START

US

OFFICIAL GAZETTE

VOL. 971

1978

MILRO PHOTO DIVISIO

OFFICIAL GAZETTE of the

UNITED STATES PATENT and TRADEMARK OFFICE

CONTENTS

Patent and Trademark Notices
Patent Cooperation Treaty Information
Patent
971 OG
Reissue Applications Filed
971 OG 8
Patent Notices
Certificates of Correction for the Week of June 6, 1978 Disclaimers
National Technical Information Service
971 OG 10
971 OG 10
971 OG 10
Condition of Patent Applications
Defensive Publications (T971,001)
Reissue Patents Granted $(29,656)$
Plant Patents Granted $(4,258)$
General and Mechanical ($4,092,739$)
Chemical (4,093,415)
Electrical $(4,093,816)$
Design Patents Granted (248,061) 41
Index of Patentees
Indices of Applicants of Defensive Publications, Reissues, Plants and Classification of
Patents (Including Reissues) PI 4
Designs, Plants and Defensive Publications PI 50
Geographical Index of Residence of Inventors
Patents (Including Reissues)
Designs, Plants and Applicants of Defensive Publications Change of Address Form and Subscription Order Form

The following are mailed under direction of the Superintendent of Docamenta, Government Printing Office. Washington, D.C., 20402, to whom all subseriptions should be made payable and Printing ofifec, Washington, D.
The officlal gazette (patents section), isaued weekly, sabscription s300.00 per annum for firt-clast mailing, also available as foarth-class mail at 3200.00; foreign frist-class mailing rates will be fornished upon request; single copies each, $\$ 4.00$ domestic, $\$ 5.00$ foreign. THE OFFICIAL GAZETTE (TRADEMARK SECTION), issued weekly, subseription 888.40 per annum, foreign malling $\$ 22.10$ addtional; single copies $\$ 1.70$ each. circulars of general information concerning patents, price 75 cents each. each.

PRINTED COPies of patents are furnished by the Patent and Trademark ofice a 50 cents each; PLANT PATENTS in color, 31.00 each; copies of TRADEMARKS AND DESIG Washington, D.C., 20231 .

[^0]
PATENT AND TRADEMARK OFFICE NOTICES

Patent Cooperation Treaty Information For information concerning the PCT inciuding the amounts
of the fees thereunder and the States that may he destenated in International applications consult the Notice entitled "Patent Cooperation Treaty (PCT) Implementation: Infor GazETTE of May 16, 197
Hay 2,1978 Acting Commissioner of Patents
\qquad and Trademarks.

Items Published in the Official Journal of the European Patent Office
The European Patent Office has requested that the follow. ${ }^{\operatorname{lng} \text { nottces be published in the Official Gazette since thes }}$ are of interest to persons involved in the fleld of patent
in the United States. The notices relate to three topics:

1. The announcement concerning the filing and restricttons. In this notice, the Patent and Trademark Office has added the title of the areas of the International
Patent Classification referred to
2. The decision of the Administration

European Patent Organization concerning the restric-
3. The of the processing of European patent applications. The announcement concerning the information service
regarding the restriction of processing of applica-thon-Preclassiscation Serrice and the Request form
for the Preclassification Service.
The notices read as follows:
anyouncement Concerning the filing and Restriction
on the processing of Edropean Patent a pplication*

1. Filing of European patent applications

On the recommendation of the President of the Europea Patent Office, the Administrative Councit of the Europea
Patent Organisation dectled at its first Patent Organisation dectded at its frst meeting (19-21 Octo
ber 1977), pursuant to Article 182, paragraph 1, of the Euro pean Patent Convention (EPC), that European patent applications may be fled with the EPO from 1 June 1978 .
Pursuant to this decision the EPO will be accepting European patent appilcations from 1 May 1978. Howerer, the date of Alling of applicatlons recefred in May will be 1 June 1978. Applications may be filed with
(a) the branch of the European Patent Offlce at The
(b) the European Patent Office in Muntch (Rosenh
 Wherever posstble, applications should be flled with the branch
at The Hague since it will be handling the first phase of the procedure.
The right to file European patent applications with the cen trial Industrial property office or other competent authorty of Contracting State, where the law of that State so permits,

[^1] the Restacticton of the processino of Europes con Pate Applications Undir Abticle 162, Paragraphan 2, of tere The Adminiate.t Convention*
The Administrative Council of the European Patent
Organisation Haring Regard to the European Patent Convention, and in particular Article 162, paragraph 2 thereof,
Having Regard to the proposal of the Prestident of the Euro-
pean Patent Office, Having Regard to th
Haring Regard to the written procedure initlated pursuant to
Article 7 of the Rules of Procedure of the Administrative
Council on the hasts Councll on the basis of the letter dated 17 No Administrative Councll members and of document $C A / 2 / 77$ annexed to that
letter. Has Decided as Folloves:
As from I June 1978 the processing of European paten applications in certain areas of technology shall be restricted. Article 2
The restrictions shail apply solely in respect of substantive
xamination and subsequent proceedings.
Article 3

The areas of technology in which applications filed in the processed shall be as listed in column 1 of the $\begin{aligned} & \text { annex to thils }\end{aligned}$ aecision. abticle 4
The areas of technology in which applications filed in the period from 1 December 1978 to 31 May 1979 will be fully processed shall be as 1 isted in column 2 of the Anner to this
This Abticle 5
Nows aectson shall enter into force on 19 December 1977 For the Berne, 19 December 1977.
The vice-Chalrman
Paul Braendli
Annex
Areas of techyoway in which applications will be Fully Processed
The areas of technology 1 isted below are defined by the ssmbols of the International Patent Classification.
This Decision of the Administratire Council of the Euro-
pean Patent Organisition condras the announement pub.
ished in the Omflal Journal

971 O.G. 4
OFFICIAL GAZETTE

C 01	NORGANIC CBEMTSTRY
C 02	TREATING WATER, WASTE WATER
	AND SEWAGE

C 01 INORGANIC CHEMISTRT
C 02 TREATING WATER, WASTE WATER AND SEWAGE
C 03 GLASS; MINERAL AND SLAG WOOL
Cos CEMENTS; CERANDCS, etc.; SOUND OR THERMAL DNSULATENG MATERULS
C 05 MANUFACTURE OF FERTILISERS
C OG EXPLOSNES; MATCHES
C 07 ORGANIC CHEMISTRY
C OB ORGANIC MACROMOLECULAR COMPOUNDS; THER PREPARATION OR CHEMCAL WORKENG-UP; COMPOSITIONS BASED THEREON

E 04 BULIDNG
E 05 LOCKS; KEYS; WINDOW AND DOOR FITTINGS; SAFES
DOORS, WINDOWS, SHUTTERS OR ROLLER BLINDS, IN GENERAL; LADDERS

ENGINEERNG ELEMENTS AND UNTTS; GENERAL MEASURES FOR PRODOCDNG AND MANTANNNG EFFECTIVE FUNCTIONING OF MACBINES OR dNSTALLATION

24 beating; ranges; ventilating
25 REFRIGERATION OR COOLNNG; MANUFACTURE OR STORAGE OF ICE; LQUEFACTION OR BOLDIFICATION OF
F 26 DRYTNG
28 HEAT EXCBANGE IN GENERAI

C 03 GLASS; MINERALIAND SLAG WOOL
C O4 CEMENTS; CERAMICS, etc.; SOUND OR THERMAL NNULATING MATERIALS
C 05 MANUFACTLRE OF FERTLLISERS
C 06 EXPLOSIVES; MATCHES
C O7 ORGANIC CHEMISTRY
COB ORGANIC MACROMOLECULAR COM POUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOhons based thera
C 21 METALLURGY OF RRON
C 22 METALLURGY; FERROUS OR NONFERROUS ALLOYS; TREATMENT OF
ALLOYS OR NON-FERROUS METALS

C 23 WORKING OR TREATMENT OF METALS, OTHER TBAN BY MECRANICAL MEANS; COVERING MATERIALS WTTH METALS; INHIBITING CORROSION OR DNCRUSTA

C 25 ELLECTROLYTIC OR ELBCTROPHORETIC PROCESSES; APPARATUS THEREFOR bulding
E 05 LOCKS; KEYS; WINDOW AND DOOR FITTMNG; SAFES DOORS, WINDOWS SHUTTERS OR ROLIER BLINDS, IN GENERAL. LADDERS
E 21 manowg
F 16 ENGINEERNG ELEMENTS AND UNTTS; GENERAL MEASURES FOR PRODOCNT AND MANTADNNG EFFECTIVE FUNCTIONING OF MACHDES OR DNSTALLATIONS

F 22 STEAM GENERATION
F 23 COMBUSTION APPARATUS; COMBUSTION PROCESSES

F 24 BEATING; RANGES; VENTDLATING
F 25 REFRIGERATION OR COOLNG; MANUREFRIGERATI
FACTURE OR STORAGE OF ICE; LGQUEFACTION OR SOLIDIFICATION OF GASES
F26 DRYDNG
F 28 HEAT EXCGANGE IN GENERAI

June 6, 1978
U. S. PATENT AND TRADEMARK OFFICE

G 02 OPTICS
G 03 PBOTOGRAPHY; CDEMATOGRAPHY; ELECTROGRAPHY; BOLOGRAPHY (Exeluding G 03 C)
Photosensitive compositions or bases carrying them; Photographic processes raphic processes; Auxiliary processe in photography
G 05 CONTROLLING; REGULATING
G 07 CHECKING DEVICES

G 09 EDUCATION; CRYPTOGRAPHY; ADVERtising; SEALS
H 01 BASIC ELECTRIC ELEMENTS
H 01 B Cables; Conductors; Insulators Selection of materials for their conductive, insulating or dielectric properties
C Resistors
G Capacitors; Capacitors, rectifiers, detecdevices, of the electrolytic inf -sensitive

4 Electric switches Relags; Emerne
Electric 5 witches; Relays; Emergency
protective devices
J Electric discharge tubes or discharge 12 mps

K Electric incandescent lamps
L Semiconductor devices; Electric solid
state devices not otherwise provided for
state devices not otherwise provided for
P Waveguides Resonators, lines, or other devices of the waveguide type
Q Aerials
R Line connectors; Current collectors
s Devices using stimulated emission
T Spark gaps; Other non-enclosed discharge apparatus

H 02 GENERATION, CONVERSION OR DISTRUBUTION OF ELLECTRIC POWER
H 02 B Switchboards, switchyards, or switchgear, for the distribution ol electric power
G Installation of electric cables or lines

G 02 OPTICS
G 03 PBOTOGRAPHY; CINEMATOGRAPEY; ELECTROGRAPHY; BOLOGRAPHY (Excluding G 03 C)
Photosensitive compositions or bases arrying them; Photographic processes, raphic, X-ray, colour, stereo-photoin photography
G 05 CONTROLLING; REGULATENG
G 07 Checking devices
G 0 of signalling
G 09 EDUCATION; CRYPTOGRAPGY; ADVERTISING; SEALS
H 01 BASIC ELECTRIC ELEMENTS
H 01 B Cables; Conductors; Insulators, Selection of materials for their conductive, insulating or dielectric properties
C Resistors
G Capacitors; Capacitors, rectifiers, detectors, switching devices or light-sensitive devices, of the electrolytic type
H Electric switches; Relays; Emergency protective devices
J Electric discharge tubes or discharge l2mps
K Electric incandescent lamps
L Semiconductor devices; Electric solid
P Waveruides not otherwise provided for vices of the waveguide type
Q Aerials
R Line connectors; Current collectors
s Devices using stimulated emission
T Spark gaps; Other non-enclosed discharge apparatus
H 02 GENERATION, CONVERSON OR DISTRIBUTION OF ELECTRIC POWER
H 02 B Switchboards, switchyards, or switchgear, for the distribution of electric power
G Installation of electric cables or lines

H 04 ELECTRUC COMMUNICATION TECHNIQUE
is restricted under Article 162 , parapranh patent appitications is restricted under Article 162 , paragraph 2, the Euronean
Patent Office (EPO) will offer the following service to poten. thal applicants:
The European
The European Patent Office will determine provisionally in
tchich sub-class or which sub-class or sub-classes of the International Patent
Clasification an invention which is likely to form the of a European patent application falls.
The EPO will also establigh ch hether this sub-class or these
sub-classes will be the areas of technologu in sub-clagses will be the areas of technology in respect of which
processing is restricted at the envisaged time of filing of the prospective applicatio
The EPO will then communicate this information to person making the request.
The EPO will perform this service in response to a writte request. When making their request, users of the service are recommended to use the form in the Annex, which will be
obtainable from the EPO (see addresses below), or to use the ext of the form in theif request.
If the form or test thereof is
In any case be clearly identified as a request for the "pre-closs any case be cleariy identified as a request for the "pre-class
fication service." It should state that an indication is require nication service." It should state that an indication is required
of the sub-class or sub-classes of the International Paten Classification in which the invention falls, and whether this sub-class or one of these sub-classes will be on the list ope
or examination at the envitsaged time of filing. The request for examination at the ensisaged time of filing. The request
should state in which month the prospective application is likely to be filed. The request and the documents acconipanyin It must be in an officlal language of the EPO, (English. French Mand
German).
The pre-classiffcation request Postal addres
The pre-classification reques
a) the description, claims and drawings whith will be
filed if the invention becomes the subject of Den the invention becomes the subject of a Euro
b) the claims which will be flied if the invention become
the subject of a European patent application, and a
cops of a previous application whose prity is
be clatmed previtous it anpilcation whose priority is man, or if it is not, a translation of it into one or
or the present, no fee will be charged for this service.
The pre-classification request and the documents a EPO will howerer maintain confidentlality in thespect of thes

Convention for the Protection of Industrial Property.
Potential users of this service are reminded of their re Willty for complying with any national leglslative or regula tory prorisions governing inventions which, owing to the
hature of their subject matter ature of their subject matter, may not be communicated
broad without the prior authorisation of the competent anthorities of the State in question, (cf Article $7 \mathbf{5}$, paragrapht
and No pers Nace person, Irrespective of ths state of restdence or principal of a representative in using to act through the intermed lary legal persons may make their request for the serv, natural or chal persons may make thefr request for the seryice through
the intermedtary of a representative. In this case it is necessary for the representative to file with the EPO not
nuthorisation to act in this and authorisation to act in this capacits. This service will commence on 1 February 197s. Requests t the European Patent Office Brant directly to or file bey will be dealt with. Office, Branch at The Hague, where ostal address : Bropean Yatent Office PO Bor No. 5818
L-2280 HV Rijswitk
-2eso HV Rijswijk ZH diress for dellveries by hand
uropean I'atent office ${ }_{\text {Patentiaan }}{ }^{2}$
Requests wil
Postal address :
European Patent Office
PO Box 202020
D- 8000 München 2
Address for deliveries by hand
Eurosean fro deliverles by
Batent Ofice
Rosenheimer Strasse 30
München
Nuery
to ensure effort will be made to provide a rellable service and to ensure that if the EPO assigns a provisional classification
which is open for which is open for examination when the ensuing application is filed. that this application will be examined. However, the EPO can give
no Mability.
\qquad Year \qquad
The undersigned requests the European Patent Office to determine provisionally and communicate to him
(i) in which subelass or subelasses of the International Patent Classification the invention set out in the accompanying documents falls;
(ii) Whether this sub-class or one of these sub-classes will be on the list open for examination at the envisaged time of filing of the prospective European Patent application

The envisaged time of filing of the prospective application is signed \qquad

Accompanying documents (please tick where applicable):

drawings
copy of previous application whose priority is to be claimed
translation of previous application into English. French or German \square claims
-If the envisaped time of filing lis not indicatod, the EPO will gill porform the ervice, but will indicate whether the whbciess or one of the abbelases is open for examination at the time of porforming the wrice.

Patent Suits
Notices under 35 U.S.C. 290 ; Patent Act of 1952
 ESSING; 8,091,912, same, fled Jan. 25, 1978, D.C., W.D.N.C (Charlotte) Doc. C-C078-0020, Lex Tex Ltd., Inc. v. Ame 3,091,912. (See 3,077,724.)
s,237,488, P. A. Tesson, PIPE LINE Laying appara
 CV77-3778-RF, Sartech Int'l Inc. . . Sante Fe Int'l Corp.
Filed plaintir's notice of dismissal and roluntary disnissal of complaint and order thereon, Jan. 24, 1978.
S.259.291, R. S. Batt, BEARING, fled Apr. 14, 1977, D.C.,
S.D.N.Y., Doc. $77-\mathrm{C}-1802$ Bell \& Howell Co. v. McGraw Hill S.D.N.Y.,. Do. 77 -C-1 1502 Bell \& Howell Co. v. HeGrave Hill
Inc. Dlsmissal pursuant to Rule 41 (A) (1), Dec. 2, 1974. 3,291,908, K. Ehrat, PROCESS FOR THE CODING OF MES SAGES, Rled Dec. 13, 1977, D.C., N.D. Tex. (Dallas) Do CA3-77-1610C, Gretag Aktiengeselllschaft v. Datotek Inc. s.425,508, E. W. Faulstlch, EXTENSION LADDER, filed
Aug. 20, 1976, D.C., Ill. (Chicago), Doc. $76 c 3106$, Eugene W. Fauletich v. Motac, Inc.
3,471,112, MacDonald and MacDonald, CoMbiNatio.
SHELF SUPPORT AND ANCHOR SHELF SUPPORT AND ANCHOR, Aled Jan. 23, 1978, D.C Conn. (Hartford), Doc. H78-38, P.X. Industries, Inc. v.
Plastiglide Manufacturing Corporation.
3.500,8s3, R. LL Cook, hard Faced Ceramic and plas
TIC ARMOR, $3,516,898$, same, HARD FACED PLASTIC ITC ARMOR, 3,516,898, same, HARD FACED PLASTIC RMOR, Aled Jan. 30, 1978, United States Court of Claim
(District of Columbia), Doc. 37-78, Goodyear Aerospace Cor poration v. The United States.
$3.516,998$. (See $3,509,833$.)
3,547,811, J. R. Me Whirter, cyclic oxygenation of BOD-CONTALNLG WATER, 3.547,812, same, HIGH OXY-
GEN UTILIZATION IN BOD-CONTALNING WATER GEN
TREATMEYT, 3,547, ,813, Robinson and MEWhirter, BIO
CHEMCAL CHEMICAL OXIDATION WITH LOW SLUDGE RECYCLE,
$3,547,815$, J. R. McWhirter, STAGED OXYGENATION OF 3.547,815, J. R. McWhirter, STAGED OXYGENATION OF
BOD-CONTANING WATER, fled May 2 , 1975, D.C., S.D......, Doc. 2098, Air Products and Chemical, Inc. v. Union
Carbide Corparation. Carbide Corporation.
3,547,812. (See 3,547,811.)
$\begin{array}{ll}\mathbf{3 , 5 4 7 , 8 1 3 .} & \text { (See } 3,547,811 .) \\ \mathbf{3 , 5 4 7 , 8 1 5} & \text { (See } 3,547,811 .)\end{array}$
3,782,007, Qulnn and Kwiatkowski, GLaSS FORMING Ma CHINE HAVING AN AUTOMATIC CONTROL SYSTEA 3,987, 703 , Kwlatkowski and Wood, PROGRAMMABLE AUTO
MATIC CONTROLLER, Aled Sept. 23, 1977, D.C S. MATIC CONTROLLER, fled Sept. 23, 1977, D.C., S.D. Tex.
(Houston), Doc. CA H-77-1586, Ball Corp. and Ball Packaging Products, Inc. v. Anchor-Hocking Corp.
3,774,056, Sample and Scheuer and Speheger and Cox,
DIGITAL ELECTRONIC CONTROL CIRCUIT FOR CYCLIDIGITAL ELECTRONIC CONTROL CIRCUTTFOR CYCLI CALLY OPERABLE APPLIANCES AND THE LIKE, fled
Feb. 22, 1978, D.C., S.D. Ohlo (Cincinnati), Doc. C-1- $\mathbf{8} 8-92$,

3,804,231, Farrell and Blanch1 and Johanson, floatag COLLECTING APPARATUS AND METHOD, Flled Jan. 2
1978, D.C. Conn. (New Haren), Doc. N-78-34, JBF Scienti Corporation v. Sealand Encironmental Engineering, Inc.
3,827,107, R. R. Moore, ADJUSTABLE STRAP ASSEMBLY Iled Feb. 10, 1978 , D.C., N.D. Callf. (San Franclsec), Doc
C-78-318 CBR Robert R. Moore v. Orthopedic Technol C-78-
Inc.
s.814,943, Bennett and Haller, automatic tape load
 May 19, 1977, D..., Mass. (Boston), Doc. 75-1916-F, Pro.
Oramming Technologies, Inc. 3,887,806, Lancaster and Lancaster, PROCESS OF Morporation $\mathrm{s}, 867,806$, Lancaster and Lancaster, PROCESS OF MAKIN
ATRETCHED WRAPPED PACKAGE, fled Dec. 20,197 D.C.N.J. (Newark), Doc. C-77-2596, Lantech Inc. v. Pack oing Sales \& Development Corp.
9,884,008, F. R. Dybel, LOAD SENSING DEVICE, 4,010,679,
same, PEIZOLECTRIC TRANSDUCER SENSOR FOR USE
 TEM, Aled Nor. 28, 1977, D.C., S.D. Ohlo (Cincinnati), Do C-1-77-710, International A easurement \& Control Company
v. Pressco Inc.
 iemens aktiengesellschaft v. Reliable Electric Company. 3,969,703.
4,010,679. (See $3,762,907$. .)
(See $3,884,088$)
4,011,431, M. L. Lerin, electric COoking appliance With reversible grill, fled Feb. 15, 1978, D.C., C.D alif. (Los Angeles), Doc. CV78-621-LTL(Sx), Winnie Ma $\underset{4,048,848 \text {. }}{\substack{\text { (See } 3,884,088 .) \\ \text { anufacturing Co., Inc. } \\ \text { v. Scovill Manufacturing Company. } \\ \hline}}$

REISSUE APPLICATIONS FILED

Notice under 37 CFR 1.11 (b). The reissue applications

 in the indicated Examining Groups and copies may beobtained by paying the fee therefor (37 CFR
1.21 (b)).

Re. 29,169, Re. S.N. 882,821, Filed Mar. 2, 1978, C1. 195/ 103.5 A, PROCESS FOR THE DEMONSTRATION AND DETERMINATION OF REACTION COMPONENTS HAVING SPECIFIC BINDING AFFINITY FOR EAC OTHER, Antonius Hermanus Wilhelmus Maria Schuurs, et porated, Asheville, N.C., Attorney or Agent: Robert H. Falk et al., Ex. Gp.: 172
3,543,949, Re. S.N. 897,298, Filed Apr. 17, 1978, Cl. 214 / Roman J. Weier, Owner of Record: Wyand Industries Inc Roman J. Weier, Owner of Record: Wyard Industries Inc,
Forest Lake, Minn., Attorney or Agent: John C. Barnes, Ex. Gp.: 314
3,611,494, Re. S.N. 900,021 , Filed Apr. 28, 1978, Cl. 425 376 R, EXTRUSION HEAD FOR EXTRUDING ANNU LAR ARTICLES OF THERMOPLASTIC MATERIAL Harald Feuerherm, Owner of Record: Kautex-Werke Reinold Hagen, Rheinland, Germany, Attorney or Agent: Edwin E.
Greigg, et al., Ex. Gp.: 322 Greigg, et al., Ex. Gp.: 322
3,949,354, Re. S.N. 893,569, Filed Apr. 5, 1978, Cl. 340/18 LD, APPARATUS FOR TRANSMITTING WELL bORE DATA, Jackson R. Claycomb, Owner of Record Schlumberger Technology Corp., New York, N.Y., Attorney or Agent: David L. Moseley, et al., Ex. Gp.: 222

3,949,687, Re. S.N. 896,195, Filed Apr. 12, 1978, Cl. 112 7, DEVICE FOR USE WITH BOTTONHOLE AT TACHMENT, Howard B. Julien, Owner of Record: Inven ${ }_{353}$ I, Attorney or Agent: Manfred M. Warren, et al., Ex. Gp. 353

37,962,602, Re. S.N. 897,299, Filed Apr. 17, 1978, Cl. 315 370, SIDE PINCUSHION CORRECTION SYSTEM, Woifgang Friedrich Wilhelm Dietz, Owner of Record: RCA Corporation, New York, N. Y., Attorney or Agent: Eugene M. Whitacre, et al., Ex. Gp.: 222

3,994,990, Re. S.N. 881,080 , Filed Mar. 27, 1978, Cl. 260 MENT OPICALLY BRIGHTENED NYLON MONOFILA Record FISHING LINE, Danny R. Foote, Owner of Record: Berkley \& Company, Inc., Spinit Lake, Iowa, Attor

4,001950, Re. SN 896074 , Filed Apr. 13,1978, C1 $354 /$ 19, DATA RECORDING CAMERA Susumu Fujith, Owner of Record: Fuij Photo Film Ca. Lid., Kanagawa-Ken Gapan, Attorney or Agent: Richard C. Sughrue, et al., Ex. p.: 211

4,024,979, Re. S.N. 885,696, Filed Mar. 13, 1978, Cl. 220 11, HANDLING RING FOR PLASTIC DRUM, Walter J.

4,059,867, Re. S.N. 869,922, Filed Jan. 16, 1978, Cl. 16/110 Haavik, Owner of Record: The Nash Engineering Company, A, HANDLE FOR UTENSILS, Robert J. Adamis, Owner Norwalk, Conn., Attorney or Agent: Albert C. Nolte, Jr., et of Record: Inventor, Attorney or Agent: George B. White,
al., Ex. Gp.: 343 Ex. Gp.: 353

PATENT NOTICES

Certificates of Correction for the Week of June 6, 1978 4,071,941.-La Vern E. Sweet, Chino, Calif. METHOD For | P.P. 4.165 |
| :---: |
| D. $266,5+4$. | 1. $1.2+6,5+4$.

D. $247,+14$.
. D. $247,+414$
$3.363,15$
3
3 177205
 $3,852,294$
$3,91.942$
$3,968.994$ 3.951 .942
3.968 .94

3.938 .13 .7 \begin{tabular}{l}
1.953 .13 .7

3.953 .61

3.99 .875

\hline

3.985 .361

$3.99+3,575$

$3,997,68.3$

\hline
\end{tabular}

 3.999 .008
$4.001,+21$

4.002 .50 S | 4.002 .208 |
| :--- |
| $4.003,768$ |
| $4.004,762$ | $4,003,76 \mathrm{~s}$

$4,004,62$
$4.006,722$
 4.007 .121
4.007 .161
4 4.007 .161
4.012 .357
$4.013,573$ $4.012,357$
$4.013,53$
$4.014,59.5$
 4.016 .542
4.0121 .049
4
4 4.021 .049
$4.01,313$
$4.021,4+0$ $4.021,4+0$
$4.022,767$

0.022 .756 \begin{tabular}{l}
4.022 .767

$\begin{array}{l}\text { 4.022.786 } \\
4.023 .516\end{array}$

\hline

4.023 .516

$4.02+, 264$

4

\hline

$4.024,264$

4.024 .54

+0.027 .064

\hline
\end{tabular}

4.027 .214
4.027 .516
4.025 .333
.02 .19

4
4.029 .419
4.031 .533 4.028.419
4.031 .533
4.032 .052

4.035 .912
4.038 .384
4.039 .324
1039.659

4.033
4,03
4

+.043 .339
$4.0+4+1+2$
$4.04+.231$
1.041 .10
$\mathbf{4} .044 .231$
$4.04+675$
4.044 .716

$\mathbf{4}, \mathbf{4} 5 \mathbf{4}, 438$
4.054 .96
$\mathbf{4}, 0450.516$

4,045,933	+,066,304
4,046,991	4,066,390
4,047,154	+.066.521
4,048,437	4,066,589
4,049,052	4,066,627
4,049,626	4,066.744
4,050,651	4,066.8.35
4,051,332	4.066,918
4,051.527	4,067.06:3
4,051.707	4.067.170
4,052.348	4,067,253
4.052.350	4,06T,377
f.052.t03	+,067,543
4.053, 3.37.9	4.067,577
4,0.33.834	4,067,719
4.054.569	4,067.75.5
4.054,671	4.067,911
4.0.54, 833	4.068.034
4.054,974	4,068,243
4.050,431	4,068.267
4,055,486	4,068,292
4.055,551	4.068.574
4.056,520	4,068.937
4.056,996	4,069,210
4.057,437	4.069,2\% 8
4,057,952	4.069.327
4,058.163	4.069 .389
4.058.194	4.069.390
4,05s.403	4,069,675
4.0.88.500	4.069,688
4,058.709	4,069,725
4.058,851	4.069,946
4.058.85,3	4.069,995
4.05s,991	4,070, 124
4.059,027	+.070.41. ${ }^{\text {a }}$
4.059,250	4.070,473
4.059,618	4,070.697
4.059,819	4.070.759
4,060,73.7	4.070,954
4,061,209	4,071,12:
4.061,550	4.071,29.,
4,061.97. ${ }^{\text {S }}$	4,071,573
4.062.730	4,071.602
4,063,036	4.071,650
4.063.221	4,071.709
4,064,1s2	4.071.793
4.064.872	4.071.81,
4,064,874	4,071,845
4.065.179	4,071,878
4,065,295	4.071.880
4.065.237	4.072,010
4,065,242	4.072.302
4.063.635	4,072.360
$4,065,788$	+,072.370
4.066.151	4.072.481

Disclaimers
Reissue No. 29.016.-Gcorge Raymond Peacock, Loulsville, K. WELDNG AND FORMING METHOD. Patent dated Oct. 26, 1976. Disclaimer filed Apr. 4. 197S, by the as.
signee, Thermatool Corp. signee, Thermatool Corp.
Hereby enters t.

1. of sald patent.

-

3.676.15s.-Leonarl G. Fischer, College Point. Nif., and Phillp Wong, Bergenfield, NJ. METHOD OF FonMMNG
AN ADHERENT COATING ON FOODS. Patent date AN ADHERENT COATING ON FOODS. Patent dated
July 11, 1972. Disclaimer filed Mar. 15, 1978, by the asJuly 11. 1972. Disclaimer filed M
signee, DCA Food Industries, Inc.
Hereby enters this disclaimer to clatms 1 to 11 of sail
971 O.G. 10
dated Feb. 7, 1978. Disclalmer filed Apr. 5, 1978, by the inventor.

National Technical Information Service
Goveriment-owned Inventions
Notice of Availability for Licensing
The inventions listed below are owned by the U.S. Governunent and are available for domestlc and posisiby forelgn
Hitensing in accordance with the licensing policles of the
agee agency-sponsors.
Coptes of the
Coples of the patents cited are arallable from the Con-
mistincr of Patents and Trademarks, Washington, D.C. missioner of Patents and Trademarks, Washington, D.C.
20231. for $\$.50$ each. . e equests for coples of patents must include the patent number
Coples of the patent applications can be purchased from
the National Technical Information Service (NTIS), Springfield, Na. 22161 for $\$ 4.00$ (88.00 outside North American Con-
tinent). Requests for coples of patent applications must in. tinent). Requests for corlies of patent applications nust in-
clude the patent application number. Clalms are deleted from patent applicatlon conies sold to the pubbitc co avold prema-
ture disclosure in the event of an tinterference before the ture disclosure in the event of an interference before the
Patent and Trademark Office. Claims and other technical Patent and Trademark Offte. Clalms and other technical
data will usunlly be made avallable to serious prospective licensers by the egency which filed the case.
Requests for Iicensing information on
Requests for licensing information on a particular inven-
tion should be directed to the address cted for the apencython shout
sponsor.
dorglas J. Campios,
Patent Proyran Coordinator,
Sational Technical Information Serrice.
v.s. Depabtaient of the army
 Patent 3.995.79. Laser MIssile Guldance Systems. Filled Oct.
15, 1974. Datented Dec. 7 , 1976. Xot araliable NTIS.

 Phatent 4 t. 02.123. Dual Channel Redundant Fuze. Flled July
11, 1975. Patented Jan, 11, 1977, Not avallable NTIS.

 Patent $4,056,354$. Process for Rapld Dyeing of Textlles. Filled
Feb. 10, 1976. Patented Nor. 1, 1977. Not avallable NTIS.

U.s. defartment of Commerce

National Technical Information Service
${ }_{5285}{ }^{2}$ Port Royal Road
5285 Port Royal Road
Springteld. Va. 22161
Fatent anplication 868.358. Inverse Fourth Power Photo-
metric Chlibrator. FIled Jan. 10, 1978.
U.S. Departaent of Energy
Assistant General Coungel for Patents
Washngton, D.C. 20545

Tatent 4.031.387. Metiod or Ditermintan wheter ert

July $20,1977$.
Patent application 823,142. Slide Valre. Flled Aug. 9, 1977.

 National abronautics and Space administantion

PATENT EXAMINING CORPS
RENE D. TEGTMEYER, Assistant Commissioner WILLIAM FELDMAN, Deputy Assistant Commissioner

CONDITION OF PATENT APPLICATIONS AS OF MAY 6, 1978
chemical examining groups

mechanical examining groups

DEFENSIVE PUBLICATIONS

PUBLISHED JUNE 6, 1978

Published et the request of the applicant or owner in accordence with the Notice of Dec. $16,1969,869$ O.G. 687 . The abstracts of Defensive number of pages of specification, including claims and shects of drawings contuined in the application as originally filed. The fives of thee applications are aviilable to the public for inspection and reproduction may be purchased for 30 cents a sheect.
Defensive Problication applications have not been examined as to the meris of alleged invention. The Patent and Trademark Office makes no asertion as to the novelty of the disclosed subject matter.

T971,001
LINT-COTTON RECLAIMING APPARATUS FOR
Gino J. Mangile COTHII, Jr Greenille Mis
United Santes of America as represented by the Secretary of Agriculture, Wmenington, D.C.

Filed Jun. 14, 1977, Ser. No. 806,571
Int. C.2 ${ }^{2}$ D01B $1 / 02$
U.S. C. $19-202$
5 Sheets Drawing. 11 Pages Specification

An apparatus to reclaim lint-coton and return it to the ginnin process is disclosed. The apparatus comprises in combination a unique arrangement of condensing cylinders, feed cylinders,
saw cylinders, grid bars, and doffing brushes used to collec
T971,002
ADJUSTABLE NOZZLE
Thomes L. Mitchell, Washington, IIl, assignor to Caterpillar
Filed Mar. 15, 1976, Ser. No. 666,735 Int. C.2. ${ }^{2}$ F01M $9 / 00$
U.S. C. $184-6.14$
2 Sheets Drawing. 14 Pages Specification

In a system including a first member and a second member
ment is included. The nozzle directs pressurized fluid such as a lubricant or coolant delivered to the first member outwardly in a range of possible directions to impact the second member.

1971,003

SYNTHESIS OF DIMALEIMIDES
Gus George Orphanides, Newark, Del, ampnor to E. I. du Pont
de Nemours and Company, Wilmington, Del. Filed Dec. 29, 1975, Ser. No. 645,21 int. C1. ${ }^{2}$ C07D 403/00, 403/02 U.S. C. $260-326.26$

Bifunctional maleimides can be prepared in high yield by Bifunctional malceimides can be prepared in high yield by composed of the azeotrope of hexamethylphosphoramide o 1 -methyl-2-pyrrolidone and acetic acid, followed by dehydraon of the intermediate with acetic anhydride in the presence of an alkali metal salt of a C_{2} - C_{5} aliphatic acid. The solven can be used in subsequent syntheses of maleimides can be used in subsequent syntheses of maleimides.

FOAM T1,004 $\begin{gathered}\text { FOASTICS }\end{gathered}$ Imperial Chemical Dind, Biggleswade, England, saignor to Claims priorty Ang, 8, 1977, Ser. No. 822.910 Claims priority, application United Kingdom, Sep. 6, 1976

Int. C. ${ }^{2}$ B29D $27 / 00$ U.S. C. $264-53$

 No Drawing 12 Pages SpecificationA process for the manufacture of a foamed thermoplastic aromatic polyethersulphone comprising heating a solid ther pone which is not in comprising an aromatic pol plastic polymer, said composition containing 0.25 to 20% by weight of an absorbed volatile liquid selected from water, acetone, ethyl acetate, methyl ethyl ketone, methylene chlo Tg is the glass/rubber transition temperaure of C wher plastic polyethersulphone Preferably the thermoplastic composition contains 0.5 to 20% and particularly 1 to 20% by weight, of the absorbed volatile liquid.
The sol
The solid thermoplastic composition may be in the form of a powder or granules so as to produce a foamed puff-ball type of
structure or it may be in the sheet, film, coating in the form of a shaped article such as foamed shaped article. The heating may be effected using an air oven, a microwave oven or by immersion of the composition in the form of a shaped article in a fluidized bed or bath or The volatile liquid may be incorporated into the con by exposing the polyethersulphone to an atmosphere of the liquid and more particularly by immersing the polyethersulphone in the volatile liquid. Where the volatile liquid has a solvent affinity for the polyethersulphone, granules or powder soaked in the liquid may flow together to form a product
which becomes a foamable solid after the excess volatile liquid has been allowed to evaporate.
Examples of polyethersulphones employed in the foaming

- $12-0-\mathrm{SO}_{2}-\mathrm{anc}$

$$
-1-2-2
$$

T971,005
METHOD FOR SYNCHRONIZING SETS OF INTERACTING PROCESSES
William Wilkinson Collier, Wappingers Falls, N.Y., assignor to
International Business Machines Corporation, Armonk, N.Y. International Business Machines Corporation, Armonk, N.Y.
Continuation of Ser. No. 425,358, Dec. 17, 1973, abandoned, which is a continuation of Ser. No. 212,282, Dec. 27, 1971, bandoned This application May 13, 1977, Ser. No. 796,786 Int. Cl. ${ }^{2}$ G06F $9 / 0$
U.S. C. $364-300$
6 Sheets Drawing. 32 Pages Specification

Allows a set of processes to operate cyclically on a set of shared resources (e.g. I/O buffers). Each process is allowed to condition that it does not operate simultaneously on a resourc with any member of the next (cyclic) subset of processes. PURIFICATION OF PHOT1,006 PURIFICATION OF PHOSPHORIC ACID SOLUTIONS
Anthony J. Smith, Florence, Ala., assignor to Tennessee Valley Authority
Filed Sep. 14, 1977, Ser. No. 833,191 Int. C1. ${ }^{2}$ C01B $25 / 16$
\qquad
An improved method of purifying wet-process phosphoric acid by sedimentation, in which the crude acid is intimately
mixed with an appropriate amount of finely divided silica or mixed with an appropriate amount of finely divided silica or
silicate. The result is that the absolute magnitude of the zeta silicate. The result is that the absolute magnitude of the zeta
potential of the suspended solids, particularly humus and gyppotential of the suspended solids, particularly humus and gyp-
sum, decreases to a value that allows them to aggregate, settle
tapidly, and be removed by conventional methods. The Si:F ratio is increased, effecting a reduction of muorine contamination. The rate of growth of gypsum crystals is increased, reduc-
ing the amount of post-precipitation of gypsum and other ing the amount of post-precipitation of gypsum and other
particulates. Because the rate of settlement is increased, the holding time prior to further processing, such as concentrating
merchant-grade acid, is decreased, reducing storage and space requirements and associated capital investment as well as investment in product inventory. The sedimentation of solid

iquid and solid fertilizers containing fewer impurities. The emoval of solids, particularly humus, allows the efficient separation and recovery of organic solvent when uranium is methods, minimizing the loss of solvent.

T971,007
MICROWAVE TREATMENT OF PACKAGE FOODS James L. Hecht, Richmond, Van, assignor to E. I. du Pont de Nemours and Company, Wilmingston, Del. which is a continuation-in-part of Ser. No. 500,497, Aug. 26, 1974, abandoned, which is a continuation of Ser. No. Aug. 26, $\mathbf{0 4 8}$, Jun. 29, 1973, abandoned. This application Aug. 11, 1976, Ser No. 713,353
Int. Cl. ${ }^{2}$ A23L 3/ Int. Cl. ${ }^{2}$ 23L $3 / 00$
U.S. C. 426-234
1 Sheets Drawing. 16 Pages Specification
1 Sheets Drawing. 16 Pages Specification
The shelf-life of food is improved by sterilizing such food by heating it in a container having oxygen barrier properties, by miroduct sterilization. Such container is formed of a laminat including an organic polymeric material coated with an inorganic glassy barrier material and with a heat-sealable topcoat. The coating is from 0.02 to 2 microns thick and includes over 50% metal phosphate selected from aluminum and iron phos to 0.5 and up to about 50% of the metal ions may be replaced by tin, titanium or zirconium ions.

T971,008

FOXING PRIMER
David R. Hansen, Houston, Tex., assignor to Shell Oil Company Filed Jul. 18, 1977, Ser. No. 816,788
Int. Cl. ${ }^{2}$ B32B 25/00; D03D $1 / 00$ U.S. C. $428-266$ No Drawing. 9 Pages Specification
An improved footwear assembly is disclosed comprising a fextile upper, a polymeric soling and a foxing wherein the copolymer. The improvement lies in coating at least the area of
copolise the upper which is contacted with the foxing with a silane compound containing at least one functional group. These functional groups include halogens, alkoxy groups, alky mines, methacryloxypropyl groups, alkyl mercapto groups the foxing and polymeric soling are formed from compositions containing styrene-butadiene block copolymers.

DTITE Re. 29,656
adorive transfer unit having a slidable PIERCING MEMBER
Richard Marion Chittenden, Gryyslake; Peter Lorin Bryant Lake Bluff, and Charles Carlock Classen, Waukegan, all o
additive container to transfer into the [vacuumized] solution container.

Re. 29,657

POWER DRIVEN SKI
Jui. 31, 1975. Contimued Oct of Ser. No. Ser. No. 600,665, Royce H. Husted, Wheaton, Il., assignor to Saroy Engineering, 1974, abandoned. Application for reissue Mar. 21, 1977, Ser.
U.S. C. 128 - 272.3

Int. Cl. ${ }^{2}$ A61J $1 / 00$
7 Claims

1. An additive transfer unit for storing and transferring of a medicament to a solution container having an exposed closure [and a vacuum therein]
said transfer unit comprising [a] an additive container for storing the medicament to be transferred, said additive container having a rigid neck portion defining a finish, the affixed thereto;
said closure having a shoulder for resting against said finish of the rigid container neck, said closure including a puncturable stopper with a pierceable diaphragm portion posi tioned in sealing engagement with the opening in the tubular member having a cylindrical portion, the cylindrical portion including a central opening therein for slidably receiving a piercing member;
said tubular member including an undercut in the outside said tubular member including an undercut in the outside
surface of the cylindrical portion thereof, sealing means surface of the cylindrical portion thereof, sealing means
positioned in said undercut; pood engageable with the cyl
member and the sealing means to ber and tubular member prior to use of the unit;
said tubular member being positioned and arranged so that the opening therein overlies the diaphragm portion of said
stopper; stopper;
crimping me
the additive moans to affix the closure and tubular member to said piercing mentainer
opening in said mer being positioned within said central phoug said member and having a passageway thereboth ends thereof; both ends thereof;
said piercing member having an integral stop and being movable from the first position for entry through the
closure of the [vacuumized] solution container with said integral stop constructed and arranged to contact said exposed closure of [vacuumized] said solution container to a second position for puncturing of the stopper in the additive container to thereby provide a pathway between 6. In a caron for packaging an article comprising a rectangy-
the containers and permit the medicament within the larly shaped top wall a rectangularly shaped botrom wall a pair
2. In a power driven ski for [attachment to a skier's foot and for] slidingly negotiating snow as with a conventional ski, said power driven ski having in combination
portion having aperture dividing it into an anterior skj face and a posterior ski portion,
b. a bridge holding said ski portions to each other,
[c. means for attaching said skio to a skier's foot,]
[c. means for attaching said ski to a skier's foot,]
[d.] c. an endess tread circulateably suported
d.] c. an endless tread circulateably supported around said posterior ski portion having at least one tension carrying
member and a plurality of cleats attached to said tension carrying member for thrusting against the snow. [e.] d means for circulateably supporting said tread around said posterior ski portion, and
[f.] e. motor means coupled to said tread for circulating said tread around said posterior ski portion, he improvement wherein the posterior ski portion has a longisaid bridge holds said ski portions in position one relative to the other so that said undersurfaces jointly form a longitudinally smooth skiing undersurface substantially throughout th
length of said ski.

BOOK CAPTON Re. 29,658

BOOK CARTON WITH IMPROVED OPENER enjamin Rous, New York, N.Y., assignor to Stone Contain Original No. 3,989,141, dated Nor.' 2, 1976, Ser. No. 662,962 Mar. 1, 1976. Application for reissue Feb. 7, 1977, Ser. No 666,434

Int. C. ${ }^{2}$ B65D 85/54
U.S. C1. 206-424

I
10 Chai

of trapezoidally shaped side walls foldably connected to each side of said bottom wall, one of said pair of side walls also being foldably connected to one side of said top wall, a first pair of end flaps, each of said first end flaps being foldably connected to one end of said bottom wall along a first folding line, each of said first end
flaps including an inner portion and an outer portion, said inner portion being foldably connected to said outer portion along a third portion beeing foldably connected to said outer porion along a third
folding line, said end flap inner portion being foldably connected to said bottom wall and being coextensive in length with said bottom wall, the improvement comprising said firt end flap outer portion being a first predetermined amount (X) shorter in length
than said end flap inner portion. said fint end flap outer porion being equal to width to a second predetermined amount (L), a clasure flap being hingedly connected to the other of said pair of side walls, said closure flap having a pair of end portions extending inwardly from the ends of said closure flap a distance equal to the second predetermined amount (L), said closure flap end portions
being equal in width to the first predetermined amount (X), said being equal in width to the first predetermined amount (X), said
closure flap and said first end flap outer portions being normally positioned parallel to said bottom wall and being coplanar with each other.

PROCESS AND PRODUCT FOR MAKING A SINGL SUPPLY N-CHANNEL SIIICON GATE DEVICE William E. Armastrong, Miesion Viejo, Calle ole, Inc., Schaumburg. III. Original No. 3,912,545, dated Oct. 14, 1975, Ser. No.
May 13, 1974. Application for reisue Mar. 7, 1977, Ser. No. 775,004
U.S. Cl. 148-1.5 Int. C. ${ }^{2}$ H01L 21/265

1. A process for [increasing the threshold voltage of an] fabricating an inverter including serially connected N-channel
MOS devices in a semiconductor substrate comprising te MOS devices in a semiconductor substrate comprising the step
implanting acceptor ions [of one conductivity type] into the channel regions of both devices at the surface portion of a P-type semiconductor body [having source and drain level and in an amount sufficient to increase the threshold voltage of said MOS [device] devices

Re. 29,661
SULFURIZED METAL PHENATES
Yngre Gust Hendrickson, El Cerrito, and John M. King, San Raffel, both of Caslif,", assignors to Cherron Reeearch Com-
pany, San Francisco, Calif. pany, San Francisco, Calif. Original No. 3,801,507, dated Apr. 2, 1974, Ser. No. 281,863,
Aug. 18, 1972. Application for reisurue Jul. 5, 1977, Ser. No. 812,940
U.S. C1. 252-42.7

$$
\text { Int. C. }{ }^{2} \text { C10M } 1 / 54
$$

U.S. C. 252-42.7 13 Claims 1. A composition of matter prepared by reacting an alky
phenol having from 8 to 3 carbon atoms in the alkyl group, phenol having from 8 to 35 carbon atoms in the allyl group,
sulfur and an alkaline earth metal base in the presence of a mutual solvent to form a sulfurized metal phenate having a sulfur to metal atom ratio between 1 and 4 and an alkalinity alue 4010200 mg . $\mathrm{KOH} / \mathrm{gram}$.
7. A process for producing a mixture of sulfurized metal phenates having a sulfur to metal atom ratio between 1 and 4
and an alkalinity value of 40 to 200 mat KOH . comprises: comprises:
irst contacting of 8.7 to 47 mol percent of an alkyl phenol
having from 8 to 35 carbon atoms in the alkyl group, from having from 8 to 35 carbon atoms in the alkyl group, from
13 to 81 mol percent of sulfur, from 0.5 to 42 mol percent of an alkaline carth metal base and from 1.3 to percent percent of a mutual solvent within a liquid reaction medium at a temperature of 250 to 450° F. and at a presence of 5 to 20 p.s.i.a. for a period of 1 to 6 hours, the mol ratio
being maintained between 0.05 to 1.5 mols of metal base, being maintined between 0.05
0.1 to 4 mols of mutual solvent and 1 to 5 mols of sulfur per mol of alkyl phenol; and
second contacting of the reaction product obtained from said first contacting with 0 to 49 mol percent of said alkahine earth metal base, and from 171080 mol percent of said
 9. A process for producing a mixture of 4 to 10 hours. 9. A process for producing, a mixture of sulfurized metal and an alkalinity value of 40 to 200 mg . KOH/gram which comprises
contacting in a first step from 0.2 to 1 mol of an alkaline earth metal base, from 0.2 to 1 mol of a mutual solvent and from 1.5 to 3 mols of sulfur with each mol of an alkyl phenol having from 8 to 35 carbons; in the alkyl group said contacting being maintained at a temperature of 250 to $450^{\circ} \mathrm{F}$. and a pressure of 5 to 20 p.s.i.a. for a period of product; and
contacting in a second step said sulfurized intermediat reaction product with 0.2 to 0.6 mol of an alkaline eart metal base and from 0.5 to 2 mols of mutual solvent per mol of said alkyl phenol in said first step;
temperature of 250 to $450^{\circ} \mathrm{F}$. and a pressure of 2 to 15 p.s.i.i.a. for a period of 2 to 10 hours to produce a sulfurized metal phenate mixture.

Re. 29,663

Maild R. Mining and Manufucturing Company, St. Paul, Minn. Ortiginal No. 3,681,179, dated Aug. 1, 1972, Ser. No. 56,379, Jun. 20, 1970. Continumation-in-part of Ser. No. 678,013, Oct. 25, 1967, abandoned. Application for reisasue Jua. 24, 1977, Ser. No. 809,629
${ }_{-336}^{\text {Int. }}$

315

1. Flexible adhesive-coated solar control film which is nor1. Flexible adhesive-coated solar control film which is northe use of a protective liner, readily unwound and easily handled in large sheets but which is capable of being firmly, adherently but removably bonded to a glass sheet with a pressure enjitive adheive to provide a bubble-free transparent lami sensed structure said solar control film comprising in combina tion:
a thinsparent film backing, coating on one face of saic backing,
backing,
over the aluminum,
a thin, trans
a water-activatable adhesive system comprising:
a uniform continuous layer of normally tacky waterinsoluble pressure-sensitive adhesive coated over said primer layer and firmly adherently bonded thereto and
thin, uniform continuous light-transmitting tack-free film-forming water-soluble material coated tack-free firmly bonded to said laber material coated over and sive,
whereby water may be applied to the water-soluble material to activate it and render its surface slippery, thus permitting the solar control film to be readily positioned on a glass window soluble material can be expelled at the edges of said film and the remaining water evaporated through said film to permit the pressure-sensitive adhesive to bond firmly to said windowpan and form a laminated structure having excellent optical prop erties.

PLANT PATENTS

GRANTED JUNE 6, 1978
Illustrations for plant patents are usually in color and therefore it is not practicable to reproduce the drawing.

$\stackrel{4}{4,258}$
 John J. Ryan, 39877 Sundale Dr., Fremont, Calif. 94538 Filed Mar. 28, 1977, Ser. No. 782,284

 1 Claim U.S. Cl. Plt. -68U.S. Cl. PIt. -68

Int. C. ${ }^{2}$ A01H 5/00

1. A new and di
2. A new and distinct form of Impatiens plant as described
3. A new and distinct form of Impatiens plant as desciler 1 Con ch known by the cultivar name Chickasaw and and illustrated known by the cultivar name Maya and particu- and illustrated known by the cultivar name Chickasaw and
larly characterized by its excellent floriferousness; good break- particuarly characterized by short internodes; many rose-pink ing action; making a full basket; giving good cutting produc- flowers in the summer and salmon flowers in the winter; tion; red-green foliage like Mikkel Red Magic: fast growth bright yellow variegation on a moderately light green lea adverse conditions. under high light and increasing age of plants; and a
breaking action conducive to making a good basket.

4,259 John J. Ryan, 39877 Sundale Dr mi - NAVAJO Filed Mar. 28, 1927, Ser. No. 782,285
U.S. C1. PIt. -68 Mar. 28, 1977, Ser. No. 782,285
Int. C1.2 ${ }^{2} 01 \mathrm{H}$ 5/00

1. A new and distinct form of Impatiens plant as described and illustrated known by the cultivar name Navajo and partic ularly characterized by rich red-green foliage with a very distinct golden brown to off-yellow variegation; a medium
size, rose-red flower with a light eye; a very erect, thick, stiff stem; and very good breaking action, making an excellent pot
and/or bedding plant. and/or bedding plant.

IMPATIENS PLANT ${ }^{\text {4,261 }}$ - CREEK John J. Pyan, 39877 Sundale Dr., Fremont, Calif. 94538 Filed Mar. 28, 1977, Ser. No. 782,287 U.S. CI. Plt- 68 Int. Cl. ${ }^{2}$ A01H $5 / 00$

1. Anew
2. new and distinct form of Impatiens plants as described and illustrated, known by the cultivar name Creek and particularly characterized by its bright red-greene foliage that grows in
richness under high light; bright pink flower color with larly characterized by its bright red-green foliage that grows in
richness under high light; bright pink flower color with slightly darker eye; moderate flower size and average numbe ty; but the chief distith habit for a New Guinea pot vari trast.

PATENTS

GRANTED JUNE 6, 1978

ERRATA

For	See
CLASS	Patent no.
072-275	4,092,875
010-024.	4,092,913
010-088.	4,092,914
400-144.2	4,093,059
400-236.	4,093,060
400-194.	... 4,093,061
220-462.	... 4,093,114
274-009	... 4,093,152
366-336.	4,093,188
366-156.	... 4,093,189
283-001	... 4,093,276
134-104.	4,093,472
350-355.	... 4,093,534
544-344.	.. 4,093,616
544-281.	.. 4,093,617
544-387.	.. 4,093,618
568-766.	4,093,667
568-855.	.. 4,093,668
235-001	4,093,848
235-302.2	.. 4,093,851
362-104.	.. 4,093,973
363-027.	.. 4,093,975
358-053.	4,093,976

PATENTS

GRANTED JUNE 6, 1978

GENERAL AND MECHANICAL

METHOD OF REPLACING HAIR
Richard P. Clemens, 1706 S. 91 st Ave., Omaha, Nebr. 68124 and Robert Fucha, 1908 Parkwild West, Council Blufft, Iowa
51501 51501
Continuation of Ser. No. 665,690, Mar. 10, 1976, abandoned. This application Aus. 29, 1977, Ser. No. 828,942 U.S. C. 3-1

1. A method for replacing hair in a delineated area of a living 1. Aechod for replacing hair in a delineated area of a living human scalp which has
A. Positioning a plurality of individual tubular resinous sleeves atop the scalp skin layer and arranged in an annular pattern within said delineated area;
B. Providing distinct spatial gaps between the ends of neigh boring tubular sleeves;
C. Embedding a series of sutures in an annular pattern utiliz ing an elongaes.one-piece surgical thread, the lead-end of which is inseey ed in repeated alternating fashion as follows:
i. through the sualp skin layer and restricted to the spatial gap between heighboring sleeves whereby there is pro-
vided suturing infra-lengths lying buried within the subcutaceous scalp layer; and
ii. through the longitudinal bore of the sleeves as a suturing supra-length said bore being sufficiently larger cros-sectionally than said suturing whereby each sleeve remains entirel
slidable therealong;
D. Buttressing the su
thread at it lead-end and trail-end thereby preventing the buried infra-lengths thereof from sliding within the sub-
cutaceous layer; and
to which connector replacement hairs to the sleeves and
ich connector replacement hair might be attached.
ARTICULATED JOINT PROSTHESIS
Salomao Eshriqui, Rua Pampeu Loureiro No. 32, Bloco B-Apt. 402, Rio de Janeiro, Brazil
FLled Oct. 4, 1976, Ser. No. 729,100
Claims priority, application Brazil, Oct. 3, 1975, 750646
U.S. Cl. 3-1.911

9 Claims 1. first bone alated joint prosthesis comprising in combination of a first bone associated with one side of said joint;
a second bone penetrating element for penetrating the marrow of a second bone associated with the other side of said joint;
articulation means having a normal plane of articulation comprising first hinge means on said first element and second hinge means on said second element, said first and inge means being operatively associated for artic ulation about a hinge axis; and
second hinge means, permitting therebetw said first and
rotational movement in a plane perpendicular to the nor mal plane of articulation of the articulation means; said articulation means including a hinge pin defining said hinge axis and said bias means being positioned between said pin and said first hinge means;

said first hinge means including a bearing at each end of said pin and said bias means comprising separate elastic means pin and said bias means comprising sep
forming part of each of said bearings.

PROSTHETIC DEVICE FOR USE AS A HIP JOINT homas David, Vienna, Austria, assignor to Firma Ludwig Berram GmbH \& Co. KG, Hannover, Germany Bivision of Ser. No. 699,841, Jun. 25, 1996, abandoned. This Claims priorty, application Austrian, Jun. 26, 1975, 4941/75
U.S. Cl. 3-1.913

1. A hip joint prosthesis comprising a substantially spherical portion capable of being anchored in the acetubular fosse of a pelvic bone, a shank portion capable of being anchored in a
femur, the spherical portion and the shank portion being inte gral and being gral and being composed of an elastic material, fixing means
associated with the spherical portion, and at least one holding associated with the spherical portion, and at least one holding
member co-operable with the fixing means to anchor the spherical portion in the fosse, said holding member being anchorable in the pelvic bone by being inserted into a hole,
previously made through the pelvic bone, from the side oppo-
site the fossa and said holding member comprising a shaft for insertion into the hole in the pelvic bone, and a fixing head on he shaft engageable against the side of the pelvic bone oppoite the fossa, the shaft of the holding member having a having a threaded shaft extending from the spherical portion and engageable in the threaded hole.

,092,742

DYNAMIC PROSTHETIC MYOCARDIUM Adrian Kantrowita, Pontiac, and Paul S. Freed, Oak Park, both of Mich, asalgnors to Sinai Hoopital of Detroit, Detroth, Mich

Filed Oct. 18, 1976, Ser. No. 733,677
U.S. C. 3-1.7

9 Claims

1. A prosthetic myocardial device for replacing excised necrotic or scarred myocardial tissue to simulate contra and relaxation during systole and diastole, comprising: with each of the arms being supported at one of its ends for pivotal movement and the other end of each arm being adapted for suture to the heart around the periphery of an opeaing formed in excising myocardial tissue; power plurality of arms to simulate contraction and relaxation of the heart, including an hydraulic cylinder, a piston reciprocable within the cylinder, and a piston rod extending out of the cylinder and being essentially coaxial of the functionally interconnecting the piston rod and each of the pivotal arms for effecting reciprocal pivotal movement of the arms in response to the reciprocal axial movement of the piston rod.

4,092,743

NTRAOCULAR LENSE
Charies D. Kelman, 73 Becon Rd., Old Westbury, N.Y. 12123 Cos D. Kelman, Cononnuation-in-part of Ser. No. 728,973, Oct, 4, 1976, U.S. C. 3-13
U.S. C. 3-

26 Claims (A) the lens having
(1) a medial, light-focusing lens body, and
(2) a pair of lateral position fixation elements connected
with said lens body
(B) one of said position fixation elements having l) a first portion contiguous to and extending generally
laterally outwardly from a first region of the periphery of said lens body, and
(2) a second portion extending from said first portion generally trans versely thereto and at least partly peripherally of suid lens body, said second portion having that
part of its peripheral edge which faces said lens body part of ins peripheral edge which faces said
spaced from the periphery of said lens body
(C) and the other of said position fixation elements extending
generally laterally outwardly
(1) from a second region of the periphery of said lens body spaced from and generally opposite said first region and (2) in a direction generally oppositit to that of said first portion of said one position fixation element (D) said pair of position fixation elements cooperating to with respect to the iris of an eye of a lens implant paten (E) the configurations of said position fixation elements and their location with respect to said lens body being such that
(1) the minimum length
(a) of a projection of the entire lens onto a plane parallel to the optical axis of said lens body in a direction perpendicular to a projection of said optical axis on
such plane such plane
(b) which can be achieved by rotating the lens 360° (2) is greater than the mini,
(a) of a projection of said lens body onto said plane in a

direction perpendicular to a projection of said optical axis on such plane
b) which can be achieved by rotating said lens body to an extent sufficient that axis
an incision in the eye, by a movement the lens, through adial with respecte, by a movement which is generally length of such incision to pe greater thenld require the length of such incision to be greater than the minimum possible length of the incision which, as a function of would accommodate and permit passage therethrough of said lens body alone, and
(F) the maximum width of each of said position fixation elements at any part thereof for a given thickness thereof
being such that that element can be accommoded pass longitudinally through said minimum length incision (G) whereby
(G) whereby the entire lens is capable of being snaked into the eye of a lens implant patient through said minimum length incision.

AUTOMATIC HYGIEN2,74

AUTOMATIC HYGIENIC WASHING MACHINE Fitol 689 Seneca Are., Rideewood, N.Y. 11227
Filed Feb. 22, 1977, Ser. No. Filed Feb. 22, 1977, Ser. No. 770,41
Int. $\mathrm{Cl}{ }^{2}$ A61H 35/00; A46B 13/O6; GOSG 9/04 1.S. C. $4-7$ 2 Claims 1. An automatic hygenic washing machine, comprising in combination, a bracket mounted under a toilet seat, spherical through said ball, one end of a shank being pivotally connected to one end of said rod, a power unit being detachably supported by one of opposite end of said shank, a rotating brush detachably being supported on said power unit, said brush periphery thereof and openings on said periphery communica.
tion with an interior chamber of said base; said power uni
directly communicate with the space between the projections, said projections acting as stiffeners and centering
including a case having a first cor a a plurality of radials fins formed around an outer side of said shaft first chamber, an entry port and an outlet port from a col water supply being connected to said entry port so that flow o said water through said first chamber cause said shaft to rotate, a second chamber inside said power unit case communicating
with one end of a central opening through said shaft, said brush mounted upon an opposite end of said shaft, an interior of sai base communicating with an opposite end of said shaft central

opening, a plurality of perforated openings through a periph an entry port on said second chamber a flexible bose from an entry port on said second chamber, a flexible hose from entry; a first link pivoted at one end to said toilet seat, a contro lever adjacent a side of a toilet being tethered to an opposit end of said link, a lower end of said lever being rotatable in a opening on an opposite end of said rod, a sideward spur near a connected to said spur, said second link being also connecte to a sideward spur formed along an intermediate portion of said shank.

guides, said
said thread.
SWIMMING POOL APPARATUS
Richard Hartis, Archbold, Ohio, assignor to Mack and Gooding, Archbold, Ohio, a part interest Archbold, Ohio, a part interest
Continuation-in-part of Ser. No. 472,214, Mar. 22, 1974, abandoned. This application Apr. 20, 1976, Ser. No. 678,473 U.S. C1. 4-172.17. ${ }^{\text {Int. }{ }^{2} \text { E04H } 3 / 20 \text {; E03B } 11 / 00 ~}$

4,092,745
Robert A. Oropallo, Pasadena, Calif,, assignor to America a. Oropallo, Pasadena, Calif,, essignor to America Filed Dec. 13, 1976, Ser. No. 749,827
U.S. C1. 4288

11 Claims
U.S. C. 4288

1. In a drain assembly for a drain floor having an opening oward which a drain pipe projects, the combination compris
ing: (a) a tubular plastic body sized to exteriorly fit the drain floor opening, the body having an external thread, and nut threadably engaging the body thread and rotatable relative to the body, the nut defining an exterior flange,
the body and nut consisting of molded plastic material, the body and nut having a common axis,
(b) a plate defining an upper flange overlapping the top of the body, and a grille bounded by the upper flange and overlapping the upper interior of the body,
(c) and a tubular base having a flange attached to the nu
flange at the underside thereof portion projecting downwardly for reception of the upper extent of said pipe, said base consisting of molded plastic material,
(d) said nut including circularly spaced downward projec. tions extending into the upper interior of the base, the nut of the ut at approximatly the level of the

2. Swimming pool apparatus for use on a pool filled with water up to a predetermined maximum level and having a side pool, such outlet normally being filled with water water in the n combination, chamber means including a rectangular waterght box having an opening in one side for positioning in lignment with a pool outlet, sealing means for effecting a liquid seal between said chamber means and the pool adjacent on said watertight box adjacent such side opening, said sealing means preventing the pool water from entering said chamber means and the pool outlet, said chamber means including an upper portion which extends above the predetermined maxi-
the pool, said upper portion defining an opening located above frame may be positioned above the bed of a patient and the he predetermined maximum water surface level, said chamber hoist means attached to the stretcher and the patient lifted up means further including a lower portion which extends below
the pool outlet when said watertight means is sealed to the pool whereby, when said chamber means is sealed to the pool with said sealing means and is drained to below the pool outlet, the pool outlet is drained without lowering the normal water surface level, and suction cup means mounted on opposed sides
of said watertight box for removably mounting said watertight box in a surrounding relationship with the pool outlet.

4,092,747

ODOR TRAP FOR DRAIN
Fied May 20, 1976, Ser. No. 688,309 Claims priority, application Germany, May 21, 1975, 2522425 U.S. Cl. 4-286

9 Claims

and transported, and whereby the apparatus may be folded for storage.

MATTRESS SPRING $\begin{gathered}\text { 4,092,749 }\end{gathered}$ MATTRESS SPRING UNIT CONSTRUCTION rated, Chicago, Il. led Jan. 6, 1977, Ser. No. 757,237
Int. Cl. U.S. Cl. 5-267

1. An odor trap for a drain, comprising:
an upwardly open housing having a substantially flat sidewall provided with an exit port for entering waste water; insert having a peripheral wall forming a bottom inlet beneath the level of said exit port and a circular lateral outlet registering with said exit port;
mounting means securing said insert to said sidewall; and
an upwardly concave tongue in said insert spaced fre an upwardly concave tongue in said insert spaced from said periphery of said outlet, said tongue having a curved bottom hugging said outlet over substantially the lower third of its periphery and a pair of upstanding flanks on opposite sides of said curved bottom, said flanks rising to
a level below a horizontal midplane of said outlet, said curved bottom rising to the same level and merging there gradually into said flanks along a generally U-shaped overflow edge whose bight is curved about a vertical axis disposed inwardly of said outlet and whose arms defined wall, said overflow edge being separated by a senerally ring-segmental clearance from said peripheral wall, said clearance terminating at said sidewall and having a horizontal cross-sectional area at least equaling the cross-sectional area of the flow path of said outlet.

PATIENT HANDLING SYSTEM

Marion H. Ewers, Payson, Ariz, assignor to Air Rotor Develop ment Company, Inc., Paysion, Ariz.
Filed Jul. 16, 1976, Ser. No. 705,810
U.S. C1. 5-85

$$
\begin{aligned}
& \text { Jul. 10, 1976, , Ser. No. No. } 7 \text {. } \\
& \text { Int. C1G } 7 / 10
\end{aligned}
$$

1. A retention and support strip for attachment to a mattress nnerspring unit with cross helicals which extend transversely coil springs in the rows, to reduce spin-out of the cross helicals and increase firmness of the innerspring unit comprising:
a strip including leg members for extending about the cros helicals of the innerspring unit and for being crimped together with the cross helicals about the terminal convolutions of adjacent coil springs in a row when said strip
overlies the terminal convolutions of the coil springs in overlie

4,092,750 INFLATABLE INSULATING APPARATUS Ellis, 2315 Brondway, No. 2, Boulder, Colo. 80302
Filed May 14, 1976, Ser. No. 686,653 Filed May 14, 1976, Ser. No. 686,653 U.S. C. 5- 343 Int. Cl. ${ }^{2}$ A47G 9/00 $\quad 17$ Claims
insulating appatis 1. An inflatable insulating apparatus for use as or in a mat1. Apparatus for lifting and transporting bed 8 Claims 1. Apparatus for lifting and transporting bed patients from
and to hospital beds comprising a strectcher a horizontall ${ }^{\mathbf{3}}$ and to hospital beds comprising a stretcher a horizontall
foldable rectangular frame having corner hinges, detent means to prevent folding of the frame from the rectangular position in use, hoist means carried by said frame and having means for engaging said stretcher a plurality of legs straddling the bed
and supporting said frame above hospital bed height and means and supporting said frame above hospital bed height and means
for moving the apparatus attached to said legs; whereby the nvelopes; means for inserting a fluid therevilty of fluid-tight nvelopes; means for inserting a fluid therewithin to inflate said cant portion of the thermal radiation incident thereon, said onal poced portions including said reflective means being in east a portion of each of said fluid one another across at spaced portion including said reflective means intersecting a
path extending between a first surface of each of said envelopes adapted to engage a first object, person or the like being insuengage a second object, surface or the like from which the firs object, person or the like is being insulated, whereby said apparatus in an insulator with heat transfer through and across

said envelopes being reduced by said spaced reflective means said envelopes located adjacent one another; said apparatus incluing adational insulation material covering at least portuon of the exterior of each of said envelopes to facilitate the
reduction in heat transfer through said apporatus; and a reduction in heat transfer through said apparatus; and a cover
retaining said envelopes and additional insulation material
together.

4,092,751

 CONTOURED FOAM SEATTheodore B. Burkholder, Perrysburg, and Robert J. Stalter, Borling Green, both of Ohio, assignors to The Goodyear Tire R Rubber Company, Akron, Ohio
Filed May 6, 1976, Ser. No. 683,
Int. Cl. ${ }^{2}$ A47C $23 / 00$
6 Claims

1. In an improved seat including a support means for
foamed body contact member, the improvement wherein the surface of the foamed body contact member has cored-ou areas, said cored-out areas being positioned to give a geometric
pattern of grooves that extend continuously in lengths no mor patan four inches before the grooves terminate or change direc tion to give raised portions, each portion being capable of being compressed independent of any other portion for at leas 10 percent of its compression deflection.

4,092,752
FIRE RETARDANT BOX SPRING AND MATTRESS
FIRE RETARDANT BOX SPRING AND MATTRESS Upiohn Cougan, Newport Beach, Calif, assignor to The Upjohn Company, Kalamazoo, Mich. Filed Nor. 29, 1976, Ser. No. 745,690
U.S. CI. 5-345 R 1. An improved box spring and mattress combination, said 1. An improved box spring and matress combination, said mattress consists essentially of
a homogeneous core of flame retarded flexible polyurethane
foam which is the product of reaction, under foam pro-
ucing conditions, of
cent to 95 percent by weight of toluene disocyana
cent from 95 percent to 5 percent by weight of pol
methylene polyphenyl polyisocyanate containing from bout 40 percent to about 70 percent of methylenebis(ne polyphenyl polyisccyanates having a functionality higher than 2.0 ; (b) a polyether polyol having an equivalent weight from
about 500 to about 2500 and a functionality from about about 500 to about 2500 and a functionality from about
2.0 to about 4.0 ; (c) from about 2 to
(c) from about 2 to about 20 percent by weight, based on
weight of final foam, of antimony oxide; weight of final foam, of antimony oxide; (d) fright of final foam, of a polyhalogenated member

selected from the class consisting of polyhalogenated aliphatic diols and polyhalogenated aromatic compounds; and
(e) from 0 to about 15 percent by weight, ba
of final foam, of alumina trihydrate; and

隹解 foam, of alumina trihydrate; and on weight (f) when the amount of alumina trihydrate is zero, a chlorinated hydrocarbon polymer in an amount such that the
resultant foam contains from about 2 to about 8 percent by weight of chlorine;
said core of flame retarded polyurethane foam being enclosed in a covering of flame retardant ticking; and said box spring comprising a non-combustible frame.

4,092,753
COMBINATION DRILL AND SCREWDRIVER Manfred E. Fuhrmann, 115 West St., Mamaroneck, N.Y. 10543 Flied Apr. 5, 1976, Ser. No. 673,990
U.S. Cl. 7-158 Int. Cl. ${ }^{2}$ B25F 3/00 2 Claims

1. A combination screwdriver and drill tool comprising a hollow cylindrical outer sleever having an upper end and a lower end, the internal walls of said outer sleeve having first ongitudinal slots formed along a substantial length thereof and eter of said outer sleeve being less at the upper end thereof than acing shoulder of said outer sleeve, a lateral downwardly facing shoulder formed at the point where said lesser and
greater diameters of said outer sleeve join, a second slot ward of said compartments and the forward marginal edges of ormed in the outer walls of the upper end of said outer sleeve said top panel being anchored relative to said bow structure. and extending completely therethrough and being oriented at a
passage therein and having a cylindrical shaft having a central passage therein and having a proximal end and a distal end
located longitudinally within said outer sleeve, fist spring located longitudinally within said outer sleeve, first spring
means disposed on said shaft and engaging said downerly means disposed on said shaft and engaging said, downwardly
facing shoulder to urge the distal end of said shaft extending to just below the central portion of said outer sleeve, a cutting drill bit extending through said central passage of said shaft and the length of said outer sleeve, said shaft and cutting drill bit being fixedly engaged with one another, second spring
means urging said outer sleeve downwardly with respect to said cutting drill bit and shaft, transverse pin means extending from said shaft, engaging said first longitudinal slots in said outer sleeve, the base of said slots serving as a stop means engageable with said pins to limit downward movement of said
shaft and cutting drill bit with respect to said shaft and cutting drill bit with respect to said outer sleeve,
guide means in the lower portion of said outer sleeve for said guide means in the lower portion of said outer sleeve for said
cutting drill bit, and changeable screwdriver bit means secured in the lower portion of said outer sleeve and locked against
rotation relative to said outer sleeve, and a longitudinal central rotation relative to said outer sleeve, and a longitudinal central
passage within said changeable screwdriver bit means adaptpassage within said changeable screwdriver bit means ada
able to permit said cutting drill bit to pass therethrough.

4,092,754

John V. Boat interior and cabin design
Yost, 2233 Riverside Dr., Trenton, Mich. 48183 Filed Mar. 7, 1977, Ser. No. 775,058
Int. C1. ${ }^{2}$ B63B $17 / 00$
U.S. CI. 9-1.1

9 Claims

1. A boat including a hull defining longitudinal upstanding opposite sides interconnected by a bottom extending between lower marginal edges of said sides and by a bow structure a pair of spaced apart midship opposite side compartments immediately inwardly of said sides and defining a center longi-
tudinal aisle therebetween, said sides terminating upwardly in tudinal aisle therebetween, said sides terminating upwardly in
generally horizontal gunwales, said compartments projecting generally horizontargunwales, said compartments projecting
appreciably upwardly above said gunwales and including forward upper portions inclined forwardly and downwardly toward said gunwales, a lower walk deck extending longitudinally of said hull between said compartments and appreciably forwardly of the latter, a raised deck above and below said
walk deck and gunwales, respectively, extending between said waik deck and gunwales, respectively, extending between said
sides forwardly of said compartments and forwardly from the latter toward said bow structure, said raised deck including a rearwardly opening vertical extending recess formed therein opening into said aisle between said compartments and in
vertical registry with the forward portion of said walk vertical registry with the forward portion of said walk deck
extending forwardly of said compartments, the portion of the interior of said hull disposed between said compartments and said bow and between said opposite sides defining a forward cockpit, and a cover removably secured over said cockpit including a top panel and depending opposite side panels, said
top panel including front and rear marginal edges, said side top panel including front and rear marginal edges, said side
panels including forwardly and downwardly inclined rear marginal edges extending downwardly from adjacent ends of sidd rear marginal edge of said top panel, said inclined marginal edger being anchored relative to the corresponding portions of enid forwardly and downwardly inclined compartment upper partioas, sid side pancks including lower marginal portions
anchared retrive to the corresponding gunwale portions for-

4,092,755

Gary W. HIGHLY VERSATILE DOCK TRAILER Gary W. Hughes, 33 Vista Dr., Little Rock, Ark., 72204 U.S. C. 9-1.2

Int. C1. ${ }^{2}$ B63C $13 / 00$

1. An improved, combined trailer and dock unit, said unit comprising an elongated rectangular, open chassis frame, flotaprotected by said chassis frame, wood decking fixed to the
pixed upper surface of the chassis frame and overlying siided to to the members, said chassis frame including horizontal bottom
beams on each side thereof, a drop axle wheel assembly for beams on each side thereof, a drop axle wheel assembly for
detachably mounting to said frame, each wheel assembly com prising a pair of elongated slider bars, spring members shackled prising a pair of elongated slider bars, spring members shackled
to said slider bars and depending herefrom, whecels mounted to the spring members and means for detachably mounting said slider bars to the bottom of said chassis frame side e ceams at
longitudinally adjustable positions, demountable bunks carried longitudinally adjustable positions, demountable bunks carried
by said chassis frame and projecting above said deck for guiding a boas longitudinally therecbetween during loading of the
boat onto said unit, at least one roller means demountably boat onto said unit, at least one roller means demountably carried by said chassis frame adjacent the rear end of the unit
and projecting above the deck for contact with the boat keel during movement of the boat longitudinally into overlying position with respect to the unit deck, a tow bar means, means
for mounting said tow bar means to the frent for mounting said tow bar means to the front end of said chassis frame at the center thereof, winch means mounted to said
towbar means for winching the boat over said roller onto said bunks, vertically adjustable anchor bars mounted to at least the rear corners of said chassis anchor bars mounted to ment relative to said chassis frame for jacketing the rear of said
trailer-dock unit trailer-dock unit above the water level to permit the unit to act
as a fixed dock within the water, subsequent boat therefrom, means for remorovably mounting a winch in-
cluding a winch line a cluding a winch line adjacent to each of sount vertically adjust-
able anchor bars, and pulleys fixed to said chassis freme able anchor bars, and pulleys fixed to said chassis frame adjacent the vertically adjustable anchor bars; whereby, by attach-
ment of the end of a winch line to the upper end of the vertical anchor bar and by leading said line through said pulley, operating said winch forcibly drives the vertically adjustable anchor bars vertically downward into the sea bottom to lift the rear
end of said dock-trailer unit. end of said dock-trailer unit.

DIVER'S 4,092,756 BUOYANT CADD

 U.S. CI. $9-8 R$

1. A buoyant

1 Claim

1. A buoyant vessel which is adapted to a marine diver's use storage of matrine equipment, game and the like comprorsing: A. a flexible bladder which is fluid impermeable, said bladder being elongated in a horizontal direction and streamlined longitudinally for facile movement under the water, primarily in horizontal directions, said bladder defining a
skirt at its bottom which said skirt comprises a streamlined continuation of the bladder in a downward, vertical direction, said skirt forming inner and outer apertures at verti-
cal ends thereof and defing cal ends thereof and defining an inflatable facemask con-
nection between the bladder and
application of outer aperture to the face of the diver his means in response to said photocells, and form plates for adexhalant may inflate the bladder;

B. a flexible stringer which is secured interiorly to the skirt and shielded thereby, said stringer providing a connection
for a restraint line, joining the diver to the vessel, per se.

APPARATUS FOR $4,092,757$
NUMBERS OF RIGHT AND LEFT IASTS SIZE Ludvik Dokoupii; Oldrich Hroude, both of Gottealdov, an Jovef Zila, Otrokorice, all of Crechoolovakia, assignors to Zavody premeho strojirenstri, narodni podnik, Gottwaldor, Czechoslovakie
Filed May 13, 1977, Ser. No. 798,562
U.S. C. 12-127

Int. C. ${ }^{2}$ A43D 3/00

1. Apparatus for identifying the size numbers of right and left shoe lasts on a shoe making machine having a frame and
shoe ironing devices, comprising a support for the heel part of a shoe last supported on the frame of the marchine, the support
having means cooperating with the heel part of the she last to having means cooperating with the heel part of the shoe last to locate the last with respect to the suppor, the heel part support
having an extension, a support for the toe part of the shoe las having an extension, a support for ch: toe part of the shoe last
slidingly supported on the extension for movement in a direc sion perpendicular to the longitudinal axis of the shoe last, a
support for identification elements slidabby mounted on sid support for identification elements slidably mounted on said
extension for movement in the direction of the longitudinal axis extension for movement in the direction or the longiudinal axis
of the shoe last, a first power means for selectably sliding the support for the identification elements in reverse directions,
the identification elements comprising two sets of light source the identification elemencs comprising two sets of light sources and cooperating photocells arranged side by side on the sup.
port for the identification elements and adapted to identify in the course of their movement the size number of a left or a right shoe last by the interruption of a light beam striking the photocell by the toe part of the shoe last, means to control the
said first power means according to the response of one of said said first power means according to the response of one of said of the machine, means controlling the said second power
justment of said ironing devices slidably supported on the frame of the machine for movement in reverse directions generally along the length of the shoe last, the second power means being connected with said form plates so as selectively nally of the shoe last.

CAST POWER BRUSH John P. Horton, Berrardsrille, and Susan H. LeWand, Colonia,
both of N.J,, essignors to Newark Brush Company, Kenilboth of N.J.
worth, $\mathrm{N} . \mathrm{J}$.

Filed Aug. 14, 1975, Ser. No. 604,546
U.S. Cl. 15-180 Int. CC. ${ }^{\text {A A46B }}$ 3/02, 3/16

1. In a rotary power driven high speed, heavy-duty municipal sweeping brush element having a working surface that is lat or disc shaped and provided with means for attaching the
rush to a rotary heavy-duty source of power, said brush element containing a multiplicity of bristles having medial bends therein formed into a plurality of tufts containing a plurality of bristles, each tuft being suris formed in each of the tufts above said restraining means and so that the major portion of the bristles extend below said restraining means to perform the sweeping function, and a back for said brush and a positioning means for said tufts comprising a body of a fiberglass filled and reinorced substantially inflexible high impact thermoset polythan 2 foot-pounds per inch and a Shore D hardness greater than 50 cast around said tufts so that said bight is embedded in said resin with its upper end closer to the top surface of said brush back than to the bottom surface thereof and with said restraining means being closer to the
bottom surface of said back than to the top surface thereof and at least substantially completely embedded in the body of said resin.

4,092,759
COUNTING MECHANISM FOR A MOTOR VEHICLE
WASHING PLANT WASHING PLANT
ebhard Weigele, Am Schönblick 12, 8901 Tafertingen, Ger-
Filed Jan. 26, 1977, Ser. No. 762,748
Cluims priority, application Germany, Feb. 23, 1976, 7605361 U.S. C. 15-257 1. In a counting mechanism for a motor vehicle washing lant having a vehicle guiding track, comprising a vertically ovable switching member adapted to be conlacted by and ember extending transversely with respect to the direction of ovement of said vehicle and in the path of movement of said wheels on said one spacing (b) of said vehicle, a stroke counter or moved to said switching member and a conveyor device veyor device having plural spaced conveyor rollers mounted
on an endless tension member and moved in said vehicle guid on an endless tension member and moved in said vehicle guid ment of said wheels on said one side of said vehicle, the im provement comprising wherein said switching member is arranged in said path of movement of said conveyor rollers, wherein the limits of vertical movability of said switching

member is at least as great as a spacing between a path o movement (B) of the highest point of each conveyor roller above the bottom of said vehicle guiding track and wherein said switching member includes a loading device for returning said switching device, after being pressed down by a vehicle wheel, into an initial ready position above the conveyor roller.

METHOD AND APPARATUS FOR ELECTRONICALL rarland G. Mc RELAXING POULTRY
Nell G. McWhirter, deceased, late of Kansas City, Mo. by NeWhirter, Kanses City Mo spose), assignor to Jerry Continuation of Ser. No. 429,867, application Jan. , 1991, Ser. No. 446,357 The portion of the term of this patent subsequent to Dec. 31, 1976, has been disclaimed
Int. C C. ${ }^{2}$ A22B $3 / 00$
U.S. Cl. 17-1 E

1. Apparatus for electrically shocking poultry in a poultry processing operation, said apparatus comprising: (a) a poultry conveyor having a plurality of poultry supporting shackles spaced therealong and movable in a defined path, said shackles engaging legs of poultry to support same head down;
(b) a first shocking device positioned in said path along said
conveyor, said first shocking device having upper and conveyor, said first shocking device having upper and
lower electrodes positioned in said path for electrical engagement with portions of said poultry as same moves thereby, said engagement being an electrical circuit making member having an inclined upper surface and an upper edge portion and a lower edge portion
(c) means on said lower electrode defining a channel extending between the upper edge portion and the lower edge portion thereof;
means on said lower electrode and means extending along the upper edge portion of said lower electrode and provide a flow of liquid between the upper edge portion and the lower edge portion and having a substantially niform depth across the channel:
(e) means including portions defining a liquid collecting channel extending along the lower edge portion of said lower electrode for collecting used liquid and poultry waste across the width of the channel for disposal of the
liquid and waste: liquid and wast
(f) a jugulating area positioned in said path along said con-
veyor and spaced from said upper edge portion of said lower electrode;
(g) a second shocking device positioned in said path along said conveyor and having said jugulating area between said first and second shocking devices, said second shock-
ing device having upper and lower electrodes positioned in said path for engagement with portions of said poultry as same moves thereby, said engagement being an electrical circuit making contact; and
(h) means electrically connected to said upper and lower first and second shocking devices for applying a first electrical potential difference to said upper and lower electrodes of said first shocking device and a second electrical potential difference to said upper and ower electrodes of said second shocking device whereby
circuit between the electrodes in each of said first and towards the portion of said surface between said opposed time in said frist shocking deve polfy is shocked a first lateral edges.
time in said first shocking device before moving into the stunned condition and the poultry is shocked a second time in said second shocking device with a lesser electrical potential difference after jugulation is performed on the poultry, said second shock being of a voltage to facilitate
bleeding of the poultry.

4,092,762
HOG HEAD REMOVAL METHOD Edward Ochylski, 9155 S. Pleasant, Chicago, III. 60620 Divislon of Ser. No. 477,781, Jun. 10, 1974, Pat. No. 3,990, This application Apr. 12, 1976, Ser. No. 675,704 U.S. CI. 17-45 Int. C. ${ }^{2}$ A22B 3/00

1. A method of removing a head from a hog carcass which has been stuck which method comprises:
suspending said carcass in the head-down position suspending said carcass in the head-down position;
marking the skin of the carcass around the neck;
engaging a hook in the stick wound or in the jaw of said carcass;
thereafter app
thereafter applying a substantially longitudinal force to said carcass through said hook, wherein said longitudinal force is offset from vertical, whereby the carcass is positioned in whereby the head is rotated upwardly about a horizontal axis; and
continuing said force until the atlas joint is disengaged and
said heal ontinuing said force until the atlas joint is disengaged
said head is substantially removed from said carcass.

4,092,763 AIR GUIDE PLATE

Thomas C. Poore, Mauldin, S.C., assignor to J.P. Stevens \& Co., Thomass C. Poore, Man
Inc., New York, N.Y
Continuation of Ser. No. 728,655, Oct. 1, 1976, absandoned. This application Jul. 12, 1977, Ser. No. 814,824

1. A card machine air guide plate comprising a surface having a plurality of grooves substantially adjacent a pair of opposed lateral edges of said plate, each of said grooves forming an angle relative to said lateral edges for
across said surface from each of said opposed lateral edges

4,092,764
CLEANING OF TEXTILE CARDING MACHINES INCLUDING AN AIR RECIRCULATING SYSTEM Arthur E. Thomas, and E. Alan Pace, both of Winston-Salem, assignors to Envirotech Corporation, Menlo Park, Calif
Filed Dec. 3, 1976, Ser. No. 747.139 Filed Dec. 3, 1976, Ser. No. 747,13
Int. Cl. ${ }^{2}$ D01G $15 / 76$

1. An apparatus for removing waste and trash from a carding machine including a supporting chassis set upon a carding room floor, the chassis having side walls which are parallel to he fow of fiber through the machine and end walls to define anlosed bottom region in the machine beneath the carding components, comprising:
a first means attached to the machine to provide a flow of b. a pressure plenum mounted to the machine, said pressure plenum connected in communication with said first means to receive the flow of air under positive pressure and having an emitting orifice to emit the pressurized air into the bottom region;
. a second means mounted to the machine to draw under from the bottom region
d. a suction plenum connected to said second means mounted to the machine and having a receiving orifice formed spaced from and opposite the emitting orifice through whem after the flo
and trash; and rash;
from a concentrating means mounted to receive a flow a large volumetric flow of air clear of entrained waste an lasge volumetric flow of air clear of entrained waste and and trash is concentrated; and
a recirculating means delivering par of air to said first means so that this air is tecirge portio component of the flow provided by said first means.
developing tension in said torsion spring, said spring raising said lower arm and said latch means when sufficien
tension develops in said spring. tension develops in said spring.

METHOD FOR MAKING A, DIAP DIAPHRAGM WITH CAST NOZZLE BLOCKS
William W. Browning, and Donald J. Legacy, both of Wellsville, N.Y., assignors to Turbodyne Corporation (Steam Turbine
Division), Wellsville, N.Y. Division of Ser. No. 631,891, Nov. 14, 1975, Pat. No. 4,025,229. This application May 19, 1976, Ser. No. 687,923
Int. Cl. ${ }^{2}$ B23P IS/O4 U.S. C. 29-156.8 R

1. A harnessing device comprising
head having a guide channel therein,
locking tang within said head,
and a strap having a plurality of members for sequentially said channel, end of said
surface extending froming a serrated ramp in an outer vilace extending from one of said members over an inter members said ramp extending towards said bead on said strap from an end thereof having a thickness substantiall equal to the unobstructed height of the channel in said head.

4,092,766

RETANER CLIPS
Engelbert A. Meyer, Union Lake, Mich., assignor to USM Corporation, Farmington, Conn.
inumion of Ser. No. 492,680, Jul. 29, 1974, abandoned

C. $24-73 \mathrm{MF}$
It . Cl. ${ }^{2}$ A44B $21 / / 00$

U.S. Cl. 24-73 MF

6 Claims

1. A sheet metal clip adapted for assembly on one flange of
2. A sheet metal clip adapted for assembly on one flange of more workpieces in the space between the flanges of the channel member, the clip comprising:
an elongated body portion having along its upper edge a bight,
rom which there downwardly extends on one side a transand downwardil suspension tab,
apair of spaced on the opposite side there extends at least a pair of spaced resilient legs angularly related to the body portion
pair of prongs, located one on each side of said tab and pair of prongs, located one on each side of said tab and
projecting from said body portion toward said tab to projecting from saic bady portion tow paid tab and said prongs for receiv-
define a space between

4,092,767
LAMINATED BUCKLE WITH NO FALSE LATCH Surendra D. Narayan, Warren, Mich., asoignor to Allied Chemi cal Corporation, Morris Township., N.J. Filed Mar. 1, 1976, Ser. No. 662,990
Int. Cl. ${ }^{2}$ A44B $11 / 26$
U.S. Cl. 24-230 AL ${ }^{\text {Int }}$
ing the one flange of the channel in gripping engagement herebetween
ach of said legs being bised toward the opposite farge of said channel from said one flange when said clip is mounted on said channel, and extending from said body portion toward the opposite flange to define a space therebetween for receiving the one or more workpieces in gripping engagement therebetween,
and a prong disposed on each of said legs directed inwardly of said channel to retain the one or more workpieces in the so defined space in the channel.

1. A buckle comprising:
plurality of plates secured together, each of said plates having a cavity in the central portion thereof, said cavities being in substantial alignment with one another; at least
one of said plates including guide means extending from an exterior forward end of saide plate to its cavity for guiding a tongue into the buckle;
movable latch means for engaging the tongue, a portion of
said latch means extending in and movable within said said latch means extending in and
cavity of at least one of said plates;
manually operable actuation means for actuating said latch means, a portion of said actuation means extending in and movable in said cavity of at least one of said plates; and a unitary biasing means disposed in said buckle near the fully inserted position of said tongue for moving said latch
means into engagement with said tongue when said means into engagement with said tongue when said for ejecting said tongue upon movement of said latch
means by said actuation means, said buckle offering low means by said actuation means, said buckle offering low
resistace to the insertion of said tongue until said tongue resistace to the insertion of said tongue until said tongue
nears its fully inserted position in said buckle, said biasing means having a tongue engaging portion, an energy storage portion and a latch engaging portion; said tongue engaging portion, upon movement by said tongue, causing storage of energy in said energy storage portion, said amount of energy, moving said latch means to engage said tongue in said buckle;
said tongue engaging portion comprising at least one upper
arm extending through an opening in a second plate said arm extending through an opening in a second plate; said energy storage portion comprising at least one torsior
spring attached to a third plate, said latch engaging portion comprising at least one lower arm, said lower arm extending under said latch means; said tongue, upon nearing its fully inserted position in said buckle, pushing said upper arm in a first direction substantially parallel to
movement of said tongue as said tongue enters said buckle. said movement of said upper arm in said first direction
groove to open a plurality of fluid flow passages throug said cylindrical plate as defined by the nozzle blades on adjacent nozzle blocks,
71 o.g.
f. electron beam welding the entrance end of said nozzle blocks to the front face of the cylindrical plate, and g. finish machining the cylindrical plate and nozzle blocks to provide the completed diaphragm assembly.

FIBER BUNDLE ENCAPSULATING APPARATUS homes David Dickcon, Jry, San Joee, and Jeremy Corwin
Wright, Palo Alto, both of Calif, eadgnors to Alza CorpornWright, Palo Alto, bo

Filed Apr. 14, 1976, Ser. No. 676,752
U.S. Cl. 29-234

4 Claims

1. An apparatus for encapsulating a bundle of fibers aligned senerally parallel to each other axially within an elastomeric diameter of the bundle comprising in combination: (a) a casing defining a tubular inner channel of diameter at (a) a casing defining a tubular inner channel of diameter at
least about equal to the normal diameter of the bundle, said casing being openable to expose said channel so that the elastomeric tube may be placed therein;
(b) a nipple at each end of the channel onto which the respective ends of the elastomeric tube are adapted to be sealingly placed;
(c) reversible pressurizing means connected to the bore of
one of the nipples for generating sufficient presure with one of the nipples for generating sufficient pressure within the tube to temporarily expand the segment of the elastomeric inner surface of the casing that defines the channel: (d) means for drawing the bundle of fibers through one of the nipples into the radially expanded tube while maintain ing said pressure;
(e) a removable tubular member adapted to receive and hold
the bundle before the latter is drawn into the tube the bundle before the latter is drawn into the tube; the exterior end of said one of the nipples with the bores of the tubular member and said one of the nipples aligned and open to each other; and
(g) means for sealing by closing the other end of the tubular member.

4,092,770
CLUTCH ASSEMBLY-DISASSEMBLY TOOL
Gerald L. Polashank, Jackson, Mich, assignor to Clark Equip-
ment Company, Buchanan, Mich.

Filed Jun. 29, 1971, Ser. No. 811,332
Int. C.2. B23P $19 / 04$
U.S. Cl. 29-263 7 Clatm 1. A clutch assembly-disassembly tool in combination with a fluid-actuated type clutch having an internally splined drum affixed to a first rotatable transmission member, an externally and a plurality of interleaved friction plates splined alternately to said hub and drum wherein said friction plates are confined
between an annular end plate located via a retainer ring in a retainer ring groove in the splined inner peripheral surface of said drum and a fluid pressure actuated piston which serves to press said friction plates together thereby connecting said hub
and drum for conjoint rotation, said piston being biased in a direction away from said friction plates via a piston return spring confined between said piston and an annular spring retainer cup secured against axial movement via a snap ring
located in a peripheral snap ring groove of said first rotatable locaned in a peripheral snap ring groove of said first rotatable
transmission member, wherein said assembly-disassembly too is utilized for compressing said piston return spring to permit the ready insertion or removal of said snap ring during the absence of said end plate and friction plates, said assembly
disassembly tool comprising:

a. an outer annular membe
binernally splined drum; being adapted to fit within said
b. an externally expanding split retainer ring adapted to fit into said recainer ring groove and function to restrain said drum;
c. an inner annular member fitting within said outer annular member and seating on said annular spring retainer cup; and
d. means for displacing said inner annular member axially inwardly within said drum, relative to said outer annular member, thereby compressing and axially displacing said spring so as to permit ready removal or insertion of said snap ring relative to said snap ring groove.

4,092,771

PROCESS AND APPARATMUS FOR RENEWING SLIDING gate valve units for casting ladles Bermhard Tinnes, Zolilikerberg, and Franz Ruckstuhl, Schwer-
zenbech, both of Switzerland, aselgnors to Metricon $\mathbf{A G}, \mathrm{Zu}$ rich, Swituerknd
Continuation-in-part of Ser. No. 580,516, May 23, 1975, abandoned. This application Feb. 24, 1977, Ser. No. 771,692 $7215 / 74$ Priority, application Switzeriand, Mar. 27, 1974,
Int. C1. ${ }^{2}$ B23P 7/00, 19/04, $25 / 00$
U.S. C. 29 29
F. 8 Claims lades, comprising:
disassembling each unit into its slide housing, slide part and clamping lid;
shunting the slide housings and slide parts into two separate loops of work stations which rejoin at a final assembly
in the first of loops, clearing out worn-out refractory elein the ths from the slide parts, setting new refractory elements Division on
menth in mortar in the slide parts, baking the slide parts to set the mortar and transferring the renewed slide parts to the final assembly station;
bed stones from the slide housings, setting new refractory
bed stones in mortar, heating the slide housings to set the mortar and transierring the renewed slide housings to the final assembly station; and

reassembling the renewed slide parts and slide housings at the final assembly station, clamping these parts together ermined degree. cermined degree.

$$
4,092,772
$$

METHOD FOR MAKING A UNIVERSAL JOINT Rodger L. Moring, Yorkville, III, amignor to Caterpillar Trac tor Co., Peoria, III.

Con of Ser. No. 462,379, Apr. 19, 1974, Pat. No. 3,958,431 ation Dec. 30, 1975, Ser.
Int. Cl. ${ }^{2}$ B23P $19 / 100$
shank having an annular shoulder spaced from its proximal end, said method comprising the steps of
(a) forming a hole in a metal bar:
(b) inserting said proximal end of said shank through said hole so that said shoulder abuts against one side of the metal bar;

(c) rolling said proximal end outwardly to form a flange pressing against the surface of said bar whereby a portion flange; and
(d) thereafter forming said bar into said U-member.

PLASTIC TUBE CUTTER

Homer Watts, 8725 Continental, Warren, Mich. 48089 Filed Jan. 21, 1977, Ser. No. 761,223 Filed Jan. 21, 1977, Ser. No. 761,223
t. Cl. ${ }^{2}$ B23D 21/06; B26B 27/00; B26D 3/16

A device for cutting cylindrical a first elongated handle member;
second elongated handle member; means for pivotally securing one end of said first handle member to one end or said seci hanle member so tha said handle members are movable between an open and aw means forme
med on each of said handle members for lampingly engaging said tubing of different and predeter inec outside diameters when said handle members are said closed position wherein said jaw means comprises a pluraity of semicircular channels formed on each hand different radius and being spaced along said handle members so that upon closure of the handle members, said channels of a like radius on opposite handle member register with and face each other so that with tubing ositioned between channels having a radius equal to one entioned channels clampingly engage and support substantially the entire outer periphery of said tubing when said handle members are in said closed position; and
cutting blade pivotally secured to said first handle member and adapted to move from an outer pivotal positio
dinal axis of said chanels and to an inner pivotal position to thereby cut said tubing.

4,092,775

MANUAL WINDOW SHADE ROLLER CUT OFF KNIFE Paul J. Erpenbeck, Grand Rapids, Mich, assignor to Breneman, Inc., Cincinnati, Ohio

Filed Mar. 1, 1976, Ser. No. 662,341 U.S. C. $30-95$

1. A manual shade cutter including.
an elongated cutting member having a first extremity and a second extremity, said second extremity including a first
finger indentation having a concrave surface adapted to be engaged by a finger, said cutting member adapted for cutting a shade;
an elongated supporting member having a bed shaped to support a rolled shade during cutting by said cutting nember, said supporting member also having a irst exincluding a second finger indentation having a concave surface adapted to be engaged by a finger;
pivot means rotationally coupling said first extremity of said cutting member to said first extremity of said supportmember;
blade coupled to said cutting member and having a cutting edge generally aligned with a plane through the longitudinal axis of said cutting member and facing said supporting member; ate said second finger indentation and said bed through
which said cutting member extends generally intermediate said first finger indentation and said blade, so that applying pressure to either of said finger indentations causes rotation of both said supporting member and said cu
member about a shade supported on said bed; and resilient biasing means coupled between said cutting member and said supporting member for urging such members toward one another so that said rotation of said cutting autting action about the periphery of the shade due to the urging by said biasing means of said blade against the shade and less cutting action occurs when finger pressure han when applied to said second finger indentation.

4,092,776

illiam C. Ferguson, Denville, N.J., assignor to Cooper Indus.
tries, Inc., Houston, Tex.
Fied Dec. 16, 1977, Ser. No. 861,291
S. 1 Int. C1. ${ }^{2}$ B268 $13 / 18$

1. A cutting tool, comprising:

8 Claims
U-shaped
(a) one-piece plastic tongs having a substantially U -shaped torsion spring portion and two integral leg portions ex-
tending therefrom and terminating in free ends, each said leg portion having a cutting blade mounting surface adjacent said free end
mounted on said cutting blade mounting surfaces and having a cutting surface projecting beyond said free ends,
said cutting blade members being oppositely angularly disposed along their length and width with respect to one another as to provide crossover and clearance of said cutting surfaces for a cutting operation; and
limit relative movement of said legs;
d) aid tongs having a said stop means is disengaged and said leg portions are urged by said torsion spring portion to their furthest sepa ration, and second and third positions of lesser separation

arm and being pivotable around a vertical axis being substantially coincident with a cutting edge of a cutter element of that cutting mechanism;
length of that first and second arms being such that the entire length of that completely extended beam is substantially equal to the width of that support means in a direction perpendicular with respect to that guide means.

4,092,778
DENTAL APPLIANCE FOR INTRODUCING A FILLER MATERIAL INTO A TOOTH CAVITY Rudiger Hirdes, Tippelsberger Str. 42, D - 4630 Bachum, Ger. many
Divisio
many
ivision of Ser. No. 535,312, Dec. 23, 1974, Pat. No. 3,990,152. This apticaton Apr. 11, 1996, Ser. No. No77,896
Claims priority, application Germany, Dec. 24, 1973, 2364547 Claims priority, application Germany, Dec. 24, 1973, 2364547 U.S. C. $32-60$

Cleims
in which said stop means is engaged and said legs are in side-by-side relationship with sald mounting surfaces fac cutting in said second position and not exposed in saic third position, the blade members being operable to per form said cutting operation as the legs are moved together from said second position to said third position; and (e) said torsion spring portion being operable to apply tor-
sion forces to said legs to urge said blade members together in cutting relationship as the cutting operation io performed and to return said tongs from said third position to said second position, said stop means, when en
gaged, stopping the returning legs at said second position

CUTTING-OUT MACHINE 4

CUITING-OUT MACHINE FOR FLAT MATERIAL Rolf Jung, Walblingen, Germany, medignor to Krause a. Reicher
GmbH \& $\mathbf{C o}$. $\mathbf{K G}$ Spezialmachinenfabrik, Waiblingen, Ger many

Filed Mar. 10, 1977, Ser. No. 776,355 Claims priority, application Germany, Jan. 26, 1977, 2703066 U.S. Cl. 30-273 Int. C. ${ }^{2}$ B2687/00

1. A cutting-out machine for flat material, especially a cloth cutting machine, comprising in combinatio
a support means for the flat material;
guide means mounted lengthwise of that support means; a beam positioned above that support means and pivotable around a vertical axis being mounted on a carriage which
is movable along the guide means lengthwise of the sitale port means, that beam having at least two arms which ar port means, that beam having at least two arms which are first one of that arms being pivotable around the vertical beam axis and a second one of that arms having a free end opposite to its end interconnected with that first arm;

2. A dental appliance for introducing a filler material into a tooth cavity, comprising a support; a discharge nipple on said
support and having an elongated interior channel formed with support and having an elongated interior channel formed with
an inlet and an outlet; first means forming a first passage having an open end; second means forming a second passage which an open end; second means forming a second passage which
communicates with said inlet; a replaceable magazine on said support and having an elongated chamber for a quantity of said filler material, said chamber communicating with said open end and with said channel in direction transverse to the elonga-
tion of the channel; a first expelling element reciprocable tion of the channel; a first expelling element reciprocable in passand and chamber for expelling a portion of said filler material and charging it into said channel; a second expelling element reciprocable in said second passage and channel for expelling said portion through said outlet; and a single mechanical drive means for effecting coordinated reciproca-
tion of both of said expelling elements said tion of both of said expeling elements, said drive means includ-
ing a crank drive having a crank connected to said second expelling element by a crank rod and a cross-head to thereby reciprocate said second expelling element, and a rack drive having a rack connected to said first expelling element and driven by said crank to thereby reciprocate said first expelling element coordinately with said second expelling element, said
crank being configurated as a bevel gear projecting beyond the crank being configurated as a bevel gear projecting beyond the
path of travel of a pin on said crank rod and meshing with path of travel of a pin on said crank rod and meshing with cross-head and said second expelling element, said shaft having a trailing end portion provided with a socket coupling and with a slip-clutch which is interposed between said coupling
and said bevel pinion.

Bozidar M OF OR BETWEEN PLANES
Bozidar
(3182)
Filed Jan. 25, 1977 , Ser No 762,291 Claims priorty, appiciction Astr. No. Jen, 29, 1976, PC4676 U.S. C. 33-1 SD Int. C. ${ }^{2}$ G01C 21/20

7 Claims
4002,780 Thomas E. Trethewey, and Peter M. Wells, Jr,, both of Syca. more, III, assignors to Ideal Industries, Inc., Sycumore, IIL. Continuation of Ser. No. 648,149, Jan. 12, 1976, abandoned, which is a continuation-lin-part of Ser. No. 603,324, Aug. 11, 1975, abandoned. This appirication
U.S. Cl. $33-139$

Int. C. ${ }^{2}$ G01B 3/10
12 Claims

1. A device for determining angle relationships between planes, such as in geological structures, comprising:
disc member having two opposed planar surfaces;
each of said circles indicating an angle from at least part of the range from 0° to 90° which is the complement of the half angle of one of a family of notional right circular cones of equal height, each of said circles being the base of the cone of which
of the half angle;
of the haff angle
of the curved lines of on one of said planar surfaces, each mon point coincident said family passing through a commily of concentric circles and each of said curved lind eing a portion of a circle each of which said curved lines one common line extending radially from the common point;
each of said curved lines indicating an angle from at least
part of the range from 0° to 90° which is the complement
of the half angle of one of a family of notional right circular cones of equal height, each cone having a base with a radius equal to the diameter of the curved line which
indicates the complement of the half angle for that cone;
indicates the complement of the half angle for that cone
base member on which said disc member is rotatably
mounted, said base member having thereon a horizontal U.S. Cl. 33-143 J Int. C.L ${ }^{2}$ G01B 5/00 9 Claims bearing degree scale; ruler member extending across said disc member having a eleme
ruler edge thereon; and
means for mounting said ruler member on said base member, means for mounting said weunting means including means for rotating said ruler member with respect to said planar surfaces of said disc member and said base member and said mounting means including means for lateral movement of said ruler member with respect to said planar surfaces of said disc nember and said base membe.

2. For use in an electrical fish tape reel assembly in which a reel includes a generally annular tape-receiving chamber peseparate to permit winding and unwinding of a fish tape in the chamber, the improvement comprising a tape winder adapted to mounted between the lips so as to project outside of the reel and constructed to be moved peripherally around the reel between the lips, a tape passage through the tape winder for aassage or the tape chereth a handle on the tape winder, the tape passage being directed outwardly through the winder at an oblique angle to the radius of the reel and extending through the counter chamber for passage of the tape therethrough, the tape assage including an inlet passage on the inside of the winder and an outlet passage on the outside thereof spaced from each lape in the counter chamber, and a counter mechanism in the counter chamber mounted on one side of the tape passage acluding a rotary drive wheel in fixed position in the counter hamber, the radius of the drive wheel being greater than the span of tape to provide a positive friction drive between the lape and the drive wheel so that the counter mechanism will indicate a linear measure for the tape fed to and from the reel.

CHAIN ELONGATION GAUGE
Eugene H. Biake, 874 Hollister St., Space 21-B, San Diego, 92154
led Apr. 1, 1977, Ser. No. 783,613
A measuring apparatus which comprises: a first tubular a second t
second tubular element slidingly nested into the first tubular element;
maximum for forcing the tubular elements toward their means for limiting the longation; motion and for prevent ing the rotation of the second tubular element in relation
to the first;
cylindrical indicator means for measuring the longitudinal
travel of the second tubular element in relation to the first comprising:
second ement slidingly inserted between the first and second tubular elements;

means for preventing the longitudinal motion of the thir element in relation to the second tubular element; and third tubular element cooperating with a reference point on the first tubular element, and a reference point on the first tubular element.

APPARATUS FOR SIMULATING INTERSECTING Charles I PTRUCTURAL ELEMENTS Industries, Inc.. Phoenix, Ariz Ariz, asaignor to Time Save Filed Oct. 6, 1976, Ser. No. 730,030
Int. Cl.2
U.S. CI. 33-174 N

1. An apparatus for simulating the intersecting attitudes of an elongated primary member and an elongated secondary mem-
ber for determining the configuration of those members at the intersection thereof, said apparatus comprising:
(a) primary member simulating means for simulating the 1. A flat plane holding fixture for objects having diametri atatided and at least a portion of the surface of the elongated primary m
means including,
. means for suppantially open planar configuration,
plane, and
III. means supportingly positioned on said open plane frame for forming an arcuate surface of predetermined curvature with that arcuate surface simulating at least a portion of the surface of the elongated primary member
when the primary member to be simulated is of a substantially circular cross sectional configuration,
(b) secondary member locating means mounted on said primary member simulating means for simulating th elongated secondary member to be simulited
elongated secondary member to be simulated;
(c) secondary member simulating means coupled to said
secondary member locating means for simulating at least portion of the surface of the elongated secondary member
and
(d) pattern determining means mounted on said secondary
member simulating means and in contact with the surface simulated thereby, said pattern determining means extending from said secondary member simulating means into ber simulatine the surface simulated by said primary mem ber simulating means for simulating the configurations of the simulated elongated primary and the simulated el
gated secondary members at the intersection thereof.

FLAT PLANE HOLDING FIXTURE James J. Hodges, 1127 S. 6 th St., Louissille, Ky. 40203
Filed Aug. 10, 1976, Ser. No. 713,324 U.S. C. $33-180$ R Int. C1. ${ }^{2}$ B25B Ser. No. 713,324
5/02, $5 / 14$ 6 Claims
 cally opposed corners comprising:
(A) a base plate including a first pair of aligned slots defin ing selective orientation of the object being held upon a longitudinal axis and a second pair of similarly aligned slots defining selective orientation of the object being held upon a transverse axis
pairs of aligned slots 50 ss slide so as to abut opposed corners of sai C) linkage pivoted
the center point intersection of long inerconnecting saidse axes of said object being held and govern constant equidistant disposition base, so as to govern constant equidistant disposition of said clamp
with respect to said (D) an electrically energized sensing and
(i) at least one sensor adjacent a slot in each said
(ii) switch means closable, as one of said clamps abuts said (iii) indicator
(iii) indicator means indicating closing of said switch and,
thus, the size and orientation of said thus, the size and orientation of said object.

POOCESS AND 4,092,784 PROCESS AND APPARATUS FOR DRYING AND heating nylon Granules
Hoerauf, L, Worms; Ernst Gnenther, Ludwigshafen; Werner Hoerauf, Ludwigshafen; Ernst Kissel, Ludwigshafen; Hermann Linge, Carisbere, Eckart Neumann, Frankenthal, and Eberhard Schaefer, Ludwigahafen, all of Germany, assignors many
Filed Jun. 23, 1976, Ser. No. 698,855
Claims priority, application Germany, Jul. 8, 1975, 2530304
U.S. C. 34- ${ }^{13}$

10 Claims

1. In a process for drying and heating nylon granules, which the granules flow downwards through a vertical zone, hot inert gas, which is free from molecular oxygen, is passed in
countercurrent through the granules and the granules are then countercurrent through the granules and the granules are then
cooled and intermittently discharged in part-streams, the improvement which comprises feeding the granules wetted with water, or a suspension of the granules in water, into the top of said vertical zone, initially depositing the granules as a layer in
the upper part of said vertical zone where the water is sepathe upper part of said vertical zone where the water is sepaules substantially free of water into the next-lower part of said vertical zone wherein the granules are allowed to flow under gravity downwards through the zone while passing an inert gas which is free from molecular oxygen in countercurrent
upwards through the granules at from 70° to $200^{\circ} \mathrm{C}$, with the proviso that the inert gas, before leaving the zone, is passed through the initially deposited layer of granules, thereafter dividing the granules into part-streams in the lower part of the vertical zone over the entire cross-section of the zone, and tently, but simultaneously, over the entire cross-section of the zone, into a common discharge zone, with the proviso that the common discharge zone is only partially filled at all times during the process.

TEACHING AND DISPLAY APPARATUS Edwin E. Forsman, P.O. Box 1524, Pocatello, Id. 83201 orsman, P.O. Box 1524, Pocttello, Id.
Filed Jan. 6, 1972, Ser. No. 760,134
int. Cl. ${ }^{2}$ G09B $1 / 02 \quad 8$ Clain 1. A teaching and display apparatus comprising: first means for providing a portable support structure, second means asso-
ciated with said first means for the display of various items for education and entertainment, and third means for providing associated audio messages along with the second means, the first means including a main support panel, at least one secondary support panel attachable to the main support panel by
id secondary support panel for an operator of the apparatus, the second means including at least one stage for puppet shows

and the like, a rear view projection screen for films and the like, and at least one rotatable display panel for various objects.

4,002,786 EDUCATIONAL DEVICE ${ }^{02906}$
Filed Apr. 19, 1976, Ser. No. 678,421
Int C ${ }^{2}$ G09B $19 / 00$
U.S. CI. $35-8$ R

1. An educational device comprising a plurality of plates that re located one on top of the other in vertically stacked relation, the overall configuration of the stacked plates simulating a shoe, each of said plates being hingedly connected to an hingedly movable about a horizontal axis to selectively expose the interior surfaces of the plates as each is pivotally moved relative to the others, the bottommost of said plates defining a base and forming the sole of the simulated shoe, the forward portions of the plates above said base plate being located in stepped vertical relation to simulate the vamp of the shoe, each of the plates that define the vamp having pairs of spaced opencord extends for simulating a shoestring, the plates located above the one in contact with the base plate having the openings formed in the forward edges thereof and in the uppermosi face, wherein the cord is extendible therethrough for simulating the lacing of the shoestring when the plates are located in

APPARATUS FOR TEACHING THE EXECUTION OF SKI TURN ON SKIS nerk, Switzerland chemin du Con Skis
and May 6, 1977, Ser. No. 794,626
MOBILE DIRECTIONAL HIGH VELOCTTY AIR MOVING APPARATUS Filed May 6, 1977, Ser. No. 794,626 Filed Dec. 20, 1976, Ser. No. 751,981
Int. C. ${ }^{2}$ E01H $S / 10$ ${ }_{6007 / 76}^{\text {Claims }}$ Int. C1. ${ }^{2}$ A63B 69/18
U.S. C. 35-29 R

1. Apparatus for teaching the technique of turning a ski, comprising left and right plates placed side by side in parallee
relation to one another, each plate including means for supporting a shoe without capability of sliding, means supporting each plate for resilient lifing and lowering movements in accordance with shift of weight on the plate and for inclination about a longitudinal axis through the plate, and means responsive to the movement of said plates for producing a signal each
time that one of the plates is unweighted and occupies a raised time that one of the plates is unweighted and occupies a raised
position while the other plate is weighted and simultaneously lowered and inclined about its longitudinal axis in the direction of the first plate.

4,092,788

Ellis Couine Topele, Kans, aseigor to St Froncis Hosplal Inc., Topeks, Kens. Filed Jan. 23, 1977, Ser. No. 809,152
Fint U.S. CI. $35-17$

1. A cardiopu vertical suppor
ery therport means connected to said base at the periph ery thereof and extended upwardly therefrom;
pair of spaced apart, shoulder contact members connected to zeid vertical support means and projected outwardly therefrom over the plane of said base; and
semid vertical support means and projected therefrom over the plane of said base intermediate said shoulder contact members and said base.
2. A floatable device for excavating and transporting excated material, comprising:
a nonfloating frame structure;
a shovel comprising two shovel sections swingably suping movement toward and away from one relative swingat least two buoyant bodies having a predetermined buoy ancy and being movably connected to said nonfloating frame structure at opposite ends thereof;
operating means connected between said frame. structure
and said buoyant bodies for lowering said frame structure and said shovel as a unit relative to said buoyant bodies
when an excavating operation is to be performed and for raising said unit relative to said buoyant bodies after the
excavating operation has been completed and the shovel contains excavated material therein;
drive means connected between said frame structure and said shovel sections for swinging said shovel sections
relative to said frame structure, said drive means and said operating means being independently operable in relation to one another, and said drive means causing swinging of said shovel sections when said unit is in said lowered position for performing an excavating operation; and
the buoyant capability of said buoyant bodies together b such that they carry the full load of the shovel and the frame structure in a stable floating condition.

STORED INFORMATION DISPLAY APPARATUS Arthur A. Apissomian, 411 Westchester Ave., Mt. Vernon, N. Y 10552
continuation of Ser. No. 576,285, May 12, 1975, abandoned which is 2 continuation of Ser. No. 392,564, Aug. 29, 1973,
sbandoned. This application May 3, 1976, Ser. No. 682,64i Int. C1. ${ }^{2}$ GO9F $11 / 30,7 / 00$

16 Claims

1. An intelligence display apparatus comprising
tially transparent face-
plate;
(b) illum plate; (c) an intelligence selection element disposed in said envemeans, said selection flement means, said selection element comprising second regions substantially opaque thereto, said first and second regions having respective widths in the ratio of about 6:7 to about ha:9;
(d) an intelligence storage element comprising a plurality of discrete and different sets of intelligence, said storage element being disposed in said envelope and between said selection element and said illumination means, said sets individually comprising a plurality of bits respectively that said bits of each set collectively comprises a composite of the intelligence of said set, each one of said bits being totally opaque, totally transparent, or both partially opaque and partially transparent to said light said bits of certain said set of inteliggence being substantially yaigneed
with said first regions and the bits of the respective said sets including said certain set, of intelligence are sequen tially substantially aligned with said first regions when a least one of said information selection element and said
intelligence storage element is moved relative to the other certain said sets being aligned with said said first regions a certain times and other said sets being not so aligned and another said set being so aligned at another time, said intelligence storage element and saic intellige
element comprising a unitary structure; and
(e) means for moving at least one of said selection elemen and said storage element with respect to the other so tha observable through said first regions.

2. A frame assembly for removably retaining a sheet material sign about peripheries thereof comprising:
sign about peripheries thereof comprising:
first and second upright means each having one portion configured for removable insertion into supporting terrain, each having another portion disposed upwardly from
said one portion formed of angle stock having elongate said one portion formed of angle stock having elongate
flanges mutually integrally associsted to exhibit internally flanges mutually integrally associated to exhibit internally extending from an internal apex;
first and second mutually spaced and parallel cross-member assemblies each having termini rigidly connected with said first and second upright means, configured to retain
said first and second upright means one and other portions in mutually spaced parallel relationship and retaining a least said other, upwardly disposed, portions in orientations wherein said internal angles thereof are arranged in mutually facing relationship symmetrically disposed abou apexes of said spaced first and second upright means other portions, said first cross-member assembly being posi tioned between said first and second upright means respective other portions at or substantially near the upmember, the oppositely disposed ends of which are rigidl joined with corresponding mutually opposite said inter nally disposed surfaces at positions thereon spaced from corresponding said apexes,
aid one portion being fashioned having a first tip configured ror insertion within said terrain and extending along portion extending normally to said axis a select distance to a second tip, said internally disposed surfaces of said base support portion being normally upwardly disposed when said first tip portion is inserted within said terrain;
said other portion associated with said one portion being
coplanar with and parallel to said given axis and rigidly coupled with said one portion second tip; and
said second cross-member assembly comprising a bar member, the oppositely disposed ends of which are rigidly joinexes of the internal angle exhibited by the internall
disposed surfaces thereof at respective locations spaced cylindrical slide member telescopically receivable in the shell
from said base support portion, said section cross-member from said base support portion, said section cross-member element and resilient means for biasing the slide member out-
bar member and that portion of each said one portion wardly of the shell element the angle stock extending to a respective said base support wardly of the shell element, the improvement comprising, portion providing a three-edge periheral support for at least a second said sheet material sign.

4,092,793

CLIP-ON SIGHT MOUNT
America as represented by the Secretary of the Army, Wash ington, D.C.
 slide member for selectively allowing and preventing relative axial movement by rotating the shell element and slide member relative to each other, said interconnecting means including a generally L-shaped slot in the cylindrical wall of one of said shell element and slide member and
a protrusion on the cylindrical wall of the other of said a protrusion on the cylindrical wall of the other of said
shell element and slide member with the protrusion adapted to protrude into said slor to control the relative adapted to protrude into said slot to control the relative
rotative positions of the shell element and slide member.
U.S. Cl. 42-1 ST

4 Claims

1. A clip-on sight assembly including a telescope sight, said weapon comprising:
(a) a bracket for support of said telescope sight thereon, said bracket provided with a pair of normally extending por
tions having a pair of spaced members provided with first second and third pins extending therebetween in substantially parallel relation, said first and second pins disposed at the distal ends of said normally extending portions, and said third pin disposed
extending portions;
(b) a support member for attachment to said barrel, said support member including a pair of portions in substan tially normal relation, said first portion being horizontally
disposed across said barrel and said second portion bein vertically disposed on said barrel, each said portion having a v-groove along a first surface thereof to receive said first and second pins and a slot along a second surfac thereof to receive said third pin, said second surface of each said portion being in adjacent relation; and,
member for biased engagement with said third pin.

SAFETY DEVICE FOR GUNS
Robert D. Moren, 6411 W. Fremont Dr., Littleton,
Siren, 6411 W. Fremont Dr., Littleton, Colo. 80123 Filed Feb. 22, 1977, Ser. No. 770,838
U.S. Cl. 42-1 LP Int. C1.2 F41C 27/00 6 Claims

1. In a safety device for a gun having a firing pin, a barre defining a bore, and a firing chamber for receiving ammunition device including a generally cylindrical open ended shell ele. ment adapted to be placed in the firing chamber, a generally

FISHING POLE MOUNT AND SIGNAL Ivan L. Bryant, 1196 N. Romes Le., Medford, Orea. 97501 Filed Jan. 3, 1977, Ser. No. 756,277
U.S. Cl. 43-17 $\quad 2$ Claims

1. Fishing equipment comprising, in combination, (a) a stake adapted to be driven firmly into the ground,
(b) a pole carrying socket pivotally mounted on the stal (b) a pole carrying socket pivotally mounted on the stake, (c) yieldable spring means normally maintaining the socket (d) an audible signalling device.
(e) means responsive to tilting of the socket by a tug on the line to sound the signalling device, and
(f) an alternative, silent socket mounted on the stake for
holding the rod and the reeled-in line holding the rod and the reeled-in line without capacity for producing an audione ignal during the silent and cla removal of a fish from the line and hook re-baiting.

George Adams, Box 297, Grover City, Calif. 93433
Filed Apr. 2, 1976, Ser. No. 673,209
Int. Cl. ${ }^{2}$ A01K $91 / 04,83 / 00$
2 Claims

2. A fishing hook comprising
3. A fishing hook comprising:
a shank having a barbed point terminating at one end thereof and a fishing hook coupler terminating at the other end a wire bent upon itself to define a leading stretch of arcuat contour and of sufficient width at its widest point so that
a leader can pass therethrough, a flat inner side follower stretch interconnected at one end of said shank and at one connected at the other end of said leading stretch and erminating in a free end, the inner side follower stretch and said outer side follower stretch defining separate and spaced apart opposed flat adjacent surfaces, and an aperture formed in said leading strecth for enabling a leader to pass therethrough with a kent surfaces of said inner side follower stretch and
adicer adjacent surfaces of said inner side
said outer side follower stretch.
$4,092,797$
FISH TRAPPING DEVICE
Salvador R. Azurin, Bigna, Legaspl CIty, Phillppines
U.S. C. ${ }^{43-102}$

4. A fishing device comprising a fishing net having a closed bottom and an opened mouth; an inflatable flexible tube attached to the opened mouth of said net by means of a plurality of hooks and rings; a rope inserted into the plurality of rings
that is adapted to close the mouth of said net as soon as a catch is made and said tube deflated; a tube coupler coupled to both ends of the inflatable tube having air and water intake and
discharge discharge ports that are adapted to inflate said inflatable tube
and propel the inflated tube in order to float to the water and propel the inflated tube in order to float to the water
surface and to be propelled sidewise; an air compressor attached to said coupler that is adapted to supply the necessary pressurized air to the flexing floatable tube; and a water pump attached to said coupler that is adapted to supply the necessary pressurized liquid
sidewise direction.
\qquad

$\xrightarrow{4,092,798}$

Ramiro Oquita, 6014 Chandler Dr., San Diego, Califr 92117 on-in-part of Ser. No. 617,602, Sep. 29, 1975
application Jan. 10, 1977, Ser. No
Int. Cl. ${ }^{2}$ A63H $35 / 00$ U.S. Cl. ${ }^{46-11}$

1. A pinata, comprising
a bottom wall having an extended surface; side and top walls cooperating with said bottom wall to
define a substantially enclosed chamber whereby a plurality of small items may be carried in said chamber on said bottom wall; said chamber including separable parts; and
means for holding said separable parts in assembled rela tion including a balloon and means for suspending said pinata, said latter means being connected to said balloon whereby bursting of said balloon while the pinata is suspended causes said parts to separate thereby opening said chamber for release of the contents of said chamber.

4,092,799

TETHERED EXERCISE DEVICE Paui R. Anderson, 23701 Surf Core, Laguna Niguel, Calif. 92677 Filed Apr. 12, 1976, Ser. No. 675,920
 2 Claims

1. A tethered exercise device which comprises:
an elongate resilient strap having a closed loop end,
ball mounted on the strap for reciprocal movemen thereon, the ball being of resilient material and having a
flexible wall and hollow core, the wall having a firs opening in a side wall, a second and third opening in a top wall and a fourth opening substantially opposite the first opening, said openings being adapted to receive said strap therethrough,
a pin fastened to the handle, and
a U-shaped hook having an open end leg and a second longer leg, the longer leg further having a closed end loop formed on the lower end thereof, the loop being rotatably mounted on the pin, and the closed loop end of said strap

4,092,800

VEGETATION CONTROI
James Robert Wayland, Jr; Frank S. Daris, and Morris Guy Merkle, all of College Station, Tex., assignors to Phytox Corporation, College Station, Tex.
Continuation of Ser. No. 400,139, Sep. 24, 1973, abandoned,
which is a continuation of Ser. No. 225,109, Feb. 10, 1972, abandoned. This application Nor. 2, 1976, Ser. No. 737,909
U.S. C. 47-1.3

1. A method of vegetation control, comprising the steps of
2. A method of vegetation control, comprising the steps of: enerating an electromagnetic wave having a frequency in the range of from 300 an energy radiator;
trolled to the electromagnetic wave emission from the energy radiator; and
reflecting the wave emission after it has passed through the area back into the area of vegetation control to achieve an
approximately 300 Joules $/ \mathrm{cm}^{2}$ sufficient to cause the death or debilitation of the vegetation without raising the tem-

4,092,802
SPROUTER FOR HOME USE WITH AUTOMATIC
IRRIGATOR IRRIGATOR George Clement Oyama, 9, Shiba, Nishi-Kabo Shiroyama-cho, Minato-ku, Tokyo, Japan

Filed Feb. 7, 1977, Ser. No. 766,521
U.S. C. 47-16

perature of the area sufficiently to cause death or debilita tion solely by thermal effects.

FRESH FLOWER

Leonard H. Schoenherr, and Willinm J. Drablowski, both of Ludington, Mich, assignors to Leonard H. Schoenherr, Lud-
ington, Mich ington, Mich.

Fled Mar. 16, 1977, Ser. No. 778,231
Int. CC. ${ }^{2}$ A47G $7 / 00$
U.S. Cl. $47-1.12$

1 Claim

1. A holder for fresh flowers comprising a frame and a body of rigid, open-cell water permeable foam, said body being
shaped to form the structural support and shape definition for a wreath, said body being of substantial thickness and having a generally rectangular cross section with front and rear surfaces and having a length substantially greater than either its width or depth; said frame having spaced first wire elements seated around and against the side faces of said body and spaced
second wire elements seated against the rear face of said body and generally U-shaped third wire elements having end leg portions joined by web portions, said web portions extending across said rear surface of said body and said end leg portions extending in a rear to front direction across the side faces of said body, said first and third elements intersecting at a plural-
ity of locations and at each intersection being welded together ity of locations and at each intersection being welded together locations and being welded together to form a rigid, structural frame of generally channel-like cross section and having an unobstructed front and being substantially open and unobstructed along its side faces between said first and second
elements and capable of maintaining its geometric shape and integrity when supporting the foam body saturated with water and loaded with flowers; said frame forming an elongated, recessed pocket of a shape corresponding to that of the foam body and of a size to snugly receive and positively engage and clamp about said foam body and hold it against displacement or geometric reshaping resulting from extended periods of inclined to vertical position.

2. An apparatus for growing sprouts comprising:
. a first container for retaining a supply of seeds and for growing sprouts therein having a base formed with a drain opening for passing water and retaining said beans and sprouts and upstanding sidewalls for retaining said sprouts and an intermittent supply of water;
a second container removably mounted above said first formed with a drain opening for discter having a base said first container;
arst container;
. a valve mounted in said second container selectively covering said discharge opening a first position and un-
covering said discharge opening in covering said discharge opening, in a second position;
d. value operating means mounted in said second containe operatively connected to said valve and including a float responsive to the water level in said second container for opening said valve at a pre-selected upper elevation and closing said valve at a lower pre-selected elevation; water inlet regulating means for supplying water to said
second container at a pre-selected means regulating the ingress and egress said first container; and 3. said air regauner; and
3. the upper edge of said upstanding sidewalls of said firs container is formed with repeating stepped lands posi2. a ring member positioned between and
containers formed with mating reensaid first and second positioned at a plurality of elevations for raising lands second container above said first container at selected varying elevations depending upon selected relative rotational positions of said first container and said ring

SELF-WATERING APPARATUS FOR PLANTS Thomas H. Naylor, P.O. Box 370, Castle Rock, Colo. 80104 Filed Aus. 2, 1976, Ser. No. 710,436 U.S. C. $47-62$

18 Chaims

1. Watering and draining apparatus for plants, comprising, in combination:
tray mea
tray means for holding plants;
supply conduit means extending from the tank to the tray
supply con
means;
a valve in the supply conduit means for contro
of water from the tank to the tray means; means for providing a flow of water from the tank to the tray means through the supply conduit means.
return conduit means extending from the tray means to the tank, including an interior upright drain conduit disposed within within the tray means,
drain aperture means in the interior upright drain conduit to provide a
means,
cap means, including a top and a skirt extending downwardy substantiaily perpendicular to the top, disposed on
the interior upright drain conduit and movably adjustable thereon,
a plurality of apertures extending through the skirt of the cap means and communicating with the interior uprigh
drain conduit to provide a selectively varied second flow of water from the tray means,
having an inclined outer end and further having a lower edge inclined from the horizontal at an angle a and an upper edge inclined from the horizontal at an angle β such that angle a is greater than angle β, said lower edge of said
angled arm terminating at a point from the center of the angled arm terminating at a point from the center of the salue of the difference between radius S and radius R falls

in the range of 0.01 to 0.06 inches, whereby said saucer structure enables molding of said saucer by a fixed or structure enables mo
stationary type mold.
said fastener members being aligned with said holes of the container so that said container and saucer may be pressed together in releasably interlocking fashion with a portion of each said angled arm penetrating a corresponding hole in said container.
an aperture extending through the top of the cap means for
an aperture extending har ingh the return conduit means, and a relieved portion on the interior upright drain conduit
selectively communicating with the plurality of apertures selectively communicating with the plaramity or apertures
extending through the skint of the cap means for varying the second flow of water from the tray to the return conduit means.

4,092,804

FLOWER POT AND INTERLOCKING SAUCER Donald A. Morris; Eddie A. Wilson, and Eric A. Little, all of Lavrence, South Korea, assignors to Packer Plation

$$
\begin{aligned}
& \text { Kins. } \\
& \text { Filed Feb. 16, 1977, Ser. No. } 768,97 \\
& \text { Int. Cl. }{ }^{2} \text { A01G } 9 / 02
\end{aligned}
$$

U.S. CI. 47-66

1. Apparatus for sharpening blades including a carrier for U.S. C. $47-66$ 1. An interlocking molded saucer for a container having 1. An interlocking molded saucer for a container having a
bottom with a plurality of spaced holes, each said hole having an edge substantially tangential to a radius R, said saucer coman edge
prising:
a saucer bottom portion;
continuous side wall integrally molded to said bottom portion around the perimeter thereof; and
plurality of fastener members integrally molded with said saucer bottom portion, each said member having a con-
tainer abutting surface disposed from the center of said tainer abutting surface disposed from the center of said
saucer bottom a distance substantially equal to said radius saucer bottom a distance substantiailiy equal to said radius

KEY DUPLICATING MACHINE Horst W. Wich, 816 Brent St, South Pacadine Calif. 91030 Flied Nov. 17, 1976, Ser. No. 742,619
Int. Cl.2 B24B 17/02; B21K 1300 U.S. CI. $51-100$ R

3 Claims

1. A key duplicating machine comprising
a rotatable grinding wheel having a peripheral cutting edge distance relative to the cutting edge of said grinding wheel;
a shaft disposed parallel to the axis of said grinding wheel; mounting means for supporting said shaft for movement along and for rotating about the axis thereof;
for holding a key blank and an existing key having notches thereon;
biasing means for causing said existing key on said keyholder to bear against the reference edge of the guide member as
the shaft is moved along its axis to thereby blank on said keyholder to be rocked about the axis of the shaft laterally into the cutting edge of the grinding wheel
to remove material therefrom in accordance with the to remove material therefrom in accordance with the
notches on the existing key notches on the existing key;
linear cam provided with a ramp thereon; and ing the ramp on said linear cam as said keyholder is moved along the axis of said shaft to rock said keyholder abou the axis of said shaft away from the cutting edge of the grinding wheel into a normal rest position.

$$
\begin{aligned}
& \text { WHEEL CLAMPING DEVICE }
\end{aligned}
$$

George Luther Grove, Cincinnati, Ohio, assignor to Cincinnati Miliacron Inc.. Cincimnatt, Ohio
Filed Dec. 10, 1976, Ser. No. 749,466 U.S. C1. 51-168

1. In a machine tool having a rotatable spindle with a spindle diameter adapted to support a cutting wheel, a spindle flange aialy adjacent one spindee diamecer, and a clamping flange
disposed between the flanges, an improved wheel clamping (a) a belleville-
(a) a belleville-type spring disc interposed between said wheel and one of said flanges and coaxial therewith, adapted for compression to a working deflection, said spring disc thereby accommodating an interval of positive or negative spring deflection from the working deflection,
yet maintaining a substantially constant working load throughout said interval;
a plate adapted to be in
and a side of a clamped wheel; and
(c) a fee relief in sided wheel; and movement.

COMBINATION EAVES $4,092,808$
SOFFIT CONNECTION MEANS AND FASCIA WITH MAKING SAME
John E. Maloney, Jr., Addison, and Richard F. Zeccagni, Lom-
bard, both of III, sssldions to bard, both of III, sessignors to ZMC, Inc., Addison, III.
Continuation-in- part of Ser Continuation-in-part of Ser. No. 506,359, Sep. 16, 1974,
abandoned. This application Jul. 2, 1975, Ser. No. 592,388 U.S. Cl. 52-11 Int. Cl. ${ }^{2}$ E04D $13 / 00$

1. A combination eaves trough and fascia with soffit connec ion means, comprising:
an elongated, generally channel-shaped, upwardly opening
gutter member roll-formed from one continuous strip of gutter member roll-formed from one continuous strip of
sheet metal and having a flat horizontal bottom wall and spaced apart upstanding front and back walls and adapted to be mounted directly on the ends of rafter tails of an overhanging eaves structure of a building roor, said front and back walls having respective free upper por to said bottom wall
he vertical dimensions of said front and back walls and thereby the vertical dimensions of the gutter member
being such that the upper portion of said being such that the upper portion of said back wall can lie
adjacently under the roof drip line and the lowe of the gutter member including the bottom wall will be located below the rafter tails whereby the gutter member will serve as combination gutter and fascia; the upper portion of said back wall providing means for
securing the gutter member to an integral groove recessed reinforcing rib roll-formed rectly in and integrally in one piece with the sheet metal material of the gutter member horizontally in and along the lower portion of the gutter member at the juncture the groove recessed rib defining a horizontal sanding walls. opening toward the back of the gutter member to receive an edge of a soffit panel;
said groove recessed rib being of a reentrant socket groov formation and having a pair of vertically spaced horizontal socket groove wall flanges and a vertical spacer socke
groove root wall coextensive with said horizel groov defining the socket width of said groove, and stiffen
and ing junctures joining said horizontal socket groove wall flanges to said vertical spacer socket groove root wall
flange and to said one upstanding wall of the gutter mem-
flange and to said one upstanding wall of the gutter mem-
ber, said junctures cooperating with said wall flanges in ber, said junctures cooperating with said wail flanges in
attaining reinforcing stiftess in said groove recessed rib and thereby in the lower portion of said one upstanding wall and the gutter member in general;
the lowermost of said horizontal socket groove wall flanges comprising a return bent folded facc-to-face double thick-
ness of material wherein one thickness of the fold is integral with the lower edge of said one upstanding wall and
said thicknesses of material being joined tootthem wall; said thicknesses of material being joined together along a
simple return bend providing a thin edge integral connecsimple return bend providing a thin edge integral connec-
tion facing toward the back of the gutter member;
whereby when the edge of a soffit panel is received in said
groove the appearance will be affirded of the soffit panel being
substantially a continuation of the bottom wall of the gutter member.

4,092,809
DOMED ROOF STRUCTURES FOR EASY ASSEMBLY AND DISMANTLING
Frederic Edward Bellas, 148 Zerbey Ave., Edwardsville, and Robert Anthony Decker, 204 Shoemaker St., Swoyersille, Filed A
U.S. C. 52-63

Aug. 20, 1976, Ser. No. 716,143
Int. Cl. ${ }^{2}$ E04B $/ / 347$

1. A domed roof structure to enclose an area, the outer periphery of said area defined by a base, comprising: a dome plate having a centrai body and a pluraily of dome
tenons protruding radially therefrom, each dome tenon having a rectangular cross-section,
a plurality of rib sections, being generally rectangular in ross-section, each having a rib tenon on the other end,
means for coupling said dome tenons fixedly to said rib mortises comprising a series of longitudinally spaced otches defined in said dome tenons and a spring loaded oocking bolt of a size accommodatingly smaller than said notches, a spring placed circumferentially around said locking bolt and a cartridge to accommodate said locking bolt and spring whereby said dome tenon is inserted into
said rib mortise, said locking bolt is retracted, thereby said rib mortise, said locking bolt is retracted, thereby
compressing said spring, one of said notches is lined up compressing said spring, one of said notches is lined yp
with said locking bolt and said locking bolt is inserted into said notch to form a firm coupling,
d. a plurality of seat plates mounted on said base, each seat plate comprising an upturned top section having a seat mortise having a generally retanguar cross section
horizontal section and a lower vertical section,
means for mounting said lower horizontal section of said
seat plate on said base
f. means for coupling said rib tenons to said seat mortises
thereby forming a skeletal framework of the domed roof structure, comprising a series of longitudinally spaced notches defined in said rib tenon and a spring loaded coupler mounted on said seat mortise which comprises
notches, a spring placed circumferentially around said locking bolt and a cartridge to accommodate said locking thereby compressing said spring, one of said notches is lined up with said locking bolt and said locking bolt is inserted into said notch to form a firm coupling.
g . a cover drawn over said skeletal framework to enclose the g. a cover drawn ov
area desired and,
h. means for anchoring said cover to said domed roof structure.

DOMICAL STRUCTURE
John S. Sumner, 728 N. Savtelle, Tucson, Ariz, 8571 U.S. Cl. 52-81

1. A roof for a domical structure comprising: a plurality of scalene triangular panels, interconnected along y shaped roof, in the corners of each curved triangular sector and interconnected by an interior plane triangle and bent in different directions along the intercincon of each curved triangle with the pla d surfaces,
positioned adjacent to the edge of an adjoining panel to
each panel of each pair bein panels, and
tially along arcs of great circles of the domical structure and forming the framework of the structure,
said panels overlapping to form said interconnection between adjacent pancls,
edge connected plature formed only from edge to supporting framework:

COOLIN
COOLING TOWER, CONSTRUCTION METHOD AND PRECAST PRESTRESSED CONCRETE Tung.Yen Lin, El Cerrito, and Yung UNTS
both of Calif, assignors to T. Y. Lin International, San Freon cisco, Calif.
Filed Feb. 14, 1977, Ser. No. 768,175
Int. C. ${ }^{2}$ EOMH 12/16

1. A cooling tower or the like, comprising:
a series of angularly waextending columns secured to said foundation and leading upwardly therefrom,
a lower ring joining the upper ends of all said columns,
from said lower ring to provide a veil with a thin skin and the surfaces of said lip sides which are perpendicular to the ribs strengthening the structure and enabling the thickness opening in said window frame so as to leave a toe surface o said wall including a series of post-tensioning tendons, and an upper ring at the top of said wall,
said wall being provided by
said wall being provided by:
a series of tiers of precast rein
a series of tiers of precast reinforced concrete panels, each
panel having said ribs along edge portions panel having said ribs along edge portions
defining a cavity where adjacent panels meet,

some of said post-tensioning tendons being horizontally disposed at some of said tiers of panels,
a series of upwardly-extending steel cases, one cage lying
between each pair of adjacent penels of the same tier enclosed by portions of said ribs, some of said post-tensioning tendons passing through said cages, and poured-in-place concrete filling the remainder of said cavities and said cages.

4092812

SILICONE GLAZING SYSTEM Richard F. Dawher, Wheaton, IIl, and George J. Bouchey,
Millbarn, N.J., medignors to General Electric Company, Wa. Mellborn, N.

Filed Ang. 5, 1976, Ser. No. 712,123 U.S. C1. 52-309.3 16 Chims

1. A window pane construction in which the winoow pane is substantially fush with the exterior wall of a winoow pane is substantially flush with the exterior wall of a building and ic
which there is no external abutment lip on the external surface of said window pane comprising a four-sided window frame which has supporting sides extending around said opening and
perpendicular to the opening in said window frame and lip perpendicular to the opening in said window frame and lip
sides which are perpendicular to said supporting sides and sides which are perpendicular to said supporting sides and
extending from the interior from said supporting sides to the extending from the interior from said supporting sides to the vulcanizable silicone rubber of at least 30 Durometer Hardness extending along all four of said supporting sides of seid win-
dow frame and extending along all four of said lip side dow frame and extending along all four of said lip sides, but
such that said spacer rods on said lip sides do not cover all of
said lip sides, said toe surface extending on all sides of said ing, a window pane resting on and against and supported by said a wpacer rods, and a layer of a room temperature vulcanizable silicone rubber sealayt applied over the exposed external surfaces of said spacer rods and extending from the toe surface on said lip sides to the edge of said window pane such that window pane in place in conjunction with said spacer rods.

4,092,813

EDGE PROTECTOR TRIM STRIP Frank Eggert, Hamburg, Germany, asagnor to Schlegel (UK) Limited, Seacroft Leeds, England Filed Nor. 1976, Ser. No. 737,608

Filed Nor. 1, 1976, Ser. No. 737,608
Int. Cl. ${ }^{2}$ E04B 1/62; E04F $15 / 14$
U.S. CL. 52-397

1. A one-piece edge protector trim strip for application to an applied position on a metal flange or the like such as that found around door openings on motor vehicles, said strip having a
body of generally U-shaped cross section, formed of polymeric material, and resiliently deformable gripper fins extending rom the arms of said U-shaped body inwardly thereof hroughout the length of said strip, wherein said gripper fins comprise a first single deformable gripper fin on one of the first fin is formed of a first deformable material of one hardness, and a plurality of gripper fins of a second deformable material ofter than said first deformable material on the other arm of aid U-shaped body whereby said plurality of gripper fins are collapsed when said trim strip is in its applied position for
ccommodating flanges of different thicknesses, preventing ingress of water into said trim strip, and presenting anti-sliding riction surfaces in engagement with the flange for resisting emoval of said trim strip from the flange, and wherein a minor urface portion of said first gripper fin facing said plurality of gripper fins is of a third deformable material softer than said plurality of gripper fins to maximize the frictional forces resisting removal of said trim strip from the flange while mesimimizing the frictional forces resisting application of said trim strip on
he flange.

1.S. C. $\mathbf{~ A ~ s t e e l ~ r e i n ~}$

2 Claims
sioning member, one end of which is embedded in a dead end ype of borehole and having a continuous central passage therethrough suitable for injecting cementing material into, or for venting air from such a borehole, comprising at least two individual, continuous steel rods each having the approximate coss-sectional shape of a sector of a circle so that each rod ential surface, said rods being assembled with the adjacent radial surfaces of the rods in contact to form the reinforcing

nember with a cros-section which is substantially circular he circoumferential surfaces of each of said rods containing ribs ssembled member, each of said rods having a recess extendin the entire length thereof in the region where the two radia surfaces would meet to provide said continuous central pas sage, the outer edges of at least one pair of contacting radia surfaces of the assembled member being rounded off to form and a conduit tube positioned along said circumferential recess.

4,092,815

METHOD OF LOADING GLASS SHEETS ON A COLLAPSIBLE RACK FOR STORING OR SHIPPING James R. Rowiey, Freeport, and Paul D. Majesky, Upper St. Carr, Pu of Pan, ebelgnors to PPG idautries, Inc., Pitt burgh, Pa.
Division of Ser. No. 576,916, May 12, 1975, Pat. No. 4,014,435, which is a continuation-inn-part of Ser. No. 493,440, Jul. 31, 742,382
U.S. CI. 53-3
surface, the ribs being sized for slideat guideways of the L-shaped supports
ounting the base on the horizoted Lershed wih the ribs of the base in the guideways of the vent sideway motion of the L the banding therein to preoprovide an assembly rack;
loading a plurality of sheets on the rack in a generally vertical position; and
securing the sheets on the rack.

INNER FOIL $\begin{aligned} & 4,092,816 \\ & \text { WRAPPING DEVICE }\end{aligned}$

 Enzo Seragnoli, Bologna, Italy, asaignor to G. D. Societa Per Azioni, Bologna, Italy Flied Mar. 25, 1977, Ser. No. 781,525Clesims priority, application Italy, Mar. 31, 1976, 3389A/76 U.S. CI. 53-234 Int. Cl. ${ }^{2}$ B65B 11/32 2 Claim

1. A device made for inner foil wrapping with the length's long ends over one of the larger faces of a bundle of cigarettes in very high speed soft packet cigarette packers, the device a number of radially positioned compartments equidistant from one another, each said compartment being capable of receiving a bundle of cigarettes for packeting laid long sides to the axis of rotation of said turning head or wheel; and a plurality of fixed and moving folder means in combination with said turning head or wheel for packeting operations with the length of
foil, one of the said folder means being set at a tangent to the peripheral fascia of said turning head or wheel corresponding to a stay position occupied successively by said compartments of said turning head or wheel with alternating movement radial to said turning head or wheel, a wall of each compartment
above that said one of said folder means with alternative movement in the sense of rotation of said turning head or wheel comprising a thin plate and said one folder means also having a thin plate facing said turning head or wheel so as during its forward movement to rebut the after ends of the length of foil
onto the surface of the former plate external to the corresponding compartment, and wherein said folder means includes: a pair of radially oscillating arms with a platelet joined to an end of each said arm, said platelets contacting the two long ends of the outer side of the bundle of cigarettes; and a fixed guide concentric to said turning head.

A method of loading sheets on a collapsible rack, compris ing the steps of:
providing a pair of rigid L-shaped supports each having (1) a vertical leg joined to a horizontal leg and (2) a rigid guideway therein positioning flexible ban
guideway of each of the L -shaped supports;
inserting pins in the L-shaped supports to maintain the band ing in the guideways;

> FILM APPLYING DEVICE WITH A STRAW-HOLE PERFORATOR
> Mir Frederick Rist, III, Onkdale, Minn, amigeor to Minnesota Mining and Manuffecturing Company, St. Paul, Minn. Flied Jan. 31, 1977, Ser. No. 763,991
Int. C. ${ }^{2}$ B65B 7/28; B67B 3/04 U.S. C. ${ }^{53-298}$
> 1. In a device for applying predetermined lengths of a heat
sealable film over the open ends of cups from a supply length of the film, said device comprising: means adapted for advancing an end of a said strip of heat sealable film along a path from a distance equal to said predetermined length; means adapted for supporting a said cup in said device; means for providing relative movement between said means adapted for supporting and a said predetermined length of the film extending between said first and second positions, said means for providing relative movement being adapted to bring the lip of the cup into
full circle engagement with one surface of the predetermined length of film; means for applying heat and pressure to fuse

said predetermined length of film to the lip of said cup when the predetermined length of film is in engagement with the cup; and means for severing the applied predetermined length
of film from the supply length of film, the improvemen wherein said device further comprises means along said path in advance of said first position for perforating said film to provide a small area of the film which can be separated along the perforations and bent aside to provide a hole in the film said means for perforating before operation of said means for advancing to provide a said small area in each predetermined ength of film applied to a cup.

HAY BALER

Donald H. Brewster, 2630 Creek Rd., Sandy, Utah 84070 Flied Feb. 17, 1976, Ser. No. 658,239 U.S. C. 56-341

1. A hay baler for forming large cylindrical bales of hay comprising
a. frame means for supporting said baler;
b. means for picking up loose hay from the ground;
c. endless belt transport means for transporting said loose hay to an elevated position;
d. a loop of an endless belt in said baling section to recceive
hay from said elevated position and form cylindrical hay from said elevated position and form cylindrical bales
of hay as said belt travels said endless belt being the same endless belt as the belt forming said transport means;
e. means for propelling said belt; and
f. discharge means to discharge said bale from the end of said baler opposite said hay pick-up means.

ELECTRONIC TIMEPIECE Kazunari Kume; Minoru Watanabe, both of Tokorozawra; Hideshi Oono, Sayama, and Munetakn Tamaru, Tokyo, all of Japan

Filed Feb. 26, 1976, Ser. No. 661,57
Mar. 25, 1975, 50-035795; May $30,1975,50-064172$
U.S. C1. 58-23 R

9 Claims

(e) ${ }^{24}$		
	Eatais	
*	Ear	
		$\square^{\text {Pax Pata }}{ }^{48}$

An electronic timepiece comprising, in combination: a frequency standard providing a relatively high frequency frequen
signal;
a frre
freque
frequency signal;
provide a first low frequency signal, a second low frequency signal lower in frequency than said first low frequency signal, and a third low frequency signal lower
signal;
signa;
first and second manually operable switches;
a control circuit including means for generating first and second outputs when said first and second manually operable switches are actuated, respectively, means for generating a first output signal in reponse to at least said first
output and said first low frequency signal, and means for generating a second output signal in response to at least generating a second outpur signal in response to at least
said second output and said second low frequency signal; a driver circuit normally providing first driving current pulses in response to said third low frequency signal and control circuit to provide second and third driving current pulses, respectively, at frequencies equal to those of said first and second low frequency signals; and
an electro-mechanical transducer normally driven by said first driving current pulses to advance rotatable timetime and responsive to said second and third driving current pulses to advance said time-representing members at first and second speeds higher than a normal rotational speed in which said electromechanical transducer is
driven by said first driving current pulses, whereby time correction can be performed at different speeds.

CONTROL DEVICE FOR AN ELECTRONIC WATCH Carl A. Wira, Weinbergestrasse 26, 6300 Zug, Siritzeriand
Claims priority 15615/75; Mar. 2, 1976, 2542/76
U.S. CI. 58-23 BA

1. A watch comprising having at least one through bore and a notch;
battery means in said chamber;
an electronic module in said chamber having at least one notch in its periphery and at least one terminal at its periphery; and
control means including
at least one push-button in said through bore and radially slidable therein;
a return spring means electrically connected to said bat tery means cooperating with said push-button and com prising a substantially circular return spring having tul
opposing ends and substantially encircling said module said return spring having a middle portion thereof with a substantially rectangular cross-section and compris a subs
ing,
a boss
a boss for engaging in said notch of said casing in order to locate said return spring with respect to the casing
and also for engaging in said notch of said module in order to locate said module with respect to said return spring,
ELECTRONIC TIMEPIECE CTRCUIT
Electric Co, Yokohama, Japan, asslgnor to Tokyo Shibaura
Electric Co., Ltd., Kamasaki, Japan
Claims priority, application Japan, Jul. 2, 1975, 50-80984 U.S. Cl. ${ }^{\text {Int. Cl. }}{ }^{2}$ ($\mathbf{~ G 0 4 C}$ ($3 / 00,21 / 00$; H03K $21 / 32$

2. An electronic timepiece which comprises a clock puls oscillator; a timing pulse generator for dividing the frequency
of a clock pulse produced by the clock pulse oscillto a timing pulse; an address pulse generator for sending fort address pulses to designate a prescribed address being stored with a time data upon receipt of a timing pulse from the timin static random a memory circuit formed of a plurality of matrix represented by a number of time data by a number of bits required to denote the code of each time data, and, when word-selecting line connected to a memory cell is supplied with an address pulse designating said memory cell, sending
forth a time data through a data line of the designated cell; a display device for displaying a time data read out from the memory circuit; a carry-judging circuit for deciding whether a time data issued from the memory cell should be carried up to an immediately following higher unit time level and generating a carry-instructing signal; a reset-judging circuit for generating a reset-judging circuit for generating a
reset-instructing signal where carry is required, to clear the carried time data; a first delay circuit for holding a carry instructing signal delivered from the carry-judging circuit until a time data being carried is received; a second delay circuit for is received; an adder for signal until a time data being cleared the first delay circuit and a minimum unit time supplied from for corroct from the memory circuit; and a correction a time receipt of a reset signe data delivered from said adder upo a reset signal from the second display circuit.
nations of output information being thus obtained at the out
puts of said flip-flop circuits and of the control device respec
METHOD OF $4,092,824$ Helm Fiedic of operating a turbine technische Werke-Fokker GmbH, Bremen Gereinigte FlugFiled May 28, 1974, Ser. No. 473,500 U.S. Cl. $60-39.02{ }^{\text {Int. Cl. }{ }^{2} \text { FO2C } 7 / 00,7 / 32}$

TIMEPIECE HAVING DISPLAY CYLINDERS Sonobe Shiro, Tokyo, Japan, zadignor to Sankho Co., Ltd., To
kyo, Japan Filed Feb. 2, 1976, Ser. No. 654,118
Claims priority, application Jappan, Feb. 10, 1975, 50-17720 U.S. C1. 58-125 C

5 Claims

1. A timepiece comprising a casing, an hour cylinder and a minute cylinder contained in said housing, driving means for rotating said cylinder at a constant speed of one revolution
every 12 hours for said hour cylinder and one revolution every every 12 hours for said hour cylinder and one revolution every 60 minutes for said minute cylinder, and a dial plate mounted on said casing, said dial plate being provided with hour and minute windows extending in the axial direction of said hour said hour cylinder and being marked with a plurality of digits for displaying hours and said minute window being parallel with said minute cylinder and being marked with a plurality of digits for displaying minutes, the outer periphery of each of said cylinders being divided into two areas by a line inclined at a predetermined angle with respect to the axis of each said
cylinders and said two area being colored by different colors, wherein said driving means comprises a first shaft driven at a constant speed by said driving means, a first pinion mounted on said first shaft for driving a second pinion mounted on a second shaft, a third pinion rotatably mounted on said second shaft, a pin and slot connection between said second and third pinions, gaging said pin and slot, a fifth pinion meshing said third pinion for driving said minute cylinder, a third shaft continuously rotated by said first shaft, a first cam wheel mounted on said third shaft, a fourth shaft driven by said third shaft, a second cam wheel cooperating with said first cam wheel, a third cam wheel cooperating with said third pinion, said second and third spring means interposed between said fourth shaft and said second cam wheel, and means for driving said hour cylinder in accordance with the intermittent rotation of said second cam wheel.
2. Method of operating an auxiliary gas turbine which is used for starting an aircraf engine and for driving auxiliary on board equipment comprising the steps of, generating externally
to the turbine a pressurized gas without sustaining combustion for driving the turbine;
mixing the pressurized gas after its generation with aircraft engine fuel; and
feeding the mixture to the turbine for driving the turbine, so
that the turbine is driven by the mixture without undergole that the turbine is driven by the mixture without undergo-
ing or having undergone combustion ing or having undergone combustion.

PROCESS FOR BASE-LOAD AND
PROCESS FOR BASE-LOAD AND PEAK-LOAD POWER Clark J. Egan, Piedmont, Calif, asignor to Cherron Researct Company, San Francisco, Calif.
Continantio-in Continnantion-in-pprt of Ser. No. 613,654, Sep. 15, 1975, Pat. No. $3.986,349$. This application Sep. 16, 1996, Ser. No. 724,12
Int. C. ${ }^{2}$ Fe2B 43//08
U.S. $60-39.02$

1. A process for the generation of power from a solid carbo (a) forming a combustible synth
(a) forming a combustible synthesis gas by reacting said
carbonaceous material with steam and oxygen at as ele vated temperature;
(b) contacting a first pors hydrocarbon synthesis catalyst thereby fosmis gas with a tion product mixture containing water, $\mathbf{H}_{2} \mathrm{CO}$ CO oxygenated organic compounds and synthetic hydrocarbons;
(c) contacting said reaction product mixture prior to forma-
tion of an aqueous phase there tion of an aqueous phase therein with a hydrogenation-
catalyst under hydrogenation catalyst under hydrogenation conditions, thereby con-
verting said organic compounds to water and combustible hydrocarbons; (d) thereafter sep
$\mathrm{C}_{3}+$ hydrocarbons; generating a second portion of said synthesis gas and generating power from the resulting combusted synthesis
gas; and
(f) combusting at least a portion of said $\mathrm{C}_{3}+$ hydrocarbons
and generating additional power from the resulting com. busted hydrocarbons.

4,092,826
FUEL INJECTORS FOR GAS TURBINE ENGINES
George Pask, Stanton-by-Bridge, England, asalgnor to Rolle Royce Limited, London, England Fid No 0,06
Claims priority, application United Kingdom, Dec. 6, 1975,
U.S. Cl. $60-39.74$ R $^{\text {Int. C. }{ }^{2}{ }^{\text {502C }} 7 / 22}$

6 Cluims

1. A fuel injector for a gas turbine engine comprising: an elongated cylindrical hollow body having a downstream end, an upstream end and an interior surface opening at least to said downstream end; means defining a passage through the fuel injector for flow of compressed air; an orifice exendiwg
through the side of said hollow body intermediate the downstream end and the upstream end thereof and opening through said interior surface to the interior of the hollow body; a fuel supply duct extending into said orifice from the exterior of the hollow body and communicating with the interior of said hollow body through said orifice to supply fuel tangentially
onto the interior surface of said hollow body, and a continuous helical wall projecting radially inwardly from said interior surface from a position immediately upstream of said orifice and extending at least 360° around said interior surface to a position downstream of said orifice whereby fuel supplied hrough said fuel supply duct is prevented from returning outwardly through said orifice.

APPARATUS FOR AERIAL WATER ACQUISTTION AND areld J. Schneider, 14923 Moorpark St, Sherman Oake, Calif. ${ }_{91403}$

Filed Apr. 21, 1977, Ser. No. 789,649
Int. C. ${ }^{2}$ F15B $1 / 06 ;$ B64B $1 / 50$
U.S. C. $60-398$

Apparatus for the acquisition of rain water and including, funnel supported aerially by balloon means and together with a duct from said funnel to said reservoir for the immediate gravitation of acquired rain water into storage.

1. A hydroelectric plant for genera
plant structure located in the body of water
first lever means pivotally connected at a first end to and extending downord from seid plant structure to s surface of said body of water; loat means attached to a secis
for floating on said surface;
second lever means pivotally connected to said plant struc
ture; ture;
crosshead
osshead means pivotally connecting said first lever means to said second lever means;
ylinder means operatively connected to said second lever means to move a piston means therein in response to said reciprocating in sid cylinder means to save piston mean reciproca
through;
response to heigh for generating a first control signal in signal adjusting said crosshead means to maintain rela signal adjusting said crosshead means mo mainain rela less of said height;
means for generating power from said fluid movement from said piston means.

4,092,829 Peter Durenec, Anmandale, Va,, medgnor to The United States of America as represeated by the Secretary of the Army, Wamb ington, D.C.

Filed Nov. 6, 1975, Ser. No. 629,452
Int. C1.2 F01B 29/10; F02G $1 / 04$
U.S. Cl. 60-517 7 Claims 1. In a closed cryogenic cooling system comprising an elec tric motor driving a compressor which feeds a regenerato through a conduit, the system containing a low molecular weight gas at a minimum pressure orders of magnitude greater compressor comprises:
crankshaft having at least first and second cylindrical sections with axes parallel to but displaced a short distance
in opposite directions from the axis of rotation in said sage which affords communication between the vessel and the a pistonkshaft; a first rod connected between said piston and motor whereby gas evaporating from the liquefied gas is conpiston and a first rod connected between said piston and ducted into the motor, and in heat conductive relationship with said first cylindrical section to provide a displacement the vessel, at least one container holding a buffer substance
thereof equal to twice said short distance associated with thereof equal to twi
said first section;
hollow cylinder closed at one end snugly and coaxially her therebetween piston to provid a compression chan said cylinder and said second cylindrical section to prouce a displacement of said cylinder which is opposite to that of said piston the weights and displacements of said piston and cylinder crankshaft vibration;

a housing surrounding said motor crankshaft, piston and gas at said minimum pressure and having inward proje tions providing bearing supports for said crankshaft and a first guide recess to slideably engage the outer surface of only; and said conduit into said receess and having a telescoping section within said housing communicating with said compression chamber, whereby said gas at high ambient pressure within saii
housing leaks into said chamber and is forced into said conduit at even higher pressure by the relative motion o said piston and cylinder and any gas leaking through said telescoping section into said recess passes freely back into
said housing.

4,092,830

GAS DRIVEN MOTOR WITH BUFFER SPACE John Walter Rilett, 18 Links View, Stratton, Cirencester, En-
Filled Jan. 13, 1977, Ser. No. 759,133
Claims priority, application United Kingdom, Jan. 16, 1976, Int. Cl. ${ }^{2}$ F01K 2
U.S. Cl. $60-671 \quad$ Int. C. ${ }^{2}$ F01K 25/10 $\quad 10$ Claims

1. A motor having in combination therewith apparatus fo supplying to the motor gas evaporated from liquefied gas, sai
which during operation of the motor releases heat to the vessel and the liquefied gas therein, whereby the tendency of the
evaporation of the liquefied gas to cool the remaining liquefied gas in the vessel is at least partly counteracted.

4,092,831

ROOF BAR FOR SURFACE SUPPORT ELEMENTS
Walter Lubojatsky, Recklinghausen, and Wilhelm Wertele wski, Walter Lubojatsky, Recklinghnusen, and Wilhelm Wertelewski,
Datteln, both of Germany, assignors to Becorit Grubenuusbau Dattein, both or Germany, asalgany
GmbH, Recklinghausen, Germany
Claims priority, application Germany, Jun. 5, 1975, 2525034 U.S. C1. 61-45 D Int. Cl. ${ }^{2}$ E21D 15/44

1. In an improved roof bar for surface support elements of he type which includes a top plate, an L-shaped gap sealing plate having horizontally-disposed, upper section and a verti-
cally-disposed, lower section which serves as a buffer plate, cally-disposed, lower section which serves as a buffer plate,
said gap sealing plate being coupled to at least one side of said said gap sealing plate being coupled to at least one side of said
roof bar and being displaceable generally toward an adjacent roof bar, a pivotable hydraulic cylinder coupled to said buffer plate and to said roof bar, the improvement comprising:
first guide element rigidly mounted on said roof bar beneath said top plate thereof, said first guide element defining, in cooperation with said top plate, a horizontally-
extending channel therebetween in which said upper horizontally-disposed section of said gap sealing plate is slidably mounted.

$$
\begin{aligned}
& \text { sporsed section of saad } \varepsilon \text { ed. } \\
& \text { en }
\end{aligned}
$$

METHOD OF CORRECTING THE HEIGHT LEVEL OF A FOUNDATION

Arne J. Mattson, Vesteras, Sweden, assignor to Paul Anderson Industrier AB, Vesteras, Sweden

led Sep. 7, 1976, Ser. No. 721,030
U.S. C. 61-51

Int. C1. ${ }^{2}$ E02D 27/48, $5 / 48$

1. In a method of correcting the height level of a concrete
foundation or the like which is supported on a loose soil material, the bearing capacity of which has been locally increased under the foundation by means of an oblong casing open at its isolate with respect to lateral movements in the in order to predetermined soil volume from the surrounding soil, the
improvement comprising the steps of: providing at least one ice crystal slurry from the first stage to the second stage layer of a material having distribution passages beneath the wherein disentrainment of vapor is effected, and means for

foundation, and injecting a moveable material mass into said layer at a pressure capable of rising the foundation.
$4,092,833$
SPLITT-PHASE COOLER WITH EXPANSION PISTON Peter Durenec, Annandale, Van ENHANCER America as represented by the Secretary of the Army, Wash ington, D.C.
Filed Feb. 28, 1977, Ser. No. 773,033 U.S. C. 62-6 Int. C.2 ${ }^{2}$ F25B 9/00 3 Claims

producing water having a reduced impurity content from the ice crystals.

3 Claims
ELECTRICAL APPLIANCE FOR MAKING SORBET Pierre Tanguy, 30, rue de Dilion, 21000 Dals, and André Falirre, 14, rue Adolphe Dietrich, 21000 Difon, both of France
 Claims priority, application France, Jen. 30, 1974, 74 03045 U.S. C1. ${ }^{62-136}$ Int. Cl. 2 G05D 24/02; A23G 9/00

4 Claims

1. A split-cycle mechanical cooler having a compressio portion, a distinct expansion portion, and conduit means be piston in a first cylinder and a second piston in a second cylinder, and means for reciprocally moving said pistons in said cylinders in phase opposition; said expansion portion including a third cylinder having distinct first and second spaces, a third piston in said third cylinder having opposite ends respectively in said first and second spaces, and a regenerator in said end of
said third cylinder which is in said first space of said third cylinder; and said conduit means including first and second conduits respectively connecting said first cylinder to said first space and said second cylinder to said second space.

FREEZE SEPARAT 4
Albert IVor Lloyd, Dorset, England, assignor to United Kingdom Atomic Energy Authority, London, England Flied Dec. 14, 1976 , Ser. No. 750,351
Claims priority, appliction United Kingdom, Jan. 28, 1976, Int. Cl. ${ }^{2}$ B01D 9/04; C02B $1 / 12$
U.S. C1. 62-123 13 Claims 1. In a plant for reducing the impurity content of impure water by an immiscible refingerant-frezee process, the plan including a two stage crystallizer for producing ice crystals in the impure water by boiling the immiscible refrigerant in th the second stage, the improvement wherein the crystallizer first stage is arranged as a number of tiers of passageways and includes means for introducing refrigerant into impure water in the passageways defining each tier, conduit means for leading

1. In an appliance for making sorbet or ice cream, wherein the appliance has a driving spindle projecting from a gear
motor housing to which a rotating arm supporting mixing blades thereon is attached, and wherein said appliance includes means for preventing the mixer blades from becoming locked in ice by effecting a progressive withdrawal of the blades from a vertical orientation lowards a horizontal orientation under the action of an opposing torque applied io the blades by the of the ice during freezing, the improvement comprising:
an automatic stopping device including a projection means provided on one of the blades for contacting a lever uring on the periphery of a cover for the gear motor housing and opposing continued rotation of said arm supporting the blades on completion of the withdrawal of he blades, said projection means causing said lever to switching means for opening the motor supply circuit responsive to said projection means contacting said cooperating means wherein said switching means is activated by a cam rotated by a spindle mounting said lever on said
cover.

4, 4,092,836 FLEXIBLE-DISK COUPLINGS porting the latter between said opposite ends to thereby inhibit
said free deflection for increasing the spring rate thereof above $4,079,598$, and Ser. No. 695,205, Jun. 11, 1976, Pat. No. $4,04,571$. This application May 20, 3777, Ser. No. 798,939 U.S. Cl. 64- ${ }^{13}$ Int. C1. ${ }^{2}$ F16D $3 / 78$

6 Clxims

said first rate to a second spring rate only when torque loads bove said predetermined torque load are being transferred between the flywheel and input shaft.
$4,092,838$
YARN GUIDE TUBE FOR WARP KNITTING
MACHINES

Robert J. Gengi, Emerson, N.J., assignor to Joan Manufacturing Corporation, Waldwick, N.J.

Filed Jul. 22, 1977, Ser. No. 817,922
U.S. Cl. 66-214 Int. Cl. ${ }^{2}$ D04B 23/00 6 Claims

1. In a knitting machine including a row of needles supprted for longitudinal reciprocation, carrier rod means supported for parallel movement relative to said needles, and means for imparting step-by-step racking movement to said carrier rod means, the combination therewith of improved means for feeding inlaying yarns to said needles, said inlaying (a) feding means comprising
(a) des,
(b) spaced apart support means for said tube guide support bar, each of said support means including one end fixed on said carrier rod means and an opposite end fixed on said tube guide support bar
(c) a plurality of profile plates including one face removably secured to said tube guide support bar, and
(d) a plurality of yarn guide tubes including upper end portions fixed to the other face of each of said profile plates and being circular in cross section, said yarn guide tubes
including lower end portions extending downwardly from said profile plates to define free ends for directing inlaying yarns to said needles, the centers of the free ends of adjacent yarn guide tubes being spaced the same distance apart
as the spacing of said needles said lower end portions being bent inwardly from opposite sides so that, the free lower ends of adjacent yarn guide tubes are elongated in cross-section and are sufficiently spaced apart to at times permit the needles to pass therebetween.

DEVICE FOR THE WET-TREATMENT OF MOVING
Gerhard Bähre, Bendestorf; Jürgen Brauns, Buchbolz (Nordh elde), and Willi Struck, Pinneberg, all of Germany, assignors to Artoe Dr. Ing. Meier-Windhorst KG, Seevetal, Germany Claims priority, application Germany, Aug. 8, 1975, 2535464 U.S. Cl. 68-19 Int. Cl. ${ }^{2}$ D06B 3/02, $15 / 08$ U.S. Cl. 68-19

1. In a device for the continuous wet treatment of movin webs and, in particular, the washing and drying of textile webs of the type including a chamber through which the web passe in a serpentine fashion along substantially horizontal trave paths supported by a plurality of horizontally spaced apa unsupported, horizontally-disposed stretches of the web said guiding rollers being disposed in a vertically-oriented column at one side of the chamber and said reversing rollers being
disposed in a vertically oriented column at the other side of the disposed in a vertically oriented column as

DEVICE FOR FLANGING THE EDGES OF SHEET SECTION GerdJJürgen Eckold, St. Andreasberg, and Hans Mana, Bad Switzerland
Claims priority Dee. 10, 1976, Ser. No. 749,401 U.S. Cl. 72-312 Int. C. ${ }^{2}$ B21D $19 / 08$
ment comprising:
mounted adjacent to one of the reve each of which is disposed to engage across the width of the upper surface of the horizotally disposed stretch of we upper surface excess liquid therefrom and thereby prevent the web from floating on the reversing rollers;
a second plurality of elongated wipers, each of which is mounted adjacent to one of the guiding rollers and is disposed to engage across the width of the upper surface of the horizontally disposed stretch of web so as to strip floating on the guiding rollers; and
third plurality of elongated wipers, each of which is third plurailty of elongated wipers, each of which is
mounted adjacent to the middle of one of the free unsupported stretches of the web and is disposed to engage
across the width of the lower surface thereof so as to strip liquid therefrom and so as to provide positive guidance and support for the unsupported horizontally-disposed stretch of the web.

1. Apparatus for bending the outer edge of sheet metal members into a predetermined form, comprising:
a yoke substantially having a C -shaped contour in the direcyoion of said edge and extending substantially transverse to said edge on both sides thereof;
support member for supporting said sheet metal member and being engaged with one of the legs of said yoke, and including a tub said yoke further in
ment with ser including a centering element for engagement with said support member;
a tool carrier mounted on said yoke and movable relative thereto;
tool means carried by said tool carrier and comprising a clamping member for retaining said sheet metal member against said support member, and a bending member adapted to engage the edge of said aheer and bend it about said support member
ing said clamping member and said bending member and to move said tool carrier relative to said support member.

2. A sheet metal brake comprising: a base having an elongated, substantially horizontal, fixed, work clamping surface; plurality of elongated arms each extending normally to the
length of said fixed work clamping surface; pivot sections fixed to each of the arms near a first end of each arm, extending ormailly to the arms and being pivotably connected to the bork clamping surface and normally to the lengthe to said fixed arms; an elongated movable work clamping member fixed to arms; an elongated movable work clamping member fixed to said arms and parallel to said work clamping surface said clamping member having a flat surface adapted to cooperate with said fixed clamping surface to retain a sheet workpiece therebetween, and a flat anvil surface extending at an acute angle with respect to said workpiece clamp surface so as to form an elongated bending nose with said workpiece clamping surface; actuator means supported between the base and the
first ends of at least certain of the arms, the actuator means first ends of at least certain of the arms, the actuator means
being adapted to move the arms about their pivotal connections with the base between a closed position wherein the movable work clamp is in close spaced relationship to the fixed clamping surface so as to clamp a sheet workpiece therebetween, and an open position wherein the movable clamp is spaced from the fixed work clamping surface to allow insertion
or removal of workpieces therebetween; and an elongated bending arm pivotably supported with respect to the base on an axis extending parallel to the fixed and movable work clamps.

4,092,842
DEEPLY EMBOSSED SHEET PRODUCT AND METHOD AND APPARATUS FOR THE PRODUCTINN THEREOF
 erville, both of
Denver, Colo. Deaver, Colo.
Continuantion of Ser. No. 622.930, Oct. 16, 1975, abandoned, abich is 1 continustion-in-part of Ser. No. 512,829, Nov. 7, 1974,
abandoned. This application Oct. 26, 1976, Ser. No. 735,646 U.S. C. 72-379 Int. C1.2 B21D 13/04

1. A method for the deep embossment of a single layer of sheet material which comprises first embossing across said ons across at least one of the surfaces of said sheet materia said hills and valleys extending outwardly from at least one of the surfaces of said sheet material not more than 1 cm , and hereafter embossing in superimposed relationship on said clief pattern a deep embossment pattern, said deep emboss ment pattern comprising a plurality of sarge protioerances, relative to the relief features of said small scale relief pattern to encompass at least portions of several of said hills and valleys, said large protuberances being present in a number sufficient to prevent adjacent shects of said sheet material from touching except at the point sheet material are stacked in vertical array

4,092,8
 apparatus for testing the readiness of

 mil Danilorich Meted coal for moulding 15, kr . 88; kv. 2, and Viktor Vasilierich Gavriko, ulitan Sharikovaya, 51 , shas, 15, kr. 49, all of Kharkov, U.S.S.S.R. Filed July 19, 1977, Ser. No. 816,944 U.S. C. 73-17 R

1. An apparatus for testing the readiness of heat-treated coal for moulding, said readiness being assessed in terms of time as a span between the moment of exerting pressure on a sample o comprising: a casing, a vertical shaft placed in said casing and having an end extending outside the casing; a drive connected to said end of the shaft; a bracket placed in the casing and-fixed by one of its end on said shaft; a receptacle for accommodating a coal sample, said receptacle being a sleeve open at both ends,
fixed vertically on the other end of said bracket; a feed pipe for letting a stream of coal in the casing, said pipe being positioned on the top thereof over the path of rotation of the receptacle with the shaff; a slanted bottom of said casing; a disposal pipe
for removing the coal from the casing said pipe being located for removing the coal from the casing, said pipe being located receptacle and move therethrough; means for moving said plunger in said receptacle during rotation thereof with the shaft to compress the coal sample therein, said means having a first guide member, positioned in said casing along the path o
rotation of the receptacle with the plunger so as to be in rotation of the receptacle with the plunger so as to be in
horizontal plane at the level of the top end face of the receptacle and to close the entrance passage thereof on the corresponding portion of said path of rotation, said means having a econd guide member, placed in said casing on the same pormember a weight; a lever system which kinematically con nects said second guide member with said weight whereby the second guide member is urged towards the first guide member said second guide member having an ascending and horizontal parts of the profile of said second guide member used for
interaction with the lower end of said plunger as it rotates with the receptacle, whereby the plunger is driven upwards and the coal sample is compressed in the receptacle between the plunger and said first guide member; said means having a thirc quent portion of the receptacle path of rotation and having an ascending profile used for interaction with the plunger to cause a further upward movement thereof in the receptacle for the removal of the coal sample therefrom; said means having a recepthacle path mef rotaion in position with the casing along the receptacle path of rotation in series with the third guide mem-
ber and having a descending profile used to interact with said plunger for bringing it into its lowermost position; a means for indicating the beginning of a displacement of the plunger with said second guide member caused by the coal-sample swelling. second guide member through said lever system; mith said
stopping said drive of the shaft rotation when the receptacle comes to a position preceding the intersection of its path of rotation and the stream of coal, and to a position on the horizontal part of the profile of said second guide member; and a means for actuating said drive of the shaft rotation when the coal sample begins swelling.

092,844
HYDROGEN PROBE WITH LIMITED ACTIVE AREA Donald H. Oertle; Richard M. Vennett; Burton M. Casad, and tal Oil Company, Ponca Clty, Okla.

Filed Aug. 20, 1976, Ser. No. 716,32
Int. C.2
U.S. CI. $73-23$

1. A hydrogen probe device comprising
an elongated tubular member formed of a hydrogen-permea ble metallic material, said member having a first closed end formed of said hydrogen-permeable metallic materia and a second
ing device;
inner liner of a hydrogen-impermeable material and extending a par of a hydrogen-impermeable material and extending a par
of the length of said tubular member and being sealingly joined at each end to the interior of said tubular membe whereby hydrogen permeating the portion of the length thereof between the sealed ends of said liner is prevented from entering the interior of said probe and passing ou the open end thereof; and a
vent means through the wall of said tubular member be tween the ends of said liner whereby hydrogen which
permeates said tubular member between the sealed ends of said liner may pass freely from between the outer surface of said liner and the lined inner surface of said tubular member thereby preventing a buildup of pressure between
the interior of the lined portion of said tubular member the interior of the lined portion of said tubular member
and the exterior of said liner, the extent of said vent means being from the exterior to the interior of said tubular member.

4,092,845

LUNG SIMULATING AEROSOL SAMPLER Vittorio Prodi; Carlo Melandri; Giuseppe Tarroni, all of BoloBologna, and Cornignani, Ferrara; Tonino De Zniecomo, Bologasasind Gianfranco Bompatie, San Laszaro (Bo), all of
Italy, assignors to Comitato Nazionale per l'Energin Nucleare - Cnen, Rome, Italy Clizims priority, application Italy, May 28, 1976, 49698 A/76
U.S. CI. 73-28

1. An apparatus for simulating the human respiratory trac with respect to the deposition of aerosol particles contained in the breathed air which apparatus comprises an enclosed duc along which the following means are included in the order: humidifying and particle catching means; a cyclone; a bubble and a vacuum pump.

4,092846

DETECTION OF LIQUID IN A GAS STREAM Thomas C. Jeffery, Lake Charles, La, and Wilmer B. Graybill, Pittsburgh, Pa, assignors to PPG Industries, Inc., Pittrburgh, Pontin
Continuastion of Ser. No. 523,777, Nov. 14, 1974, abandoned,
which is a continuation-in-part of Ser. No. 256,081, May 23, which is a continuantion-in-part of Ser. No. 256,081, May 23, U.S. C1. 73-29 Int. C.2 ${ }^{\text {G }} \mathbf{0 1 N}$ 33/00

7. An apparatus for vaporizing a liquid comprising a vaporizer means to which that liquid is fed and means for supplying heat to said vaporizer means, the combination therewith of stream comprising acing a substantially liquid-free vapor line for removing vapor from seid vessel, means withinel, a vessel for segregating liquid from vapor, and means for deter mining the weight for said vessel.

FLASH POINT ANALYZING MEANS AND METHOD FLASH POINT ANALYZING MEANS AND METHOD
Charies R. Lymel, Port Neches, and Robert A. Wheeler, Beas-
mont, both of Tex, aselgnors to Texaco Inc., New York, N.Y. mont, both of Tex., emelenors to Texaco Inc.. Nev.
Filed Jus. 23,1977, Ser. No. 809,513
Int. C. ${ }^{2}$ GOiN $25 / 52$
U.S. CI. 73-36

Int. C. ${ }^{2}$ G01N $25 / 52$

(4) a fourth section connected to the third section comprising a handle.

METHOD AND APPARATUS FOR MEASURING MELT ELASTICTY OF POLYMERS ryce Maxwell, 19 MeCoath Cir., Princeton, N.J. 08540
Filed May 27, 1977, Ser. No. 801, 189 led May 27, 1977 , Ser. No. 801,189
Int. C1. ${ }^{2}$ G01N 3/24
U.S. CI. 73-101

17 Claims

1. A flash point analyzer for use with a steam stripper having a bottom tray and receiving a stream of material and steam and providing a product, comprising means for sensing the temperproviding a product, comprising means for sensing the temper-
atures of the material, the steam and the product and providing signals T_{1}, T_{2} and T_{3}, respectively, corresponding thereto; means for sensing the flow rates of the steam and the product and providing corresponding signals F_{2} and F_{3}, respectively,
corresponding thereto; means for sensing a presure in the crripper and providing a signal Prepresentative thereof; means for sampling the product and providing signals corresponding to at least two predetermined parameters of the product; and means connected to all the sensing means and to the sacmpling means for providing a signal corresponding to the flash point
temperature of the product in accordance with the temperature signals T_{1}, T_{2} and T_{3}, the flow rate signals F_{2} and F_{3}, the pressure signal P and the parameter signals.

METHOD AND APPARTUS FOR DETERMINING
HYDROCYCLONE INTERIOR WEAR
David Charles Thomas, Oklahoma Crty, Okla, assignor to Kerr-
MeGee Chemical Corporntion, Oklahoma City, Okla
S. C. 73-86 Int. C.2 ${ }^{2}$ G01N $17 / 00$

1. An apparatus adapted for insertion in a hydrocycione provided with an inlet, underflow outlet and overflow outle for determining the extent of wear of the interior conical sec
tion of said hydrocyclone comprising: tion of said hydrocyclone comprising:
ter less than the diameter of the underflow outlet of the hydrocyclone;
(2) a second section connected to the first section comprising a truncated conical section possessing an angle of taper equal to the angle of the interior conical section of the hydrocyclone and of such a diameter as ocontact the
lower section of the interior conical section upon insertion thercin;
(3) a third section connected to the second section comprising a cylindrical section of a diameter less than the larges

2. An apparatus for measuring elastic properties of polymers comprising:
(a) a first member mounted for low friction rotation, said first member defining an axis of rotation; (b) a second member mounted for low friction rotation about said axis of rotation and positioned adjacent said first member to define therebetween an intervening space to
receive therein a specimen of polymer to be tested; (c) means to rotationally drive said first member axis of rotation to allow relative rotational movement between said first member and said second member to cause shearing of the specimen positioned therebetween in
said intervening space: said intervening space;
(d) releasable retaining means to selectively prevent rotation
of said second member (e) stop means to selectively
drive means and to stop rolt operation of said rotational If a light source directed rotation of said first member; (g) an optical fiber means within axis of rotation; rotate therewith, said end oriented along said axis of rotation ind a second a first distant from said axis of rotation and parallel with respect thereto, said optical fiber means adapted to transmit light from said first end to said second end;
(h) light interrupting means located in the light flow path between said light source and said first end of said optical
fiber means to intermittently blech fiber means to intermittently block at a known frequency of said optical fiber means; and (i) recording means for recording
second end of said optical fiber means and, hence said rotation of said second member by recording the light emitted from said second end of said optical fiber means.

FUEL MEASURING AND RECORDING SYSTEMS FOR COMBUSTION DEVICES AND METHOD FOR COMBUSTION DEVICES AND METH
MONTORING FUEL FLOW Curtis L. Erwin, Jr., 5805 SE. Gladetome, Portland, Oreeg. 97206 Division of Ser. No. 456,264, March 29, 1974, Pat. No.
3,949,602. This application Mar. 2, 1976, Ser. No. 663,049 The portion of the term of this patent subsequent to Apr. 23 1991, has been discliximed.

Int. C. ${ }^{\text {G }}$ G01F 9/00
U.S. CI. 73-113

17. A fuel measuring system in combination with an engine fuel supply means for said engine, slow flow type volumetric, measuring means measuring fuel flow in said measuring sys tem, compensating means in said system aymanged to compen-
sate the measurement of said measuring means due to varia sate the measurement of said measuring meems due to varia-
tions in the specific gravity of the fuel, and recording mean arranged to make a record of a compensated amount of fue flowing through said measuring means.

4,092,851
APPARATUS FOR THE MEASUREMENT OF VEHICLE FUEL CONSUMPTION Fen, 207 Dogwood La, Berkeley Heightu, N.J. 0792 Filed Jun. 14, 1976, Ser. No. 693,839
Int. C1. ${ }^{2}$ G01L $3 / 00$
U.S. C1. 73-114
input and output columns to a level between the lower contact and the center contact;
(c) the numeric display is adapted for being activated by the (d) the circuitry to indicate fuel consumption; and
cally connected circuitry includes a valve actuator, electricontact, for coped to the upper contact and the lower ery and readout time interval, which is initiated when the electrolyte bridges between the upper contact and the electrolyte bridges between the upper contact and the connected to the center contact and the lower contact and to the valve actuator by an actuator link and to the counter, which counter control includes means for resetting the counter to zero and enabling the counter to respond to the electrical signal from the odometer linkage
unit when the electrolye bridges between the center contact and the lower contact, which counter control also includes means for disabling the counter from further response at the start of the recovery and readout time interval upon receiving a signal from the actuator link; in which said apparatus the number of pulses per unit dis-
tance travelled and the volume of the output column between the center electrical contact and the upper electrical contact are selected such that the count registered in the counter and displayed on the display is a direct reading
of the fuel consumption rate. of the fuel consumption rate.

MULTIPLEXED TR
MULTIPLEXED TRANSDUCER
Hbert Lewis Fowler, Kirkcaldry; David Martin Walker, Frea.
chic; Alsastir Kershar Stevenson, Glenrothea, and Alan Gra. chic; Alsastir Kereman Stevenson, Glenrothea, and Alan GraHughes Microelectronics Limited, Glearothes, Scothand Flied Mar. 21, 1977, Ser. No. 779,587 Claims priority, application United Kingdom, Mar. 23, 1976,
1725/76; Apr. 30, 1976, 17857/76; Nov. 16, 1976, 4754/76, U.S. C. 73-117.3 Int. C.1. ${ }^{\text {G } 01 M} 15 / 00$

29 Claims

1. Vehicle fuel consumption rate measurement apparatu comprising courrot connected to the control circuitry, a fuel flow sensor uni electrically connected to the control circuitry, and a numeric display electrically connected to the control circuitry wherein (a) the odometer linkage unit includes means for producing
an electrical pulse train, in which the number of pulses is an electrical pulse train, in which the number of pulses is
related to the distance traveled by the vehicle, to drive a counter in the control circuitry;
(b) the fuel sensor unit includes a fuel input port and a fuel output port with an upper fuel path and a lower fuel path therebetween, the upper fuel path including an electrically control circuitry to an open position and a closed position, and the lower fuel path including an input column and an output column extending downward of the upper fuel ing a lower electrical contact, a center electrical contact and an upper electrical contact, the lower fuel path containing a body of electrolyte, which electrolyte is denser han the fuel and not misciber with is included in sufficient quantity to fill the

2. A transducer for producing electrical signals which are a (anction of a plurality of different parameters, comprising (a) signal generating means for generating first and second signals having the same frequency characteristic relationships between said first and second signals during first and second periods respectively;
c) a plurality of parameter sensing devices each for combin ing said first and second signals in relative proportions dependent upon the value of one of said parameters so as (d) sum signal selecting means arranged to select sequ tially sum signals from said plurality of parameter sensing devices, and
means and arranged to produce a from said selecting signal which is inglicative of the difference in phase of the selected sum signal developed during said first and second
periods, whereby to derive sequentially a plurality of
output signals each indicative of one of said parameters.

4,002854

ames L. Henry, and C.AXIS LOAD CELL assignors to The Bendir Corporation, Southrield, Mich Ohio This applicat. No. 615,852, Sep. 23, 1975, abandone This application Apr. 20, 1977, Ser. No. 789,032 U.S. CI. 73-133 R

1. A multi-axis load cell comprising:
a housing assembly;
a hub member disposed in said housing assembly; means for drivingly connecting said housing assembly and said hub member for relative displacement therebetween,
said means including a plurality of flexure arms enterding said means including a plurality of flexure arms extending
between said housing assembly and said hub member, said means including means fixing each of said flexure arms at one end to one of said housing assembly and said hub member;
said means drivingly connecting said housing assembly and said hub member also including flexure means mounting
each of said flexure arms to the each of said flexure arms to the other of said housing
assembly and said hub member, said flexure means readily deflecting to allow relative movement between each flexure arm and said other of said housing assembly or said hub member in a direction along the respective axis of each flexure arm while providing substantially greater resistance to relative movement in other directions; and
ransducer means for measuring the relative displacement between said housing assembly and said hub member and generating signals corresponding thereto, said transducer means engaging one of said housing assembly and said hub member and fixed to the other, whereby the load exerted through the flexure arms may be determined.

DYNAMOMETER AND COUPLING FOR A TEST STAND Lionel L. Kinney, Peoria, IIl,, asagnor to Caterpillar Tractor Co., Peoria, III
led Jan. 28, 1977, Ser. No. 763,316
Int. CC. ${ }^{2}$ G01I
U.S. CI. 73-134

1. Method of testing a rotary movement - electrical signa rransducer system providing pulses in synchronism with rotation of a rotary device having widely varying speeds, such as he wheel of an automotive vehicle, comprising the steps of comparing the time duration of a first occurring pulse a first predetermined time interval and having a first limited time duration with respect to a fixed longest time interval;
generating a first evaluation signal if the measured time duration of the first pulse exceeds said first limited time duration,
with a second predeterion of the second occurring puls than said first predetermined time interval which is longe second limited time duration with respect to said fixed longest time interval;
nary error, or malfunction signal if the measured time
neral duration of the second occurring pulse exceeds said sec ond limited time duration;
logically combining said first and second evaluation signals and
(a) inhibiting generation of the preliminary error signal if the first pulse is shorter than the first interval, and the inhibiting transmission of the preliminary error signal if
the first pulse is longer than said first interval;
the first pulse is longer than the first interval and the second pulse is also longer than said second interval indicative of deceleration of the wheel; and
(c) transmitting said preliminary error signal if the first pulse is shorter than said first predetermined interval
and the second pulse is longer than said second predetermined time interval.

2. A dy
a housing mounted on said base for rotation about an aris,
said housing including first and second parts relatively said housing including first and second parts rel
rotatable about said axis and defining a chamber; interleaved brake discs defining a brake pack within said chamber, some of said discs carried by said first housing part and others carried by said second housing part; a hydraulic piston within said chamber for compressing said
pack; pack;
axially directed coolant inlet and outlet ports
and communicating with said chamber;
a and communicating with said chamber; a transducer connected to one of said housing parts and to
said base; and a rotatable chuck drivingly connected to the other of said housing parts.

4,092,856

KILOBAR RANGE STRESS GAUGE
Richard Kande, Vickeburg, Misa, assignor to The United States of America as represented by the Secretary of the Army, Weshington, D.C.

$$
\begin{aligned}
& \text { Filed May 13, 1977, Ser. No. } 796,649 \\
& \text { Int. C.2 }{ }^{2} \text { G1L } 7 / 02
\end{aligned}
$$

U.S. Cl. 73-141 A Int. Cl. ${ }^{2}$ G01L 7/02

1. A free field stress gauge for use in stress fields up to and cluding the kilobar range, comprising
active disc having a plurality of element, the density a modulus of said free field stress gauge being dependent upon the number of said plurality of elements and the material used to construct said free field stress gauge, said plurality of elements comprising a plurality of rings
formed in one surface of said active disc, said plurality of rings being formed by cutting a plurality of grooves in one surface of said active disc;
cover disc secured to said active disc to cover said active disc; and
gauge, said means for sensing any stress applied to said
gaid gauge, said means for sensing any stress applied to said
free field stress gauge being mounted on said active disc and comprising a plurality of strain sensors mounted on the inside of the innermost ring of said plurality of rings.

4,092,857

John B. Lawson, Providence, R.I., assignor to Lawson-Hemphill, Inc., Central Falls, R.I. Filed Jul. 5, 1977, Ser. No. 812,561

Filed Jul. 5, 1977, Ser. No.
U.S. CI. 73-144

1. A rotating head tensiometer adapted for meas
the tension on a running yarn, which comprises:
a handle,
measuring head rotatably mounted on said handle and provided with walls surrounding an enclosure facing said handie;
suring head reative enclosure for rom
suring head relative to said handle, pair of rollers rotatably mounted on said beam above said walls for rotation of said beam an amount proportional to yarn tension,
toothed wheel carried by said beam therearound for rotation therewith, and
a plurality of escapements mounted therearound for oscillation about axes parallel to the axis of relative rotation of said handle and said measuring head,
each of the escapement axes being coincident with the center of inertia of the respective escapement, each of said escapements being heavy, elongated, and
having a pair of protuberances engaging the toothed rertia is high even at low rates of head rotation and no

weight bias of the heavy escapements tend to change the tension reading at whatever angle said tensiometer is held.

OCEANOGRAPHIC SENSOR WTHH IN-SITU CLEANING AND BIO-FOULING PREVENTION SYSTEM Gene A. Edgerton, Ventura, Calif., assignor to The United Statey of America as represented by the Secretary of the Navy Continuation-in-part of Ser. No. 635,552, Nov. 26, 1975, abandoned. This application Mar. 11, 1977, Ser. No. 776,578 U.S. CI. 73-170 A Int. C1. ${ }^{2}$ G01R 3/00

1. An oceanographic sensor system having the capability of both self-cleaning and bio-fouling prevention simultaneously while operating in a sensor mode while submerged, for removal of foreign materials thereon and the prevention of foul ing thereof, comprising.
and shape operable to be vibrated at or near a resonant
frequency at various energy levels;
b. a plurality of separate sensor means fabricated on surfaces of said transducer substrate element as an integral part thereof
seid treno of said sensor means being on opposite sides of said transducer element;
. said sensor means being electrically connected to senso readout means;
an electrical means for providing an alternating electrical potential to vibrate said transducer element while said sensor means is operating in a sensor mode; means for
connecting any of the sensor means on one side of the transducer element to one side of said electrical means and any of the conductive coatings on the opposite side of said transducer element to the opposite side of said powe source for exciting the transducer substrate element to
cause vibration thereof at desired frequencies to generate negligible, the impedance of said fluid or substance between sonic energy which varies in energy intensity from levels said electrodes being indicative of the level of said fluid or which create acoustic streaming forces to intensities which cause cavitation forces to cause removal of any
foreign fouling matter on the transducer element and integral sensor means by cavitation of the surrounding water and to prevent fouling due to marine organisms
adhering to the sensor surface by acoustic streaming of water adjacent the surface thereof concurrently while oceanographic parameter measurements are being made by said sensor means.

4,092,859
OSCILLATING WING FLOWMETER
Joseph P. DeCario, Wrenthan, Mase, amedgaor to The Foxboro
Compayy, Foxboro, Mmas.
Compeny, Foxboro, Men.
Flied May 31, 1977 , Ser. No. 801,955 US. C1.73-194 B Int. C. ${ }^{2}$ G01F 1/00

A fluid flow meter comprising:
a first wing element;
said wing elements extending longitudinally alongside each other;
said second wing element having an inner surface toward said first wing element, an opposite outer surface, a lead aid second wing element being
ment about an axis longitudinally thereof; pivotal move-
said axis being transversely nearer said leading edge tha said trailing edge;
whereby said second wing oscillates at a frequency proportional to flow rate.

LEVEL MEI 4,092,860
Mathems Gijbertus Jozef Arte AND CONTROL Wailre; Jozef Augurtinus Elisabeth Spean, Eadoornstrant Nuenea; Antonius Gerardus Martinus v. Asseldonk, Out dhoornatrant 33, and Johannees Augurtinus Catharinus Mari lande
Cluime Flied Oct. 14, 1975, Ser. No. 622,398 $\underset{7413475}{\text { Claims }}$

4,092,861
LIOUID LEVEL MEASURING DEVICE
illiam F. Fiing, 351 S. Fuller Ave., Apt. 35, Los Angeles, Calif. Filed Feb. 14, 1977, Ser. No. 768,642
Int. C1.
U.S. CI. 73-311

1. A liquid level measuring device for simultaneously measuring the liquid levels of two liquids in a container, said device (a) an elo
(a) an elongated frame insertable into the liquids in said (b) two floats
(b) two floats of different buoyancies
(c) means for mounting said floats so that each float is movable along said frame by the buoyant forces of the respective liquids; said mounting means comprising two endless guide cables, means for mounting each guide cable on said frame for independent movement relative to said frame, and means for mounting each float on a respective endless ide cable;
d) manually operable means for selectively holding said floats in a fixed position relative to said frame; said holding means being mounted adjacent one end of said frame for engaging each endless guide cable to hold the same in a fixed position relative to said frame. 4,092,862
THERMAL GRADIENT TEMPERATURE SENSOR Allen L. Taylor, Woodbury, Minn., asaignor to Minnesota Mi Continuation of Ser. No. 467,015, May 4, 1

U.S. CI. 73-362 CP May 24, 1976, Ser. N
Int. Cl. ${ }^{2}$ G01B $7 / 16$

2. A temperature sensor for placement in thermal contact with an object for providing a detection of the thermal gradient of the object, which sensor comprises:
electrically nonconductive pyroelectric material comprising two uniformly poled pyroelectric mheets adhesivively joined together in surface-to-surface contact to form a
relatively stiff midsection in said layer about which the sheets of said layer bend; and
an electrically and thermally conductive layer carried on not more than one broad surface of said layer for placement in surface-to-surface contact with at least a portion of said
object, said pyroelectric layer producing an electrostatic object, said pyroelectric layer producing an electrostatic
charge pattern on its surfaces whick varies in accordance with the thermal gradient of the portion of the object that waid conductive layer contacts.

4,092,863
ELECTRONIC THERMOMETER CIRCUIT
Robert B. Turner, Weymouth, Mass., assignor to Johnson \& Johnson, New Brunswick, N.J.

Filed Jan. 12, 1977, Ser. No. 758,630
U.S. C. 73-362 AR ${ }^{\text {Int. Cl. }{ }^{2} \text { G01K 7/24 }}$

4,092,864
 HOT SPOT THERMOMETER
 Robert F. Romanowaki, Rochester, N.Y., aedignor to Qualitrol Corporation, Fairport, N.Y.
 U.S. C. 73-363 Int. Cl. ${ }^{2}$ G01K 5/48 6 Chim

1. An electronic thermometer system comprising: a temper ture sensing circuit for providing an analog signal representa circuit including a temperature sensing probe, a bridge circuit connected thereto, and an anticipation circuit means connected to the output of said bridge circuit, said anticipation circuit means including (i) means for providing a first output signal representative of a reference temperature signal, and (ii) means
for generating a second output signal having seriate first and second portions, said first portion being representative of said sensing probe heat transfer response curve, and said second

Fichard V UID-TEST APPARATUS
Richard V. Strybel, Elk Grove Village, $\mathrm{III}_{\text {, }}$ asignor to Gould Filed Jun. 24, 1976, Ser. No. 699,537
U.S. CI. 73-756

6 Chims

1. In a fluid-test apparatus such as for use in testing 2 refrig eration system having a high presure side and a low pressure
side, said apparatus having a body defining a manifold cham ber, the improvement comprising: first connector means hav ing a first manually operable valve for selectively providing first fluid communication through said body to said manifold chamber; second connector means having a second manually munication through said body to said manifold chamber; third connector means having a third manually operable valve for selectively providing a third fluid communication through said
body to said manifold chamber; fourth connector ing a fourth fluid communication through said body to said manifold chamber; and gruge means for indicating a fluid condition communicating with said manifold chamber, each of said connector means including a connector fitting secured to said body, means defining a passage in said body extending
between the connector fitting and the manually operable vilve to be closed by the valve when the valve is in a closed condition and to have communication with the manifold chamber when the valve is in an open condition, the connector fittin and passage of one of said connector means having a prese
lected flow capacity at least the cumulative flow capacity of the connector fitting and passage of at least two of the other connector means, the manually operable valves of each of said connector means comprising similar size diaphragm valves permitting flow of fluid serially through said one connecto connecting means with effectively maximum cumulative thow permitted by said at least two other connecting means whereby application of a vacuum to said one connector means permits concurrent full capacity evscuation of the low and high sides
of the refrigeration system through two of the other connecto means respectively.

4,092,866

Raymond D. Miele, In Springifeld, N.J., and Roy E. Watron, Ray Mom D. Miele, Jr, Springield, N..., and Roy E. Wation, Filed Mar. 14, 1977, Ser. No. 777,209
Int. C. ${ }^{2}$ G01D 11/26; G04B 39/00
U.S. C. 73-431

1. An instrument case comprising
container having at least one open end,
a window
arcuately shaped flange on the peripheral edge of the an expandable split coliar having end portions formed receive the peripheral edge of said flange and the periph eral edge of said window.

3 ring which snaps in place around said collar and causes it to contract, end portion resiliently pressing said window against a least a portion of said flange when contracted, and

said ring and collar being removably locked in place on the container when said ring snaps in place.

ULTRASONIC SCANNING APPARATUS Terrance Matzuk, 154 Eileen Dr., Pittsburgh, Pa, 15214 Flied Feb Flled Feb. 10, 1977, Ser No. 767,376

 U.S. C. 73-609 Int. C. ${ }^{2}$ G01N 29/04

1. Ultrasonic scanning apparatus for insonifying a specimen amprising:
a housing, ultrasonic transducer disposed within said housing and an ultrasonic transducer disposed within said housing and
mounted for movement in a predetermined path therewithin,
magnetic means for effecting movement of said transducer in said predetermined path,
electrical means for energizing said transducer and receiving signals therefrom,
said magnetic means including permanent magnet means and energizing means for electrically energizing said electromagnetic means,
position sensing means for determining the position of said transducer within said predetermined path,
said position sensing means being disposed out of direct sigra processing means for compecimen, and
said position sensing means and another signal which indicates a desired position of said transducer and emitting
a position correcting signal if a difference in said signals
exists, whereby exists, whereby
aid transducer may be moved in a continuously controlled manner in said predetermined path within said housing independently of the position or movement of said hou ing with automatic correction for departures of said tran ducer from a desired position on said predetermined path, contact with said specimen and cooperating with said signal processing means.

ULTRASONI 4,092,868
ULIRASONIC INSPECTION OF PIPELINES
and Marion A. Tennison, Camarillo, all of Calif, andignors Rockwell IItternationan Cormporatlo, all El Cealif,, amaignors Flled Oct. 12, 1976, Ser. No. 731,199 U.S. Cl. 73-638
dimensionally-responsive second plate element adapted to be
exposed in said closed environment; and pin means defining a

singular locus of vibration transmitting connection of said first plate element to said second plate element in dimensionally 7 Claims temperature responsive relation.

1. An inspection station for a pipe comprising: a moveable carriage positionable inside the pipe means for moving said carriage through the pip tirst magnet mounted on ssid carriage so that the poles of the pipe when said carriage is positioned within the pipe; an ultrasonic Lamb wave transmitter coil and a first receiver an uitrasonic Lamb wave transmitter
a second magnet mounted on said carriage a predetermined
distance from said first magnet;
second magnet;
second magnet;
ectronic means fore polw said carriage;
carriage;
electronic m
second recens for receiving signals from said
a recorder carried by said carriage and coupled to said electronic receiving means for recording said signals; and a battery for powering said electronic driving and receiving
means, and said recorder, whereby the portion of the pipe means, and said recorder, whereby the portio inspected by ultrasonic Lamb waves reflected by non-uniformities and ultrasonic Lamb waves transmitted past said non-unifo
mities as said carriage is moved through the pipe.

LIP PLATE ASSEMBLLY FOR VIBRATION TESTING THROUGH TEMPERATURE EXTREME THERMAL

David V. Kimbell, Claremont, Calif, exadgnor to Kimball Indra tries, Inc., Moaroris, Calis

$$
\begin{aligned}
& \text { P) Monrovia, Calii. } \\
& \text { Filed May , Ser. No. 795,183 }
\end{aligned}
$$

U.S. C. 73-665

Int. C1. ${ }^{2}$ GO1N 29/00
U.S. A. slip plate assembly for shaker-head generated vibration
15 testing of a test piece being exposed to thermal cycling be tween preselected test temperature extremes in a closed envionment, said assembly comprising: spaced, generally paralilel and congruent plate elements including a first plate element
beyond said closed environment for coupling of the assembly to said shaker head, and a test piece-carrying, test temperature

ENGINE STARTING MECHANISM Paul Francis Giometti, Horsecheads, N.Y., maignor to Facet Enterprises, Ince, Tulas, Okla, Ser. No. 718,510

1. An engine starting mechanism for rotating an engine mounted disc having opposed faces, said starting mechanism a starter m
a starter shaft selectively rotated by the starter moto a sleeve member surrounding the starter shaft;
means acting between the starter shaft and sieeve member to rotate the sleeve member with the starter shaf and permit axial movement of the sleeve member relative to the starter shat; first and second annular frictional gripping members respecdively mounted on the sleeve member and the inertia member and adapted for engagement with the opposed faces of the engine mounted disc;
ad helical means mounting the inertia member on the sleeve member so inat upon initiation of rotation of the starter member to carry the second frictional gripping member toward the first frictional gripping member whereby the opposed faces of the disc are drivingly engaged by the frictional gripping members to rotate the disc with the starter shaft.

PRECISION DRIVE MECHANISM FOR CONVERTING FIXED RECIPROCATING MOTION TO ADJUSTABLE Petrick J RECIPROCATING MOTION
Patrick J. Cunningham, Fullerton, Calif., assignor to Dyne Corporation, Ansheim, Calif. Int. Cl. ${ }^{2}$ F16H $21 / 32$
U.S. C. $74-40$

6 Claims SAFETY ATTACHMENT FOR THE HORSEHEAD OF AN
OIL WELL PUMPING UNTT L. C. MeClure, P.O. BELL PUMPING UNTT Filed Jul. 1, 1976, Ser. No. 703,551 U.S. Cl. 74-41 Int. Cl. ${ }^{2}$ F16H $21 / 32$ 4 Claims

1. Precision drive mechanism for converting fixed arcuate reciprocating motion into adjustable reciprocating rectilinea motion, comprising:
a base member adapted to receive a drive plate in slidable a first drive plate having
plate being slidably attached to said base member to proplate
vide rectilinear motion of said drive plate with respect to said base member;
a first pivot frame having an elongated arm of which one end
is pivotally attached to said base member, the other end is pivotally attached to said base member, the other end of
said elongated arm being adapted to be connected to a source of fixed arcuate reciprocating motion;
a first bearing member slidably attached to said elongated entire length thereof, said bearing member being adapted to threadably engage lead screw means;
first lead screw means for threadably engaging said bearing
member and being rotatably attached to said pivot fram member and being rotatably attached to said pivot frame,
said lead screw means moving said bearing member along said lead screw means moving said bearing member along
said elongated arm of said pivot frame when said lead screw is rotated;
First turning means attached to said first lead screw means
for adjustably rotating said first lead screw means, aid for adjustably rotating said first lead screw means, said
first turning means having a projecting pin extending first turning means having a projecting pin extending
radially outward from said first lead screw means adjacent the end of said first lead screw means, a drive shaft rotatably mounted to said base member and having one end
adapted to be turned with the other end thereof having adapted to be turned with the other end thereof having a
projecting pin extending radially outward therefrom, and projecting pin extending radially outward therefrom, and
a hollow cylindrical connector having two ends with each end having at least one longitudinal slot therein where one end of said hollow cylindrical connector is in sliding movable contact over the end of said first lead screw
means with said at least one longitudinal slot engaging said means with said at least one longitudinal slot engaging saic
projecting pin therein and the other end of said hollow projecting pin therein and the other end of said hollow
cylindrical conector is in sliding movable contact over said other end of said drive shaft with said at least one longitudinal slot engaging said projecting pin of said drive shaft whereby said first lead screw means can pivot in
reciprocating angular motion with respect to said drive reciprocating angular motion with respect to said drive
shaft and said drive shaft can be turned to rotate said first
lead screw means; and
first connecting means fixedly attached to said first bearing member for slidably connecting said first drive plate through said elongated slot to said first bearing member whereby said first drive plate is moved in reciprocating
rectilinear motion with respect to said base member by said first pivot frame when said other end of said elongated arm of said irst pivot rame is connected to a source
the reciprocating motion of said first drive plate being
adjustable by moving said first bearing member along said elongated arm of said first pivot frame by rotating said first lead screw means.
2. In combination with an oil well pumping unit comprising walking beam oscillatable in a vertical plane about substanially a horizontal axis, a horsehead on one end of the beam and including a pair of side plates and an arcuate plate detining the
face of the horsehead, a wire line assembly connected to the upper end of the arcuate face of the horsehead and connected lo a polished rod at the lower end thereof, that improvement comprising an attachment for retaining the wire line assembly
in overlying relation to the arcuate face to prevent bending of in overlying relation to the arcuate face to prevent bending of
the polished rod during an upward movement of the horschead in the event the polished rod does not move to its lowest position during a previous downward movement, said attachment comprising a pair of laterally spaced strap assemblies components connected together by a transverse spacing and pivoting assembly oriented in spaced, generally parallel relaion to the arcuate face of the horsehead, means securing the ree end portions of the components to the side plates of the he edges of the arcuate face of the horsehead. he edges of the arcuate face of the horsehead.

4,092,873

CONVERTING CONTINUOUS ROTARY MOTION aburo Murakami, Sakki, Japan, assignor to Watary Shimokawa, Japan
Filed Nor. 25, 1975, Ser. No. 635,209 Claims priority, application Japan, Nov, 29, 1974, 49-136319Claims priority, applica
Oct. 21, 1975, $50-125843$

```
\[
\text { Int. C. }{ }^{2} \text { F16H 27/O4 }
\]
```

1. Apparatus for
2. Apparatus for converting a continuous rotary mot Claims (i) a drive shaft rocking motion of a driven shaft, comprising: (i) a drive shaft
(ii) a profile cam member mounted on said drive shaft for rotation therewith, said cam member being axially slidable on said drive shaft, said cam member being circular at its axial center, said cam member having at each side of said
axial center respective portions which have contours with axial center respective portions which have contours with
a substantially triangular cross-section with rounded corners, each such portion of said cam member having opposed arcuate surfaces, the radius of one such opposed surface decreasing and the radius of the other of such opposed surfaces increasing considered in the direction
from said axial center towards the other end of each por tion,
(iii) a driven shaft having its axis of rotation parallel to the axis of rotation of the drive shaft
(iv) a structural member mounted in fixed spaced relation
ship with respect to the axes of the drive shaft and driven shaft
acured a for comprising a pair of inextensible strands
secured at a first end to said structural member and cou-

pled at their second end to the driven shaft at a radial spacing from said driven shaft, said strands lying in a plane
normal to the axis of the cam member, said strands being respectively in continuous abutment each with a diametrically opposed portion of the cam surface,
whereby as said cam member rotates and causes radial moveaxis, the rocking motion being variable by axial shifting of the cam member to bring different contours of the cam membe into abutment with the strands.

ACTUATOR MECHANISM
William C. Stange, Ellicott City, M.d, mssignor to The United States of America as represented by the Administrator of the D.C.

Continuation-in-part of Ser. No. 596,787, Jul. 17, 1975, Pat. No
4,010,455. This application Dec. 6, 1976, Ser. No. 747,675 4,010,455. This application Dec. 6, 1976,
US, CT. 74-100 R U.S. CI. 74-100 R

1. An actuator mechanism comprising
frame means;
shair means rotatably supported in said frame means; means for positioning said shaft means in at least two rotary
positions;
at least one pair of plunger means coupled to said shaft means, each of said plunger means being responsive to a control signal for applying bidirectional rotation to said shaft means respectively; and
coupling means joined between said shaft means and each of said plunger means, said coupling means including; sleeve means surrounding said shaft means and in sliding engagement therewith, said sleeve means having an elongated aperture extending therchrough for shaf means, and
in means connected to said shaft means and radially extending through said aperture, said pin and shaft means being
slidable within said aperture and sleeve means respectively for a determinable angle before said pin means contacts said sleeve means.

TUBE DRAWING METHOD AND APPARATUS TUBE DRAWING METHOD AND APPARAnver, Otto Uhmann, Burgdorf, and Norbert Stephan, Hanover, both
Of Germany,
Crook, England
Filed Feb. 11, 1977, Ser. No. 767,761 Claims priority, application Germany, Feb. 20, 1976, 2606809 U.S. C. 72-275 Int. Cl. ${ }^{\text {B }}$ B21C 1/10 8 Cluims

1. A method of continuously drawing a succession of tube lengths having a plurality of successive drawing steps at a luraiity of successive drawing stages respectively, each comupstream of the die, and a downstream rotatable draw block operable for drawing the tube through the die, comprising the steps of selectively accumulating the tube between successive drawing stages while temporarily and separately discontinuing he drawing step at either stage and continuing the drawing sep at the other stage; separately inserting each stage floating then threading the leading end of the oncoming tube length through the die and if the oncoming tube length is a succeeding tube length, joining the leading end thereof to the trailing end of the preceding tube length, and operating the respective draw block for drawing the oncoming tube length through the ing and temporarily and separately discontinuing each drawbetween stages, for the said inserting, threading and joining
steps. steps.

THROTTLE $4,092,876$ THROTTLE CONTROL SLIDER mes Harrie Povejsil, Willoughby, Ohio, assignor to Towmotor Corporation, Mentor, Ohio iled Feb. 7, 1977, Ser. No. 766,101 Int. C. ${ }^{2}$ G05G 9/00; B60K 4//00 U.S. C. $74-478$

A linkage assembly comprising
a frame member
a pivot shaft mounted relative said frame;
an operator responsive pedal member mounted on said pivot neutral position in first and second directions. first link means connected with said pedal for
pivoted motion of said pedal to rotational motion; control rod reciprocally mounted relative said frame and movable in third and fourth directions;
basing said control rod in said fourth direc
second link means operably connecting said pedal member with said control rod for causing said control rod to move only in said third direction while said pedal member it
rotated from its neutral position in said first and said sec ond direction;
said second link means comprising a first arm affixed to and rotatable with said pivot shaft, a second arm coupled with said first arm and extending at generally right angles
therefrom, an elongated lever mounted generally at its midpoint for rotation on said frame with said second arm coupled at one end of said lever, first and second lost motion links coupled with ssaid lever each on opposite sides of the roounting thereof and extending outwardly in the same general direction; and, coupling means for
ciating said lost motion links with said control rod.

4,092,877
SELECTIVE MODE HANDWHEEL VALVE OPERATOR Howard L. Ledeen, Pasadens; Franz Schmon, Granada Hills, and Willem E. Tupker, Sylmar, all of Calif, amaignors to Fiow Control Syatems Inc., Sun Valley, C
Filed Mar. 14, 1977, Ser. No. 777,134 Int. CC. ${ }^{2}$ F16X 31/05
US. C. $74-625$
14 Claims

1. A selective mode valve operator comprising.
a stationary member adapted to be mounted on a valve body; means on said output sleeve adapting it for membery driving
connection to a valve operating input shat connection to a valve operating input shaft;
a handwheel coaxial with said output sleeve;
a handwheel coaxial with said output
a rotary motor drive having an output shaft adapted when sctivated for driving engagement with said output sleeve shift means for selectively locking said handwheel to one of said stationary member and said output sleeve; and means preventing driving operation of said rotary motor
when said handwheel is locked to said output sleeve.

4,092,878 RETENTI
FLOATING CARRIER RETENTION FOR A PLANETARY
GEARSET
John J. Campbell, Decatur, Illn, asignor to Caterpillar Tractor Co., Peoris, III.

Filed No
 Nor. 19, 1976, Ser. No. 743,38

U.S. C. $74-801$

1. In
ing:
gearing system, the combination compris.
at least one sun gear defining a primary rotational axis,
at least one ring gear disposed in coaxial relationship with
said sun gear and being of greater diameter than said sun gear,
at least one planet gear disposed between said sun gear and said ring gear and being engaged with each thereof, said planet gear having a secondary rotational axis which
moves along an orbital path around said primary rotational axis upon differential rotation between said sun gear and said ring gear,
positioner means having an annular groove which is coaxial with said sun gear and said ring gear and of smaller diame-

ter than said orbital path, said groove having axially spaced-apart wall surfaces, and
an annular planet gear carrier carrying said planet gear and being disposed for rotation about said primary axis as said planet gear orbits therearound, said planet gear carrier being of the floating form capable of limited nonrotational planet gear carrier having an annular inner edge extendin into said groove of said positioner means whereby axial movement of said carrier and said planet gear is restricted.

4,092,879
SCREW BACK REMOVAL TOOL National Semiconductor Corporation, Santa Clara, Calis to Filed Feb 10 Corporation, Santa Cinra, U.S. C. 81-6 Int. C. ${ }^{2}$ G04D 3/00; B25B $13 / 18$

1. A self adjusting spanner wrench comprising a generally cylindrical body having a handle end and a
gripper end, gripper end
a plurality of guide slots formed in said body and extending
axially and radially thereof, and incluaing cam means
defined by each of said slots, defined by each of said slots,
gripper member slideably mounted in each of said slots and
including a gripper prong extending from the gripper of said body, said gripper member disposed in engagement with said cam means, for radial movement in response to said cam means upon axial movement within said slot, an biasing means within said body for biasing said gripp
members to the outermost position in said guide slots. members to the outermost position in
gtructure, a stationary bearing rack supported on said tructure, a turnable fluid operated chuck seated on said bearing structure, a supporting rack mounted on said supporting aid bearing rack, a non-turnable fluid operated chuck nounted on said supporting rack in alignment with said turntable chuck to define a main axis therewith, said racks having coaxial openings through which the threaded tubular bodies coaxial openings through which cone ireaded for turning the

APPARATUS FOR STRIPRING INSULATION FROM A APPARALECTRICAL CONDUCTOR OR THE LIKE Kurt Knufmann, Kloten, Switzeriand, aselignor to Contraves AG, Zurich, Swituerland
Flied Apr. 4, 1977, Ser. No. 784,261
Claims priority,
U.S. C. 81-9.5

Int. C. ${ }^{2}$ H02G $1 / 12$

1. An insulation stripping apparatus for partially removing an end section of insulation sheathing of an electrical condu tor or the like, comprising:
a housing;
a restoring spring for exerting a restoring force upon said
means mounting said thrust rod to be axially displaceable in
said housing against the restoring force of said restoring a holder clamp;
means for operatively connecting the holder clamp with said means for oper
thrust rod;
a stripper clamp arranged in said holder clamp;
a traction rod arranged in said thrust rod;
means for operatively connecting said stripper clamp with said traction rod;
a sleeve member fixed to said housing;
said holder clamp together with said thrust rod and said stripper clamp being guided to be axially displaceable in said sleeve member;
sid holder clamp together with said thrust rod and said stripper clamp together with said traction rod conjointly being guided to be axially displaceable during a holdingand cutting operation at which time the conductor is held and its insulation cut, whereas said stripper clamp to-
gether with said traction rod is guided to be axially disgether with said traction rod is guided to be axially dis-
placeable relative to said holder clamp during a removal placeable relative to said holder clamp dition of the conduc-
operation when the cut-through insulation operation when
tor is removed.

4,092,881

APPARATUS FOR MAKING-UP AND BREAKING THREADED PIPE CONNECTIONS Rainer Jürgens, and Alfred Ootertag, both of Celle, Germany, zesignors to Cristensen, Inc., Salt Lalke City, Utal
Filed Oct. 29, 1976, Ser. No. 736,728 Filed Oct. 29, 1976, Ser. No.
Int. C. ${ }^{2}$ B25B $13 / 50$

U.S. C. 81-57.34 \qquad 18 Chims
of thread 1. Apparatus for the making-up and breaking of thread and drilling tools for well bore drilling, comprising a support-

urnable chuck relative to the non-turnable chuck during clamping engagement between the chucks and threaded tubu lar bodies therein, said supporting structure being formed by parallel to said main axis and defining the path of movement of said supporting rack, said stationary bearing rack and supporting rack being mounted between the end portions of said sup port beam and on the exterior of said unitary support beam to be supported thereby.

WATER CLOSET F 4, 092,8822 WRENCH AND PULLER Foyd Evans Whitmore, Elington, Conn., andgnor to Whitmon Tool $\&$ Die Con. Inc., Vernon, Conn.
Flied Jan. 16, 1976, Ser. No. 649,734
US. C. $81-90 \mathrm{C} \begin{aligned} & \mathrm{Int} \text { C. }{ }^{2} \text { B25B } 13 / 02\end{aligned}$

1. A tool for the installation, alignment and removal of the water closet flange comprising:
a. a base element having a length at least as long as the diameter of the water closet flange, and a width sufficien to push the water closet flange onto a soil pipe;
b. a pair of line-up studs engagable with a respective pair of boit head receiving soots in said water closet flange, saic size as to be accommodated in the bolt head receiving slo
and fixedly attached at a first end to a bottom surface of the base element;
c. a head element attached to a second end of the cylindrical
body having a diameter larger than the cylindrical body and slidably and fixedly engagable in the bolt head receiving slot in the water closet flange, said cylindrical body having a length such that the head element when engaged
in the water closet flange does not extend beyond the bottom surface of the water closet flange;
d. a handle attached to a top surface of the base element in a perpendicular relation to the base element; and
e. a spirit level mounted in a cavity in said tool for
a spirit level mounted in a cavity in said tool for indicating
the alignment of the water closet flange bolt head recciv. the alignment of the water closet flange bolt head
ing slots for proper mating with a water closet.
ing slots for proper mating with a war
LINEAR SLIDE AND SWVELEL ARRANGEMENT FOR A Jamee J. Kindelan, Greensburg, PATHE Mould Company of Pennsylvania, Greensburg, Pa.
Filed Jan. 14, 197, Ser. No. 759,339 S. Cl. 82 Int. Cl. ${ }^{2}$ B23B 3/34, 3/28

2. In a machine tool having a saddle displaced by a driven feed member longitudinally along a bed for movement parallel
to the rotational axis of chuck means adapted to support at least feed member longitudinally along a bed for movemen paralle one workpiece at one end of the bed while the chuck is rotated
by a drive in a predetermined relation to the rotation of a by a drive in a predetermined relation to the rotation of a
pattern at a laterally-displaced location where a tracer probe pattern at a laterally-displaced location where a tracer probe
produces a signal corresponding to a desired movement of tool means to duplicate a surface contour of the pattern in the workpiece, the combination comprising.
linear slide means including a linearly-displaced member to simultaneously reciprocate said tracer probe and said tool
means along parallel directions of attack in response to means along parallel directions of attack in response to
said signal produced by the tracer probe to move the tool means for duplicating surface contours of the pattern in the workpiece
a lower swivel means including a member rotatable about a
generally vertical axis while supported by said saddle to generally vertical axis while supported by said saddle to
adjustably select a desired angle between said directions of attack and the rotational axis of said chuck means,
an upper swivel means essentially consisting of a single upper swivel member rotatable about a single generally
vertical axis upon a swivel support surface carried by the linearly-displaced member of said linear slide means, said single upper swivel member supporting and angularly positioning said tool means and said tracer probe means to
always extend from the single upper swivel member in a always extend from the single upper swivel member in a
generally parallel relation with the rotational axis of the generally paral
chuck means,
tool holder means receiving said tool means for support by
said single upper swivel member,

- carrier frame carrying said tracer probe for support by said
single upper swivel member, and
fuid-actuator means coupled to said linear slide means to reciprocate said tracer probe and said tool means along
said parallel directions of attack while the tracer probe and tool means extend from said single upper swivel member in the generally parallel relation with the rotational ber in the generally parall
axe chuck means. 13. In a machine tool havis rotatable about parallel, horizontal axes while separately sup. porting a pair of die molds for machining by simultaneously movable tools carried by elongated bars that are controllably positioned in response to a tracer probe output signal corre-
sponding to internal surface contours in a master mold while the mold is rotated about an axis parallel to said horizontal axes at a laterally-displaced location from said chucks, said machine tool including a saddle displaced by a driven feed member longitudinally of a bed along a course of travel toward and away from said chucks and generally parallel with said horizontal axes, the combination including:
inear displacement means carried by said saddle to simulta-
neously reciprocate said tools along parallel directions of attack to machine a design into the internal surfaces of said pair of die molds,
first swivel means supporting said linear displacement means
upon said saddle to adjustably select a desired angle be upon said saddle to adjustably select a desired angle be-
tween araid directions of attack and said horizontal second swivel means supporting said tools while carried by said linear displacement means to angularly position said bars while carrying said tools so that the bars extend in a generally-parallel relation with said horizontal axes,
follower bar including a tracer probe at one end for movement along the internal surface contours in said master
mold, and mold, and
means to anger frame supported by said second swivel ing said tracer probe aso that said follower bar while carry. generally-parallel relation waid follower bar extends in a generally-parallel relation with said horizontal axis while
reciprocated by said linear displacement means. reciprocated by said linear displacement means.

LATHE ADAPTER FO, 092,884

MACHINING Ellmood J. King, 2750 Elmira St., Nerbbury Park, Calif, 91320 Filed May 19, 1977, Ser. No. 798,724
U.S. C. 82-5

25 Claims

15. In a lathe having a carriage for driving a compound too rest consisting of an upper block and a lower block, a lead screw for driving said carriage, and means for setting said lathe for cutting standard thread sizes, the improvement comprising: drive means for driving said upper block a predetermined
incremental amount independent of and proportional to the movement of said carriage whereby said lathe may be set to cut threads any size between said standard settings.

4,092,885

CENTER FOR LATHES

Kiyotaka
Filed Jun. 6, 1977, Ser. No. 803,85
Fuled Jun. 6, 1977, Ser. No. 803,857

Claims priority, application Jspan, Jun. 9, 1976, U.S.C. $82-33$ I | Int. Cl. ${ }^{2}$ B23B $23 / 04$ |
| :--- |

11 Claim

1. A center for lathes comprising a tubular casing with its interior serving as an oil chamber, a center rod fitting in the casing and having a conical front end projecting
casing, front bearings and a rear bearing provided between the casing and the center rod, an oil feeding screw portion positioned between the front bearings and the rear bearing and formed on the center rod, and an oil reservior provided on the
casing, forward and return oil channels extending between the oil reservoir and the oil chamber to permit the whole oil in the reservoir and the chamber to circulate within the center.

METHOD AND APPARATUS FOR SLITTING A CONTINUOUS WEB OF MATERIAL Heinz K. Nowisch, Fulton, N.Y., assignor to The Black Clawson Company, Middletown, Ohio Sor No. 806,156

Filed Jun. 13, 1927, Ser. No.
Int. C. ${ }^{2}$ B26D $1 / 24$

U.S. CI. 83-56

6. A method of lengthwise slitting a continuous web of material utilizing upper and lower disc-shaped web slitting members disposed on opposite sides of sald web with their peripheral edge portions in engagement with one another where said web passes therebetween, said lower web armature member being driven by a mowor spearting said lower web sititing member, said method comprising the steps of:
activating said motor means for a sufficient time to bring said
outer peripheral edge portion of said lower web slitting member up to substantially the same speed as movement of said web;
deactivating said motor means;
continuing to drive both said upper and lower web slitting
members so as to slit said web by frictional engagement between said slitting members and said web.

1. In a method for automatically varying the feed rate of a 1oving workpiece carriage in the proximity of permissible numerical control means for controlling the position of the numerical control means for controling the position of the
workpiece carriage and means for determining the position of the workpiece carriage in the machine tool, the improvement comprising
storing signals corresponding to a plurality of safety positions of said workpiece carriage located within said termi-
nal positions of said workpiece carriage in a memory nal positions of said workpecte carriage in a means, and comparing said safety position signals with measured position signals generated by said workpiece carriage position
determining means corresponding to the position of said determining means correspol machine tool,
workpiece carriage in said mater
said feed rate of said workpiece carriage being automatically said fed rate of said workpiece carriage being automatically
reduced by said numerical control means when said safety positions are passed by said workpiece carriage as said
carriage moves in a direction towards said terminal posicarriage moves in a teeduction being cancelled by said
tions, said feed rate red numerical control means if a position signal is generated by said numerical control means for moving said work piece carriage in a direction away from said terminal positions to a
machine tool.

4,092,888
SELF-STRIPPING PUNCH AND GUIDE ASSEMBLY
SELF-STRIPPING PUNCH AND GUIDE ASSEMBLY
Kenneth J. Wilson, Roserille, Minn., assignor to Wilison Tool Company, St. Paul, Minn.
Filed Jul. 1, 1977, Ser. No. 812, 128

Int. C. ${ }^{2}$ B26F $1 / 14$
.S. C. $83-140$ 1. A punching device for use in a machine having a frame with a lower portion supporting a die and an upper portion
having a vertical bore aligned therewith, said punching device comprising:
A. a guide
A. a guide sleeve adapted for slidable disposition in the bore in the upper portion of said machine frame, said sleeve having a circumferential groove adjacent its upper end, and a resilient retaining means in said groove,
B. a punch having a head and a body slidably disposed in said sleeve, said body having a circumferential groove spaced from the ends of the body,
C. a retaining ring disposed in said punch body groove, the outside diameter of said ring being substantially greater
than the diameter of the punch body whereby the periphery of the ring projects beyond the periphery of the body, D. a spring support collar slidably disposed on said punch body in normal engagement with the projecting periphery

STENCIL-CUTTING MACHINE scques Bousquet, Poncin, France, ausignor
Tintex Socifte Anonyme, Poncin, France
Flied Mar. 29, 1977, Ser. No. 782,44
Int. C.2 B26F 1/00 U.S. CI. 83-284

Int. Cl. ${ }^{2}$ B26F $1 / 00$
7 Claim

of the retaining ring, said collar having a downwardly extending annular flange in engagement with the upper
end of the guide sleeve and the retaining means therein, end of the guide sleeve and the retaining means therein, head, and
F. stripper means disposed in the bottom end of the guide
sleeve.

4,092,889

SLOTTED WORKTABLE
Martin John Filber, Milton Keymes, England, assignor to The
British Hydromechaics Research Anocintion, Bedford, British Hydromechadics Research Aesociation, Bedford, En-
giland ion Ser. No. 674,444, Apr. 7, 1976, Pat. No. 4,05
This application Aug 22, 1977, Ser. No. 826,997 This application Aug, 22, 1977, Ser. No. 826,897,
Clumim priorty, application United Kingdom, Apr. 9, 1975,

Int. CL. ${ }^{2}$ B26F 3/00
16 Cleims

1. An apparatus for cutting stencils in a sheet, comprising a support, a press formed on said support and comprising a pair of superposed rollers separated by a gap, a plate, composed of
ferromagnetic material slidably mounted on a support and shiftable between said rollers, al phanumeric - character cutting dies disposed on said plate and adapted to pierce said sheet
upon said sheet being disposed on said dies, said dies lying on upon said sheet being disposed on said dies, said dies lying on said plate and having upwardly turned cutting edges, means or rotataty yisplacing at least one of said rollers to advance
said plate, said dies and said sheet between said rollers whereby said rollers press said sheet against said dies, said support being provided with a pair of guide rails slidably receiving said plate and engaging opposite longitudinal edges hereof, said plate being provided with a pair of entrainmen
rails along its opposite longitudinal edges parallel to said guide rails along its opposite longitudinal edges parallel to said guide
rails and receivable between said support roller and said pressng roller for advancing said plate between said rollers; and at east one magnetic alignment rule overlying said plate and magnetically adherent thereto for lining up of said dies on said
plate.

4,092,891
APPARATUS FOR CUTTING STEEL SECTIONS Manfred W. Hansen, Dusseldorf, and Emil F. Kersting, Ratin-
gen, both of Germany, asalguors to Sack GmbH, Duseeldorf, Germany
Filed Apr. 11, 1977, Ser. No. 786,133 Claims priority, applicetion Germany, Apr. 15, 1976, 2616809
Int. C. ${ }^{2}$ B23D $35 / 00$ U.S. CI. 83- $\mathbf{3 4 1}$

1. A sloted worktable, comprising, a first frame having two oppositely-facing sides, securing means disposed in a horizontal plane and arranged on said oppositely-facing sides of the ing between said securing means, the single length of flexible support material being in the form of an endless band, a second frame situated between said sides of the first frame and movable in a horizontal plane towards and away from said sides, a first pair of parallel rollers carried by the second frame and spaced apart in a horizontal plane substantially coplanar with
said plane of the securing means, further roller means carried by the second frame and extending parallel to the first pair of by the second frame and extending parailel to the first pair of
rollers, below said plane of the first pair of rollers, the flexible roliers, below said piann of trined over the first pair of rollers and the further roller means so that said material passes over the
first pair of rollers and below the further roller means to define first pair of rollers and below the further roller means to define
a slot between the first pair of rollers. a slot between the first pair of rollers.

2. Apparatus for cutting rolled steel sections with a web and ne or more flanges extending at an angle to the web, said apparatus comprising profiled cutters movable relative to each time of the cut, the cutter edges for cutting the web of the section extending in an inclined manner at an acute angle (α)
with respect to a plane (N) at right-angles to said axis at the ime of the cul, and extensions of the cutter edges following th shape of the flanges of the section at leass as ,ar as these exten. plane, such that the cutter edges aseciated with the flanges form an angle (β) with respect to said plane, whereby the flanges are cut over their full height from their outer surfaces.

Ronald Mo
England
 \section*{4,092,892
 \section*{4,092,892
 HOLE FORMING MACHINE}

Filed Jun. 21, 1976, Ser. No. 698,29
Claims priority, application United Kingdom, Jun. 23, 1975,

1975, ${ }^{28939}{ }^{\text {2 }}$ B26D $7 / 06$

U.S. C1. 83-413

1. A hole forming machine for producing a pattern of holes in a sheet of given material, comprising
(a) a machine frame
b) at least two spaced hole forming means connected with said frame, each of said hole forming means including
rary turre
(2) a plurality of punches mounted on said turret, said turret being rotatable to successively position said punches opposite a hole forming station on said machine frame; and
(3) means for operating that ont of said punches which is positioned at said hole forming station at a given time
guide frame means connected with said frame for sup
porting said sheet for two-dimensional coplanar displace ment relative to ssid hole forming stations, said guide frame means including two sets of orthogonally-arranged
slidably connected pairs of parallel spaced bars, one set of said bars being connected with said frame for axial sliding movement, and sheet holding means for mounting the sheet of material on the other set of bars;
(d) a template mounted on said machine frame, said template dicative of the holes to be formed in said sheet by said hole forming means; and
(e) a stylus mounted on said guide frame means for coopera-
tion with the template pattern for positioning said sheet at a desired location relative to said hole forming stations whereby said hole forming means are operable to form on wo separate arcas or by the pattern on said template.

4,092,893 MULTIPLE SELECTVE BELL INSTRUMENT
 SOLE AND

Ronald O. Beach, Doylestown, MEN

Carillons, Inc,, Sellersville, Pa. Ser. No. 736,405
U.S. C. $84-1.11$

1. A carillon tone generator adapted for prod
tations of a plurality of bell notes, comprising:
2. a first set of vibrators, each vibrator of said first set having a respective different characteristic . first striker means positioned in operative relation to said vibrators to produce vibrations correspond said first set tive tones, said first striker means comprising at least a first striker located in relation to each first set vibrator so as to cause said first set vibrator to produce a major tone when
struck thereby and a second harp striker located at a respective different position relative to each of said first set vibrators so as to cause said first set vibrator to produce a harp tone when struck thereby;
c. first pickup means operatively associated with said first set a composite signal representative of the vibrations of said first set vibrators, said first pickup means comprising a transducer mounted in fixed operative relation with each of said first set vibrators, d. a second set of vibrators, each vibrator of said second set
having a respective minor characteristic, and said second having a respective minor charactinis to, each vibrator of said first set;
e. second striker means located in association with said
second set of vibrators for controllably striking said sec-

ond set vibrators, said second striker means comprising a striker positioned relative to each second set vibrator so as to cause said second set vibr
f. second pickup means operatively associated with said second set of vibrators for picking up a composite signal representative of the vibrations of said second set vibraors, said second pickup means comprising a transducer second set vibrators;
3. means for selectively activating said first and second striker means, said activating means comprising control means for simultaneously activating corresponding strikers of said first and second sets;
h. mixer means connected to receive a major input from said first pickup means and a minor input from said second pickup means, for producing a mixed signal representative of a combination of said two inputs;
minor control means, in operative connection with said
mixer means, for controlling the mixing operation of said mixer means; and
means for amplifying and transducing the output of said mixer means, thereby to provide a bell tone output.

4,092,894
MUSIALSLIDE
Roy L. Clongh, Jr, 1 N. Curtiville Rd, Concord, N.H. 03301 Filed Jul. 26, 1976 , Ser. No. 708,718
Ind. 1 .
U.S. C. 84-319

1. A device for use in varying the pitch of one or more an elongated body adapted to be hand held and being beveled an elongated body adapted to be hand held and being beveled
at its opposite ends so as to provide front and back mutually converging end surfaces, the length of said body being such that when said body is held in a user's hand, one beveled end
may be engaged by the palm of that hand while simultaneously and pitch generating means for generating a plurality of pitch
a finger of that hand may be engaged with the other beveled end; and loop member having one end fixedly secured to a side of
said elongated body and its other end free and further

having a U-shaped portion spaced from said elongated body and formed to extend around the use's index finger so that the said index finger can be arched in order to
exert, in a varied manner, pressure on the front end of said body.
output signals in response to said serial data, clock, and control signals, each of said pitch output signals appearing at a particular pitch output terminal and including the binary data bits of said serial data signal inputted to said pitch register means, and
transposed in time relationship, and thereby in representative chromatic musical relationship with respect to said binary data bits of said serial data signal; at least one combiner means connected to receive predetermined ones of said pitch outpu signals and to said stop tabs to receive stop tab signals and being responsive thereto to generate a composite data signal output signals; at least one rank driver means connected to receive said composite data signal and said clock and control signals from said combiner means and said master oscillator means, respectively, for generating in response thereto a plurality of periodically updated parallel output signals corre-
sponding in spacial chromatic relationship to individual ones of said binary data bits of said composite data signal, said rank driver means including amplifier means for amplifying said parallel output signals for operating individual ones of said chest magnets in response thereto for actuating corresponding
individual ones of said organ pipes. individual ones of said organ pipes.

ELECTRONIC PIPE ORGAN CONTROL SYSTEM William P. Zabel, 8118 N. Sakaden Pkwy., Fort Wayne, Ind. $\underset{46825}{\text { Willinm }}$
Filed Dec. 6, 1976, Ser. No. 747,536
U.S. C. 84-345
$\stackrel{4,092,89 \%}{ }$
David Peter Willialing washer Darid Peter William Puchy, 30 The Crescent, Cheltenham, New
South Wales 2119 , Australis Claims Filed Apri. 8, 1977, Ser. No. 785,815 Claims priority, application Anstralili, Apr. 30, 1976, PC5752 40 Claims U.S. C. $85-50 \mathrm{R}$

1. An annular washer to provide a seal between the upper surface of an object into which a fastening device, having a shank passing through said washer, is inserted; said annular washer having a substantially flat region on the underside of an
annular boss surrounding the center aperture through said annular boss surrounding the center aperture through said
washer, and having a peripheral downwardly, outwardly extending resiliently deformable tapered annular skirt, said tapered skirt having its rim located below said flat region and being joined to the periphery of said boss by a deformable annular diaphram.

4,092,897

APPARATUS FOR WEAVING BRAIDED-WIRE APPARATUS FOR WEAVING BRAIDED-WIRE BUNDLED STRANDS TO EQUALIZE TENSION James M. Lalikos, Springfield, and Harold K. Waite, East Lon meadow, both of Mass., assignors to Titeflex, 2 division of Atlas Corporation, Springfield, Mass.

$$
\begin{aligned}
& \text { Filed Apr. 14, 1976, Ser. No. } 676,940 \\
& \text { Int. C1. }{ }^{2} \text { D04C 3/12, } 3 / 40 ; \text { F16L } 11 / 02
\end{aligned}
$$

U.S. Cl. 87-29 9 Claim

1. In apparatus for weaving a braided wire sheath around a tubular core which comprises, in combination, a plurality of bobbin-carriers each supplying a multi-strand bundle of wires,
drive means for moving said carriers in opposing directions drive means for moving said carriers in opposing direction
along sinuous paths as said tubular core is drawn longitudinally
whereby said bundles are interlaced in a woven pattern ove the surface of said core;
he improvement comprising means for progressively twisting each of said multi-strand bundles in one directio
about its length whereby strands under less tension tend to be wound helically about the strands under greater ten sion.
2. Apparatus for fabricating high-pressure hose composed of an inner tube reinforced by an outer braided sheath woven
from high tensile-strength wire which comprises, in combina tion:
tion:
first and second sets of bobbin-carriers, each of said bobbin carriers paying out a multi-strand bundle of wires under tension

drive means for moving said first set of bobbin-carriers in a first direction along a sinuous track aroubin-carriers in the opposing direction along a different sinuous track around said tube whereby said bundles pass alternately over and under one another to form a predetermined woven pattern over the surface of said tube,
a feeding member mounted for rotary movement on each of
said bobbin-carriers, said feeding member said bobbin-carriers, said feeding member having an elon-
gundles; and $\begin{aligned} & \text { garein } \\ & \text { burng }\end{aligned}$ drive means for rotating said feeding member to twist
bundle and it is fed to the surface of said inner tube.

SHOCK-EXCURSION APPARATUS FOR RETRACTIN THE UMBILICAL PLUG OF A MISSILE
John F. Witherspoon, Mountrin View, Calif., sssignor to The
United States of America as represented by the Secretary of
the Naty, Waslington, D.C. Filed Apr. 25, 1977, Ser. No. 790,511
U.S. Cl. 89-1.811

6 Chims

1. For use with a launch-gas powered missile having an 1. For use with a launch-gas powtered side wall and electri-
umbilical plug separably coupled into its cal power conduit coupled to the plug; apparatus for physically disengaging and retracting said plug during the initial comphisising:
a plug-disengaging stop member carried by said launching
tube in the path of travel of the plug for forcefully disengaging the plug during missile lift-off,
a flexible line secured at one end to said plug, a launch-gas to the other end of the line, and
conduit means for applying said launch-gas pressure to said driven member for moving it in a line-pulling direction whereby said disengaged plug is retracted said flexible line being provided with a catenary for active to said missile and for assuring plug disengagement prior to said retraction.

4,092,899

REAR GATE PEEP SIGHT DEVICE
Jeffrey A. Lienan, Huntarille, Ala, assignor to The United
States of America as represented by the Secretary of the Army, Washington, D.C

Iled Apr. 4, 1977, Ser. No. 784,105
Int. Cl. ${ }^{2}$ F41F $3 / 04$
U.S. CL. 89-1.816

1. A rear gate peep sight device comprising a launcher; a front sight mounted adjacent one end of said launcher; a firing mechanism mounted on said launcher, said firing mechanism cover maunted on said firing mechanism and rocket; and a afety and said firing button when in a closed position, said cover being movable to an open position, said cover having a rear peep sight built therein and alignable with said front sight mounted on said launcher for aligning said launcher with a target.

WEAPON SYSTEM $4,092,900$
WEAPON SISTEM EQUIPPED WITH RELOADING
Conrad Hottinger, Bruno Rappen, both of Zurich, and Kur schatfuer, Worblaufen, all of Switzerland, asaignors to Werk land Filed Mar. 17, 1977, Ser. No. 778,681

Int. Cl. ${ }^{2}$ F41F 9/06

1. A weapon system comprising:
2. A weapon sy
a gun mount;
an automatic gun arranged at said gun mount;
an ammunition container provided for said automatic gun; means for supporting said automatic gun together with saic ammunition container to be pivotable about an elevation alignment axis;
reloading container for cartridges, said reloading container having an outlet opening and being arranged at said gun mount;
conveyor device provided for the reloading container for forwardly displacing sets of cartiages located in the reloading container to said outlet opening, from which
location the cartridges can be filled into the ammunition a lathe, a housing comprising an elongate, substantially cylincontainer;
said ammunition container having an inlet opening for re said ammunition container having an inlet opening for
ceiving the cartridges from the reloading container; said supporting measis mounting said ammunition con
to be pivotable into a cartridge loading position; to be pivotable into a cartridge loading position;

means for displaceably mounting the reloading container a the gun mount in order to bring the outlet opening thereof
into alignment with the inlet opening of the ammunition container when pivoted into its loading of the ammunition; and said conveyor device comprising transport elements which
can be shifted together with the sets of cartridges out of can be shified together with the sets of cartridges out of
the reloading container at least partially into the ammuni the reloading
tion container.

4,092,901
DEVICE FOR FIREARM INTENDED FOR TANK WHICH HAS A BARREL SUPPORTED IN A RECOIL JACKET ars G. T. Gustavsoon, and Sven-Hikkn Svensson, both of Kar Filed Sep. 10, 1976, Ser. No. 722,185 Claims priority, application Sweden, Sep. 12, 1975, 751020 U.S. C. $89-46$

10 Cluims

1. A protective device for a firearm of the type having a barrel supported in a recoir jacket and located in a tank pro-
vided with loading members for the firearm intended to con vey rounds to the firearm from a magazine separate from the that the recoil jacket in connection with said under side has a pening and covers which can be opened and closed, with a east one first cover supported in the recoil jacket and at leas one second cover supported in the breech ring of the barrel,
and in that the first and second covers are located at different levels so that at the recoiling of the firearm in the recoil jacket they will slide one over the other.

Fuled Feb. 28, 1977, Ser. No. 722,54
US. CI. $90-11 \mathrm{D}$

1. An attachment for a lathe comprising a cutting head, 5 Chim motor and mounting structure therefor, said mounting struc wre comprising a base plate for attachment to the cross slide of
lathe, a housing comprising an elongate, substantially cylin.
drical clamp, a shelf for mounting the motor, a bearing sleeve clamped in the housing, said bearing sleeve having at its opposite ends bearings, a drive sleeve rotatably mounted in said bearings with its ends extending from the ends of the housing,
an internally conical opening in one of the projecting ends of an internally conical opening in one of the projecting ends of
the drive sleeve, an internally cylindrical opening in the other projecting end of the drive sleeve, said cutting head being of circular right section containing at one end peripherally spaced holes, the axes of which converge toward said one end of the head, cutters fixed in the holes and a conical neck at the other

end concentric with the axis of the head, said head being mounted to the drive sleeve with said conical neck engaged ends mounted ical opening, a spindle threaded at its opposite ends mounted in the drive sleeve with one of its threaded ends
threaded into the conical neck and its other end extending threaded into the conical neck and its other end extending through said cylindrical opening, a nut threaded onto said
other threaded end of the spindle against the end of the drive other threaded end of the spindle against the end of the drive
sleeve, clamping the conical neck within the conical opening for rotation of the head with the drive sleeve, a pulley fixed to the drive sleeve, a motor bolted to the shelf and means drivably connecting the motor to the pulley.

> VIBRATORY DRIVE MECHANISM Franz Allimer Sophin, N.C., masignor to Graystone Corporation, Moaroerille, Ph. Filed Nov. 17, 1975, Ser. No. 632,710 Int. Cl. ${ }^{2}$ F15B 21/02 13 Claims

1. A vibratory drive mechanism for an oscillating tool, comprising: a single-acting hydraulic piston assembly having a ported pressure chamber and a reciprocating output member adapted to be operatively connected to vibrate the tool, a rotary distributing valve, fluid supply, and separate return line valve to a source of pressurized hydraulic fluid, said rotary valve to a source of pressurized hydraulic fluid, said rotary
valve including a ported cylindrical shell member having a valve including a ported cylindrical shell member having a
first pair of openings connected with said supply line means and a second pair of openings conneceted with said return line
means and axially displaced from said first pair of openings, a
ported cylindrical spool member coaxially reccived in said
shell for continuous sealing rotation therein having first and econd axially displaced throughports positioned for alternate registration, respectively, with said first and second pairs of shell member openings, and drive means for imparting continu
ous rotation to said spool member in said shell member.

4,092,904

MEANS FOR RETAINING A PISTON ON A PISTON ROD
Mry bonald Schreiber, Dubuque Iowe, sestigor to Deere
Company, Moline, III.
Filed Sep. 17, 1976, Ser. No. 724,396
Filed Sep. 17, 1976, Ser. No. 724,396
Int. C1. ${ }^{2}$ F15B $15 / 22$; F16J 1/00
U.S. Cl. 91-39

1 Claim

unicating with said fluid ports during rotation of said cylinder barrel for directing fluid to and from said piston cavities,
connecting means interconnecting said cylinder barrel and said connecting means interconnecting said cylinder barrel and said
distal end of said shaft means for transferring reaction forces resulting from said reciprocating movement of said pistons by said cam means through said shaft means to said first housing portion while freely allowing rotation of said cylinder barrel on said shaft means, said shaft means extending into said cylin.

der barrel to a distal end thereof, said cylinder barrel defining a cavity adjacent said distal end of said shaft means, said cylin.
der barrel including a plurality of holes extending theredhrough from the exterior thereof to said cavity therein, said connecting means including a thrust bearing supported at said distal end of said shaff means and a plurality of pins secured in at least some of said holes and engaging said thrust bearing
the side thereof facing said distal end of said shaf means.
the side thereof facing said distal end of saic

CARTON FLAP FOLDING MECHANISM Hans Roff Ingemar Linnér, Helvingborg, Sweden, as
AB Akerlund \& Ravaing, Land, Sweden
Filed Mar. 15, 1977, Ser. No. 777,721
Claims priority, application Smeden, Nov. 12, 1976, 7612634 U.S. C. $93-49 R \quad$ Int. CL. ${ }^{2}$ B31B 1/52
U.S. CL $93-49$ R

1. A carton flap folding mechanism for use in a packaging machine in which a series of folding boxes having at least one open end, and at least one pair of sidewall flaps oppositely positioned at said open end of the folding box is folded inwards over the open end, said folding mechanism comprising: a pair of folding pin members each adapted to be movable series of folding boxes, the path of movement of each of said pin members being a segment of a substantially circular path of travel, the center of said circular path of travel being between the plane of said open end and the opposite
end of the folding box, and wherein during a first phase of movement said folding pin members fold said respective flaps inwards over the open ends of respective folding boxes positioned adjacent each other; and
means for moving said folding pin members.

4,092,907
OUTLET NOZZLLE FOR HEATING AND VENTING
Ernst Meyer, Oberursel, Taunus; Hans Trube, Sindelfingen, and Hermann Grimm, Ostelsheim, all of Germany, assignors to Daimier-Benz Aktiengesellochaft, Stuttgart, Unterturkheim, Germany
Continuation or
Continuation of Ser. No. 611,431, Sep. 8, 1975, abandoned. This
application Jul. 25, 1977, Ser. No. 818,770
Claims priority, application Germen. Se. 8. 7, 1974,2442946 U.S. C1. $98-40 \mathrm{~A}$ In. C. ${ }^{2}$ F24F 13/06, 13/10 $\quad 9$ Claims

1. An adjustable air outlet nozzle especially suited for hea ing and dening or airirendidionings systems of automotive
 hiaving an enlarged central length porioion deffining aldod cememit wih an inner guide surface of hollow-spherical contour; a truncated sphere and which is supported in a universally pivotable manner inside said connector housing lodgement; a dou-ble-wing butterfly valve arranged inside the spherical ring on
the upstream side arranged on a common pivot shaft which extends transversely across the inner diameter of the ring, the two wing flaps carrying bevel gear segments cooperatiting with a common drive
bevel gear arranged in the center axis of the nozzle and jourbevel gear arranged inside a transverse supporting member of the spherical ring; and a manually operable control member
arranged on the downstream side of the spherical ring and arranged on the downstream side of the spherical ring and
attached to the drive bevel gear so as to be carried by the ring attached to the drive bevel gear so as to be carried
and its transverse supporting member, the improvents therein being characterized in that:
the spherical ring is constituted of two halves which are
joined in a radial plane near the equator of their spherical
shape;
the two ring halves define between them a radially inwardly
facing positioning groove;
the transverse supporting member of the spherical ring
includes a peripheral mounting ring which is receivable includes a peripheral mounting ring which is receivable
and axially clampable in said positioning groove, and a and axially clampable in said positioning groove, and a
narrow stem extending radially from side to side of the peripheral mounting ring and having an enlarged hub-like central portion with an axial bore inside which the drive bevel gear and the attached control member are journalled;
the control member has the shape of a cross handle defined by two perpendicularly crossed radial arms extending across the inner width of the spherical ring, said arms being shaped so as to serve as air flow guides, with an axial width several times greater than the circumferential
width, the arms having on their upstream side an outline which generally matches the outline of the supporting member stem; and
the drive configuration between the control member and the the drive configuration between the control member and the
butterly valve, via said bevel gear drive, is such that the
wing flaps of the valve, in their fully open position, are substantially aligned with a central axial plane through the valve pivot shaft and one radial arm of the control mem-
ber is likewise aligned with said plane, while the stem of ber is likewise aligned with said plane, while the stem of the supporting member is similarly axially aligned with and its pivot shaft define axially aligned air guide surfaces on the upstream side of the nozzle, while the supporting member stem and the radial arm of the control member define similarly aligned air guide surfaces on the down stream side of the nozzle.

4,092,908
John F. Straitz, III, Mendowbrook, PL., assagnor to Combustion Unlimited Incorporated, Elkins Park, P. P.
Fled Jul. 15, 1977, Ser. No. 815,992 U.S. Cl. $98-60$

1. A vent stack for waste gas comprising, in said stack, a fluidic diode permitting flow for discharge of combustibl waste gas and obstructing return flow in the stack, said fluidic diode comprising at least one axially aligned
frustoconical baffe with a central opening, and means for frustoconical baic electricity generation at said diode com prising a ring in surrounding relationship to a baffle central opening having a smooth surface curved in the direction of discharge gas flow.

PERFORATED SELF-DRAINING MEATLOAF BAKING John M. Phillipe 2399 PAN N Filed Jul. 12, 1976, Ser. Noor 704,734 Calif. 92627 Int. Cl. ${ }^{2}$ A47J $37 / 12$
U.S. C1. 99-444

1. A self-draining baking pan comprising:
a receptacle for receiving an item to be baked, said receptaperipheral wall being joined to the bottom wall and pro jecting outwardly therefrom;
at least one leg stand,
means for attaching said leg stand to said peripheral wall for pivotal movement, said leg stand being pivotable to an extended position in which it can engage a supporting
surface to support said bottom wall above the supporting surface and in spaced relationship to the supporting sur${ }^{\text {face; }}$
position; and position; and
drain hole mea wall whereans in said bottom wall and in said peripheral drain from said receptaces from the item being baked can -

4,092,910
MACHINE FOR VACUUM PEELING FRUITS AND VEGETABLES
Lyubomir Nikolor Gencher; Iliya Chadomiror Kafedilier, and Kootedin Spirov Klyamor, all of Plovdiv, Bulgaria, asagignors to DSO "Bulgarplod", Sofia, Bulgaria Filed Noor. 28, 1975, Ser. No. 636,073
Int. C. ${ }^{2}$ A23N 7/01 J.S. C1. 99-472

1. In an apparatus for vacuum-peeling fruits and vegetables, tank adapted to contain treating liquid, means associated with he tank for heating such liquid, a rotor mounted within the tank for rotation in a vertical plane about a horizontal axis, a
plurality of buckets individually carried at circumferentially paced portions of the rotor for receiving fruits and vegetables o be treated, means for rotating the rotor to advance the buckets through the treating liquid in succession, a vacuumapplying station cooperable wreating liquid, a delivery chute for charging fruits and vegetabies into the buckets, and a removal hute for discharging fruits and vegetables after they have een treated to vacuum in the vacuum-applying station, the mprevement wherein the buckers have open radialy inner and osed in the tank in the path of rotation of the successive buckets; and in which the vacuum-applying station comprises, combination, a pair of radially opposed bucket seals individ he bucket, means to sealingly engage said bucket seals with said inner and outer surfaces including means supporting a first one of the bucket seals for radial movement toward and away om one of the inner and coupled to the movably supported vacuum chamber means coup
first one of the bucket seals.

4,092,911
BLANCHING
Bichard J. Goodale, P.O. Box 268, WRtsonville, Calif. 95076 Filed Jan. 21, 1977, Ser. No. 761,977
U.S. C. 99-483 8 Claims 1. Apparatus for blanching products such as vegetables by exposing the vegetables to steam from a steam source, said pparatus comprising in combination:
a conveyor system for transporting vegetables from one end
of said chamber to the other, said conveyor system comprising a conveyor belt fixed between two spaced driv rollers positioned at opposite ends of the chamber, irst valve means for introducing vegetable into one end of conveyor belt;
second valve means for receiving vegetables from the conveyor belt at the other end of said chamber and for transporting said vegetables from said chamber,
aid valve means for introducing and receiving vegetables including sealing means for preventing the escape of gas

from said chamber and allowing a buildup of pressure within the chamber;
steam conducting manifold connecting with the steam source for the transport of steam to spaced points along said conveyor carrying the vegetables for exposing th vegetables ber; and
with the occurrence permiting air to enter the chambsur condition within the chamber caused by the sudden con densing of steam therein while preventing the passage of air from the chamber.

4,092,912
PRESS PLATEN WEDGES
Emil Simich, Chicago, Ill,, esignor to A. J. Gerrard \& Com pany, Des Plinines, Il. $\begin{aligned} & \text { Filed Jun. 11, 1976, Ser. No. 695,065 }\end{aligned}$ U.S. C. $100-3$ Int. Cl. ${ }^{2}$ B65B $13 / 02$

4 Cluims

4. A method of producing high density bales of a materia omprising
mpressing the material to be baled between a pair of press ens defining a compression chamber therebetween, ach of said platens having a pluraility of contoured plate each of said contoured platen wedges further having two spaced corner end means at each end thereof extendin into the compression chamber which provide bale tie
accommodating channels between adjacently mounted platen wedges to thereby provide a reduced girth on the the corners of the bale,
inserting tie means into the bale tie accommodating channels
to encircle the compressed bale of material to encircle the compressed bale of material having a reengage the corners of the bale, securing said tie means to said co
and
releasing the press platens to material.

4,092,913

BALE TYING APPARATUS
 Frank C. Tea, Bellerwe, Ohio, sadgnor to The American Baler

 Filed Apr. 23, 1974, Ser. No. 463,319U.S. C. $100-24$

1. Bale tying apparatus for use with a baler, said baler including a baling chamber having sides, a feed hopper having an opening into said chamber for delivering to said chamber face and reciprocable within said chamber and past said feed hopper opening to a forward position of extension, and means to reciprocate said head, said tying apparatus comprising wire dispensing means on opposite sides of said baler, wire guide means on opposite sides of said baler for guiding
wires dispensed from said dispensing means and extending through said chamber on the forward side of the feed hopper opening and along each side of said chamber and a bale formed therein,
a wire puller assembly mounted on one side of said chamber, including a longitudinal member long enough to reach ing along opposite sides of the baling chamber, means for extending and retracting said longitudinal member along a path through the slots in the baling head and across said chamber to and from said other side from and to said one side, and a nose on said longitudinal member for engaging said wire extending along said other side whereby retracdispensing means on said other side across said chamber and positions a length of wire drawn from said other side closely adjacent a corresponding length of wire on said one side, said nose on the front end of said longitudinal member having a downturned forward end extending higher than the level of the wires so that upon extension of said longitudinal member said downturned forward end of said nose lifts said wires and said longitudinal member passes under them without engagement, and upon retracion said rear end of said nose is engaged by said wires as
encountered and pulled in the direction of retraction by said longitudinal member,
pair of rotatable twister means spaced apart and supported for rotation on said one side of said chamber and on opposite sides of said path of extension and retraction of said longitudinal member each for engagement of each with said wires at a point spaced from the other along said
adjacent lengths thereof, means to rotate said twister adjacent lengths thereof, means to rotate said twister
means whereby said wires are twisted together for a distance from the point of engagement of each of said twister means,
itter means mounted on said one side of said chamber along said path of extension and retraction and between said spaced (wister means for cutting both said wires in said
adjacent lengths thereof and between the spaced points of engagement of said twister means,
each side of the path comprising guide arms positioned on each side of the path of extension and retraction of said holding the wires at predetermined levels for the desired engagement by said longitudinal member, said arms pivotAly connected to support means to permit said arms to sing and change the level of the wires guided by them as
said longitudinal member is extended and said resilient means urging said arms to swing back to their predetermined level after the passage of said nose and remain at said level as said longitudinal member is retracted.

4,092,914

BALING MACHINE INCLUDING MEANS FOR Donald E. Burrough, and Dean E. Seefeld, both of Weat Bend Wiss, assignors to Gehb Company, Weat Bend, Wis.
Filed Nov. 26 , 1976
U.S. C. $100-88$

3 Claims

1. A crop handling machine for forming cylindrical bales and comprising
a mobile frame including a pair of transversely spaced apart vertical support structures;
tween said support structures and forming at least betion of an upper belt flight of a bale forming chast a por means for supporting said conveyor belt including a plura ity of horizontal spaced apart parallel rollers, each of said
rollers being rollers being supported between said vertical suppor
structures and being rotatable about an belts contacting each of said rollers and defining an angle of wrap around each of said rollerss;
means for controlling the transverse position of said conveyor belts on said rollers including means for supportin
at least one of the ends of caid rollers flight for movement in an arcuate path generally per be dicular to the axis of said one of said rollers and perpendicular to a plane bisecting the angle of wrap defined by the conveyor belts contacting said one of said rollers, said means for supporting at least one of said ends of one o
said rollers including skewing means said roliers including skewing means having a spherica arcuate movement of one of the ends of one of said rollers
imparts a force on the belts in the direction of the longitudinal axis of one of said roller, wherein said means for having means for rotatably supporting said one of said ends and means for supporting said bracket for pivotable movement about a pivot axis, said pivot axis and the axis of said one of said rollers being spaced apart and defining a plane generally bisecting the angle of wrap defined by the conveyor belts contacting said one of said rollers.

OIL HEATED DOUBLE
Thomas R. Keeny, Lindenwold, N.J., assignor to Molins MaThomas. R. Keny, Lindenwold, N.J..., essignor to Moiins Ma
chine Company, Inc., Cherry Hill, N.J. Continuation-in-part of Ser. No. 614,050, Sep. 17, 1975, Pat.
No. $4,023,481$. This application Feb. 10, 1977, Ser. No. 767,610 No. 4,023,481. This application Feb. 10, 1977, Ser. No. 767,610
Int. C1. ${ }^{2}$ B30B 15/34 U.S. CI. 100-93 P

11 Claims

1. A platen for heating a web of corrugated board in a double facer and adapted for receiving a heated liquid transfer medium comprising a main plate having a planar outer surface por contact with he web, a second plate below said main plate, peripheral spacer between said plates to define a shailow and an outlet, heam means connected to said plate for stiffening said plates, means associated with said beam means for modu lating the temperature of said beam means to compensate for a deflection in said main plate caused by a emperature differ ence between said main plate and said second plate.

4,092,916

CONTROLLED-DEFLECTION ROLL Caristoph Link, and Wolf-Gunter Stotr, both of Ravenaburg, Gerland Claims Filed Aug. 19, 1977, Ser. No. 826,159 22,1976 Claims
$11989 / 76$

Int. C. ${ }^{2}$ B30B 3/04 22, 1976,
U.S. C. $100-174$

Int. C. ${ }^{2}$ B30B 3/04
5 Cluims

[^2]least one bearing element by means of which the tubular roll shell bears on the roll support
said mounting means including guide members rotatably mounted in the roll shell and guided upon the roll suppor in the direction of the pressing or disengaging movemen of the roll shell a scraper device having a scrap
controlled-defiection roll;
said scraper blade, during operatit
widraper blade, danig operation of the controlled-deflec tion roll, being in contact with the outer surface of said roll shell; and

means for securing the scraper device to the guide members.

NIP POLI FOR 4,092,9

NIP ROLL FOR TREATING WEB MATERIALS York, N.Y. Division of Ser. No. 582,105, May 30, 1975, Pat. No. 3,995,354 This application Apr. 14,1976, Ser.
Int. ${ }^{2} .^{2}$ B30B $3 / 04$
U.S. CI. 100-176

1. An apparatus for compacting web materials and the like hich comprises:
a. a a substantially rigid roll member rotatably mounted on said frame;
ped in engaged rotaion rotation with said substantially rigid roll having:
an inner substantially cylindri a cover member of a generally incompressible substan tially resilient material positioned about said inner mem-
ber and secured to the outer surface portions thereof and
2. reinforcing members positioned within said cover member and forming a part thereof and having a tensile modulus of elasticity greater than the modulus of the generaily incompressibie resilient material, each of said reinforcing members being sloped at a generally acute of the inner member, the direction of slope being such that rotating at least one of said rolls in a direction such that the reinforcing members approach the generally rigid roll in an orientation generally similar to the plane
of a web material passing therebetween and the reinforcing members resist substantial displacement of the generally incompressible material, in a direction toward the entrance to the nip, but permit displacement of the generally imcompressible material toward the exit side placed incompressible material recoils opposite to the direction of movement of the web and the speed thereof is less than the speed of the material entering the nip thereby providing compacting forces substantially within the plane of the web material;
d. means to apply adjustably variable forces between said
rolls for varying the nip between said nip roll and said oills for varying the nip be
e. means for drivingly rotating at least one of the covered
roll and generally rigid mating roll. roll and generally rigid mating roll

LABEL PRINTING 4,092,918 Laul H. Hamisch, Jr. Frnd APPLYING APPARATUS Marking Syiteme, Inc., Dayton, Ohio, assignor to Monarch Continuation-in-part of Ser. No. 476,744, Jun. 5, 1974, Pat. No. 3,957,562, which is a continuantion-in-part of Ser. No. 380,445,
Jul. 18, 1973, abandoned, which is a continuation in part of Ser. No. 312,454, Dec. 6, 1972, Pat. No. 3,968,745, which is a continuantion-in -part of Ser. No. 208,035, Dec. 8, 1971, abandoned. This application Mar. 17, 1076, Ser. No. 667,761
Int. C. ${ }^{2}$ B41F 1/08 U.S. C. 101-288 Int. C.2 ${ }^{2}$ B41F $1 / 08$

22 Claims

1. Apparatus for printing and applying pressure sensitive labels, comprising: means for mounting a roll of pressure sensitive labels carried on a web of supporting material, means fo for delaminating the printed labels from the supporting mea rial web, means defining a path for the label web from the supply roll to the delaminating means, means for advancing the web to the printing means and to the delaminating means, the roll mounting means comprising a reel and a shaf for rotatably mounting the reel, the reel having a disc, a hole in the disc fo separate from the disc for mounting the roll, and means for keying the hub to the disc so that the hub and the disc rotate as a unit, the hub having outwardly extending spring fingers extending through a hole in the roll and exerting outward pressure on the inside of the roll.

4,092,919
CARD SELECTING AND ADDRESS PRINTING
Xeazo Araya, and Takahi Heatus
Keazo Araya, and Taknasi Hashimoto, both of Tokyo, Japa sedignors to Tanaka Selid Co.. Ltd., Tokyo, Japa
Flued May 5, 1975, Ser. No. 574,251
Claims prierity, application Japan, May 7, 1974, 49-50552
U.S. C. 101-53 Int. C.1.2 B41L 47/46
a card hopper to receive therein a group of cards includin the cards to be selected and those not to be selected; card feeder for feeding the cards, from the card hopper an optical card reading and signal generating means, stored with specified information, which reads the coded infor mation on a card fed by the card feeder, compares it with the stored specified information, and generates a firs selected or a non-selected card depending upon whether or not said card has information thereon which corresponds to the specified information of said optical means
and which generates a second signal for actuat and which generates a second signal for actuating said card feeder at a shorter time interval than said predeter
mined time interval for feeding a subsequent card whe said read card is a non-selected card, to ensure rapid feeding of the cards in such cases;
card path selecting mechanism which selects a card path according to said first signal generated at the optical carr selected card along a printing path or said non-selecting card along a non-printing path, respectively;
a workpiece hopper accommodating therein papers on which said specified information is to be transfer-printed workpiece feeder for feeding said papers one at a time
successively along a paper feeding path from the workpiece hopper to a waiting station provided adjacent to a printing station of the paper and for subsequently feeding the paper to the printing station in response to the third signal generated from the optical card reading and signal
generating means when said read card is a selected card while simultaneously feeding the next paper to the waiting station;
id workpiece feeder including first and second paper feeding rollers along said paper feeding path, the first roller
being mounted under the work piece hopper, the econd roller being disposed at a distance from the first roller which is less than or equal to the length of said paper, and the circumferential velocity of the second roller being higher than that of the first roller, so as to maintain an
appropriate distance between the papers fed along the paper feeding path;
a paper position sensing and timing device for generating a
fourth signal for stopping said workpiece feeder in order fourth signal for stopping said workpiece feeder in order lo stop the workpiece at said waiting station at a prese-
lected constant time interval after said paper is sensed by said paper position sensing and timing device
printing means disposed at said printing station which pressedly transfer-prints said specified information on the
selected card fed through the card path selecting mech nism and the printing path onto the paper fod from the nism and the printing path onto the paper fed from
workpiece feeder along said paper feeding path; a card stacker; and
card stacking roller which catches the cards fed through
the printing path and through seid non-pinting path the printing path and through said non-printing path and
stacks them in the card stacker in the stacks them in the card stacker in the same order as they
were held in the card hopper.

DOCUMENT IMPRINTER
John A. Barnak, Stamford, Conn., esedignor to Litton Businees Systems, Inc., Paramus, N.J.
Continuation of Ser. No. 522,955, Nov. 11, 1974, abandoned, and Ser. No. 522.956, Nov. 11, 1974, Pat. No. 4,027,585, and Ser. No.
522.957, Nov. 11, 1974, Pat 522,958, Nov. 11, 1974, Pat. No. 4,018,156. This applicettion

Nor. 10, 1976, Ser. No. 140,562
Int. Cl. ${ }^{2}$ B $1 \mathrm{U} / 1 / 44$

1. A card selecting and address printing apparatus for select. US. C. 101
2. A card having specified information from among a group of ards bearing thereon coded information and for transferprinting said specified information from said card onto a sheet f paper comprising:
3. In an imprinter having printing means comprising Cluima printing unit, said rotary printing unit including at least panks of printing members, said banks being each respectively disposed at different angular locations about the axis of rota-
tion of said rotary printing unit, each printing member having pluraility of type faces any one of which is adapted to be faces of each printing member for printing; a cylindrical platen cooperable with said banks of printing members and defining herewith a printing nip; means for feeding to said printing nip web of label material to be printed on by said type faces, said eb of label material comprising labels carrying a coating of comprising a carrier strip to which said labels are releasably secured by said pressure sensitive adhesive; said cylindrical slaten comprising:

an exterior portion;
an underlying portion of elastomeric material;
axis or rotation, and said slot extending between the as semblies parallel to said axis of rotation and being openended, print sheet advancing means associated with said first assembly to advance an endwise feedable print shee
endwise beneath the drum and then upwardly in the slot the support means including first and second side plates at opposite sides of the slot, the drum located between the first side plates, said print sheet advancing means including a pair of rotors rotatable about said drum axis at opporotor drive means including ratchet means operable to rotatably index said rotors, said ratchet means includes a circular series of ratchet teeth on at least one of the rotors, said teeth projecting inwardly toward the drum axis, a least one actuator arm having rotatably reciprocating includes a motor operatively connected with said arm to rotatably reciprocate the arm.

LITHOGRAPHIC INK SUPPLY
Roy C. Schweitzer, Barrington, III
Multigreph Cor, Barrington, IIn, amignor to Addresoograph Multigraph Corporation, Clereland, Ohio
Continuation-in-part of Ser Continuation-in-part of Ser. No. 599,158, Jul. 25, 1975, said exterior portion being made of a synthetic resinous material, and being thinner and harder than said underly-
ing elastomeric material portion, said synthetic resinous exterior portion presenting an outermost surface which is substantially smooth and glossy and substantially non-
adherent to said pressure sensitive adhesive carried by said labels;
whereby
and retards synthetic resinous exterior portion minimizes and retards deposition of the pressure sensitive adhesive from the labels onto the platen.

4,092,921

HIGH SPEED PRINTER MODUL
Andrew M. McInnis, Covina, and Robert A. Nielsen, Pasedena, both of Calif easignors to Sheldon-Sodeco Printer, Inc. Filed May 27, 1976, Ser. No. 690,579
U.S. Cl. 101-93.21
U.S. Cl. 101-363

Int. C. 2 B41L $25 / 12$

1. A method of maintaining a substantially constant volume of ink on a fountain roller of a lithographic duplicating ma chine having an ink fountain including a fountain roller, and support means above the fountain comprising the steps of: (a) providing an ink package comprising a disposable con-
tainer body containing a supply of operative lithographic low viscosity ink and including dispensing opening mean to permit flow of ink when the dispensing opening means is exposed to the atmosphere, the dispensing opening means comprising a substantially linear opening array the opening array including no opening smaller than onehalf square inch in area or smaller than three-eighths inch in minimum dimension, and being so arranged as to pres ent a portion of an opening within two inches measured axially from any portion of the fountain roller, a cover tainer body and cover being made of nondeflectable. nonshiftable elements and being free of access passages
other than said dispensing opening means, and readil other than said dispensing opening means, and readily removable closure means for sealing the dispensing open ing means to prevent flow of ink during storage of the ink
2. In impact printer apparatus operable to rapidly print haracters on a print sheet in lines and columns, and including: first assembly including a conionuously reata sembly including hammer means, a print transfer medium and carrier therefor, the improvement comprising: support means supporting said assemblies in spaced relation to provide a print sheet receiving slot between the drum at one side of the slot and local extent of said transter mesaid assemblies being generally spaced transverse to said
package;
(b) removing the closure means from the ink package and placing the ink package on the support means with the dispensing opening means facing downwardly and with the opening array parallel to the fountain roller axis and spaced above the ink support surfaces of the fountain by at
least about one quarter inch such that the ink flows directly into the fountain and against the fountain rolle forming an elongate bead of ink which increases in size until it blocks exposure of the dispensing opening means to
the atmosphere and shuts off flow of ink from the con- identifying the load characteristics thereof comprising insert
tainer body; (c) maintaining substantially constant the volume of the bead ing an unstruck primer into a primer pocket in the cartridge of ink by spontaneous replenishment in response to expo- cia identifying the load characteristics of the loaded cartridge sure of the dispensing opening means to the atmosphere as
the volume of the bead of ink is diminished during duplicating operation;
(d) removing and discarding the ink package from the ma-
chine when the supply of ink in the container body is exhausted.

LITHOGRAPHIC PRTITM ward A. Fromeon 15 PRINING PLATE SYSTEM Howard
06066

Filed Aug. 5, 1976, Ser. No. 711,930
Int. Cl.
U.S. C. 101-467 C. ${ }^{2}$ B41C $1 / 10$; B32B $7 / 14 \quad 3$ Claims

1. Method for making composite lithographic substrates having an aluminum printing member which is recyclable, comprising:
providing
providing a continuous web of carrier material having a
given width; given width; 1. Apparatus for holding an end portion of a printing blanket
on an associated cylinder comprising; an elongate holding bar on an associated cylinder comprising; an elongate holding bar legs defining a groove for receiving saidend portion of said prising a terminal end portion of one of said legs; a bar support adapted to be installed on said cylinder and receeiving said holding bar therewithin with said bar support having a cooper ating supporting surface for receiving said cam surface thereagains; and double eccentric means for attaching and detachin tric means comprising, a support shaft carried by said ba support, a comparatively large first disc eccentrically mounted on said shaft providing locking action for retaining said cam surface against said supporting surface, and a second dis
smaller than said first disc and being also eccentrically mount ed on said shaft providing clamping action of said bar within said bar support perpencicular to said locking action, said discs being rotatable to enable attaching and detaching of sai
holding bar.

4,092,924
METHOD FOR IDENTIFYING THE LOAD
METHOD FOR IDENTIFYING THE LOAD
CHARACTERISTICS OF CENTERFIRE FIREARM
John H. Edmisten, P.O. Box 201, Boone, N.C. 28607
Division of Ser. No. 692, 844 , Jun. 4, 1906 . This application Apr.
4, 1977, Ser. No. 784,578
U.S. C. 101-426

1. A method of loading a centerfire firearm cartridge while
providing a continuous aluminum web having the same width as the carrier web and a central longitudinal portion defining an image area;
continuously applying a releasable adhesive on at least one of the carrier web and the aluminum web along at least releasably adhering the two webs along the longitudinal lines to form a composite web;
transversely cutting the composite web to form discrete printing plates wherein the carrier and aluminum portions
for a plate have the same lenth; for a plate have the same length;
applying a light sensitive coating on the aluminum member
of the discrete plate and exposing and sensitive coating in the image area thereof: mounting the discrete plate on a printing press; and
separating the aluminum member from the carrier after use on the printing press to effect the recycling of the alumi-
num members. num members.

MECHANICAL POL, 0 292,926

MECHANICAL ROLAMITE IMPACT SENSOR An E. Bell, Altadena, Cailf, asignor to Technar, Incorporaied, Arcadia, Cuir. Dec. 17, 1976, Ser. No. 751,859
Flued De.
Int.2 GO1P 15/02. Fi2C
U.S. C. 102-204 C. ${ }^{2}$ G01P 15/02; F42C $1 / 00 \quad 12$ Claims 6 Claims electrical energy comprising:
a rolamite means responsive to acceleration or deceleration above a predelermined amount;
a support means upon which said rolamite means is mounted for supporting said rolamite means and providing a path of movement for a portion of said rolamite means during said deceleration above a predetermined
trigger means located adjacent to said support means, said trigger means comprising a first portion extending into said path of movement of a portion of said rolamite means, a second portion which extends to a hammer means and a pivot point located between said first and second portions,
ment of said rolamite means as a result of said acceleration or deceleration;
and releasable bs located adjacent to said trigger means upon movement of said trigger means;
a primer means activated by said hammer means

1. A fuze having controlled arming means to provide a preselected delay interval for use on either fin or spin stabilized projectiles comprising:
an ogive of generally conical configuration formed with an
apex, said ogive defining a chamber therein;
an orifice formed at the apex of said ogive providing communication between the external fluid environmen through which the projectile travels and the ogive chamber;
an initiator;
an initiator; member mounting said initiator in said ogiver
a support member mounting said initianor in said ogive first and second chamber, said first chamber being in communication with said orifice;
said support member defining a plurality of passageways
providing communication between said first and second chamber,
transversely extending carrier mounted for transverse displacement relative to said ogive in response to a transverse force, said carrier being mounted in the end opposite the apex; a detonator mounted in said carrier for movement therewith prearrier in an unarmed state but responsive to pressure increases within the first and second chambers to release said locking means thereby permitting transverse mo ment of said carrier to an armed state,
said pressure releasable locking means including a locking
member acting on each side of said carrier, each of said members comprising
members
a culinder,
a piston mou
a piston mounted in said cylinder for telescopic movement therewith wherein the end of said piston is in communi aning with said second chamber, and
said piston into between said cylinder and piston urging wherein pressure increases in said first said carrier chamber due to fluid entering said chambers through sid orifice will act on said piston whereby the con trolled build-up of pressure acting on said piston to overcome the spring force provides a preselected dela interval causing the controlled
arming delay from the unarmed to the armed state;
second locking means mounted in said carrier for locking said carrier in the armed state and
ceeasable seal means cooperatively associated with said orifice to separate said first chamber from the external environment prior wine fring of said projectile, thereby providing an additional operational delay for arming.

TRAVEITNG SUPPOR
TRAVELING SUPPORT APPARATUS adgnor to Midcon Pipeline Equipment Co., Honston, Tex.

Int. C.. ${ }^{2}$ B61B 13/Or. N0. 759,781
U.S. C. $104-119$

9 Crime

1. Traveling apparatus, comprising body means having oppositely disposed pairs of wheel means adapted to engage oppositely outwardaly facing uniformly spaced edges of track means, and endiess beit drive means supported by said body eling apparatus along said track means, each of said oppositely disposed pairs of wheel means being supported by a cross shaf assembly having telescoped shaft clements biased to elongat by spring means disposed therebetween and including contro means operable to compress said spring means to shorten said
shaft assembly to move said wheel means against said opposite shaft assembiy to move said wheel means against said opposire ble to relieve said compression of said spring means whereby said shaft assembly is lengthened to space said wheel means
srom said opposite edges of said track means.

TRANSPORT INSTALLATION WTIH TRIPLE GRIP FOR COUPLING THE VEHICLES TO HAULAGE CABLES Roger Laurent, Chambery, France, assignor to POMA 2000
S.A., France Filed Dec. 13, 1976, Ser. No. 750,143 Cluime priority, application France, Dec. 31, 1975, 7540392 U.S. C. $104-173$ R Int. C. ${ }^{2}$ B61B 9/00

2. A transport installation comprising passive individual vehicles, a track on which the said vehicles run, haulage cables extending along the said track, a grip carried by each vehicle to couple the vehicle on to said cables, said grip having two
cheeks mobile in relation to each other, and each having three jaws to form three pairs of jaws of which the jaws of each pair belong to different cheeks, a relative movement in one direction of the said cheeks resulting in the opening of one pair of
jaws and the closing to the two others and a movent jaws and the closing to the two others and a movement in the
opposite direction resulting inversely in the closing of one pair opposite direction resulting inversely in the
of jaws and the opening of the two others.
faces
wheel means for selectively projecting the guide-follower wheels outwardly laterally of the vehicle for engagement in use on the guide surfaces laterally of a path of travel the vehicle is to travel and for retracting the guide-follower
wheels to a retracted position under the vehicle, said means for projecting and retracting the guide-follower wheels including a plurality of relatively slidable, telescopically arranged tubes, pivotal toggle arms pivotally connected to said tubes for actuating said tubes to an extended position and to a retracted position, and a hyand
means for automatically transmitting guide movement of
said guide-follower wheels to the manual stering said guide-follower wheels to the manual steering mecha-
nism of the vehicle on which said apparatus is mounted to nism of the vehicle on which said apparatus is mounted to
effect guiding of the vehicle along said path, said means for transmitting movement comprising flexible control means connected to said pivotal toggle arms and connected in use to the vehicle stecring mechanism and including means rende ng said flexible means taut when
said guide-follower wheels are projected to effectively operate the steering mechanism and for rendering said flexible means slack for rendering the control means inef-
fective when the guide-follower wheels are retracted. fective when the guide-follower wheels are retracted.

POSITIVE GUIDE MECHANISM
WITH NECHANISM FOR ROAD VEHICLES WITH NON.TURNABLE WHEELS Helmut Wulf, Nellingen, and Klaus Niemann, Weinstadt-
Endersbach, both of Germany, assignors to Daimler-Benz Aktiengeselischaft, Germany
Claims priority, application Germany, Mar. 6, 1975, 2509713 U.S. CI. 104-247 Int. C.2 ${ }^{2}$ B61F 9/00

7 Claims
4,092,930
UIDE FOLLOWABLE AND MANUALLY STEERABLE VEHICLE OF A TRANSPORTATION SYSTEM
Yokohemuraj Shigeru Saitoh, and Mitrsuharu Homadia, all of
Yokohama, Japan, assignors to Nisean Motor Company Lim-
ted, Japan
Filed May 13, 1976, Ser. No. 686,084
Claime priority, application Japen, May 19, 1975, 50-58739
U.S. C. 104-247 Int. C. ${ }^{2}$ B62D 1/26 2 Claims

1. In combination, a vehicle having a steering mechanism driveable on highways and roads, an apparatus for converting the vehicle for use on a guide track system comprising,
a set of guide-follower wheels having verical axes of ro
a set of guide-follower wheels having verical axes of rota-
tion,
tion, , movably mounting said guide-follower wheels on
said vehicle for selective travel on a puide track system having laterally spaced guide surfaces relative to a path ture adjacent each end region for controlled movement be the vehicle is to travel and for following the guide sur- tween confronting truck side column structures, an improved
bolster guide arrangement comprising holder means fixed to and projecting from the bolster side wall structure in flanking wear shoe means seated on the holder means in force transmitting relation to cooperate with the side column structure in limiting relative horizontal movement between the bolster and side column structures, and interlocking means captively engaged between he holder means and wear shoe means for

4,092,93 RECEPTACLE USE IN DEPOSITING ARTICLES IN A UTILIZED THEREIN
Trevor Anthony Sayer, Croydon, England, asaignor to Bur
ronghe Corporation, Detroit, Mich. roughe Corporation, Detroit, Mich. Flied Nov. 27, 1974, Ser. No. $\mathbf{5 2 7 , 8 9 7}$
Claims priority, application United Kingdom, Mar. 15, 1974, 11611/74
U.S. C1. 109-24.1

Int. C. ${ }^{2}$ G07G 5/00

wherein said holder means is a vertically elongated generaliy U-shaped block defining a vertical passage, said wear sho
means is a generally rectangular trough-shaped hollow means is a generally rectangular trough-shaped hollow block
embracing the U-shaped block and having vertical side wall means interconnecting upper and lower end wall portions to define a central pocket complementary to the U-shaped block, and said interlocking means projects through the passage of the U-shaped block and overlaps end wall portions of the trough shaped block to hold the blocks in direct force transmitting

1. A system comprising an unarticulated road vehicle pro vided with a front axle having steerable front wheels and a rear axle having non-steerable rear wheels, characterized in that a
first guide means is provided for defining first guide means is provided for defining a path or travel of th and mutually opposite within an area of a lateral periphery of the road vehicle at least approximately at the same distance in front and to the rear of the non-steerable rear wheels as viewed in the vehicle longitudinal direction, and in that the first guide means and said single second guide means are operatively steerable rear wheels such that a rolling plane of the rea wheels is always disposed substantially at a right angle to radi of curvature of a curved path traversed by the non-steerable rear wheels whereby said rear wheels are free of oblique run-
ning and lateral forces.

4,092,93
REPLACEABLE BOLSTER GIB ARRANGEMENT (incert W. MacDonnell, Crete, III, assignor to R. W. Ma Company, Crete, III.

Filed Jul. 26, 1976, Ser. No. 708,900
Int. C1. ${ }^{2}$ B61F $5 / 04,5 / 50 ;$ F16C 17/00, $25 / 02$
relation.

4,092,933 BRACING DEVICE
Thomas Chariton, 13931 S. Stoneshire, Houston, Tex. 77037 Continuation-in-part of Ser. No. 585,083, Jun. 9, 1975,
sbandoned. This application Oct. 14, 1975, Ser. No. 622,125 U.S. Cl. 105-366 R ${ }^{\text {Int. Cl. }{ }^{2} \text { B65J 1/22 }}$
relation

1. Apparatus for use in depositing articles, such as bank eposit envelopes, in a receptacle, comprising: chute having an inlet through which the articles are inserted and an outlet through which the articles exit into he receptacle;
a mechanical gate at the injet of the chute;
a mechanical gate at the outlet of the chute
an actuator for each or the inlet and outlet gates for opening and closing same; tion on the article therein;
an actuator for actuating the recording device,
cycle initiating means enabled when the inlet gate is closed for initiating a deposit cycle having a predetermined semit insertion of the article into the chute while the outlet gate is closed, closing the inlet gate, actuating the recording device to record information on the article, and opening the outlet gate to permit the article to pass into the receptacle;
sequence controller controlling the actuators of the inlet gate, the recording device, and the outlet gate to enforce said predetermined sequence of actions in the deposit cycle within specified time periods
and error detecting means terminating the deposit cycle at any stage thereof in which there occurs an action deviat-
ing from said predetermined sequence or not within a time period specified in the sequence.

4,092,935

PROCESS AND APPARATUS FOR THE INCINERATION OF SOLID FUEL MATERIAL
Charles E. Barnabe, Birmingham, Ala, aseagnor to Pasarant
Forportiled Mar. 28, 1977, Ser. No. 781,979
U.S. CI. 110-186

1. A process for the combustion of solid waste material
containing combustibles in a gravity-type furnace having mul tiple groups of superimposed hearths, the improvement comprising:
(a) feed
said said group of superimposed hearths so that said material is
preheated, dried and burned within said group of superimproheated, dried
posed hearths,

(b) selectively supplying controlled amounts of an auxiliary
fuel to the lower hearth of each said group of superimposed hearths to maintain the discharge temperature of gases flowing from each said upper hearth above th gnition temperature of said gases, and most group of superimposed hearths.

METHOD AND APPARATUS FOR SEED TAPE
METHOD AND APPARITING FOR SEED TAPE
J. Cartis Grimn, and Clyde C. Grimn, both of Braford, Fla., to Harrington Manufecturing Co., Lew
Filed Junt 24, 1976, Ser. No. 699,585

U.S. C. 111-1

14 Claims

1. An automatic seed taps planter for field planting seed tape, comprising:
a moble rame structure having connecting means associated therewith for connecting the frame structure thereof field by ser such that said planter can be pulled through a field by said tractor during the planting operation;
B. means mounted about the front of said frame structure for
forming a seed bed about a top portion of the soil within forming a soed bed about a top portion of the soil within
the field being traversed by said planter, said seed bed forming means including:
B1. roller means rotatively mounted forwardly within said frame structure about a transverse axis;
face for engaging the underlying soil as said planter is pulled through the field by said tractor such that the engagement of said outer cylindrical surface with the
underlying soil results in the formation of said seed bed; and
2. cleaning blade means associated with said seed bed forming means and normally maintained in engagement with the outer cylindrical surface of said roller means
for continuously cleaning said cylindrical surface during the planting operation;
C. means for dispensing seed tape from said planter to said formed seed bed where said seed tape is appropriately disposed generally on the surface of said seed bed or
mbedded within the seed bed in sccordance with acepted planting practices for the particular type of seeds within said seed tape, said seed tape dispensing means including:
Cl. means for supporting a spool having said seed tape wound therearound;
C2. guide means disposed generally below said spool having said seed tape wound therearound, said guide means being spaced vertically above saed therethrough such that as the seed tape is dispensed in the planting operation the seed tape moves through said guide means; and
C3. wherein there is provided wheel means supported by said frame structure rearwardly of said guide means for passing over said seed tape once the same is engaged
with the underlying soil and applying a downward wirce to generally hold the seed tape about the formed seed bed so as to allow the seed tape to freely unwind from the spool thereof as said planter moves throug the field during the planting operation; and
D. means bed and the dispensed seed tape for protecting the seeds and resulting seedlings for a time period after plant ing said seed tape, said means for laying said covering material including: porting a spool of covering material about a transverse axis rearwardly of said seed tape dispensing means; D2. means for engaging said covering material and press ing the same against the underlying soil during the seed
tape planting operation so as to generally hold the covering material about said formed seed bed so as to allow the covering material to properly unwind from the spool thereof during the planting operation; D3. furrow opening disc means supported by said planter frame structure forwardiy of the area where saic covering material is laid, for
said formed seed bed;
D4. said means for engaging said covering material including a pair of laterally spaced wheels supported by said frame structure and particularly spaced to run in said wheels operative to engage side portions of said covering material dispensed from said spool and to
press the same into said furrows; and press the same into said furrows; and
DS. back filling means carried by said planter frame structure generally rearwardly of said pair of wheels for
back filling portions of the soil displaced from said back filing portions of the soil displaced from said
furrows back into said furrows and over the side por tions of said covering material such that the back filled soil tends to hold down said covering material about said seed belt, said back filling means comprising a pair
of laterally spaced floating disc assemblies carried by said frame structure about the rear thereof, each float ing disc assembly engagable with a mound of dirt displaced from a respective furrow and disposed adjacent thereto so as to urge a portion of the displaced soil back
into said furrow, each of said floating disc assemblies including:
3. pivot plate means rotatably mounted about a trans2. arm means securred to staid pive; plate means and extending generally rearwardly therefrom; and opposite the end thereof which is of said arm means pivot plate means, said disc means being angled so as to engage and urge soil disposed adjacent a respective
furrow back into said furrow and generally over a furrow back into said furrow and generally over a respective side portion of
disposed within said furrow.

AUTOMATIC STITCHTG 4 ,092,937 PROGRAMMABLE SEWING MACHINE
John Vernon Landau, Jr.; Barmey Dean tain Lakect; Frederick. Alexexnder Rean Hupinats, both of MounM Montrile, all of N.J., medignors to The Filed Mar. 21, 1977, Ser. No. 779,890
Int. C. 2 D 58 . U.S. C. 112-121.11 ${ }^{\text {Int. Cl. }{ }^{2} \text { D05B 19/00 } \quad 28 \text { Claims }}$

1. A programmable sewing system adapted to perform a sequence of operations on a
sewing system comprising:
a sewing machine having a frame;
sewing needle supported within said frame for selectively repeated movement from a down position through a work
material to an up position and returned to a down position
a looptaker supported within said frame for cooperatio
with said sewing needle in the formation of stitches;
reversible work material feed system supported within sa frame and including feeding means for passing work mate rial in a path between said needle and said looptaker;
continuously variable speed drive means for selectively
actuating said sewing needle, said loptaker and said wor actuating said sewing needle, said looptaker and said wor
material feed system in synchronism with each other;
presser device selectively movable from a position urgin
said work material against said feeding means to a position out of contact with said work material;
manual control means for selectively moving said presser
device out of contact with said work material;
treadle means for selectively actuating said drive means to
continuously variable sew speed;
means for stopping said drive means with said sewing needle in a selected one of said up and down positions; in a selected one of said up and down positions; and including means for counting said selectively repeated movement of said sewing needle in effecting stitches upon selective actuation of said treadle means, means for measuring the time duration of said presser device in a position needle is in a selected down position after the completion of at least one stitch, means for obtaining a copy of said continuously variable sew speed actuated by said treadle means, and means for automatically recording in a first mode of operation upon reactuation of said treadle means
the stitch count, any one time duration and variable sew speed copy of a segment in said sequence of operations on a work material;
said programmable sewing system having a second mode of operation utilizing said readie means as an ON/OFF.
chine in accordance winh the record from said recording means obtained in said first mode of operation and in the OFF position permitting operation of selected compo nents of said sewing machine.

SEWING MACHINE WTTH PROGRAMMABLE Donald Jay Conehenour MEMORY Gonald Jay Coughenour, Morristown, and John Addison Herr, Garwood, both of N.J., amignors to The Singer Company Flled Jul. 27, 1976, Ser. No. 709,04
U.S. Cl. 112-158 E Int. C. ${ }^{2}$ D05B 3/02 14 Claim

1. In a sewing machine having stitch forming means opera tive to form successive stitches including mechanism for influncing the stitch position coordinates of said successive stitches in the formation of a pattern of stitches, logic mean responsive to input data representative of stitch position coor dinates for producing stitch position coordinate electrical signals, actuating means responsive to signals from said logic
means for controling the position of said stitch forming mean means for controling the position of said stitch forming means
in accordance with input data fed to said logic means, and re-programmable programming means operably connected to said sewing machine, said programming means including operator manipulating means for generating stitch by stitch digital input data corresponding to a stitch pattern selected by the operator and read-write static memory means continuously
available for storing said digital input data while connected to said sewing machine and for transmitting electrical digita output signals corresponding to the stitch pattern selected by he operator to said logic means such that an operator may select a stitch pattern program for entry into the sewing ma hine for automatic reproduction of the stitch pattern by the sewing machine

Warren Dean TENSION DISC ASSEMBLY
Warren Dean Knowles, Clark, N.J., amignor to The Singer
Flied Dec. 27, 1976, Ser. No. 754,291 Int. C.2. ${ }^{2}$ DOSB $47 / 00$
U.S. C. 112-254

1. A tension disc assembly, for use in a tension device in
conjunction with individual, uniformly shaped tension discs, comprising:
one of said uniformly shaped tension discs;
rigid flat plate having an aperture therethrough, said aper-
ture having a shape congruent to the shape of said one
tension disc; and,
weans for mounting said one tension disc within said aperture whereby said plate augments the size of said one
tension disc enabling said plate with said one tension disc mounted therein to be used as an assembly both for dise ing thread into said tension device and for tensioning thread therein.

2. An adjustable cam cleat particularly adapted for releasably holding lines of different diameters against axial tension
exerted on said lines in opposite axial directions, comprising: exerted on
a first cam jaw having an arcuate periphery with first engag. ing means mounted thereon for engaging a line, said first cam jaw being pivotally mounted on said base about a first axis normal to said base;
a second cam jaw having an arcuate periphery with second engaging means mounted thereon for engaging said line, said second cam jaw being pivotally mounted on said
adjustment means about a second axis notmal to adjustment means, said second cam jaw being disposed a distance opposite said first axis, said second cam jaw being movable with said adjustment means linearly relative to said first axis to vary said distance therebetween for accommodating lines of different diameters between said engaging means engage said line disposed between said first and second cam jaws and cooperate to hold said line
from movement in opposite axial directions. from movement in opposite axial directions.

4,092,942

MOBILE SHOT BLASTING APPARATUS FOR SHOT BLASTING THE BOTTOM OF A SHIP OR THE LIKE Sinichi Kurohiji, Taneshli; Genshichi Shigyo, Mitaka, and
Nobujiro Aral, Yokohama, all of Japan, asaignors to Megiter Company, Japinn Jul. 5, 1977, Ser. No. 812,524
Filed led Jul. 5, 1977, Ser. No.
Int. C1.2
B60S $3 / 02$ 1. In apparatus for seam
end member transfer means for causing movement of an end member to a "make-up" station;
can body member transfer metans for causing movement of a can body member to the "make-up" station and for effecting supportive engagement of the can body member with
the can end member and for causing movement of the can body member and the end member supported thereby from the "make-up" station to a "seamer" station;
control rod means for applying a relatively light holding and stabilizing force on said end member during supportive association of the body member with the end member at
the "make-up" station and during movement of the can the "make-up" station and during movement of the can
body member and the end member supported thereby from the "make-up" station to the "seamer" station; cam means operatively connected to said control rod means for causing movement of said control rod means between an extended position and a retracted position relative to the end member; and
the improvement of resilient compressible force application engaging the upper surface of the end member and limiting the amount of force applied to the end member.

1. In a mobile shot blasting apparatus for the bottom surface of a ship;
dust collecting means disposed in the tractor:
support means operatively mounted on the tractor having an arm which is vertically pivotably and horizontally rota able about the tractor;
shot blasting means pivotably mounted on the end of the arm and fluidly connected to the dust collecting means fo shot accelerating means operatively disposed in the sho blasting means for directing shot at a predetermined angle;
a hopper disposed in the shot blasting means and arranged to collect the shot and debris reflected and disloged from the
separating means arranged in the hopper to separate the sho from the dust and debris and direct the dust and debris to the dust collecting means and the shot to the bottom of the hopper;
a first conveyor means disposed at the bottom of the hoppe to convey the shot collected therein through an opening closably by gate means, formed in the bottom of the hopper into a supply chute;
a second conveyor means operatively connected to the shot chute to convey shot therein into the shot accelerating means;
the improvement comprising:
cox means disposed in the upper portion of the shot blasting
means and provided with through holes in the upper and lower surfaces thereof to permit therethrough the passage of high velocity shot from the shot accelerating means;
casing means slidably disposed in the box means which has
casing means sidably disposed in the box means which hace
through holes formed in the upper and lower surfaces
thereof to permit therethrough the passage of high veloc ity shot from the shot accelerating means;
urging means operatively connected to the box means and the casing means to urge the casing means upwardl
against the weight of the casing means so that the casin means is slidable in the box means via the application of a small force;
magnetic means disposed on the upper portion of the casing
means to attract and hold the casing means against the surface to be shot blasted and;
roller means mounted on the upper portion of the casing means to contact the surface and maintain a predetermined gap between the upper surface of the magnetic means and the surface to be shot blasted.

MARINE PROTECTION SYSTEM
Norman Lund, and George R. Young, both of 6525 New Haven, Melbourne, Fla. 32901, 1906, Ser. No. 706,299 Int. Cl. ${ }^{\text {B }}$ B63C $1 / 00$; E02C $3 / 00$
U.S. CI. 114-222

1. A marine growth retardation system comprising in combj
nation: a marine structure located at least partially in water and
marine structure located at least partially in water and
having pilings to form a boat slip for housing a boat
gas diffuser means located adjacent said marine structur gas difinser means located ade
below the water level for feeding and dispersing gas fed
and thereto, said gas diffuser means being mounted to the sea bed in said boat slip directly beneath the mooring positio of a boat;
ozone generator means coupled to said gas diffuser means
for directing ozone therethrough and to the surroundin water;
what means set vertically in the water adjacent said marine
structure to restrict the flow of water therepast, said akirt means having a plurality of skirts removably attached to adjacent said skirt means will prevent marine growth from fouling marine structures; and
a removable cover adapted to fit over said boat slip and having an opening therein for a boat to fit thereinto in said boat silip, said opening in said bop cover having a raised ing therethrough.

UNDERWATER ANCHOR FOR THE MOORING OF LOATING STRUCTURES AS WELL AS A METHOD FOR THE PLACING OF SUCH AN ANCHOR Siemen Van der Wall, Lunteren, Netheriands, maignor to Verenigde Bedrijven Bredero N.V. Utrecht, Netherinand Clams priority, application Netheriands, May 29, 1975, 306376 Int. C. ${ }^{2}$ B63B 21/24 U.S. C. 114-297

2. A method for placing a floatable anchor having a body with a closed hollow interior and a fastening point for an achor cable, into the bottom of an ocean, river, or other body of water, upon which a thick sof layer, such as mud, is present, fastening one end of
cable of a floating lifting devic
lifting the end of the body attached to the cable with respect to the other end;
supplying so much water to the interior of the body the the anchor assumes an upright position and the floating power of the anchor becomes negative, but not exceeding the required maximum lifting power of the lifting device;
paying out the lifting cable until the anchor reaches the bottom of the body of water and sinks therein; and ballasting the anchor while sinking, until the required anchor weight is obtained.

4,092,945

FLOAT APPARATUS FOR BICYCLE
Walter Ankert, and Ingrid Ankert, both of R.R. \#1, Box 43, Ashbura, Ontario, Cannda
Filed Sep. 27, 1976, Ser. No. 726,472
Int. CC. ${ }^{2}$ B60F 3/00
U.S. Cl. 115-2

5 Claims 1. A float apparatus for a conventional bicycle, said bicycle fork and mounting means for mounting a front wheel and a andiebar coupled thereto, a rear fork assembly and rear wheel nounting bolts, a seat, and pedals, said float apparatus comprising in combination, a rudder under said front wheel of said
bicycle and coupled directly to said front fork assembly whereby movement of said handlebar causes movement of said rudder, a paddle mounted directly on each pedal by means of mounting bracket, and a left side and a right side pontoon assembly, each assembly including a pontoon, each assembly
including a frame for securing said pontoon to said bicycle at spaced apart and in coaxial alignment with one another, a the front and rear forks thereof having spaced eseentially paral. plurality of planet gears rotatably mounted between said carri-
lel transversely extending arcuate front and rear support bars
ers and in circumferentially spaced relationship therearound lel transversely extending arcuate front and rear support bars
mounted to said pontoon and extending to the upper portion of mounlod ol said pone where sadid bars are coupled o e each other by
said bicycle fram
a horizontal support member, a front essentially horizontal

support bar extending from said arcuate transverse front sup port bar to said front fork of said bicycle and being pivotalily mounted to said transverse front support bar and said for , and
means for coupling the left side and right side pontion assemblies to each other along the upper portion of said bicycle frame.

ELECTRIC TROLLING MOTOR HAVING PLANETARY GEAR REDUCTION
Chris S. Kappas, 218-13th St, Recine, Wis. 53403 Filed Jai. 25, 1977, Ser. No. 818,310 $18 \mathrm{E} \quad \mathrm{Int.}^{2} \mathrm{CL}^{2} \mathrm{~B} 63 \mathrm{H} 5 / 13$ U.S. C. $115-18$ E 8 Claims

1. An electric trolling motor comprising, a cylindrical motor housing having an electric motor therein and a motor drive shaiv extending rearwardil therefrom and terminaiug in a rear
driving end, a cylindrical gear housing located rearwardly and abutting agginst said motor housing and having a complementary shape therewith, said gear housing having an axial bore therein and a transverse shoulder at the inner end of said bore, an internal gear ring mounted in said bore and abutting against
said shoulder and means for removably but rigidy securing said shoulder and means for removably but rigidly securing
said gear ring in said bore and against said shoulder, said gear housing also including a rearwardly extending hub, a rear sleeve thrust bearing mounted centrally in ssid hub, a propelier shaft rotatably journalled in said rear sleeve thrust bearing and extending through said hub and rearwardly thereof; a bearing
support located within said gear housing but axially spaced from said gear ring and extending into said motor housing, means removably securing suid bearing support in said motor housing, said bearing support having a central and axially
extending aperture therethrough and an anti-friction bearing cesersubly mounted in said aperture, a sun and planetary gear membly mounted within spid gear housing and comprising, a

OIL LEVEL INDICATOR FOR USE WITH DAMPING OIL LEVEL INDICATOR FOR USE WIT

FLUID METERING PINS Jean P. Labrecque, Stratiora, Conan, madgnor to The United
States of America ss represented by the Secretary of the Navy,
Weshington, D.C. Wasthington, D.C.
ied Oct. 6, 1977, Ser. No. 840,189
Int. C1. ${ }^{2}$ F16F 9/06; G01F 23/00
U.S. C. $116-118$ R
U.S. C. 116—118 R $\quad 7$ Clima

1. A hydraulic fluid level indicator for use in combination with a hydraulic fluid metering pin positioned in an extensible shock absorbing unit comprising:
a rod slidably received in a bore extending longitudinally through a metering pin;
means urging said rod out one of through said bore; and view upon the occurrence ond of said metering pin into unit,
exposed porto of the exposed portion of said rod indicating extremely extended positions of said unit resulting from unusually
low hydraulic fluid levels therein which levels normally would be concealed by increased air pressure in said unit. ers and in circumferentially spaced relationship therearound,
means for rotatably mounting each of said planetary gears between said rear and front carriers, said gear assembly also including a centrally disposed sun gear in constant mesh with said planet gears, said planet gears also being in constant mesh with said internal gear ring, a front sleeve thrust bearing loournalled, said sun gear and said rear end of said motor shaft forming an axial releasable driving connection therebetween, said front sleceve thrust bearing abutting against said anti-fricion bearing assembly, and a propeller shaft having a detachble connection with said rear carrier and extending through said rear sleeve thrust bearing.

GAUGE $4,092,948$
SUPPLY SUPPLY Fled Jan. 5, 1977, Ser. No. 756,741 Flled Jan. 5, 1977, Ser. No. 756,741
Int. Cl. ${ }^{\text {G }} \mathbf{0 1 D} 1 / 00$
US. C. $116-114 \mathrm{PV}$
8 Cluims

1. Apparatus for exponentially indicating the linear movement of a movable reference marker comprising base means for tracking the movement of a movable reference marker, a first arm, said arm being movably secured to said base for position ing said indicator means on said base, said arm being movable to project into the path of a movable reference marker, a second point on said indicator means being slidably mounted on track means, said track means being secured to and posi-
tioned on said base at an angle to said arm so that when
indicator means is moved by said arm, the angle of alignmen
of said first point and said second point on said indicator means

is changed with respect to said arm, said indicator means bein positionable in the path of a movable reference marke

CONTAINER ROLLBACK DETECTOR AND COATING Romano Balordi, Millers, Md,, medignor to Crown Cork \& Seal Company, Inc., Philladelphis, Pa. Int. C1.2 B05C 1/02, 13/02
U.S. CI. 118-6

In a container handling apparatus for transporting m cans along a predetermined path and having a series of moving mandrels for receiving cans and conveying them along the path, means for urging cans onto ones of said mandrels, and seated upon a mandrel, the improvement comprising:
a shoe disposed adjacent a segment of the path traversed by said mandrels for frictionally engaging said mandrels to cause said mandrels to rotate; and
a substantially rigid, elongate stripper arm disposed adjacen at least a portion of said segment and including an edge section extending generally parailel to sad path, said edge
section being sufficiently close to the mandrel surfaces to prevent cans having rolled-back edges from fitting be tween said stripper arm and said mandrel surfaces, but permitting the passageway therebetween of sidewalls of undeformed cans;
whereby cans having rolled back edges are prevented from
fully yeating upon said mandrels. Int. C..2 BOSC 7/02, 7/08, 19/00
U.S. C. 118-8

5 Clims

1. An internal pipe coating apparatus for coating the interior surfaces of uncoated weld joints in an otherwise internally
coated pipeline comprising a frame having wheels at the forward and rear ends thereof, the forward end being oriented towards an uncoated weld joint to be coated, a drive motor for within the pipeline wheels to move the coating apparatus feeler mechanism located s the forward end of said frame, said feeler mechanism including a pair of electrically conductive arms adapted to bear against the internal surface of the pipeline
and to create a completed circuit when the feeler arms engage the bare surface of the uncoated weld joint to stop the drive motor, means responsive to the actuation of said drive motor for pivoting said feeler mechanism into position where said
feeler arms are in contacting position agginst the internal surfeeler arms are in contacting position against the internal sur-
face of the pipe, a rotatable hollow shaf located at the forwer face of the pipe, a rotatable hollow shaf located at the forward
end of said frame, said hollow rotatable shaft being provided with a hollow hub and a plurality of hollow radiating arms adapted to spray powder on the uncoated weld joint, a spin motor mounted on said frame for rotating said shaft, means for
actuating said spin motor, a powder suspension device mounted on said frame, means for conducting a suspension of powder from said powder suspension device to said hollow hub, a fan means mounted on said frame and actuated in subsequent timed relation to the actuation of the spin motor to
provide air under pressure to the powder suspension device to suspend powder therein, a valve located on said conducting means, valve operating means actuated in timed relation with and subsequent to the actuation of said fan means for opening said valve to provide a strcam or pos der the hollow hub so that a suspension of powder passes out of the hold
centrifugal force to coat the heated weld joint.

MENSCUS FOPMING 4,092,951
MENLCUS FORMNGMPPLCATOR INCLUDING
oyd B. Kopis. 330 Incưm ANTI DRIP
Division of Ser. No. 506,355, Sep. 16, 1974, abaedowed. This U.S. C. ${ }^{118-50}$ Int. C. ${ }^{2}$ BOSC S/OQ. $7 / 06$

1. For applying liquid to the interior surface of a bore within object, an elongated applicator of generally cylindrical form defining a generally circular shoulder having an overflow leaving a small but noncritical radial space between the overflow periphery and the bore, liquid supply means for supplying the liquid continuously to the applicator to flow onto the which under the restraint of surface tension protrudead bead the overflow periphery sufficiently to contact the bore zurfice when the applicator is positioned within the bore, said applicator defining an aspirating intake underlying the overflow periphery in circumferentially distributed relation to said ahoulon the spplictor to continuously apply mpinting to
aspirate liquid from an annular zone immediately below the overilow periphery to prevent dripping and wastage of liquid
from the applicator even when the applicator is removed from

a bore and to remove a portion of the liquid deposited on a surrounding bore surface by the liquid bead on the shoulder a an incident to passage of the applicator through the bore.

4,092,952
AUTOMATIC SLIDE STAINER
Ronald N. Willie, and Arman Mooradian, both of 30076 DeRonald N. Wilkie, and Arman M
quindre, Warren, Mich. 48092

Flied Aug. 19, 1977, Ser. No. 826,064

U.S. C. 118-58 37 Claims

1. In an automatic slide stainer, a hollow enclosed frame work including a base and a cover with front, rear and side walls;
said cover including an outer annular platform;
a first dish of limited width having a flat bottom mounted
upon said upon se
stain, a stain' dish of increased width having a flat bottom mounted
ppon said platform at one side adjacent said first dish, upon said platform at one side adjacent said first dish,
adapted to contain a stain solution;
a reservoir tank mounted upon said base within said framework, having an outlet, and adapted to contain a rinse solution;
rinse tank connected to and in communication with said reservoir tank, projected up through an aperture in said
platform and adjacent the other side of said stain dish, and phatiorm and adjacent the other side of said
having an inlet above said reservoir tank;
a motor-operated pump mounted upon said base within said framework, and having an inlet and outlet;
anduits respectively interconnecting the reservoir outle and pump inlet, and pump outlet and rinse tank inlet, for the continuous circulation of rinse liquid through said rinse tank;
a power rotated upright hub journalled and supported upon and within said framework centrally of said plafform and projecting through and above said cover;
a disc shaped slide retainer plate mounted upon and centrally
secured to said hub for rotation radially inward of said dishes and tank;
series of radially extending slide retainers pivotally mounted upon said plate around its periphery, each resupportably and frictionally receive one end of a slide to be stained;
said slide retainer and clip having a raised secured position, a raised slide clearance position and a lowered horizontal mersion position for translation within the fluids in he respective dishes and rinse tan said side retainers, when suppor
biased to immersion position; and a series of spaced cam means mounted upon said cover inwardly of said platform, normally in the path of rotative
movement of said slide retainers and slides for movably camming the retainers successively to raised slide clearance position;
said cam means being located adjacent and in advance of the radial sides of each dish and tank so that said retainers and connected slide are temporarily cammed to raised clearance position to clear the dish and tank sides during continous rotation thereof.

APPARATUS FOR CO, 4T,9023 Robert E. Waugh, COR COATING GLASS CONTAINERS Company, Columbus, Ohio Ohio, asalgnor to The D. L. Auld Company, Columbus, Ohio
Filed Dec. 9,1976 , Ser. No. 748,946 U.S. C. 118-642 Int. C.' ${ }^{\text {B BOSB } 13 / 04}$

1. Apparatus for coating a glass container with a layer of 1. Apparatus for
plastic comprising:
means for rotating a glass container about a horizontal axis and moving said container past a coating station,
a plurality of liquid applicator nozzle means, positioned above the coating station, each of said nozzle means,
including a plurality of fluid carrying tubes distributed axially along said container, for supplying uncured plastic liquid to an associated area on the container as the container rotates,
means for supplying predetermined quantities of uncured plastic liquid to respective ones of said plurality of nozzle means, and
eeans for rotating said container about a horizontal axis after uncured liquid plastic is applied to said container at said coating station such that said container is rotated as said plastic cures, desired thickness on its associated container area.

HGH SPEED 4,092,95
HIGederick W. Hadson, West Heariettop NENT SYSTEM Corporation, Stamford, Conn.
Filed May 31, 1977, Ser. No. 802,156 U.S. C. $118-658$ Int. Cl. ${ }^{2}$ C03G ${ }^{\text {I }}$ IS/08

1. Apparatus for applying magnetic toner to a latent magnetic image on an imaging member moving at high speed,
comprising: a housing having an upper magnetic toner supply chamber provided with an opening through which magnetic
toner can flow under the influence of gravity; a bottom hous ing wall member below said opening and shaped to conform to a portion of the path of travel of said imaging member; a lipseal affixed to said bottom housing wall member adapted to divert air flow away from and retain magnetic toner upon, said bottom housing wall member; means for magnetically savag-
ing airborne magnetic toner located above said toner supply chamber and adapted to deposit sal vaged toner into said toner supply chamber; baffle means, located intermediate said mag-
netic salvaging means and said opening; adapted to divert netic salvaging means and said opening; adapted to divert
airborne toner from the vicinity of said imaging member into said upper toner supply chamber; and low friction, resilien sealing means for confining toner between said imaging mem seaing means for conining teveloper housing.
ber, said lip-seal and said dever

> 4,092,955 ROUGHNESS SENSOR

Junuthula N. Reddy, Troy, Mich, esaignor to The Bendir CorJunuthula N. Reddy, Troy, M
poration, Southfield, Mich.

$$
\begin{aligned}
& \text { Filed Oct. 4, 1976, Ser. No. 729,317 } \\
& \text { Int. C. }{ }^{2} \text { F22B 3/04 }
\end{aligned}
$$

U.S. Cl. 123-32 EA 12 Claims

WATER COOLLD INTERNAL COMBUSTION ENGINE, PARTICULARLY A DIESEL ENGINE
Greier , 126, Heinrichstrasse, Othmar Skatuche, Jooef Greier, Bertram Obermayer, Gerhard Feichtinger, and JoGran, Austria
Filed Aug. 26, 1976, Ser. No. 717,894
Claims priority, application Austria, Sep. 4, 1975, 6849/75 U.S. C. 123-41.74

1. Roughness sensor means for detecting and mea cycle-to-cycle changes in engine speed comprising: (a) engine speed sensor means adapted to res. the with the cylinder head cooling water chamber of each cylinder
via means forming a bore directed towards a cylinder head engine event recurring each engine cycle to produce injection nozzle of the associated cylinder
herein an alternating signal comprising first and second transitions defining first and second contiguous intervals herebet
(b) content storage means coupled to said engine speed sensor means operative to store contents representing the width of at least one of said first and second intervals; (c) comparator means coupled to said content storage means
operative to compare the widths of said first and second intervals to produce an output pulse having a magnitude determined by the difference between said first and second intervals; and,
(d) speed normalization means coupled to said content storage means and said comparator means operative to modify
said magnitude of said comparator output to produce a roughness signal varying directly with said comparator output and inversely with said contents.
2. A water cooled internal combustion engine comprising a cylinder block, a cylinder head cast integrally with the cylin-
der block, an overhead camshaft housing cast integrally with the cylinder head and the cylinder block, an overhead camshaft located in said camshaft housing, intake and exhaust valves and fuel injection nozzles suspended in the cylinder head, means forming exhaust ducts which extend transversely of the engine to an exterior wall on the exhaust side of the engine, means forming a cooling water chamber extending distributor channel extending in the longitudinal direction of the engine and positioned immediately above the exhaust ducts, said cooling water distributor channel communicating 971 O.G. 4

COMPRESSION IGNTION
COMPRESSION IGNITION INTERNAL COMBUSTION Donald Willred Tryborn, Slough, Eng
Armatrong Whitworth \& Co. (Eggineers) Ltod, Slough, En-
cland
Flied Oct. 15, 1975, Ser. No. 622,602
Claims priority, application United Kingdom, Oct. 16, 1974, U.S. C. $123-48$ B ${ }^{\text {Int. C. }{ }^{2} \text { F02B 75/04 }}$

5 Claims

1. A compression ignition engine having a crankshaft and cylinder means and comprising for each cylinder,
two opposed pistons reciprocable in each cylinder,
two rocker beams, one for each piston
two rocker beams, one for each piston having fulcrums
which are stationary and at ends of the beass and lic which are stationary and at ends of the beams and lie
ine parallel to the axis of the respective cylinder, piston rods connecting the pistons to their respective rocker beams,
oppositely positioned cranks directly adjacent to one another on the crankshaft,
one connecting rad couplin
one connecting rod
respective crank, connecting rods coupling the opposite rocker beam to re-
spective cranks spective cranks so that the rods connecting said opposite
beam are directly adjacent to and on either side of the rod connecting said one of said beams,
the engine further comprising means for adjusting the posi-
tions of the stationary fulcrums to vary the compresion
tions of the stationary fulcrums to vary the compression
ratio of the engine, and ratio of the engine, and
fuel intet means and exhaust means.

INTERNAL COMBUSTION ENGINE David Jerry Hale, Pickett, Wisen, amignor to Brunswick Corporation, Skolde, Filed.

Filed Sep. 4, 1975, Ser. No. 610,319
U.S. C1. 123-73 PP
nt. C. ${ }^{2}$ F02B $33 / 07$
U.S. C. $123-73$ PP

1. A two-cycle V-engine having a plurality of in-line cylin ders in a pair of angular oriented banks with an exhaust cham. ber located between said banks with a common wall between the cylinders and the exhaust chamber, each of said cylinders
having a head located at a defined head end portion and having having a head located at a defined head end portion and having
circumferentially spaced iniet and outlet port means, a reciprocating piston in each of said cylinders characterized by a loop charging and scavenging apparatus wherein said port means comprise an exhaust port unit located in said common wall and
extending from the cylinder through said common wall into extending from the cylinder through said common wall into
the exhaust chamber and extending longitudinally of the banks the exhaust chamber and extending longitudinally of the banks
of cylinders toward one end of said banks of cylinders, said exhaust chamber exiting from said one end of the engine, a pair of oppositely located inlet port units for supplying of innet
gases to each cylinder, each of said inlet port units having an gases to each cylinder, each of said inlet port units having an
inlet port including essentially linear sidewalls which are subiniet port inclucing essentialy linear sidewalls which are sub-
stantially differently angularly oriented with a progressively stantialy differenaly anguarly oriented wailh a progressing to the front and a discharge opening of the port unit to direct the inlet gases across the cylinder with an angle of impact adjacent the wall of whe cylinder opposite said exhaust port unit and moving out-
wardly to the head of the cylinder and across the top of the
piston toward said exhaust port unit and then moving from the head in the opposite direction and toward the exhaust port unit in the general form of a loop to define loop charging and 20. In a two-cycle engine, an engine cylinder block and closed at one end by a head and having a piston reciprocally mounted in the cylinder, said cylinder block having circumferentially spaced inlet and outlet
port means arranged to create a loop charging and scavenging port means arranged to create a loop charging and scavenging
of the cylinder from a pressurized chamber at the end of the cylinder opposite said head, characterized by an exhaust port unit located in the block for exhausting gases from the cylinder, said port unit having an exhaust port terminating in the cylinder and located to be completely uncovered with the
piston at maximum spacing from the head and to be progrespiston at maximum spacing from the head and to be progres-
sively covered during the movement of the piston from said position, a finger port in the cylinder diametrically opposite the exhaust port, a pair of inlet port units located one each to the opposite sides of the finger port, each of said inlet port units

having a passageway extending through the block parallel to the cylinder and coupling the pressurized chamber to the cylinder, said inlet port units being located on diametrically
opposite sides of the cylinder and essentially equicircumferen tially spaced from the exhaust port and the finger port, said
inlet port units each having an inlet port having esentill inlet port units each having an inlet port having essentially straight sidewalls which are substantially differently angularly oriented with a progressively converging angle of flow dire
ing the charge from said ports toward the finger port with an angle creating impact adjacent the finger port said finger port introducing a charge merging with the flow from the inlet ports and moving from the porss to the head of the cylinder in the general form of a loop to define loop charging, wherein said passageway of each of said inlet port units has a large inle opening adjacent the crankcase and is connected to said inlet port by a sharply curved front wall and a slowly curved back wall, said walls being joined by sidewalls and defining a pro-
gressively restricted opening to said inlet port ressively restricted opening to said inlet port.
INLET GAS MIXER FOR INTERNAL COMBUSTION
Edvard A. Mayer, Newburgh, and Prank V. Sassi, Fishlill, both of N.Y., essignors to Texsco Inc., New York, N.Y. Continuation-in-part of Ser. No. 265,107, Jun. 21, 1972, abandoned. This application Mar. 13, 1974, Ser. No. 450,911
Int. C. ${ }^{2}$ F02M 25/06 U.S. Cl. 123-119 A Int. C1. ${ }^{2}$ F02M $25 / 06$
2. In combination with an internal combustion engine having
intake and exhaust manifolds, an exhaust gas recycling system cuntrol chamber disposed in an EGR conduit connecting an incorporated in said engine to recycle a portion of exhaust gas exhaust pipe to an intake pipe of the engine, ssaid EGR valve from said exhaust manifold whereby to intermix with air to means being provided with a pressure sensing pipe extending form a homogeneous preliminary gaseous mixture for intro- mearefrom to a pressure source, and a back pressure tranaducer
duction to said engine intake manifold,
a gas mixer (17) in said gas recycling system adapted to
receive flows of said exhaust gas and air respectively, and to form said preliminary gaseous mixture, said gas mixer to form said
comprising,
an elongated cas
an elongated casing defining a circular gas mixing compartment (19) having opposed ends,
ment (19) having opposed ends,
inlet means for exhaust gas and air disposed transversely on iniet means for exhaust gasas and air disposed transversely on
one end of seid clongated casing, an impinging wall (39) positioned at the casing opposed end against which air and exhaust gas streams
compartment (19),

means forming a discharge port (41) opening into said gas mixing compartment (19) and communicated with said
engine intake manifold to conduct said preliminary gase ous mixture to the latter,
said inlet means for exhaust gas including a conduit (24) communicated with said mixing compartment (19) and
with said engine exhaust manifold respectively to conduct with said engine exhauss manifold respectively
a stream of exhaust gas from the latter and,
a plurality of nozzles (27) communicated with said conduit (24), being circularly arranged about the latter and having
discharge slots (35) extending from said conduit (24) radially outward to the wall of said casing, whereby to define between adjacent nozzless intermediate passages communicated with a source of air, said conduit (24) includes an internal deflecting surface ((43) at the conduit end, and
openings (33) formed in the conduit wall adjacent to said openings
deflecting surface to communicate said nozzles (27) with said conduit.

EXHAUST GAS RECIRCULATION SYSTEM IN AN INTERNAL COMBUSTION ENGINE Hidetaka Nohira, and Massankd Tanake, both of Susono, Japan, asaignors to Toyota Jidooha Kogyo Kabushild Knisha, Toyota,
Japan Filed Nov. 18, 1976, Ser. No. 743,145
Claims priority, application Japan, Jun. 18, 1976, 51 78896[U] Int. C1. ${ }^{2}$ F02M 25/06
U.S. C. 123 -119 A Chims 1. A back pressure-controlled exhaust gas recirculation
system (EGR system) in an internal combustion engine comsystem (EGR system) in an internal combustion engine com-
prising a pressure-operated EGR valve means with a pressure
having an atmospheric pressure chamber connected to said having an atmospheric pressure chareser connection chamber
pressure sensing pipe and having a presure operation cher

connected to said pressure control chamber, wherein the improvement comprises an air bleed passage, connected, at one
end, to said atmospheric pressure chamber of said back pres end, to said atmospheric pressure chamber of said back pressure transducer and the other end of said air bleed passage opening into the atmospheric air, said air bleed passage being provided with a branch passage diverging therefrom and being connected to a venturi portion of a carburetor.

CARBURETION SYSTEM FOR PREVENTING ENGINE MISFIRES DURING GEAR CHANGES JIN Minoru Yameda, Toyota, Japan, melignor to Toyote
 Cluime priority, application Japer, Mar. 10, 1977, 52-25450 U.S. C1 $11 \mathrm{Int.}^{\text {C.2 }}{ }^{\text {2 }}$ P02B $33 / 00$

1. A carburetion system for use in an internal combustion engine of a vehicle comprising: an intake passage for said engine;
a throttle valve located in said intake passage;
an idle port open in said intake passage;
means for providing a firts signal when a clutch pedal of said vehicle is depressed;
means for providing a se is at an idle opening position; coincidence detecting circuit for detecting the simultaneous occurrence of said first and second signals and providing an output signal when coincidence is detected,
said output signal representing a gear changing condition said output signal representing a gear changing cos
a fuel passage for directing fuel to said idle port;
valve means for opening a communication path be
atmosphere and said fuel passage in response to said output signal, whereby air is introduced into said fuel passage at the time of changing gears; and
timing means for closing said valve means a predetermined period of time after said coincidence detecting circuit provides said output.

PRECARBURETOR IGNITION SYSTEM Arthur L. Beatoa, and Nelson E. Weygant, both of St. Petere barg, Fina, mignors to Steven P. Corrignn, Omaha, Nebr.
Continuation-in-part of Ser. No. 508,273 , Sep. 23, 1974, abandoned. This application Apr. 1, 1976, Ser. No. 672,723 U.S. C. 123-133 Int. C.' ${ }^{2}$ F02M 31/00

5 Claims
duct means and controlling fluid level hydrostatic pressure means and the electrically energized heating element means operation, high and low speed valve means mounted in a valve housing means to regulate fuel vapor flow from the vapor
mechanical means engageable with the transport piston for mechanically driving the transport piston;
supplying a low pressure fluid to ted to the housing for supplying a low pressure fluid to the equalizing chamber,
said supply bore being closeable by the control portion of said supply bore being closeable by the control portion of the transport piston terminal edge;
means defining a relief bore connected to the housing for relieving the pressure in the equalizing chamber under the
control of the slave pistor cons defining slave piston;
means defining a pre-load fuel quantity line connected to the housing for delivering a pre-load fuel quantity to the working chamber;
a check valve located in the pre-load fuel quantity line, opening in the direction of fuel flow; and
means defining a pressure line connecting
chamber and the pressure chamber, wherein: (i) fuel serves as the fluid delivered to the equalizing chamber by the supply bore; and
(ii) the pre-load fuel quantity is deliv
chamber through the pressure line by the the pressure
FUEL VAPORIZING AND MIXING DEVICE FOR FUEL VAPORIZANG AND MIXING Gildo Prosen, Chicago, IIl., assignor to Vortac, Inc., Gleavien,

Filed Nov. 3, 1976, Ser. No. 738,623
U.S. Cl. 123-141
Int. Cl. ${ }^{2}$ FO2M 29/06

1. A carburetor attachment for insertion between a carburetor and a cooperable engine intake manifold, comprising a sleeve-like tubular member, formed from relatively thin formable sheet material of tubular configuration, adapted to be inserted in the intake bore of such a manifold, said tubular member having at its inlet end a radially outwardly extending bore for supporting the same therein with such flange disposed between the cooperable mating faces of the carburetor and intake manifold, said tubular member having an external diameter at such end slightly less than that of such a bore, the side walls of said tubular member having a plurality of inwardly directed protuberances forming alternate lands and grooves in the internal surface of said tubular member, the inlet ends of
the lands being rounded and merging into the sidewalls of said tubular member adjacent the inlet end thereof, the bottom edges of said grooves being arranged for close disposition to the sidewalls of such an intake bore whereby the effective area at the discharge end is only slightly smaller than that of the
intake end, as compared with the total area of such an intake bore, said lands being uniformly spaced and having their respective inlet ends circumferentially offset with respect to their associated outlet ends, forming generally spirally arranged lands with the internal surface of the intermediate portion of said sleeve having a relatively smoothly curved serpentine
configuration in transverse cross section, whereby each land is of a generally triangular configuration in transverse cross section, having inwardly converging sidewall portions connected by a convex rounded portion.
2. A control device for the fuel pump of an internal combustion engine, the pump being of the kind including a contro member movable to nuluence he supply of fuel to the engine,
the device including a fluid pressure operable piston arranged when fluid under pressure is applied thereto, to move said PUMP CONTROL DEVICES Edward Robert Lintott, London, England, assignor to Lucas Claims priority, application United Kingdom, Sep. 27, 1975,
$39666 / 75$
valve and linkage means placed around the vapor chamber part of its terminal edge facing the equalizing chamber;
control member to a position in which no fuel is supplied to the engine and a solenoid operable valve controlled by a manually operable switch, said valve when said switch is opened, serving to allow fluid under pressure to be applied to said piston, a pressure in said cylinder, said inlet being controlled by said pressure in said cylinder, said iniet being controlled by sai
solenoid operable valve, a port formed in the wall of the cylin der said port being uncovered by said piston when the latter has moved a predetermined extent under the action of fluid under pressure supplied through said inlet, and a further sole noid operable valve for controlling flow through said port, the type having a cylinder with a combustion chamber, and a ble valve is closed the piston can move its maximum extent in the cylinder under the action of fluid pressure but when saic further solenoid operable valve is open the piston will move only so far as to uncover said port.

14 Chite
I.C. ENGINES Ricardo \& Co., Engineress (1927) Limited, Eaghand Claims priority, application United Kingodom, Jun. 10, 1976
piston with a crown in the cylinder, the major portion of the formed in the crown of the piston being afforded by a rece a catalytic element in the cylinder carried by the piston and mounted in a position overlying the bottom of said recess, and mbustion engine, comprisin
a housing within which a pump cylinder, a sping chat a pressure chamber, a working chamber, and an equalizing chamber are defined;
a transport piston;
a slave piston, said transport piston and said slave piston being coaxially disposed within the pump cylinder, and defin ing the equalizing chamber with the pump cylinder, said slav der, said transport piston defining a control portion formed as
communication with the fuel supply, whereby excess fuel
collected in said reservoir is returned to said fuel supply means;
said fuel vapor separator means further comprising an air said fuel vapor separator means further comprising an air
intake means of said fuel vapor separator means, whereby air is mixed with partially vaporized fuel from said spray orifice means and delivered to said thermer
receiving heat therefrom.

VAPORITER 4,092,963
Rich APORIZER-REGULATOR, LIQUID FUEL Filed Feb. 24, 1977, Ser. No. 71,638
Int. C1. ${ }^{2}$ FO2M 31/00
U.S. C. 123-133 Claims 4. In a liquid fuel vaporizer-regulator device, a lower housing fuel reservoir chamber means, an upper housing expansion
chamber means with an outlet fitting means to distribute fuel vapor to an engine, a smaller diameter vapor chamber duc means connecting the upper and lower housing means, hydrostatic pressure means suppling liquid fuel from the lower housing means into the vapor chamber duct means lower end, an electrically energized heating element and housing mean
pleced inside the vapor chamber duct means lower end and immersed in the liquid fuel, a float operated inlet and outle

1. A precarburetor ignition system for use in combinatio with an internal combustion engine said system comprising:
thermerator means interconnected to the intake manifold of hermerator means interconnected to the intake manifold o
the internal combustion engine, fuel source means, fuel supply
means interconnected in fluid communication between thermerator means and said fuel source means; said fuel supply means comprising, at least in part, supply conduit means; said dirrect engagement with exhaust gases from the internas in bustion engine; fuel vapor separator means disposed in flum communication between said fuel supply means and said thermerator means, spray orifice means having a predeter-
mined configuration and connected in fluid delivery position to the interior of said fluid vapor separator means, said spray means to the interior of said fuel vapor separator means in at least a partial vapor state, said fuel vapor separator means
further comprising reservoir means disposed in spaced relation further comprising reservoir means disposed in spaced relation conduit means interconnected between said reservoir means and said fuel supply means, said fuel vapor separator means
comprising, at least in part, a substantially curvilinear longitu dinal configuration, said, spray orifice means connected in interconnecting relation to the interior of said fuel vapor sepa-
rator means and disposed in direct fuel delivery relation to an interior curved surfaced of said fuel vapor separator means, whereby fluid is directed into the interior of said fuel vapor separator means toward the interior curved surface, said reser voir means disposed below the interior curved surface in fluid
communication with the fuel supply whereby exces fuel delivered to said thermerom sor complete vaporization upo linkage means placed around the vapor

Filed Sep. 13, 1976, Ser. No. 722, U.S. C. $123-140$ FG Cl. ${ }^{2}$ F02D 1/04, 1/06
 borald Höfer, Weisasch-Flacht; Franz Eheim, and Odon Koppe, both of Stuttgart, all of Germany, aseignors to Robert Bo
$\mathbf{G m b H}$, Stuttgart, Germany Claims priority, application Germany, Dec. 24, 1975, 255869 U.S. CI. 123-139 AT Int. C1.2 F02M 39/00 10 Claims

means for injecting fuel into said recess, when the piston is at
about its top-dead-centre position, in a direction such that

substantially the whole of the injected fuel will contact the surface of the catalytic element to initiate its combustion.

FNGed Dougles Stover, Mt IGITION SYSTEM Centerbare both of Ohio, Ime Hore, bow of Outo, Inc., Honston, Tee.
Filed Feb. 9, 1977, Ser. No. 766,883 Int. C. ${ }^{2}$ F02P $1 / 00,7 / 02,9 / 00$
148 E U.S. C. $123-148$ E

1. An ignition system for a multiple combustion chamber internal combustion engine comprising, in combination, timing disc, means for rotating said timing disc in synchronism with the engine, , irrst sensor means scanning a precelermine
track on said timing disc as said timing disc is rotated for generating first signals in response to predetermined portion of said track, a separate second sensor means and a separate capacitive discharge circuit means associated with each com bustion chamber in the engine, said second sensor means scan ning procetermin for selectively generating second signals is response to the sensing of predetermined portions of such scanned tracts during the occurrence of such first signal, each of said capacitive discharge circuit means including a storage capacitor, an ignition coil having a primary winding and elec
tronic switch means for discharging said capacitor through tronic switch means for discharging said capacitor through
said primary winding, means for charging said capacitor, and said primary winding, means for charging said capacitor, and means for triggering the electronic switch means in said capac itive discharge circuit means associated with such second sensor means.
2. A gasoline engine fed with lead mixture only, said engine having a cylinder, a piston therein and a cylinder head pro-
vided with a torch chamber having a spark plug therein for emitting a plurality of flames into the combustion chamber, and a suction valve and an exhaust valve, characterized in that; (a) the cylinder head is provided with a combustion chamber recess with a periphery which enters toward the center
line of the cylinder in a maximum a line of the cylinder in a maximum amount between the
suction valve and the exhaust valve to provide an area to create an intense turbulence of a lean mixture in cooperation with the top surface of the piston;
(b) the torch chamber is located on the cylinder head at a
position spaced from the center line of the cylinder; and position spaced from the center line of the cylinder; and
(c) the torch chamber is provided with at least two openings, the center line of one of said openings being directed to pass through a portion of the combustion chamber just below the center of the head of the suction valve, and the
center line of the other of said openings being directed to pass through a portion of the combustion chamber just below the center of the exhaust valve; the torch flames emitted from the said two openings being directed toward the top surface of the piston.

4,092,970
CONTROLLING INTERNAL COMBUSTION ENGINES Gerald Stuart Morris Ball, Dideot, and Anthony Walter Andrews, Southampton, both of Eagland, smignors to Exxon Rescarch and Engineering Company, Linden, N.J.
Continuation-in-pert of Ser. No. 405,861, Oct. 12, 1973, abandoned, which tr a continuation of Ser. No. 184, 624, JJun. 1 , Claims priority, application United Kinglom, Jun. 5, 1970, 27316/75; May 11, 1971.152201/71
Int. CI. ${ }^{2}$ F02B 77/00; FO2D 11/08
U.S. C. 123-198 D. ${ }^{\text {Int. }}$ F02B 77/00; F02D $11 / 08$

1. A valve in combination with an internal combustion engine for automatically controlling the maximum speed of said passageway of said engine and having at least a first valve seat, he maximum internal diameter of the said first conduit portion and the said first valve seat being D , movably mounted valve means having at least a first sealing surface and operable as a
function of pressure differential, support means fo said valve means for movement between a normally open position and a closed position, said first sealing surface disposed in operable contact with said first valve seat for substan-
tially sealing off said first tially sealing off said first conduit portion and preventing flow spring means biasing said valve means into said open position away from said first valve seat, adjusting means for adjusting the amount of bias supplied by said spring means to said valve
means and being substantially inaccessible when operatively assemblad with said engine, said first sealing surface and saic irst valve seat being spaced apart by a distance L when said is at least equal to 0.25 D , said spring means and said valve means being so constructed and arranged and the bias of said spring means being so adjusted that when the rate of flow past

desired flow rate corresponding to a maximum desired engine speed said valve means automatically moves under influence of the resulting pressure drop thereacross into said closed posihe bias applied by said spring means for stopping said engine, said spring means returning said valve means to said normally open position when the engine is stationary and the pressure drop across said valve means is substantially zero

SELP-CONTAINED, MULTI-BLADE PACKAGE FOR SLURRY, MAWS AND THE LIKE Kenneth W. Viccount, 321 Cherry St., Crriske, Pa, 17013
 U.S. C. 125-16 R
dimension of the end cap, and
dimension of the end cap, and t least first and second nuts threaded, respectively, onto the ends of said first and second connecting rods extending
into the counter bores of the end caps and being full received within the recesses formed by said counter bores said relatively thick end caps preventing distortion of the blade package when said nuts are tightened on said connecting rods thereby ensuring the rigidity and parallelism blocks in the blade head assembly of a slurry saw or the like.

1. A self-contained, multi-blade package for use in the blade head assembly of a slurry saw or the like, comprising: head assembly of a slurry saw or the like, comprising: first and second pluralities of thin, flat spacers inserted a either end between said blades and having aigned holes therein,
at least a first connecting rod extending through aligned holes in said first plurality of spacers,
at least a second connecting rod extending
boles in said second plurality of spacers
holes in said secoively phuraily of spacers,
each pair hecaively tick end caps, at least one end cap of each pair having at least one through drilled hole and being counter bored on one face with one end of a con into the counter bore, said relatively thick end caps each

PROCESS OF CUTTING WAFERS Frederick Schmid, Marblebeend, Ming, aselgmor to Crytal Syrtema, Inc., Salem, Mises, 1977, Ser. No. 767,809

U.S. C. $125-16$ R | Int. C1. ${ }^{2}$ B28D $1 / 08$ |
| :--- |

23 Claima

1. In the process of cutting a workpiece with abrasive particles in which longitudinally extending blades are moved rela tive to the workpiece, that improvement comprising: providing a blade including a longitudinally extending abra-
sive-holding portion of metallic material having a hard-sive-hoiding portion of metalic material having a hard blade core of greater tensile strength, said abrasive-hold ing portion defining a cutting surface extending between the opposite sides of said blade and defining less than onc half the total outer surface of said blade
placing said blade under tension adjacent a charging element
with said cutting surface of said abrasive-holding portion ards and closely adiacent said cing portion ment;
tially into said sbrasive-holding porrasive particies par tially into said abrasive-holding portion by moving said said cutting surface of said blade and element towards each other and introducing abrasive particles into the interface between said abrasive-holding portion of said blade and said element,
the thickness of said abrasive-holding portion being not lese than about one-half the nominal size of said particles, and said particles being embedded into a longitudinally holding portion but not into said sides of said blade

4,092.973

Richeld RANGE CABINET J. Bernazzani, Roslindale, Mase, assignor to The United States of Americas is represented by the Secretary of the Army, Washington, D.C.

Flied Apr. 19, 1976, Ser. No. 678,503
at.
U.S. CI. $126-37$ B $\quad 1$ Claim

1. In a cooking range for use in the field which comprises a cabinet frame, a hinged front door, a hinged lid, and cabinet
outer shell side and rear walls, the improvements which comprise a unitary, U-shaped, outer shell, said outer shell being removable from said cabinet frame, said cabinet frame having flanged upper and lower edges on both sides thereof forming
upper and lower runners along the upper and lower edges of upper and lower runners along the upper and lower edges of
both sides of said cabinet frame, said outer shell comprising two side walls separated from each other and being joined by a rear wall and having flanged upper and lower edges on both
sides thereof, said flanged upper and lower edges of both sides sides thereof, said flanged upper and lower edges of both sides
of said outer shell cooperating with said upper and lower runners formed by said flanged upper and lower edges of the
sides of said cabinet frame for slidably engaging said outer shell sides of said cabinet frame for slidably engaging said outer shell
with said cabinet frame to permit operation of said cooking with said cabinet frame to permit operation of said cooking
range and for slidably disengaging said outer shell from said range and for slidably disengaging said outer shell from said
cabinet frame to facilitate cleaning all of the surfaces exposed to food and vapors from food inside of said cooking range during operation thereof, said outer shell comprising means on
both sides thereof for locking said outer shell side walls to said both sides thereof for locking said outer shell side walls to said
cabinet frame during operation of said cooking range and for cabinet frame during operation of said cooking range and for
unlocking said outer shell side walls from said cabinet frame, unherexing said outer shell becomes slidably disengageable from said cabinet frame.

POCKET CAMP STOVE
POCKET CAMP STOVE
Imamoto Zenzaburo, Yokohama, Japan, assignor to InternaBusiness Development Company, Bellerue, Wast
Filed Jul. 12, 1976, Ser. No. 704,119 Inted Jul. 12, 1916, ${ }^{\text {F }}$, Ser. No. $5 / 20$
In
U.S. C. 126-38

5 Claims

1. A portable gas stove comprising:
a gas burner unit including a burner head; and
a gas supply conduit having an outlet end connected to said burner unit, and an inlet end connected to gas control
means which are adapted for connection to a can of gase-
ous fuel under pressure of a type having a protruding depressable member controlled outlet valve built into the can, and in which gas flows out from said can via an axial
passageway, in said depressable member, said gas control pasans being operable for moving the depressable member
meand selectively variable amounts for both turning the gas flow on and off and regulating its flow rate, and said gas control means including an inlet port which is in alignment with the axial passageway in the depressable member when sand
gas control means is connected to the gaseous fuel can.

PLURAL CHAMBER SHEET 4
PLURAL CHAMBER SHEET METAL GAS BURNER AND METHOD OF MANUFACTURE
Nick G. Grammatoponloos, Bloomingedale, Ill, assignor to Groman Corporation, Cuicago, III.

3 Clims

1. A gas burner for use in a gas fired cooking grill of the type dapted to carry a horizontally disposed rack for supporting food and having gas supply inlets, the improvement compris ing, in combination, a pair of generally H -shaped stamped
sheet metal shells generally U-shaped in cross-section, one comprising a top shell and the other comprising a bottom, shell, comprising a top shell and the other comprising a bottom shell,
said top and bottom shells being secured together by a peripheral lip on one of said shells being bent over a peripheral edge on the other of said shells so as to form a permanent seal
around substantially the entire periphery of said H-shaped around substantially the entire periphery of said H-shaped
shells and thereby form a gas chamber therein, said top and bottom shells each being formed with a depressed planar porion which extends transversely ycross the width of the shell
approximately midway between the ends thereof so as to diapproximately midway between the ends thereof so as to di-
vide each top and bottom shell into a pair of generally U vide each top and bottom shell into a pair of generally U -
shaped shell sections, said transverse planar portions being shaped shell sections, said transverse planar portions being
arranged to abut one another when said top and bottom shells are interconnected so as to form a gas-tight seal thereby defining two separate generally U-shaped hollow burner chambers for connection to separate gas inlets, a plurality of gas outlet
apertures formed in a wall of said bottom shell around substanapertures formed in a wall of said bottom shell around substan-
tially the entirety of its H -shaped configuration for directing a gas flame upwardly over said peripheral lip on said top shell, and a pair of gas inlet apertures formed in said bottom shell on opposite sides of said transverse planar portions for connection to respective gas inlets.
$4,092,976$
CONDITIONER
Carrol E. Buckner, Asherille, N.C., assignor to Buck Stove Marketing, Corp., Asherille, N.C.
Filed Jun. 7, 1976, Ser. No. 693,805
U.S. C. $126-63$

Int. Cl. ${ }^{2}$ F24C $1 / 14{ }^{2}$
19 Claim

1. An air conditioning unit comprising:
two side walls of said housing for forming a substantially stacked elements thereby providing a solar collector that in U-shaped forced air channel; an opening in said front wall for providing access to a chamber defined by the interior of said interior walls;
vent means in a front wall of said side air channels adjacent
the side edges of said opening;
rim mounted to said front wall
a rim mounted to said front wall of each of said side air Richard outer lateral edge thereof;

the side exterior walls of said forced air channel forming an angle less than ninety degrees with the front wall of said side forced air channels;
means mounted to said housing for forcibly introducing air into the back portion of said channel through a port to traverse said air channel and to exit said vent means creating an exiting forced
said opening; and
directing means interior said air channel for directing said forced air from said port over a substantial portion of said back and two side interior walls to said vent means.

4,092,977

FLAT PLATE SOLAR COLLECTOR ichard Warren Gurtler, Mesa; Robert Maxwell Handy, Phoe-
nix; Michael Chancey Keeling, Tempe, and Isreel nix; Michael Chancey Keeling, Tempe, and Lrrael Arnold
Leak, Scottsdale, all of Ariz., assagnors to Motorola, Inc., Schaumburg, III.

$$
\begin{aligned}
& \text { Filed Jul. 12, 1976, Ser. No. 704,145 } \\
& \text { Int. C1.2 F24J 3/02 } \\
& \text { U.S. Cl. 126-270 }
\end{aligned}
$$

8 Claims

1. An efficient solar collector, comprising: a thin base; insulating means placed on top of the thin base; a fluid flow plate having a plurality of passages for conducting a fluid to be heated by the solar collector, the fluid flow plate being on top
of the insulating means; an absorber having a layer of black of the insulating means; an absorber having a layer of black being bonded to the top of the fluid flow plate; a convection suppressor placed on top of the absorber for reducing hea losses from the absorber; a transparent cover for allowing solar radiation to pass placed on top of the convection suppressor; means to form a frame around the outer periphery of the thin base, insulating means, fluid flow plate, absorber, convection 1. A combined solar collector and struer uppresin and frm a frame being easily removable from the beam, said beam comprising; spaced, longitudinally extending,
shaped portions having an open side, said beam also including
a longitudinally extending recessed portion between the chan-
nel-shaped portions;
shaped portion having thembed within the channel assembly comprising a highly polished reflector arranged within the channel-shaped portion; an absorber tube disposed within the reflector and spaced therefrom to absorb
the sun's energy; and the sun's energy; and
uransparent cover positioned over the open end of said
channel portion. channel portion.

FIBRINOGEN MO
FIBRINOGEN MONITOR
Donald H. Frank, Deerfield; J. Fred Jeffriea, Waukegan; Mary C. Swanson, Lincolnwood, all of Ill.; Thomas L. Erb, and \& Con Cuicago, III. $\begin{gathered}\text { Fled Jan. 12, 1976, Ser. No. } 648,254\end{gathered}$
U.S. C. 128-2 A

METHOD AND APPARATUS FOR BRAIN WAVEFORM John Paul EXAMINATION

1. A method of determining the average frequency of a sample of a band-limited EEG waveform in the presence of an intermittent interfering unwanted alpha rhythm waveform of
relatively greater amplitude than the relatively greater amplitude than the components of the
wanted waveform and of a defined frequency range within said wanted waveform and of a defined frequency range within said
band limits, comprising sensing a subject's brain waveform, limiting said waveform to frequencies within said band limits, detecting in a sample of said waveform at least every alternate zero crossing point in the waveform, counting the events defined by adjacent alternate crosing points, identifying
events having durations respectively within and outside a range corresponding to the duration of a cycle of a waveform within the defined frequency range of the unwanted waveform, determining the number and the sum of the durations of the events having durations outside said range during said sample, and calculating from said number and said sum the average frequency of these latter events.

2. A therapeutic wrap consisting of an inner strip and an outer strip attached to each other along one end, the outer strip being an elongated resilient elastic compression bandage material, the inner strip being of flexible material formed into at least one pocket for receiving prepackaged coolants of manufacture, and running nominally coincidental with the outer strip, wherein at least one loop of flexible material is attached
to the backside of the inner strip at intervals along its length. said at least one loop freely encircling the outer strip.

4,092,983
Victor Slivenko, San Diego, Celiifs DEVICE Company, San Diego, Calif Calif, asaignor to General Atomic Flied Jen. 31, 1977, Ser. No. 764,207
U.S. CI. 128-214 R ${ }^{\text {Int. C1. }{ }^{2} \text { A61M S/00 }}$

16 Claims

1. A device to provide access to the circulatory system of a living body for simultaneous withdrawal from and return of duits of generally circular cross section, either one being insertable in a living blood vessel and the other being connectable to a by-pass graft of that same blood vessel; a generally cylindrical housing having one end closed and extending transversely f and adjoining said conduits near the closed end, the points of
djoining both conduits being spaced apart from each other longitudinally with respect to the axis of the housing and being paced away from the axis, said housing having fluid communication with each of said conduits through an aperture in the onduit walls at each of said points of adjoining, the perimeter defining each of said apertures being formed of a sharp edge of
the conduit wall, said housing having a length sufficient to extend from the blood vessel to a point outside the living body valve body in said housing, said valve body having therein a pair of spaced apart ports that are located to be alignable with he apertures at one given rotative position of said valve body, said valve body being adapted to receive a dual-conduit cathe port, and said valve body being coaxially rotatable in said housing between positions of alignment and nonalignment o said apertures and said ports to selectively establish fluid com munication between the circulatory system and the catheter when inserted in suid valve body; at least all blood and skin logically compatible material.

4,092,984

UNDULATING RECTAL FLUSHING APPARATUS
Paul Bindel, 3946 W. North Ave., Chicago, Ill. 60647
Int. Cl. ${ }^{\text {A }}$ A61M $3 / 00$
U.S. Cl. 128-229

1. A portable apparatus for irrigation of the colon and intesposition by the usual toilet the rim of a toliet bowl and held
(1) having a semicircular cutout portion, and
(2) a pair of spaced slots therein positioned opposite the cutout;
(b) an enclosed housing anchored on the upper side and on one end of said plate;
(c) a motor in said housing operatively connected to: (1) a reduction gearing,
(2) a shaft extending from said reduction gearing;
(d) a circular cam fixedly mounted to said shaft
(1) said cam having a plurality of lobes, each lobe having a curved rising work face and a falling work face;
(e) an elongated rod shaft extending through said plate to medially of said cutout portion;
(f) an elongated cam follower having one end positionable on said cam, and its other end fixedly mounted to one end of said rod shaft;
(g) an adjustable crank arm secured to the other end of said rod shaft, having a right angled arm at its free end and right angles thereto;

(h) a vertically extending guideway secured to and depending from said plate;
(i) a slide bar supported in said guideway,
(1) a cross arm secured at one end to said slide bar and extending at right angles to said guideway and having a portion thereof lying on said curved arm,
(2) support bracket anchored to the free end of said rod; (j) an enema tip removably mounted in said bracket and directed to jet warm fluid vertically for vertically reciprocative motion relative to said base plate.

4,092,985 FOR ELEC

BODY ELECTRODE FOR EFECTRO-MEDICAL USE Jhn George Kantene 858 Condor Drire Bulithl OSE Canada
Continuation-in-part of Ser. No. 526,681, Nor. 25, 1974, Pat. Co. 3,72,329. Thic appication Aug, 2, 1976, Ser. No. 710,535 S. Cl. 128-303.13 Int. C. ${ }^{2}$ A61N 3/06

8 Clims

1. A body electrode useful as the return electrode in electrosurgical procedures comprising: an elastically, resiliently facing towards the body and an outer surface for facing away therefrom;
flexible, electrically conductive metal sheet member connected to said cover sheet member having an outer conpresented towards the inner surface of said cover sheet member, and an inner surface for facing towards the body terminal means in electrically conductive relation to said metal sheet member,
means for attaching the body electrode to a patient's body; a layer of water permeable woven fibrous webbing covering and extending beyond the peripheral edge thereof, and
adapted to receive and restrain the flow of electrically said main surface greater than zero with at least 30 percent of
conductive medium of thin conductive medium of thin semi-solid or fluid consistency those fragments constituting said major proportion being enappled hereto, said layer having a thickness of from countered at a substantially perpendicular angle of incidence
about $1 / 50$ to about inch, the fibres of said webbing so as to be intersected by said line substantially through the being of low water absorbency and being interwoven sirection of their initial thickness, and a smokable outer wrap-
together into said webbing in interlocking fashion, said
layer being secured to the cover sheet member at locations layer becing secured to the cover shect member at locations
beyond the peripheral edge of said metal sheet member and said layer being elastically resiliently stretchable
along with the cover sheet member.
and said layer being elastically res
along with the cover sheet member.
CONSTANT OUTPUT ELECTROSURGICAL UNIT Mer Schnelderman, Clifton, N.J., assignor to Ipco Hospital Supply Corporation (Whaledent International Division), New Filed Jun. 14, 1976, Ser. No. 695,52
Int. C1. ${ }^{\text {A61B } 17 / 36 ; ~ A 61 N ~ 3 / 00 ~}$ ping around said rod operable to coherently maintain the ping around said rod opera
fragments in said orientation.
```
M
```

SMO 4,092,988 SMOKING TOBACCO COMPOSITIONS Thomas V. Van Auken, Richmond; Harrey J. Grubbs, Mechan-
icsrille, and William R. icssille, and Willinm R. Johnson, Jr., Richmond, all of Va., assignors to Philip Morris Incorporated, New York, N.Y.
Filed Nov. 5, 1976, Ser. No. 739,291
17 Claims U.S. Cl. $131-17$ R
Int. C1. ${ }^{2}$ A24B $3 / 12$ 1. A smoking 8 Claims ral or reconstituted tobacco and between about 00005 natuweight percent, based on the weight of tobacco, of a polymeric weight percent, based on the weight of tobacco, of a polymeric
carbonate ester composition having a molecular weight in the range between about 500 and $2,000,000$ and consisting essentially of recurring monomer units corresponding to the formula:

1. An electrosurgical unit providing an output voltage to oad, comprising an oscillator producing an output signal of a given frequency, a control circcuit means coupled to the oscillaor for providing an output voltage from the oscillator for use the output to the input of the oscillator to maintain the output voltage level from the unit as a substantially constant value independent of the load, and wherein said oscillator includes control electrode, and said control circuit means includes a
switching transistor having its collector-mitter circuit conswected between said control electrode and ground, and havin
net a fixed voltage on its base, capacitor means, and means for selectively connecting said means to said base.

CIGAR-LIKE PRODUCT

Pierre Imbert, Paris, France, asalgnor to Service D'Exploitation Continination-in Tapers et des Allumettes, Paris, France abandoned. This application Aug. 26, 1976, Ser. No. 717,569 Claims priority, application France, Jan: 12, 1973, 73.00987 S. C. $131-8 \mathrm{R}$. Cl. ${ }^{2}$ A24D $1 / 00$; A24C $5 / 18$

4,092.989
AROMATIC COMPOSTTIONS
Edouard P. Demole, Genera, Switzerland, asaignor to Firmenich Edouard P. Demole, Genera, Switzerland, assignor to Firmenich
S.A., Genera, Switzeriand S.A., Geneva, Swicueriand \quad Division of Ser. No. 482,776, Jun. 24, 1974, Pat. No. 3,920,027, Dhich of division of Ser. No. 219,136, Jan. 19, 1972, Pat. No.
3,840,023. This application Jun. 12, 1975, Ser. No. 586,368 3,840,023. This application Jun. 12, 1975, Ser. No. 586,368 Claims priority, Application Swituerinad, Jan. 19, 1971,
$773 / 71$; Jun. 23, 1971, $9156 / 71$; 773/71; Jun. 23, 1971, 9156/71; Jan. 11, 1972, 380/72

1993, hass been diecelaimed 1993, hass been disclaimed.
Int. Cl^{2} A24B $15 / 04$

1. A smokable cigar-like product comprising a plurality of prepared fragments of natural or manufactured tobaccoo leaves having irregularly contoured main surfices whose dimensions ness of the leaves, said fragments being compressed axially at constant cross-section into a rod-like shape with an orientation said rod such that the major proportion of those fragments $\quad 2$ Claime ying in a line parallel to the main axis of the product are 1 to about 1000 parts per million based on the weight of to期 carbor total number of carbon atoms in $\mathbf{R}^{1}, \mathbf{R}^{2}, \mathbf{R}^{3}$ and \mathbf{R}^{4} collectively does not exceed about $20 ; m$ is an integer between 0 and about 8 ; and n is an integer between 2 and about 10,000

4,092,990
VIBRATORY COIN FEEDER
gemakera, Inc,, Indianapolis, Ind assignor to Standard Chan semakers, Inc., Indiannpolis, Ind.
Filed Sep. 15, 1975 , Ser. No. 613,074 U.S. C. 133-1 R ${ }_{\text {Int. }} \mathrm{Cl}^{2}{ }^{2} \mathbf{G O T D} 1 / 00$ U.

1. A vibratory coin feeder comprising.
a frame;
a hopper mounted to said frame to receive jumbled coins; a platform positioned beneath said hopper to receive coins herefrom, said platform having an outer circumferen-
tially extending wall with a coin outlet located inwardly next to said wall;
drive means operable to vibrate said hopper and platform moving said coins from said
and outwardly to said outlet;
dispensing means adapted to receive coins from said outle
and being operable to dispense coins thereform in a con trolled predetermined amount;
said hopper includes a lower portion with a hopper coin oudet and an upper portion connected together both of
which support said jumbled coins; and further comprising isolation means connecting said lower portion to said uppe portion but vibratio
said lower portion;
supporting means mounted to said frame and supporting said supporting means mounted to said frame and supporting said
upper portion of said hopper, said supporting means being upper portion or said hopper, said su;
vibration isolated from said frame;
spring means mounting said platform and said lower portion of said hopper on said frame and allowing said platform and said lower portion of said hopper to vertically move
both said upper portion and said lower portion of said
hopper have downwardly slanting parallel walls to sup
port said jumbled coins with said upper portion of said
hopper supported by said supporting means reducing th
load of coins supported by said spring means.

4,092,991
 CLEANING MACHINE

Marvin K. Rohrs, Fanwood, NJ.J., assiggor to Metalwash MaMarvin K. Rohrs, Fanwood, N.J., assignor Division of Ser. No. 623,210, Oct. 16, 1975, abandoned, which is Division of Ser. No. 623,210, Oct. 16, 1975, abandoned, which is
a continuantion of Ser. No. 481,072, Jun. 20, 1974, abandoned, which is a continuation-in-part of Ser. No. 458,635, Apr. 8, 1974, abandoned. This application Apr. 16, 1976, Ser. No.

Int. C. ${ }^{67}$ B08B $9 / 08$
U.S. C. 134- 127
washi \qquad

1. A machine for washing beverage cans comprising a trans port conveyor including a reticulate belt member upon a upper course of which cans to be washed are carried and
hold-down conveyor including a reticulate belt member hav ing a lower course space above the upper course of said trans port conveyor, spray means disposed to direct liquid through
said belt members and onto said cans, said belt member of said hold-down conveyor being trained around conveyor drums, a surface of the hold-down belt member contacting said drums xtending stiffener members projecting therefrom and said conveyor drums having recesses on belt member contacting surfaces thereof, said recesses being circumferentially spaced around said surface whereby said stiffener members, during the passage of the hold-down conveyor belt around said drums, extend into said recesses and opposite surfaces of said belt gagement with said cans and being substantially free of projec-

ions, said stiffener members each consisting only of a single lat strip disposed substantially normal to adjacent portions of said belt member of said hold-down conveyor and each being secured thereto at an edge region of said strip to leave the regions of the belt member between the planes of said strips
substantially free of restriction to the passage of said sprays herethrough, said belt member being provided with a plurality of roller means projecting laterally from the edges thereof, saic oller means cooperating with track means disposed adjacen ongitudinal edges of the lower course of said hold-down conveyor to guide said lower course and prevent sagging of
said longitudinal edge regions of said belt member.

LAMINATED ARCH $4,092,992$
CONSTRUCIER AND METHOD OF CONSTRUCTING THEM Strum Hudile, Pleasant Ridge, Mich, avignor to Tension voogd, Lansing, Mich.
The portion of the term of this patent subrequent to May 21, Int. C1. ${ }^{2}$ A 45 F 1/16

1. A substantially, hollow structural encompass or beam member having at least one predetermined curved bight, comprising multiple layers of comparitively twice longitufinal
structural components aligned in an assembled layer structural components aligned in an assembled layer upon cavity having a cross sectional area of at least wice the croes sectional area of the wall material encompassing said tubulhr cavity, and means for fixing said layers together to attain a high stiffness to weight ratio in said structural member.

4,092,993
METHOD AND APPARATUS FOR PREPARING CHEMICAL SOLUTIONS Jnmes Santon Stereesoon, Onklind, Calif, asesignor to Termina-
tor Products, Inc. Onkland, Calif? Filed Jun. 19, 1975, Ser. No. 588,417
Int. C. ${ }^{2}$ B05B 9/00; F16X $11 / 18$ U.S. C. $137-15$
 1. A system for producing a solution of a base liquid and a
chemical without exposing one to risks of handling hazardous
chemicals, comprising a tank for holding a predetermined chemicals, comprising a tank for holding a predetermined quantity of base liquid, a pump having a suction end and a discharge end, a circulating system including said tank and said
pump for circulating the base liquid of said tank, a Venturi in said circulating system between said pump and said tank, means including said Venturi for withdrawing from a source container of chemical a desired quantity of chemical to be
mixed with such base liquid, means also including said Venturi for gradually introducing said desired quantity of chemical into said closed system while said base liquid is circulating therein, and means for selectively switching said Venturi from aid chemical withdrawing means to said chemical introducing means and vice versa.

4,092,994
Eric McGowan, St. Austell, England, assignor to United Gas Industries Limited, London, England
Filed Mar. 19, 1976, Ser. No. 668,725 Claims priority, application United Kingdom, Apr. 14, 1975, 5151/75

Int. C. ${ }^{2}$ F16K 1/46

1. A valve having a valve plate and an annular valve seat, 1. A valve having a valve plate and an annular valve seat,
said valve plate being movable axially toward and away from
U.S. C. 137-65 int. Cl. ${ }^{2}$ F16K $1 / 46$
said seat, an annular sealing member lying freely between said Said seat, an annular sealing member lying freely between said of spaced fingers extending normally therefrom around the periphery thereof, said disc abutting the valve plate and said spaced fingers extending loosely within the annular sealing member to prevent lateral movement thereof such as would take it out of alignment with the seat but allowing the sealing
member freedom to move axially with respect to the fingers and means for operating said valve by abutting the disc and thereby moving the valve plate.

MULTIPLE $4,092,995$
multirle valve with automatic sequential OPERATION
Paul Stubenruss, Kostlanerwee, 4, Brixen, Prov. Bozen, Italy ded Jul. 19, 1976, Ser. No. 706,863
U.S. Cl. 137-119 Int. Cl. ${ }^{2}$ F16K 21/06 11 Claims

1. A valve for controlling the flow of fluid under pressure from an inlet to a plurality of outlets in sequence, said valve comprising:
having casing having an internal opening about an axis and having two axial ends;
ing into two whamberid opening and dividing said open ing into two chambers;
means bearing on the actu
coans bearing on the actuator means and urging it to a firs
position adjacent one of said ends whereby one of sai chambers, the one at said one end, is normally small and the other chamber is normally large;
leed valve means communicating with said other chamber to permit fluid to be slowly discharged from said othe chamber;
to permit said ating with said inlet and said one chambe to permit said pressurized fluid to flow into said one chambeans areby the pressurized fluid acts on said actuator means and moves it against the urging of said second mentioned means from said first position and toward the other of said ends to a second position;
to open said two chambers innocted to the actuator means other when said actuator means arrives at said secon position and to close said communication between said two chambers when said actuator means returns to said first position, whereby when said two chambers are in communication said second mentioned means will retur
said actuator means to said first position; atable sequencing valve means and conn
and said outlets for placing said outlets sequentially in communication with said inlet depending on the position of the valve means; and
ndexing means for rotating the sequencing valve means as
said actuator means moves from said second to said actuator means moves from said second to said firs
position.

4,092,996
Arne Karl Kock, Swedenborgsing APPARATUS
Filed Mar. 18, 1976, Ser. No. 668,243, Sweden
Claims priorty, application Sweden, Mar. 21, 1975, 7503242 U.S. C. 137-344 4 Claims

1. An apparatus for conducting water from a water source to a water-consumer which is movable over a surface in relation to the water source and which comprises:
a. two substantially identical, extendible and collapsible pipe-systems each of which has a plurality of substantially
rigid pipes and a plurality of pipe-coupling devices, said rigid pipes and a pluraity of pipe-coupling devices, said
pipe-coupling devices being arranged to pivotally connect the ends of the pipes together so that water may flow from pipe to pipe through the pipe-coupling devices;
. a plurality of holding means each arranged to hold a specific portion of a pipe in one pipe-system in a pivotally
spaced apart relationship to a corresponding portion of a pipe in the other pipe-system, said distance being small in relation to the lengths of the pipes;
c. first water-supply means adapted to supply water from the water source to a pipe at one end of a respective pipe-sys-

pipe at the other means effective to pass water from a pipe at the or
water
e. a plurality of supp the pipe-systems above the surface at a holding means and the pipe-systems above the surface at a holding means an
comprising structures for engaging the surface; and f. each of said holding means is arranged at each alter pipe-coupling device of respective pipe-systems, said olding means being adapted to hold a pipe-coupling evice of one pipe-system spaced at a distance from a tem, said distance being of the same magnitude as the cross-sectional dimensions of the pipes.

4,092,997

CONSTRAINT MEANS FOR FLEXIBLE ELEMENTS
Howard C. Hansen, Battle Creek, Mich, assignor to Clari Equipment Company, Buchanna, Mich.

Filed Jan. 26, 1977, Ser. No. 762,540
U.S. C1. 137-351 Int. C1. ${ }^{2}$ F16L 33/00 1. An assembly of at least three flexible elongated hydraulic conduits flexibly bonded together lengthwise thereof in such manner that in a cross-section of said conduits an arc having a determinate curvature may be connected beiween the axes o said conduits, said conduits in themselves having such mechan-
ical properties that bending the conduit assembly lengthwise ical intermediate the ends thereof effects in the bend of the assembly a substantial flattening of said arc, the radius of said
bend being substantially uniform and being a function of the radius of said arc, said conduits being mutually supportive and
having a substantial section modulus about a transverse axis as a function of the configuration of said are.

4,092,998
AUTOMATIC PRESSURE REGULATOR John P. Taylin, 15 Sewall St, Weat Nerton, Mass. 02165
Continuation-in-part of Ser. No. 692,811 , Jan. 4,1976 abandoned. This application Jul. 12, 1971, Ser. No. 815,042 U.S. C1. 137-171

1. An automatic pressure regulator including in combinatio (a) housing means defining an inlet passageway and an outlet passageway and an inlet area adjacent said inlet passage-
way and an outlet area adjacent said outlet passageway; (b) a piston body arranged and movable inside said housing means, said piston body defining an additional passageway through said piston body allowing the flow of fluid from (c) a deep convolution rolling diaphragm having a means; outer portion affixed to said housing means, a radially inner portion affixed to said piston body and a rolling wall interposed between said housing means and said piston body, one side of said rolling wall being acted upon by the pressure prevailing in said inlet area and the other side of said rolling wall being acted upon by the pressure prevail
ing in said outlet area, and said rolling wall being arrenged ing in said outlet area, and said rolling wall being arranged tional passageway so as to control the flow of fluid from said inlet area through said piston body to said outlet area (d) spring means interposed between said housing means and said piston body biasing said piston body to move in a direction tending to cause said roling wall of said rolling diaphragm to reduce said effective cross-sectional area o (e) means for increasing the effective
of said rolling diaphragm as said piston rody wal against the action of said spring means.

2. A fluid flow control valve comprising: housing having a fluid passageway extending axially theretion; an axially slidable piston received within said housing, said
piston having a first surface for exposure to upstream fluid piston having a first surface for exposure to upstream fluid
and a second surface for exposure to downstream fluid; a first buckleable plate affixed to said piston and extending downstream therefrom; and
means for affixing said first buckleable plate to said housing
at a location downstream of said piston at a location downstream of said piston,
Whereby axial movement of said piston is affected by fluid fow through said vaive and therefore affects the degree
of buckling of said first buckeable plate which in turn stabilizes fluid flow through said valve.

RISING STEM VAL, 4,093,000
Jer S. Pit 17310 VALVE POSITION INDICATOR
James S. Poff, 17310 Heritage Bay Dr., Webster, Tex. 77095 Filed May 20, 1977, Ser. No. 798,812 U.S. C. 137-554 ${ }^{\text {Int. }}$

4 Claims

1. A position indicator adapted for use with a valve having a body, a ball core positioned within a flow passage of the position by rotation through an angle of 90°, a stem positioned within a stem passage of the valve body to engage the ball core, said stem having a groove provided in the surface thereof to coact with a pin extending from the body to cause a camming action which rotates the core between opened and closed positions as mechanism to raise and lower the stem by rotating a handwheel through a series of turns about the stem, including
a sleeve adapted for attachment to said handwheel mechanism for rotation thereby through the series of turns with the hand wheel, a tubular shell of non-magnetic material adapted for attachment to the stem and being disposed within said sleev and adapted to be raised, lowered and rotated by the stem, a least one magnet supported within said sleeve at a distance
from the handwheel mechanism and rotatable with said sleeve about said shell, and a first and a second reed switch with associated wiring supported within said shell separated by at least a distance necessary to raise and lower the stem when opening and closing the valve which in turn raises and lowers the switches relative to the magnet for activating the respeclimiting any twisting of the wiring to the angle of rotation of the stem.

EXCESS FLOW ${ }^{4,093,001}$
Billy F. E. Sandin, Kumla, Sweden, assignor to AB Kalle Regulatorer, Saffle, Sweden
Filed Mar. 29, 1976, Ser. No. 671,552

Filed Mar. 29, 1976, Ser. No. 671,552
U.S. CI. $137-495$

1. An excess flow valve, comprising
(a) an elongate valve housing having a flow passage extend ing therethrough, an upstream portion of said housing
defining a valve seat; defining a valve sea
(b) a valve stem disposed in said housing and extending lhrough said flow passage for reciprocal movemen thally flat valve disc tem being provided with a substanwith said valve discat at its upstream end for cooperating (c) a lever pivotally mounted to said valve stem and extend (c) a lever pivotally mounted to said valve stem and extending outwardly therefrom for reciprocally driving said
valve stem, said pivot being of the lost motion type; (d) a two-arm lever pivotally mounted with respect to said housing, said two-arm lever being rigidly affixed to said first mentioned lever and disposed perpendicularly thereto;
e) a spring carried by said valve housing and engaging one end of said two-arm lever to bias said two-arm lever in a first direction to open said flow passage, and means car-
ried by spring;
spring; (f) selectiv connected to the other end of applying a motive force said two arm lever in a second direction to closer to move passage; and
distance of said valve disc to said valve for adjusting the
state by adjusting the tension of said spring, wherein said spring serves to bias said valve disc to an open position stream side of said disc and whereas said on the down applying means is utilized for closure of the flow passag irrespective of the pressure created by a medium flowing through the flow passage.

CONTROL 4,093,002
CONTROL DEVICE OF A LARGE HYDRAULIC DISTRIBUTOR, IN PARTICULAR FOR PUBLIC WORK APPLIANCES arice And zieux Bouthen, France,

Filed Jun. 1, 1976, Ser. No. 691,64 Claims priority, application France, May 29, 1975, 7517503 S. C. 137-596.2 C. ${ }^{2}$ F15B 11/08, 13/042

1. A directional control valve comprising
a. housing having an inlet and an outlet;
a pressure responsive spool means disposed in said housin for communicating said inlet to said outlet and a second position terminating communications between said inl and said outlet said spool means having a pressure cham ber which when communicated to pressure is operative to shift said spool means to said second position;
a reservoir port;
a pressure responsive valve means disposed in said outlet
dividing said outlet into first and second pressure chambers, said valve means being normally biased to preven fluid communication between said pressure chamber when said spool means is in said second position, said valve means further adapted to open in response to a predetermined pressure in said first pressure chamber
when said spool means is in said first position and said valve means is adapted to open in response to a predetervalve means is adapted to open in response to a proeeter-
mined pressure in said second pressure chamber when said spool means is in said first position;

APPARATUS FOR LOADING AND UNLOADING SHITPS Hermann Miller, Krefeld, and Heinz Keltjens, Grevenbroich both of Germany, asssignors to Mannesmanan Altiengeedl schaft, Dusseldorf, Germany
Filed Apr. 29, 1976, Ser. No. 681,86 Claims priority, application Germany, May 15, 1975, 252200 U.S. C. $137-615$
spool means to said second position, said pilot valve meay further adapted to communicate samber when said spool
chamber to said third pressure chamber chamber to said third presure chand
means is in said second position; and
said pilot valve means closing communcation between said second and third pressure chambers when said spool means is in said second position and said pilot valve means connecting said third pressure chamber to said reservoir
port, said pilot valve means having a pressure port which port, said pilou valved to pressure is operable to actuate said pilot valve means, said spool means chamber and said pressure port being connected in series by said pilot valve means.

1. In apparatus for loading and unloading ships, a stand pipe on a dock, an inner jib pipe, bearing means at one end of the inner jib pipe connecting and pivotally mounting the inner jib pipe upon said stand pipe for movement in a vertical plane, an outer jib pipe, bearing means connecting and pivotally mount ing one end of said outer jib pipe upon the other end of said inner jib pipe for pivotal movement in the same plane, an latter pivotal connection, a beam extending approximately parallel to the inner jib pipe, the beam adjacent one end pivo ally connected through a link to said stand pipe at a bearing coaxial with the pivot bearing means of said inner jib pipe, and counter-weights on said beam for providing weight compenss ion for the mobile parts of the pivot bearing means on the independent adjustment of the jib pipest the improvement fo osition both said inner and outer jib pipes in a generally vertical rest position behind the dock edge comprising linkag neans between said beam and the rearward extension of said uter jib pipe at its ends pivotally connected thereto respec ively, and movable power means on said beam connected to he pivot bearings (25) and the link (11) and the pivot bearings (31) with the extension 19 of the outer jib pipe (17) may be xtended, for retracting said outer jib pipe to said rest position.
\qquad

4093,004

ARMORED CONDUTT
Stephen A. Kile, and Rufus V. Jones, both of Bartlesville, Othe,
assignors to Phillipa Petroleum Company, Bartiesville, Okle Flied Jul. 23, 1970, Ser. No. 57,808
U.S. C. 138- 140

Int. C. ${ }^{2}$ F1GL $9 / 14$
S. C. 138-140
manufacture comprising a cond 1. An article of manufacture comprising a conduit structur comprised of a pluraity of layers of oriented polyolefin mateorientation direction of adjacent layers are at angles one to the other and wherein said plurality of layers of oriented polyolein material has established on the outer periphery thereof a covering material for the protection of said polyolefin.

CABLE TIE GUN CABLE TIE GUN
Robert M. Eberhardt PPrk Ridge JJmes Arthur MCNana, on a respective one of said slidable members (33), braking
means arranged between said first horizontal support and a obert M. Eberhardt, Park Ridge, James Arthur McNana, means arranged between said first horizontal support and a
Burbbent, and DDemnis M. Hever, Clucgono, all of ili, assignors
to All States Plestic Mannfecturing Co. Inc Chicago, III. to All States Plestic Manufucturing Co. Inc., Chicago, ill. Filed Feb. 28, 1977, Ser. No. 772,569 U.S. C. $140-123.6$ 17 Claims

1. A cable tie gun comprising an actuator, mounted for an 1. A cable tie gun comprising an actuator, mounted for an
excursion over a predetermined arc, cable tie tensioning slide bar means mounted for reciprocal motion responsive to operation of said actuator in order to tension a strap of a cable tie,
force transmitting means comprising a pair of members conforce transmitting means comprising a pair of members con-
nected in series between said actuator and said tension slide nected in series between said actuator and said tension slide
bar, said pair of members being interconnected by a stud on one member held in a cove on another member under a prese-
lected spring tension, means responsive to a movement of said lected spring tension, means responsive to a movement of said
actuator means through a limited said predetermined arc for causing an interference between said predetermined arc for causing an interference between
said tensioning slide bar and said pair of members, said interference proventing a full actuator excursion through the full swing of said predetermined arc and further preventing said
stud from leaving said cove, means responsive to a tension in the strap of a cable tie for holding and immobilizing said slide the strap of a cable tie for wholding and inmobilizing said slice
bar means with a force which is greater than said predetermined spring tension, whereby said stud may slip out of said ove if said interference does not occur before the end of the imited excursion permitted by the interference, and thereby enable the actuator to take its full excursion, and means responsive to saidending excyrond said simited excursion where said interference normally occurs for severing the strap of a cable of whereby said strap severing means operates only at he he excursion and independently of the point in said excursion where the force of the strap tension exceeds the excedetermined spring tension to immobilize the tensioning means.

4,093,006

DEVICES FOR GRIPPING WHEELS
Eleutheer A. Heseels, Earopari Noord 39, 2700 Sint Niklans,
Beigium Filed Apr. 4, 1977, Ser. No. 784,510
Claims priority, application Belgium, Apr. 7, 1976, 840441 ; Mar. 21, 1977, 255755
U.S. Cl. 141-288 A Int. CL. ${ }^{2}$ B25H 5/00 4 Claims 1. An apparatus for gripping a wheel to permit removal of a tire fitted onto the wheel, comprising: a vertical drive shaft (20), means (7, 8) for rotating said drive shaft, a first horizontal support ($26,27,29$) rotatably mounted around said drive shaft, qual angles around said drive shaft (20) and each having one qual angles around said drive shat (20) and cach having one three slidable members (34) each slidably mounted on a respecive one of said guide arms and each having at least one claw nember (50) adapted to grip on the rim of a wheel, a second
horizontal support fixed on said drive shaft at least three link members (39) each pivoted at one end (40) on said second

fixedly mounted frame member, and means for adjusting the pressure between said braking means, said first horizontal support and said frame member.

METHOD FOR RO

AODFOR ROOT END CUTTING OF LUMBER AND A DEVICE FOR PERFORMING SAID METHOD Mekaniska Verkstan, Nylend

Filed Jun. 12, 1975, Sweden 506
Claims priority, application Sweden, Juil 10, 1974, 74090671 S. Cl. 144 Int. Cl. ${ }^{2}$ B27C 9/00; B27B 31/00

SCDEW DRIVER 4,003,008
ROTABLE CAPD HANDLE WITH
Lino Martin, 2659 W. Okeechobe Rd., Hileenh, Fla. 33010 Continuation of Ser. No. 625,364, Oct. 24, 1975, abandoned. This application Mar. 21, 1977, Ser. No. 779,594 U.S. C. 145-61 EA 2 Claims

1. A tool comprising
A. an elongate cylindrical handle with an axial through bore handle being sized to fit the hand of a user,
B. a shaft having a first end zone, a second end zone and an intermediate zone, said intermediate zone being between the end zones, and said second end zone comprising a working end of the tool,
C. means to fix the intermediate zone of the shaft in the bore unit about the longitudinal centerline of the handle and shaf,
D. said first end zone extending from said handle,
E. an end cap on said extending first end zone including means to captivate said end cap on said extending end zone in a fixed axial position in which it is rotatable on said first end zone and means rotatably journalling said end cap on said first end zone
F. said end cap having a bearing therewithin with an axial
face facing said handle and said handle having a bearing face facing said handle and said handle having a bearing
therewithin with an axial face facing said end cap and ball bearing means captivated between said bearing facess;
G. said means to captivate said end cap on said extending shaft portion comprising a headed end on the first end ter than the remainder of the shaft and defining an axially facing abutment shoulder when viewed from the working facing abutment sot the and flat bearing surface when viewed from the end cap end of the tool, said end cap bearing having an said shaft and being shaped with two end portions of larger diameter than the middle portion, one large diameter portion defining said axial face facing said handiame, the other opposite large diameter portion having a ylindrical recess surrounding said headed end of said bearing against said abutment shoulder of said headed end of said shaf, an end plate between said end cap and said headed end of said shaft and bearing against said fla bearing surface of said headed end, and pin means fixing said end plate to the said other opposite large liameter
portion of said end cap bearing, the end cap filling in the portion of said end cap bearing, the end cap portions of the area between the two larger diameter end portions of the
end cap bearing and being held to said bearing by said pin means.

4,093,009

VACUUM PACKING DEVICE
athony Iayurone, end Pichard Anthony Iavarone, both of 20-61 St. Raymond Ave., Broar, N.Y. 10462 Filed Mar. 4, 1977, Ser. No. 774,46
Int. Cl. ${ }^{2}$ B65D $81 / 20$
U.S. C. 150-. 5
lin. C1. ${ }^{2}$ B65D 81/20
${ }^{5}$ Clam

1. A vacuum packing device comprising a resiliently flexible container, a resilient cover, said cover having a valve aperture of said container,
valve means connectable to said cover through said valve valve means connectable to said cover through said valve
aperture and selectively openable and closable when said
cover is engaged to said container permitting the withair from entering said container
support means insertable in said container before engagement of said cover to prevent the collapse of said con

tiner when air is withdrawn therefrom, said valve means including cover grasping means for grasping opposed
lateral surfaces of said cover and providing a pair of pluralities of ribbed-like protrusions extending outwardly from each of said opposed lateral surfaces or man

4,093,010
Senjamin L. Humley, and Jamees C. Packard, both of Clinton, Tenn., assignors to Hunley and Packard, Clinton, Tenn. Hed May 4, 1977, Ser. No. 793,719

Int. Cl^{2} A 45 C 11/38

1. A case for fragile articles comprising a rigid container including a generally rectangular bottom member, upstanding walls including a pair of end walls including upper edges and a pair of side walls including upper edges attached to the
periphery of said bottom member, said bottom member and said walls defining an open topped main compartment, a lid proportioned to unite with the upper edges of said walls to close the main compartment, resilient cushioning means having a smooth continuous surface on the interior of said compartment covering and attached to the lid, the bottom member,
said end walls and said side walls, first elongated partition means for dividing said main compartment into smaller first compartments, said first partition means having a rigid, generally planar, elongated support member, said support member extending, between opposed side walls of said container and
extending generally perpendicular to the bottom member, extending generally perpendicular to the bottom member,
cushioning means having a smooth continuous surface on the planar sides and top edge of said first partition support member, the length of said first partition rigid support member being such that it extends into and compreses the cushioning
U.S. CI. $150-52 \mathrm{~J}$

with said second root cutting means for making a second cut substantially at said transverse mark; and mark and said second cutter in aligment. cans for stopping said longitudinal movement with said
2. A root end cutting device for cutting ends of pieces of lumber, each piece having a longitudinal or transverse mark, said device having spaced first and second ends and compris-
conveying means for transversely conveying the pieces of lumber through the device;
a stop;
irst means for moving said pieces of lumber against said ${ }^{\text {stop; }}$
lumber means for making a first end cut on each piece of lumber as the same is being conveyed through said device; second cutter man
sensing means for sensing said
means responsive to masing said marks;
rse mark for longitudi-
surface of said cushioning means so that the deformation of the cushioning means at least in part holds the first support member in position, and second elongated partition means for divid-
ing one of said first compartments into ing one of said first compartments into smaller second comally planar, elongated support member, said support membe extending between said first partition means and one of said upstanding walls other than said opposed walls, generally
perpendicularly to the bottom member, cushioning means on perpenanicularly to the bottom member, cushioning means
the planar sides and top edge of said second partition suppor member, the length of said second partition support membe being such that it extends into and compresses the cushioning and the cushioning means on said first partition support mem ber without penetrating the surface of said cushioning means, so that the deformation of the cushioning means at least in part holds the second support member in position.

4,093,011
Removable THREADED INSERT Filed Dech, 8503 Sherman, Warren, Mich. 48089 $\begin{array}{ll} \\ \text { U.S. C. } 151-57 & \text { Int. Cl. }{ }^{2} \text { F16B 39/02 }\end{array}$

6 Claims

1. In combination a threaded insert secured to an anchoring structure, each having portions thereof contiguous to eac anchoring structure, comempising:
an axially extending pocket open at one side and having an axially inner end defining a reaction surface, said pocke formed in said insert along said portion thereof contiguous to said anchoring structure;
pocket and seated against ured to be disposed in said pocket and seated against said reaction surface formed in said pocket and having a configuration adapted out of said pocket and having a configuration adapted to be
forced into said anchoring structure materipl to tecure forced into said anchoring structure material to secure
said locking element to said anchoring structure and prevent relative shearing movement between said contiguous portions of said insert and said anchoring structure, and
means for engaging said locking element and said reaction means for engaging said locking element and said reaction
surface and forcing said locking element out of said pocket whereby said insert may be released from said anchoring structure.

SKID PREVENTIVE TIRE ASSEMBLY
John H. Detwiler, Manhasset, N.Y., essignor to Detwiler Corporation, Westbury, N.Y.
lied Apr. 26, 1976, Ser. No. 680,492
Int. C1.2 B60C $27 / 10$
U.S. C. 152-226
tire across the entire surface and the end portions of the strap to extend beyond in adjacent relationship to at least a portion of the opposed side walls of the tire; attachment means on the strap for cooperation with anchor means to removably attach the strap to the tire; he central portion of the strap adapted to be normally posi-
tioned on the circumference of the tire with the dimen sional width sides being substantially parallel with the circumferential surface of the tire so that when the tire is rotating in normal engagement with a road surface the strap will remain in the normal position and offer minimum resistance to driving engagement between tire and
road and when the tire is subjected to surfaces tending to cause slippage, engagement between the strap and the road will cause the strap to automatically deform so that at least a portion of the dimensional width of the underside of the strap is brought into a position that is approximately perpendicular to the circumferential surface of the tire
thereby increasing frictional and mechanical engagement with the road surface and assisting in stopping the slippage and returning the tire to normal engagement with the road surface at which time the strap will automatically return to its normal configuration and position;
least the road contacting portion of the strap having a
configuration permitting its shifting to the approximate

perpendicular position and the automatic return to the normal configuration and position;
he strap being designed to operate to provide anti-skid surfaces and the strap shifting between the normal and approximate perpendicular position a predetermined amount depending upon the hardness of the road surface with which it is in engagement to provide the necessary action;
feast one stud extending through the central portion of the strap and projecting upward from the side of the strap disal from the tire surface to provide additional road engaging contact when the strap is in the normal position and the stud being of a predetermined height above the surface of the strap so that it does not interfere with the position; and each stud bein
that on soft surfaces the stud and strap improve traction and prevent skidding, on semi-hard surfaces the stud as sists in initiating the shifting of the strap to the approximately perpendicular position without interfering with when the strap does not rotate fully to the on occasio perpendicular position the stud will dig in to provid anti-skid action.

1. Anti-skid strap adapted to be removably mounted on a tire having a pair of opposed side walls and a peripheral road contacting outer circumferential surface comprising:
the strap having a greater width than thickness and
length sufficient to permit the central portion of the strap
to extend transverse to the circumferential surface of the

4,093,013
BIKE TRACTION ATTACHMENT Nathanial H. Levise, Box No. 20424, Prasadena, Calif. 90006

Filed May 23, 1975, Ser. No. 580,320
Int. C1. 2 B60C $27 / 20$ U.S. C1. 152-240

1. An improved traction attachment of the type having a plurality of cleats around the circumference of a tire, said cleats at some interval are held in place by a pair of side bands,
a said cleat having a U-shape transverse cross-section and conforming to said tire, and having a longitudinal cross-secment comprises:
(a) the said ceeat is a single unit throughout; and
(b) U-shaped ends of said cleat, having said

U-shaped ends of said cleat, having said geometrical figure longitudinally cross-section throughout, said ends
fastened around said side bands, each tip of each said end extends downward, a portion of each said tip is in contact with a horizontal plane through the lower curved portion of said cleat, thereby, each said ip prevents lateral skid

RADIAL PLY PNEUMATIC TIRE HAVING WOVEN MULTIFILAMENT FABRIC REINFORCING PLY Hajime Tomoda, Atsugg; Kenhachi Mitsuhasahi, and Tuneo
Morikava, both of Hiratuake, all of Japan, assignors to The Yokohama Rubber Co., Led, Tokyo, Japan
Yokobama Rubber Con, Lid, Tokyo, Japan
Flied May 20, 1976, Ser. No. 688,425
Claims priority, application Japan, May 27, 1975, 50-62529 U.S. CI. 152-362 CS
thereof being turned around the turned portion of the carcass ply and extending to the inside surface layer of the long the carcass ply,
hacaterized in that one of said reinforcing plies, which is located closest to the outer surface of the outside surface layer of the bead portion, comprises a woven multifia ment fabric consisting of multifilament warps in a density of 20 to 65 yarns 50 mm and mulitiament werst thereof located farther from the bead wire bundle than the endmost point of the outside end portion of said carcas ply.

METHOD OF MOUNTING LARGE PNEUMATIC TIRES S. W. Malinald, P.O. Box 161, Tamaroa, MI. 62888
Filed Jun. 23, 1977, Ser. No. 809,278
U.S. C. 157-1.1

Int. C. ${ }^{2}$ B60C $25 / 06 \quad 2$ Claims

1. In the use of that type of tire mounting machine which mounts a tire casing on a horizontally secured rim having upper and lower flanges, annular bead seating areas inwardly adjacent to said flanges, and a sloping-walled drop center portion therebetween, the machine being of the type in which
two counter-rotating bead deflectors, rotated from within the rim about such upper flange, commence adjacent to each other and rotate through nearly semi-circular arcs of travel in opposite senses,
the method, utilized when the tire lower bead is at least partially in the drop center portion, of mounting the tire upper bead over the rim upper flange, comprising the steps of
(a) positioning said bead deflectors adjacent to each other at a selected point along the circumference of the rim; (b) applying, radially outward of said point against a localized area of the tread of the tire adjacent to its upper
sidewall, a thrust force having a radial horizontal component and a downward component, whereby to thrust a portion of the upper bead, inward of such localized tread area, downward below the upper flange of the rim and at least partly adjacent to the lower bead part therein into its drop center;
(c) commencing the counter-rotation of said bead deflectors to deflect the upper bead from above to below the upper rim flange in an arc widening progressively from said selected point during substantially the first one-third of
2. A radial ply pneumatic tire having a bead portion having an inside portion and an outside portion thereof comprising, embedded in a rubber matrix,
(a) a bead wire bundle; (b) a carcass tire cord fabric located in the b) a carcass ply of a metal tire cord fabric located in the
inside surface layer of the bead portion and having an end insition thereof being turned around said bead wire bundle portion thereon teing in outside surface layer of the bead portion,
(c) one or more reinforcing plies arranged between a portion of said carcass ply extending to the outside surface layer of the bead portion and the outer surface of the outside the bead porface lay of the bead portion, and
(d) an additional reinforcing ply having an outside end portion thereof located between the portion of said carcass portion and said reinforcing ply and the other portion
their said arces of travel;
(d) then increasing the horizontal component of the thrust force sufficiently to so buckle the said upper sidewall portion between said localized area and bead as to displace and thereby shift a greater part of the upper sidewall to the other side of center of the rim;
(e) causing said bead deflectors to progressively deflect said bead over the upper rim flange during substantially the second one-third of their said arcs of travel; and then moving same radially further inward, whereby to cause the tire casing to twist downward and inward at the section at which the thrust force is applied, sufficiently to draw out of the drop center the lower bead part theretofore therein and press the upper bead portion fully into the
drop center thereat, thus to permit the upper sidewall to time, said shell mold and said core body being preheated to a (g) continuing the progression of the bead deflectors during the final portion of their arcs of travel, whereby to complete the bead deflection over the upper flange of the rim.

4,093,016
CURTAIN COATING METHOD AND APPARATUS AN THE MANUPACTURE OF PAPERBOARD
John Dougita Colemana, Surrey Hillk, Australia, asaiggor to
Commonealth Sclentific and Industrial Research Orgeniza. tion, Campbell, Australia
Division of Ser. No. 477,380, Jun. 7, 1974, Pat. No. 3,992,252 Clieims priority, application Australlia, Jun. 7, 1973, 3 The portion of the term of this patent subeequent to Feb. 15, 1994, has been dischalmed.
Int. C1. ${ }^{\text {D }}$ D21F $11 / 00$
U.S. CI. 162-124
aking multi-ply paperboard comprising the steps of depositing paper pulp onto a forwardly travellin carrier web at locations spaced along the carrier web to form successive superimposed paper plies and applying starch solu-
tion to the upper surface of at least one of the plies onto which tion to the upper surface or at least one of the plies onto which
a succeding ply is superimposed and before said succeeding ply is formed; the starch solution being applied to said ply surface by the technique of introducing a forced flow of starch solution into a chamber which is disposed above the carrie
web in advance of the location at which said succeeding ply to be formed and which has an upright side wall with a horizontal slot outlet of vertical width in the range of $1 / 16$ inch to inch, maintaining the forced flow of starch solution into the chamber whereby in the vicinity of the slot outlet the starch
solution is maintained within the chamber at a level above the upper edge of the slot outlet such that the starch solution is extruded horizontally from the slot outlet as a horizontal stream contacting both the upper and lower edges of the slot
outlet and of thickness determined by the vertical width of the slot outlet, allowing the stream issuing from the slot outlet to fall downwardly under gravity across an upright surface which terminates at a bottom blade edge at a distance below said horizontal slot outlet such that the falling starch solution down said upright surface to a thickness less than that of the horizontal stream extruded from said slot outlet, and allowing the attenuated continuous curtain to fall away from said up-
right surface at the blade edge and to drop onto said ply sur-
face. right sur
ime, said shell mold and said core body being preheated to a
emperature of from 1300° to $1600^{\circ} \mathrm{C}$., the improvement which comprises providing the preformed core body with a mineralizer containing devitrifying metallic ions which promote formation of cristobalite, a silice content of at least 90 percent by
weight, and a limited amount of impurities so that the core weight, and a limited amount of impurities so that the core
body retains rigidity at high temperatures in excess of $1600^{\circ} \mathrm{C}$. ady retains rigidity at high temperatures in excess of 1000 . cristobalite before the molten metal is allowed to flow into the hell mold, the preformed core body containing from 35 to 55 percent by weight of cristobalite before being located in said
12. A precision porous leachable refractory core for hightemperature precision investment shell mold casting of aircraft turbine engine airfoils from superalloys comprising at least 95 percent by weight of silica and no more than 55 percent by
weight of cristobalite, said core containing at least 35 percent by weight of cristobalite and from 0.04 to 0.2 percent by weight of alkali metal ions that promote the formation of cristobalite, said alkali metal ions being present in an amount such that preheating of said core for 1 hour at a temperature of
about $1400^{\circ} \mathrm{C}$. will convert at least 60 percent by weight of the silica to cristobalite, said core beaing formed from a refractory composition containing finely divided refractory particles and a binder, said refractory particles comprising at least 75 per-
cent by weight of high-purity silica particles with a purity of at cent by weight of high-purity silica particles with a purity of a
least 99.5 percent by weight and up to 25 percent by weight of added mineralizer particles with a particle size not in excess of 50 microns containing at least 0.2 percent by weight of alkali metal ions, said mineralizer particles being treated with a sodium compound to provide said devitrifying metallic ions and
to cause sodium ions to be concentrated at the outer surfaces of said mineralizer particles, the percentage by weight of said metallic ions in said mineralizer particles being at least several times that in said high-purity vitreous silica particles, said core
having a modulus of rupture of at least 700 pounds per square having a modulus of rupture of at least 700 pounds per sq
inch and a porosity of from 20 to 40 volume percent.
CASTING METHODS WTTH COMPOSITE MOLDED
CORE ASSEMBLY
$\begin{aligned} & \text { David V. Trumbaner, Bremer, Iowa, amignor to Deere \& Com- } \\ & \text { pany, Moline, III. }\end{aligned}$
pany, Moline, III.
iled Oct. 19, 1976, Ser. No. 733,958
U.S. Cl. $164-32$ Int. Cl. ${ }^{2}$ B22C 9/04, 9/24, 9/10

CORES FOR INVESTMENT CASTING PROCESS an J. Miller, Jr, South Euclid; Donald L. Eppink, and Ted A Loxley, both of Mentor, all of Ohilo, assignors to Sherwood Refractories, Inc., Cleveland, Ohio
Filed Dec. 29, 1975, Ser. No. 644,939
Int. C.2 ${ }^{2}$ B22C $1 / 02,9 / 04,9 / 10,9 / 12$
U.S. C. $164-28$

1. In a directional solidification casting process for precision casting of superalloys wherein a molten metal alloy at a temperature above 1500° C. is caused to flow into a preheated multi-layer refractory shell mold containing a preformed po-
rous leachable vitreous silica core body and is caused to solidfy progressively from the bottom of the mold over a period of
2. A method of casting metal castings comprising the steps
forming a composite core assembly by:
fabricating a first core having an irregular outer surface portion;
molding a destructible layer of cellular plastic material around said irregular outer surface portion of said first core, such that an inner surface of said layer intimately contacts and conforms to the configuration of said irregular outer surface portion of said first core to interock said first core and said plastic layer together, and an irregular surface portion; and
molding a second core in encompassing relation around said irregular outer surface portion of said plastic layer such that an inner surface of said second core intimately contacts and conforms to the configuration of the irreg ular outer surface portion of said plastic layer to inter and such that the outer surface of said second core is o nonconforming shape relative to the outer surface of said plastic layer;
forming a mold cavity within a pair of mold halves;
inserting said core assembly as an integral unit within one of said mold halves;
securing said mold halves together; and
introducing molten metal into said cavity to destroy said plastic layer and form said casting.

4,093,019
METHOD OF PRODUCNG SMALL SHAPED PARTS BY
CASTING FROM METAL AND APPARATUS FOR CASTING FROM METAL AND APPARATUS FOR
PERFORMING THE METHOD uls Seybold and Ced Groen, bot of Solin
asaignors to Firm Piel \& Adey, Solingen, Germany assignors to Firm Piel \& Adey, Solingen, Germany
Filed Jul. 16, 1976, Ser. No. 705,784
Claims priority, application Germany, Jul. 19, 1975, 2532402
S. Cl. 164-52 Int. Cl. ${ }^{2}$ B22D 27/04

7 Cluims U.S. Cl. 165-1
drawing
phase,
phe of the he the conduit means submersed in the liquid phase

1. A process for the production of small molded components by casting high alloy steel, and metal alloys similar to said alloy steels with respect to their melting temperatures and melting heat, in a crucible
ing the steps of:
ing imiting the maximum amount of metal to be melted down in the crucible at any given time to the charge weight neces sary for casting into a single die plus an amount of the metal sufficient to form a metal heel for heat retention;
supplying heat electrically to the charge being heated to
casting temperature; casting the metal into a dia
interrupting the heating of the charge during the casting step; and

retaining in the crucible a metal heel during the casting step, the heat content thereof compensating for at least a por-
tion of the heat loss occuring from the metal during the tion of the heat loss occurring from the metal during the
heat interrupting step to maintain the pourability and castability of the metal in the crucible.
2. A method of cooling an enclosed instrument panel and an instrument in an aperture in said panel comprising: inducing end of said instrument; providing spacing for and directing end of said instrument; providing spacing for and directing each of said individual jets of cooling air in a direction perpen-
dicular to the face of said instrument in a manner for forming a cooling air flow path comprising a sheet a short distance from said panel and close enough to said aperture so that said sheet aches to a surface of shand instrment, and exhausing said cooling air from said enclosed instrument panel.

4,093,022
George Polyak, Jr, RD. \#1, Box 131B, Mt Hope Wherton
Filed May 2, 1977, Ser. No. 792,780
U.S. C. 165-39

Int. C1. ${ }^{2}$ F28D $7 / 00$
fluid into the liquid phase thereof not directly against said conduit means and not directly against said shell means to provide
jet mixing the liquid phase of the hot fluid with the vapor phase thereof.

INSTRUMENT AND PANEL COOLING APPARATUS Kenneth Dale Groom, Kent, Wesh madgor to The Boeing Kenceth Dale Graom, Kent, Wash,, asaignor to
Company, Seattic, Wasch. Filed Dec. 29, 1975, Ser. No. 645,
Int. Cl. ${ }^{2}$ F28F $9 / 22,13 / 12$ U.S. C. 165-1

 .

VAPOR-TYPE HEAT EXCHANGER
John R. Schieber, Holland, Pa, asaignor to Betz Laboratories, Inc., Trevose, P.
Filed Mar. 26, 1976, Ser. No. 670,787 Filed Mar. 26, 1976, Ser. No. 670,787
Int. C1. ${ }^{2}$ F28B S/O0; F28F $21 / 00 ;$ G01N $25 / 00$
U.S. C. $165-1 \quad 23$ Clnims
U.S. A method of exchanging thermal energy between cooling

1. 1 . 10 . fluid and hot fluid comprising the steps of:
conducting the cooling fluid through thermally conductive conduit means surrounded by shell means,
injecting the hot fluid in the vapor phase into the shell means,
a cylindrical chamber having a vertical, elongate axis;
said chamber being closed at said chamber being closed at opposite axial ends thereof;
first means for admitting a heated fluid into said chamber, in
first means for admitting a heated fluid into said chamber, in said chamber;
second means, adjacent an end of said chamber which is
opposite said one end, for discharging such fluid from said opposite said one end, for discharging such fluid from said
chamber in a second direction transverse to said axis; conduit means fixed in and substantially uniformly distrib-
uted within said chamber and extending axially thereof; said conduit means opening only outwardly of said one and opposite ends of said chamber;
third means for admitting ambient air into said conduit means; and fourths means for discharging air from said conduit means;
wherein wherein
said third and
said third and fourth means comprise a housing which sub-
stantially envelops said chamber;
said housing having a substantially
sad housing in in a closed end wall; said end walf being adjacent to, b
one end of said chamber; and
means cooperative with said fluid defines a compartment ing means and said air admitting and dirting and dischargcause ambient air repetitively to cycle or pumpingly circulate through said conduit means and said compartment means;
said portion of said wall is eccentric relative to said chamber
and cooperates with said chan and cooperates with said chamber to define said compartment means of a uniform, crescent-shaped cross-section;
and wherein
said air discharging means communicates with said compart-
ment means, and comprises means for discharging air from said compartment means in said first direction from a side of said heat ex
second means.

SHEET 4,093,023
Ivan Vasilierich Frantsenjuk, ulitsa Parkovaya, 3, kv. 15; Andrel
Demitrierich Belyansky, ulitsa Parkoraya, 3, kV. 16; Leonid
Semenorlch Semenorich Bobyler, proapekt Mira, 11, kr. 22; Zinory Pe-
trovich Karetay, prospekt Mira, 27, kV. 7, all of Lipetsk; trovich Karetny, prospekt Mira, 27, $\mathbf{k V}$. 7, all of Lipetsk;
Nikolai Nildtievich Alexandrov, Sharikopodshipnikovskaya nilitsa, 2, kv. 147, Moecow; Vasily IVanovich Kulikov, Krasnodarakayz ulitssa, 12, Kr. 113, Moscon; Ergeny VladimiroVich Kovalevich, Frunzenakichy nembererinnaya, 24, kr. 38, Moscon; Virtor Gurierich Tinyakov, Juzhno-Portonay
ulitsa, 16, kr. 23, Moscow; Alexnadr Viadimirovich Bolotnov, Kavkazsky bulvar, 47, kr. 37, Moecow; Jury Alexandrovich

 Nikolei Matreerich Svetlakor, 6 Milcroraion, $10 \mathrm{~K}, \mathrm{kr} .50$,
Alms-Atra; Gennady Nikolaerich Burmistrov, mikroraion "Orbita-I", 25, kV. 74, Alma-Ata, and Jury Grigoriev Kurenko, ulitsa 12 Linim, 67 , Alma-Ata, all of U.S.S.R Filed Jun. 24, 1976, Ser. No. 699,438
U.S. C. 165-89

4 Claims

1. A sheet mill table roll, comprising: a cylindrical hollow body; half-axles accommodated within said cylindrical hollow
body and mounted on table bearing supports; said cylindrical body and mounted on table bearing supports; said cylindrical
hollow body having hubs fixed on said half-axles; through
channels provided at the periphery of said hubs; covers mounted on each end face of said hollow body; a central por provided in each said cover and having a diameter essentially malled by sid covide and said half arlas. $4,093,024$ heat exchanger exhibiting improved fluid Verne L. Middleton, East Alton, Ill, assignor to Olin Corporation, New Haven, Coni

Filed Jun. 15, 1976, Ser. No. 696,203 U.S. C. ${ }^{\text {Int. Cl. }}{ }^{2}$ F28F 3/172, 9/22, 27/02; F24J 3/02

1. A heat exchange system for use in a solar energy collector system comprising a plurality of passageways for a heat exby a plurality of spaced, parallel individual connecting por tions of said passageways extending therebetween, said passageways having entry and exit portions extending from said
header structures to provide ingress and egress openings for header structures to provide ingress and egress openings for
said heat exchange medium, wherein said connecting portions are provided with a plurality of constrictions in internal diameer extending along at least a portion of the length thereof wherein at least some of said constrictions have differing internal diameter so that the constriction adjacent the area of great-
est turbulence and fluid flow has the smallest internal diameter est turbulence and fluid flow has the smallest internal diameter
over at least a portion of its length and the constriction on individual connecting portions have gradually increasing internal diameter in relation to increased distance from said area of greatest turbulence, said constrictions serving to divert fluid away from the connecting portion receiving the primary exchange medium between all of said connecting portions.
$4,093,025$
METHODS OF FLUIDIZED PRODUCTION OF COAL IN Ruel C. Terry, Denver, Colo., assignor to In Situ Technology,
Inc., Denver, Colo. Inc., Denver, Colo.

This application Nor, 23.1976 Ser, Pat. No. 4,069,868. Mhis application Nor. 23, 1976, Ser. No. 744,258
Int. C.2
E21B 43/24, 45/62

2 Claims
coser

1. A method of producing coal in situ comprising the steps of
rilling wells into a coal formation, leaking oriented cores in the coal formation,
completing the wells so that they are hermetically sealed, installing facilities at the surface to inject fluids into the coal formation and to remove fluids from the coal formation, removing water from the coal formation, igniting the coal formation
removing the products of combustion from the coal forma tion,
installing a heat exchanger in the wells used to withdraw fluids from the coal formation,
extracting and recovering sensible heat from withdrawn roducing so
vent the build-up of particulate mathdrawal wells to prevent the build-up of particulate matter in the wells.
formation to promote a flow of hydrocarbons to a production well for production therefrom, the improvement comprising

maintaining the quality of the steam injected into the formation within a range of from 35 to 45%.

4,093,026

REMOVAL OF SULFUR DIOXIDE FROM PROCESS GAS USING TREATED OIL SHALE AND WATER Richard D. Ridley, Grand Junction, Colo., assignor to Occiden tal Oill Shale, Inc., Grand Junction, Colo.
abendoned, whin-ch is a continuation-in-partt of Ser. No. 593,622, Jul. 7, 1975, abandoned, which is a continuantion of Ser. No. 492,822, Jul. 29, 1974, abandoned. This application Apr. 15, 1977, Ser. No. 787,887
Int. Cl. ${ }^{2}$ E21B $43 / 24$
U.S. CI. 166-256

21 Claims

2. A method for removing sulfur dioxide from a process gas comprising the steps of:
passing a process gas containing sulfur dioxide through a fragmented permeable mass of particles containing treated oil shale and including alkaline earth metal oxides, said mass including water for combining with alkaline earth the process gas for removal of sulfur dioxide from the process gas.

METHODS OF USE 0 ,093,028
AND SONIC OR OF CEMENTITIOUS MATERIALS SUBSURFACE FORMATIONS Clarence W. Brandon, Nashyille, Tenn, exiono Brandon, Nashavile, Tenn., a part interest Continuastion-in-part of Ser. No. 406,045, Oct 3,981,624, which is s continustion-in-part of Ser. No. 611, No Jan. 23, 1967, Pat. No. 3,765,804, which is a contiduotation-in-papt
of Ser. No. 665,995, Jun. 17, 1957, Pat. No. 3,302,720, This application Sep. 7, 1976, Ser. No. 721,605

Int. Cl. ${ }^{2}$ E21B 33/138, 33/14
U.S. CC. 166-281

51 Cleime

1. A method of cementing casing, liner or tubing in a well bore comprising the steps of
bore comprising the steps of
introducing into a well casing, liner or tubing a charge of cement under pressure of the compression portion of a sonic or energy-carrying wave, and
displacing drilling mud or other debris in said well bore below or between said casing, liner or tubing and the walls of said well bore by said charge of cement,
gas, foam, emulsion or solvent into said cos containing tubing prior to the introduction of cement under pressure of said compression portion of said sonic or energy-carrying wave,
wherein said fluid becomes gaseous or vaporous during a least a rarefied portion of said sonic or energy-carrying
wave.

UTLLIZATION OF LOW BTU NATURAL GAS

 Paul Barg Weiras, Yardley, Pa, and John Clarence Zahhner Paul BargPrincten,
York, N.Y.
Continuation-in-part of Ser. No. 698,449, Jun. 21, 1976, somandoned. This application Mar. 24, 1977, Ser. No. 780,743 U.S. C1. 166-305 R int. Cl. ${ }^{2}$ E21B 43/16

1. A process for economic utilization of natural gas, having low heating value by reason of containing carbon dioxide in admixture with the methane content thereof, which process comprises subjecting a natural gas having substantial methane
content in admixture with at least 50 volume percent of carbon dioxide based on total volume of said gas to the following steps in the sequence recited:
(a) removing a substantial portion of the acid gases from said
natural gas to leave a reformer feed gas containing 20-40 natural gas to leave a reformer feed gas containing 20-4 mol percent carbon dioxide;
(b) mixing said reformer feed gas with water and reacting
the mixture in contact with a catalyst to promote the reforming reaction of methane and water to produce carbon monoxide and hydrogen under temperature and pressure conditions conducive to said reforming reaction;
and and
c) reacting the product of step (b) in contact with a carbon monoxide reduction catalyst for promotion of synthesis reaction between carbon dioxide, carbon monoxide and hydrogen to produce methanol or hydrocarbons, which are liquid at normal temperature of $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$ and atmospheric pressure, under conditions of temperatur
and pressure conducive of said synthesis.
removing the handling pipe from the well
lowering riser casing into the well:

connecting the riser casing to the casing hanger by rotating the riser casing in the same direction as used for disconnecting the handling pipe.
$4,4,093,031$ Pilliam E. Portz, North Madison, Ohio, aesigmor to True Temper Corporation, Cleveland, Ohio

2. A pendulum type hoe comprising a handle a fork secured to one end of said handle and comprising a pair of laterally spaced, parallel leg portions extending
RUN-IN AND TIE BACK APPARATUS $\quad \begin{aligned} & \text { 4,093,030 } \\ & \text { Bilfeld }\end{aligned}$ James Vaull Bonds, Houston, Tex,, assignor to McEvoy Oilfeld Equipment Company, Houston, Tex. ${ }^{\text {Division of Ser. No. 533,123, Jan. 22, 1975, Pat. No. 4,646,405, }}$ Division of Ser. No. 543,123, Jan. 22, 1975, Pat. No. 4,
which is a contination of Ser. No. 253,516, May 15, 1972, which is a continuation of Ser. No. 253,516, May 15, 1972 ,
abandoned. This application Jan. 4, , 197, Ser. No. 762,181
U.S. C. $166-315$
$15{ }^{\text {nt. C1.2 }}$ E21B 23/00, 43/10
6 Claims
3. A method of completing a well comprising Clam
owering a casing hanger suspending a casing string into the well by means of handling pipe until the casing hanger securing the casing string in the well;
disconnecting the handling pipe from the casing hanger by a rotation of the handling pipe;
beyond said one end;
said leg portions having elongated slots therein disposed at an angle relative to said leg portions whereby the longe xes of said slots are generally horizontal when said hanblade having a pair of upwardly angled an
the upper ends of said arms having inwardly turned flanges projecting inwardly through said slots toward each other a reinforcing member having bifurcated end portions pro jecting through said slots and affording laterally directed openings receiving said flanges;
said flanges and said bifurcted
bined thickness smaller than the vertions having a comslots whereby to allow limited articulation of said blade with respect to said fork.

4,093,032
ELECTRONIC WEIGHING APPARATUS Nobort Uyama, Oraka, and Katuankd Hara, Tondabayachi, both of Japan, ausignors to Kubota Led, Omake, Japan Claims priority, application Japan, Dec. 8, 1975, 50-147147 U.S. C. ${ }_{177-165}^{\text {Int. C. }{ }^{2} \text { G01G 13/14, 23/22 }} 8$ Claims

1. An electronic weighing apparatus for weighing an article in a packing, which packing constitutes a tare weight, comprising: displacement means responsive to the weight of an article being weighed for causing a displacement associated with the weight of said article, said displacement means comprising
means for placing said article thereon, electrical signal providing means responsive to the displacement of said displacement means for providing an electrical signal associated with the displacement of said displacement means and thus with the weight of said article, weight display means responsive to said said article, means for setting the unit price data of said article, multiplying means responsive to said unit price setting means and to said electrical signal providing means for multiplying said unit price data by said weight associated electrical signal esponsive to said multiplying means for displaying the price of said article, resetting means coupled to said electrical signal providing means for resetting said electrical signal providing means into an initial state, said resetting means being enabled when only a tare weight is placed on said article placing means of said displacement means, an article without the packing
being further placed on said article placing means of said displacement means after said resetting means is enabled, disabling means responsive to said resetting means for disabling said price display means before said resetting means is enabled, wherein said disabling means if further responsive to said before said resetting means is enabled, said apparatus further comprising shift register memory means responsive to said resetting means for storing said weight assocised electrical signal representative of tare weight before said resetuing means
is enabled, means responsive to said memory means for displaying said tare weight, and means responsive to said resetting means for selectively applying said weight associated electrical signal to said shift register means only before said resetting means is enabled.

4,093,033
SNOWMOBLLE SUSPENSION SYSTEM
Hobert J. Rooch, Plymouth, Minn,, amignor to Kaweeld Mo1977, Ser. No. 771,800 U.S. Cl. $180-5 \mathrm{R}$ lot. C. ${ }^{2}$ B62M $27 / 02$ 8 Climes 1. In a suspension system for the body of a track driven ground-engaging track and a suspension assembly mounted on the frame for yieldably supporting one end of the body, the
provision
a longitudinally resilient member having one end connected to said frame, the other end being normally located at a rest point and movable to a limit point against restorative force produced in the member

and linkage means connected between said rest point and said other body end for translating downward displace-
ment of said other body end relative to the frame into ment of said other body end relative to the frame into longitudinal movement of said rest point toward said limit
point, including means for increasing the ratio of said point, including means for increasing the ratio of said
movement relative to said displacement as the other end of the resilient member approaches the limit point.

$4,093,034$

 VEHICLE SUPPORTED WINCH rancis M. Curley, Metrimora, and Jemes L. Schmitt, Weshing ton, both of $\mathrm{Il}_{\text {, }}$, Flied Dec. 15, 1975, Ser. No. 640,515 U. C. C. $180-53$ R

1. In a vehicle having an engine and a supported winch releasing comprises a supported rotatable drum for receiving and motion to said drum having clectch and brake means, said clutch and brake means including a normally disengaged inpu clutch which drivingly engages on application of fluid pressure ransmitting means in a reel-out direction which releases on pplication of fluid pressure thereto, a normally engaged dis onnect cluch which disengages said drum from said transmit ng means on application of fluid pressure thereto and a nor
mally disengage viscous drag brake which engages on application of fluid pressure thereto to create a drag on said drum opposing loosening of said cable, pump means serving as a source of pressurized fluid and means communicating said pump means for selectively controlling application of saic ressurized disa said diconect clutch and said drag brake an improve ment comprising:
an accumulator communicating with said pump means for
storing said pressurized fluid under pressure produced by said pump means when it functions and for supplying said pressurized fluid when functioning of said pump means is retarded;
otary meand transmission driven by said engine; rotary means driven by said transmission for imparting ro
tary motion to said means for selectively transmitting
rotary motion to rotary motion to said drum; and
drive means driven by said rotary means, said drive means
driving said pump, functioning of said driving said pump, functioning of said pump being retarded as said transmission stalls whereby said accumula-
tor supplies said pressurized fluid, said rotary means including a shaft extending from said transmission drivingly connected with said drive means; and
control valve means providing selective application of fluid pressure to said input clutch, said brake, said disconnect serving as said means for selectively control valve means serving as said means for selectively controlling applica-
tion of said pressurized fluid and comprising: a control body which includes means for continuously routing a first portion of said fluid to lubricate said winch and means for intermittently routing a second portion of said fluid away from said accumulator to lubricate said winch represelected value, said body having (1) a fluid passage preceiving fluid from said pump means, (2) a first branch receivage as part of said continuous routing means and through which said first portion of said fluid flows via a
restricted orifice, (3) a second branch passage in flow restricted orifice, (3) a second branch passage in flow
communication with a control spool which directs said second portion of said fluid to said intermittent routing means when accumulator pressure reaches said preselected value, (4) a third branch passage communicating
via check valve means with said accumulator, (5) a logic via check valve means with said accumulator, (5) a logic
slug receiving fluid pressure from said accumulator, delivslug receiving fluid pressure from said accumuator, deliv-
ering fluid pressure to move said control spool when said accumulator pressure reaches said preselected value into
position for routing said second portion of said fluid to position for routing said second portion of said fluid to
lubricate said whinch and providing path means for the pubricate said whinch and providing path means for the
fluid delivered to move said control spool when said accumulator pressure reaches said preselected value, and
(6) a control shift spool operator positionable to a Reel-In (6) a control shift spool operator positionable to a Reel-In position wherein said brake, input clutch, and disconnect
clutch are engaged and said drage brake is disengaged, a clutch are engaged and said drage brake is disengaged,
Brake-On position in which said brake, disconnect clutch and drag brake are engaged and said input clutch is disengaged, a Brake-Off position in which only said disconnect clutch is engaged and a Free-Spool position in which said brake, said input clutch, said
drag brake are all disengaged.
ii. at least one pair of axles journalled in said frame members normal to the flow of the air stream;
iii. a pluraity of spaced levers journalled in each axle of said pair of axxes and having opposite arms extending
from said axle, each of said levers being axially spaced along the respective one of said axles;
iv. a first set of vanes disposed about one of said axles and a second set of vanes disposed about another of said
axles, each said set of vanes comprising: a first and a second group of vanes fixedly projecting from said opposite arms, the plane of said first group of vanes being normal to the plane of said second group of vanes, said vanes being sized to engage the axially adjacent
ones of said levers, said vanes having a driving position wherein said vanes engage adjacent levers and present wherein sroad surfaces to the force of the airs stream and a feathered position wherein said vanes present their
respective cantilevered journalled arm to the force of respective cantilevered journalied arm to the force of
the air stream, said driving and feathered positions being reversible as said axle rotates, whereby the force of the air stream bearing on each group of vanes simultaneously causes one group of vanes to assume the
driving position and the other group of vanes to assume the feathered position, the functions of the groups of vanes alternating as the force of the air stream against the group of vanes in the driving position turns said levers which in turn rotate the said axle;
b. means for taking power off of each said pair of axles for
c. means for producing electrical power in response to said
power take off means; and d. means for transmitting the electrical power to charge the
electric power source;
hereby, motion of the vehicle produces an air stream to whereby, motion of the vehicle produces an air stream to
operate said fluid mill and charge the electric power source.
 1. In combination with an irrigation tower including support
and driven wheel means for supporting and driving said tower from and over ground to be irrigated, said tower including a first pair of generally right angularly disposed driven and drive shafts journalled therefrom, compact numerically high ratio
drive means drivingly connecting said drive shaft to said whee means, said drive means including first driven means driving means, said drive means including first driven means driving
said drive shaft from said driven shaft, said first drive means said drive shaft from said driven shatt, said first drive means
including a pair of gear wheels consisting of a first small diame-ter gear wheel on said driven shaft having a plurality of rollers generally paralleling, supported from and spaced equally about
and radially outwardly from said driven shaft and journalled from the latter and a second large diameter gear wheel mounted on said drive shaft, said second gear wheel including an outer peripheral cylindrical portion having a pluraility of one axial end of said outer peripheral portion, said first gear
wheel being disposed in meshed engagement with said second gear wheel with successive rollers of said first gear wheel engageable in the notches spaced about said outer peripheral
portion, said notches being generally U-shaped in configuration, said drive means including second drive means including a second pair of right angularly disposed driven and drive shafts having first and second small and large diameter gear corresponding to the first mentioned rollers and notches and meshed with each other, the drive shaf of the first pair of shafts driving the driven shaft of said second pair of shafts, said coaxial with the drive shaft of said first pair of shafts, said drive means including third drive means including a third pair of
driven and drive shafts also having first and second small and driven and drive shafts also having first and second small and large diameter gear wheels thereon including roliers and
notches, respectively, corresponding to the first mentioned rollers and notches, the drive shaft of said second pair of shaf comprising the drive shaf of said third pair of shafs, said driven and drive shafts of said third pair of shafts paralleling each other and the peripheral notches on said second gear
wheel of the drive shaf of said third pair of shafts opening wheel of the drive shaf of said third
radially outwardly of that drive shaft.

4,093,038 SPRING BRAKE ASSEMBLY Neil Leroy Molin, New Briter

 A/S, Nordborg, Denmark Filed Nov. 12, 1976, Ser. No. 741,243HEAD ACTUATED CONTROL APPARATUS FOR BATTERY-POWERED WHEELCHAIR BATTERY-POWERED WHEELCHHIR
William Wanet Miller, III, 2533 Hillegass St. Apt. 101, Berkeley, Calif. 947 lu May 10, 1976, Ser. No. 684,759

Filed May 10, 1976, Ser. No.
Int. Cl. ${ }^{2}$ B60K $26 / 00$
77
U.S. C. $180-77$ R

4 Claims

1. Control apparatus for use in controlling the position of
2. Control apparatus for use in controling the position of a headrest and an electrically powered back reclining mechanism, said apparatus including a first switch and a second switch formed for mounting proximate said headrest, said first
switch being formed for electrical connection to said back switch being formed for electrical connection to said back
reclining mechanism to effect reclining of said back and said reclining mechanism to efrect reccining of said back and said
second switch being formed for electrical connection to said back reclining mechanism to effect raising of said back, said first switch and said second switch each including actuating elements formed for engagement by the head of the user of said
wheelchair, wherein the improvement in said control apparatus comprises:
said actuating elements being formed for mounting proxi-
mate said headrest to extend in a direction generally paral.
lel to the back of the whelchair over a distance enabling lel to the back of the wheelchair over a distance enabling
engagement thereof by the head of the user when the back engagement thereof by the head of the user when the
of the wheelchair is in the fully reclined position.
U.S. C. $180-82$ R

3. A spring brake assembly for a truck tractor of the type having a chassis and a cab, said spring brake assembly, comrising, a chassis frame portion disposed immediately behind rake actuator mounted on said rear axle, a filter unit mounted on said chassis frame portion and hose means connecting said actuator and said filter unit; said actuator including casing means defining a chamber, a flexible diaphragm dividing said chamber into first and second chamber sections, push rod and being movable away therefrom in a brake applying direction and towards thereto in a brake releasing direction, return pring means biasing said diaphragm in a brake releasing direcon, first port means throd neans in said second chamber for moving said diaphragm and said push rod in a brake applying direction when said first hamber is depressurized, second port means through which ir is admitted to and exhausted of sid second chamber in it comprising a rectangularly shaped box-member having ront and rear spaced apart walls and being mounted on said chassis frame portion, fitting means on said rear facing wall, a ponge rubber filter in said wer inf adjacent said rear wall port means at the lower part of said box member providing luid communication between said filter chamber and the surounding atmosphere; and hose means connecting said spring rake actuator second port means to said filter unit fitting means.

4,093,039 AIR INTAKE SLLENCER

ames Walter Moore, and Stephen Alphonse Braun, both of Wis, assignors to Deere \& Company,
Int. C. 10, 1976, Ser. No. 684,593
U.S. Cl. 181-229
chamber for an

1. An expansion chamber for an air intake silencer, compris- 6 Claims hg: upper and lower identically dimensional and configured top wall joined to a depending wall half including a clooed defined by a first flange and terminating in first plane inclind upwardly from rear ecand cerminating in first plane inclined end; said lower chamber half including a closed bothe wall oined to an upright wall means having an upper end defined parallect to flange and terminating in a second plane which in parallel to the first plane; said first and second flanges defining
respective connection surface means which cooperate to form
a telescopic joint whereby the lower and upper ends a telescopic joint whereby the lower and upper ends respec
tively of the depending and upright wall means are releasably joined together; an air inlet opening means being provided in the depending wall means of the upper chamber for connection to a tubular inlet member; and an air outlet opening means, for connection to carburetor intake means, being provided at a
axially directed sound dampening guide vanes downstream
of said second deflector means. of said second deflector means.

4,093,041
FOOD SERVING SYSTEM Paul Davis, Swampecott, and David Schnelder, Lexington, both of Mase
Mass.

Filed Apr. 19, 1976, Ser. No. 677,972 Int. C1. ${ }^{2}$ E 04 H 3/04

U.S. C. 186-1 D

forward location in the upright wall means of the lower chamber at a level which places at least a portion of the outle
opening means at a level above a rear location of the second opening means at a level above a rear location of the second
fange whereby easy access may be had to the air outlet open ing means, when the upper chamber half has been disconnected from the lower chamber half, so that carburetor adjustments may be made by inserting a tool through the outlet
opening means.
$4,093,040$
SILENCER AND COOLER FOR PUMP UNIT Kenneth L. Trelber, 1103 Villamay Bivd, Alexandrig, Va. 22307 Filed Dec. 21, 1976, Ser. No. 753,149 U.S. C. 181-252 Int. C.2 ${ }^{2}$ F01N 7/00, 7/14 3 Cluims

1. An exhaust silencing and cooling system for engines com prising:
a silencing and cooling unit having a axial passage there through, said passage having a first inlet for cooling air at one end, an outlet for cooled exhaust gases at the opposite end, and a second laterally directed exhaust gas inlet
disposed between said first inlet and said outlet. disposed between said first inlet and said outlet;
means for connecting said first inlet to a source of cooling exhaust line of an engine;
first gas deflector means; for directing laterally entering
exhaust gases axially along said passage; at least one pair of oppositely directed wedge-shaped barri-
ers spaced so as to create an obliquely directed flow path ers spaced so as to create an obliquely directed fiow
located downstream of said first gas deflector;
located downstream of saic first gas deflector;
a second deflector means located at the downstream end o
said flow path for redirecting gases leaving said flow path said flow path for redirecting gases leaving said flow path
into a generally axial direction; and into a generally axial direction; and
2. A food serving system comprising
a mobile cart constructed and arranged to be rolled about low voltage rechargeable power pacs
an array of racks for food serving trays on thenged cart, a plurality of substantially identical food serving trays constructed and arranged to fit on and be removed from the
racks, at least one localized food container supporting area in each tray for orienting a container in a prescribed position on the trays,
electric heaters fixed to the cart and positioned to be in heat exchange rclation with containers on the food container supporting areas on the trays when the trays are on the
racks. racks,
and an opening in each tray at the container supporting area for enabling the container on the area to directly engage 7. A food serving tray comprising a body of heat insulating material defining a lower surface and an upper surface for
carrying hot and cold food in serving containers, carrying hot and cold food in serving containers, said body having a first food supporting area on said upper
surface and carrying means for positioning a surface and carrying means for positioning a food serving
container thereon and a second food supporting area on said upper surface laterally spaced from said first area,
said first food supporting said first food supporting area comprising a metallic insert
extending from said upper to said lower surface and havextending from said upper to said lower surface and hav-
ing high thermal conductivity properties to enable direct ing high thermal conductivity properties to enable
heat transfer through said body by conduction.

LOCKING GRIPP

LOCKING GRIPPER
Jacques Pradon,
des Fosses, France
Cla Filed Oct. 18, 1976, Ser. No. 733,361
Claims priority, application France, Oct. 20, 1975, 7532025
U.S. Cl. 188-67 application France, Oct. 20, 1975, 7532025
Int. Cl. ${ }^{2}$ F16D 63/00 1. In a gripper for locking against an elongated body and abject to a relative displacement along the length of the body and capable of locking at any place therealong, said gripper
comprising a rigid member, at least two jaws provided with surfaces for locking against the body and means for locking the jaws transversely on the body by wedge effect comprising, for jaws transversely on the body by wedge effect comprising, for
each
jaw, a pair of substantially parallel bearing surfaces in-
clined relative to the elongated body, one surface being aranged on the corresponding jaw, the other on said rigid mem- SLIDING CALIPER DISC BRAKE ber, and at least one rolling member interposed between said Hartmut Unterberg, Koblenz-Metternich, Germany, assignor to ber, and at least one rolining member interposed between said
bearing surfaces for transmission of the locking force of the associated jaw to the rigid body, the improvement comprising at least one shoe associated with each pair of bearing surfaces, Girling Limited, Birmingh-Mem, England
Fied Feb. 15, 1977, Ser. No Filied Feb. 15, 1977, Ser. No. 768,722 Claims priority, application United Kingdom, Feb. 18, 1976, U.S. CI. 188-73.3 Int. Cl. ${ }^{2}$ F16D 55/224

said shoe being provided with a surface for application agains one of the bearing surfaces and elastic means connecting said
shoe with the second bearing surface for maintaining the rolling member between said second bearing surface and a rolling surface provided on the shoe whereby force is transmitted
between said bearing surfaces through said jaw, said roller and said shoe in succession

4,093,043

CALIPER TYPE DISC BRAKE
Phillip A. Smith, Troy, Ohio, assignor to The B. F. Goodrich Company, Akron, Ohio U.S. CI. 188-73.6

8 Claims

1. A caliper brake having a brake disc rotatable about an axis, a supporting body, a lining carrier positioned in a direc-tion at one side of said disc, said lining carrier having end
spaced generally circumferentially of said disc, a first one of said ends having an opening for receiving a cylindrical torque pin mounted on said supporting body and extending axislly of said disc to support said lining carrier and permit axial sliding movement of said lining carrier into and out of braking engagement with said disc, said opening comprising a ruin wall of said the diametral clearance between said pin and the wall of said lining carrier axially of said disc, retention means between a second one of said ends and said supporting body for supporting said lining carrier in position, said retention means supporting sai. lining carrier while permitting sliding movement axially of said disc as well as circumferential movement toward and away
from said torque pin to accommodate expansion and contracfrom said torque pin to accommodate expansion to
tion of said lining carrier due to changes in temperature caused by the heat generated during braking and brake actuating means in engagement with said lining carrier moving said
2. A sliding caliper disc brake comprising a carrier member for fixing to a vehicle; a caliper member adapted to straddle a minor portion of the periphery of a rotatable disc; guide means
guiding said caliper member for sliding relative to said carrier member, said guide means including first and second receiving means containing openings, first connecting means joining said carrier members, first and seconnd pins which are snug sliding fits within said openings, and second connecting means joining said first and second pins to the other of said caliper and carrier members, one at least of said first and second connecuing means
including a resilient element; and an actuator for directly urging a friction pad onto one side of said disc to cause said
caliper member to slide relative to said carrier member to caliper member to slide relative to said carrier member to
apply by reaction an opposite friction pad to the other side of
said disc.

4,003,045
NOISE PREVENTING MEANS FOR DISC BRAKES
Koujl Kawern Koujl Kawrmura, Susono, Japan, asignor to Toyota Jidocha Kogyo Kabushbilik Kairba, Japan
Cluims priority, application Japan, Mas (1978,
${ }^{\text {Claims }}$ priority, application Japan, May 19, 1976, 51.
U.S. C. 188-73.5

Int. CL. ${ }^{2}$ F16D 65/02

1. A brake noise or squeal preventing means for use in disc rakes of a type in which a rotatable disc in rotation is decelhaving a thrust giving end and working in a hydraulic cylinder having an axis, the preventing means comprising a shim or late member unfixedly interposed between said piston and said friction pad, said shim or plate member having a cut out
portion thereof at a location where the same confronts with portion thereof at a location where the same confronts with
said thrust giving end of said piston on that side of said axis of said cylinder with which any given point on sasid disc first comes into alignment; and a coating of friction reducing mate-
ing with said friction pad, in order to slide easily against said
friction pad friction pad.

4,093,046
EXHAUST BRAKNG APPARATUS
Jullius P. Perr, Columbus, Ind., assignor to Cummins Engine
Company, Inc., Columbus, Ind. ulius P. Perr, Columbus, Ind., assignor to Cumm
Company, Inc,. Columbus, Ind.
Filed Dec. 30, 1976, Ser. No. 755,970 U.S. C. 188-273 Int. C.' ${ }^{\text {F O2D 9/06 }}$

1. A modulating exhaust braking apparatus for a motor vehicle engine, comprising a first chamber disposed between a
pair of complemental sections of an exhaust duct for the enpair of complemenaal sections of an exhaust inst chamber being provided with an inlet connected
gine to one complemental duct section and an outlet connected to a second complemental duct section; closure means adjustably mounted within said first chamber for movement between firs and second positions and, when in the first position, closing off
exhaust gas flow through the first chamber and, when in the exhaust gas fiow through the first chamber and, when in th
second position, permitting substantially unrestricted exhaus gas flow through the first chamber, said closure means being biased to normally assume said second position; a second elongated chamber separated from said first chamber and havin
one end wall thereof connected to a source of regulated pneu matic pressure; and a pneumatic pressure responsive means movably mounted within said second chamber, said responsive means having a surface portion remote from the second cham-
ber end wall and operatively connected to said closure means. ber end wall and operatively connected to said closure means,
said responsive means effecting movement of said closur means from said second position to said first position and retaining same in said first position only when said responsive means is subjected to pneumatic pressure above a predeter mined amount.

TRAVELLING CABLE SUUPPORT SYSTEM Manfred Wampfler, Markter Weg 5, D-7858 Weii am RheinMarkt, Germany
Filed Mar. 16, 1977, Ser. No. 778,199 Claims priority, application Germanyy, Jun. 23, 1978, 2628112 U.S. Cl. 191-12 R

1. A travelling cable support system comprising:
a guide rail;
a pluraily of conductor sleds slidably mounted upon said guide rail for movement therealong wherein the first
conductor sled is adapted to pull the remaining conductor sleds;
a plurality of non-elastic traction cords respectively inter posed between said conductor sleds, at least one conductor carried by said, conductor sleds; and a plurality of elastomeric cords connecting together adja
the length of said elastomeric cords being less than the length of said traction cords when said elastomeric cords are not tensioned and being capable of obtaining a greater length than the length of said traction cords when said tion cords being less than the length of said conductor.

VEHICLE STEERING BRAKE AND CLUTCH CONTROL Gary A. Hakes, North Brunswick, N.J.; Norma G. Shook, Mor ton; George W. Cackley, Hanna City, both of III.; Stephen D. Burdette, Edina, Minn., and Hugh, C. Morris, Peoria, Ill Filed May 21, 1976, Ser. No. 688,798
Int. Cl. ${ }^{\text {F F16D }}$ 67/04; B60K $29 / 00$
-13 R
32 Claims

1. In a vehicle in which driving force is applied to both sides thereof, including clutch and brake systems associated respec fively with both sides thereof and responsive to fluid pressure rom a source thereof for steering of the vehicle, each clutch
and brake system associated with a side of the vehicle compris ing clutch means disengageable to disconnect the driving force applied to that side of the vehicle and engageable to connect the driving force to that side of the vehicle and brake means actuatable to brake that side of the vehicle, and releasable to release that side of the vehicle, a control apparatus for each clutch and brake system comprising:
vand comprising a valve body defining a bore, and firs and second valving spools movably disposed within and along said bore;
first means for providing fluid communication between said source and said valve body bore;
second means for providing fluid
said valve body bore and said clutchunication between third means for prore and said clutch means; third means for providing fluid communication between said
valve body bore and said brake means: valve body bore and said brake means;
fourth means for providing fluid commun fourth means for providing fluid communication from said
valve body bore and through which fluid pressure may be released from said valve body bore;
the first valving spool being movable within said bore to first and second positions relative to said valve body, the first
valving valving spool in one of said first and second position
allowing release of fluid pressure from said clutch mean through said second fluid communication means and said fourth fluid communication means, the first valving spoo in the other of said first and second positions providing communication of fluid pressure from said source through
said first fluid communication means, through said second fluid communication means, to the clutch means;
the second valving spool being movable within said bore to first and second positions relative to said valve body, the second valving spool in one of said first and second positions providing communication of fluid pressure from said
source through said first fluid communication means source through said first fluid communication means,
through said third fluid communication means, to said brake means, the second valving spool in the other of said first and second positions allowing release of fluid pressure from said brake means through said third fluid communication means, and said fourth fluid communication means, and
actuator means operatively coupled with said first and second valving spools so that movement of said actuator second valving spools to their respective first positions, and movement of the actuator means in another direction provides movement of said first and second valving spools ond positions
wherein said release of fluid pressure from said clutch means is allowed with said first valving spool in said first position, and wherein said communication of nuie pressure from said source to said brake means is provided with the second valving spool in said first position, wherein the
first and second valving spools are movable in the same, first direction relative to the valve oody from the first to the second positions thereof, and the first and second valving spools are movabie in the opposite, second direc tion relative to the valve body from the second to the first position thereof, and wherein the brake means are applied
upon release of fluid pressure therefrom, and released upon application of fluid pressure thereto, and further wherein the clutch means are applied upon release of fluid pressure therefrom, and released upon application of fluid pressure thereto.

4,093,049
FREEWHEEL DEVICES
Kenneth Watson, Yeovil, and James Edwin Saunders, SherKenneth Watsoa, Yeoln
borne, both of England Ited, Yeoril, England, Filed Feb. 3, 1977, Ser. No. 765,119 Claims priority, application United Kingdom, Feb. 3, 1976 4252/76 Int. C1. ${ }^{2}$ F16D 41/00
U.S. C. 192-47

16 Cluims

1. A cageless freewheel comprising a plurality of roliers interposed between inner and outer races formed respectively on a pair of driving and driven members, one of said races having wedge-shaped portions equal in number to the roliess, at least one axially extending actuating lever beeng interposed
in the plurality of rollers and being arranged for limited cirin the pluraily of rolers between a first position in which the
cumferential movement cumfers assume an engaged position on rotation of the driving
rollers member so as to transmit rotation to the driven member, second position in which the rollers are retained in a disengaged position, and means for moving the or each lever begaged position, and means for
tween the said first and second positions.

ising:

means for retining a brake in braking condition and electrical control means for said retaining means, said electrical control means including means for energizing said retaining means upon stopping of the vehicle,
first switch me
first switch means adapted to be actuated when an accelerator pedal is depressed beyond a predetermined extent, second switch means adapted to be actuated when a clutc pedal is depressed to a predetermined position, and circuit means for deenergizing said retaining means when
both of said first and second switce means are actuated, both of said first and second switch means are actuated,
wherein said retaining means comprises ferromagnetic plate wherein said retaining means comprises ferromagnetic plate means provided stationarily, lever means pivotally
mounted on said plate means and operationally connected to said brake pedal so that said lever means rotates in ccordance with the movement of said brake pedal, and lectromagnetic means mounted on said evenergized, said electromagnetic means is fixed on the plate means by magnetic attractive force.

HYDRAULIC CONTROI SYSTEM FOR POWER SHIFT TRANSMISSION
Ernest A. Kreitrberg, Mukwonsgo, Wis, assignor to AllisChalmers Corporation, Milwaukee, Wis,
Filed Aug. 2, 1976, Ser. No. 710,908
U.S. C. 192-87.13 $\quad 10$ Claims
\qquad prising, a source of pressurized fluid, a plurality of hydraulic prising, a source of pressurized fluid, a pluraily of hydraul.
actuators for actuating clutches in said power shift transmis-
(4 UTCH AND ACCEI LOCK FOR VEHICLE
Akira Mizuno, Kari Filed Mar. 24, 1976, Ser. No. 669,752
Claims priority appliction Jop U.S. CI. $192-0.049 .{ }^{\text {Int. }}{ }^{2}$ F16D $67 / 04$; B60T $11 / 1006$ Claims
 ion, a pressure modulating valve connected to said source of pressurized fluid, conduit means connecting said modulating valve to each of said hydraulic actuators, a clutch valve conwator valve for selectively operating a mating of said hydrauic actuators, an inching valve connected to said source of ressurized fluid, means connecting said inching valve to at o said hydraulic actuators, means for selectively and alterna. tively operating and releasing each of said clutch valves, resiient means in each of said clutch valves for returning said
clutch valve to its return position, fluid throttling means in on the said recess, the thickness of the recess in the non-pressueach of said clutch valves for regulating the rate of return of rized state being determined by the following formula: each of said clutch valves to its return position for controlling the rate of pressure decay of pressurized fluid in the mating
the rate of pressure decay of pressurized fluid in the mating
hydraulic actuator of the disengaged clutch, said modulating
valve including a flow control valve with a piston for modulat$t / d=2 \times 10^{-2}$ diameter of the recess.

ing the flow through the modulating valve to the actuated clutch valve, a pressure accumulator in said modulating valve having a plunger and resilient means between said piston and plunger operating said flow control valve in response to pres-
sure build-up in said accumulator therby throtling fuid flowsure build-up in said accumulator thereby throttling fluid flow-
ing through said modulating valve and controlling the rate of ing through said modulating valve and controlling the rate of
pressure rise in said actuated clutch valve and mating hydraulic actuator of the engaged clutch.

FLUID ACTUATECD COUPLING ASSEMBLY Cart Gunnar Falk, Sollentuna, Sweden, asignor to Forenade Fabrikserken, Sweden
Continuation-in-part of Ser. No. 435,728, Jan. 23, 1974, abandoned. This application Feb. 23, 1976, Ser. No. 660,682 U.S. C. 192-88 B Int. C. ${ }^{2}$ F16D 1/06

9 Claims

1. A fluid actuated coupling assembly for releasably coupling at least two elements together preferably for transmitting
torgue therebetween comprising an outer metal sleeve, an iner metal sleeve concentrically mounted within the outer leeve and secured thereto at least at one end and defining a one end of the sleeves, means for introducing a pressure fluid one end of the slecees, means for introducing a pressure hiud
in said recess and means for preventing exhaust of said pressure fluid, said secured sleeves and said means for preventing ex- U.S. CI. 192-106.1 12 Claims haust of said pressure fluid defining a volume which includes disc In a coupling device, a rotatable hub assembly, a rotatable said recess volume and which is slighty larger than said recess pockets in said hub and disc assembly having spaced side walls volume, the radial dimension of the sleeve walls of both sleeves pockets in said hub and disc assembly having spaced side wails, being variable by changing the pressure on the pressure fluid resilient means in said aligned pockets adapted to establish a
bly, said resilient means comprising, a Belleville stack having ment to cause relative movement of said coupling elements in end portions engaging said side walls in said aligned pockets, said one direction, and a position sensor which senses said

and guide means engaging said Belleville stack to retain the same in assembled relation within said aligned pockets.

TORQUE-TRANSMITTING TOPO Jamee R. Blackburra, and Dudley C. Smith, both of Dallas, Tex samignors to Johnn E. Mitchell C. Companith, both of Dallies, Filed Nov. 15, 1976, Ser. No. 742,002 U.S. C. 192-116.5

18 Claims

1. A torque-transmitting, torque-sensing control, which is usable to transmit torque between two rotatable members that
are held ragainst appreciable axial movement, and which coma are held against appreciable axial movement, and which comrotatable members to rotate with, while not experiencing appreciable movement relative to, said one rotatable member, a second coupling element that rotates when said other roatable member rotates but that can experiemce apprectiable on said first
relative to said other rotatabe member, a surface coupling element that is engageable with a confronting surface on said second coupling element to force said coupling elements to rotate together while permitting appreciable relative maid second coupling element and said other rotatable member, means urging said coupling elements for relative movement in one direction but yielding to permit relative movement of said coupling elements in the opposite direction, said means contin-tion-inducing engagement with each other, said surfaces on said coupling elements responding to a predetermined increase in rotation resistance of one of said coupling elements to cause relative movement of said coupling elements in said opposite decresse in said rotation resistance of said one coupling ele-
relative movement of said coupling elements.

SINGLE REVOLUTION MECHANISM Gerrit Burgers, Amstelveen, Netheriande, assignor to International Business Machines Corporation, Armonk, N.Y. Flied Dec. 10, 1976, Ser. No. 748,865
Claims priorty, application Netherlands, Jun. 30, 1976, 7607249 U.S. C. 192- $\mathbf{1 2 7}^{127}$ Int. C1. ${ }^{2}$ F16D 71/00

1. A single revolution mechanism, wherein a coupling be tween a shaft to be driven and a continuously rotating shaft is
effected and latched, and after performing a predetermined rotation of the shaft to be driven, the latching and the coupling with said continuously rotating shaft are automatically interrupted, comprising: a feed roll (() rotatably mounted at one end of a first lever (3); means (4) for bringing said first lever rom the rest position to an operative position in which opera by frictional contact with a continuously rotating shaft (11) and, further means for mechanically latching said lever and feed roll in the operative position independently of said means (4) and means for eliminating this mechanical latching after a predetermined rotation of said feed roll.

4,093,057

GATE ASSEMBLY FOR A COIN SELECTING AND SEPARATING DEVICE Kristen H. Dietz Florimant, Mo asesignor to Coin Acceptom, Inc., St. Louis, Mo.
Filed Mar. 4, 1977, Ser. No. 774,252

Int. Cl. ${ }^{2}$ GOTF $1 / 00$
U.S. CI. 194-1 R

1. A gate assembly for a coin selecting and separating de (a) a mainislate
(a) a mainplate means,
(C) a first gate includineans on the mainplate means
(1) a first pin inserted into the first hinge socket means, replaceable mounting plates for said keeper pins fixed to the (2) a second pin aligned but operatively disconnected top of said horizontal plate extension and forming a positive
from the first hinge socket means in an open position of retainer means for the lower end of said mechanism assembly the gate relative to the mainplate means, and (3) key means for precluding angular movement of the sides of the mounting bracket. first gate from the open position,
(d) a second hinge socket means on the first gate,
(e) a second gate including p
(f) the first and second gates CHARACTER SLUG CONSTRUCTION
open position to operatively disengage the key means and Gordon Sohl, Richardson, Tex, amsignor to Xerox Corporation, to insert the second pin of the first gate into the first hinge Stamford, Conn. Filed Dee. 6, 1976, Ser. No. 747,84 acket means for hingedly connecting the first gate for tive to the mainplate means.

COIN OPERATED NEWSPPAPER VENDING MACHINE Charles D. Terry, Palestine, Tex., assignor to Terry Manufacturing Company, Palestine, Tex.
Filed Mar. 30, 1977, Ser. No. 782,960
Int. Cl. ${ }^{2}$ G 07 F $5 / 08$
U.S. CI. 194-71

16 Claims

1. In a coin operated newspaper vending machine, a main mounting bracket adapted for attachment to the interior of a coin mechanism housing wall, a unitized coin operated mecha-
nism assembly, positioning and supporting means for said assembly on said main mounting bracket, a vending machine access door latch, means to pivotally mount said latch on the interior of a part of an access door, spring means biasing said
latch upwardly relative to said main mounting bracket, lateral guide means for said latch on said mounting bracket, positive keeper means for the latch on said mounting bracket engage-
 latch downwardly in opposition to the force of said spring means when the vending machine access door is closed, the latch then being held in a release position out of engagement with the positive keeper means on said mounting bracket, said main mounting bracket including a vertical phate body far
attachment to said housing wall, a lower end horizontal plate extension projecting from said, plate bordy and forming a base
seat for said unitized coin operated mechanism assembly, a pair seat for said unitized coin operated mechanism assembly, a pair of side vertical positioning flanges for said mechanism assem-
bly projecting from said plate body, a pair of pivoted keeper bly projecting from said plate body, a pair of pivoted keeper
elements for said mechanism assembly on said plate body near the top thereof and adapted to releasably engage over a web of said mechanism assembly to retain the assembly releasably against said plate body, said positive keeper means for said latch comprising a pair of spaced keeper pins depending from
said horizontal plate extension for entry into a pair of spaced openings in said latch near opposite sides of the latch, and
2. A character slug coupled to the end of a beam extending from the base of a print element for an impact printer, compris ing:
front surface having a raised character extending there from, and
a rear surface engageable by an impacting means for moving the slug in a print operation,
said rear surface including a projection extending therefrom to directly receive the strike from the impacting means character area,
said projection positioned on the rear surface at the centroid of the raised character and having a substantially spherical configuration with an area substantially less than the strike area of the impacting means.

4,093,060
TYPEWRITER RIBBON FEED DEVICE
Peter Muntschick, Dresden, Germany, assignor to VEB Kom eter Muntschick, Dresden, Germany,
binat Zentronik, Dresden, Germany
Filied Dec. 2, 1976, Ser. No. 746,787 Filed Dec. 2, 1976, Ser. No. 746,787
Claims priority, application Germany, Dec. 4, 1975, 189879 U.S. C. 400—236.1

1. An ink ribbon feed device for a typewriter comprising: a support, a toothed transport wheel mounted for rotation on said support about a first axis;
a ribbon spool carried by said support;
transport lever pivotally mounted on said support for pivotal movement about a second axis;
a spring mounted between said transport pawl and said transport lever to urge said transport pawl into engagement with the toothed transport wheel;
a forked end on said transport lever remote from said trans port pawl;
port pawl;
a driving lever pivotally mounted on said support for pivotal
 axes being positioned substantially along a straight connecting line;
a pin carried by said driving lever
means for operatively interconnecting said driving lever and
said transport lever whereby pivotal movement of ssid driving lever causes pivotal movement of said transport lever, said means being constituted by the engagement of said pin in said forked end of said transport lever;
a universal bar of the typewriter connected to said traction bar; and
restoring spring mounted between said driving lever and said support, wherein said pin includes an enlarged head portion which rests against said support.

4,093,061 INK RIBBON

Anthony Horak, Detroit, Mich, asagnor to Burroughe Corporn Anthony Horak, Detro
tion, Detroit, Mich.

Filed Feb. 23, 1977, Ser. No. 771,341
U.S. C. $400-194$
C.'. $\mathbf{B 4 1 J} 31 / 14$, , $27 / 04$
. $400-194$

1. A rotatable integral ribbon disc for use with a dot matrix or solid character impact printer comprising:
a circular ribbon film;
an ink supply housing concentric at a reduced diameter with said circular ribbon film, said housing having first and
second complementary members disposed on opposite sides of said ribbon film for forming an ink supply cham ber fully enclosing a portion of said ribbon film; and
porous ink storage means within said ink supply chamber porous ink storage means within said ink supply chamber and surrounding said enclosed portion of the ribbon film film outside of said housing with ink through said enclosed portion upon rotation of said ribbon disc.

METHOD OF AND APPARATUS FOR FEEDING ARTICLES
Borje Lennart Sjögren, Huddinge, Sweden, assignor to AB W canders Korkfabriker, Alvangen, Sweden
Filed May 3, 1976, Ser. No. 682,761 Claims priority, application Sweden, May 7, 1975, 7505342
S. Cl 198-380 int. Cl. ${ }^{2}$ B65G 47/24
surface laterally outwardly to carry the caps thereon outwardly toward the feed path, and

obliquely thereto between the feed path and said deflector such that the force imposed upon each cap thereby is to force only the former away from the feed path.

4,093,063

ARTICLE HANDLING MEANS FOR A PACKAGING MACHINE
Rodney K. Calvert Dunwoody, and Dale K. Scott Joneaboro both of Ga., assignors to The Mead Corporation, Dayton, Division of Ser. No. 650,805, Jan. 20, 1976, Pat. No. 4,023,328. This application Mar. 17,1977 , Ser. No. 778,624
Int. Cl.
B65G 47/26 U.S. CI. 198-425 Int. C. ${ }^{2}$ B65G 47/26 2 Claims

1. Article handling means for arranging continuously moving articles in spaced groups, said article handling means comusly $\begin{aligned} \\ \text { conveyor means including metering means for continu- }\end{aligned}$ controlled and substantially constant velocity an endless feed element havinustantially constant velocity, an endless path, a plurality of article engaging pusher projections path, a plurality of article engaging pusher projections
mounted in a spaced relation on said endless element and arranged respectively to move behind the rearmost article of a group of moving articles to impart movement to such group of articles in the direction of movement of the articles in such manner as to establish a gradually increasing space between such rearmost article and an immediately succeeding continuously moving article, a plivatlly of elongated smoothly con-
toured spacer elements pivotaly mounted at one end thereof with said pusher projections and each spacer element having an article engaging restraining portion thereon, and spacer control means for sequentially engaging and imparting conrolled swinging movement to said spacer elements relative to said endless feed element so as to swing the restraining portions thereof into the path of movement of the articles and into said spaces respectively only after the length thereof is sufficiently between each of said restraining portions and each of the immediately succeeding pusher projections respectively.

2. A conveyor packing station for use with a primary con veyor having a longitudinal length defined by lateral side rails and a plurality of transversely disposed, spaced, parallel rollers
defining a primary conveyor plane, comprising, in combinadefining a primary conveyor plane, comprising, in combina-
tion, a packing station frame disposed adjacent a primary tion, a packing station frame disposed adjacent a priary
conveyor side rail, a packing conveyor movably mounted on said packing station frame above said primary conveyor plane for movement between an extended position positioning an end
of said packing conveyor adjacent and over the primary con of said packing conveyor adjacent and over the primary con
veyor and plane thereof and a retracted position away from the primary conveyor, a plurality of rollers rotatably mounted upon said packing conveyor defining a support surface for an the length of the primary conveyor, motor means mounted on said packing station frame operatively connected to said pack ing conveyor for moving said packing conveyor between said extended and retracted positions, a transfer conveyor disposed
below the primary conveyor in alignment with the direction of below the primary conveyor in alignment with the direction of
movement of said packing conveyor, said transfer conveyor movement of said packing conveyor, said transier conveyor
including a base vertically movable between raised and lowered positions, a plurality of article supporting elements mounted on said base extending upwardly and located between
the rollers of the primary conveyor, said elements including an the rollers of the primary conveyor, said elements including an
upper article supporting portion which is located above and upper article supporting por rime the primary conveyor rolers at said raised and lowered
below
positions of said transfer conveyor, respectively, said packing positions of said transfer conveyor, respectively, said packing conveyor at said extended position being disposed aderef, and
said transfer conveyor at said raised position thereof said transfer conveyor at said raised position thereef, and selectively translating said base between its raised and lowered positions, and third motor means mounted on said packing conveyor drivingly connected to at least some of said rollers
thereof to move an article supported thereon toward the prithereof to move an article supported thereon toward the p.
mary conveyor upon energizing of said third motor means.

MACHINE FRAME ASSEMMBLIES FOR SCRAPER-CHAIN CONVEYORS
Helmut Temme, Waltrop, Germany, asaignor to Gewerkschant Eisenhutte Weutfalis, Germany
Piled Jun 1, 1976, Ser. No. 691,236
Cleims priority, application Germany, Jun 6, 1975, 2525343 S. C. 198-735 Int. C. ${ }^{2}$ B65G 19/28 10 Claims U.S. C. 10 Claims

1. In a machine assembly for a scraper-chain conveyor 1. In a machine assembly for a scraper-chain conveyor
which has a frame composed of side walls and means for driving a scraper-chain assembly mounted between the side walls; ing a scraper-chain assembily mounted between the side walls, he improverinclined plates disposed one above another between the side walls, each plate having an upper surface which can form part of a conveying surface leading to said drive means, the
uppermost plate being detachable to permit the lowermost
plate to become operative as part of the conveying surface in dependence on the size of the drive means and the scraperchain assembly, wherein an intermadiathe channel structure,
disposed between the frame and a further chan said further channel structure having side walls and an inclined plate between the side walls which aligns with the lowermost

plate of the frame, said intermediate channel structure having side walls and an inclined plate between the side walls which aligns with the uppermost plate of the frame, and wherein the
removal of the uppermost plate in converting the assembly for removal of the uppermost plate in converting the assembly for
use with a smaller drive means is accompanied by the removal of the intermediate structure and the connection of the frame with the further structure.

ACOUSTICAL CONVEYOR COVER
Charles Ponald Mitchell, Marietty, and Jacon K. Sedam, Dunwoody both of Ga., sssignors to The Coca-Cola Company, Atlanta, Ga, Filed Feb. 28, 1977, Ser. No. 772,900 861 Int. C. ${ }^{2}$ B6SG $21 / 00$ 2,Clsims U.S. Cl. 198-861

1. In combination with a conveyor, which transports articles between an article washing station and an article filling station, a conveyent comprising:
of said top cover including a top portion, the inside surface of said top portion forming a substantially continuous
curve with the inside surfaces of a pair of sidewalls which extend downwardly from said top portion to a support extructure for said conveyor;
means for attenuating noise internally generated within said cover including acoustically absorbent material, said material being a compressible resilient material;
door means connected in an opening in said conveyor cover for providing access to said conveyor, said door having a transparent porthin coneyor within said cover;
said con sain means provided between said
convans provided berween said suppor structure for the conveyor and the lower portion of said sidewalls for permitting drainage of any moisture within said cover; perm
and
means fo
neans for releasably retaining said acoustically absorbent material including a pair of retaining clips mounted on th door means, said retaining clips of said pair being so spaced as to retain said acoustically absorbent materia therebetween in a compressed state, whereby said acoustically absorbent material conforms to the shape of the
adjacent sidewall and holds itself between said clips with a self-biasing action.
$\stackrel{4,093,067}{ }$
Edward F. Hollander, Jr., Broomall, Pa., zesignor to John P. Filed Nov. 8, 1976, Ser. No. 739,476
U.S. C1. 206-219

Int. C.2 ${ }^{2}$ B65D $25 / 08$

1. A package comprising
a tube of flexible material having a first and second end, a first seal extending transversely across the tube and closin said first end,
second seal extending transversely across the tube and
closing said second end,
chambe said second end
a chamber formed by said tube and said end seals for con
taining contents,
hollow stem dispensing means extending through and sup-
hollow stem dispensing means extending through and sup-
ported by said second seal with an inner end inside the
tube and an outer end outside the tube,
means closing the outer end of the stem,
a second package contained within semid chamber to form an
inner package while the first-said package forms an outer
package,
said inner package comprising a tube of flexible material
closed at its ends by seals that form a second chamber containing second contents,
with the seals of the inner package being weaker than the
a third package contained within the first-said chamber, said third package comprising a tube of flexible materia closed at its ends with seals that form a third chamber containing third contents,
seals of the second third package being stronger than the seals of the second package,
with the inner end of said
of the third package,
解 temperature-changing reaction when mixed together, whereby the outer package may be squeezed to rupture seal of the second package and mix its contents with the contents of the outer package to form a reaction whic changes the temperature of the contents of the third pack age,
and
the stem closing means may be opened and the outer package may be squeezed to dispense
ture-changed contents of the third package.

PACKING SHEET AND PACKAGES FORMED THEREBY
Thomas J. Smrt, Bartett, MII, asaignor to Fox Valley Marking
Systems, Inc., Cary, III.
Filed Sep. 13, 1976, Ser. No. 722,703
U.S. C. 206-403

1. A package comprising a plurality of elongated articles, each article having a top and a bottom, a bottom cushioning sheet supporting the bottoms of the articles, a top cushioning sheet positioned over the tops of the articles, and a carton
enclosing the cushioning sheets and the articles, each of the top and bottom cushioning sheets including a plastic sheet having irr-tight air-filled compressible bubbles formed therein con

Claims
lacting the articles, each bubble comprising radially outwardly extending projections and being generally positioned in a space
between adjacent articles, the spacing between adjacent bubbles of a sheet being less than the width of the articles so that the top and bottom of each article contacts and partially compresses a projection of at least two bubbles whereby the top and bottom of each article is protected within the carton by

cushion of air within the bubbles, the compressing of said projections by the articles causing the height of the bubbles etween adjacent articles to be greater than the height of the ubbles before the articles contact the bubbles and the pressure he air within the bubbles before the articles contact the bubthe air
bles.

PACKAGE FOR A $4,093,069$
 PACKAGE FOR A STACY OF SHEET MATERIALS FA-GEVAERT N.V., Mrtbelar, Belgium
 applicition Apr. 6, 1976, Ser, 1974, abandoned. This Claims ppiority, application United Kingdom, Dec. 7, 1973, S. CI. $206-155$ Int. C. ${ }^{2}$ B65D 65/16, 75/28

28

1. A package for a stack of generally quadrangular sheet defined edge around said to be opened at one end to leave a composite wrapper of flexible wrapping material having a width slighty exceeding the width plus twice the thickness of said stack and an overall length exceeding twice the length and twice the thickness of said stack, said wrapper including at least one body sheet extending around one end and the major lengthwise portion of the opposite exterior surfaces of said end, at least one end sheet extending shound said other stack end and over the eremaining lengthwise portions of said exterior surfaces with its edge margins in overlapping relation with the edge margins of said body sheet, a seal detachably adhering each end of said body sheet in the vicinity of the edge threof to locus of the contiguous face of the end sheet spaced from the corresponding end edge of said end sheet, said composite in its lengthwise direction, whereby said stack is tightly concained within a tube defined by the thus sealed composite wrapper, and means for sealing the opposite ends of said tube along the sides of said stack.

STACKING AND NESTING CONTAINER

 Edward L. Stahh, Richmond, Mich, asalgnor to Pinckney Molded Pisatices, Inc. Pinckney, Mich. Filed Mar. 9, 1977, Ser. No. 775,727U.S. C. $206-507$ Int. C. ${ }^{2}$ B65D $21 / 04$

1. An upwardly open container having a rectangular bottom wall, side walls extending upwardly from opposite side edges of said bottom wall, said side walls having stacking supports
adjacent the upper edge portions thereof, said container having adjacent the upper edge portions thereof, said container having
on opposite sides thereof first rests directly under said supports so that said container can be stacked at an upper level with respect to another similarly or reversely oriented container of
identical construction by engaging the first rests of the upper identical construction by engaging the first rests of the upper
container with the stacking supports of the lower container, container with the stacking supports of the lower container,
end walls extending p , end wails extending upwaraly from the front and rear ed ges of
said bottom wall, said end walls throughout at least a major portion of their length beeing of less height than said side walls
and having second rests disposed below the level of said stackand having second rests disposed below the level of said stacking supports and above the level of said first rests, said second
rests being spaced apart the same distance as said stacking supports so that said container can be nested at a lower level with a 90° turned lower container of identical construction by engaging the second rests of the end walls of the upper con-
tainer with the stacking supports of the side walls of the lower container.

4,093,071
NESTING AND STACKING CONTAINER Edward L. Stahn, Richmond, Mich, and Ellsworth E. Sanders, Sanibel Island, Fin, assignors to Pinckney Molded Plestics, Inc., Pinckney, Mich.
ed Apr. 4, 1977, Ser. No. 784,145
Int. C1.2 ${ }^{2}$ B65D 21/04
U.S. C. 206-507

8 Claims

ber of the upper container with said first seating means of the lower container and engaging said rest means of the upper tainer, said support member being disposed at a level above said bottom wall and below said first seating means, said sec ond seating means being disposed at a level below said first seating means in a position to maintain the bottom wall of an upper nested container parallel with the bottom wall of the

VARIABLE ATTENUATION SUPPORT SYSTEM Robert R. Black, Jr., Newport Beach, Calif, assignor to Plastics Research Corporation, Cerritos, Calif.
Filed Feb. 17, 1976, Ser. No. 658,190

Filed Feb. 17, 1976, Ser. No. 658,190
Int. Cl. ${ }^{2}$ F16M 13/00
U.S. CI. 206-521

1. A prising:
a base su
a payload support separated from the base support; a plurality of mounting pads affixed to said base support; a pluraility of mounting pads affixed to said payload suppor a plurality of pairs of said pads being formed in which on pad of said pair is on said base support and one on said an adjustable shock
adjustable shock mount for each said pair of pads, each shock absorbers, means comprising a plurality of resilien shock absorbers between the corresponding one of said shock absorbers between the corresponding pair of pads,
and means for locking and unlocking at least a second one of said shock absorbers between the corresponding pair of pads, said locking and unlocking means comprising means for pivotally mounting one end of the corresponding shock absorber to one of the pads in the corresponding
pair of pads and a manually operable lock for locking and pair of pads and a manually operable lock for locking and
unlocking the other end of the same shock absorber to the other pad in the corresponding pair of pads.

4,093,073

FIBER CAN DOUGH PACKAGE WITH KRAFT PAPER BODY AND PEELABLE LABEL James R. Leezer, Minneapolis, Minn., sesignor to The Pillsbury Company, Minneapolis, Minn.
Continuation-in-part of Ser. No. 561,132, Mar. 24, 1975, abandoned. This application Nor. 8, 1976, Ser. No. 739,913 U.S. C. 206-606

1. An upwardly open container comprising a substantially U.S. CI. 206-606
package comprising:
2. A fresh dough package comprising: (a) a generally cylindrical can having a cylindrical body wal
comprising a kraft paper body stock layer in strip form wound into a helix with its mating side edges defining a helically extending butt joint,
(b) a liner formed from flexible sheet material against the inside surface of the body stock layer and overlapping th
inner edge of the butt joint in the body stock layer,
(c) a removable label layer peelably bonded to the outside surface of the kraft body stock layer,
(d) said label layer having means therein defining a lifting tab, said lifting tab providing a means for withdrawing the (e) a peelable particulate mineral coating layer bonded (e) a peelable particulate mineral coating layer bonded be-
tween the label and the kraft body stock layer, (f) the removal of the label causing at least a portion of the particulate mineral layer to peel away from the adjacent body stock layer and at least a portion thereof to remain adhered to the label layer thereby facilitating the removal
of the label without the surface of the body stock layer of the label without the
adhering to the label,
pulling the same to tear said wings from said leg.
$\stackrel{4,093,075}{ }$
Desmond Walter Moline, London, England, assignor to Molins Limited, London, England
Claims priority, application United Kingdom, Mar. 27, 1976, Int. Cl. ${ }^{2}$ B07C $5 / 344$
U.S. CI. 209-73

(g) the peel strength of the bond between the label and the kraft body layer being between about 0.1 and 0.5 pounds per inch width of the label and also being less than the
tensile strength of the label, thereby allowing removal of the label intact at least from the area of the butt joint to weaken the butt joint by an amount which is uniform uniform opening characteristics throughout its length to facilitate opening the container at the butt joint, and (h) a circular end closure member sealed to at least one en of the tubular body wall of the container.

4,093,074 ENVELOPES
 William E. Bielagski, 19 James Pl., Fredonia, N.Y. 14063 Filed Jun. 24, 1977, Ser. No. 809,631 Int. C1. ${ }^{2}$ B65D 27/34 U.S. C1. 206-629
 5 Claim

1. An envelope having a front panel, a bottom flap, a to flap, and two side flaps, and wherein said bottom flap is folded to have first marginal portions thereof overlap first marginal marginal portions to form a back panel, and wherein said top lap may be selectively folded to have first marginal portion thereof overlap second marginal portions of said side flaps, the mprovement which comprises.
panel and adapted to facilitate opening of said envelope said improved bottom flap including a substantially T shaped portion having a leg and two wings extendin laterally from said leg in opposite directions, said leg bein glued to third marginal portions of said side flaps with said waced glue portions provided on said top flap firs portions and adapted to adhere to said wings but not saic leg;
whereby said envelope may be opened by grasping such

2. An ejection mechanism for cigarettes or like articles for ssociation with means defining a vertical channel through which cigarettes may be stacked one above the other and a a support level higher than the bottom of supaid channel, said upport members being arranged so as to support end portions of a cigarette in said channel and being movable out of said censing to allow said cigarette to fall below said support level, nozzle disposed at a sevel level above said support level, an air a horizontally-directed air-blast against one end of a cigarette to displace such cigarette from the channel, and a valve arranged to control air supply to said nozzle, said sensing means
being connected to control said valve so that said valve is opened to allow said air-blast to operate when the cigarette at the level of the nozzle has a bad end detected by the sensing means.

BOTTLE RACKS, PARTICULARLY RACKS FOR WINE BOTTLES
Brian R. Newton, Johannesburg, South Africa, assignor to NewBrian R. Newton, Johannesburg, SOUA, Arica, asign
ton \& Taylor (Proprietry) Limited, South Africa
Claims priority, application South Africa, Jen. 22, 1974, 74/0450; Sep. 4, 1974, 74/5616 ${\text { Int. Cl. }{ }^{2} \text { A47B 73/00 }}^{\text {7 }}$ U.S. Cl. 211-74 Int. Cl. ${ }^{2}$ A47B 73/00 9 Claims

1. A rack for bottles, or the like, comprising:
a plurality of basic rack forming elements arranged in two spaced apart substantially coplanar sets; each of said basic elements having a periphery defined by edges; at least one concave formation defined in a said edge, thereby to
define at least part of a supporting surface for a bottle, or the like;
said basic elements of said sets thereof are oriented and positioned such that each concave formation defined in the basic elements making up one of said sets is generall
aligned with a concave formation defined in the basi elements making up the other of said sets, thereby to provide and define at least part of two cooperating supporting surfaces for support of a bottle, or the like, tha
extends between two aligned said formations on the two said sets;
said sets;
means for joining said sets of basic elements and for support ing them in their said orientations;
the edges of the outermost basic elements of each set defining he free edge portions of the sets said free edge por-
tions being aligned;
a terminal rack forming element extending between said sets
at a free edge portion thereof; said terminal element being
in engagement with a said aligned free edge portion of
in engagement with a said aligned free edge portion of
both said sets; thereby closing off said free edge portion of
both said sets; thereby closing off said free edge portion of
both said sets and to close of the space between said sets.
both said sets and to close off the space
4,093,077
JEWELRY DISPLAY RACK
Thomas Strasser, 1500 Palisades Ave., Apt. 24 B , Fort Lee, N.J. 07024

Filed Apr. 15, 1977, Ser. No. 787,868
U.S. C. 211-194

1. A novel jewelry rack providing a variable capacity stor-
age and ease of assembly comprising: age and ease of assembly comprising:
a base for supporting the jewelry rack in the display area;
said base having a plurality of mounting rods extendin generally upwardly from and attached to said base to support said jewelry rack;
a plurality of vertically stacked modular display frames adapted for display of jewelry and supported by said
mounting rods; each of said modular display frames hav ing a plurality of corner posts and jewelry mounting frame members connecting said corner posts, each of said corner posts having a substantially vertical channel each adapted to receive one of said mounting rods, so that said modular
display frames are supported in a vertical stack of variable capacity upon which jewelry is displayed
and wherein the bottom of each corner post is substantially
horizontal and has a recessed area, the top of each of said
corner post being substantially horizontal, having an up-
wardly projecting area conforming with the upper adjacent recessed area in the bottom of the corner post of the modular display frame stacked above so as to provide for easier assembly of the jewelry rack by improving the stability of the vertical stack of moduar display frames
and wherein, said jewelry mounting frame member is a and whertin, seam having a substantially vertically disposed L-shaped cross section, the horizontal protion of said L-shaped cross section being directed toward the interior of said modular display frame so as to form an interior lip on said beam to facilitate attachment of jewelry mounting means to said jewelry mounting frame member.

TANDEM MERCHANDISE DISPLAY EQUIPMENT obn R. Radek, Hinsdale, III, asedignor to Ready Metal Manufacturing Company, Culcago, nu.
U.S. C. 211-189 Int. C. ${ }^{2}$ A47F $5 / 10$ (Clams

1. A knockdown frame for supporting merchandise display and housing equipment, comprising
(a) a pair of laterally spaced transverse beams of channel cross-section on the same level adjacent the lower end of
the frame, with the flanges of said chunnels the frame, with
downwardly,
(b) a vertical strut of channel form affixed to the downwardly facing flanges of each of said beams with the flanges of the channel of said strut extending outwardly, (c) a second pair of laterally transverse beams of channel frame and overlying said first pair of transverse beams, the flanges of the second pair of channels extending downwardly,
(d) means for joining the upper end of said vertical strut to the downwardly facing flanges of said second pair of
beams beams,
(e) a channeled lug welded to the lower end of each strut and projecting in a longitudinal direction from each of said
first-mentioned downwardly facing flanges, with the web first-mentioned downwardly facing flanges, with the web
of the lug uppermost and its inner portion having rectan gular recess adapted to embrace said strut, and the inner edges of said web welded to the respective flanges of said first-mentioned transverse beams, and
(f) a longitudinal beam of channel cross-section with the lugs and with the ends thereof disposed in channeled relation to said lugs and having a rectangular recess in the outer ends for embracing each vertical strut as well as openings in proximity thereto in alignment with corresponding openings in the webs of the lugs for receiving detachable interconnecting fastening means therebetween.

4,093,079

Geoffrey Wilton ROTARY COUPLER
 Filed Mar. 18, 1977, Ser. No. 778,901 U.S. C. 213-62 A

Int. Cl. ${ }^{2}$ B61G $1 / 38$

1. A rotary coupler for a railway car comprising a couple head having a shank extending rearwardly therefrom, said shank having an opening therein with a plurality of bearing surfaces, a coupler butt contiguous with the end of the shank said butt having a forwardly extending cylindrical member attached thereto which extends into the opening in the shank and a plurality of spaced bosses on said cylindrical member cooperating with the bearing surfaces for sustaining draft and cooperating
buff forces.
 Germany Filed Feb. 25, 1977, Ser. No. 772,265 Claims priority, application Germany, Mar. 1, 1976, 2608424 U.S. CI. 213-75 R

14 Climes

10. In a vehicular train including a lead vehicle and a fol ower vehicle hitched to said lead vehicle by a universal coupling, each of said vehicles being provideling comprises:
a pair of wheel mountings pivoted to the body of said lead vehicle on opposite sides thereof for swinging about a common axis transverse to the direction of vehicular motion;
a bolt centered on said axis interconnecting said wheel axis; and
pair of generally horizontal arms rigid with the bodies o said vehicles extending in said direction, one of said arms terminating in an annular inner knuckle traversed by sald bolt and provided with a spherically curved outer surface, the other of said arms terminating in an outer knuckle with a spherically curved inner surface surrounding said inne knuckle.

1. A low inertia transfer arm for rapid operation and for comprising of small or medium sized parts, said transfer arm comprising:
supporting arm adapted for connection at one end to a device for movement of said arm having at least two a pair of tongs comp;
a pair of tongs comprising a pair of jaws for gripping a part;
means mounting said tongs at the other end of said supporting arm, one of said jaws being rigidly attached to said supporting arm and the other of said jaws being movable relative thereto betwe
tions of said jaws; and tions of said jaws; and
eeans for controlling op
controlling means inc controlling means including;
a rocker lever comprising a pair of arms;
means mounting ssaid rocker lever for movement between wo stable positions, said rocker lever being arranged to
be movable between said stable positions by contact between a respective one of said arms and a fixed stop;
a torsion bar extending along said support arm fixed at one end to said movable tong jaw and at the other end to said rocker lever for rotation therewith about its longitudinal means mounting said torsion bar for rotation about its a said supporting arm.
4,093,081 MEDIUM SIZED PARTS cacques Yver, Greaoble, Prance, semignor to M caike des Pondret-Metafram, Paris, France

Flled Jan. 17, 1977, Ser. No. 759,743 Claims priority, application France, Feb. 27, 1976, 7605588 U.S.Cl. 214-1 BB | Int. C. ${ }^{2}$ B66C $1 / 54$ |
| :--- | 3 Claims

4,093,082

IRRIGATION PIPE LAYING AND PICK UP VEHICLE Melton Archie Goodsell, 2325 Olive Rd., Holtrille, Calif. 92250

Filed Jul. 30, 1976, Ser. No. 710,191
Int. Cl. ${ }^{2}$ A01G 25/02; F16L 1/00
U.S. CL. 214-1 PA 19 Clime

1. A vehicle for picking up and laying irrigation pipe of the ype consisting of a plurality of rigid sections and couplings prising
a vehicular frame having a raised platform,
inclined guide means mounted on said frame at a first end of said vehicle for guiding the end of a section of irrigation
pipe being picked up from the ground level to above the lipe being picked up from the ground level to above the said line of pipe and for guiding the pipe section down said guide means as said vehicle is operated away from said line of pipe,
of said sections of iad platform for supporting a plurality
uncoupling means for uncoupling a section of said pipe being picked up from the subsequent pipe section, said uncoupling means comprising angulation guide means for guiding the free end of the leading pipe section and
elevating said end relative to the longiudinal axis of the adjacent section.

4,093,083

APPARATUS FOR STACKING AND UNSTACKING SHEET MATERIAL, MORE PARTICULARLY GLASS Karl-Heinz Klams, Cologne, Germany
Karl-Heinz Klana, Cologne, Germany, asmignor to Spiegelglas
werke Germania, Zweigriederinecung der Glaceries de Saint Roch S.A., Cologne, Germeny
Contimantion of Seer. No. 676,334, Apr. 12, 1976, abondoned. This applicatios Aus. 9, 1977, Ser. No. 823,125 Claims prioritt, applice
U.S. C. 214-7

1. In an apparatus for adding to and removing glass sheets from a stack of glass sheets arranged in vertically inclined position, one upon another, the apparatus having a pivotally
mounted arm with a free end, means for reciprocating said arm between arm with a free end, means for reciprocating said arm der mounted on said arm adjacent said free end and having od, means for supplying a vacuum plate mounted on said rod, means por supplying air under pressure to said cylinder vacuum plate, , means for accommodating variations in spacing
between the face of the stack of sheets and the limit of travel of said arm toward the face of said stack, the spacing between said arm and the face of said stack changing from sheet to sheet; said accommodating means including a first pressure sensitive sensor means communicating with said vacuum plate or reading the magnitude of the vacuum estabished therein sensitive sensor means communicating with said pneumatic cylinder for reading the change in pressure when forward
movement of the piston encounters sesistance of a magnitude movement of the piston encounters resistance of a magnitude
in excess of a predetermined value; said first and second sensor in excess of a predetermined value; said tirst and second sensor
means limiting the outward extension travel of said piston rod and preventing said piston rod from exerting excessive pres sure against the glass sheets.

4,093,094
FREIGHT-TRANSPORTATION SYSTEM WITH ROAD/RAIL TRANSSHIPMENT Karl Ringer, Frauenbergestrasse 30, Bad Waldsee, Germany
(D. 7967)
Filed Aug. 25, 1975, Ser. No. 607,509
Claims priority, application Germany, Avg. 24, 1974, 2440682
U.S. C. $21-11$ R 26 Claims 1. A freight-transportation system serving a given territory,
a rail network having a multiplicity of transfer stations each forming a junction between at least one railroad track and a local road;
loading and unloading bays at said stations accommodating
road vehicles adapted to carry modular loads of predeter mined dimensions;
conveyor means at each of said stations for transferring loads between said bays and respective spaces on flatcars a computer at each of said stations controlling the operation of said conveyor means thereof in response to destination and available-space information fed in, the computers of adjacent stations being interconnected for exchanging said information;
said conveyor , ransfer paths extending each between a respective bay and an assigned unit area on any of said trains halting in a predeter-
mined position on said track, each of said transfer paths includ-

ing a set of rollers arrayed in at least one row transverse to said track and drive means controlled by said computer for displacing said rollers to advance a load resting thereon, said track
being disposed in a well flanked by at least two raised platbeing disposed in a well flanked by at least two raised plat-
forms in line with load-carrying surfaces of said flatcars, said platforms being each traversed by a multiplicity of said transfer paths, said flatcars being provided with rows of further rollers forming extensions of said transfer paths in said predetermined position, the platforms proximal to said track being longitudinally divided into sections each substantially coextensive in
length with a flatcar of any of said trains, each of said sections being individually transversely shiftable toward an aligned stationary flatcar of any of said trains and being further shiftstationary flatcar of any of said trains and being further shi
able across said well in the absence of a train on said track.

APPARATUS FOR MAKING READY-MIXED CONCRETE both of Germany, assignors to Ingrid Hudelmeler Ulm, both of Germany, assignors to Ingrid Hudelmaier, Ulm, Claim Filed Mar. 11, 1977, Ser. No. 776,585 Claims priority, application Germany, Mar. 16, 1976, 2611055 U.S. C. $214-16$ R ${ }^{\text {Int. Cl. }{ }^{2} \text { B65G 3/20 }}$

1. Apparatus for delivering batches of ready-mixed concrete materials from a bunker to concrete mixer trucks comprising: cal axis and an including a central tower having a vertisaid cross arm structure including a plurality of ing radially outwardly from said axis of said central tower
and angularly spaced apart from each other and said axis
at regular angular intervals:
at regular angular intervals
a plurality of transfer containers, at least one transfer container mounted on each of said arms, each transfer co
tainer comprising a plurality of separate material storag compartments therein and each container having a clos able outlet at the bottom thereof;
actuating means on said apparatus for operating said outlets: rive means for effecting rotation of said cross arm structure
relative to said axis to move said transfer containers along a closed circular path of movement around said axis between a filling station and a plurality of other stations along said path, including at least one emptying station above a position whereat a concrete mixer truck havin
positive mixing tools therein can be accommodated,
said drive means including indexing means for effectin rotation of said cross arm structure in indexed incrementa amounts corresponding to the distance between eac adjacent pair of stations;
conveyor means located clear of said circular path of move-
ment of said transfer container and clear of said cross ment of said transier container and clear of said cross arm position above said filling station for delivery to a transfer container thereat;
and an operator's control station including operator and said drive means.

4,093,086
WAREHOUSING SYSTEM
Lester Wade Lucas, and William Marion Albers, both of S.
Louis County, Mo., assignors to Wefterau Incorporated, St. Louis, Mo.

Filed Feb. 9, 1976, Ser. No. 656,315
Int. Cl. ${ }^{2}$ B65G $47 / 00$
U.S. CI. 214-16.4 A

1. A merchandise warehousing arrangement comprising support surface, a pluraity of rows of a multiplicity of storage racks in aligned side by side relationship, adjacent ones of said rows being parallel and spaced apart a distance sufficient to define therebetween an access aisle, a plurailty of loading
vehicles adapted to move therein, a merchandise outbound conveyor elevated above said support surface and having its path of travel in axially perpendicular relationship to the longitudinal axis of the storage racks rows, conveyor spurs elevated above said support surface connecting the proximate ends o preselected access aslevand conveyor elevated above said support surface and having its direction of travel in axially parallel relationship to the longitudinal axis of said rows of storage racks, said firs inbound conveyor presented along the length of and parallel to at least one of said rows of storage racks and extending subload handling zones being at opposite ends of said rows of storage racks, said first and second load handling zones respec ively providing first and second vehicle loading docks each having a respective boundary spaced from the ends of said
rows of storage racks and extending in perpendicular relationship to the longitudinal axis of said rows of storage racks, a second merchandise inbound conveyor elevated above said
support surface and overlying a portion of said second load support surface and overlying a portion of said second load
handling zone, said second merchandise inbound conveyor being positioned above said second loading dock and adjacent said second loading dock boundary and having its travel path long said boundary in axially perpendicular relationship to the ongitudinal aris of said rows of storage racks and disposed in paced apart relationship to the ends of said storage rack rows
emote from said outbound conveyor, a railway siding presented upon the side of said load handling zone remote from said storage racks and in axially perpendicular relationship to said storage racks, said second inbound conveyor means presented in overlying relationship to the portion of said load
handling zone immediately proximate said railway siding, said handling zone immediately proximate said railway siding, said irst inound conveyor being spaced at its ends from said
outbound conveyor and said second inbound conveyor, said merchandise outbound conveyor being positioned above said first loading dock and adjacent said loading dock boundary and having its travel path along the last said boundary, said
merchandise outbound conveyor overlying a portion of said first load handling zone, said first and second inbound conveyors permitting inbound merchandise handling at both said first and second load handling zones without interference with outbound merchandise handling at said first load handling zone, the extent of elevation of said merchandise outbound
conveyor, said conveyor spurs and said first and second inbound conveyors being sufficient to permit movement of fork trucks or other mobile loading units therebeneath and to allow of facile load handling therebeneath by personnel with respect vehicles adjacent each of said first and second loading dock boundaries.

UNLOADING TUBE 4,093,087
UNLOADING TUBE ARRANGEMENT FOR COMBINE Frans J. G. C. DeCoene, Zedelgem, Belgium, assignor to Sperry Rand Corporation, New Holland, Pa. Cleims priority, application United Kingdom, Jun. 29, 1976, 26947/76

1. A combine harvester comprising:
a grain tank with a discharge opening at one side of the an unloading tube having a main portion and an end portion angled with respect to the main portion, the angled portion being pivotally mounted on the grain tank with the
unloading tube in communication with the discharge opening, the pivot axis between the tube and the grain tank being inclined so as to extend upwardly in a direction owards the central vertical fore-and-aft plane of the
movable throughout a range of unloading positions in all support and the vehicle to clear the tire of the vehicle rear laterally with respect to of the tube extends substantially overhang.
an unloading auger disposed in the main portion plane, unloading tube and having a receiving end spaced from he pivotal connection between the tube and the tank,
a grain tank auger extending within the grain tank and having a discharge end spaced from the pivotal connection between the tube and the tank,
intermediate shaft extending between the distan an intermediate shaft extending between the discharge end
of the grain tank auger and the receiving end of the unof the grain tank auger and the receiving end of the un-
loading auger, the intermediate shaft being telescopic, and a pair of universal joints, respectively disposed at the ends of the intermediate shaf and at opposite sides of the pivotal connection between the tank and the tube, the universal
joints respectively connecting the discharge end of the grain tank auger to one end of the intermediate shaft, and the receiving end of the unloading auger to the other end of the intermediate shaft.

4,093,088

UNDERFLOOR TIRE STORAGE Willianm V. Hildebrandt, and Allan G. Miller, both of Sterling
 Filed May 12, 1977, Ser. No. 796,127 U.S. C. 214-451 Int. C.2 ${ }^{2}$ B62D 43/04

1. An arrangement particularly in goods vehicles provided with a loading platform of the kind comprising a continuous
conveyor means, two pulleys, one positioned at the rear end of said platform and the other one at the front end of said platform, said continuous conveyor means running over said two pulleys, equidistantly spaced driving carriages provided on said conveyor means, at least two load-carrier means in the one of said driving carriages, the arrangement comprising an outwardly projecting driving arm on each one of said driving carriages, members mounted on said arm at various distances from the respective carriage, each one of said members ar ranged to connect a load carrier to an associated driving car riage, guide rails provided on the lower face of each one of said end of said load-carrier means, the arrangement comprising guide means matching said rails, said guide means provided on said driving arms, a blocking means arranged on said driving arm at each one of said guide means, and a catch shoulder formed on each load-carrier means, said guide means arranged to cooperate with said catch shoulders, and wherein said arm of which, the blocking arm, is arranged to cooperate with said catch shoulder formed on said load-carrier means, the arrangement comprising a piston slidably arranged in a cylin der at the rear end of said loading platform, said piston arranged when displaced upwards, to abut against the opposite blocking arm against the action of a spring means out of en gagement with said catch shoulder formed on that one of said load-carrier means which at that moment is positioned immediately above.

4,093,090

SPREADER FOR LIFTING CONTAINERS
U.S. C. 214-620

Int. C. ${ }^{2}$ B66F 9/14
10. In a generally rectangular container lifting spreade frame having a longitudinal axis and container engaging devices at the corners thereof, the improvement comprising; said container engaging devices being slidably movably mounted
on said frame for movement in unison in the same direction generally perpendicular to said longitudinal axis without mov

ing upwardly or downwardly relative to said frame, and power means for so moving said container engaging devices.

4,093,091
LOAD MOMENT SENSING SYSTEM FOR LIFT TRUCKS Edmund Greage, Willowick, and Grant C. Melocik, Chardon,
both of Ohio, assignors to Towmotor Corporation, Mentor

Filed Jun. 30, 1976, Ser. No. 701,336

 U.S. CI. $214-673$1. A lift truck comprising
vehicle frame;
ground engaging means on said frame whereby said truck may traverse the underlying terrain;
an upright mast adjacent an end thereof and pivoted to said frame about a substantially horizontal axis;
lift carriage mounted on said mast for up and down move. ment hereon,
said end about said axis;
second motor means for moving said lift carriage up and down on said mast;
anually operable control means for selectively energizin said first and second motor means;
overload sensing means on said frame; means for sensing when said
mined position on said mast:
migned producing means operatively connected to said manu-
signal producing means operatively connected to said manal
ally operable control means for providing signals repre-
senting tilt toward, tilt away, up and down carriage commands; and
logic system connected to and responsive to both said sensing means and said signal producing means for (a) preventing energization of said first motor means for
tilting in either direction and said second motor for lifting when an overload has been sensed and when said signal producing means are issuing an up carriage command signal;
(b) allowing energization of said first motor means for tilting loward said frame only when an overload has been sensed and when said carriage is above said prede-
termined position and when said signal producing means are not issuing an up carriage command signal; and
c) allowing energization of said first motor means for tilting in either direction when an overload has been position.

2. In a load lifting apparatus which comprises a primary load member pivotally mounted about a generally horizontal axis one another pivotally connected to the frame and the primary load member to provide impetus for pivotal movement therebetween, a secondary load member movable relative to the primary load member, a lift cylinder and a lift piston movable relative to one another connected to the primary load member and the secondary load member to provide impetus for linear controlling flow of pressurized fluid from pump means to said ilt cylinder and lift cylinder valve means for controlling flow pressurized fluid from said pump means to said lift cylinder, an improvement for protecting said apparatus from overbalancing by sensing a moment created by a load on said apparatus, comprising:
valve sensing simultaneously a lift pressure force propor-
tional to a lift pressure in a head end of said lift cylinder tional to a lift pressure in a head end of said lift cylinder and a ait pressure force proportional to a till pressure in a pressurized fluid from the rod end of said till cylinder to said till cylinder valve means and from said lift cylinder valve means to the head end of said lift cylinder responive to the greater of said lift pressure force and said til pressure force exceeding a predetermined value,

3. An improvement in a hermetically sealed container for storing and dispensing sterile liquids, said container including a botle with a neck defining a dispensing outlet, said bottle
having a transverse abutment means on the neck surrounding having a transverse abutment means on the neck surrounding
the outlet, said improvement comprising, in combination: the outlet, said improvement comprising, in combination:
an overcap having a cylindrical side wall and a top w an overcap having a cylindrical side wall and a top wall
fitted on said bottle neck over said dispensing outlet, said
overcap being hermetically sealed to said bottle neck. overcap being hermetically sealed to said bottle neck;
an outer ring threadedly interfited over said overcap an an outer ring threadedly interfitted over said overcap and
adapted for downward rotation to abut said abutment adapted for downward rotation to abut said abutmen
means and jack said overcap off said bottle neck; and axially interlocking means on said overcap and said outer ring limiting upward displacement of said outer ring with respect to said overcap.

HOME CANNING SYSTEM Ned J. Smalley, Perrysburg, and Ralph H. Whitney, Whitehouse, both of Ohio, assignors to Owens-Illinois, Inc., Toledo, Filed Mar. 28, 1977, Ser. No. 782,272
Int. C. ${ }^{2}$ B65D 45/10

1 Claim

1. An improved home canning closure system for a container having a threaded neck portion terminating in an annular rim defining the periphery of an open mouth, said closure system including:
a metal
container covering and closing the open mouth of said the perinhery of its a sealant means positioned around the periphery of its lower surface and adapted to sealingly engage the annular rim defining the open mouth of said
container, said metal lid including an upwardly and outwardly tapered portion positioned radially inwardly from said sealant means; and
a plastic ring adapted to be placed over the metal lid and including an annular toy panel portion and a skirt portion depending therefrom, the skirt portion incorporating
buttress style threads adapted to engage the threaded neck portion on said container, the annular top panel portion including an upwardly and outwardly inclined ramp por tion on the interior surface adapted to engage the tapered portion on said metal lid, and a reduced thickness section formed at the junction of said annular top panel portion
and said skirt portion adapted to cooperate with said threaded engagement between the plastic ring and container to form a spring means to maintain a uniform force on said metal lid to bias the metal lid into sealing engagement with said container, said tapered portion on said
metal lid and said inclined ramp portion on said plastic ring cooperating to allow flexing of the metal lid out of sealing engagement with said container when the force on said metal lid due to the pressure within said container exceeds the uniform force of said spring means on said
metal lid to thereby vent said excess pressure from said container.

STOPPER-COVER 4,093,09

STOPPER-COVERING CAPSULE FOR A BOTTLE ierre Babiol, Villefranche-sur-Saone, France, assignor to So-
ciete Nouvelle de Bouchons Plastiques S.N.B.P., Paris, France Filed Feb, 23, 1977, Ser. No 771,129
Flied Feb. 23, 1977, Ser. No. 771,129
Claims priority, application France, Feb. 27, 1976, 7606230 Jul. 13, 1976, 7622021
U.S. Cl. 215—307

Int. Cl. ${ }^{2}$ B65D 41/18

1. A deformable plastic capsule in combination with a bottle having a neck and having a bore extending into the bottle through an upper rim and having below the rim an enlarged annular collar which is trapezoidal in cross-sectional shape, the ower periphery of the collar being stepped inwardly at a first angle to the vertical to form an annular anchor surface, the a base portion sh cover its bore;
a thin-wall cylindrical skirt portion integrally joining the base portion, the skirt portion being of lesser diameter than the diameter of the bottle neck and conforming ap when fitted thereon, and the skirt portion being of axial length greater than the distance between the rim and the anchor surface of the collar; and
the skirt portion having an annular inwardly-extending re taining rib which is triangular in cross-section and extends around the inner surface ore shing waced from the base portion of the capsule and located to fit below the lower periphery of the collar against the anchor surface, the retaining rib having an upper-oblique surface which before the capsule is fitted to a botle forms with the axial sidewall of the skint portion a second angle, and the rib being so formed that after the capsule be inclined inwardly in the vicinity of the lower
periphery of the collar at a third angle, the sum of the pecond and third angles equalling the first angle.

4,093,096

REMOVABLE STOPPER FOR A SCREW-NECK BOTTLE Jacques Julien Augros, Villiers le Bel, France, assignor to So- an clete Anonyme dite: Arts et Techniqnaes Noovelles, France Filed May 19, 1977, Ser. No. 798,4
Int. C1. ${ }^{2}$ B65D 41/04 U.S. CI. 215-330

4 Claims

1. A removable stopper for a screw-neck bottle wherein the bottle neck is formed with a radial projection arranged transverse to the thread at the lower end of the external surface thereof, said stopper comprising:
a generally cylindrical closure having a closed upper end and a lower open skirt portion, the internal surface of said
skirt being formed with a thread configured to mate with the thread on the bottle neck;
a first radial projection at the lower end of said internal thread and arranged transverse thereto; and
a second radial projection parallel to and spaced from said first projection, said second projection being surrounded and by a zone of the material of said skirt, said zone bearing said bottle neck is engaged by said stopper, said weakened zone flexes to permit said second projection to move radially upon abutting the projection on said bottle neck to pass thereover when moving in eilher direction, said irst and second projections being arranged and configured to closely confine the projection

4,093,097

PLASTISOL COMPOSITION AND CONTAINER CLOSURE GASKET MADE THEREFROM Walter Robert Wazolek, Sykesille, Md., assignor to W. R Grace \& Co., New York, N. Y.
Continuation-in-part of Ser. No. 563,018, Mar. 28, 1975, Pat. Continuation-in-part of Ser. No. 563,018, Mar. 28, 1975, Pat.
No. $4,020,966$. This application Jan. 10, 1997, , Ser. No. 558,093 No. 4,020,96. Int. C65D 53/04, 53/06; C08K $5 / 17$; C08L $23 / 00$ U.S. C. $215-349$

1. A plastisol composition comprising (a) a copolymer resin 1. A plastisol composition comprising (a) a copolymer resin
of a normal a-olefin and maleic anhydride ($1: 1$ mole ratio) of a normal a-olefin and maleic anhydride ($1: 1$ mole ratio) microns and having the structure

$$
\left[\begin{array}{l}
-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{B} \\
1 \\
\mathrm{R}
\end{array}\right]
$$

wherein B is a member of the group consisting of

$-\mathrm{CH}-\mathrm{CH}-$
1
COOH COOH
R is H or $\mathrm{C}_{x} \mathrm{H}_{2 x+1}, x$ is 1 to 16 and n is $2-300$, and (b) 65-600 parts/ 100 parts copolymer of an amine plasticizer having the parts/100
$\mathrm{R}^{\prime}-\left(\mathrm{NH}_{2}\right)_{x}$
herein x is at least one and \mathbf{R}^{\prime} is an organic moiety having an aromatic, aliphatic, cycloaliphatic, heterocyclic or a combina tion of aromatic and aliphatic groups therein.
2. A container closure comprising a cap having deposited herein a resinous mass functioning as a gasket to seal the container when the closure is in sealing relationship with the container, said resinous mass comprising a fluxed plastisol of a a-olefin and maleic anhydride ($1: 1$ mole ratio) having a particle size in the range from about 0.1 to about 1500 microns and having the structure

$$
\left[\begin{array}{l}
-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{B} \\
1 \\
\mathrm{R}
\end{array}\right]
$$

wherein B is a member of the group consisting of
and

R is H or $\mathrm{C}_{x} \mathrm{H}_{2 x+1}, x$ is 1 to 16 and n is $2-300$, and (b) $65-600$ parts/100 parts copolymer of an amine plasticizer having the
$\mathrm{R}^{\prime}-\left(\mathrm{NH}_{2}\right)_{x}$
wherein x is at least one and R^{\prime} is an organic moiety having an aromatic, aliphatic, cycloaliphatic, heterocyclic or a combination of aromatic and aliphatic groups therein.

4,093,09

CLOSURE COMPOSITION AND CONTAINER CLOSURE GASKET MADE THEREFROM Cr Robert Wszolek, Sykesille, Md., assignor to W. R. Grace \& CO., New York, N.Y.
Continuation-in-part of Ser. No. 563,018 , Mar. 28, 1975, Pat. No. 4,020,966. This application Jan. 10, 1977 , Ser. No. 758,232 Int. C1. ${ }^{2}$ B65D 53/04, 53/06; C08K 5/16; C08L 23/00 1. A plastisol composition comprising (a) a compolymer resin of a normal α-olefín and maleic anhydride ($1: 1$ mole ratio) having a particle size in the range from about 0.1 to about 1500 microns and having the structure

$$
\begin{aligned}
& \text { Coso }
\end{aligned}
$$

wherein B is a member of the group consisting of

R is H or $\mathrm{C}_{2} \mathrm{H}_{2 x+1}, x$ is 1 to 16 and n is $2-300$, and (b) $65-600$ parts/100 parts copolymer of an isocyanate plasticizer having

R - $-(\mathrm{NCO})_{y} \mathrm{ps}$
wherese
in wherein x is at least one and R^{\prime} is a C_{1} to C_{36} organic moiety
selected from the group consisting essentially of aryl, aralkyl,
cycloalkyl, alkyl, substituted aryl, substituted arally, substicycloaikyl, alkyl, substituted aryl, substituted aralky, sul
tuted cycloalkyl, substituted alkyl and mixtures thereof. 2. A container closure comprising a cap having deposited container when the closure is in sealing relationship with the container, said resinous mass comprising a fluxed plastisol of a composition comprising (a) a copolymer resin of a normal α-olefin and maleic anhydride ($1: 1$ mole ratio) having a particle
size in the range from about 0.1 to about 1500 microns and having the structure

$$
\left[\begin{array}{l}
\left.{ }_{\mathrm{R}}^{\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{B}}\right]_{0} . \\
\hline
\end{array}\right.
$$

wherein B is a member of the group consisting of

R is H or $\mathrm{C}_{2} \mathrm{H}_{2 x+}, x$ is 1 to 16 and n is $2-300$, and (b) 65-600 Rarts/100 $\mathrm{C}_{2} \mathrm{H}_{2 x+1} x$ is 1 to 16 and n is $2-300$, and (b) 65-600 parts/100 part
$\begin{aligned} & \text { alkys, substitued aryl, subsstituted alalkyl, } \\ & \text { subssituted cycloalky, substitued alkyl and }\end{aligned}$
$\begin{aligned} & \text { substituted cycloalk } \\ & \text { mixtures thereof. }\end{aligned}$

4,093,099

RECTANGULAR CONTANER FOR THE AGING OF ALCOHOLIC BEVERAGES
James E. Spooner, 2360 A 46 Ht St, Los Alamos, N. Mex. 87544 Filed Sep. 11, 1975, Ser. No. 612,342
Int. Cl. ${ }^{2}$ B65D $9 / 12,25 / 00,61 / 00$
U.S. C. 217-72

1. A box-like container for the aging of alcoholic 3 Chims and the like, seid container being comprised of six rectangular planar panels, any three mutually adjacent panels being mutually perpendicular to each other and defining a corner of said container, any one panel contacting an adjacent panel in face to
edge relation and the third panel of any three mutually cent panels in edge to face palation the rectantually adjameeting at each corner in overlapping face to edge relation and meeting at each corner in overlapping face to edge relation and
leaving a cubical gap at said corner and a plug means provided
at said gap to prevent leakage at said corner all of said panels and the plug means being held in tight box-like form by a

prestressing means to provide liquid tight contact at the face to edge and edge to face juncture of said panels.

PRESSURE VESSEL CONSTRUCTION AND METHOD Hugh Ford, London, England; Georpe J. Mraz, Warren, Pa., and Jean Noel Simier, Lillebonne, France, assignors to Naktional
Force Company, Irvine, Pa, and Societe Cnimique des CharForce Company, Irvine, Pa. and Societe Chimique des CharFiled Oct. 28, 1975, Ser. No. 626,084 Int. Cl. ${ }^{2}$ B65D 7/22, 7/44
U.S. C. $220-3$

1. An improved vessel which comprises: (a) a pressure vessel having a unitary, high strength alloy steel side wall;
(b) at least one flange integral with and extending radially outwardly from said side wall;
(c) at least one ring extending entirely around but not welded to said flange, said ring being comprised of a weldable material having a tensile strength which is less than the tensile strength of the wall of said pressure vessel; (d) a temperature control jacket surrounding and radially spaced outwardly from the wall of said pressure vessel, at least one end of said temperature control jacket being (e) ring compressing means extending entirely arour contact with said at least one weldable ring, said ring compressing means being tensilely stressed and said at least one weldable ring being compressively stressed against said flange by said ring compressing means.

4,093,101

PARTITIONED PLASTIC CASE
Bernard Braun, 834 Moore St, Woodmere, N.Y. 11598
Filed Aug. 25, 1977, Ser. No. 827,468
Int. C. ${ }^{2}$ B65D $1 / 36,25 / 04,2506$
U.S. C. 220-22

1. In a molded plastic case having a pair of spaced-apart sims walls, a pair of spaced-apart end walls and a bottom wall
connected together to form a generally rectangular shell, the to 16° with respect to said plane, said second bead and said improvement comprising a partition structure molded in situ in second flat wall portion being dimensioned so that the distance including A. one or more partition sections extending generally per pendicular to the case bottom wall, and
B. means formed integrally with each partition section and the case bottom wall connecting the partition section to
the case bottom wall, said connecting means comprising the case bottom wall, said connecting means comprising
2. means defining an opening in the case bottom wall, 2. a tab projecting from the bottom edge of the partition
section into said opening,

3. a pair of webs extending in opposite directions from the lower edge of said tab to the opp
opening near the top thereof, and
4 a pair of projecting surfers locit just below the junctions of the webs and the adjacent opening edges, said surfaces extending toward one another and being substantially coextensive with said webs so that after the juntions between the webs and the opening edges are broken to free the partition section
from the shell, the webs can be flexed so that their free from the shell, the webs can be flexed so that their free
ends resiliently engage under the projecting surfaces and re-anchor the partition section to the bottom wall.

END PANEL FOR CONTAINERS
John L. Kraska, Riverside, III., assignor to National Can Corporation, Chicago, III.

Filed Aug. 26, 1974, Ser. No. 500,706
U.S. C. 220-67

1. An end panel for containers consisting of a panel having a substantially flat central panel portion, a first bead surrounding
said central panel portion and comprising an inverted U. shaped arcuate portion extending from and raised above saic central panel and extending downwardly into a first flat wall portion, said first bead having a first radius and said first flat
wall portion defining an angle greater than 10° and less than wall portion defining an angle greater than 10° and less than
16° with respect to a plane extending perpendicular to said flat central portion, a second bead extending from the outer end of said first flat wall portion and comprising a U-shaped portion, said first flat wall portion having a length sufficient to locate said second bead entirely below the level of said centra panel, a second flat wall portion extending upwardly from said sec
ond bead, said second flat wall portion defining an angle less han 4 with respect to said plane, a third flat wall portion means, so arranged and constructed that upon said compres integral with an outer cage ofining an angle in the range of 14 skirt of said lid is forced outwardly.

RUBBER DIAPHRAGM TYPE DOOR LOCKING MECHANISM
John W. Hutchinson, Erie, Pa., assignor to American Sterilizer
Company, Erie, Pa.
Filed Aug. 26, 1976, Ser. No. 717,918 Int. Cl. ${ }^{2}$ B65D 45/00
U.S. C. $220-316$

4,093,105 Walter W. Russell, Philader WITH VENT MEANS Cinnaminson, N.J., assignors to N. T. Gates Company, Pennsauken, N.J. N.J., assignors to N. T. Gates Company, Penn2 Claims U.S. CI. 220—373 Int. C. ${ }^{2}$ B65D 51/16

1. A container comprising a plastic cup-shaped body, and a plastic cap removably fitting on said body, each of said body and cap having a plurality of small holes therethrough with said holes being larger in area at the inner surface of the container than at the outer surface thereof.

4,093,106

1. A door locking mechanism for a pressure vessel having a door (10), to prevent opening of the door (10) when gas in said chamber (41) is under pressure on a pressure side of said door comprising,
a lock bod
fixed to said door (10) in an opening in said door (10) and
shaft (30) extending through said opening in said door (10) and adapted to engage a lock on the outside of said doo (10),
irst teeth (31) on said lock body (20),
first teeth (31) on said lock body (20),
means (21) supporting second teeth (32) on said shaft (30) means (21) supporting second teeth (32) on said shaft (30)
overlying said first teeth ($\mathbf{3 1}$) on said lock body (20), pressure plate (24),
said means on said shaft engaging said pressure plate (21),
an annular seat (23) supported on said lock body (20) and having a fir
body (20),

APPARATUS FOR DETACHING WIRES CUT TO
body (20),
ENGTH FROM A DISORDERED BUNDLE OF WIRE Graz, Austria, assignors to EVG Entwicklungs-u. Verwertungs Gesellschaft mbH, Graz, Austria
Claims priority, application Austris, Apr. 2, 1975, 2506/75
U.S. C. 221-224 Int. C. ${ }^{2}$ B65G $61 / 00$

8 Clims
eid annular seat (23) having a bore therethrough and counterbore of said bore terminating in a second flat sur face (37) surrounding said bore, said second flat surface being spaced outwardly relative to said vessel from said first flat surface,
said pressure plate (24) being disposed in said counterbor and adapted to rest on said second flat surface (37),
said pressure plate (24) and on said first flat surface (23) means sealing said diaphragm (25) to said first flat surface o said seat (23) providing a closure for said bore and said counterbore,
said counterbore in said seat ($\mathbf{2 3}$) being defined by an annular contoured surface (39) inclined from said first flat surface
and terminating at said second flat surface (37) and said and terminating at said second flat surface (37) and said
contoured surface and said pressure plate being adapted to provide a smooth, continuous surface for supporting said diaphragm (25) when a gas under pressure in said vessel forces said diaphragm and in turn said pressure plate outwardly towards said second flat surface to in turn force said second teeth into engagement with said first teeth
whereby said shaft is restrained against rotation, thereby preventing said lock from being opened when a pressure exists in said chamber.

1. An apparatus for detaching wires cut to length from a tainer for said bundle of wire, an advancing comprising a conLainer for said bundle of wire, an advancing device for advanccent an end of said container and being arranged to move said wires one at a time in a direction transverse to their longitudinal axis against a stop, a pair of conveyor rollers, said conveyor rollers having a variable spacing between their axes and being mounted adjacent said stop, said rollers being arranged to
grasp the end of each wire one at a time as it is brought against said stop by said device, and to pull said wire out of said bundle in a substantially axial direction.

4,093,107

SPRAYING EQUIPMENT
Denis John Allman, Chichester, and Lionel IVor Alfred Taylor Southampton, both of Engiand, assignors to E. Allman and Filed May 14, 1976, Ser. No. 686,593 21028/75
U.S. C. 222-23

Int. C1. ${ }^{2}$ B05B 9/06

1. A device for determining the volume of 9 Claims which is applied per unit area of ground by spraying equipquid
comprising means for generating a first electrical signal repre senting the rate of supply of spraying liquid to the ground, speed at which the equipment is traversing the ground, fun tion generating means, means for applying said first and said second electrical signals to said function generating means for generating in response thereto an output signal equal to the

first and second signals, the said predetermined factor repre senting the ratio between the distance travelled by the equip. ment and the ares of ground to which spraying liquid is applied
during travel over that distance so that the output signal represents the volume of spraying liquid applied to unit area of the ground, and means for applying said output signal to a visual indicator means, which provides a visual indication of said volume applied to unit area of ground.

SYRINGE ADAPTED TO OVERCOME A PRESSURE SYRINGE ADA PESISTANCE

$$
\begin{aligned}
& \text { RESISTANCE } \\
& \text { el, and Peter Grun }
\end{aligned}
$$

Wolfgang Hein, Dassel, and Peter Grundmann, Konigswinter Woifgang Hein, Dassel, and Peter Grundmann, Konigawinter,
both of Germany, mignors to Carl Schleicher \& Schull, Einbeck, Germany
Continuntion of Ser. No. 594,633, Jul. 10, 1975, abandomed This appllcation Dec. 14, 1976, Ser. No. 750,427
The Claims priority, application Germany, Nov
Int. Cl. U.S. C. 222-401

A syringe for expelling a liquid medium for filtration, said syringe comprising:
a first cylinder cooperating with a first piston having a first hollow piston rod and defining a first pressure chamber, the hollow portion of said hollow piston rod defining a second cylinder having a smaller cross section than said first cylinder and cooperating with a second piston having a second piston rod and def. a bore formed within said firs and second pressure chambers;
valve in said bore having a means biasing said valve closure element to open the valve upon an over-pressure in said second pressure chamber; an inlet/outlet attachment for the liquid medium opening into said first pressure chamber
an air inlet duct formed in said second piston opening into said second pressure chamber;
a second valve that opens in response to an underpressure in said second pressure chamber during an air intake stroke of said second piston and closes in response to an air over-pressure in said second pressure chamber during an
air pressurizing stroke of said second piston, said second valve being in communication with said air inlet duct; a cover for said first cylinder;
a stop on said first piston which is able to abut said cover in the extreme intake stroke position of the first piston; and with said liquid medium charged into said first pressure being expelled by means of an air over-pressure provided upon said liquid medium within said first pressure chamuper by means of a pumping action of said second piston.

EXPANSIBLE 4,093,109 XPANSIBLE TROUGH APPARATUS FOR USE IN PRODUCING POLYURETHANE FOAM Milford J. Schrader, $\mathbf{5 2 5}$ Cinderella Dr., Claremont, Calif. Filed Sep. 20, 1976, Ser. No. 725,100 U.S. C1. 222-527 Int. C.'? B29D 27/00, 27/04

8. In an apparatus for use in the production of continuous buns of polymeric foam from a mixture of liquid foam reac ants, an improvement comprising a pair of open ended trough sections, one of said sections being slidably mounted within the
other to define an expansible trough, a pair of detachable end ections, one of said sections being disposed at the extended end of each of said trough sections, means for securing each o said end sections to said extended ends of said trough sections, guide means carried by said end sections and said trough sec-
tions, said means carried by said end sections cooperating with said means carried by said trough sections for aligning said end sections with said trough sections and a protective lining dis posed within the interir said trough sections to preven contact reactants.

NOISE AND FOULING REDUCER FOR PowDER-ACTUATED TOOL poration, New Haven, Conn.
Filed Mar. 11, 1977, Ser. No. 776,570
US. C. 227-9

1. A powder-actuated tool for driving fasteners into suppor
ing structures, said tool comprising: a firing chamber for re-
ceiving a powder charge; a barrel having a bore into which ceiving a powder charge; a barrel having a bore into which
combustion gases from the powder charge are directed to power the tool; gas passage means extending from said barrel power into a chamber on the tool for receiving the combustion gases; and a plurality of baffle plates mounted in said chamber
to provide increased surface area therein for deposition of to provide increased surface area therein for deposition of
fouling deposits from the combustion gases and for muffling Youling deposits from the combustion gases and for muffling
the sound of the expanding combustion gases; said baffle plates being arranged in a stack within said chamber with passages being formed in the individual baffle plates to allow the com-
bustion gases to infiltrate said stack each of said bafle plates bustion gases to infiltrate said stack; each of said baflie plates
being identical to the others in construction, and said baffle plates being loosely stacked within said chamber so as to be removable therefrom for cleaning; and spring means for biasing said baflle plates into engagement with each other to retain
the composition of said stack. the composition of said stack.

4,003,111
AUTOMATED APPARATUS FOR JOINING WOO PLATES IN SIDE-BY-SIDE RELATION
ko Katob, Ikeda, Japan, asignor to Suntory Ltd, Osake, Sedahiko Katoh, Ikeda, Japen, asaignor to Suntory Ltd., Osak
Japan
Continuation-in-part of Ser. No. 557,117 , Mar. 10, 1975, abondoned This application. Jan. 6, 1977, Ser. No. 7577,152
Claims priority, application Japan, Jul. 4, 1974, 49-76715 U.S. C. 227-26 Int. C.2 ${ }^{2}$ B27F 7/02 16 Claims
adapted to admit nails therethrough and spaced given distances apart, said sliding plate being disposed under bu in contact with said bottom opening of said hopper and
slidably movable relative to said hopper between at least a first position and a second position;
nail guide means located below said sliding plate, between the platen means and said nail driver means, said nail guide means having nail guide channels therein, a first plurality of said nail guide channels being brought in registration with a first given number of said slits of said sliding plate
for receiving nails in said first plurality of channels thereof which are in registration with said first given number of slits when said sliding plate is in said first position, and a second plurality of nail guide channels being brought into registration with a second given number of said slits of
said sliding plate for receiving nails in said second plurality of channels thereof when said sliding plate is in said second position, said nail driver driving the nails in said channels into a wooden plate to be joined; and
a plurality of upright nail-direction aligning members
mounted in said hopper in the positions over said channels mounted in said hopper in the positions over said channels for maintaining said nails in alignment.

FLAP POSITIONING ASSEMBLY
Clifford Henry Faulkingham, 3500 Heatherington Rd., Orlando, Fla. 32804 Filed Apr. 4, 1977, Ser. No. 784,061 Int. C1. ${ }^{1}$ B25C $7 / 00$

1. In an automated apparatus for joining a set of a plurality of wooden plates with adjoining surfaces in a side-by-side relation, including:
conveyor means
conveyor means for transporting said wooden plates in sequence to a given position;
joining means at said given position for receiving thereon
said plurality of sy-one by said conveyor means, said joining means incleing:
nail driving means including a nail driver which is recipro cable over a given distance in a direction substantially perpendicular to the surfaces of said wooden plates wooden plates are supported in substantially parallel abutting relation; a hold-down plate positioned above said platen means and being movable upwards and downwards relative to said same;
wooden plate holding means which is movable back and forth in a direction substantially perpendicular to the surfaces of said wooden plates which are to be joined to
hold and retain at least one wooden position when said nail driving means is operated to drive nails into said wooden plates; and means after operation of said nail driving means to clear said wooden plates from said platen means;
the improvement wherein said nail driving means comprises substantially in a given direction, said hopper having a bottom opening for passing said nails out of said hopper a sliding plate having a given number of slits which are

2. A flap positioning assembly of the type primarily used to comprising: support frame means positionable at least in part on the exterior of the container and including a base plate,
support means extending outwardly from said base plate; posiupport means extending outwardly from said base plate; posiioning means movably attached to said support frame means and including clamp means movably positionable in spaced an elongated configuration, said clamp means further disposed in corresponding relation to said support frame means so as to ecurely engage a flap portion of the container between said support frame means and said clamp means; and connecting eans movably interconnected between said positioning means and said support frame means and including a plurality
of linkage elements pivotally connected between said positionng means and said base plate and disposed to at least partially an non-ment of said positioning means between a clamped and non-clamped position.

4,093,113 SEAM SOLDERING MECHANISM Corporation, Frmington, Conn. Maso, sedignor to USM Filed Feb, 8, 1977, Ser. No. 766,779 U.S. C. 228-36

2 Clims

1. Mechanism for soldering seams of cans and the like comprising, in combination with means for guiding and moving the cans in one direction along a path with their seams in predetermined orientation, an applicator roll movable in the path of
seam travel counter to said one direction and having one por seam travel counter to said one direction and having one por
tion which, during operation of the mechanism, is arranged to pass through a bath of molten solder and thence through an anti-oxidation or de-oxidizing atmosphere to present another previously solder-wetted applicator roll portion in substan
tially continuous tangential relation progressively along the length of the joint of each seam, the roll being disc-like and having a rim formed to substantially correspond in width with the openings of the respective seam joints, a single means for sphere, and a drive shaf for the roll driven independently of the can moving means and extending transversely of and beneath said path, the shaft being substantially horizontal and journaled heightwise between said can guiding means and the
surface level of the solder bath to cause an upper portion of the roll rim to engage and wipe opposite entrance edges of the seam joints progressively and thereby apply a positive pressure causing the solder being transferred by the rim to penetrate
into each seam joint. into each seam joint.

4,093,114

PLASTICS BAG
Norman Edward Lawes, Yarm, England, assignor to Imperial Norman Edward Laweh, Yarm, Enginad, assignor
Chemical Industries Limited, London, England Flued June 21, 1976, Ser. No. 698,219
Claims priority, application United Kingdom, Jul. 3, 1975, Claims priority, application United Kingdom, Jul. 3, 1975,
28046/75; Ang. 6, 1975, $32851 / 75$
The portion of the term of this patent subsequent to Oct. 4, 1994,
has been disclaimed.
U.S. C. 220-46.2

10 Claims

1. A packaging container comprising a stiff outer casing and a plastics-film liner, the improvement consisting in that the liner is a valved bag formed from a length comprising too piles
of plastics film, the length being folded and joined to provide a bag having one wall formed by overlapping panels, the ends
of the bag being closed and the overlapping panels being joined ogether by a longitudinal seal located along the edge region of together by a longitudinal seat located along the edge region of
the outer panel, the longitudinal seal being interrupted to provide a valve opening with transverse seals at each side of the valve opening defining a passageway constituting a filling valve between the pancels, the outer panel comprising the two plies with their edges coextensive and the inner panel comprismaterial in addition to said two plies at least throughout the valve region, the two plies and the additional layer whick comprise the inner panel being arranged with their edges he outer panel, the additional layer being joined to the two lies of the inner panel at least by the transverse seals and being ocated with at least one of the plies of the inner panel lying betweon the addicial layer and we outer pard overlap.

LIQUID-TIGHT FLAT TOP CONTAINER IIl, ascignors to NIMCO Corporntion, Cotytal Lalke, III. Continuation of Ser. No. 488,852, Jul. 15, 1974, abendo This application Feb. 11, 1977, Ser. No. 767,683
Int. Cl. ${ }^{2}$ B65D $\mathrm{s} / 74$

U.S. C. 229-17 G

1. In a blank of foldable sheet material for a container having creating a liquid tight bottom closure and first, second, third and fourth wall panels, said wall panels being joined by fold lines along their respective bottom edges to said bottom closure panels and tabs and said wall panels being arranged side by ide each joined along a fold line to the panels adjacent to it, op edges to an improved roof panel arrangement comprising n combination:
first and second rectangular roof panels each having firs second, third, and fourth edges, said first and second rectangular roof pancls connected along their first edges
respectively to the top edges of said first and said third wall panels;
first and second rectangular sealing tabs connected along
fold lines respectively to the third edges of said first and second rectangular roof panels as extensions thereof;
third, and fourth edges, connected along their first edges respectively to the top edges of said second and fourt wall panels, said first rectangular end panel connected along its fourth edge to said second edge of said firs
rectangular roof panel and along its second edge to said fourth edges of said second rectangular roof panel, said second rectangular end panel connected along its fourth edge to the second edges of said second rectangular roo panel and having its seconed edge free for closing engage ment with the fourth edge of said first rectangular roo panel, each of said first and second rectangular end panel
having a triangular end tab and first and second triangul havid-in a tabs, said first and second triangular fold-ing tab being connected to said triangular end tab along fold lines.
said second triangular fold-in tab of said first rectangular
end panel and said first triangular fold-in tab of said secend panel and said first triangular fold-in tab of said second rectangular end panel being scored for folding along
a line substantially parallel to the third edge of said second rectangular roof panel and extending across said second triangular fold-in tab of said first rectangular end panel, said second rectangular roof panel and said first triangul first and second lip tabs connected along a fold line to third edge of said first rectangular end panel as extension thereof, said first lip tab connected along a fold line to said
first rectangular sealing tab and said second lip tab confirst rectangular sealing tab and said second lip tab con
nected along a fold line to said second rectangular sealing tab, said first and said second lip tabs being joined together along a fold line at their common edge;
first and second shim tabs connected along a fold line to the third edge of said second rectangular end panel as exten
sions thereof, said first shim tab connected along a fold line to said second rectangular sealing tab, said second shim tab free for closing engagement with said first rectangular shim tab, said first and said second shim tabs joine
together along a fold line at their common edge.

4,093,116

PANEL INTERLOCKING MEANS
Richard Kenneth Watkina, Lithonia, and Leo Benatar, Atianta both of Ga., asaignors to The Mead Corporation, Dayton,
Filed Jan. 13, 1977, Ser. No. 759,116
The portion of the term of this patent subsequent to Mar. 7 ,
Int. C1. ${ }^{2}$ B65D $75 / 08$
U.S. C1. 229-40

7 Claims

1. An arrangement for interlocking a pair of panels in overlapping relation, said arrangement comprising a locking tab having generally parallel side edges and a shoulder portion a the end thereof remote from said base, said shoulder portion comprising tapered side edges, a retaining tab struck from the
other of said panels and joined thereto at its base and defining a locking aperture in said other panel for receiving said locking tab and being oriented so that the base of said retaining tab is
remote from the base of said locking tab, and a transverse remote from the base of said locking tab, and a transverse
holding groove formed in said shoulder portion of said locking holding groove formed in said shoulder portion of said locking tab and extending partially through said shoulder portion and retaining tab when said locking tab is driven through said ocking aperture whereby said locking and retaining tabs are maintained in angular mutually braced relation to each other

4,093,117

Henry Clifton Morse, 345 Fullerton Pkwy., Chicago, III. 60614 Filed Jun. 1, 1976, Ser. No. 691,853
Int. CC. ${ }^{2}$ B65D 27/00 C. 229-70

1. For use as a mailer and communications device, 1. For use as a mailer and communications device, a one-piece stiff cardboard strip having parallel end edges extending from the length thereof and side edges connec
ing said end edges together and including four connected sections, three defined by fold lines, and a fourth defined
by a slit extending for substantially the length of the fourth section,
first section having an inner and an outer side and forming a mailing flap and having an adhesive strip extending side edge of said first section,
a second section comprising a back for the mailer,

a third section comprising a front for the mailer and folded over the back, and glued to the mailing flap by the adhesive strip,
and a fourth section comprising a slide connected with the third section by a tab and folded over the third section and slide relative to the envelope as the mailer is in its completed form as said tab is broken by a pushing or pulling
action on the slide, when the mailer reaches its destination, and forming a communication carrying device.

CENTRIFUGE PARTICOM,118
CENTRIFUGE, PARTICULARLY FOR USE WITH AUTOMATIC ANALYSIS APPARATUS, ESPECIALLY Hartmut Sinn; Dieter Schroder, and Hans Stallmann, all of Osterode am Harz Germany, assignors to Herreus Clrist GmbH, Osterode am Harz, Germany
Filed Jun. 2, 1977, Ser. No. 802,372 Claims priority, application Germany, Jun. 16, 1976, 2626910 U.S. CI. 233-26

1. Centrifuge for substance analysis and for use with essenially flat sample carriers, each of which is adapted to carry a a rotor of sample probes, comprising
including an outer circumferential sleeve (4) of material pivotably suspended and riber-reinforced plastic;
said sabplended and radially movable holder (11) for the centrifuge is stopped,
the holders the holders hang
tommost; and
guide means (15) guiding said holders for radially outward movement toward said outer sleeve (4), said holders (11) being radially outwardly movable toward said outer sleeve, and, in operation of the centrifuge, the holders swinging into horizontal position due to centrifugal force, ported by said circumferential sleeve (4) when the holders are forced to pivot from the downward hanging position
to extend radially outwardly due to centrifugal force arising in operation of the centrifuge.

ACCESSORY HEATING DEVVCE FOR TRACTORS AND Edmund Swisher, 670 Upper River Rd., Glllipolis, Ohio 45631 Filed May 9, 1977, Ser. No. 794,835 Filed May 9, 1977, Ser. No. 794
Int. Cl. ${ }^{2}$ B60H $3 / 00,1 / 02$

6 Claims
U.S. C. $237-12.3^{\text {Int. }}$

1. An accessory heating device for a tractor and simila equipment mounted onto a forward wall of a radiator housing having a radiator assembly and a fan, which comprises. (a) a heater housing having a base, a rear wall with a large
opening therethrough, a pair of sidewalls, a front wall opening therethrough, a pair of sidewalls, a front wall
with a large opening therethrough, a top with a hole with a large opening therethrough, a top with a hole
therethrough, and a chamber therein, wherein one of said therethrough, and a chamber therein, wherein one of said
sidewalls has a vertically aligned slotted opening therethrough;
(b) means for mounting said rear wall of said heater housing against said forward wall of said radiator housing: (c) a filter member insertable through said slotted opening into said chamber,
(d) a plurality of vane elements transversely disposed across said opening of said front wall, each said vane elements rotatably disposed within said opening, sato pluraity of
said vane elements extending from a bottom to top of
said opening;
(e) means for maintaining said filter element in a vertical alignment within said chamber
(f) means for opening and closing said vane elements within
said opening;
(g) an annuiarly shaped sleeve affixed to an upper surface of
said top of said heater housing around said hole in said top;
and and
(h) one end of a flexible conduit mounted onto said sleeve member, another end of said flexible conduit adapted to be
mounted in a serial fluid connection to an air registe disposed in an operator's compartment of said tractor.
U.S. C. 238-8

$$
\text { Int. Cl. }{ }^{2} \text { E01C } 9 / 04
$$

1. A railroad crossing structure for use with a highway railroad crossing having a pair of spaced, substantially parallel
rails, a plurality of elongated ties subtending and supporting rails, a pluraity of elongated ties subtending and supporting
said rails and being disposed transversely thereof, and means for securing said rails to said ties, said railroad crossing structure comprising:
(a) an elongated elastomeric pad of a width proportioned to
span the distance between said pair of spaced, substantially parallel rails, and having along at least one edge hereof a channel for receiving therein the flange portion a wheel of a rairroad car and for providing a drainage channel for water and the like;
b) a flexible plate of a generally concave cross-section imbedded within said elastomeric pad, said flexible plate having a deflecting action as vehicles drive over said

absorber to provide a vehicle smoother transition over abaid railroad crossing structure and to force the edge of said railroad crossing structure and to force the edge of
said flexible plate towards said channel to break up foreign objects such as snow, ice and the like which may form or collect in said channel; and
) tie down means for securing said elastomeric pad atop said plurality of ties, said tie down means comprising anchor means, the opposite ends of said flexible plate anchor means.

$4,093,121$ NOZT1E

NOZZLLE Lundbergs Fabriks AB, Fristad, Sweden
Claims priority, Nov. 17, 1976, Ser. No. 742,613 195,7512927 S.

4 Cluims

1. A nozzle for supplying two components for the producion of an expanded plastic layer in a cavity defined by a surounding wall which is being advanced continuously, comprising an outer casing closed at one end, a central nozzle tube closed end of the casing to form the mouth opening of the ozzle, two supply tubes arranged along diametrically opposed ides of the central tube, which form together with the central ube a partition extending across and longitudinally along the gentral tube near the muith end therefmunicaing with the entral tube near the moun and thereof, and means for connecting

INTEGRATED DIVERGENT EXHAUST NOZZLE

 THRUST REVERSER Duane L. Linderman, Chuia Vista, and Felir Hom, La Mesa,Filed Nor. 3, 1976, Ser. No. 738,578
U.S. C. 239-127.3 15 Claims 1. An integrated low drag afterbody, divergent nozzle and thrust reverser system for use on high performance aircraft
with subsonic cruise and supersonic flight capabilities having
at least one jet engine with a rearwardly discharging nozzle adapted to produce reaction thrust comprising:
a variable divergent nozzle and a low drag afterbody for connection to the aircraft for receiving and controlling rearward flow of the exhaust gas stream from said variable
convergent nozze;
said system comprising at least two fixedly mounted laterally spaced sidewalls having parallel planar opposing faces; at least two nozzle-reverser sections positioned between said
sidewalls with forward and aft pivotal connections thereto sidewalls with forward and aft pivotal connections thereto
and having inner walls forming continuations of said and having inner walls forming continuations of said
convergent nozzle for further controlling said rearward flow of said exhaust gas stream; said nozzle-reverser sections have outer marginal sides, in slideable sealing engage-
ment with said opposing faces of said sidewalls, and move ment with said opposing faces of said sidewalls, and move

in a first direction about said forward pivotal connection toward and away from the engine longitudinal axis to vary the cross-sectional area of the divergent nozzle exit through a plurality of intermediate positions from a mini-
mum area cruise position to a maximum divergent reheat augmented thrust position to effect the proper coordination and match with the position of the variable convergent nozzle for substantially optimum expansion of said
exhaust gas streams while maintaining a low drag external afterbody and move in a second direction about said aft pivotal connection outward and aft until their rearmost surfaces meet at the engine longitudinal axis to form a
thrust reverser for redirecting said exhaust gas laterally thrust reverser for redirecting said exhaust gas laterally
and forward to effect reverse thrust: and actuation means for moving said nozzle-rev

4,093,123

AIRLESS SPRAYER AND PRESSURIZING SYSTEM
Victor J. Maran, Playa del Rey, Calif, asdignor to Dispenser Corporation, Millwankee, Wis
Continuation-in-pprt of Ser. No. 567,307, Apr. 11, 1975, U.S. C. 239-322 Int. C. ${ }^{2}$ B05S 9/047 16 Clain 1. A self-contained dispensing unit for dispensing liquid contents under pressure comprising:
a container;
ber for storiston dividing the container into a first chamber for containing a pressurized gas; and

- manually operable liquid release valve cons and with the first chamber for controllably releasing liquid with the first chamber for controllably releasing liquid
therefrom under pressure from the second chamber, the valve comprising a valve body with a cylindrical bore having a projecting interior ledge for engaging a resilient
sealing member, an insert member receivable through the sealing member, an insert member receivable through the
bore of the valve member and having a cylindrical section bore of the valve member and having a cylindrical section
of reduced diameter defining an outwardly projecting ledge for engaging a resilient sealing member, the insert member further having an axial bore extending within the
cylindrical section and terminating adjacent the outcylindrical section and terminating adjacent the out wardy projecting le axe and bore to outside the cylindrical section, a resilient sealing member mountable on the inser member to seal the cylindrical section to the cylindrical
bore of the valve body upon assembly and to releasably
seal the radial opening upon engagement between said seal the radial opening upon engagement between said
ledges, and a biasing spring for urging the insert member

ledge toward the projecting interior ledge of the cylindrical bore to compress the resilient sealing member therebe. tween.

ATOMIZER 4,093,124 Bruno MTOMIZER WITH AIR INLET VALVE Bruno Morane, Paris Yvees Hardouin, Surrilliera, and Jean.
Louis Gueret, Paris, all of France, asdignors to L'Oreal, Paria,
France Continustion-in-part of Ser. No. 708,367, Jul. 26, 1976, abandoned. This application Jan. 17, 1977, Ser. No. 759,657 Claims priority, application France, Oct. 20, 1976, 7631523 U.S. C. 239-327

1. In an atomizer for spraying a liquid product, said atomize comprising a container having flexible walls and a neck, a spray head mounted on said neck, an atomization chamber
inside said spray head, a depending tube inside said container opening into said atomization chamber, at least one valveles ejection orifice leading from said chamber to the exterior of said container, and at least one duct connecting the spray chamber to the interior of the container so that the liquid product can be sprayed in atomized form both in an uprigh and an inverted position of the container, said spray head comprising an annular bottom the edges of which are cona hollow central shaft encircled by the mounting skirt, said hollow shaft being closed at its upper end by a wall pierced by said at least one ejection orifice, at least one air intake orifice in the annular bottom of the spray head cooperating with a valve nember, the improvement according to which the depending and cooperating with said spray head to define said atomiza tion chamber, and the valve member is a flexible washer which covers said at least one air intake orifice when urged thereagainst by pressure within said container, said washer being centered around said tip and gripped between a collar formed
\qquad 4,093,125
WATER NOZZLE FOR DOUGH FORMING APPARATUS Mounir A. Shatila; William H. VonDerLeth, both of Blackfoot, John L. Veeneman, and Marion E. Thomas, both of Idaho Falle, all of Id., Esaguors to Ampen Elife., San Fra Division of S af Ser. No. 507,602, Sep. 19, 1974, abandone
application Nor. 24,1976, Ser. No. 744,529
Int. C.' U.S. C. 239-553.3

2. A nozzle for dispensing water at substantially zero veloc1ty comprising inner and outer elongate hollow cylindric wall said walls being concentric so that there is defined therebe tween a chamber having an annular cross-sectional shape, first and second radially extending impervious discs in said annular concentric relation and dividing the upper regions of said chamber into a central sub-chamber and two end sub-chambers disposed on opposite longitudinal ends of said central subchamber, said end sub-chambers having a substantially larger longitudinal extent than said central sub-chamber, there being cating with the lower regions of respective said sub-chambers means for supporting said walls on a substantially horizontal axis, one end of said inner cylindric wall constituting the inlet to said nozzle, the upper region of said inner wall defining a pluraity of substantially vertically extending passages
admitting water from interior of said inner cylindric wall to respective said sub-chambers, said outlet openings each having a longitudinal extent corresponding to the respective longitudinal length of ssid sub-chambers and an area substantially
greater than the combined area of said passages so that water greater than the combined area of said passages so so hificant kj-
egressing from said outlet openings is without signic netic energy or velocity except that caused by the force of gravity acting on the water

PULVERIZER
Marcel A. Castiaux, rue de Goseclies 58, Roux, Belgium (B6160)

Fi60) Fled Apr. 11, 1977, Ser. No. 786,212 Claims priority, application Belgium, Apr. 16, 1976, 0166241 U.S. CI. 241-37.5 C. ${ }^{2}$ B02C 13/31, 13/286

7 Cluims 1. A pulveriser for glass containers, comprising a barrel, a lid closing an upper end of said barrel, a flap mounted in said closing an upper eld between a ciosed position and an open position, said flap dividing the interior of said barrel when in a posiosed position into a first compartment above said flap defining a filling chamber and a second compartment below said flap defining a pulveriser chamber, a pulverising rotor having comprising an arm moveable between a first position in which it locks said lid and another position in which said arm disengages said lid and comprising a cam integral with said arm, said cam having two rolling tracks, a lever pivotally mounted on
said barrel adjacent said flap having one end connected to said

end of said lever engageable successively on said two rolling tracks of said cam.

DISINTEGRATOR AND SEPARATOR APPARATUS Ibert K. Alberts, Bountiful, Utahh, and Weldon B. Joliey, Redton, Calif. Filed Oct. 21, 1975, Ser. No. 624,477 Int. C. $\mathbf{2}^{2}$ B02C $23 / 28$
U.S. CI. 241-55

1. A device for disintegrating and separating raw material cluding in combination:
processing chamber formed by back and front parallel
panels spaced apart from each other and joined together at their outer edges;
an impact wall within said processing chamber displaced inwardly from said outer edges of said panels, to divide said processing chamber into a centrae compartment wit prising the longitudinal face portion of a plurality of plates for deflecting material back into the central compartmen to achieve inter-partical impacts, including passage means between opposite ends of said plates for connecting said
central compartment with said external compartment a drive shaft passing through said back panel into said central compartment;
casing member surrounding said processing chamber to form an insulation space between processing chamber to said processing chamber, including bearing means fo journaling said drive shaft; inside said central compartment, and having back and front discs connected by a plurality of transverse blades
extending between the periphery of said disks, said blades extending inwardly less than half the radial dimension of said disks and extending outwardly without projecting seyond the periphery of said discs, with said drive shaft
attached to and terminating with said back disk leaving attached to and terminating with said back disk leaving
the middle of said central compartment open and wherein the middle of said central compartment open and wherein
said longitudinal face portion of said plates is aligned with said longitudinal face portion of said plates is aligned with the direction of rotation of said impeller as well as perpen-
dicular to the respective adjacent blades; motor means located outside of said processing chamber and outside of said casing member, which motor means is attached to said drive shaft which passes through said insulation space into said central compartment for rotating said impeller;
inlet means communicating through said casing member, said front panel and said front disk with said middle of said central compartment
the raw material; and
outlet means communicating through said casing member with said external compartment for discharging the air along with the disintegrated and separated material.

MEAT EXTRUDER HAVING 4
having double blade cutter
J. Haywood Barnes, Wadsworth, Ohio, assignor to Edwin W. Oldham and Vera L. Oldham, both of Akron, Ohio, a part interest to each
No. 4,036,442. This of Ser. No. 635,403, Nov. 26, 1975, Pat. U.S. C. 241-82.5 ${ }^{\text {Int. C1. }{ }^{2} \text { B02C } 18 / 36}$

1. In a meat cutting and/or extrusion device including a frame having a tubular portion in which a driven screw extruding means is positioned for forcing meat along the axis of such frame portion, the combination of an apertured discharge normal to said axis, a rotatable cutter means secured to said extruding means immediately adjacent said discharge means for cutting the meat into pieces, said discharge means comprising an apertured flat surface disc, said cutter means including a plurality of substantially radially extending cutting blades and a hub portion engaged with an end portion of said screw extruding means, the cutting blades each having an overhanging
leading edge connected to a cutting edge of the cutting blades leading edge connected to a cutting edge of the cutting blades cessed towards said discharge means, said cutting blades each having a plurality of radially spaced, substantially circumferentially extending recesses formed in their leading edges.

4,093,129 Henry J. Polansky, Buffalo, Minin., sssignor to Tire Recycling of Minnesota, Inc., Shorevien, Minn.

Filed Jan. 19, 1977, Ser. No. 760,365
U.S. C. $241-186 \mathbf{R}^{\text {Int. }}$

1. A machine to comminute refuse includes:
2. A machine
A. a housing;
B. a rotor rotatably mounted in said housing, said rotor being constituted as two integrally connected, face-to-face, outwardly diverging, part-conical discs;
a plurality of shear plates extending generally radially
outwardly from each of said part-conical discs of outwardly from each of said part-conical discs of said
rotor, said shear plates each having a plurality of outwardly extending teeth lying in a radial plane which in cludes the axis of the rotor and said teeth extending from end to end of the longitudinal dimension of the rotor;
E. an intake hopper at an upper part of said housing, there being aligned openings provided between a lower portion of the hopper and an upper portion of said housing in soid housing;
F. an anvil fixedly positioned in said housing, said anvil having a plurality of teeth situated to intermesh with the shear plate teeth as the shear plates and rotor revolve and rotate in the housing, said anvil teeth extending from end
to end of the longitudinal dimension of the rotor, said anvil being below said intake hopper and at a side thereof to receive refuse carried toward it by said shear plate G.eeth; and
. said housing being provided with a discharge passagewa in position to receive comminuted refuse passing betwee said rotor and said anvil.

4,093,130
Stanley Robert Prem, Montoursille, Pa, asalignor to Koppers Company, Inc., Pittsburgh, Pa.

Filed Mar. 24, 1977, Ser. No. 780,827
U.S. CI. 241-245 Int. C1. ${ }^{2}$ B02C $7 / 14$ (${ }^{2}$ 3 Clnims 1. A disc type refiner comprising a base with an integral
central housing, a first channel shaped housing attached to end of the central housing, a second channel shaped housing attached to the other end of the central housing, a drive shaf extending through the first channel shaped housing, the central housing and into the second channel shaped housing, means in supporting the drive shaft, a non rotating plate holder mounted within a first movable housing located between the central housing and the first channel shaped housing, a second non
otating plate holder mounted within a second movable housing located between the central housing and the second channel shaped housing, the pair of non rotating plate holders being
in spaced opposed relation and having refiner plates disposed on each opposed face of the non rotating plate holders, otating disc mounted on the drive shaf between the no rotating refiner plates, refiner plates disposed on each side of plates disposed on the opposed non rotating plate holders means connecting the drive shaft and rotating diate holders, to provide
motation of the disc with the shaft means for axially the spacing between the rotating refiner plates and non rotat-

ing refiner plates during refining to insure that equal and oppo-
site thrusts are produced on opposite sides of the rotating refiner plates, inlet means for conveying material to be refined
into the central housing and directing the material between the into the central housing and directing the material between the juxtaposed refining plates, outlet means for removing the re
fined material from the central housing, means for changing all efiner plates without moving the rotating center disc, the changing means comprising means for axially retracting the
first movable housing with first movable housing with non rotating plate holder and plate
away from the rotating center disc and means for axially retracting the second movable housing with non rotating plate holder and plates away fron the rotating center disc.

4,093,131
MACHINE FOR WINDING TAPE BODY INSULATION Georgy Semenorich Balyko, wlitza Sharikovskyya, 47, kv. 37, and Nikolai Stepanorich Bubele, ulitse Mira, 114, kv. 69 , bot of Kharkov, U.S.S.R.
Filed Sep. 15, 1976, Ser. No. 723,651
Cluims priority, application U.S.S.R., Dec. 8, 1975, 2198844 Cec. 15, 1975, 2302983. Mor 15. 1975, Dec. 8, 197 Dec. 15, 1975, 23023 ; Mar. 15, 1975, $231 / 12$
U.S. C1. 242-6 $\quad 8$ Cluims 1. A machine for winding tape body insulation on the pole oundation and consisting of a stationary part and a movable part, the stationary part of the frame being rigidy fixed to the
foundation; a support fastened on said stationary part of the frame; an overhang hinged on said support, the movable part of the frame being rigidly fixed to said overhang so as to be movable relative to said stationary part of the frame; an elecric drive mounted on the stationary part of the rrame; a wind
ing device for applying insulation to a pole coil made in the ing device for applying insulation to a pole coil made in the
form of two toothed half-rings detachable from each other, the first of said half-rings being placed on said movable part of the frame, and the second being placed on said stationary part of on which said driving gear is mounted being kinematically on which said driving gear is mounted being kinematically
interconnected with said electric drive; a unit for holding the pole coil to be wound in position mounted on said stationary part of the frame; a unit for rotation of the pole coil mounted on said stationary part of the frame; a locking device for hold ing said stationary and movable parts of the frame together
while the winding of the insulating tape is in progress, said locking device being placed on one of said parts of the frame locking device being placed on one of said parts of the frame
and interacting with the other part of the frame; a yoke-shaped
traverse mounted on said movable part of the frame and adapted to be displaced thereon; a first pair of rollers mounted on said yoke-shaped traverse, the first toothed half-ring being mounted on said traverse and interacting with said first pair of rollers; a device for locking said first half-ring once the winding of insulating tape on the pole coil is completed, said device locking said second toothed half-ring upon the completion of

winding, said device being placed on the stationary part of the frame; a second pair of rollers mounted on said stationary part of the frame, one roller of said second pair of rollers being half-ring being rotatable on said pair of rollers; at least one pin fastened on the face surface of at least one of said toothed half-rings; and a bobbin with insulating tape rotatably mounted on each of said pins.

4,093,132
METHOD OF WINDING A MAGNETIC DEFLECTION Williom P YOKE ley r. Carisianna, Saugerties, and Joceph F. Hevesi, Hurley, both of N.Y., sssignors to International Businese MaContinuation of Ser. No. 392,847, Aug. 29, 1973, abandoned, which is a continuation of Ser. No. 134,901, Apr. 16, 1971, Pandoned, which is a division of Ser. No. 7,27, Jan. 30, 1970,
S. C. 242 Int. C1. ${ }^{2}$ H01F 41/08

1. A method of winding a cathode ray tube magnetic deflec ion yoke with winding end turns produced in situ in defined bundles located radially outwardly from the axial portion of the winding, comprising the steps of:
(a) providing a subassembly comprising an annular core portion and first and second end caps at each end of said
core portion forming permanent core portion forming permanent operative parts of said
yoke, said end caps being of non-lectrically conductive
non-magnetic material and comprising a plurality of hook
members separated by a plurality of slots, seid plurality of members separated by a plurainty of siots, seug pluraity of
slots being galigned to form longitudinal troughs along the axis of said core portion and said hooks being radially directed and spaceed around the perimeter of said end caps displaced radially outwardly from said longitudinal troughs,
and
ating
and using, said subassembly as a wire forming and retaining
tool by: tool by:
(b) feeding wire:
under tension along one of said troughs toward said first
end cap,
through the slot in said first end cap defining the end of said one trough, radially outwardly between and behind the hook members
flanking said slot and then under tension along said
annular channel to another of the hooks in said first end cap.
then under tension in the reverse axial direction through
the slot and trough immediately beyond seaid the slot and
the hooks,
(c) hooking sid, ing one of the hook members in said second cerresponding one of the hook members in said second end cap and
feeding said wire in like manner but in the opposite direction along said second annular channel, and
(d) continuing feeding said wire back and forth between said
end caps to form coil loops having axially directed longitudinal portions and annularly directed end turns portions,
said end turns being formed and held in defined bundles said end turns beeing formed and held in defined bundles
located radially outwardly from said longitudinal portions by said annular channels formed by said hook members.
$4,093,133$
PORMATION OF A RESERVE WINDING THREAD OF DEFINED LENGTH ON BOBBINS OF A TEXTILE HINE
Herbert Hofmmann, Bremen, and Friedrich Wachendorf, Egess-
tedth both of Germiny, essegnors to Fried. Krupp Geeelischaft tedt, both of Germany, mesignors to Fried. Krupp
FIled Sep. 15, 1976, Ser. No. 723,492
Claime priority, applicatoon Gerrnny, Sep. 20, 1975, 2542000

11 Cheims

4. In apparatus for winding a bobbin in a textile machine 4. In apparatus for winding a bobbin in a textile machine
including: a bobbin holder composed of two arms, two bobbin including: a bobebin holderaly mposect of twa respective arm and arranged to support a bobbin at a predetermined position for rotation, and a yarn catch element mounted on the periphery of one of the discs; a yarn supply device for delivering yarn to a bobbin mounted in the hoider; a yarn collector; and a suclicion and an inlet opening in the vicinity of the location in which a bobbin is supported by the holder, the suction device having an
inlet region extending from the inlet opening toward the outlet inlet region extending from the inlet opening toward the outlet a guide member and a yarn severing device carried by said suction device in the vicinity of its said inlet opening; means supporting said inlet region for pivotal movement
between a first position in which the inlet opening is in
front of the bobbin position and a second position which is located at the opposite side of the bobbin position from said yarn supply device;
a yarn cutting device located in said suction device at a variable distance from said inlet opening for cutting yarn in said suction device at a selected distance from said inlet opening;
and cutting control means connected to said cutting device
for causing it to cut the yarn at such preselected distance for causing it to cut the yarn at such preselected distance
from said inlet opening in response to movement of said inlet region of said suction device to said second position.

4,093,134
METHOD AND APPARATUS TO REDUCE WASTE YARN DURING TIE-UP OF YARN WINDERS Afons F. Schmitr, and Doughas L. Dixon, both of Kingzport,
Tennn, Tenn., mangnors to Eastman Kodak Company, Rochester,
N.Y. Fled May 23, 1977, Ser. No.
Int. C. ${ }^{2}$ B65H $54 / 0296$
U.S. C. 242-18 PW

8 Cleime

1. In a yarn winder having
a mandrel for rotatably supporting a yam package tube that has in the outer axial end of the yarn package tube a notch for snagging a yarn moving from a source of supply and into an air doffer, and
a transfer tail apparatus for guiding the moving yarn into engagement with the outer axial end of a rotating sup--
ported yarn package tube for subsequent snagging of the ported yarn package tube for subsequent snagging of the
yamn by the notch and severing of the yarm between the notch and in or near the air doffer and subsequent formation on the yarn package tube of a yarn transfer tail prior to release of the moving yarn from the transfer tail apparatus to a yarn traverse guide on the yarn winder for guiding of the yarn onto the package portion of the yarn package tube as the yarn p
comprising: eans on the
snagged in the notch and severed for trapping the loose portion of the severed yarn that extends between the notch where the moving yarn becomes snagged and a
point in or near the air doffer where the yarn becomes point in or near the air doffer where the yarn becomes
severed.

DEVICE FOR CON 4,093,135 WHEN WINDING THREAD A RESERVE WINDING Peter Hermanns, Stommeln, Germany Peter Hermanns, Stommeln, Germany, assignor to FMN
Schuster \& Co., Hurth-Efferen, Germany Schuster © Co., Hurth-Efferen, Germany
Filed Jan. 26, 1976, Ser. No. 652,337
Claims priority, application Germany, Jan. 28, 1975, 2503299
U.S. C. $242-18$ Int.

18 Claims

1. A device for controlling a reserve winding during wind ing of a thread onto a spool or core, in which the thread is fed to the spool by a delivery mechanism via a traversing device, said device comprising:
a. means for applying an end of the thread to the spool at an a reserve winding zone defined adjacent the end of the spool,
b. means for moving the thread in a to-and-fro movement first in an outward axial direction toward the end of th
spool to fix said thread end by a plurality of crossing spool to fix said thread end by a pluraity of crossing
thread windings forming a first layer of windings and them in an inward axial direction away from the end of the spool to form a plurality of reserve windings over the first layer of windings,
c. means for maintaining the speed of the to-and-fro movement of the thread within the reserve winding zone at a predetermined amount,
d. said moving means includes a stationary member having a straight edge portion and a movably disposed thread guide contact means, and
e. said thread guide contact means being effective to cause the thread to move to-and-fro along the straight edge portion.

4,093,136
TEXTILE, YARN OR TAPE WINDING MACHINES Gordon Mackie, Ledyhill, Ireland, asalgnor to James Mackie a Sons Limited, Belfast, Ireland

Flled May 27,1976 , Ser No. 690740 Claims priorty, application United Kingdom, Jun. 2, 1975,
U.S. CI. 242-45 Int. C. ${ }^{2}$ B65H 59/00

1. A yarn or tape winding machine comprising:
take up spindle for winding said yarn or tape,
drive means for rotating a member at a controlled speed,
drive means for rotating a member at a controlled speed,
torque transmitting variator means including said member for transmitting a controlled torque to said take up spindie,
control
control means for controlling the torque transmitted by said torque transmitting variator means, said control means including a second member connected to said torque
transmitting variator means, power means connected to said second member for driving said second member, and sensing means connected to said power meanis for sensing said yarn or tape tension and adjusting said torque transmitting variator means by controlling said power means to move said second member when said yarn or tape tension varies beyond predetermined limits.

4,093,137
Thomas J. Briari Trexpable Collet Huntington, both of Pand, amignors to PPG Industrien, Inc.,
Pittshergh, Pa Pittsburgh, Pa,

Flled May 19, 1977, Ser. No. 798,555

1. In a collet for collecting strand material on a tube comprising:
fluid inlet, a sealed fluid chamber, a piston, a plurality of expandable rings, a plurality of unexpandable spacers etween said rings and at the end of said rings opposite and spacers and means for ry carrying said piston, rings, ings, and spacers beans for rotating said collet, said piston, rings, and spacers being arranged such that upon passing a fluid into said chamber and pressurizing said chamber said
pressure is transferred by said piston and said spacers to said rings to expand said rings and upon release of said fluid pressure said piston and said spacers release the pressure from said expandable rings to return said rings to their unexpanded state, the improvement comprising a plurality of fingers surrounding said rings and spacers and
means connecting said fingers to said rings, said fingers means connecting said fingers to said rings, said fingers
being capable of firmly holding said tube in place during winding of said strand material and said means connecting said fingers to said rings being capable of acting with said rings to retract said fingers when the fluid pressure is released to thereby release said tube.

4,093,138

PORTABLE HOLDER FOR RIBBON-LIKE MATERIAI Robert E. Shafer, 185 Shady Lake Dr., Hurst, Tex. 76053
U.S. C. 242-55. 2 I. ${ }^{2}$ B65H 75/02, 75/26, 19/02
U.S. C. 242-55.2

5 Clains 1. Portable apparatus for holding and dispensing a coiled
strip of ribbon-like material, with the initivl strip of ribbon-like material, with the initial radius of a full coil of said coiled mate which is substantially larger than the width (a) a pair of material, comprising:
a a pair of parallel rods rigidly connected at the first ends thereof, with the length of said rods being substantially longer than the radius of a full coil of the strip of ribbononly slightly greater than the width par of rods being
material, such that the rods serve to restrain the sides of being adapted to receive a roll of sheet material between said (b) an arm pivotably connected to the pair of parallel rods at (b) an arm pivotably connected to the pair of paraliel rods at
a point intermediate the length of said arm and relatively near one end thereof, so as to divide the arm into longer and shorter portions, with the arm being mounted between the pair of rods, and the pivot location on said pair of rods being relatively near their rigidly connected ends, and the longer portion of the arm being curved inwardly coil of the ribbon-like material when said coil is mounted in the apparatus, and the distal end of said longer portion of the pivoted arm defining an arc as the material is progressively removed from the coil at the periphery thereof, and the length of said longer arm portion is such as to
cause said arc to extend approximately through the center cause said arc to exteril.
of the coiled material
(c) means for releasably and rotatably holding a coil of
ribbon-like material between the two parallel rods, with tions of the periphery of the roll, said bands being driven by the said means including a rigid core having a diameter of at roll of sheet material upon rotation of the roll of sheet material least two inches and being so thin as to permit the parallel
rods to bear directly against the sides of the coiled mate-

rial, and further including a removable fastener for hold ing the rigid core between the second ends of the two parallel rods, such that the apparatus may be rotated about any axis and turned through any angle without causing the
coil of ribbon-like material to fall out of the apparatus; (d) a spring mounted for biasing the arm toward general longitudinal alignment with the two parallel rods; and (e) a generally U-shaped foot secured to the dital end of the longer portion of the pivoted arm, with the open part of the foot being oriented inwardly toward the rods, and the gap between the two legs of the U-shaped foot being just
slightly wider than the width of the coiled material, such that the U-shaped foot can both encompass and bear radially against a peripheral portion of the coil of ribbonlike material which is held between the two parallel rods, and the length of the two legs of the U-shaped foot being substantially less than the radius of the rigid core,
whereby interference between the two rods and a projecting leg of the U-shaped foot is precluded, and the base of said foot will therefore press radially against the periphery of the coiled material until the very last increment of said material is dispensed from the apparatus.

4,093,139
SUPPORT FOR LONG ROLLS OF SHEET MATERIAL Alfred P. Amoretti, 5 ruelle St. Roch, Nice, France
Flled Jan. 5, 1977, Ser. No. 756,860 Filed Jan. S, 197, Ser. No. 756, \qquad 8 Clims U.S. Cl. 242-55.2 1. A support for a roll of sheet material having a base, comprising an upper series of rollers and a lower series of rollers, an upper endless band of flexible elastic material disposed elastic material disposed about said lower rollers, said support

METHOD OF RECOILING SLIT MATERIAL METHOD OF RECOILING SLIT MATERIAL
Doughs S. Matsunge, Chicago, III., aseignor to Braner Enter-
prises, Inc. Schiller Park, inl prises, Inc., Schiller Park, 111. Fili, 1

Int. C..2 B65H, $35 / 02,23 / 10$,
U.S. C. $242-56.2$ Int. Cl. ${ }^{2}$ B65H 35/02, 23/10 4 Clims

1. In a slitting line including an uncoiler, a slitter and recoiler having a rotatable drum, a coil of metal material carried by said uncoiler, said material extending through said litter and being cut thereby into multile strands, and strand varying in thicknes
prising the steps:
(a) securing the ends of each strand to said recoiler drum; b) rotating said recoiler drum to coil at least one turn of each strand around said drum;
(c) releasing the end of each strand from said drum with said
first turns of the strands remaining strands remaining in contact with the
(d) rotating said drum in frictional contact with said strand first turns to impart winding rotation to the strands with said drum rotating relative to at least one of said strands to cause each of the strands to be wound upon said drum at
substantially the same linear speed as said sheet material is uncoiled during rotation of said uncoiler and passes through said slitter.

RECOILER SPACER SHOOTER
Richard H. Garrett, Sr., and Yale M. Feniger, both of Toledo, Ohio, assignors to Coll Tite, Inc.. Toledo, Ohio Filed Jun. 2, 1977, Ser. No. 802,72
Int. C1.2 B65H 19/04
U.S. C1. 242-56.9 between said slitter and said mandrel, comprising:
(A) a vertical post-type base located before said mandrel and adjacent one side of the plurality of strips slit from the
coil,
(B) a horizontal boom extending from said base under said
strips,
(C) means for oscillating said boom on said post base to a position away from under said strips,
(D) carriage means movable on and along said boom,
(E) means for moving said carriage along said boom,
(F) a spacer shooter device pivotally mounting on said car- Jesse W. Escue, 314 Nicholson, Joliet, III. 60435
riage,
(G) means for raising and lowering said device about its Filed Apr. 11, 1977, Ser. No. 786,149
Int. Cl. ${ }^{2}$ B65H $59 / 00$ pivot to direct its free end toward said winding coil on U.S. C. 242-75.51 said mandrel,

(H) beam means projecting outwardly from said device fo indicating the coil strip and its periphery toward which said device is aimed,
(I) means for shooting one spacer spacers in said device, and means out of said device in the direction of said beam for insertion in the coil of the selected winding strip for taking up the slack in said strip between the slitter and the mandrel.

4,093,142

FILMSTRIP CARTRIDGE
Marrin I. Mindell, Pittsford, N.Y., assignor to The Singer Company, New York, N.Y.

Filed Sep. 20, 1976, Ser. No. 724,875
U.S. Cl. 242-71.1

1. An improved filmstrip cartridge comprising:
a filmstrip cartridge having a film guide channel
hereby filmstrip may be guided along its longitudinal axis
into and out of said filmstrip cartridge;
said film guide channel terminating with a film opening
through which said filmstrip may be guided along its through which said filmstrip may be guided along its
longitudinal axis into and out of said filmstrip cartridge;
said film guide channel having a first surface portion oppo-
site a second surface portion;
a pair of laterally spaced apart first film guide surfaces on
said first surface portion of said film guide channel; a pair of laterally spaced apart second film guide surfaces on said second surface portion of said film guide channel; said first and said second film guide surfaces providi,
port for the lateral margins of said filmstrip; and port for the lateral margins of said filmstrip; and
the space between said second film guide surfaces having a finger opening formed therein and
means providing a reduced area of film contact on said first surface in the space between said first film guide surfaces to reduce the friction between said film and said firs surface;
opening.
opening;
whereby said filmstrip may be manually advanced along said
971 O.G. 6
film guide channel by pushing said filmstrip accessible through said finger opening with a finger.

4,093,143

Filed Apr. 11, 1977, Ser. No. 786,149

1. An apparatus for winding stock in coil fashion comprising a base, a variable speed motor mounted on said base, said shaft equipped with a reel for taking up said stock, a speed selection control unit for regulating the speed of said motor having monitoring means responsive to movement of said stock at a point remote from said reel, said monitoring means instantaneously signalling said motor to reduce its speed in response to momentary slight increases in the speed of said
stock at said remote point as the diameter of said stock on said stock at said remote point as the diameter of said stock on said
reel builds to maintain the speed of said stock at the selected speed on said control unit, a coil guide operatively joined through a second gear box to said first gear box for rotation and reciprocation to direct said stock onto said reel, said coil guide being carried on a support shaft linked to said second for selectively engaging and disengaging said motor and said for selecively engaging and disengaging saad motor to direct said
first gear box whereby said apparatus is adapted to stock onto said reel in side-by-side coil fashion at the selected
speed. speed.

4,093,144
 FISHING REEL BRAKE

Yasomatsu Morishith, Kure, Japan, assignor to Ryobi, Ltd., Fuchu, Jappn F Fied Aug. 25, 1976, Ser. No. 717,782 Claims priority, application Japan, Aug. 29, 1975, $50-$ S. 1 Int. Cl. ${ }^{2}$ A01K 89/02
U.S. C. $242-84.52 \mathrm{~A}$

1. In a bearing type fis tu. Cl. ${ }^{2}$ A01K 89/02
\qquad 1. controllably wound and unwound throwhich a fishing line evice, the improvement characterized bygh a traverse cam shaft extending between said side by
shaft extending between said side plates and positioned
radially outwardly from said spool radially outwardly from said spool, a pair of arms pivot-
ally mounted at one end to said shaft, said arms extending substantially along the outer circumference of said spool when in a braking position and rotatable away from the outer circumference of said spool to a non-braking posi-
tion, a line guide roller rotatably connected between sec- pivotally supported independently of said pendulum on said ond ends of said arms at a position whereby said line will bearing block, said pendulum having a mass on the normally
ride on said guide roller as said line is unwound or re- lower end thereof, said locking lever being engageable by said ride on said guide roller as said line is unwound or re- lower end thereof, said locking lever being engageable by said
wound, and said guide roller being positioned such that mass and being pivotable thereby into a position wherein it is tension on said line provides a rotating force on said arms mass ang ingement with said cylinder means and locks the latter in the direction of said non-braking position, said arms against rotation.
having brake pads connected thereto at positions closer to
having brake pads conrecced thereto at position saider to
said shaft than said roller and on the side of said arms sacid shaft than said roller and on the side of said arms ference of spaid spool, the force of said frictional engagement being greater as said arms are rotated towards the
circumference of said spool to said braking position, a circumference of said spool to said braking position, a
lever attached to one of said arms and rotatable with said arm about said shaft, said lever being inside one of said

side plates and extending radially inwardly, a contro screw substantially entirely located within said side plate except for a manually rotatable head portion, a contro member threaded onto sasid control screw for sliding axially thereon upon rotation of said screw, said contro
member having an arm extending towards said lever mermer having an arm extending rowards said lever,
spring means connected between said control member arm and said radially extending lever, said spring means and the weight of said line guide roller providing a biasing force on said arms to rotate said arms to said braking
position, whereby the value of said braking force can be position, whereby the value of said braking force can be
manually adjusted by rotating said coanrol screw which manually adjusted by rotatitng sadid control screw which
causes the physical relationship between said spring means and radially extending lever to be altered.

SELP 4,093,145 SELF-LOCKING BELT WINDING DEVICE Wolf-Dieter Klink, Schw.Gmund-Lindach, Germany, aesignor
to REPA GmbH Feinstandwerk, Schw.Gmund.Lindech Germany Filed Dec. 17, 1973, Ser. No. 426,341
Claims priority, application Germany, Dec. 18, 1972, 2261890 The portion of the term of this putent zubeequent to Jun. 6, 1993, has been disclaimed.
Int. $\mathrm{C} .{ }^{2}{ }^{\text {B65H }} 75 / 48$

4 Claims

1. Self-locking belt wind-up device for safety belts comprising rotatable cylinder means whereon a safety belt is windable and a unitary assembly of a bearing block, a pendulum pendu-than
2. A method of winding a continuous strapping as a roll comprised of a plurality of overlying layers each having a like number of strapping convolutions, said method including the steps of continuously advancing the strapping relative to a
strapping traverse carriage toward and onto a continuously strapping traverse carriage toward and onto a continuously
rotating shaft to wind the strapping thereon, moving the carriage linearly like distances in each of opposite directions relative and parallel to the rotating shaft and correlating the movement of the traverse carriage with the rotation of the winding shaft by generating a like number of electrical pulses
U.S. CI. 242-107.4 A of electrical pulses related to those generated during rotation of the winding shaft for moving the carriage in each of its opposite directions of traverse for a period during which $1+$ Fconvolutions of strapping are wound about the shaft as a roll layer, where I is an interger and F ranges from zero to less than one complete convolution, and between successive movements of the carriage in the opposite directions of traverse maintaina selected number of such electrical pulses are generated by the rotation of the winding shaft and strapping portions B are wound on the roll which bridge overlying roll layers and define nodes at each of the roll ends, with the duration of each such dwell period being such that the strapping portions F and B together range essentially 1 minus 7 of a strapping convolu-
tion to 1 plus $\overline{1}$ strapping convolutions and the nodes defined tion to 1 plus istrapping convolutions and the nodes defined
by the bridging portions B at the respective ends of the wound by the bridging portions Bat the respective ends of the wound roll are arranged in overiying relationships and form not less
than 2 and not more than 4 groups of nodes at each of such roil than 2

FLAT NYLON 66 YAR 0 ,093,147 PROCESS POR MING A SOFT HAND, AND James E. Bromley, Pensacola. Fha.; Michael M. McNamara, Gaffery, S.C., and Wayne T. Mowe, Pensicola, Fla, amignorn to Monannto Compeny, St. Lovis, Mo. Continuation-in-part of Ser. No. 482,962, Jun. 25, 1974, abandoned. Thia application Nor. 4, 1975, Ser. No. 628,721
Int. Cl. ${ }^{2}$ B65H 5S/02; D01D $5 / 16 ;$ D02J $1 / 22$; D02G $3 / 22$. U.S. C. $242-159$ Clime 1. A bobbin having wound thereon a flat nylon 66 yarm having a substantially constant cross sectional configuration
along its length, a shrinkage S less than 8.5%, an initial modulong greater than $15 \mathrm{~g} / \mathrm{d}$, a positive stress index α, and a retrac tion less than 1%.

4,093,146
WINDING METHOD AND APPARATUS FOR STRAPPING AND STRAPPING PACKAGE Harold A. Haley, Media, Pan, aseignor to FMC Corporation, Philadelphia, Pa abandoned. This application Auc. 24, 1976, Ser. No. 717,43 US. 1 Int. C1. ${ }^{2}$ B65H 54/28, 55/04 U.S. C. 242-158.2

TAPE PATH FOR A MAGNETIC TAPE TRANSPORT SYGNETEM
James P. Urynowich, Loe Angelect Daniel R. O'Nell, Santa Jameas P. Urynowič, Loe Angelect; Daniel R. O'Neill, Santa
Monica; Hale M. Jones, Phaya Del Rey, and Alan Painter, Monicas; Hale M. Jones, Playy Del Rey, and Alan Painter,
Los Angelea, all of Calif, amelgnors to Telex Computer Products, Inc., Tuise, Okla.

Wied Nov. 5, 1975, Ser. No. 623,469
U.S. CI. 242-182 Int. C1. ${ }^{2}$ G11B 15/58 $\quad 3$ Cluims U.S. C. 242-198 ${ }^{\text {Int. }}$
disposed perpendicular and adjacent to a line tangent to
said file reel, said tangent line intersecting the horizontal line of said file reel at an angle in the range of 60° to 70°, the horizontal line being drawn through the center of said file reel and parallel to the ground;
2. means for guiding said magnetic tape along said tape
path; and ailiary vacuum chamber and a second auxiliary vacuum chamber, each of said auxiliary vacuum cham bers disposed adjacent to one of said first and second a pair of sidewall plates one sidewall plate of said firs auxiliary vacuum chamber being common to a sidewall of said first vacuum chamber and one sidewall plate of said second auxiliary vacuum chamber being commo to a sidewall of said second vacuum chamber.

4,093,149

CARTRIDGE TAPE RECORDER SYSTEM AND
CARTRIDGE TAPE RECORDER SYS
 well Inc., Minneapolis, Minn.

Filed Nov. 28, 1975, Ser. No. 635,939
Int. Cl. ${ }^{2}$ G11B $23 / 10,15 / 32$
14 Claim

Within a magnetic tape transport system, which includes

1. Within a magnesc ape in in a particular plane, the file reel storing
a magnetic tape;
b. a machine reel disposed in the
and adjacent to the file reel; ; a file reel drive motor for driving the file reel;
c. a file reel drive motor for driving the file reel;
d. a machine reel drive motor for driving the machine reel;
d. a magnetic head disposed approximately on a center-lin
drawn between the file reel and the machine reel;
f. a capstan for driving the magnetic tape bidirectionally
between the file reel and the machine reel;
g. a control system for controlling the file reel drive motor,
the machine reel drive motor and the capstan, a tape path comprising:
2. a first vacuum chamber and a second vacuum chamber,
cach of said vaccuum chamers being disposed in the each of said vacuum chambers being disposed in the
same plane as the file reel and the machine reel and having a front plate, a back plate, a base plate and a pair of parallel sidewalls, one sidewall of said first vacuum chamber is adjacent to the file reel and one sidewall o the second vacuum chamber; is adjacent to the machine
reel, said firt and second vacuum chambers being disreel, said first and second vacuum parallel sidewall plates
posed in such a manner that said pall of said first vacuum chamber form a V with said paraliel sidewall plates of said second vacuum chamber with both of said base plates at the vertex of said \mathbf{V}, said first vacuum chamber is disposed paraliel and adjacent to a line tangent to said file rel, said largat an angle in the US. 1 Int. C.2. ${ }^{2}$ G03B $1 / 04$; G11B $15 / 32$ ing the horizontal line of said file reel at an angle in the U.S. C. 242-192
range of 10° to 20° and said second vacuum chamber is
3. An apparatus for generating constant tape tension in a tape
transport system of the type wherein the supply and take-up recls are simultaneously driven by surface engagement with a
capstan having a resiliently deformable peripheral surface, said apparatus comprising:
means for urging the supply and take-up reets asis peripheral surface of the capstan thereby causing the peripheral suriace of the capstan thereby causing the
peripheral velocity of said supply and take-up reels to increase above that of said capstan;
means for imparting a constant braking force on said supply reel, said braking means generating bias and torque effects upon the periphery of said supply reel;
said bias effect uniformly reducing the peri the supply reel throughout the tape transport operation

thereby creating a first tensioning component in the span thereby creating a first tensioning component in
of tape between said supply and take-up rees;
said torque effect reducing the peripheral velocit said torquee effect reducing the peripheral velocity of the
supply reel throughout the tape transport operation in direct proportion to the decreasing diameter of the tape wound thereon thereby creating a second tensioning com-
ponent in the span of tape berween said supply and take-up ponent in
reels; and
ing and rotating said second reel, and second means for engaging a peripheral portion of said second turntable via said peripheral portion said second turntable structure ture;
means in
in
means including a web capstan for driving said web between

4,093,152
reels; and
a means for balancing said first and second tensioning com- DISC CADDY AND DISC PLAYER SYSTEM THEREFOR ponents of said constant braking means so as to match the Kenneth Donald Peters, Cranbury, N.J., assignor to RCA Corsupply reel peripheral velocity rate of change occuring
during the tape transport operation to the greater, but correspondingly sloped, take-up reel peripheral velocity rate of change. \qquad
WEB TRANSPORTING APPA
WEB TRANSPORTING APPARATUS AND WEB CARTRIDGES
Irving Karsh, Los Angeles, Calif., assignor to Bell \& Howell
Company, Cricago, Ill. 16,1976, Ser. No. 714,739 U.S. C. 242-198 Int. C.2 ${ }^{2}$ G11B $23 / 10$ 20 Claims

1. Apparatus for transporting a web from a first reel to a distinct second reel, comprising in combination:
means for rotating said first reel including a first turntable structure for removably receiving, supporting and rotal
ing said first reel, and first means for engaging a peripheral ing said first reel, and first means for engaging a peripheral
portion of said first turntable structure and for rotating said first turntable structure via said peripheral portion; means for rotating said second reel including a distinct sec-
ond tumtable structure for removably receiving, support-

2. In a disc record player, including a turntable rotatably mounted on a base, for use with a record-enclosing caddy
having a pair of substantially flat covers, with peripheries having a pair of substantially flat covers, with peripheries
releasably held by an expandable ring in respective channels in releasably held by an expandable ring in respective channels in
the inner rim of said ring which are disposed on opposite sides of an inwardly-projecting central land of the ring; apparatus comprising the combination:
means, mounted on said
means, mounted on said base and including a ring-engaging
platform, for supporting a caddy in a platform, for supporting a caddy in a position over said
turntable whereat the covers thereof are substantially parallel to said turntable; first selectively actuated mea
ence of a platform-engaged cadd shape permitting channel release of the towermost of the covers held by said platform-engaged ring, while main-
taining support of the uppermost of said covers on the second selectively actuated means, subject to engagement with the released cover, for lifting said released cover of said turntable and returning it to plafform level.
said first and second reels;
a base for jointly supporting and rotatably mounting said means for fecond turntable structures;
means for forming a first web loop between said first turnta-
ble structure and means including said web capstan, said first loop forming means including a first web loop feeler, means for yielda-
bly mounting said first web loop feeler on bly mounting said first web loop feeler on said base adja-
cent said first turntable structure, and first means releascent said first turntable structure, and first means releas-
ably coupled to said first web loop feeler and connected to said first turntable rotating means for controlling said first tumtable rotating means to maintain said first web loop; means for forming a second web loop between said second turntable structure and said web capstan, said second loop
forming means including a second web loop feeler, means forming means including a second web loop feeler, means
for yieldably mounting said second web loop feeler on for yieldably mounting said second web loop feeler on
said base adjacent said second turntable structure, and said base adjacent said second turntable structure, and
second means releasably coupled to said second web loop feeler and connected to said second turntable rotating means for controlling said second turntable rotating means to maintain said second web loop; and
said first and second peripheral portion engaging means, web capstan and first and second means for controlling said first and second turntable rotating means.

Filed May 4, 1977, Ser. No. 793,639
U.S. CI. 274-9 R

Int. Cl. ${ }^{\mathbf{2}}{ }^{\mathbf{G}} 11 \mathrm{~B}$ 25/04
4,093,153
GROUND-CONTROLLED GUIDED-MISSILE SYSTEM Manuel L. Bardesh, Willingboro; Carl P. Clasen, Cherry Hill Robert M. Scudder, Haddonfield; Lawrence H. Simon, Cherry Cherry Hill, all of N.J.; Robert W. Ekis, Athens, Ala, and Alfred I. Mintzer, Lexington, Mass., assignors to The United States of America as represented
Army, Washington, D.C.
Filed Nov. 18, 1965, Ser. No. 508,605 Filed Nov. 18, 1965, Ser. No. 508,
Int. C.1. ${ }^{\text {F4IG }} 7 / 14$

6 Claims

17 Claims

U.S. Cl. 244-3.14

1. A missile system for defense against ground targets an clouds of incoming targets and decoys, comprising: launcher
with missiles mounted thereon and disposed for positioning on with missiles mounted thereon and disposed for positioning o
locations for launching said missiles; and a time-sharing rada locations for lisunching said missies; and a time-sharing rada tion, tracking and discrimination of the targets, simultaneou racking of discrete units of the targets, transmission of com-
mand signals to said launchers for launching said missiles, and mand signals to said launchers for launching said missiles, and
command control of said missiles after the launch, all on the same time-sharing basis.

TARGET SEEKING GYRO FOR A MISSILE William B. McLean, China Lake, Calif., assignor to Walter G Finch, Beltime Md, Finch, Baltimore, Md., a part interest
Continuation of Ser. No. 337, 9999 , Feb. 19, 1953, abandoned. This application May 7, 1956, Ser. No. 583,337.
Int C. 2 F42B $13 / 28$ F F41G $7 / 10$; G01C $19 / 28,19 / 53$ U.S. Cl. $244-3.16$

37. In combination in a missile guidance system, a target 37. In combing apparatus having radiation responsive means including a scanner, a gyroscope having a rotor, said scanner being mounted on said rotor for picking up radiation from a target,
the sight line to said target, said radiation responsive means producing a signal when the gyroscope rotor axis deviates from alignment with the sight line to said target, said signal having a time phase dependent on the radial direction of depar-
ture of said target from the gyro rotor axis, the precessing ture of said target from the gyro rotor axis, the precessing means emboding
signal whereby said gyro is precessed in the proper sense to signal whereby wald the line of sight to said target, a position
align its axis with sensing means included in said target seeking apparatus and sensing means incluaded in said carget seeking apparatus and
mounted adjacent said gyro rotor for sensing the position of said gyro rotor, and servo means responsive to signals from 38. A target seeking device for a guided missile comprising a gyroscopically stabilized means for optically scanning a limited region about a first coordinate axis for electromagnetic radiations emanating from a target source, said means including a permanent magnet rotor rotatable with said gyroscopic
means about said first axis, the magnetic poles of said permanent magnet defining a second coordinate axis transverse to said first coordinate axis, a radiation sensitive means for producing electrical signal variations in response to variations in radiation incident on said radiation sensitive means, said radia-
tion sensitive means being fixedly positioned relative to said tion sensitive means being fixedly positioned relative to said
scanning means for receiving said radiations from said scanning means to cause said electrical signals generated thereby to vary in magnitude with the directional displacement of said target with respect to said first coordinate axis and in time phase with the polar angular position of said target with respect to the second coor rotor responsive to said signal for
said permanent magnet rom sapplying a magnetic force to said gyroscopically stabilized means having a component normal to said second axis and in a direction causing said gyroscopically stabilized means to precess through an angle and in a direction to bring said first ordinate axis into directional alignment with said target

STEAM POWERED 4,093,155
STEAM POWERED TILTING ENGINE VTOL AIRPLANE Elmo Kincaid, Jr., 1660 Ashley Dr., Clarkston, Wash. 99403

U.S. CI. 244-12.4

10 Clums

1. A VTOL airplane having fixed wings with a plurality of propulsion units supported on struts distributed about the center of gravity of the airplane, and having multi-bladed
rotors interconnected to a manner for generating thrust when the propulsion units are operated, the propulsion units being mounted rotatably to the wings of the airplane for movement between forward flight propulsion units between the forward flight position and the hover position, at least one working fluid generator fixedly attached to the airplane, and means for distributing the working fluid from the said generator to each of the propulsion units, each propulsion unit comprising:
(a) two cylinders horizontally opposed, said cylinders being mounted on opposite sides of a crankcase,
(b) a plurality of bosses surrounding said crankcase,
(c) radial bearings received by said bosses, to surround and
support the propulsion unit, said bearings having an axis of
rotation substantially parallel to said cylinders, and
working fluid supply pipe connected thereto by means of a rotary joint which is coaxial with said radial bearings.

SEAL FOR VARIABLE PLUG TwO DIMENSIONAL NOZZLE Robert B. Cavanagh, Jr., and David K. Jan, both of Rockrille, Conn., assignors to United ford, Conn.

This appllicer. No. 751,802, Dec. 16, 1976, abandoned.

1. A two dimensional nozzle for exhausting products of
combustion emanating from a gas turbine engine a centerbody combustion emanating from a gas turbine engine, a centerbody in said nozzle having side edges in sliding relation with side
walls of said nozzle, cooling means for said side walls and said centerbody wherein, said cooling means for said side walls includes flat surfaced side wall panels having inner passages conducting cooling air in indirect heat exchange with said exhausting products of combustion and discharging in the exhaust gas flow path through vertical slots in said side wall
panels, said slots being in communication with a cavity in said panels, said slots being in communication with a cavity in said
centerbody such that cooling air leaks therefrom, means to centerbody such that cooling air leaks therefrom, means to
prevent said leaks including spaced dam-like elements disposed in said vertical slots such that when said side edges wipe over said spaced dam-like elements at least one of said elements
extends between said cavity and the exhaust stream minimizing extends bet
said leaks.

AIRPLANE INSTRUMENT WITH THROTTLE CONTROL SELECTIVELY REGULATED BY AIR SPEED OR LIFT David George Clewa, and David Sweeting, both of Maidstone,
England, asaignors to Fullott Brothers (London) Limited, Chelmaford, Engiand
(1976, Ser. No. 753,711 Claims
$5381 / 76$

Int. C. ${ }^{2}$ G0SD $1 / 08$
U.S. C. 241-182

1. An aircraft instrument comprising:
(a) means for providing a first signal which is a function of airspeed and suitable for use in controlling an aircraft by variation of the airspeed to a predetermined value;
(b) means for providing a second signal which is a function ing with said signal of value, A, for deriving said control error of lift and suitable for use in controlling the aircraft by signal in correspondence with the expression:
variation of the airspeed to adjust the lift to a predeter-
mined value;
(c) selecting means arranged to apply the second signal to
signal utilization means for controlling the aircraft in signal utilization means for controlling the aircraft in
accordance with said second signal except when said and second signal falls below a predetermined datum level,
which represents a safe margin above stall, whereupon the which represents a safe margin above stall, whereupon the first signal is applied to the signal utilization means; and
(d) the selecting means being arranged to provide a transi(d) the selecting means being arranged to provide a transi-
tion between control by the first signal and control by the second signal which is shorter than a a transition between
control by the second signal and control by the first signal. second signal which is shorter than a transion betwern the second signal and control by the first signal.
control

4,093,159
SEMI-AUTOMATIC AIRCRAFT CONTROL SYSTEM Pichard D. Gilson, Columbus, Ohio, assignor to The Ohio State Univeraity Reecarch Foundation, Columbus, Ohio

25 Cluims

1. A flight control system for providing a command perceptible to a pilot representing control correction required to
derive an optimum attitude for an aircraft, comprising: derive an optimum attitude for an aircraft, comprising: transducer means responsive to the instantaneous aerody deriving an output signal, V_{A}, corresponding with the instantancous coefficient of lift exhibited by said airfoil; first signal generator means for deriving a signal of fixed value, V_{D} proportional with a coefficient of lift for said
airfoil predetermined to be desired for performance of said aircraft during approach to flare-out and departure maneuvers;
altimeter means having an output signal of value, h, variable in correspondence with the absolute altitude of said aircraft;
second signal generator means for deriving a predetermined signal of fixed value, A , corresponding with a said altitud seiected
first summing network means coupled to receive said prede termined signal of value, A, and said altimeter output signal of value, h, for deriving an altitude responsive output signal of value corresponding with the expression, A-h, only when said aircraft is at or below said altitude corresponding with said signal of value, \mathbf{A},
second summing network means responsive to said trans-
ducer means output signal value, V_{A}, and said first signal ducer means output signal value, V_{d}, and said first signal
generator means signal of value, V_{D}, when said aircraft is above a said altitude corresponding with said signal o value, A, and for deriving a control ert sersession: $V_{C}=V_{D}-V_{A}$,
said second summing network means additionally being re-A-h, when said aircraft is at or below said altitude correspond-
where, β, is an empirically determined calibrating constant; and display isplay means responsive to said control error signal to establishing an optimum attitude for said aircraft.

4,093,160

4,093,160
FREE VORTEX ARCRAFT
t. II, 4778 Hillerest North, Hillierd, Ohio 43026

Int. C. ${ }^{2}$ B64C 23/06 $\quad 19$ Claim
U.S. C. $244-199$

1. Improved free vortex aircraft construction including:
(a) frame means;
(b) shield means; mounted on the frame means to generate and shed a substantial amount of vorticity into the air
when the aircraft moves forwardly through the air, with said shield means and frame means providing an upper vortex forming zone downwind of the shield means; (c) vortex duct means located within the frame means, generally beneath the upper vortex forming zone, and extending transversely across the frame means providing a lower
vortex zone, with said duct means being provided with a pair of spaced inlet openings communicating with the ends of the upper vortex forming zone;
(d) thruster air duct means located within and extending longitudinally along the frame means and communicating openings; and
(c) engine means mounted centrally on the frame means and communicating with the thruster duct means to provide thrust for moving the aircraft forwardly through the air
and for pumping air from the upper vortex forming zone through the inlet duct openings and vortex duct means to retain and concentrate the vorticity within said upper vortex zone to form a free vortex of low pressure air extending in a generally circular manner across the frame means and through the vortex duct means, with said free
vortex acting on the frame means and vortex duct means to produce lift on the aircraft.

CONTROL SYSTEM WT1
COMMUNICATION FOR CENTRALIZIED CONTROL OF ohn H. Auer, Jr., Fairport, N.Y, asignor to General Signal Corporation Rochester, N Y.

> Filed Apr. 25, 1977, Ser. No. 790,737 Int. C.2.2 B61L 27/00 hod of operating a olurality of vehicle
U.S. CI. 246-5

1. A method of operating a plurality of vehicles controlled by a central controlling authority and communicating with the (a) manifesting to all vehicles within a common zone of control a permissive GO indication;
(b) communicating information from a plurality of vehicles
to a central controlling authority and determining at said central controlling authority, whether said vehicles or any of them should continue in motion;
(c) for each vehicle it is determined should not continue in
motion, formulating and communicating to such specific vehicle a STOP command;

(d) receiving said STOP command aboard said specific thority a manifestation that said STOP command has been received; and,
(e) removing said permisive $G O$ indication from each of the
vehicles if said central controlling authority does vehicles if said central controlling authority does not
receive said acknowledgement that said receive said acknowledgement that said stop command command was transmitted.

4,093,162

TRAIN OPERATION CONTROL APPARATUS
Tadashi Taknoka, Ibaraki, and Eiichi Toyota, Kateuta, both of
Japan, assigoors to Hitechi, Ltd., Japan
Filed Feb. 15, 1977, Ser. No. 768,753
Claims priority, epplication Japan, Feb. 20, 1976, 51-17054
S. 246 , apple Int. Cl. ${ }^{2}$ B61L 3/00

1. A train operation control apparatus comprising: a counter which starts to count an input signal having a
frequency proportional to a running speed of the train in frequency proportional to a running speed of the train in
response to an operation signal which is produced when the train passes a predetermined point, the content of the counter being indicative of the distance which the train has travelled after passing the predetermined point,
a memory having locations for storing speed instructions predetermined according to the distance which the train
has travelled after passing the predetermined point, said has travelled after passing the predetermined point, said
instructions being selectively read out according to the content of said counter,
means for setting the content of said counter at a predetermined value before said operation signal is produced,
a fault detection circuit for detecting a failure of said counter according to the content of said memory which is read out in response to said operation signal, and
applied to the train upon detection of the failure of said counter, said brake instruction circuit including an exclusive OR circuit which exclusively ORs the output of said fault detection circuit and said operation instruction sig.

SWTH 4,093,163 ertil Ivar Larsson, Breder RAIL POINTS tromekano i Bredaryd AB, Bredaryd, Sweden Claims priority, application Sweden, Jan. 19, 1976, 7600466 U.S. C. $246-476 \quad$ Int. C. ${ }^{2}$ B61L $9 / 04,5 / 06$

1. An improved switch for rail points arranged to shift a switch blade consisting of two rails interconnected at corresponding free ends to end positions, alternately in engagemen railroad track rails resting on substantially equidistantly spaced sleepers, the improvement comprising a hollow box girder forming a housing and having substantially the external dimensions of one of said sleepers and positioned in the location of a sleeper in spaced relation to a pair of adjacent sleepers, an ing and connected with said switch blade to shift the switch blade to said end positions, and an associated switch blade end position indicator mechanism within said housing and having a oonnection with said electrically powered mechanism, the arrangement being such that the railroad bed areas between
said housing and the adjacent pair of sleepers is unobstructed. said housing and the adjacent pair of sleepers is unobstructed.
said compression rod holes to hold said end blocks, shims and intermediate blocks in compressive relationship, and
the dangler and the rotator are rotatably engaged at the bottom at least four angle-iron legs mounted to said end blocks by thereof, said angle-iron legs being provided with mounting slots for individual height adjustment of each leg to provide for levelling capability for the compressionloaded foundation assembly.

4,093,165

DEVICE FOR HOLDING BABY BOTTLES Edward Sussman, 166-25 Powells Cove Blvd., Beechhurst, Queens, N.Y. 11415

Filed Jan. 27, 1977, Ser. No. 762,882
Int. Cl. ${ }^{2}$ A47D is/00
U.S. C. 248-106
posture and condition against inclination when the both outer and inner member are spread to crossed condition. through an arc in the range of 180° for receiving the stud, thereby limiting the rotation of one bearing member with
and hoprecast equipment installation foundation for levelling and holding down of equipment having particular base dimensions and absorption of equipment vibration, comprising
two precast concrete end blocks of wo precast concrete end blocks of substantially the same
standardized width, each of said end blocks being pro vided with at least two aligned compression rod holes, and each of said blocks being provided with a continuous channel insert rail on its equipment-mounting face for mounting of equipment,
plurality of precast concrete blocks of different, standard-
ized widths, positioned betw said plurality of in oned between said end blocks, each of at least two of intermediate blocks being provided with the holes of said end blocks, and rovi holes aligned with the holes of said end blocks, and having widths selected to provide a distance between said channel rails approximat
ing the equipment base dimensions ing the equipment base dimensions,
sion rod holes for fine adjustment of the distance between the channel rails to the equipment mounting dimension, at least two compression rods and bolts positioned through

1. A device for holding a baby bottle, especially a bottle of the type containing an internal sucking straw, the device com-
prising a flexible suction cup adapted to grip any flat horizontal prising a flexible suction cup adapted to grip any flat horizontal
surface a collar encircling the bottle about its circumference, a rod fixed to the collar and encircling the bottle about its lower length, the collar and the rod forming a bottle cage removably retaining the bottle, a swivel mechanism comprising upper and lower bearing members, the rod being fixed to the upper bearing member so as to orient the rod and thereby horizontal, and the suction cup being fixed to the lower bearing member, the flexibility of the suction cup enabling limited manual variation of the upward slant of the cage, and a substantially vertically-oriented pin member passing through and joining the bearing members for roation abour a sabsa and the upper bearing member having an arcuate slot extending Edgar L. Borreson, 6133 N. Newburg Ave., Chicago, III. 60631
Filed Mar. 25,1977, Ser. Filed Mar. 25, 1977, Ser. No. 1 2 Cluims

respect to the other bearing member.

4,093,166

HORIZONTAL POSTURE MAINTENANCE STRUCTURE Shonosuke Iida, 759 Nishikubo, Chigasali-shi, Kanagawa-ken,
Japan Filed Jun. 13, 1977, Ser. No. 806,21 Claims priority, application Japan, Aug. 21, 1976, 51. Int. Cl. ${ }^{2}$ A47C $7 / 70$
U.S. C1. 248-126 1. The horizontal posture maintenance structure comprising: an outer member consists of a slinger and a dangler which
curve and are shaped of similar figure and long narrow strip pieces and are pivoted at both ends, and an inner member
 similar figure long narow and are pivoted at both ends, and

CONSTRUCTION OF METAL ARTICLES CONSTRUCTION OF METAL ARTICLES ooklyn, 19339 Citronia, Northridge, Calif. 91324
Filed Aug. 26, 1976, Ser. No. 717,598 Filed Aug. 26, 1976, Ser. No. 71 Int. Cl. ${ }^{2}$ F16B $12 / 46$ U.S. Cl. 248-188 5 Cleims
the construction of metal articles having polygonal upright members and channel shaped transverse members, in
combination, an upright member having an end part having flat side portions lying in mutually perpendicular transverse planes, channel shaped transverse members constructed to be secured to the end portion of the said upright member by way of joints, each channel shaped transverse member having sid
flanges and end parts including portions having surfaces lyin flanges and end parts inclucing portions having surfaces lying against surfaces of the sides of the end part adjacent to but no beyond the end of the upright member, certain of said portions comprising opposed tabs formed by inwardly bent parts of the outside of said upright member and securing means securing the said juxtaposed surfaces to each other, and the bottom of said channel shaped member devoid of its side flanges by the ormation of said tabs resting on one of said surfaces of the sides of ther
thereof.

4,093,168

Robert T HANGER BRACKET Robert T. Buril, 1753 James Rd., St. Panl, Minn. 55105
 U.S. CI. 248-220.4

$$
\begin{aligned}
& \text { ug. 19, 1977, Ser. No. No. } \\
& \text { Int. C1. }{ }^{2447 F} 7 / 28
\end{aligned}
$$ 1. As a substitute for a perforated mounting board of 7 Clim thickness and known hole spacing and sizing, a strip of substan tially rigid sheet material having at least two mounting flanges to jointly define a reference surface, and having bracket mean connected to and located between said flanges with a steppec

configuration defining first and second mounting surfaces configuration defining first and second mounting surfaces respectively from said reference surface, the difference be-
tween said distances being substantially said known thickness less the thickness of the sheet material, said first mounting

surface being formed with a set of holes, spaced and sized to agree with said know
spaced from said step.

4,093,169

ATTACHABLE HANGER FOR CONTAINERS David A. Winchell, Twin Lekes, Wis., assignor to Baxter Trave nol Laboratorica, Inc., Deerffeld, Ill.
Filed Dec. 20,1976 , Ser. Int. Cl. ${ }^{2}$ B65D $23 / 10$
U.S. C. 248-311.3

1. A one-piece hanger for a container which comprises. means for attaching said hanger member to a container, an elongated, flexible hanger member, secured at both ends thereof to said attaching means to define a closed loop, and positioned in generally coplanar relationship to said attaching means, said elongated hanger member defining a pair of first fex sections positioned respectively adjacent being adapted to bend to permit said hanger member to be
pulled into a more transverse relationship with said attachpulled into a more transverse relationship with said attaching means, said elongated hanger member also defining a pair of curved, spaced, second flex sections positioned in hanger member, said second flex sections being also adapted to bend, to facilitate the moving of said elongated hanger member into said more transverse relationship.

SUPPORT FOR HAND GREASE GUN
Claude Spray, 6008 Arlington BIvd, Richmond, Calit Fpray, 6008 Arlington Blvd., Richmond, Calif, 9480 Filed Jan. 31, 1971, Ser. No.
Int. C. ${ }^{2}$ A47G $29 / 00$ U.S. CI. 248-359

1. A support for a hand grease gun of the type including an elongated cylindrical body and an oscillatable pump actuating ever swingable toward and away from one side of said body
said support comprising an upstanding inclined panel member having an opening formed through an upper portion thereof and including upstanding opposite side marginal portions and upper and lower marginal portions, said opening being of a size to snugly, but slidingly receive the rear end portion of a cylindrical grease gun body therethrough, an elongated upstanding
lever hingedly supported, intermediate its opposite ends, from the downwardly facing side of said panel member for oscillation about a horizontal axis spaced below said opening and extending transversely of said lever outwardly of said side, the upper end portion of said lever extending toward and having
its free end projecting slightly into the adjacent lower portion its free end projecting slighty into the adjacent lower portion
of said opening when said upper end portion is disposed at leas generally normal to the center line of said opening, the other ower end of said lever being displaceable toward said panel nember in order to effect swinging of said one end portion away from said panel member and retraction of said free end
outwardly of said opening, the upper extremity of said opening being spaced but slightly from the upper marginal portion of said panel member, spring means operatively connected be iween said lever and said panel member yieldingly biasing said lever toward a position with said one end portion thereof disposed generally normal to the center line of said opening he lower marminal edge of said projecl member including an integral laterally directed integral horizontal support flange for support from a horizontal support surface, said support flange projecting outwardly of said downwardly facing side of said panel member and the included angle defined between said
panel member and support flange being less than 90°.

FISHING-ROD HOLDER
 FiSHING-ROD HOLDER Alfred Mengo, Sr., 4302-83rd St., Kenobha, Wis. 53140 Filed Oct. 21, 1976, Ser. No 734,619 led Oct. 21, 1976, Ser. No. 734,61 Int. Cl. ${ }^{2}$ A01K $97 / 10$

U.S. C1. 248-515

1. A holder for supporting a fishing rod, 1 Claim bracket hase upwardly-extending spaced walls integrel to said base, and ubular member intermediate said walls, pivot means to sup port said tubular member relative to said walls, said tubular member conforming at the lower end thereof to a plane angu larly directed relative to the axis of said tubular member, and a
stop member slidably-secured to said panel, said stop member being slidably guided intermediate said walls and having an

upwardly-directed tongue to engage said plane of said tubular member.

4,093,172

Kenneth Frank Johnson, 22 Station Road, Deagon. Q. 4017, Australia Filed Apr. 12, 1977, Ser. No. 786,890 S. C. 249-19 Int. CI. ${ }^{2}$ EO4G $9 / 00$

A hand tool to aid in laying an upper course of bricks on a lower course of similar bricks, said hand tool comprising a frame and a handle connected to the frame, said frame including: a pair of similar L-shaped side members each having a iong leg and a short leg and spaced laterally apart in lateral alignment with one another by a frame end member
said long and short legs being provided with outer side flanges projecting laterally of said long and short legs placed on a lower course of bricks with their respective side flanges overlaying side faces of that lower course whereby to define a gauge cavity to receive mortar on which a brick of an upper course is to be bedded and said short legs are adapted to engage an end face of an already define a gauge cavity to receive mortar which is to be sandwiched between the two said bricks of the upper course.

MOLD FOR MANU,093,173
 MOLD FOR MANUFACTURE OF BODIES FOR

 Tadahisa Kamamata, Rus Pirasennung, 484; Carios Jorge Freire Antunes, Rua Bento de Matos, 133/33, and Carios de Brito Antunee, Rua Augursta, 2110/11, all of Sao Paulo, Braxil Division of Ser. No. 642,237, Dec. 18, 1975, abandoned. Claims priorty, application Brazil, Dec. 23, 1974, 010738 Clims priorty, application Braxil, Dec. 23, 1974,Int. CI. ${ }^{2}$ B29C $5 / 00,1 / 14 ;$ B29F 1/00 U.S. CT. 249-105
 1. Apparatus for the manufacture of a body having a bottom,
at least four side walls, at least one door, and a roof for isothernal transport units, such as refrigerated or heated trucks, railers, railway cars and the like, comprising
a single pair of molds consisting of an internal mold and an
external mold for molding a main structure comprising the external mold for molding a main structure comprising the
bottom, the side walls, and at least one door opening of the body in a single monocoque part, the main structure exter nal mold comprising
a bottom panel;
side wall panels;
plates for the bottom and the side wall panels having an internal face with relief corresponding to the desired external configuration of the body, and external face having reinforcing ribs
means for securing the bottom panel plates to each of the
side wall panel plates
a double rim on the upper edge of the side panel plates comprising (i) an inner rim having an upper section inclined to the plate and a lo
orifices through the lower stepped section of the inner rim or rifices through the lower stepped section of the inner rim o
the double rim of the side panel plates for injection of molding material;
paced apart boit holes through the extended horizontal rim the double rim of the side panel plates for securing the external mold to the internal mold; and
t least one rectangular door opening through the side panel plates having a size, configuration and location desired for of the body;
the main structure internal mold comprising internal mold, whatic box having an open top for the uuter surace, wherein the box comprises: internal configuration of the body;
sides having rectangular of tene bos y; the bottom of the box, the openings corresponding to openings in the side panels of the external mold;
an inclined flat circumferential ribbon around the top of the box;
spaced a
spaced apart orifices through the circumferential ribbon fo injection of molding materials located so the injection orifices of the main body external mold and the main body internal mold are aligned when the main body external and internal molds are assembled;
a horizontal peripheral rim extending from the circumferential ribbon for suspending the internal mold on the exmold; and spaced apart holes through the horizontal peripheral rim fo
securing the internal mold to the external rim of the side outer mold portion being expandable when vacuum is applied the prismatic box are suspended the walls and bottom of thereto so as to withdraw from an article produced in said the prismatic box are suspended away from the bont
and side panels of the main body external mold when the main body external and internal molds are assembled.

> 4,093,174

COMBINATION DIE AND PALLET Wayne L. Mullins, 5001 E. Cactus, Scortsdale, Ariz. 85254 Continuation-in-part of Ser. No. 681,419, Apr. 29, 1976, Pat. No. The portion of the term of this patent subsequent to Dec. 21, U.S. C. 249-120 | 1993, has been disclaimed. |
| :--- |
| Int ${ }^{2}$ B28B $7 / 24,7 / 26$ | U.S. CI. 249-120

1. In a combination die and pallet of honeycomb construc-
(a) a die plate of rectangular shape presenting end and side edges and formed with a plurality of depressions anranged in longitudinal rows,
(b) each of said depressions being defined by a frusto pyramidal wall and a flat bottom,
(c) end flanges depending from said end edes and side flanges depending from said side edges, said flanges being Hanges depending from said side edges, said flanges being
integral with said die plate, having lower edges, and of a height slightly less than the depth of said depressions, (d) a rectangular base plate of the same size and shape as said die plate and presenting end and side flanges,
(e) fused joints between
(e) fused joints between those portions of the side and end
flanges on the die plate which overlap portions of the side and end flanges of the base plate
(f) spot fusions between said base plate and the bottoms of
(g) a plurality of longitudinal ribs upstanding from said base plate and pressed therefrom leaving grooves opening onto the lower face of said base plate, said ribs being parallel to
the side edges of said plates and alternately disposed bethe side edges of saic plates and alternately disposed be-
tween said side edges and said longitudinal rows of depressions.

4,093,175

DISTENSIBLE ELASTOMERIC MOLDS
Raymond M. Putzer, Racine, and William J. Maurino, Kenosha,
both of Wis, assignors to Precision Feexmold, Inc., Racine,
Wis.
Continuation of Ser. No. 403,197, Oct. 3, 1973, abandoned, 3,776,683. Tiln of Ser. No. 222,141, Jan. 31, 1972 , Pat. No. .S. C. 249-153
U.S. C. 249-153

7 Claims an outer female portion having an integral radially extending annular flange adjacent its upper portion for being supported on a supporting edge, said female portion having an internal onavity containing considerable undercut back draft portions, said mold also including an inner male portion in said cavity and forming an annular space with said female portion that
defines the shape of an article to be produced in said mold, said

mold and said inner mold portion collapses inwardly when vacuum is applied thereto so as to be withdrawn from the interior of said article produced in said mold.

\section*{4093,176}
 MOLD-LOCKING DEVICE

Andre Contastin, Severac-le-Chateau, France, assignor to Industries et Techniques d'Ameublement, Severac-l-Chateau, France

Filed Mar. 2, 1977, Ser. No. 773,780 Claims priority, application France, Mar. 3, 1976, 7606603 Int. C1. 2^{2} B29C $1 / 16 ;$ B22C $21 / 08$; B65D 45/00 U.S. C. 249-167

1. The combination of a two part mold having engaging rims and a locking device for said mold, said locking device com prising:
a support means fixed at one end to one of said rims;
a flexible bellows mounted at the other end on said suppo means;
a movable plate member secured to the opposite end of the bellows;
air inlet means passing through said movable plate member to the interior of the bellows;
hook-like member rigidly secured to the movable plate member; and
compression spring means extending between the hook-like member and the fixed support means; and
means on said hook-like member and said support means for limiting movement by the spring means of the movable plate member towards the fixed support member in the
absence of pressure in the bellows to pivot said hook-like member relative to said mold to engage the other of said rims.

DASHPOT MECHANISM FOR SELF-CLOSING
DASHPOT MECUMBING VALVES
Earl L. Morris, Whittier, and Larry D. Fields, La Puente, both of Calif., assignors to min Industry, Calif. \quad Filed Mar. 16, 1976, Ser. No. 667,31
 U.S. CI. 251-54 Int. Cl. ${ }^{2}$ F16K 31/48; F16F 9/10 3 Claims

1. A fluid-filled dashpot mechanism comprising
(a) housing means having a passageway therein;
(a) housing means having a passageway therein;
(b) stem means reciprocally disposed in said passageway
(c) pushbutton means secured to one end of said stem means
for operably displacing said stem means;
(d) a pair of rolling diaphragms disposed in face-to-face relationship in said passageway and operably coupled in
fluid sealing relationship to said housing means and said fluid sealing relationship to said housing means and said
stem means so as to form an enclosed chamber within said housing means for containing said fluid therein;
(e) piston means dividing said chamber into two portions and reciprocally operable therein for displacement of said fluid in said chamber
(f) means for operably associating said stem means with said piston means for reciprocation therewith
(g) fluid communication means for providing continuous (g) fluid communication between said chamber portions;
(h) check valve means operably associated with said stem means so that when said stem means is operably displaced in one direction said fluid flows from one chamber portion to the other through sasd thereby allowing a reltively rapid displacement of said fluid between said chamber portions and effectuating relatively rapid displacement of said piston means and said stem means, and when said stem means is operably displaced in the opposite direction said fluid flows from said other portion to said one chamber allowing a relatively slow displacement of said fluid be tween said chamber portions and effectuating relatively slow displacement of said piston means and said stem means; and
(i) stop means for limiting the stroke of said stem means, wherein said stop means for operably limiting the stroke of said stem means includes threaded rod means one end
of which is threadably disposed in said pushbutton means of which in other end extending beyond said pushbutton means towards said housing means, the distance between said other end of said rod and said housing means deter mining the stroke of said piston means by limiting the axia displacement of said stem means.

2. A valve for use in a conduit having a smooth cylindrica internal surface comprising shaft means extending diametrisaid valve disc to said shaft, said circular disc having oppo sitely bevelled surfaces on opposite sides of said shaft, an annular groove extending about the entire periphery of said disc sealing means secured in said groove for sealing engagemen
with the internal surface of said conduit, adjustable locking with the internal surface of said conduit, adjustable locking
means for locking said valve disc at a selected angle relative to a transverse plane through said conduit comprising handle means secured to said shaft means, a locking member movably mounted on said handle means, locking plate means having plurality of locking apertures for said locking member \backslash and
means for adjustably securing said locking plate to said conduil for infinite adjustment of said locking plate relative to saic conduit.

Charles F. Schmid
(id, P.O. Box 126, Junction City, Kans. 66441 It. C.2 2 F16K $31 / 04$. F16L $55 / 10$
U.S. C. 251-133

7 Claims

1. A power wrench for operating gate valves on irrigation water pipe, said gate valve including a tubular discharge portion on the valve and extending outwardly of said pipe, said wrench comprising:
a) a gripping member having a bore with an interior surface member, said bore forming a flow passage therethrough aligned with the tubular discharge member;
(b) power means for imparting reversible rotary motion; and (c) speed reduction means operatively connecting said rotating same for opening and closing the gate valve and
permitting unobstructed water flow therethrough during opening and closing movement thereof

GEARED HAND WHEEL FOR BUTTERFLY VALVES GEARED HAND WHEEL FOR BUTTERFLY VALVES Carroll Company, Orinde, Calif.
Continuation of Ser. No. 513,093, Oct. 8, 1974, abandoned. This ation of Ser. No. 513,093, Oct. 8, 1974, abandoned. This
application Aug. 23, 1976, Ser. No. 717,055
$\begin{array}{ll}\text { Int. Cl. F16k } 31 / 53 \\ 251-248 & 8 \text { Claims }\end{array}$ U.S. CI. 251-248

1. For a butterfly valve having a projecting valve shaff for
turning its control disc to open and closed paition a
turning its control disc to open and closed positions, a disc-
shaped geared handle comprising:
necting it to a valve shaf hing attaching means for connecting it to a valve shaft of a butterfly valve;
second circular gear means having anchor means for secur-
ing it to buterfly valve in a non-rotating relationship therewith, said first and second circular gear means ar-
ranged concentrically and in adjacent relationship with said second circular means having at least one tooth difference with respect to said first circular gear means;
a carrier means arranged to rotate concentrically with said
first and second gear means; first and second gear means;
at least one pinion gear means journalled in said carrier gear means;
circular hand wheel mears associated with said carrier means whereby manual rotation of said hand wheel is operable to rotate said carrier means so that said pinion
gear means meshing with said first and second circular gear means meshing with said first and second circular
gear means will track therewith in a planetary manner and gear means will track therewith in a planetary manner and
cause them to rotate slowly relative to one another, in a direction related to the direction of rotation of the carrier
and and
stop means arranged between the first and second circular
gear means so that it is operable to limit the relative rota gear means so that it is operable to limit the
tion thereof to a predetermined amount.

4,093,181

POWERED VEHICLE JACK
Raymond W. Ivins, 1901 SE. Minter Bridge Rd., \#69, Hillsboro, Raymond W.I
Oreg. 97123

Filed May 9, 1977, Ser. No. 795,393
U.S. CI. 254-97

Int. Cl. ${ }^{2}$ B66F. $3 / 02$ ${ }_{\text {ination, }} 5$ 1. An automotive jack comprising in combination, 1. Anck standard supported in a stationary manner by a
ground engaging base and having recesses spaced thereground engag
along, and
a carriage for powered travel along said standard and including,
a roller equipped frame for rolling travel along said standard,
a bumper engaging arm mounted on said frame, a bumper engaging arm mounted on said frame,
rotatable means on said frame engageable with said standard rotatable m
recesses,
a gear reduction drive coupled to said rotatable means, a gear reduction drive coupled to said rotatable means,
a motor mounted on said frame and coupled to said reduction drive, and
switch means in circuit with said motor and with a power source to control carriage movement along said jack
standard.

4,093,182
VEHICLE JACK
Hugo Rutenbeck, Breckerfeld, Germany, asignor to Firma
August Bilstein, Ennepetal, Germany August Bilstein, Ennepetal, Germany
Flud May 23,197,
Ser. No. 799,
Geims Filed May 23, 1977, Ser. No. 799,763
Claims priority, application Germany, Jun. 4, 1976, 2625085
Int. C. ${ }^{2}$ B66F 3/12 U.S. CI. 254-126

1. In a vehicle jack having a support leg with a bearer foot, manually operable adjusting member, in particular a screw spindle, coupled to the support leg, a lifting arm capable of being raised and lowered by the adjusting member and having
at its free end a support head engaging the vehicle frame, and an its free end a support head engaging the vehicle frame, and
an auxiliary foot movably carried upon the support leg, the improvement which comprises a coupling member arranged to act upon the auxiliary foot and operatively displace upon operation of said adjusting member, which coupling member,
upon the raising of the lifting arm brings into effect an addiupon the raising of the lifting arm brings into effect an addi-
tional support provided by the auxiliary foot and prevents ional support provided by the auxiliary foot and prevents
inadvertent release of the jack.

$$
4,093,183
$$

UNITARY GROUNDING ASSEMBLY FOR BUNDLE CONDUCTOR STRINGING BLOCKS
Keith E. Lindsey, Passadena, and Hoyt W. Boczeman, Jr., Glendora, both of Calif., assignors to Lindsey Manufacturing Filed Jun. 23, 1977, Ser. No. 809,409
Int. C.2 B665 $1 / 36$ U.S. C. 254-134.3 Pat 1. A grounding assembly adapted to be pivotally mounted
astride the frame of a bundle conductor stringing block comprising: a U-shaped main body having a pair of generally parallel legs interconnected crosswise of one end thereof by a shaft supporting a separate conductive roller for each conductor of a bundle conductor, the other ends of said legs including means for pivotally mounting said assembly on the opposite lateral sides of the frame of a bundle conductor stringing block, means rollers in pressurized contact with the underside of a respective conductor of a bundle conductor supported by a stringing
block, and said legs including resilient flexible portions permitting the roller-supporting ends of said legs to twist generally about the length thereof and said roller-supporting shaft to tilt way from the normally prevailing plane thereof to accommodate differential conductor sag conditions.

HYDRAULIC BRAKE SYSTEM FOR CRANE HOIST John E Wiechel, DRUM wasignor to Haraicchfeger Corporation, Millwankee, Wis.

Fled Mar. 7, 1977, Ser. No. 774,962
U.S. C. $254-139.1$

3 Claims

1. In a hydraulic brake system for the hoist drum of a lifting crane having an operator's station having a floor, in combinacrane
tion:
a hois
a hoist drum shaft to be braked;
a brake band for exerting a braking force on said hoist drum shaft;
shaft;
a brake cylinder operatively connected to said brake band, said brake cylinder comprising a cylinder and piston defining a chamber for accommodating brake fluid therein;
a brake vaive located near said floor of said operator's station for controlling the supply of fluid to said brake cylin
der, said brake valve comprising a cylinder and a piston derfining a chamber for accommodating brake fluid therein;
a source of fluid;
means for supplying fluid from said source to said chamber in said brake valve;
supply line for supplying fluid from said brake valve cham ber to said brake cylinder chamber; and having its other end near said operator's station; brake pedal mounted near said floor of said operator station and movable between a brake release position and a brake applied position;
a valve toggle linkage connected between said foot pedal and said piston of said brake valve, said valve toggle linkage causing said brake valve to supply fluid at a predetermined pressure when said pedal is moved to a firs brake applied position and a greater pressure when
pedal is moved to a second brake applied position; pedal is moved to a second brake applied position;
and a hydraulic simulator located near said operator's station for adjusting the position to which said foot pedal can be moved when depressed, said hydraulic simulator compris ing a cylinder, a piston slideable in said cylinder and cooperating therewith to define a fluid receiving chamber, said fluid receiving chamber being connected to said other end
of said branch line, biasing means for biasing said piston to a position whercein all fluid is expelled from said fluid receiving chamber, a manually adjustable stop means for limiting the travel of said piston, said stop means being manually adjussable to limit the amount of fluid that can be supplied from said brake valve to said hydraulic simula extent to which said pedal can be depressed said hydraulic simulator further comprising a hollow housing having a pair of end walls spaced apart axially along an axis through said housing, each of said end walls having an opening therethrough along said axis, wherein said cylin-
der is mounted in the opening in one of said end walls and along said axis, said cylinder having openings at its opposite ends, one of said openings being threaded for receiving said other end of said branch line, wherein said piston is slideable in said cylinder along said axis and has a poris slideabe in in said cyinder along
wherein said manually adjustable stop means has a threaded in the other of said end walls, said stop means extending in the oiher of said end wails, said stop weans excencin, wherein said biasing means is disposed between said other end wall and said piston,
and wherein said fluid receiving chamber communicated directly with said threaded opening in said cylinder.
wined within the confines of said stationary couplin
earing portion and mounted to dynamically engage said

capstan and pulley means while moving juxtaposed said coupling bearing portion

4,093,186
LINE BRAKE DEVICE USEFUL FOR FIRE ESCAPE Steven T. Golden, 822 Teegue, Santa Paula, Califif. 93060
Flled Nor. 22, 1976, Ser. No, 743, U.S. CI. 254-156 Int. C1. ${ }^{2}$ B65H $59 / 16$

1. A manually operated line braking mechanism comprising wo pulley assemblies;
means for holding said pulley assemblies apart from each other, including a cylindrical frame holding one of said pulley assemblies and a cylindrical head piece holding the a line;
means for guiding said line through said pulley assemblies so that different sections of said line extend between said pulley assemblies with said line sections close to each other as said line runs through said pulley assemblies; and means for rotating one of said two pulley assemblies with respect to the other including a rotatable connection be tween said frame and head piece whereby the sections of line between said assemblies frictionally engage one anincreasing the temperature of said braking mechanism
U.S. CI. 256-49

2. A fencing system for supporting a plurality of barriers comprising: a plurality of anchors for co
said anchors comprising: a mid-sectionprising. b. substantially vertical side rectangular configuration, dinal sides of said mid-section portion extending downwardly from said sides,
waltion portion extending downc. means disposed on the upper surface of said mid-section portion for connecting said anchor to one of said barriers, and
d. substantially horizontal opposing edges in parallel spaced relation extending outwardly from the bottom of
plurality of said side members; and
plurality of stays for providing support to said barriers,
each of said stays comprising: a a longitudinal member havin
a a longitudinal member having a mid-section portion of
angular cross-section, said aforesaid member having angular cross-section, said aforesaid member having
downwardly extending sides convergent into a center rib,
b. each of said convergent sides terminating at the end c. substantially viertical a reverse bend, wardly from each of said reverse bends toward said riband
d. inward
d. inwardly directed substantially horizontal open channels extending from the bottom end of said vertical side
members, said open channels being receptive of said edges for engaging said anchor.

4,093,188

STATIC MIXER AND METHOD OF MIXING FLUIDS Terry A. Horner, c/o TAH Industries, P.O. Box 178, Imlays. town, N.J. 08526

Filed Jan. 21, 1977, Ser. No. 760,876
U.S. C1. 366-336 an. 21, 197, Ser. No. 760
Int. C1.2 B01F $15 / 00$

1. An element for a static mixer for mixing fluids comprims at least two banks of stationary bafle plats an axis which is parallen to the overall direction of around an axis which is parallel to the overall direction of flow of
the fluids to be mixed, each bank abutting each
extending from said axis so as to form interfacial aperture extending from said axis so as to form interfacial apertures
through which fluids may flow from one bank to an adjacent bank,
the plane of
said axis and beiafle plate being inclined at an angle to baffle plates being inclined at an angle to the planes of the each bank having a first set comprising a plurality of baffle plates spaced along said axis with their planes substantially parallel to each other,
at least one of said banks having a second set comprising a plurality of baffle plates with their planes substantially parallel to each other spaced along said axis and being
similarly inclined to said axis as the baffle plates of said first set but at an angle different from the angle at which

the baffle plates of said second set in said at least one bank being interspersed with the bafle plates of the first set in being bank, and
the plane of ach
the plane of each plate in said second set intersecting the
plane of t least one plate in said first set in the same bank plane of at least one plate in said first set in the same bank
at an intersection near the outer edges of said plates. at an intersection near the outer edges of said plate.

APPARATUS FOR CONTINUOUS PREPARATION OF A SUSPENSION
Iosif Borisovich Sokol, bulvar matrose Zheleznyaka, 11^{a}, kv. 79; Nina Vladimirovna Katysheva, Angarskaya ulitsa, 49, kor-
pus 2, kv. 167; Vladimir Mikhailovich Belyaev, Angarskaya ulitsa, 59, kv. 23, all of Moscow; Dmitry Danilovich Logvinenko, ulitsa Kalinina, 5, kv. S; Ekaterina Alexandrovna Morozko, ulissa K.Libknekhta, 22 , both of Poltava; Boris
Alexeevich Pepelin. Bulatiokovsky proezd, 10 , kv. 746, and Alexeevich Pepelin, Bulatnikovsky proezd, 10, kv. 746 , and
Viktor Alexeevich Prudovoi, Snaiperskaya ulitsa, 6, korpus 3, kv. 40, both of Moscow, all of U.S.S.R.

Filed Oct. 18, 1976, Ser. No. 733,383
U.S. CI. 366/156

3 Claims

1. An apparatus for continuous preparation of a suspension comprising: a framework; a housing mounted on said framefield having a generally annular shape and being accommo dated within said housing; a mixing chamber having a body receiving therein ferromagnetic particles and encircled by said inductor, a hexible conder a fard flexible condwit with a supply
of a liquid component of the suspension to be prepared and the ing chamber; a feed line; a tube havith said body of said mixsaid brar, a feed line; a tube having a branch pipe, one end supply of a solid component of the suspension to le prepared the other end of said branch pipe communicating via said tube with said body of said mixing chamber, said hollow shaft being accommodated inside said tube; a feed screw mounted on said hollow shaft and being inside said tube; means for effecting
rotation of the feed screw mounted on said housing; a disrotation of the feed screw mounted on said housing; a dis-
charge device including an S -shaped conduit having one end connected to a bottom of said body of the mixing chamber.

4,093,190

PROCESS FOR THE PROTECTION OF A REFRACTORY NALL IN SERVICE
Emile Sprunck, Moyeurre, and Pierre Jean Leroy, St. Germain en Laye, both of Fince, amolgro France bandoned, which in part of Ser. No. 590,054, Jun. 25, 1975, abandoned, which is a continuation-in-part of Ser. No. 234, 2727 , Int. C. ${ }^{2}$ C 218
 U.S. CI. 266-47

1. In a process for treating a bath of molten metal in a refrac-ory-lined metallurgical furmace by introducing oxygen into controll batly improvement comprising: controllably injecting liquid hydrocarbons through at leas
one single tube tuyere in said refractory lining located one single tube tuyere in said refractory lining located
beneath the dynamic level of said bath, said tuyere being sufficiently spaced away from the source of said oxygen introduction to prevent free gaseous oxygen from contacting said hydrocarbons and said liquid hydrocarbons being injected in sufficient quantity so as to direct said hydrocarbons tow

4,093,191

SAFETY DEVICE FOR WELDING TORCH Ferguson, 4303 Fluhr Dre, Louisrille, Ky. 40216 Filed Nov. 19, 1976, Ser. No. 743,094
U.S. Cl. $266-48$ Int. Cl. ${ }^{2}$ B23K $7 / 00$
uishing/fuel-oxidizer burning tor 4 Claims 1. A fire extinguishing/fuel-oxidizer burning torch arrangefuel supply means to supply selected fluid fuel to said torch means; oxidizer supply means to supply selected fluid oxidizer to said torch means; fire extinguishing material supply means
to supply selected fluid fire extinguishing material; valve eans including:
(a) first passageway means communicating with said fuel supply means and said torch means with valve member operable from first position;
(b) second passageway means con oxidizer supply means and said torch means; initiate flow of fuel through said first passageway means
and flow of said oxidizer through said second passageway means to second position to terminate flow of fuel through said first passageway means and terminate flow of said oxidizer through said second passageway means;

(d) valve member control means responsive to pressure o said fire extinguishing material supply means to operate
said valve member means from said first position to said second position upon selected decrease in pressure of said fire extinguishing material.

1. In a tilting drive arrangement for a converter having a gear within a gear housing arranged on a tilting trunnion of the converter and a torque support for supporting the gear housing
on a base, the torque support including a guide rod hinged to the gear housing, a torque rod supported on the base in bearings, and a lever arranged to connect the guide rod to the
torque rod so as to produce a torsional moment in the torque torque rod so as to procuce a torsional moment in the torque rod, the improvement comprising a torsion measuring means
located on the torque rod for measuring the torque in the torque rod and hence the tilting moments.

4,093,193
COMPOSITE HIGH TEMPERATURE PROTECTION
John E. Causidy, Churchville, and Max H. Kruas, Huntingdon Valley, b
in, Pr.
Filed Jun. 7, 1977, Ser. No. 804,417
Cle C21C 7/00; F164 9/14; B65N $81 / 00$
U.S. C. $266-87$ C2C 7/00; F16L 9/14; B65N $81 / 0013$ Chims
U.S. C. 206- ${ }^{1}$ I. A composite high temperature protection tube, compris
ing:
(a) an inner core of a first material,
(b) an intermediate zone surrounding said core and being of
a different material, said intermediate zone being sup-
ported by said core, said intermediate zone being spirally wound layers of ceramic paper bonded together, said ceramic paper being inorganic and having an organic inder in amounts suficient to increase the tear strength

roll by pulling on an unwound portion thereof, said ceramic paper having a thermal conductivity less than 2 BTU-in. $/$ hr. Ft. $2^{2{ }^{2}}$ F. at a mean temperature of $2000^{\circ} \mathrm{F}$, (c) an outer wrap bonded to iself along overlapping side
edges and spirally wound around and confining said intermediate zone

PROCESS AND REACTOR 4 Norval D. Clare, Niagara Fille, N.Y., and Charles H. Lembe Norval D. Clare, Niggara Falla, N.Y., and Charles H. Lemke,
Newark, Del., sedignors to E. I. Du Pont de Nemours and Newark, Del., mesignors to
Company, Wilmington, Del.
Cision of Ser. No. 648,761, Jan. 13, 1976, Pat. No. 4,014,687. This application Dec. 28, 1976, Ser. No. 755,124
U.S. C. $266-122$

1. A reactor for carrying out the continuous production of magnesium metal by reaction of MgCl_{2} and sodium in an anhyrous liquid phase comprising
(b) an upper outlet pipe for withdrawing molten material (b) an upper outtet pipe for withdrawing molten materials
through the bottom of the reactor by overflow as the level through the bottom of the reactor by overflow as the leve af such materials exceeds a preselected upper liquid ope
ating level within the reactor; (c) an inert gas inlet pipe for blan preselected upper liquid operating level with inert gas. (d) inlet means for injecting granular solids containing
MgCl_{2} below a preselected lower liquid operating level within the reactor;
(e) an inlet pipe for injecting molten sodium metal below the granular solids inlet; and
(f) a lower outlet pipe for receiving molten material and of such materials exceeds a preselected low as the lev ting level, the L/D ratio of the reactor below the pres lected lower liquid operating level being at least about 1:1

CARBURIZING FURNACE
Donald J. Schwalm, Northrille, Mich., assignor to Holcroft a Company, Livonia, Mich

Filed Jan. 19, 1977, Ser. No. 760,567
Int. C1. ${ }^{2}$ C21D $1 / 00$
16 Claims

1. Carburizing apparatus comprising a furnace having means defining heating, carburizing and diffusion zones, longitudi-
nally spaced piers mounted on the floor of said furnace in each nally spaceed piers mounted on the floor of said furnace in each
of said zones and extending transversely between the side walls of
of said fones funce, track means on said piers and means for conveying a pluraility of work trays along said track means succes-
sively through said zones, means for introducing into each of sively through said zones, means for intronucing ine thes and fan
said zones a gas atmosphere appropriate to that zone, and means in each zone for circulating the atmosphere therein through the work in said zone, said fan means each comprising fan mounted in a side wall of said furnace and having its inlet means with said iniet and outlet being longitudinally spaced part and separated by at least one of the piers in said zone, whereby atmosphere is circulated downwardly through the ork at one pier position and upwardly through the work at an adjacent pier position within said zone.

LENGTH-ADJUSTABLE GAS SPRING Fritz Baver, Altdorf, Germany, assignor to Suspa FederungFtechnik Fritz Baver \& Sohne OHG, Alto
Filer
and Germany Claims priorty, application Germany, Aug. 26, 1976, 2638363 -65 Int. C1. ${ }^{2}$ F16F 9/32

A continuously length-adjustable compressed gas-filled spring, such as for height adjustment of chair seats, table top or the like comprising
an outer cylinder constituting a housing, an inner cylinder coaxially disposed in said outer cylinder, and defining an
annular chamber therebetween; a piston mounted coaxiannular chamber therebetween; a piston mounted coaxisealingly contacting the inner wall of said inner cylinder to prevent leakage of said gas across said piston between a chamber on the other side of said piston, said piston being
connected to a piston rod extending through one end of the housing in a gas-tight manner through a first sealing plug at one end of said cylinders, a second sealing plug to seal the two cylinders at the opposite end in a gas-tight manner, means chambers separated in a gas-tight manner by the piston on the piston rod, said means comprising a valve including a valve push rod serving as a valve release pin and extending through the other end of said housing in gas-tight manner through said second sealing plug, a first ing plug which is in the vicinity of said valve push rod, a second bypass channel located in the vicinity of said first sealing plug,
displve comprising a piston sealing element coaxially displaceably mounted and guided in a gas-tight manner in said inner cylinder on said valve push rod; a bypass de-
pression in the inner wall of said inner cylinder, whereby said valve is opened by moving said piston sealing element axially adjacent said bypass depression to provide gas
flow communication between said first and second chambers through said bypass depression, said first and second bypass channels and said annular chamber, and said valve is closed when said piston sealing element is in a position
axially spaced from said bypass depression to close said gas flow communication between said first and second chambers.

LEAF SPRING SUSPENSION

in W. Carter, Bettendorf, Iowa, and L. John Koutsky, Milan, II., essignors to Sears Manufecturing Company, Davenport Iowa Filed Mar. 16, 1977, Ser. No. 778,019

1. A suspension for use with a support structure for a sea the support structure having upper and lower halves interconhe seat being attached to the upper half, said suspension com-
first means for suspension having a first connecting end operably coupled to the upper half of the support struc oure and having an opposite, first terminating end, said therein between said first connecting and terminatin ends, said first means having a bar member and a transverse member, said bar member being attached between two linkage members, said transverse member being transverse member engaging said bar member;
second means for suspension having a second connecting end attached to the lower half of the support structure and having an opposite, second terminating end, said second herein between said second conrecting and terminating ends; and
control means for weight adjustment extending between said
terminating ends to connect said first and second means, chain and sprocket arrangement; said engine supporting frame said first and second pivot areas abutting, said first means
being rockable upon said second means at said pivot areas.

4,093,198
COIL SPRING DEVICE
Tom Lindhardt Petersen, Sodingevej 6, 5750 Ringe, Denmark Continuation of Ser. No. 661,562, Feb. 26, 1976, abandone Claims priorty, application Denmark, Feb. 26, 1975, 738/75 U.S. C. 267-179 Int. C1. ${ }^{2}$ F16F 1/12

being of a generally rectangular configuration with shorter end
members affixed to the shafts and longer side members extend members aftixed to the shafts and longer side members extend being edge-reinforced I beams welded together at the corners with overlay corner plate reinforcememts, said frame having

removable engine mounting brackets extending inwardly from each of said side members, each of said mounting brackets having an angle section with two faces engageable with said
ide member, a plurality of spaced connecting sections extendside member, a plurality of spaced connecting sections extend-
ing transversely from said angle section to an engine engaging ing transversely from said angle section to an engine engaging
section, said angle section and said engine engaging section having a plurality of openings along their lengths.

1. A device such as a playground toy, comprising a heavy coil spring, the opposed ends of which are affixed to respective
opposed parts so as to render these parts mutually resiliently moveable by compression, expansion or bending of the coil
spring, said spring at least at one end thereof having an outerspring, said spring at least at one end thereof having an outer-
most winding of small pitch and a following winding of increased or increasing pitch confining together with said outermost winding a helical wedge shaped space, a substantially
non-compressible distance element being non-compressible distance element being arranged in a portion
of said wedge shaped space between and in engagenent with respective winding portions, said distance element causing a
first portion of said windings on one side of said distance ele. first portion of said windings on one side of said distance element to be substantially locked at a mutual distance apart and saic distance element causing a second portion of said windings minimum freespace both between said windings and adjacent the sides thereof of a size sufficient to prevent body appendages of a user from becoming jammed between said windings,
and a substantially non-stretchable connector means being anranged adjacent said distance element so as to hold the respective winding portions in said engagement with the distance element and prevent the winding portions from being moved away from each other.

ROTATABLE ENGINE SUPPORTING APPARATUS Paul Hefner, Billings, Mont, assignor to Ralph Stewart, Billings, Mont., a part interest

Filed Aug. 2, 1977, Ser. No. 821,225
U.S. C. 269-61

Int. C. ${ }^{2}$ B23Q $3 / 18$

1. A rotatable engine supporting apparatus including a 10 Clims of spaced truncated bases, an engine supporting frame disposed of spaced runcated bases, ane engine supporting frame exposed
between the spaced bases on rotatable shats extending through pairs of bearing assemblies mounted on the upper surface of each of said bases, one of said shafts being driven by a gear reduction motor located in one of said bases through a

DEVICE FOR CuTITING YARN

 9 Claims

1. A device for cutting elongated material which comprises drum having a plurality of axially disposed uniformly and equidistantly spaced, narrow grooves; said grooves being at east four in number; said material being disposed on said drum's surface, means for securing the material thereon, and comprising elastic band means mounted at opposite ends of the upport means for rotatably supporting the drum, and includng a pair of upright members rotatably receiving the drum, ad said grooves being selected that when the material is cut y cutting means placed in selected ones of said grooves the by cutting means placed in selected ones of sald
material will be substantially equal in length.

4,093,201
DISC SUPPORT STRUCTURE Wolfgang Dietze, Munich; Richard Mittermeier, Moosbure, and Woligang Dietze, Munich; Richard Mittermeier, Moosburg, and
Gerhard Steinwagner, Munich, all of Germany, zeignors to Gerhard Steinwagien Mef Berlio \& Munichy, asign Division of Ser. No. 452,934, Mar. 20, 1974, Pat. No. 3,962,301. This application Dec. 8, 1975, Ser. No. 638,299 Claims priority, application Germany, May 7, 1973, 232295 U.S. C. 269-296 Int. Cl. ${ }^{2}$ B23Q $3 / 00$

1 Clsim priority, application Germany, Sep. IN THE FOLDING APPARATUS Rudoir Fischer, Lu-Oggersbeim, and Rudoif Frey, Dirmatein,
both of Ger, enthal, Germany
cutal, Germany Jul. 29, 1976, Ser. No. 709,749
Clxim U.S. Cl. 270-20 5 Cleims

1. A support structure for supporting a plurality of crystal discs thereon during treatment of said discs, comprising: being composed of a material selected from the group consisting of Si and SiC, said body having a flat continuous bottom wall and upwardly extending curved side
walls integrally formed with said bottom wall and being walls integrally formed with said bottom wall and being curved in opposition relative to one another, and at least tending upwardly beyond the periphery of said side walls a distance greater than the radius of a disc to be supported on said structure so as to form a closed arc above said ottom wall and join said curved side walls to one another; and
member composed of a material selected from the group consisting of Si and SiC , said block member being of a size fitting within said rub-shaped body to support a stack of said discs at a position within said support structure.

CABINET DOOR MOUNTING BRACKET
John E. Kincaid, 218 Center St., Kernersville, N.C. 2728
Filed Oct. 25, 1977, Ser. No. 845,328
Filed Oct. 25,1977 , Ser. No.
Int. C. ${ }^{2}$ B25B $5 / 14$
9 Claims

1. A door holding clamp comprising: a bracket, said bracket having first and second L-shaped sections, said L-shaped sections having leg and foot portions, said first and second L haped sections being joined faci:lal member, a support flange ends on opposide sides of a vertical member, a support flange and one of said L -shaped members having an adjusting means.

2. Apparatus for slowing down fed printing specimens which are fed from a folding cylinder by means of a conveyor wheel of the folding apparatus in a rotary printing press, comprising:
a pair of rollers supported on said frame and including a driven roller and a cooperating, freely pivotable roller forming a wedge portion therebetween interposed between said folding cylinder and said paddie wheel,
conveyor belt and the fed printing specimens passing through said wedge portion, said driven rolier being fixed for rotation in said frame in synchronism with the fed printing specimens, said driven roller including on the outer periphery thereof at least two peripherally spaced nings forming therebetween a first aperture, said pivotable
roller being movably coupled to said frame and adjustable for movement relative to said driven roller, said pivotable roller including on the outer periphery thereof a radially having at least one undercut portion forming a second aperture adapted to be aligned with said first aperture for providing a path through which said conveyor belt runs, said rollers being operable al a lower speed than that of impact speed of the specimens when they are introduced into said paddle wheel; and
adjustable means to adjust the distance between said pair o rollers, coupled to said pivotable roller, so as to permit speciment relative to the tide specimen.

SHEET CUTTER, FOLDER AND STACKER
Glenn A. Landgraf, and Fred H. Ebel, both of Boca Raton, Fila, assignors to Irvin Industries, Inc., Greenwich, Conn.

Filed Nov. 15, 1976, Ser. No. 741,5
U.S. Cl. 270-21 9 Chim 1. A sheet cutting, folding and stacking machine comprising cradee for supporting a roll of sheet material to be promeans for feeding the she
to a cutting station
to a cutting station,
cutter including a hot
cutting sheets of selected size from the roll,
a folder approach conveyor disposed adjacent the cutter
station for receiving the cut sheet one at a time from the and simultaneously pivotally moving said folding plate abou
cutting station, folder mounted immedialy adjacent the approsch veyor for receiving the sheets to be folded means including a peir the sheets to be folded
the folder for making at least ane a fold in each sheet after
its leaves the appring part of
its leaves the approach conveyor,
a transfer conveyor mounted adjacent the folder for receiving the folded sheets from the folder,

a stacker assembly mounted on the transfer conveyor in the path of folded sheets received by said conveyor for resaid cradle including a plurality of idler rollers forming a bed said crade including a piuraile of idier rollers forming a bed
to support the roll of sheet material, driver rollers for engaging the sheet for pulling the sheet and a scray dispose
and a scray disposed between the wire cutter and drive
rollers for temporarily collecting lengths of the sheet riterial porporarily collecting lengths of the sheet material prior to it being fed to the cutter.

FRENCH FOLDER CONSTRUCTION
Kemimir Kober, Caicigo, Mil, medgnor to Chicazo Dryer Company, Cricrego, III.
Fled Sep. 30, 1976, Ser. No. 728,080 Int. C. ${ }^{2}$ B65H 45/22

6 Chims

1. A folding apparatus comprising spaced parallel article support surfaces; having outermost parallel edges; the interval between said outermost edges of said support surfaces, defining means for said opposed article support surfaces; a folding plate disposed beneath said support surfaces having parallel longitudinal edges; a first pivot mounted adjacent one end portion of said plate adjacent one longitudinal plate edge supportably vinlly parallel to said support surfaces; said folding plate paralel longitudinal edges being interconnected by a transverse article-ngaging edge substantially traversing the interval etween said outermost edges of said parallel support surfaces motive means connected to said support means for said article support surfaces for uniformly moving said article support
surfaces toward and away from each other in parallel relation; said motive means also being connected to said folding plate
and simulaneously pivotally moving said folding plate about opposed to said pivot is maintained in substantial underlying alignment with the vutermost edge of an overlying article
alignment with
support surface Joeeph Daniel Green Feeder for Carton blanks Joeeph Daniel Greenwell, Florence; Charles C. Hughes, and
Robert W. Kinney, both of Ludlom, all of Ky., sssignors to R. Filed Dec. 1, 1976, Ser. No. 746,460
U.S. C. 271-3.1 Int. Cl. ${ }^{2}$ B65H Ser. No. $1 / 340,3 / 30,4$

3 Claims

1. In a carton blank feeding mechanism
a magazine lower stage,
a blank ejecting mechanism located below the lower stage, a magazine upper stage located immediately above the lower stage and being inclined to the vertical, and
upper and lower stages, said rollers forming the sole sue port for carton blanks mounted in the upper stage of said magazine,
the upper stage of the magazine having one wall which is at
an angle of approximately 30° to the vertical
the axes of said rollers defining a plane lying at an angle of
whereby cartons loaded in said upper stage and resting on said rollers will be shingled with respect to each other. olding a prefolded pack of sheets which are fed in a folding parallel to and underneath a folding knife comprising: a frame;
a generally U-shaped yoke including a horizontally extending base meember and two arms secured to, and extending upwardly from opposite ends of said base member, said yoke being pivotably mounted on said frame for pivotable
movement about a vertical axis, and such that ssid arms thereof are disposed on opposite sides of said folding knife a pair of horizontally-disposed rotatable shafts each of which is coupled to the upper end of one of said arms of said yoke for rotation about a horizontal axis, said shafts being disposed beneath said belts;
finger coupled to each of said shafts for rotation therewith
said fingers being rotataly said ingers being rotatably movable into the folding path
of the pack of she edge thereof;
eagn for means for rotating said shafts so that said fingers are moved in a work cycle in the folding path of the pack of sheets so
that one of the said fingers will engage an advancing that one of the said fingers will engage an advancing
leading edge thereof, said means rotating said shaft and, in turn, said fingers, in the feeding direction of the pack of sheets but at a slower speed so as to permit the trailing edge of the pack of sheets being fed at a higher speed by said belts, to become properly aligned with the leading
edge: and edge; and
means for pive
neans for pivoting said yoke so as to, in turn, move one of
said fingers to said fingers toward the leading edge of the pack of sheets for engagement therewith, the other finger remaining in a until such time that the trailing edge of the pack of sheet becomes properly aligned with the leading edge thereof.
mounted to sides of the elongated member, for supporting the apparatus on a supporting surface; and
casters, d
frames.

DIVING APPARATUS
Lemis J. Daly, Fayetterille, N.Y,, amignor to Robert C. Stevens, Filed Mar. 28,1977, Ser. No. 782059 S. Cl. 272 Int. Cl. ${ }^{2}$ A63B S/10

7. A self-adjusting diving platform of relatively short length including: beluding:
a board pivotally mounted at one end to said base member; a pair of spaced apart arcuate shaped spring members secured in cantilevered fashion at one end in the base member and extending outwardly from said base each spring
member extending along an edge of the board; member extending along an edge of the board;
said crossbar extending transversely and beneath the board; and
at least one arcuate guide slide means affixed to the bottom surface of the board and extending substantially longitudinally the board and having a generally concave working surface formed therein for receiving and guiding the
crossbar in sliding relationship therewith when said board is used by a person, in rearward movement of the crossbar when the board is loaded to a predetermined level and to resist rearward movement of the crossbar when the board is loaded beyond said predetermined level.

FINGER/ARM FRICTION 4,093,210
FINGER/ARM FRICTION TYPE EXERCISING DEVICE Warrington, Pa.

Filed Jun. 3, 1977, Ser. No. 803,149
Int. C. ${ }^{2}$ A63B $23 / 00,21 / 26,21 / 30$
U.S. C. ${ }^{272-67}$

1. An exercising device adapted to strengthen the deep and
superficial muscles of the forearm, comprising
2. a base member for attachment to a wearer's waist, said
base member having
base member having
a. a projection means perpendicular thereto for receiving
a wheel rotatable thereon, and
b. means for attaching said base member to a wearer's waist;
3. a wheel telescopically mounted for rotation on said projection, means said wheel having
a. a plurality of radial projectio
a. a plurality oreof by thearer of said exs to initiate rotation said base member projection exercising device; selectively receiving portions of said wheel to rotation of said wheel relative to said base member projection; and 4. means joining said wheel to said base member projection means, said joining means having said selective receiving means positioned therewithin whereby said joining means
may be adjusted incrementally to change the resistive may be adjusted incrementally to change the resistive
force necessary to be overcome in order to rotate said force necessary to be overcome in order to rotate said
wheel relative to said based member projection means.
COMBINATION JUMP ROPE AND FLEXIBLE COMBINATION JUMP ROPE
Thomas E. Hughes, 5908 Ridgewood Rd., Jackson, Miss. 39211, ${ }^{\text {and }}$ Thomas E. Skornschek, 618 Ashcroft Dr., Brandon, Fla. 11

Filed Feb. 4, 1977, Ser. No. 766,053
Int. Cc. ${ }^{2}$ A 63 B S $/ 20,21 / 14,21 / 30$
U.S. C. $272-68$
a. a pair of handgrips,
b. an elastic, flexible member having two spaced ends con extending between the handgrips; and fastening means attached to the handgrips for attaching the ends of the flexible member to the handgrips; the improvement wherein:
. each of the handgrips is resilient and includes a torsion spring provided with normally diverging arms, and two and the other of the handles on the the one of the arm each of the handles extending longitudinally away from he torsion spring, one of the handles of each of the hand arthest from the torsion spring with the handle spaced tending part way around the handle and substantially transverse to the longitudinal extent of the handle for electively receiving the flexible member and permittin wrapping the flexible member around the one of the handles of each of the handgrips, the other of the handles of each of the handgrips being provided on an end of the andle spaced farthest from the torsion spring with recess means provided in the one of the handles and loward the torsion spring for receiving the flexible member and facilitating performance of certain exercises by using the other of the handles of each of the handgrips as a fulcrum for the flexible member.

PUNCHING BAG $4,003,212$
PUNCHING BAG FOR PRACTICING UPPERCUTS 07095 , Burmon Jacques, 15 E. Bunns Le., Woodbridge, N.J. Filed May 12, 1976, Ser. No. 685,630
Int. Cl. ${ }^{2}$ A63B $69 / 00$ Int. C. ${ }^{2}$ A63B 69/00 $\quad 10$ Claim

1. A training device for fighters permitting the practice of uppercut punches comprising:
in which training is to take place sid the wall of a room be vertically disposed thereon; b. an arm having padding attached on all sides thereof and presenting at its outer end a portion simulating the chin of a fighter;
c. an angle bracket rigidly attached to said mounting mem-
d. first and second side members rigidly attached to said mounting member and to said angle bracket said side members each heving a hole formed therein; and
a rod rigidly attached to the end of said arm disposed in said holes for rotation therein
f. means for limiting the downard motion of said padded arm to an approximately horizontal position such that the bottom portion of the padding on the end of said arm when said mounting member is attached to the wall, will
be approximately at the height of a man's chin; and g. means biasing said padded arm downward to said approx mately horizontal position.

4,093,213
VARIABLE RESISTANCE LIFTING MECHANISM
Charles Milton Coker, Huntington Beach, and Gary Marvin Health Equipment Corp., Los Angeles, Calif. Filed Feb. 10, 1977, Ser. No. 767,41
Int. C. ${ }^{2}$ A63B $21 / 06$

1. A variable resistance lifting mechanism, comprising: a frame having means for guiding the movement of weights: lever arm means ivotaly ace pormit substantially only reciprocation of said lever arm means with respect through a sleeve means when said lever arm means is pivoted by a user
a pivotable, linear bearing sleeve means for receiving said ever arm means in telescoping relationship, said sleeve
means being mounted at a position remote from said lever arm means pivot point, said sleeve means being mounted
for linear movement within said guide means and for for linear movement within said guide means and for
simultaneous pivotal with respect to said frame to maintain alignment with said lever arm, said sleeve means simultaneously distributing a user's lifting forces over a substantial length of the respective lever arm means dur-
ing lifting of the lever arm means
bar weight supporting means pivot
each linear bearing sleeve means;
each linear bearing sleve means;
a plurality of weights slidably mounted for linear movement of said guide means, said weight having adapted to distrib-
ute the forces against said guide means over a length of said guide means; and, said guide means; and
bar means,
whereby pivoting by a user of said lever arm means about its pivot point causes pivoting said linear bearing sleeve pivot point causes pivoing suaid linear bearing sleeve
means with respect to said guide means and simultaneous linear movement of said sleeve means and of said weights on said guide means.

DUAL FUNCTION EXERCTSE MACHINE
Charles Milton Coker, Huntington Beach, and Cliff James Coker, Calabessas both of Calif, essignors to Paramo Health Equipment Corp., Los Angeles, Calif. Heain Equipmen Feb. 10, 1977, Ser. No. 767,411
Filed
U.S. CI. 272-118

Int. Cl. ${ }^{2}$ A63B 21/06
4 Claims

1. A dual function exercise machine, comprising:
a frame having means for guiding the movement of weights: a plurality of separate and independent adjacent lever arm means pivotally connected to said frame for lifting separate stacks of weights by a user;
patable, linear bearing sleeve means for receiving each
said means, each said sleeve means mounted at a position remote from each said lever arm means pivot point said each sleeve being mounted for linear movement with respect to said guide means and for simultaneous
rotation with respect to said frame to maintain alignment with the respective lever arm means, each said sleeve
means being adapted to simultaneously distribute lifting forces over a substantial length of each of the respective lever arm means;
bar means pivotally connected to said each linear bearing
plurality of separate and independent stacks of weights, each stack of weights being slidably mounted for linear movement on said guide means and associated with one o said lever arm means; and,

securing means adapted to secure each one of said bar means to a selected number of weights in an associated stack, said lever arm means being so situated on the frame as to permit exercise by one or both corresponding user's limb on adjacent lever arm means connected to the same or lever arm means causing rotation of an associated linea bearing sleeve means with said lever arm and simulta neous linear movement of said sleeve means and of said selected number of weights on said guide means.

CHANCE OPERATED SIMU

ere P. (1 Barham Dr., San Mercos, Calis

$$
\begin{aligned}
& \text { Filed Jun. 4, 1976, Ser. No. } 693,276 \\
& \text { Int. C1. }{ }^{2} \text { A } 63 \text { F } / / 18
\end{aligned}
$$

1. A. game system, comprising:
2. A game system, comprising:
center unit including a plurality of display devices for
indicating cards respectively played by a plurality indicating cards respectively played by a plurality of
individual players, wherein each display device provides display of a given card in response to a predetermined center display code signal;
a plurality of player hand units, wherein each player hand unit is coupled to a separate center unit display device
a plurality of display device for indicating the identity of the cards in an individual player's hand in response predetermined hand display code signals representing different cards, and
switch means for selecting a card for display in the center unit display device coupled to said player hand unit; reans responsive to said selection of a card for providing a said predetermined center display code signal to the center unit display device coupled to said player hand unit, $\stackrel{\text { and }}{\text { means fo }}$
means for randomly distributing a predetermined number of said hand display code signals to each player hand unit, plurality of RAM's, each separately coupled to each of the
player hand units, wherein each RAM provides said pre-
determined hand, display code signals in response to being
addresed by different hand card code signals having addressed by different hand card code signals having different counts;
a counter for providing a succession of hand card code
signals having different counts;
hand card code signals and distributing said receeived hand card code signals to separate RAM's;

means for randomly providing said hand card from the counter to the multiplexer; and a plurality of card counters each of which is coupled to the multiplexer and to a given RAM for counting the number of hand card code signals provided to said given RAM and for inhibiting further distribution of said hand card code signals to said given RAM upon counting that a been distributed to said given RAM. CONSTRUCTION

MODULAR BALL REBOUND APPARATUS

33950 Filed Nor. 26, 1976, Ser. No. 745,417
U.S. C1. 273-29 A Int. C1. ${ }^{\text {A }}$. ${ }^{23 B 61 / 00}$
1 Claim

1. A portable ball rebound apparatus comprising
at least three ball rebound panels each having a planar surface of a shock absorbing material,
means to removably support said rebound panels,
said means to support said rebound panels comprising an easel including a pair of opposed, spaced apart front legs
interconnected by a plurality of transverse parallel rails of interconnecter by a pluraily of transverse paraunci rain of and a pair of side rear legs hingedly connected at their upper ends to the respective front legs,
means to adjust said means to support in a manner so as to
selectively selectively position said planar surface at various selective angles of inclination to the vertical, with a cellular synthetic material bonded thereto comprising shock absorbing material, and
wherein said plurality of transverse parallel rails comprises a bottom rail fixed between the bottom ends of said front bottom edge in a manner so as to fit behind and on top of said bottom rail, and intermediate and top rails fixed between said front rails in positions to supportingly engage the back of each of said rebound panels.

4,093,219	
Jean-Daniel Pirand, Thiers, France, meat	
Transformation du Croutchove-sotrac, Cournon, FranceFFled Oct. 22, 1976, Ser. No. 734,955	
Cluims priority, application France, Oct. 30, 1975, 7533174	
US. C1. 273-65 B	2 Clx

1. A racket comprising
a frame defining a central opening
a handle extending outwardly from said frame
first string means forming a plurality of longitudinal strings
extending in the direction of said handle, spaced over the central opening and attached to said frame under tension; second string means forming a plurality of cross strings extending aver the central opening tond attached to said frame under over the
plurality of centrally located strings of the first and second string means being interwoven in the conventional basketweave pattern and forming an imaginary center striking strings: strings,
he cross strings spaced from the longitudinal side strings being interwoven over and under at least two longitudinal strings with consecutive cross strings alternating the over and under pattern; and
plurailty of cross strings spaced from at least one end of the
cross end strings being interwoven with longitudinal strings in an identical predetermined pattern.

SIMULATED VIDEO GAME
Glen R. Dash, Watertown, Masen, nasignor to Massachosetts
ritute of Technology, Cambridge, Meas.
Filed Dec. 13, 1976, Ser. No. 750,055
Filed Doc. 13, 1976, Ser. No. 750,055
Int. C.2 A63F $7 / 06$; GOBB $\mathrm{S} / 22$; HONN $7 / 18$
U.S. Cl. $273-85 \mathrm{G}$
49. For use in an electronic game wherein simulated images 49. For use in an electronic game wherein simulated images
are produced on the image screen of a CRT having a raster 1. A two-ply ball for use in sports activities, consisting of an scan beam, electronic controller means operable to produce on external cover layer fabricated of a wear-resistant material said image screen he simulacion leas and secured to a composite bladder/body forming the game, the simulation of at least one active component of the inner layer in the ball, said composite bladder/body layer said game, and the simulation of an object that moves about the being fabricated from an elastomeric resin comprising a poly- playing area or region, said electronic controller means includcondensation product of at least one compound of the group ing, in combination, component signal generating means to consisting of the dicarboxylic acids and esters of the dicarbox- provide an active component signal that serves to generate on
ylic acids having a molecular weight of less than 300 with a the image screen the simulated active component, object genyic acids having a mol whose molecular weight is between erating means that serves to generate said object on the image
screen, latch means connected to receive the active component
ignal and the object signal and adapted to note the coincidence of the active component signal and the object signal and,

when activated, to lock the simulated component and the nd means to activate the latch means.

4,093,222
MINIATURIZED GOLF GAME Filed Mind McAllister, Kentrield, Calif. 94904 Filed Mar. 23, 1977, Ser. No. 780,403
Int. C1.2 A63F
simulate the playing of golf on the course depicted on said map by skilled manual
contoured game board.

4,093,223

ELECTRONIC GAME APPARATUS AND METHOD William F. Wilke, 702 N. Minnesota St., Carson CYty, Ner 89701; Alan G. Hutcheson, 349 Smithridge, Reno, Ner. 89502 and Richard D. Ross, 285 E. Lincoln Way, Sparks, Ner. 8943 Filed Jan. 23, 1976, Ser. No. 651,914
Int. Cl. U.S. C. 273-94 R ${ }^{\text {Int. Cl. }{ }^{2} \text { A63F 9/00 }} \quad 24$ Claims

U.S. C1. 273-87 R

1. A skill
a miniature golf ball;
contoured game board having a plurality of slots arranged in a " U "-shaped configuration around a playing area
convexly contoured with the apex thereof lying on the centerline of said "U" to arcuately accelerate-said ball olling thereon away from said centerline simulating hook and slice;
designator means for associating golf shots of particular
distances and directions with each of said slots the dislistances and directions with each of said slots, the disto the distances from the associated slots to said centerline, the directions of the golf shots associated with the slots on respectively:
at least one miniature golf club for manual striking of said ball for movement on said contoured game board; a map depicting in miniature a golf course; and
said slots into corresponding movement on said map
8 Claims
sid slots into corresponding movement on said map to
2. An electronic game apparatus comprising.
a simulated playing field including automatically controllable indicia means for displaying game ball position and coreboard display means inc
ding automatically controllafirt means for mans for displaying game data;
ity means for manually inputting a selected one of a plurality of play choices by a player presently on offense;
second means for manually inputisg a selected second means for manually inputting a selected one of a
plurality of play choices by a player presently on defense; game controller means including microprocessor means, random access memory means, and read-only memory means, wherein one portion of said read-only memory
means includes probability table means compring a ply means includes probability table means comprising a plu-
rality of stored electrical states arranged such that said states represent odds of success for different parameters involved in each play choice, and wherein a second portion of said read-only memory means includes a processor controller comprising a plurality of stored electrical states, said game controller means operating to detect
input play choices and operating to generate a random number in response thereto, said processor controller operatively enabling said microprocessor means in conjunction with said random access memory means to automatically selectively access a plurality of said states in said probability table means based on the play choice of the
offensive player, the play choice of the defensive player and based on said random number, the accessed states of said probability table means constituting a specific play outcome;
lock generator means, said clock generator means acting in
conjunction conjunction with said microprocessor means and said random access memory means of said game controller means to use said play outcome to automatically generate a play execution;
means for enabling said game controller to automatically
control said playing fill control said playing field indicia means such that in real time same generated play execution is displayed, wherein the game ball is displayed as moving from an initial position on said playing field to a position corresponding to that determined by said play outcome; and means under the control of said game controller display
such that the current status of the game is continuously maintained thereon. athletic contest from electrical signals selected by competin players representing chosen offensive and counteracting defen
sive plays of said athletic contest comprising the steps of:
a. electronically detecting said signals representing said
chosen offensive play and said chosen counteracting de-
fensive play;
fensive play;
c. operatively accessing automatically a plurality of ele tronically stored probability tables as a function of the detected plays chosen and random numbers generated, for obtaining data therefrom;
d. electronically processing said obtained data to generate a play outcome; and
e. thereafter electronically displaying automatically and in real time on a simulated playing field said play outcome, including the location and movement of opposing players.

ANCHORING DEVICE FOR CAP FOR A GAME
Robert John Oliver, Adelaide, Australia, assignor to ZimmClem Oct 5, 1976, Ser. No. 729,775
Claims priority, application United Kingdom, May 20, 1996, U.S. Cl. 273-95 AA ${ }^{\text {Int. Cl. }{ }^{2} \text { A63B 69/00 }}$ U.S. Cl. 273-95 AA
C. ${ }^{2}$ A63B 69/00
section, said container section formed to fit about the end of said arm, pivot means mounting the other end of said bottom and a pair of opposed sides of the said object and target arm in proximity of said pin and release means mounted of a length shorter than that of the object, with said con- on said target engaging said loop whereby upon the swinging container section, so that the opposed end section of the object may extend beyond the opposed ends of the container section, to permit a player to strike with the paddle, one projecting end of a said object resting in the container
section, so as io permit the other end of the object when so struck to freely pivot and to permit the object to freely rise above the container after being so struck by the padrise ab
dle.

TARGET WITH IMPROVED SHOCK ABSORBER MEANS Charles A. Seunders, and Thomass Allen Snunders, both of CoNebr. Continuarion-in-pprt of Ser. No. 623,793, Oct. 20, 1975, Pat. No.
3,979, 118. This spplication Jun. 28, 1976, Ser. No. 700,194
The portion of the term of this patent subsequent to Sep. 7, The portion of the term of this patent subsequent to Sep. 7,

1993, has been disclaimed.
Int. C. ${ }^{2}$ F41J $7 / 04$
U.S. CI. 273-102.1 E

7 Claims

5. A marksmanship target assembly comprising
an impact target producing a visible reaction to missile impacts and including a generally disk shaped target face hub means supported by said target support arm ing a generally circular disc having a diameter no greater ing a generally circular ore the thet face, and
than the diameter of
shock absorber means interposed between and connecting
said target face to said hub means to cushion impacts of said carget face to said hub means tock
missiles striking said target, said shock absorber means comprising a plurality of annularly spaced, longitudinaliy resilient, linearly collapsible ribs formed integrally with said target face, said bub means securing rearwardly directed

WATER DUMPING TARGET GAME
Franklin K. Pierces 14220 SW. 74th St., Miami, Fla. 33183 Flied Jun 27, 197, Ser. No. 810,416
U.S. C. $273-102.1 \mathrm{G}$

3 Claims 1. A water dumping toy comprising a platform, support
means extending upwardly of said platform, a water bucket means extending upwardy of said platorm, a water bucket, bucket on said support means, a lanyard, means securing an
end of said lanyard to said bucket, said lanyard having a loop end of said lanyard to said bucket, said lanyard having a loop portion at the other end, a pin mounted on said support means
receiving said loop portion and maintaining said water bucket in an upright position, a target arm, a target mounted at one

of said target about said pivot means said loop is removed from said pin and said water bucket is compelled to pivot about said water bucket.

GAME TRACING ARROW
Richard C. Kelling, Grafton, Wist, amignor to The Raymond Lee Organization, Inc., New York, N.Y., a part intereat
FIled Sep. 1, 1977 Ser
No U.S. C. 273-100.5 R $^{\text {Int. C. }{ }^{2} \text { F41B } 5 / 02}$

1. A game tracing arrow for providing a trail for game struck by the arrow, said game tracing arrow comprising hollow shaft having spaced opposite first and second ends,
said shaft opening at its first end and being filled in so that said shaft opening at its first end and being filled in so that
it is solid in the area of its second end for a predetermined part of the length from said second end, said shaft having equiangularly spaced holes formed therethrough around the circumference thereof where said shaft is hollow but next-adjacent the solid part thereof;
a trail-indicating dye material in the shaft;
eathers on the shaft extending from the area of the second piston member coaxially movably mo
the first end thereof and extending a tance out of said first end and a predetermined distance into said shaft; and
head part on the piston member at the end thereof extending out of the first end of the shaft whereby when the
arrow strikes a target the impact with the target forces the piston member back into the shaft thereby causing the dye material to gradually drip to the ground via the holes through the shaft to mark the trail of the target.

4,093,230 ARROWHEAD

Miroalav Andrew Simo, Riverside, IIl, assignor to New Archery Prodocts Corp., Riverside, III.
Continuation-In-part of Ser. No. 619,824, Oct. 6, 1975, Pat. No
The portion of the term of thor. $\mathbf{4}$, 1,76, Ser. No. 738,030 has been diecleimed.
Int. C. ${ }^{2}$ F41B $5 / 02$ U.S. C. 273-106.5 B ${ }^{\text {Int. Cl. }{ }^{2} \text { F41B 5/02 }} 34$ Claims U.S. Cl. 273-108 Int. C. ${ }^{2}$ A63F 9/00 $\quad 10$ Cluims U.S. C. 273-106.5 B ${ }^{\text {Int. Cl. }{ }^{2} \text { F41B 5/02 }} 34$ Claims U.S. Cl. 273-108 Int. C. ${ }^{2}$ A63F 9/00 $\quad 10$ Cluims
fins extending inwardly from said exterior wall for a dis fins extending inwardy from said exterior wail the fin ends engage said arrowhead body.
tance

[^3] U.S. C. 273-106.5 B ${ }^{\text {Int. Cl. }{ }^{2} \text { F41B 5/02 }} 34$ Claims U.S. Cl. 273-108 Int. C. ${ }^{2}$ A63F 9/00 $\quad 10$ Cluims

20. An arrowhead assembly comprising
an arrow shaft having a head end, an adapter shaft having a head end and an other end, said adapter shaft provided by shaping said arrow shaft head end and having means an arrowhead body forming a hollow cylinder, said hollow cylinder having a diameter greater than said adapter shaft providing freely rotatable movement when said adapter shaft is inserted in said hollow cylinder, multiple blades firmly mounted within said body and having a shape namic flight characteristics and deep target penetration, the forward end of said arrowhead body having forwardly reducing diameter taper; and
tapered nosepiece having a fastening means at its tail end for mating with said fastening means in the head end of th said adapter shaft and said arrow shaft, said nosepiece having a hollow taper portion to receive said tapered forward end of said arrowhead body while allowing freely rotatable movement of said arrowhead body and blades.
24. An arrowhead assembly for attachment to the head end
an adapter shaf tomprising:
an adapter shaft having a head end and an other end, said other end having fastening means for securement to said nosepiece at sand adapter shaft head end; nosepiece at said adapter shaft head end;
cylinder having a diameter greater than said adapter shaf providing freely rotatable movement when said adapter shaft is inserted in said hollow cylinder, multiple blades firmly mounted within said body and having a shape exterior to said arrowhead body adapter for good aerodynamic flight characteristics and deep target penertstion; for mating with said fastening means in the head end of the adapter shaft fastening said nosepiece in fixed relation to said adapter shaft and said arrow shaft while allowing freely rotatable movement of said arrowhead body and blades; and
s protective sheath covering the blades, said sheath comprising an exterior wall the shape of a truncated cone having a large end which when in place extends rearwardly beyond the blades and an opposite small end which when in place extends forwardly beyond the blades, multiple

1. Superfly game apparatus comprising in combination a simulated building structure having side walls and a roof; a scaffold carried by each of said side walls having means thereon pivotable to a locavion aproximate the adjacent corner of the structure
simulat hellucpter mounted on said roof for rotation
a series of playing pieces each configured in the representation of a human figure and positionable on the respective corners of the structure for movement therealong; relaining means on said structure cooperable with said playlevels; and manually operable means for propelling said playing pieces vertically along the corners of said structure.

4,093,232

PLAYER OPERATED GAME APPARATUS
David J. Nutting, and Jeffrey E. Froderikeen, both of Milwaukee, Wis, amignors to Belly Manfecturing Corporation, Chicago, Ill. Filed May 13, 1975, Ser. No. 576,980

121 Int. C. ${ }^{2}$ A63F $7 / 00$

1. A game apparatus comprising: a processor having program means for programming the processor and memory means for storing signals;
player-pperated control means for affecting the motion of the physical means;
pluraity of reans, response means have means for detecting the mass, each with and operatively connected to the procesocer forenaling the processor that the response means has detected the mass;
plurality of display means for presenting information based upon the detection of the mass by the response means, each display means having a display activation means associated therewith and operatively connected to the
processor for activating the display means in response to a signal from the processor; and multiplexing means operatively connected to the processor
for cyclicly and sequentially enabling each of the signaling for cyclicly and sequentially enabling each of the signaling
means to signal the processor that its associated response means has detected the mass, and for cyclicly and sequentially enabling each of the display activation means to activate its associated display means;
said processor having means for storing the signals from the
signaling means enabled by the multiplexing means int signaling means enabled by the multiplexing means into
the memory means, for addressing the program means and the memory means, and for signaling the display activa tion means enabled by the multiplexing means, in response to the program means and the memory means.
2. A pinball game comprising a processor having program-
ming means and memory means; a ball; a downwardly inclined ming means and memory means; a bal; a a diecting the ball on to
playing field; player operated means for ejectin playing field; player operated means for ejecting the ball on to
the playing field whereby the ball may roll downwardly; a

plurality of response means for detecting the ball and having signaling means associated therewith and operatively connected to the processor for signaling the processor that the
response means has detected the ball; a plurality of display response means has detected the banesenting information based upon the detection of the ball by the response means and having display activation means associated therewith and operatively connected to the
processor for activating the display means in response to a processor for activating the display means in response to a
signal from the processor; and multiplexing means operatively signal from the processor; and multiplexing means operatively
connected to the processor for cyclicly and sequentially enabling the signaling means to signal the processor that its associated response means has detected the ball, and for cyclicly and sequentially enabling the display activation means to activate its associated display means; said processor having means
for storing the signals from the signaling means enabled by the multiplexing means in the memory means, for addressing the program means and the memory means, and for signaling the display activation means enabled by the multiplexing means, in response to the program means and the memory means.

4,093,233

Charles E. Barbarow, 147 Greene Ave., Totowa, N.J. 07512 Filed Jan. 28, 1977, Ser. No. 763,497 U.S. C. $273-176$ Ant

12 Claims
10. In a golf ball game apparatus, the improvement comprising:
pair of scoring stands for placement upon a playing surface in laterally spaced-apart relationship, each scoring stand including a base; and
plurality of scoring columns extending along each scoring stand upwardly from the base thereof and located longitudinally along each scoring stand, the scoring columns including corresponding delineated areas on confronting
surfaces of the pair of scoring stands for defining a corresponding plurality of scoring zones within a scoring field
xterdig along the playing surface between the scoring columns on the pair of scoring stands;
each scoring stand having a finite lateral width and including a stepped configuration wherein each subsequent consecutive scoring column, as viewed in the longitudinal direction away from the predetermined position on the playing

surface and toward the scoring field, extends upwardly one step further than the next previous scoring column to establish a plurality of consecutive steps of finite width; | estab |
| :--- |
| and |
| | scoring indicia placed on each step for identifying the score corresponding to

OLF PRACTICE DEVICE
C. Dickinson Barton, c/o Barton Industries, 236 W. 54th St., Kansas Clty, Mc. 64112
Division of Ser. No. 695,830 , Jun. 14, 1976, Pat. No. 4,022,476. ion of Ser. No. 695,830, Jun. 14, 1976, Pat. No. 4,022,
This application Jan. 31, 1977, Ser. No. 764, 040 U.S. C. ${ }^{273-200}$ Int. P^{2} A63B $69 / 36,43 / 02,37 / 12 \quad 3$ Claims U.S. C. 273-200 R

1. In a device for use to practice striking a ball such as a golf ball, the combination of:
means providing a generally vertical ball suspension member, hexible openwork net sized and arranged to completely
and tightly surround the ball and presenting a plurality and tightly surround the ball and presenting a plurality of apertures through which the surface of the ball may be
struck, said net having an opening large enough for the ball to pass therethrough; an endless cord threaded through the apertures of said net in
extension substantially around the periphery of said open
ing, said cord presenting a pair of projecting loops located substantially across said opening from one another, one of said loops being passed through the other loop and secured to said ball suspension member to suspend the ball therefrom in a manner to hold said net opening closed and to maintain said net drawn completely around the ball in a tightly stretched condition.

TOURIST GAME
Dennis P. Barry, Bronx, N.Y., asslgnor to Publishers Planning Inc., New York, N.Y.
Filed Jul. 29, 1976, Ser. No. 709,633
U.S. C. 273-254

25 Claims

1. A board game apparatus designed to acquaint players with U.S. C. 273-260
which
tern;
tern; game pieces comprising accurately scaled three dimensional istiatures of instruments of warfare, said pieces visually
dish and identifiable: distinguishable and identifiable;
pertaining to each respective game piece emboding chata tion of information relating to the ability of each said piece

to moved on said board, its firepower, and its resistance to opponents' fire;
to opponents' fire;
second charts with tables printed thereon embodying data pertaining to said various terrain and geography on said board enabling calculation of the ability of each of said pieces to be moved on said various terrain on said board; a single die; and
worksheet having printed thereon a replica of the features a workshect having prit.

4,093,23

CHESS BOARD GAME
Gary Dougles Weiss, P.O. Box 588, Redwood City, Calif. 94062 Filed Sep. 20, 1976, Ser. No. 724,733

,

1. A modified chess game comprising a board with 100 squares which are evenly divided into four sections of 25 squares, each section having nine alternating light and dark squares which are alternating dark and light colors, each section having a characteristic color, the nine alternating light and dark colored squares of each section together forming two rows and columns of alternating light and dark colored squares in the middle portion of the board and four standard sets of 1. Tactical warfare game apparatus, comprising. a game board on which various types of terrain and geogra- chessmen, each set being colored to correspond to one of
transportation for use by the corresponding player, eac ing to localities accessible by the corresponding mode o transportation; and
means for determining the movement of said token mean about said path.
\qquad
WAR GAME APPARATUS
Randy Lee Hoffa, 8000 E. River Rd,, Minneapolis, Minn. 55432 Filed Nor. 22, 1976, Ser. No. 743,976
U.S. C. 273-255 971 O.G. 7

4,093,238
 Myron Alan MORSE RACING GAME

 Myron Alan Mookowitz $\mathbf{K} 21$ Avon Dr., E. Windsor Towaship,Mercer County, N.J. 08520 N.J. 08520
May 1976, Ser. No. 684,195
Int. C.2 U.S. CI. 273-277

10 Claims

1. A game comprising a plurality of selection tiles each
selection tile having two faces, one of a group of variables selection tile having two faces, one of a group of variable appearing on ony one facevided for each of said variables, a plurality of move ment tiles, each of said movement tiles having two faces, each of said faces of said movement tiles having a variable thereon in an arrangement so that the same variable does not appear o tile having a number on both faces of said movement tile, any one of a plurality of numbers being applied to said movemen
tile faces, the sum of such numbers for each group of variables tile faces, the sum of such numbers for each group of variables
being the same, a playing board comprising crossed lines form ing a pluraity of of rayks and files of spaces, said ranks being
incovided for and including each said variable, said files underprovided for and including each said variable, said files underneath said ranks being used to score said game by recording in
a particular file the number appearing on the uppermost face of a particular file the number appearing on the uppermost face of
movement tile upon which also appears the variable of the particular file when said movement tile is played by a perso
competing in said game. competing in said game.

4,093,239

PISTON ROD SEALING ARRANGEMENT FOR A STIRLING ENGINE
Eisuke Sugahara, Tokyo, Japac, aedignor to Nippon Piston Ring Co., Lto., Tokyo, Japan Fled Jan. 17, 1977, Ser. No. 759,701 Claims priority, application Japen, Jan. 21, 1976, 51-5681; Int. C. ${ }^{2}$ F02G $1 / 00 ;$ F16J $15 / 40$ U.S. CI. $277-3$

2 Chims

1. A sealing arrangement for light molecular weight gases
employed in a Stirling engine or the like, including a working
cylinder, a reciprocating piston disposed in said cylinder, and an axially reciprocable piston rod secured to said piston and (a) block seal means surrounding said piston rod immediately below said cylinder opening and including, in order, a bush, a breaker ring, at least one block seal packing ring, and at least one back-up ring, said block seal packing ring biased by a coil spring disposed around the outer periphery thereof,
(b) liquid seal means surrounding said piston rod below said block seal means and comprising, in order, a liquid blocking portion including at least one liquid seal packing ring means for preventing the escape of the liquid in said reservoir, said liquid seal packing ring comprising a plurality of split ring segments inwardly biased by a coil spring disposed around the outer periphery thereof, said liquid seal means further including an annular cup coaxial with and
surrounding said piston rod in said liquid seal reservoir to surrounding said piston rod in said hiquid seal reservoir to
prevent the outward spread of the liquid, said coaxial annular cup having holes about its periphery to supply the annular cup having
liquid therethough,
(c) a leakage gas recirculation system including a return line coupled to said block seal means and drawing off gas (d) a compressor having an input coupled to said return line and a discharge output connected to said working cylinder below said piston through a control valve, and (e) opening means, including a crank angle timer, for open-
ing said control valve when the cylinder pressure beneath said piston falls below a predetermined value.

PLUNGER SEALING AND LUBRICATING APPARATUS FORD PUMPS
FOR PUMPS essignors to Kebushilid Kesishn Shikutani, Odewara, Japen Filied Jun. 15, 1977, Ser. No. 806,701
Int. Cu. ${ }^{2}$ 865D 53/00; F04B 39/02
U.S. C. 277-15

1. Plunger sealing and lubricating apparatus for horizontal plunger pumps provided with a crank case mounted on a base, a cylinder block fixed to the crank case, a cylinder head secured to the front of the cylinder block, and at least a plunger horizontally slidably disposed in the cylinder block, which each plunger in the cylinder block, said room having forward and rearward portions and an annular groove therebetween, a hollow cylindrical retainer having the front portion thereof threadedly fitted in the rearward portion of said room and the bock portion projecting backwardly from said room, the front portion and forming an inner annular shoulder therebetween, a portion and forming an inner annular shouder therebetween, a
first sealing packing mounted in the forward portion of said
room in front of said retainer, a second sealing packing
mounted in the back portion of said retainer and having the therethrough and into the interior of the boiler, comprising: a front side pressed against said shoulder, an oiling packing wall box having firrt sealing means contained therein engaga-
mounted behind said second sealing packing in the back por. ble with a rotatable and axially slidable slag blower tube for mounted bechind said second sealing packing in the back por- ble with a rotatable and axially slidable slag blower tube for
tion of said retainer and having a leg portion drawn down out substantially preventing products of combustion from escaping of said retainer and immersed in oil in an oillpan secured to the from the interior of the boiler to the exterior thereof between in the front portion for internal communication between a void including an outer annular flange provided with an opening space defined by said first and second sealing packings and said annular groove in said room, a liquid passage internally provided for communication between said groove in the cylinder
block and a suction chamber in the cylinder head, a sealed conduit disposed in said liquid passage and bridging the joining between the cylinder block and the cylinder head.

4,093,241

PUSH-PULL CABLE AND ROD ASSEMBLY WITH SEAL John Richard Muntyanofi, Aurora, and Ivan Richard Lampory Peoria, both of IIL, esignors to Caterpiller Trector Co_{0} Peoria, Ill.

Filed Feb. 24, 1977, Ser. No. 771,50
Ined Feb. 24, 1977, Ser. No. 771,50
Int ${ }^{2}$ F16J $1 / 32$; F16C $1 / 10$

1. A seal cap assembly for a control cable system, the contro cable system including a cylindrical housing having a cab
extending therethrough, the seal cap assembly comprising:
rod means axially disposed in said housing for connectio with said cable;
a first member associated with said housing proximate one end thereof, the rod means extending outwardly of the
first member;
sealing means disposed about the rod means for sealingly
associating the rod means with the cylindrical housing so associating the rod means with the cylindrical housing so
that the rod means is movable therethrough; and that the rod means is movable therethrough; and retention means for removably retaining said sealing means
disposed about said rod means relative said first member
disposed about said rod means relative said first member.
4,093,242 hrough which the slag blower tube is to extend, said flange eing fixed to the wall box and having a planar outer surface disposed normal to the opening in said first sealing means, in box and comprising: a diametrically split, floating seal ring box and comprising: a diametrically split, floating seal ring
having an opening therethrough of substantially the same diameter as the outer diameter of the slag blower tube, said floating seal ring having parallel sides and being mounted on he wall box with its inner side contiguous with and slidable on the planar outer surface of said flange, resilient means securing
the parts of the split ring together so that the opening in the ring will engage with the outer surface of a slag blower tube extending therethrough, a thrust ring having a planar inner surface and an opening extending therethrough of a diameter
larger than the outer diameter of the slag blower tube but larger than the outer diameter of the slag blower tube but
smaller than the outer diameter of the floating split ring, said thrust ring being mounted on the exterior wall of the wall box with its planar inner surface contiguous with and slidably engaged by the outer parallel surface of the floating split seal
ring, and with its opening in substantially axial alignment with ring, and with its opening in substantially axial alignment with
the opening in said first sealing means, means spacing the inner the opening in said first sealing means, means spacing the inner
planar surface of the thrust ring from the opposed outer planar surface of the annular flange, and means fixedly securing said thrust ring to the wall box, said spacing means being slightly
greater than the distance between the parallel faces of the greater than the distance between the parallel faces of the
floating split seal ring by an amount only sufficient to permit he floating seal ring to move radially between said opposed planar surfaces and at the same time to sealingly engage said lanar surfaces and the outer surface of a slag blower tube extending therethrough.

UBBING CONTACT SEAL 093,243
COABING CONTACT SEAL MEMBER WITH LOW WEAR Katsuhiro Kishida, and Akira Oyamadn, both of Yokohama, Japan, assignors to Nissan Motor Company Limited, Yokohama, Japan Filed

Claims priority, application Jepen. Nog 29, 1975, 50-103902	Clims priority, Application Japan, Aug. 29, 197
Int. Cl.2 F28D 19/00; F16J $15 / 34$	U.S. CI. 277-96.2

Stevens M. Terry, Rte. No. 1, Box 500, Evington, V. 24550 Terry, Rte. No. 1, Box 500, Evington,
Filed May 31, 1977 , Ser. No. 801,613
Int. C1. ${ }^{2}$ F16J $15 / 56 \cdot$ F22B $37 / 52$

1. In a low wear member which is adapted for rubbing contact with another member and is useful as a high tempera. ture rubbing contact seal member on a rotary regenerator of a gas turbine, the low wear member including a metal substrate, at least one undercoat layer formed on a surface of said sub-
strate, and a surface layer coated on an outmost one of said at least one undercoat layer, the material of said surface layer consisting essentially of a major amount of a refractory and wear resistant ingredient selected from the group consisting of COO , NiO and mixtures thereof and a minor amount of a solid 1. A slag blower wall box seal for an opening in a boiler wall lubricating ingredient, the material of said at least one under-
adapted to seal around a slag blower or lance tube extending coat layer being said refractory and wear resistant ingredient
optionally and individually with the addition of a minor channel on the frame, said channel having a back wall and at
amount of said solid lubricating ingredient, said at least one least one side wall, a rope which is resiliently compressible undercoat layer and said surface layer being formed individu- across its width positioned lengthwise in said channel; and an ally by flame spraying, the improvement comprising at least across its width positioned lengthwise in said channel; and an one of said at least one undercoat layers additionally contain- said strip being flexibly attached along the first of its two long ing a metal, at least one member of which is selected from the edges to a side wall of the channel so as to sandwich the rope
group consisting of Cu, Ni or Al , the coefficient of thermal
between the back wall of the channel and the rear surface of expansion of said metal and the amount of said metal being such that each of the metal-containing undercoas tayers is ises
different from said surface layer in thermal expansion coefficient than an undercoart layer without said metal from said each of the metal-containing undercoat layers.

STUFFING $4,093,244$
STUNGBOX SEAL PARTICULARLY FOR ROTATING
SHAFTS SHAFTS
Jean-Jacques Bontant, 44, rue Charles Drot 92500 , Rein maiton, France, medigoor to Regie Nationale Des Uusines Re nault, Boologare Bilinncourt, France
Filed Jan. 7, 1977, Ser. No. 757,733
Claims priority, application France, Jan. 26, 1996, 7601955
U.S. Cl. 277-153 Int. Cl. ${ }^{2}$ F16J $15 / 18 \quad 5$ Claims

1. A stuffing-box seal particularly adapted for rotating shafts, comprising
a ring seal;
a retaining sleeve for said ring seal
an external housing;
centering sleeve bonded together with said external housing and said retaining sleeve; and
ring sean being held by said retaining sleceve wherei said of said centering caps has a set of orifices and grooveves for supplying lubricant to a sealing lip of said ring seal. 4,093,245
MECHANICAL SEALING MEANS Peter J. Connor, Bethlehem, Pa., assignor to Mosser Industries, Inc., Bethlehem, Pa.
Filed Jun. 2, 1977, Ser. No. 802,892
${ }_{\text {Int. C. }{ }^{2} \text { F23L } 13 / 06}$
U.S. C. $277-237$ R

2. Apparatus comprising a moving member, a fixed frame with which the moving member cooperater, and means for
sealing between said moving member and said fixed frame, said with which the moving member cooperate, and means for
sealing between said moving member and said fixed frame, said
sealing means comprising means forming a rigid, elongated
between the back wall of the channel and the rear surface of
the metal strip, said channel means, rope, and metal strip being the metal strip, said channel means, rope, and metal strip being
positioned such that said moving member can press against the positioned such that said moving member can press against the
front surface of the metal strip in sealing engagement therewith, urging the strip against the rope, the resilience of the rope providing a pressure counter to that exerted by the movng member, said metal strip being thin enough
surface irregularities of the moving member.

$$
\begin{aligned}
& \text { UNIVERSAL FEED FINGER DEVICE } \\
& \text { Frederick Goff, Box 773, Rte. 4, Travelers Rest, S.C. } 29690 \\
& \text { Filed Aug., 19, 1977, Ser. No. 823,188 } \\
& \text { Int. C1.2 B23B } 31 / 00
\end{aligned}
$$

U.S. Cl. 279-41 A 5 Claims

1. A feed finger for gripping and feeding a bar of stock 1. A feed finger for gripping and feeding a bar of stock
material on an automatic screw machine and the like comprismate
ing:
an
an elongated cylindrical member having a hollow interior and being open at both ends thereof; ne end of said cylindrical member adapted for attachment to a feed tube of said machine through which said bar
stock is fed; a plurality of
obliquely to the longitudinal direction of said cylindrical member to define a helical cage; and
said cylindrical member being crimped in a section interme-
diate the closed ends of ssid helical crimped bore in which said bar stock is gripped.

4,093,247

Arthur Alexander Bernard, Beecher, and Richard Allen Bernard, Fossmoor, both of III, aseagnors to Darex Corporation, Division of Ser. No. 594,349, Jul. 9, 1975, Pat No $4,001,975$ This application Jul. 20, 1971, Ser. No. 707,026
Int. Cl. ${ }^{2}$ B23B $31 / 12$
U.S. Cl. 279-53

1. In combination with a fluted twist drill sharpening device
5 Clain 1. In combination with a fluted twist drill sharpening device
having a pair of spaced apart chuck receiving bearing having a pair of spaced apart chuck receiving bearing surfaces;
a plural-jawed chuck for gripping the fluted end of twist drills having two peripheral bearing surfaces receivable in the two bearing surfaces of the sharpening device; an outer tubular body having a first cylindrical rearward end and a second cylindrical forward end, the diameter of the first cylindrical
end being greater than the diameter of the second end and a sloping wall section between said first and second cylindrical ends; a plurality of jaw members received in said tubular body, each said jaw member defining a clamping surface for gripping said drill and including a forward arcuate portion corresponding to the second cylindrical end of the tubular body, a rearward arcuate portion, and an arcuate sloping portion corre-
sponding to the sloping portion of the tubular body; each said rearward arcuate portion being stepped to provide a shoulder
on each jaw member and on each jaw member; and means for applying a jaw closing
force to said shoulder portion of each jaw, force to said shoulder portion of each jaw, whereby the arcu-
ate sloping portion on each of said jaw members is caused to co-act with the cylindrical sloping portion of the tubular body; said last named means including a bushing adapted to engage
the shoulder on each jaw member, and a manually turnable

knob having threaded engagement with internal threads on the rearward end of the outer tubular body and adapted to urge said bushing on each jaw.
,093,248
PIVOTAL IMPLEMENT
Benno Gasaner Denno Gesener, D-8011 Haus near 14C, and Johann Gass Filed Mar. 22, 1977, Ser. No. 779,965
Cluime priority, application Germany, Mar. 22, 1976, 2612068 U.S. Cl. 280-6.1 $\quad 11$ Claims

2. A pivotal implement, such as a pivotal plow, comprising: an implement frame having an axle extending generally longitudinally in the direction of travel about which said an undercarriage on which said implement frame is pivotably supported for movement relative to said undercarriage about said longitudinal axie, said undercarriage including pair of transversely-extending wheel axles, each of which supports one of said wheels and each of which is coupled to said undercarriage for independent movement in a substantially vertical direction, relative to the longitudinal axis of said undercarriage, between an upper limiting position and a lower limiting position
ocking means associated with said wheel axles for preventing a tipping movement of said undercarriage relative to blocking means being movable between a blocking position and an unblocking position for respectively preventing and permitting movement of said wheel axles; and ensor means associated with each of said wheel axles which
are responsive to a change in position of its associated are responsive to a change in position of its associated
wheel axle relative to said longitudinal axte and which are coupled to said blocking means and which move said blocking means into a blocking position when the associated wheel axles moves from said upper limiting position downwardly relative to said longitudinal axle.

3. An ice skate assembly comprising:
hardened steel blade having an upper portion and a lower portion including a lower ice engaging surface terminating in upwardly curved front and rear portions, the upper portion including a non-interfering upper surface which is rounded transversely and non-interfering side surfaces; a blade-supporting body of a synthetic plastic material located about said upper portion such that said lower por the body; nchor structure means defined by the blade and the body
and positioned at a discrete location relative to the length of the blade whereby the blade and the body are attached to one another; and
fastener means passing through the body and through the upper portion of the blade at a plurality of locations along
the length of the blade spaced from the anchor structure whereby the blade is further attached to the body.

4,093,250

Nils Wikstrand, Mora, Sweden, assignor to Firma Moon, Ma lung, Sweden Filed Oct. 29, 1976, Ser. No. 736,850 Claims priorty, application Sveden, Oct. 30, 1975, 7512169

1. In a ski pole having a pole and a snow collecting shoe trached to one end of the pole including cup means defining a recess facing away from the pole, the improvement compris-
ing: means for attaching said cup means at an extreme end of ing: means for ataching said cup means at an extreme end of
the pole with said recess axially beneath said pole so that said recess is free from any part of said ski pole and said cup means defines a recess formed generaily in the shape of a hemisphere having a substantially continuous spherical inner sliding sur-
face, said cup means forming a gliding surface facing snow and
ice compacted therein during skiing and acting as a fulcrum the vehicle attached fixedly to the foot board and rising there and bearing point for the ski pole.

4,093,251
APPARATUS FOR CARRYING GLASS PANELS
APPARATUS FOR CARRYING GLASS PANELS
mbroise O. Boyer, 2345 Randolph, Windsor, Ontario, Canada Ambroive O. Boyer, 2345 Randolph, Windsor, Ontario, Canada
Continantion-in-part of Ser. No. 642,905, Dec. 22, 1975, Pat. No. 4,033,597. This application Apr. 27, 1977, Ser. No. 791,441 U.S. Cl. 280-46 Int. Cl. B62b I/O8 10 Claims

1. An apparatus for carrying, holding and storing automobile glass windshields of the longitudinally curved type so that such windshields may be transported without damage thereto comprising a frame having first and second longitudinal frame members of generally the same length, said frame members said frame members having upper surfaces which are flat, with said upper surfaces of said frame members lying in a horizontal plane, a first row of upright dowels fixedly secured to and positioned at predetermined spaced locations along the length of said first longitudinal frame member, a second row of up-
ight dowels fixedly secured to and positioned at correspondright dowels fixedly secured to and positioned at correspond-
ing predecermined spaced locations along the length of said second longitudinal frame member, each of said dowels of said first and second rows being provided with an elongated tubular resilient member which is sleeved over the dowel, each of the elongated tubular resilient members being adapted to supore a portion of the windshield and prevent the scratching or dowel sleeved over the upper portion thereof, a rotatable ocking finger made from a resilient material for each dowel and sleeved over the corresponding end cap, said locking inger having a pair of clamping surfaces, each clamping surlace being adapted to cooperate with an opposing clamping surface on an adjacent locking finger to hold and clamp a
windshield therebetween, and means associated with said frame for enabling said apparatus to be transported from place to place.

4,093,252

SCOOTER BOARD
John Rego Rue, Marietth, Gr., assignor to Charles A. Burrell, John Rego Rue, Masrieth, G..,
Marietta, Ge, a part interest
 U.S. C. 280-87.04 A \qquad 1. A scooter type coaster vehicle comprising a foot board, fore and aft spaced tandem caster wheels on the bottom of the foot board and each freely and independently swiveled for
full 360° of rotation in either direction on a swivel axis substantially normal to the foot board, a forward balancing handle for
above, and said balancing handle having a top hand grip por

tion arranged substantially above the swivel axis of the for ward caster wheel of the vehicle.

CHASSIS FRAME FOR MOTOR VEHICLES Josef Lehr, Hennover, Germany, maignor to Daimer-Benz Aktiengesellschath, Stuttgert, Germany
FLled Dec. 7, 1976, Ser. No. 748,307
Claims priority, application Germany, Dec. 8, 1975, 2555107 U.S. CI. 280-789 Int. Cl. ${ }^{2}$ B62D 21/02

1. A chassis frame for motor vehicles comprising paralle members projecting from the sides of the frame girders; cros nembers projecting from the sides of the frame and interconhaving openings in their side walls enclosing the hollow section; said openings conforming with the cross section of the cross members, said cross members having a center section and abutting end sections, said sections being inserted from the
sides through the openings into the hollow interior of the longitudianl section; said cross members passing through said longitudinal members, said end sections projecting beyond the ongitudinal members, said center section of said cross members penetrating the wall of the longitudinal members facing the vehicle center, said end sections of said cross members
passing through the outer wall of the longitudinal members said center section and said end sections abutting bluntly each other and being connected to each other by welds within the interior of the hollow section of said longitudinal members.

PROTECTIVE FRAME 4
OILC FRAME STRUCTURE FOR A MOTOR VEHICLE FUEL TANK
Toshi Exaki, Toyota, Japan, assignor to Toyoto Jidosha Kogyo
K. K., Toyota, Japan \quad Flied Oct. 22, 1976, Ser. No. 734,978 Filed Oct. 22, 1976, Ser. No. 734,978
Claims priority, application Japan, Aug. 64, 1976, 51-105008
Int. C1. U.S. CI. 280-783 Int. C1. ${ }^{2}$ B60R $5 / 04$
Or proceci 8 nd bent wo 1. A structure for protecting a fuel tank which is Claim at the rear of he motor vehicle and between two frame mem ides of said fuel vehicle which extend along and beyond the esb said fuel tank, said structure comprising reinforcing members coupled to said frame members, said reinforcing sid frame members are provided with of said tank whereby adjacent at least the length of said fuel tank and non-reinforc
ing sections behind said tank and further comprising a kick-up section of said frame members in front of the gas tank, said

and an inner channel provided on said frame members forward of said kick-up section, the end of said inner channel only adjoining the end
kick-up section.

4,093,255
PASSENGER MOTOR VEHICLE
Karl Wilfert, Gerlingen-Waldstadt, and Walter Schmid, Sindelfingen, both of German, usignors to Daimer-Benz Aktien gesellechaft, Germany
Filed Apr. 30, 1975, Ser. No. 572,952 Claims priody App. 30, U.S. C. 280-788 Int. C. ${ }^{2}$ B62D 27/04 39 Claims

1. A passenger motor vehicle which comprises a lowe portion including front and rear axle means operatively conthe lower portion and including at least the passenger space the upper portion being pivotal with respect to the lowe portion about an axis of instantaneous rotation extending gen-
erally in the vehicle transverse direction and disposed within erally in the vehicle transverse direction and disposed within
the longitudinal center area of the vehicle at least approximately at the height of the center of gravity of the upper portion, characterized in that the upper portion and lower portion are connected with each other within the area of the axle means by way of at least one support means that possesses
an elastic yieldingness in at least one direction, further characan elastic yieldingness in at least one direction, further ins harac-
terized in that the exis of instantaneous rotation is located above the center of gravity of the upper portion.

LOCKING MECHANISM FOR AUTOMOBILE FENDER
Luther J. McAdams, Sr., 1626 E. 91 st Pl., Clucago, III. 60617 Filed May 11, 1977, Ser. No. 795,727

Int. C1. ${ }^{2}$ B60J 9/00
U.S. C. 280-153 R 3 Claim 1. A which is pivotally supported on an automobile fender by hooks located at the lower edges of the front and rear portions of the fender skirt and has a pivotally mounted latch at the top of the fender skirt which latch extends behind the fender to prevent removal of the fender skirt from the fender, said lach being pivoted by operation of an arm integrally formed therewith, said loc
an angle, threaded rod engaging a threaded opening in one leg of the angle to thereby enclosed said latch arm between the
hreaded rod and the legs of the angle when the latch extends behind the fender
key operated disc tumbler cylinder lock plug connected to one end of said threaded rod and having radially extending disss projecting from the plug along the length hereof, said key being insertable in the cylinder lock plug to retract said discs,

a cylinder lock housing fastened to and extending throu said fender skirt,
said cylinder lock housing having a passage extending therethrough with said passage including a cylindrical portion adapted to receive said disc tumbler cylinder lock plug
and spaced longitudinally extending stops adapted to engage said radially extending discs to prevent rotation of said key operated cylinder lock plug in said passage.

4,003,257
Larry G. Tarrin, R.R. 2, Harvana Ill. 626
Filed Jul. i, 1977 , In. 62624 S. C. $230-166$ Int. C1. B60r 3/02

1. A ladder assembly securable to a platform of a truck for manual actuation between a collapsed position and an operable position facilitating access to and from the platform, said lad der assembly comprising:
upport means including mounting means securable beneath the platform adjacent one side theroof, and guide means wardly of said mounting means, and
ladder portion comprising:
a ladder frame including a plurality of crosspieces, connect ible adjacent one end thereof to said mounting means fo swinging movement about a horizontal axis between a pieces are vertically spaced to form climbing steps, and a generally horizontal collapsed position in which said ladder frame is disposed beneath the platform,
labilizer arm means pivotably connected at one end to said
during swinging movement of said frame between operable and collapsed positions, said arm means including, first connecting means disposed remotely of said one end of said arm means for automatically latchingly engaging said guide means when said frame is in an operable position to resist swinging movement of said frame, and
second connecting means located proximate said one end of said arm means for automatically latchingly engaging said guide means when said frame is in a collapsed position to resist swinging movement of said frame, said stabilizer arm means being manually swingable about the pivot connection thereof with said ladder frame to said guide means and permit swinging movement of said ladder frame, and
unlatching means mounted to said ladder frame for movement relative to said ladder frame and said stabilizer arm means, said unlatching means being manually movable and including a portion engageable with said stabilizer ing said second connecting means from said guide means to allow said ladder frame to be swung to the operable position.

VEHICLE HAVING RESILIENTLY MOUNTED COUNTERWEIGH $\begin{aligned} & \text { Robert N. Stedman, Chillicothe, III., assignor to Caterpillar } \\ & \text { Tractor Co., Peoria, Il. } \\ & \text { Filed May 2, 1977, Ser. No. } 793,211 \\ & \text { Int. CI. B60R } 27 / 00\end{aligned}$
U.S. Cl. $280-755 \quad 7$ Claims

1. A vehicle comprising:
frame having an end portion;
counterweight positioned adjacent the end portion of the
frame;
connecting the counterweight to the frame and permitting limited upward and downward movement thereof relative to the frame; and
resilient supporting means connected to the end portion of
the frame and attached to the counterwer supporting the counterweight and for cus for resiliently supporting the counterweight and for cushioning shoc
loads exerted on the frame in response to inertia force o the counterweight, said resilient supporting means being independent of said connecting means.

VELOCIPEDE STEERING AND DRIVING STRANGEMENT
Roaben T. Terrian, Chicago, and Donald K. Fietchic, Arlington Heights, both of II., asagignort to Marrin Gises \& Aseociatem Heights, both
Chicago, ill.

Filed Aug. 30, 1976, Ser. No. 718,907
U.S. CT. 280-240 Int. C.2 ${ }^{2}$ B62M 1/02 $\quad 10$ Claime

1. A vehicle, comprising a carriage, propelling means mov ably mounted on the carriage for engaging a support surface to propel said carriage over the suppor surface, manually opera-
be means on the carriage for driving said propelling means, steering means mounted on said carriage and operatively associated with said propelling means for moving said propelling means to steer the vehicle, said steering means including generally vertical shaft mounted on the carriage and a horizon-
pelling means, linkage means between said operable means and gaging said engagement member ($\mathbf{5}^{\prime}$) for restricting the relative pelling means, linkage means between said operable means and gaging said engagement member (5) for restricting the reiaive
said propelling means permitting steering movement thereof rotational range of a steering handle H , said handle H being by said steering means relative to said operable means and said carriage and a plurality of universally mounted support wheels for supporting the carriage for movement in any direction over the support surface. \qquad
COASTER BRAKE FOR BICYCLE WITH DERAILLEUR ANGE MECHANISM
Ray S. Persenn, 1220 Minnesota Ave., Bemidji, Minn. 56601
Filed May 9, 1977, Ser. No. 795,104
8 Claim
U.S. C. 280—241

2. In a bicycle having a coaster brake and a derailleur speed U.S. CI. 280-289

fixedly secured to the top end of said steering stem (4) with respect to said head pipe P.

SAFETY BICYCIE SEA
SAFETY BICYCLE SEAT REFLECTOR ihm, 642 N. Cherry St., Celina, Ohio 4582 Filed Jan. 13, 1977, Ser. No. 759,114 change mechanism, a driving chain having a tensioned upper
run to rotate a multiple drive sprocket in forward rotation, wheel having a wheel hub, a drive clutch engagable with said hub to drive said hub in forward rotation from said sprocket, an overrunning chain clutch on a lower run of said chain allowing free movement of said chain in said forward rotation and arranged to seize said chain in reverse rotation when the lower run of the chain is tensioned, means operable by the
movement of said chain clutch with the chain when the chain is seized to rotate said sprocket forcefully in a partial reverse rotation, and means actuated by said reverse rotation of said sprocket to disengage said drive clutch and apply said coaster brake.

ERONT FORK FOR $\stackrel{4,093,262}{\text { TWO.WHEELED VEHICLES }}$ Milibihiro Koyama, Kswagoe, and Kazuo Watanabe, Asaka, both of Japan, assignors to Honda Giken Kogyo Kabushiki Keisha,
Tokyo, Japan Filed Oct. 20, 1976, Ser. No. 734,273
Claims priority, application Japan, Oct. 24, 1975, 50-145154
U.S. C. 280-279 4 Claims 1. An improved front fork for a two-wheeled vehicle such as a motor-cycle comprising: a
ing stem 4 fixedly secured at the center part thereof; and a pair of fork members $(2,3)$ fixedly secured to both ends of the bridge member 1, the improvement comprises: said bridge
member (1) being constructed of a hollow square tubular body member ($\mathbf{1}$) being constructed of a hork members $(\mathbf{2}, 3$) respec-
having the top end parts of said fork tively being insertable and fitted into openings (8), (9) perforated at both left and right end parts of bottom wall surface of said bridge member 1, said top end parts of said pair of fork members (2), (3) being fixedly joined to the upper wall 6 and
 and part of a head pipe P of a front part F of a vehicle body frame to support said steering stem (4) in a freely rotatable manner, a handle stopper (5) being fixedly secured to said bridge member (1) at a center portion hereor, along said lower

1. In combination with a bicycle having a seat which inludes a seat cover, springs and a post: a safety bicycle reflector secured directly to the seat and covering the back and shape of a bib and comprising a material presenting a reflective surface on all sides and edges and in which the lower portion of the reflector extends forwardly beyond the seat post, said eflector having a securing opening in its forward lower poron for receiving the bicycle post to secure the reflector to the
\square
4,093,264
$4,093,264$
OSTITON
G POSITION REGULATING DEVICE
For Augionicycles Liga, Kamagoe, all of Japan, assignors to Honda Giken Kogyo Kabushikd Kaisha, Tokyo, Japan

Filed Aug. 12, 1976, Ser. No. 713,829 application Japan, Aug.
Int. C. ${ }^{2}$ B60K $23 / 00$
U.S. C. 280-296
\qquad
7 Clims

1. A speed changing position regulating device for a motorycle having a transmission gear, comprising end part of said steering stem (4), said handle stopper (5) en- a shift pedal (30);
a link mechanism ($\mathbf{4 0 , 5 0 , 8 0 , 1 0 0)}$
a connecting means (165,170);
cle; gear for changing over speed changing positions by the operation of said shift pedal (30) which is operatively
connected with said speed changing operating means (60)

said link mechanism ($\mathbf{4 0}, \mathbf{5 0}, \mathbf{8 0}, \mathbf{1 1 0}$) being operated through said connecting means (165, , 170) by the rise and fall of said
stand (160) so that, when said stand (160) rises, the shift position of said speed changing operating means (60) may be changed over to a neutral position by said link mechanism ($40,50,80,110$) operated by said connecting means $(165,170)$ and said speed changing operating means (60)
may be held in said neutral position. may be held in said neutral position.

$$
\begin{aligned}
& \text { 4,093,265 } \\
& \text { FIFTH-WHEEL BRAKING CONTROL } \\
& \text { John E. Hodge. Box 91, Moline, III. 61265 } \\
& \text { Flled Jnn. 25, 1977, Ser. No. } 762,289 \\
& \text { Int. C. } 2 \text { B60T } 7 / 20,8 / 18 \\
& \text { U.S. CI. } 280-438 \text { R }
\end{aligned}
$$

2 Clxims

1. In a fifth-wheel assembly of the type having a braking control to prevent a trailer from overriding a tractor to which the trailer is connected, a stop assembly adjustable for different
loads to determine the amount of traction to release brakes of loads to det
the trailer;
said fifth-wheel assembly having a mounting bracket to be attached to a tractor, a fifth wheel, a supporting member for supporting said fifth wheel, and a substantially vertical supporting link, said supporting link having a lower por-
tion to be connected to said bracket and an upper portion to be connected to said supporting member, said braking control being connected to said supporting link, bearing means rotatively connecting the lower portion of said supporting link to said mounting bracket, said supporting member being coupled between the upper portion of said
supporting link and said fifth wheel, said supporting link being rotatable about said bearing means to allow movement of said upper portion of said supporting link a short distance between a fore position in a direction toward the front of a tractor and an aft position in a direction toward
the rear of the tractor, said mounting bracket having means for stopping the rotative motion of said upper
position of said supporting link in a direction toward th rear of the tractor at said aft position where the downof the axis of rotation of said bearing means sid stop assembly comprising a fixed member rigidly with respect to said mounting bracket, said fixed member being positioned a short distance in a direction toward the front of the tractor from said upper portion of said supporting link, upper portion of said supporting link,
adjusting means between said fixed member and said stop means, and said adjusting means adjustable to set said stop means in a fore-to-aft direction at a position where said upper portion of said supporting link comes in contac
with said stop means and stops said supporting link as said supporting link is rotated to said fore position where the downward component of a load on the fifth wheel is desired short distance from the axis of rotation of said bearing means in a direction toward the front of said tractor.

4,093,266

CARGO CARRIER
Bobby G. Bexter, Warrenton, Mo., assignor to The Binkley Company, Warrenton, Mo. Mo., 15, 1976. This application
Division of Ser. No. 705,585, Jul. un. 9, 1977, Ser. No. 804,928
U.S. CI. $280-491$ R

1. A cargo carrier operable between elevated and lowered positions, comprising a bed for supporting cargo, means for supporting the rearward end of said bed and means to raise and lower the front end of said bed relative to the ground, said front end raising and lowering means further comprising member secured to the front end of said bed and inclined adapted to be attached to a towing vehicle and slidingly engag ing said inclined member upon fore and aft movement of said sliding means relative to said inclined member, whereby for ward movement of said sliding means along said inclined member toward the front end of said inclined member lowers the
front end of said bed, and rearward movement of said sliding means along said inclined member toward the rear of said inclined member raises the fromt end of said bed.

SKI BRAKE

Hans Horn, Wellington, New Zealand, sesignor to TMC Corpo ration, Barr, Zug, Switzerland
Fired Jul.
Claims priority, application Anstria, Jul. 24, 1976, U.S. Cl. 280-605

1. A ski brake for use a base;
a sole holder movably secured to said base and being movable between a ski boot holding position and a ski moot releasing position; at least one skabrake arm pivotaly secured to said base and
being movable between a retracted position and a braking being movable between a retracted position and a braking
position; position;
first resilient said braking position ;iasing said ski brake arm toward
releasable locking means for holding said ski brake arm in said retracted position when said sole holder is in said sk to permit movement of said ski brake arm toward said braking position in response to a movement of said sole holder to said ski boot releasing position, said releasable
locking means including a movable locking element locking means including a movable locking element on
said ski brake arm and second resilient means therefor fo biasing said locking element into locking relation with said

base to effect said holding of said ski brake arm in said retracted position and a cam member operatively con
nected to said sole holder and engaging said locking ele ment and being movable in response to a movement of said sole holder, said cam member effecting an unlocking of said locking element from said base in response to said movement said sole holder so hat said first resilien means will urge said ski brake arm to said braking posi-
tion.

4,093.268

PLASTIC DRAG REDUCING SURFACING MATERIAL Ronald N. Sampeon, Murryarille, and Zal N. Sanjana, Penn Hills, both of Pa., asuignors to Westinghouse Electric Corp., Pittsburga, Pa
Filed Oct. 18, 1976, Ser. No. 733,593 Penn
Corp.,
En

Erwin Krob $\begin{aligned} & \text { 4,093,270 } \\ & \text { SAFETY SKI BINDING }\end{aligned}$ Anstria, Anstris, nemigeore to TMC Corporation, Bear, Zus, SwitzerFlied Dec. 14, 1976, Ser. No. 750,403 S. C. 280-626 Int. C. ${ }^{2}$ A63C $9 / 08$ 19, 1975, 9721/75 US. C. $280-626$
of forwardly extending teeth for removable engagement with second engagement means mounted on said base depressed ageinst said scond engegemagt means; and said second engagement means including pawl means pivo ally mounted on said base plate forward portion, pivotal between a first latch position and a second forward un-

latched position, and having means biasing said paw eans into said latched position, said pawl means incluc ing a forwardly extending release trigger mounted abo ward into said second unlatched position, said pawl means including a rearwardly extending latch means for engag. gat least one of said first engagement means teeth in said first latched position.

1. A ski comprising a core bonded to a base layer, wherein he base layer comprises a rigid plastic matrix and from abou wt. \% to about 45 wt . \% of a thermoplastic, water soluble
olymer disposed within the plastic matrix, wherein the base layer provides a surface where the water soluble polymer will le leached out of the rigid plastic matrix upon contact with water, to provide a boundary lubricant film on the layer surface.

4,003,269 SKI BINDING

Börje Hoffiman, Lenomhytten, Seeden, asalgnor to Hoffmans
Verkstads $A B$, Langashyttan, Sweden Filed Aug. 27, 1976, Ser. No. 718,171
Clasims priority, application Sweden, Sep. 19, 1975, 7510502
U.S. C. $280-615$ Int. C1.2 A63C 9/18

1. An improved ski binding, including a base plate adapted to be fastened to a ski surface having upwardly directed side portions and a forward portion extending beyond said side portions, a boot clamp having a forward portion and two rearward arms having ends rotatably journaled in
said side portions, said improvement comprising:
said boot clamp including first engagement means nonrotatably secured to said forward portion, including a plurality
2. In a combination of a ski boot and a ski binding, said ski boot having a lower shell and an ankle cuff pivotally secured to said lower shell to allow pivotal movement of said ankle cuff about a pivot axis in response to shifts in the weight of an individual using said ski boot, said ski binding including at leas said heel portion to s ski, the improvement comprising wherei said ankle cuff has projection means extending rearwardly therefrom and includes first means thereon defining a downwardly facing first surface and wherein said heel holder incudes second means defining an upwardly facing second surlice, said first surface directly engaging said second surface to limit the amount of pivotal movement of said ankle cuff to the
rear of said lower shell, support means for supporting said rear of said lower shell, support means for supporting saic
second means for movement toward and away frum said heel portion of said ski boot and resilient means for resiliently urging said second means toward said ski boot.

BUCKLE FOR SAFETY STRAP FOR SKIS

 Erwin Weigh, Brunn am Gebirge, and Jowef Svoboda, Schwechat. both ofFiled Nov. 24, 1976, Ser. No. 744,938 Ceb. 25, 1976, 1411/76 pricrit, application Austria, Nov. 26, 1975, 8990/75; U.S. C. 280-637 Int. C. ${ }^{2}$ A63C 9/08

1220 Ba 8111215318

1. A buckle for use with a safety strap to effect a securement of a skier to a ski, comprising:
a first buckle part having means defining a housing thereon, said housing having spaced side walls and spaced ent
walls, the spacing between said walls defining a cavity therebetween, means defining a passageway in one of said end walls extending from the exterior of said housing into said cavity, stationary lip means adjacent one side of said passageway and facing inwardly of said cavity, at least
one of said side walls adjacent said lip means being defined by a first resiliently flexible tab formed on said housing and anchored thereon adjacent said end wall remote from said end wall having suid passageway therein, said first tab being pivotal about the anchor point from a normal position spaced from said lip means into said cavity so that the free end thereof is movable into said cavity past said lip thereof to said normal position; and
a second buckle part having a flat annular frame with a central opening therein and a second resiliently flexibl tab extending into said opening from one edge of sail project out of the plane of said annular frame at the free end thereof and being flexible out of the normal position into the plane of said annular frame, said second buckle part being received in said passageway and said cavity with said one edge of said frame being positioned adjacen said one end wall of said housing and said free end of said second tab projecting toward said one side wall of said
housing and said free end of said first tab past said lip means, said free end of said second tab engaging said lip means to prevent withdrawal of said second buckle part from said cavity, said first tab being resiliently flexed into said cavity and into engagement with said second tab to effect a movement of said second tab out of said normal
position into said plane of said annular frame to position position into said plane of said annular frame io position
said second tab in alignment with said passageway and out of alignment with said lip means for removal of said second buckle part from said first buckle part.

UNITARY LIFT AND SP2
John E. Raidel, Rte. 9, Box 400-M, Springfield, Mo. 6580
adidel, Rte. 9, Box 400 M, Springfield, M
Filed Oct. 15, 1976, Ser. No. 732,874
U.S. C. $280-686$ Int. C. ${ }^{2} \mathbf{B 6 0 G} \quad 11 / 10$ \qquad U.S. C. 200 12 Claim frame of a vehicle; a torque beam pivoted to the bracket mean frame of a vehicle; a torque beam pivoted to the bracket means wheel and said control arm relative to said frame during road
with an end extending therefrom, means for attaching said impact conditions, thereby substantially isolating said frame torque beam to an axle; a lift beam pivotally connected to the from such impacts.

NDEPENDENT, 4093,273
John D. Fitzpatrick, Utica, and Gary L Smith Pontiac, both of Mich., assignors to General Motors Corporation, Detroit,
Mich. Filed Nov. 26, 1976, Ser. No. 745,215
U.S. CI. 280-696

1. In combination with a vehicle frame, an independently prung front wheel assembly including a wishbone-shaped ontrol arm having an outer end and a pair of spaced apart
inner ends; a stering knuckle and associated road wheel mounted on the outer end of said control arm; a vertically oriented coil spring disposed between said control arm and said frame; a horizontally oriented shaft; means connecting said spaced apart inner ends of said control arm for pivotal movement about said shaft; mounting means having a bore formed
therethrough a predetermined diameter larger than the diameter of said shaft and surrounding said shaft intermediate said inner ends of said control arm; fastener means for rigidly securing said mounting means to said frame; and elastomeric bushings mounted on said shaft and confined in the bore of said mounting means, said elastomeric bushings having at least one side of reduced effective thickness forming a space providing a ow horizontal rate and a high vertical rate for increased horisuch impact.

UPPER FITTING OF 4093,274 displaceable In height within a body Hansjürgen Scholz, Echterdingen; Jürgen Gimbel, Gechingen, and Walter Jahn, Sindelfingen, all of Germany, assignors to Daimler-Benz Aktiengesellschaft, Germany
Filed Non. 11, 1976, Ser. No. 740,940 Claims priority, application Germany, Nov. 15, 1975, 2551329 U.S. C. 280—747 Int. C. ${ }^{2}$ B60R 21/02 $\quad 10$ Claims

rque beam to the axle; the lift beam being pivotable in a plane parallel to the pivoting of the torque beam.

Abstract

\section*{}

都

4,093,276	
BIPARTITE STOCK CERTIFICATE	
eph Debe, 214 Stewart Ave., Garden	
S. C. 283-1 R	10 Clai

1. An upper fitting of a shoulder belt band arranged adjust-
able in height within a body hollow space means provided with able in height within a body hollow space means provided with
an outlet opening for the belt band, characterized in that the an outlet opening for the beli band, characterized in hat ine
outlet opening is covered of by a shield means which in
is provided with an aperture for the belt band, and in that the position of the aperture is adapted to be matched to the ad justed height of the fitting.

SEAT BELT SECURING DEVIC
Gary A. Wize, Wsshington, Mich., assignor to General Motors
Corporation, Detroit, Mich.
Filed Mar. 11,1977, Ser. No. 776,626
Lied Mar. 11,1, 1. 2 A62B Ser. No. $35 / 00$
Int.
U.S. CI. 280-747

1. An occupant restraint system for a motor vehicle body having an occupant seat and comprising: a belt, means anchoring one end of the belt outboard the seat and adjacent the lap
of the occupant and the other end of the belt outboard the seat of the occupant and the other end of the belt outboard the seat
and adjacent the shoulder of the occupant, one of the belt and adjacent the shoulder of the occupant, one of the belt
anchoring means being a retractor for winding up the belt to a vertically extending stored position outboard the seat to permit ease of occupant ingress and egress, a belt securing device
connected to the vehicle body inboard the occupant, said connected to the vechicle body inboard the occupant, said securing device having a pair of tong arms pivotally mounted
for movement to a closed position for capturing encirclement for movement to a closed posiasing the tong arms to an open
of the belt, spring means bin spaced-apart belt-releasing position, an actuating member posi-
tioned between the tong arms and operably connected theretioned between the tong arms and operably connected therewith for pivoting the tong arms against the bias or the selt upon a closed position for cap thaning encting member during one-handed forcey of the belt between the tong arms, and releasible latch
2. Stock certificate comprising a planar body having indicia hereon denoting the body as a single stock certificate and comprising a first portion corresponding to a first type of
interest in the stock having indicia thereon denoting the first ype of interest and a second portion corresponding to a secnd type of interest in the stock having indicia thereon denoting the second type of interest and means for effecting bipartition of the body into separated first portion to signify on its face that the holder has only the first interest in the stock, the separated second portion to signify on its face that the holder body to signify on its face that the holder has both the first and second interests in the stock.

8 Claims ASCEMBLY FOR PREPARING IN ASSEMBLY FOR PREPARING INSERTS FOR HOSPITAL IDENTIFICATION BRACELETS John L. Nolan, Glenview; Harrey M. Nordby, Buffalo Grove, nors to Hollister

Filed Jan. 21, 1977, Ser. No. 761,423 U.S. Cl. 282-24 R Int. C.2 ${ }^{2} 41 \mathrm{~L} 1 / 22,1 / 261$ Claim

1. An assembly for preparing imprinted inserts for hospital dentification bracelets, including a base sheet of imprintable ations into said sheet being divided by rows of parallel perfoeing divided by a transverse line of perforationss accoss the entral portion thereof into an identification section and a everable handle section, said identification sections having an outer insertion end portion of tapering shape, wherein the verlay said identification shections withon paper arranged to
thereagainst, said carbon sheet being divided into a plurality of receiving and being bonded to an appropriately tapered end of
severable elongated strips having severance lines in alignmen
with those of said base sheet so that the base sheet strips can be with those of said base sheet so that the base sheet strips can b
removed one at a time with the respective overlying carbo rtrip, said carbon sheet strips each having a first uncoated
set margin extending over the insertion end portion of the under ying base strip and a second uncoated margin on the opposite
side thereof adjacent the line of division between said identifil side thereof adjacent the line of division between said identif
cation and handle sections, said first and second margins of each carbon strip being adhesively attached to said base sheet in defined areas spaced inwardly from the outer edge of their respective margin, both of said margins providing unattached of said tab portions of each carbon strip overlying an insertion end of the underlying base strip and the other tab portion overlying the handle section thereof, said carbor strips being
removable after the imprinting of said base strips by grasping removable after the imprinting of said base strips by grasping
one of said tab portions at either end thereof.

4,093,278
IE SOLVENTS FOR PRESSURE-SENSITIVE COPYING James Kern Sears, Webster Groves, Mon, assignor to Monsanto
Company, St. Louis Mo Company, St. Louita, Mo.
Filed Dec. 27, 1976, Ser. No. 754,467
Int. CC.2 B41M $5 / 22$
U.S. C. 282-27.5

1. A pressure-sensitive recording system comprising (a) supporting sheet material,
(b) mark forming components arranged in contiguous juxte position and supported by said sheet material, said compo nents comprising a chromogenic material held within microcapssules and an electron accepting material of the Lewis acid type reactive with said chromogenic material
to produce a mark when brought into reactive contact. to produce a mark when brought into reactive contact,
and
(c) a pressure releasable solvent for said chromogenic mark
forming component, said solvent comprising an aryl ester
the pipeline; a split ring having side walls normal to the longitudinal axis of the coupling provided in a groove in the outside surface of said male adaptor member and containing a hole in each side of the split in the ning, the axis of said holes being
parallel to the direction of fluid flow; a restraining pin fitted through the wall of the male adaptor member and seated in the holes of the split ring to retain said split ring in the contracted position in the groove of said male adaptor member without protrusion beyond the outside diameter surface of said male adaptor member and containing a groove on the inside surface thereof, said groove being sized so that the walls thereof snugly engage the side walls of the split ring when the restraining pins which heve a geometry such that in one position they will not engage the female member and when the pins are
rotated in their seats away from the wall of the male adaptor member to another position, the female member will engage and automatically drive the pin from its seat when said male adaptor member is inserted into said female member allowing for expansion of said split ring to its natural uncontracted position within the grooves in the female section and male
adaptor member thereby locking said male adaptor member and female member together.

4,093,280 SYNTHETIC RESINOUS PIPE JOINT MADE UP IN ONE-PIECE WITH A METALLIC MALE SCREW Tadao Yoshizawa, and Sabaro Kadowald, both of Sakni, Japan, asaignors to Kubota Ltd., Oraken, Japen,
Filed Jun. 14, 1976, Ser. No. 695,564
Cleims priority, application Japan, Jun. 14, 1975, 50-80872 U.S. C. 285-39 Int. Cl. ${ }^{2}$ F16L $35 / 00$
forming component, said solv
represented by the structure

wherein \mathbf{R}_{1} is hydrogen, methyl or ethyl; \mathbf{R}_{2} is hydrogen or C_{1} to C_{1}.
zero or 1 .
 Anthony Fredrick Verdecca, Havorth, N.J., and Oriando Bor rajo, Hialeath, Fla, selganors to Fib-R-Fit Inc., Fairvier, N.J. Filed Sep. 2, 1976, Ser. No. 719,826
U.S. C. 285-23

1. A coupling for joining the ends of a tubular pipeline through which a fluid is to flow comprising a tubular male
adaptor member having an inside tapered surface suitable for or C_{1} to C_{9} alkyl; R_{3} is hydrogen, methyl or ethyl; and n is
2. A
ing:
3. A pipe joint for connecting heterogeneous pipes comprisa metallic pipe connecting portion forming one end of said pipe joint and being externally threaded at one end thereof;

synthetic

 other end of said pipe joint; said metallic pipe connecting portion having a nut-shaped part formed on its outer peripheral surface between the externally threaded one end thereof and the other end face of metallic tightening of said pipe joint, the inside tightener paralte exhibiting an out-of-round excavated form; the other end of said metallic pipe connecting portion extending from said nut-shaped tightener part in the opposeing substantially tubular in configuration, and the external and internal peripheral surfaces of said substantially tubular configured other end of said metallic pipe connecting portion being provided with a ring-shaped part irregularly configured along the length thereof so as to provide, alternatingly, increasing and decreasing radialdimension thereof along any given line drawn longiudinally along the peripheral surface of said tubular other nally
end;
said resinous pipe connecting portion including an integral inner layer completely covering the entire inner surface of said metallic pipe connecting portion extending from said resinous pipe connecting portion in the direction of said
metallic pipe connecting portion, and including the inner surfaces of said externally threaded end, the excavated said metallic pipe connecting portion;
said resinous pipe connecting portion further embedding said tubular oher end of said metallic pipe connecting portion, inclut the irregularly configured external
said inner layer of said resinous
having an inner surface form of substantial roundness throughout the length thereof and of the inner surface of said metallic pipe connecting portion which it covers.
prevent said clamps from moving away from one another the adjustable rigid securement of said strap second end to said second clamp being effected by passing said strap
second end between the constricting band hose clamp and the underlying surface of said rigid fitting and then reversely turning said strap second end outward away from the fitting and backward over the constricting band clamp and an intermediate portion of said strap,
a tab extending toward said first strap end from an interof said strap to said first clamp being effected by capturing

4 4,093,281
THREADED CONNECTORS
Martin B. Jansen, Jr., Houston, Tex., assignor to Vetco Offshore Industries, Inc., Ventura, Calif.
Flied Nov, 15, Filed Nor. 15, 1976, Ser. No. 742,072
Int. CI. ${ }^{2}$ F16L $55 / 00$ U.S. CI. 285-39

26 Claims

1. A pipe connector comprising, in combination; a tubular in member having an external chread and a wiblur box member having an internal thread meshing with said external
thread, means for applying axially directed tensil forces in opposite directions to said pin member and box member, respectively, to preload engaging faces of said meshing threads against one another, and means for retaining said preload
between said engaging faces while said axially directed tensile between said engaging faces while said axially directled tensile
forces are applied and after application of said axially directed tensile forces has been discontinued.

$4,093,282$ HOSE CLAMP

George H. Kyriakodis, 1944 King Arthur Rd., Philadelphis, Pa.

the clamp between the strap and the said tab with the strap disposed against the inside surface of the clamp and wit the tab disposed against the outside surface of the clamp. and then turning the said first strap end outward around the clamp and reversely to overlie the outer surface of the clamp and align with the said tab, and
(c) hose surface deforming protuberances carried by said elongated strap in hose surface engaging position and limited surface areas when said first clamp is clamped about the hose to thereby effectively lock the hose to said first clamp.
dEVICE FOR RELEASABLY PASTENING TUBE OR PIPE Garl Weinhid Um Jand
Filed Nov. 22, 1976, Ser. No. 744,090 Claims priority, application Germany, Nor. 27, 1975, 2553189 U.S. C. 285-243

19116
Filed Nor. 24, 1976, Ser. No. 744,502
U.S. C. 285-114 Int. C. ${ }^{2}$ F1GL $35 / 00$

2 Clxims 1. A hose clamp adapter strap for use in conjunction with a pair of constricting band hose clamps wherein a first such clamp is clampingly disposable about a resilient hose to clamp such a hose about a rigid fitting, and wherein a second such
clamp is clampingly disposable about another portion of the clamp is clampingly disposable about another portion of the
aforesaid rigid fitting, said adapter strap comprising in combination,
(a) an elongated strap made of semi-rigid deformable materal having first and second strap ends, said strap being rigidly lockable at said first end to said first clamp, and a spring for said paggle lever lock lying, in said closed positio being adjustably rigidly securable at said second end to of the device, between said toggle lever and said other of said said second clamp and being effective when so secured to two shell parts, engaging said engaged end of said other of saic
two shell parts and said toggle lever and loaded in said closed dows include abutting frame members in the closed position, position of the device.
dows include abutting frame members in the closed position,
comprising drilled aligned apertures at at least one position along said frames, said aligned apertures being open only at one end adjacent the inside of said windows and closed toward the outside, a screw for insertion into said apertures from the inside directly engaging said apertures to lock said windows together and draw said frame members together into face-to face contact, a head and integral hat washer on said screw, a
cup washer positioned adjacent the open end of the apertures, cup washer positioned adjacent the open end of the apertures,
said apertures at the open end having a substantially enlarged portion, said cup washer being positioned in said enlarged portion with a tight frictional fit to prevent turning of the same, he head of said screw being recessed into said cup washer to limit accessibility to the head, and locking means formed over nauthorized removal of said screw, said locking means comprising a plurality of curved ridges formed on the underside of said integral flat washer, said ridges frictionally engaging the adjacent face of said cup washer and binding against said washer prevented from rotating by the frictional fit in said enlarged portion.

SECURITY LOCKING DEVICE FOR LOUVRE AND Jatry D. Burton, 12232 Wald Wrf Dr LyN
Larry D. Burron, 12232 Waldorf Dre, Lynwood, Calif 90262 1. In a door hinged to a door frame and a locking mechanism on the closing upright edge of the door, the improvement comprising:
said locking id locking mechanism including a longitudinal engaging element on and carried by said closing edge and being movably mounted;
one upright edge of the door frame and being laterally opposed to and generally parallel and interlocked with the engaging element;
aid engasting a elemement and counter element extending over at least a substantial part of the door height;
disengages the counter element so that the doorle that it relative to the frame;
bocition means movably mounted on the door and in one position retaining the engaging element in a locked posi-
tion when a min the door is closed;
and a grip means movably mounted on the door and connected to said blocking means for moving it to a "release" position so that said en
said counter element.

4,093,285
Paul R. Fayle, P.O. Box 1121, Lexington, Va. 24450
Filed Mar. 18, 1976, Ser. No. 668,002
U.S. C. 292-251

1. A screw lock assembly for windows, wherein the win-
U.S. C. 292-259 R Int. Cl. ${ }^{2}$ E0SC $19 / 18$

2. A security system for louvre and jalousie windows and/or doors having a multiplicity of glass slats or panes, said system omprised of:
multiplicity of thin metallic bracs, that are formed in the shape of a rectangle having long and short sides whereby one of the long sides is uninterrupted while the other long
side is interrupted internediate said shor two flanges having first and second portions, said firs portions extending outward from said interrupted side to join with said second portions, said second portions to tending substantially perpendicular to said first portions, each of said brac wrapping around each of said glass slats or panes; and
a latching means comprised of an elongated rigid flat member having a multiplicity of openings on one side in a predetermined space relationship based on the location of said brac flanges on said panes, whereby said openings of said latching means mates with said first portions of said
bracs thereby forming a stationary integrated brac-latch system which precludes the removal of said glass panes or slats from said louvre window or door.

4,093,287

George G. Canter, 2 Overlook Ave., Great Neck, Long Island, N.Y. 11021 Filed Feb. 22, 1977, Ser. No. 770,915
Int. C1. ${ }^{2}$ B65D $33 / 34$ U.S. CI. 292-317

1. A car seal and the like comprising a two-piece cap and a sealing strip for overlapping a car door handle and the like,
said two-piece cap disposed at substantially right angles to the said two-piece cap dispossed at subions, one of said sections having a slot therein, said strip of material at its outer free end being of a size and shape to pass through said slot, said strip of material at its opposit forward end and inwardly thereof having an eniargeed section,
said forward end being folded over said enlarged section in slightly spaced relation therewith, said enlarged section along itts side edges also being folded over said forward end to provide flanges retaining the same in such folded-over position, strip, and said flanges having coinciding slots extending in wardly of their forward ends, spring-actuated locking means wardosed in said coinciding slots, said flanges defining therebe tween an area for laterally retaining said spring-actuated lock ing means in contact with the outer faces of the strip, said
bent-over portions of the strip providing a longitudinal space bent-over portions of the strip providing a longitadian space
therebetween to receive the outer free end of the strip, and holes in the free end of the strip and in the forward end of the strip between said flanges which coincide when said free end
of the strip is inserted in the slot and pushed to the innermos of the strip is inserted in the slot and pushed to the in said coin end thereof, said said strip to lock the same in position when said spring-actuated means are displaced by the free end of said spring.
strip.

4,093,288

BINDING STRAP MADE OF SYNTHETIC RESIN Tedeshi Suzuli, Saitama, Japan, assignor to Toska Co., Ltd., Tokyo, Japan Filed Dec. 29, 1976, Ser. No. 755,171 Claims priority, appliction Japan, Jan. 14, 1976, 51-3049 Int. Cl. ${ }^{2}$ B65D 55/06
US. Cl. 292-321
8 Claims

1. A binding strap comprising: a head portion, said head portion
cated passageway; an intermediate portion having a first end extending from a
side of said head portion;
connecting portionote from said first end;
stop tooth means formed within said passageway, said stop stop tooth means formed wind tooth means comprising a centrally projecting fixed tooth
part having an upper face and a centrally projecting elastipart having an upper face and a centrally projcclower faces positioned diametrically opposite to said fixed tooth part; slit, said slit being positioned below said rockable tooth part for further assisting rocking motion of said rockable tooth part, said slit forming a supporting wall face which supports said lower face of said rockable tooth part when restraining said connecting portion, while allowing free ocking motion when said lockable tooth part is in another osition during insertion of said connecting portion, both said upper faces lying in the same plane only when said fixed tooth part and said rockable tooth part are lockably restraining said connecting portion.

4,093,289

ELECTRIC/MANUAL DOOR LOCK OPERATING

MECHANISM

kira Inabayashi, and Jun Watranabe, both of Hirobhima, Japan, assignors to Toyo Kogyo Co., Ltd, Hirosin
Instrument Co., Ltd., Yono, both ir, Napan
Filed Apr. 5, 1977, Ser. No. 784,757
Claims priority, application Japan, Apr. 7, 1976, 51-43683[U]
U.S. C. 292-336.3

A vehicle door lock operating mechanism, comprising: (a) a door lock mechanism
(a) a door lock mechanism,
(b) actuating means connected to said lock mechanism and movable between a locked position and an unlocked position,
(c) operating means connected to said actuating means for manually moving same between said locked and unlocked positions,
(d) a reversible electric motor,
a pivotal member movable between a locking position, an unlocking position, and a neutral position,
reduction gear means engageable between said electric motor and said pivotal member for implementing the movement of the latter from its neutral position to either its locking position or its unlocking position by the selective energization of said electric motor,
(g) means connecting said actuating means and said pivotal member and including means for permitting a limited degree of free movement of said actuating means independent from said pivotal member when the latter is in its neutral position, whereby the lock mechanism may be manually operated independendly of said motor and reduction gear means, and
(h) spring means for biasing said pivotal member towards its neutral position.

VEHICLE WITH SAFETY DEVICE

 Loonard Charles Pearion, Wolkinghum, Englinnd, assignor toNational Research Development Corporation, London, EnFiled Mar. 9, 1976, Ser. No. 665,229 Claims priority, application United Kingdom, Mar. 14, 1975,
U.S. C. 293-15

Int. C. ${ }^{2}$ B60R 21/14

1. A vehicle including:
an impact member located at low height off the ground, and
by which the moving vehicle will tend upon collision with a typical pedestrian to make impact below his center of gravity;
a bonnet on
a bonnet onto which said impact by said impact member will
tend to throw said pedestrian;
tend to throw said pedestrian;
a least one sensor means connected to said vehicle for sens-
ing and being actuated by one of (1) said initial collision of ing and being actuated by one of (1) said initial collision of
said impact member with said pedestrian and (2) the subsequent impact of said thrown pedestrian on said bonnet; a safety device moveable in a path of movement from a stowed position to an operating position, in which operat-
ing position said safety device forms a barrier to restrain ing position said safety device forms a barrier to restrain
said pedestrian from falling off said bonnet; said safety device in said stowed position lying at a height off the ground below that of said bonnet and closely similar to that of said impact member;
said path of movement of said safety device from said stowed to said operating position carrying it first horizon-
tally and outward from said vehicle and then upward; and means responsive to the sactuation of said at least one sensor means for moving said safety device through said path of movement thereof from said stowed to said operating
position.

O 4,093,291
 CONTACT LENS APPLICATION AND REMOVAL
 Herbert L. Schurgin, 26 J , ${ }^{\text {Ser }}$ St
 Filed Aug. 17, 1977, Ser. No. Int. Cl. ${ }^{2}$ A61F $9 / 00$

U.S. CI. 294-1 CA

1. An instrument for application onto and removal of a contact lens from a user's eye comprising:
a body adapted to be hand-held by a
having a chamber containing an illumination source
first and second arms supported by said body and outwardly extending therefrom in spaced relationship to each other, said arms having end portions of a material and configuration for safe engagement with a user's eye; each other;
each other; body between said first and second arms and having a curved outer surface for supporting a contact lens thereon, and an aperture centrally disposed in said curved
tion source to provide a visual alignment target by which the instrument can be aligned with a user's eye; and

a predetermined amount beyond said footplate, the tips of said end portions being configured to facilitate, grasping of the confronting peripheral edges of a contact lens on a

4 ING 093,292
SLING AND ITS METHOD OF MANUFACTURE Jose Maria Maso Marcet, calle Navas de Tolosa 353, and Joee de Caiasanz Peradejordi Guanabens, calle Enrique Granados 101, both of Barcelona, Spain
Continuation-inn-part of Ser. No. $\mathbf{5 6 0 , 9 9 0}, \mathrm{Mar}$. 21, 1975,
abandoned. This Claims priority appplication Mar. 7, 1977, Ser. No. 775,106
Spain, Apr. 1, 1974, 201899; Nor 13, 1976, 224442

Int. C. ${ }^{2}$ B66C $1 / 18$
U.S. C. 294—74

1. A sling for moving loads, comprising a coil having a
multitude of substantially multitude of substantially uniform, closed and juxtaposed
loops, said loops being elongated to form a middle portion of loops, said loops being elongated to form a middle portion of
two substantially parallel adjacent coil sections, each coil section having filamentary material strands which are located adjacent to each other, and bight-shaped portions at opposit ends of said middle portion so that one of said bight-shaped portions may be connected with a load to be moved; means fo each other when a load is to be moved, said retaining means including winding means having a plurality of substantially annular turns extending circumferentially about strands in each of said coil sections, said turns including a run located in inter
spaces bounded by said strands and extending for spaces bounded by said strands and extending from one to the
other of said coil sections in direction transversely of the elon gation of said loops for interconnecting said coil sections and for preventing them from moving apart from each other when said one bight-shaped portion is urged in direction away from he other of said bight-shaped portions during movement of the load, said retaining means including a substantially tubular length which extends over a substantial portion of the length of the coil; means for protecting said bight-shaped portions and including a pair of flexible protectivigesteeveseseach sortions and
a respective one of said bight-shaped portions; and means for
preventing relative movement between said protective sleeves and said sheath, and including means for fastening said sleeves oopposite ends of said sheath, said fastening means inclusing said sheath, said threaded seam of stitches being located exter orly of said winding means so that relative movement of said coil sections apart from each other during movement of the load is counter-acted substantially by said winding means, whereby said and said sheeth.

4,093,293

Richard D. J. Huggeth, Clanfield, England, assignor to Lewmar Marine Limited, Havant, Engiand Filed Sep. 21, 1976, Ser. No. 725,271 Claims priority, application United Kingdom, Oct. 6, 1975,
U.S. C. 294-83 R Int. C. ${ }^{2}$ F16G 15/08

1. In a marine shackle having a body comprising a closable 1. In a marin loop and a retaining means rotatably secured to the body the improvement comprising a post formed integrally in one piece with the body and having a cylindrical stem portion and a head portion of a diameter larger than that of the stem portion, the post penetrating an aperture in the retaining
means, a split collar on the post in said aperture comprising means, a spit collar on the phold against lateral separation by
two identical discrete parts held the sides of said aperture and having at least a portion between the head portion and the retaining means effective to preven movement of the retaining means away from the body over th head of the post, and spacer means surrounding the post and
abutiable against both the body and the retaining means to abuttable against both the body and the retaining medy and
maintain a fixed minimum spacing between said body and retaining means, the spacer means comprising two identical discrete parts engaged together to form an annulus about the stem portion, the said fixed minimum spacing being such that he retaining means is positioned so that saic portion the retain ing means.
fish in a well, said fingers flexing to accommodate entry into the fish;
tapered surface supported by said body adjacent to said collet fingers, said surface movable relative to said colle fingers which movement deflects said collet fingers radi ally inwardly and outwardly between fish engaging and disengaging positions
cam follower, said cam fearst means which functions as cam follower, said cam means and first means moving said another to deflect said collet fingers betudinally of one ing and fish disengaging positions between fish enga said first means alternately moving between two positions one associated with engaging and the other associated

with disengaging a fish, said cam means and said first means being constructed and arranged to operate between the engaging and disengaging positions on relative axial downward movement of said body, said cam means comprising a tubular member rotatably positioned around said
body which is limited in axial movement along said body by a pair of spaced shoulders which capture said tubular member therebetween;
sleeve telescoped over said body, said sleeve supporting a pair of radially inwardly directed pins which comprise said first means; and axially relative to said sleeve between the fish engaging and disengaging positions.

4,093,294

RELEASABLE WIRELINE SPEAR
William T. Taylor, 222 Camp Lilly Rd., Humble, Tex. 77338 Filed Jun. 4, 1975, Ser. No. 583,774
U.S. CI. 294-86.25

11 Chaims

1. A spear comprising
an elongate body having a connector means for supporting an elongate bod
said body;
irst means supported by said body;
2. An integrally formed bottle carrier for carrying a single a elongate set a circulat fingers supported by said body and row of bottles comprising a plurailty of spaced open-ended
bottles, a longitudinally extending substantially rigid bridging
bar connecting a pair of collars, an individual frame aro and spacially separated from eacs, an individual frame around respective collar is mounted, part of said frame forming a reinforcing edge of the adjacent rigid bridging barm, means connecting each collar to the individual frame to lend support thereto, diagonally extending legs connecting the open ends of each collar to the reinforcing edge of the adjacent rigid bridging bar to permit the open ends to be spread apart to receive
the neck of a bottle, the extreme opposite of said longitudinally spaced collars in the carrier being oriented with the open ends facing inwardly opposite to each other and toward an adjacent rigid bridging bar to permit removal of either end bottle by
pivoting the lower end pivoting the lower end thereof outwardly away from the adjacent bottle in the carrier, and a plurality of longitudinally
extending reinforcing ribs beneath said rigid bridging bar and connecting the portions of the frames which form the opposite reinforced edges of each rigid bridging bar, said bottle carrier being further characterized in that there are at least two longitudinally extending bridging bars connecting at least three a pair of rigid bridgging bars is oriented longitudinally with the open end facing toward the open end of an adjacent collar.

$\stackrel{4,093,296}{\text { BOTTLE GRIPPER }}$

Tsutomu Itoh, Tokyo, Japan, assignor to Onoda Cement Co., Ltd., Onod, Japan
Claims prioited Jun. 20, 1977, Ser. No. 808,060 Claims priority, application Japan, Jun. 28, 1976, 51-75469
Int. C1. ${ }^{2}$ B66C $1 / 42$ U.S. C. 294-90 19 Claims
wo manually operable, movable tweezer legs supported by said frame;
hird leg positioned between the two movable tweezer legs and attached to said support riser and held generally stationary with respect to the frame so that each movable
leg is movable relative to the third leg and the freme said two movable legs and said third leg each having a

length such that all three legs terminate at approximately at the same point when the movable legs are closed against the third leg;
said movable legs being positioned and adapted for pivotal movement toward the third leg such that relative move ment of the three legs lies in a common plane; and frictionally engaging an object to be grasped.

4093,299
ARTICULATED RAILWAY SERVICE WHEEL AND UNITARY RAILWAY HUB AND AXLE Overton B. Cappe, Verona, and J. Richard Milliken, Pittsburgh, both of Pa., assignors to Edgewater Steel Company, Oakmont, Pa.

Filed Sept. 30, 1976, Ser. No. 728,115
Oitario, Canaded Jun. 21, 1976, Ser. No. 697,811
Fil Int. Cl. ${ }^{2}$ B62D $37 / 100$ U.S. CI. 296-1 S
U.S. C. 295-14 Int. C. ${ }^{2}$ B60B 17/00 17 Claims

1. An air deflector for use with a road vehicle of the kind which is adapted for travel forwardly along a path of travel and which has a cab and a
rearwardly of and extending above said cab, said deflector having a streamlined air deflecting face and being adapted to be mounted on said cab in front of said body portion with said
2. Structure for assembly of an articulated railway service wheel comprising
rim means of toroidal configuration
hub means, and
open web spring means for removably interconnecting the rim means to the hub means,
the rim means in an assembled wheel being rotatable with and circumferentially disposed with relation to the hub means with open spaces being defined by the spring web bled wheel,
the open web spring means comprising elongated rodike means defining a plurality of spring units which are distributed symmetrically between the rim means and hub means when in an assembied wheel,
receiving means on the rim means and hub means for receivwheel,
sid receiving means being free of fastener means which are non-unitary with said rim means and said hub means, respectively while providing for removably interconnecting the rim means, spring web means, and hub means so as to permit predetermined relative move tructures
predetermined relative movement being limited during and compressing of the spring units,
each said spring unit having a generally U-shaped configuration when projected onto a plane in perpendicular rel tionship to he axis of resped configuration spring unit comprising
pair of elongated legs extending between the rim means and the hub means establishing a resultant directional component for each said leg which is radial of an assemcomponent,
said leg means presenting a curvilinear configuration when projected onto a plane in perpendicular relationship to the axis of rotation of an assembled wheel,
said curvilinear configuration of the leg means changing in
response to vertical and lateral forces applied through the response to vertical and lateral forces applied through the
hub means and rim means in an assembled wheel when in use. air deflecting face facing generally forwardly and with said ace disposed generally transversely of said path of travel, said face having the following features, which are defined wisposed geenerally across said path of travel and oriented for movemen ong a horizontal said path of travel:
(a) a bottom leading edge,
b) a first region extending from said bottom leading edge and sloping generally rearwardly and upwardly thereupwardly and rearwardly at a relatively section sloping upwardiy and
c) a second region extending from the upper margin of said upper section and sloping upwardly and rearwardly therefrom at a relatively shallow angle to the horizontal, (d) a third spoiler region formed by a flange-like portion of said deflector, said spoiler region extending from the upper margin of said second region and forming an upper margin of said deflechor, said spoier a generally upright position so that air flowing over said face is deflected upwardly by said spoiler region as the air leaves the deflector.

4,093,301

MOVABLE DOOR FOR A VEHICLE
amuel W. T. Kook, 2642 A Beldin Le, Walnot Creek, Calit ${ }_{94596}$

Filed Sep. 27, 1976, Ser. No. 727,262
${ }^{3} \mathrm{MC}^{\text {Int. Cl. }}{ }^{2}$ B60P 3/32
10 Claim

1. A tong assembly for gripping a cylindrical shaped body such as an air-compressor comprising, pair of vertical struts.
pair of cross bars pivotally mounted together at an intermediate section of each cross bar, with a lower end of one vertical strut, with clamp bracket fixed to
shape to fit under a comer of a er end of each strut of a a clamp jaw, of a shape to fit about the curved side of said cylindrical object, pivotally mounted to an intermediate section of each strut, together with tension means fixed to the upper end of each cross-bar, said tension means suit
U. C. 294-99 R 10 Claims
2. A grasping device comprising:
a frame adapted to be held generally stationary with respect to an article being grasped;
said frame comprising a generally flat support, an aperture in
the support, and a support riser adjacent to the aperture in the support and projecting from the support;
an enclosed camper body defining a laterally directed for-
ward wall facing said rear wall of said truck cab,
a first opening in said rear wall of said tuct
a corresponding second opening in said forward wall of said
VEHICLES
corresponding second opening in said forward wall of said Eldrid W. Nelson, Minneapolis, Minn, asaignor to Chass. Olson caligner, ode waith the other,
said camper body being positioned rearwardly of said truck Int. Cl. ${ }^{2}$ B60N $1 / 02 ;$ B60P 7/08; B61D 45/00; B62B $11 / 00$ cab so as to define a space between said truck cab rear wall and said camper body forward wall,
a first slidable door and means on said truck cab rear wall for sliding said first door laterally between a first position cab to a second position uncovering said first opening and within said space, and,
a second slidable door and means on said forward wall of said camper body for sliding said second door laterally in a direction opposite to the direction of sliding of said first
door, between a first position obturating said second opendoor, between a first position obturating said second openso that passengers may move to and from said cab and said camper.

3. A wheelchair retaining device for use in a passenger an elongate arm to extend generally horizontally alongside of the wheelchair from back to front, the arm having a rear end with attachment means to be affixed to a rigid part of the vehicle, the arm having a transversely extend-
ing front end to traverse the plane of the chair wheel and onfront the tire of the wheel;
${ }^{a}$ releasable clamping jaw on the front end of the arm and facing rearwardly to embrace the frame of the wheelchair;
and and
articulated articulated means in the arm permitting the front end of the tion to swing away from the wheelchair frame and out of the way of the wheel of the chair.

4,093,304

HOLDING MEANS FOR A WINDOW, PREFERABLY WINDSHIELD IN VEHICLES
Hermann Ziegler, Renningen, Germany, azsignor to Dr. Ing. h.c.F.Porche Akd May 7, 1976, Ser. No. 684,022
Filed

Claims priority, application Germany, May 7, 1976, 2520320 U.S. CI. 296-84 D Int. C1. ${ }^{2}$ B60J $1 / 02$

1. A camper cover adapted for attachment to a vehicle having a cargo area, said camper cover comprising:
a plurality of longitudinally spaced-apart, transverse frame members having an upper portion and depending side portions and adapted for mounting on a vehicle to form a camper frame over the cargo area of a vehicle;
an inflatable cover member having a front edge, a rear edge and two side edges and formed of opposed flexible, air sure between said sheets, said opposed sheets being further attached together by a plurality of elongated seams to form adjacent, longitudinal, inflatable sections within said enclosure, said inflatable sections being in gas communication and having means for introducing a gas into said adapted to fit over the camper frame formed by said frame members to form a camper cover; a plurality of longitudinal bracing members extending between adjacent frame members to form a V brace; and
means for securing said two side edges of said inflatable cover member to the sidewalls of the cargo area of the vehicle.

2. In an arrangement for attaching a windshield to the wind shield frame of an automobile by way of an adhesive material, an easily removable member attached to said windshield frame,
said adhesive joining said windshield to said easily remov able member,
wherein said easily
U-shaped in easily removable member is at least in part flange portion wss-section and said windshield frame has a lange portion which is at least partially surrounded by wherein part of said flange portion of said windshield fram
is cambered and the adjoining part of said easily remov- accommodating seat mounted on the upper portion of the able member is provided with a camber so as to be resaid windshield frame.

4,093,305

SUN PROTECTION
Jonchim Sturoste, Steinhangwe8 9, 6490 Schluchtern-Niederzell, and Peter Hever, Nordstr. 25, 6497 Steinan, both of Germany Filed Feb. 4, 1977, Ser. No. 765,674
Claims priority, application Germany, Dec. 11, 1976, 2656245 Int. C. ${ }^{2}$ A47C 7/62

9 Claims

A sun protection, especially for use with deck chairs camping chairs, or the like, said sun protection comprising a plurality of U-shaped supporting beams each of which includes a central cross beam, a pair octions for removably coupling the opposed ends of said central beam to one end of each of said side beams, a mounting ear removably connected to the end of each said side beam that is opposite said respective cros beam, a pair of clamping holders coupled to the end of said side securing said sun protection to a chair, a pair of clamping bolts adjustably coupling said mounting ears to each other and to a respective one of said clamping holders, said U-shaped supporting beams being angularly displacable with respect to each other and being angularly dispiacable as a unit with respect to
said clamping holders, said clamping holders being formed as said clamping holders, said clamping holders being formed as
angular elements in one of which is removably disposed one of angular elementsints in a torsion-resistant manner, and a foldable fabric covering said U -shaped supporting beams.

4,093,306

AUXILIARY RIDER SUPPORT FOR JOG CARTS Joseph Zitone, R.F.D. 1, Port Jervis, N.Y. 1271 Filed Mar. 25, 1977, Ser. No. 781,364
U.S. C. 297-217

14 Chims

 1. For use on a jog cart frame mounting said shafts on directed shans and a cart rame mounting said shafts on wheels, a quick attaching and readily detachable auxiliary rider support, said support comprising an upright frame having aninner side and an outer side, said support frame also having an inner side and an outer side, said support frame also having an
upper portion and a lower portion, hook means on the upper upper portion and a frame inwardly directed for engagement over a jog cart shaft in general alignment over a wheel, locking means on the support frame below the hook means and inwardly directed for releasable engagement with a jog cart to, in conjunction with the hook means, releasably fix the rider
support to the jog cart, said rider support including a rider

the support frame, said footrest projecting outwardly from the support frame.

VEHICLE RESTRAINING BELT STRUCTURE onald A. McLennan, 520 Maple Row, Elchart, Ind. 46514 McLennan, 520 Maple Row, Elichart, Ind.
Filed Oct. 22, 1976, Ser. No. $\mathbf{3 3 4 , 8 7 0}$
U.S. CI. 297-385

1. A passenger restraining belt structure for use with a vehicle seat having a back, comprising a body for engaging the front of the back of the seat, straps connected to said body and edges of each strap extending downwardly, to a position near the midsection of an adult passenger for overlapping one an ther in front of the passenger and at least partially supporting the weight of the passenger's body, the tola and botion and the op edge being the normal position of the passenger's arm pit. means for securing said straps together with the straps around he body of the passenger, an upper portion atrached to said ody for extending over the top of the back of the seat, and means for artaching said upper portion to the back of the sea

DENTAL OPERATING $4,093,308$ (RM SUPPORTS
ARM SU Proris
Tualtin, Oreg.
Filed May 10, 1976, Ser. No. 684,659
Int. C..2 A47C $7 / 54$
U.S. CI. $297-16$

1. In a dental operating chair of the type including a movable
back member which can be moved to position a patient in said advances of the conveyor sections adjacent to the ends of the
chair in a substantially supine posture, wherein the back memchar in a substantially supine posture, wherein the back mem- conveyor are such that the angle of the substantially straigh ber has opposite longitudinal sides, the improvement which
comprises arm supports which are connected by a band that

encircles said back member and are thereby removably secured along said opposite longitudinal sides of said back member constituting means for retaining the arms of a patient proxi-
mate the body trunk of said patient when said patient is in supine posture in said chair.

4,093,309
METHOD OF AND APPARATUS FOR CONTROLLING ADVANCE OF UNDERGROUND ARMORED CONVEYORS
Rex Mullins, Burton upon Trent, England, assignor to Coal Industry (Patents) Ltd., London, England
Continuation-in-part of Ser. No. 605,837 , Continuation-in-part of Ser. No. 605,837, Aug. 19, 1975,
abandoned. This application Feb. 14, 1977, Ser. No. 768,438 Chims priority, application United Kingdom, Oct. 24, 1974, 5996/74

Int. C1. ${ }^{2}$ E21D $15 / 48$
U.S. C. 299-1

3 Claims

1. A method of controlling advance of an armored conveyo arranged along an underground mine longwall face having
roadways adjacent to its ends, the conveyor comprising a series of articulated sections advanceable with respect to the fact in snake-like manner by a plurality of advancing mechanisms spaced along the length of the conveyor, comprising advancing the conveyor sections towards desired advance positions, detecting the advances of a plurality of said con conveyor, said detecting being done by means including a wound elongate member anchorable at one end for unwinding as the conveyor is advanced toward the longwall, the advances being indicated by signals corresponding to the unwound
length of the member, comparing the summed detected adlength of the member, comparing the summed detected ad-
vances, and controlling subsequent advances of the conveyor sections such that the relative advance of substantially the whole conveyor length tends to be maintained at the same distance from an initial base line, the straightness of the con-
further preselected limit.

4,093,310
SEALING AN UNDERGROUND COAL DEPOSIT FOR IN SITU PRODUCTION
 Division of Ser. No. 774,597, Mar. 7, 1977. This application Int C.2. E21 $33 / 13$.
U.S. C. 299-2

5. A method of sealing an underground coal deposit wherein subsidence crack forms a communication passage between prising the steps of
injecting a fluid into the said subsidence crack, the said fluid having the capability of sealing the said subsidence crack, sealing the said subsidence crack, and
continuing injecting the said fluid into the said subsidence crack until sufficient fluid head pressure is established to ground coal.

ARRANGEMENT FOR $4,093,311$
ARRANGEMENT FOR CLAMPING VEHICLE WHEELS trinid Maus, Darmstadt, Germany, assignor to Firma Carl
Filed Sep. 27, 1976, Ser. No. 726,814
Claims priority, application Germany, Jan. 26, 1976, 2602738 U.S. C. $301-9 \mathrm{DH}^{\text {Int. C. }{ }^{2} \text { B25H 5/00 }}$

1. An apparatus for clamping a vehicle wheel rim having able position, comprising rotatable respective wheel in a rotat-
device including wheel centering means for engaging a mounting hole in said vehicle wheel rim, said wheel centering means comprising centering bolt means secured to said clamping evice, said centering bolt means extending toward said backing means, guide pin means extending from said centering bolt means also toward said backing means, biasing spring means said guide pin means toward said backing means, said centering bolt means comprising a first bolt portion rigidly mounted to said clamping device and a second bolt portion operatively connected to said first bolt portion, said second bolt portion having a contoured surface facing toward said backing means for engaging a mounting hole, said centering bolt means fursaid guide pin means and said biasing spring means being located in said central, axially extending channel of said centering bolt means, said guide pin means and said channel comprising cooperating shoulder means inhibiting the removal of said suide pin means from said channel, said spring means urging said guide pin means toward a shoulder engaging position.

2. A two-circuit brake installation for motor vehicles, comprising a shiftable master brake cylinder means including two pressure space means for the two brake circuits, said two pressure space means being connected with each other by a shifting valve means arranged in said line which is merable a shifting valve means arranged in said line which is operable in connection between the two pressure space means, and an intermediate piston in the master brake cylinder means between said two pressure space means, said intermediate piston being arranged substantially coaxially to two pressure points and being freely movable within a guide sleeve means of smaller diameereof with central extensions for the mechanical cooperation with the two pressure pistons, characterized by control means for shifting the shifting valve means in dependence on the load, on the pressure prevailing in the master such pressure.

4,093,314

HYDRAULIC BRAKE PRESSURE CONTROL DEVICE Hean Kozakio Anjo Japen, essignor to Aisin Seiki Kevbuchiki Kaisha, Kariya, Japan ${ }^{\text {Flied }}$ Dec. 22, 1976, Ser. No. 753,583 Filed Dee. 22, 1976, Ser. No. 753,583
Claims priorty, application Japan, Dec. 30, 1975, 50-156968 Claims priorty, application Japan, Dec.
Int. Cl. ${ }^{2}$ B60T $8 / 24$
U.S. C. 303-24 F

1. A decorative wheel ring comprising at least two spring lips for engagement in the rim of a wheel of a motor vehicle, the decorative wheel ring being provided with a clip support portion for each spring clip, wherein each spring clip has the orm of a three-legged spring loop comprising an outer free leg
oined at its one end to a central portion through a first bent portion, and an inner free leg joined to said central portion hrough a second bent portion, including tangs on said centra portion which, after the decorative wheel ring together with said spring clips inserted in said clip support portions has been wheel dish and thus hold the decorative wheel ring freely suspended on the wheel of the vehicle, each clip support por tion on the decorative wheel ring being provided with an axially extending guide slot adapted to receive said outer free leg of the spring loop of the spring clip, wherein said clip support portion also conans a projecting exaring loop of the an axial stop which embraces said extension and forces said tangs against said rim thereby to secure said ring. aster cylinder, two wheel brake cylinders located on opposides of the vehicle at the same point along the longitudinal the master vehincle in separate hydraulic communication with he master cylinder, the communication defining two pressure equal reduced braking pressure to both brake cylinders during straight-ahead vehicle motion and proportioned reduced brakig pressure to the brake cylinders during lateral vehicle motion, said reduced pressures being relative to the master cylinder pressure, the unit having
the separate hydraulic cone valve interposed in each of reduced wheel brake pressure to the respective wheel cylinder for master cylinder pressure greater than a predecermined valve setpoint,
(ii) two springs each associated with a respective one of the proportioning valves, each of the springs being biased, the exerting force of the respective one of the biased springs, (iii) two weights each movable in response to centrifugal
force caus
turn, and
(iv) first and
d by the lateral motion of the vehicle during a a respective one of the weans each applying the force of the first and second lever means being responsive to the pring exerting force and the weight for increasing the ing reduced pressure to the thetpoikylinder outboard of the vehicle turning path and decreasing the spring exerting

force and the setpoint of the valve supplying reduced pressure to the inboard brake cylinder relative to the
respective predetermined setpoints with no lateral vehicle respective predetermined setpoints with no lateral vehicle
motion, motion, ment comprising mechanical link means interact-
the springs for automatically equalizing the exerting between the springs for automatically equalizing the exert-
ing forces of the springs and the valve setpoints in the absence ing forces of the springs and the valve setpoints in the absence
of lateral vehicle motion, said link means connecting the first and second lever means.

MODULATING VALVE ASSEMBLY FOR RAILROAD CAR BRAKE CYLNDERS
willinm R. Page, 400 E. Randolph St., Chicago, m. 60601 , and Jamea G. Reea, 1212 Lake Shore Dr,. Chicago, ill. 60610 Filed Jul. 5, 1977, Ser. No. 813
Int. C. ${ }^{2}$ B6OT 11/12

17 Claims

1. In a brake cylinder for railroad car air brake equipment
including a brake cylinder pipe connected to the brake cylinder head for communicating fluid under pressure to the brake cylinder from the outlet of the brake cylinder pipe to the inlet of the brake cylinder head, a modulating valve assembly therefor for supplying the braking pressure fluid to the brake cylinder from the brake cylinder pipe at a pressure that is a predeterpipe for brake service strokes above minimum service applica. pipe for brake service strokes abo
tions, said assembly comprising:
a bracket plate interposed between the brake cylinder pipe outlet and brake cylinder head inlet, sid bracket plate being formed to define a first passage second passage communicating with the brake cylinder second passage communicaing with
id value ding valve device carried by said bracket plate,
housing device comprising
differential valve member mounted across said cavity to define first and second chambers on either side of said valve member and for flexing movement laterally of said valve member,
said bracket plate first passage being in free communication with said first chamber,
an annular valve seat positioned in said first chamber adjacent said valve member, with said bracket plate second through said valve seat, and said valve member being mounted to be flexed against said seat for sealing of communication of said second passage to said first chamber, said second chamber being in free communication with said bracket plate second passage, either side of same working areas of which the working
號 area exposed to said second chamber is greater working working area of same that is exposed to said first chamber by a predetermined ratio, whereby when said chambers member will be subject to a differential pressure force biasing same toward said seat,
means for spring biasing said valve member away from said seat that is overcome when said differential force reaches
a predetermined amount a predetermined amount,
and check valve means in shunting relation to said seat for receond passagender pressure in said brake cylinder and der pipe is fe tald first passage when said brake cylinder pipe is free of the fluid under pressure.

COMBINED 4,093,316
COMBINED ANTISKID AND LOAD-DEPENDENT BRAKE CONTROL SYSTEM FOR A MOTOR VEHICLE Erich Reinecke, Beinhora, Germany, ssaignor to WABCO Westinghouse GmbH, Hanover, Germany
Claims priority, application Germany, May 21, 1976, 2622746 U.S. C. 303-100 Int. C. ${ }^{2}$ B60T 8/02, 8/18
U.S. C. 303-100

1. An antiskid brake control system for motor vehicles Comims 1. An
prising:
(a) a a
(b)
(a) a reservoir in which fluid under pressure is stored;
b) a brake cylinder device for each wheel of the vehicle,
(c) an operator controlled brake valve device via which the
fluid pressure from said reservoir is supplied to said brake
cylinder devices in accordance with the degree of braking
d) valve
and ssid brake interposed between said brake valve device and ssid brake cylinder devices for influencing braking
pressure independently of said brake valve device; (e) antiskid control means for effecting operation of said valve means during wheel skid conditions; (f) sensor means for providing output signals corresponding
effective brake cylinder pressure and the load supported by the respective axles of the vehicle; and (g) load control means subject to the sensor output signals for effecting operation of said valve means to influence the
fluid pressure of said brake cylinder device of a chosen

one of the respective vehicle axles so as to follow a predetermined brake cylinder pressure buildup curve that deviates from a normal buildup curve at a predetermined point
thereon corresponding to the time when the brake valve thereon corresponding to the time when the brake vaspported by the chosen axle.

VEHICLE ANTISKID BRAKE CONTROL SYSTEM HAVING MEANS FOR ADJUSTING A NON-SENSED WHEEL BRAKE PRESSURE RELATIVE TO A SENSED Klous Lindemann HeEL BRAKE PRESSURE
Klaus Lindemann, Hanover, Latz Weise, Misborg, and Erich Weatinghouse GmbH, Hanover, Germany
Filed May 27, 1977, Ser. No. 801,435
Claims priorty, application Germany, Jun. 18, 1976, 2627284 US. Cl. 303-111 Int. C. ${ }^{2}$ B60T 13/68 19 Claims

1. An antiskid brake control system for the fluid pressure operated brakes ond thereof, said system comprising:
a wheel at each end thereof, said system comprising:
(a) a storage tank normally charged with fuid pressure;
(b) a brake cylinder device for each wheel of the vehicle;
(c) a fluid pressure conduit extending from said tank to each
said brake cylinder device;
(d) a brake valve device in said conduit for controlling the
supply of fluid pressure from said tank to said brake cylinsupply of fluid pressure from said tank to said brake cylin-
ders and for controlling the release of said brake cylinder fluid pressure;
(e) sensor means for providing output signals in accordance with the dynamic behavior of but a single wheel of at least one axle;
(f) evaluation means for providing control signals in accordance with said output signals from said sensor means; (g) control valve means for modulating the fluid pressure of
signals in order to adjust the brake cylinder pressure at the respective wheels independently of said brake valve device;
(h) delay means for varying the degree of fluid pressure adjustment by said control valve means at said brak the other of said wheels of the same axle, such as to preclude the fluid pressure at the brake cylinder of a whee without said sensor means from attaining a level corresponding to the fluid pressure level at the brake cyind of a wheel having said sensor means.
$\stackrel{4,093,318}{ }$ ENDLESS DRIVE SYSTEM
John W. Edwards, P.O. Box 1151, Brandon, Fle. 33511 Continuation-in-part of Ser. No. 590,938 , Jun. 27, 1975. May 12.1975 , which is a continuntion-in-pprt of Ser. No. $576,6 \mathrm{~A}$, No. 532,698, Dec. 13, 1974, abendoned. This application Jan. 12, 1976, Ser. No. 648,527
U.S. C1. 305-11

2. An endless drive system comprising
plurality of endless drive sections, each section including a substantially closed contact surface and inwardly sloped, substantially closed side surfaces extending from first and
second sides of said contact surface toward the center of the endless drive system and forming therewith a body portion having a substantially closed periphery;
connecting means for pivotally connecting the portions of said endless drive sections adjacent the center of the drive an endiess path; and
shield means extending from each body portion and overlapping an adjacent endless drive section for maintaining a drive sections as said endlas dive system travel in an endless path.

TRACK CONSTRUCTION 40 , VEHICLES SUCH AS TANKS

Hans G. K. Börner, Blicek natel-Mimbech, Germas

 Gerisch-Werke GmbH, GermanyFiled Sep. 2A, 1976, Ser. No. 726,110 Claims priority, application Germany, Mar. 19, 1976, 2611681; Dec. 6, 1975, 2554980

int. Cl. ${ }^{2}$ B62D $55 / 20$

U.S. C. 305-58 R

1. A track 14 Chims 1. A rack construction for land vehicles, such as thed a plurality of track members each comprising first and ond spaced, parallel sets of transversely extending tubular members, ssid sets each comprising at least two tubular members mounted in axially spaced relationship so as to define a gap therebetween and having axially aligned bores therein, said track members each including a wheel contacting surface located thereon;
a plurality of connection members each including a wheel contacting surface;
and connecting means, including a pair of connecting pins
extending through resilient sleeves mounted in said extending through resilient sleeves mounted in said
aligned bores of said sets of tubular members, for connecting said connection members and said track members
ber by a predetermined distance upstream of said intake
portion. portion.
TAPER JOURNAL
$4,093,321$
(BEARING FOR ROLLS FOR USE IN ROLLING MILLS

together in alternating relationship to form a track, said affixed thereto on the sides thereof opposite to said wheel contacting surfaces and extending in both longitudinal directions of the track beyond the two connecting pins of the connection member.

4,093,320
Merical bearing for vertical
Ryoichi Kaneko; Katutosi Nii; Hiroo Hiroyama, and Kinpei Ryoichi Kaneko; Katutosi Nit; Hiroo Hiroyama, and Kinpei
Okano, all of Hitachi, Japan, assignors to Hitachi, Ltd.,

Filed Nov. 5, 1975, Ser. No. 629,623
Cleims priority, application Japan, Nor. 8, 1974, 49-127993
U.S. C. 308-9

19 Claims
 tion, Kobe, Japap Flied Mar. 19, 1976, Ser. No. 668,723
Claims
41481[(U)
Int. C. ${ }^{2}$ F16C $3 / 00$
U.S. C. 308-20

1. A taper journal bearing for rolls for use in rolling mills, comprising a bushing housed in a roll bearing box, a sleeve closely fitted onto a taper journal of the roll, an oil film depossaid sleeve to said roll, said fixing means arranged at an area ther than that directly subjected to a rolling force acting upo
said sleeve, the rolling force being transmitted from said said sleeve, the rolling force being transmitted from said roll
bearing box. 4,093,322 4,093,322 AND ENGINE EQUIPPED WITH SUCH A BEARING Karel Koskuba, Duivendrecht, Netherlands, assignor to Stork Werkspoor Diesel B.V., Amsterdam, Netherlands Claims priority, application Netherlands, Oct. 10, 1975, 7511971 Int. Cl. ${ }^{2}$ F16C $25 / 02$
2. A grooved spherical bearing for vertical machines com- U.S. CI. 308-23
rotatable member including a semi-spherical end portion; stationary member for bearing said semi-spherical end plurality of grooves formed on the surface of said semispherical end portion of said rotatable member, said surface adapted to be brought into sliding contact with the
surface of said stationary member, said grooves being arranged such that they perform the function of drawing lubricating oil, in which said semi-spherical end portion and said stationary member are immersed, toward the sliding surfaces of the two members as said rotatable
member rotates: member rotates;
means for reducin
means for reducing resistance of the lubricating oil flow
directed along the sliding surfaces caused by a flow of the dubricating oil being radially forced by inertia of said rotatable member, and wherein each of said plurality of grooves has an intake portion for said lubricating oil dis-
posed at a major diameter surface of said semi-spherical posed at a major diameter surface of said semi-spherical
end portion and an outlet portion for sadd lubricating oil disposed at a minor diameter surface of said semi-spherical end portion, and wherein said resistance reducing means includes an edge portion of said stationary bearing mem-
ber extending in an axial direction of said rotatable mem.

3. A slide bearing for a shaft absorbing a radial load on the shaft varying in direction, said bearing comprising two or more
bearing bushings held in place by means of two bearing caps
provided at their boundary surfaces with meshing teeth securing them against relative displacements, each tooth having slanting opposite side faces such that adjacent faces of adjacent teeth of each bearing cap extend convergently downwardly to define a valley, the bottom of the valley between each pair of adjacent teeth of at least one bearing cap having a groove extending below said bottom of the valley.

4,093,323
Gerhard Quandt, and Wermer Riea, both of Heidelberg, Ger-

Filed Jul. 14, 1976, Ser. No. 705,004
Claims priority, application Germany, Jul. 29, 1975, 2533804 U.S. C1. 308-121 int. C1. ${ }^{2}$ F16C 32/00

19 Climes

1. In a bearing for the rotor of a rotary device, the bearing being composed of an oill-lubricated slide bearing bush and a otation relative thereto, the bush presenting a cylindrical surface providing support for the pin in the radial direction, and means for yieldingly mounting the bush, the improvemen comprising: a bearing ring mounted to rotate with the rotor and having an axial end face ring forming, with an axial en
face of said bush, an axial slide bearing for the rotor, said axia eearing receiving a supply of lubricating oil during rotation of said device; and means defining a narrow annular gap extending substantially in the axial direction in the vicinity of, and spaced radially outwardly from, said axial slide bearing to provide a constricted region adjacent said axial bearing a lates.
members together have the form in cross section of a block letter " G,"
hird annular member of generally block letter " S " form in cross section has first and second outer oppositely extending axial portions, an intermediate axial portion, a first radially extending portion connecting said intermediate
axial portion with said first outer axial portion, and a second radially extending portion connecting said intermediate and second outer axial portions,
said third member having its first radial portion positioned between and coextending with said radially extending intermediate arial portion lying between and coextending

with said flange portions at the said other ends of said first and second members, with its first outer axial portion lying between the flanges of said second member and
extending to a free end toward the web portion of said second member, with its second outer and intermediate axial portions lying on opposite side of and coextending with said flange at the said other end of said first member,
and and
sid radially and axially coextending portions of said mem-
bers being spaced and the free ends of said axially extending portions being spaced from adjacent radially extending portions to permit free relative rotation between said first said second members and said third member.

4,093,325

TUBULAR SPINDLE MOUNTING FOR BICYCLE BOTTOM-BRACKET HUB
oger Troccar, Annecy, France, assignor to Societe Nouvelie de Roulements, Annecy, France
Flled Oct. 29, 1976, Ser. No. 737,003 Claims priority, application France, Oct. 30, 1975, 7533142 U.S. CI. 308-192 3 Claims : Erwin R. Carrigan, Manchester, Ohio, assignor to Electric Co., St. Louis, Mo.
Filed May 16, 1977 , Ser. No. 997,278 Filed May 16, 1977, Ser. No.
Int. Cl. ${ }^{2}$ F16C 33/80
U.S. C. 308-187.1

8 Chims
1. In a free-running bearing seal axially assembled in an
187

annular space between a journalled shaft and a bearing housing, comprising:
a first annular member of channel form in cross section having a radially extending web portion and an axially extecod annular member of channel fo
a second annular member of channel form in cross section havially extending flange at each end thereof,
said first and second members being arranged with their
radial web portions coextending, with their flanges ex- the outer race of the relevant bearing said bushings constituttending toward each other, and with their flanges at one ing the axial play adjustment members and being on the other end in axial alignment, whereby said first and second hand screwed in the tapped body of said hub.

$\stackrel{4,093,326}{ }$
 Thomes Edward Ford, 150-24 6 th Ave., Whitestone, N.Y. 11354

 Flied May 11, 1976, Ser. No. 685,438 U.S. C. 312-231 12 Claims

An artist's kit comprising:
a rectangular box for holding artist's materials including base and a front wall, a rear wall and side walls all veri cally disposed wind
cluding a cover;
cluing a cover; \quad rsper to said base, and furher in means mounting said cover to said box for pivotal move ment between a closed position wherein said cover over-
lays the walls of said box and any one of a plurality of open positions; and
c. means partly disposable within and without said box for releasably clamping said kit to an external mounting sur face including means for biasing the base of said box against said mounting surface for effecting the clamping of
said box to said mounting surface, wherein the releasable said box to said mounting surface, wherein the releasable
clamping means includes means defining at least two apertures in said bias, a pair of mounting members each having a first portion positionable beneath the mounting surface and a second portion connected to said first portion and extendable through one of said apertures and for acting on each of said second portions for biasing each first portion against the underside of the mounting surface.
spaced relative to each of the finger receiving portions such that both hands of a person are accommodated in the
tion, wherein said spring element means will clamp said apparatus in said support means while said holding mean position, said holding means selectively releasing sead spring element means and permitting removal of said apparatus from said support by allowing said received apparatus to move said spring element from its first retracted position to its second extracted position during
removal of said apparatus whereby said clamping means disengages said complimentary clamping means on saic apparatus when said spring element means is in its ex
tracted positio

ANIFOLDING 4,093,329
MANIFOLDING MEANS AND SYSTEM FOR ELECTRICAL AND/OR PNEUMATIC CONTROL Clarence M. Asbill, III, Richmond V2, essignor
Controls Company, Richmond, Va.
Filed Mar. 22, 1977, Ser. No. 780,038
U.S. CI. 339-16 R
espective finger receiving portions and thumb recess simultaneously.

DEVICE FOR CLAMPING AND EJECTING FROM A CONTANER AN AUTORADIO OR THE LIKE S.p.A., S.p.A., Rome, Italy

Int C1. ${ }^{2}$ E05B 73 , Ser. No. 780,613
U.S. C. ${ }^{312-333}{ }^{13}$ Claims

1. A clamping and ejecting assembly for a support structure dapted to receive an apparatus, such as an autoradio or the like having complimentary clamping means thereon, said as-
sembly comprising: sembly comprising:
support means for receiving and supporting an apparatus spring element means mount reciprocally movable with respect to said support means reciprocally movable with respect to said support means
between a first retracted position and a second extracted position;
clamping means arranged upon and movable with said
spring element means for matingly spring element means for matingly engaging said compliing said apparatus inserted in said support means with said spring element means in its first retracted position; and fixing said spring element means in its first rer selectively
2. In a manifold means adapted to detachably carry on one side thereof a plurality of pneumatically and electrically oper-
ated control units each of which is adapted to be fluidly and electrically interconnected to pneumatic means and electrica means of said manifold means, the improvement wherein said means for said pneumatic means and said electrical mean whereby external pneumatic and electrical lines can be inter connected to the same side of said manifold m
units are adapted to be interconnected thereto.

4,093,330

Robert B. Pittman, River Edge, N.J., assignor to Industrin Robert B. Pittman, River Edge, N.J., assigno Filed May 16, 1977, Ser. No. 797,015 Int. C. ${ }^{2}$ H05K $1 / 12$
U.S. C. 339-17 CF

$$
\text { Int. C. } .^{2} \text { HUSK } 1 / \Pi 2
$$ 1. A receptacle for a circuit chip having a plurality of ex posed connection pads spaced from one another, comprising: station on one face thereof, and an aperture extending through said body to the other face thereof from said chip-receiving station in the vicinity of said chip-carried connection pads when said chip is at said chip-receiving station;

(B) a contact-holding element removably secured to said body and defining a plurality of spaced contact-receiving first passages in communication with said aperture;
(C) a plurality of contact members adapted to be associated with said receptacle, each of said members having a firs contact portion extending at least partially through one of
said first passages, a second contact portion extending from said first contact portion to said one body face and there exposed at said chip-receiving station to engage and
make electrical connection with a given one of said chipcarried connection pads, and a third contact portion extending from said first contact portion to said other body ace and there exposed for the making of an externa connection thereto, said contact member having a first stop part engaging said contact-holding element from the
direction of said one body face, thereby limiting the de-
gree to which said co (D) a contact-retaining element removably mounted on said body at said one body face thereof and having second passages in which said second contact portions are re ceived, each of said contact members having a second stop part engaging said contact-reteaining element from the
direction of said other body face, thereby limiting the degree to which said contact member can move toward said one body face.

CONTAMINANT RESISTANT FEN

 adrew John Molchan, Indiamapolik, Ind, asadgnor to Bell
Telephone Laboratories, Incorporated, Murray Hill, N.J. Filed May 16, 1977, Ser. No. 796,991
U.S. CI. 339-39

1. A contaminant-resistant female connector comprising a housing including:
a front wall,
a plug-receiving cavity that is open to the front wall, ridge projecting forwardly from the front wall, the ridg substantially surrounding the opening to the plug receiving cavity,
plug-receiving cavity, coms situated adjacent to the
and
spindle-receivis
a cover pivotally meanity that is open to the front wall; between a closed and an on the housing and movable in-use position intermediate the closed and and having an in-use position intern
the cover including
a front wall overlying the front wall of the housing, the front wall of the cover extending into close proximity with the forward end of the ridge when the cover is in the closed and in-use positions,
a skirt extending rearwardly from the front wall of the
cover, the skirt overlapping the rid in the closed and in-uspe positions, and
spindle extending rearwardly from th spindle being positioned within the spindle-receivin cavity of the housing
means for biasing the cover toward the closed position; a plurality of contact springs mounted on a dielectric carrier the carrier being positioned in the carrier-receiving cavity
neans for rotatively se
receiving cavity and also retaining the carrier within the carrier-receiving cavity.

POWER CONNECTOR
Paul S. Simko, Naperville, Il., assignor to Bunker Ramo Corpo ration, Oak Brook, III.
Continuation of Ser. No. 426,156, Dec. 19, 1973, which is a This application No. 246,813, Jun. 21, 1972, abandoned U.S. CI. 339-49 R 5 Claims

1. A connector comprising a pair of identical halves each half including a plate-like base member, and a pair transversely-spaced, elongated tubes extending forwardl
therefrom to forward ends, the tubes being of differen therefrom to forward ends, the tubes being of differe diameters, and a pair of tubular elements rearwardly ex
tending to rear ends with substantially equal internal d ameters and in communication with said tubes,
the halves being capabale of being fitted together with their
forward ends interfitted and the small tube on each hal being positioned in the large tube on the other half, and the respective tubes then being substantially completely telescoped, each half also including a latch hook integrally formed with each base and disposed between the tube and recessed below the forward ends of the tubes, each latch hook including a hook angled rearwardly and facing
the large tube, the latch hooks being interconnected in releasable locking relation when the halves are fitted together, and each connector half also including contacts with elements extending into but recessed below the tube and tubular elements, and making mutual contact engage-
ment within respective telescoped tubes, wherein the bas member is made up of front and rear base members perma nently secured together with the tubes and tubular ele ments being integral with the front and rear member, respeccively,
ments through openings of substantially lesser diameter than the internal diameter of the rear tubular elements thereby forming shoulders around those openings on the base member, and said contacts have outer portions of greater diameter than said openings forming shoulders
thereon engaging said shoulders on the base member and tubular portions extending rearwardly from said shoultubular p
ders, and
he rear tubular portions have spring tines biased radially inwardly against said tubular portions, normally retaining he contacts in position, but being capable of being flexed the contacts out through said rear tubular elements.
$\stackrel{4,093,333}{\text { ELECTRICAL ADAPTER }}$ David A. Tjornhom, Sr., 2895 West Rd., Wayzata, Minn, 55391 Continuation-in-part of Ser. No. 500,610, Aug. 26, 1974, abandoned. This application Dec. 15, 1975, Ser. No. 640,937 U.S. Cl. 339-78 ${ }^{\text {Int. Cl. }}{ }^{2}$ H01R 17/20, 31/06 11 Cluims

2. An adapter for electrically connecting an electric light socket having an internal threaded electrically conductive
portion to a light bulb having an electrically conductive exterportion to a light bul having an electricaly conductive exter-
nal sleeve provided with external threads, the adapter comprising: a tubular member having a threaded first end section adapted to mate with the threaded electrically conductive portion of the socket and a second end section having an internal threaded wall forming a cavity for accommodating the
threaded sleeve of the light bulb, first electrical conductor means extended between the first end section and engageable with a portion of the socket and the second end sections and the socket and sleeve of the bulb, said first section having an externally open groove, said second section having an internally open groove, said first electrical conductor means comprising an elongated electrically conductive member located in said first and second grooves, and second electrically conduc-
tive means insulatively mounted on the tubular member adapted to contact the center of the base of the bulb and the center of the socket, and means for locking adapter in a socket, said means for locking the adapter in the socket comprising a band spring located within the tubular member, and locking finger means cooperating with the spring whereby the spring biases the finger locking means to a locking position, said first dating said locking finger means.

Ralph F. Wickenber WIRE RETAINER fitting therethrough and at least an outer tubular conductor all of St. Paul, Minn,, asslgnors to Minnesota Mining and covering along said dielectric, said connector comprising a Manufacturing Company, St. Paul, Minn.
Filed Jul. 8, 1977, Ser. No. 814,024

107 Int. Cl. ${ }^{2}$ H01R 13/58 contact wedge assembly, a body assembly and a nut assembly with said contact wedge assembly being pressed fit between said body and nut assemblies as they are connecter ogly said contact wedge assembly comprising an electrically con-
5 Claims
 said contact wedge assembly comprising an elecricaly
ductive tapered funnel element for slidably receiving therein the end portion of the tubular dielectric of the cable whereby said tapered element shall lie between said dielectric and the outer tubular conductor of the cable and shall contact said outer tubular conductor, said contact wedge assembly comprising receptacle means to receive the extending bare end or
the inner conductor, said nut assembly comprising an aperture to receive the cable and a clamping ferrule, said aperture terminating in said clamping ferrule, said ferrule capable of moving towards the end of the cable when the cable is associated with said tapered funnel element to cooperate with said capered funnel element to clamp the outer tubular conductor of the body assembly comprising a body telescoped in a coupling nut, said body comprising thin metal walls surrounding a central dielectric and terminating in a body seat facing said electrically conductive tapered element, and gripping means for holding said electrically conductive tapered element fixed to said body

1. A device for separating and positioning individual wires of a multiple conductor cable in a fixed relatio
base element of a splice connector comprising
an elongate insulative body member adapted to receive a base element of a splice connector and isolated wires from a multi-conductor cable, said body member having an
upper and lower surface and a first and second edge on upper and lower surface
said upper surface, and
an insulative cap member formed to mate with said body
member,
said bod
said body member having a plurality of spaced projections on said upper surface and positioned along said first and second edge to define a plurality of parallel transverse aligned wire receiving channels along said edges for tially parallel alignment.
said body member having a plurality of strain relief reces ses formed in said upper surface of said body member and located within said wire channels along said first
edge, edge,
seid body
said body member and said cap member having a plurality of alignment means for aligning said cap member with said body member,
said cap member having spaced wire pusher means aligned with said access holes to cooperate with said access holes for bending and retaining means for securing said cap member on said body member.

$4,093,335$

ELECTRICAL CONNECTORS FOR COAXIAL CABLES Oscar H. Schwarth, Brooklyn, and Daniel A. Le Donne, Bronx, both of N. Y., assignors to Automatic Connector, Inc., Com mack, N.Y.

Filed Jan. 24, 1977, Ser. No. 761,475
seat to prevent relative rotation between said inner conductor cally conductive tapered element is pressed against said body seat, said gripping means comprising teeth extending oppositely from said taper, said teeth and said electrically conductive tapered element being integrally formed together and being of a metal material harder than the material of said body whereby edges of said teeth will bite into said bor seat as said body and tapered element are drawn together.

$4,093,336$
 SAFETY CIRCUIT AND SOCKET CONSTRUCTION Manning I. Rose, 2301 Glenhenth, Dayton, Ohio 45440 vison of Ser. No. 510,215, Sep. 30, 1974, Pat. No. 4,008,403 This application Feb. 10, 1977, Ser. No. 767,434 U.S. C. 339-180

4 Cluims

Int. CI. ${ }^{2}$ H01R 17/04

U.S. CI. 339-177 E

1. In a socket construction of the type having a first contact for engaging one terminal of a load and a second contact for engaging a second terminal of the load, the improvement Wherein one of said contacts has two spaced parts, said spaced parts being electrically interconnected by one of said terminals upon insertion of sald ing said one of said contact parts to an electrical energy source, and wherein second conductor means is connected to the other of said contact parts for connecting said other of said spaced 1. An electrical connector for a coaxial cable of the type parts to electric circuit means external to said load.

SOCKET CONTAC

Tord Jscobeon, Stockbolm, Sweden, assignor to Telefonak-
tiebolaget L M Ericsuon, Stockholm, Sweden
Filed Nov. 19, 1976, Ser. No. 743,508
S. Cl. 339-256 S Int. C. ${ }^{2}$ H01R 13/12

1. In a socket contact with an axial cavity for the reception of a contact element which is provided with an outer contact surface, the esocket contact having a helical spring which is part
of the conducting path of the socket contact and is arranged to of the conducting path of the socket contact and is arranged to
touch the contact surface of the contact element, the improvement comprising means for supporting the helical spring with a straight longitudinal axis which is perpendicular to the longi-
tudinal axis of the axial cavity and partly recessed in the wall udinal axis or the axial cavity and partly recessed in the wal
of the axial cavity, and partly extending laterally into the axia of the axial cavity, and partly extending laterally into the axia
cavity, said means permitting lateral movement of the helical pring radially outward from the axial cavity by the contac surface of the contact element upon insertion thereof into the axial cavity, said means fixing the helical spring in place by resure against the ends of the helical spring, and the center of turns at the ends of the helical spring.

4,093,338

APPARATUS FOR PIECEWISE GENERATION OF GRATING-LIKE PATTERNS Gary Carl Bjorklund, West Windoor, Linn Frederick Moldel, all of N.J., sasignors to Bell Telephone Laboratories, Incorporated, Murray Hill, N.J.

Filed Jan. 12, 1976, Ser. No. 648,326

1. Apparatus for piecewise generation of a grating-like pattern in a photoresponsive material, the apparatus comprising:
an interferometer having a plurality of elements wherein a interferometer having a plurality of elements wherein a
coherent beam of light is split into two component beams which are made to intersect;
a photoresponsive material having a planar surface is positioned normal to the bisector of the angle between the two component beams at their intersection, the component section of the photoresponsive material, wherein the difference between optical path lengths of the two compo-
ent beams intersecting in the photoresponsive material can be adjusted to zero at any one point in the material, can be adjusted to zero at any one point in the material, component beams can be adjusted by rotation of a single element about a fixed axis, without changing the difference between the optical path lengths of the two component beams; and
means for translating the coherent beam, and thus the component beams, parallel to themselves so that the intersectinterference pattern in registration with the previously generated pattern in a different section of the photoresponsive material, the translating means comprising a reflector which is moved along an axis parallel to the longitudinal axis of the beam impinging upon the reflector.

4,093,339

METHOD AND APPARATUS FOR FABRICATING OPTICAL WAVEGUIDE GRATING RESONATORS phone Laboritorics, Middletown, N.J., sasignor to Bell Telephone Laboratories, Incorporated, Murray Hill, N.J.
Flied Ma 26, 1977 , Ser. No Int. C1. ${ }^{\text {G }}$ G02B $5 / 18,5 / 32$; G03H $1 / 04$
U.S. CI. $350-3.70$

1. Apparatus for creating an interference pattern in a photo resist layer covering an optical substrate having a waveguiding layer, said apparatus comprising laser means for developing two coherent beams of radiation that are directed so as to create an interference pattern in a predetermined area of said photoresist layer, and at least one sheet of high index medium perpendicular to said waveguiding layer and oriented such that only a portion of each of said two beams is caused to pass through said high index sheet before that portion impinges on said photoresist layer, whereby an optical grating resonato can be fabricated in the waveguiding layer of said optical
substrate.

4,093,340

LIGHT-BEAM DEFLECTION SYSTEM Karl Klose, Hamburg, Germany, axignor to U.S. Phillipa Corpo ration, New York, N.Y
Filed May 19, 1976, Ser. No. 688,064 Claims priority, application Germany, May 30, 1975, 2524152
Int. C. ${ }^{2}$ G02B 27/17 U.S. C1. $350-6.5$

1. A light 6 Claim 1. A light beam deflection system for scanning a plana 1.ace along a linear scanning path at a uniform rate of speed, comprising light source means for providing a narrow ligh beam, rotational means for angularly deflecting said light beam scanning path, a series of stationary planar mirrors, each of said planar mirrors being arranged perpendicular to said deflecting
path and tangential to a parabola defined in said deflection plane so that the focal point thereof coincides with the axis of

rotation of said light beam and the axis of symmetry thereof is perpendicular to the planar surface to be scanned.

4,093,341
OPTICAL FIBER CONNECTOR
Aubrey M. Crick, Epping, Encland, migignor to International Standard Electric Corporation, New York, N.Y. Cleime priority, application United Kingdom, Jun. 19, 1975, 26105/75
S. Cl. $350-96.21{ }^{\text {Int. C. }{ }^{2} \text { G02B } 5 / 14}$

An optical fiber multi-way connector member compris
1.
ing:
ng: a rigid shell having an elastomeric lining therein;
a rigid shell having an elastomeric lining therein;
means comprising a plurality of aligned rods in said shel having cylindrical surfaces dimensioned to provide a plurality of tricuspid interstices that are each defined by the meeting together of three of said cylindrical surfaces; a plurality of optical fibers each secured inside a ferrule to terminate at or ferrule axis
said ferrules being located in said tricusp
which they each have an interference fit;
an apertured member secured to said shell behind said ferrules, the
ferrules;
Terrules; arical spring surrounding the fiber protruding from each
said ferrule and acting between said apertured member said ferrule and acting between said apertured member interstice; and
said apertured member being sufficiently resilient to allow
the insertion and withdrawal of the ferrules and their corresponding springs through its apertures.

4,093,342
OPTICAL FIBER CABLE Stanley G. Foord, Harion, and Walter E. Simpoon, Ware, both of Eaction, New Yorts, N.Y. Continuation of Ser. No. 626,073, Oct. 28, 1975, abandoned. This application Nov. 17, 1976, Ser. No. 742,676 Claims priority, application United Kingdom, Nov, 12, 1974 S. $\mathbf{C l}_{350-96.23} \mathrm{Int}$ C. ${ }^{2}$ G02B 5/16

1. An optical fiber cable comprisin
2. An optical fiber cable comprising:
plurality of optical fibers disposed lengthwise around a high elastic modulus strength reinforcement member extending along the neutral axis of the cable; said reinforcement member consisting of a prestretched molecularly oriented plastic.
a plastic tape wrapped about said fibers on said reinforement member; an extruded plastic sheath surrounding said tape on said reinforcement member; and
said plastic tape being of a material different than said sheath and being contiguous with said sheath, said plastic tope oviding a heat shield for said reinforcement member so
 occur during extrusion of said plastic sheath.

OPTICAL WAVE 4,093,343
OFAC WAVEGUIDE HAVING PERIODIC SPATIAL PERTURBATIONS
Logen Earal Hargerove, Arlington, Va, asignor to Bell Tele
 U.S. C. $350-96.30$

1. In a multimode waveguide capable of guiding wave enrgy at a frequency of interest in a plurality of different propagating modes, and of dissipating wave energy in the form of waveguide, for enhancing the coupling between selected pairs of propagating modes;
characterized in that
the spatial frequency of said coupling-enhancing means
varies between a first frequency f_{1} and a second frequency f_{2}, where f_{1} and f_{2} are the spatial frequencies corresponding, respectively, to the beat frequency between the two
owest order propaging modes and the two highest order propagating modes.

INFRARED POLARIZATION ROTATOR AND OPTICAL SWITCH
 Bank; Van-Tran Nguyen, Holmdel, and Chandra Kumar Naranbhal Patel, Summit, all of N.J., assignors to Bell Telephone Laborntories, Incorpornted, Murray Hill, N.J.
Filed Nor, 5, 1976, Ser. No. 739,320

Filed Nor. 5, 1976, Ser. No.
Int. Cl.
U.S. Cl. $350-147 \quad$ Int. Cl. ${ }^{2}$ B01F I/OI

14 Cleims

1. An infrared polarization rotator comprising a medium, means for applying to said medium a linearly polarized beam of
light to be polarization rotated, means for applying to said light to be polarization rotated, means for applying to said
medium substantially collinearly with said beam a control meam of circularly polarized light, the frequencies of the beams being adjusted so that the frequency of one beam is nearly ground state of a two-photon transition of the medium and some intermediate state and so that the sum of the frequencies of the two beams is sufficiently close to the frequency of said wo-photon transition for substantial resonance dispersion to be produced as the beams traverse the medium, the polariza-
ion of the beams being selected in accordance with the requirements of the quantum-mechanical angular momentum selection rule which applies to said two-photon transition, characterized in that said medium is a crystalline solid the
index of refraction of which does not substantially vary azimuthally about the direction of propagation of the radiation to be polarization rotated, said crystal having a structure of exited states of excitons, which exciton states are involved in said one-photon and two-photon transitions.

4,093,345

SEMICONDUCTOR RIB WAVEGUIDE OPTICAL MODULATOR WITH HETEROJUNCTION CONTROL MODULATOR WITH HETEROJUNCTIO
Ralph Andre Logan, Morristown; Franz Karl Reinhart, and William Robert Sinclair, both of Summit, all of N.J., assignors

to Bell Telephone Laboratories, Incorporated, Murray Hill, | to Be |
| :--- |
| $\mathrm{N} . \mathrm{J}$. |

Filed May 27, 1976, Ser. No. 690,650 U.S. C1. 350-355 Int. C1. ${ }^{2}$ G02B $5 / 14$

19 Claims 1. In a semiconductor device for modulating optical radiaion in response to an electrical signal
(a) a first epitaxial semiconductor layer in direct physical
contact with a second epitaxial semiconductor layer of the same conductivity type as that of the first epitaxial layer and of higher bulk refractive index than that of the first epitaxial layer, said second epitaxial layer having a rela-
tively thick optical rib waveguide portion and a relatively iively thick optical rib waveguide portion and a relatively thin slab portion, said
(b) a third layer contacting at least a first portion of the
plateau surface of the rib waveguide portion, said third layer thereby forming a heterojunction with the rib portion of the second epitaxial layer, said heterojunctio characterized by a barrier potential height of at least 0.3 volt, said third layer being essentially a semiconductor compound composed of chemical constituent elements

stiuent element of the semiconductor material of the firs and second epitaxial layers, and said third layer bein tive index for said optical radiation that is less than that the second epitaxial layer and having a free carrier con centration that is at least an order of magnitude highe than those of the first and second epitaxial layers.

OPTICAL $\stackrel{4,093,346}{\text { LOw }}$
OPTICAL LOW PASS FILTER
Hisashi Nishino; Teruo Hosokawa, both of Saka, and Ikuo Hioli, Kishing, Teruo Hosokina, both of Sakai, and Iku Kabushiki Kaisha, Azuchi, Japan Continuation-in-part of Ser. No. 379,013, Jul. 13, 1973, Pat. No. 3,910,683, which is a continustion-in-part of Ser. No. 164,757, Jul. 21, 1971, Pat. No. 3,768,888. This application May 27, Claims priority, application Japan, May 24, 1974, 58649[U] The portion of the term of this patent subsequent to Oct. 30 ,

1990, has been disclaimed.
20 Claims

1. A color television camera including an optical system o he type having a color-encoding filter means disposed in the light path of said optical system and serving to spatially modu-
late at least two color images with respect to a scanning direction and scanning means for detecting said image and produc. ing chrominance and luminance signals,
the optical system comprising optical low-pass filter means including a transparent substrate and at least two sets o channels formed on said substrate and delineating raised portions for introducing phase retardation,
other and disposed at an angle of not less than 15°.th each more than 45° to the channels of at least one other set, the
angle between a line bisecting the acute angle formed scannin said sets of channels and the perpendicular to said scanning direction being no greater than half said acute angle.

OPTICAL SIMULATION APPARATUS USIN CONTROLLABLE REAL-LIFE ELEMENT Joseph A. La Russe, Yorktown Heights, N.Y., assignor to Far. Filed May 10, 1976, Ser ${ }^{2}$. 685,017 Int. C. ${ }^{2}$ G02B 27/10; G09B 9/08
U.S. Cl. $350-174$

Optical simulation apparatus for training an observer in the manipulation of a controllable real-life element relative at least one real-life image, said apparatus comprising. (a) optical means for forming an image at or near infinity fo stereoscopic viewing by said observer;
(b) a first display screen and means for generating a first
display of a simulated real-life image on said first display (c) a second display screen and means for generating a seeond dislay of another simulated real-life image on said second display screen;
(d) means for combining images from said first and second display screens and for directing said images toward said
optical means for forming an image viewable by said observer; and
(e) a three-dimensional physical object positioned between at least one of said display screens and said optical means for forming an image, whereby said physical object is
itself directly viewable by said observer with parallax and relative distance relative to said first and second displays. selait physical object being a dimensionally smaller mode
of said controllable real-life element.

4,093,348

LENS SYSTEM WITH FRONTAL APERTURE STOP Mitsuo Yasukuni, Sakri, Japan, assignor to Minolta, Torrance,

Filed May 25, 1976, Ser. No. 699,851 Cluims priority, application Japan, Jun. 3, 1975, 50/67325 U.S. Cl. 350—206

13 Chaims

1. A frontal aperture lens system consisting, consecutively from the object to the image side, of
an aperture stop,
first positive lens component having a front surface convex to the object side,
third positive meniscus lens component convex to the image side, and
fourth positive lens component having a front surface convex to the object side, characterized in that the third
positive meniscus lens component is a doublet consisting of a negative lens and a positive lens which is cemented to the negative lens at the image side thereof

HIGH REFLECTIVITY LASER MIRRORS eorge J. Mills, Santa Ans, Callif, assignor to Northrop CorpoFiled Oct. 27, 1976, Ser. No. 736,157

Int. C1. ${ }^{2}$ G02B $5 / 08$
U.S. CI. $\mathbf{3 5 0}$ - 288

1. A highly reflective laser mirror having high thermal onductivity comprising
a. a polished copper substrate, and
b. a layer of copper-gold alloy which has been heat-treated and quenched to transform said layer into a face-centered and quenched to transform said layer into a face-centered are ordered in certain lattice positions.

SYSTEM FOR CENTIFI, $4,03,350$ Y CASTING A THIN FILM PLASTIC IN A REPLICA PROCESS FO PROVIDING MULTI-FACETED POLYGONAL

bor Fisli Los Alter Hilike Calis esieror to Xeror Corpor

 tion, Stamford, Conn.Filed May 19, 1976, Ser. No. 687,720 Int. Cl. ${ }^{2}$ G02B $5 / 08$
U.S. C. $350-299$ 1. A process of providing high speed multi-faceted polygonal scanners comprising providing a polygonal master the members, providing an aluminum preform positioned concenmembers, providing an aluminum preform posifined concenagainst said aluminum preform in a replica process to provide multi-faceted polygonal scanner said casted epoxy conformg to the shape of said faceted master.
7. A multi-faceted polygonal scanner produced in accorwin the process as defined in claim 1.

CONTROLLED
Controlled FLexible membrane reflector 93111, and Gerkmard Robringer, 745 Wi, Santa Barbara, Califf. Barbara, Calif. 93108

$$
\begin{aligned}
& \text { Filed Mar. 15, 1976, Ser. No. 667,16s } \\
& \text { Int. C. }{ }^{2} \text { CO2B } 5 / 10
\end{aligned}
$$

U.S. Cl. 350-310

13 Claim 1. A controlled flexible membrane reflector comprising.
a flexible conductive membrane with an optical surface a supporting structure on which said membrane is mourface; means for providing an electric field operative on said flexible membrane, said optical surface of said flexible conductive membrane being shaped by said electric field;
a sensor for continuously detecting the shape of said optical surface of said flexible membrane; and means responsive to said sensor for controlling selected

4,093,353

OPTICAL RADIATION LIMITER Kenneth T. Lang, Dover, Mass, asadgnor to Hone
Minneapolis, Minn.
Filed Dec. 17, 1976, Ser. No. 751,836
U.S. CI. $350-313$

Int. C1. ${ }^{2}$ G02B $5 / 22$
portions of said electric field for altering the shape of corresponding selected portions of said optical surface to
counteract passive and dynamic perturbations in said counteract passive and dynamic perturbations in said
surface.
\qquad
WINDOW ADAPTED TO BE FLOODED WTTH LIOUID Robert J. Pisar, 2807 Spring Creelk Rd., Rockford, III. 61107 Filed Mar. 17, 1977, Ser. No. 778,49
U.S. C. $350-312$

2. A window comprising a pair of upright panes made of
transparent material and disposed in spaced face-to-face relation whereby a space is defined between said panes, means extending around said panes and establishing a liquid-tight seal
around said space, a liquid supply manifold disposed within said space, said manifold comprising upper and lower tubular branches disposed adjacent the top and bottom portions, respectively, of said space and further comprising an upright tubular branch disposed adjacent one side portion of said space and establishing communication between said upper and lower and communicating with said space, gas outlet means in the upper end portion of said upright branch and establishing communication between said space and said upright branch, a supply reservoir containing liquid and communicating with said lower branch, an overflow reservoir communicating with said upper branch, selectively operable means for delivering
liquid from said supply reservoir to said manifold with said liquid flowing into said space by way of said inlet means and flowing to said upper branch and thence to said overflow reservoir by way of said upright branch, the gas in said space being expelled therefrom through said outlet means and said
upper branch as liquid enters said space through said inlet upper branch as liquid enters said space through said inlet means, and selectively operable means for causing giquid to be
returned from said overflow reservoir and said space to said supply reservoir, the liquid from said overflow reservoir flowing into said upper branch and then through said side branch to said lower branch and then flowing to said supply reservoir, the liquid in said space returning to said lower branch by way

1. An optical limiter for limiting radiation travelling along path, the optical limiter comprising:
first bandpass filter means positioned in the light path and having a first spectral passband which shifts with changes in temperature of the first bandpass filter means; second bandpass filter means positioned in the light path and
having a second spectral passband, the first and second spectral passbands at least partially overiapping when the radiation travelling along the path has an intensity less than a threshold level; and
thermal isolation means for thermally isolating the first bandpass filter means to an extent greater than the second
bandpass filter means, whereby radiation travelling the path having intensity greater than the threshold level causes a shif of the first spectral passband with respect to the second spectral passband.

METHOD AND APPARATUS FOR SPLITTING A BEAM OF ENERGY
James C. Fletcher, Administrator of the National Aeronautics and Space Administration, with rea

Filed Dec. 23, 1975, Ser. No. 643,897
U.s. CI. $350-320$

1. A method of forming two diverging beams of energy from single beam of energy, comprising the steps of:
a impinging said single beam of energy on a first surface of a substantially transparent prism means, a cross-section of said prism means forming substantially truncated isosceles triangle sides, said cross-section being taken perpendicula to said sides, said sides having a base forming a wide end refraction substantially greater than a surrounding me
dium, and said single beam of energy being angled at said first surface toward said wide end of said prism means; b. splitting said single beam of energy into an externally reflected beam and an internally transmitted beam at said first surface, said internally transmitted beam traveling
through said prism means toward a second surface angled through said prism
toward said wide end:
c. impinging said internally transmitted beam on said second surface at an angle of incidence that is less than the minimum angle necessary for substantially total internal reflecmum
d. splittin
d
d. splitting said internally transmitted beam into an internally reflected beam and an externally transmitted beam at said
second surface, said internally reflected beam traveling second surface, said internally reflected beam traveling
through said prism means toward said first surface angled toward said wide end;
e. impinging said internally reflected beam on said firs surface at an angle of incidence that exceeds the minimu angle necessary for substantially total internal reflection;
and . reflecting said internally reflected beam between said firs and second surfaces toward said wide end of said prism means for dispersal therefrom.

SYMMETRICAL INTERNAL HEATER FOR LIQUID SYMMETRICAL INTERNAL HEATER
Michael Kaplit, Birmingham; Daniel B. Hayden, Port Huron, and George W. Smith, Birmingham, all of Mich, assignors to General Motors Corporation, Detrolt, Mich.

Filed Feb. 4, 1977, Ser. No.
Int. C. ${ }^{2}$ G02F $1 / 13$
6 Claims

4, 4,093,356
TRANSFLECTIVE LIQUID CRYSTAL DISPLAY ohn E. Bigelow, Clitton Park, N.Y, assignor to General ElecFlied Feb. 14, 1977, Ser. No. 768, 105

Int. CI. ${ }^{2}$ G02F $/ / 13$
U.S. C. $350-338$ Claims

1. A transflective liquid crystal display capable of producing bservable indicia responsive to substantially unpolarized light ntering from the front or the rear of the display, comprises:
a liquid crystal cell switchable between first and second light transmissive conditions, the first transmissive condition causing substantial absorption of light having a polarizaion vector in a first direction, the second condition allowing transmission of light through said cell with substantially no attenuation thereof
first quarter-wave plate adjacent the rear of said cell and
having an optical axis positioned substantially at a 45° angle with respect to said first direction;
a transflective member arranged adjacent said first quarter a transinective member arrangee adje wave-posite said cell;
second quarter-wave plate arranged upon the opposite side of said transflective member from said first quarter-wave plate, said second quarter-wave plate having an optical axis disposed essentially parallel to the optical axis of said first quarter-wave plate; and
means positioned adjacent said second quarter-wave plate pposite said transflective member for polarizing substanially unpolarized light in said first direction.

CERMET INTERFACE FOR ELECTRO-OPTICAL CERMET INTERFACE FOR
Nexander D. Jacobeon, Topangi; Jan Grinberge Paul O. Brautz both of Los Angelea, and William P. Bleha, Jr., Carrbbad, all of Calif, eedorors to Heghes Aircrit Compeny, Culver City, of Caliir.
Calir.
Filed Apr. 5, 1977, Ser. No. 784,894
S. C. $350-338$ Int. C. ${ }^{2}$ GO2F 1/13
S. C. $1.350-238$

1. In an electron
5 Clims 1. In an electro-optical device of the type having substrate means for providing spatially and temporally modulated voltage or current patterns, having electro-optical means for pres-
enting a display controlied by said patterns, and having an interface comprising light blocking means and mirror means between said substrate means and said electro-optical display means, the improvement comprising:
said light blocking means comprising a plurality of layers cach formed by a pair of sequentially alternating films, the first of said films in each of said pairs comprising a homogeneous dielectric material and the second of said films in each of said pairs comprising a randomly dispersed plurality of islands of a metallic electrical conductor separated
by said dielectric material, said islands being specea sufft-
ciently to minimize the lateral conductivity of said second films and said first dielectric films being thin enough to said second films of adjacent layers by electron tunneling

through the intervening first dielectric film to render said interface anisotropically conductive, said interface being a good electrical conductor in the transverse direction normal to the plane of its layers and being a good electrical
insulator laterally in any direction in the plane of its layers.
first end is so held, said animatable means being mounted on said support means adjacent said second end; and

means associated with said support means for animating said animatable means in response to a change in pressure o the grip exerted by the teeth of such person.

4,093,360
OPHTHALMIC INSTRUMENT OPTICAL SYSTEM Richard C. Mohrman, and Richard L. Seldenbere, both of Roch ester, N.Y., assignors to Bausch \& Lomb Incorporated, Roch ester, N.Y. FLled Sep. 13, 1976, Ser. No. 722,952 Flued Sep. 13, 1976, Ser. No. 722,9
Int. C. ${ }^{2}$ A61B $3 / 10$ U.S. Cl. 351-13

HIGH EFICIENCT 4,093,358 4,093,358 DEVICE Meredith David Shattuck, and Glenn Tavernia Sincerbox, both of San Jose, Califf, assignors to International Businees Machines Corporation, Armonk, N.Y.

Int. C1. ${ }^{2}$ G02F 1/17, 1/23: C09K 3/00
U.S. CI. $350-357$

8 Claims

1. In a reversible electrochromic display device comprising a reactive medium between two electrically conductive elecprising an anhydrous solvent and an oxidant/reductant pair wherein the reductant is an electron acceptor, the improvement according to which the oxidant is a triaryl pyrazoline compound having the formula:

wherein A, A^{1} and A^{2} are each phenyl or phenyl substituted with an electron releasing group, and n is zero or one.

4,093,359
OCULAR FIXATION AID
Ferris F. Ketcham, 4615 33th Ave., SW., Seattle, Wash. 98126 Filed Sep. 23, 1976, Ser. No. 725,968
U.S. C. ${ }^{351-1}$ int. Cl. ${ }^{2}$ A61B 3/00, 3/02
1.Slaims

1. An orally held ocular fixation aid for use during the examnation of a patient's eyes comprising:
animatable means for providing a fixation target that is effective when animated to attract and maintain the gaze of a patient and to stimulate accommodation;
support means having a first end and a second end, said first end being sized and shaped for being held in the being gripped between such person's teeth, said second end projecting from the mouth of such person when the
system for selectively measuring corneal a survgle imaging measuring mode of said instrument and for examining the surface of a cornea in the examining mode of said instrumen said instrument including a measuring light apparatus having an illuminated mire with apertures therethrough for projecting an image of said mire apertures through a cornea, said measur
ing light apparatus allowing the reflection of said mire imag ing light apparatus allowing the reflection of said mire image
formed within the eye to pass through its center, said measuring light apparatus being disposed on an aligning axis about which said instrument may be rotated in order to align said instrument with the principal vertical and horizontal meridian of the eye in the measuring mode of said instrument, and viewing light apparatus for projecting an image of the cornea
along said aligning axis in the examining mode of said instrument, said instrument comprising:
(a) reflecting means for displacing an image from said aligning axis to an imaging system axis and for returning said image to said aligning axis in an erect and unreversed position in order to provide both mire and corneal images b) imaging system means disposed on said imaging system axis including objective lens means and optical wedge means for measuring the cornea in said measuring mode of said instrument and for examining the cornea in said exam ining mode of said instrument;
having a first optical axis and a a first optical wedge having a second optical axis and second optical wedge (d) an eyepiece disposed on said aligning axis at the opposite
end of said instrument from said measuring light apparatus for viewing said images.

COMPOSITE PROSTHETIC POLYMERIC DEVICES
Charles E. Erickson, and Amar N. Neogi, both of Seattle, Wanh. samignors to Precision Coamet Co., Inc., Minneapolis, Minn This application Apr. 29,1974, Ser. No. 464,734
U.S. C1. 351-160

Int. $\mathrm{Cl}^{2}{ }^{2} \mathbf{G 0 2 C} 7 / 04$

1. A contact lens comprising a center lens portion and peripheral skirt portion attached thereto, said center lens portion having a greater hardness than said peripheral skirt por-
tion, said peripheral skirt portion comprising a hydrophilic normally water swellable, polymer matrix compatible with the material forming said center lens portion, said peripheral skirt portion being relatively free of stress and distortion and con-
taining a water soluble solid inert substance dissolved throughout the polymer matrix before hydration; said substance being removed from said matrix during hydration of said hydrophilic polymer.

PINCH ROLLER MOVING DEVICES FOR SIMULTANEOUS IMAGE AND SOUND RECORDING CINECAMERAS
Menikethu Kato, Necya, Japari, aseignor to Elmo Compan Limited, Nagoya, Japan
Claims priority, application Japan, Mar. 15, 1976,
31/031373[U] Int. Cl. ${ }^{2}$ G03B 31/0
U.S. Cl. 352-27 13 Claims

agid pinch roller transversely to press said film against said capstan;
said capstan driving motor being actuatable upon depression of a cinecamera release button.

MOTION PICTV, 0 , MOTION PICTURE PROJECTOR Werke Franke a Heidecke, Braunechwela, German
Filed Sep. 30, 1976, Ser. No. 728,210 Int. C.2 ${ }^{2}$ G03B $21 / 10$
U.S. C. 352-104

1. A motion picture projector comprising a housing having pluraity of walls including a relatively narrow side wall, a arranged for standing in either of two orientations wherein said wide side wall forms a top surface in a first orientation and said narrow side wall forms a top surface in a second orientation notrol elements for said projector being mounted on said
arrow side wall to face forward in said first orientation and pward in said second orientation, film spool means arranged on said wide side wall to rotate in a plane parallel with saic wide side wall, a projection lens within said housing, said rojection lens having an optical axis, a first mirror mounted osition intercepting a beam of light rays projected from said projection lens when said projector is in said first orientation and a second ineffective position out of said beam when said rojector is in said second orientation, a first light aperture in said wide side wall of said housing in position to receive ligh
reflected by said first mirror when in said first position with said projector in said first orientation, a second mirror mounted on said wide side wall adjacent said first light aper fure in position to receive light reflected by said first mirro urough said first aperture to said second mirror and to refle direction of said optical axis of said projection lens and toward he plane of said narrow side wall on which said control ele ments are mounted, and a second light aperture in said end wal of said housing in alignment with said optical axis in position to said optical axis and out of the housing through said second perture when said first mirror is in its second ineffectiv position and said projector is in said second orientation.
2. A pinch roller moving device for a simultaneous image and sound recording cinecamera having a capstan, a pinch roller movable into contact with said capstan to advance con tinuously a film having a sound recording track along one longitucinal edge thereof, means for strive an electric motor for driving sapstan and an electric motor for driving said intermittent film driving means, said device comprising.
a rotatable lever on which said pinch roller is rotatably and transversely movably supported;
rotary means rotatable upon rotation of said capstan driving
motor; and
eans for transmitting said rotation of said capstan driving mear to said rotary means to rotate said lever to move

MOTOR VEHICLES
Keith G. Miller, 88 Carroll St., Binghamtor NY 13902

> er, 88 Carroll St, Binghamton, N.Y Filed Feb. 4, 197, Ser. No. 765,841 Int. $_{\text {C. }}{ }^{2}$ G33B 29/00

1. C. 352-132 4 Chim 1. A photographic recording arrangment for vehicles, in cluding a camera extendably mounted on the dashboar hereof and faced in the direction of travel of said vehicle, said camera having a frontal lens element and a rear lens element
for focusing an image of the subject in front of the camera ont
said lenses for focusing an object from a secondary path onto said rear element, said secondary path including an image athering element comprising a tubular extension of ligh reflecting mirrors and a lens, said extension being adjustable

for facing the speedometer of said vehicle and thus directing an mage thereof onto said prism and thereby through said rear lens element onto the light-sensitive film in the image plane of said camera.
power said oscillatable sensor
tion of said film transport drive,
hereby said objective lens can be adjusted into foust mote subject before film is transported through said exposure station of said camera.

4,093,366
MOTION PICTURE PROJECTOR APPARATUS AND MIGI INTENSITY PROJECTION ARRANGEMENT Kenyon A. Hapke, Lbbertyville, II., aselgnor to Bell \& Howell Company, Chicargo, Ill.

Flled Mar. 14, 1977, Ser. No. 777,494
U.S. Cl. 352-193 Int. C1. ${ }^{2}$ G03B $21 / 00$

25 Claims

AUTOMATIC FOCUS ADJUSTING DEVICE Tadso Isomo, Kokubuanji, Jappan, a auigigor to Nilhen Beru.Hauer chimurayama, Japan
Flied Mar. 28, 1977, Ser. No. 782,106 Claima priority, application Japan, Mar. 30, 1976, 51 S. C. 352-140 Int. C. ${ }^{2}$ G03B 3/00, 7/08

1. In a motion picture camera for transporting sound and 1. In a motion picture camera for transporting sound and
silent film, the camera having an operation control means, a film transport drive at a film exposure station energizably esponsive to the operation control member, a sound station cusable a capstan selectively powered by a capstan drive, a nage plane at the film exposure station, and an improved
 uutomatic focus adjusting system for focusing said objective lens, and having a fixed sensor, an oscillatable sensor for imag
ing the remote subject on detector means of the adjusting yystem, and means responsive to the detector for adjusting the ocus of said objective lens relative to camera-to-subject distance, the improvement comprising:
circuitry for energizing selectively the capstan drive motor responsive to first switch means associated with said camera operation control member and second swich mean in the camera; eans connecting
able sensor; and
focus mode selection means associated with said first and second switch means for energizing said capstan drive to

2. Motion picture projection apparatus comprising: motion picture projection unit having a high intensity light source, film transporting apparatus and switch means for
controlling the operation of said motion picture projection unit;
a power supply unit adapted to be connected to an AC supply source, said power supply unit comprising means for generating the operating supply requirements for said peration of said generating meansdetachable means for interconnecting projection unit and said power supply unit, said interconnecting means comprising a multiple conductor cable; and eeans for detecting the proper interconnection of said said detecting means comprising a return continuity path conductor located within said multiple conductor cable, said return continuity path conductor being connected through said controlling switch means, said detecting means being effective to control said enabling means.

4,093,367
 MAGING APPAPATUS

Roger H. Eichorn, deceased, late of Webster, N.Y.; by Lincoin First Bank of Rochester, executor, Rochester, N. $\mathbf{Y}_{\text {, }}$ and Xerox Corporation, Stamford, Conn.

Filed Apr. 18, 1975, Ser. No. 569,237
U.S. CI. 355-3 R

Int. Cl. ${ }^{2}$ G03G $15 / 00$

1. An imaging apparatus employing a tran
cally photosensitive web member comprising:
(a) an elongate platen for supporting a receiving medium; (a) an elongate platen for supporting a receiving medium;
(b) means to suspend the photosensitive member in a plane
substantially parallel to the axis of said platen, and to casing, an air circulating path extending from said casing to

process means set forth below;
(c) charging means for placing a substantially uniform charge upon the side of the electrically photosensitive member closest to he plane,
photosensitive photosensitive member on the side opposite the charged side and creating an electrostatic latent image on the charged side, said exposure means further including a movable exposure head mounted for translation along a
path parallel to the axis of said platen and means to ad path parallel to the axis of
vance said exposure head; circulating path to secure said record medium firmly in position thereby maintaining a predetermined distance between said record medium and said screen photosensitive body.

U.S. CI. 355-15

development means for depositing marking material on the electrostatic latent image on the electrically photosen
transfer station means for transferring the marking material image a line-at-a-time by heat and pressure to the receiving medium on said piaten, and
(g) first control means for controlling and coordinating the various process means set forth above, and said means to advance said exposure head, whereby an image is created developed and transferred to a predetermined position on the receiving medium.

$4,093,368$

ELECTROGRAPHIC APPARATUS
俍i, Japen, asdignor to Olympus Opti-
cal Company Limited, Tokyo, Japan Filed Nor. 23, 1976, Ser. No. 744,267 Claims priority, application Japan, Nov. 27, 1975, 50-141114 U.S. CI. 355-3 SC

1. In an electrographic apparatus comprising a drum type screen photosensitive body and for producing, on a record medium having a dielectric material layer, an electrostatic charge image corresponding to an image to be recorded in response to an eloctyosy controlling a flow of corona ions directed from a corons discharge device through said screen photosensitive body toward the record medium, the improvement comprising: a casing for substantially hermetically surrounding sad aice ar circulating a flow of air through said

2. An apparatus for removing and collecting particles from a means for dislodging the particles from the surface: means for storing the dislodged particles,
a particle tight conduit operatively connected to said dis-
 means dislodging means to said storing means; means for moving the dislodged particles from said dislodg. ing means through said conduit to said storing means; and means for maintaining the dislodged particles spaced from the interior surface of the walls of said conduit the movement of the dislodged particles therethrough

1. A compound optical system appe

(a) a main optical path (3), having,
 ment (10) over as (4) for forming an image of a docu-image-receiving surface, and
(3) a shutter (20) in said main optical path adjacent to caid document
(b) an auxiliary object $(\mathbf{2 0}, 16)$ comprised of a line of indicis
(c) an auxiliary optical path (1), having at least one quasi-col limative reflective means (2) small in area with respect to said major increment of area () and not greater than the to the length of said main optical path,
(d) mounting means $(9,29)$ to position one said quasi-collimative reflective means (2) in close peripheral relation to, and spaced from, said objective lens (4) on the document side thereof, to cause said auxiliary optical path between said auxiliary object and said reflective means (2)
to lie at an angle to the direction of said main optical path and such as to alter the direction of said auxiliary optical path to lie approximately parallel to the direction of, and closely adjacent to said main optical path, through said objective lens near the periphery thereof and to imping upon a minor increment (7) of said image-receiving sur face adjacent to, and symmetrically aligned with, said mage (6) of said document, on the side thereof opposite control means (36) connected to synchro
said document (10) and said image-receiving surface (8), and connected to said shutter and to said indicia, to alternately occlude said main optical path by means of said
shutter, and to simultaneously cause said indiaia hutter, and to simultaneously cause said indicia to be illuminated.

4,093,371
 COMPOSING MACHINE

Thomas P. Aglinta, Rochester, N.Y., aseignor to Xerox Corporation, Stumford, Conn.

Filed Sep. 22, 1976, Ser. No. 725,899
U.S. CI. $355-43$

7 Cleims

1. A composing machine, including:
means for supporting successive original documents; means for masking selected portions of each original docua viewing screen;
means for projecting the unmasked portions of each original document onto said viewing screen to display successive portions of each original document thereon, said projecting means comprises a light source for illuminating each original document disposed on said supporting means, a lens, first means for directing the light rays reflected from successive masked original documents through said lens
forming a light image of the unmasked portion of each original document, and second means for directing the light image of the unmasked portion of each original document onto said viewing screen to be displayed thereon; and means for reproducing the portions of each original document being displayed on said viewing screen.

4,093,372
PRE-SEPARATED RECIRCULATING DOCUMENT COPYING SYSTEM Joachim Guenther, Webster, N.Y., sesignor to Xerox Corpora. Filded Mar. 28,1977 , Ser. No. 781,811
Fliled Mar. 28, 1977, Ser. No. 781,811
Int. C1. ${ }^{\text {B65H }} 5 / 22$ G03B 27/48

1. In an automatic document handling system for recirculat ing a plurality of individual documents having pre-selected dimensions past an imaging station of a copier in a pre-collated order for making multiple collated copy
ments, the improvement comprising: document recirculation means for individual documents toward and awating a plurality of tation while maintaining a separation from the imaging documents by shingling the documents in a pertidividual rated, partially overlapping, configuation during a portion of said recirculation,
wherein a portion of said document recirculation means comprises a document transport which sequentially incrementally advances the documents transported thereon by a distance substantially less than a dimension of a document to provide said shingling.

4,093,373

MICROFICHE CAMERA EDITING DEVICE
Harry A. H. Spence-Bate, 115 Cheam Pl., P.O. Box 8, Morley, Australia (6062)
Filed Aug. 14, 1974, Ser. No. 497,463
Claims priority, application Australiz, Aug, 15, 1973, PB4486 Cluims priority, applicition Australii, Aug. 15, 1973, PB4486
Int. Cli. G03B 27/44, 27/04, 23/08 U.S. Cl. 355-54 10 Claims

1. A microfiche editing and recording device for transmitting a microimage from a first microimage bearing film to a a microfiche camera;
a microfiche camera;
being movably mounted to said microfiche camera housing be moved on said camera to a storage position out of the optical axis of said microfiche camera when not in use as
an editing device: an editing device;
a means in said housing for defining an optical path, a por
tion of which is aligned with the optical axis of said micro che camera;
means supported by said housing for holding said first microimage bearing film;
means connected to said first film retaining means for locat ing said first microimage bearing film in said first film
retaining means in a plurality of predetermined X and a retaining means in a plurailty of predetermined X and a
plurality of predetermined Y positions relative to said optical path;
means in said microfiche camera and connected to saic
second film for moving said second microfiche film to second film for moving said second microfiche film to
plurality of predetermined X and a plurality of predeterplurality of predeterminet X and a pluraity oris of said
mined Y positions relative to said optical axis microfiche camera; and
means for applying light from said first microimage bearing
film to said second microfiche film along said optical film to said second microfiche film along said optical path whereby the microimage on said first m.
film is transferred to said second film.

4,093,374
MULTIPLE RANGE VARIABLE MAGNIFICATION REPRODUCTION MACHINE
Edwin Zucker, Rochester; David K. Shogren, Ontario, and Corporation, Stamford, Conn.

$$
\begin{aligned}
& \text { Filued Jan. 12, 1976, Ser. No. } 647,941 \\
& \text { Int CI. } \mathbf{C o 3 B} \text { 27/34, } 27 / 40,27 / 70
\end{aligned}
$$

U.S. C. $355-57$
of said cam surfaces for driving said cam follower means.

METHODS AND APPARATUS FOR AUTOMATIC APPARATUS FOR orothee Griesch, Eltrille; Herbert Schröter, Taunusatein; $\mathrm{Pe}-$ ter Schwïgler, Mainz, and Eckehard Stein, Frankfurt am schaft, Germany
Filed Apr. 26, 1976, Ser. No. 680,461 Ication Germany, Apr. 28, 1975, 2518787 U.S. CI. 355-68 31 Chims

A variable magnification reproduction machine compris-

1. A variable magniciting a platen for holding a document;
holding means comprising hocument scanning means including movable mirrors for scanning a document at said platen, said document scanning means comprising can or ower means and a pluralmeans which, in turn, imparts movement to said movable mirrors,
mage receptor means for receiving an image of said docuimage receptor means for receiving an image of said
ment scanned by said document scanning means, imaging means for focusing an image of said document onto said receptor means,
means for adjusting said imaging means for selecting between different document magnifications,
means responsive to said selected magnification for adjusting the scanning rate of said document scanning means in accordance with the selected magnification for each of saud plurailty of cam surfaces range of document magnifications for each cam surface, and
means responsive to the selected magnification for selecting
2. Photographic printing apparatus for printing fromforigi ls made on different types of photographic material', the apparatus comprising:
eans to determine which of at least two types (such as silver halide or diazo film) of photographic material the original employs comprising means to examine the spec tral transmission characteristics of said original,
means to determine the image density of the original, and
means to control the exposure in accordance with both the type of material as determined and the image density.

4,093,376
AUTOMATIC EXPOSURE CONTROL Karavattuveetil George Rabindran, Morton Grove, and John R. Fompany, Chicago, Il.

Filed Jun. 1, 1976, Ser. No. 691,733
U.S. CI. 355-68

1. In a document recorder of the type having a document iransport for feeding documents along a predetermined path, in exposure station within the predetermined path and includeach document is pesented to the exposure station to fecit te the photographing of the documents, an automatic exposure control system for controlling the illumination intensity of the
exposure light source to assure proper exposure of each docu-
ment comprising:
a first light source arranged relative to the predetermined
path for projecting light onto the documents to be repath for projecting light onto the documents to be re
corded; corded; termined path for receiving the light reflected from the documents originating from said first light source, said first light sensitive element providing a first control signa having a magnitude directly related to the intensity of saic reflected light;
a feedback arrangement coupled between said first light sensitive element and said first light source for controlling the light output intensity of said first light source responsive to said first control signal to render the intensity of the reflected light received by said first light sensitive element substa ially constant; and
the exposure light source for controlling the illumination intensity of the exposure light source in direct relation to the light output intensity of said first light source, said control means comprising a second light sensive element
arranged relative to said first light source for receiving the light output of said first light source, said second light sensitive element providing a second control signal having a magnitude directly related to the light output intensity of said first light source and averaging means coupled to said second light sensitive element for averaging said signal, and means responsive to said third control signa for controlling the illumination intensity of the exposure light source.

4,093,377
COPYING MACHINE
Hiroshi Tsude, Mitake, Japan, amignor to Olympus Optica Company Limited, Tokyo, Japan Claims priority, application Japan, Dec. 16, 1975, 50 68907[(T] U.S. CI. 355-76
C. ${ }^{2}$ G03B 27/62. 27/6

1. A copying machine employing a casing, a carriage mov bly mounted on said casing and supporting a manuscript to be copied thereon, a lid pivotally mounted at one side edge manuscript on said carriage; said machine comprising: manu manuscript on said carriage; said machine comprising: manu-
script holding means resiliently connected at one end to script holding motally mounted portion of said lid and having a free end material which mod composing and photocopying graphic eing formed with a manuscript, a lower suriace of said lid graph an area of a work support, projecting light, from outside holding means therein when said lid covers said manuscript; a camera lens, through the viewfinder of the camera toward the holding means therein when said lid covers said manuscript; a camera lens, through the camera lens and onto the work sup-
connecting member resiliently connecting the one end of said port to illuminate the area of the work support that the camer connecting member resiliently connecting the one end of said port to illuminate the area of the work support that the camera manuscript holding means to said pid solding means being urged locating the source of light at such a distance from the camera
said against said manuscript until said lid reaches an open position that heating of the light source does not reach the camera, and separates from said manuscript as said lid further opens focusing the camera, as necessary, for photographing the area, beyond said given open position.
pivojacting above said

4,093,378
ALIGNMENT APPARATUS ndrew Frederick Horr, Fairfax, and William Frederick White Williston, both of Vt., amignors to Interuational Businems Machines Corporation, Armonk, N.Y.
Filed Nor. 1, 1976, Ser. No

Int. C.1. ${ }^{\text {G03B }}$ 27/62, $27 / 64$

U.S. C. $355-76$

1. A mechanism for positioning the surface of an object in a lected position with respect to a reference plane comprisin means for holding said object,
deans for defining said reference plane
driver means aligned with said holding means, and said object for sensing the the surface of said object with respect to said reference plane and controlling respective ones of said driver means to engage and move the holding means to porith he sened said

4,093,379
METHOD AND APPARATUS FOR MAKING PHOTOGRAPHIC COPIES Photo-Optical Ind Mendon, N. , $_{\text {, and }}$ asaignor to Ehreareich Filed Sep. 14, 1976, Ser. No. 723,210

 of the support that is illuminated by said light, composing the
sraphic material with respect to the limits of the illuminated area, supplying to the graphic material additional light for copying, and operating the camera, while in its light-projecting position, to photograph the graphic material, characterized by
transmitting said light from its source to a viewfinder of the transmitting said light from its source to a viewfinder of the camera by passing the light through a fibre optic bundle to
avoid heating of the eyepiece and the camera by the light avoid heating of the eyepiece and the camera by the light
source, using a camera that has a finder screen with marking thereon, and focusing the camera on the area to be photographed by adjusting the focus to bring the image of the mark ings on the finder's screen into sharp focus on the illuminated area of the work support, using copying lights to illuminate the camera, and composing the art material while the copying lights are extinguished so that the area illuminated by the light projected by the camera is clearly defined with light of lower intensity than that required for copying, maintaining the work support under low illumination during composing of the the area illuminated by the light projected from the camera and adjacent surfaces of the work support, using a flat horizontal surface as the work support, locating the camera above the support with the projection axis substantially normal to said support, holding the camera on a mechanically adjustable port to obtain a desired field of coverage, using as the copying camera a reflex camera having its objective lens at the front of the camera and its viewfinder at the back of the camera, and projecting the light through a viewfinder to illuminate the area
on the work support whereby the light projected on the work on the work support whereby the light projected on the work
support for composing the graphic material, and the light that copies the graphic material, pass through the same camera lens.

OPTICAL SYSTEMS UTILIZING THREE-WAVE OPTICAL SYSTEMS UTEREDETECTORS Mattbew B. White, Cohnseet, Mask, amignor to The United Wening America ces reprecinted by he Secretary of the Nary Filed Nor. 4, 1976, Ser. No. 738,989
U.S. C. 356-5
a first and second mixer;
means for coupling the output of said first detector to one input of said first mixer and the output of said second detector to one input of said second mixer,
a radio frequency oscillator;
means for generating a microwave signal, $\omega_{m i}$ miot
means for coupling said microwave signal to both said first and second detectors,
the two optical signal components of said composite signal and said received reflected signal interacting with said
microwave signal to produce first and second difference signals of frequency $\omega_{m b}-\omega_{2}+\omega_{1}$; and means for coupling said ramdio frequency oscillator to the other input of said first mixer;
means for coupling the output of said first mixer to the other input of said second mixer whereby the output of said that of said radio frequency oscillator and whose phase is independent of any slow phase variations in said composite sigual or said microwave signal; and
means for determining the phase relationship between said
difference signals whereby to obtain a parameter which is difference thignals to distance from said site to said remote target. related to the distance from said site to said remote targel.

4,093,381

Marbik A. YOD FOR ASSAYING ENDOTOXINS
Tramien, 7609 Ereter Rd, Betheoda, Md
Filed Nor. 29,1976, Ser. No. 745,966
Int. C1. ${ }^{2}$ G01N $21 / 00$
U.S. C. 356-51

1. A method for assaying en
mprising the following steps:
ing lipopolysecchwn volume of an aqueous liquid containfrom the group consisting of E coli $0127: B 8, E$ coli OS5:BS, S. aborus equi S. enteritidis and S. flexneri b. maintaining the temperature of the sample in the cell at between 20° and $30^{\circ} \mathrm{C}$,
c. passing ultra-violet radiation of a wave length between d. measuring the absore said liquid sample in the cell, d. measuring the absorbance of the delecting radiation at 259 from;

4,093,382

HYBRID HOLOGRAPHIC NON-DESTRUCTIVE TEST SYSTEM Americo Conal Aeronautice and Spece Adminictration, Werehington, D.C.

Fuled May 14, 1976, Ser. No. 686,331
Int. C. ${ }^{2}$ G01N 21/00; G02B $27 / 00 ;$ G01N $3 / 00$
U.S. CI. $356-72$ Int 2 G01N 21/00; G02B 27/00; G01N 3/00 7 Clime

1. In an optical ranging system for determining the distance a remote reflecting target, the combination of
means for generating at first site a composite signal having two optical signal components ω_{1} and $\omega_{2 j}$ inard said remote target and for receiving the signal reflected there-
first and second optical signal detector which operate on the heterodyne principle;
means for directing said composite signal onto said first ond det and said received reflected signal onto said second detector;

2. A hybrid non-destructive testing system for determining the presence of inhomogeneities in a test object comprising:
(a) an optical testing subsystem selectively operable to produce image data information of the object in the form of an optical hologram for detecting surface or subsurface
flaws;
(b) an aco
to produce image data inforstem selectively operable form of an optical hologram for detecting interior flaws; (c) a correlation testing subsystem selectively operable to produce image data information of the object in the form and magnitude of flaws whose presence has been deter mined by the results of selective operation of the other subsystems of the testing system;
(d) real-time single format detector/read-out means for accepting image data information from the three subsys-
tems; and tems; and
(e) optical receiver/analyzer means for analyzing image dat information accepted by the detector/read-out means.

4,093,383

ANGLE MEASURING DEVICE WITH A TELESCOPE Wielmand Feist, Klaus Junghanna, and Alfred Kunz, all of Jena,
Germany, eaciguors to Jenoptik Jena G.m.b.H., Jens, Ger many
Filed Dec. 16, 1976, Ser. No. 748,623 Chims priority, application Germany, Jan. 9, 1976, 01190745 U.S. C. ${ }^{356-152}$

NARROW ANGLE NARROW BANDWIDTH OPTICAL Gerald D. Ferguson, Yeceriver P SYSTEM of America as represented by the Secretary of the Nary, Washington, D.C.

Filed Oct. 4, 1976, Ser. No. 729,523
Int. Cl. ${ }^{2}$ G01J 3/48
U.S. C. 356-186

11 Claims

1. An optical system for receiving radiation reflected from an area illuminated by light of a specific frequency, comprising, in combination: receiving means adapted to receive the reflected radiation over a narrow field of view for forming an imaged output, said receeving means including a circular collecting lens
positioned at the input positioned at the input thereof;
interference filter means optically
interference filter means optically connected to receive said
receiving means output including a flat top filter element receiving means output including a flat top filter element
in which said specific frequency is at the low end of the bandpass for normal incidence of radiation and at the high end for maximum incidence of radiation; and
detector means optically connected to receive the passed
radiation from said filter means for producing an output radiation from said filter means for producing an output tion at the specific frequency.

2. An angle measuring device comprising
a base,
a telescope being seated for rotation about at least one axis relative to said base,
at least one graduated circle being provided with at least one line division of equally spaced intervals, said graduated circle being connected to said base,
at least one scanner being connected with said telescope said scanner and said graduated circle being for measuring the rotations of said telescope,
a micrometer for subdividing said division intervals,
at least one electro-optic scanning means for taking readings on said micrometer,
electronic means connected to said scaner and said reading means for detecting signals from said scanner and said reading means and for formation of an angular measuring result,
a graduated plate being arranged in the field of view of said telescope and being provided with a reticle,
said graduated plate being provided with two lines substantially symmetrical and in parallel with one line of said reticle and being spaced apart from said one line by at least the
division.

COLOR GRADIENT ANALYZER
Murata Noboru, Tokyo, Japan, assignor to Okd Electric IndusMurata Noboru, Tokyo, Japan, assignor to Okd
try Co., Ltd., Tokyo, Japan Filed Oct. 7, 1976, Ser. No. 730,472
Claims priority, application Japan, Oct. 17, 1975, 50-124407 Claims priority, application Japan, Oct. 17, 1975, 50-124407
Int. $C 1 .{ }^{2}$ G01J 3/48, $1 / 02$ U.S. CI. 356-188

1. A color gradient analyzer comprising a rotational filter having a plurality of optical color filters, a motor for rotating the rotational filter, a photo-electric converter positioned lyzed through one of said color filters, a white ball positionabetween the photo-electric converter and an object to be analyzed, said white ball being able to be illuminated by the sunlight, a plurality of relays connected to the output of the photoelectric converter, a recorder connected to the outputs of said relays, means for providing the signal concerning the rotational angle of the rotational filter, and a plurality of delay
circuits connected between said means and said relays.
$4,093,386$
DEVICE FOR APPLICATION OF LIQUID PRODUCTS,
SUCH AS PAINT, GLUE AND THE LIKE
Stig Gunnar Lundgren, and Lars Johan Tornell, both of Gote
borg, Sweden
Filed Oct. 27, 1976, Ser. No. 736,162
Int. Cl. ${ }^{2}$ B4 4 D 3/28
6 Claims
U.S. CI. 401-219
each of the opposite ends of the intermediate portion having reduced width with respect to said intermediate portion, said end portions being disposed in a common plane essentially parailel to the plane of the intermediate portion but other, and a web integrally interconnecting said intermediate portion and each of said end portions and forming a step therebetween, said

2. An improved device for application of liquid products
such as paint, glue and the like, comprising a container holding the aforesaid liquid, and an applicator roller, said roiler mounted at the front wall of said container, a discharge open
ing formed in said front wall of the container, said opening ing formed in said front wall of the container, said opening
communicating the interior of said container with said applica tor roller,

end portions being insertable each through one bole in the heaf from the said one side thereof in order to extend along
俍 the opposite side of the sheaf, with said webs extending
through the holes, wherein the improvement resides in that the end portions are angled in said essentially parallel plane in
end opposite directions in relation to said intermediate portion to form laterally projecting tongues.
an elongated chamber arranged intermediate said discharge opening of said container and said applicator roller, said
chamber positioned underneath said roller and having a paint supply slot formed in its top section, said paint supply slot extending in the longitudinal direction of said applicator roller,
wall sections positioned in front of said container and above said chamber at the ends thereof, mounting plates for atachment of said applicator roller, said mounting plates removably arranged on said wall sections, a number of
attachment elements arranged on said mounting plates in symmetrical positions relative to a certain point on each symmetrical positions relative to a certain point on each
one of said plates, said attachment elements serving to one of said plates, said attachment elemments servis
retain said mounting plates to said wall sections,
a plurality of mounting holes in said mounting, plates to receive therein the trunnion ends of said applicator rolle said mounting holes disposed non-symmetrically relativ mounting plates,
said mounting plates arranged to be re-set so as to allow positioning of said mounting holes in their individual positions of use, each one of said mounting holes intended for an applicator roller of a certain size and type, said ensuring that a portion of the periphery of said rolle xtends closely above said paint supply slot and that said roller projects above as well as beyond these wall sections, and
said discharge opening extending along the front wall of said container with its lower delimitation line level with the bottom of said container.

FASTENER FOR DETACHABLY 4,0937 INTERCONNECTING PUNCHED DOCUMENTS
Otto Julius Jönsson, Malmo, Sweden, assignor to AB Malmo
PAC, Malmo, Sveden \quad Continuation of Ser. No. 385,198, Aug. 2, 1973, abandoned. This
application Feb. 27, 1975 , Ser. No. 553,766
U.S. Cl. 402-19

Int. C. ${ }^{2}$ B42F $3 / 00$

1. An improved one-piece fastener in the form of a thin flat strip of resilient material for detachably interconnecting punched documents assembled in a sheaf, comprising an elongated planar intermediate portion adapted to engage, at one of the flat surfaces theror,

2. A tie rod assembly in a vehicle steering linkage compris ing inner and outer tie rod members, said tie rod members portions having a peripheral thread of a right-hand lead, the other of said end portions having a peripheral thread of a lef-hand lead, an adjuster sleeve extending between said tie rod members, said sleeve being a tubular member of deformble metal with complementary right and left hand interna hreads that engage the respective right and left hand threads
of said end portions of said tie rod members, said adjuster of said end portions of said tie rod members, said adjuster he overall length of said tie rod members connected thereto, said adjuster sleeve having radially projecting bead mean integral with the walls thereof encircling and located radially outwardly of said tie rods and inboard of the ends thereof, saic bead being partially constricted radially inwardly to reduce its
diameter and longitudinally displace material of said sleeve and thereby laterally load the engaged threads to maintain the tie rods and sleeve in an adjusted position.

COM,093389
CONNECTION AND FASTENING ELEMENT FOR ESPECIALLY DOWEIS FOR PR OF SOFT MATERIAL, Günter Wibrow, Norderstedt, Germed
Ginter Wibrow, Norderstedt, Germany, sesignor to ITW ALCas
G.m.b.H., Norderatedt, Germany

Claims priority, application Germany, Oct. 14, 1975, 2545859
Int. C1. ${ }^{2}$ F16B 7/00
U.S. C. 403-280 Int. C.2 ${ }^{2}$ F16B 7/00

1. A one-piece sheet metal connection and fastening element adapted fror connecting workpieces of relatively sof masterial having predetermined depth blind bores therein, said fastening
element including a hollow pin bent from flat sheet metal stock element including a hollow pin bent from flat shoet metal stock
having in at least one end thereof a plurality of circumferenhaving in at least one end thereof a plurality of circumeren-
tially spaced axially extending elongated openings spaced from the ends of the pin, said elongated openings being provided in parallel spaced arrangement at a predetermined distance from
the end of said at least one end portion and forming between the end of said at least one end portion and forming between said elongated openings a plurality of webs integrally con-
nected at their opposite ends and adapted to be bent outwardly nected at their opposite ends and adapted to be bent ounwardy
intermediate the extremities of said webs, a sheet metal, sleevelike reinforcing member surrounded by and integral with the
hollow pin, said member extending a predetermined distance hollow pin, said member extending a predetermined distance
into the end portions carrying said webs whereby said at least into the end portions carrying said webs whereby said at least
one end portion can be axially upset in the blind bore of said workpiece with at least partial portions of said webs being vaulted radially yutwardly in a direction towards and into the
wall of said bore. wall of said bore.

4,093,390

BRACKET TIGHTENING DEVICE
Zenzaburo Trukmo, Onaks, Japan, asaignor to NTN Toyo
Bearing Co. Lta. and Zemzabaro Tsukumo, both of Onaka
Japan Co. Ltd. and Zensaburo Tsukumo, both of Osaka,
Flued Oct. 27, 1976, Ser. No. 736,224 Claims priority, application Japan, Oct. 29, 1975, 50/130687;
Oct. 29, 1975, 50/130688; Nov. 18, 1975, 50/139104; Nov. 18, Oct $29,1975,50$
1975, 50/139105

Int. C. ${ }^{2}$ F16B 2/02, 7/04
U.S. C. 403-373

1. A device for tightening a bracket on a round rod or shaft by making use of resiliency, comprising an intermediate body
having sufficient resiliency within the restorable elastic limits,

7 Clims

one end of said intermediate body being pivotally mounted a a fixed point on the bracket, the other end thereof being engaged at a fixed point on the outer surface of the rod or shaf
on which the bracket is to be tightened, an adjusting screw on which the bracket is to be tightened, an adjusting screev
attached to said bracket and having its front end abutting against the intermediate portion of said intermediate body.

MILLING CUTTER $\begin{array}{r}4,093,391\end{array}$
TOOTHING
MAKING ARCUATE
THEAD Lothar Willy Bechmann, and Eberhardt Karl Reise, both of Karl-Marr-Stadt, Germany, asaignors to VEB Werkzeugkom-
binat Schmalkalden, Schmalkaden, Germany Filed Mar. 8, 1976, Ser. Norm 665, 059

Int. C.1.2 B26D $1 / 12$
U.S. Cl. 407-22

7 Claims

1. A milling cutter head for making arcuate toothing, the head having a main axis (M), comprising a substantially disk shaped carrier body (2) with a locking ring (3) surrounding the
same; said body having therein at least one pair of grooves (4) same; said body having therein at least one pair of grooves (4)
of a stepped cross-section, for a corresponding number of pairs of removably inserted, substantially axianlly extending outer (5) and inner ($)$ milling cutters, said grooves having different
distances from the distances from the main axis; said cutters having head cutting edges (17) in head regions thereof, that partially overlap be-
tween adjoining cutters of a pair, and corresponding fink cutting adjoining cutters of a pair, and corresponding flank
cher cutting edges (18); wherein said cutters both have cylindrical
body surfaces (51 $\ldots 54,61 \ldots 64$) that are substantially ectilinear along the entire cutting lengths; said body surfaces including chip bearing surfaces (84, 64) and associated limiting surfaces (53,62 , which latter adjoin said flank cutting edges;
wherein the inclination angle (Ψ) defined between said chip Wherein the inclination angle (Ψ) defined between said chip
bearing and said limiting surfaces in smaller than 90°; and wherein at least one of said chip bearing surfaces is substantially planar along said entire cutter length and constitutes a main active cutting surface from the outer end of the respec-
pockets having a seat for holding an insert with its cutting face in a substantially axial plane modified to the extent of any axia and radia rake of its cutting edge projecting beyond an periphery, each pocket having a chip clearance wall associated therewith, said wall providing chip clearance space projecting from the entire cutting face to the periphery of said body, eac pocket with its chip clearance wall being substantially isolated from every other pocker by burckets being uniformly spaced overlapping cutting relationship in an axial direction and angularly spaced in a circumferential direction on a continuous helical path for progressive cutter entry in milling a work
piece. piece. 25 milling cutter comprising an annular body constructed for mounting a plurality of individual cutting elements on its periphery, with a cutting edge of each element extending
beyond the periphery, and on a continuous helical path, with beyond the periphery, and on a continuous helical path equal angular spacing, within a range of 91° to 100°.

TAPPING MACHINE
Garland Y. Smith, Hinsdale, and Gerald R. Scott, Elmhurst, both of IIl, sasignors to Garland Smith Engineering Co., Inc., Hinodale, III. Filed Sep. 8, 1976, Ser. No. 721,396
U.S. Cl. $408-67$

21 Claims

1. A tapping machine comprising: a base adapted for fixed connection to a structure to be tapped; an elongated frame
connected to said base; a movable balanced drive assembly connected to said base, a moved frame, said movable balanced drive assembly being movable along said elongated frame relative to said structure to be tapped, said movable balanced drive assembly having a boring bar longitudinaly sixed a a a palanced drive
movable balanced drive assembly, assembly including a plurality of motors, each motor of said plurality being spaced equidistantly about said boring bar, a
pluality of axially spaced driven members drivingly conplurality of axially spaced driven members drivingly connected to said boring bar, each motor of said plurainy being
connected drivingly to a respective one of said plurality of connected drmbers; and a cutter drivingly connected to said boring bar, said cutter being adapted to engage cuttingly a surface of the structure to be tapped.

4,093,394

DOWEL HOLE-BORING JC
Arthur Adams, e/0 Karl Davenport, 9614 Heatherdale Dr., Arthur Adems, c / o Karl Davaporn
Dalles, Tex. 75243
Filed Jul. 5, 1977, Ser. No. 812,573 U.S. C. 408-103 Int. C. ${ }^{2}$ B23B 49/00

1. A dowel hole boring jig comprising: S.S. C. $408-103$
2. A dowel hole boring jig comprising: edges spaced behind said cutting edges in the direction of drill
at least one round cross-section hole having a selected diameter equal to a dowel hole bit diameter, said hole thereof;
a portable base
a frame secured to said base and provided with at least one circular cross section aperture shaped, sized and positioned to hold said cylinder

first clamp means secured in said frame above and beyond said cylinder's first end whereby a first work piece can be be bored by a bit passed through said hole from said othe end thereof; and
second clamp means secured in said frame above and beyond said cylinder's other end whereby a second work piec
can be clamped adjacent to the cylinder's other end i position to be bored by a bit passed through said hole from said first end thereof.

DRILL AND COMBINED DRILL COUNTERSINK Willinm K. Luebbert, St. Lovis County; Thoman O. Blankenathip, Marthasille, and Roy H. Freeman, St. Louis, all of Mo.,
nesignors to McDonnell Dougias Corporation, St. Louis, Mo. Filed Mar. 14, 1977, Ser. No. 777,171
Int. C1. ${ }^{2}$ B23B $51 / 00,31 / 44$ U.S. C. $408-224$

1. A drill for producing holes of close tolerance in non-fer ous and non-metallic composite materials, said dill comprising an axially elongated body having a cylindrical form with
diametrally opposite substantially flat first surfaces which taper convergently toward one end of said body from the cylindrical body remote from said one end, said first surfaces having diametrally opposite margins substantially coextensiv
with said first flat surface and conforming to the cylindrica shape of said elongated body, and said one end of said body being formed with similar substantially flat drill point surfaces convergently directed toward the longitudinal axis of said body from each of said opposite side margins, said drill poin surfaces and said first surfaces meeting along first edges formrotation, said drill point surfaces being oppositely engled rela-
tive to each other to lay back of said associated cutting edges and directed to converge from said opposite margins to intersect along a line which constitutes a chisel edge on said one end
of said body. of said body.
2. The drill set forth in claim 1 wherein a second cylindrical
body is carried by said first mention body is carried by said first mentioned body, said second body
having a diameter larger than said first mentioned body and formed with a countersink drill face presented to said first mentioned body in position to perform a countersink operative in sequence with said cutting edges forming a hole.

4,093,396
 CHUCK KEY HOLDER

Sven Holger Widige, Gustafs, Sweden, aspignor to Lars Goota Sven Hoiger Widig, Gustifks Sweden, assignor to Lars Goota,
Brandstrom and Karl Peter Brandstrom, both of Soderhamn, Sweden Filed Dec. 15, 1976, Ser. No. 750,651 Cleims priority, application Sweden, Jan, 30, 1976, 7600992 U.S. CI. 408-241 R

5 Cluims

$$
\overbrace{5}^{2} \int_{-1}^{51}
$$

1. A chuck key holder for releasably securing a chuck key to the electric cable of an electrically drivable hand tool compris-
ing: a first tubular collet formed of a slightly elastic material and having a radial slot therein extending the axial length thereof, said first collet thus being elastically separable in the region of said slot for reception of an electric cable therewithin; and a second tubular collet formed of a slightly elastic material and having a radial slot therein extending the axial length thereof, said second collet thus being elastically separa-
ble in the region of said slot for reception of an element of a che in the region of said sot for reception of and element of a
chuck therewithin; said first and second collets being interconnected with their longitudinal axes angularly offset and spaced apart by at least the respective radius of each of said collets.

4,093,397

HIGH VACUUM PUMP
Grady R. Lovelady, 1624 San Altos PI., Lemon Grove, Calif.
92045 Filed Apr. 15, 1976, Ser. No. 677,249
U.S. Cl. 415-53 R

1 Claims 1. A high vacuum pump comprising:
a generally cylindrical housing having a housing inlet and a
an impeller assembly having a rotor hub in the center thereof rotatably mounted eccentrically of the axis of said housing, said hub defining a passageway extending the length thereof and forming an intake at one axial end thereof; an outlet at the other axial end of said hub, said outlet communicating via an inlet chamber in said housing with
impelier bla
thereof; and

an exhaust duct on the other radial side of said impeller assembly extending radially from the axis of said rotor hub.
$4,093,398$
WIND DRIVEN POWER MECHANISM Miller, 10208 SE. Tilford Rd., Boring, Oreg. 97009 Filed Sept. 23, 1976, Ser. No. 725,758 U.S. C. $416-8$

1. A wind driven power mechanism comprising
(a) a base having forward and rearward ends and arranged to be disposed longitudinally in the direction of wind movement,
(b) a pair of opposite, parallel endless carriers supported at opposite sides of said base for movement in the direction of the wind over an upper arcuate drive run and along a
lower horizontal return run in the direction against the wind,
(c) a plurality of flexible sail-type vane means having upper and lower ends
(d) means connecting the upper ends of said vane means laterally between said two endless carriers,
said carriers in upright sail condition for the upper run of ment by the wind for driving the carriers longitudinally and having movement along the return run of said carriers in a collapsed condition uninfluenced by the wind,
(f) a pair of horizontal axis idler wheels on said base disposed between said upper and return runs and being concentri g) and means connecting the lower ads of seid ves of said idier wheels whereby the lower the vane means move around the latter in the whive and return runs by wind engagement in the drive run of the carriers.

$$
4,093,399
$$

TURBINE ROTOR ${ }^{4,093,399}$ WITH CERAMIC BLADES
Robert G. Glenn, Huntington Valley, Pa, nealgnor to Electric Power Research Institute, Inc.. Palo Alto, Calif. Fled Dec. 1, 1976, Ser. No. 746,41
Int. C. ${ }^{2}$ F01D $s / 08,5 / 30$
U.S. Cl. 416-95

8 Claims

1. In a gas turbine rotor: a rotor disk having a number o circumferentially spaced, outer peripheral grooves, an attach-
ment piece for each groove of the rotor disk, respectively, the attachment pieces having respective roots received within corresponding grooves of said rotor disk; a plurality of ceramic rotor blades, each blade having a root; and means on said attachment pieces at the radialy outer margins thereof fo received within respective grooves of said attachment pieces, said attachment pieces having structure isolating the rotor disk from gases impinging on said blades, said rotor disk and said attachment pieces having fluid passages therein forming parts the attachment pieces.

4,093,400

CROSS BEAM ROTOR
Robert Charles Rybicki, Trumbull, Conn., assignor to United Technologies Corporation, Hartford, Conn.

Filed Dec. 15, 1976, Ser. No. 7
U.S. Cl. 416-141 9 Claims 1. A helicopter rotor adapted to be
a spar member flexible in flapping, in-plane bending and
twisting and extending through and on opposite sides of said axis or rotation and having a feathering axis about
which said twisting occurs,
blade positioned at opposite ends of said spar and supblade positioned a for rotation therewith,
hub member supporting said spar for rotation about said axis of rotation and connected thereto, and

- - - suppod from said hub at stations on spherical bearings supporied from said and act supporting
opposite sides of said rotational axis and each sum

ad spar therefrom for universal motion about a point on said feathering axis.

4,093,401
COMPRESSOR IMPELLER AND METHOD OF MANUFACTURE

vignor to Sundatrand Co

poration, Rocliford, III.
Filed Apr. 12, 1976, Ser. No. 676,264
US. C. 416—185 int. CL. ${ }^{2}$ FO4D 17/10 22 Cluims

1. A centrifugal compressor impeller, comprising;
a body formed as a truncated, generally conical body of revolution with a longitudinal axis of rotation, a circular cross section section;
poraiaity of impeller blades on the surface of the conical ing a generally radial section extending from an outer end at the base of the body generally toward said axis and an inducer section extending from the truncated end of the
body, in a generally axial direction to mmerge smoothly body, in a generally axial direction to mmerge smoothly being defined by parabloic curves wrapped on a series of cylindrical surfaces concentric with the impeller axis, the origin of each parabolic curve being in a plane transverse the impelier anis and spaced a preselected distance from the truncated end of said body.

ROPELLER OR A 4,093,402
LIER OR A SET OF WINGS FOR A WIND MILL Filed Nor. 9, 1976, Ser. No. 740,090 Int. C. ${ }^{2}$ F03D $1 / 06$
\qquad 7 Cl 1. A propeller or a set of wings for a wind mill or such a uvh as the wind, comprising a rotatable supported hub with at least one mainly radially extending blade having a cross section in the shape of a "wing profile" and a blade angle varying
along the length of the blade, said blade being provided with at pulse chamber and adapted for connection to a first source of least one auxiliary blade with a cross section in the shape of a regularly cycling pressure pulses, a second pressure inlet com "wing profile", which auxiliary blade as seen in a sectional municating with said second pulse chamber and adapted for plane going through the midchord point of the average chord connection to a second source of regularly cycling pressure
of said auxiliary blade and lying parallel to the plane, defined
pulses, the second source of pressure pulses being of substan of the relative wind with respect to said auxiliary blade and the by the relative wind with respect to said auxiliary blace and the
centerline of the relating main blade, is positioned such that the pulses, the second source of pressure pulses being of substan-
tially equal intensity as the first source of pressure pulses and at
least 90° least 90° out of phase from the first source of pressure pulses,
whereby said first diaphragm in whereby said first diaphragm in response to the cyclical pressure variations in said first pulse chamber alternately moves away from said first wall portion to draw fuel into said suction chamber through said fuel intake and toward said first wal
portion to pump fuel from said suction chamber into said pressure chamber through said fuel transfer means and whereby said second diaphragm sequentially with respect to said first diaphragm and in response to cyclical pressure variations in said second pulse chamber alternatively moves away hrough said fuel transfer means by said first diaphragm into said pressure chamber and toward said second wall portion to pump fuel from said pressure chamber through said fuel outlet, first biasing means for biasing said first diaphragm in a direction away from said first wall portion, and second biasing means for biasing said second diaphragm in a direction away biasing means being less than the biasing force of said first biasing means.
elongation of the chord lying in said sectional plane and start ing from said midchord point and going through the leading
edge of said auxiliary blade will interest a line positioned in said plane and running parallel itl interest a line polative wind and through
the rotational axis of the hub of the propeller. wherein said auxiliary blade is mainly rectangular, the leading edge of it being positioned about normal to the relative direction of flow the leading and trailing edges being situated in one flat plane.

MULTISTAGE FLUID-ACCUATED DIAPHRAGM PUMP WITH AMPLIFIED SUCTION CAPABILITY
II Schrimpf, Wauwatoen, and Rusel J. Van Rens, WaukeCarl F. Schrimpf, Wauwatooa, and Ruseel J. Van Rens, Wauke-
Waukegra, III. Sep. 15, 1996, Ser. No. 723,334
U.S. C. 417-246 Int. C. ${ }^{2}$ FO4B 3/00, 43/06

14 Claims

1. A fluid actuated fuel pump comprising means defining separate inlet and outlet chambers each including respectiv first and second wall portions, a first flexible diaphragm disinto a first pulse chamber and a suction chamber including said first wall portion, said first diaphragm being movable awa from and toward first wall portion, a fuel intake through which fuel is admitted into said suction chamber, a second flexibl diaphragm in said outlet chamber and separating said outlet including said second wall portion, said second diaphragm being movable away from and toward said second wall por ion, fuel transfer means communicating between said suction and pressure chambers and through which fuel is pumped from said suction chamber to said pressure chamber when said first hrough which fuel is pumped from said pressure chamber when said second diapphragm is moved toward said second wal portion, a first pressure inlet communicating with said firs

4,093,404
APPARATUS $4,093,404$ CONTARATUS FOR PREPARATION OF MATRICES John W Soetr FRANGible PARTICULATE MATTER John W. Soehngen, and Albert Gerken, both of Berkeley
Helghts, N.J., aesignors to Celanese Corporation, New York,

1. In matrix preparation apparatus having matrix supply means, reservoir means for supplying a flow of frangible pariculate material, and mixing means for dispersing the flow of
frangible particulate material in the matrix, the improvement being means for supplying the frangible particulate material to he mixing means comprising:
reciprocable pump means having a first annular pump chamber and a second annular pump chamber, coaxially alligned and alternately operable, for continuously pumping the flow of frangible particulate material at a uniform
metered rate without substantial impairment of frangible particles;
manifold means communicating with the reservoir means, the mixing means and the first and second pump chambers, for conveying the flow from the reservoir means to one of the first and second pump chambers and from the other of the first and second pump chambers to the mixing means; and
verting the flow from the reservoir means to the first and
ver second pump chambers and for simultaneously connecting
the first and second pump chambers with the mixing means such that one pump chamber communicates with the reservoir means while the other pump chamber com municates with the mixing means.

4093.4

 FUEL-OPERATED DEVICE William Stanley Brian, 25 Landing Rd., Huntington, N.Y Filed Feb. 2, 1977, Ser. No. 764,751 -343^{2} FRaim

FLUID OPERATED HYDRAULIC PUMP INCLUDING NOISE REDUCTION MEANS NOISE REDUCTION MEANS Dougina P. Miller, Milwankee, Wis, asagior to A Filed Aug. 25, 1976, Ser. No. 717,761
Int C. ${ }^{2}$ FO4B 17/00; FOiN 3/06, $1 / 08$ U.S. C. $417-401$

1. In a gas driven motor for driving a hydraulic fluid pump: gas chamber in said motor; and a muffler for exhausting gas from said gas chamber of said motor to a region of pressure relief and for reducing noise generated by such exhaustion, said muffler comprising:
first port for direc chamber
ber of said motor ing pressurized gas from said gas cham. sion chamber;
2. An improved fuel-operated device comprising a pair of combustion cylinders having pistons therein each having slidbly disposed piston rods extending therefrom operatively arranged in opposing facing relation to each other such tha said piston rods are urged through power strokes towards each gas-producing type fuel for said combustion cylinders effective to cause an initially maximum pressure expanding gas in said cylinders for powering said piston rods through said power strokes, a pair of pressure transfer fluid cylinders having pistons therein each having slidably disposed piston rods extend ing therefrom operatively arranged in opposing facing relation pressure strokes away from each other along a second move ment path oriented perpendicularly and in crossing relation to said first movement path, passage means connected from said pressure transfer fluid cylinders to a storage means for flowing said pressure transfer fluid thereto, an outlet connection from said storage means to a pressure fluid-operated motor for allowing said pressure transfer fluid to power said motor in
operation in the performance of work utilizing said pressure transfer fluid energy, and a coupling linkage means strategically located at the intersection of said first and second movement paths operatively interconnected between said piston rods of said combustion and said pressure transfer fluid cylinders so as to produce said fluid pressure strokes in the latter in response to said power strokes of the former, said coupling linkage means including pivotally interconnecited links is a amplification of said movement occurring along said first movement path in said corresponding extent of movement occurring along said second movement path and subsequently a reversal therein, whereby despite an initial maximum pres sure in said expanding gas of said fuel there is produced in said fluid a pressure at a desirable starting minimum value which subsequently builds up therein whereby contribute to the pressure fluid energy.
porioy of second ports for exhausting gas from another portion of said annular expansion chamber to said region of pressure relief;
site sides of said first in said expansion chamber on opposite sides of said first port and between said first port and
said second ports for controlling gas flow between said first port and said second ports, said annular expansion chamber being defined by a pair of spaced apart end walls, a circumferential side wall extending between said end walls, and a projection extending between said end walls; chamber on one side of said projection; and said plurality of second ports being located in said annular expansion chamber on another side of said projection, said baffle means comprising:
pair of spaced apart first baffles disposed on opposite sides of said first port, each first baffle extending between said end walls and from said circumferential side wall and
extending toward but spaced from said projection, each first baffle defining a first passage near said projection; pair of spaced apart second baffles disposed on opposite sides of and spaced from said pair of first bafles, each second baffle extending between said projection and said circumferential side wall and from one of said end walls and extending toward but spaced from the other of said near the other of said end wallsnear the other of said end walls;
sides of and spaced from said second bosed on opposite baffle extending between said projection and said circum ferential side wall and from the other of suid end walls and extending toward but spaced from said one of said end walls, each third baffle defining a third passage near saic one of said end walls;
rected by said baffle means through said first port to be dithird passages and through said second ports.

INJECTION OF ADDITIVES INTO LIQUID STREAMS David Roy Miliea, Pontypool, Engiand, aselgaor to Imperial Division of Ser. No. 411,167, Oct. 30, 1973, Pat. No. 4,015,828.

This application Dec. 10, 1976, Ser. No. 749,562
Int. C. ${ }^{2}$ F01C $1 / 18,21 / 12 ;$ FO4C $1 / 08$; B01F $5 / 14$

1. Apparatus for incorporating an additive into a liquid stream comprising a centre plate containing at least two inter-
secting circular openings, gear wheels rotatably mounted in said openings and each in meshing contact with an adjacent wheel, at least one of said wheels being driven, inlet and outlet openings positioned adjacent the points at which the gear wheels separate and mesh respectively and means projecting
into the inlet opening and positioned adjacent the point at into the inlet opening and positioned adjacent the point at
which the gear wheels separate to permit an additive to be injected into said inlet opening, said means being a hollow rod having an end portion shaped to conform to the e ear wheels to
the point at which they separate, the inlet opening for said the point at which they separate, the inlet opening for said
additive being through the tip of said end portion where the gear wheels separate.

POSITIVE CAM TYPE COMPRESSOR Yosbichilk Yamaguchi, 101 Toyobafuil, Toyoyama-Chou, Ni-shikesugai-District, Aichi Prefecture, Jappan
Filed Dec. 3, 1976, Ser. No. 747,006

Filed Dec. 3, 1976, Ser. No. 747,086
Int. C1. ${ }^{\text {F }}$ FO1C $1 / 00,19 / 00,21 / 04$
U.S. C. 418-92

5 Claims

1. A positive cam type compressor comprising a cylinder having opposite ends, valve plates at each of the ends of the
cylinder, front and rear plate casings on said valve plates defin ing respective compartments, a positive cam mounted in said cylinder to form chambers on opposite sides of the cam, means for rotating said cam, said valve plates having suction and exhaust valve openings for respective feed and discharge of
fluid to and from said chambers, at least one isolator plate slidably supported by said cylinder, plate casings, and valve plates, said cam being slidably engaged with said isolator plate to produce successive suction and compression stages in said chambers and reciprocal movement of said plate into and ou
for lubricating fluid, said plate casings having small holes in opposite end walls thereof communicating with said tank, said isolator plate being provided with a network of lubricating channels which open at the surface of the isolator plate fo racing regions to be lubricated, said isolator plate having oppo
site ends with small ports thereat leading to said network of channels, said ports facing said end walls of the plate casing for conveying lubricating fluid to and from said network as the isolator plate undergoes reciprocal movement, wherein said isolator plate constitutes a piston which penetrates into said compartments respectively and produces pressure therein to
force the lubricating fluid into said network via said ports and withdraws from said compartments respectively and produces suction therein producing return of lubricating fluid thereto.

IN SITU CONCRETE 4,093,409 FORMING MACHINE Thomas W. Barber, El Toro, and Milles W. Proctor, Santa An both of Calif, assignors to Donovan Construction Company, Irrine, Calif?

This application. 590,257, Jun. 25, 1975, abandoned S. C. $425-59 \quad$ Int. Cl. ${ }^{2}$ B28B $13 / 02$

19 Claim

1. An apparatus for forming in place continuous concrete ipe in an open trench, said apparatus comprising:
an interior forming member;
an interior forming member;
an exterior forming member;
means connecting said exterior forming member to said interior forming member in a spaced relation with respec to each other to define a space therebetween, said space being open at its rear end and closed at its forward end a concrete pump;
means connecting
eans connecting said concrete pump to said space fo
supplying concrete under pressure into said space between supplying concrete under pressure into said space between
said interior and exterior forming members, said concrete reacting against the closed forward end of said space for moving said forming members forward; and an inflatable support bag located and moving behind said
interior forming member to support said pipe as said fal interior forming member to support said pipe as said form
ing members move forward. ing members move forward.
$4,093,410$
PAVING TOO
Charles P. Miller, McHenry, Ill, assignor to Miller Formless Co., Inc., McHenry, IIl.

Filed Jan. 21, 1977, Ser. No. 761,272
U.S. C. 425-59 ${ }^{\text {Int. Cl. }{ }^{2} 404 \text { 104; E02B 11/02 }}$

1. A ditch paving tool adapted to form a continuous layer of concrete along the sloping wall of a graded ditch upon being a frame assembly including a mover comprising:
a frame assembly including a pair of horizontal members supporting thereunder a framework angularly oriented with respect to said horizontal members
said framework being disposable in a working relationship
with the sloping wall of said ditch; pivot means on said
prime mover for pivoame assembly for attaching to said therefrom on a generally hovement of said frame assembly teast a pair of upright support members
said frame assembly support members extending from
said pivot meas
pair of front and rear guide means carried by the forwar end of said frame assembly; verse said frame assembly; the front guide means having a forwardly extending flange along its lower edge;
the rear guide means having a rearwardly extending flange along its lower edge;
a screed assembly carried by said pair of guide means and supported in sliding relationship on said flanges;

said screed assembly including enclosing substantially verti cal side walls and an end wall adapted to retain said con sloping wall;
power means connected between said pair of guide mean and said screed ascembly to extend and retr guicie means assembly in relation to said pair of guide means whereby the width of said layer is controlled; and
means operatively connected to said upright support members to pivot said guide means about said pivot means to maintain said lower edges in substantially parallel spaced relationship with said sloping side.

APPARATUS FOR APPIMTM, IN-PLACE TO SURFACES Jimmy D. Lee, 6821 Piccadilly, Houston, Tex. 77017 Filed Dec. 29, 1975, Ser. No. 644, 763 U.S. C1. 425-64
a framework adapted to move a
which the foam is to be applied
which the foam is to be applied, spacing means attached to said framework along only one side thereof for spacing said framework away from the surface to which said foam is to be applied, said frame work being operatively associated with such an independent spacing element along the side of said framework opposite to said spacing means,
fixed pressure plate adjustably mounted in said framework substantially parallel to the surface to which the foam is to be applied, and adapted to cover a portion of the foamed material applied to the surface, said pressure plate being within a continuous belt mount
which is a rolling surface, and
foam dispensing means, operably associated with one side of said framework and positioned to deliver a foamed material in proximity to the surface to which the foam is to be applied, and said pressure plate.

An apparatus for applying a foamed polymeric materia 1. An apparaus surface having an independent spacing element in-place to a surface

1. An apparatus for cooling an extruded tube of thermoplastic material comprising an annular orifice for extrusion of sucb a tube, a cooling surface downstream of said annular orifice, in the direction of extrusion, in heat-transfer relationship with said cooling surface, means operatively associated with said cooling surface for providing a sheath of a heat-transfer fluid between, and in contact with, such a tube and said cooling surface, and means between said withdrawing means and the downstream extremity of said cooling surface for displacing the whole tube in the same direction transversely of the direc between at least a selected area of such a tube and the sooling surface.

4,093,413
AUTOMATED APPARATUS FOR MOLDING OR DIE Wolfong sctiolleore CASTING Wolfgang Sctïltora, and Urben
 PLied Jun. 1, 1977 , Ser. No. 802,313
Claime
priorty, application Switzerinad, Jun. 9, 1976, 238/76

9, 1976,
,
U.S. CC. 425-110 ${ }^{\text {Int. C1.2 }{ }^{2} \text { B29C 6/00, } 7 / 00}$

26 Claims

1. Apparatus for the automated manufacture, in repetiti cycles, of composites constituted by apertured composite arti-
cles having the aperture in a prefabricated insert thereof, said apparatus comprising, in combination, a mold-forming appare operable to apply molten material about said insert, by
ching molding operation, to form said composite; plural clamping
mandrels operable to be clamped in said apertures to constimandrels operable to be clamped in said apertures to consti.
tute, temporarily, "mandrel-with-insert" and "mandrel-withtute, temporarily, "mandrel-with-insert" and "mandrel-with-
composite" combinations; a discharge station for discharging composite" combinations; a discharge station for discharging
composites from said mandrels; a charging station for charging shid mandrels with said inserts; and a loading system with holding means, including holders for holding said mandrels, and with conveying means; said loading system repetitively
carrying out, in timed sequence, the following operations: (1) carrying out, in timed sequence, the foilowing operations: (1) using a holder, of a "mandrel-with-composite" from said machine; (2) at said loading/unlooding position, loading in "man-drel-with-insert" from a holder into said machine; (3) at a
set-off position at said discharge station, setting-off at least one set-of position at said discharge station, setuing-off at least one
composite from a respective holder; and (4) at a take-up position at said charging station, taking-up at least one insert with a respective holder.

Filed Sep. 16, 1976, Ser. No. 723,783

 U.S. C. ${ }^{425-113}$ 1. A single die for co-extrusion including in combination a and tapering to a smaller diameter toward a discharge end o the passage at the forward end of the tip, an extrusion die surrounding a forward end portion of the tip and having an inside surface that confronts the tupered surface of the tip and that is spaced from the confronting surface of the tip to leave
an annular passage between the confronting surfaces for the flow of plastic electrical insulating material through said annular passage, characterized by a melt flow separator extending lar passege, characterized by a melt flow separator extending
into the space between said confronting surfaces and dividin said space into two passages, one of which has its sides con verging to reduce the radial width of the passage along the entire portion of its length that confronts the flow separator
for different materials for forming superimposed layers insulation, the melt flow separator extending for a portion and only a portion of the length of said annular passage, the mel low separator terminating at its forward end at a location spaced back from the discharge end of the tip so that the separator cannot serve as an extrusion die for said tip, passages
in communication with said two passages for supplying differ ent insulating material to the upstream ends of each of said two passages on the different sides of the melt flow separator, and the extrusion die having a tapered passage therein extending beyond the tip and in which the superimposed
tion are sized before discharge from the die.

TRANSFER PRINTING PROCESS FOR HYDROPHILIC SYNTHETIC FIBRE MATERIAL OR MIXIURES OF HYDROPHILIC AND SYNTHETIC FIBRE MATERIAL Switzerland, audenors to Cibe Gelgy AG, Beoel, Switzeriand Filed Jul. 8, 1975, Seri. No. 594,077, Cleims priority, applications Switzeriand, J U.S. C. 8-2.5 A
II. 12, 1974 1. In a transfer printing process for the dyeing or optica brightening of hydrophilic fiber material, synthetic fiber mate rial or mixtures thereof which comprises bringing a treated and dried surface of a temporary carrier into contact with the dry surface of the material to be dyed or optically brightened brightener from the temporary carrier to the material to be dyed or optically brightened, and separating the said materia rom the temporary carrier, the improvement according which the temporary carrier comprises a flexible, dimension ally stable, heat stable, sheet-like base having on at least a optical brightener, a binder which is stable at temperatures below $230^{\circ} \mathrm{C}$ and at least one solid compound which melts during the beat exposure step of the transfer process and which has a vapor presure above $10^{\circ} \mathrm{mm} \mathrm{Hg}$ at 150 to $20^{\circ} \mathrm{C}$, said olid compound being inert during the transfer printing process and being selected from the group consisting of amides, or 6 - membered saturated or unsaturated heterocyclic ring compound which possess at least one of the groups or atoms N $\mathrm{S}, \mathrm{O}, \mathrm{NH}, \mathrm{CO},=\mathrm{CH}^{2} \mathrm{CH}_{2}$ as members and which compound unsubstituted or substituted by a member from the group of alkyl $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right), \mathrm{OH}, \mathrm{NH}_{2}$, hydroxyalkyl $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ and halogen. emporary carriers for use in the transfer printing process, said composition comprising water, organic solvent or mixtures thereof having dissolved or dispersed therein at least one sub limable dyestuff or optical brightener and a binder which is table below $230^{\circ} \mathrm{C}$.
the improvement wherein the composition contains at least
one solid compound which melts during the heat exposure

step of the transfer printing process and which has a vapor | step of he transere prinumg process and which has a vapo |
| :--- |
| pressure $a b o v e ~$ |
| -5 |
| mm Hg | H^{-1} at temperatures of 150° to $250^{\circ} \mathrm{C}$, said solid compound being inert during the transfer printing process and being selected from the group consisting of amides, imides, unsubstituted and substituted ureas and thioureas and 5 . or 6 -membered saturated or

unsaturated beterocyclic ring compounds which possess
at least one of the groups or atoms $\mathrm{N}, \mathrm{S}, \mathrm{O}, \mathrm{NH}, \mathrm{CO}$
$=\mathrm{CH}$ or CH_{2} as members and which compound is unsub-
stituted or subssituted by a member from the group of alkyl ($\mathrm{C}_{1}-\mathrm{C}_{4}$), $\mathrm{OH}, \mathrm{NH}_{2}$, hydroxyalkyl ($\mathrm{C}_{1}-\mathrm{C}_{3}$) and halogen.
18. In a temporary carrier for use in the transfer printing process the improvement wherein said carrier comprises a
flexible, dimensionally stable, heat stable sheet-like base having on at least a portion of the surface thereof at least one sublim able dyestuff or optical brightener, a binder which is stable a lemperatures below $230^{\circ} \mathrm{C}$ and at least one solid compound which melts during the heat exposure step of the transfer 150° to $250^{\circ} \mathrm{C}$, said solid compound being inert during the 150° to $250^{\circ} \mathrm{C}$, said solid compound being inert during the transfer printing process and being selected from the group ureas and thioureas and 5 - or 6 -membered saturated or unsaturated heterocyclic ring compounds which possess at least on of the groups or atoms $\mathrm{N}, \mathrm{S}, \mathrm{NH}, \mathrm{CO},=\mathrm{CH}^{\text {or }} \mathrm{CH}_{2}$ as mem bers and which compound is unsubstiated or substituted by member from the group of alkyl $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right), \mathrm{OH}, \mathrm{NH}_{2}$, hydroxy- of
alkyl $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ and halogen.
process por 0 ,093,416 PROCESS FOR PRINTING CARPETS jörn Sigard, Rump, Gemeva, Switreorlach, and Philippe Jean Dereux, St-Julien-en-Greerom,
Geigy AG, Beepel, Switrerladd

Flied Jan. 2, 1976, Ser. No. 646,026
U.S. C. $8-2.5 \mathrm{ImL}$

1. In a dry heat-transer printing process for 17 Chin 1. In a dry heal-transfer printing process for the printing of contact with a temporary support carrying a vapor transferable dyestuff or dyestuffs and heat is applied to achieve the vapor transfer of the dyestuff or dyestuffs from the temporary upport onto the web or warp of yarns, said vapor transfer cing carried out prior to introducing suid yarns into a machine for weaving, knitting or for attachment of the yarns to a base ing the vapor transfer and prior to eeparation of the temporary upport from the yarns, the yarns and temporary support are wound onto a beam.

METHOD FOR PROCESSING TEXTILE MATERIAL
 arl Hera Helineta, Alte Bahmofitrowe 33, and Joachin Claime priority, application Gerrany, Jni. 1, 1974, 2437173, Car. 4, 1975, 2509381
 U. C. C. $8-137$
 lat. CL. ${ }^{2}$ B08B $3 / 00$
 1. Method for washing textile material consinsing Claimas 1e prewash and main wash cycle and one or more rinee cy les, where a phouphate-free alkaline wash liquor is used in the acid surface-sctive substances acting in the acid range is used acid wash solution in the prewash cycle, and that carbonate nasuions whore composition is such that they dissolve in hexile material to be treated are formed in the man the textule cycle.

METHOD OF SPOTTING GARMENTS TO BE LAUNDERED
Southrield, both of Michor, asedgeors to BASF Wyyndotic Corporation, Wy yandotte, Mich Filed Mar. 23, 1977, Ser. No. 780,557
Int. C.2 D06\%
US. C. 8-142
Int. C. ${ }^{2}$ D $06 \mathrm{~L} 1 / 00$

1. A method of spotting and laundering a garment 4 Cl ig organic soil in an area of said garment, said method comprising applying to said garment in the vicinity of said organic ail a composition which consists essentially of a solution of (1) bced by weight percent or more of nonionic surfactant pro8 carbon atoms (with the of fatty alcohols containing 10 to cohols which is is the proviso that the proportions of such ore carbon atoms is limited to about 20 percent by weight with mixed lower-alkylene oxides selected from the group consisting of ethylene oxide and propylene oxide to such an eink as to have the mixed oxides comprise about 57 to 6 eight percent of the total fatty alcohols plus alkylene oxides sed being about 50 to of ethylene oxide in the mixed oxides olvent made of a mixture of isoparaffins containing anaraffinic about 11 to 14 carton atoms, and then loundering aeid gar ment.

DEVICE FOR IRRADIATNG LISUUD AND PASTY Mented Tember, HOBSTANCES
Manfred Trabber, Holm, and Dieter Hever, Ueterven, both of Germany, madgions to Licentia Patent-Verwaltungs-
Claims priorty Oct. 15, 1976, Ser. No. 732,893
Chims priority, application Germany, Oct. 22, 1975, 2547261
Int. C. ${ }^{2}$ A61L $3 / 00$; Goin $23 / 12$
U.S. C. $\mathbf{2 1 - 1 0 2 ~ R ~}_{\text {Int. }}{ }^{2}$ A61L 3/00; G01N 23/12 6 Clisims

1. A device for irradiating liquid and pasty substance with high energy electrons in order to pasteurize or sterilize the
irradisted substances and to also enrich them with one or more
additives, particularly with gases, comprising, a horizontally irradiated substances and to also enrich them with one or more
addives partucularly with gases comprising a horizontally
disposed bousing, a pair of cylindrical circulation members disposed housing, a pair of cylindrical circuataion members
rotatably mounted in said housing in parallel relationship and
being rotatable in opposite directions and having radially exbeing rotatable in opposite directions and having radially ex-
tending helically arranged blades, said housing having walls
which extend in the which extend in the axial direction of said circulation members
and are closely conformable to the annular paths followed by and are closely conformable to the annular paths followed by
the peripheries of said blades during rotation thereof, said the peripheries of said blades during rotation thereof, said
housing having the shape of a solid figure eight formed of two tubes connected together and having a front side with an inlet for feeding the substance to be irradiated and having an oppo-
site rear side with an outlet for discharging the irradiated site rear side with an outlet for discharging the irradiated
substances, said housing further being provided with a pluralsubs of openingss between said inlet and spaid outlet for the introduction of additives and having a top with an irradiation open-
ing between the axes of said circulation members and electron ing between the axes of said circulation members, and electron
beam radiation means disposed over said irradiation opening beam radiation means disposed over said irradiation opening
for directing a sweeping electron beam over said irradiation opening.

4,093,420
MINERAL PROSPECTING BY ORGANIC DIAGENESIS John F. Grayson, Tulsa, Okla, and Peter K. H. Groth, Denver, Coto, amignors to Stundard Oil Company (Indiann), Chicago,
Filed Jun. 4, 1976, Ser. No. 692,825
Int. CI. ${ }^{2}$ GO1N $33 / 24$
U.S. C. ${ }^{23-230 ~ E P ~}$
6 Claims

1. A method of prospecting comprising the following steps:
2. A method of prospecting comprising the following steps:
(a) removing palynomorphs from geological samples col-
lected from a plurality of stations separated by a considerlected from a plurality of stations separated by a considerable distance in a region and,
(b) measuring a light characteristic due to transmission of light through a selected part of each of a plurality of said an average value thereof, whereby the average values
from step (b) may be mapped against the location of said pluraity of stations to produce anomalies characteristic of the subsurface below said stations.

APPARATUS FOR PRODUCING CARBON BLACK Norman M. Jerking, Rockport, Tex., assignor to Ashland Oil, Inc., Ashland, Ky
Continuation of $\mathbf{~}$

This application Sep. 1, 1977, Ser. No. 830,276
 U.S. CI. $23-259.5$

1. In a furnace-type reactor for the production of abrasionresistant grades of rubber-reinforcing carbon black, said furnace having a tubular combustion chamber for effecting the larger than the length thereof and whose downstream end is in open communication with an elongated axially aligned tubular reaction zone having a diameter substantially smaller than that of said combustion chamber, and means for injecting a nortoined with carbon black producing fecdstock, centrally positock axially into said reaction zone; the improvement wherein said feedstock injection means comprises:
a pipe shroud member fixedly and centrally positioned with respect to the upstream closure end of said combustion chamber and in axial alignment therewith, said shroud
member having an upstream and downstream closure end, member fatter freely accommodating the passage of the metalthe latter freely accommodaung the passage of the
lic feedstock supply tubes as hereinafter defined;
feedstock suppy pipe concentrically disposed within said shroud member adapted to be longitudinally extended in the downstream direction and retracted in the upstream
direction and whose upstream end projects beyond the direction and whose upstream end projects beyond
upstream closure end of the pipe shroud member;
cylindrical manifold rigidly attached to and in open co munication with the downstream end of said feedstock
suppy pipe and the header suppy pipe and the header end of which is provided with a centrally located circular port and a plurality of like
ports circumferentially disposed thereabout; ports circumferentially disposed thereabout; axial alignment with said centrally located circular port and whose discharge end is about flush with the face of the pipe shroud member downstream closure end upon retraction of said feed stock supply pipe to its upstream
excursion limit; and excursion limit; and
metallic feedstock supply tube of approximately the length
of said centrally disposed feedstock supply tube rigidly of said centrally disposed feedstock supply tube rigidly
connected to each of said circumferentially disposed header ports and permanently angularly preformed so that the discharg ends thereof assume an expanded circular pattern contiguous to and within the periphery of the opening of said reaction zone upon positioning same
downstream of said pipe shroud member downstream closure end by extending said feed stock supply pipe beyond said upstream excursion limit thereof.

AUTOMOTIVE EXHAUS1,422
AUTOMOTIVE EXHAUST SYSTEM USING FILTER Paul O. Hain, Hamilton, Ohio CARBONATE COATING tonal Corporation, Stamford, Conn lonal Corporation, stamiord, Conn.

Filed Jun. 1, 1976, Ser. No. 691,479
Int. Cl. ${ }^{2}$ B01J $1 / 22$. B01D $35 / 18$
greater than the internal diameter of said housing; imposing an external compressive force about said liner member around its periphery to compress said wrapper of resilient material and to reduce the circumference of the liner member to a dimension less than the internal circumference of the converter housing;
axially inserting said compressed combination of said liner member, said wrapper of resilient material and said monolithic element into said tubular housing and removing said external 3. In a catalytic.
3. In a catalytic converter for treating exhaust gases having a metal housing containing gas inlet and outlet pors and a
catalyst coated, axially channeled monolithic ceramic element positioned within said housing, the improvement comprising a wrapper of compressible, resilient material wrapped around wid ceramic element, and extending axially for at least a poron of the length of said element, said wrapper being mainfree or its fully compressed state, within the walls of a tubular center portion of said housing and also comprising at least one metal liner member shaped to conform generally to and within the walls of the tubular center portion, the said liner member
having non-joined longitudinal side edges which permit the having non-joined longitudinal side edges which permit the
diameter of the liner member to be varied, said liner member being positioned in surrounding relation to said wrapper and in contact with said wrapper so as to partially compress said wrapper and to space said wrapper from the walls of said tubular center portion of said metal housing, the resiliency of
said wrapper causing said liner member to be forced outwardly said wrapper causing said liner member to be forced outwardly
to the maximum diametrical extent permitted by the constraint imposed by the center portion of the metal housing.

4,093,424

Risaburo Yoobida; Kegenice Kaitho Yositions Rianburo Yoahids; Keisuke Kailho; Yusakn Ide, and Takeehi Hirobe, all of Tokyo, Japan, sadgnors to Toyo Ink Manufacturing CO_{n} Ltid. Tokyo, Japan
Claims priority, application Japan, Mar. 9, 1976, 51-24700; Apr. 13, 1976, 51-40867; Jun. 15, 1976, 51-69297; Jun. 15, 1976; 51-69298; Jul. 21, 1976, 51-86051; Dec. 9, 1976, 51-14712 U.S. Cl. $44-\frac{\mathrm{Int}}{\mathrm{C}}$

1. A thermogenic composition comprising (A) at least one
7 Clims compound selected from the group consisting of alkali metal sulphides, polysulphides, hydrosulphides, hydrates thereof and
mixtures thereof and (B) at the group consisting of (1) carbonaceous material, (2) iron carbide, (3) activated clay, (4) iron, nickel and cobalt sulphates and hydrates thereof and (5) potassium salt of anthraquinone
sulphonate.

PROCESS FOR PREPARING COAL BRIQUETTES FOR COKE AND APPARATUS FOR THE PROCESS Eimi Arald, Kyoto; Takeo Sakni; Selzabaro Takei, both of Toyyo, and Sekiro Komori, Fukuyama, all of Japan, amignors to Keihan Rentan Kogyo Co., Led, Japan
Filed Oct. 29, 1976, Ser. No. 737,021 Claims priority, application Japer., No. No. 1, 1975, 50-131678 U.S. C. $44-10 \mathrm{~F}$

50-131678
 1. A process for preparing a coal briquette by pulverizing a
starting coal followed by adding a caking agent and then molding the resulting mixture, which comprises introducing coal into a tightly closed vessel equipped with a high speed rotating blade, pulverizing the coal, while water content of the coal is heat generated during the pulverization, to a temperature above the melting point of said caking agent maintaining the system pressure at a predetermined value by regulating the to the pulverized coal while the coal, is lept a said caking agent

1. A method of supporting a ceramic monolithic element in generally tubular metal catalytic converter housing compris ing the steps of: wrapping a compressibie, resilient material
around the periphery of a monolithic catalyst element; placing around the periphery or a monoiidic catalyst element; placing said wrapper of resilient material, the combination of said liner member having a diameter in an uncompressed state
bove the melting point of the caking agent, throughly mixing and kneading the caking agent with the pulverized coal and sufficiently spreading it over the pulverized coal and subse-
quently removing the coal from said tightly closed vessel and briquetting the coal.
2. A tightly closed type of kneader for pulverizing a start 12. A tightly closed type of kneader for pulverizing a start-
ing coal for coal briquette and kneading the pulverized coal with caking agent which comprises a propeller type inclined

3. A method for separating a mixture of heavy and light
bottom where both the blades are fixed coaxially or to the same
shaft and driven externally, an inlet for the starting coal and an shaft and driven externally, an inlet for the starting coal and an outlet for product both of which can be opened, closed or tightly shut, a coal collecting blade having a sectoral cross section facing the direction of rotation of the coal and fixed
inside of the U-type rotating blade, an automatically controlled external heating device and a pressure controlling device which can function also as a discharge valve for excessive steam pressure, and a water-supply pipe.

4,093,426

METHOD OF AND APPARATUS FOR THE LIQUID METHOD OF AND APPARATUS FOR THE LIQUI DRYING SLUDGE Juan Cantulapiedra Beavinuea, Mandrid, Sppin, amalgnor to Memany
Filed Jan. 16, 1977, Ser. No. 807,329
Claims priority, applicatiton Spin. Jm. 18, 1976, 448,984
Int. C.2 B03C $1 / 00$
US. C. 55-8

1. In a method for the removal of solids from a hot-gas stream entraining particles of said solids wherein said hot-gas stream is cooled, treated with a liquid with settling of particles tion, the improvement which comprises
separating settled particles from the gas stream from which the particles settle;
branching a portion of a main stream of the bot-gas stream from the remainder of the main stream prior to the cooling thereof;
contacting the separated settled particles with the branched portion of said hot-gas stream to cool the branched por
hereafter combining said cooled portion with the remainder of the main stream prior to electrostatic precipitation.
isotopes comprising: introducing a gaseous feed stock mixture containing ligh
and heavy isotopes under sufficient pressure and tempera. and heavy isotopes under sufficient pressure and tempera
ture into an elongated cylindrical vortex tube in a circum ferential fashion so as to impart a swirling action of saic mixture within said tube around the longitudinal axi thereof which separates said mixture into a warmer outer radial portion and a cooler inner, radial portion;
which comprises about 60% of the feed stock mixtur
wid adjacent the cylindrical walls of ssid tube through a outer opening spaced radially outwardly from the longitudinal axis of said tube;
drawing off the inner radial portion of said whirling mixture
which comprises about 40% of the gaseous feed solet mixture through an axial outlet located approximatel along the longitudinal axis of said tube, said inner radia portion exiting from said axial outlet beeing enriched with heavy isotopes and said outer radial portion exiting from said outer opening being enriched in light isotopes.

GAS/LIQUID SEPARATOR

Emery C. Swogeer, Arlington, Tex, medgnor to The United States of America as reprecented by the Secretary of the Nary Washington, D.C.

Apr. 12, 1977, Ser. No. 786,909
U.S. C. 5S-52

1. A method of separating liquid from gas bubbles entrained herein comprising:
tially bubble-free liquid will collect in the periphery
thereof and less dense bubble-containing liquid will collec
in the center thereof in the center thereof
said step of creating a vortex including initially directing Manfred Siegler, SAS SEPARATION SYSTEM recovering said more dense liquid by peripheral discharge and collecting said less dense liquid by aspiration effect from said vortex,
said step of recover
said step of recovering more dense liquid including chang. ing circular flow of exiting liquid into radial flow
thereof, said step of collecting less dense liquid including discharg ing said less dense liquid symmetrically within the discharge of said more dense liquid to create said aspira. tion effect;
venting the bubbles from said collected liquid
combining said liquid recovered by peripheral discharge and
said collected liquid in an outlet flow create secided liquid in an outlet flow arranged so as to edreate said aspiration effect; and
additionally removing bubbles from said less dense liquid by iquid in a second volume by peripherand collecting the liquid in a seco
first volume,
said step of recovering more dense liquid further including additionally bafling said peripherally discharged liquid so as to form radially outward movement thereof prior vice. 2. A gas and
from a liquid such as hydraulic fluid under extreme starting and operating conditions comprising:
container having an inlet chamber and inlet means for ference thereof so as to produce a swirling motion therein thereby creating a centrifugal force action which causes eavier liquid to move to the wall of the chamber and iquid having gas entrained therein to be forced toward center of the chamber so as to create vortex in the iquid directed thereinto;
separating chamber contiguous to said inlet chamber for initially separating larger gas bubbles from said liquid; and a circumferentisl slot in said separating chamber permitting overflow of more dense liquid into chamber chamber so that the more dense substantially gas-froe liquid may be discharged therefrom;
settling chamber remote from said separating chamber and means for directing the liquid not discharged from said separating chamber and containing smaller gas bubbles ent means conngected to said settling chamber for venting gas therefrom
said settling chamber partitioned into at least upper and lower communicating volumes:
eans for collecting and convering liquid not discharged to said upper volume; liquid from said bapfe permitting peripheral settling of liquid from said upper volume to said lower volume for centrally concentraing said not discharged liquid;
lower volume at a position adjacent said means permitting peripheral settling;
means for combining liquid discharged from said separating chamber and said lower volume so as to augment flow of through said separator
container and said annular chamber med outlet in said with and discharging liquid into said restrictod such a relation to the discharge of liquid thereinto from said volume as to create an aspiration effect inducing
and
radially disposed bafles in said annular chamber for chang. ing circular flow of liquid to radial flow thereof.
of Calie, Segler, San Jooce, and Ted Lee Wong, Sunnyvale, botis Of Calif., emaignors to General Electric Company, San Jose

Filed Dec. 19, 1975, Ser. No. 642,460
U.S. Cl. 55-58

1. In a processing system for processing a stream of a gas mixture including a relatively small portion of predetermined gas mixed with other gases. a process for removing said predepredetermined gas comprising the steps of: (1) providing a gas preconditioning syste
and an outlet and including means for r having an inlet gases from said gas mixture;
(2) directing said ges minure, tioning system to metreby into said inlet of said preconditioning system to thereby provide a preconditionsd gas
mixture at said outlet of said preconditioning system; (3) providing a gas separation system including first second adsorber columns each including a bed of adsorbent having high selectivity for said predetermined gas in a container having inlet and outlet passages, said precond multiple of the gas processing capacity of saity which system;
ditioned gas but a predetermined portion of said precon ditioned gas mixture from said outlet of said precondition ing system to the inlet thereof for recirculation there through;
(3) directing said predetermined portion of said precond tioned gas mixture from said outlet of said preconditioning system into said inlet passage of said first column of said separation system and into the first column bed thereo Wressure favorable for a low temperature and a hig gas on said adsorbent whereby an adsorbate of said prede. lermined gas and co-adsorbed other gases is adsorbed only on an upstream portion less than the full length of suid firs column bed while the remainder of said other gases free o d through said outle: ing system;
) directing said predetermined portion of said precond tioned gas mixture into said inlet passage of said second column and into the second column bed in accordance with the conditions of said step (5) when said upstrean
portion of said first column bed becomes seturuter (7) closing said inlet passage of said first columated; upstream portion of said first column bed becomes satu ated and reducing the pressure therein from said high pressure to a low pressure favorable for desorption of suid sasorbate from said adsorbent by pump-down through said first column bed and venting from said procesaing
system a portion of said co-adsorbed other gases, and terminating said pump-down short of breakt through of
said predetermined gas from said bed whereby the vented sases are free of said predetermined gas;
(8) closing said outlet pressage of said first column and increasing the temperature of said first column bed above desorption of said predetermined gas from said absorbent while reducing the pressure in said first column by pumpdown through said inlet passage of said first column to desorb and remove said predetermined gas and co adsorbed other gases from said first column bed and directing the thus removed gases into said inlet of said pre-
conditioning system for recirculation therethrough conditioning system for recirculation therethrough
whereby the concentration of said predetermined gas in said preconditioned gas mixture is increased.

4,093,430
APPARATUS FOR IONIZING GASES,
ELECTROSTATICALLY CHARGING PARTICLES, AND ELECTROSTATICALLY CHARGING PARTICLES OR IONIZNG GASES FROM GAS STREAMS
James J. Schwab, Seattle, and Darid B. Goodson, Renton, both of Wamh, assignors to Air Pollution Systems, Incorporated Kivision of Ser
application Man 28, Aug. 19, 1974, abandoned. This Intication May 28, 1976, Ser. No. $690,948 \mathrm{~B}$
Int $3 / 41$
U.S. CI. 55-107

1. An ap
a tubular
through;
menerally; nerally planar inner electrode having a perimeter gener ally corresponding to the shape of said outer electrode,
said inner electrode being positioned within said said inner electrofe being positioned within said outer
electrode and defining an electrode gap therebetween said inner electrode having a smoothly curved periphera surface converging outwardly from the center of saic
electrode when viewed in axial cross section said inner electrode when viewed in axial cross section said inner electrode being the sole corona current emitting structure
within a sufficient distance from said inner electrode to allow an axial wedge-shaped expansion of the field to the outer electrode;
means for applying a high voltage across said electrodes for
creating a corona discharge high intensity electrostatic creating a corona discharge high intensity electrostatic
field within said electrode gap; field within said electrode gap; means for moving said gas in a stream axially throug electrode gap thereby charging contaminants in said gas and
mens for collecting said charged contaminants.

RAPPING ASSEMBLY AND ELECTRODE SUPPORTS FOR ELECTROSTATIC PRECIPITATORS Alfred Franenfelder, Zollikerberg, SWitzerland, assignor to
American Air Fulter Company, Inc., Louiz-1lle, Ky American Air Futer Company, Inc., Louiswlile, $\mathbf{M y}$.
Filed Dec. 13, 1976, Ser. No. 749,674
U.S. CI. 55-112

7 Claim

1. In combination with an electrostatic precipitator having housing with a flow-through inlet and a flow-through outlet and a pluraility of discharge and collecting electrodes disposed ing including an opening in the upper portion thereof with a rapping assembly extending therethrough, said rapping assembly for said discharge electrodes comprising
an electrically insulated cover means covering said opening,
an upper end extending through said cover, insulating means insulating said reciprocating support, means, the lower end of said support means having a pin wheel drive means mounted thereon;
driving means driving said reciprocating support means; vertically extending stationary support tube encircling said
vertically extending reciprocating means attached to said insulated cover means at its upper end and having electrode carrying means mounted onto its lower end;
said electrode carrying means having a plurality of said
discharge electrodes attached thereto and at least one disharge electrodes attached thereto and at least one
rapper receiving means mounted onto said electrode carrying means;
rying means;
said electrode carrying means including rapper shaft support means thereon supporting a horizontally extending rappe shaft, said rapper shaft including at least one rappe
thereon, said rapper being in alignment with and received by said rapper receiving means, said rapper shaft including a pin wheel therein in alignment with and driven by said pin wheel drive means whereby said rapper shaft is rotat able at a preselected rate.

4,093,432
 ELECTROSTATIC PRECIPITATOR

Willard K. Ahlrich, 2227 Pine Lake Rd. NW., Stuart, Fla. 33494 Continuation-in-part of Ser. No. 573,570, May 1, 1975, Pat. No. ,01,57. This application Sep. 3, 1976, Ser. No. 720,219 U.S. C. 55-138 Int. C. ${ }^{2}$ B $\mathbf{~ 0 3 C}$ 3/ 3/00 U.S. CI. $55-138$
precipitator having a 17 Claim 1. In an electrostatic precipitator having a plurality of annu-
lar, axially spaced apart, parallel collector plates, said collector plates being axially aligned and each having a central opening therethrough, the central openings of said collector plates being aligned to define an axially elongated gas-receiving passage surrounded by said pluraity of coliector plates, inle
means associated with one end of said plurality of collecto
plates for permitting a gaseous stream to be supplied into said being in fluid communication with said housing outlet; a gas-receiving passage and then flow radially outwardly damper assembly pivotally disposed in each said contactor fow prough channels derined between the adjacent collector flisposed adjacent the other end of said wherein individual contactor beds may be closed off to waste plurality of plates for closing the other end of said passage, gas flow; each said contactor bed inlet includes an adjustable ionizing means associated with said inlet means for ionizing the weir plate, said adjustable weir plate extending downwardly gaseous stream flowing therethrough, means for electrically from the side of said inlet opposite a stop means, said weir plate nsulatively supporting alternate ones of said collector plates in its downward extreme position abuting a trailing
tion means for supplying voltage to said alternate collector plates and said ionizing means, comprising the improvemen

wherein the central openings of at least some of said collecto plates are of decreasing diameter as the plates extend from one end thereof to the other end thereof so that the axially elongated gas-receiving passage decreases in cross-sectional area as extends firy of plates extend at a nonperpendicular angle with respect to the axial direction of said passage so as to define a reverse slope as measured with respect to a radially outwardly extending direction which results in the radially outer edges of said plates becis and edges of the plates and said inlet means.

DAMPER ASSEMBLY FOR MOBILE BED SCRUBBER DAMPE ASSMB Sellersburg, Ind., assignor to American Air Filter Company, Inc., Louisville, Ky.
Filer Compriled Jul., 29, 1974, Ser. No, 492,705
U.S. C. 55-226

Int. C.' ${ }^{2}$ B01D 47/12
5 Claim

1. A wet scrubbing apparatus comprising: a housing with a fluid flow inlet and a fluid flow outlet; a plurality of contactor each bed including a fluid flow inlet being in fluid communication with said housing inlet: a spray means positioned to introduce scrubber solution into

4,093,434
GAS-SCRUBBER APPARRTUS FOR BLAST FURNACE Gerhard Hausberg, Essen-Bredeney; Kar1-Rudolf Hegemann, Essen-Bergerhausen; Günther Finger, Weecl; Hans Schifer, Gelsenkirchen, and Helmut Weiseert, Hamm, all of Germany, assignors to Gottrried Bischoff Bau Kompl. Gasreinigungz-
Germany Fled Mar. 25, 1976, Ser. No. 670,542
Filed Mar. 25, 1976, Ser. No. 670,542
26, 1975, Claims priority, application Germany,
2513360; Aug. 16, 1975, 2536534
Int. C. ${ }^{2}$ B01D 47/00
collecting chamber having a wall connected to said duct and to said wall means.
said gap being so dimensioned that the pressure drop along the length of said gap is substantially linear and the gas exits from said outier side at substantially the same velo ity as that with which it enters said inlet side.

TOTAL HEAT ENERGY
TOTAL HEAT ENERGY EXCHANGERS Albert J. Marron, Spring Lake, and Walter J. Markowski, Cranford, both
Continuation-in-part of Ser. No. 418,364, Nov. 23, 1973, abandoned. This application Jul. 17, 1975, Ser. No. 596,642 Int. Cl. ${ }^{2}$ B01D 53/06; F28D 19/04

14. In a make-up air supply system having a total energy exchange wheel mounted for rotation spanning across an ai supply duct leading from the outside atmosphere into a room or the like and a parailel adjacent exhaust air duct from said
room to said outside atmosphere, the improvement comprising a media for said wheel providing parallel tubular passages aligned with said airstreams for the passage of air through said wheel, the diameter of each of said passages being not less than substantially 0.055 inch nor more than substantially 0.12 inch and the length of said passages being within the range of fiome-
substantially 100 to substantially 400 times said passage diameter, said media comprising cellulosic paper material constituted by substantially 84% by weight of paper fibres and substantially 16% by weight of ammonium sulfide and diammonium phosphate, and the temperature and humidity conditions of the air received in said room through said media being in other
than straight line relationship, when plotted on a psychromet ric chart, with the temperature and humidity conditions of sai outside atmosphere and said room air.

4,093,436

URANIUM ENRICHMENT APPARATUS HAVING A CASCADE OF SEPARATING STAGES IN A SINGLE UNIT Werner Wenzel, Spellen, Germany, assignor to NUSTEP Trenn

Filed Sep. 22, 1976, Ser. No. 725,493
Claims priority, application Germany, Sep. 23, 1975, 2542296 5. 550 Int. C. ${ }^{2}$ B01D 51/08

6 U.S. C. 55-269

1. An apparatus for isotopic enrichment of a gas, especiall
6 Cluim uranium enrichment, comprising:
an upright column formed as a vacuum-tight multipartite container having an upper portion, an intermediate por ion and a lower portion, said column being formed a least in the regions of said intermediate and upper portion with a central mounting tube;
portion subdividing same into a plurality of sectors, said partitions being affixed to said mounting tube
respective separating-nozzle units in each of said sectors for
the isotopic separation of gas therein into light and heavy fractions;
respecive coolers in said intermediate portion below each of said sectors for feeding gas to the respective unit; respective compressors in said lower portion of said column for compressing gas and feeding it to each of said coolers;
duct means in said column for receiving respective fractions from the units of the units of the respective sectors and

mixing a light fraction from one unit with heavy fraction from another unit prior to passage into the respective compressor whereby said units are connected is cascade,
said duct means including an annular gas distributor in said upper portion of said column having respective passages communicating with each sector at the top thereof; and
slider m slider means for selectiv
tions of said passages.

4,093,437
AIR FILTER MATERIAL
Hiroo Ichihara, Nagoya, and Yuzzuru Ohta, Kasugai, both of Japan, assignors to Nippondenso Co., Ltd., Japan
Filed Aug. 25, 1976, Ser. No. 717,667 Cluims priority, application Japan, Aug. 26, 1975, 50-103744 U.S. C1. 55-487

1. An air filter material comprising
(1) an upper fibrous layer to be disposed at upperstream position of influent air, containing 50 to 70% by weight of
polyester fiber having a diameter of about 2 denier and 50 polyester fiber having a diameter of about 2 denier and 50
to 30% by weight of polyester fiber having a diameter of about 6 denier, the basis weight of said layer being 25 to 45 $\mathrm{g} / \mathrm{m}^{2} ;$
) an intermediate fibrous layer containing 60 to 80% by weight of polyester fiber having a diameter of about 1.5
denier and 40 to 20% by weight of polyester fiber having a diameter of 2 to 2.5 denier, the basis weight of said intermediate layer being 40 to $60 \mathrm{~g} / \mathrm{m}$;
tion of the influent air, containing 60 to 80% by weight of rayon fiber having a diameter of about 1.5 denier and 40 to 2 denier, the basis weight of said lower fibrous layer being 80 to $100 \mathrm{~g} / \mathrm{m}^{2}$;
(4) a resin applied to the unified mass of the said three fibrous layers to provide a fibrous layer lamination; and,
(J) a pluraity of columns of intertwinement extending from
one side of the fibrous layer increase rigidity.

METHOD OF MAKING L, LAMINATED WINDSHIELDS Robert M. Currit, Dearborn, Mich, asignor to Ford Motor
Company, Dearborn, Mich.
FLied Oct. 28, 1977, Ser. No. 846,654
U.S. CI. $65-62$

Int. C1. ${ }^{2}$ C03B $23 / 02$
1 Claim
a glass ribbon 1. A method of making windshields from a glass ribbon manufactured by a float process in which molten glass is
flowed out upon a molten metal bath to form a ribbon of glass, wherein the ribbon of glass is stretched by longitudinally applied stretching forces to a thickness less than an equilibrium thickness, and wherein the ribbon of glass is removed from the molten metal bath and annealed, the glass ribbon developing
drawlines therein in the direction of movement of the ribbon over the molten metal bath because of the stretching forces
applied thereto, which method of making windshields comprises the steps of:
cutting oblong
cutting oblong glass brackets from said glass ribbon in a
manner that the drawlines run across the shorter dimen-
manner that the drawlines run across the shorter dimen-
sion of the bracket;
cutting the so-formed glass brackets into windshield shaped articles;
forming pa
forming pairs of windshield shaped articles;
final windshield configuration; and
laminating formed pairs of the so-bent windshield shaped anticles to produce completed windshields which have the drawlines of the glass aligned in the top to bottom direc tion.

4,093,439

METHOD AND APPARATUS FOR MANUFACTURING MELASS RIBBON ON A BATH OF MOLTEN METAL Jean-Clande Coulon, Chalon sur Saone, France, and Piero Amannati, Pisa, Itraly, assignors to Selint Gobain Industries,
Neullly-tur-Seine, France
Filed May 19, 1977, Ser. No. 798,618 Claims priority, application France, May 19, 1976, 7615049
U.S. CI. 65-65

15 Claims

1. An apparatus for manufacturing glass ribbon comprising in combination:
(a) a tank containing a bath of molten metal on which poured molten glass to form a glass ribbon; and (b) a guide member disposed interior of side walls of the tank along opposite edges of the glass ribbon, a lower portio
rial and having means for thrusting the glass ribbon conaacting the guide member in a direction generally transing the glass ribbon being rotatable about a vertical axis, an upper portion of said guide member having means for cooling the edges of the glass ribbon, said cooling means being separated from said rotatable thrusting means above means from cooling ing means which pres.
2. A method for man
a) directing molten glass onto a glass ribbon comprising (b) advancing the molten glass along the molten metal bath so as to form a glass ribbon;
(c) guiding and simultaneously cooling the edges of the glass bath, the glass ribbon being guided by rotatable means disposed about a vertical axis for thrusting the glass ribbon in a direction generally transverse to the advancing flow of the glass ribbon and the cooling being performed by cooling means positioned above the glass ribbon, said
thrusting means and cooling means being parts of a single structure disposed interior of side walls of the bath along opposite edges of the glass ribbon; and
(d) thermal insulating the thrusting means from said cooling means.

4,093,400

SOLID PHYTOSANTIARY COMPOSTIION

Sogemaric, Lyon, France Filed July 10. 1975, Ser. No. 594.856 Claims priority, application France, Joil. 15, 1974, 7425780
U.S. C. 71-65 \qquad

1. A solid phytosanitary composition compacted into single
doses for agricultural application intended to be progressively doses for agricultural application intended to be progressively
disintegrated by contact with a stream of water and containing a few to 80% by weight of an active material selected from the group consisting of a berbicide, growth regulator, and fertil-
izer, a solid nonhydrophilic filler of which talcum is the major component and $20-60 \%$ by weight of a solid water-insoluble starch.

4,093,441
METHOD FOR INHIBITING BUD GROWTH OF PLANTS Saleh Abdul-Kadir Ashlar, Madison, Wis, 2ssignor to American Cyanamid Company, Stamford Conn
Continuation-in-part of Ser. No. 631,359, Nor. 12, 1975, Pat.
No. $4,067,118$. This application Sep. 9,1977, Ser. No. 831,841 Int. CL. ${ }^{2}$ A01N $9 / 22$

1. A method for 1. A method for inhibiting bud growth on plants comprising, contacting the plants with a bud growth inhibiting amount of
(l)
wherein X represents $\mathrm{H}, \mathrm{CH}_{3}, \mathrm{Cl}, \mathrm{OCH}_{3}, \mathrm{SCH}_{3}$ or $\mathrm{NO}_{2} ; \mathrm{R}_{1}$ is phenyl, vinyl or alkyl $\mathrm{C}_{1}-\mathrm{C}_{4} \mathrm{R}_{2}$ is alkyl $\mathrm{C}_{1}-\mathrm{C}_{4}$ provided that represented by R_{1} and R_{2} is 5 to 7 , and when R_{1} and R_{2} are taken together with the carbon atom to which R_{1} and R_{2} are taken they may represent cycloalkyl $\mathrm{C}_{5}-\mathrm{C}_{6}$ optionally substituted with methyl; and the optical and stereoisomers thereof.

SYNERGISTIC HEPBI,
SYNERGISTIC HERBICIDAL COMPOSITIONS
3-(BENZTHIAZOL-2-yl)-1,3-DIMETHYLUREA AND A SUBSTITUTED DIPHENYL ETHER Robert Rudolf Schmidt, Cologne, and Lothar Rohe, Wuppertal both of Germany, assignors to Bayer Aktiengesellschaft, Le verkusen, Germany Flled Jun. 2, 1976, Ser. No. 692,169 Filed Jun. 2, 1976, Ser. No. 692,169
Claims priority, application Germany, Jun. 19, 1975, 2527394
Int. C. ${ }^{2}$ A01N 9/12 U.S. CI. 71-90 Int. Cl. ${ }^{2}$ A01N $9 / 12 \quad 10$ Claims 1. A herbicidal composition containing as active ingredients
synergistically effective amounts of (1) 3 -(benzthiazol- 2 -yl)synnergistically effective amount
1,3 -dimethylurea, of the formula

and (2) 2,6-dichloro-4trifluoromethyl-4'-cyano-diphenyl ethe of the formula

HYDANTOIN DERIVATIVES AND METHODS FOR REGULATING PLANT-GROWTH
Clauce Clapot, Oullins; Jean Vial, Tassin, and Louis Dumont, Chapooost, all of France, assignors to PEPRO, Soclete pour le Dereloppement
France France
Division o Division of Ser. No. 472,471, May 22, 1974, Pat. No. 3,990,8
This application Sep. 21, 1976, Ser. No. 725,295 Claims priority, application France, May 22, 1973,7319579 Int. Cl. ${ }^{2}$ A01N 9/12; C07D 233/76

1. A process for modifying the growth of plants wherein the plants are treated with an effective amount of a compound corresponding to the formula:
(I),

in which
II) A represents hydrogen or halogen, except that the phenyl radical is not 3,5 -dihalogenated,
represents hydrogen, an alkyl, alkoxy, $\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{COOR}^{\prime}$ where $\mathbf{R}^{\prime}=$ hydrogen, alkyl, the alkyl part of the radicals containing from 1 to 5 carbon atoms,
m is an integer from 0 to 5 ,
n is an integer from 0 to 3 ;
m and n together being at most equal to 5 ;
R_{3} represents hydrogen or an alkyl radical containing 1 to 5 carbon atoms;
R_{2} represents hydrogen, an optionally halogenated or hy.
droxy substituted $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl radical, a $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkanoyl radical, a carbamoyl radical monosubstituted or disubstiradical, on the nitrogen by $C_{1}-\mathrm{C}_{5}$ alkyl;
said composition containing (1) the urea and (2) the dipheny ether in a ratio by weight of $1: 0.1$ to 1 .

> 4,093,443

THIADIAZOLYLIMIDAZOLIDINONES
John Krenzer, Onk Park, Ill, assignor to Velsicol Chemical
Corporation, Chicago, II. ${ }^{\text {Divion }}$, 1974, Pat. No. 4,028,375. This application Apr. 7, 1977, Ser. No. 785,711
The portion of the term of this patent subsequent to Jun. 15, 1993, has been disclaimed.
Int. C. ${ }^{\text {A01N }} 9 / 12$
U.S. C. 71-90

9 Clain

1. A herbicidal composition comprising an inert carrier and as an essential acive ingria

wherein \mathbf{R}^{1} is selected from the group consisting of lower alkyl, lower alkenyl, lower haloalkyl, lower alkoxy, lowe selected from the group consisting of lower alkenyl, lower chloroalkenyl, lower bromoalkenyl and

$$
\begin{aligned}
& \mathrm{R}^{\mathbf{3}} \\
& -\mathrm{C}-\mathrm{C} \equiv \mathrm{CH} \\
& \underset{\mathrm{R}^{4}}{1}
\end{aligned}
$$

wherein \mathbf{R}^{3} and \mathbf{R}^{4} are selected from the group
hydrogen and alkyl of up to three carbon atoms.

4,093,445

SULFONAMIDE HERBICIDE ANTIDOTE COMPOSITIONS AND METHODS OF USE Duane R. Arnekler, Antelope, Mont., and Don R. Baker, Coan. Division of Ser. No. 285,971, Sep. 5, 1972, Pat. No. 4,021,229. This application Jan. 24, 1977, Ser. No. 761,841 Int. C. ${ }^{2} 101 \mathrm{~N} 9 / 12$

24 Claims U.S. Cl. $71-100$

1. In the method of controlling weeds wherein a thiccarbsmate herbicide is applied to the habitat of said weeds, the
. improvement comprising applying to the habitat thereof from
about 0.01 to about 15 parts by weight for each part of weight about 0.01 to about 15 parts by weight for each part of weight
of the thiocarbamate herbicide an antidote compound correof the thiocarbamate her
sponding to the formula

R1- $\mathrm{SO}_{2}-\mathrm{N}_{\mathrm{N}_{3}}^{\mathrm{R}_{2}}$
wherein R_{1} is selected from the group consisting of alkyl containing from 1 to 6 carbon atoms, inclusive, haloalkyl containing from 1 to 6 carbon atoms, inclusive, and in which halo
includes chloro, bromo and fluoro, halogen which includes chlorine, bromine, and fluorine, isocyanate, alkenylamino, in which alkenyl contains from 3 to 6 carbon atoms, inclusive, halophenylamino wherein halo includes chloro, bromo and
fluoro, phenyl, substituted phenyl wherein said substituents can be selected from alkyl containing from 1 to 4 carbon atoms, inclusive, alkoxy containing from I to 4 carbon atoms, inclu-
sive, halogen which includes chlorine, bromine, and fluorine, nitro, amino and haloalkylaminosulfonyl containing from 1 to 4 niro, amino and haloalkylaminosulfonyl containing from 1 to fluoro; \mathbf{R}_{2} and \mathbf{R}_{3} can be the same or different and are selected from the group consisting of hydrogen, alkyl containing from 1 to 6 carbon atoms, inclusive, haloalkyl containing from 1 to 6 carbon atoms, inclusive, and halo includes chloro, bromo and fluoro, alkoxy containing from 1 to 6 carbon atoms, inclusive, alkenyl containing from 3 to 6 carbon atoms, inclusive, alloalkoxycarbonyl containing from 3 to 6 carbon atoms, inclusive, and wherein halo includes, chloro, bromo and fluoro, alkynoxycarbonyl containing from 3 to 6 carbon atoms, inclusive, carbamoyl, haloalkylthio containing from 1 to 6 carbon atoms, inclusive, in which halo includes chloro, bromo, and fluoro, diacetonitrilocarbamoyl, phenyl, substituted phenyl ing from 1 to 4 carbon atoms, inclusive, halogen which includes chlorine, bromine and fluorine, hydroxy, nitro and carbamoyl, and R_{2} and R_{3} taken together form the ring structure alkyloxazolidyl in which each alkyl substituted contains from 1 to 4 carbon atoms, inclusive, as mono, di, tri or tetra substituents.

4,093,446
4TRIFLUOROMETHYL-4NITRODIPHENYL ETHERS Horst O. Bayer, Levittown; Colin Swithenbank, Perkasie, and Hans Company, Philadelphia, Pa.
Continuantion-in-part of Ser. No. 617,560 , Sep. 29, 1975, and
Ser. No. 617,562, Sep. 29, 1975, seid Ser. No 617.560 , is a Ser. No. 617,562, Sep. 29, 1975, said Ser. No. 617,560, is a 3,928,416, sild Ser. No. 617.562, is Feb. 12, 1973, Pat. No $3,928,416$, seb.
331,719, Feb. 12, 1973, Pat. No. 3,928,416, which is a continuntion-in-part of Ser. No. 234,651, Mar. 14, 1972, Pat.
No. 3,798,276. This application Aug. 31, 1976, Ser. No. 719,484 No. 3,798,276. This application Aug. 31, 1976, Ser. No. 719,484
U.S. CI. 71-109

1. A compound of the formula

wherein X is a hydrogen atom, a halogen atom, a trifluoromethy group, or a ($C_{1}-C_{4}$) alkyl group,
is a hydrogen atom, a halogen atom, or a trifluoromethyl group, and
is a $\left(\mathbf{C}_{1}-\mathrm{C}_{1}\right)$ alkoxy group having one or more hydrogen atoms replaced by a carboxy group, or an agronomically acceptable salt thereof, or a $\operatorname{carb}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkoxy group. 12. A method of controlling weeds which comprises apply ing to the surface of the growth medium prior to the emer gence of the weeds from the growth medium a compound ccording to claim 1 in an amount sufficient to control the growth of the weeds.

N-ARYLCARBAMIC ACID ESTERS AND PLANT GROWTH REGULANT COMPOSITIONS AND METHODS
Carl Metzger, Wuppertal-Vohwinkel; Gerhard Jager, Wapper-tal-Elberfeld, and Klaus Lurssen, Koenigedorf, all of Ger-
many, assignors to Bayer Aktiengesellschaft, Leverkuen, Germany
Divislon of Ser. No. 265,909, Jun. 23, 1972, Pat. No. 3,920,727. This application Noo. 17, 1975, Ser. No. 632,742 Claims priority, application Germany, Jun. 23, 1971, Int. C1.2 A01N 9/20; C07C 125/06 U.S. C. $71-111$

1. N-arylcarbamate of the formula

wherein
R is open-chain lower aliphatic hydrocarbyl containing up 10 ten carbon atoms or open chain substituted lower ali-
phatic hydrocarbyl wherein the substituents are hydroxy, halogen, alkoxy having 1 to 4 carbon atoms, aryl or substituted aryl having 6 to 10 carbon atoms; said substituted aryl being substituted by at least one member selected rom the group consisting of halogen, alkyl of from 1 to 4
carbon atoms, haloalkyl of from 1 to 4 carbon atoms and 1 to 3 halogen atoms, alkoxy of from 1 to 4 carbon atoms 1 to 3 halogen atoms, alkory of riom 1 to 4 carbon atoms
and nitro R^{1}, R^{2}, and \mathbf{R}^{3} are individually selected from the group consisting of hydrogen, alkyl and haloalkyl of from ycloalkyl of up to 8 carbon atoms and halogen.
R^{4} is alkyl with 1 to 6 carbon atoms, alkenyl with 3 to 6 carbon atoms, alkynyl with 3 to 6 carbon atoms, haloalkyl with 1 to 6 carbon atoms and 1 to 3 halogen atoms, alkoxyalkyl, alkylthioalkyl, carbalkoxyalkyl and carbalkoxyalke-
ayl each with 1 to 4 carbon atoms in the alkoxy or alkyl. nyl each with 1 to 4 carbon atoms in the alkoxy or alky--
thio part and 1 to 4 carbon atoms in the alkyl part, cycloalyl with 3 to 8 carbon atoms or aryl, aralkyl, aryloxyalkyl or arylthioalkyl with, in each case, 6 to 10 carbon atoms in the aryl part and 1 to 3 carbon atoms in the alkyl part, the aryl part of the four last-mentioned radicals being unsubatoms, alkoxy with 1 to 3 carbon atoms, haloalkyl with 1 to 2 carbon atoms and 1 to 5 halogen atoms and Y is oxygen or sulfur.
2. Plant-growth regulant composition comprising an agriculturally acceptable carrier and, as an active ingredient, plant growth regulatingly effective amounts of a compound as claimed in claim 1.
3. Method of regulating the growth of plants which comprises applying to the plants or their habitat an effective amount of an N -aryl carbamate of the formula
(2-
wherein
\mathbf{R} is open-chain lower aliphatic hydrocarbyl containing up to 10 carbon atoms or substituted open-chain lower aliphatic hydrocarbyl wherein the substituents are hydroxy, 6 to 10 carbory having 104 carbon atoms or aryl havin $R^{1} R^{2}$ and R^{3} are indivis
sisting of hydrogen, alkyl and haloalkyl of from 1 to 10 added a low-temperature-melting ferrophosphorus powder carbon atoms, alkoxy of from 1 to 10 carbon atoms, cyclo- having a phosphorus content of at least 2.8%, in such an alkyl of up to 8 carbon atoms and halogen;
\mathbf{R}^{4} is alkyl with 1 to 6 carbon atoms, alkenyl with 3 to carbon atoms, alkynyl with 3 to 6 carbon atoms, haloalkyl alkyl alkylthioalkyl, carbalkoxyalkyl and carbalkoxyalkenyl each with 1 to 4 carbon atoms in the alkoxy or alkylthio part and 1 to 4 carbon atoms in the alkyl part, cycloalor aryythioalkyl with, in each case, 6 to 10 carbon atoms in the aryl part and 1 to 3 carbon atoms in the alkyl part, the aryl part of the four last-mentioned radicals being unsubstituted or substituted by halogen, alkyl with 1 to 3 carbon atoms, alkoxy with 1 to 3 carbon atoms, haloalkyl
to 2 carbon atoms and 1 to 5 halogen atoms and \mathbf{Y} is oxygen or sulfur

4,093,448

METHOD OF PRODUCING PELLETS FROM ORE CONCENTRATES
Stanislav Borisorich Eliseev, ulitsa Peshestreletskaya, 115, kv. 1, Voronezh; Jury Alexandrovich Butskoi, selo Podgornoe, ulitas 9 Yanvarya, 31, Voronezhskaya oblast, Ramonsky k vas, 31 , kv. 21, Voronearh; Albina Andreevna Golubeva, ulitsa Koltsorakaya, 77, kv. 41, Voronezh; Vladimir Milkhailovich Ozerov, ulitua Svobody, 59, kv. 12, Voronezh; Valentin and Iya Petrovisa Vassinova-Slipulina, ulitza Tsimlyanskaya, 2, kv. 32, Voronerh, all of U.S.S.R. Continuntion of Ser. No. 519,018, Oct. 29, 1974, abandone This application Sep. 27, 1976, Ser. No. 726,968
U.S. C. 75-3 Int. C1. ${ }^{2}$ C22B $1 / 08$

9 Claims
entrates of

1. In a method of producing pellets from ore concentrates of
particle size less than 0.83 mm , comprising mixing ore concenparticle size less than 0.83 mm , comprising mixing ore concen-
trate with a binding material, the major portion of which being trate with a binding material, the major portion of which being
selected from the group consisting essentially of calcium oxide, magnesium oxide and mixtures thereof to produce a total homogeneous mixture of said components, pelletizing said total homogeneous mixture to produce pellets and curing said pellets in saturated steam at a temperature of from $100^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$ within a time period sufficient for their hardening, the
improvement being that said mixing is performed in the following sequential steps:
a. mixing said ore concentrate and said binding material to
form a first prepared mixture form a first prepared mixture,
b. subjecting said first prepared mixture to hydration to form
c. further mixing said first prepared hydrated mixture until
homogenous to form a first prepared homogenous hy-
drated mixure, and drated mixture, and
d. mixing said first prepared homogenous hydrated mixture with an additional amount of said ore concentrate to form nous mixture of said first prepared homogenous hydrated mixture and said additional ore concentrate contains 4 to 15 weight percent of said binding material

4,093,449

PHOSPHORUS STEEL POWDER AND A METHOD OF MANUFACTURING THE SAME
Lars-Erik Svensson, Hoganss Jan Robert Tengzelius, Viken, and
Per Folke Lindskog, Hoganas, all of Sweden, assignors to Per Folke Lindskog, Hoganas, all of
Hoginas AB, Fack, Hoganss, Sweden

Filed Oct. 26, 1976, Ser. No. 735,207

amount that the phosphorus content of the mixture is 0.2 to 1.5\%, wherein the ferrophosphorus powder has a maximum particle size of $20 \mu \mathrm{~m}$

RODUC 4,093,450
produchon of ultrafine cobalt powder FROM DILUTE SOLUTION
Narry N. Doyle; Willie H. Seibt, both of Edmonton; Kshitindra Mohan Sarkar, St. Albert, and Mark R. Benz, Fort Saskatche-
wan, all of, Calif, assignors to Sherritt Gordon Mines Limited, Toronto, Canada

Filed May 12, 1977, Ser. No. 796,24 Claims priority, application Caneda, Mar. 7, 1977, 273334 U.S. C. $75-0.5 \mathrm{AA}^{\mathrm{Int} . \mathrm{Cl}^{2} \mathrm{C} 22 \mathrm{~B} 23 / 04} \quad 10$ Clims

1. A process for producing ultrafine cobalt powder comprising providing an aqueous solution of cobalt ammine carbonate, with the concentration of cobalt ions being in the range of from ia and to about 20 gpl , heating the solution to drive off ammoseparating theon dioxide and precipitate ultrafine cobalt oxide, hearating the coparalt oxide precipitate from the solution, and tmosphere to reduce the cobalt oxide to ultrafine a redalt pow der.

COKE AGGLOMERATE AND METHOD OF UTILIZING Soyd E SAME Boyd E. Cass, Ligonier, David W. Coste, and Joseph R. Quigley,
both of Pittsburgh, all of Pa., assignors to Cardd, Inc., Pittsburgh, Pa.
led Sep. 28, 1977, Ser. No. 837,53
U.S. Cl. 75-43 23 Claims U.S. C. $95-0.5 \mathrm{R} \quad 13$ Claims \quad Int. A coke agglomerate consisting essentialy of a cured 1. A phosphorous steel powder for manufacturing sintered cement on a dry basis, and $15-65 \%$ of at least one finely dimouldings having high toughness and strength, comprising a vided calcium bearing material selected from the group conbasic powder of a steel powder substantially free from phos- sisting of calcium hydroxide, calcium carbonate, and calcium
phorus and having good compressibility to which is intimately fluoride.
${ }_{30841 / 75}^{\text {Clams }}$ $3061 / 75$

4,093,452

Gene Donald Spenceley, Penistone, Near Sheffield, and Neil Gene Donald Spenceley, Penistone, Near ALemeth, Rothertam, both of England, assignors to Britist Steel Corporation, London, England Filed July 20, 1976, Ser. No. 707,060

Int. Cl. ${ }^{2}$ C21C 7/00, 7/06
\qquad

1. A method of treating a molten metal in a transfer container having a top, a base and a discharge nozzle in the base, said nozzle having, on the exterior of the container, a sliding gate valve assembly for controlling the discharge of metal from the nozzle and the introduction of reagent material entrained within a gas directly into the molten metal to promote the efficiency of mixing and reaction, saidipe and a closure comprising a discharge spent closure portion being selectively portion, said spout, pipe and closere
movable into alignment with the discharge nozzle of the container, which comprises introducing the molten metal through the top of the transfer container while the nozzle of said container is stopped by the gate valve, moving said gate valve and introducing through the inlet pipe a particulate re-agent mate-
rial entrained within a gas to promote efficient mixing and rial entrained within a gas to promote efficiend mixing and
reacting of the re-agent with the molten metal and then removreacing of the treated molten metal through the sliding gate valve.
ing

METHOD OF MAKING AN ORDERED ALLOY Yoshimi Makino, Fuilsawn; Satoru Uedaira, and Shigeyasu Ito, both of Yokohama, all of Japan, esesignors to Sony Corpora-
tion, Tokyo, Japan
Filed Dec. 9, 1975, Ser. No. 639, 121
Claims priority, application Jupan, Dec. 20, 1974, 49-146423 U.S. CI. 75-129

9 Claims

1. A method for making a substantially ordered alloy con taining at least a first metallic element and a second element comprising the steps of
(a) providing a solid, imperforate metal base consisting of at tast said arst metallic element,
(b) depositing a thin metal layer on said base, said metal layer consisting of at least said second metallic element, said second metallic element being capable of forming an ordered alloy with said first metallic element, said mend layer being not in excess of the deposited metal layer at (c) heating said metal base and the deposited metal a temperature below ordered alloy to be made for a suffiemperature of the ordered alloy temperature of the ordered alloy to be made for a sum- as a feed material for a steelmaking process, said product hav
cient length of time to cause diffusion of said deposited as
metal into said metal base and formation of a
layer of ordered alloy between the two metals.
NICKEL-BASE SINTERED ALLOY uichi Saito, and Osamu Mayama, both of Niigata, Japan, assignors to Mitsubishi Kinzoka Kkiousuld Kain Filed Nov. 24, 1976, Ser. No. 744,932
Claims priority, application Japan, Dec. 18, 1975, 50-150123
Int. C. ${ }^{2}$ B22F $1 / 00$ U.S. C. 75-236 U.S. Cl. 75 Clims
2. A nickel-base sintered alloy having a density of at least 95
95 4 Claims
at least 95 percen of in weight percentage:
tially of,

chromium	from	10.0	10	35.0\%
${ }_{\text {chen }}$ chungsten	from	0.5 0.2	10	15.0% 12.0%
	${ }_{\text {from }}$	0.1	1080	20.0\%
iron	from	0.1	10	
titanium	from	0.05	to	2.50\%
silicon	from	-0.05	10	1.30\%
${ }_{\text {mang }}^{\text {manese }}$	from	0.1	10	3.5\%

and the balance nickel and incidental impurities: said nickelbase sintered alloy being prepared by sintering a reduced powder mixture consisting of said metals and carbides of said met als, said reduced powder mixture being prepared by the steps comprising simultaneously reduring a mixed powder constially of powders of oxides of elements constituing ing essentially of powders of oxides of elemenw con ander to produce a reduced sponge-like mass, and pulverizing said reduced sponge-like mass to obtain said reduced powder mixture; said alloy an id reduced powder mixture having substantially the sam lemental chemical composition.

COMPACTED, PASSIVATED
 COMPACTED, PASSIVATED METALLIZED IRON

 Wolfgang B. Pietach, Matthems, N.C., assignor to Midrex CorWorfgang B. Pietach, Minthe wh, N.C.,poration, Charlotte, N.C.
Continuation of Ser. No. 584,184, Jun. 5,1975 , abandoned. This application Dec. 22, 1976, Ser. No. 753,243 application Dec. 22, 1976, Ser.
Int. C1.
U.S. C. 75-256

ing dense, substantially pore-free faces with a densified surface layer on each face of from 0.1 to 1.0 mm thick and a surface density of from about 6.5 to $7.9 \mathrm{~g} / \mathrm{cc}$, a less dense center with 75% to about 96% of the total iron present is in from about state.
triboelectric charge, thereby minimizing back transfe

from the sheet of support material to the electrostatic latent image.

POLYURETHANE.POLYANHYDRIDE SUBBING LAYER FOR PHOTO SENSITIVE ELEMENTS Manningtree; Frederick Robert Bannister, Colchester, an David Leonard Boutle, Maldon, all of England, assignors t Imperial Chemical Industries Limited, London, England Continuation of Ser. No. 416,496, Nov. 16, 1973, abandoned. Claims priority, application United Kingdom, Nov. 20, 1972, 53492/72; Jul. 13, 1973, 33446/73

1. A method of producing images in accordance with a master, comprising the steps of:
(a) providing a photoconductive layer spaced from an image support adjacent thereto, and electrodes respectively
associated therewith,
(b) bringing a dispersion of charged toner particles into the the electrodes,
(c) exposing the photoconductive layer to a light image of the master, thereby producing with respect to said layer, a conductivity image corresponding to the master,
(d) applying an electric field across said space by means sure, said field causing migration of the charged toner particles in a first direction, with change of toner particle charge as controlled by said conductivity image, (e) again shunting the electrodes, causing a further migration of toner particles in a second direction to form
image of the master on the image support, and
(f) opening the connection between said electrodes after a predetermined time sufficient to form an intense image, but insufficient for deposition of background consisting of
toner particles. but insufficient
oner particles.

4,093,457

Int. Cl. ${ }^{2}$ G03C $1 / 78$
U.S. Cl. $96-87 \mathrm{R}$ layer and a hydrophilic light sensitive layer applied to one or both surfaces thereof wherein the subbing layer is adherent to the film support, and comprises a mixture consisting essentially of at least one polyurethane resin with at least one anhydride
polymer selected from the group consisting of: (a) at least one hom the group conising of
cyclic carboxylic acid anhydride wherein said mixture contains from about 16.5% by weight of the anhydride polymer; and
cy) at least one copolymer of a polymerisable unsaturated cyclic acid anhydride wherein said mixture contains from
about 10% by weight of the anhydride polymer, the mixture containing up to 75% by weight of said anhydride polymer.

4,093,459

TREATED CARRIER PARTICLES USED IN ELECTROPHOTOGRAPHIC PROCESS Virgil W. Westdale, Chagrin Falls, Ohio, and John Novotny, San Jose, Calif., assignors to Addressograph-Multigraph Corporation, Cleveland, Ohio
Division of Ser. No. 728,461, Sep. 29, 1976. This application Ser. No. 728,461, Sep. 29, 1976. Th
Mar. 14, 1977, Ser. No. 777,628
U.S. CI. $96-1$ SD Int. C1. ${ }^{2}$ G03G $13 / 08$
U.S. Cl. 96-1 SD \qquad 1. A process for developing a latent electrostatic image rier which comprises a member selected from a group consist ing of metallic particles and siliceous particles to the surface of which is adhered a mixture of a metallic sulfide and a member selected from the group consisting of perfluorinated and sub-

18 carbon atoms and salts, esters and amides thereof, said sist image, which comprises imagewise exposing to actinic sulfide and acid being present in a ratio by weight of sulfice to light the photosensitive material according to claim σ, an charges to said electroscopid powder and said carrier, with an alkaline aqueous developer thereby removing the whereby said electroscopic powder is attracted to said carrier and transferring said electroscopic powder from said carrier to said latent electrostatic image.

4,093,460

CONTRAST ENHANCEMENT AND SMALL DETAIL BLENDING OF PHOTOGRAPHIC IMAGES Leonard M. Weinatein, 13 Burke Ave., Newport News,
${ }^{23601}$ Continuation-in-part of Ser. No. 395,494, Sep. 10, 1973 Condoned. This application Apr. 15, 1976, Ser. No. 677,64 U.S. CI. 96-27 E Int. C1. ${ }^{2}$ G03C $5 / 04$

6 Claim

1. A method of blending the granular appearance and small 1. A method of blending the granular appearance and smal
details of a projected image which comprises the steps of: pravils of a projected image which a projection system including a light source, a
pron lens, and an image source;
lens, and an image source;
inserting a linear radial transmission filter immediately adjacent to said lens whereby said projection system projects an image through said linear radial transmission filter;
placing a projection surface at the sharp focus position of the placing a projection surface at he shap foctions pyem whereby image is secured;
moving said projection surface away from said sharp focus position thereby causing the granular structure and small derail ons of the granular structure are not distinguishable from each other.

4,093,461
POSITIVE WORKING THERMALLY STABLE PHOTORESIST COMPOSITION, ARTICLE AND METHOD OF USING
Frank J. Loprest, Binghamton, N.Y., and Eugene F. McInerney,
Chagrin Falls, Ohio, assignors to GAF Corporation, Wayne,
Filed Jul. 18, 1975, Ser. No. 597,226
U.S. C1. $96-36$
. 23 Claim 1. A positive working photoresist composition, comprising a mixture of a light-sensitive orthoquinone diaz condensatio naphthoquinone diazide ana a product of an aromatic dianhydride and an aromatic di-priproduct of
6. A photosensitive material, comprising a mixture of a support having coated thereon a layer comprising a light-sensilive orthoquinone diazide or orthonaphthoquinone diazide and a polyamic acid condensation product of
13. A method of forming a thermally stable positive photore-
magewise exposed areas.

4,093,462

2,5-BIS(SECONDARY AMINO) OXA- AND THIADIAZOLE PHOTOGRAPHIC DEVELOPING AGENTS
Heary Woif Altand; Stanley Wray Cowan, both of Rochester, and Ismael Adolfo Olivares, Pittrford, all of N

Filed Nov. 11, 1976, Ser. No. 741,164
Int. Cl. ${ }^{2}$ G03C $5 / 30$; COTD 277/38
15. A photographic process comprising developing an 23 Clims 15. A photographic process comprising developing an inence of a silver halide developing agent of the formula:

$$
\left\|_{\mathrm{R}-\mathrm{NH}-\mathrm{C}}^{\mathrm{N}_{\mathrm{C}}^{\prime}}\right\|_{\mathrm{C}-\mathrm{NH}-\mathrm{R}_{1}}^{\mathrm{N}}
$$

wherein each of $\mathrm{R} \cdot \mathrm{NH}-$ and $-\mathrm{NH}-\mathrm{R}_{1}$ is a secondary amino group, R and R_{1} are independently selected from the group consisting of 1 to 4 carbon alkyl; Ito 4 carbon alkyl substituted tuted with alkylthio of 1 to 2 carbon atoms; aryl; aryl substituted with alkoxy of 1 to 2 carbon atoms; aryl substituted with alkylthio of 1 to 2 carbon atoms; and \mathbf{X} is sulfur or oxygen.

4,093,463

WATER SOLUBLE BINDER OVERCOAT ON
VESICULAR ELEMENT CONTAINING N_{2}-RELEASING
George Leland Fletcher Pittsford and Micheel Moeshener, Spencerport, both of N.Y., assignors to Eastman Koder Com. pany, Rochester, N.Y. Filed Neb. 22, 1977, Ser. No. 770,969
Int. Cl.' ${ }^{\text {G }}$ (3C
1/52. $/ 1 / 68$
U.S. C. $96-67$

Int. Cl. ${ }^{\text {G }} \mathbf{G 3 C}$ 1/52. $1 / 68$
n-sensitive v
relationship,
(a) a support
(b) a first layer comprising a binder that is substantially insoluble in water and, uniformly distributed in said binder in an amount between about 1 and about 15% by weight of ulating agent; and
(c) a second layer superimposed over said first layer, said second layer comprising a water-soluble binder, said layer being substantially free of radiation-sensitive material, said binders together providing a latent image stability period for \mathbf{N}_{2} that is sufficient for vesicular imaging. enhanced speed comprising, in laminar relationship, a support,
a first layer comprising a mixture of poly(-chloroacrylonitrile) and poly(vinylidene chloride-co-acrylonitrile), and uniformly admixed with said mixture in an amount be${ }_{2,5 \text { dimethoxy }} 4$-morpholinobenzene diazonium hexafluorophosphate;
and a second layer superimposed over said first layer and comprising poly(vinyl alcohol) and a crosslinking agent, said second layer being substantially free of radiation-sensitive material;
image stability period for N_{2} that is sufficient for vesicular imaging.

LIGHT SENSITIVE $\begin{aligned} & \text { 4,093,464 } \\ & \text { O-QUINONE DIAZIDE }\end{aligned}$ Hans Ruckert, Naurod, and Barbere Widenhin Win Hans Ruckert, Naurod, and Barbara WIdenhain, Wiesbaden
Sonnenberg, both of Germany, assignors to Hoechat Aktien geeselischaft, Germany
Filed Jul. 26, 1973, Ser. No. 382,864 Claims priority, application Germany, Jul. 27, 1972, 223694 U.S. CI. 96—91 D Int. C1. ${ }^{2}$ G03C $1 / 54,1 / 60$ 1. A light-sensitive transfer composition comprising, as separate compounds in a homogeneous mixture,
(a) about 25 to 40% by weight of an alkali-soluble novolak
(b) about 12 to 30% by weight of an o-naphthoquinone
diazide sulfonic acid derivative selected from the diazide sulfonic acid derivative selected from the group
consisting of esters thereof and amides thereof, and (c) about 5 to 30% by weight of a polyalkyl acrylate or polyalkyl methacrylate.

PHOTOSENSITIVE DIAZZO CONDENSATE COMPOSITIONS
Simon L. Chu, and Eugene Golda, both of Yonkers, N.Y., assign ors to Polychrome Corporation, Yonkers, N.Y. Continustion-in-part of Ser. No. 388,313, Aug. 14, 1973,
abandoned, which is a continuation-in-part of Ser. No. 182,845, Sep. 22, 1971, abandoned, mhich is a cont of inuation of Ser. No.
738,857 , Jun. 21, 1968, abandoned. This application Mer. 1968 , abandoned. This application Mar. 12,
, Ser. No. 557,731 Int. C1. ${ }^{2}$ G03C $1 / 52,1 / 70$
U.S. CI. $96-115$ R

1. A light sensitive, solvent soluble, oleophilic film forming A. A light sensitive, lightses:
A. A light sensitive, light hardenable, organic solvent solu insoluble reaction product of: of:
a. A negative acting diazonium salt of diphenylamine; and
b. An organic reactive carbo
compound therefore; with
alkali metal thiocyanate; and
B. An organic solvent soluble, substatilly epoxy resin; said composition capable of being coated onto a base sheet from solution in an organic solvent or substantially organic solvent medium to form a tack-free continuous surface; exposed to light in a predetermined
area to harden the coating in such area; and removed from area to harden the coating in such area; and removed from
unexposed area by an aqueous or substantially unexposed a
developer.

4,093,466

ELECTROLESS TIN AND TIN-LEAD ALLOY PLATING BATHS porated, Harrisburg, Pz

Filed May 6, 1975, Ser. No. 574,979
U.S. C. 106-1.22 Int. C. ${ }^{2}$ C23C 3/02 ${ }^{374,979}$

1. A salt composition, when diluted with 1 liter of water and sufficient hydrochloric acid to provide a solution having a pH of 0.5 to 1 , is suitable for immersion plating of tin-lead alloys a
increased rates, the salt composition comprising the proporincreased rates, the salt composition comprising the propor
ions of:

METHOD FOR MAKTVG 4,467

METHOD FOR MAKING FOUNDRY MOULDS AND CORES
kT. 146. Sergel Semens, Sharikopodshipnikorakaya ulitsa, 2, 17, korpus 1 kr 15 , 150 neerskyya ulitssa, 13, kr. 3, all of Mocecon, UeSl.S. R. Continuation of Ser No. $\mathbf{4 3 5}, 019$ Men. 21,1074 , Continuation of Ser. No. 435,019, Jan. 21, 1974, abandoned,
which is a continuation of Ser. No. 306,336, Nov. 13, 1972, which is a continuation of Ser. No. 306,336, Nov. 13, 1972,
bandoned, which is a continuation of Ser. No. 131,533, Apr. 1971, abandoned. This application Apr. 28, 1976, Ser. No.
680.93 Int. C1. ${ }^{680,9238} 7 / 34$
U.S. C1. 106-38.35 10 Claims 1. A method for making foundry moulds and cores which
comprises preparirg a mixture made up of from 94.0 to 98.5 comprises preparir.g a mixture made up of from 94.0 to 98.5 parts by weight of moulding sand, from 2.0 to 10.0 parts by weight of ortho-phosphoric acid and a requisite amount of a material containing not less than 30% of ferrous oxide, so that
the mixture obtained contains from 1.5 to 6.0 parts by weight the mixture obtained contains from 1.5 to 6.0 parts by weight
of ferrous oxide, shaping the moulds and cores obtained from the moulding mixture and holding them in the air for hardening.

4,093,468
PROCESS TO OBTAIN TRANSPARENT COLORLESS AND GLASS-CERAMICS SO OBTAINED Montigny sur Loing, both of France, aselgnors to Corning Glass Works, Corning, N.Y.

Filed Mar. 23, 1977, Ser. No. 780,513
Int. C.2.
C03C
U.S. C. $106-39.7$

1. Sensibly colorless transpartent glass-ceramics wherei 2 Chims beta-quartz solid solution constitutes the predominant crystal phase having base compositions within the $\mathrm{Li}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$
field which contain, on the basis of oxides and as calculated from the batch, about $0.5-6 \%$ by weight TiO_{2}, an amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ up to about 500 ppm , and about $0.03-0.75 \%$ by weight $\mathrm{Nd}_{2} \mathrm{O}_{3}$.

MOLDED GLASS ARTITLES HAVING BULK HOMOGENEITY AND OPTICAL QUALITY SURFACE Leon M. Sanford, and Che-Kuang Wu, both of Corning, N.Y assignors to Corning Glase Works, Corrings, N.Y. This application Apr. 20, 1997, Ser. No. 789,105
Int. $\mathbf{~ C l . ~}{ }^{2}$ C03C $3 / 10,3 / 043 / 30$ U.S. C. 106-53
U.S. Cl. 106-53 1 . A hyral 4 Cla 1. A hydrated glass article consisting essentially, in mole
percent on the anhydrous basis, of about $70-82 \%$ SiO percent on the anhydrous basis, of about $70-82 \% \mathrm{SiO}_{2}$,
$10-17 \% \mathrm{Na}_{2} \mathrm{O}$ and/or $\mathrm{K}_{2} \mathrm{O}$, and $5-15 \% \mathrm{ZnO}$ and/or PbO , and having a water content of about $3-8 \%$ by weight of the total article, said water content being tightly bound within the article such that, upon DTG analysis, the glass demonstrates
no water loss below about $120^{\circ} \mathrm{C}$. and consisting of silanol groups and molecular water present in such proportions that the ratio of silanol groups to molecular water is equal to or greater than 1.0 , said glass article having at least one portion
with the surface thereof having a smoothnes such the with the surface thereof having a smoothness such that over a
distance of at least 0.1 inch, on an arithmetic average bsis, Roughness Height is less than 3.0 microinches and having a
substantially uniform refractive index thoughout the bulk of said heating tank to circulate the heated molten bath from saic the glass such that a transmissivity of visible light of about 92% is demonstrated.

4,093,470

ALUMINA REFRACTORIES
Carl James Cherry, King of Prussia, Pa., assignor to Combustion Engineering, Inc., Windsor, Conn.
Filed Oct. 20, 1976, Ser. No. 734,141
U.S. Cl. 106-56 Int. C.2. ${ }^{2} \mathbf{C 0 4 B} 35 / 10$
U.S. C1. 106-56 int. C1. ${ }^{2}$ CO4B 35

11 Claims
use in mono1. An unshaped, unfired refractory material for use in mono-
lithic refractory construction comprising a mixture of a volatillithic refractory construction comprising a mixaure of a viaui-
ized silica slurry and a refractory batch wherein said volatilized silica slurry comprises:
a. from 60.0 to 90.0 weight percent water
b. from 10.0 to 40.0 weight percent volatilized silica,
c. from 0.1 to 2.0 weight percent concentrated acid, and
c. from 0.1 to 2.0 weight percent concentrated
d. from 0.05 to 1.5 weight percent dispersant,
and wherein said mixture comprises:
a. from 15 to 60 weight percent of an
a. from 15 to 60 weight percent of an aggregate alumina-containing refractory of a relatively large particle size, b. from 6 to 45 weight pere
tively small particle size.
c. from 5 to 20 weight percent graphite,
d. from 1 to 35 weight percent of a green strength binder e. from 2 to 20 weight percent of said volatilized silica slurry,
f. from 0 to 5 weight percent water.

4,093,471
GLASS FIBER REINFORCED CEMENT COMPOSITE
nobert Kennedy Greig, Cuucheth, Near Wurrington, En-
In Robert Kennedy Greig, Cuilcheth, Near Warrington, En-
gland, assignor to Pllington Brothers Limited, St. Helens,
England
Cleime Filed Jul. 2, 1976, Ser. No. 701,787 Claima priority, application United Kingdom, Jul. 4, 1975,
Int. C1. ${ }^{2}$ C04B 31/06
6 Cleims 1. In a method of making a glass fibre reinforced cement
composite material in which chopped strands of glass filaments composite material in whic chopped strand of giass ined into a
are mixed into a cement slurry which is then poured mould and allowed to cure, the improvement which consists in
first preparing the cement slurry without filaments from a first preparing the cement slurry without filaments from a
cement/water mix by a high shear mixing process using a cement/water mix by a high shear mixing proces using a
mixer to which the power input is at least $5 \mathrm{KW} / 100 \mathrm{Kg}$ of slurry, so that cement agglomerates are broken up into their primary particles, and then adding the chopped strands of glass
filaments into the cement slurry during a relatively low shear filaments into the cement slurry during a relatively low shear
mixing process using a mixer to which the power input is mixing process using a mixer to which the power input in
$\mathrm{KW} / 100 \mathrm{Kg}$ of slurry or less to avoid separation of the strands into individual, filaments.

4,093,472
APPARATUS FOR CLEANING STRIP
Frederick \mathbf{S}. Lukke, New Kensington, and William P. Zoryski, Tarentum, both of Pa., assignors to Allegheny Ludlum Indo: tries, Inc.. Pittsburgh, Pa.
Filed Feb. 17, 1977, Ser. No. 769,496
U.S. C. $134-104$ 1. Apparatus for cleaning strip in a molten salt bath, compris ing a main tank for containing said molten bath, a central
longitudinal baffle in said main tank, said baffle terminating longitudinal baffle in said main tank, said baffle terminating
short of the ends of said tank to provide passageways, a heating short of the ends of said tank to provide passageways, a heating
tank located along one side of said main tank adjacent the entry end thereof, a first opening from said main tank to the rear end of said heating tank, a second opening from said main tank to he lower formard,
heating tank through said forward passageway, a forward tank section located along the other side of said main tank at the
entry end thereof, a third opening from said main tank to said forward tank section adjacent to the bottom thereof, an inter mediate tank section located adjacent to the forward tank section, said intermediate tank section having upper and lower mpartments, a rear tank section located adjecent said inte

mediate tank section, bath circulating means in said rear tank section, large openings from said lower compartment to said ront and rear tank sections, relauively small and said rear tank section at least one adjacent the top thereof, means for directing said bath from said rear tank section rearwardly in said main tank, and means for directing said strip through said main tank below the level of said molten bath and above said long tudinal baffle.

SOLAR PANEL WITH UV ABSORBER Joseph Lindmayer, 6919 Blaindell Rd, Betheedg, Md. 20034 Continustion-in-pprt of Ser. No. 7115, 407, Ause, 25, 1976, Pat. No. 4,057,939. This application June 15, 1977,
Int. Cl. ${ }^{2}$ H01L 31/04
U.S. C. $136-89$ P

> for maintaining solar energy cells in ping ing thercon, comprising a subs 10 Claims to receive light impinging thereon, comprising a substrate on which said cells are mounted, a layer of silicone resin adhesively secured to said substrate and photovoltaic cells disposed within and encapsulated by said resin layer, said layer having distributed therein an ultraviolet light absorber in the form of a liquid or finely divided solid in an amount that will absorb sufficient ultraviolet light impinging on said layer to mitigate of said resin from said substrate while having no adverse effect on curing of said resin.

METHOD FOR PREPART, 4

METHOD FOR PREPARING ALUMINUM ALLOYS
OSSESING IMPROVED RESISTANCE WELDABILTTY Philip R. Sperry, North Haven, Conn.; Williem C. Setzer, Creve Coear, Mo, and Lloyd E. Damon, Wallingford, Conn, aseigrors to Swiss Aluminium Litd, Chipplig, Switzerland $, 043,840$. Division of Ser. No. 703,781, Jul. 9, 1916, PaL. No. 4,043, S. C. 1 Int. C1. ${ }^{2}$ C22F $1 / 04$

1. A method for the preparation of wrought products which 1. Aprises:
A. providing an aluminum base alloy consisting essentially iron, ap to 2.0 to about 6.0% magnesium, up to 0.40% vanadium, balance aluminum;
(B) casting said alloy;
(C) heating said alloy to a homogenizing temperature and temperature below the solvus temperature of the gamma prime (D) hot and como working said alloy;
(D) hot and cold working said alloy;
(E) annealing said alloy whereby the vanadium is substan-
tially retained in solid solution to provide a wrough
produce exhibiting reduced electrical conductivity produce exhibiting reduced electrical conductivity, in-
creased electrical resistivity, improved resistance weld. ability plus good tensile properties, said wrought product
being capable of plastic deformation; and
being capable of plastic deformation; and
(F) resistance welding said wrought product to provide a
resistance welded article.

4,093,475

METHOD OF CASTING ALUMINUM BASE ALLOY
SHEET AND PRODUCT dori, Owensboro, Ky., asaignors to National Steel Corpora tion, Pittrburgh, Pa .

Filed Dec. 30, 1976, Ser. No. 755,950
int. C. ${ }^{2}$ C22C 21/16: B22D $11 / 06,21 / 0$
U.S. Cl. $148-32$
3. An aluminum base alloy sheet which has been continu
4 Claims 3. An aluminum base alloy sheet which has been continu-
ousiy cast in sheet form characterized by elimination or reduction in edge cracking and a resultant elimination of or signifi-
cant reduction in the necessity for edge shearing consisting essentially of the following composition: silicon from about 0.06 to about 0.30%, iron from about 0.45 to about 0.70%, manganese from about 0.35 to about
0.80%, magnesium from about 0.01 to about 0.29%, copper from about 0.10 to about 0.30% and the balance aluminum plus inconsequential amounts of other elements in which composition when the silicon and/or magnesium
are on the low side of their ranges the iron and/or mangaare on the low side of their ranges the iron and/or manganese are on the high side of their ranges, when the silicon
is on the high side of its range the magnesium is on the low side of its range or the iron and/or manganese are on the high side of their ranges, when the magnesium is on the
high side of its range the iron and manganese are on the high side of its range the iron and manganese are on the
high side of their ranges and when the magnesium is on high side of their ranges and when the magnesium is on
the high side of is range and the iron and manganese are not on the high side of their ranges the silicon is on the low side of its range.

NICKEL BASE ALLOY
William J. Boesch, Utica, N.Y., assignor to Special Metals
Corporation, New Hertiond N.Y.
Corporation, New Hertford, N.Y.
Flled Dec. 22, 1976, Ser. No. 753,252 U.S. CI. $148-32.5$ present in the alloy, up to 0.1% of elements from the group
consisting of magnesium, calcium, strontium and barium, up to consisting of magnesium, calcium, strontium and barium, up to
6.0% of elements from the group consisting of rhenium and uthenium, balance essentially nickel; said titanium plus said aluminum content being from 6.0 to 9.0%; said titanium and luminum being present in a titanium to aluminum ratio of rom $1.75: 1$ to $3.5: 1$; said alloy being substantially free of deleterious acicular, sigma and mu phases; said gamma prime being
characterized as gamma prime which is substantially speroidal; said alloy being characterized by a highly desirable combination of hot corrosion resistance, strength, creep resistance, phase stability and stress rupture life; said desirable combination of properties being, in part, attributable to said boron
content of from 0.031 to 0.048%.

1. A thermo-magnetic-treated anisotropic permanent magnet alloy having a residual magnetic flux density of 7,000 Gauss anisotropic permanent magnet alloy being prepared by subjecting an alloy consisting essentially of 17 to 45% by weight of hromium, 3 to 14.5% by weight of cobalt, 0.2 to 5% by weight of silicon and a balance of substantially iron to a solution treatment at 600° to $1300^{\circ} \mathrm{C}$., heating the alloy in a mag-
netic field at a temperature of 570° to $670^{\circ} \mathrm{C}$. for a period of 10 minutes to 5 hours, and then aging the thermo-magnetic treated alloy at a temperature within $200^{\circ} \mathrm{C}$. below the ther- mo-magnetic treatment temperature for a period of 30 minutes
to 50 hours. to 50 hours.

ACTIVATED AMM $4,003,478$ NTRATE EXPLOSIVE OMPOSITION
Gerald L. Hurst, Dallas, Tex., assignor to Tyler Holding Company, Dallas, Tex.
Continuation of Ser. No. 312,833, Dec. 7, 1972, which is a
division of Ser. No. 79,096, Oct. 8, 1970, Pat. No 3 . 722,410 This application Jan. 17,1977 , Ser. No. 759,948 Int. C. ${ }^{2}$ c66B 45/00

U.S. Cl. 149-2

1. A gamma prime strengthened nickel base alloy consisting essentially of, by weight, from 12.0 to 20.0% chromium, from
4.0 to 7.0% titanium, from 1.2 to 3.5% aluminum, from 12.0 to 4.0 to 7.0% titanium, from 1.2 to 3.5% aluminum, from 12.010
20.0% cobalt, from 2.0 to 4.0% molybdenum, from 0.5 to 2.5% tungsten, from 0.031 to 0.048% boron, from 0.005 to 0.045% carbon, up to 0.75% manganese, up to 0.5% silicon, up to 1.5% hafnium, up to 0.1% zirconium, up to 1.0% iron, up to 0.2% of rare earth elements that will not lower the incipient melting

An explosive mixture comprising:
density of less than about 0.80 grams per cubic have a bulk and which have been activated by combining a minor nondissolving proportion of a solvent with ammonium 0.80 and thereafter heating the prills to an elevated tem-

from the prills,

a fuel selected from a liquid hydrocarbon derivative having
an oxygen equivalent weight less than about 4 grams per equivalent
said mixture detonable by a commercial number 6 cap.
THIN-FILM PROCESSING APPARATUS AND METHOD James L. Baird, Winchester, Mass., assignor to Artisan Indus tries Inc., Waltham, Mass. Continuation of Ser. No. 587,995, Jun. 18, 1975, abandoned.
This application Jan. 13, 1977, Ser. No. 559,19 This application Jan. 13, 1977, Ser
Int. Cl. ${ }^{2}$ B01D $/ 1 / 22$

1. In a fluid-processing apparatus of the wiped thin-film
ype, which apparatus comprises in combination:
a substantially vertical closed chamber characterized by (b) a rotor shaft within the chamber;
(c) means to rotate the rotor shaft;
(d) a feed inlet at the upper part of the chamber for the introduction of feed material
(e) a product outlet remotely spaced apart and downstream from the feed inlet for removal of product material; (f) a vapor chamber within the closed chamber and upstrea of the feed inlet;
(g) a vapor outlet in the vapor chamber for the removal of vapor; and
(h) a plurality of rotor blades secured to the rotor shaft for rotation therewith, the blades having a one end and an ther end, and riong in a thinfloforming relationship
U.S. Cl. 159-6 W
with the interior wall, said blades extending from the vicinity of the feed inlet to the vicinity of the product outlet, the peripheral edges of said blades being smooth long their length, the improvement which comprises from the one to the other end of the blades, and the helical twist of such blades varying continuously and onsymmetrically from one to the other end, the total elical twist of the rotor blades increasing from the feed inlet to the product outlet, up to about blades at the product outlet of the apparatus, and wherein the rotor blades are substantially aligned with the rotor axis at or bout the feed inlet, and wherein the degree of wist of the helical blades from the feed inlet to the product the thin film on the interior wall of the chamber, hereby providing good agitation of the thin film of material being processed, as the film decreases in thickess by evaporation, on the surface of revolution from he feed inlet to the product outle.

4,093,480
METHOD FOR MAKING ELECTRICAL CONNECTORS onald Reford Blalock, McLeansville, and Julian Lesco Carrington, III, Greensboro, both
Conporita, Harisburg, Fa. This application Apr 21, 1976 Ser. No, aba,204 S. Cl. 156-54 Int. Cl. ${ }^{\text {H01B }} 13 / 06,13 / 26 \quad 5$ Claims

1. A method of manufacturing electrical connectors comprising the steps of:
ontinuously axially feeding a substantially endless strand of firm, solid elastomeric material which has a Shore A which the elastomeric material is bonded along a first predetermined path through a folding zone, a bonding zone, and a cutting zone,
continuously feeding a substantially endless flat strip of insulating film along a second predetermined path which
extends towards, and merges with, said first predetermined path at the beginning of said folding zone, said strip having a width which is greater than the circumference of said strand and having transversely extending spaced
apart conductors adhered to the one side thereof which faces away from said first path,
said feeding steps being carried out by means of an endless belt which is moved continuously along said second predetermined path and which supports said film during movement through said folding and bonding zones,
progressively folding said plastic strip and said belt arou said strand in said folding zone and locating marginal side surface portions of said strip against each other and slightly compressing said strand in a direction extending normally of its axis without elongation of said strand
during final stages of said folding step so that said strip has a snug fit on said strand, bonding said marginal side
said bonding zone, and cutting through said film
intervals as said strand passees thround at periodic time whereby,
electrical connectors each comprising an elastomeric body member of corrugated paperboard to form a plate member having a film wrapped therearound and having spaced apart having at least one permanently curved portion, the method circumferentially extending conduct
of said film and produced serially.

4,093,481
METHOD FOR RETREADING AND REPAIRING
VEHICLE TIRES
Wilhelm Schelkmann, Witten, Germany, assignor to Vakuum
Vulk Holdings Limited, Nassanu, Bahamas Filed Jan. 28, 1976, Ser. No. 653,240
Claims priority, application Germany, Jan. 31, 1975, 2503973 U.S. Cl. 156-95

1. A method for repairing a vehicle tyre comprising the steps
of: filling a repair region of the tyre with vulcanisable bindin rubber material,
applying a flexible cover to the rubber filled region,
applying a flexible cover to the rubber fued region,
attaching the flexible cover to the tyre with an adhesive that can withstand the vulcanisation temperature of the rubber filling around the border of the flexible cover to provide a
seal between the flexible cover and the tyre, seal between the flexible cover and the tyre,
piercing the flexible cover with a hollow suction piercing one point over the repair region where air or other
least gas or vapour has accumulated within the repair region, evacuating the air or other gas or vapour from the repair region ad eac
the needle,
removing the needle from the flexible covering at each of said points after the air or other gas or vapour has been evacuated,
by the needle puncture opening in the flexible cover made heating the repair region to vulcanise and bond the rubber heaing the repair reging to the tyre.
fill

$$
\begin{gathered}
4,093,482 \\
\text { ND INSULA }
\end{gathered}
$$

HEAT AND SOUND INSULATOR OF CURVED CORRUGATED PAPERBOARD AND METHOD OF CORRUGATED PAPERBOARD AN Mitsutoshi Ogata, and Norinao Naito, both of Fukuoka, Japan, asignors to Nissan Motor Company Limited and Fukuoka Paper Company, Limited, both of, Japan
Filed May 14, 1976, Ser. No. 686,314

$$
\begin{aligned}
& \text { Filed May 14, 1976, Ser. No. 686,314 } \\
& \text { Claims priority, application Japan, May 15, } 1975,50-58137
\end{aligned}
$$

S. Cl. 156-210 Int. Cl. ${ }^{2}$ B32B 3/28, $1 / 00$

1. A method of shaping a heat and sound insulating plate
omprising the steps of:
preparing a plane composite plate by joining a sheet of plane liner paper to a corrugated medium of paper by a thermoplastic resin such that a layer of said resin in hardened state adheres both to said corrugated medium at respective top regions of parallel ridges thereof and to the inside surface of said plane liner
press-forming said plane composite plate into a desired shape having at least one permanently curved portion with
application of heat to said layer from the outside of said liner and said corrugated medium such that the temperature of said layer is maintained above the softening point of said resin and that said resin fluidifies and permits said liner and said corrugated medium to compensate for rela-
tive displacement during the for uring the forming; and
plate member whereby the shaped plate member is free plate menber whereby the shaped plate member is free
from such internal strains as cause spontaneous deformation of the plate member.

PROCESS AND APPARATUS FOR FORMING PLEATS IN Lamrence O'O DRAW DRAPE
Proder O'Quinn Jacobs, Richmond, Va, assignor to Plastic Inc., Richmond, Va.
Filed Feb. 9, 1977, Filed Feb. 9, 1977, Ser. No. 767,100
Int. C.' B31F $1 / 00$; DO6J $1 / 00$
U.S. Cl. 156-227

11. Process for the production of a straight uniform pleat in the heading of a drapery comprising the steps of:
(a) positioning a piece of a sheet backing material on an essentially flat surface of a positioning means contoured so as to completely encompass the outer periphery of said tionless disposition,
(b) positioning fold-forming means above said backing mate(b) positi
(c) placing the heading of a drapery having a front surface and a rear surface over said fold-forming means in a manner such that said front surface faces upward, and said rear dorming folds in seid heading by causing ing means to interengage with a shaping means brought vertically downward onto the front surface of the heading,
(e) causing the bottoms of said folds to contact said backing material in straight line regions,
(f) cohesively bonding the bottoms of said folds to said backing material within said straight line regions in abutment with said flat surface to form a finished pleat, (g) raising said shaping means, and

METHOD OF MAKING SUPGBGI
METHOD OF MAKING SURGICAL CATHETERS AND
Repinald William Harrinon, Salisbury, and George Albert Peach, Andover, both of England, assignors to Warne Surgical Products Limited, Hampehire, England
Filed July 14, 1976, Ser. No. 705,336
Claims priority, application United Kingdom, Jul. 16, 1975,

1. A method of forming a cuff on a self-retaining catheter, said method comprising the steps of
providing a catheter having a tubular shaft, a passage ex-
tending inside and along the length of the wall of said tending inside and along the length of the wasll of said shaft, and a hole extending between said passage and the
outside surface of said shaft in proximity to the distal end of said shaft,
extruding a thin-walled tube of thermoplastic material,
fitting said tube onto said tubular shaf
fitting said tube onto said tubular shaft at the distal end
thereof at a position where said tube overlies said hole
bonding the ends of said tube to said tubular shaft, and,
bonding the ends of said tube to said tubular shaft, and,
thereafter,
heating said tube to a first temperature to soften said tube
heating said tube to a first temperature to soften
and surrounding said tube with a mould, then
and surrounding said tube with a mould, then
injecting a fluid into said tube via said passage and said hole
so as to cause said tube to expand and adopt the shape of said mould, then
seatid mould, then to sald to second temperature higher than said hirst temperature, said second temperature being sufficient to allow flow of said thermoplastic material, then
shape, and then
shape, and then
allowing the fluid in said tube to escape and removing the
mould.
4,093,485
METHOD FOR FORMING A HOT MELT ADHESIVE Robert L. Orasteen, Shore Rd., Cape Neddick, Me. 03902

Filed May 31, 1977, Ser. No. 801,846

1. A method for manufacturing an even laminated product by extruding a molten thermoplastic coating-material track edge strips of said coating-material track by means of jets of heat absorbing material to keep said edge strips from adhering to edge strips of said basic-material track, said strips of each of aing predetermined for recovery.

METHOD OF $\quad 4,093,487$
BLANKET CONSTRUKING A PRINTING ndrem Clyde, both of N.C., asolgnors to Dayco Corporation, Dayton, Ohio

> Filed Nor. 15, 1976, Ser. No. 7442,165 Int. C.2. ${ }^{2} 29 \mathrm{D} 7 / 14$
U.S. C. ${ }^{156-244.16}{ }^{\text {Int. Cl. }{ }^{2} \text { B29D 7/14 } 4 \text { Clime }}$
from the initial extrusion of said sleeve, at which point the sleeve has been cooled to a substantially solidified set condition.

METHOD AND APPARATUS FOR MAN

 AN EVEN LAMINATED PRODUCT BY EXTRUSION Arto Honkanen, Helsinki, and Erkid Laibo, Kolloo, both of Arto Honkanen, Helsinki, and Erkid Lailo, Kulloo, bodFinland, amiguors to Pekema
OY, Helinkd, Finland Filed Ang. 25, 1976, Ser. No. 717,511
Claims priority, application Finnand, Sep. 4, 1975, 752496 U.S. C. 156-244.19

US. C. 156-244.13 Int. Cl. ${ }^{2}$ B29D 23/04 7 Cleims

1. A method for continuously forming a hot melt adhesive cartridge of accurate outside dimension and having a non-stick continuously extruding a hollow sleeve of non-stick, ther moplastic material;
sizing said continuously extruded sleeve to a predetermined outside dimension;
coling said sleeve to a solidified set condition; and
introducing a hot melt adhesive material into said hollow
sleeve by dispensing such material at a point downstream

2. A method of continuously making a printing blanke construction comprising the steps of, supporing a fabric subsrate web in coul form for unwinding rotation, unwinding and moving a polymeric layer against said substrate web at said station, continuously bonding a reinforcing layer against said polymeric layer, and continuously calendering a printing face against said reinforcing layer

4,093,488
PROCESS FOR THE PRODUCTION OF BUILDING MATERIAL ELEMENTS, PARTICULARLY BUILDING Kurt Kirsch, Vienna, Volkmer Hisens Kurt Kirsch, Vienna; Volkmar Hilzensauer, Amstetten; Gunther
Pflug, VIenna; Felix Wehrmann, Vienna, and Gerald Maresch, Phug, Vienna; Feliir Wehrmann, Vienna, and Gerald Maresch,
Vienna, all of Austria, assignors to Isovolta Osterreichische Isolierstoff werk Axtiengesellschaft, Wiener Neudorf, Austria Division of Ser. No. 450,\&47, Mar. 13, 1974, sbandon Claims priority, application Austria, Mar. 16, 1973, 2385/73; Dec. 12, 1973, 10381/73; Feb. 21, 1974, 1400/74
U.S. CI. 156-245

Int. Cl. ${ }^{2}$ B29C 19/00

1. A process for the production of an incombustible building
material element having material element having good thermal insulation properties (a) spray
ulite granules, whice ine granules, while agitating the granules, a liquid conmixed resin having at least one combustible resin compomixed resin having at least one combustible resin comporesin component, wherein the amount of resin, calculated as solid substance, coated on the granules is 2 to 30% by weight, based on the weight of the granules,
(b) placing the coated granules in a first press and pressing the coated granules without heating to bond them to form a transportable molded product,
press provided with a heating means, and
(d) pressing and heating the transportable molded product at an elevated temperature to further bond the granules and organic binder in the molded product to form an incominsulation properties.

4,093,490
METHOD OF MAKING VAGINAL DIAPHRAGM George A. Ziets, Bound Brook, and Bernard L. Williams, Mar-
tinsrille, both of N.J., assignors to Ortho Pharmaceutical tinssille, both of N.J., ass

Filed Apr. 29, 1977, Ser. No. 792,383
Iat. C.2
U.S. Cl. 156-245

Iot. C. ${ }^{2}$ B29F $1 / 00$
7 Claims 1. The method of making a diaphragm comprising center orming a sheet of a thermoplastic elastomer into a dome at an elevated temperature, said sheet having a diameter greater than said ring, and sealing said dome to said ring, whereby a diaflexible dome-shaped membrane.

FASTENER INSTALLATION METHOD ugh G. Wheipton, 2059 W. Artesla, Torrance, Calif. 90504, and William H. Trembley, 8463 Hiquera St., Culver Clty, Calif.
ancer 90230
Contin
Continuation-in-part of Ser. No. 156,406, Jun. 24, 1971,
abandoned. This application Mar. 18, 1974, Ser. No. 452,097 Int. Cl. ${ }^{2}$ C09J 5/00; B32B 3/12, 27/34 U.S. Cl. 156-309

8 Clàms

4,093,489
PROCESS FOR LAMINATING PHOTOGRAPHS AND THE LIKE INTO MOLDED ARTICLES OF MELAMINE-FORMALDEHYDE RESIN Kwang Kill Hong, Rte. 2, Box 141, Colonial Beach, Va. 22443 Filed Sep. 22, 1976, Ser. No. 725,650
Int. Cl. ${ }^{2}$ B29C $19 / 00$; B44F $7 / 00$
U.S. CI. 156-245

7 Claims

1. A process for the production of a rigid molded decorative 1. A process for the production of a rigid molded decorative mine-formaldehyde resin, comprising the steps of:
(a) sandwiching a decorative element, consisting of an in-dicia-bearing opaque sheet of paper, between two flexible cast, preformed, self-supporting uncured translucent resin films formed by rying a layer of a catalyst-containing
aqueous solution of a thermoseting melamine-formaldehyde condensation product at below curing temperature, to form a layup;
(b) overlaying the thus-produced layup onto a surface of a flexible three-dimensional molded article formed of a catalyst-containing partially-cured melamine-formalde-
hyde filled molding resin, with the indicia-bearing surface hy the sheet of paper facing away from the molded article. to form an assembly; and
(c) curing the melamine-formaldehyde condensation product completing the cure of the partially-cured molding resin, conforming the layup to the shape of the molded article and bonding the layup produced asserative assembly.
2. A method of installing a fastener insert to a panel having cavity extending thereinto from one face thereof, the method comprising the following steps in combination:
providing a fastener insert having an axially extending body and a flanged heat conductive head portion integrally oviding at one
providing on an undersurface of said flange synthetic resin bonding material which is solid at room temperature melts at an elevated temperature and resolidifies on cool ing to bond adjacent structures;
providing a heating tool having an operating temperature melting temperature of said bondproviding a panel having a cavity, said cavity having cross-sectional size adapted to receive said body and a depth sufficient to allow engagement between said bonding material and portion of the outer surface of said pane
adjacent said cavity when said body is inserted in saic cavity;
inserting
inserting said body in said cavity to provide engagemen between said flanged head portion and said bonding mate rial and between said bonding material and said oute salse portions or pane
and to said bonding material by placing said heating too and to said bonding material by placing said heating tool ing material;
said bonding material being characterized by yielding increased bonding strength between said insert and pane from said heating tool beyond the time required to met said bonding material, and up to a maximum time, beyond
which said maximum time the bonding strength of said bonding material deteriorates, and
stopping the heating of said bonding material after melting thereof at a time to effect a resulting bonding strengt which is approximately the maximum bonding strength of said bonding material.

4,093,492
COPOLYAMIDES CONTAINING CAPROLACTAM LAURICLACTAM AND 11-AMINOUNDECANOIC ACID LaURICLACTAM AND 11-AMINOUNDECANOIC ACID Germany, assignors to Plate Bonn Gesellischaft Mit Bes. chrankter Haftung, Bonn, Germany
Division of Ser. No. 467,234, May 6, 1974, Pat. No. 3,948,844, which is a continuation-in-part of Ser. No. 384,371, Jul. 31, 1973, Pat. No. 3,883,487. This appplas
Claims priority, application Germany, May 12, 1973, 2324160 Claims priority, application Germany,
Int. Cl. ${ }^{2}$ Co9J 5/06
U.S. C. 156-331 12 Claims 1. A process for heat-sealing together surfaces of materials
comprising applying to at least one of the surfaces to be sealed a composition comprising a copolyamide having a melting range below about $110^{\circ} \mathrm{C}$ and consisting essentially of recurring units of caprolactam, lauriclactam, 11 -aminoundecanoic acid and a hexamethylene diamine salt of an aliphatic dicarboxylic acid of the formula:
$\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{COOH}$
(1)
in which n is $4,7,8,10$ or 11 , joining said surfaces, heating the materials to be sealed to a temperature sufficient to melt the copolyamide and cooling the materials.

4,093,493

APPARATUS FOR FORMING A PHOTOGRAPHIC POD.TAPE PRODUCT
Richard D. Welch, Pittsford, and John E. Iversen, Rochester, both of N.Y., assignors to Eastman Kodak Company, Roches
ter, N.Y. ter, N.Y.
Trision of Ser. No. 483,586, Jun. 27, 1974, abandoned. This application Sep. 19, 1975, Ser. No. 615,031
U.S. CI. 156-358

1. In an apparatus for adhering rupturable photographic pods onto a tape to form a photographic pod-tape product in which each pod comprises a pair of facing rectangular walls formed of deformable sheet material and secured to one an other at their marginal edges to form a cavity for a liguid photographic processing agent, the comminite entry and exi
 sponding edges of a plurality of pods fed therein through spaid entry opening;
said chute having a portion of a width less than the width of
itudinal axis of said chute; and
longindinal axis of said chute; and means extending into said first slot for simultaneously (1) applying the adhesive surface of a tape trained over a
portion of said tape applying means into engagement with portion or said tape applying of said pods to form said pod tape product, and (2) transporting said product from said chute through said exit opening.

SECURING MEANS FOR PARQUET FLOOR BOARDS
William A. Boettcher, 4007 N. Clark St., Chicago, III. 60640
Filed May 9,1977 , Ser. No. 795,171
.S. Cl. 156—577

1. Securing means for parquet boards designed to be laid on floor, comprising a machine adapted to travel in a direct course on the floor, transverse cylinder means mounted in the machine and carrying a series of rotatable rolls from which
tapes adhesive on the under side may be drawn to adhere to the floor during said travel, the tapes showing a protective overing on the upper side when laid, and such covering removable to allow the parquet boards to be laid on said upper side into adhering engagement with the tapes, the machine having a pair of side walls receiving said cylinder means plates carried by the tie bar in line with the tapes, and means to adjust the channel plates according to lateral adjustments of the tapes.

4,093,495

APPARATUS FOR REMOVING A TIRE FROM A BUILDING DRUM OF A TIRE BUILDING MACHINE Bruno Colombeni, Milan, Italy, essignor to Industrie Pirelli S.p.A., Milan, Italy

Filed Jun. 24, 1977, Ser. No. 809,761
Claims priority, application Ittyly, Jon. 28, 1976, 24790/76 U.S. CI. 156-394 Int. Cl. ${ }^{2} \mathbf{~ B 2 9 H} 17 / 00$ 12. In a tire building apparatus having longitudinally spaced reaker building-drum and tire building drum and means interediate the two drums for transferring a breaker structure from the breaker building-drum to the tire building drum by back and forth movement therebetween, a means mounted on said intermediate means facing said tire building drum for
removing a tire from the tire building drum which comprises
means movably attached to said intermediate means for a group to join said portions into a composite filter rod;
movement substantially perpendicularly with respect to movement substantially perpendicularly with respect to wherein the means for axially spacing the portions apart in-
the axis of the fire building drum disposed to move below cludes at least one stationary suide, including means for disa tire on the tire building drum and comprising a frame placing a rod in its flute so that it projects beyond said lateral having a generally arcuate contour compresponding to a placing a rod in its flute so that it projects beyond said
segment of the peripheral surface of a tire, means pivotasegment of the peripheral surface of a tire, means pivota-
bly mounted on the frame having rollers disposed to bly mounted on the frame having rollers disposed to
contact the tire when the frame is disposed below the tire, contact the tire when the frame is disposed below the tire,
means for moving the said frame into contact with the tire, means

means attached to said intermediate means disposed near the top of a tire on said tire building drum comprising an arm
means for moving said arm radially inwardly to agains means for moving
the side of the tire,
means for moving said device longitudinally with said arm disposed agains
the drum, and
means for pivoting said pivotal means to discharge the tire therefrom after the tire is removed from the drum.

APPARATUS FOR ASSEMBLING ROD-LIKE ARTICLES Desmond Walter Molins, London, England, assignor to Molins Filed Mar. 31, 1976, Ser. No. 672,148 Clajims priority, application United Kingdom, Apr. 4, 1975, S. Cl 156 Int. C1. ${ }^{2}$ B65C 9/04

1. Apparatus for making composite filter rod, comprising
neans to feed successive groups each consisting of several means to feed successive groups each consisting of several
axially aligned component filter portions, said means including axially aligned component filter portions, said means including
at lease conveyor provided with flutes for supporting and at least one conveyor provided with flutes for supporting and
conveying filter rods in a direction transverse to their lengths; means for cutting the rods into portions, the flutes of said conveyor being provided with additional lateral support means for said rods in the region where they are cut by said cutting
means; means for subsequently axially spacing the portions means; means for subsequently axialy spacing the portions
apart to form a sub-group of component filter portions; means to feed a web of uniting material; slitting means to slit the web continuously longitudinally into a plurality of strips; guide means for changing the directions of travel of said strips and for spacing the strips apart; means for successively cutting
portions from the strips to provide a plurality of uniting bands; and means for wrapping the uniting bands around the end portions of each adjacent pair of component filter portions of

SELF RETRACTING STRIPPER FINGER FOR COLF RUGATING MACHINE Martin J. Lerf, New York, N.Y., asalgnor to SQS Corrugated
Paper Machinery Co., Inc., Brooklyn, N Y. Paper Machinery Co., Inc., Brooklyn, N.Y. U.S. C. 156-473 Int. C.2 ${ }^{2}$ B31F $1 / 00 \quad 10$ Claims

1. Web corrugating apparatus including first and second tating corrugating rollers operatively in mesh at a corrugat ing nip through which a flat web passes to be transformed into a corrugated web, a pressure roll operatively disposed adjacen
said first corrugating roll at a pressure nip through which the corrugated web and another flat web pass and are joined to form single faced board, a plurality of transversely spaced finger means having arcuate surfaces operatively positioned t support the corrugated web in the region between said nips,
each of said finger means including an upstream and a down stream section generally aligned in a plane parallel to the rotational axis of the corrugating rollers, biasing means urging arcuate surfaces of said sections toward said first corrugating roll, a first and a second holder to which the respective up stream and downstream sections are secured, a support to which said holders are movably mounted, and means opera
tively connecting said holders whereby movement of said firs holder in a blade retracting direction is transmitted to said second holder to move the latter in a direction to retract said downstream blade

AUTOMATIC SHIRT COLLAR STAY APPLYING id Wendell 8803 MACHINE Filed May 11, 1977, Ser. No. 795,891 Int. C1. ${ }^{2}$ A41H 43/00
U.S. Cl. 156-494 \qquad 5 Claims 1. A machine for adhesively attaching a stiffening stay to the
end sections of collar materials wherein end sections of collar materials wherein the stiffening stays ar
provided with a heat sensitive adhesive on at least thereof, comprising:
a. a frame for supporting said machine;
a. a frame for supporting said machine;
b. a pair of spaced collar or liner mately
b. a pair of spaced collar or liner material supporting members spaced apart and in substantially the same plane and
of substantially of substantially the same contour as the end of a collar or
liner material, said supporting members being of such liner materia, said supporting members being of such the collar or liner material;
c. a collar or liner tightening member positioned on said frame between the two collar or liner material supporting members having means for engaging the said collar or larer material and moving the same in a plane perpendicumembers for moving the end portions of the collar or liner material inwardly against the ends and outer edges of the said collar or liner supporting members:
d. said stays being formed of a flexible polyester plastic;
e. a pair of spaced magazines for carrying a stack of stays in each of said magazines adjacent the ends of said collar or liner materials supporting members

means for automatically placing a single stay from each lack in position on the collar or liner material supporting means adjacent each end of the collar or liner material; positioned on the collar or liner material, and means for moving the heating means in close proximity of the said stays and means for supplying heat to the said stays for a predetermined period to soften the said adhesive carried thereon suficienty tion or liner material.
coll
heating means for receiving said sheet material from said forming means and heating said sheet material; an extruding die including
a straight application passage having an inlet for receivin said sheet material containing the spaced holes and arcuate projections thereupon at one end and an outle integrally extruded onto the upper surface of said shee material moving into said application passage as the sheet material passes through the application passag and wherein said fused plastic material is simultaneousl permitted to flow into said holes of the sheet materia integrally embedded in said arcuate projections on saic sheet material;
a straight sheet passage communicating with the inlet of said application passage extending in the longitudina direction of said application passage, and guiding said the application passage,
downwardly inclined passage therein communicating with said application passage whereby a fused plastic material may pass therethrough onto the upper surface tion passage, and
a manifold located above said sheet passage and therein communicating with said inclined passage;
an extruder connected to said manifold for feeding said fused plastic material through said manifold and saic grally forming the upper layer under pressure onto the perforated sheet material moving into said applicatio passage so as to form an extruded product on the lower and upper layers; and
cooling means for receiving the thus-formed product and
continuously cooling sing continuously cooling said extruded product.
$4,093,499$
APPARATUS FOR PRODUCING FLEXIBLE NON-SKID Hiromitsu Nake, No. 39, Caza Shinmachi, Yashio-shi, Saltama. Ken, Japan
Continumion

Cotinuation of Ser. No. $\mathbf{5 5 7} 886$, Mer 12,1975 , ehatione which is a division of Ser. No. 483,005, Jun. 25, 1974, abandoned. This application Nov. 15, 1976, Ser. No. 742,115
Cluims priority, application Japan, Jul. 16, 1973, 48.79785 priorit, application Japan,
Int. C1.

3 Chims

1. An apparatus for continuously producing a flexible non-
skid strip having a lower layer and an upper non-skid layer, said apparatus consisting essentially of
feed means for continuously feeding a continuous length of sheet material which forms said lower layer from a supply roll, said sheet material being of a material selected from
the group consisting of aluminum, copper, steel and stainthe group consisting of aluminum, copper, stel and stain-
less steel; forming means for receiving said sheet material from said feed means comprising upper and lower forming rolls having a peripheral surface shape for continuously making
a plurality of spaced holes in the sheet material in the a plurality of spaced holes in the sheet material in the
longitudinal direction thereof with arcuate projections on the upper surface of said sheet material bridging each of
the holes;

BAG FORMING APPARATUS BAG FORMING APPARATUS
Thomas J. Browne, Birmingham, Mich, asedgnor to Lehigt
Valley Industries, Inc, New York, NY Valley Industries, Inc., New York, N.Y.
Fuled Mar. 28, 1977 , Ser. No. 781,778
U.S. CI. 156-510 C. ${ }^{\text {Int. }}$ B20D S/08; B30B $15 / 3416$ Claim

1. An apparatus for making plastic bags from multilayered portion; plastic film comprising a housing including a front edge substantially continuous elongated base rigaidy secured film, a ubstantially spanning the length of said front edge of the ral ridg, said elongated base having a plurality of spaced integral ridges; a wire element supported by said spaceed ridges of
said elongated base; a first insulating strip overlying said wire; an electrical circuit including a switch, said electrical circuit having terminals connectable to said switch and to an external power source; means in said lid for actuating said switch when
said lid is closed; a second insulating strin in said lid which is substantially coextensive with and overlies said first insulating strip when said lid is closed; an elongated channel in said lid substantially coextensive with and parallel to said second insulating strip and a cutting means slideably mounted in said channel for severing the plastic bags from said tubular film.

PROCESS FOR SYNTHESIZING AND GROWING SINGLE CRYSTALLINE BERYL Masaya Hirabayashi, Yokaichi; Naoki Omi; Yuil Nakano, both of Kyoto, and Tetsuro Oshiba, Yokaichi, all of Japan, assignors to Kyoto Ceramic Co., Ltd., Kyoto, Japan
Fiied Feb. 12, 1976, Ser. No. 657,595 Claims priority, application Japan, Feb. 18, 1975, 50-20692 U.S. Cl. 156-624

4,093,501
FRICTIONAL HEAT WELD Dirk Adriasan van Staveren, Moerkapelle, Netherlands, assignor Ruiswijk, Netherlands

Filed Oct. 7, 1976, Ser. No. 730,329
${ }_{7511929}$ Claims priority, application Netherlands, Oct. 10, 1975
U.S. C. $156-580$ Int. C. ${ }^{2}$ B32B 31/2O

1. A device for connecting the ends of a strap of thermoplas tic material wrapped about a package comprising
a platform for supporting the package having a longitudinal vertical slit,
a strap supply,
a lower die,
cutting mechanism for severing a strap wrapped about a
package to form two ends and a free end on said strap supply,
means for moving the upper and lower dies relative to one another to force the two ends of said strap wrapped about a package toward one another,
means for inserting the free end of said strap supply between the two ends of said strap wrapped about said package, and means for moving said free end longitudinally of said
two strap ends when the two strap ends and said free end are forced together by said means for moving said upper and lower dies together.
2. A process for forming a single crystalline beryl out of a olten salt comprising the steps of:
(a) adding the componstor mixture;
(b) heating
(b) heating said mixture to a temperature higher than the melting point of said flux so as to form a molten salt; (c) cooling said molten salt to a temperature below the
temperature of beryl formation (d) reheating said salt to the upper temperature region of beryl formation for a sufficient length of time so as to preferentielly form single crystalline beryl; and beryl therefrom. beryl therefrom.

METHOD FOR FABRICATING ULTRA-NARROW
METHOD FOR FABRICATING ULTRA-NARROW Erik Preston Harris, Yorktown Heights, and Robert William
Keyes, Ossining, both of N.Y., assignors to Keyes, Ossining, both of N.Y., assignors to
Business Machines Cornational Business Machines Corporation, Armonk, N.Y. Filed Mar. 7, 1977, Ser. No. 775,335
U.S. C. $156-628$

1. A method for fabricating ultra-narrow metal lines on a upporting substrate comprising the steps of: applying a thin metal film on the surface of a substrate, covering selected portions of said thin metal film with mask ing material to delineate a desired pattern,
selectively ion implanting the edges of said film, masked portions of said thin metal film to predetermined desired depth,
removing said
removing said masking material from said remaining portions of said thin metal film,
and removing by selective etching the unimplanted portions of said thin metal film to provide a pattern of ultra-narrow

METHOD FOR PROODUCCNG ELECTRICALLY CONDUCTIVE INDIUM OXIDE PATTERNS ON AN INSULATING SUPPORT BY ETCHING WITH Johannes J. Ponjee, and Hendrik J. Feill both of Eindhove Johannes S. Ponjed, and Hendrik J. Feil, both of Eindhoven,
Netherlands, assignors to U.S. Philips Corporation, New York, N.Y.
Fiied Aug. 5, 1976, Ser. No. 712,040
METHOD AND APPARATUS FOR EFFECTING EVEN DISTRIBUTION APD MIXING OF HIGH CONSISTENCY PULP AND TREATMENT FLUID
Johan C. F. C. Richter, Nice, France, assignor to Kamyr Ak-
tiebolag, Karlstad, Sweden
Filed Mar. 10, 1976, Ser. No. 665,576 Claims priority, appilcation Sweden, Mar. 14, 1975, 7502870 ${ }_{7509341}^{\text {Claims }}$
U.S. C. ${ }^{156-656}$

Int. Cl. ${ }^{2}$ C23F $1 / 02$

1. A method 2 Claims 1. A method of producing an electrically conductive pattern comprising forming a uniform layer of indium oxide on an layer an etch-resistant coating in the negative image of the desired pattern, applying to said thus coated layer an aqueous hydrochloric acid etching solution containing in addition to the acid, ferric chloride in a quantity of between $0.01 \mathrm{~mol} / /$ and the saturation concentration thereof

2. A method for continuously distributing and mixing high consistency pulp with at least one treatment huid in a housin introducing pulp having a solids content of about 5% or more into the housing cylindrical portion,
imparting a rapid circular movement about an axis of rotation to said pulp, corresponding to a linear peripheral velocity at the velocity at which the pulp is fluidized, afte
introduction into said moving pulp being contained by said housing cylindrical

METHOD AND APPARATUS FOR HEATING AND REMOVING MOISTURE FROM WATERY MATERIAL Hidemasa Tsuruta, Tokyo; ShojI Itoh, Chiba; Masayuki Otsuka, and Naoki Shimizu, both of Tokyo, all of Japan, asslgnors to Nittetu Chemical Engineering Ltd., Tokyo, Japa Claims priority, application Japan, Oct. 4, 1975, 50-119371
U.S. C. 159-9 A

4. An apparatus for heating and removing moisture from watery material, comprising:
a rotatably supported drum of cylindrical shape having an niet and an outlet at opposite ends;
a plurality of perforated partitions dividing said drum into a number of longitudinally extending compartments for accommodating packing elements including a center compartment and circumferential compartments around said center compartment each compartment retaining packing passage of the watery material while blocking passage of the packing elements;
a feeding duct extending to said inlet of said drum for feeding watery material thereto;
means for introducing a hot gas axially through said drum;
and
means for removing exhaust gas from said drum.
protion,
protion, tion in a predominantly even layer over a layer of moving
pulp in said housing cylindrical portion, thus forming pulp in said housing cylindrical portion,
repeated layers of pulp and treatment fluid,
transforming the circular movement of said, pulp having a layer of treatment fluid into a whirling movement translating along said axis of rotation of said pulp, so that displace
ment between the pulp layers takes place effecting complete mixing of said pulp and said treatment fluid, and transporting the now mixed pulp and treatment fluid to
another treatment station, the mixed pulp and fluid another treatment station, the mixed pulp and fluid no
longer having a whirling movement during transport to longer having a whirling n
the other treatment station.
8. Apparatus for continuously distributing and mixing high consistency pulp with at least one treatment fluid comprising an enclosed housing, said housing having a cylindrical por tion thereof,
means for tangentially introducing pulp having a solids
consistency of about 5% or more into said housing cylindrical portion,
means for imparting a rapid circular movement about an axi of rotation to said pulp, corresponding to a linear periph after introduction into said housing cylindrical portion said moving pulp being initially contained by said housing cylindrical portion,
means for generally radially introducing a treatment fluid into the housing cylindrical portion in a predominantly
even layer over a layer of moving pulp in said housin cylindrical portion, thus forming repeated layers of pulp and reatment fluid,
means for transforming the circular movement of said pulp having a layer of treatment fluid into a whirling movethat displacement between the pulp layers takes place effecting complete mixing of said pulp and said treatment fluid, said transiorming means comprising a generally from one end of said cylindrical extending outwardy

Conical housing portion having an outlet disposed at the is clarified to produce green liquor containing sodium carbon-
termination of the convergence thereof, and
ate, sodium sulfide and sodium chloride and the carbonate and termination of the convergence thereof, and means for transporting the now mixed pulp and treatmen
fluid to another treatment station, the mixed pulp and fluid no longer having a whirling movement during transpor to the other, treatment station.

METHOD OF LIQUID TREATING CELLULOSE FIBRES WITH ELASTIC PRESSURE SHOCKS orsten

Filed Nov. 17, 1976, Ser. No. 742,91
Int. C. ${ }^{2}$ D21C $1 / 02,1 / 10,5 / 02$
U.S. C1. ${ }^{162-18}$

1 Claim

1. In a method of treating cellulose fibers in a cellulose pulp wherein the pulp consistency is in the range of $10-90 \%$, an wherein intermittent elastic compression forces are applied to
the fibers, the improvement wherein the applying of elastic forces comprises the steps of:
positioning a rotatable paddle wheel eccentrically within a
container so that paddle arms of the paddle wheel at least container so that paddle arms of the paddle wheel at leas
closely approach an interior wall portion of said container intermittently,
invermittentily,
providing said wall portion with an elastic surface, introducing the fibers into the container,
rotating the paddle wheel to intermittently elastically compress the fibers against saide elastic surface to apply elastic pressure shocks to the fibers for a duration not exceeding
one second and of a magnitude causing pressure in the one second and of a magnitue causing preshere in the
interior of the fibers to exceed 0.2 atmospheres excess interior of the fibers to exceed 0.2 atmospheres excess
pressure, whereby liquid is expelled from the fibers and presure, whereby liquid is expelide from
allowing the fibers to expand following the pressure shocks to adsorb liquid, and
repeating said steps of applying shocks and allowing the
fibers to expand, until the fibers are completely impreg nated with liquid.

4,093,508
PROCESS FOR RECOVERING CHEMICALS FROM THE WASTE LIQUORS OF SULFATE CELLULOSE DIGESTION AND THE WASTE WATERS OF
Kaj Olof Hearicson, BLEACHING
strom Onakeyhtio, Finland
Filed Mar. 10, 1975, Ser. No. 556,974
Cleims priority, application Finland, Mar. 12, 1974, 743/74
U.S. C1. 162-30 K Int. C. ${ }^{2}$ D21C $11 / 12$
U.S. C. $162-30$

1. In a process for the recovery of chemicals from the 3 1. In a process for the recovery of chemicals from the waste
liquors of sulfate cellulose digestion and from the waste waters iiquors of sumate cellulose digestion and rrom the waste water
of bleaching, wherein the waste liquor from the digestion
concentrated by evaporation and the concentrated waste concentrated by evaporation and the concentrated waste li
quor is burned in a recovery boiler to produce a melt mainly quor is burned in a recovery boiler to produce a melt mainl containing sodium sumfice, sodium carbonaters of bleaching an
ride, the melt is dissolved in the waste wate
ate, sodium sulfide and sodium chloride and he carbonate and the chloride are separated from the green liquor, the improve
ment which consists of (1) separating sodium carbonate from the green liquor by crystallization under conditions to retain all the sodium chloride in the sodium sulfide-containing mother liquor said mother liquor being saturated with respect to so dium chloride, dissolving the crystallized sodium carbonale caustizing at least a portion of the sodium carbonate solution

with a caustizing agent which is calcium hydroxide to form sodium hydroxide, (2) caustizing the sodium carbonate-depleted sodium sulfide containing mother liquor with calcium hydroxide (3) concentrating by evaporating said mother liquo to precipitate sodium chloride, (4) separating sodium chloride therefrom and combining the resultant mother liquor containing sodium sulfide with the sodium hydroxide-containing solution in a ratio suitable to form a digestion solution with desired sulfide content.

PRODUCTION OF PULP SLURRIES EMPLOYING ichard I Jecobe Patic ANHYDRIDE
burg, Ohio, saignor to The Sherwin
Wiliams Company, Cleveland, Ohio
Flled Jun. 27, 1977, Ser. No. 810,013 Int. Cl. ${ }^{2}$ D21D $3 / 00$
U.S. C. 162-158
making paper comprising 1 Claim 1. A method for making paper comprising adding to an slurry, from 1 to 5 percent of isatoic anhydride to shorten the beating time required to achieve a given degree of pulp free ness as compared to the beating time required to achieve the same degree of freeness for the pulp slurry without an isatoi anhydride addition, and forming the paper sheet, whereby th formed from the pulp without an isatoic anhydride addition, and beaten to the same degree of freeness.

XANTHATED STARC, $4,093,510$
Merle E. Carr, Chillicothe, AMI, MEsignor to the ADDITIVES America as represented by the Secretary of Agriculture, Washington, D.C.

Filed Apr. 7, 1977, Ser. No. 785,616
U.S. C1. 162-175

Int. C1. ${ }^{2}$ D21D 3/00

1. Compositions for use in increasing the 17 Cluims strength of paper comprising xanthated starch amines (XSA) characterized by the following general structure:

wherein R^{1} is a $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkylene or hydroxy-substituted alkylene; and $\mathbf{R}^{2}, \mathbf{R}^{3}$, and \mathbf{R}^{4} are each selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{12}$ straight or branched alkyl, cyclohexyl, phenyl, and benzyl,
amine group; and
and
wherein D. xanthate group. 8. A method of in
2. A method of increasing the wet and dry strength of a
paper product comprising adding to the pulp furnish as paper product comprising adding to the pulp furnish as a
wet-end additive in a papermaking process an effective amount of a xanthated starch amine (XSA) characterized by the following general structure:

wherein R^{1} is a $C_{1} C_{6}$ alk ylene or hydroxy-substituted alkyl ene; and R^{2}, R^{1}, and R^{4} are each selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{12}$ straight or branched alkyl, cyclohexyl, phenyl, and benzyl;
mine group represents the degree of substitution of the
wherein D.S. X represents the degree of substitution of the xanthate group.

APPARATUS FOR OXYGEN BLEACHING OF PULP INCLUDING RECIRCULATION OF EXHAUST GASE France, assignor to Kamyr Aktiebolag, Karistad, Sweden Division of Ser. No. 500,899, Aug. 26, 1974, Pat. No. 3,963,56 This application Feb. 9, 1976, Ser. No. 656,58, Claims priority, application Siveden, Aug. 27, 1973, 7311580 U.S. C. 162-234 int. C1. ${ }^{2}$ D21C 9/10, 7/00 4 Clims 1. Apparatus for oxygen bleaching of pulp comprising an oxygen reactor vessel including an inner concentric suban oxysen reactor vessel including an inner concentric subthan at the bottom thereof, and an outer chamber surrounding and completely enclosing said inner sub-vessel,
said outer chamber having a pressurized gas-filled top sortion thereof above the open top of said inner sub-vesportion thereof above the open top of said inner sub-ves-
sel, and having a liquid level below the top of said inner sel, and hav
sub-vessel,
seab-vesel,
meansporting high-consistency pulp to an inlet in means for adding oxygen to said pulp in said means for transporting said pulp before entry into said opening in the bottom of said sub-vessel, bottom of said sub-vessel,
means for emulsifying the pulp and the oxygen to thor-
the bottom inlet in said sub-vessel,
rotatable scraper means associated with said inner sub-vessel at the top thereof to distribute pulp over the top edge of said inner sub-vessel into said outer chamber, located adjacent the bottom of said outer chamber, and

means for exhausting gas from said top portion of said oute chamber and returning said exhausted gases to said mean for adding oxygen to said pulp in said means for transpon ing said pulp before entry into said opening in the botto of said sub-vessel

4,093,512

PAPERMAKERS BELTS HAVING ULTRA-HIGH MODULUS LOAD BEARING YARNS Thomass B. Fleiecher, East Greenbuash, N.Y., asdignor to Huyck Corporation, Wake Forest, N.C.
led Apr. 23, 1975, Ser. No. 571,03
Int. C1. ${ }^{2}$ D21F $1 / 10.7 / 08$
U.S. C. 162-348 ${ }^{\text {Int. C. }{ }^{2} \text { D21F 1/10, 7/08 } \quad 16 \text { Claim }}$

1. A papermakers' belt for use in a papermaking machine and omprised of ultra-high modulus load-bearing yarns comprised . (para-phenylene terephthalamide)

WATER MODERATED REACTOR adeusz Berens, and Ragnar Manseon, both of Vasteras, Swe den, Claims priority, application Sweden, Aug. 29, 1974, 7410932 U. C. 176-37 Int. C. ${ }^{2}$ G21C 15/00

1. Water moderated reactor comprising 2 Claim vessel with a plurality of vertically arranged fuel pressure which are enclosed in a moderator tank provided with a cove and positioned by means of an upper core grid arranged in the moderator tank, and comprising a sprinkling device arranged device comprising and below said cover, said sprinkling device comprising a plurality of substantially linear and hor lurality of sprinkling nozzes individually provided with
sprinkling water connected to said main sprinkling tubes, a power of said breeding reactor as a result of the lowering of the
plurality of auxiliary tubes each positioned above a corre. temperature of the coolant flowing the
ing excess heat resulting therefrom.

4,093,515
LAMINATED CARBON-CONTAINING SILICONE RUBBER MEMBRANE FOR USE IN MEMBRANE ARTIFICIAL LUNG
Theodor Kolobor, Rockville, Md., assignor to Government of the United States, Washington, D.C. Filed Mar. 1, 1976, Ser. No. 663,127
Int. C1. ${ }^{2}$ B01D $13 / 00$
U.S. Cl. 195-1.8

1. In a
2. In a membrane artificial lung device for extracorporeal 1. In a membrane artificial lung device for extracorporeal
blood gas exchange during blood perfusion therethrough in-
and cluding a blood-compatible gas-permeable membrane through which said exchange is effected, the improvement consisting of said membrane being a laminated silicone rubber membrane composed of at least two layers comprising a first layer of
silicone rubber compounded with from about 25 to about 40% silicone rubber compounded with from about 25 to about 40%
by weight of silica filler and a second layer of silicone rubber compounded with from about 0.25 to about 40% by weight of carbon black filler.

PREPARATION OF LIQUID FUEL AND NUTRIENTS FROM MUNICIPAL WASTE WATER John L. Lang, P.O. Box 1242, Midland, Mich. 48640
Filed Sep. 27, 1974, Ser. No. 509,813
U.S. CI. 195-27

$$
\begin{aligned}
& \text { Sep. 2t, 19/4, ser. No. st } \\
& \text { Int. C1. }{ }^{2} \text { C12B } I / 00
\end{aligned}
$$

1. The process for preparation of useful substances, including liquid fuel stock and nutrient materials from liquidous (a) sdjustment which comprises essentially the steps of: (a) adjustment of the solids content of said liquidous waste; (b) hydrolysis and saccharification of the polysaccharides and other components of said liquidous waste in the pres-
ence of an essentially constant concentration of a hydrolytic agent selected from the group consisting of oxygen, lye
ozone, and acidic compounds of sulfur and phosphorus, and carried out to the extent that the organic portion of the liquidous waste is essentially solubilized and sterilized; (c) rendering innocuous the hydrolytic agent of step (b);
(d) adjustment of the soluble solids content and the pH of the so-obtained mixture to provide a suitable environment for fermentation of said mixture;
(e) innoculation of said sterile mixture with a selected essentially single fermentation species, and, when desired, with (f) fermentation of said,
metabolic action by said (g) isolation of the desired product components from the fermented mixture.
2. A method of bringing a nuclear power plant to fractiona electric load conditions, which nuclear power plant comprises reactors, at least one nuclear reactor being a breeder and both reactors transferring heat to said working substance, said method comprising the steps of: reducing the supply of wark
ing substance to said turbine in accordance with a predeter ing substance to said turbine in accordance with a predetermined fractional load; transterring heat successively from said breeding reactor to a first cooling circuit having a first coolan temperature; connecting the other nuclear reactor to a second cooling circuit with a coolant temperature higher than said irst coolant temperature; lowering the coolant temperature sponding to the reduced supply of said and increasing the

4,093,517
 $4,4,093,517$

 IN THE PRESENCE OF A NONIONIC SURFACTANT rakash S. Masurekar, Webster, and Charles T. Goodhue, Roch ester, both of N.Y., assignors to Eastman Kodak Company, Rochester, N.Y.Continuation-in-part of Ser. No. 639,690, Dec. 11, 1975. This application Nor. 15, 1976, Ser. No. 741,908
U.S. Cl. 195-66 R

Int. Cl. ${ }^{2}$ C12D 13/10

1. A method for producing cholesterol oxidase comprisim
growing a cholesterol oxidase-producing microorganism in gas to each burner, the improvement in a decarbonizing appamedium comprising a cholesterol oxidase inducer, from ratus including
about 1.0 to about 5.0 g . Лiter of a nonionic surfactant a pipeline in said cellar for conducting compressed air below which is non-toxic to the microorganism, and at least each row of heating flues, each pipeline extending in a about 10 g ./iter of yeast extract, thus producing cholesterol oxidase; and
recovering the cholesterol oxidase.
4,093,518
STIRRED GAS BUBBLE FERMENTER
Michito Hamanaker; Toshio Sano, and Noriharu Kumura, all of Sodegaura, Japan, assionors to Idemitsu Kosan Company Sodegaura, Japan, assignors to
Limited, Tokyo, Japan Filled Jan. 25, 1977, Ser. No. 762,422 S. $195-142 \mathrm{Int}$. C. ${ }^{2}$ C12B $1 / 12,1 / 18$
U.S. Cl. 195-142 PROCESS FOR GOLD PLATING
2. In a stirred gas bubble fermenter having aeration means, a
Donaste gas outlet and an overflow exit, and provided with a
N.J., sasidgnors to Bentell Telephonel Laboratories, Incorporated, waster outside the fermenter and coupled to the fermenter through said overflow exit,
the improvement comprising:
an overflow weir connected to the inner wall of the feran overflow weir connected to the inner wall of the fer-
menter below said overflow exit and extending at least in the upward direction of the fermenter so as to be opposite at least a portion of said overflow exit; and
a guide plate arranged between at least a portion of said
overflow weir and at least a portion of said overflow exit to improve gas-liquid separation.

4,093,519
DECARBONIZING APPARATUS FOR AN DECARBONIZING APPARATUS FOR AN Erich Pries, Bochum, Germany, assignor to Dr. C. Otto \& Erich Pries, Bochum, Gum, Germany
Comp. G.m.b.H., Bochum,
Filed Aug. 7, 1975, Ser. No. 602,766 Filed Aug. . 1975 , Ser. No. 602,760
Claims priority, application Germany, Aug, 19, 1974, 2439724 Int. C1. ${ }^{2}$ C10B 43/12, 21/12 U.S. CI. 202-241

1. In a battery of underjet coke ovens which includes regenerative heating by regenerators above a cellar, gas distribution pipes in the cellar including rich gas feed pipes extending from each distribution pipe through regenerators having a high temperature environment to conduct rich gas to burners within a row of heating flues between two coking chambers, a gas dispensing nozzle located within the relativers for supplying rich
pipes in the cellar below the regenerater
generally parallel relation to a gas distribution pipe supplying rich gas to said nozzles,
means below the high temperature environment of said
regenerators coupled between each gas dispensing nozzle regenerators coupled between each gas dispensing nozzle
for rich gas to inject compressed air from said pipeline into the gas distribution pipe toward the opening in a gas dispensing nozzle located below the regenerators within said relatively cool part of said distribution pipe for periodic cleaning of the gas dispensing nozzle
a supply header for conducting compressed air along the valve means for controlling the flow of compressed air from said supply header to each said pipeline,
regenerative reversal control timer for reversing regenerative heating of the underjet coke ovens,
controller means responsive to a control signal from said timer to conirol regeneraiven hattery, and
control means coupled to operate said valve means in response to a signal from said regenerative reversal control timer for periodic cleaning of said gas dispensing nozzles.

409350 Murray Hill, N.J.
Continuation of Ser. No. 658,702, Feb. 17, 1976, abandoned. This application Jul. 20, 1977, Ser. No. 817,267 U.S. C. $204-15$ Int. Cl. ${ }^{2}$ C25D $5 / 02$, s/08, $5 / 16$

1. A process for electroplating metals and alloys selected from the group consisting of soft gold, hard gold, nickel, tin ickel, and tin-lead on surfaces comprising the step of: passing current from an electrical energy source through an plated as part of the cathode in which electrical resisto are located outside the plating solution and in series be are located ousside the electrical energy source and the surfaces to be plated and in which plating solution is pumped through a plating cell so that plating solution flows parallel to the surface to be plated with a given parallel flow rate charac terized in that
(a) the electrical resistance is between 10 and 10,000 ohms;) the flow rate of the plating solution parallel to the surface (c) the current density is between $50-300 \mathrm{ma} / \mathrm{cm}^{2}$ for hard gold, so as to produce uniform, predetermined plating thickness.

CHROMIUM ELECTROPLATING

 Stanley Renton, 6 Kenilworth Close, Penkridge, Staffordshire, West Midlanper Crowther, 14 Gilbanks Road, Stourbridge, Cantinuastion-in-part of Ser. No. 751,376, Dec. 17, 1976, bandoned. This applicition Jun. 28, 1977, Ser. No. 810,74 Clisims priority, application United Kingdom, Dec. 18, 1975, Int. C1. ${ }^{2}$ C25D 3/06, 3/5U.S. C. 204-43 R

1. In a trivalent chromium electroplating bath of the thims
which consists essentiall which consists essentially of an acidicating bath of the type solution of trivalent chromium, a carboxylate selected from formate, ace-
tate and mixtures thereof, a bromide and ammonium the improvement which consists in maintaining in said bath an amount of metal ion selected from (i) iron or nickel in the
amount of between 30 and 150 parts per million of the solution amount of between 30 and 150 parts per million of the solution
by weight, or (ii) iron plus nickel in the amount of between 30 and 150 ppm with the nickel being in an amount up to about 100 ppm .
isting of cyclic alcohols, glycol ethers, and aromatic sulfonates that are not wetting agents.

ELECTROLYTIC CHROMIC ACID BATH FOR CHROME PLATING
Horat Dillenberg, Kniser-Wilhelm-Allee 26, 56 Wuppertal 1
Germany Filed Dec. 17, 1975, Ser. No. 641,607
Clisims priority, application Germany, Jan. 10, 1975, 2500730
U.S. C. 204-51 Int. C1. ${ }^{2}$ Crmb $3 / 10$
U.S. C. 204-51
 consisting essentially of
450 grams per liter
to grams per liter;
salt;
a water soluble pyridinium, quinolinium or acridinium sul fate salt;
said sulfate salt being present in an amount of at least 1.1
grams per liter up to about 7.0 grams per liter;
said halide salt being present when one of fluoride, chloride,
bromide and iodide, in an amount of about
0.12 to 0.4 grams per liter of fluoride
0.18 to 0.6 grams per liter of chloride 0.401 to 1.2 grams per liter of iodide; and said water soluble sulfate salt and water soluble halide salt regulating electroplating and providing a high throwing power and highly glossy coating while avoiding scorching at
coating sites of high current density.

4,093,523

BRIGHT ACID ZINC ELECTROPLATING BATHS BRIGHT ACID ZINC ELECTROPLATING BATHS John A. Henricks, Onk Park, and Robert E. Wild, Wheato
both of Il., amsignors to Edward B. Wild, Wheaton, III. Filed Feb. 7, 1977, Ser. No. 766,554
U.S. C. 204-55 R Int. Cl. ${ }^{2}$ C25D $3 / 22$
U.S. C1. $204-55 \mathrm{R}$ \qquad 1. The method of electroplating a bright zinc deposit from an
aqueous acid chloride electrolyte containing potassium chloaqueous acid chloride electrolyte containing potassium chlo-
ride as the conducting salt and boric acid as the buffer; by means of an aromatic aldehyde or ketone brightener that is
dispersed into the electrolyte by means of a mixture of, 1- a dispersed into the electrolyte by means of a mixture of, 1 . fatty imidazole sulfonate, 2-a fatty amido betaine and 3-a
hydrotropic coupling agent selected from the group consiting of cyclic alcohols, glycol ethers and aromatic sulfonates that
are not wetting agents.
4. A mixture of addition agents that will produce a bright
zinc deposit of an aqueous acid zinc chloride bath; said mixture zinc deposit of an aqueous acid zinc chloride bath; said mixture held in solution by means of a fatty imidazole sulfonate, a fatty amido betaine and a hydrotrope selected from the group con-

BONDING OF REFRACTORY HARD METAL John R. Payne, Pleassanton, Califf, assignor to Kriser Aluminum \& Chemical Corporation, Onklend, Calif. Continuation-in-part of Ser. No. 749,563, Dec. 10, 1976,
abandoned. This abandoned. This application Oct. 27, 1977, Ser. No. 846,061 U.S. C. $204-61019$ Claim

1. In an aluminum reduction cell comprising a shell defining cavity with the inner surfaces thereof lined with refractory material, at least one electrode depending into the cavity, and second electrode of opposite polarity to the first mentioned is protected by refractory hard metal, the improvement comprising an aluminum carbide bond at the interface between the efractory hard metal and the protected electrode surface which is formed in situ at the interface thereof by reacting a carbonaceous material with molten aluminum.

METHOD OR $4,093,525$ METHOD OF PREVENTING HYDROGEN Dugh Cunningham, Corpus Christi, Tex., assignor to PPG In
 distries, inc., Pittsburgh, Pa.

Filed Aug. 20, 1976, Ser. No. 716,311
Int. C. ${ }^{2}$ C25B $1 / 16.1269 / 02$
U.S. CI. $204-98$

1. In a method of conducting electrolysis in a bipolar electroyzer having a plurality of electrolytic cells electrically and om an any in series comprising passing an electrical current lectrolytic cell end of said electrolyzer to anodes of a first yte and an aqueous alkali metal hydroxide containing cathoyte to cathodes of said first electrolytic cell, evolving hydrogen at said cathodes, and passing said electrical current from joined to anodes of a subsequent cell in said electrolyzer said anodes joined to the opposite side of said bipolar unit, and
thereafter to a cathodic end of said electrolyzer, the improve ment comprising:
passing said ele passing said electrical current from the cathodes of the first
cell 1 aterally to the overall vector flow of current through the electrolyzer, from an anodic end of said electrolyzer to a cathodic end of said electrolyzer, to conductor means at the periphery of said cell; and
passing said electrical current through said conductor means arallel to the vector flow of current through the electrolyzer and then in a direction laterally to the vector flow of current through the electrolyzer from the conductor means to the anodes of the subsequent cell.

HYDROMETALLURGICAL LEACHING AND REFINING OF NICKEL-COPPER CONCENTRATES, AND ELECTROWINNING OF COPPER Jorge L. Bianco, New Oricans,
both of La, and Courtney S. Simonas, Weston, Conn., assignoris to Amax Inc., Greenwich, Conn.
lied Sep. 8, 1977, Ser. No. 831,364
Int. C.2 $2581 / 22$. C25C
U.S. C. $204-104$

32 Claims

1. A process for the hydrometallurgical refining of a sulur 1. A process 20% by weight of the total nickel present is in an acid-soluble metallic form which comprises:
providing a slurry of said concentrate in particulate form in
a copper-containing sulfuric acid leaching solution having a pH ranging up to about 3.5 ,
subjecting said slurry to a first stage leaching and refining step at atmospheric pressure and a temperature ranging
from about 40° to $95^{\circ} \mathrm{C}$ while simultaneously aerating said from about 40° to $95^{\circ} \mathrm{C}$ while simultaneously aerating sain
slurry to effect the simultaneous dissolution of nickel and slurry to effect the simutaneous dissof copper from said solution,
continuing said leaching to a terminal pH of over about 5 to refine said solution by further rejecting copper and impurities therefrom by hydrolysis and provide a purified rities therefrom by hydrolysis and provide a purined
nickel sulfate solution and a first stage atmospheric leach residue containing undissolved nickel, copper and impurities,
separating said purified solution from said first stage atmospheric leach residue for nickel recovery,
subjecting said first stage atmospheric leach residue as a
slurry to a second stage oxidation leaching step at elevated temperature and pressure in a copper-containing sulfuric acid solution for a time sufficient to reach a terminal pH ranging from about 2.5 to 4 and to effect dissolution or vide a second stage pregnant solution thereof and a second stage residue impoverished in said nickel,
the copper-containing sulfuric acid solution employed in
sald second stage leaching step having a compositio
SO_{4} to the nickel in said atmospheric leach residue ranges from about $0.7: 1$ to $1.3: 1$, separating the second stage pregnant solution containing nickel and copper from said second stage leach residue, stage atmospheric leach for separating the nickel from stage atmospheric leach impurities in said solution,
ubjecting said second stage leach residue to a third stage oxidation leaching step at elevated temperature and pres-
sure in a sulfuric acid-containing solution with the total surf in to the total nickel + copper ratio on the molar basis ranging from about $0.9: 1$ to $1.3: 1$ to effect dissolution o substantially all of the nickel and copper in said residue, stage pregnant nickel-copper sulfate solution containin
 ranging up to about 3 ,
subjecting said third stage pregnant solution to a copper winning step for the selective removal of copper while
regenerating acid therein and thereby provide a spen copper-sulfuric acid solution,
and recycling said spent acid solution back into the process to recover the remaining non-ferrous metal values therefrom.

4,093,527

HYDROGEN GENERATING APPARATUS Kazuo Tanno, Hitachi; Yazumasa Furutani, Katruta; Takeshi ors to Hitachi, Ltd., Tokyo, Jappan Mito, all of Jha Fluims priority, Nor. 26, 190, Claims priority, application Japan, Dec. 13, 1974,
Int. C1.
C25B
I/02; B01D
13/02 U.S. C. $204-129$

1. A hydrogen generating method, comprising:
(1) providing a cell having a casing, and first and second electrodes on the opposite ends of said casing; (2) providing a plurality of cation and anion exchange membranes disposed in said casing in a manner that said cation and anion exchange membranes are alternately arranged
between said electrodes and are spaced from each other to define a plurality of chambers, with each chamber constiuting the space encompassed by a cation exchange memrane, an adjacent anion exchange membrane and said casing, and electrically isolating with said casing and transferring only cations and anions from one chamber to an adjacent chamber through the respective membranes; (3) introducing a first aqueous electrolyte into every other one of said chambers;
(4) introducing a second aqueous electrolyte of the same kind as said first electrolyte into said other chambers, while maintaining the second electrolyte at
(5) heating part of the first electrolyte outside of said chambers to concentrate the first electrolyte by vaporizing water therein and removing the vaporized water from the first electrolyte;
(6) introducing water into said other chambers containing
an second electrolyte to dilute the second electrolyte so between the first and second electrolytes; and
(7) maintaining the number of said chambers at least enough so that the sum of the theoretical decomposition voltage drop due to the hydrogen over-voltage determined by the material of said electrodes and a voltage drop due to the interior resistance of the cell is high enough to decompose the water in the electrolyte to generate hydrogen at one of said electrodes when said electrodes are electrically interconnected in an electrical path electrically parallel to the chambers.

RESISTOR ANODE FOR METAL TANK Carl G. Strobach, Clarendon Hills, III, assignor to Rheem Manufacturing Company, New York, N.Y. Continuation-in-part of Ser. No. 704,343, Jul. 12, 1976,
bandoned, which is a continuation of Ser. No. 542,459, Jan. 20, 1975, abandoned. This application Feb. 28, 1977, Ser. No. Int. C1. ${ }^{2} \mathbf{C 2 3 F}$ 13/00
U.S. Cl. 204—197

Filed Mar. 10, 1977, Ser. No. 776,453
Int. C1.2 C25B 3/00; C07C $51 / 08,63 / 26,63 / 28$
CI. $204-180 \mathrm{P}$

1. A process for the preparation of terephthalic acid which comprises electrolyzing in the anode compartment of an electrolysis cell wherein said anode compartment is separated from the cathode compartment by a cation selective membrane, an
aqueous solution of sodium terephthalate at a molar concentration of from about 0.1 to about 0.7 to form an aqueous suspension of terephthalic acid and separating said terephthalic acid product, said electrolysis being conducted at a temperature of from about 60° to about $120^{\circ} \mathrm{C}$, a current density of from about 100 to about 500 amps per square foot, and at a voltage of from about 5 to about 12 volts.
2. A process for the preparation of terephthalic acid which comprises hydrolyzing terephthalonitrile in an aqueous me dium containing a stoichiometric excess of sodium hydroxide at a temperature of between about 100° and about $250^{\circ} \mathrm{C}$ removing ammonia generated by the hydrolysis from the aqueous medium, subjecting an aqueous solution containing from about 0.1 to about 0.7 molar per liter of sodium terephthalate partment of an electrolysis cell wherein said anode compartment is separated from the cathode compartment by a catio selective membrane to form an aqueous suspension of tereph thalic acid and separating said terephthalic acid product, said electrolysis being conducted at a temperature of from about 60° to about $120^{\circ} \mathrm{C}$, a current density of from about 100 K 5 about 500 amps per
3. An improved resistor anode assembly comprising in combination:
an anode with a longitudinal axis and of generally cylindrical Shape having a generally flat top surface, an exposed,
center core wire generally on the axis, and including a groove adjacent the top surface
a conductive metal cap including a top and cylindrical side wall to define a cylindrical receptacle for receipt of the anode, a lower internal surface in the receptacle, an external surface of said side wall being formed for attaching the cap through an opening in the tank;
a disc-shaped resistor having opposed generally flat contact surfaces, said resistor being interposed between the internal surface of the cap and the exposed end of the core
wire, one of said disc contact surfaces being in mechanical wire, one of said disc contact surfaces being in mechanical
and electrical contact with the internal surface of the cap; a conductive biasing spring having an anode end and a resistor end, the spring having an axial passage with the anode end positioned at one end of the passage along the axis thereof whereby the anode end is accessible to a welding probe projecting in the passage, said anode end the core wire and the resistor end being generally flat to provide mechanical and electrical friction contact with the other contract surface of said disc; and
n elastic deformable, hollow, insulating sleeve positioned in said receptacle between the cap side wall and said anode, said sleeve being generally cylindrical and including
means cooperating with the anode groove on the inside to facilitate holding the anode, the diameter of the anode being less than the cap receptacle, said anode also projecting into said receptacle, said cap being force fitted and swaged onto said sleeve to retain the anode, said sleeve also separating the resistor, and conductive biasing spring resistor and spring provide a sole conductive, series path for electrical flow between the anode core wire and the lower internal surface of the cap and maintain said sole path by prevention of electrical contact between the conductive biasing spring or the edge of said disc and said cap regardiess of dimensional changes in said anode assembly
and by accommodation of any dimensional changes due to expansion or compression of the assembly
, 4,093,530
DEVICE FOR ELECTROCHEMICAL TREATMENT OF Vladimir Isaakovich Suslin, ulitsa Frunze, 17, kv. 46; Alexandr Ivanorich Dubovik, ulitsa Grardeitser Shironintser, 63 A, kv. 22; Boris Anatolievich Makeer, ulitss Norgorodskaya, , kr . 121, and Zinory Abramovich Lekarev, ulitsa Trinklera, 20, kv. 71, all of Kharkov, U.S.S.R.

Filed May 20, 1977, Ser. No. 799,119
U.S. C. $204-224 \mathrm{M}$

1. A device for electrochemical treatment of workpieces comprising:
a working
working chamber having a bottom and passages made in said bottom;
said bottom;
a tool disposed within said working chamber, a negative pootential being applied to said tool in the course of treat-
poter ment of a workpiece also disposed within said working
chamber, to which workpiece a positive potential is apchambe
plied;
a drive for said tool;
a working gap formed between said tool and said workpiece in the course of treatment thereof, an electrolyte and a washing medium being alernately dered into saic said passages;
an intermediate chamber with walls, said intermediate chamber being disposed directry under said working chamber
and receiving said electrolyte and said washing medium and receiving said electrolyte and said washing medium
a feed tank for said electrolyte delivered into said work gap for treatment of said workpiece and discharged into the same feed tank from said intermediate chamber after said workpiece is treated;
a separate conduit for said electrolyte, communicating with a separate condui
said feed tank;
water main for said washing delivered into said working gap for washing said workpiece and discharged into drain from said intermediate chamber;
a separate conduit for said washing medium, communicatin
with said main and connected to said separate conduit fo said electrolyte;
said electrolyte; medium joining said separate conduits downstream of
their junction and alternately delivering said electrolyte their junction and alternately delivering said ere
and said washing medium into said working gap;
change-over means for actuating the delivery to said work piece of said electrolyte or said washing medium and the piece of said electrolye orter the workpiece is treated, through said intermediate chamber, said change-over means con sisting of a distribution valve located in said separat said distribution valve so that said distribution valve altersately shuts off said conduit for the electrolyte or said conduit for the washing medium, a mechanism for separa ing the discharge of said electrolyte from that of said
washing medium, disposed at said intermediate chamber washing medium, disposed ah saug said distribution valve and operatively connected through said distribution valit
out the discharge of the electrolyte or the washing medium according to
pump for the deliv electrolyte from said electrolyte feed tank and said wash ing medium for said water main, or said electrolyte only electrolyte and said washing medium, made in one of the walls of said intermediate chamber; flaps provided in said mechanism for separating the discharge of said electrolyt from that of said washing medium, the number of said flaps corresponding to the number of said ports; an axle 0 which said flaps are hinged; a rod in said mechanism for separating the discharge of said electroyte from that end,
said washing medium, having a first end and a second end said first end being connected through said distribution valve with said control element; and a cam mounted on said second end of said rod and alternately interacting with each of said flaps in accordance with the operative position of said distribution valve.

APPARATUS FOR CONCENTRATION AND PURIFICATION OF A CELL LIOUOR IN A PURIFICATION OF A CELL LRQU Andrew D. Babinsky, Chagrin Falls, and Leo L. Benezra, Men tor, both of Ohio, assi
tion, Cleveland, Ohio
tion, Cleveland, Ohio or or Ser. No. 644,977 , Dec. 29, 1975, Pat. No, 4, 4,036
This application Apr. 18, 1977, Ser. No. 788,250 application Apr. 18, 1977, Ser. No.
Int. C1.

C25B
$9 / 00,13 / 08,5 / 00$ U.S. C. $204-265$

1. An electrolytic cell for the concentration and purification of a cell liquor comprising: a three compartment container; a porous catalytic anode disposed within an anode compartment of said container; a porous diaphragm separating the anode draulically impermeable cation-exchange membrane separating the central compartment and a cathode compartment; a cathode disposed within the cathode compartment; means for passing a cell liquor into the central compartment; means for passing hydrogen gas into the anode compartment and across aid porous catalytic anode; means for passing an electrolyzing ring the purified and concentrated alkali metal hydroxide rom the cathode compartment; means for recirculating hydroen gas emanating from the cathode compartment and the node compartment back into the anode compartment and the cell liquor within the central compartment.

RECOVERY OF SILVER FROM
RECOVERY OF SILVER ${ }^{4}, 033,532 \quad \begin{aligned} & \text { thereon such that repulsive forces between the particles are }\end{aligned}$ Nick G. Branibar, Sparta, N.J., essignor to Anken Industries, groups possessed by the chemical compound, and wherein said Morristown, N.J.
Flied \mathbf{J}

Filed Jan. 21, 1977, Ser. No. 761,376
Int. ${ }^{2}$. ${ }^{\text {C5SC }} 1 / 20,7 / 00,7 / 02$
U.S. CI. 204-271

5 Claims

coated particles undergo selected transportation in dependence upon an applied electric field having a potential equal to or
greater than the voltage threshold created by the dipole intergreater than the voitage threshold cre
action between said coated particles.

CATALYTIC CRACKING PROCES

1. Apparatus for the electrodeposition of silver from solution
comprising a housing having a removable cover and walls with comprising a housing having a removable cover and walls with positioned with edge portions thereof within said grooved positioned with edge portions thereof within said groveed
walls, said anode-cathode plates being maintained in spaced relation from one another, said removable cover including electrical contacts on the underside thereof in electrical con-
tact-making engagement with said anode-cathode plates, said tact-making engagement with said anode-cathode plates, said
housing including a fluid inlet and outlet and a bottom compartment for receiving fluid under pressure from said fluid inlet and closed by a perforated plate at its top portion, the combined area of said perforations being less than the area of said
fuid inlet, and support means of resilient material positioned on the upper surface of said perforated plate for supporting the lower edges of said anode-cathode plates in spaced relation
from said perforated plate.

Nith
Tex., assignors to The Dow Chemical Company, Midiand Tex, assignors to The Dow Chemical Company, Midand, Filed Dec. 12, 1975, Ser. No. 640,119
Int. C1. ${ }^{2}$ C25B $13 / 102,13 / 06,13 / 108$ U.S. CI. 204-29 1. An. C. $204-29$

6 Claims 1. An improved diaphragm for use in an electrolytic cell
wherein brine is electrolyzed to produce chlorine, caustic, and hydrogen and wherein a polymeric fluorocarbon-bonded as-
bestos diaphragm is positioned between the electrodes, the bestor diaphragm is positioned between the electrodes, the
improvement which comprises the use of a mixture of crocidoimprovement which comprises the use of a mixture of crocido-
lite and chrysotile as the asbestos, said mixtures of crocidolite/ chrysotile being of a weight ratio in the range of about $33 / 6$ to about $75 / 25$.

WORKING FLUIDS FOR $\begin{aligned} & \text { 4,093,534 } \\ & \text { DIRCTROPHORETIC IMAGE }\end{aligned}$ DISPLAY DEVICES
Caristopher Frederick Carter, Wooton; Roy Trevor Blut Towcester, James Cyri Alexander Lewis, and Geoffrey Michnel Garner, both of Northampton, all of England, assignors to Plessey Handel und Investments AG, Zug, Switzerland Cled Feb. 5, 1975, Ser. No. 547,33,
Claims priority, application United Kingdom, Feb. 12, 1974, US. C. $350-355$ Int. Cl. ${ }^{2}$ C25D $1 / 12$; B03C $5 / 00$
U.S. C. 350-355 Int.
orking flui
; B03C 5/00

1. A working fluid for an electrophoretic image display comprising a dispersion of a species of finely divided particles of an opaque dielectric material suspended in a suspension
medium, each of said particles having a chemical compound adsorbed onto the surface thereof and forming a coating

Corportion Be Schwart, Philsdelphia, Pa., assignor to Mobil Oil Corporation, New York, N.Y.
,072,600, and a continuation-in-part of Ser. No. 599,920, Jul. 28, 1975, and Ser. No. 440,890, Fert of Ser. No. 599,920, Jul. is a continuation-in-part of Ser. No. 399,008, Sep. 20, 1973, abandoned. This application Jer. No. 15, 1997, Ser. No, 806,713 U.S. CI. ${ }^{\text {Int. Cl. }{ }^{2} \text { C10G- } 120} 11 / 04 ;$ B01J 8/24; C01B 29/12 9 Claims

1. In a process for the catalytic cracking of gas oil to produce products boiling in the motor fuel range, wherein said gas oil is
contacted with a porous acidic solid catalyst in a cracking vessel at conversion conditions including elevated temperatures and the absence of added hydrogen so as to convert said gas oil to lower molecular weight products with deposit on esulting from said cracking, the so deactivated catalyst being resuling from said cracking, the so deactivated catalyst being
ransferred to a regeneration vessel in which oxidation of said carbonaceous deposit proceeds in the presence of air with generation of carbon monoxide and carbon dioxide and the egenerated catalyst at elevated temperature is transferred yze further cracking and supply at least part of the heat of reaction required by said cracking, the improvement which mprises:
conducting said cracking and said regeneration with an inventory of solid, porous, acidic cracking catalyst parti-
cles of which at least a portion contans catalyst comprising at least one metal selected from the group consisting of platinum, palladium, iridium, osmium, rhodium, ruthenium, and rhenium such that said metal is capable of contacting said gas oil but limiting the concen-
tration of said metal to an amount great enough tration of said metal to an amount great enough to pro-
mote oxidation of CO and inadequate to substantially increase the generation of coke and hydrogen in said reaction vessel as compared with a like catalyst free of
such metal, said amount being less than 50 ppm based on otal catalyst inventory.

4,093,536
CATALYTIC CRACKING AND DEHYDROCYCLIZING OF ALKANES USING ALKALINE EARTH OXIDES PROMOTED WITH MANGANESE OXIDE AND/OR
RHENIUM OXIDE
Louis F. Heckelsberg, Bartlearille, Okla, asignor to Phillips Petroleum Company, Bartiesville, Okla.
Continuation-in-part of Ser. No. 460,935, Apr. 15, 1974, Continuation-in-part of Ser. No. 460,935, Apr. 15, 1974,
abandoned. This application May 22, 1975, Ser. No. 580,010 US. C. 208-121 C1.2 C10G 11/04; B01J $27 / 04$
U.S. C. 208- 121

1. A method for catalytically converting alkanes comprising contacting the alkanes under converting conditions with a catalyst by forming a reaction mixture consisting essentially of said alkanes and a catalyst consisting essentially of components selected from the group consisting of:
promoter selected from the group consisting of mangapromoter selected from the group consisting of manga-
oxide,
(B) at least one alkaline earth oxide and a promoting amount (C) an alkaline earth and
de selected from the group consisting of strontium and barium and a promoting amount of a promoter selected from the group consisting of manganese oxide and a mixture of manganese oxide and rhenium oxide.

FCC CATALYST SECTON CONTROL
Benjamin Groes, and Wooyoung Lee, both of Cherry Hill, N.J., ascignors to Mobil Oil Corporation, New York, N.Y. Continuation-in-part of Ser. No. 608,351, Aus. 27, 1975,
abendoned, and Ser. No. 608.352 , Ang. 27, 1975, abendoned. This application Feb. 17, 1977, Ser. No. 769,639 This application Feb.
Int. C. ${ }^{2}$ C10G $13 / 18$ U.S. CI. 208-164

9 Claims

1. In a fluid catalytic cracking process for cracking a hydro carbon feed stream, wherein said stream is contacted with ho
regenerated catalyst in a reactor section maintained under regenerated catalyst in a reactor socm cracked products and
catalytic cracking conditions to form catalytic cracking connitions by coke; and wherein said cracke products and spent catalyst are separated in, and recovered from, said reactor section; and wherein said a recenererator sec catalyst is continuously circulated CO-burning mode thereby
tion operating in the complete tion operating in the complete co-buraing with air and form
burning said contaminating coke by contact wither

PROCESS FOR INHIBITING THE CORROSION OF HEAVY PULPS FOR HEAVY MEDIA SEPARATION OF Joaschim Kandler, Erftutadt Lechenich; Klans Komorniczyl, Kerpen, and Mathins Reity, Cologne, all of Germany, asignmany Filed Ang. 22, 1975, Ser. No. 607,013
Claims priority, application Germany, Avg. 28, 1974, 241096 S. Cl. 209-172.5 Int. C. ${ }^{2}$ B03B 5/30
U.S. CI. 209-172.5
lat. CL. ${ }^{2}$ B03B $5 / 30$ 1. A process for inhibiting the corrosion of aqueous heavy pulps containing ferrosilicon with between 8 and 20 weight $\%$ of silicon therein as a heavy medium and being used in the heavy media separation of minerals, wherein the heavy pulp is used in admixture with between 0.1 and 0.8 weight $\%$ of a carboxy alk ane-phophowic form having one of the following formulae:

in which R stands for hydrogen or alkyl having from 1 to 4 carbon atoms,

	3)
$\stackrel{\mathrm{O}}{(\mathrm{HO})_{2} \mathrm{P}-\mathrm{CH}_{2}-\mathrm{COOH}}$	4)
$\stackrel{\mathrm{H}}{\mathrm{HO})_{2} \mathrm{P}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}}$	5)

got regenerated catalyst and flue gas at substantially the same temperature, said hot regenerated catalyst having a tem perature substantially higher than said spent catalyst, said regenerator section being provided with adjustable means for recy spent a portion of hot regenerated calayst to said recoveating said air; and wherein hot regenerated catalyst is recirculated to said reactor section, the method for controlling the process, whereby improving its adaptive behavior, which comprises:
with with a predetermined temperature cat
djusting within the regenerator section, the recycle of ho regenerated catalyst to spent catalyst to change the recycle ratio in a direction to reduce said temperature devia 0.7 to about 5 before and affer said change; and
djusting the air preheat temperature in a direction to reduce said regenerated catalyst temperature deviation.
having one

$$
\begin{aligned}
& \mathrm{COOH} \\
& \mathrm{O} \\
& \text { O } \mathrm{CH}-\mathrm{CH}-\mathrm{COOH} \\
& (\mathrm{HO})_{2}^{\mathrm{P}}-\mathrm{CH}-\mathrm{COOH}
\end{aligned}
$$

$4,4,093,539$
Corma F Guadin treatment OF WASTEWATER Corporation, Mil

Filed May 12, 1976, Ser. No. 685,723 Int. C1. ${ }^{2}$ C02C 1/06, 1/10; B01D 21/02 U.S. CI. 210-17

1. The method of improving the efficiency of an activated sludge wastewater treatment plant and of protecting it from
destructive hydraulic surges which comprises: estructive hydraulic surges which comprises:
(a) forceably aerating wastewater in an aeration tank,
the aeration tank,
(c) recycling activated sludge to said aeration tank, and
(d) rotating said contactor to promote and support th growth upon said contactor of a filamentous, highly active
and efficient biomass which includes as part of the biomass and efficient biomass which includes as part of the biomass as well as those typically present on the surfaces of a
rotatable biological contactor. rotatable biological contactor.

4,093,540
PURIFICATION PROCESS
Achintya Kumar Sen Gupta, Schenefeld Bez. Hamburg, Ger many, assignor to Lever Brothers Company, N
Claims priority, application United Kingdom, Nov. 13, 1975, 6893/7

Int. Cl. ${ }^{2}$ B01D 13/00
44 Claims
U.S. C. $210-23 \mathrm{~F}$

1. A process for refining crude glyceride oil comprising the
steps of:
(a) separating different molecular weight constituants of said
(a) separating different molecular weight constituants of said crude oil into retentate and permeate fractions by ultrafil
tering, under pressure, through a semipermeable mem brane, a solution containing said crude oil in an organi
solvent in which phospholipid micelles are formed; and
(b) passing, in solution in a non-polar solvent, the constitu
(b) passing, in solution in a non-polar solvent, the constitu
ants contained in said permeate fraction through an adsorbant, wherein said adsorbant is a metal oxide or metal loid oxide adsorbant with an average pore size of 30 to
2000 A and is selected from the group consisting of sili$2,000 \mathrm{~A}$ and is selected from the group consisting of sili-
cas, aluminas and mixtures thereof and further wherein cas, aluminas and mixtures thereor and further wherein
said permeate fraction solution contains 5 to 90 percent by weight of oil.

4,093,541

METHOD FOR THE REMOVAL OF METALLIC
MERCURY
Carlo Piccinini, Fano (Pesaro), and Vincenzo Conti, S.Ippolito, (Pesaro), both of Italy, assign
Filed Sep. 30, 1976, Ser. No. 728,242
Claims priority, application Italy, Oct. 3, 1975, 27957 A/75
U.S. CI. 210-40 Int. Cl. ${ }^{2}$ B01D $15 / 00$

1 Claim 1. A method for the removal of metallic mercury from previously untreated industrial sewage waters containing
comprising the step of contacting said sewage waters with
activated carbon having a surface area of at least 350 squar meters per gram. EMULSIONG AGENT COMPRISING WATER-IN-OIL EMULSION OF H-ACTIVE POLYMER CARRYIN
FORMALDEHYDE AND AMINE RADICALS (Dahmen, Rheydt, Wolfgang Hubner, Kempen, and Eduar
 Fabrik Stockhausen \& Cie, Bakerfad, Germany Continuation-in-part of Ser. No. 484,474, Jul. 3, 1974, abandoned. This application Jan. 2, 1975, Ser. No. 538,428
Claims priority, application Germany, Jul. 4, 1973, 2333927 Claims priority, application Germany,
Int. Cl. ${ }^{2}$ B01D $21 / 01 ; ~ C 08 L$
$61 / 32$ U.S. C. $210-54$ 1. A flocculation, sedimentation, dehydration or retentio composition comprising a stable dispersion of about 10 to 50% concentration by weight of a polymeric Mannich base in a
mixture of water, a water-insoluble liquid and a quantity of an emulsifier of a suitable HLB number effective to produce a stable water-in-oil emulsion, the Mannich base comprising an H-active polymer carrying carbonamide groups reacted wit
formaldehyde and a primary or secondary alkyl or hdroxyal kyl amine wherein the alkyl groups have up to about 18 carbon atoms, said formaldehyde and said amine being employed in the reaction in approximately equimolar amounts, and sad formaldehyde being present in at least about 0.1 times the molar amount of the carbonamide groups.
r. The process for clarifying an aqueous liquid having matewith a composition according to claim 1, and allowing said mixture to settle, whereby the suspended material settles ou more rapidly than in the absence of said composition.

DECOMPOSITION OF FORMIC ACID IN VERY LOW CONCENTRATION
cky Hill, and Werner O. Hang, Trent both of N.J., assignors to Mobil Oil Corporation, New York, Filed Sep. 22, 1976, Ser. No. 725,211
U.S. Cl. 210-59 1. The process of increasing the pH of a very dilute solution
of formic acid to 4.0 or higher which comprises contacting said solution with a heterogeneous formic acid decomposition catalyst consisting essentially of caustic on a solid inorganic
substrate selected from the group consisting of alumina, titaniasubstrate selected from the group consisting of alumina, titaniazirconia, titania, zorrona, 510° and mixares hereor, at a
temperature of from about 500° to $1200^{\circ} \mathrm{F}$, said solution containing up to about 1.0 weight percent of formic acid.

4,093,544

METHOD AND APPARATUS FOR MMONIA-NITROGEN REMOVAL BY VACUUM DESORPTION
Darid S. Ross, Lorain, Ohio, assignor to Sterling Drug, Inc., New York, N.Y.
Continuation of Ser. No. 247,262, Feb. 5, 1975, abandoned. This application Nov. 12, 1976, Ser. No. 741, U.S. C. 210-59 Cl. ${ }^{2}$ CO1C 3/00; C02C $1 / 02 \quad 29$ Claims 1. A method for removing ammonia nitrogen from a body of wastewater having an upper surface, a given pH and a given (a) increasing the pH of said wasterater the of:
(a) increasing the pH of said wastewater to a highly basic condition;
(b) applying to said upper surface of said wastewater a vacof corresponding approximately to the vapor pressure ammonia is desorbed from said wastewater effluent;
(c) absorbing said desorbed ammonia in a body of liquid
having a pH substantially less than said highly basic condition; and,
(d) introducing into said wastewater bubbles
is only slightly soluble in said wastewater.
An apparatus for reming ammonia nitros 4. An appara a siven pH and g amen temperature said apparawater having a given pH and a given temperature, said appara-
tus comprising means for increasing the pH of said wastewater tunk means for receiving said highly basic wastewater; means or creating a vacuum corresponding aproximately to the vapor pressure of said wastewater at said given temperature

means for applying said vacuum to said tank means whereb ammona itbse of ducing bubbles of a sor directing said desorbed ammonia and said low soluble gas from said tank means; said vacuum creating mean including a displacement tank, means for filling said tank with a liquid with an increasing liquid level, means for sealing said
displacement tank, means for creating a vacuum in said sealed displacement tank, means for creating a vaccumen in, and means
displacement tank by forcing said liquid therefrom, for communicating said vacuum from said displacement tank to said tank means
displacement tank.
\qquad
4,093,545
METHOD AND APPARATUS FOR DETERMINING THE AMOUNT OF ULTPAFILTRATION DURING DIALYSIS Herbert M. Cullis, Silver Spring, Md., assignor to Baxter Travenol Laboratories, Inc., Deerfield, III.

Filed Feb. 14, 1975, Ser. No. 550,051
U.S. Cl. $210-86 \quad 5$ Cluims

1. In a dialysis system which includes dialysis solution conduit means for passing dialysis solution through a membrane dialyzer, the improvement comprising:
neans for supplying and means for withdrawing essentially
identical volumes of dialysis solution to and from a por tion of said dialysis solution conduit means and a dialyzer connected to said conduit means, to precisely and positively control the input and outpur connected dialyzer; and from said conduit portuon and a variable liquid volume
and connected to said portion of the dialysis solution the input and output of dialysis solution; and
means for measuring the total liquid volume of dialysis solution in said precisely, positively controlled conduit ortion and connected dialyer, sadd cotal liquid volume seing less than the entire liquid volume of dialysis solution iquid volume indicate the amount of ultrafiltration during dialysis; in which said means for supplying and means for withdrawing identical liquid volumes comprises doubleaced piston means, reciprocable in a chamber, diacent one ace of said piston, and a second, variable volume chamber portion adjacent the opposite face of said piston; a dialysis solution supply conduit, as part of said dialysis solution conduit means, communicating with said first chamber portion; first one-way valve means in said supply conduit chamber as said piston causes its volume to expand, and to be expelled into said conduit portion and connected diayzer as said piston causes said volume to contract, said second chamber portion communicating with a dialysis solution withdrawing conduit as part of said cialysis solupermitting dialysis solution to be withdrawn from said conduit portion and connected dialyzer into the second chamber as said piston causes the volume of said second chamber to expand, and for permitting dialysis solution to
be expelled from said second chamber and from the dialybe expeiled from said second chamber and rember contracts, sis system as the volume of said second chand
through reciprocating motion of said piston.

4,003,546
OLICAL FILTE BIOLOGICAL FILTER
Jiri Taborsky, 5315 8th Ave., Bradenton, Fan 33505
Filed Jun. 1, 1976, Ser. No. 644,721
Int. CC. ${ }^{2}$ CO2C $1 / 04$

Int. C1. ${ }^{2}$ CO2C $1 / 04$ Claims
U.S. Cl. 210-150

1. Apparatus for cultivating organisms and for fuitering water from a water source by use of the organisms to remove organic waste present therein comprising: a plurality of pan
means including first pan means, said plurality of pan means each comprising a bottom portion and a rim portion extending in upwardly protruding relationship to said bottom portion, each of said pluraity of pan means having rigidly secured therein a plurality of spaced apart divider means disposed adjacent the bottom portion of each of said pan means; said plurality of divider means being in substantially paraliel rela-
tionship; one end of each of said parallel divider means abuttionship; one end of each of said paralilel divider means abut-
ting said rim portion with the opposite end of each of said parallel divider means being spaced apart from said rim poraion, each successive divider means having said spaced apart end disposed in substantially reversed disposition relative to each preceding divider means forming a continuous extenuated tenuated channel having an inlet for receiving water and an outlet disposed to pass water to drain means; said pan means being disposed in successively lower disposition than the next
preceding pan means, the water source disposed to provide water to said inlet of said first pan means, said drain means ormed within the bottom of each of said pan means and disquent successive pan means, whereby water flows along said extenuated channels of each of said pan means in successive. order; and dam means transversely disposed relative to the sides of said channel and extenuating therebetween, said dam means extending vertically upward to a height less than said
rim portion and said divider means whereby the flowing water rim portion and said divider means whereby the flowing water
is forced to pass over the upper longitudinal edge of said dam means and organic sediment present in the water is trapped.

$$
4,093,547
$$

MAGNETICALLY COUPLED AQUARIUM FILTER Robert M. Sherman, Beverly Hills, and Charles O. Fuerst, Simi Valley, both of Calif, amignors to Aquaria, Inc., Van Nuys,
Calif. Caliif.

Fled Jan. 19, 1977, Ser. No. 760,590
U.S. C. 210-169

6 Claims

1. In a filter apparatus for use with a home-type aquarium having a wall defining a rim, said filter apparatus having. a power unit having a housing, a motor having a drive sha and a first magnet member mounted on said shaft, said motor being mounted within said housing, and hanger means attached to said housing for hanging said power unit on a rim of an aquarium wall so as to suspend said extending upwardly and including a hook-shaped member for hooking engagement over an aquarium wall rim,
a separate filter unit, means for mounting said filter unit in close proximity to said power unit, said filter unit comprising a container, a pump housed in the lower portion of said container, said pump having a second magnet mem-
ber to be rotated by the magnetic field of said first magnet member for the rotation of the pump impeller; the im-
provement comprising:
said means for mounting said filter unit with respect to said power unit includes an upward facing edge defined by the said power unit, hanger means mounted on said filter unit container for removable engagement with said upward facing edge of said hook-shaped member, said hanger means constructed and arranged for interlocking hooking engagement with said upward facing edge, and means mounted on said power unit housing for engaging the
ower end of said separate filter unit container for providing accurate alignment of said first and second magnet members for transmitting power from said first magnet member to said second magnet member to drive said pump whereby said filter unit mounting means provides for removal of said separate filter unit without disturbing said power unit and the filter unit may be serviced by position on an aquarium rim.

LIQUID FILTER APPARATUS Jon L. D. Sterkenburg, and George O. Kelbert, both of Jacksonville, Fla, assignors to OUl Refining Systems of F
 Filed May 10, 1976, Ser. No. 684,749 Int. C.2. $\mathbf{2} 01 \mathrm{D}$ 3/28
 U.S. C. 210-180
 Int. C. ${ }^{2}$ B01D $3 / 28$
 15 Cluims

1. In a liquid filter apparatus having a housing with a side wall connecting between an upper portion and a bottom por-
tion and with an inlet located in one of said portions and an tion and with an inlet located in one of said portions and an
outlet located in the other of said portions, a first rigid perforated plate fittingly disposed in said other end portion of said housing, a second rigid plate slidingly arranged in said one end portion of said housing, filter media for filtering fluid located in said housing between said plates, means for maintaining said
first plate spaced from said outlet against the force of said filter first plate spaced from said outiet against the force of said filter
media thereagainst, said second plate being disposed between said filter media and said inlet and having one face engaging said media and an opposite face facing said inlet and being constructed and arranged to sealingly slide along the interior
cold surface of said side wall of said housing, said second plate having an aperture therethrough located spacedly inwardly of
said side wall for the flow of fluid through said aperture to said filter media whereby, with channeling of said filter media and pressure drop within the interior of said filter media, fluid pressure on said opposite face of said second plate causes said second plate to slide in the direction toward said filter media to
compress the filter media against said first plate and to close compress the filter media against said firs
the channels causing such pressure drop.

4,093,549

Harold L. Wilson, Atator SEWAGE TANK
ison, Antonia, Mo. 63052
U.S. C1. ${ }^{105 \mathrm{~S}} \mathrm{Int.}^{\text {C1. }}{ }^{2}$ CO2C $1 / 06{ }^{763,892}$

11 Claims

1. A sewage treatment tank comprising an aeration compart ment and a pump, said pump having an inlet receiving fluid and an outlet for discharging said fluid, means for aerating fluid
discharged through the outlet of said pump comprising a pipe like vertical conduit connected to a horizontal outlet conduit
from said pump at a lower end and extending above the fluid level in the tank at an upper end for drawing air through said conduit by aspiration and mixing with the raw sewage pumped hrough the outlet of the pump to the aerating compartment, the lower end of the vertical conduit having an upstream side wall having a concave bottom protruding into an outlet conduit from said pump to provide a resticted area throat to in-

DEVICE FOR PURIFYING SEWER WATER IN SMAL IFYING SEWER WS
Ho Priibo, Kristianstad, and Erik Horkjajir Alberteca, Bromollen
den
Flled Nov. 29, 1976, Ser. No. 745,665 Claims priority, application Sweden, Dec. 11, 1975, 7514038 Int. C1. ${ }^{2}$ C02B $1 / 20 ; 002 \mathrm{C} 5 / 02$
U.S. C. 210-201
rease the velocity of fluid flow past the vertical air conduit for saw sewage fluid in said outlet conduit and said upstream side wall has a concave configuration terminating at the bottom in pair of opposed foot portions which rest on the inside wall of said outlet conduit to position the vertical conduit therein in proper registry.

COLUMN FOR HIGH PRESSURE LIQUID
CHROMATOGRAPHY
Kort-Wilbelm Stahl, Hanover, and Elchard Schuppe, Ronnenbere both of Germany, eserignors to Riedel-de Hsen Aktien Feecllechaft, Seelze, Germany
Filed Jun. 1, 1976, Ser. No. 691,531 Claims priority, application Germany, Jun. 4, 1975, 2524751 U.S. C. 210-198 C

A column for high pressure liquid chromatography (HPLC) having a tube with an inlet and an outlet end and being filled with sorbent, said tube being concentrically surrounded by a pressure jacket so that an interspace between said cube and said pressure jacker is plows through the internal tube filled with the same medium as flows through the internal tube and the pressure in the interspace being equar by means of packings surrounding said tube like stuffing boxes and sealing the interspace between said tube and said pressure jacket, and the interspace is connected by means of a pipe with he inlet end of said tube, a venting means is cos opens up in a interspace, the pipe con means is disposed on another short pipe sounted on the pressure jacket, and the two short pipes being mounted at opposite ends of the pressure jacket.

1. A device for purifying sewer water in small sewer sysms, said purifying device having no moving parts, compris-
a sedimentation chamber (9) having an inlet (8) for receiving sewer water, means for receiving and holding water to be sedimented and an outlet (9) for removing sedimented water from said sedimentation chamber, said outlet ($\mathbf{9}$) being mounted a predetermined distance above the bottom of said chamber (() to provide a pool of water for tion chamber (6), and said inlet (8) being located at a higher level than said outlet (9);
a vessel ($\mathbf{1 0}$) mounted in said sedimentation chamber ($(\mathbf{)}$ at an intermediate level between the levels of said inlet (8) and outlet (9), said vessel (10) being disposector recive sewe war level above said pool of water in said sedimentation chamber (0);
receptacle (10) in said sedimentation chamber (0) for holding a liquid containing sedimentation-promoting sub stance, said receptacle (16) being mounted at a higher level than said vessel (10);
a container (12) located completely above said receptacle
(10) for supplying said liquid to said receptacle (16), said (16) for supplying said liquid to said receptacle (16), said
container (12) having a liquid outlet tube (15) connected adjacent its bottom but being otherwise provided with air-tight walls, said outlet tube (15) extending down wardly into said receptacle (16);
first siphon tube (17) having an inlet in said receptacle ($\mathbf{1 6}$) and a lower outlet in com mication with said vessel (10) for supplying said liquid from said receptacle (16) to said second siphon tube (11) having an in (10) and a lower outlet in said chamber (6) outside saic vessel (10), said lower outlet of said second siphon tube (11) being located below the liquid level in vessel (10) and at a lower level than said outlet ($\mathbf{9}$) of sasid sedimentation
chamber (0), said lower outlet of said first siphon tube ($\mathbf{1 7}$) being connected to the top portion of said second siphon tube (11) such that when suction is developed in said second siphon tube (11), suction is thereby developed in said first siphon tube (17) to supply said liquid to said sewer water.

4,093,552
 FILTRATION APPARATUS

August Guyer, Zurich, Switzerland, assignor to Escher Wyss Limited, Zarich, Switzeriand
Frims Nor. 30, 1976, Ser. No. 746,221
$\underset{016075 / 75}{\text { Clims }}$ priority, application Switzeriand, Dec. 11, 1975, U.S. C. 210-297 Int. C. ${ }^{2}$ B01D 33/02

1. Apparatus for filtering a suspension under pressure com-
prising
a. a housing containing an elongated, annular filtration chamber bounded by external and internal surfaces in the form of bodies of revolution,
b. each of said surfaces being formed as a filtering member and being provided with a filtrate discharge collector; c. an inlet for introducing suspension under pressure to one
end of said annular chamber and an axially spaced outlet end of said annular chamber and an axially spaced outlet for discharging
d. means defining a permeable agitating partition of cylindrical form which is located in, and extends longitudinally of,
caline the annular chamber; and
e. drive means for rotating said partition,
faces so that, during operation, 有 from each of said surturbulent state forms between the partition and each surturbulent state forms between the partition and each sur-
face and is effective to keep solids from accumulating on the adjacent surface. and argon, and said carbon black being present in said cryo-
genic fluid in a quantity between 10 and 1,000 grams per liter genic fluid in a quantity between 10 and 1,000 grams per liter

of cryogenic fluid, whereby a homogeneous stable suspension is maintained in said cryogenic fluid.
.

4,093,554 HYDRAULIC FLUID COMPOSITIONS
Gerald John Joseph Jayne; Herbert Frank Asken, and Colin John Harrington, all of Wokinghnm, England, asaignors to
Castrol Limited, Swindon, Fnolend Castrol Limited, Swindon, England
Claims priority, application United Kingdom,
Kingdom, Mar. 27, 1974
U.s. Cl. $252-78.3$ Cl. ${ }^{2}$ C09K 50/00; C07F 7/18 U.S. C. $252-78.3$

1. A glycol-substituted aryl silane of the formula

wherein (a) R is aryl;
(b) X is selected from the group consisting of

TREATING MOLTEN METAL WITH A MIXTURE OF A CRYOGENIC FLUID AND SOLID CARBON BLACK Jean Galey, Voisins Bretonneux; Gérard Bentz, Elancourt-
Trapper; Pierre Karinthi, Jouy-en-Josess; Ghislain Gilbert, Trappes; Pierre Karinthi, Jouy-en-Josas; Ghislain Gilbert France, assignors to L'Air Liquide, Societe Anonyme pour France, sasignors to 1 Etude et l'Exploitation des Procedes Georges Clavide, Paris, France
Filed Jun. 30, 1975, Ser. No. 592,077
Chaims priorty, Claims priority, applicantion France, Jni.
Int. C. ${ }^{2}$ B22D 27/04
U.S. C. 252-70

1 Claim

1. A coll 1 Claim reatments, comprising a body of at least one cryogenic fluid at in which each \mathbf{R} is defined above, \mathbf{R}^{\prime} is as hereinafter defined, its boiling temperature, and suspended in said body of cryo- each \mathbf{R}^{2} is independently selected from the group consisting of genic fluid finely divided carbon black in the form of particles hydrogen, methyl and ethyl provided that when any group \mathbf{R}^{2} being selected from the group consisting of nitrogen, helium, carbon atom is hydrogen, R^{3} is alkyl, R^{4} is selected from the
group consisting of diol and polyol residues, R^{6} is selected from
the group consisting of aryl and alkyl, and n is an integer; and
(c) each R^{\prime} is, independently selected from the group con-
sisting of groups of formula (A) as defined above, alkyl, aryl, and groups of the formula:
$-\mathrm{O}-\mathrm{R}^{\mathrm{s}}$
wherein R^{5} is alkyl and if the glycol-substituted aryl silane contains more than one group R^{5} they may be the same or different; provided that the glycol-substituted arylsilane contains at least one group selected from the group consisting of

wherein $\mathbf{R}^{2}, \mathbf{R}^{4}$ and n are as defined above

4,093,555
PRODUCTION OF DENTAL MODELS AND TOOTH REPLACEMENT PARTS
Werner Schmitt, Robert Purrmann, both of Starnberg; Peter Werner Schmitt; Robert Purrmann, both of Starnberg, Peter
Jochum, and Woil-Dietrich ZSher, both of Hechendorf, all of Germany, amalgnors to ESPE Fabrik Pharmazeutischer Praparate $G \mathrm{GmbH}$, Seefeld, Germany
Con Continuation of Ser. No. 544,549, Jan. 27, 1975, abando
application Jan. 4, 1977, Ser. No. 756,925
Cluims priority, application Germany, Jan. 30, 1974, 2404380
Int. Cl. ${ }^{2}$ CO9K $3 / 00$; A61C $13 / 22,13 / 08$
U.S. C. 252-188.3 R

1. An homogenous composition suitable for the production of dental replacement parts and dental models comprising mixture of a bromine containing compound of the formula

PROCESS FOR M CPOENCAPSULATION OF METALLOCENES Stanley Wojciak, New Britain, Conn., assignor to Loctite Corporation, Newington, Conn.
lied Jul. 2, 1975, Ser. No. 592,581
Int. C. ${ }^{2}$ B01J 13/02
U.S. Cl. 252- 316 1. A process for
. 9 Claims (a) providing an aqueous solution of a water-soluble precondensate of urea and formaldehyde wherein the preconden-
sate concentration sate concentration is about 15 to about 50 percent by
weight; $\underset{ }{\text { weight; }}$
(b) adding to said precondensate solution a particulate metal(b) locene in such amount that the weight ratio of metallocene (c) adding to said precondensate solution or the mixture of said precondensate solution with said metallocene a cationic surfactant in such amount that the weight ratio of surfactant to metallocene is between abo about $1: 10$ said surfactant having the formula $t-\mathrm{C}_{18-22} \mathrm{H}_{37}$ (d) forming a slurry
(e) adjusting the pH of the resultant dispersion to about 1 to about 6.5 by addition of a water-soluble acid, thereby causing polymerization of said precondensate, and
(f) coustinuing said polymerization in the temperature range of about 15° to about $80^{\circ} \mathrm{C}$. until said metallocene parti-
cles are encapsulated with a shell of water-insoluble ureaformaldehyde polymer.
4,093,557

PROCESS FOR INHIBITING CORROSION OF METALS IN AQUEOUS SYSTEMS
David C. Zecher, Newark, Del., assignor to Hercules Incorpo-
rated, Wilmington, Del. rated, Wimington, Del.
Filed Sep. 16, 1976, Ser. No. 723,676
U.S. C. 252- 389 R
int. Cl. ${ }^{2}$ C09K $3 / 00$
inhibiting corrosion of metal surfa contact with recirculating water systems comprising maintain ing within said systems from about 20 p.p.m. to about 200 p.p.m. by weight of a corrosion inhibiting composition contain
ing a compound containing at least one quinomethide group selected from compounds of formula

in which R is an alkylidene radical having 1 to 6 carbon atoms,
cycloalkylidene radical or a SO_{2} radical, R^{\prime} is an alkylene and resins of formula II which are at least partially oxidized radical having 2 to 6 carbon atoms or a cycloalkylen
and $-\mathrm{Y}-\mathrm{O}$ - is an acyloxy radical of the formula

$$
\stackrel{\mathrm{O}}{ }_{\mathrm{O}}^{\mathrm{C}}-\mathrm{O}-
$$

and - $\mathrm{O}-\mathrm{Y}$ - is an acyloxy radical of the formula

$$
\stackrel{\mathrm{O}}{\mathrm{O}-\mathrm{C}-\mathrm{R}^{\prime \prime}-}
$$

where $\mathbf{R}^{\prime \prime}$ is an alkylene radical having 1 to 5 carbon atoms in which formulas \mathbf{R}_{1} and R_{5} are hydrogen, carboxyl, hydroxyl optionally bearing an aromatic substituent, and x is 1 or 2 and $-\mathrm{SO}_{3} \mathrm{H},-\mathrm{NH}_{2}$ and alkyl and alkylene radicals having up to 8

(II)
carbon atoms, aryl or substituted aryl, R , is substituted aryl; about 70 percent and as much as about 85 percent of the initial R_{6} and $\mathrm{R}_{\text {, are residues of at least a partially oxidized phenolic }}$ resin.
uminum has been removed while retaining more than abou 60 percent of the original crystallinity
9. A crystalline product obtained by the method of claim 1.

MOLYBDATE CATALYSTS
Robert K. Grasselli, Chagrin Fallls; Dev D. Suresh, Warrensville Heights, and Robert C. Miller, Northriedd, all of Ohio, assignors to The Standard Oil Company, Cleveland, Ohio
Continuation-inn-part of Ser. No. 313,495, Dec. 8, 1972, abandoned, which is a Division of Ser. No. 67,269, Aug. 26 Filed Jul. 29, 1974, ind Ser. . No. 492,374
U.S. C. 252-432

1. A molybdate catalyst of the formula
$\mathrm{A}_{\boldsymbol{a}} \mathrm{X}_{\mathrm{b}} \mathrm{Sb}_{\mathrm{c}} \mathrm{Mo}_{d} \mathrm{O}_{e}$
11 Claims
wherein
A is selected from the group consisting of iron or iron and vanadium;
\mathbf{X} is at least one element selected from the group consisting of aluminum, chromium, cobait, nickel, copper, bismut,
tellurium, boron, phosphorus, titanium and tungsten;
telliurium,
and
a
a is a number from 0.01 to 2
b is a number from 0 to $3 ;$
c is a number from 0.1 to $12 ;$
d is 12 ; and
e is a number as determined by the combined valence
requirement of the elements other than requirement of
in the catalyst. \qquad

PROCESS FOR THE PREPARATION OF A PALLADIUM
Hons Fermolz Fiecthech Hans Fernholz, Fischbecth, Taunus; Günter Roscher, Kelkheim,
Tsunus; HanseJoachim Schmidtr, Falkenstein, Taunus; Heinz Tnunus; HaneJoachim Schmidd, Falkenstein, Taunus; Heinz sheim, Main, all of Germany, assignors to Hoechast Aktiengesecischath, Frankfurt am Main, Germany
Filed Mar. 2, 1976, Ser. No. 663,117
Claims priority, applicatton Germany, Mar. 4, 1975, 2509251 U.S. CI. 252-43

17 Chims

1. A process for the preparation of a palladium catalyst for the oxacylation of olefins in the gaseous phase, which comprises impregnating a catalyst carrier with a solution comprisboxylic acid, drying the catalyst at a temperature below $90^{\circ} \mathrm{C}$ until a residual solvent content of less than 8% by weight is
attained, and thereafter reducing the catalyst in a gaseous attained, and thereafter reducing the catalyst in a gaseous
phase at a temperature of 40° to $260^{\circ} \mathrm{C}$ by passing a gas mixture phase at a temperature of 40° to $260^{\circ} \mathrm{C}$ by passing a gas mixture
containing an inert gas and a reducing agent over the catalyst.

4,093,560
ULTRA HIGH SILICCONCONTENT ZEOLITES AND ULTRA HIGRPARATION THEREOF George T. Ker, Trenton, and Arthur W. Chester, Cherry Hill,
both of N.J., assignors to Mobil Oil Corporation, New York,

Filed May 20, 1976, Ser. No. 688,459
U.S. CI. 252-455 Z nt. C. ${ }^{2}$ B01J 29/06
11. Claims

1. A method of removing aluminum from a crystalline alumi-
nosilicate zeolite characterized by an initial silica/alumina ratio nosilicate zeolite characterized by an inititil silica/alumina ratio
of at least about $2: 1$ but less than about $6: 1$ which comprises of at least about $2: 1$ but less than about $6: 1$ which comprises
preparing a slurry of said zeolite in alkali metal or ammonium preparing a slurry of said zeolite in alkali metal or ammonium salt which upon acidification yields an anion which complexes with aluminum, adding to said slurry a water-soluble acid having a first ionization constant greater than 10^{-2} at a rate
such that between about s and about 15 percent aluminum is such haved per day to yield a resulting product which at least

CATALYST FOR THE REDUCTION OF NITROGEN CATALYST FOR THE REDUCTION OF NITROGEN
OXIDES AND METHOD FOR THE PRODUCTION THEREOF
Yasuo Nishikawa; Akira Watanabee Tetsuya Sugimoto, all of Okayama; Kazuyasu Yabukd, Bizen, and Yoobio Hatayama,
Kashihara, all of Japan, assignors to Kyushu Refructories Co., Ltd., Bizen, Japan
Filed Feb. 1, 1977, Ser. No. 764,533 Claims priority, application Japan, Feb. 10, 1976, 51-13732 U.S. C. 252-466 J U.S. C. 252-466 J 1. A catalyst for the reduction of nitrogen oxides obtained by
calcining at least one particulate iron hydroxide at a temperature not exceeding $550^{\circ} \mathrm{C}$ and coating the calcined particles with an aqueous solution of an aluminum salt, washing, drying and molding the particles having the aluminum salt coating, followed by baking to form an alumina coating, said catalyst ontaining 60 to 90 percent by weight of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 40 to 10 ter of not more than 500 A , a pore volume of not less than 0.1 cc / g and a specific surface area of not less than $10 \mathrm{~m}^{2} / \mathrm{g}$.

POLYMERIC COMPOSITIONS FOR MANUFACTURE OF SECONDARY ELECTRON MULTIPLIER TUBES AND OF SECONDARY ELECTRON MULTIPLIER TUBES AN
METHOD FOR MANUFACTURE THEREOF Yoshi Kishimoto, Hirakata, Japan, sasignor to Matrushbita Electric Industrial Co., Lidd, Japan
Flied Feb. 16, 1977, Ser. No. 769,01 Claims priority, application Japan, Feb. 20, 1976, 51-18072 S. Cl. 252-51 Int. C.2 ${ }^{2}$ H01B $/ 1 / 06$

1. A polymeric composition for the manufacture of a secondary electron multiplier, comprising
a polar type or electron donor matrix polymer having a secondary electron yield higher than unity and molecularly dispersive conductive molecules and less than 40% by volume of granularly dispersive conductive particles, said composition having a volume resistivity in the range
of 10^{5} to 10^{10} ohm cm . of 10^{5} to $10^{10} \mathrm{ohm}-\mathrm{cm}$.

4,093,563
esilient material which is electrically CONDUCTIVE UNDER PRESSURE
 Claims priority, aplication, Ser. No. 616,054 U.S. C. $252-513$ Int. C. ${ }^{2}$ H01B $1 / 02$
S. C. $252-513$

16 Claims
essentially of between 10% and 80% by volume of a vulcanized one-phase homogeneous silicone polymer having a Shore A Durometer hardness of between 15 and 50 , having dispersed therein between 20% and 90% of electroconductive
metallic particles, and being electrically conductive under an metallic particles, and being electrically conductive under an applied pressure, said composite material being produced by
admixing and then vulcanizing at room temperature and withadmixing and then vulcanizing at room temperature and wils-
out applied pressure an admixture of room temperature vulcanization polymer having said particles dispersed therein;
said room temperature vulcanization silicone polymer being
thixotropic and non-corrosive to said particles, having a density between 0.9 and 1.15 at $25^{\circ} \mathrm{C}$ a viscosity of about 2,00,00 ceniposes and bicaization of between 0.1 and age coeffici said metallic
from the group nickel, copper, and tin, and have an apparent density between 0.2 and 6.0 , a tapped density between 0.5 and 6.0 , a specific surface between 1 and $850 \mathrm{~cm}^{2} / \mathrm{gram}$ a flow micron and 2,500 microns, a diameter distribution within the same range, and an atomic mass between 9.01 and 207.19.

4,093,564

ELECTROCONDUCTIVE COATING
Willinm F. Moll, Jr., Summit, and Frank J. Botta, Linden, both of N.J., Monalignors to Yare Engineering Corporation, Filed Feb. 14, 1977, Ser. No. 768,3
lint. C. ${ }^{2}$ H01B $1 / 08$
U.S. C1. $252-518 \quad 9$ Clnims 1. An electroconducting clay composition for electrophocography having solvent holdout characteristics comprising an expandable clay, an alkain melal salt and at eard corn syrups,
compound from the group consisting of sugar and compound from the group consisting of sugar and corn solyrups, polystyrene and fluorochemicals.

4,093,565
FLAVOR AND FRAGRANT COMPOSITIONS
Robert John Steltenkamp, Somerzet, N.J., sesignor to Colgate-
Palmolive Company, New York, N.Y. Paimoilve Company, New York, N.Y. Division of Ser. No. 414,34, Nov. 9,1973 , Pat. No. 3,99,
which is a division of Ser. No. 125,79, Mar. 18, 1971 . abandoned. Thia application Mar. 18, 1976, Ser. No. 668,025 has been dinclimed.
Int. C1. ${ }^{2}$ A61K $7 / 46 ; \operatorname{Co7C} 1 / 20$
U.S. C1. 252-522

$$
\begin{aligned}
& \text { disclaimed. } \\
& 7 / 46 ; \operatorname{conC} 1 / 20
\end{aligned}
$$

1. A method of making a synthetic lime mix having the fragrance of steam distilled natural lime oil comprising the steps of refluxing a mixture of (A) citral or a citral-containing oil selected from the group consisting of lemongrass oil, Eucayptus staigeriana and Litsea cubeba and (B) an acid selccled lic acids and water for a period of from 1 to 3 hours, said acid eing a catalyst and being present in a weight ratio of citral to acid of from about $1: 1$ to $20: 1$ which is effective to adjust the fluxed mixture and recovering from the distilled mixture a reaction-product consisting essentially of a major amount of terpene hydrocarbons and minor amounts of oxygen-contain ing compounds and 1 -methyl-1,3-cyclohexadiene.

PHOSPHATE-FREE SPRAY CLEANER FOR METALS Pizabeth L. MacNamara, Holland, and Fred Pearlatein, Phila cel es repreented by the Secretary of the Army, Washington, D.C. 70,78

Filed Dec. 27, 1976, Ser. No. 750,784
Int. C. ${ }^{2}$ C11D $3 / 08,3 / 10,3 / 33$
U.S. C. 252-527

6 Claims
from phos1. A metal cleaner compositi
about 50% by weight sodium metasilicate,
about 40% by weight sodium carbonate, and
about 10% by weight ethylenediamine tetraacetic acid diso dium salt.
4. A metal cleaner composition essentially free from phoshates, consisting essentially of
about 50% by weight sodium metasilicate, bout 30% by weight sodium carbonate, and
then weight sodium hydroxide.
AMINATED CROSSLINKED COPOLYMERS OF ISCHLOROMETHYL) STYRENE WHICH EXHIBIT IMPROVED ANION EXCHANGE PROPERTIES Marrin J. Hurwitz, Ellicins Park, and Noyes L. Avery, Oreland, both of Pa
phia, Pa .

Filed Jan. 17, 1977, Ser. No. 759,950
U.S. C. $260-21 \mathrm{E}$ 1. A crosslinked copolymer resulting from copolymerizing a monomer mixture of
(a) one or more monoethylenically unsaturated monomers,
including bis-(chloromethyl)styrene which comprises at including bis-(chloromethyl)styrene which comp
least about 5 weight percent of the mixture; and
least about 5 weight percent of the mixture; and ent at between about 0.5 and about 50 weight percent of the mixture.
17. A process for preparing an amine functionalized anion exchange resin comprising copolymerizing by a suspension polymerization reaction a monomer mixture containing from
about 5% to about 99.4% by weight of bis(chloromethy)styrene, from about 0.1% to about 94.5% by weight of vinylbenzyl chloride, and from about 0.5% to about 30% by weight of a polyethylenically unsaturated crosslinker, and aminating the copolymer with an alkylamine having 2-3 alkyl groups which may be different from one another and which contain 1-5 carbon atoms each.

4,093,568

Maomi Seko; Yssumichi Yembrand both of Tokyo; Hiroturug
Maomi Seko; Yasumichi Yamikosai, bota of Tokyo; Hirotuagu
Miyauchi, Kavasali; Mitranobu Fukumoto, Yokohani; Miyauchi, Kimoto, Yokohama; Itara Watanabe, Yokohama, and Kasee Kogyo Kaburchikik Knisha, Oraks, Japan
Filed Nor. 2, 1976, Ser. No. 738,223
Claims priority, application Japan, Nov. 17, 1975, 50-137228 U.S. C. $260-2.2$ R
U.S. C. $260-2.2 \mathrm{R}$

1. A process for producing a cation exchange membrane, 1. A process for producing a cation exchange membrane,
which comprises subjecting a cation exchange membrane containing perfluorocarbon polymers having pendant N -sul. fonamide groups as represented by the formulas (I) and (II):

$$
\begin{gathered}
\mathrm{R}_{\Gamma}-\mathrm{SO}_{2}-\mathrm{N}-\mathrm{R}_{1}-\mathrm{X} \\
1 \\
\mathrm{R}_{2}-\mathrm{X}
\end{gathered}
$$

(I)

$$
\begin{gathered}
\text {-continued } \\
\mathrm{R}_{\mathrm{f}}-\mathrm{SO}_{2}-\mathrm{N}-\mathrm{R}_{1}-\mathrm{N}-\mathrm{SO}_{2} \mathrm{R}_{f} \\
\mathrm{X}-\mathrm{R}_{2} \quad 1 \quad 1 \\
\mathrm{R}_{2}-\mathrm{X}
\end{gathered}
$$

Wherein R_{f} represents a perfluorocarbon polymer chain, R_{1}
represents $-\mathrm{C}_{m} \mathrm{H}_{2 m}$-(where m is an integer of 1 to 6) or represents $-\mathrm{C}_{m} \mathrm{H}_{2 m}$ - (where m is an integer of 1 to 6) or

R_{2} represents $-\mathrm{C}_{n} \mathrm{H}_{2 n}$ - (where n is an integer of 0 to 6) and X epresents hydrogen, amino group or hydroxyl group, to treat ment with an oxidizing agent under conditions such that the concentration of the oxidizing agent is from 0.1 mil from $5^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at an oxidation potential of fromperature of 0.3 to 1.5 olt; the said pendant sulfonamide groups being present in surface stratum containing at least 90% of said groups based on the total cation exchange groups in said stratum, the thicknes of said stratum being from 0.2 to 200μ.

POLYURETHANE RESINS PRODUCED FROM ACTIVE HISPERSION OF POLYISOCYANATE-POLYADDITION PRODUCTS IN HYDROXYL CONTAINING
COMPOUNDS AS DISPERSING AGENTS Artur Reischl, Leverksusen; Gert Jabo, Cologne, and Alberto Carlos Gonzalez-D̈̈ner, Leverkusen, ell of Germany, assign
ors to Bayer Aktiengesellichatt Bayerwerk ors to Bayer Aktiengesellechaft, Bayerwerk, Germ
Filed Nor. 10, 1976, Ser. No. 740,452
Claims priority, application Germany, Nov. 12, 1975, 255079 U.S. C. $260-2.5 \mathrm{AM}$ Int. Cl. ${ }^{2}$ C08G $18 / 08 \quad 3$ Claims U.S. Cl. $260-2.5 \mathrm{AM}$

1. In a process for the production of polyurethane resins in 1. In a process for the production of polyurethane resins in
which polyiscyanates are reacted with materials containing active hydrogen atoms and other known additives, the im-
provement wherein the active hydrogen containg material is provement wherein the active hydrogen containing material is a stable dispersion of non-ionic polyisocyanate-polyaddition pronts which are formed by the process which dispersing reacting
2. organic polyisocyanates with
3. compounds having primary and/or secondary amino 3. as dispersing agent, compounds groups in
as dispersing agent, compounds having at least one hydroxyl group and a molecular weight of between about 62 mpounds (3) having secondary groups in cases where compounds (2) have primary hydroxyl groups, and wherein the components are reacted in the presence of more than 4% by including water. including water.

4,093,570

PRODUCTION OF POROUS POLYMERS
Tetsuya Miyake, Tokyo; Kunihiko Takeda, Yokohama; Akihiko
Ikede, Yokohama, and Kazuo Imamura, Yokohama, all of Japan, assignors to Asshi Kasel Kogyo Kabushiki Kaisha, Osele, Japen Apr. 14, 1976, Ser. No. 677, 120 Claims priority, application Japen, May 1, 1975, 50-52911; May 10, 1975, 50-55238; Jun. 9, 1975, 50-69361; Jun. 9, 1975, 50-69362

Int. Cl. ${ }^{2}$ Coss 9/00
U.S. CI. 260-2.5 B
producing a polar, porous polymer compris-
(A) about 2 to about 98 percent of at least one cross-linkable (II) monomer having a plurality of $\mathrm{CH}_{2}=\mathrm{C}<$ groups and (B) about 98 to about 2 percent by weight of at least one monomer selected from the group consisting of (i) copoly(ii) conjugated diene monomers, about 15 to about 100 percent by weight of the total monomers (A) and (B) being polar monomers,
in the presence of an organic medium which does not react with any of monomers (A) and (B), and selected from the group consisting of:
one liquid selected from consisting essentially of at least selected from Group (iii);

II. a mixed organic liquid consisting of at least one liquid selected from Group (i) and at least one liquid selected from Group (iii);
III. a mixed organic liquid consisting of at least one liquid selected from Group (ii) and at least one liquid selected from Group (iii); and
\qquad erein

Group (i) liquids dissolve all of the homopolymers of Group (ii) monomers chosen; Group (ii) liquids do
Group (iii) liquids dissolve at least one homopolymer o the monomers chosen but do not dissolve at lea

4,093,571

PROCESS FOR MAKING POROUS METAL CONTAINING POWDER COATING COMPOSITIONS Marvin Gordon, Succussuna; Martin J. Hannon, Martinsville,
and Henry H. George, Jr., Berkeley Helghts, all of N.J. assignors to Celanese Corporntion, New York, N.Y. Filed Jan. 14, 1976, Ser. No. 649,128
U.S. Cl. 260-2.5 B Int. C1. ${ }^{2}$ C08J $9 / 30$

13 Claims
13 Claims

1. A process for preparing uncured curable porous metal
particle-containing powder coating compositions useful 1. A process for preparing uncured curable porous metal
particle-containing powder coating compositions useful in
powder coating applications, which powder coating applications, which process comprises (a) atomizing by spraying a gas which is intermixed with a solu-
tion comprising a solvent, a resin which is melt extrudable and tion comprising a solvent, a resin which is melt extrudable and which will cure in the presence of a curing agent, a curing
agent which will cross-link said resin upon the application of heat, and suspended metal particles to form droplets, and (b) collecting the sprayed droplets in a liquid bath wherein (b) liquid is miscible with said solvent but said liquid is a non-solvent for the solutes of the solution and wherein said liquid bath is subjected to a radial flow motion whereby said flow motion carries the particles away from one another thereby precipitatagglomerated form.

4,093,572
METHOD OF MAKING A STORAGE STABLE ISOCYANATE AND ITS USE
John R. White, Wadsworth, Ohio, assignor to The Goodyear Tire \& Rubber Company, Akron, Ohio

Filed Oct. 4, 1976, Ser. No. 729,319
U.S. CI. 260-2.5 AH

Int. C1. ${ }^{2}$ CosG 18/14 \qquad

1. A storage stable
2. A storage stable liquid isocyanate composition consisting
of a blend of about 0.2 to 0.4 parts of silicone block copolymer of ethylene/propylene with a liquid isocyanate composition in which the resin is polystyrene; with the proviso that, when hat develops crystals on standing for 96 hours at $25^{\circ} \mathrm{C}$., said licone block copolymer having ability at 0.5 parts by weight
R_{3} and R_{4} each are hydrogen or a hydroxy protecting group; $R_{\text {s }}$ is hydrogen or formyl; and
X is hydroxy or

X is hydro the resin is polystyrene; with the proviso that, when X and, when X is
in 100 parts of said isocyanate composition to teduce sdrace entimeter as measured by Cenco-DuNony Interfacial Tensimeter at $25^{\circ} \mathrm{C}$.

LOW.VISCOUS, STABLE POLYMMER DISPERSIONS AN POLYURETHANES PREPARED THEREFROM
Gerhard G. Ramlow, Grosese Ile; Louis C. Pizzini, Trenton; John
T. Patton, Wyandotte, and John R. Murphy, Trenton, all on
Mich., ascignors to BASF Wyandotte Corporation, Wyan Micte, Mench.
dotte, Micher
Division of Ser.
Division of Ser. No. 465,072, Apr. 29, 1974, Pat. No. 4,014,846 This application Jan. 17, 1977, Ser. No. 759,978
U.S. Cl. $\mathbf{2 6 0 - 2 . 5 ~ B E ~}$ Int. Cl. ${ }^{2}$ COBG 18/63

12 Claims

1. A polyurethane prepared by the reaction of an organic
polyisocyanate with a low-viscous polymer disperson pre
pared by blending:
(a) from 45 to 95 weight percent of a polyol
alent weight of from 500 to 10,000 with
(b) from 55 to 5 weight percent of a hydroxy-containing
finely-divided solid polymer obtained by polymerizing in
the presence of a free radical catalyst and an organic
solvent:
(1) about
55
to
95
weight percent of an ethylenically
(1) unsaturated monomer or mixture of monomers and
(2) from about 45 to 5 weight percent of a hydroxy-ter minated organic compound having from one to eigh
hydroxyl groups, a hydroxyl equivalent weight of from hydroxyl groups, a hydroxyl equivaient weight of from
500 to 10,000 and containing a polymerizable carbon-tocarbon double bond, said weight percents being based on the total weight of (1) and (2).
2. The polyurethane of claim 1 prepared in the presence of a blowing agent.

SOMATOSTATIN ANALOGS AND INTERMEDIATES James E. Shields, Indianapolis, Ind., assignor to Eli Lilly and Company, Indianapolis, Ind.

Ind. Ind., assignor to
Filed Feb. 2, 1977, Ser. No. 763,943
Int. Cl. ${ }^{2}$ C08L 37/00; C07C 103/52; A61K 37/00
U.S. C. $260-8$

1. A compound selected from those of the formula

H-L-Ala-D.Ser-L-Cys-L-Lys-Y-L-Phe-L-Phe-D.
Trp-L-Lys-L-Thr-L-Phe-L-Thr-L.Ser-L-Cys-OH

each of R, R_{1}, R_{2}, R_{3}, and R_{4} is other than hydrogen.

THERMOSETTING YINYI CHLORIDE POL YMER

POWDER COATINGS
Joseph Weldon Hagan, Warren, N.J., assignor to Union Carbide Corporation, New York, N.Y.

Filed May 12, 1976, Ser. No. 685,541
.S. C. $260-15$ Int. Cl. ${ }^{2}$ C08L $1 / 14$

1. A thermosetting vinyl chloride polymer powder coating 1. A thermoseting powder particles are of a blend of constitutents consisting ssentially of:
chloride polymer having pendant hydroxyl groups conpert hydroxyl groups coni. 75 to 95 percent of weight, based on the weight of said vinyl chloride polymer, of vinyl chloride,
ii. 2 to 20 percent by weight, based on the weight of said vinyl chloride polymer, of an hydroxyalkyl acrylate having from 2 to 6 carbor
iii. 0 to 23 percent by weight, based on the weight of said vinyl chloride polymer, of vinyl acetate:
herein the vinyl chloride polymer has a number average
molecular weight of from 5,000 to 25,000 and a glass transition
B. 3 ture above $40^{\circ} \mathrm{C}$.;
B. 3 to 60 percent by weight of said vinyl chloride polymer of a melamine formaldehyde resin, urea formaldehyde
resin, phenol formaldehyde resin, or blocked isocyanate resin, phenol form
crosslinker; and
C. 10 to 30 percent by weight of said composition of cellulose acetate butyrate having a butyral content of from 45 lose 60 percent.
to

4,093,576

MIXTURE FOR ANCHORING BONE IMPLANTS Joost Robert deWijn, Nijmwegen, Netherlands, assignor to Sulzer Brothers, Ltd., Winterthur, Switzerland Claims priority, application Switzerland, Apr. 18, 1975, 4970/75
and their pharmaceutically acceptable non-toxic acid addition U.S. CT. 260-17 R 14 Claims salts, and intermediates to said compounds, said intermediates having the formula \quad R-L-Ala-D-Ser $\left(R_{4}\right)-L-C y s\left(R_{1}\right)-L$
$L y s\left(R_{2}\right)-Y-L-P h e-L-P h e-D-T r p\left(R_{5}\right)-L-L y s\left(R_{2}\right)-L-T h r\left(R_{3}\right)-L-$ ${ }_{\text {Phe }}$ Ly $\left(R_{2}\right)-\mathrm{Th}\left(\mathrm{R}_{3}\right)-\mathrm{L}-\operatorname{Ser}\left(\mathrm{R}_{4}\right)-\mathrm{L}-\mathrm{Cys}\left(\mathrm{R}_{1}\right)-\mathrm{X}$; in which
$\begin{aligned} & \mathrm{Y} \\ & \mathrm{Y} \text { is } \mathrm{L} \text {-Asn or } \mathrm{L} \text {-Ala; }\end{aligned}$
R is hydrogen or an α-amino protecting group; R_{1} is hydrogen or a thio protecting group;

1. A doughy mixture for anchoring implants a water-insoluble composition of a filler consisting of at leas one polymethylmethacrylate (PMMA) polymer in pow der form and a polymerizing liquid monomeric methyl biologically compatible high-viscosity gel of 200,000 cent poise or more in admixture with said water-insoluble
composition to form a dispersion of said composition with said gel, said gel being soluble in water and in body fluid alcohol (PVAL), polyhydroxy alkylmethecrylate polyvi nylmethyl ether, polyvinylpyrrolidone, a polyacrylic acid salt, a water-soluble polysaccharide or a water-soluble cellulose ether more particularly partially neutralized carboxymethylcellulose (CMC); such substance having been dissolved in an aqueous liquid in a quantity of from 3
to 60 percent by weight.

4,093,577

Photocurable resin compositions Ryozo Kano; Akiva Ikea; Toohimitun Ugric, and Akio Hirose, all of Tokyo, Japan, signors to Toy Ink Manufacturing Co., Ltd., Tokyo, Japan
Chums priority, application Japan, Mar. 5, 1976, 51-23108; Mar. 9, 1976, 51-24697; Mar. 9, 1976, 51-2 2698
USS. CT. $260-22$ CB
U.S. Cl. $260-22$ CB

1. A photocurable resin composition
comprising 90% by weight of a photopolymerizable photosensitizing compound prepared by esterifying with an ethylenically unsaturated fatty acid a resin having an OH equivalent of $150-500$ produced by esterification of a dialkylaminobenzoic acid and a polybasic acid with a polyhydric alcohol, (2) 99 to 5.2% by weight of a photosensitizing agent, the percentages being based on the weight of said resin composition.

U.S. Cl. $260-28 \mathrm{P}$
2. A self-lubricating antifriction material comprising a car1. A self-lubricating antifriction material comprising a car-
bon filler selected from the group consisting of a powder of fired oil coke, a powder of artificial graphite and carbon fabric a binder in the form of epoxy resin having a molecular weigh drin with diphenylolpropane and polyalumophenylsiloxane resin having a molecular weight of 5000-15000 with a mole ratio of the silicon atoms to the aluminium atoms equal to $3-8$ chlorinated paraffin having a molecular weight of $500-1100$ and chlorine content of $40-70$ mole percent; the proportion of said components in said self-lubrication antifriction material epoxy resin - $15-57$
polyalumophenylsiloxane resin - 3-10
chlorinated paraffin $-0.2-10$
carbon filler - the balance

LOW PRESSUPE MEL 4,093,579 PRESSURE MELAMINE RESINS CONTAINING AN ETHYLENE GLYCOL AND AN ELASTOMER Darwin Fiske DeLapp, New Canaan; James Christopher Geber Stamford, both of Conn., amend Kenneth Dana Bunkoweki, Cincinnati, Ohio, assignors to Formica Corporation, Clnein sati, Ohio

Filed Feb. 11, 1977, Ser. No. 767,722
U.S. C. 260-29.4 R ${ }^{\text {lit. C1. }{ }^{2} \text { C08L 61/28 }}$

1. A composition of matter comprising
(1) a blend of an aqueous melamine /f solution and from about 2 to about 20%, by hyde resin on the solids weight 2 to about 20\%, by weight, based having a molecular weight of from about 62 to about 2100
(2) an aqueous solution of the resinuous reaction product o (I) melamine, (II) formaldehyde and (III) from about 2 to about 20.0%, by weight, based on the total weight of melamine and formaldehyde, of an ethylene glycol having wherein said (1) or (2) contains, in admixture therewith (3) from about 2.5 to about 30.0%, by weight, based on the weight of resin solids in (1) or (2), of an elastomer comprising
(a) an eth
(a) an ethylene/vinyl chloride containing from about 20 to about 30% ethylene, from about 65 to about 80% vinyl
chloride and from about 0.5 to about 7.0%, by weight, said percentages being based on the total weight of (a) of amide groups,
(b) a polyurethane resin containing from about 3.0 to about 10.0%, by weight, based on the total weight of (b), of carboxyl groups, o
(c) a butadine/acrylonitrile copolymer containing from
about 50 to about 95% butadiene from about 5 to 50% acrylonitrile and from about 1 to about about 5 to 50% said percentages being based on the total weight of (c), of carboxyl groups,
said elastomer having a particle size of up to about 20,000 Angstroms.

4,093,580
METHOD FOR TREATING AQUEOUS MEDIUMS CONTAINING MAGNESIUM SULFITE TRIHYDRATE Robert L. Jones, Newtown; Lewis Volgenan, Iryland, and Philip S. Davis. Furlong, all of Pa., signors to Beta Laboratories,
Inc., Trerose. PaFiled Aug. 5, 1976, Ser. No. 711,914
Int. C.2 ${ }^{\text {COOL }} 41 / 00$; C03B S/06 USS. CI. $260-29.6 \mathrm{SQ}$ 30 Claims
U.S. Cl. $260-29.6$ SQ method for dispersing magnesium sulfite tri-hydrate
contained in an aqueous medium comprising adding in combicontained in an aqueous medium comprising adding in combination to the medium an effective amount for the purpose as a (i) an oligomer having the formula:

where R_{1}, R_{2}, R_{3} and R_{4} are the same or different and are where R_{1}, R_{2}, R_{3} and R_{4} are the same or different and are
selected from the group consisting of hydrogen, methyl selected from the group consisting of hydrogen, methyl
and ethyl, Y is at least one member selected from the

X is one or more members selected from the group consting of $-\mathrm{COOC}_{2} \mathrm{H}_{4} \mathrm{OH},-\mathrm{COOC}_{3} \mathrm{H}_{6} \mathrm{OH}$, $\mathrm{CONHCH}_{2} \mathrm{OH},-\mathrm{CONHCH}_{3},-\mathrm{CONHC}_{2} \mathrm{H}_{3}$, ${ }_{-} \mathrm{CN},-\mathrm{OOCCH}_{3},-\mathrm{OOCC}_{2} \mathrm{H}_{5}$, and $\left.-\mathrm{CONHC}_{3} \mathrm{CH}_{3}\right)$ ${ }^{-} \mathrm{CN},-\mathrm{OOCCH}_{3},-\mathrm{OOCC}_{2} \mathrm{H}_{5}$, and $\left.-\mathrm{CONHCl}_{2} \mathrm{COH}_{3}\right)$ and 0.6 , and M is a water soluble cation of a bisulfite salt; (ii) and
(ii) an effective metal salt of a copolymer of a 1 -olefin having from 4 to 16 carbon atoms and a compound having the formula:

where R is individually selected from the group consisting of hydrogen, methyl and ethyl.

4,093,581
EMULSION POLYMERIZATION OF VINYL CHLORIDE USING PREHOMOGENIZED MIXED EMULSIFIER Donald F. Anderson, White Planing, N.Y., assignor to Stuffer Chemical Company, Weetport, Conn

Company, West port, Conn.
Filed Nov. 11, 1776, Ser. No. 740,989
IER ${ }_{6}{ }_{6}$
USS. C. $260-29.6 \mathbf{~ M H}$
In an emulsion polymerization procedure 8 Claims . chloride home forming monomer charge containing vinyl chloride in the presence of a
water soluble initiator and an emulsifier to form a latex concomprises using as an emulsifier, a prehomogenized mixture of: comprises using as an emulsifier, a prehomogenized mixture of:
(1) at least one $\mathrm{C}_{12} \mathrm{C}_{12}$ straight chain alkyl or alkenyl surfactant of the formula $R O S O_{3} A$ or $R C(O) O A$, where R is a $\mathrm{C}_{12}-\mathrm{C}_{18}$ straight alkyl or alkenyl group and A is an alkali metal cation, kaline earth metal cation or alkanol amine of up to 6 carbon toms and (2) at least one $\mathrm{C}_{11}-\mathrm{C}_{2 \text { straight chain alkyl or alkenyl }}$ than 18 carbon atoms to effect formation of the polymers in said latex in a single step.

4,093,582
ORGAN PHOSPHORUS ESTER PLASTICIZED
ORGANO PHOSBORATE COMPOSITION
Victor Mark, Evansville, and Phillip Steven Wilton, ML. Yernon, both of Ind, assignors to General Electric Company, Pittsfield, Mane. Filed Dec. 8, 1976, Ser. No. 748,469
USS. C. $260-30.6 \mathbf{R}^{\text {Int. C.2 }}{ }^{2}$ C03K 5/51 6 Claims 1. A plasticized polycarbonate composition comprising in admixture, a high molecular weight aromatic carbonate polyger having an IV of 0.40 ol 1.0 ding. in methylene chloride a e

wherein R_{1} is independently selected from the group consisting of hydrogen, halogen or C_{1} to C_{12} alkyl; R_{2} is independently selected from the group consisting of hydrogen or C_{1} to C_{5} alkyl; R_{3} is independently selected from the group consisting o hydrogen, halogen or $\mathrm{C}_{1} \mathrm{C}_{2}$ alkyl; \mathbf{X} is selected from the group consisting of:

wherein A is

and R_{4} is hydrogen or $C_{1}-C_{4}$ alkyl; R is independently selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{15}$ alkyl; aryl o $6-14$ carbon atoms and substituted aryl wherein the substituants are $\mathrm{C}_{1}-\mathrm{C}_{5}$ alky;
(c) $-\mathrm{CH}_{2} \mathrm{~B}-\mathrm{CH}_{2}-$
wherein B is $\mathrm{C}_{1}-\mathrm{C}_{16}$ alkylene or arylene of 6 to 14 carbon atoms;
wherein a is an integer of 3 to 15 ;
(c) -O
(n) -s -
\mathbf{Y} is \mathbf{O}, \mathbf{S} or an electron pair; \mathbf{M} is selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{30}$ alkyl, aryl of 6 to 14 carbon atoms $\mathrm{C}_{1}-\mathrm{C}_{30}$ alkoxy, aryloxy of 6 to 14 carbon atoms, alkylthio of 1 to 30 carbon atoms, arylthio of 6 to 14 carbon atoms, alkyl amino of 1 to 30 carbon atoms, arylamino of 6 to 14 carbon atoms and substituted aryl wherein the substituents are C_{1} to C_{3} alkyl, aryloxy of 6 to 14 carbon atoms, alkylthio of 1 to 30 14 carbon atoms; T is

$1-\frac{1}{4}$

wherein Y and M are as previously defined; m and n are into
gers from 0 to 80 provided the sum of m and n is at least 2 ; and phenyl, bromophenyl, lower alkyl-phenyl, lower alkoxyphe-
\mathbf{Z} is

wherein R_{1}, R_{2}, R_{3} and X are as previously defined and p is an
integer of $0-5$.

4,093,583

PEROXIDE VULCANIZATION OF OIL-EXTENDED ELASTOMERIC ETHYLENE COPOLYMERS Darid Apotheker, Wilmington, Del., assignor to E. I. Du Pont de
Nemours and Company, Wilmington, Del. Femours and Company, Wilmington, Del. ${ }^{\text {29, 1976, Ser. No. 728,003 }}$ U.S. CI. $260-33.6 \mathrm{AQ}$ Int. U.S. CI. 260- $\mathbf{3 3 . 6} \mathbf{A Q}$ Q. $1 .{ }^{2} 008 \mathrm{~K} 5 / 01$

14 Claims 1. An elastomeric peroxide vulcanizable copolymer compo-
sition of ethylene, at least one $\mathrm{C}_{3}-\mathrm{C}_{18}$ alpha-monoolerin, and at least one monoreactive nonconjugated diene containing at
least about 0.1 weight percent allylically least one monoreactive nonconjugated diene containing at
least about 0.1 weight percent allylically incorporated bro-
mine, at least about 20 phr of a hydrocarbon extending oil mine, at least about 20 phr of a hydrocarbon extending oil,
about $1-5$ phr (active ingredient) of an organic peroxide and an about 1-s phr (active ingredient)
unsaturated peroxide activator.

4,093,584

PROCESS FOR THE MASS COLORATION OR WHITENING OF LINEAR POLYESTERS Ginther Zwahlen, Dornach; Gerhard Umsonst, Frenkendorf, and Andreas Lsely, Allschwil, all of Switzerland, assignors to
Ciba-Geigy Corporation, Ardsley Ciba-Geigy Corporation, Ardsley, N.Y.
Flied Dec. 10, 1975, Ser. No. 63 Claims priority, application Switzerland, Dec. 18, 1974,
U.S. C. $260-40 \mathrm{P}$

Int. C1. ${ }^{2}$ C08K $9 / 04$
 poly esters, wherein the polyester to be coloured is mixed, in the solid or fused state, with a preparation consisting subsstan-
tially of a colourant or fluorescent brightener which is soluble tially of a colourant or fluorescent brightener which is soluble
or insoluble in the polyester, and of a polystyrene with a softening point above $100^{\circ} \mathrm{C}$, and the resultant mixture, provided
it is not already it is not already in the form of a melt, is converted into the
molten state and formed into shaped articles. molten state and formed into shaped articles.

4,093,585

PROCESS FOR THE DYEING OF WATER-INSOLUBLE THERMOPLASTIC POLYMERS AND
POLYCONDENSATES IN THE MASS
Wolfgang Teige, Kelkheim, Tannus, and Rudolif Schickfluss,
Frankfurt am Main, both of Germany, assignors to Hoechst
Frankfurt am Main, both of Germany, assignors to Hoechst Aktiengesellechaft, Frankfurt am Main, Germany
Filed Feb. 28, 1977, Ser. No. 772,576
Claims priority, application Germany, Mar. 2, 1976, 2608481
Int. Cl. ${ }^{2}$ C08K $5 / 35$ U.S. Cl. $260-10 \mathrm{P}$ 1. Process for the dyeing of a water-insoluble thermoplastic polymer or polycondensate in mass, which comprises adding
to the said thermoplastic material before the final molding thereof an azlactone dyestuff of the formula (1)

in which A and Beach represents naphthyl, phenyl, chloro
nyl, nitrophenyl,

lower alkyl- $\mathrm{C}-\mathrm{O}$-phenyl, lower alkyl-O-C-phenyl, II 0

cyanophenyl, dichlorophenyl, chloro-lower alkyl-phenyl, ni-tro-lower alkyl-phenyl, chloro-nitrophenyl, A and B being
identical or different, D represents naphthylene, phenylene. identical or different, D represents naphthylene, phenylene,
monochlorophenylene, dichlorophenylene or di-lower alkoxyphenylene, or with a mixture of dyestuffs of the said formula (1).

PYRROLIDINE DICAPBOTYM
AND STABILBOXYLIC ACIDS AND ESTERS AND STABILIZED COMPOSITIONS ration, Ardsley, N.Y. Continuation-in-part of Ser. No. 541,373, Jan. 15, 1975, Dec. 28, 1973, abandoned. This application Mar. 18. 1976, Ser

1. A $260-45.8 \mathrm{~N}$
wherein
X is hydrogen, hydroxyl, O , alkyl having 1 to 12 carbons,
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$, alkenyl having 3 to 4 carbons or
$\underset{\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{;}}{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}}$, alkenyl having 3 to 4 carbons or
\mathbf{R}^{1} is hydrogen, alkyl having 1 to 20 carbons or phenethyl; and
R^{2} are the
R^{2} are the same or different alkyls having 1 to 7 carbons. 16. A composition of matter stabilized against degradation hich comprises a synthetic organic polymer subject to ultrametet light degradation and a compound of claim 1.

4,093,587

TRISUBSTITUTED HYDROXYPHENYLALKANOIC ACID ESTER AND AMIDE STABILIZED John D. Spivack, Spring Valley, N.Y., assignor to Ciba-Gelgy Corporation, Ardsley, N.Y.
Division of Ser. No. 490,835, July 23, 1974, Pat. No. 3,984,460, Which is a continuation-in- p part of Ser. No 400,745, Sept. 25,
1973 , abandoned. This application May 3. 1976, Ser. No. 682.236 U.S. C. $260-15.8 ~$
NEt U.S. Cl. $260-A 5.8$ NE
 22 Claims subject to deterioration and from 0.01 to 5% by material subject to deterioration and from 0.01 to 5% by weight of a
stabilizing compound of the formul stabilizing compound of the formula

[^4]\mathbf{R}^{1} and $\mathbf{R}^{\mathbf{2}}$ are alkyl of 1 to 3 carbon atoms or together are a substituted or unsubstituted carbonium, sulfonium, ammonium, butylene chain which together with the phenyl ring form phosphonium, arsonium, and iodonium cations.
$\mathbf{R}^{\text {a }}$ is tetrahydronaphthyl group,
is alkyl of 1 to 18 carbon
\mathbf{R}^{3} is alkyl of 1 to 18 carbon atoms; cyclohexyl; phenyl;
o-tolyl; p-tert-octyphenyl; 2,4-di-ter-butylphenyl; 2-(al-
kylthio)ethyl of 5 to 21 atoms in the chain; alkylene of 2 to 6 carbon atoms, thiodiethylene, 3 , 6 -dioxa-1, 8 -octa-methylene; or a polyvalent saturated aliphatic hydrocarbon radical of 37 carbon atoms where n is 3 or 4 ,
A is a straight chain alkylene of 1 to 3 carbon atoms, and n
is an integer of 1 to 4 .
4,093,588
HINDERED PHENOLIC CYCLIC PHOSPHONATES AND STABILIZED COMPOSITIONS
John D. Spivack, Spring Valley, and Martin Dexter, Briarcliff Manor, both of N.Y., assignors to Ciba-Geigy Corporation, Continuatio
abandoned, which is a continuation-in-part of Ser. No. 421,173, abandoned, which is a continuation-in-part of Ser. No. 421,173,
Dec. 3, 1973, abandooed. This application Sep. 3, 1976, Ser. No. $\xrightarrow[\text { Int. } \mathrm{Cl} .^{2}]{ }$ C08K $5 / 53 ;$ C07F 9/1 U.S. Cl. 260-45.8 R

1. A compound having the formula

10 Claims

wherein
$\mathbf{R}^{\mathbf{R}}{ }^{\text {i }}$ is alkyl of 1 to 8 carbon atoms,
\mathbf{R}^{3} and \mathbf{R}^{4} are independently hydrogen or alkyl of 1 to 12 carbon atoms,
\mathbf{R}^{s} is hydrogen, a
\mathbf{R}^{5} is hydrogen, alkyl of 1 to 8 carbon atoms or phenyl and providing that each \mathbf{R}^{5} does not have to be the same, and
\mathbf{R}^{6} is alkyl of 1 to 8 carbon atoms or phenyl, or \mathbf{R}^{5} and \mathbf{R}^{6} \mathbf{R}^{6} is alkyl of to 8 carbon atoms or
together represent tetramethylene.
2. A composition of matter comprising a polyamide subject to oxidative and thermal deterioration stabilized
0.01 to 5% by weight of a compound of claim 1 .

> 4,093,589 NON-OPAQUE FLAME RETARDANT POLYCARBONATE COMPOSITION Arnold Factor, Scotia, N.Y.; Donald Benjamin George Jaquiss, New Harmony, and Victor Mark, Evansville, both of Ind. assignors to General Electric Company, Pittsfield, Mass. Filed Feb. 3, 1977, Ser. No. 765,363
Int. C. ${ }^{2}$ Cosk $5 / 42$
U.S. Cl. 260-45.75 B

$$
\begin{aligned}
& \text { Int. C } \\
& \text { fiame re }
\end{aligned}
$$

9 Claims
ne retardant polycarbonate composition 1. A non-opaque flame retardant polycarbonate composition
comprising in admixture an aromatic carbonate polymer and a minor amount of an additive selected from the group consist ing of the organic cationic salts of unsubstituted and substituted monomeric or polymeric aliphatic, aromatic or heterocyclic
sulfonic acids and mixtures thereof and inorganic acids, the sulfonic acids and mixtures thereof and inorganic acids, the
cationic porion of said organic cationic salt being selected from

FLAME RETARDANT POLYCARBONATE COMPOSITION
COLTMC
Victor Mark, Evanssille, Ind., essignor to General Electric Company, Pittsfield, Mass. This application Jul. 14, 1976, Ser. No. 705,025 Int. C1. ${ }^{2}$ CosK $5 / 42$
U.S. CI. $260-45.85 \mathrm{~S}$ 1. A flame retardant carbonate poly

11 Chims 1. A flame retardant carbonate pol
lected from the group consisting of:
(a) a carbonate polymer having in admixture a minor amo of an additive selected from the group consisting of the metal salts of unsubstituted and substituted polymeric phenol ester sulfonic acid, and mixtures of the metal salts of unsubstituted and substituted monomeric phenol ester
sulfonic acid and the metal salts of unsubstituted and substituted polymeric phenol ester sulfonic acid wherein the metal salts are selected from the group consisting of the alkali metal salts and alkali earth metal salts and mixtures of these metal salts, and the substituent on the metal salts of the substituted monomeric and polymeric phenol
ester sulfonic acid is selected from the group consisting of an electron withdrawing radical, and mixtures of electron withdrawing radicals,
(b) a metal salt of a sulfonic acid substituted carbonate poly-
mer wherein said metal salt comprises from 0.01 to up to 10.0 weight percent of said polymer, and
c) mixtures of (a) and (b).

35-DITERTIARY ALKY, 4 , 093,591 G-ACYLOXY-4THIA HEXANOATES AND HEXENAMIDES AS ANTIOXIDANTS Richard H. Kline, Cuyahoga Falls, Obio, assignor to The Goodyear Tire \& Rubber Company, Akron, Ohio
Filed Nor. 8, 1976, Ser. No. 739,687

$$
\begin{aligned}
& \text { Filed Nor. 8, 1976, Ser. No. } 72 \\
& \text { Int. CC. }{ }^{2} \text { Cosk } S / 36
\end{aligned}
$$

U.S. C. $260-55.85 \mathrm{H}$

1. A composition of matter stabilized against oxidative degradation which is comprised of:
A. a polymer susceptible to oxidative degradation selected mers wherein the monomer is selal rubber, homopolyconsisting of mono-olefin monomers from the group ers, and synthetic copolymers whereind diolefin monoonomers is selected from the group consisting of the olefin monomers and diolefin monomers; and olefin monomers and diolefin monomers; and ing the following structural formula:

 ing of tert. alkyl radicals having from 4 to 8 carbons, and
cycloalkyl radicals having from 5 to 12 carbons; R^{2} and R^{3} are selected from the group consisting of \mathbf{H}, and alkyl radicals having from 1 to 4 carbons; $R^{4}, R^{9}, R^{6}, R^{1}$ and R^{9} are selected 1 to 4 carbons R^{8} is selected from the group consisting of alkyl
radicals having from 1 to 20 carbons, alkenyl radicals having from 12 to 20 carbons, cycloalkyl radicals having from 5 to 12 carbons, phenyl, substituted phenyl, and aralkyl radicals hav-
ing from 7 to 12 carbon atoms; x, y or z equals 0 to 12 12 $x+y$
 100 parts by weight of polymer.

4,093,592

NOVEL PHENOLIC ANTIOXIDANTS, THEIR PREPARATION AND THEIR USE
Norbert Mayer, Gersthofen; Gerhard Pfahler, Augsburg, and Hoechst Aktiengeesellschaft, Frankfurt am Main, Germany Filed Mar. 17, 1977, Ser. No. 778,706 Cluims priority, application Germany, Mar. 23, 1976, 2612214 U.S. CI. $260-15.85$ B 1. 2,2 - Bis -(alkyl-4'-hydroxyphenyl)cycloalkyl-(alkyl)-carboxylic acid ester of the formula

wherein
m is 0,1 or
m is 0,1 or 2 ,
is an integer of from 2 to 9 and
\mathbf{R}^{\prime} is an alkyl or isoalkyl radical with up to 30 carbon atoms, the valency of which corresponds to the meaning of p in each case, or a mono- or bivalent, optionally alkylsub-
stituted cycloalkyl radical having of from 5 to 12 ring stituted cycloalky1 radical having of from 5 to 12 ring
carbon atoms, or a monovalent alkene or alkyne radical carbon atoms, or a monovalent alkene
having of from 3 to 30 carbon atoms, having of from 3 to 30 carbon atoms,
and
$\mathbf{R}^{\mathbf{3}}$ is hydrogen or an alkyl or isoalkyl radical having up to 4
carbon atoms. carbon atoms.

PROCESS FOR PRE093,594
dEPOSITABLE COATING CATHODICALL Terry
mer mer Specialtion, Louisville, $\mathbf{K y}$., essignor to Cen mer Specialties Company, Louisville, Ky to Celanese Poly Filed Aug. 18, 1976, Ser. No. 715,267
U.S. C. 260-47 EP

1. A process for preparing a resinous composition which comprises
(A) adducting
(a) a polyepoxide resin derived from a dihydric phenol and an epihalohydrin derived from a dihydric pheno 1,2 -epoxide equivalent weight of about 400 to abou 4000 , with
(b) a polyamine having at least 2 amine nitrogen atoms per molecule, at least 3 amine hydrogen atom per molecule wherein at least 1.5 mols of (b) are present for each epox ide equivalents of (a) and wherein the reaction is contin ued until all of the epoxide groups have reacted with amine groups;
(B) removing by
(B) removing by distillaton the unreacted polyalkylene poly
amine; and (C) reacting
the so formed a temperature of about 150° to about $500^{\circ} \mathrm{F}$. one 1,2 epoxide amine groups, said monoep oher group reactive with amine groups, said monoepoxide having about 8 to 24 mols of (C) are reacted per each mol of (A) and wherein said resinous composition has a weight per active nitrogen of about 200 to about 600 .

4,093,595
PROCESS FOR PREPARING POLYESTERS FROM DIPHENOLS AND AROMATIC DICARBOXYLIC ACIDS BY DIRECT POLYMERIZATION
Steven P. Elliott, Wilmington, Del., assignor to E. I. Du Pont de Nemours and Company, wilmington, Dee.
Filed Nov. 19,1976, Ser. No.
U.S. Cl. $260-47 \mathrm{C}$ C. C1. ${ }^{2}$ C08G 63/14. 63/18 $\quad 13$ Clxims

1. A direct polymerization process comprising reacting 1. A direct polymerization process comprising reacting a
composition consisting essentially of at, least one aromatic dicarboxylic acid and at least one dihydric phenol in the presence of a catalytic amount of a compound selected from the group consisting of antimony, tin, and titanium compounds and a temperature sufficient to maintain the resulting polyester in molten state.

METH $4,093,59$
METHOD FOR POLYMERIZATION OF Walter Karl Olander, Clifton, N.Y., aseignor to General Electric Company, Pittsfield, Mass. Filed Dec. 21, 1976, Ser. No. 753,501
Int. C1. ${ }^{2}$ CosG $65 / 44$
U.S. CI. 260-47 ET
C. C. CosG 65/44 U.S. C1. 260-47 ET

1. Claims
method for the preparation of a polyphenylene oxide which comprises oxidatively coupling a phenolic monomer of the formula:

POLYESTER STABILLZATION, AND COMPOSITION

 Toledo, Ohio $\begin{aligned} & \text { Filed Sep. 14, 1977, Ser. No. 833,192 } \\ & \text { Filed }\end{aligned}$, assipnor to Owens-1U.S. Cl. $260-15.85 \mathbf{P}$
2. A method for stabilizing a saturated polyester containing

which comprises forming an intimate admixture of said polyes ter with 0.3 to 3 parts by weight of 5 -hydroxy isophthalic acid per 100 parts by weight of said polyester.
 hydrogen, chlorine, bromine and iodine group consisting of substituent selected from the group consisting of hydrocarbon
radicals, halohydrocarbon radicals having at least two carbon atoms between the halogen atom and the phenol nucleus, hydrocarbonoxy and halohydrocarbonoxy radicals having at least two carbon atoms between the halogen atom and the phenol nucleus; and Q^{\prime} is as defined for Q^{\prime}, and in addition may
be halogen and $Q^{\prime \prime}$ are each as defined for Q^{\prime} and in addition be halogen and $Q^{\prime \prime}$ are each as defined for $Q^{\prime \prime}$ and in adition
hydrogen with the proviso that Q, Q^{\prime} and $Q^{\prime \prime}$ are all free of a tertiary carbon atom, in the presence of a catalyst of the formula:

wherein R_{1}, R_{2}, R_{3} and R_{4} are independently selected from the group consisting of lower alkyl of from 1 to 8 carbon atoms, when Y is a single bond to form a six carbon ring that may be saturated or have up to two double bonds and which may be substituted with a substituent selected from the group consisting of hydrogen, halogen, lower alkyl of from 1 to 8 carbon toms, lower alkoxy of from 1 to 8 carbon atoms; Y is a single ond or is CH_{2}, and R is hydrogen or R min coter R_{3} to form an unsaturated ring containg 5 to 6 garbon atoms or saturated ring containing 5 to 6 carbon atoms carbon atoms or saturated ring containitg may be unsubstituted or substituted with lower alkyl groups of 1 to 8 carbon atoms or aryl groups, an organic solvent, an alkali and an oxygen containing gas, to form a polyphenylene oxide and thereafter recovering the polyphenylene oxide from the reaction mixture.

wherein R^{1} is selected from hydrogen, lower alkyl of from I to 8 carbon atoms and phenyl; halogen, lower alkoxy of from 1 to 8 carbon atoms; R^{2} is o-phenylene; lower alkoxy o-phenylen wherein the lower alkoxy group has from to cornylene: lower alkyl-o-phenylene wherein the lower alkyl group has from 1 to 8 carbon atoms; lower alkylene of from 2 to 3 carbon atoms; phenyl lower alkylene wherein the alkylene portion has from 2 to 3 carbon atoms and lower alky substituted lower alkylene wherein the lower alkyl group ha from 1 to 8 carbon atoms and the alkylene portion has from 2 to 3 carbon atoms; R^{3} is oxygen or nitrogen; R^{4} is lower alkyl
eneoxy having from 2 to 3 carbon atoms, lower alkyl substi eneoxy having from 2 to 3 carbon atoms, lower alkyl substi-
tuted alkyleneoxy wherein the lower alkyl group has from 1 to 8 carbon atoms and the alkylene portion has from 2 to 3 carbon atoms, o-phenyleneoxy, phenyl lower alkyleneoxy wherein the alkylene group has from 2 to 3 carbon atoms' lower alkyl-o phenylene wherein the lower alkyl group has from 1 to 8 carbon atoms or phenyl-o-phenyleneoxy; R is selected from is 0 or 1 an organic solvent, a base, and an oxygen containing gas, to form a polyphenylene oxide and thereafter recovering the polyphenylene oxide from the reaction mixture.

4,093.59
OXIDATIVE COUPLING OF PHENOLIC MONOMERS IN THE PRESENCE OF MANGANESE COMPLEXES OF MANGANESE PHENYL BENZOIN OXIME CATALYSTS Eugene George Bannuci, Scotia, and Walter Karl Olander, Clifton Park, both of N.Y., asaignors to General Electric Conpany, Pittrfieid, Mass.
Filed Dec. 21, 1976, Ser. No. 753,507 13 Claims U.S. CI. $260-47 \mathrm{ET}{ }^{\text {Int. Cl. }}{ }^{2}$ COBG $65 / 44$ POLYMERIZATION OF 2,6-DI-SUBSTITUTED PHENOLS
PHENOLS Walter Karl Olander, Cinton, N.Y,, assignor to
Company, Pittsfield, Mass.

U.S. C. 260-47 ET

1. A method for the preparation of a polyphenylene oxide 1. A method for the preparation of a polyphenylene 7 Chimas hich comprises oxidatively coupling a phenolic monomer of which comprises oxidatively coupling a phenolic monor the formula: having the formula

wherein X is substituent selected from the group consisting of wherein X is a substituent selected from the group consisting of hydrogen, chlorine, bromine and iodine; \mathbf{Q} is a monovalent hydrogen, chlorine, bromine and iodine; \mathbf{Q} is a monovalent substituent selected from the group consisting of hydrocarbon subsituen selected from he gricup caving at least two carbon toms betwen the halogen atom and the phenol nucleus, atoms between the halogen atom and the phenol nucleus, ydrocarbonoxy and halohydrocarbonoxy radicals having at hydrocarbonoxy and halohydrocarbonoxy radicals having at least two carbon atoms between the halogen atom and the least two carbon atoms between the halogen atom and the phenol nucleus; and Q^{\prime} is as defined for Q, and in addition may phenol nucleus; and Q^{\prime} is as defined for Q, and in addition may be halogen and $Q^{\prime \prime}$ are each as defined for Q^{\prime} and in addition be halogen and $Q^{\prime \prime}$ are each as defin Q^{\prime} ard $Q^{\prime \prime}$ and in adition hydrogen with the proviso that $Q^{\prime} Q^{\prime}$ and $Q^{\prime \prime}$ are all free of mula:
hydrogen with the proviso that Q, Q^{\prime} and $Q^{\prime \prime}$ are all free of of oxygen and a manganese commplex having the formula

wherein R^{1}, R^{2} and R^{3} are independently selected from the group consisting of hydrogen, lower alkyl of 1108 carbon
atoms, lower alkenyl of from 1 to 8 carbon atoms, aryl, amino atoms, lower alkenyl of from 1 to 8 carbon atoms, ary, and
lower alkoxy of from 1 to 8 carbon atoms and halogen.

ROCESS $4,093,599$
VULCANIZABLE EL PREPARATION OF THIODIETHANOL
Romeo Raymond Aloia, Bridgewater, N.J., assignor to American
Cyanamid Company, Stamford, Conn.
Flled Mar. 18, 1977, Ser. No. 779,115 U.S. C. $260-47 \mathrm{R}$ 15 Claims t. Cl. ${ }^{2}$ Cas 7 , No. 779,115 1. A process for the preparation of a thiodiethanol-based
elastomer composition which comprises condensing a monomer charge comprising thiodiethanol, or a major proportion of hiodiethanol with (A) one or more saturated or unsaturated
aliphatic diols, or (B) one or more dihydric phenolic aliphatic diols, or (B) one or more dihydric phenolic com-
pounds or (C) mixtures of (A) and (B) at a temperature abov pounds or (C) mixtures of (A) and (B) at a temperature above
about $150^{\circ} \mathrm{C}$ in the presence of from about 0.1 to 3 percent by weight, based on the weight of said monomer charge, of phos phorous acid, to provide an oligomeric precondensate havin
molecular weight in the range of about 500 to 5000 , said precondensate being fluid at temperatures above about $100^{\circ} \mathrm{C}$ adding to said precondensate from about 0.01 to 0.1 percent by
weight, based on the weight of said precondensate, of sulfric weight, based on the weight of said precondensate, of sulfuric
acid and continuing the condensation reaction at a temperture acid and continuing the condensation reaction at a temperature
in the range of about $150^{\circ} \mathrm{C}$ to $220^{\circ} \mathrm{C}$ until the condensate attains a molecular weight sufficient to provide a Mooney viscosity of at least about 10 .

SILANE END-CAPPED $\begin{aligned} & \text { 4,093,600 } \\ & \text { You-Ling }\end{aligned}$ You-Ling Fan, East Brunswick, and Alford Gailey Farnham tion, New York, N.Y. Filed Apr. 30, 1976, Ser. No. $\mathbf{~} \mathbf{6 8 1 , 8 3 0}$
Int. Cl. ${ }^{2}$ CosG $75 / 00$
copolymer resin comprising one or more ethylenically unsatu-
(I) rated monomers selected from the group consisting of vinyl (I) rated monomers selected from the group consisting of vinyl
esters, aryl vinyl compounds, vinyl nitries and divinyl com pounds and a carbocyclic or heterocyclic carboxylic ester monomer useful in imparting heat resistance to vinyl resin lymers made therefrom having the general formul
$\left(\mathrm{RO}_{2} \mathrm{C}^{\prime}\right)_{2}=\mathrm{X}=\left(\mathrm{C}^{\prime \prime} \mathrm{O}_{2} \mathrm{R}^{\prime}\right)_{2}$
wherein $=\mathrm{X}=$ is selected from a tetravalent 5 or 6 membered single ring system and a double 6 membered ring system selected from the group consisting of cyclopentane, cyclopendine, cyclohexane, dioxane, naphthalene, dibenzene, benzophenol, anthracene and dibenzylmethane wherein the C' carbons are attached to one pair of vicinal carbons in said ring system and the C carbons are attached to one other pair of vicinal carbons in said ring system wherein 1 each of R and R^{\prime} is a terminally ethylenically unsaturated aliphatic radical
linked by the removal of the hydroxyl group from compounds selected from removal of the hydroxyl group from compounds
seonsisting of monohydric vinyl alcoselected from the group consisting of monotydric vinyl alco-
hol and alkoxylated derivatives thereof and the other of each R and R^{\prime} is selected from the group consisting of $-\mathrm{H},-\mathrm{CH}_{2} \mathrm{C}$ $\mathrm{H}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCR}^{\prime \prime}=\mathrm{CH}_{2}$, and $-\mathrm{CH}\left[\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}\right.$. ${ }_{2} \mathrm{O}_{2} \mathrm{CCR}^{\prime \prime}=\mathrm{CH}_{2}$, wherein $\mathrm{R}^{\prime \prime}$ is -H or $-\mathrm{CH}_{3}$.

4,093,602
POLYMERIC MATERIAL CONTAINING ALDEHYDE GROUPS AND THE METHOD OF ITS PREPARATION Sirec, Kladno, all of Crechoslorakia, assignors to Ceskoslovanska akademie ved, Prague, Czechoslovakia
Filed Oct 20,1975 , Ser
Claims priority, application Czechoslovakia, Oct. 24, 1974,
Int. Cl. ${ }^{2}$ COSG 2/00, 12/04, 2/26
U.S. Cl. 260-73 R
3 R . 1. Polymeric material which is in the form of spherical particles having a diameter of up to 3 mm , contains up to 40%
of free aldehyde groups, and is formed by radical copolymerization of a monomer of the general formula:

$$
\begin{aligned}
& \mathrm{R}_{1}-\mathrm{CH}=\mathrm{C}-\mathrm{R}_{2} \\
& \mathrm{C} \\
& \mathrm{CH}=\mathrm{O}
\end{aligned}
$$

where R_{1} is selected from the group consisting of hydrogen, alkyl with 1 to 5 carbon atoms, aryl and furyl and R_{2} is selected from the group consisting of hydrogen, alkyl with 1 to 5 carbon a

4,093,603
COPOLYESTERS OF TEREPHTHALIC ACID, 1,2-PROPANEDIOL AND
U.S. C. $260-49 \quad 17$ Claims 1. A silane end-capped polyarylene polyether of the formula:
\mathbf{x} - polyarylene polyether chain $-\mathbf{X}^{\text {p }}$ \mathbf{X}-polyarylene polyether chain $-\mathbf{X}^{\prime}$
wherein \mathbf{X} and \mathbf{X}^{\prime} individually repre
wherein each silane end group contains at least one hydrolyz. able substituent group or at least one silanol hydroxyl group.

VINYL ESTERS OF TETRACARBOXYLIC ACIDS AND VINYL ESTERS OF TETRACARBOXYLIC ACIDS AND Erich Kuehn, Wilmington, Del., assignor to ICI Americas Inc., Wilmington, Del.
Filed Sep. 29, 1976, Ser. No. 727,411 Filed Sep. 29, 1976, Ser. No. 727,411
Int. C.2 Co8F 218/14, 224/00, 226/06 U.S. Cl. $260-63$ UY U.S. C. $200-63$ UY

1. A composition cura
inston J. Jackson, Jr., and Herbert F. Kuhfuss, both of Kingsport, Tenn., assignors to Eastman Kodalk Company, RochesFiled Jan. 19, 1977, Ser. No. 760,778
U.S. Cl. 260-75 R 2 and 3 as follows:
2. terephthalic acid
from about 30 to about 75 mole percent of 1,4 -cyclohexanedimethanol; and
3. from 70 to 25 mole percent of 1,2 -propanediol; said copolyester having an inherent viscosity of at least about
0.40 as measured at $25^{\circ} \mathrm{C}$. using 0.5 gram of polyester per 0.40 as measured at 25° C. using 0.5 gram of polyester per and 40% by volume tetrachloroethane.

COPOLYMERS OF POLYPARABANIC ACIDS AND POLYAMIDES
Augustin T. Chen, Cheshire, and Kemal B. Onder, North Haven, both of Conn., aeslegnors to The Upjohn Company, Kalamazoo

Filed Jul. 5, 1977, Ser. No. 812,800
Int. C.2. ${ }^{\text {Co8G }}$ 18/00
U.S. Cl. $260-77.5 \mathrm{CH}$ 1. A copolymer characterized by the presence in rand arrangement of each of the following recurring units.

wherein R_{1} represents a member selected from the group co sisting of alkylene from 1 to 15 carbon atoms, inclusive, arylene from 6 to 12 carbon atoms, inclusive, and aralkylene from 7 to 25 carbon atoms, inclusive, R_{2} is the residue of an organic diisocyanate $\mathrm{R}_{2}-(\mathrm{NCO})_{2}$, and, in 75 to 100 percent of the units (II), R_{3} is alkylene from 4 to 13 carbon atoms, inclusive, and, in 0 to 25 percent of the units (II), R_{3} is arylene from 6 to 12 carbon atoms, inclusive, with the proviso that, when \mathbf{R}_{1} repre-
sents arylene, \mathbf{R}_{3} is free of aromaticity.

4,093,605
AUXILIARY AGENT FOR IMPROVING RETENTION, Lutz Hoppe; Branislav Boehmer, and Rudolf Behn, all of Wal rode, Germany, aviguors to Woire Wulsrode Aktiengeeell chaft, Wallerode, Germany
Cleims priority, application Germany, Jan. 24, 1975, 2502874, Aus. 30, 1975, 2538745
Aus. $\mathbf{3 0}, \mathbf{1 9 7 5}, 253814$ Int. C.2 ${ }^{2}$ C08G 69/48
U.S. Cl. 260-78 SC \qquad 3 Clams
of flusha1. An auxiliary agent for improving the retention of flusha-
ble solids, for accelerating the drainage of suspensions and for rapid treatment of industrial waters, effluents and sludges by adding thereto basic water soluble polymer consisting essentially of a reaction product C formed by crosslinking 0.5 to 3 mols of an intermediate product A with $0.8-1.2$ mols of an pound selected from the group consisting of epichlorohydrin and dihalogenoalkane, product A being at least one polyamine which contains quaternary nitrogen and formed at $40^{\circ}-100^{\circ} \mathrm{C}$ by the action of $1-2$ mols of a material selected from the group consisting of at least one polyvalent amine, at least one monoone mol of a secondary amine hydrochloride with 1 to 3 mols of epichlorohydrin, product B being at least one resinous, basic polyamino-amide formed from reacting materials selected from the group consisting of; at least one dicarboxylic acid and at least one polyalkylene polyamine; at least one aminocarleast one lactam and hexamethylene diammonium adipate.

METHOD OF PRODUCING INTRAVENOUSLY INJECTABLE GAMMA GLOBULIN AND A GAMM GLOBULIN SUITABLE FOR CARRYING OUT TH
Myer Louis Coval, 6241 Chelton Dr Continuation-in-part of Ser. No. 550,467, Feb. 18, 1975 abandoned. This application May 21, 1976, Ser. No. 688,621
Int. C. ${ }^{\text {A23 }}$ 1 106 U.S. C. $260-112$ B Int. C. ${ }^{2}$ A23J $1 / 06$ $-112 \mathrm{~B}$ 6 Cluma 1. A process for preparing a gamma globulin substantially
devoid of anticomplementary activity and suitable for intravenous administration, from a material selected from the Fraction I + III plasma protein paste having a protein content of abou $25-30 \%$ and Fraction II paste which comprises the steps: a. suspending said paste in water to form a solution of low $\mathrm{cm}^{-6} \mathrm{ohm}^{-1}$ at a pH of about 4.8 to 6.5 to produce precipitate and filtrate,

b. fractionally precipitating impurities from said filtrate by adding polyethylene glycol to 4% weight/volume and then 5% weight/volume, c. precipitating the gamma globulin by adding polyethylen aid process being carried out at a temperature of about 0° to 20 | said pro |
| :--- |
| $\stackrel{c}{\mathrm{C}}$. |

IMMUNOLOGIC CHEMOTHERAPEUTIC AGENT COMPRISING ANTIGEN BINDING DIMER Michael Selar; Ruth Armon, both of Rehovot Ruth Maron, Tel Michnel Selk; Ruth Arraon, botin of Rehovot, Ruth Maroo, Te
 ors to
Israel

Filed May 25, 1976, Ser. No. 699,276 Claims priority, application Lsrael, May 27, 1975, 47372 U.S. CI. 260-112 B 17 Clains 1. A composition of matter comprising an antigen binding dimer containing an anti-tumor antibody specific to a tumor antigen, said dimer covalently bonded to an anti-cancer drue hrough a functional group on the dimer that is nonessential fo antibody acivity ine dimer, and the gha fanclonial group ity of the drug, thereby preserving both the antibody activity of the dimer and the pharmacological activity of the drug.

4,093,608
PRES FOR PURIFYING COAGULATION FACTOR VII USING DEAE-CROSSLINKED DEXTRAN th in Nillomiyn, and Mre Green Comoration Onake, Japan
Filed Apr. 1, 1977, Ser. No. 783,625
C.sime priority, application Jappan, Apr. 9, 1976, $51-39894$ U.S. CI. $260-112 \mathrm{~B}$ \qquad

1. A process for purifying coagulation factor VIII which plasma froctacting for 10 to 60 minutes a human plasma or lasma fraction containing both prothrombin complex and conductiv, said plasma or plasma fraction having an electro 8.8 to 7.9 , and a liquid temperature of 0° to $10^{\circ} \mathrm{C}$, with a pH of aminoethyl cross-linked dextran and thereby adsoring and removing said prothrombin complex.

SOMATOSTATIN SYNTHESIS
Dimitrios Sarantalide, West Chester, Pa, aedgmor to American
Home Producta Corporation, New York, N.Y. Home Products Corporation, New York, N.Y. Flied Dec. 10,1976, Ser. No. 749
Int. C. ${ }^{2} \operatorname{co7C} 103 / 52$ U.S. C. $260-112.5 \mathrm{~S}$ C1.2 COTC 103/52 3 Clams successive amino acid residues are coupled N-terminally to a preceding peptide fragment followed ultimately by complete
deprotection of the tetradecapeptide and oxidation to produce the 3-14 disulfide bond, the improvement which comprises: (a) preforming by solid phase synthesis the compound
(R)Phe-Phe-Trp-Lys(R)-Thr(R)-Phe-Thr(R)-Ser(R)-OR R Phe
Resin
(b) removing the fully protected octapeptide from the Resis by reaction with hydrazine;
(c) coupling the octapeptide hydrazide with Cys(R)(OR) by the azide method and subsequently
(d) completing the N -terminal elongation of the peptide
chain by the solution method.

4,093,610

PROCESS FOR PRODUCING TRIGLYCYL-LYSINE VASOPRESSIN AND INTERMEDIATES THEREFOR Nedumparambil A. Abrahan, Dollard des Ormenux; Hans U, Immer, Mount Royal, and Kavimir Sestanj, Point Claire, all
tion, New Yorle, N.Y.
Filed Jan. 31, 1977, Ser. No. 763,772
Int. Cl. ${ }^{2} \mathbf{C 0 7 C} 103 / 52 ; \operatorname{C07G} 7 / 00 ; \operatorname{Co9H} 00 / 00$ U.S. CI. $260-112.5 \mathrm{R}$

1. A process for preparing a cyclic dodecapeptide of the 1. A process for preparing a cyclic dodecapeptide of the
formula

H-Gly-Gly-Gly-Cym-Tyr-Phe-Gln-Asn-Cys-Pro-Lys-Gly-NH
which comprises the steps of:
reacting first hexapeptide of formula Boc-Gly-Gly-
Gly-Cys(Tr)--Tyr-Phe-NHNH which furnishes nitrous acid in situ in with a reagent mineral acid to convert said first hexapeptide to the corresponding first hexapeptide aride and reacting said azide
with a second hexapeptide of formula $\mathrm{H}-\mathrm{G} \ln \mathrm{Mb}$ with a second hexapeptide of formula $\mathrm{H}-\mathrm{Gln}(\mathrm{Mb}$
$\mathrm{h})-\mathrm{Asn}(\mathrm{Mbh})-\mathrm{Cys}(\mathrm{Tr})-\mathrm{Pro}$ - $\mathrm{Lys}(\mathrm{Boc})-\mathrm{Gly}-\mathrm{NH}$ -
oxidizing the resulting protected linear dodecapeptide of the formula:

$\mathrm{Lys}(\mathrm{Boc})-\mathrm{Ty})-\mathrm{NH}_{2}$
with iodine or thiocyan
Wisulfide dodecapeptide of the obtain the protected cyclic

reacting said protected linear dodecapeptide with mercuric eacting said protected linear dodecapeptide with mercuric acetate, mercuric chloride, silver acetate of silver nitrate
to obtain the corresponding mercuric or disilver salt of the to obtain the corresponding mercuric or
corresponding disulfyydryl derivative,
reacting said salt with hydrogen sulfide to obtain the protected linear disulfhydryl dodecapeptide,
oxidizing said last-named dodecapeptide with oxygen, 1,2
diiodoethane, sodium or potassium ferricyanide, iodine thiocyanogen to obtain said protected cyclic disulfide dodecapeptide;; and
in the presence of a conced cyclic disulfide dodecapeptide ous solution of a mineral acid under moderately acidic
conditions appropriate to remove the Boc and Mbh pro tecting groups to obtain said cyclic dodecapeptide.
in a buffer of
b. contacting said suspension with said albumin containing fluid to provide a suspension having albumin absorbed upon the solid phase thereof;
OCTAPEPTIDES AND METHODS FOR THEIR PRODUCTION
OCTAPEPI rancis John Tinney, Ann Arbor, Mich., sesigno
David \& Company, Detrot, Mich.
Filed Apr. 7, 1977, Ser. No. 785,384 Filed Apr. 7, 1977, Ser. No. 785,
It. Cl. ${ }^{2}$ COTC $103 / 52$
U.S. C. $260-112.5 \mathrm{LH} \quad 6$ Clims 1. An octapeptide having the name $\mathbf{N}^{\text {a benzyloxycarbonyl- }}$ L-glutaminyl-L-prolyl-Nin-benzyl-L-histidyl-Nimmenzyl-L. histidyl-O-benzyl-L-seryl-L-prolyl-L-tryptophyl-D-alanine

SELECTIVE REMOVAL ${ }^{4,093,612}$
SELECTIVE REMOVALOFALBUMIN FROM BLOOD FLUIDS AND COMPOSITIONS THEREFORE ames Travis, and Ralph Pannell, both of Athens, Ga., amignori to Research Corporation, Nen York, N.Y. Continustion-In-part of Ser. No. 601,676, Aug. 4, 1975, Pat. No. 4,016,149, which is a continuanton-in-part of Ser. No. 396,036 ,
Sep. 10, 1973, abandoned. This application Feb. 27, 1976, Ser. No. 661,890
U.S. CI. 260-122 Int. C1. ${ }^{2}$ A23J 1/00; C07G 7/00 19 Claims 1. A method of obtaining albumin from substantially cell free aqueous fluids containing the same comprising the steps of
a. suspending a composition of the general formula (SP) $)_{x}$ (CRD) wherein CRD is a color reactive dye of the general formula

wherein
R_{3} is hydrogen, alkyl, phenyl, alkoxy phenyl, alkyl phenyl
or

wherein R_{1} is hydrogen, an alkali metal, or an alkaline earth metal, \mathbf{R}_{2} is halo or -O-dextran,
Z_{1} is two hydrogen atoms, or $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-$ to form a naphthyl nucleus with the phenyl nucleus to which it is attached,
Z_{2} is one bond of a nitrogen-nitrogen bond or a hydrogen attached to the nitrogen shown only,
Q is substituted or unsubstituted aryl where Z_{2} is hydro-
gen, or Q is substituted or unsubstituted aryl- $\mathrm{N}=$ where gen, or Q is substituted or unsubs
Z_{2} is one bond of a double bond
m is 1 or $0, n$ is 1 or 2 , provided that the substituent groups aforessid are other than halo or heavy metal, and Wherein SP is a solid support phase selected from the resin containing amino groups, provided that where the CRD, \mathbf{R}_{2} is halo, the SP- linkage in the (SP) $)_{x}(\mathbf{C R D})$ is to the R_{2} bearing position of the triazine moiety, and where in the CRD R_{2} is O -dextran, the SP- linkage in the (SP) x (CRD) is to the Q moiety
separating the solid phase-albumin adsorbate from the
aqueous phase by treating the solid phase-albumin adsoraqueous phase by treation with an aqueous ionic eluent wherein the anion is thiocyanate.

4,093,613

TRISAZO PIGMENTS CONTAINING TWO BARBITURIC ACID COUPLING COMPONENTS
Stefan Harl, Allechwil, and Armand Rouèche, Bottmingen, both of Switzerinad, assignors to Ciba-Geigy Corporation, Ardsley, F.Y. Filed Jul. 19, 1976, Ser. No. 706,369 Claims priority, spplication Switzerland, Jul. 31, 1975, Int. Cl. ${ }^{2}$ C09B 35/00 1. An azo pigment of the formula

in which R_{1} and R_{2} denote H, alkyl with $1-6 \mathrm{C}$ atoms or aryl, Y denotes an O, S or imino, Z denotes O or imino and $\mathrm{Y}_{1}-\mathrm{Y}_{4}$
denote H , halogen, alkyl containing $1-4 \mathrm{C}$ atoms, alkoxy con taining 1-4 C atoms, nitro, trifluoromethyl or alkoxycarbony containing 2-4 C atoms.

METAL COMPL $4,093,614$
Sheldon Caibnik, Cherry Hiil, NITROGEN COMPOUNDS Sheldon Caibnik, Cherry Hill, and Perdinand P. Otto, Wood-
bury, both of N.J., assignors to Mobil Oil Corporation, New York, N.Y.
Continuation-in-part of Ser. No. 493,358, Jul. 31, 1974, Pat. No 3,945,933. This application Dec. 9, 1975, Ser. No. 639,026 U.S. C. 260 Cl. ${ }^{2}$ C07F $3 / 00$; C10L $1 / 30$; C10M $1 / 54$

15 Claims

1. A double complex salt product which is a complex of a coordinated complex of the Wroduct which is a complex of a salt product consisting essentially of the reaction product of salt product consisting essentially of the reaction produl toup
(1) an alkenyl succinic anhydride in which the alkenyl group contains from 8 to about 500 carbon atoms, (2) a member selected from the group consisting of

wherein n is a number from 1 to $10, m$ is a number from 2 to $10, p$ is a number from 3 to $10, \mathrm{R}^{\prime}$ is alkylene of 2 to 5

Int. C.2. ${ }^{2}$ C07D 255;02 257/02 259/00

Int. C. ${ }^{2}$ C07D 255/02, 257/02, 259/00
11 Claims
carbon atoms and $R^{\prime \prime}$ is hydrogen or a hydrocarbyl group of 1 to 30 carbon atoms,
(3) a irst metal compound consisting essentially of a metal of Periodic Groups IB, IIB, IVA, IVB, VB VIB, VIIB, or (4) all which forms a complex with reactant (2) and
from the group consisting of (3), and alkali and alkaline earth metal oxides, hydroxides, halides and carboxylates of monocarboxylic acids having from 1 to 30 carbon atoms.

4,093,615

CYCLIC OLIGOMERS OF N-SUBSTITUTED AZIRIDINES George E. Ham, Lake Jackson, and Ruben L. Kranse, Angleton, both of Tex., asaignors to The Dow Chemical Company, Mid-
Continuation of Ser. No. 180,236, Sep. 13, 1971, abandone

1. A cyclic oligomer of the formula

$$
4-\mathrm{CH}_{2}-\mathrm{CR}_{1} \mathrm{R}_{2}-\underset{\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{R}_{3}}{\substack{\mathrm{CH}_{2}}}
$$

(a) x is an integer of from 3 to 8 ;
(b) \mathbf{R}_{1} and \mathbf{R}_{2} are independently hydrogen or lower alkyl;
and a ${ }^{\text {a }}$, R_{3}, hydrogen, hydroxyl, cyano, a hydrocarbyl radical R, selected from the group consisting of alkyl, aryl, alkaR selected from the group consisting of aikyl, aryl, alka-
ryl, aralkyl and alkenyl, the corresponding hydroxy-substituted R_{4} hydrocarbyl radical or R_{3} is represented by one of the formulas

and $-0-R_{4}$ wherein each hydrocarbyl radical R_{4} has and $-\mathrm{O}-\mathrm{R}_{4}$, wherein eact
from 1 to 24 carbon atoms.

4,093,616
QUATERNARY SALT AS HYPOGL YCEMIC AGENTS Donald E. Kuhla, Gales Ferry, Conna, asaignor to Phizer Inc. New York, N.Y.
Division of Ser. No. 712,204, Aue 6, 1976, Pat. No. 4,04,015 (b) Which is a continuation-in-part of Ser. No. 609,914, Sep. 3, 1975, (b) abandoned. This application Ane. 8, 1977, Ser. No. 822,442 (c) U.S. CI. $54{ }^{2}-3441215 / 10,241 / 38,401 / 00$; A61X $11 / 495$ Cuime 1. A compound selected from those having the formulae:

wherein R is hydrogen or the carbon and hydrogen atoms completing a fused 3,4 benzo moiety; \mathbf{Q} and \mathbf{Z} are each seand X is a pharaceutically acceprearen and chlorin and X is a pharmaceutically acceptable anion.

4,093,617

PYRAZOLOISUSTITYTED
Roland K. Robins, Santa Ans; Darrell E. O'Brien, Mission Viejo, to ICN Thomas Novinson, Conta Mesa, all of Calif,, assign Continuation of Ser. No. 520, I31, Nov. 12, 1974, which is a contiruntion of Ser. No. 273,465, Jul. 20, 1972,
abandoned, which is a continuation-in-part of Ser. No abandoned, which is a continuation-in-part of Ser. No. 206,538,

Dec. 9 , 1971, abandoned. This application Jan. 28, 1976, Ser. No. Int. Cl. ${ }^{2}$ CO7D 487/04; A61K 31/415 | Int. |
| :--- |
| 544 |
| -281 |

1. A compound of the structure

8 Claims

wherein R_{1} is $C_{1}-C_{3}$ alkyl; R_{2} is $C_{1}-C_{3}$ alkyl; and R_{1} is halogen.
vi

2,4,6-TRIALKYL-3-HYDROXY-PHENYLALKKANOIC John D. Spivack, Spring Valley, and Martin Dexter, Briarcliff Manor, both of N.Y., assignors to Ciba-Geigy Corporation, Division of Ser. No. 494,156, Aug. 2, 1974, Pat. No. 3,988,363, which is a continuation-in-part of Ser. No. 400,603, Sep. 25, 1973, abandoned. This application Jun. 7, 1976, Ser. No. U.S. C. 544-387 Int. Cl. ${ }^{2}$ CO7D 295/18 U.S. C. compound having the formula
1.

wherein
R is a branched allyl of 3 to 8 carbon atoms,
R^{1} and R^{2} are A is a straight chain alkylene of 1 to 3 carbon at

METHOD FOR OXIDI,093,619 rancois X FOR OXIDIZING CINCHONA ALKALOIDS Paris, France, assignors, to Dowliceques Koenig, both of Paris, France,
Paris, France
Filed Nov. 19, 1976, Ser. No. 743,257 Claims priority, application Prance, Nov. 19, 1975, 7535383 U.S. Cl. 260-284 tat. C1. ${ }^{2}$ COTD $401 / 06 ;$ N07G $5 / 0$

13 Clain 1. A method of oxidizing cinchona alkaloids comprising the
step of reacting a ketone represented by the formula: R, COR step of reacting a ketone represented by the formula: $\mathrm{R}_{3} \mathrm{COR}$
in which R_{3} and R_{4} are the same or different and denote branched alkyl group, an aryl group or R_{3} and R_{4} together with the carbonyl group form a condensed ring or a carbon o heterocyclic ring having 5 to 7 atoms with a cinchona alkaloi in the presence of a strong base in an aprotic solvent.

4,093,620
PROCESS FOR PRODUCCONG 2 -CYANO N-SUBSTITUTED HETEROCYCLIC COMPOUNDS AND PRODUCTS PRODUCED THEREBY Thomas S. Osdene, and Edward B. Sanders, both of Richmond, gnors to Phillip Morris Incorporated, New York, N.Y Filed Jun. 10, 1976, Ser. No. 694,687
Int. Cl. ${ }^{2}$ CO7D 213/57, 401/04
U.S. Cl. 260-291 10 Cleim 1. A process comprising the steps of: (a) reacting an N -substituted lactam having the formula:

Wherein:
n is 0 to 1 ;
is methyl or phenyl; \mathbf{R}_{1} is H or pyridyl; and each of \mathbf{R}_{2}
through R_{8} is H
with a reducing agent selected from the group consisting of with a reducing agent selected from the group consisting of
sodium aluminum hydride, sodium bis-(methoxyethoxy)aluminum hydride and di-isobutylaluminum hydride at a lemperature below about $20^{\circ} \mathrm{C}$ for at least 30 minutes under an inert atmosphere to produce an intermediate and
(b) then reacting said intermediate with a reagent comprising about $30^{\circ} \mathrm{C}$ for at least 15 minutes.

4,093,621
PROCESS FOR PREPARING
HETEROCYCLICALEYLTHIOALKYLN-CYANOGUANI DINES AND THIOUREAS

YRIDINE ESTERS 4,093,622
INE ESTERS OF CYCLOPROPANE-CARBOXYLIC Iive A. Henrick, and Gerardus B. Stenl, both of Palo Aito Calif, assignora to Zoecon Corporation, Palo Alto, Calif? (ivision of Ser. No. 578,837 , May 19, 1975, abandoned, which is a continuation-in-part of Ser. No. 418,595, Nov. 23, 1973, abandoned. This application Jul. 26, 1976, Ser. No. 708,825 U.S. CI. $260-295 \mathbf{R}^{\text {Int. C1. }{ }^{2} \text { C07D 213/51 }}$
 $\begin{array}{cl}\text { 1. The compound, } & \text { bis(cyclopropanemethyl)2,6- } \\ \begin{array}{c}\text { pyridinedicarboxylate. } \\ \text { 2. } \\ \text { The } \\ \text { compound, }\end{array} & \text { bis(cyclopropanemethyl)2,5- }\end{array}$ pyridinedicarboxylate.

4,093,623
METHOD OF PREPAPING THE ACLD COPPER SALT OF W-NTROTETRAZOLE Wiliam H. Giligan, Washington, D.C., and Mortimer J. Kamlet, Silver Spring, Md., zasignors to The United Stateen of
America as represented by the Secretary of the Navy, Washington, D.C.

> C. Filed May 5, 1977, Ser. No. 794,197 Int. C1. ${ }^{2}$ COFF $1 / 08$

Thomas Henry Brown; Graham John Durant, both of Welwyn Garden Crty; John Colin Emmett, Codicote, and Charon Robin Ganellin, Welwyn Garden Clty, all of England, assign-
ors to Smith Kline \& French Laboratories Limited, Welmyn Garden City, England
Division of Ser. No. 606,269, Aug. 20, 1975, Pat. No. 4,013,678 This application Nov. 15, 1976, Ser, No. 741,586 Claims priority, application United Kingdom, Sep. 2, 1974,
U.S. C. $260-294.8 \mathrm{H}$ H. ${ }^{2}$ C07D 213/44, 233/30
U.S. C. $200-294.8 \mathrm{H}$

1. A process for the production of a compound of the for-
U.S. C. $260-299$
2. In the Von Herz process of preparing the acid copper salt 12 Claims of 5 -nitrotetrazole having the composition

NHR_{1}
wherein E is sulphur or NCN, R_{1} is hydrogen or lower alkyl, and R_{2} is a grouping of the structure

$$
\text { Het }-\left(\mathrm{CH}_{2}\right)_{m}-\mathbf{s}-\left(\mathrm{CH}_{2}\right)_{n}-
$$

$\overbrace{\mathrm{N}}^{\mathrm{N}-\mathrm{O}^{-}} \mathrm{N}^{\mathrm{C}} \mathrm{CNO}_{2}\} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
which comprises slowly adding a solution of 5 -aminotetrazole and a strong inorganic acid in water to a solution of a compati-
be water soluble copper (II) salt and sodium nitrite in water in ble water soluble copper (1h) salt and sodium nitrite in water in
accordance with the method of Sandmeyer, the improvement comprising: using a 25 to 100 percent excess of NaNO_{2}. 3. In the Von Herz process of preparing the acid copper salt wherein Het is a nitrogen containing 5 or 6 membered hetero- of 5 -nitrotetrazole having the composition
cyclic ring selected from imidazole, pyridine, thiazole, iso thiazole, oxazole, triazole or thiadiazole which ring is option-
ally substituted by lower alkyl, hydroxyl, halogen or amino; ally substituted by lower alkyl, hydroxyl, halogen or amino;
and m is 1 or 2 , and n is 2 or 3 such that the sum of m and n is 3 or 4; which comprises treating a compound of the formula
$\mathrm{Het}-\left(\mathrm{CH}_{2}\right)_{m}-\mathrm{Z}$
wherein Het and m are as defined hereinabove and Z is a group selected from tosyloxy, methanesulphonyloxy, trifluoromethanesulphonyloxy, benzoyloxy with one or more nitro or chloro substituents, trifluoroacetoxy or diphenylphosphoryloxy, which forms a good leaving group, with a mercaptan of the formula

wherein n E and R_{1} are as defined hereinabove, in the presence of a base, said reactants and base being present in molar equivalent amounts.

by slowly adding a solution of 5 -aminotetrazole and a strong inorganic acid in water to a solution of a compatible water soluble copper (II) salt and sodium nitrite in water in accorprising: dine small amounts of the water soluble copper (II) salt to the -aminotetrazole-acid solution to prevent the build up of detonation sensitive 5 -diazotetrazole in the 5 -aminotet-razole-acid solution during the addition of the 5 -aminotet
razole-acid solution to the copper (II) salt-sodium nitrite solution.

1,2,4THIADIAZOLDINE-3,5-DIONE

anap R. Rerankar, and Roland K. Rbos, both of Santa Ana, Calif, samignors to ICN Pharmacenticalie, Inc., Irvine, Filed Jan. 31, 1977, Ser. No. 763,913
Int. Cl. ${ }^{2}$ C07D 285/08
U.S. C. $260-302 \mathrm{D}$

1. The compound $1,2,4$ Thiadiazolidine- 3,5 -dione. 1 Claim

wherein R is hydrogen, methoxy or nitro
4,093,625
G-SULFUR ANALOGS OF PENICILLINS AND
Thomes J. Commons, Boston; John C. She
Young-Sek Lo, Brookline, all of Mass, assignors to Massa-
Flusetts Institute of Technology, Cambridge, Mass.
Filed Aug, 9, 1976, Ser. No. 712,540
Int. C1. ${ }^{2}$ COTD 499/00, $501 / 00,501 / 04,501 / 10$ U.S. CI. $260-306.7$ C
2. A compound having the formula:

THIOPHENE ETHANOLAMINES Jehan F. Bagil, Kirkland, and Eckhardt Ferdinandi, St. Leurent, both of Canada, assignors to American Home Products Corpo-
ration, New York, NY. Divislon of Ser. No. 569,509, Apr. 18, 1975, Pat. No. 4,024,156. This application Feb, Ap, 1977, Ser. No. 768,913
 U.S. Cl. 260-326.12 R 5 Claim 1. A compound of the formula

ArCHOR ${ }^{\prime} C^{2} R^{2} N^{3} \mathbf{R}^{4}$
herein \mathbf{R}^{2} is a conventional penicillin pharmaceutically ac
which Ar is selected from the group consisting of 2-thieny is electrophyllic as compared to the sulfur to which it is at- 5 -(lower alkyl)-2-thienyl, 5 -phenyl-2-thienyl and 4,5 -dichlorotached, selected from the group of lower alkyl cyclopentyl, 2-thienyl; \mathbf{R}^{1} is hydrogen or lower alkyl; \mathbf{R}^{2} is hydrogen or cyclohexyl, methycyclohexyl, phenyl, benzyl, tolyl, and a lower alkyl; R^{3} is hydrogen or lower alkyl; and R^{4} is 2 -indol-3
conventional pencillin side chain acyl radicals. cally acceptable acids.

4,093,626

 β-LACTAM ANTIBIOTICSEric Hunt, Reignte, England, amignor to Beechman Group Lim-
ited, United Kingdom Filed Dec. 20, 1976, Ser. No. 752,002
Claims priority, application United Kingdom, Jan. 27, 1976, C197/76 priority, application United Kingiom, Jan. 27, 1996, Miched MILEMYCIN AND PROCESSES THEREFOR U.S. C. 260-307 FA. Cl. ${ }^{2}$ CO7D 498/04 5 Clnims Inc., Rahway, N.J. \quad Filed Apr. 11, 1977, Ser. No. 786,172 1. A compound of the formula (D)

$$
\begin{aligned}
& \mathbf{A}_{1}, A_{2}, \mathbf{A}_{3}, \mathbf{A}_{4} \mathbf{B}_{\mathbf{1}}, \mathbf{B}_{2}, \mathbf{B}_{3} \mathbf{C}_{1} \text { or } \mathbf{C}_{2} \text { which comprises: } \\
& \text { (a) bromina }
\end{aligned}
$$ bromosuccinimide;

(b) acetylating the 13 -bromomilbemycins with an alkal (c) hydrolizing the 13 -acetoxy milbemycins with aqueou alkali metal hydroxide.

Wherein R is hydrogen, alkyl of $1-4$ carbon atoms, alkenyl of -4 carbon atoms, epoxide of 2-4 carbon atoms or alkyl of $1-4$ carbon atoms substituted by one or two moieties selected f
the group consisting of halogen, azido and phthalimido.

4,093,627
-(4-CHROMANYLIDENE)AMINO)-2-OXAZOLIDIGeorge C. Wright, and Marvin M. Goldenbere, both of Norwicb, N.Y., axignors to Morton-Norwict Prodecta, Inc., Norwich,

Filed Jnu. 1, 1977, Ser. No. 812,126
U.S. C. $260-307$ C It. Cl. ${ }^{2}$ COTD $263 / 26$
U. CI. 260-307 C

1. A compound of the formula
diAZABICYCLOALKANE DERIVATIVES Hideo Kato, Katsuyymas, Tomoyser Nichikawa, Ono, and Eiich
Koahinaka, Katuyams, all of Japen, Koahinaka, Katuyama, all of Japan, zadenors to Hokuril Pharmacentical Co., Ltd., Fukui, Jappan Cleims priority, application Japan, Jun. 10, 1976, 51-67158
4 Claims U.S. C. 260-326.85 1. A diazabicycloalkane compound of the formula:

5 Claima

wherein \mathbf{R} represents a hydrogen atom or a halogen atom

selected from the group consisting of chlorine, bromine and iodine,
iodine, and therapeutically acceptable acid addition salt thereof.

4,093,631
7.AMINOPROPOXY CHROMANE AND CHROMENES Derek Victor Gardner, Bishop Stortford, Engiand, asaignor to Beecham Group Limited, United Kingdom
Claims priority, application United Kingdom, Jun. 3, 1975, Int. C1.2 COTD 311/02; A61K 31/35 U.S. Cl. $260-345.2$

or a pharmaceutically acceptable salt thereof wherein \mathbf{R}_{1} hydrogen, alkyl of 1 to 4 carbon atoms or benzyl; R_{2} is hydro gen, alkyl of 1 to 4 carbon atoms or berzyl; R_{3} is hydrogen alkyl 1 to 4 carbon atoms or acyl of 1 to 4 carbon atoms; R_{4} naphthyl, phenyl unsubstituted or substituted by 1 or 2 substit uents selected from the group consisting of fluorine, chlorine, ano, nitro, acetoxyl, amino, methylamino, ethylamino, dimeth ylamino, diethylamino, acetamido, hydroxyl, methoxycar bonyl, ethoxycarbonyl, carboxamido, sulphonamido, carboxy, trifluoromethylthio, trifluoromethoxyl, methylsulphonyl, tri fluoromethylsulphonyl and methylhio, R s is hydrogen or alky atoms. X is oxygen and the dotted line represents a single or double bond.

66-SUBSTTTUTED- $2,5,7, \&-$ TETRAMETHYL 2
66-SUBSTITUTED-2, , , \&-TETRAN DETL 2 -Ka-Kong Cana, Stanhope, and Gabriel Saucy, Evex Felle, bo of N.J.n wispors to Hofmann-La Roche Inc., Nutley, N.J. Division of Ser. No. 638,382, Dec. 8, 1975, Pat. No. 4,029,678,

wherein \mathbf{R} is lower alkanoyl, benzyl, benzhydryl or trityl; \mathbf{R}_{12} is hydrogen or taken together with its attached oxygen atom

4,003,633

PROCESS FOR PREPARING TETRAHYDROFURAN
asuo Tanabe; Jun Toriya; Mseato Sato, and Yen Shirage, all of Wreahild , Limited, Tokyo, Japan
Claims priority, application Japan, Feb. 4, 1976, 51-11078
S. C1. 260-346.11 Int. C..2 CO7D 307/08
U.S. CI. $260-346.11$

1. A pocess for preparing tetrahydrofuran by 10 Chaims 1. A process for preparing tetrahydrofuran by the dehydrocatalyst, consisting essentially of;
(a) supplying 1,4 butanediol and a non-volatile acid catalyst to a reaction zone,
(b) reacting said butanediol and said catalyst at a temperature between above the bowdr poinan and below the boiling point of 1,4-butanediol,
(c) continuously removing a vapor mixture of water and tetrahydrofuran from said reaction zone,
(d) supplying said vapor mixtures to a first distillation column maintained under a pressure lower than that in said
reaction zone and in the range of from atmospheric pressure to $3 \mathrm{~kg} / \mathrm{cm}^{2}$ gauge,
(e) distilling a first azeotropic mixture of water and tetrahy(i) supplying said a first distillste to
(i) ump maintained under a presur a second distillation colfirst distillation column ay 3 tesure higher than that in said (g) distilling a second azeotropic mixture of water and tetrahydrofuran from the top of said second distillation column to form a second distillate, (b) recycling said second disiluate column (i) supplyin
(i) supplying a substantially water-free-bottom of said sec-
ond distillation column to a third distillation column maintained under atmospheric pressure or a pressure slighly higher than atmospheric pressure, (i) recycling the bottom of said third distilation column into ()) recycling the bottom of said hird distilacion column into said reaction zone, and
(k) ortaining tetrahydrofuran from the top of seid third
distillation column.

$$
4,093,634
$$

ANHYDRIDES OF CARBOXYMETHYLOXYSUCCINIC ACID
teres Fort Les ipper Seddele River, and Eddie Neloon GvComprer Flied May 16, 1977, Ser. No. 797,226 Int. C..2 COTD $307 / 60$ U.S. C. 260-366.74 1. A mixture of carboxymethylox ysuccinic

$$
\mathrm{z}-\mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{C}-\mathrm{O}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{z}}
$$

wherein Z is independently

4,093,635

PREPARATION OF MALEIC ANHYDRIDE FROM FOUR-CARBON HYDROCARBONS
Noel J. Bremer, Kents James F. White, Alron, and Ernest C
Miberger, Solon, all of Ohio, assignors to The Standard Oil ompany, Cleveland, Ohio Oct. 19, 1976, Ser. No. 733,740
Int. Cl. ${ }^{2}$ COTD $307 / 60$
U.S. C. $260-346.75$ 1. In a process for th 1. In a process for the preparation of malecic anhydride by the
9 Clidation of n-butane, n-butenes, 1,3 -buter hereof with molecular oxygen in the vapor 1,3 -butadiene or mixture emperature of about $250^{\circ} \mathrm{C}$ to to $600^{\circ} \mathrm{C}$ in phase at a reaction catalyst, the improvement C to $600^{\circ} \mathrm{C}$ in the presence of a atalyst which is free of iron, coball, nickel, an alkali metal and an alkaline earth metal, said catalyst having the formula

$$
\mathrm{Mo}_{12} \mathrm{P}_{\sigma} \mathrm{Bi}_{6} \mathrm{Cu}_{c} \mathrm{C} 1_{\rho} \mathrm{O}_{f}
$$

wherein
herein
a, b and c are numbers from 0.001-10;
d is from
d is from 0.001-5;
and f is a positive number of oxygens required to satisfy the
valence states of the other alements valence states of the other elements present. 9. In a process for the preparation of malecic anhydride by the xidation of 1,3 -butadiene with molecular oxygen in the vapor
hhase at a reaction temperature of about $250^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ in the presence of a catalyst, the improvement comprising using as a
catalyst a catalyst which is free of iron, cobalt, nickel, an alkal
metal and an alkaline earth metal, said catalyst having the rmula
$\mathrm{Mo}_{12} \mathrm{P}_{8 \mathrm{Bi}_{8} \mathrm{Cu}_{4} \mathrm{X}_{\mathrm{f}} \mathrm{O}_{f}}$
wherein
X is a halogen selected from the group consisting of chlorine, bromine or iodine; and
wherein
a, b and c are numbers from 0.001-10
d is from 0.001-5;
and f is a positive number of oxygens required to satisfy the
valence states of the other elements present.

EPOXIDATION OF OLEFINIC COMPOUNDS
Pierre-Etienne Boot, Thisis, and Michel Costantimi, Lyons, both of France, sasignors to Rhone - Poulenc Industries, Paris,
Continuation-in-part of Ser. No. 479,262, Jun. 13, 1974, aboadoned. This application Feb. 14, 1977, Ser. No. 768,630 Claims priority, application France, Jon. 14, 1973, 73 21666
U.S. C. $260-348.29$ \qquad 53 Clime

1. Process for the catalytic epoxidation of an olefinic compound in the liquid phase which comprises treating the compound with an organic hydroperoxide in the liquid phase in the presence of a tin catalyst of the formula:
$\mathbf{R R}^{\prime} \mathbf{S n C l}_{2}$
in which
R is a wholly aliphatic or cycloaliphatic or aromatic, or mixed aliphatic/aromatic, aliphatic/cycloaliphatic of nsaturated moromatic, linear or branched, saturated or at most 20 carbon atoms,
R^{\prime} is selected from the group consisting of chlorine and monovalent organic radicals of the formuls:
$\mathbf{R}^{\prime \prime}-\mathrm{Y}$
in which:
Y represents an oxygen atom, or a ($-\mathrm{O}-\mathrm{O}-$) group, or a carbonyloxy group ($-\mathrm{CO}-\mathrm{O}-$), the radical
attached to the carbon atom of ($-\mathrm{CO}-\mathrm{O}-)$,
$R{ }^{\prime \prime}$ is as defined under R and may be identical or different to
R.

$$
4,093,637
$$

9,9(10,10)-BISACYLOXYMETHYLOOCTADECANOATES
AS PRIMARY PLASTICIZERS FOR
William R. Miller, and Everett H. Pryde, both of Peoria, III assignors to The United States of America as represented by the Secretary of Agriculture, Washhington, D.C.
U.S. Cl. 260-405 Int. Cl. ${ }^{\text {2 }} \mathbf{C O 9 F} 5 / 00$
U.S. CI. 260-405

1. A method of preparing a primary plas
nylchloride comprising the following steps:
a. providing a compound selected from the a. providing a compound selected from the group consisting
of $9(10)$ formylstearic acid and $9(10)$-formylstearic acid alkyl esters;
b. converting said compound from step (a) to $9,9(10,10)$ bis(hdroxymethyl)octadecanoic acid (BMMOA) by rea tion with formaldehyde in the presence of base; with a $\mathrm{C}_{1}-\mathrm{C}_{8}$ straight or branched alkyl alcohol; acylating the ester from the preceeding sto wit able acylating agent to yield the primary plep with a suit ing the general structure:
where
$\mathbf{R}^{1}=C_{1}-\mathrm{C}_{8}$ Straight or branched alkyl;
$\mathbf{R}^{1}=\mathrm{C}_{1}-\mathrm{C}_{8}$ Straight or branched alkyl;
$\mathbf{R}^{2}=\mathrm{C}_{1}-\mathrm{C}_{4}$ straight or branched alkyl or halogen-sub-
stituted alkyl;
$x=7$ or 8 ; and
$y=7$ or 8 with the proviso that $x+y=15$; and rimary plasticizers prepared in step (d)

SIMULTANEOUS PREPARATION OF ORGANIC ACID SIMULTANEOUS PREPARATION OF ORGANIC ACID
CHLORIDES AND TRICHLOROACRYLOYL CHLORIDE AND PRODUCT
Francois Muller, Saint-Auban, France, avaigaor to Produits Chimiques Pechiney-Saint-Gobain, Frrace tinuation of Ser. No. 764,944, Occ. 3, 1968, abandoned. This
application Mrr. 25, 1974, Ser. No as, 114 application Mar. 25, 1974, Ser. No. 454,114
Claims priority, application France, Oct. 23, 1967, 67.125439 Claims priority, application Prance, Oct. $\mathbf{I n , 1} 19$
Int. C1. ${ }^{2}$ CO9F 7/00; C11C 3/00 U.S. C. $260-408$
chlorides and trichloroacryloyl chloride comprising the step chlorides and ricxachloropropene and an organic acid having the formula

in which \mathbf{R} is selected from the group consisting of alkyl, wherein \mathbf{R} and \mathbf{R}^{\prime} each independently represent a member chloroalkyl, alkenyl, phenyl, chlorophenyl, methoxyphenyl selected from the group consisting of hydrogen, lower alkyl and cycloalkyl, heating the mixture to a temperature within the having $1-4$ carbon amino and hydroxy with the proviso that range of 50° to $220^{\circ} \mathrm{C}$, and separating the trichloroalkylol atoms, amino, acetylamino and \mathbf{R}^{\prime} is said amino, acetylamino or 12. The process as claimed in claim 1 in which the organic
chider acid component is selected from the group consisting of butyryl chloride, caproyl chloride, capryloyl chloride, lauroyl ryl chloride, caproyl chide p-chlorobenzoyl chloride and anis-
chloride, benzoyl chloride, oyl chloride.

METAL SALTS OF $\begin{gathered}4,093,639 \\ \text { M.HYDROXYALKYLATED OR }\end{gathered}$ N-AMINOALKYLATED BRANCHED a-AMINOACIDS Juirgen Habermeier, Pleffingen, Switzerland, and Godwin BerCorporation, Ardsley, N.Y.

Filled Apr. , , 1976, Ser. No. 673,238
Claims priority, application Swiserind 4719/75

Int. Cl. ${ }^{2}$ C07F $3 / 06$
U.S. CI. 260-429.9 Int. Cl. ${ }^{2}$ CO7F $3 / 06 \quad 11$ Claims 1. A metal complex, of an N-hydroxyalkylated or N.
aminoalkylated, branched α-aminocarboxylic acid and a divalent metal cation, of the formula

$$
\begin{aligned}
& \left(\mathrm{X}-\mathrm{CH}-\mathrm{CH}-\mathrm{NH}-\mathrm{CR}^{3} \mathrm{R}^{4}-\mathrm{COO}\right)_{2} \mathrm{M} \\
& \mathrm{R}^{1} \underset{\mathbf{R}^{2}}{1}
\end{aligned}
$$

wherein
X represents hydroxyl or aminomethyl,
R^{1} represents hydrogen, alkyl of 1 to 4 carbon atoms or
phenyl,
\mathbf{R}^{2} represents hydrogen, and with the proviso that when \mathbf{R}^{1} is alkyl of 1 to 4 carbon atoms or phenyl, R^{2} also represents alkyl of 1 to 4 carbon atoms, or
R^{1} and \mathbf{R}^{2} together represent tetramethylene,
\mathbf{R}^{3} and \mathbf{R}^{4} are the same or different and each independently represents alkyl of 1 to 4 carbon atoms, cycloalkyl of 50 6 carbon atoms, phenyl or benzyl, or said phenyl or said 6 carbon substituted by alkyl of 1 to 12 carbon atoms, o together \mathbf{R}^{3} and \mathbf{R}^{4} represent tetramethyiene or penta methylene, and
M represents a divalent copper, zinc, cobalt or nickel cation.
dOUBLE SALT OF ZINC CHLORIDE AND INDAMINES Gregoire Kalopissis, Paris; Andree Bupaut, Boulogne-sur-Seine and Francoise Estradier, Paris, all of Frrace, asalgnors to L'Oreal, Paris, France
Division of Ser. No. 553,067, Feb. 25, 1975, Pat. No. 3,984,43, Dirision of Ser. No. O53,057, Feb. 25, 1975, Pat. No. 3,98, Hz mhich is a division of Ser. No. $3,876,368$, and a continuation-in-part of Ser. No. 180,455, Sep. 14, 1971, abandoned. This application Jun. 23, 1976, Ser. No.
Claims priority, application France, Sep. 18, 1970, 70.3404 Claims priority, appication $\mathrm{Int} \mathrm{Cl}^{2} \mathbf{C 0 7 F} 3 / 06$
U.S. C. $260-429.9$ double salt of zinc chloride and an indamine having the formula
ne, but not both of R and R is said amin, R_{1} and R_{2} each independently represent a member selected from the group consisting of lower alkyl having 1-4 carbon atoms and lower alkyl having $1-4$ carbon atoms and of hystituted with a member selected from the group consisting
of hamino, carbamyl, benzoylamino and alkyl sulfonamido wherein the alkyl moiety has $1-4$ carbon atoms, sulfona
and
R_{3},
${ }_{\mathbf{R}_{3}}, R_{4}, R_{5}, R_{6}, R_{7}$ and R_{8} each independently represent a member selected from the group consisting of hydrogen, lower alkyl having $1-4$ carbon atoms and lower alkoxy having $1-4$ carbon atoms

PREPARATION OP $4,093,641$ LIKYL ESTERS OF PHOSPHORUS
dwin P. Plieddemann, Midland, Mich, asaignor to Dow Cor-
ning Corporation, Midanad, Mich
Filed Sep. 26, 1971 , Ser. No. 836,451 In. 1200 Int. Cl. ${ }^{2}$ CO7F $7 / 08$

1. A. 260-48.2 E 11 Clim 1. A method of preparing silylalkyl esters of phosphor which consists of
(i) R_{3} SiR' X or siloxanes of the general formula (i) $\mathrm{R}_{3} \mathrm{SiRX}$ or silioxanes of the general formula (iii) oligomers of the general formula
($\left.\mathrm{XR}^{\prime} \mathrm{Me}_{2} \mathrm{Si}_{2} \mathrm{OM} \mathrm{Me}_{2} \mathrm{SiO}\right)_{n}$
with phosphorus compounds having the general for
mula mula

$\stackrel{\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{CH}_{3} \mathrm{OPR}_{2}}{ }$

at temperature in the range of $100^{\circ} \mathrm{C}$. to $300^{\circ} \mathrm{C}$. in the presence of amines or phosphines capable of forming onium compounds with the reactants, for a period of time sufficient
ide, and then
ide, and then i) subjecting the resulting reaction mixture to a reduced pressure and an elevated tempe III) thereafter recovering the silylalkyl ester of phosphorus, wherein
R is an alkyl group, aryl group, alkoxy group containing $\mathrm{X}^{1-4 \text { carbon atoms, an } \mathrm{R}^{\prime} X \text { group or a siloxy group; }}$ X is chlorine, bromine or iodine,
m is a positive integer;
n is 0 or a positit
R^{\prime} is a divalent alkyl or aralkyl radical;
$\mathrm{R}^{\prime \prime}$ is methyl, ethyl, phenyl, halobenzyl or -OR"' wherein $\mathbf{R}^{\prime \prime \prime}$ is methyl or phenyl.

4,093,642
SURFACE ACTIVE SILICONES
Curtis L. Schilling, Croton-on-Hudson; Bela Proksi, Mahopac, and Bernard Kanner, Went Nyack, all of N.Y., asoignors to Filed Dec. 20, 1926, Ser. No. 752,879
U.S. C. 54-106 106 Int. C1. ${ }^{2}$ COTF $7 / 10$ 1. A composition of matter selected from the group consist ing of: Siloxane compounds having the structural formula:
where \mathbf{R} is a monovalent hydrocarbon group having from 1 to 18 carbon atoms,
(2) R^{\prime} is a divalent organic group whose valences are
provided by carbon atoms and having from 1 to 18 carbon atoms,
\mathbf{R}^{\prime} and is a divalent anionic group covalently bonded to (4) Y^{+}is a ically bonded to Y
(4) Y^{+}is a monovalent cation that has at least 8 carbon
atoms and that is derived from a cationic surfacto having a halogen counterion by removal of the haltant and that is free of ionically-bonded hydrogen,
(5) m is an integer having a value from 1 to 100 , (5) m is an integer having a value from 1 to 100,
(6) n is an integer having a value from 0 to 200, (6) n is an integer having a value from 0 to 200,
(7) the ratio of m to $(n+2$) being from 0.1 to 20 , and
B. Siloxane compounds having the structural formula:

$$
\begin{gathered}
\frac{\mathrm{R}^{\prime} \mathrm{YY}^{+} \mathbf{X}^{-}}{} \\
\mathrm{R}_{3} \mathrm{SiO}(\mathrm{SiO})_{m}\left(\mathrm{R}_{2} \mathrm{SiO}\right)_{n} \mathrm{SiR}_{\mathbf{3}} \\
\mathbf{R}
\end{gathered}
$$

where
(1) R is 2 monovalent hydrocarbon group having from 1 tio R^{18} carbon atoms,
(2) R^{\prime} is a divalent organic group whose valences are
provided by carbon atoms and having from 1 provided by carbon atoms and having from 1 to 18 (3) YY^{+}is a divalent cationic group that is free of ionical-,
ly-bonded hydrogen and that is covalently bonded to R^{\prime} ly-bonded hydrogen and th
and ionically bonded to X
(4) X^{-}is a monovalent anion that has at least 8 carbon atomi and that is derivec from an anionic surfactan the metal,
(5) m is an integer having an average value from 1 to 100 , (7) n is an integer having a value from 0 to 200 , and
(to $(n+2)$ being from 0.1 to 20 .

$$
4,093,643
$$

CATALYTIC FORMATION OF HYDROCARBONS FROM CO, H_{2} MIXTURES AND PROCESS FOR MAINTAINING CATALYTIC ACTIVITY
M. Albert Vannice, Boalsburg, Pa, and Robert L. Garten, Summith N.J., assignors to Exron Research and Engineering Co pany, Linden, N.J.
condoned. This appplication Feb. 17, 1977, Ser. No. 769,574 S. C1. $260-49 \mathrm{M}^{\text {Int }}$ Int. C. ${ }^{2}$ C07C $1 / 04$
U.S. C. $260-49 \mathrm{M} \quad 9$ Cleim 1. A process to produce low molecular weight organic
compounds comprising substantially methane, said proces consisting of the steps of passing a mixture of CO and H_{2} over palladium supported on an acidic metal oxide selected from the group consisting of alumina and hydrogen-y-zeolite wherein
the palladium metal particle size is maintained at less than 100

A by running at a reactor bed temperature of less than $350^{\circ} \mathrm{C}$ at a pressure ranging from 1 to 500 atmospheres and at

$$
4,093,64
$$

3-(4-(2,2-DICHLORO-1,1-DIFLUOROETHOXY)-2-METH George A. Burbenyl)SULFONYL)-2-PROPENENITRILE Mixan, both of Midilnd, all of Mich., savalgnors to The Dow
Chemical Company, Midland Mich Chemical Company, Midand, Mich.
Flied Feb. 22, 1977, Ser. No. 770,862
wed Feb. 22, 1977, Ser. No. 770,8
Int. C1.2 CO7C $121 / 75$
U.S. CI. 260-465 F

1. The compound 3-((4-(2,2-dichloro-1,1-difluorcether 1 Clim methyl-5-nitrophenyl)sulfonyl)-2-propenenitrile.

STYRYL-TETRAHYDRON, 4
STYRYL-TETRAHYDRONAPHTHYL DERIVATIVES Hugh Davidson, Castleford; Kelth Trevor Johnoon, Poontefract,
Brian Ernest Leggeter, Wakeffeld, and Anthony John Moore Brian Ernest Leggeter, Wakeffield, and Anthony John Moore,
Leeds, all of England, amagnors to Hickson \& Welch Limited, Cratteford, England
Division of Ser. No. 382,168, Jul. 24, 1973, Pat. No. 3,940,437. This application Nov. 28, 1975, Ser. No. 636,099 Claims priority, application United Kingdom, Jul. 26, 1972 Int. C1. ${ }^{2}$ C07C 143/24; D06P 1/00; D21H 1/46; C09K 11/00; U.S. C. $260-505 \mathrm{C} \quad$ COTC 143/42 U.S. C. $260-505 \mathrm{C}$

1. A compound of the formula

wherein R is $-\mathrm{SO}_{3} \mathrm{H}$, halo or alkoxy of $1-6$ carbon atoms and n is 0,1 or 2 , at least one $-\mathrm{SO}_{3} \mathrm{H}$ group being present; or a salt thereof.

4,093,646
REDUCTION OF NITRO COMPOUNDS WITH
AQUEOUS SOL AQUEOUS SOLUTIONS OF A FORMATE all of Manchester, England, auadgnors to Imperial Chemical Industries Limited, London, Engyland Claims priority, application United Kingdom, Ang. 19, 1974,
$36361 / 74$ $36361 / 74$
U.S. C1. $260-508$
Int. ${ }^{2}$ 2
C07C
143/56, 143/64, 101/72 10 Claims 10 Claims

1. In a process for the reduction of aromatic nitro compounds selected from the class consisting of nitronaphthalene monosulphonic acids, nitronaphthalene disulphonic acids, nitronaphthalene trisulphonic acids, nitrobenzene sulphonic
acids, dinitrobenzene sulphonic acids, dinitromesitylene sulacids, dinitrobenzene sulphonic acids, dinitromesitylene sulphonic acid, substituted nitrobenzene sulphonic acids in which
the substituents are selected from acetylamino, methyl, methe substituents are selected from acetylamino, methyl, meamino hand β-(nitro-sulphophenyl)-ethenyl, and substituted anino and β-(nitro-sulphophenyl)-thenyl, and substituted selected from acetylamino, hydroxy and sulphonic acid, the improvement which consists of treatment of said compounds with an aqueous solution of a formate in the presence of a
hydrogenation catalyst based on platinum pall

4,093,647
PROCESS FOR OXYCARBONYLATION OF AROMATIC
John J. van Vearooy, Media, Pa., ausignor to Suntech, Inc.,
Wayne, Pa. Flied Aug. 22, 1977, Ser. No. 826,291 U.S. CI. $260-515$ R
\qquad aking and $63 /$

1. A process for making aromatic carboxylic acids which 100° Arises reacting at a temperature of from about 0° to about
$100^{\circ} \mathrm{C}$, an aromatic hydrocarbon of the benzene at least one ring carbon atom attached to a hydrogen atom with carbon monoxide at a pressure of from about 10 to about 500 psi in a solvent selected from the group consisting of lower iphatic carboxylic acids, their anhydrides and mixtures thereof and in the presence of a mixture comprising thallium
rifluoroacetate and a divalent palladium salt in a mole ratio o trifluoroacetate and a divalent palladium salt in a mole ratio
thallium to palladium of from about $10: 1$ to about $1000: 1$.

THERAPEUTICALI $4,093,648$
RREAPEUTICALLY ACTIVE BENZOIC ACID DERIVATIVES AND A PROCESS FOR PREPARING
Enrico Sianesi, Milan; Giuseppe Bonola, San Donato Milan; Ivo
Setnikar, Milan, and Maria José Magistrett, Milan, all of Setrikar, Milan, and Maria José Magistretti, Milan, all of
Italy, assignors to Recordati S.A. Chemical and
cal Company, Cuisseo, Svituerinad
Claims priority, application Italy, Jul. 16, 1975, 25448 A/75

U.S. C. $260-519$

1. Therapeutically active 2 - and 3 -substituted benzoic acid derivative having the general formula

wherein \mathbf{X} is OH and its alkaline or alkaline earth metal salts.

4,093,649

LIQUID PHASE OXIDATION OF UNSATURATED ALDEHYDES TO CARBOXYLIC ACIDS WITH A , K_{2} BISMUTH CATALYST Jar-lin Kno, Cherry Hill, N.J., and John Joueph Leonard,
Springfield, Pan, asaiguors to Atlentic Richfeld Company, Lo Angelec, Calif.

Filed Feb. 7, 1977, Ser. No. 766,112
Int. C. ${ }^{2}$ Co7C $51 / 32,57 / 04,57 / 106,57 / 0$
Int. C1. ${ }^{2}$ C. $\mathbf{C l}$. $260-530 \mathrm{~N}$
U.S. Cl. $260-530 \mathrm{~N}$

1. A process for the liquid phase oxidation of an α, β 1. A process for the liquid phase oxidation of an α, β -
unsaturated aliphatic aldehyde containing from 3 to 6 carbon atoms in an inert solvent solution to the corresponding unsatu-
rated aliphatic carboxylic acid which comprises contacting rated aliphatic carboxylic acid which comprises contacting said aldehyde with oxygen or an oxygen-containing gas at
temperature of from about $0^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$. and a pressure temperature ou from about and is00 psig in the presence of from about 0.00001 to 0.5 mole of an inorganic or organi fismuth salt catalyst selected from the group consisting of bismuth chloride, bismuth bromide, bissurise, bismuth carbonate, bismuth pentafluoride, bismuth pentoxide, bismuth citrate, bismuth oleate, bismuth tartrate, bismuth phenate and bismuth ammonium citrate or mixtures thereof, per mole of said alde-
ayde to effect an in situ decomposition of intermediate perox
ide compounds formed during
ited aliphatic carboxylic acid.

PROCESS FOR PREPARING TRIHYDROCARBYL (2,5 -DIHYDROXYPHENYL) PHOSPHONIUM SALTS corge A. Dooralian, Bedford, and Lawrence G. Duquette,
Maynard, both of Mase, assignors to The Dow Cremical Maynard,
Company, Midiland, Mich.
Flied Apr 23 ,
U.S. CI. 260-539 A Int. C. ${ }^{2}$ CO7C 53/08 1. A process for preparing a compound of the 12 Clai

wherein
R_{1}, R_{2} and R_{3} are each independently hydrocarbyl or inertlysubstituted hydrocarbyl groups of from 1 to about 20 carbon atoms, and A^{\ominus} is an inert neutralizing anion; said stoichiometric amounts (a) a phosphine of the formula $R_{1} R_{2} R_{3} P$, wherein $R_{1}-R_{3}$ have the aforesaid meanings, (b) p-benzoquinone, and
(c) a protic acid of the formula $H^{\oplus} A \ominus$
hercin $A \theta$ has the aforesaid meaning in a liquid reaction o 4 carbon atoms, 1,2 -ethylene glyc alkanol of from glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, or a lower alkyl ($\mathrm{C}_{1}-\mathrm{C}_{4}$) ethe
of said glycols, or a mixture thereof.

PRODUCTION OF PERCHLOROMETHYL MERCAPTAN PRODUCTION OF PERCHLOROMETHYL MERCAPTAN Milton L. Honig, Bronx; Carl C. Greco, Garnersvile, and Ede
ward N. Wallh, New CIty, all of N.Y ward N. Waleh, New City, all of N.Y.
Chemical Company, Westport, Conn.

Filed Dec. 22, 1976, Ser. No. 753,119
Int. C. ${ }^{2}$ C07C 145/00
U.S. C. $260-543 \mathrm{H}$

4 Cluims
U.S. C. $260-543 \mathrm{H}$

1. In a method for producing perchloromethyl mercaptan via the catalytic reaction of chlorine and carbon disulfide, the improvement which comprises:
(1) contacting the reactants with additive selected from the group consisting of phosphonates, phosphoected from the hereof, where said phosphonates are represented by the formula:

wherein R independently is hydrogen, hydrocarbyl, chlorine, or substituted hydrocarbyl; R^{\prime} and $R^{\prime \prime}$ independently are R but simultaneously; and where said phosphonites are represented simultaneously;
by the formula:
wherein R independently is hydrogen, hydrocarbyl, chlorine,
or substituted hydrocarbyl; R^{\prime} and $R^{\prime \prime}$ independently are R but
not chlorine or hydrogen; said additives being added to not chlorine or hydrogen; said additives being added to the
reaction system in amounts which vary in the range of from about 0.01 to about 10% by weight of the carbon disulfide feed, and

PRODUCTION OF PYRIDOXINE INTERMEDIATES David Llewellyn Coffen, Glen Ridge, N.J., assignor to Hoft mann-La Roche Inc., Nutley, N.J., No., 783,240
Filed Mar. 31, 1970, Ser. Int. Cl. ${ }^{2}$ C07C 103/133
U.S. Cl. 260-561 A

2 Clisims
4,093,652
PROCESS FOR THE PREPARATION OF THIOSULFENYL CARBAMOYL HALIDES to Union Carbide Corporation, New York, N.Y. Int. CII. ${ }^{2}$ COTC $125 / 00,125 / 03$
U.S. CI. $260-54 \mathrm{C}$

1. A method of preparing a compound of the formula:
8 Claim

$$
\begin{gathered}
\mathrm{O} \\
\mathrm{H}-\mathrm{C}-\mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R}_{1}
\end{gathered}
$$

which comprises reacting a compound of the formula:

with a compound of the formula:
$\mathrm{x}-\mathrm{s}-\mathrm{s}-\mathrm{R}_{1}$
in the presence of an organic base, wherein
X is chlorine
with one or more chloro, bromo flooro, alt substituted substituents or phenyl or lower phenyl alkyl either unsub stituted or substituted wither phenyl alkyl either unsubfluoro, nitro, cyano, lower alkyl, lower haloalkyl or lower alkoxy substituents.
\mathbf{R}_{1} is alkyl, alkenyl, cycloalkyl, bicycloalkyl, cycloalkenyl or bicycloalkenyl or lower phenylakyyl or phenyl; or lower phenylalkyl or phenyl substituted with one or more chloro, bromo, haro, nitro, cyano, lower arky, lower substituents. \qquad
PROCESS FOR THE PREPARATION OF OPTICALLY ACTIVE PHENYL GLYCINE AMIDE
iineimus H. J. Boesten, Sittard, Netheriands, assignor to
Stumicarbon, B.V., Geleen, Netherlands
Filed Dec. 8, 1976, Ser. No. 748,399
514300
The portion of the term of this patent subsequent to Jul. 19, 1994, hass been disclaimed.
Int. C. ${ }^{2}$ C07C 103/28
U.S. Cl. 260-558 A
S. CI. 260-558 A
Cl. ${ }^{2}$ 007C 103/28

1. A process for isolating an optically active form 11 Claims ycine amide, from a mixture of D- and L-phenyl glycine preparing a mixture of D - and L-phenyl glycine amide and an optically active acid of the class consisting of 2-pyrrolidone--carboxylic acid and N -acetyl phenylglycine;
precipitating one antipode as diasterecisomer sult solution of said mixture:
and racemizing in a solve
and racemizing in a solvent the other antipode from the
mixture in the presence of a ketone selected from the class
consisting of acetone, methylethyl ketone and cyclohexa-
none and said optically active acid.

wherein X is halogen.

> AMIDINE RICE HERBICIDES George A. Miller, Glenside, and Marvin H. Feischfreseer, War rington, both of Pa., assignors to Rohm and Has Company, ladelphia, Pa.

Filed Apr. 13, 1970, Ser. No. 28,038
Int. Cl. ${ }^{2}$ C07C $123 / 00$
U.S. C. $260-564 \mathrm{RF}$

1. A compound of the formula
wherein R is a $\left(C_{6}-C_{10}\right)$ alkyl group, and Ar is a group of the formula

wherein n is 1 to 3 .

PROCESS FOR MAKING AZINES

Jean Pierre Schirmann, Oullins; Jean Combroux, Moranat, and Jean Pierre Schirmann, Oullins; Jean Combroux, Mornant, and
Serge Yvon Delavarenne, Francheville-le-Huut, all of France, Serge Y Yon Delavarenne, Francheville-le-Haut, all of Frunce,
assignors to Produits Chimiques Ugine Kublmann, Paris,
France France

Fuled Sep. 10, 1976, Ser. No. 722,232
Claims priority, application France, Sep. 17, 1975, 7528457 U.S. Cl. $260-566$ B

1. In the process for the production of azines of the general
formula: ormula:

here R_{1} and \mathbf{R}_{2} which may be identical or different represent toms, branched alkyl or cycloalkyl groups having 12 carbon 12 carbon atoms, or hydrocarbon having from 6 to from 3 to toms containing an aromatic ring or together R_{1} and R_{2} represent linear or branched alkylene having from 3 to 11 carbon atoms, these radicals being non-substituted or substituted by at east 1 chlorine, bromine or fluorine atom or by a nitro, hy-
droxy or alkoxy, which process
which process comprises reacting hydrogen peroxide in the
liquid phase with ammonia in the presence of a carbonyl compound, aldehyde or ketone, of general formula:
$\mathrm{R}_{2}^{\mathrm{R}_{1}}{ }_{\mathrm{C}=0}$
with R_{1} and R_{2} being defined as above, an amide of a monocarboxylic acid, the ionization constant of which is below 5×10^{-5} or an amide of a dicarboxylic acid at leas one of the acid groups of which has an ionization constant below 5×10^{-3}, and a catalyst selected from the phos phosphates, arsenates, bicarbonates, antimonates, stan nates or sulphonates of ammonium or alkali metals or the saturated alkyl ($\mathrm{C}_{1}-\mathrm{C}_{5}$) esters thereof,
he improvement comprising carrying out the process in the nonium salt of the said monocarboxyic or dicarboxylic acid.

4,093,657

PROCESS FOR PREPARING MONOMER OF BILE ACID SEQUESTRANT POLYMER
Erwin F. Schoene waldt, Watchung, and Paul Sohar, Warren, both of N.J., assignors to Merck \& Co., Inc., Rahhway, N.J.
Flled Apr. 9, 1976, Ser. No. 675,375

$$
\begin{aligned}
& \text { Filed Apr. 9, 1996, Ser. No. } 67 \\
& \text { Int. C.2. }{ }^{2} \text { COTC } 85 / 04
\end{aligned}
$$

U.S. C1. $260-567.6 \mathrm{M}$.

Th comprises reacting thes 3 Clai 1. The process which comprises reacting together approxi
mately equimolar quantities of N, N-bis $(3$-chloropropyl)me thylamine and trimethylamine, said reaction being conducted in the presence of a polar organic solvent under conditions of time and temperature such that monoquaternization is substan-
tially complete and diquaternization is minimized ially complete and diquaternization is minimized, thereby forming 3 -[N -(3-chloropropyl) methylamine]-N,N,N-trimeth-yl-propan-1-aminium chloride.

4,093,658

PROCESS FOR THE PREPARATION OF AROMATIC POLYAMINES
Hemut Knorel, LeraliaMinE both of verkusen, Germany

Fiaims priorty, Dec. 29, 1975, Ser. No. 645,041 2500574 | Ins priorty, application Germany, Jan. 9, 1975, 2500574 |
| :--- |
| Int. Cl. | U.S. CI. $260-570 \mathrm{D}$ int. C1. ${ }^{2}$ ConC $85 / 24$ polyamines comprising: presence of a hydrophobicic solvent and in the absence of an acid catalyst to produce a precondensate mixture con

taining the corresponding N, N^{\prime}-disubstited aminals
(B) removing substantially all the water from said precondensate mixture to produce a first organic phase,
(C) mixing said first organic phase with an aqueous solution ontaining an acid catalyst thereby producing a first two phase mixture,
(D) subjecting said first two-phase mixture to a first rearrangement reaction wherein a mono-N-substituted aminal is formed and wherein a second two-phase mixture is produced,
organic phase and a first aqueous phase
(F) subjecting said first aqueous phase to at least one more rearrangement reaction thereby producing an aqueous condensation mixture containing said aromatic poly amines,
(G) extracting said aqueous condensation mixture with a second aqueous phase comprising an aqueous solution
containing the acid catalyst as an amine salt of said aro matic amine, and of said aromatic polyamines, phase, and
(I) returning
6. A process for the preparation of multi-nuclear aromatic (A) condensing an ar
presence of a hydrophotic amine with formaldehyde in the an acid catalyst to produce a precondensate mixturce (B) removing substantially all the water fom mixture, densate mixture to produce a first wren from said
C) mixing said first organic phase with an aqueous solutio containing
mixture,
(D) subjectit
(D)
 aqueous condensation mixture phase containing said aro matic polyamines,
(E) separating said second organic phase and said aqueous condensation mixture phase,
a extracting said aqueous condensation mixture phase with provide a solvent phase and a comerising an aqueous solution containin ar an caid aromatic an amine salt of said aromatic amine.
and of said aromatic polyamines
G) recovering aromatic polyamines from said solven
(H) returning said aqueous phase to step (C).

2-DECARBOXY-2-HYDROXYMETHYL-S-OXA-PGE COMPOUNDS
 Norman A. Nelson, Galesburg, Mich, asaignor to The Upjohi Division of Ser. No. 647 , 363,
 This application Marr. 17, 1977 , Ser. Pt. No. 4,028,419. Int. Cl. ${ }^{2}$ M07C 49/46, 49/80, No/ 778, 4645

U.S. Cl. $260-586 \mathrm{R}$

wherein Y is trans $-\mathrm{CH}=\mathrm{CH}-$ wherein M_{1} is

Abstract

or wherein R_{s} is hydrogen or methyl; wherein L_{1} is

or a mixture of
and

d

wherein R_{3} and R_{4} are hydrogen, methyl, or fluoro, the same or different, with the proviso that one of R_{3} and R_{4} is methyl only when the other is hydrogen or methyl;
wherein g is 1,2 , or 3 ; and
wherein m is 1 to 5 , inclusive.

4,093,660

PROCESS FOR RECOVERING A DIALKYLARYLKETONE
Anstoli Onopchenko, Monroerllle, and Johann G. D. Schulz, Pittsburgh, both of Pa, sasignors to Gulf Research \& Devel. opment Company, Pittsburgh, Pa.

Mar. 30, 1977, Ser. No. 782,630
Int. C1.2 CO7C
U.S. C. 260-591

Int. Cl. ${ }^{2}$ 007C 49/76
recovering a dialkylarylke 25 Cl from the group consisting of $3,4,3^{\prime}, 4^{4}$-tetramethylbenzophe. from the group consisting of $3,4,3,4$-tetramethylbenzophe-
none and $4,44^{-d i m e t h y l b e n z o p h e n o n e ~ f r o m ~ a n ~ o i l y ~ m i x t u r e ~}$ contaminated largely with the corresponding 1,1 -diaryl-2 nitroethylene, said oily mixture having been obtained as a result of the nitric acid oxidation of a diarylalkane selected rom the group consisting of 1,1 -bis(p-tolyl)ethane and 1,1 bis 3,4 -dimethyiphenyl) ethane at a temperature below about
$140^{\circ} \mathrm{C}$. which comprises heating said mixture to a temperature of at least about 140° until solidififation occurs and then recovering the dialkylarylketone as a solid from a solvent solution of he 1,1 -diaryl-2-nitroethylene, said solvent being selected from he group consisting of alcohols, esters, ethers and hydrocarbons.

CATALYTIC DECARBONYLATION OF ESTERS David John Trecker, South Charleaton, and Michael Ray Sand Corporation, New York, N.Y.

Flied Jun. 4, 1973, Ser. No. 366,440
Int. C.2
U.S. C1. 260-595
nt. C..2 C07C $45 / 20,47 / 02$
. . CI. 260-595 \qquad 1. A vapor phase process for the production of aldehydes and ketones, which comprises contacting a lower alkanoate with an oxide of a metal selected from the group consisting of nickel, chromium, zinc, copper, manganese, cobalt, iron, titaperiod of time sufficient to produce the aldehyde or ketone orresponding to said alcohol. corresponding to said alcohol.

4,093,662

ETHER PHOSPHORIC ACID COMPOUND Robert Harry Edwards, Thomess Alan Williams, and Kenneth
Hall, all of Cumbria, Endemend, ascigmors to Albright \& Wison Limited, Oldaury, England
trision of Ser. No. 437,891, Jen. 30, 1974, Pat No. 3,947,499. This application Oct. 15, 1975, Ser. No. 622,485 Claims priority, application United Kingdom, Feb. 7, 1973, Cosims
Int. $\mathbf{C l} .^{2}$
OOTD
105/02, 107/02; C01B 25/16, 25/26 Int. C1. ${ }^{2}$ CO7D 105/02, 107/02; C01B 25/16, 25/26
2 Claims
U.S. C. $260-606.5$ P 1. The solid anhydr
$\mathrm{H}_{3} \mathrm{PO}_{4} \cdot\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{O}$.

4,093,663
 NOVEL ONIUM SURFACTANTS

 Harris, Midland, Mich., and Earl H. Wagener, Con Robert, Califr, sssignors to The Dow Chemical Company, Midcord, cond, Mich.

$$
\begin{aligned}
& \text { Hiled Nov. 15, 1973, Ser. No. 416,30 } \\
& \text { Int } \mathrm{Cl}_{\mathrm{OMC}, 1 / 9 / / 6} \text {. }
\end{aligned}
$$

U.S. CI. 260-607 B

$$
\text { Int. C. } 2^{2} \text { OOC } 149 / 46
$$

U.S. C. $260-607$ Claims

1. An onium surfactant corresponding to the formula X $\left.\# \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{m} \mathrm{CH}_{2}-\mathrm{R}-\mathrm{CHR}^{\prime}-\mathrm{Q}^{+} \mathrm{A}^{-} \mathrm{n}$ wherein X is a hydrophobic n-valent radical derived by the removal of n atoms of active hydrogen from an organic compound and
corresponding to the hydrophobic portion of a nonionic sur. corresponding to the hydrophobic portion of a nonionic sur-
factant having a hydrophilic-lipophilic-balance of from 1 to about 30 and having the structural formula X $\left.\# \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O} \div{ }_{-} \mathrm{H}\right)_{n} ; m$ is an integer of at least 1 and is the same in each of the above formulas; R is a divalent aromatic hydrocarbon radical of from 6 to about 14 carbon atoms, the chain length of which can be interrupted by oxygen or sulfur atoms; R^{\prime} is hydrogen or methyl and is methyl only when R is
m - or p-phenylene; Q^{+}is a tertiary atom of sulfur; \mathbf{A}^{-}is a m - or p -phenylene; a is a tertiary atom of sulfur; A is a
compatible anion; and n is an integer of from 11 to 5 and is the same in each of the above formulas.

BIS HALOGENATED PHENOXYALKANOATES AND THE METHOD OF MAKING SAME
Lawrence H. Nash, Fort Lauderdale, Fha, sasignor to Kalo Laboratories, Inc., Kansas City, Mo

Int. Cc. 18, 1976, Ser. No. 733,177
C07C 179/14; A0iN 9/00
U.S. CI. $260-610 \mathrm{D}$

1. A compound useful as a plant growth resu 4 Claims 1. A cormula

wherein X and X^{\prime} are each chlorine atoms, R and R^{\prime} are each alkyl groups containing from 1 to 4 carbon atoms and n and n each have a value from 1 to 5 .

0
ARYL PERFLUORO-ALKYL ETHERS AND METHOD OF PRODUCING THEM
Viktor Mikhrilovich Belonas, ulitsa Ujitnaya, 5-a, kr. 3., Odeasa; Lev Moiseerich Yagupolksy, ulitian Ivana Kudri, 41, kr. 48 .,
Kier; Ljubor Antooovna Alexeera, Proletranky bulvar, 41, kv. 28., Odessa; Sergei Vaillevich Sokotor, ulitua 3 Internatsionala, 67, kv. 222., and Alexel Iranovich Ponomaret, ulitat Ziny Portnovoi, 21, Korpus 1, kr. 18., both of Leningrad, all of
U.S.S.R. Continuation of Ser. No. 628,237, Nov. 3, 1975, abandoned. This application Sep. 29, 1976, Ser. No,
Cluims priority, application U.S.S., Nor. US. C. $260-12$ Int. C1. ${ }^{2} 007 \mathrm{C} 43 / 28,41 / 00 \mathrm{~N}$ U.S. C. $260-612 \mathrm{D}$

1. Aryl perfluoro-a
$\mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{3}$ or $\mathrm{CF}_{2} \mathrm{OCF}_{3}, \mathrm{X}=\mathrm{Br}$ $\mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{2} \mathrm{OCF}_{3}, \mathrm{X}=\mathrm{NO}_{2}$
2. A method of producing aryl perfluoro-alkyl ethers of the

where
where
$\mathbf{R}_{F}=\mathrm{CF}_{3}, \mathrm{CF}_{2} \mathrm{OCF}_{3}, \mathbf{X}=\mathrm{Br} ;$
$\mathbf{R}_{F}=\mathrm{CF}_{2} \mathrm{OCF}_{3}, \mathbf{X}=\mathrm{NO}_{2}$,
which comprises fluorinating of aryl esters of perfluorocarboxylic acids of the general formula

where R_{F} and X are as defined above, with sulphur tetranuo ride in an autoclave at a temperature of $25^{\circ}-100^{\circ} \mathrm{C}$ in hydrogen fluoride solution with the concentration of the starting
esters in hydrogen fluoride being $20-50 \%$. sters in hydrogen fluoride being 20-50\%.

PROCESS FOR THE MANUFAC
PROCESS FOR THE MANUFACTURE OF GLYCOL Hans-Jürgen Arpe, Fiscchbech, Trunus, Germany, assignor Hoechast Aktiengeeeclischaft, Frankfurt (Main), Germany
Continuation of Ser. No. 546,901 , Feb. 4, 1975, abandoned. This Continuation of Ser. No. 546,
application Nor. 12, 1976, Ser. No. 741,392
Claims priority, application Germany, Feb. 6, 1974, 2405633 S. $200-615$ Int. C1. ${ }^{2}$ C07C 41/00
U.S. C. $260-615 \mathrm{~A}$

1. In a process for the production of an ethylene alymed 1. In a process for the production of an ethylene glycol
monomethyl ether formal of the formula $\left[\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}\right.\right.$ $\left.{ }_{2} \mathrm{O}\right)_{2} \mathrm{~N}_{2} \mathrm{CH}_{2}$, wherein n is from 1 to 8 , by reacting the corresponding ethylene glycol monomethyl ether with a 20 to 60% by weight aqueous formaldehyde solution in the presence of
from 0.2 to 20% by weight, calculated on the ether, of an acid from 0.2 to 20% by weight, calculated on the ether, of an acid
having a pK value of less than 4 , the improvement which comprises reacting said ether and aqueous formaldehyde soluion in the presence of a halohydrocarbon selected from the group consisting of dichloromethane, trichloromethane, tetra chloromethane, ethylene dichloride, $1,1,2$-trichloroethane, 1,1,2-trichloro-trifuoroethane, tetrachloroethylene, isopropyl
chloride, propyl chloride, propylene dichloride and butyl chloride, and distilling of water in a mixture comprising an azeotrope of water with said halohydrocarbo

PREPARATION OF 4 N -HEXYLRESORCINOL
Charles Masterson Starks, Ponca City, Oklen, mesignor to Continental Oil Company, Ponca City, Okla.

led Mar. 14, 1977, Ser. No. 777,755

U.S. C1. 568-766

Int. C1. ${ }^{2}$ C07C 39/08
9 Chims prising; a) preparing hexylresorcyl ethers by reacting recor cinol with a hexylating agent having the general formula 1 . $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{X}$ at a temperature of from about $25^{\circ} \mathrm{C}$ to about $175^{\circ} \mathrm{C}$ in the presence of a base selected from the group consisting of the oxides, hydroxides, or carbonates of sodium, potassium, calcium, ammonium, magnesium, tetra-alkyl ammonium,
berium, and lithium, and b) heating the reaction product of (a) to a temperature of from about $150^{\circ} \mathrm{C}$ to about $300^{\circ} \mathrm{C}$ in the presence of an acidic catalyst to yield 4 -n-hexylresorcinol wherein X is selected from the group consisting of $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$ $\mathrm{CH}_{3} \mathrm{SO}_{3}^{-}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3}^{-}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OSO}_{3}^{-}, \mathrm{CH}_{3} \mathrm{OSO}_{3}^{-}, \mathrm{ArSO}_{3}^{-}$ and ONO_{3}-or mixtures of these.

MANUFACTURE OF BUTYNEDIOL Wolfgang Reises, Ludwigetefen; Hame-Ingo Joichek, Mannheim; Rudoli Schnur, Frankenthal; Siedried Windert, Heidelberg Wleblingen; Joergen Dechler, Lad wigahafen, and Herwis Hoff mann, Frankenthan, all of Germany, Filed Mar. 19, 1974, Ser. No. 452,565
Cluims priority, application Germany, Mar. 24, 1973, 2314693 U.S. CI. 568-855 Int. C. ${ }^{2}$ C07C 29/00 4 Cleime

1. A continuous process for the manufacture of butynedio which comprises reacting acetylene and formaldehyde in a liquid medium containing particles of a metal acetylide on medium, said particles particles being suspended inge of 0.1 3 mm . and particles having diameters in the range of ${ }^{3}$. drawing liquid reaction product from the upper portion of said chamber, said liquid reaction product in said portion being substantially free of suspended catalyst particles, recycling a portion of said reaction product to the lower portion of saic reaction chamber and supplying said recycled liquid reaction product into the lower portion of said chamber in admixture with fresh aqueous formaldehyde solution to form said liquid through said reaction chamber at a liquid medium throughpu of about 10 to $60 \mathrm{~m}^{3}$ per m^{2} per hour and provide in the reaction chamber a liquid medium velocity sufficient to maintain said catalyst particles in a suspended state in the upwardly flowing liquid medium with the upper zone of said liquid medium bein withdrawn from said substantially catalyst-free upper zone and feeding gaseous acetylene into the lower portion of said chamber with the gaseous acetylene finely distributed in the liquid medium at a rate at which the accetylene is virually completely consumed in the liquid medium in said chamber.

METHOD $\stackrel{4,093,669}{ }$

TRICHLOROMETHYLTRIFLUOROMETHYL-BEN-
Erich Klauke, Odenthal, and Gerthard Bïttreer, Cologere, both of Germany, masignors to Bayer Altiengerellochath, Leverkneen Germany
Chimes priority, appli, S. $200-651$ Int. C. ${ }^{2}$ Germany, $25 / 00$
U. C. $260-651 \mathrm{~F}$

1. A process for the preparation of a trichloromethil-tias fluoromethyl-benzene of the formula

chlorobenzene, 1,3 -bis-(difluorochloromethyl)-2-chloroben zene, 1,4 -bis-(difuorochloromethyl)-2,5-dichlorobenzene, 3 -
difluorochloromethyl-benzotrifuoride, 4 difluorochlorometh-yl-benzotrifuoride, 2-chlooro-3-difluorochloromethyl-benzotrifluoride, 4 -chloro-3-difluorochloromethylbenzotrifluoride -bromo-3-difluorochloromethy-benzorfiuoride in the presence of a halogen transfer catalyst.
wherein
R^{1} and
R fuorina R^{2} are identical or different and represent hydrogen, hich comprises conine, formula

selected from the group consisting of 1 -fluorodichloromethyl-
1-frichloromethyl-benzene, 3-trichloromethyl-benzene, ${ }_{1} 1$-finuorodichloromethyl-4-4isi-
chloromethyl-benzene, zene, \quad 1,4-4is-(fluorodichloromethyl)-benzene,
(fluorodichloromethyl)-chlorobenzene,
2,6-bis-(fluorodi-chloromethyl)-chlorobenzene, 2,5 -bis-(fluorodichloromethyl)chlorobenzene, 2,6 -bis-(fluorodichloromethyl)-fuororobenzene, 2,4 bis-fluorodichloromethyl-fluorobenzene, 2,5 -bis-ffluorodi-chloromethyl)-1,4-dichlorobenzene, 1 -fluorodichloromethyl-difluorochloromethyl-benzene, $\quad 1,3$-bis-dififuorochlorome-hhyl)-benzene, 1,4 -bis-(difluorochloromethyl)-benzene, 1,3 -bis-(difluorochloromethyl)-5-chlorobenzene, 1,3 -bis-difluoro-chloromethyl)--b-bromobenzene, $\quad 1,4$-4bis-(dinuarochlorome-
thyl)-2-fluorobenzene,
1,4 -bis-(difuorochloromethyl)-2chlorobenzene, 1,3 -bis-(difuuorochloromethyl)-2-chlorobenzene, 1,4 -bis-(difluorochloromethyl)-2,5-dichlorobenzene, 3 -
difuorochloromethyl-benzotrifluoride, 4 -difuorochlorometh-difuuorochloromethyl-benzotrifluoride, 4 difluorochlorometh-
yl-benzotrifuoride, 2 -chloro-3-difuorochloromethyl-benzotri-yl-benzotrifuoride, 2-chloro-3-difluorochloromethyl-benzotri-
fluoride, 4 -chloro-3-difluorochloromethylbenzotrifuoride, 4-bromo-3-difluorochloromethyl-benzotrifluoride and 2 . fluoro-3-dififuororochloromethyl-benzotrifluoride with a compound of the formula

wherein
\mathbf{R}^{\prime} and \mathbf{R}^{2} have the previously assigned significance, said other compound also being selected from the group con-
sisting of 1 -fluordichloromethyl -3 -trichloromethyl-bensisting of 1 -fluorodichloromethyl-3 -trichloromethyl-benzene, 1 -fluordichloromethyl-4trichloromethyl-benzene, $1,1,3-$
bis-(fluorodichloromethyl)-benzene. bis-(fluorodichloromethyi)-benzene, 2,4 bis-(fluorodichloromethyl)-
chloromethyl)-benzene, chlorobenzene, ,2,6-bis-(fluorodichloromethyl)-chlorobenzene, 2,5-bis-(fluorodichloromethyl)-chlorobenzene 2,4 bis-fluorodi-chloromethyl)-fluorobenzene, 2,5 -bis-(fluorodichloromethyl)-1,4-dichlorobenzene, 1-fluorodichloromethyl-3-difluorochloromethylbenzene, $\quad 1$-fluorodichloromethyl-4-difluoro chloromethyl-benzene, 1,3 -bis-(difluorochloromethyl)-benzene $\quad 1,4$ bis-(difluorochloromethyl)-benzenze, $\quad 1,3$-bis-(di-
fuorochloromethyl) 5 -chlorobenzene, fluorochloromethyl)--chlorzoenzene,
chloromethyl)- 5 -bromobenzen,
1,4 bis-(difluorochlorome chloromethyl)-5-bromobenzene,
thyl)--filuorobenzene,
1,4 -bis-(difluorochloromethyl)-2

PROCESS OF ISOMERIZING OLIGOMERS O HEXAFLUOROPROPENE
Masahiro Ozawa, No. 1-6-8, Minamidali, Kami-fukuoka City; Tadanki Komatsu, No. 271-8, Fuikubo, Miyoshi-cho, Iruma-
gun, Suitama Prefecture, and Kimind Matsuoka, No. 3-35-7, Kishi-machi, Kawague City, all of Japan
 Claims priority, application Japan, M. Mr. 5, 1976, 51-23142 U.S. CI. 260-653.1 R 25 Cluims 1. A process of isomerizing oligomers of hexafluoropropene into a thermodynamically stable isomer, comprising the steps of:
preparing a mixture of non-protonic polar solvent, an alkali metal fluoride, a crown ether and at least one of the folmetal fluoride, a crown ether and at least one of then
lowing dimers and trimers of hexafluoropropene;

II

\qquad
and
heating the mixture at a temperature in the range from 20 to $150^{\circ} \mathrm{C}$, whereby said dimers and trimers are isome

$$
\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{C}_{\mathrm{C}^{\prime}}^{\mathrm{CF}_{2} \mathrm{CF}_{3}}
$$

and a trimer having the formula (IIIC)。
$\mathrm{CF}_{3} \mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CC}_{\mathrm{CF}\left(\mathrm{CF}_{3}\right)_{2}}^{\mathrm{F}}$
$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}{ }_{\mathrm{C}=\mathrm{C}}^{\left(\mathrm{CF}\left(\mathrm{CF}_{3}\right)_{2} \quad(\mathrm{IIIC})_{b}\right.}$

HYDROALKYLATION USING MULTI-METALLIC
ZEOLITE CATALYST Timothy P. Murthr; William A. Jones, and Ernest A. Zuech, all
of Bartlesrille, Okla, asslgnors to Phillipe Petroleum Com of Bartiestile, Olia., pany, Bertiessilie, Okia.

> led Nor. 22, 1976, Ser. No. ${ }^{\prime \prime}$ $668 \mathbf{R}$ Int. C. ${ }^{2} \operatorname{CojC} 15 / 100$
U.S. Cl. $260-668$ R 10 Claim 1. A process for producing monocycloalkyl aromatic hydrocarbon and alkyl-substituted monocycl
carbon which comprises: carbon which comprises.
substituted monocyclic aromatic hydrocarbon or an alkyl droalkylation conditions and in hydrocarbon under hywith a catalyst consisting essentially of at least hydrogen num compound supported on a calcined, acidic, nickel num compound suppored on a calcined, aciaic, nictel group consisting of Type X and Type Y Zeolite.

4,093,672

PROCESS FOR THE RECOVERY OF ULTRAHIGH PURITY INDENE
Yun Chung Sua, Mialiand, Mich., essignor to The Dow Chemica
Company, Midiand, Mich. Continuation-in-part of Ser. No. 691,129, May 28, 1976, abandoned. This application Jul. 15, 1977, Ser. No. 815,965 U.S. C. $260-674 \mathrm{R}$ Int. Cl. ${ }^{2}$ 007C $7 / 14$

6 Chims 1. A process for the recovery of indene in ultrahigh purity
from liquid hydrocarbon mixtures, the mixtures comprising indene and organic impurities of which at least one has a melt point above indene and of which at least one has a melt point below indene, the mixture having a co-crystallization tempera-
ture at least about $5^{\circ} \mathrm{C}$ lower than the freezing temperature of the mixture, the process comprising:
(a) crystallizing a substantial portion of the indene from the mixture to form a slurry composed of mother liquor and crystals of indene; and
b) separating the impurities from the resulting crystals by passing a non-reactive gas at a temperature in the range
between the freezing and the co-crystallization temperabetween the freezing and the co-crystalization tempera-
tures of the mixture over the surfaces of the crystals to remove said impurities while maintaining the crystals and the residual mother liquor at a temperature in the range between the freezin

4,093,673
COATING COMPOSITIONS COMPOSED OF HYDROXYFUNCTIONAL POLYMERS OR COPOLYMERS AND ALKOXYS Marris E. Hartman, Pittsburgh, and Samuel Porter, Jr., Tarentum, all of Pa., assignors to PPG Industries, Inc., Pittsburgh, P2.

Filed Nov. 14, 1974, Ser. No. 523,781
Fil C. ${ }^{2}$ Co8L $43 / 04,67 / 02,75 / 06,75 / 08$
U.S. Cl. $260-824$ EP $\quad 35$ Claims 1. A resinous coating composition comprising a blend of a hydroxyfunctional acrylic polymer with:
(A) from about 10 percent to about 50 percent by weight of polymer solids of an organoalkoxysilane crosslinking agent selected from the group consisting
silicate and phenyltrimethoxysilane; and
(B) from about 0.1 percent to about 2.0 percent by weight of polymer solids of a cure accelerating catalyst.

4,093,674
POWDER COATING COMPOSITION Koichi Tsutsui, Kyoto, and Yoshio Esuchie, Ireda, both of Japan, ausignors to Nippon Paint Co., Ltt., Japan This application Nor. 5, 1975, Ser. No. 629,131
 Int. C1.2 ${ }^{2}$ Co8L $67 / 02,29 / 04 ;$ C08G 18/62, 18/42 10 Claims
C1. $260-830$ P

1. A substantially non-sticky, melt blended, thermosetting powder coating composition in the dry state which comprises at least one solid resin having a glass transition temperature of
from 5^{*} to $150^{\circ} \mathrm{C}$ and an OH content of 1×10^{-4} to $45 \times$ $10^{-4} \mathrm{~g}$ equivalent/ g , the OH group liberating an active hydro gen atom, and at least one polyisocyanate compound which is solid at room temperature and having at least two isocyanate groups in each molecule in an average weight ratio of about 99 1 to $30: 70$ and a molar proportion of the active hydrogen in
the former to the isocyan? e group in the latter of $1: 0.2-2$.

HIGH PEEL STRENGTH ADHESIVES

Ralph M. Schure, Darien; John H. Kooi, La Gragge, and John M. Brown, Cuicago, all of III, asignors to Unitech Cremical c., Chicango, II.)

Filed Jun. 26, 1975, Ser. No. 590,622
U.S. C. $260-835$ Climm

1. A high peel strength thermoset adhesive composition which comprises a cured carboxylated poly(ester//ether) block
copolymer in which one of the blocks is isself a block copolycopolymer in which one of the blocks is itself a block copoly-
mer, said cured copolymer being a hydroxy-terminated polymer, said cured copolymer being a hydroxy-terminated polycarboxylated with a tetracarboxylic dianhydride and that has been cured with an epoxy resin, a phenol-aldehyde resin, or an amine-aldehyde resin, said carboxylated poly(ester/ether) lock copolymer being represented by the formula

wherein R is alkyl, cycloalkyl or aryl, n is a number from about 1 to about 2 , R^{\prime} and $R^{\prime \prime}$ are alkyl, alicyclic, acyclic, aryl, or
arylalkyy, p is a number from 2.4 to 1360 , is a number that the repeating ester block segment within its set of brackets makes up about 70 to about 20 weight $\%$ of the polymer, and b is a number such that the repeating ether block segment within its set of brackets makes up about 30 to about 80 weight \% of the polymer, said cured carboxylated poly(ester/ether) block copolymer having both a crosslinked carboxy acid net-
work constituent from soid epoxy or aldehyde resin and a work constituent from said epoxy or aldehyde resin and a
linear flexible block copolymer constituent and being a creepresistent, high-tensile thermoset adhesive that simultaneously exhibits high peel strength.

ANTISTATIC AGENTS | 4,093, |
| :---: |

ANTISTATIC AGENTS FOR MELT-FORMED
POLYMERS
Eugene A. Weipert, Allen Park, and Charies F. Deck, Trenton, both of Mich, assignors to BASF Wyandotte Corporation Fled Sep. 1, 1971, Ser. No. 177,136
Int. C.2. ${ }^{2}$ CoBL $77 / 00,75 / 00,67 / 00$
U.S. CI. $260-857$ PG

1. A method for rendering a elt-formed 23 Claims polyester polymer antistatic comprising:
incorporating with the polymer between about 1% and about 10% by weight based on the weight of said polymer of a polymeric composition which comprises the reaction product of
a) a hydrogen reactive compound selected from the group consisting of
(1) organic polyisocyanate and
(2) alkyl ester of a dicarboxylic acid with
(b) an alkylene oxide adduct of a nitrogen-containing compound having a molecular weight of at least 1,000,
the ratio of (a) to (b) being from about $0.5: 1.0$ to $1.0: 1.0$.

MACROMOLECULAR MATERIALS SUITABLE FOR FORMING ANTITHROMBOGENIC PROSTHESIS AND ARTIFICIAL ORGANS AND PROCESS FOR PREPARING
Paolo Ferruti, V. le Casaiodoro 24, Milan; Ezio Martuscellit,
Vico Monteroduni $;$; Fernando Rivi, Vin Trigergole 2, both of Poolo Ferrut, V. Ie Cessiodoro 2, Mian; Ezlo Martuscelili,
Vico Monteroduni 8; Fersando Rivi, Vin Trigergola 2, both of
Neples and Laciano Provenzale, P. .za dei Servili 2, Rome, all Naples, and Laciano Provenzale, P.za dei Servili 2, Rome, all of Italy
Continuntion-in-part of Ser. No. 694,394, Jun. 6, 1976,
abandoned. This application Mar. 17, 1977, Ser. No. 778,454 abandoned. This application Mar. 17, 1977, Ser. No. 778,454
Chime priority, application Italy, Jun. 10, 1975, 24245 A/75
U.S. C. $260-858$ Int. C.2. ${ }^{2}$ C08L $77 / 00,75 / 00$ 1. Macromolecular materials suitable for forming antithrom. igenic artificial organs characterized in that they are block信 froms.

CRYSTALLINE CO-AND TERPOLYMERS OF
ETHYLENE AND ACENAPHTHYLENE Frederick Eugene Bailey, and Werner Claus von Dohlen, both of Charleston, W. Ve., madgors to Union Carbide Corporation, New York, N.Y.

Filed Apr. 26, 1976, Ser. No. 680,385
U.S. Cl. $260-897$ A

1. A compatible blend of high density polyethylene and a 1. A compatible blend of high density polyethylene and a highly crystalline non-uniform copolymer comprised of ethylene and acenaphthylene; said blend having a higher use temperature than said high density polyethylene by itself, said
non-uniforan copolymer being one which lacks the independent beta thermomechanical transition in the torsion pendulum loss modulus curve possessed by known copolymers of ethyl-
ene and which is produced by the process of initiating polyene and which is produced by the process of initiating poly-
merization of a reaction mixture of acenaphthalenee ethyleny merization of a reaction mixture of acenaphthalene; ethylene; a
Ziegler or Natta catalyst; and an organic solvent, and thereafZegler or Natta catalyst; and an organic solvent, and herea-
ter continuously introducing ethylene monomer to the reaction mixture during the polymerization reaction.

4,093,679
HYDROXYALKYL OR AMINOALKYL ESTERS OF PHOSPHOLANE PHOSPHONIC AND PHOSPHINIC Hans-Dieter Block, Cologne GCIDS Hengesellechock, Cologne, Germany, sasignor to Bayer Aktiengeeelischaft, Leverkusen, Germany
Filed Nor. 12, 1976, Ser. No. 741,576 Claims priority, application Germany, Nor. 21, 1975, 2552316 U.S. Cl. $260-927 \mathrm{Int}$. C. ${ }^{2}$ COTF 9/32, $9 / 40$ 2552316 U.S. Cl. $260-927 \mathrm{R}$

1. A hydroxyalkyl or aminoalkyl ester of a phospholane 1. A hydroxyakyl or aminoolkyl ester of a
phosphonic or phosphinic acid of the formula

in which
R^{1} is alkyl with 1 to 10 carbon atoms or aryl with up to 14 $R^{2} \mathbf{R}^{\text {carbon atoms }}$ and R^{4} eac
R^{2}, R^{3} and R^{4} each independently is alkyl with 1 to 4 carbon $R^{\text {atoms, }}$ is alkydrogen, chlorine or bromine.
is alkyl with 1 to 8 carbon atoms and, where $a=0$,
optionally an aryl radical with
carbon atoms and, where $a=1$, also optionally $1 / \mathrm{m}$ of an m-valent cation or a hydroxy alkylene or imino alkylene radical of the formula

$$
\begin{aligned}
& R^{7} R^{8} \\
& 1 \quad 1 \\
& (-C-C-z-)_{n} H \\
& 1 \\
& R^{9} R^{10}
\end{aligned}
$$

\mathbf{R}^{6} is a hydroxy alkylene or imino alkylene radical of the
R^{7} and R^{8} each independently is hydrogen, alkyl with 1 to 6 carbon atoms, phenyl, alkenyl with 2 to 4 carbon atoms, chloromethyl, bromomethyl, hydroxy methyl or etherified or esterified hydroxy methyl, in adation 10 which R^{7} $R^{\text {atoms to form a ring, }} \mathbf{R}^{10}$ each independently is hydrogen or alkyl with 1 to \mathbf{R}^{9} and \mathbf{R}^{10} each indep $Z 2$ carbon atoms,
n is a number from 1 to 30 , and
X and Y each independently is oxygen or sulphur.
PHOSPHORYLATED TERTIARY BUTYLATED PHENOL/PHENOL ESTER RECTION MIXTURES
 England, asaignors to Ciba-Geig A, A, Basel, Ser. No. 586,756, Jun. 13, 1975, abendoned, which is division of Ser. No. 370,455, Jun. 15, 1973, Pat. No. 3,919,158,
Which is a continuation-in-part of Ser. No. 74,909, Sep. 23, 1970, 1667, Pat. No. $3,576,923$, mind Ser. No. 645,888 . This application Jun. 16, 1976, Ser. No. 696,703
Cluime priority, application United Kingdom, Jun. 18, 1966,
The portion of the term of this patent subsecquent to Mar. 2,
1988, has been diechimed.
Int. Cl. ${ }^{2}$ COTF 9/12

3 Claims

1. A phosphate ester composition consisting essentially of a phosphorylated tertiary butylated phenol/phenol ester mixture wherein the weight ratio of the tertiary butyl moiety to phenol
moiety ranges from 0.10 to about 0.4 , which ester is prepared by steps comprising:
(a) allylating at a temperature of about 15° to $250^{\circ} \mathrm{C}$ in the presence of a Lewis acid or a Bronsted acid as a catalyst,
phenol with isobutylene or disobutylene to obtain a terphenol with isobutylene or disobutylene to
tiary butylated phenol reaction mixture, and
(b) reacting said tertiary butylated phenol reaction mixture
with a phosphorylating agent.

MOTORLESS CARBONATOR

 Herman B. Castillo, Clavson, and Robert S. Mueller, Birming. Hernman B. Castillo, Clawson, and Robert S. Mueller, Birming ham, both of Mich., menignors to Eaton Corporland, Ohio Fied Dec. 13, 1976, Ser. No.
Int. Cl.
B01F $3 / 04$

5 Cluim
U.S. C. 261-122 Int. C. ${ }^{2}$ B01F $3 / 04$

1. A carbonator for carbonaing haimber adapted to reccive
water and connected to a source of fresh water, and a second carbonation chamber;
fluid connection means having an inlet and outlet located within said housing, said inlet being in communication with the fill chamber and the outlet being in communicabeing and said carbonation chamber, he connection means being adapted to transfer water from said fill chamber to said carbonatio
chamber and to the carbonation chamber;
eans cooperaive with said corton diaber, tain a pressure differential between the fill chamber and the carbonation chamber, the pressure differential means supplying carbon dioxide to the fill chamber at a first relatively high pressure and to the carbonation chamber at a second relatively low pressure;
a discharge port adapted to withdraw a carbon dioxidewater mixtur
mand; and
means responsive to depletion of water in the fill chamber to vent the fill chamber to atmospheric pressure, thereby allowing fresh water to flow freely into the fill chamber filling the fill chamber to a predelermined level; and with water to the predetermined level to repressurize the with water to the prederermined level to repressur
fill chamber with carbon dioxide and stop filling.

PROCESS FOR THE PRODUCTION OF BLOCR.SHAPED FUEL ELEMENTS FOR HIGH TEMPERATURE Milan Hrovat, Rodenbech REAORS Lecthor, Hanan, both of Germany, assignors to Hobeg Hochtemperaturreaktor - Brennelement $\mathbf{G m b H}$, Hanen, Germany
Cluims priority, application Germany, Feb. 14, 1976, 2605975
U.S. CI. 264-0.5

1. In a process for the production of a Clexims lock-fuel element for a gas cooled high temperally shaped by hot molding a granulated graphite material consisting essentially of a mixture of natural graphite, synthetic graphite and binder resin together with fissile and fertile coated fuel particles together with stearic acid as a lubricant to form molded blocks and wherein the blocks are subsequently heat treated
and wherein the outer hexagonal shape of the block fuel element and the cooling gas channels are produced by molding, the improvement comprising incorporated into the matrix powder prior to molding an organic compound having a very
low vapor pressure at room temperature and a vapor pressure low vapor pressure at room temperature and a vapor pressure.
of about 760 Torr at the molding temperature, of not over 200° C , said organic compound again being liquifiable under moderate pressure at the molding temperature.

METHOD POR 4,093,683
MEIHOD FOR MAKING PIPE FITTING COVERINGS Alfred H. Harley, Greensboro, N.C. madignor to Speed-Line Manufacturing Company, Inc., Greensboro, N.C. Continuation-in-part of Ser. No. 311,965, Dec. 5, 1972,
abandoned.This application May 19, 1976, Ser. No. 687,657. Int. C1. ${ }^{2}$ B29C $17 / 02$
U.S. C1. $264-25 \quad 20$ Claims 1. A method of forming a cover for a pipe fitting having a
complex configuration in the same complex configuration as complex configuration in the same complex configuration as
the pipe fitting to be covered, said cover including an opening extending between the ends of the cover whereby the cover may be spread apart and placed in position surrounding the pipe fitting, said method comprising the steps of
(a) forming a single piece of thermoplastic material into a
preform having an intermediate non-planar configuration preform having an intermediate non-planar configuration
different from the complex configuration of the fitting to be covered,
(b) folding the preform into the final complex configuration of the fitting to be covered,
(c) heating the said material while retaining it in its final complex configuration, and
(d) cooling the said material to set it in its final complex configuration while retrining the said material in its said
final complex configuration 10. A method of making a plastic polymeric material as a single piece integral structure having a complex shape conforming to the configuration of the fitting to be covered, said pipe fitting cover including an opening extending between the ends of the pipe fitting cover
whereby the pipe fitting cover may be spread apart and placed in position surrounding the pipe fitting said method comprising the steps of:
(a) providing a sheet of thermoplastic polymeric material, (b) forming said sheet of material into a preform having a configuration different from the configura
(c) folding the preform from its intermediate configuration to its final configuration conforming to the configuration of the fitting to be covered,
(d) heating the preform above the softening temperature of its final configuration, and
(e) cooling the preform below the softening temperature of the thermoplastic material while retaining the preform in its final configuration to set it in the configuration of the fitting to be covered.

4,093,684
SOLID SOLDERABLE POLYURETHANE DATA SIGNAL MEDIUM Leo P. Parts, Dayton, and Edgar E. Hardy, Kettering, both of
Ohio, assignors to Monsanto Research Corporation, St. Louis, Mo.
Continuation of Ser. No. 409,515, Oct. 25, 1973, abandoned, which is a continuation of Ser. No. 864,160, Oct. 6, 1969,
abandoned. This application Jul. 21, 1977, Ser. No. 817,894
 U.S. C. $264-25$

1. In a process for data signal recording in which a recording medium is impinged upon by an intensity-modulated, focused medium, the improvement wherein said one layer of the recording medium comprises a solid, solderable polyurethane polymer having the capability for undergoing residue free depolymerization when subjected to laser irradiation, said solderable polyurethane polymer being the heat-cured reaction product of a blocked polyisocyanate adduct having from 11.5 to 13.5 percent available NCO, and a polyester having a hy-
droxyl number of from 270 to 420 and an acid number of from 4.0 to 9.0 , and the beam is of sufficient intensity to effect said depolymerization.

PRODUCTION OF SURFACING UNITS Frederick George Cond, Sutton Coldfield, England, assignor to Ibstock Building Prodncts Limited, Leicester, England Claims priority, application United Kingdom, Dec. 23, 1975, 52687/75 U.S. CI. 264-28

Int. C. ${ }^{2}$ B05B 3/00

1. A method of producing surfacing units composed of a plurality of elements of brick, tile, stone or the like connected by fillets of suitable mortar or orther adhesive, comprising the
steps of procuring a base member comprising a surface covering of deformable saturable material, saturating said material with a freezable liquid consisting essentially of water, laying he elements thereon in a spaced dessired pattern suach that the deformable material projects into the gaps between adjacent elements in the shape of a ridge, said base member being pro-
vided with freezing means whereby the water in said material is caused to freeze and thereby secure the elements in place. while the mortar or adhesive is applied to the gaps between edge surfaces of adjacent elements above the deformable mate-
rial in the gaps, subsequent thawing of the water releasing the al in the gaps, subsequent thawing of the water releasing the
urfacing unit from the base member.

4,093,686
 SHEET MATERIALS

Rodney J. Briston, Blackburn, and Rodger G. Canning, Chorley both of England, assignors to Reed International Limited, London, England

This application Sep. 14, 1976, Ser. No, 723,304 Claims priority, application United Kingdom, Jul. 1, 1974, 29145/74
U.S. Cl. 264-45.5 Int. Cl. ${ }^{2}$ B29D 27/00

1. A process for the manufacture of a differentially expanded resinous cellular sheet, comprising incorporating a heat desition; forming a sheet from said resinous composition; applying a lacquer, wherein at least part of the solvent phase of said lacquer is an organic solvent having an affinity for said resining said bosowing agent and allowing said treated sheet to at east partially dry; applying a printing ink composition containing a kicker which depresses the decomposition temperature of said blowing agent to portions of said treated surface; and ature so that those portions of the sheet which received an
application of printing ink composition expand to a greater extent than those portions which did not receive an application of printing ink
panded sheet.

HOT PRESSING OF SILICON NITRIDE USING
MAGNESIUM SILICIDE Lastham, both of N.Y., sasignors to General Electric Company
Lethere Schenectady, N.Y. Filed Jan. 3, 1977, Ser. No. 756,083
Int. Cl. ${ }^{2}$ C04B 35/58, $35 / 64$
U.S. C. 264-65 Int. C. ${ }^{2}$ C04B 35/58, $35 / 64$

1. A method of producing a hot-pressed polycrystalline silicon nitride body having a density of at least 80% of the theoretical density of silicon nitride and which retains at least
about 75% of its room temperature mechanical properties at about 75% of its room remperature mechanical proserties ait
elevated temperatures ranging up to at least $1350^{\circ} \mathrm{C}$ in air elevated temperatures ranging up to at least $1350^{\circ} \mathrm{C}$ in air
which consists essentially of providing at least a significantly homogeneous powder dispersion having an average particle size which is submicron of silicon nitride and magnesium sile cide, and based on the total composition of the starting silicon
nitride powder said silicon nitride powder containing up nitride powder said silicon nitride powder containing up to
about 0.1% by weight of metallic impurities which react with SiO_{2} or Si and O_{2} to form low melting intergranular silicat glassy phase, up to about 3% by weight of oxygen, up to abou 4% by weight of elemental silicon, and up to about 1% by weight of halogen, said magnesium silicide being used in an
amount ranging from about 0.5% by weight to about 3% by amount ranging from about 0.5% by weight to about 3% by said dispersion in an atmosphere of nitrogen at a temperature ranging from about $1600^{\circ} \mathrm{C}$ to about $1850^{\circ} \mathrm{C}$ under a pressure of at least about 2000 psi, said body being at least substantially free of an intergranular silicate glassy phase at its grain bound aries.

METHOD OF MAKING MANNGANESE-ZINC FERRITE Arthur Withop, and Roger Emil Travagil, both of San Jose Calif,, assignors to Memorex Corporation, Santu
Filed Aug. 25, 1975, Filed Aug. 25, 1975, Ser. No.
Int. C1.
U.S. C1. 264-65 3 Claim 1. A method of producing a low porosity manganese-zinc ferrite body with high permea he steps of
MnO and ZnO within a temperature range of abo MnO and ZnO within a temperature range of about
$1180^{\circ}-1230^{\circ} \mathrm{C}$ in a vacuum environment of 50 to 200 microns pressure for a period of time of about 3 to 5 hours: (b) heating the body within a temperature range of about $1180^{\circ}-1230^{\circ} \mathrm{C}$ for at least 18 hours in an atmosphere having an oxygen parial prospheric pressures;
(c) cooling the body to a temperature in the range of about $880^{\circ}-920^{\circ} \mathrm{C}$ in said oxygen partial pressure atmosphere; (d) then soaking the body at a temperature in the range of about 880° to $920^{\circ} \mathrm{C}$ in an atmosphere having less tha 0.02% oxygen, by volume, for at least 18 hours; and (e) cooling the bod 0.02% oxygen.

1. A process for the production of compressive prestressed inforced concrete building units having smooth opposit mat of steel rods to the edges of ribs which are secured to a flat panel, pouring a layer of concrete onto a horizontal form plate he size of said panel, immersing said mat and rib edges in said concrete, vibrating said plate and panel to consolidate the
concrete around the rods of said mat, prestressing said unit by concrete around the rods of said mat, prestressing said unit by concave curvature prior to hardening of said concrete, and hen removing said plate and releasing the flexing of said panel fier the concrete has hardened.

METHOD FOR THE MANUFACTURE OF CONCDETE ohn A. M AND LKEE PRODUCTS
Panels, Inc. Panels, Inc., Bryn Mavr, Pa. which is a continuation of Ser. No. 336,362, Feb, 27,1973 , , Nandoned, which is a continuation-in-part of Ser. No. 106,364 Jan. 14, 1971, abandoned. This application Oct. 26, 1976, Ser. No.
Int.
C1.
2
U.S. CI. 264-82

1. A method of rapidly manufacturing concrete or like products having an advanced state of cure comprising the steps of blending together a calcareous cementitious binder, an aggre-
gate, the binder being present in a percentage of about $6-100$ gate, the binder being present in a percentage of about $6-100$,
based upon total of binder plus aggregate; vinyl acetate-dibutyl maleate copolymer and water to form a mix, wherein the percentage by weight of water does not exceed about 10%, wherein the weight of vinyl acetate-dibutyl maleate copolymer in the mix is within the range of about 1% to about 2% based
on the solids content of the mix, compressing the mixture under sufficient pressure to maintain the mixture in a predeter-

PROCESS FOR PRODUCONG REINFORCED CONCRETE bULIDING UNTIS, ESPECLALLY FLOOR PANELS HAVING SMOOTH SURFACES AND COFFER-LIKE INNER HOLES, AND FORMWORK ESPECIALLY FOR György Mayer, Jinos Györi; Mihihly Rikker, Antal Binfai, and Ervin Eszenyl, all of Pecs, Hungary, madgnors to Licen Talalmanyokit Ertekesito Vallealta, Budapest, Hungury
Filed Mar, 14, 1974, Ser. No 451,199 Filed Mar. 14, 1974, Ser. No.
U.S. C. 264-71

2 Chims

mined shape upon removal of the shape relative to the mold, moving said shape in a predetermined direction and exposing the shape to a preignition in an ambient atmosphere containing admixed carbon dioxide moving counter-current to said shape, subsequently subjecting said shape to an atmosphere consisting essentially of carbon dioxide gas containing minor amounts of air by moving the shape through a chamber, simultaneously feeding carbon dioxide gas to the chamber during the movement of the shape therein, maintaining the pressure within th feed to cause an exothermic temperature rise in the shape of at least 20° to $40^{\circ} \mathrm{F}$ in less than about 5 minutes, and subjecting the shape to further amounts of carbon dioxide after its emergence from the exit end of said chamber
9. In a method of rapidy manufacturing concrete or like products having an advanced state of cure comprising a sufficiently low moisture cementitious mix to maintain its shape after molding into a shape and during subsequent curing, said mix comprising water and a vinyl acetate - dibutyl maleate copolymer, wherein the weight of vinyl acetate - dibutyl male-
ate in the mix is within the range of about 1% to 2% based on weight of solids of the mix, the percentage by weight bed weight of solids of the mix, the percentage by weight of wate not exceeding 10%, the steps which comprise molding the ture under sufficient pressure to maintain the mixture in the predetermind shape upon removal of the shape relative to the mold, moving the shape in a predetermined direction, exposing the shape while it is so moving to preignition in an atmosphere containing a controlled amount of carbon dioxide which moving countercurrent to the movement of said shape, then exposing said shape to an atmosphere of carbon dioxide gas
admixed with minor amounts of ar admixed with minor amounts of air by moving the shape tially non-metallic, the height of the chamber being about 1.025 to about 4 times the height of the shape, but not exceeding the height of the shape by more than about $4 i$ inches, simulta neously feeding carbon dioxide gas to the chamber during the novement of the shape therein, maintaining the pressure, and continuing the feed to cause an exothermic temperature rise throughout the shape of at least $20^{\circ} \mathrm{F}-40^{\circ} \mathrm{F}$ in less than about 5 minutes

1. The method of treating a mix having concrete forming characteristics or the like for facilitating the curing thereo yl maleate copolymer, said mix comprising water and a vinyl acetate-dibutyl maleate copolymer, wherein the weight of vinyl acetate-dibutyl maleate is within the range of about 1% o about 2% based on the weight of solids of the mix, the percentage by weight of water in the mix not exceeding 10%, molding the mix into a formed shape in a press, discharging the hen formed shape from the press onto a conveying means, ooving the shape along a predetermined path on the convey ing means, exposing the shape, while it is so moving, to an atmosphere consisting essentially of carbon dioxide gas during its movement along said path, causing said carbon dioxide gas gas by flow of said gas through said convering means, said exposing step being performed by passing the shape through a yieldingly shielded chamber while simultaneously continuously delivering carbon dioxide gas to the chamber, causing a portion of said carbon dioxide gas to flow counter-currently hereby causing a preignition of said shape before its entry into said chamber, maintaining the gas pressure in said chamber at substantially atmospheric pressure, all as part of a continuous process.

METHOD FOR MANUFACTURING MOULDED PLASTIC Gerardus Theodorus Joeeph Egegen, 450, van der Helmstrat, Rotterdam 14, Netheriands

This application Jun. 23, 1975 , Ser. No 589,512 , Claims priority, application Netherlands, Apr. 6, 1972,
7204628 Int. Cl. ${ }^{2}$ B29C 17/04
Int. C. ${ }^{2}$ B29C 17/04

1. A method for manufacturing articles from synthetic resin pulverulent synthetic resin material to sintemprising heating pulverulent synthetic resin material to sintering temperature
on a nonporous support to form a layer of said resin material on the support, mounting the support with the layer thereon on a mould, heating the material on the support to a softened de-
formable condition in which the surfe ormable condition in which the surface of the material in ontact with the non-porous surface of the support is rendered the mould along a circumferential region thereof, peeling the material from said support in the region where the material is attached to the mould by displacing the mould and support relative to one another in a direction away from one another to
provide a free space around the circumference of the mould and applying a pressure medium via said free space against the material from the circumference thereof towards its center to continue the peeling of the material from the support and the introduction of the material into the mould to assume the form thereof.

MELT EXIRUSION PROCESS

 Donald R. J. Hill, Houston, Tex., aspignor to Gulf Oil Corpor tion, Pittsburgh, Pa. $\begin{aligned} & \text { Filed Mar. 21, 1977, Ser. No. 779,873 }\end{aligned}$U.S. CI. 264-95

Int. C1. ${ }^{2}$ B29C ${ }^{17 / 07}{ }^{7}$

1. A process for preparing a melt extruded article of manuessentially of preparing such article by bettes which consists essenilene polymer at a shear stress of less than about $3 \times 1{ }^{2}$ dynes $/ \mathrm{cm}^{2}$, said ethylene polymer being characterized by: (a) having an annealed density of at least about $0.96 \mathrm{gms} / \mathrm{m}$, (b) having melt flow properties such that the relationship between its slope parameter (s) and its apparent mel viscosity in poises at $1 \mathrm{sec} .^{-1}\left(\mathbf{A}_{a}\right)$ is defined by the for
where S is the negative slope of the curve obtained from
a plot of the natural logarithm of the polymer's apparent aplot of the natural logarithm of the polymer's apparent viscosity in poises versus the natura logarithm of the
apparent shear rate in sec. ${ }^{-1}$; and where \mathbf{A}_{o} is the natural logarithm of the polymer's apparent viscosity in poises measured at 1 sec. ${ }^{-1}$ at $190^{\circ} \mathrm{C}$;
(c) having an A_{0} value in the range of about 12.0 to about 14.5; and
(d) having an S value in the range of about 0.61 to about 0.90 .
marking material, embedding said member with its layer of raised marking material within an uncured rubber article and holding said member therein, subjecting said uncured rubber article with said member held therein to a curing environment o simultaneously cure said uncured article while curing said

METHOD FOR MAKING COMPOSITE ARTICLES METHOD FOR MAKING COMPOSITE ARTICLSS
erome H. Lemelson, 85 Rector St., Metuchen, No. 08840 Continuation of Ser. No. 848,949, Aus. 11, 1969, abandoned,
which is a continuation-in-part of Ser. No. 267,262, Mar. 22, Which is a continuation-in-part of Ser. No. 267,262, Marr. 22 , 1963, Pat. No. 3,461,197, which is a continuation-in-part of Ser.
No. 651,749, Apr. 9,1957 , abandoned. This application Feb. 22, Int. Cl. ${ }^{2}$ B29F $3 / 10$
U.S. C. $264-171$

8 Claims

1. A method for producing a composite article comprisis rendering a first material in a molten condition, passing said first material into a chamber in such molten passing saition,
rendering a second material having a melting point above that of said first material also in a molten condition, continuously forcing said second material, while molten,
through an orifice communicating with said chamber through an orifice communicating with said chamber
whereby said second material is formed to shape as it passes through said orifice and is passed continuously, as surrounding said second material with said first material in said chamber and causing said first and second materials to completely fill said chamber,
ransferring heat from said second material to said first material so as to solidify said second material within said first material, and
thereafter forming said first and second materials into an article by forcing said materials from said chamber and setting and solidifying said first material into a defined shape about said second material to provide a composite
material composed of a discrete structural formation of said first and second materials.

4093,694

METHOD OF MAKING ARUBBER ARTICLE HAVING ANENT MARKING HEREI
Vernon D. Browning, Waynesville, N.C., assignor to Dayco Corporation, Dayton, Ohio
Division of Ser. No. 559,280, Mar. 17, 1975, abandoned. This application Ang. 5, 1996, Ser. No. 711,92
Int. C. ${ }^{2}$ B29D 3/00; B29H 3/06
U.S. C1. 264-246 $\quad 2{ }^{24}$ Claims 1. A method of permanently marking a rubber article comprising the steps of, embossing a member to produce a mirror ber, coating said raised marking with a layer of marking mateber, coating said color, applying a layer of uncured rubber having another color over said surface and layer of raised

layer of uncured rubber as an integral outer part of said rubbe article and removing said member member leaving said rubbe article with a unitary two-layer debossed correculy reading rubber, said two layers helping to assure the permanence of said marking.

PROCESS FOR MAKING POLYMERIC FILM Wilfried Andre Heirbaut, Heasdonk, Belgium, assignor to AG-FA-GEVAERT N.V., Mortbel, Belgium
Filed Mar. 3, 1976, Ser. No. 663,497 Claims priority, application United Kingdom, Mar. 6, 1975, $9401 / 75$

Int. C1. ${ }^{2}$ B29D 7/24
U.S. C. $264-289$

1. In a method for biaxially molecularly orienting polyester film comprising the successive steps of stretching a substantially amorphous crystallizable, polyester film in its longitudinal direction at a film temperature between the second order
transition temperature of the film and about $50^{\circ} \mathrm{C}$ above said rransition temperature of the film and about $5{ }^{\circ} \mathrm{C}$ above said
transition temperature, and stretching said film in the transverse direction at a temperature between the second order ransition temperature of the film and about $50^{\circ} \mathrm{C}$ above said ransition temperature, the improvement wherein between the ongitudinal and transverse stretching steps the film is subected to a thermal stress-relieving treatment by maintaining ansition temperature and about $30^{\circ} \mathrm{C}$ above said temperature and below the initial stretching temperature for a time insufficient to substantially increase its crystallinity, while the film is being subjected oo a longitudinal tension which is not greater han half the longitudinal tension applied during the longitudinal stretching of the film.

METHOD OF MAKING A FLANGED FLUTED Edwin H. Land, Cambridger AING SHEET Edwin H. Land, Cambridge; Albert J. Bachelder, and Sarah H.
Perry, both of Lexington, all of Mess Perry, both of Lexington, all of Misss, assignors to Polaroid
Corporation, Cambridge, Mass. Corporation, Cambridge, Mass.
Division of Ser. No. 680,781, Apr. 27, 1976. This application
Jun. 20, 1977, Ser. No Jun. 20, 1977, Ser. No. 808,050
U.S. C. 264-295 Int. Cl. ${ }^{2}$ B29D $15 / 00$

the aqueous phase into the organic phase, whereby the contaminants remain practically completely in the aqueous phase;
(e) separating the organic phase charged with [Mo (SCN$\left.)^{3}\right]^{3-}$ ions from the molybdenum free solution; (f) washing the separated organic phase with diluted mineral acid having a concentration in the range from 0.001 to 0.1 $\mathrm{Mol} / /$ in a quantity approximately corresponding to the
volume of the organic phase; (g) re-extracting the molybden
(g) re-extracting the molybdenum with mineral acid of a
concentration in the range from $5 \mathrm{Mol} /$ to $11 \mathrm{Mol} / \mathrm{from}$ the separated and washed organic phase into an aqueous phase.

4,093,698
PROCESS FOR THE SIMULTANEOUS EXTRACTION OF METAL VALUES FROM MANGANESE NODULES Paul H. Cardmell, Zanoni, and Willinm S. Kane, Wicomico, both
of Va., assignors to Deepaea Ventures, Inc., Gloucester Point, Of Va., assignors to Deeppea Ventures, Inc., Gloucester Point,

Filed Oct. 18, 1976, Ser. No. 733,087
Int. Cl. ${ }^{2}$ C01G 3/14, SI/12, $53 / 12$

1. The process of making a flexible film retaining imbibition state, comprising the steps of folding the edges of as said sheet o material over to form a pair of side flanges, fluting the side flanges and adjacent portions of the underlying sheet by defor
mation under sufficient stress to produce permanent departures alternately in opposite directions from the planes of the mate rial, coiling the fluted material into a helix, and curing said
coiled and fluted material.

4,003,697
PROCESS FOR RECOVERING MOLYBDENUM.99 FROM A MATRIX CONTAINING NEUTRON IRRADIATED FISSIONABLE MATERIALS AND
Ali Sameh Abdel Hadi, Ettlingen-Schluttenbach; Peter-Michael Menzler, and Johann Reinhardt, both of Eggenstein-L Loopoldshafen, all of Germany, melignors to Gesellschaft fur Kernfor anag Fi.bin. Karisrube, Germany
Claims priority, application Germany, Mar. 16, 1976, 2610947 U.S. C. 423-2 Int. Cl. ${ }^{2}$ C01G 39/00
U.S. Cl. 423- $\mathbf{2}$ \qquad 1. Process for recovering molybdenum-99 from a matrix ble materials and fission products, wherein the matrix is de composed in an aqueous alkalil hydroxide solution and the
molybdenum- 99 and part of the fission products are disol ved molybdenum-99 and part of the fission products are dissolved,
the solution containing the molybdenum-99 is separated from residue of particles containing at least actinides and lanthanides and is treated with thiocyanate ions to form a molybdenum
complex comprising the steps of: complex comprising the steps of:
(a) conditioning the alkali solution containing molybdenum in the form or molybdate $\left(\mathrm{MOO}_{4}^{--}\right)$with an iodine reduc-
tion agent in a quantity corresponding to a concentratio range between $10^{-4} \mathrm{Mol}$ and 0.2 Mol per liter alkali solu rion;
(b) adding mineral acid to the alkali solution until a hydrobium ion concentration in the range from 0.1 to $6 \mathrm{Mol} / \mathrm{M}$ has been reached.
(c) reducing the molybdenum contained in the acidified
solution of step b) to form a threevalent molybdenum Mo(III) and complexing the Mo(III) with SCN- ions to
form [MO(SCN) ${ }^{3}$ - ions, said SCN ${ }^{-}$ions being present in an ion concentration in the range between $0.1 \mathrm{Mol} / \mathrm{l}$ and 3 $\mathrm{Mol} / /$ of the solution being subjected to the reduction; (d) bringing the aqueous acid solution from step c) as an aqueous phase which contains [Mo (SCN) ${ }^{3}{ }^{3-}$ ions and
contaminants into contact with an organic phase of previcontaminants into contact with an organic phase of previ-
ously conditioned di-sec butyl ether and selectively ex tracting the molybdenum thiocyanate complex ions from

16 Claims

1. A process for removing the metal values from a manganese nodule ore, the ore comprising a primary proportion of manganese and iron and secondary proportions of nickel, opper and cobalt, the weight ratio of manganese:iron being at east about $5: 1$ and the total combined amounts of copper, odule are, the process comprising:
(a) comminuting the ore to a particle size of not greater than about 20 mesh;
(b) reducing the comminuted ore at a temperature in the range of from about 300° to about $850^{\circ} \mathrm{C}$., in the presence of a reducing agent selected from the group consisting of
carbonaceous materials and hydrogen, such that substantially all of the manganese, nickel, cobalt and copper values and only a portion of the iron value are reduced to a condition in which the metal values are leachable by ammoniacal ammonium salt solutions with oxidation;
leaching solution of an ammonium salt wherein the total
leal concentration of total ammonium ion is at least about 260 grams/liter, the concentration of ammonium hydroxide in the leaching solution being at least about 120 grams/liter, as ammonium ion, and wherein the concentration of the ammonium salt anion is at least about 0.83 Normal to form manganese, iron, nickel, copper and cobalt salts and at least a major amount of the ammonium hydroxide gener-
ated during the leaching step, and a solid residue, the or and the leach solution being oxidized prior to completion
of the leaching, the ratio of iron-to-manganese in the solution being less that the of iron-to--
(d) treating the pregnant leach solution to remove sufficien (d) treating the pregnant leach solution to remove sufficient the iron and manganese values from the pregnant leach solution without substantial precipitation of any nickel, cobalt and copper to form a substantially manganese-and iron-free pregnant leach solution and solid manganese and iron compounds; and
(e) separating the nickel, cobalt and copper values from the manganese-and-iron-free pregnant leach solution so as to regenerate the ammoniated ammonium salt leaching solu14. Th.

位ion with pess of claim 1 , comprising contacting the leac xtracting medium comprising an extracting agent selected from the group consisting of alpha-hydroxyoximes and 7 hydrocarbon-substituted-8-hydroxyquinolines so as to selec copper value, substantially free of cobalt and nickel values, and
cole connecting the first raffinate with a second organic, water immiscible, liquid ion exchange medium comprising an extracting agent selected from the aforesaid group so as to selectively extract nickel, forming a second organic phase containing the nickel value and a second aqueous raffinate containing the cobalt value.

PROCESS FOR REDUCTON OF ALUNITE ORE IN ALUMINUM RECOVERY PROCESS Cent W. Loest, Broomfield, and George H. Keceler, Erergreem, both of Colo,n, asaignors to Southwire Company, Carroliton, Sciences, Inc., Golden, Colo.
Continuation-in-part of Ser. No. 655,085, Feb. 4, 1976, abandoned. This application May 27, 1977, Ser. No. 201,054 U.S. C. 423-120 int. C1. ${ }^{2}$ COIF $1 / 00 \quad 10$ Claim 1. A method for making a zeolite having the structure offretite, as determined by x-ray defraction, and capable absorbing 0.512 mmoles of benzene per gram of zeolite at $P /$ /it a composition of \ddagger of its capacity under autogenous pressure and in the absence of tetramethylammonium ions, the composi tion having oxide mole ratios of:
$\left(\mathrm{K}_{2} \mathrm{O}\right) 0.65\left(\mathrm{Na}_{3} \mathrm{O}_{2} \mathrm{O}_{2}\left(\mathrm{SiO}_{2}\right)_{2}\left(\mathrm{Al}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{3} \mathrm{O}\right) 36.11\right.$
wherein the source of silica is diatomite the composition being maintained at a temperature of between approximately $140^{\circ} \mathrm{C}$ and $145^{\circ} \mathrm{C}$ inclusive, for a time sufficient to form the zeolite.

1. A method for recovering aluminum from alunite ore which comprises:
(a) dehydrating the ore
(b) roasting the dehydrated ore in a reducing atmosphere of鲑ur a (c) roasting the reduced ore of step (b) at a temperature up to about $650^{\circ} \mathrm{C}$ in a reducing atmosphere other than sulfur to substantilly completely reduce it;
(d) leaching the reduced ore from step (c) with a solvent consisting of an alkaline solvent $\stackrel{\text { and }}{\text { als; }}$
(e) digesting the res from (d) with metal hydroxide to convert aluminum values in the resi metal hydroxide to convert aluminum values in the resi-
due to soluble aluminates; and
(f) recovering aluminum values from the soluble aluminates.

4,093,701

PROCESS FOR ACID GAS REMOVAL
Kenneth Francis Butwell, Newburgh, N.Y., assignor to Union Carbide Corporation, New York, N.Y.
Continuation-in-part of Ser. No. 627,211, Oct. 30, 1975, abandoned. This application Sep. 17, 1976, Ser. No. 723,161 U.S. Cl. 423-228 Int. Cl. ${ }^{2}$ B01D $33 / 34$ Cluims 1. In a continuous process for the selective absorption of hydrogen sulfide from a feed gas comprising an acid gas mixure of carbon dioxide and hydrogen sulfide, said proces comprising " steps of (I) counter-currently contacting the mine solution to provide a rich aqueous alkanolamine solution, II) introducing the rich solution into a stripping zone to pro vide a mixture of acid gas and water vapor overhead and lea olution as bottoms, and (III) recycling the lean solution to the absorption zone, the improvement which comprises:
(a) using an alkanolamine having the formula, $(R)_{1} N$,
wherein R is an alkanol radical, which has 2 or 3 carbon
atoms and is unsubstituted or methyl-substituted, or an
alkyl radical having 1 to 5 carbn atoms, provided at least
one of the R groups is an alkanol radical; one of the R groups is an alkanol radical;
 about 75 and a maximum loading of about 0.1 mole of acid (c) using an absorption zone having 2 to 10 separate stages, wherein the equilibrium approach between the hydrogen sulfide in the gas and liquid phases is maximized and the
equilibrium approach between the carbon dioxide in equilibrium approach between the carbon dioxide in the
gas and liquid phases is minimized;

Oskar Buechner, Ludwigshafen; Herbert Geierhams, Heidelberg; hof, and Wieland Zacher, Wesseling, all of Germany, assign ors to BASF Aktiengeeellischath, Ledwigelanfen, Germany Continuation of Ser. No. 638,955, Dec. 8, 1975, abandoned, which is a continuation-in-part of Ser. No. 621,522, Oct. 10, 195, 2 abandoned, which is a continuation of Ser. No. 431,580,
Jan. 7,1974 , abandoned. This application Jan. 31, 1977, Ser. No.
Claims priority, application Germany, Jan. 10, 1973, 2301016 U.S. C. 423-245 Int. C. ${ }^{2}$ B01D 53/34
U.S. CI. 423-245 Claim

1. A process for the oxidative removal of ethylene from industrial exhaust air which comprises: passing said industrial exhaust air which contains ethylene in a concentration of not more than 1.8% by volume over a supported palladium catalyst containing from 0.05 to 10 g of palladium per liter of an a temperature of from 130° to $200^{\circ} \mathrm{C}$.
(d) adjusting the flow rate of the lean solution through each stage so that (i) from about 0.1 to about 0.9 , by volume, of
the hydrogen sulfide passing through each stage is absorbed by the lean solution passing through said stage, and (ii) the rich solution loading in each stage is from about 0.1 to about 0.3 mole of acid gas per mole of alkanolamine; and
(e) introducing lean solution from the stripping zone into about the top of each stage, removing rich solution from
about the bottom of each stage and introducing said rich solution into the stripping zone.

4,093,704
METHOD FOR SYNTHESTS OF III-V COMPOUNDS Guy Michel Jacob, Creteil, France, assignor to U.S. Philips Corporation, New York, N.Y.
Continuation of Ser. No. S41,436, Jan. 16, 1975, abandoned. This Cluims priority, application France Jan. $\mathbf{\text { and }}$, 1974
Claims priority, application France, Jan. 16, 1974, 7401402
Int. Cl. ${ }^{2}$ C01B $25 / 00 ;$ C22C 28/00, 30/00 U.S. C. $423-299$

1. A method for the synthesis of a III-V semiconductor compound, wherein the group III element is selected from the group consisting of gallium and indium and the group V ele ment is selected from the group consisting of phosphorus and arsenic, the group V element having a vapor pressure highe of said compound, said method comprising: placing in a firs zone in a reaction vessel the group V element in non-gaseou form, placing in a second zone, in said reaction vessel, adjacen to said first zone, the group III element in liquid form, provid ing a third zone in said reaction vessel adjacent to said second vessel, providing a temperature in said first zone higher tha the evaporation temperature of said group V element, provid ing a temperature in said second zone higher than the liquify ing temperature of said group III element but below the melt ing temperature of said III-V compound, the temperature in said second zone being substantially higher than the temperature in said first zone; providing a temperature in said third
zone sufficiently low to cause condensation of said group v zone sufficiently low to cause condensation of said group V
element in said third zone and sufficiently below the tempera. ture in said first zone to cause a larger quantity of said group V element to be evaporated than is absorbed in said group III element liquid, maintaining said temperatures in said zones until all of said group V element in said first zone has evaporated and then reversing the temperatures in said first and third zones until all of the V element condensed in said third zone
has evaporated.
$4,093,705$
CONTROL OF CARBON BLACK PRODUCTION Gerard Kraus; Carl J. Stacy, and Paul J. Cheng, all of Bartle ville, Okla, assignors to Phillipe Petroleum Company, Bar tlesrille, Okia.
Filed Oct. 1, 1976, Ser. No. 728,825
Int. C. ${ }^{2}$ C01B 31/02:
U.S. C. 423-450 31/02; C09C 1/48; G01N 31/00, 29/02
2. In a method of producing carbon black by introducing a
carbonaceous feed material into a carbon black reactor, heating the feed material to an elevated temperature to decompose
the feed material to produce carbon black particles, and withdrawing from the reactor an effluent stream which contain carbon black particles, the improvement which comprises controlling the structure of the thus produced carbon black particles by:
withdrawing a sample of the reactor efluent from said effuent stream and passing the thus withdrawn sample to a analy
cles:
introducing a beam of light into the analysis zone to impinge on the sample therein;
measuring the intensity of light scattered from the sample in
said analysis zone in two different direction establishing a signal representative directions;
measured intensities; and
introducing an alkali metal into the reactor a rac whis function of the established signal so as to tend to main tain the established signal substantially constant at a predetermined value.

4,093,706

METHOD OF PRODUCTION OF SYNTHETIC FLUORITE HAVING A SELECTED GRAIN SIZE Whadystand Augustyn; Maria Driegielewska, both of Gliwice
and Andrzaj Koasuth, Katowice, all of Poland, aesaignors to
Politechnika Slanka and Instytut Cbemil Nieorganicraej, both
of Gliwice, Poland
Filed Oct. 21, 1976, Ser. No. 734,594
Claims priority, application Poland, Nov. 13, 1975, 184737
U.S. C. 423-490 Int. C..2 P01F 11/22

5, 184737

1. A method for the production of synthetic fluorite having a controlled selected grain size in the range from about $1 \mu \mathrm{~m}$ to 20 mm by reacting 1 mole of calcium carbonate having substantially said selected grain size with an aqueous solution of 2
to 6 moles of a fluoride selected from the group consisting of to 6 moles of a fluoride selected from the group consisting of the range of $50^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. for a period of 1 to 120 hours to produce fluorite grains of said selected grain size which repro duce the size and shape of the grains of the calcium carbonate.

PROCESS FOR PREPARING PEROXIDE GROUP CONTANING ALUMINUM COMPLEX George G. Merkl, 46 Sunset Ct, Hzworth, N.J. 07641 andoned, which is a continnation-in-part of Ser. No. 859,703, Sept. 22, 1969, abandoned, which is a continuation-in-part of Ser. No. 712,888, Feb. 19, 1968, abandoned. This application Nov. 17 Int C. 2 Noif $7 / 102$
U.S. C. 423-626 Int. C1. ${ }^{2}$ C01F 7/02

12 Claims

1. A method of preparing a complex of aluminum, oxygen and hydrogen, which comprises reacting by contacting, at a emperature below 150° F., aluminum metal of a purity of at east 99.98% by weight with an aqueous inorganic halogen actmosphere, said aluminum being partially immersed in said mercury and said aqueous inorganic halogen acid comprising a hin film over said mercury, the thickness of said film being insufficient to coler he ary, mid nol
oxygen gas containing atmosphere, said complex growing from the surface of said aluminum exposed to said oxygen gas containing atmosphere in the form of an easily frangible self12. A supporting sheet; and collecting said complex.
d hy method of preparing a complex of aluminum, oxygen and hydrogen, which comprises stripping aluminum metal of a purity of at least 99.98% by weight of surface oxide film, surface stripped aluminum metal with a source of protons in

the presence of mercury and an oxygen gas containing atmosphere, said aluminum being partially immersed in said mercury and said source of protons comprising a thin film over cover the ary, he thickness of said film being insufficient to portion of said amm not immersed in said mercury, whereby a taining atmosphere, said complex growing from the surface of said aluminum exposed to said oxygen gas containing atmosphere in the form of an easily frangible self-supporting sheet; and collecting said complex

OSMOTIC REL EASING $4,093,708$
OF REIEG DEVICE HAVING A PLURALITY Alejandro Zoffroni; Alen S RIE PATTERNS
Alejandro Zanaroai; Ainn S. Michneles, both of Atherton, and Corporation, Pano Alto, Calif.
Division of Ser. No. 536,006, Dec. 23, 1974, Pat. No. 4,036,227, Which is a continuation-in-part of Ser. No. 354,344, Apr. 25, 1973, abandoned. This application Mar. 9, 1977, Ser. No.
U.S. Cl. 424-15

Int. C. ${ }^{2}$ A61K $9 / 22$

1. A method for administering
2. fluid of the eye comprising,
placing in the eye tear fluid an osmotic drug to the a shaped wall formed of a semipermeable material thit maintains its integrity during the dispensing period, is permeable to the passage of eye fluid and essentially impermeable to the passage of drug;
3. the wall surrounding and forming a compartment containing an ophthalmic drug that exhibits an osmotic 3. a layer formed of a material that bioerodes in the eye tear fluid on at least a part of the exterior surface of the semi-permeable wall;
4. a passageway in the wall, said passageway communicatng with the compartment and the exterior of the device for dispensing drug from the device;
bioeroding the layer in the eye tear fluid at a controlled rate to regulate the amount of eye fluid available to the
wall for imbibition, which fluid is imbibed through the wall for imbibition, which fluid is imbibed through the
wall into the compartment in a tendency towards osmotic equilibrium at a rate determind by the permeability of the wall and the osmotic pressure gradient across the wall continuously dissolving drug; and thereby,
dispensing drug from the device to the eye tear fluid through the passageway at a controlied rate over a pro-
longed period of time.

DRUG DELIVERY DEEICES MANUFACTURED FROM POLY(ORTHOESTERS) AND
POLY(ORTHOCARBONATES)
Nam Sok Choi, Seoull, Sonth Korea, and Jorge Heller, Palo Alto, Calif, asaignors to Alza Corporation, Palo Alto, Calif. Filed Jan. 28, 1975, Ser. No. 544,808
Int U.S. C. $42 \AA^{-19}$
therapeutically effective amount of drug to the animal at a controlled and continuous rate over a prolonged period of
time. time.

RAPID DISSOL YING $4,093,710$ Rer N Soes Ging EFFERVESCENT GRANULES of Nebr., assignors to Sandoz, Inc., E. Hanover, N.J. Filed Jul. 7, 1976, Ser. No. Na3.255
Int. C. ${ }^{\text {A A6LL }} 9 / 04$

1. A drug delivery device for the controlled and continuous dministration of drug, wherein the device comprises: (a) a nhimal and formed of a bioerodible drug release rate control ling pharmaceutically acceptable material, which material comprises a polymer of the formula:

wherein R_{1} is a member selected from the group of divalent, rivalent and tetravalent radicals consisting of alkylene of 1 to
10 carbons; alkenylene of 2 to 10 carbons; alkyleneoxy of 2 to 10 carbons; alkenylene of 2 to 10 carbons; alkyleneoxy of 2 to to 7 carbons substituted with an alkyl of 1 to 7 carbons, alkoxy of 1 to 7 carbons, an alkylene of 1 to 10 carbons, and an alkenyl
of 2 to 7 carbons; cycloalkenylene of 4 to 7 carbons; cycloalkeof 2 to 7 carbons; cycloalkenylene of 4 to 7 carbons; cycloalke-
nylene of 4 to 7 carbons substituted with an alkyl of 1 to 7 nyiene of 4 to calkoxy 1 to 7 carbons, an alkylene of 1 to 10
carbons, an alko carbons, and an alkenyl of 2 to 7 carbons; arylene; and arylene substituted with an alkyl of 1 to 7 carbons, an alkoxy of 1 to 7
carbons, and an alkenyl of 2 to 7 carbons; R, and R, are selected carbons, and an alkenyl of 2 to 7 carbons; R_{2} and R_{3} are selected
from the group consisting of alkyl of 1 to 7 carbons; alkenyl of from the group consisting of alkyl of to carbons; alkenyl of
2 to 7 carbons; alkoxy of 1 to 7 carbons; alkenyloxy of 2 to 7
carbons; alkylene of 2 to 6 carbons; alkenylene of 3 to 6 carcarbons; alkylene of 2 to 6 carbons; alkenylene of 3 to 6 car--
bons; alkyleneoxy of 2 to 6 carbons; alkenyleneoxy of 3 to 6 ons; alkyleneoxy of 2 to 6 carbons; alkenyleneoxy of 3 to
carbons; aryloxy; aralkyleneoxy of 8 to 12 carbons; aralkeny carbons; aryloxy; aralkyleneoxy of 8 to 12 carbons; aralkeny-
leneoxy of 8 to 12 carbons; oxa; OR, O with R_{1} as defined above; a beterocyclic ring of 5 to 8 carbon and oxygen atoms formed when R_{2} and R_{3} are taken together; a heterocycycic ring
of 5 to 8 carbon and oxygen atoms substituted with an alky of 5 to 8 carbon and oxygen atoms substituted with an alkyl of
to 7 carbons, an alkoxy of 1 to 7 carbons and an alkenyl of 2 to 7 carbons formed when R_{2} and R_{3} are taken together; a fused polycyclic ring of 8 to 12 carbon and oxygen atoms formed when R_{2} and R_{3} are taken together; a fused polycyclic ring of to 7 carbons, an alkoxy of 1 to 7 carbons and an alkenyl of 2 to 7 carbons; and wherein at least one of said R_{2} and R_{3} is a member selected from the group consisting of alkoxy, alkenyloxy and $\mathrm{OR}, \mathrm{O} ; \mathrm{R}_{2}$ and R_{3} when taken together are a member se-
lected from the group of heterocyclic and fused polycyclic lected from the group of heterocyclic and fused polycyclic
rings having at least one oxygen atom in the ring; and wherein n is greater than 10 ; (b) a drug selected from the group consisting of locally and systemically acting pharmaceutically acceptable drugs present in the matrix; and, (c) wherein the device when in operation bioerodes at a controlled and continuous
U.S. C. 424-44
2. A method of preparing stable, free flowing, rapid dissolving, palatable effervescent granules having essentially the

which comprises:
(a) grinding the active ingredients, alkali metal carbonate and sweetener to a mesh size of less than 80 ;
(b) mixing the active ingredient, alkali metal carbonate, and sweetener in a mixer to form a uniform mixture and granulating the mixture with a 1 percent to 25 percent by weight solution of the surfactant in water to form fine granules having a mesh size between \#10 and \#80;
(c) drying the granules at a temperature between $65^{\circ} \mathrm{F}$. and
$200^{\circ} \mathrm{F}$. to a moisture level of less than 0.5 percent: (d) sizing the granulation by grinding and screening to tain particles having a particle size of less than 20 mesh; (e) sizing the organic acid to obtain particles having a particle size of less than 20 mesh;

解
(g) blending the granulation of Step (d) with the acid and flavors of Steps (e) and (f) to obtain a uniform granule mixture.

4,093,711
 ORAL HYGIENE

Ren Rodney Blackburne, Baltimore, and Warren B. Shapiro Randallstown,
Baltimore, Md.

Filed Aug. 13, 1976, Ser. No. 714,149
Int. Cl.
S. Cl. 424-54

35 Claims 1. A method for retarding pellicle and plaque formation which comprises intermittently contacting sites of plaque for sufficient to retard pellicle and plaque formation of at least one compound of the formula:

wherein R is a monovalent or divalent hydrocarbyl group dentaining at least 13 carbon atoms, n is one when R is mono valent and is 2 when R is divalent; R_{1} is H or an alkyl group containing from 1 to about 3 carbon atoms; \mathbf{A} is a divalen hydrocarbon bridge containing from 1 to about 6 carbo
from 1 to about 5 carbon atoms; or both R_{2} groups are interco nected to form a heterocyclic ring with the \mathbf{N} atom to whic wherein said heterocyclic ring is selected from the group consisting of morpholinyl, piperidinyl, pyrrolidinyl, and piper azinyl.
30. A dental preparation retarding pellicle and plaque forma tion which comprises an amount sufficient to retard pellicle
and plaque formation of at least one compound of the formula:
wherein R is a monovalent or divalent hydrocarbon group
containing at least 13 carbon atoms, n is one when R is mono valent and is 2 when R is divalent, R , is H or an alkyl group hydrocarbon bridge containing from 1 to about 6 carbon atoms, each R_{2} individually is an alkyl group containing from to about 5 carbon atoms, or both R_{2} groups are interco nected to form a heterocyclic ring with the \mathbf{N} atom to whic hey are attached and contain 5 to 6 members in the ring, and eeing selected from the group consisting of morpholinyl, bout 50% by weight of an abrasive polishing agent, from about 0.5 to about 5% by weight of a sudsing agent; from about 0.1 to about 15% by weight of a thickening agent; and water.

4,093,712

\mathbf{N}^{2}-ARYLSULFONYLL $4,093,712$ INAMIDES AND THE PHARMACEUTICALLY ACCEPTABLE SALTS THEREOF Shosuke Okamoto, 15-1i, Asahignoka 3-chome, Tarumi-ku, Kobe-shi, Hyogo, Japan; Akiko Hijikata, Kobe, Japan; Ryy Kamoto, Machide, Japan; Yosaikuno Tamno, Yoks Yoko ame, Jepen, and Shinji Tonomura Tokyo, Japan, assignor to Mitsubishi Chemical Industries Limited, Tokyo and Shosuke Okamoto, both of, Japan
Continuation-in-part of Ser. No. 638,985, Dec. 9, 1975, Pat. No $4,055,636$ Ser. No. 446522 Jan. 5, 1976, Pat, No. 4,018,915, Ser. No. 649,219, Jan. 14, 1976, Pat. No. 4,018,913, Ser. No 656,014, Feb. 6, 1976, Pat. No. 4,041,156, Ser. No. 656,870, Feb. 10, 1976, Pat. No. 4,046,876, Ser. No. 669,743, Mar. 24, 1976, Ser. No. 671,436, Mar. 29,1976 , and Ser. No. 703,704, Jul. 8, 1976, said Ser. No. 671,436, is a continuation-in-part of Ser. No 1977, Ser. No. 760,672
Claims priority, application Japan, Nov. 8, 1974, 49-128774; Nov. 8, 1974, 49-128775; Nov. 29, 1974, 49-136695; Nov. 29 1974, 49-136697; Feb. 25, 1975, 50-023268; Feb. 26, 1975, Mar. 11, 1975, 50-029358
The portion of the term of this patent subsequent to Oct. 25, 1994, has been discclaimed
Int. C. ${ }^{2}$ A61K 37/00; ©07C 103/52
U.S. C. 424-177 3 Claims (I):
wherein R_{1} is $C_{2}-C_{10}$ alkyl, $C_{3}-C_{10}$ alkenyl, $C_{3}-C_{10}$ alkynyl, ${ }_{2}-\mathrm{C}_{10}$ alkoxyalkyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkylthioalkyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkylsulfinyalkoxycarbonylalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ haloalkyl, $\mathrm{C}_{7}-\mathrm{C}_{15}$ aralkyl, $\mathrm{C}_{1}-\mathrm{C}_{1}$ alkoxycarbonylalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ haloalkyl, $\mathrm{C}_{7}-\mathrm{C}_{15}$ aralkyl, $\mathrm{C}_{8}-\mathrm{C}_{15}$ and
a-carboxyaralkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl or $\mathrm{C}_{4}-\mathrm{C}_{10}$ cycloalkylal kyl; R_{2} is hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl, $\mathrm{C}_{6}-\mathrm{C}_{10}$ aryl) $\mathrm{C}_{7}-\mathrm{C}_{12}$ aralkyl or 5 -indanyl; and n is an integer of 1,2 or 3 ; or
R_{3} is hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ alkenyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ alkynyl, $C_{2}-\mathrm{C}_{10}$ alkoxyalkyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkyltioalkyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkylsul $\mathrm{C}_{3}-\mathrm{C}_{10}$ alkoxycarbonylalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ haloalkyl, $\mathrm{C}_{7}-\mathrm{C}_{1}$ aralkyl, $\mathrm{C}_{8}-\mathrm{C}_{15}$ a-carboxyaralkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl o $\mathrm{C}_{4}-\mathrm{C}_{10}$ cycloalkyloalkyl; R_{4} is $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, carboxy $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkoxycarbonyl, phenyl, $\mathrm{C}_{7}-\mathrm{C}_{12}$ aralkyl or ring $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy; R_{5} is hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl, $\mathrm{C}_{6}-\mathrm{C}_{10}$ aryl $\mathrm{C}_{7}-\mathrm{C}_{12}$ aralkyl or 5 -indanyl; and m is an integer of 0,1 or

Ar is a phenyl or naphthyl group, either substituted with a least one substituent selected from the group consisting of sulfoamino, carbamoyl, $\mathrm{C}_{3}-\mathrm{C}_{10} \mathrm{~N}$, N-diak kylcarbamoy amino, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkylamino, mercapto, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkylthio $\mathrm{C}_{7}-\mathrm{C}_{12}$ aralkyl, carboxy, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkoxycarbonyl, $\mathrm{C}_{2}-\mathrm{C}_{1}$ carboxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ acylamino, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkyicarbony
$\mathrm{C}_{1}-\mathrm{C}_{10}$ hydroxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ hatoalkyl and phenyl option $\mathrm{C}_{1}-\mathrm{C}_{10}$ hydroxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ haloalkyl and phenyl option-
ally substituted with at least one hydroxy, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy, or mixtures thereof,
phenyl or naphthyl group, eitber substituted with at least one substituent selected from the group consisting amino, $C_{1}-C_{10}$ alkylamino, mercapto, $C_{1}-C_{10}$ alkylthio $\mathrm{C}_{T} \mathrm{C}_{12}$ aralkyl, carboxy, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkoxycarbonyl, $\mathrm{C}_{2}-\mathrm{C}_{1}$ carboxyalkyl, $C_{1}-C_{10}$ acylamino, $C_{2}-C_{10}$ alkylcarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ hydroxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ haloalkyl and phenyl option or mixtures thereof,
and at least one substituent selected from the group consist ing of halo, nitro, cyano, hydroxy, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$
alkoxy and $\mathrm{C}_{2}-\mathrm{C}_{20}$ dialkylamino; $\mathrm{C}_{1} \mathrm{C}_{10}$ aly, $\mathrm{C}_{1}-\mathrm{C}_{1}$ least one substituent selected from the group consisting af least one substituent selected from the group consisting of $\mathrm{C}_{2}-\mathrm{C}_{20}$ dialkylamino, sulfoamino, carbamoyl, $\mathrm{C}_{3}-\mathrm{C}_{10} \mathrm{~N}, \mathrm{~N}$ dialkylcarbamoyl), amino, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkylamino, mercapto $\mathrm{C}_{1}-\mathrm{C}_{10}$ alk kylthio, $\mathrm{C}_{-} \mathrm{C}_{12}$ aralkyl, carboxyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkoxy carbonyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$ carboxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ acylamino, $\mathrm{C}_{2}-\mathrm{C}_{1}$ alkylcarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ bydroxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ haloalkyl, droxy, $C_{1}-C_{5}$ alkoxy, or mixtures thereof,
$\mathrm{C}_{1}-\mathrm{C}_{12}$ aralkyl, tetrahydronaphthyl, 1,2 -ethylenedioxyphenyl, chromanyl, 2,3-ethylenedioxynaphthyl or xantheny group, any substituted with at least one substituent se lected from the group consisting of halo, nitro, cyano,
 bamoyl, amino, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkylamino, mercapto, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkylthio, $\mathrm{C}_{7} \mathrm{C}_{12}$ aralkyl, carboxyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkoxycar bonyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$ carboxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ acytamino, $\mathrm{C}_{2}-\mathrm{C}_{1}$

[^5]

\qquad
 alkylcarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ hydroxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ haloalkyl,

4,093,718

oxo and phenyl optionally substituted with at least one oxo and phenyl optionally substituted with
hydroxy, $C_{1}-C_{\text {s }}$ alkoxy, or mixtures thereof;
a naphthoquinonyl, anthryl, phenanthryl, pentalenyl, heptalenyl, azulenyll, biphenylenyl, as-indacenyl, S-indacenyl, acenaphthylenyl, phenylcarbonylphenyl, phenoxyphenyl,
benzofuranyl, isobenzofuranyl, benzo [b] thienyl, isoben benzofuranyl, isobenzofuranyl, benzo [b] thienyl, isoben-
zothienyl, thianthrenyl, dibenzothienyl phenoxathinyl zothienyl, thianthrenyl, dibenzothienyl, phenoxathinyl, indolyl, 1 H -indazolyl, quinolyl, isoquinolyl, phthalaziny carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenox azinyl or benzimidazolyl group any of which is unsubstituted or substituted with one or more groups selected from the group consisting of halo, nitro, cyano, hydroxy $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{20}$ dialkylamino, sulfoamino, carbamoyl, C_{3} - $\mathrm{C}_{10} \mathrm{~N}, \mathrm{~N}$-dialkylcarbamoyl, amino, $C_{1}-C_{10}$ alkylamino, mercapto, $C_{1}-C_{10}$ alkylthio,
$C_{7}-C_{12}$ aralkyl, carboxyl $C_{2}-C_{10}$ alkoxycarbonyl, $C_{2}-C_{10}$ $\mathrm{C}_{1}-\mathrm{C}_{12}$ aralkyl, carboxyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkoxycarbonyl, $\mathrm{C}_{2}-\mathrm{C}_{10}$
carboxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ acylamino, $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkylcarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ hydroxyalkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ haloalkyl and phenyl optionally substituted with at least one hydroxy, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy, or mixtures thereof;
9, 10-dihydroanthryl, $5,6,7,8$-tetrahydroanthryl, 9,10 -dihydrophenanthryl, $\quad 1,2,3,4,5,6,7,8$-octahydrophenanthryl. indenyl, indanyl, fluorenyl, acenaphthenyl, phenylthiophenyl, isochromanyl, 2,3-dihydrobenzofuranyl, 1,3ophenyl, isochromanyl, 2,3 -dihydrobenzofuranyl, $1,3-$
dihydroisobenzofuranyl, thioxanthenyl, 2 H -chromenyl, 3,4 -dehydro- 1 -isochromanyl, 4 H -chromenyl, indolinyl, isoindolinyl, $1,2,3,4$-tetrahydroquinolyl or $1,2,3,4$-tetrahydroisoquinolyl group any of which is unsubstituted or
substituted with one or more groups selected from the substituted with one or more groups selected from the alkyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{20}$ dialkylamino, sulfoamino, carbamoyl, $\mathrm{C}_{3}-\mathrm{C}_{10} \mathrm{~N}, \mathrm{~N}$-dialkylcarbamoyl, amino, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkylamino, mercapto, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkylthio, $\mathrm{C}_{7}-\mathrm{C}_{12}$ aralkyl carboxyl, $\mathbf{C}_{2}-\mathrm{C}_{10}$ alkoxycarbonyl, $\mathbf{C}_{2}-\mathrm{C}_{10}$ carboxyalkyl, $\underset{C_{1}-C_{10} \text { acylamino, } \mathrm{C}_{2}-\mathrm{C}_{10} \text { alkylcarbonyl, } \mathrm{C}_{1}-\mathrm{C}_{10} \text { hydroxy- }}{\text { alkyl, } \mathrm{C}_{1}-\mathrm{C}_{10} \text { haloalkyl, oxo and phenyl optionally substi- }}$ tuted with at least one hydroxy, $C_{1}-C_{5}$ alkoxy, or mixtures thereof; or benzene ring-substituted

9 β-D-ARABINOFURANOSYLPURINE NUCLEOTIDES Richard L. Tolman, Berkley Heights. N.J.; Robert W. Sidwell Irvine, and Ganapathi R. Revinkar, Santa Ana, both of Calif assignors to ICN Pharmaceuticals, Inc., Irvine, Calif. Continuation-in-part of Ser. No. 342,617, Mar. 19, 1975,
abandoned. This spplication Mar. 15, 1974, Ser. No. 451,639 abandoned. This application Mar. 15, 1974, Ser. No. 451,63 U.S. Cl. 424-180 14 Clain 12. An antiviral composition for the treatment of DN virus-caused infections containing as its active ingredient an
effective amount of a compound chosen from the group $9-\beta$-D. arabinofuranosylhypoxanthine $5^{\prime}-\mathrm{O}-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl pho phate, $9-\beta$-D-arabinofuranosylhypoxanthine 3^{\prime}-phosphate, and $9-\beta$-D-arabinofuranosylhypoxanthine $3^{\prime}, 5^{\prime}$-cyclic phosphate in a pharmaceutical carrier

4,093,715
5-IODO-5'-AMINO-2' ${ }^{\prime} 5^{\prime}$-DIDEOXYCYTIDINE AND THE PHARMACEUTICALLY ACCEPTABLE SALTS THEREO Tai-Shun Lin, North Haven; H. William Prusoff, Branford, and David C. Ward, Guilford, all of Conn., assignors to Research Corporation, New York, N.Y.

Filed Apr. 28, 1977, Ser. No. 792,011
Int.
Il. ${ }^{2}$ A61K 31/70; C07H $19 / 06$
U.S. C. $\mathbf{~ 5}$. $42-180$
pharmaceuti

7 Claims
5. A pharmaceutical composition containing an effective . Ant of a compound for treating herpes simplex virus infection in mammals, said compound being selected from the group
consisting of 5 -iodo- 5^{\prime}-amino- $2^{\prime}, 5^{\prime}$-dideoxycytidine and the pharmaceutically acceptable acid addition salts thereof together with a pharmaceutically acceptable carrier.

4,093,716
COMPOSITIONS CONTAINING

wherein R_{6} is hydrogen, $C_{1}-C_{10}$ alkyl or $C_{1}-C_{10}$ alkoxy and said substituent is at least one $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}$ alkoxy or mixtures thereof.

4,093,713
dipeptide derivatives with central nervous SYSTEM ACTIVITY AND PREPARATION THEREOF
Kazimir Sestany, Pointe Cliare; Hens Ueli Immer, Mount Royal,
and Manfred Karl Gotz, Hudson, all of Canada, assignors to

Ayerst McKenna \& Harrison Ltd., Montreal, Canadn
Filed Feb. 28, 1977, Ser. No. 772,389 Int. C. ${ }^{2}$ A61K $37 / 00$
U.S. Cl. $424-177$

1. A compound of formula I
$\mathrm{H}-\mathrm{L}-\mathrm{Pro}-\mathrm{N}\left(\mathbf{R}^{1}\right) \mathrm{CH}\left(\mathbf{R}^{2}\right) \mathrm{CO}-\mathrm{NHR}^{3}$

ANTIMICROBIAL COMPOSITIONS
18 Claims Charles D. Hufford, Oxford, Miss,, assignor to University of Mississippi, University, Miss.
(I) Filed Jul. 16, 1975, Ser, No. 596,282
U.S. C. 424-195 Claims 1. An antimicrobial composition comprising a compound or
mixture of compounds derived from an alcoholic extract of the herapeutically acceptable acid addition salt thereof. 16. A pharmaceutical composition in unit dosage form for heartwood of Liriodendron tulipifera L. selected from the treating Parkinson's disease comprising a combination of a group consisting of liriodenine, liriodenine methiodide, dehycompound of formul the ceid addition salt theref, together with a therapeutic dose admixture with a non-toxic pharmaceutically acceptable carof levodopa and a pharmaceutically acceptable carrier. rier in a therapeutically effective concentration.

Fi, University, Miss.

5-AMINO-5-DEOXYTHYMIDINE AND Prai-Shun Lin, North Haven; H. William Prusoff, Branford, and Dai-Shun Lin, North Haven; H. Wilianm Prusin, Branford, and Corporation, New York, N.Y.

Filed Apr. 28, 1977, Ser. No. 792,047
Int. Cl. ${ }^{\text {A61K }}$ 31/70; C07H 19/06
U.S. Cl. $424-180$

1. A pharmaceutical composition containing an effective amount of a compound for treating herpes simplex virus infection in mammals, said compound being selected from the group consisting of $5{ }^{\prime}$-amino- 5^{\prime}-deoxythymidine and the pharmaceutically aceeptally acceptable carrier pharmaceutically acceptable carrier.

093,717

O,O-DIALKYL-S-HALO-PYRIMIDIN(2) YL-THIONOPHOSPHORIC ACID ESTERS Fritz Maurer; Hans-Jochem Riebel, both of Wuppertal; Ingeborg Hammann, Cologne; Wolfgang Behrenz, Overathteinenbruck, Germany

Flied Feb. 6, 1976, Ser. No. 656,041
Claims priority, application Germany, Feb. 22, 1975, 2507702 The portion of the term of this patent subsequent to Mar. 29, 1994, has been dieclnimed.
Int. C. ${ }^{2}$ A01N $9 / 36 ;$ C07F $9 / 56$
U.S. Cl. 424-200

1. An O, O-dialkyl-5-halo-pyrimidin(2)yl-thionophosphoria acid ester of the formula

wherein A is hydrogen and B is alkyl of 1 to 4 carbon atoms the α - or β-position or A and B form a methylene group in the $6 a, 7 \alpha$ - or $6 \beta, 7 \beta$-position and X and Y form a group of the formula

\underbrace{N}_{N}

or X is OH and Y is
R is methyl or ethyl and
6. An insecticidal or acaricidal composition containing as
R active ingrecient an insecticidally or acaricidally effective amount of a compound according to claim 1 in admixture with a diluent.
7. A method of combatting insects or acarids which com prises applying to the insects or acarids or to a habitat thereo an insecticidally or acaricidally effective amount of a compound according to claim 1

4,093,719
ANTIARTHRITIC COMPOSITIONS COMPRISING BIS[(TRIALKYL-PHOSPHINE)GOLD(I)]SULFIDES AND METHODS OF PRODUCING ANTIARTHRITIC
David Taylor Hill, North Walviry Pa, assignor to SmithKline
Filed Feb. 16, 1977, Ser. No. 769,245
U.S. Cl. $424-215$

Int. C1. ${ }^{2}$ A61K $31 / 66$ gold(I) $)$ sulfide of the formula:

$\left(\mathrm{R}_{3} \mathrm{P} \rightarrow \mathrm{Au}\right)_{2} \mathrm{~S}$

in which:
R is lower alkyl being straight or branched chain of from one to four carbons.

4,093,720
NOVEL-17-SPIROSULTINES THEIR CORRESPONDING HYDROXY ACIDS AND COMPOSITIONS THEREOF Generiere Rousseau, Paris, and Vesperto Torelli, MaisonsAlfort, both of France, assignors to Roussel Uclaf, Paris,
\qquad
Filed Mar. 14, 1977, Ser. No. 776,942 Claims priority, application France, Mar. 16, 1976,
U.S. C. $424-241$

1. A compound selected from the 15 Claims 1. A coltines and thelected from the group consisting of 17 . spirmula

$$
-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{~S}}-\mathrm{OM}
$$

and M is selected from the group consisting of hydrogen, 14. H_{4} and an alkali metal cation. ciencies in warm-blooded animals comprising administering to least one compound of claim 1.

$$
\begin{aligned}
& \text { U.S. Cl. } 424 \text { Claims } \\
& \text { 1. A pharmaceutical composition having antiarthritic activ- } \\
& \text { itv, in dosaze unit form, comprising a pharmaceutical carrier }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ity, in dosage unit form, comprising a pharmacuticul carrie } \\
& \text { and an effective, nontoxic amount of a bis(trialkylphosphine) }
\end{aligned}
$$

 ormula
14. A method of relieving hypertension and cardiac insuffively effective amount of a

PHARMACEUTICAL CO
PHARMACEUTICAL COMPOSITIONS OF LATES AND DERIVATIVES THEREOF Gordon H. Phillippe, Wembley, and Brian M. Bein, Chalfont S Peter, both of England, assignors to Glaxo Laboratorient St . ited, Greenford, England Continuation of Ser. No. 609,043, Aug. 29, 1975, aband
This application Jan. 6, 1977, Ser. No. 757,325 Claims priority, application United Kingdom, Aug, 30, 1974, 38090/74

Int. C1. ${ }^{2}$ A61K 31/56

1. Compounds of the general formula
wherein X represents a hydrogen or fluorine atom, R^{\prime} repre sents a methyl, ethyl, n-propyl or iso-propyl group, $\mathbf{R}^{\prime \prime}$ repre sents a methyl, chloromethyl, fluoromethyl, bromomethyl or 2- fluoroethyl group and represents a single or double bond. dient, at least one compound of claim 1 together with at leas one pharmaceutical carner or excipient.

SULFONYLIMIDAZOLIDONE SUBSTITUTED CEPHALOSPORINS, ANTIBACTERIAL COMPOSITIONS CONTAINING THEM, AND METHODS OF COMIfried Schrïck; Hant-Bodo Konig? Michael Preiss; Karl Georg Metzuyt, All of Wuppertal, and Michael Walkowiak, Coloone, of of Germany, asy
schaft, Leerkusei, Gersany
Division of Ser. No. 590,74, Jun. 27, 1975, which is a Division of Ser. No. 590,794, Jun. 27, 1975, which is a
continuation-in-part of Ser. No. 548,347 , Feb. 10, 1975, continumtion-in-part of Ser. No. 548,347 , Feb. 10, 1975, Claims priority, application Germany, Feb. 18, 1974, 2407715
 16 Claims

1. A compound selected from the group consisting of cephalosporin derivative of the formula

the nontoxic salts thereof and the hydrates thereof wherein the carbon atom designated*constitutes a center of chirality; \mathbf{E} is hydrogen; hydroxy; or acetoxy;
B is phenyl; methylphenyl; chlorophenyl; hydroxyphenyl or
cyclohene 1,4-dien-1-yl; and
R_{1} is thienyl; furyl; piperidyl; pyrrolidyl; amino; alkylamino othyl; or phenyl or naphthyl substituted by one to five substituents selected from the group consisting of halo, cyano, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms
$\mathrm{NC}-\mathrm{CH}_{2}$.
2. A pharmaceutical composition useful for treating bacte rial infections in humans and animals which comprises a antibacterially effective amount of a compound of claim 1 combination with a pharmaceutically acceptable nontoxic, inert diluent or carrie.
animals which comprises administering to such human animal an antibacteriahly effective amount of a compound of claim 1.

W is hydrogen or methoxy
each individual \mathbf{R}^{\prime} is hydrogen or lower alkyl;
n is one to ten;
R^{2} is hydroxy
R^{2} is hydroxy, amino, lower alkylamino or di(lower)alKylamino; and
tetrazolyl, cyano, sydnone or aminomethylphenyl,
16. 16. An antibacterial pharmaceutical composition comprising
compound as claimed in claim 1 and a pharmaceutically acceptable carrier therefor

wherein X is in the 6,7 or 8 -position and is selected from the group consisting of hydrogen, halogen, $-\mathrm{CF}_{3}$ and alkyl and alkoxy of 1 to 8 carbon atoms, n is $2,3,4$ or $5, Y$ is in the 2,3 or
4 position and is selected from the group consisting of hydrogen, halogen, -CF F_{3} and alkyl and alkoxy of 1 to 8 carbon atoms and their non-toxic, pharmaceutically acceptable acid addition salts. 11. An analgesic composition comprising an analgesically effective amount of at least one compound of claim 1 and an nert pharmaceutical carrier.

(3-ALKYLAMINO-2-HYDROXYPROPOXY)-1-

 HYDRAZINOPHTHALAZINES Anthony Maitland Roe, Hatfield; Robert Anthony Slater, Letchworth, and Edwin Michael Taylor, Welmyn, all of England, assignors to Smith Kline \& French Laboratories Limited, Welwyn Garden City, EnglandClaims priority, application United Kingdom, Feb. 9, 1976, 04896/76 Int. Cl. ${ }^{2}$ A61K 31/50; C07D 237/34

12 Claims 1. A compound of the formula:

wherein \mathbf{R}^{\prime} is hydrogen, lower alkyl, halogen, lower alkoxy or di lower alkylamino; R^{2} is hydrogen, methyl, halogen, benzyl,
chlorobenzyl or methoxybenzyl; and X is a group of the formula

$\underset{-\mathrm{OCH}_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{NHR}^{3}}{\mathrm{OH}}$

wherein \mathbf{R}^{3} is isopropyl, t-butyl or phenylethyl; or a pharmaceutically acceptable acid addition salt thereof 8. A pharmaceutical composition having β-adrenergic blocking and vasodilator activity comprising in an effective
amount to produce β-adrenergic blocking and vasodilator activity a compound of claim 1 in combination with a pharmaceutically acceptable diluent or carrier.

ALPHA-HYDROXYIMINO-ALKYLQUINOLINIUM SALTS HAVING FUNGICIDE ACTION Luigi Abbruzzese, Milan; Franco Gozzo, S. Donsto Milanese (Milan); Glorgio Rossi, Milan; Marcella Masoero, Milan;
Simane Lorusoo S. Giuliano Milanese (Milan); Paola Bonola, Simone Lorusso, S. Giuliano Milanese (Milan); Paila Bonoia,
Milan, and Gino Tamburin, S. Donsto Milanese (Milan), all of Italy, assignors to Montedison S.p.A., Milen, Italy Filed Apr. 15, 1976, Ser. No. 677,247,
Claims priority, application Italy, Apr. 15, 1975, 22346 A/75 Claims priority, application Italy, Apr. 15, 1975, 22346 A/75
It. Cl.2 CO7D $215 / 10$; A61K $31 / 47$ U.S. C1. 424-258

1. Alpha-hydroxyimino-akylquinolinium salts of the formula

N-(2-BENZIMIDAZOLYL)-PIPERAZINES Martin Winn, Deerfield, and Jarooslav Kyacl, Lake Bluff, both of III., assignors to Abbott Laboratories, North CuI
Filed Dec. 2, 1976, Ser. No. 746,657 Filed D.ec. 207D 401/04; A61K 31/495
.S. A 12 orme the formula:

wherein
n is 2 ;
R is selected from the group consisting of hydrogen or methyl;
R^{\prime} is $C_{1}-\mathrm{C}_{6}$ alkyl, 4 -methyl valeroyl, phenyl, dimethoxyphenyl, CF_{j}-phenyl, tetrahydrofuroyl, Furoyl,

$$
-\mathrm{O}_{-\mathrm{C}-\mathrm{N}^{\mathrm{N}} \mathrm{CH}_{3} \mathrm{CH}_{3}}
$$

or $\mathrm{C}_{2}-\mathrm{C}_{4}$ alkoxy carbonyl and
$\mathrm{R}^{\prime \prime}$ is selected from the group consisting of hydrogen or methoxy.
6. An antihypertensive pharmaceutical composition comprising a compound selected from the group consisting of 1-(5,6-Dimethoxy-2-benzimidazoly1)-4-(2-furoyl)
4-(5,6-Dimethoxy-2-benzimidazolyl)
piperazine-1-carboxylic ethyl ester, $1-(5,6$-Dimethoxy-1-methyl-2-benzimidazolyl) -4 (2-furoyl) piperazine, 1 -(5,6 -Dimethoxy- 2 -benzimidazolyl)-4 (tetrahydro-2-furoyl) piperazine,
(ts 5,6 -Dimethoxy-2-benzimidazolyl) piperazine-1-carboxylic acid isobutyl ester, N,NDimethyl 4 (5,6 -dimethoxy-2-benzimidazolyl) piperazine-1carboxamide, 1 -($(, 6$-Dimethoxy-2-benzimidazolyl)-4(3,4-dime-thoxy-phenyl) piperazine, \mathbf{N} (4 -methyl valeroyl) piperazine,
1 -(56 -Dimethoxy-2-benzimidazolyl)-4(4-methylvaleroyl) perazine, $\quad 1$-(5,6 -Dimethoxy-2-benzimidazolyl) $-4(3$ - 3 riperazine,
fluoromethyl phenyl) piperazine, 1 -methyl 4 (2 -benzimidazolyl) fluoromethyl
piperazine and pharmaceutically acceptable acid addition salts piperazine and pharmaceutically acceptable carrier.
thereof and a pharmace

Wherein:
${ }^{1}$ is H or alkyl containing 1 to 5 carbon atoms R^{2} is CN ;

13 Claims
in which R^{3} is alkyl containing 1 to 5 carbon atoms
selected from the group consisting of Cl, Br and I .
selected from the group consisting of Cl, Br and I . 13. The method of combatting or preventing fungine infections of plants by Botrytis cinerea, Sphaerotheca fuliginea and Fusicladium dendriticum, which comprises applying to the
plants to be protected powders, suspensions or solutions of the compounds of claim $\mathbf{1}$, in an amount of at least 15 micrograms per sq. cm of foliar surface.

wherein X is hydrogen, halogen, lower alkyl, lower alkoxy, trifuoromethyl or nitro; Y is hydrogen, halogen, lower alkyl,
lower alkoxy, trifluoromethyl or nitro; and R is hydrogen, wer alkyl or trifluoromethyl.
8. A pharmaceutical composition for treating inflammatory conditions in mammals or treating or preventing helminthiasis
in mammals comprising a compound of claim 1 in an amount
effective for such purposes and a physiologically acceptable carrier therefor.

NOXY 4ND $4,093,72$

N-OXY AND N-AMINO GUANIDINES

Graham John Durant, Charon Robin Ganellin, and Geoffrey wher in
Robert Owen, all of Welwyn Garden Clty, England, aesigmoris to Smilth Kline \& French Laboratories Limited, Welwyn Garden City, England
ivision of Ser. No. 585,898, Jun. 11, 1975, Pat. No. 4,034,101 This application Apr. 11, 1977, Ser. No. 786,729 1074 Climms priority, application United Kingdom, Jun. 28, 1974, Int. Cl. ${ }^{2}$ CO7D 277/22; A61K 31/42S U.S. C. $421-270$

1. A compound of the formula:

FORMULA I

wherein R
formula:
Het - $\left(\mathrm{CH}_{2}\right)_{m} \mathbf{Z}\left(\mathrm{CH}_{2}\right)_{n}$
ORMULA II
wherein Het is thiazole, isothiazole, oxazole or isoxazole, which is optionally substituted by lower alkyl, chlorine or bromine; Z is sulphur or a methylene group; m is 0,1 or 2 and
n is 2 or 3 provided that the sum of m and n is 3 or $4 ; \mathbf{R}_{2}$ is n is 2 or 3 provided that the sum of m and n is 3 or $4 ; R_{2}$ is
hydrogen, lower alkyl or a grouping of the structure hydrogen, lower alkyl or a grouping of the structure shown in Formula II wherein Het, m, n and Z are as defined above; X is
oxygen or when R_{2} is a grouping of the structure shown in Formula II, X may be $N H$; and R_{3} is hydrogen, lower alkyl. phenyl or benzyl, or a pharmaceutically acceptable acid addition salt thereof.
9. A pharmaceutical composition to block histamine H_{2} receptors comprising a pharmaceutically acceptable diluent or carrier and, in an effective amount to block histamine H_{2}
receptors, a compound of claim 1.
10. A method of blocking histamine H_{2}-receptors which comprises administering to an animal in need of blocking of histamine H_{2}-receptors in an effective amount to block histamine H_{2}-receptors a compound of claim 1 .
comprises administering to an animal in need thereof in an effective amount to inhibit gastric acid secretion a compound of claim 1 .

4,093,730

METHODS OF USING SPERMICIDAL VAGINAL COMPOSITIONS COMPRISING 1,2-BENZISOTHIAZOLE DERIVATIVES
Adriano Butti, Como, and Giovanni Gazzani, Appiano Gentile, both of Italy, assignors to Prephar Prospection de Recherches Pharmacentiques S.A., Vordergesse, Switzerland
Filed Jun. 28, 1976, Ser No. 700,115 Claims priority, application Itray, Jul. 3, 1975, 25051 A/75

U.S. CI. 424-270

1. A method of contraception, comprising;
dministering to a disease free human vagina
prior to coitus a spermatocidally effective amount of
1,2-benzisothiazole derivative having the general formula
\mathbf{X} is either \mathbf{O} or \mathbf{S}
y is $\mathrm{H}, \mathrm{NO}_{2}$, a halogen atom or an alkyl radical having 1-4 carbon atoms; and
R is H ; a straight or branched alkyl or alkenyl radical having from 1-6 carbon atoms, optionally substituted by one or more hydroxyl or tertiary amino groups; a cycloaliphatic
radical having from 3 to 8 carbon atoms; a phenyl radical optionally substituted by halogen atoms or methoxy radicals; a benzyl or phenylethyl radical; or an acyl radical, -COR ${ }^{1}$, wherein \mathbf{R}^{1} is an alkyl group having from 1 to 4 carbon atoms or a phenyl radical.

METHYL-6-N-PROPOXYBENZ
METHYL-6-N-PROPOXYBENZOTHIAZOLE-2-CARBA MATE AND ANTHELMINTIC PHARMACEUTICAL COMPOSITIONS THEREOF signor to Schering Corporartion, Kenlliworth, N.J. Claims priority, Mapplication Denmark. Mar,006
Claims priority, application Denmark, Mar. 30, 1976, 1460/76 has been dischaimed.
Int. C1. ${ }^{2}$ C07D 277/82
U.S. Cl. 424-270 Int. C1. ${ }^{2}$ C07D 277/8

1. A compound of the formula

4 Claims

2. A pharmaceutical composition useful for the treatment of helminthiasis in mammals which comprises an anthelmintically effective amount of the compound of claim 1 in admixture wit

SULFOXIDE DERIV 4,093,732
Rudiger D. Haugwitz, Titurville, and Latry R Critoles ington, both of N.J., assaignors to E. R. Squibb \& Sons, Inc.,
Princeton, N Princeton, N.J.

Filed Feb. 17, 1977, Ser. No. 769,634
Int. 1 cli 2 C07D 235/32; A61K 31/415
U.S. Cl. 424-273 R $\quad 13$ Claims

1. A compound of the structure

13 Claims

wherein \mathbf{R}^{1} is lower alkyl containing I to 7 carbons or phenyl \mathbf{R}^{3} er alkyl containing 1 to 7 carbons in the alkyl group, R^{2} and R^{3} are the same or different and are selected from the group consisting of hydrogen or lower alkyl containing 1 to 7 car
bons, and R^{4} is selected from the group consisting of hac cons, and R is selected from the group consisting of halocy
coalkyl containing 3 to 12 carbons or cycloalkenyl containing 3 to 10 carbons optionally substituted with alkyl containing o 7 carbons or halo, m is 0 to $3, n$ is 0 to 3 and $m+n \leqq 5$.
9. A method for treating helmither 9. A method for treating helminthiasis which comprises
administering to a mammalian host an effective amount of a pharmaceutical composition comprising an effective amount of a compound as defined in claim 1 and a pharmaceutically acceptable carrier therefor.

PARENTERAL SUSPENSIONS
Joel B. Portnoff, Philderdphia, Pa., assignor to Merck \& Co. Inc., Rahway, N.J.

Filed Sep. 9, 1976, Ser. No. 721,921
Int. Cl. ${ }^{2}$ A61K 31/40
U.S. CC. 424-274 \qquad 2 Claims 1. A parchal. comprising 1 -(p-chlorobenzoyl)- - -methyl- 5 -methoxy-3-3indoly acetic acid; 0.10 to $0.20 \mathrm{mg} . / \mathrm{ml}$. of total suspension of a defloc culating agent comprising polyoxyethylene (20) sorbita ing agent comprising benzyl alcohol; and water.

and the physiologically tolerated salts thereof, wherein $\mathbf{R}^{1}, \mathbf{R}^{2}$, and R^{3} are hydrogen or alkyl of 1 to 4 carbon atoms; and X is phenoxy, the phenyl ring of which may be substituted by halogen, $\mathrm{OH}, \mathrm{NO}_{2}, \mathrm{NH}_{2}, \mathrm{CF}_{3}$, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 3 carbon atoms, or dimethylamino 4. A method of treatment which comprises administering to compound as defined in claim 1.

(

METHYLENEDIOXYPHENYL SUBSTTTUTED ALIPHATIC DIKETONES Joseph C. Collins, East Greenbush, N.Y., assignor to Sterling Drug, Inc., New York, N.Y.
Continuation-in-part of Ser. No.
Continuution-in-part of Ser. No. 545,486, Jan. 30, 1975, which is : continuation-in-part of Ser. No. 436,611, Jan. 25, 1974, Pat. No. 3,917,718, which is 2 continuantion-in-part of Ser. No. 265,333, Jun. 22, 1912, P196, Ser. No. 740,35
Nor. 10, 197
Claims priority, application United Kingdom, Jun. 18, 1973, 28793/73
 1. A compound of the formula
wherein Y is selected from the group consisting of
wherein
\mathbf{R}_{1} is hydrogen, chlorine or bromine
${ }_{2}$ is methyl, fluorine, chlorine, bromine, trifluoromethyl or
nitro, and
R_{4} is 1 -(alkyl of 1 to 3 carbon atoms)-pyrrolidinyl (2),
non-toxic, phamacologically acceptable acid addition sal thereof.
6. An anxiolytic or anticonvulsive pharmaceutical dosage cal carrier and an effective amount of a compound of claim 1.

4,093,735
5-SULFAMOYLBENZOIC ACID DERIVATIVES CARRYING A HETEROCYCLIC SUBSTTTUENT CARRYING A HETM, Taunus; Wulf Merkel, Nenenh Teter Bormann,
Taunus, and Roman Muschaveck, Frankfurt am Main, all of Germany, assignors to Hoechst Aktiengesellischaft, Frankfurt am Main, Germany
Division of Ser. No. 570,649, Apr. 23, 1975, Pat. No. 4,010,273. This application Nov. 10, 1976, Ser. No. 740,741 Claims priority, application Germany, Apr. 25, 1974, 2419970 U.S. Cl. 424-274

1. A compound of the formula

> | $\stackrel{R}{R}$ |
| :---: |
| $-\mathrm{Z}^{\prime}-\mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}-\mathrm{Z}-$ |
| $\stackrel{R}{\mathrm{R}}$ |
| $-\mathrm{Z}^{\prime}-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Z}-$ |
| and |
| and |

R^{\prime} is lower-alkanoyl of 2 to 6 carbon atoms;
$\mathbf{R}^{\prime \prime}$ is lower-alkanoyl of 2 to 6 carbon atoms or carbo-loweralkoxy of 2 to 6 carbon atoms;
R^{0} is hydrogen, lower-alkyl of 1 to 4 carbon atoms or chloro R is hydrogen or lower-alkyl of 1 to 4 carbon atoms; Z is a single bond, vinylene only when the remainder of Y unsaturated, or ethylene only when Y is saturated Z is a single bond, methylene or
19. A composition for combatting arthropods by hinderin their maturation which comprises an anti-maturation effective amount of at least one compound according to claim 1 in admixture with a suitable carrier or diluent.
20. A method for combating arthropods by hindering their mauration which comprises wea ing sai- maturation effective
amount of at least one compound according to claim 1 in admixture with a suitable carrier or diluent.
21. A composition for combatting viruses which comprises an antivirally effective amount of at least one compound according to claim 1 in admixture with a suitable carrier or
diluent. 22. A
tacting the locus of said viruses with a composition conses conan antivirally effective amount of at least one compound according to claim 1 in admixture with a suitable carrier or
diluent.

R_{1}^{\prime} represents methyl
${ }_{\mathrm{R}_{2}}{ }^{\prime}$ represents methyl, ethyl or chlorine
R_{5} represents hydrogen, alkyl of 1 to 3 carbon atoms or halogen and
$R_{\text {r }}$ represents
R_{6} represents hydrogen or methyl; the total number of car${ }_{R_{3}{ }^{\prime} \text { represents methyl and }}^{\text {bon }}$ atoms in $\mathbf{R}_{1}{ }^{\prime} \mathbf{R}^{\prime}, \mathbf{R}_{5}$ not exceeding 4;
R_{4} represents alkyl of 2 to 4 carbon atoms, alkenyl of 2 to
carbon atoms or cycloalkyl of 3 to 4 carbon atoms.
9. A microbicidal composition containing as active substance an effective amount of a compound as claimed in claim 1, together with a suitable carrier therefo
THEREOF IN THE TREATMENT
IREATMENT OF PAIN, FEVER O Julius Diemond LefraAMMATION
Rorer, Inc., Fort Washington, Pa.
Division of Ser. No. 574,837, May 14, 1975, which is a continuation of Ser. No. 431,254, Jan. 7, 1974, Pat. No. 3,923,910, which is a division of Ser. No. 268,419, Jul. 3, 1972,
Pat. No. 3,852,364. This application Jan. 11, 1977, Ser. No.

$$
\text { Int. Cl. }{ }^{2} \text { A61K 31/275; C07C 120/5 }
$$

$$
\begin{gathered}
\text { Int. Cl. } \\
24-304
\end{gathered}
$$

1. A method of treating inflammation, pain or fever in a 14
warm blooded animal which comprises administering to the pound of the formula:

where
R is hydrogen,
alkyl of 1 to 7 carbon atoms,
cycloalkyl of 5 to 7 carbon atoms
1 to 7 carbon atoms alkyl substituted cycloalkyl of 5 to carbon atoms,
cycloalkenyl of 5 to 7 carbon atoms phenyl or
substituted phenyl where the substion
\mathbf{Y} and \mathbf{Y}^{\prime} are each selected from the group consisting of hydrogen and cyano
Y " is selected from the group consisting of Y, lower alkyl of with the proviso that at least trifluoromethyl,
wih the proviso that at least one of Y and Y^{\prime} is cyano.

4,093,738
MICROBICIDALLY-ACTIVE ACYLATED ANILINO-CARBOXYLIC ACID ESTERS AND THEIR ANILINO-CARBOXYLIC ACIT EST
COMPOSTIONS
Adolf Hubele, Magden, Swi
Corporation, Ardsley, N.Y.
Continuation-in-part of Ser.
abandoned. This application Sep. 16, 1976, Ser. No. 723, 225
Cluims priority, application Switzeriand, Apr. 9, 1974 4998/74; Mar. 7, 1975, 2906/75

Int. C1. ${ }^{2}$ A61K 31/24; C07C 101/18

1. A compound of the formula Ia

MERCAPTOACYLAMIDOBENZOYL GLYCINE AND MUCOLYTIC PROCES Tellis Alexander Martin, Evansville, Ind,, asignor to Mead Johnson \& Company, Evansville Ind Filed Jun. 15, 1977, Ser. No. 806,877 Int. Cl. ${ }^{2}$ A61K 1 31/205; C07C $149 / 00$ U.S. CI. 424-316

1. A compound selected from the group consisting of N -[3(mercaptoacetylamino)benzoyl]glycine characterized by formula I

and a pharmaceutically acceptable salt thereof
2. A process for liquefaction of mucus which comprises
contacting said mucus with a mucolytic contacting said mucus with a mucolytic effective amount of a
compound selected from the group consisting of N -[3-(mercaptoacetylamino)benzoyl]glycine characterized by Formula I
and a pharmaceutically acceptable salt thereof

4,093,740

FODDER FOR RUMINANTS
Rudolf Fahnenstich, Strotzbach; Joachim Heese, Grossauheim, assignors to Deutsche Gold- und Silber-Scheideanstland vor mals Roessier, Frankffurt, Germany Filed Feb. 16, 1973, Ser. No. 330,110 Int. Cl. ${ }^{2}$ A61K $31 / 195$
U.S. C. 424-319 microflora of bacteria and protozoa which normally break
down added synthetic aminoacids comprising feeding them fodder which goes to the paunch, said fodder containing an N -acyl-methionine of the formula

$\mathrm{CH}_{3}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{COOH}$

where R is an aliphatic hydrocarbon having 7 to 19 carbon atoms as a source of methionine which is not broken down in said paunch, the N -acyl-methionine being present in an amount effective to increase the growth of wool on sheep.

PROCESS FOR REDUCING BLOOD SUGAR CONCENTRATION IN A MAMMAL Frederick A. Grunwald, Evansilile, Ind., assignor to Mead Johnson \& Company, Evansille, Ind. Division of Ser. No. 604,971, Aug, 15, 1975, Pat. No. 3,998,879,
thich is a division of Ser. No. 478,497, Jun. 12, 1974, Pat No Which is a division of Ser. No. 478,497, Jun. 12, 1974, Pat. No.
$\mathbf{3 , 9 1 7 , 6 9 2}$. This application Oct. 20, 1976, Ser. No. 734,154 $3,917,692$. This applint. Cl. ${ }^{2}$ A61K $31 / 18$
Int
\qquad reducing biod
6 Claims

1. A process for reducing blood sugar concentration in a 1. A process for reducing blood sugar to a mammal requiring blood sugar reduction an effective amount ranging from 3 to $200 \mathrm{mg} . / \mathrm{kg}$. body weight of said mammmal to exert a blood sugar reducing effect of a compound selected from the group consisting of
5,5-dimethyl-2-(N-p-toluenesulfonylcarbamoyl)-1,3
cyclohexanedione
ethyl-2-(N-p-toluenesulfonylcarbamoyl)-1,3-cyclohexanedione;
-isopropyl-2-(N-p-toluenesulfonylcarbamoyl)-1,3-3
cyclohexanedione;
-tert.-butyl-2-(N-p-toluenesulfonylcarbamoyl)-1,3
cyclohexanedione;
2-(N-p-chlorobenzenesulfonylcarbamoyl)-5,5-dimethylcy-clohexane-1,3-dione and pharmaceutically acceptable basic salts thereof.

4,093,742

NTI-HYPERTENSIVE
POLYHALOISOPROPYLSUBSTITUTED ARYLUREAS Bernard R. Neustadt, West Orange, N.J., assignor to Schering Corporation, Kenilworth, N.J.
Continuation-in-part of Ser. abandoned. This application May 4, 1976, Ser. No. 683,104
 U.S. Cl. 424-322 ind of the formula:

4,093,743
NOVEL BENZOIC ANILIDE DERIVATIVE AND FUNGICIDE CONTAINING SAME Kunihiro Ylibutani, Izumi; Kenichi Ikede, Toyonakc; Shigenori Hatta, Sakai, and Tatsuo Harada, Kawachinagano, all of Japan, assignors Jo Nilon Nohyaku Co. 11, 1977, Ser. No. 814,714 Claims priority, spplication Japan, Jul. 12, 1976, 51-82711 Claims priority, applis
.S. Cl. 424 Int. Cl. ${ }^{2}$ A01N 9/20; C07C 103/76

1. The benzoi 3 Cluim iral formula (l):

(1a)
2. A method for controlling fungal diseases of agricultura nd horticultural crops, which comprises applying to sai crops a fungicidally effective amount of the compound repre sented by the structural formula (I)

KILIING BAC 4 ,093,744

KILLING BACTERIAL SPORES WITH Glutaralderyide Sporicidal Compositions kins Park, Paco, essignors to W.est and Abraham Cantor, ElIsland City, N.Y
Continuation of \mathbf{S}
inuation of Ser. No. 157,681, Jun. 28, 1971, abandoned.
This application Jul. 17, 1975, Ser. No. 596,637 Cl $424-333$ Int. Cl. ${ }^{2}$ A01N 9/24 U.S. Cl. 424-333 Int. C1. ${ }^{2}$ A01N $9 / 24$ 3 Claim ances and apparatus which comprises immersing the same in (a) a solvent consisisting of wasing
(b) about 2 to 4% by weight glutaraldehyde, an
(c) 0.1 to 10% by weight of a surface active agent selecte from the group consisting of the nonionic surface active
agents which are alkylphenol ethoxylates, polyoxypropyl agents which are alkylphenol ethoxylates, polyoxypropyl
ene ethoxylates, butoxy derivatives of ene ehoxylates, butoxy derivatives of propylene oxide-
ethylene oxide block polymers, and primary alkanol ethoxylates; the anionic surface active agents which are sulfated alcohols, sulfated alcohol ethoxylates, linear alkane sulfonates, and fluorinated anionic detergents; and the ampholytic surface active agent, disodium - $\mathrm{N} \cdot$ laury - being further characterize,
and being further characterized as having a pH of 7.0 ± 0.3.

4ETHOD OF 4 4,093,746
WHITE-MEAT CALODSER FOR REARING Germano Cagliero, Ivrea (Turin); Italy, assignor to Marxer S.p.A., Turin, Italy

Filed Apr. 7, 1977, Ser. No. 785,515
Claims priority, application Italy, Apr. 23, 1976, 67991 A/76 U.S. Cl. 426-2 Int. C. ${ }^{2}$ I ${ }^{23 \mathrm{~K}} 1 / \mathrm{Apr}$. 23 , Int. Cl. ${ }^{2}$ A23K $1 / 00$

1. Method of increasing the growth rate of 4 hite-meat calves with reconstituted milk contanstematically feeding the roxazide on period of growth.

METHOD OF AND FODDER FOR PIG-RAISING Cermano Cagliero, Irrea (Turin), Italy, assignor to Marxer S.p.A., Turin, Italy

Claims priority, application Italy, Apr. 235, 1976, 67990 A/76 U.S. C1. 426-2

1. Method of increasing the growth rate of pigs in the weans. ing stage, comprising feeding the pigs with a fodder containing from 50 to 70 ppm of nifuroxazide.

4,093,745
METHOD FOR PRODUCING A BEAD COMPOSITIO Wilmette, both of III, assignors to DeSoto, Inc.., Des Plaines
IIl. untion-in-part of Ser. No. 635,282, Nov. 26, 1975
application Jun. 25, 1976, Ser. No. 699,982
Int. C1. ${ }^{2}$ A61K $7 / 50$
U.S. Cl. 421-358 Int. C. ${ }^{2}$ A61K $7 / 50$

15 Claims

1. A method for producing a non-segregating, free-flowing bath bead composition which comprises admixing urea prills with an oily liquid emollient in an amount of at least about 0.2 distributing said emollient substantially uniformly on said prills to provide emollient-bearing prills, adding to said emollientbearing prills a powdered surfactant in an amount to provide about 1 to about 15 weight percent, based on the weight of the omposition, and agitating the mixture of emollient-bearing prils and powdered surfactant while said emollient is absorbed arde composition in which the surfactant remains associated with the beads in a non-segregating fashion.
2. A method of producing a bath bead composition which
comprises: comprises:
oviding urea prills having moisture on the surface thereof in an amount sufficient to solubilize a water-soluble dye; said dye over the surface of said prills thereby producing dyed prills;
contacting the dyed prills with an absorbable liquid emollient to provide on the dyed prills at least about 0.2 to about 10 weight percent of the emollient, based on the weight of the prills to provide emollient-bearing prills;
and coating tant in an amount to provide about 1 to about 15 weight percent, based on the weight of the composition.
$44,093,748$
PROCESS FOR THE PREPARATION OF BREAD Michiro Akntsuke, Tokorozawn; Stozo Akutsu, Komae, an Michio Uchida, Yokohama, all of Japan, assignors to Eisai
Co., Ltd, Co., Lta., Tokyo, Jecpan 17, 1976, Ser. No. 754,264 Claims priority, application Japan, Dec. 27, 1975, 50-155755 U.S. Cl. 426-19 Int. Cl. ${ }^{2}$ A21D 2/08, 2/34 U.S. C. $426-19 \quad 7$ Claims 1. A process for the preparation of bread including the conventional steps of kneading, fermentation and baking,
which comprises adding a mixture of a yeast extract selected from the group consisting of beer-yeast extract, sake-yeast extract, soy-yeast extract, and wine-yeast extract, and hydrolyzed egg-white to wheat flour, wherein the yeast extract is added in an amount from 0.025 to 0.075%, and the hydrolyzed og the ante is added in an amount from 0.5 to 1.5% on the basis the amount of wheat flour

PREPARATION OF YYEAST LE $\begin{gathered}\text { 4,093, } \\ \text { PRODU }\end{gathered}$ Continuation-in-part of Ser. No. 525,35s, City, Mo. 64112 abandoned. This paplication. No. 525,359, Nov. 20, 1974, S. C. Int. C. ${ }^{2}$ A21D $2 / 04,2 / 14$. No. 712,721 1.S. Cl. $426-20$ Int. CT. ${ }^{2}$ A21D $2 / 04,2 / 14$ mprising the steps of:
mixing dough ingredients consisting of flour, water, yeast, starch digesting agent and monosodium glutamate, said monosodium glutamate added in the amount of 0.001 to 0.010 percent by weight of the flour content,
relaxing said dough at the completion of said mixing step;
and
machining, proofing and baking said dough.

BEVERAGES CONTAINING POLYGLYCEROL ESTER CLOUD
Vigen K. Babayan, Indianapolis, Ind., assignor to Stokely-Van Camp Inc.
Camp Inc., Indianapolis, Ind. This application Jun. 25, 1976, Ser. No. 699,997 U.S. C. 1250 Int. Cl. ${ }^{2}$ H23L 2/00
U.S. C1. 426-250
beverage consisting essentiall 23 Claims

1. A pastuerized beverage consisting essentially of
(a) from about 0.002% to about 2% of a polyglycerol ester
(a) from about 0.002% to about 2% of a polyglycerol ester of
(b) from about 0.02% to about 2% of a citrus oil;
foodstuff 5.0 parts per million up to about 100 parts per million codsturf 5.0 parts per million up to abour 100 parts per milion
based on total composition of $2,4,6$-riisobutyl- $1,3,5$-trioxane. (c) a sweetening agent to provide sweeten from about 5% to about 15% sucrose; (d) sufficient acid to cause the beverage to have a pH of from 2.5 to 4.5 ; and
(e) from 84% to about 99% water.

4,093,751
PROCESS FOR TREATING MILK-COFFEE MIXTURES IN SEALED CONTAINERS TO ELIMINATE INCONSISTENCY AND DETERIORATION IN TASTE adro Ueshima, 16-go, 2-ban, Takamaru, 1-chome, Tarumi-ku, Kobe-shi, Japan
Cluims priority, acp. 8, 1975, Ser. No. 620,785 Claims priority, application Japan, Oct. 9, 1974,
Int. C1. ${ }^{2}$ A23F 1/12; B05B 3/00

116458

 U.S. C. 426-407

1. An improved process for treating milk-coffee mixtures in sealed containers to eliminate inconsistency and deterioration in taste, wherein a hot milk-coffee which has been previously heated to a temperature of 90° to $95^{\circ} \mathrm{C}$ is continuously introduced into containers which are hen coithously sealed, anc wherein the sealed containers are permitted to accumulate in group, in a batch-type pressure tank, wherein the improvemen comprises:
rapidly force cooling the sealed accumulated containers containing the hot milik-coffee mixture from 90 to 95 亚 containers to further cool naturally in ambient air to about room temperature and pasteurizing or sterilizing the accumulated containers in the batch-type pressure tank.

4,093,752

 FLAVORING WITH2,4,6-TRIISOBUTYL $1,3,5$-TRIOXANE
Donald Arthur Withy 2,0mbe, Lincroft; Braja Dulal Mookherjee Holmdel; Manfred Hugo Vock, Locust, and Jomquin Fran cisco Vinals, Red Bank, all of N.J., assignors to Internations cisco Vinalis, Red Bank, I Fragrances Inc., New York, N.Y.

Filed Jun. 16, 1977, Ser. No. 807,056 U.S. Claims

1. A process for augmenting or enhancing the organoleptic
and U.S. Cl. $426-536$
2. A process for augmenting or enhancing the organoleptic 1. A process for augmenting or enhancing the organoleppic
properties of a foodstuff comprising the step of adding to said

METHOD OF APPLYING FLOCK TO A SUBSTRATE oseph E. Geary, Rochester, Joseph Pelensky, Perry, and John Peter Hart, Leicester, all of N.Y., assignors to Champio Division of Ser. No. 714,475, Ang, 16, 1976. This application Jul. 18, 1977, Ser. No. 816,311 Int. Cl. ${ }^{2}$ B05D $1 / 06,1 / 12,1 / 36$ U.S. Cl. 427-21 4 Claims

1. A method for flocking a substrate comprising
2. A method for flocking a substrate comprising:
(a) providing a flocking apparatus including a cabinet, a substrate holding turret with a horizontal rotatable shaft having two substrate holding metal platens diametrically opposed thereon, a screen printing apparatus located and detent means on the turret apparatus for registering one platen with the screen printing apparatus for printing one platen with the screen printing apparatus or printing
an adhesive onto the substrate associated therewith and the other platen with the flocking apparatus,
b) positioning a high voltage metallic electrode in said flocking tray,
the platen associated therewith
the platen associated therewin.
(c) and forming said cabinet and flocking tray of non-metallic materials, whereby the flock will move in a parallel, dense, straight and uniform direction from said flock tray to a printed substrate on the lionermile a substrate on the
electric field is established and whil uppermost platen is being printed.

4,093,754

METHOD OF MAKING DECORATIVE PANELS
Robert C. Parsons, 8003 Inwood Rd., Dalles, Tex. 78413 Filed Apr. 15, 1976, Ser., No. 677,363
Int. C. ${ }^{2}$ B24C 3/06; G03C 5/00; B41N 1/24; E06B $7 / 20$ 1. A method of making decorative panels comprising: 1. A ming a predetermined pattern on a screen such that portion of the screen corresponding to the pattern permits the flow of liquid therethrough;
applying liquid elastomeric masking material to a surface of a panel through the screen thereby applying the liquid dance with the pattern; lance whe liquide elastomeric masking material on the surface
of the panel and thereby forming a substantially solid
masking layer on the surface of the panel in accordance
with the predetermined pattern impinging a high velocity stream of particulate material onto the surface of the panel having the masking layer thereon and thereby visually differentiating the unmasked portion of the surface of the panel from the masked portions
thereof; subsequently removing the masking layer to provide a panel
having visually differentiated areas corresponding to the previously masked and the previously unmasked portions the surface of the pane

reapplying liquid elastomeric masking material to the surface of the panel through a second screen having a differ-
ent pattern thereon thereby applying the linuid elastmeric material to the surface of the panel in accordance with the pattern on the second screen;
curing the liquid elastomeric masking material on the surface of the panel; and
mpinging a high ve
the surface of the panel having the triculate material onto thereby visually differentiating the masking layer thereon the surface of the panel frating the unmasked portion of to form a panel having a dual density pattern.
$\xrightarrow{4,093,755}$ COATING Michel M. Dahl, Lakewood, and Lester D. Erb, Littleton, both of Colo., assignors to The Gates Rubber Company, Denver Colo.

This er. No. 546,063, Jan. 31, 1975, Pat. No. 3,990,862 S. C. 427-299 ${ }^{\text {Int. C. }{ }^{2} \text { B05D } 1 / 02,1 / 08}$ 7 Claims

1. A method for making a liquid heat exchanger coating comprising the steps of:
heating a pluraility of powder particles of oxide film forming metal in an oxygen rich atmosphere and forming a metal-
lic oxide film on the particles. lic oxide film on the particles
moving the particles with a stream of oxygen rich gas while
simultaneously heating a plurality of the particles to least a plastic state and some of the particles to a molten
state: state:
impacting a plurality of the particles against a metallic sub strate and against themselves partially deforming, secur-
ing and mechanically interlocking a plurality of the parti-
cles to the substrate and to portions of each other, breaking the oxide film and fusing some of the molten particles to portions of each other and forming unconnected por-
tions between a plurality of particles that define a plurality of open nucleation cells and the unconnected portions also forming porous interconnections between nucleation cells.

PROCESS FOR ELECTROLESS DEPOSITION O METALS ON ZIRCONIUM MATERIALS Robert E. Donaghy, Wilmington, N.C., assignor to General
Electric Company ectric Company, San Jose, Calif. Int. 192, 2er. No. 729,860 U.S. C. 427-304

1. A process for electroless deposition of a metal film on an article comprised of zirconium or a zirconium alloy comprising the steps of
(a) activating
(a) activating the article in an aqueous activating solution consisting essentially of from about 10 to about 20 gram per liter of ammonium bifluoride and from about 0.75 t
about 2 grams per liter of sulfuric acid, the solution bein aged by immersion of pickled zirconium in said solution for about 10 minutes
(b) removing any loosely adhering film formed on the article in the activating step, and
contacting the article with an electroless plating solution
capable of plating the activaed capable of plating the activated article and containing the metal to be
the article.

METHOD OF FORMING AND DEPOSITING MONOMOLECULAR LAYERS OF AMPHIPHILIC MOLECULES ON A SUBSTRATE
André Barraud, Bures-sur-Yvette; Roger Gras, Villiers le Bacle and Michel Vanderyver, Chatenagy Malabry, all of France, assignors to Commissariat a 1 'Energie Atomique, France Filed Feb. 2, 1977, Ser. No. 165,063
Claims priority, application France Feb U.S. C1. 427-434 A

11 Claims 1. A method for producing and depositing a monomolecular layer of amphiphilic molecules on a substrate, of the type comprising a first step of formation of said layer from a solusaid solution on a liquid surface and by removal of the solvent a second step of application of a predetermined surface pressure to the layer thus formed and a third step of deposition of said layer on a substrate, wherein the operation is performed
cent liquid containing compartments, at least two adjacen compartments being separated by a horizontal member which is partly immersed in said liquid and capable of rotating on its own axis, wherein the solution of said molecules is introduced into said first compartment, wherein removal of the solvent

molecular layer and application of a predetermined surface pressure to the layer thus formed are carried out by transfer ing said layer from said first compartment to at least said to said member which provides a separation between said compartments.

4,093,758
ARTIFICIAL CHRISTMAS TREE WITH FOLDABLE BRANCHING AND METHOD OF MAKING SAME Robert J. Weakamp, Prospect Helghts, and Robert H. Barclay Tool Co, Inc., South Cricigo Heights, III.
Continuation of Ser. No. 631,446, Nor. 13, 1975, abandoned.
This application May 31, 1977, Ser. No. 801,652 U.S. C1. 428-8

3 Claims

1. In an artificial Christmas tree of the type including central trunk and a pluraity of branches pivotally movable to and from positions outstanding from saic crunk and from anrovement comprising an improved means for pivotally mounting least one of said branches on said trunk, said improved mean comprising:
the provision of a hole in said trunk:
pitted intounting member having a a rear end portion prend portion extending ou
fiter wardly from said trunk and a pivot member mounted on said front end portion rearwardly of the front end thereof
said front end portion of said pivot mounting being U shaped, said pivot member extending between the legs of said U in spaced relation with the bight thereof, said one branch having its rear end pivotally mounted about said pivot member whereby, when said branch is pivotally
moved to its outstanding position, it engages the front end of said front end portion to be held thereby in said out standing position;
said U-shaped front end portion having a pair of aligned apertures for mounting said pivot member, one of said
apertures having a larger diameter than the other, and said pivot member being formed of elastically deformable pivot member being formed of elasically diameter larger
material and comprising a head having
than said one aperture, a shank having a head end portion
diameter smaller than said one aperture and larger than he other and a tapered tail end portion, said shank further including a circumferential groove at the junction of said head and tail end portions of width greater than the length of said other aperture wherein said pivot member is an integral member injection molded from plastic, the edge said groove on the tail end portion having a dares said greank further having a slot extending across said shank from the tail end thereof to at least the plane of the edge of said groove on the head end portion of said shank, said lot being of sufficient width to permit inward flexing of said tapered end of said shank so that it can clear said said pivot member is moved longitudinally through said one aperture the tail end portion can be forced through said other aperture until said groove registers therewith, whereupon said tail end portion will elastically expand to dispose the portion of said leg sur. ounding said other said position.

4,093,759

GLASS CONTAINER COATED WITH POLYURETHANE Akira Otsuld; Michihisa Nalito; Yukifumi Manaimo, and Akdra Mkede, all of Tokyo, Japan, aseignors to Toyo Ink Manuficturing Co., Ltd., Tokyo, Japan

Thisa pol Ser. No. 428,586, Dec. 26, 1973, abandone Claims priority, application Japan, Dec. 23, 1972, 47-128840 U.S. C. 428-35 int. C1. ${ }^{2}$ B65D $1 / 02$ 1. A glass container carrying on the surface there 4 Claims layer coating of a transparent non-tacky film in a thickness of at least 100 microns and having a tensile strength of at least 300 $\mathrm{kg} / \mathrm{cm}^{2}$ and a percent elongation of at least 200%, said film being a cured high molecular weight compound formed by the reaction of a powder having a particle diameter of about 1 to more than $20^{\circ} \mathrm{C}$. selected from the group consisting of melamine, benzoguanamine, and acetoguanamine with 0.9 to 1.5 equivalents per equivalent of said powder of a urethane prepolymer which is normally liquid and has at least 2 isocyanate groups and has a molecular weight of a least 40 per isocyanate group, said coating having been cured at a temperature of 180° to $200^{\circ} \mathrm{C}$.

SKID PIPE INSULAT10 4 ,
SKID PIPE INSULATION FOR STEEL MILL
Martin Bernard O'Malley, Pittsburgh, Pa, assignor to JohnsManville Corporation, Denver, Colo.

Filed May 26, 1976, Ser. No. 690,220
Int. C1. ${ }^{2}$ B29C $17 / 04$ U.S. Cl. 428-36

1. The method of insulating a steel mill reheat furnace skid ipe which comprises adhering to said skid pipe an unbonded, adhered position so that no significant portion thereof estends
above the level of the top of the rail projection of said skid pipe. An insulating structure for a steel mill reheat furnace skid
2. pipe formed according to the method of claim 1.

4,093,761
SHEET WITH BREAKAWAY LINE
Philip W. Taylor, Howell, Mich, asignor to Taylor Industries, Inc., Howell, Mich.
Continuastion-in-part of Ser. No. 232,730, Mar. 8, 1972, sbandoned. This application Ang. 19, 1974, Mer. No. 498,653 U.S. C. ${ }^{\text {Int. CC. }{ }^{2} \text { B65D } 65 / 28 ; ~ G 09 F ~ 3 / 00 ; ~ B 32 B ~ 3 / 04 ~} 3$ Claims

1. A sheet of extruded plastic material having a breakaway line A sisposed substrantially parallel to an edge of said sheat, ssaid
sheet being of substantially constant thickness and said break sheet being of substantially constant thickness and said break
away line being a non-apparent line of reduced elasticity along away line being a non-apparent line of reduced elasticity along
an autogenous weakened bond of said plastic material, said an autogenous weakened bond of said plastic material, saic
breakaway line being formed during extrusion of said sheet by
causing the flow of plastic material to separate and rejoin along causing the
said line.
2. The sheet of extruded plastic material of claim 1 wherein base portion and a pair of substantially parallel side walls integral with said base partion, and wherein at least one of said side walls is of said substantially constant thickness from bot
om to top and has said breakaway line of reduced elasticity om to top and has said breakaway line of reduced elasticity portion of said channel.

METHOD OF MAKING A HABRDCORE HONEYCOMB PANEL AND HONEYCOMB PANEL MADE THEREBY John Kiefer, 713 E. 6 th St. New York, N.Y. 10019
Continuation-in-pprt of Ser. No. 465,493, Apr. 30, 1974, Pat. Continuation-in-purt of Ser. No. 465,493, Apr. 30, 1974, Pat.
No. $3,895,144$, which is a continuation-in-part of Ser. No. 351.671, Apr. 16, 1973, abandoned, which is 2 continuation of Ser. No. 118,216, Feb. 24, 1971, abandoned. This application

Jul. 11, 1975, Ser. No. 595,055
Int. C.2. ${ }^{\text {B32B }} 3 / 14,3 / 20.5 / 12$
U.S. C. 428-55

20 Claims

1. A method of making a hardcore panel comprising the steps of providing a stack of predetermined width comprising
a first plurality of parallel substantially uniform first width alarst pluraility of parailel substantially uniform first width parallel planar boards of grained lumber having a second substantially uniform width less than said first width with said first
and second plurality of boards being fastened together and and second pluraity of boards being fasten ed agelher and
arranged in said stack in step-wise fashion in a pluralty of
levels with said first width being substantially equivalent to said stack width, said stack having opposed top and botto posed parallel side faces, with the top and bottom faces and side faces being substantially planar and the front and rear faces being stepped from said bottom to said top face, said fir
width planar boards comprising said bottom and said top faces of said stack, said bottom face comprising the bottom level of said stack and said top face comprising the top level of said stack with said second plurality of planar boards being ar ranged in alternate levels with said first plurality of boards in
said stack and with each of said alternate levels comprised of said second plurality of boards being comprised of at least pair of substantially uniformly spaced apart second width planar boards forming a longitudinally extending channel in said stack, ine irst cut ling said fees from said fepped stack alon a predetermined acute angle between said first cut line and sai bottom face to provide a substantially planar front face norma to said first cut line, said front face being sloped between said parallel planar top and bottom faces at said acute angle with respect to the plane of said bock at a predetermined distance from said first cut line along said side face along a second cur line through said side faces from side face to side face at said predetermined acute angle between said second cut line and said bottom face to provide a first cut portion from saia first cut portion normal to saidd second cut line, said first cut portion front and rear faces being parallel completely cutting said first cut portion through said first cut portion front face from said first cut portion front face to said first cut portion
rear face along a third cut line normal to said bottom face to rear face along a third cut line normal to said bottom face to
provide a first plurality of substantially identical cut segment each having said first cut portion sloping front and rear faces and whose top, front, bottom and rear faces are rectangula and whose side faces are rhomboidal, each of said first plurality of cut segments comprising said stack between said top and
bottom faces with the top and bottom faces of each board in said stack being parallel to said cut segment top and bottom faces; and fastening said cut segments together with said fron faces in a common plane with alternate adjacent fastened seg ments being rotated 180° about a longitudinal axis through the center of said segment parallel to said front face slope to pro-
vide a top and bottom surface for said fastened segments comprising alternating inverted sloping surfaces of said segmen top and bottom faces whose slope is at an angle supplementary to said acute angle to provide said panel with a portion of saic sloping surfaces defining sloping channels in said 14. A hardeore panel comprising a plurality of adjacent batten-like members fastened together in a substantially planar configuration, each of said batten-like members having a top
face, an opposed bottom face, a pair of opposed side faces, each face, an opposed bottom face, a pair of opposed side faces, each
of said faces being substantially normal to the adjacent face of of said faces being substantially normal to the adjacent face of comprising a fastened plurality of stacked adjacent board segments of grained lumber, each of said segments having a to face, an opposed bottom face, a pair of opposed end faces and a pair of opposed side faces, said board segments being stacke of said batten-like member end faces to said opposed end face at least a portion of said board segments defining a channe therethrough, said adjacent board segment end faces bein fastened together and being substantially parallel to each other said adjacent board segments top, bottom and side faces com respectively, each of said segment adjacent end faces for every other one of said fastened batten-like members in said plurality forming a predetermined acute angle with said longitudina axis, each of said adjacent end faces comprising said batten-like
members adjacent to said every other one in said plurality forming a predetermined obtuse angle with said longitudina

MULTIPLE-LAYERED NON.WOVEN FABRIC Ludwig Hartmann, Kaieerileutern; Paul F. Mahha, Bed Dur tern, and Eberhard Schifer, Kaiceralinutern, all of Germany, amignors to Lutravil Spinnvilies $\mathrm{GmbH} \& \mathrm{Co}_{\text {., Kaiseralautern }}$ Germany

Filed Oct. 9, 1975, Ser. No. 621,069

Climes priority, application Germany, Oct. 10, 1974, 2488299
U.S. C. 428-95

Int. C. ${ }^{2}$ B32B 27/34, $27 / 36$
13 Cluim 1. A multiple-layered non-woven fabric suitable as a backing
for tufted carpet, comprising randomly oriented synthetic filaments having points of bonding therebetween, said fabric exhibiting substantially isotropic strength parameters over it
surface, said fabric having a weight per unit area of between about 100 and 150 metric pounds $/ \mathrm{m}^{2}$, ser unid fabric having in a untufted condition a specific strength parameter A equaling at least 130 , wherein
$A=\frac{\text { Breaking load of a } 5 \mathrm{~cm} \text {. wide strip in } p}{\text { Weight per unit area in } p / \mathrm{m}^{2}}$
and said fabric having, after tufting with a continuous synthetic filament, a strength parameter $\mathrm{B} \geqq 0.9 \mathrm{~A}$, but at least 140 , wherein
$B=\frac{\text { Breaking loand of a } \mathrm{scm} \text { wide strip in } \mathrm{p},}{\text { measured alons the luff rows }}$
and a strength parameter $\mathrm{C} \geqq 0.8 \mathrm{~A}$, but at least 120 , wherein
$c=\frac{\begin{array}{l}\text { Breaking load of a } 5 \mathrm{~cm} \text { wide strip in } \mathrm{p}, \\ \text { measured transverse } \\ \text { to the tuff rows }\end{array}}{\frac{\text { and }}{} .}$
$=\frac{\text { measured transverse to the tuft rows }}{\text { Weight per unit area of the fabric in } \mathrm{p} / \mathrm{m}^{2}}$
said points of bonding between said randomly oriented continuous synthetic filaments being clearly graduated with respect otheir number, magnitude and configuration over the thick ness of said fabric, with both sides of said fab
each other as regards said filament bonding.

4,093,764

COMPRESSIBLE PRINTING BLANKET

 John C. Duckett, Clyde, and Andrew J. Gamorowash, Waynesville, both of N.C., assignors to Dayco Corporation, Dayton rille,

Filed Oct. 13, 1976, Ser. No. 731,88
U. S. CT. $428-113$

18 Chims
matrix as a single mass, each of said layers having its fibers disposed in substantially parallel relation and substantially uniformly throughout the layer with the fibers in each layer layer to define a compacted sheet of oriented discrete fibers which results in a uniform embedment of fibers throughout said matrix, said uniform embedment of said fibers resulting in said uniform disposal of said voids and providing more precise control of the compression and resiliency characteristics of satisfactory operation of said blanket over a substantial range of interference between said blanket and printing means associated therewith, said voids comprising about $40-60 \%$ of the volume of the compressible body

OFT ABSORBENT 4,093,765
ABSORBENT FIBROUS WEB AND DISPOSABLE I P DAPER INCLUDING SAME
Pa, amaignor to Scott Paper Cownent, Montgomery County, Filed Feb. 13, 1976, Ser. No. 657,893
US. C. 428. ${ }^{2}$ A61F 13/16, 13/18, 13/20; B32B 3/10
U.S. C. disp-134 16 facing layer adapted to be positioned in contact with a wearer, a low density batt of cellulosic fibers disposed beneath the facing layer for absorbing body fluids, and a fibrous wicking layer disposed beneath, and in engagement with said fibrous batt for aiding in distributing the fow of huid within said product, impod and creped fibrous web formed from an aqueous slurry, and comprises:
(a) randomly arranged and contacting sulfate wood pulp fibers constituting the predominate fiber component, by weight, of the web, said fibers being bonded together exclusively by papermaking bonds, said portion being substantially free of debonders and wet strength additives;
(b) a plurality of fractured areas provided by embossing, said fractured areas being in the form of apertures extending hrough the web thickness, said apertures being disposed distributed throughout the web;
) an adhesive bonding material extending only partially through the web thickness to form bonded regions having a greater strength than the portion of the web in which the permaking bonds, said web being creped in regions conlaining bonding material to enhance web softness and to foreshorten the web to enhance its stretch;
d) said web having a basis weight of from about 25 to about Lo lbs. $/ 2,880$ fett 2, a greater density than that of the fluff bath, said density being in the range of from about 0.08
$\mathrm{grams} / \mathrm{cc}$ to less than about $0.16 \mathrm{grams} / \mathrm{cc}$, a liquid holding capacity greater than 500%, an absorbency rate of less than 2.5 seconds, a wicking rate of greater than $14 \mathrm{~cm} / 10$ minutes, a minimum cross-machine-direction stretch of 10% and a wet cross-machine-direction tensile strength of A soft, absorbent, emb
med from an aqueous slurry randomly arranged slurry, said web comprising:
fibers constituting the predominate fiber component pulp weight, of the web, said fibers being bonded together through a portion of the thickness of the web almost exclusively by papermaking bonds, said portion being substantially free of debonders and wet strength additives;

1. A compressible printing blanket comprising, a woven base ply, a rubber printing face, and a compressible body disposed petween said base ply and said printing face, said compressible body comprising an elastomeric matrix having voids disposed punched layers of discontinuous fibers bonded together by said
) a plurality of fractured areas provided by embossing, said rractured areas being in the form of apertures extending in spaced-apart areas which are substantially uniformly distributed throughout the web;
(c) an adhesive bonding material extending only partially
(c) an adhesive bonding material extending only partially
through the web thickness to form adhesively bonded regions having a greater strength than underlying region which are bonded together almost exclusively by the papermaking bonds, said web being creped in regions containing bonding material to enhance web softness and
to foreshorten the web to enhance its stretch; to foreshorten the web to enhance its stretch;
25 to about 100 lbs. $/ 2,880$ feet 2, a density of from abou $0.08 \mathrm{grams} / \mathrm{cc}$ to less than about $0.16 \mathrm{grams} / \mathrm{cc}$, a liquic holding capacity of greater than 500%, an absorbency rate of less than 2.5 seconds, a wicking rate of greater than 14
$\mathrm{~cm} / 10$ minutes, a minimum cross-machine-direction $\mathrm{cm} / 10$. minutes, a minimum cross-machine-direction
stretch of 10% and a wet cross-machine-direction tensile strength of greater than $2 \mathrm{oz} . / \mathrm{inch}$.
4,093,766

THREE-COLOR HIGH PRESSURE DECORATIVE LAMINATE HAVING REGISTERED COLOR AND Herbert I. Scher Randalleto
Herbert I. Scher, Randallistown; Joseph A. Lex, Glen Burnie,
and Israel S. Ungar, Randalistown, all of Md Exxon Research and Enginearing Company, Linden, N.J. Continuation of Ser. No. 594,094, Jul. 8, 1975, abandoned. This application May 16, 1977, Ser. No. 797,20
Int. C1. ${ }^{2}$ B32B $3 / 30,31 / 20$ U.S. C. 428-165

14 Claims

1. A method of forming a unitary decorative laminate having registered color and embossing, comprising:
A. assembling in a stack from the bottom up
(1) backing means for said decorative laminat
(2) a fibrous underlay sheet impregnated with a thermosetting resin impregnating solution having dispersed
therein finely divided pigment of a first color pigment being retained substantially between the fibers of said underlay sheet,
(3) a thermosetting resin impregnated fibrous print sheet provided with a second color contrasting with said firs color,
ting resin orlay sheet impregnated with a thermose ting resin impregnating solution having dispersed therein finely divided pigment of a third color contrast said third color being retained substantially between then said third color being retained suld
(5) a sculptured pressing plate die having a surface with high areas, intermediate areas and low areas capable of being impressed into the uppermost of said fibrous
sheets, and means to prevent said sculpured pressing plate die from sticking to said overlay sheet during lamination;
B. applying to the upper and lower surfaces of said assembly sufficient heat and pressure to cure said resins to produc
said unitary embossed decorative pressure laminate by
(1) effecting a lamination of said fibrous sheets together with each other and with said backing means, (2) imparting the sculptured surface of said die to the uppermost of fibrous sheets,
(3) effecting lateral flow of said thermosetting resin and 3) effecting lateral flow of said thermosetting resin and
the pigment of said third color within said overlay sheet from the debossed portions of the surface of said laminate to the intermediate portions of said laminate so that
said second color is visible in said debossed portions and said third and contrasting color of said finely divided pigment is visible in said intermediate portions, and
(4) effecting vertical flow of said thermosetting resin and the pigment of said first color within said underlay sheet from said underlay sheet to the upper surface portion of said overlay sheet in the areas of the highest peaks so portions to contrast with the second color at said debossed portions and the third color at said intermediate portions; and
C. stripping said sculptured die from the resultant laminated assembly so as to provide said laminate having areas of registered color and embossing.
ure laminate having a
a plurality of resin impregnated paper sheets laminated together to form an integral laminate having a plurality of layers and having on the upper surface thereof debossed portions, embossed portions of intermediate height 2-10
mils, and embossed high peaks of $14-24$ mils height. the upper layer of said laminate having therein at least one first color in the area of said high peaks;
said debossed portions being relatively devoid of pigment within the upper layer and being transparent to show therebeneath a second color; and
said intermediate embossed portions having concentrated porportions of an opacifying pigment of a third color in
the upper layer of said laminate, wherein there is a gradual transition of said second and third colors between said intermediate height portions and said debossed portions.

COPY SHEET SUITABLE $\stackrel{4,093,767}{ }$
Einar Munk Leiusen Roditre, Denmark, AS, Con
Filed Jun. 1, 1976, Ser. No. 691,835 Claims priority, application Denmark, Jun. 3, 1975, 2473/75 U.S. C. $428-194$

1. A thermocopying copy sheet containing in at least one margin a heat responsive adhesive adapted to be activated by the heat transmitted by a thermocopier as the copy sheet and a superimposed original pass therethrough so as to releasably of the original relative to the copy sheet.

4,093,768
COPPER FOIL ELECTRICAL LAMINATE WITH COPER REINFORCED PLASTICS
Howard P. Cordts, Gratton; Robert F. Navin, and R. Charles Ross, both of Port Washington, all of Wis., assignors to Freeman Chemical Corporation, Port Washington, Wis. Filed Feb. 19, 1976, Ser. No. 659,480
Int. Cl. ${ }^{2}$ B32 $15 / 08,15 / 20.15 / 14$
U.S. C. $428-287$

3 Claims

1. A copper foil electrical laminate comprising a sheet of copper or copper alloy foil directly bonded to glass fiber reinforced unsaturated polyester resin containing up to about 2% enzotriazole incorporated in said resin prior to curing of said resin.

4,093,769
CAPILLARY BODY AND METHOD OF PRODUCING
THE SAME
Yoshio Midorikawa, Tokyo, Japan, assignor to Glasrock Products, Inc., Fairburn, Ga.
Filed Mar. 10, 1976, Ser. No. 665,622 Claims priority, application Japan, Feb. 18, 1976, 51-16849 U.S. CI. 428-295
determined sh
metal casting
said body, said fist covering entirely the outer surface of highly tacky viscous coating layer presenting an exposed yer not only adhering to said body add filing surface cevices of said body but allo securing dry particles revices of said body but also securing dry particles (c) a second coating layer covering coating substantially the first layer, said second coating layer consisting essentially of dry refractory particles, each particle being unsecured with respect to each other but secured by the adhesive 2. The destructible pattern as in claim 1, in which the particles of said second coating layer are aligned side by side and substantially only particle deep to provide for a permeable and highly smooth casting wall.

REACTION CURED GLASS AND GLASS COATINGS James C. Fletcher, Administrator of the National Aeronatics Howard E. Goldstein, Saratoga, Calif.; Daniel B. Leiser, and Victor W. Katrala, both of San Francisco, Calif.
Filed Oct. 29, 1976, Ser. No. 736,910

1. A method for producing capillary body comprising: forming a plurality of fibers into a fiber bundle: forming a pluraiity of fibers into a aber bundie;
forming a skin around the outer periphery of said fiber bundle;
impregnating the skin-encased fiber bundle with a urethane prepolymer, water and a solvent for said prepolymer; then
polymerizing said prepolymer whereby the gases generated polymerizing said prepolymer whereby the gases generated
by reaction and by volatilization of the solvent form capillary passages along said fibers.

COATING FOR GASIFIABLE FOAM PATTERNS
Adolf Hetke, Livonia, and Kip M. Bonds, Union Lake, both of Mich., assignors to Ford Motor Company, Dearbora, Mich. Division of Ser. No. 608,959, Aug. 29, 1975, Pat. No. 4,010,

This application Dec. 13, 1976, Ser. No.
Int. C1. ${ }^{2}$ B32B $3 / 26$. $5 / 16$
U.S. Cl. 428-306

2 Chaims

1. A destructible pattern for use in the cavityless method of casting, comprising:
(a) the reaction product of: weight of a less than about 80 mesh to about 6 percent by selected from the group consisting of silicon tetraboride, silicon hexaboride, boron silicides, boron and mixtures thereof, with;
(b) finely, divided particles of a reactive glass frit prepared by combining two tenths of a part to 10 parts boron oxide with 100 parts of a porous high silica borosilicate glass
wherein said glass frit is sintered rather than fused and is a two-phase glass with a very reactive high boron oxide borosilicate glass layer on the outside covering a more refractory low boron content high silica borosilicate glass in the core of each particle.
2. A high temperature resistant article comprising a reaction
cured glass coating composition resulting from the process of (a) reacting about two tenths of a percent to about 6 percent by weight of a less than about 80 mesh powder of a substance selected from the group consisting of silicon tet raboride, silicon hexaboride, other boron silicides, boron reactive glass frit prepared by combining two tenths of a
part to 10 parts of boron oxide with 100 parts of a porous
high silica borosilicate glass wherein said slass frit is in. high silica borosilicate glass wherein said glass frit is sin tered rather than fused and is a two-phase glass with very reactive high boron oxide borosilicate glass layer on
the outside covering a more refractory low boron content high silica borosilicate glass in the core of each particle;
(b) blending the reaction product in a ball mill with a carrie
solution and a prebinder in a ratio of 35 to 50 percent by
weight solid components to provide a coating slurry;
(c) applying said coating slurry to a porous silica glass sub
d) drying said coating at about
(e) glazing said coating for about one half to two hours at about 1000° to about $1400^{\circ} \mathrm{C}$, by inserting the coated substrate into the furnace at temperature and removing it rapidly after glazing.

PRESSURE-ACTIVATED AND NON-TACKY LIFT-OFF ELEMENT AND PROCESS THEREFOR Jerry H. Taylor, Webster, and Gabriel T. Turula, Rochester,
both of N.Y., assignors to Burrough Corporation, Detroit both of N.Y., assignors to Burroughs Corporation, Detroit
Mich.

Filed Jan. 31, 1977, Ser. No. 764,204 U.S. C. 428-339 Int.

A A pressure-activated element comprising: flexible, pressure-deformable flexible film substrate foundation supporting a removal adhesive layer for removing typed or printed errors or the like;
said removal adhesive layer consisting essentially of a resin and an amide wax combined as a homogeneous coating
such that said adhesive layer is substantially homogeneous and of uniform thickness providing a continuous stratum which is substantially non-tacky to the touch.
9. A non-tacky lift-off element for use as a tape, ribbon, sheet
or tab for removing printed characters comprising:
a flexible film substrate;
a non-tacky coating on the substrate consisting essentially of:
symhetic non-crystalline amide wax;
a polyamide resin and plasticizers therefor, and
solvent; and wherein the solvent is less than 80% of the
coating by weight upon application of the coating to coating by weight upon application of the coating to the fo substrate.
15. A process for producing pressure-activated elements fo
removing types or printed errors or the like comprising the removing types or printed errors or the like comprising
steps of producing a composition consisting essentially of: a resin; and
between 14 to 26% by weight of an amide wax material; and between 42 and 78% by weight of a volatile solvent vehicle consisting of an alcohol, toluene, or mixture thereof; and subsequently applying said composition to a flexible, pres-
sure-deformable foundation, and then evaporating said sure-deiormable foundation, and then evaporating said
vehicle to form an adhesive layer on the foundation in which said adhesive layer is substantially homogeneous and of uniform thickness and provides a continuous stratum which is substantially non-tacky.

4,093,773
INISHING WELT AND METHOD AND APPARATUS FOR FORMING FINISHING WELTS Compounding, Inc., Warren, Mich. .S. CI. 428 ed Sep. 20, 1976, Ser. No. 724,815
Int. Cl. ${ }^{2}$ D02G $3 / 00$

3 Claims

1. An upholstery welt of indeterminate length, having a generally cylindrical head portion integral with a generally the projecting sewing tail portion;
he welt consisting essentially of (a) a, cylindrical, flexible plastic rod coextensive with the welt and coaxially located about the rod in the head portion of the welt and having an end portion extending radially into the welt tail portion for reinforcement, and (c) an outer layer of thermoplastic material having an outer, generally key-hole shaped surface, the plastic material encasing the scrim in the region the welt, and self-bonding to itself through the interstices of the scrim in the welt tail to form a, generally key-hole of the scrim in the welt tail io form a, generally key-hole
shaped structure reinforced at its head portion by said rod and at its tail portion by said scrim internally located therein.

STABILIZED POLYMERIC COMPOSITION IN CONTACT WITH METALS
Ray Lawson Hartless, Lopatcong Townehip, Warren County, and Anthony Marion Trozzolo, Murray Hill, both of N.J., ssaynnors to Be. Division of Ser. No. 500,957, Aug. 27, 1974, abandoned. This application Jan. 23, 1976, Ser. No. 651,642 .S. Cl. 428- ${ }^{\text {Int. }}$

1. An article compis 8 Claims Antact with a polymeric a metal surface which is in intimate meric composition exclusive of filler is at least 90 percent by weight of essentially saturated polyolefin polyner, seid polymer containing a stabilizer composition characterized in that the said stabilizer composition contains only one thermal oxidation stabilizer, said thermal oxidation stabilizer consisting essentially of at least one compound in accordance with the formula

in which R is an alkyl substituent containing a tertiary carbon, said tertiary carbon being attached directly to the aryl ring, in whih R^{\prime} is hydrogen or an alkyl substituent which may also ontain a tertiary carbon and in which $\mathbf{R}^{\prime \prime}$ is hydrogen or an bonded directly to either of the aryl rings may be replaced by a hydrocarbon substituent wherein said saturated polyolefin
polymer contains a percentage by weight of said thermal oxidation stabilizer in the range of 0.01 to 0.5 .

TREATING A POLYMERIC SHAPE WITH NONIONIC FLUOROCHEMICAL SURFACTANTS AND PRODUCT Ther J. Snur, North Plainfeld NROM
Alex J. Szur, North Plainneld, N.J., assignor to Diamond Sham
rock Corporation, Clereland, Ohio rock corporation, Clevelend, Ohio
Division of Ser. No. 560,698, Mar. 21, 1975, Pat. No. 3,980,715. This application Apr. 27, 1996, Ser. No. 680,787 U.S. C. 428-394

1. A process of treating a polymeric shape with an effective amount of a nonionic fluorochemical surfactant selected from
the group consisting of:
(a) condensation product of one mole of 6 -hydroxyhexyl perfluoroisopropyl ether with from about 1 to about 20 moles of ethylene oxide, and
furobutanol with fret of one mole of $2,2,3,4,4,4$ hexalene oxide and from about 1 to about 6 moles of prop thylene oxide with from about 0 to about 20 moles of properties and antisoiling properties of the shape antistatic properties and antisoiling properties of the shape.
2. A polymeric shape produced by the process of claim 1. 11. The process of claim 1 wherein the polymeric shape is one mole of 6 -hydroxyhexyl perfluoroisopropyl ether with from about 1 to about 20 moles of ethylene oxide to improv lubricity properties, antistatic properties and antisoiling properties of the shape.
\qquad
PROCESS FOR PREPARATION OF
SPONTANEOUSLY-CROSSLINKED ALKAL METAL
ACRYLATE POLYMERS
Shuzo Aoki, Ito, and Harumasa Yamasaki, Wakay ama, both Japan, asaignors to Kso Soap Co., Ltd, Tokyo, Japp
Filed Sep. 23, 1977, Ser. No. 836058 Filed Sep. 23, 1977, Ser. No. 836,058
Claims priorty, 1 , ppplication Japan, Oct. 7, 1976, 51-120591 U.S. C1. 428- -02 \qquad
U.S. C1. 428-402

27 Claims 1. A process for the preparation of powdery, spontaneously
crosslinked, alkali metal acrylate homopolymer having a wate crossorption capacity of at least 400 grams per one gram of dried polymer, said process comprising dispersing and suspending an aqueous solution of an alkali metal acrylate having a concentration of at least 40% by weight and containing a water-soluble radical polymerization initiator in a liquid aliphatic hydrocarbon solvent, in the presence of a sorbitan fatty acid ester
having an HLB value of 3 to 6 , and polymerizing the alkal metal acrylate in the absence of a crosslinking agent.

4,093,777

COATED STABILIZED CADMIUM CHALCOGENIDE
PIGMENTS
Heinrich Heine; Peter Woditech, both of Krefeld Theodor Boit
Heinrich Heine; Peter Woditsch, both of Krefeld; Theodor Bob-
mann, Leverkusen, and Dieter Ride, Krefeld, all of Germany, masin, Leverkiusen, and Dieter Reide, Krefeld, all of Germany,
assignors to Bayer Aktiengesellschaft, Leverkusen, Germany assiguors to Bayer Axt , 1975 , Ser. No. 620,092
Filed Oct.
Claims priority, application Germany, Oct. 10, 1974, 2448338
U.S. C. $428-403$

7 Cluims

1. A coated stabilized cadmium chalcogenide pigment
rying a coating of at least one sparingly-soluble sulfide. rying a coating of at least one sparingly-soluble sulfide. 7. In a lacquer or plastic pigmented with about 0.1 to 50% by
weight of cadmium chalcogenide, the improvement wherein weight of cadmium chalcogenide, the improvement wherein said cadmium chalcogenide is a coated pigment according to
claim 1, whereby the pigment is stabilized against leaching out therefrom of cadinium.

NGOT MOL 4,093,778
INGOT MOLD FOR PRODUCING STEEL INGOTS Frederick V. Reven, Homevood, and Charles W. Connors, Wil-
mette, both of III, assignors to Nalco Chemical Company,
Onk Brook, III. Filed S

Sep. 10, 1976, Ser. No. 722,176
Int. C. ${ }^{2}$ B22C 3/00
U.S. C. 428-411

10 Cluims
.

1. An ingot mold for producing steel ingots having its inner urfaces coated with a composition consisting essentially of:

Ingredients	\% By Weigh
$\begin{aligned} & \text { A. Finely divided } \mathrm{Fe}_{2} \mathrm{O}_{3} \\ & \text { B. Alignosulfonate } \\ & \text { C. Water } \end{aligned}$	$\begin{array}{r} 5-30 \\ .1-25 \\ \text { Balance } \end{array}$

TREATMENT OF $4,093,780$
TREATMENT OF ZINC SURFACES TO INHIBIT WET STORAGE STAINING AND PRODUCTS EMPLOYED Rodney Lash LeRoy, Pointe Claire Noranda Mines Limited, Quebec, Canada Division of Ser No. 385, Qu, Ase, Canda application Nor. 17, 1975, Ser. No. 633,100 . This Claims priority, application Canade, Aug. 21, 1972, 149910
U.S. C. 428-458 C. ${ }^{2}$ B32B 15/08; B05D 3/00 18 Claims
U.S. Cl. 428-458

1. Zinc or galvanized articles having a wet storage staining and white rust inhibiting surface coating consisting essentially of a protective water-insoluble zinc-thioglycolate or zinc-polythioglycolate complex.
2. A method for inhibiting wet storage staining and forma-
of white rust on zinc surfaces which comprises treating said surfaces with an inhibiting composition, which composition comprises 0.01% to 99% by weight, as active compound, of an ester of polyester of thioglycolic acid for producing a protective, water insoluble complex zinc-thioglycolate or
zinc-polythioglycolate on the zinc surface. zinc-polythioglycolate on the zinc surface.

EPITAXIAL, SODIUM-SUBSTITUTED LITHIUM
David M. Heinz, Orange, and Eugene C. Whitcomb, Mission Daid M. Heina, Orange, and Eugene C. Whitcomb, Mission
Ciejo, both of Calif., assignors to Rockwell International
Corporation, El Segundo, Calif. Corporation, El Segundo, Calif.

Filed May 27, 1975, Ser. No. 580,641
Int. C.2
U.S. CI. 428-539 tat. Cl. ${ }^{2}$ B01J 17/36

1. A composite comprising a monocrystalline substrate having a lattice constant which causes single crystalline lithium
ferrite disposed thereon to crack, said substrate having epitaxiferrite disposed thereon to crack, said substrate having epitaxi-
ally disposed thereon a crackfree monocrystalline layer of lithium ferrite having sodium substituted for a portion of the lithium, said film having sodium and lithium present in a molar ratio $\mathrm{Na} / \mathrm{Li}$ within a range of about 0.024 to 0.268 .

BRAZED ALMNN: 4, 093
BRAZED ALUMINUM COMPOSITE
William H. Anthony; James M. Popplewell, both, of Guiford,
and Andrew J. Brock, Cheshire, all of Conn., assignors to Swiss Aluminium Ltd., Chippis, Svitzeriand Filed Mar. 3,1977 , Ser. No. 773,959
Int. C. U.S. C. 428-654

Int. Cl. ${ }^{2}$ B32B $15 / 00$
uminum comp

1. A brazed aluminum composite having improved resiscomprising an aluminum alloy core material consisting essentially of from 0.05 to 0.4% chro-
mium, from 0.2 to 0.9% manganese, up to 0.2% iron, up to 0.1% silicon, balance essentially aluminum, clad with a brazing alloy consisting essentially of from 4 to 14% silicon, up to 3% magnesium, up to 0.2% bismuth, balance essentially aluminum wherein the core contains reduced size and population density
of second phase iron containing particles and wherein a silicon rich eutectic from the cladding migrates into the core to a
reduced depth, said core being substantially free from FeAl_{3} phase

NOVEL FORMULAT1,093,783
NOVEL FORMULATIONS ${ }^{4,093,783} \mathrm{M}_{2} \mathrm{UO}_{2} \mathrm{~F}_{2}$ AND THEIR USE IN ELECTROCHEMICAL CELLS
Edward T. Mass, Jr., Kendall Park; John M. Longo, New Provi dence, and Chin H. Chang, Edison, all of N.J., assignors to Exxon Research and Engineering Company, Linde
Filed Apr. 22, 197, Ser. No. 789,813 U.S. CI. 429-5

34 Claims

1. A composition of matter having the formula $\mathrm{M}_{1} \mathrm{UO}_{2} \mathrm{~F}_{2}$ where each M is any alkali metal ion or mixtures thereof.

LITHIUM PRIMARY $\stackrel{4,093,784}{ }$
LITHIUM PRIMARY CELL
Joseph R. Driscoll, Dorchester, Mass., assignor to The United
States of America as represented by the Secretary of the States of America as represented by the Secretary of the
Army, Weshington DC ashington, D.C.
Filed Aug. 26, iled Aug. 26, 1977, Ser. No. 828,074
Int. Cl. ${ }^{2}$ H01M $6 / 14$
U.S. Cl. 429-101
tary cell includi 4
12 Claims

1. In a lithium primary cell including lithium as the anode, a solution of an inorganic salt in an inorganic solvent as the
electrolyte, and a current collector as the cathode, the improvement in cell performance obtained by coating the lithium anode with calcium.

4,093,785
LIGHTER LEAD STORAGE BATTERY Günter Sassmannshasusen, and Dieter Hasennuer, both of Brilon Germany, assignors to Accumulatorenwerk Hoppecke Car
Zoellner \& Sohn, Cologne, Germany Filed Jan. 3, 1977, Ser. No. 756,438 Claims priority, application Germany, Jan. 20, 1976, 2601975 U.S. C. 429-149

20 Claims

1. A lead storage battery comprising in combination a lead-sulfuric acid battery defining therein an acid space, a plurality of plate grids disposed in said acid space and each having a grid upper part,
an acid resistant synthetic
an acid resistant synthetic material completely covering said grid upper part and having a substantially trapezoidal a contact lug extending upwardly from one side of each of
said plate grids, respectively through said synthetic mate-
rial, said synthetic material forming an rial, said synthetic material forming an upwardly extending flange range covering and acid-tightly surrounding a said synthetic material constit
ering having at least one projection spaced from said contact lugs on an opposite end of said plate grids,
a cover being connected acid-tight with said synthetic material covering at said projection and at said flange range
around said contact lugs, said cover defining openings around said contact lugs, said cover defining openings extend,
lug bridges, disposed outside of the acid space on a side of
said cover remote from the acid space, connecting said said cover remote from the acid space,
contact lugs with one another. 20. A lead storage battery having an acid space, with posi-
tive and negative plates, and having contact lugs respectively tive and negative plates, and having contact lugs respectively
connected with one another respectively by means of lug bridges, comprising in combination
a plurality of plate grids each having a grid upper part,
an acid resistant synthetic material covering said grid upper
part,
a contact lug extending upwardly from said plate grids, respectively,
said synthetic
said synthetic material covering and acid-tightly surrounding said contact lug,
rial,
bil, lug bridges, disposed outside of the acid space, connecting said contact lugs with one another, said lug bridges have latter are connected to adjacent of said contact lugs on outwardly facing surfaces of said legs.

4,093,786

1,1-BISTERT-BUTYLPEROXYCYCLODODECANE Takeshi Komai; Masaru Matusubima, and Takeshi Nakajima, all of Aichi, Japan, assignors to Nibon Yushi Co., Ltd., Tokyo,
Japan Filed Oct. 17, 1975, Ser. No. 623,401
Filed Oct. 17, 1975, Ser. No. 623,401
Cluims priority, application Japen, Oct. 22, 1974, 49-120959 U.S. Cl. 526-57 9 Claims 1. A process for crosslinking a polymeric material which comprises treating said polymeric material with a crosslinking agent composition comprising 1,1 -bis (tert-butylperoxy)cylododecane at a pressure of 50 to $200 \mathrm{~kg} / \mathrm{cm}^{2}$ and at a temperature of 100° to $200^{\circ} \mathrm{C}$.

4,093,787
INYL CHLORIDE POLYMERIZATION PROCESS Robin Henry Burgess, Hertford, and Jeffrey Chester Greaves, Welwyn Garden City, both of Enginnd, assignors to Imperial Chemical Industrics Limited, London, England Continuation of Ser. No. 412,030, Nor. 1, 191, , boandoned. This application Aug. 14, 1975, Ser. No. 604,86
ims priority, application Uuited Kingdom, Nov. 20, 1972, C3490/72
U.S. C1. 526-62 7 Claims U.S. C. $526-62$

1. A process for the production of vinyl chloride polymers which comprises polymerizing vinyl chloride, or vinyl chloride and up to 20% by weight thereof of at least one ethylenically unsaturated monomer copolymerizable therewith, an aqueous dispersion, in a reactor having an inner wall(s) on which there has been directly deposited an insoluble layer of a ross-linked polymeric material concining polar groups and and polyethylene imine.

4,093,788
METHOD FOR THE PREPARATION OF POLYVINYL
CHLORIDE BY SUSPENSION OR EMULSION
Jong II Jin, Irvingtoa, N. Y., and Arthur J. Yn, Stamford, Conn., sesignors to Staiffer Chemical Company, Wextport Cona Filed Jun. 24, 1974, Ser. No. 482,176
U.S. C1. 526-74

1. In the polymerization of an aqueous batch charge com prising a vinyl chloride monomer and an initiator in a reactor wherein the improvement comprises incorporating in said batch charge an amount of an anthraquinone sulfonate dy deposition on the walls of the reactor.

PROCESS FOR PREPARING POLYOLEFIN Nobuyuki Kurode; Toru Nakamura, both of Yokohame; Take chi Shirnishi; Kazuo Matsuura, both of Kaweald, and Mituju Miyoshi, Naka, all of Japan, assignors to Nippon Oil Com pany, Limited, Tokyo, Japan Claims priority, application Japar, Aug. 12, 1975, $50-97190$ U.S. C1. 526-114 Int. C1. ${ }^{2}$ Co8F $4 / 02$, 10/02 $1975,50-97190$ U.S. C1. 526-114 \qquad 9 Crim 1. A process for preparing polyolefins by polymerizing or from 20° to $120^{\circ} \mathrm{C}$ and at a pressure in the range of atmo pheric pressure to $70 \mathrm{Kg} / \mathrm{cm} .^{2} \mathrm{G}$., in the presence of a catalys comprising a solid component and an organometallic com pound component, characterized in that said solid compone
is obtained by copulverizing (1) a magnesium dihalide a
(2) an aromatic hydrocarbon selected from the group con sisting of monocylic aromatic hydrocarbon and the halo-gen-and/or alkyl-substituted derivatives thereof and polycyclic aromatic bydrocarbon, the ratios of magnesium dihalide and/or manganese dihalice to said aromatic
drocarbon being in the range of from $1: 0.5$ to $1: 0.1$, (3) a tetravalent titanium compound represented by general formula $\mathrm{Ti}(\mathrm{OR})_{n^{\prime}} \mathrm{X}_{4 n}$ wherein R is an alkyl, allyl, aryl or aralkyl group having 1 to 20 carbon atoms, X is a halogen atom and n is a whole number of from 0 to 4 , and (4) a trivalent titanium compound selected from the group titanium tetrachloride with hydrogen, aluminum, titanium or an oganometallic compound, and trivalent titanium compounds obtained by reducing tetravalent titanium alkoxyhalides represented by the general formula T_{i} (OR) $X_{4} X_{n}$ wherein R is alkyl, allyl, aryl or aralkyl having 1 to 20 carbon atoms, X is a halogen atom and n is a whole of a metal of the groups I to III of the periodic table present in a molar ration with tetravalent titanium compound (3) of from 50:1 to $1: 50$ and in that said organometallic compound component is a mixture of
(5) a trialkylaluminum and
(6) a compound represented by the general formula AIR $_{n} X_{3}$ ${ }_{n}$ wherein R is alkyl having 1 to 10 carbon atoms and ma compound being present in a molar ratio with trialkyle luminum (5) of from $2: 1$ to 1000:1.

POLYPHENYLENE RESINS
William J. L Braser
S.A., Brieede Belat Bracels, Belginm, andgnor to Labofina

Fled Jen. 5, 1972, Ser. No. 215,465
Claime priority, application Prame, A. Apr. 14, 1971, 71.13111 U.S. C. 526-14 Int. C.2 ${ }^{2}$ C08F 38/00

1 Cluim U.S. CC. $526-144$

1. A normally solid, aromatic hydrocarbon soluble poly-
phenylene polymer prepared by polymerizing a mixture conphenylene polymer prepared by polymerizing a mixture con-
sisting essentially of phenyl acetylene and meta-diethynyl benzene, the mixture containing between 50 and 60 mol percent of meta-diethynyl benzene and $40-50$ mol percent of ${ }^{\text {phenyl }}{ }^{A_{l C l}^{3}}$, chlorobenenzene and TiCl_{4} in an inert solvent and under ACl ${ }_{3}$, chlorobenzene and TiCl_{4} in an inert solvent and under
inert atmosphere at a temperature of from - 80° to $150^{\circ} \mathrm{C}$.

PROCESS FOR SUSPENSION POLYMERIZATION OF VINYL CHLORIDE WITH MOLECULAR OXYGEN
Johnnn Baver, and Jooeph Heckomaier, both of Burghnusen, merny
Continuation of Ser. No. 386,724, Aug. 8, 1973, abandoned,
which is a continuation of Ser. No. 812,399, Apr, 1, 1969 Which is a continuntion of Ser. No. 812,399, Apr. 1, 1969, Claime priority, application Germany, Mar. 29, 1968, 1770090 U.S. CI. 526-200 Int. C1. ${ }^{2}$ C08F 4/28, $2 / 20$
\qquad 3 Clamm
of polyvi1. A process for the production of a polymerizate of polyvi-
nyl chloride by suspension polymerization which consists nyl chloride by suspension polymerization which consists
eesentially of the steps of (1) mixing vinyl chloride with water, in a ratio such that the
amount of said vinyl chloride is from 20 to 50% by weight amount of said vinyl chloride is from 20 to 50% by weight
of the total weight of water and vinyl chloride, in the of the cotal weight of water and vinyl chlorice, in the
presence of from 0.01 to 0.5% by weight, based on the weight of said vinyl chloride, of hydroxyethylcellulose, and a gas containing molecular oxygen selected from the
group consisting of air and oxygen in an amount of from group consisting of air and oxygen in an amount of from
0.01 to 3% by weight of molecular oxygen, based on the weight of said vinyl chloride, as the sole polymerization catalyst or catalyst-forming substance,
(2) adjusting said mixture to a pH of from
(2) adjusting said mixture to a pH of from 1.0 to 7.5 ,
(3) heating said mixture to polymerization temperatura
from 65° to $80^{\circ} \mathrm{C}$ and under the autogenetic pressure while under continuous agitation for a time sufficient to effect polymerization, and
(4) recovering said polymerizate.

4,093,792

COPOLYMERIZATION PRODUCT OF N-VINYLMETHYLPYRAZOLE AND DIVINYL CROSS-LINKING AGENT AND METHOD OF PREPARING SAME
Alla Lvovan Bratslavakcya, ulitza Zhelearndodorozhnaya, 25 m , k . 38, Krasaogorak Moakovakol oblesti; Serafima Borisorna
Makarova, prowpekt Mirk, 184, KT. 45, Mocow; Roman Yakorlerich Mushy, ulitraa Lisichanakaya, 45, kv. 15, Severodonetak Vorochillovoerndakol obleatt; Galina VIsdimi-
 rich Sapvin, Pervaya a ivas Seroiteke, 1, Korpalita, Gv. 15in, ${ }_{56} \mathrm{kr}$. 42, Severodonetak Voroshilovogradskol obleati, all of U.S.S.R.

Filed Aug, 3, 1976, Ser. No. 711,506 Int. $\mathrm{Cl}^{2} \mathrm{I}^{2} \mathrm{OD}$
$526-200$

1. A copolymerization product of N -vinylmethylpyraims with a divinyl cross-linking agent said product having an elewith a divinyl cross-inking mental unit of the formula:

wherein R is a CH_{3} radical in the position 3 or $5, \mathrm{~A}$ is a divinyl cross-linking agent selected from the group consisting of divinylbenzene, diallylmaleate, ethyleneglycol dimethacrylate,
diethyleneglycol dimethacrylate and triethyleneglycol dimeth acrylate and said product having a sorption capacity, in respect mg / g of the sortent E^{2}. $E_{f d}=130$ to $170 \mathrm{mg} / \mathrm{g}$ of the sorbent, $\mathrm{E}_{f}=180$ to $230 \mathrm{mg} / \mathrm{g}$ of the sorbent and a swelling factor in water of 2 to $4 \mathrm{ml} / \mathrm{g}$.

COPOLYMERS OF ANTHRAQUINONE DYES AND CRYLAMIDE
Michel Maur Luce Chilaine Michel Maurice Luce Champenoize Le Mesail Esanard, France France
Filed Aug. 1, 1975, Ser. No. 601,010
Claims priority, application France
U.S. C. 526-221 Int. C. ${ }^{2}$ Cospree, $212 / 32$
 1. A structurally dyed water-insoluble macromolecular
material containing, in copolymerized form, acrylamide, at east one colorless monomer selected from the group consisting of vinyl chloride, vinyl acetate, styrene, acrylic acid, acrylates and acrylonitrile and at least one anthraquinone dye having a group containing a polymerizable double bond, obtained
by reacting for one to two minutes, in an aqueous medium and in the presence of a tetravalent cerium complex, the dye with the acrylamide and then introduceing in the medium said colorless monomer and continuing the polymerization, the amount of dye being from 0.1 to 25% by weight of the colorless mono mer and the amount of acrylamide
weight of the coless monomer.

$$
4,093,794
$$

PROCESS FOR THE POLYMERIZATION OF VINYL Andre Chippaux, Levallois, France, esaignor to Plestimer, Cis Contimuntion of Ser. No. 376,547, Jul. 5, 1973, abandowed. This Cleime application Aug. 29, 1975, Ser. No. 609,831 Claims priority, application France, Jul. 21, 1972, 72.26304 U.S. C. 526-344

1. A process for the preparation of a vinyl chlo 9 Clims composition having superior physical properties which comprises polymerizing vinyl chloride monomer under suspensionor bulk polymerization conditions to form vinyl chloride polymer particles having a mean diameter of from about 10 to 500 microns, adding to the reaction medium emulsion polymerization additives at a time when the polymer particles formed are from 5 to 99% by weight of the total resultant polymer prod uct, polymerizing under emulsion polymerization condition
chloride polymer granumes of mean diameter of from about 0.02 to 2 microns agglutinated to the surface of the suspension or
bulk polymerization prepared vinyl chloride particles.

MULTI-STAGE ISOLATION

MULTI-STAGE ISOLATITN OF HIGH PRESSURE Oikar Buechner, Dudenhofen; Gottrried Schlichthserie, Neurtadt, and Friedrich Urban, Limburgermof, all of Germany,
aesignors to BASF Attiengecellichat, Germany asaignors to BASF Aktiengeevellichaft, Germany Filed May 19, 1996 , Ser. No. 687
Int. CC. ${ }^{2}$ C08F $6 / 26,6 / 28$
U.S. C. 528-481

1. A process for the manufacture of ethylene polymers by 1. A process for the manufacture of ehylene polymers by ene with other monomers which are copolymerizable with ethylene, in a polymerization zone at pressures of from 500 to
5,000 bars and at from 50° to $450^{\circ} \mathrm{C}$, followed by isolation of the resulting polymer from the reaction mixture in a two-stage isolation zone at pressures in the first stage of the isolation zone of from 100 to 500 bars and in the second stage of the isolation zone of from 1 to 10 bars and at from 100° to $400^{\circ} \mathrm{C}$, with mean product residence times of from 0.5 to 60 minutes in the differcomprises varying the temperature in the isolation zone to control the molecular weight of the ethylene polymer the temperature being raised to decrease the molecular weight and lowered to increase the molecular weight.

4,093,796
ANTIBIOTIC DERIVATIVES OF POLYENE ANTIBIOTIC DERIVATIVES OF POLYENE THE SAME
Leonard Falkowald, Gdanek; Miroulaw Bobrowakt; Helen Buluk, both of Bialyytok; Elzbietas Bylec, Gdanke;; Barbara Cybulake; Jerzy Golik, both of Sopot; Pawel Kolodziejcicyl Gdannkt; Jan Pawlak, Gdanok; Andrrej Rudowaki, Gdanak; Jan Zielineli, Gdanak, Twdense Ziminelk, Gdynia, and Ed ward Borowak, Gdanaks, Gdanke, Poland Ser. No. 279,737 niks Gdaneks, Gdenat, Poingd Ser. No. 279,737
Fled Aus. 10, 1972,
Cleime prority applicition Poland, Agg. 13, 1971, 149994; Claimes priority, ap
U.S. Cl. 536-17 Int. C. ${ }^{2}$ COTH $17 / 0$ 1. The N -glycosyl reaction product of an amino group-con taining polyene macrolide antibiotic obtained by reacting said antibiotic with a saccharide selected from the group consisting of aldose monosaccharides, ketose monosaccharides,
oligosaccharides and oligosaccharides. oligosacharides.

3 Cluime
NOVEL AMINOCYCLITOLS AND PROCESS FOR PRODUCTION THEREOF Takeshi Ode, Kodarra; Toshito Mori, and Takeshi Yamaguchi,
both of Higzachimuray mama, all of Japan, assign
Company Lth. Nagoyn, Japen
Filed Aug. 30, 1976, Ser. No. 718,770 Flied Aug, 30, 1976 , Ser. No. 718,
Claims priority, application Japan, Sep. 3, 1975, 50/106031 U.S. C1. $536-17$
 (or 1,3 -diacylamino) $1,2,3$-trideoxy-myoinositol of the following formula
wherein R represents a member selected from the group consisting of hydrogen, acetyl, and an acid salt of said acetyl. METHOD FOR PREPARING STARCH SULFATE ESTERS
Martin M. Teader, Edibon, N. $\mathrm{J}_{\text {, }}$, ediguor to Nantional Starch

 the steps of:
the steps of:
a. reacting a starch base having free reactive hydroxyl groups with a sulating agent selcced from the group of eral formula:
wherein R_{1} is selected from the group consisting of lower alkyl and R_{2} is selected from the group consisting of lower alkyl and hydrogen, said reaction being conducted in an aqueous medium at a pH of 11.2 to 13.0 and at a temperature of about 15 to $90^{\circ} \mathrm{C}$. for a period of about 1 to 20 hours, the amount of asaid suraing the weight of dry starch; and
b. isolating the resultant starch sulfate ester.

4,093,799

N-ARYLIDENE-4CHROMANAMINES
George C. Wright, and Marrin M. Goidenberg, both of Norwich, N.Y., asdignors to Morton-Norwich Products, Inc., Norwich,

Filed Jul. 1, 1977, Ser. No. 812,104 U.S. C. 542-422

A compound of the formula:

wherein n is 0 or 1 and X is hydrogen or hydroxy.

PROCESS FOR PREP 4,093,800
Stiepan Kukolian Indinaparisg Cepham Compounds Company, Indianapolis, Ind. Division of Ser. No. 615,154, Sep. 19, 1975, Pat. No. 4,024,152 This application Feb. 14, 1977, Ser. No. 768,138
Int. Cl. ${ }^{2}$ CO7D 50/
U.S. C. 544- 16 Int. Cl. ${ }^{2}$ COTD $501 / 02$

11 Chims

1. A process for preparing a cepham compound which com 1. A process for preparing a cepham comp
prises reacting a compound of the formula

mine, lower alkylamine, tri(lower alkyl)amine, N -lower alkyl-

\mathbf{R}_{1} is in the α-configuration and is hydrogen or methoxy; \mathbf{R}_{2},
\mathbf{R}_{1} and \mathbf{R}_{3} each is hydrogen or lower alkyl; \mathbf{R}_{4} is hydrogen, R_{3} and $R_{\text {s }}$ each is hydrogen or lower alkyl; R_{4} is hydrogen,
lower alkyl, cyclo-lower alkyl of 3 to 7 carbons, cycloalkenyl of 3 to 7 carbons, cycloalkadienyl of 6 or 7 carbons, phenyl, phenyl-lower alkyl, substituted phenyl or phenyl-lower alky lected from the group consisting of halogen, lower alkyl, lower alkoxy and hydroxy, or a mono-subsituted or unsubstituted heterocyclic selected from the group consisting of 2-thienyl 3 -thienyl, 2 -furyl, 3 -furyl, 2 -pyridyl, 3 -pyridyl and 4 -pyridy
wherein said heterocyclic substituent is attached at an available carbon atom and is halogen or lower alkyl; R_{6} is lower alkyl and X is hydrogen, lower alkanoyloxy,
with at least a molar ratio of sodium or potassium iodide at a emperature of from about $40^{\circ} \mathrm{C}$. to about $80^{\circ} \mathrm{C}$., to produce the 3 -exomethylene or 3 -keto cepham of the formula

in which, in the above formulae, \mathbf{R}_{1} is a carboxy protecting group; R is the residue of an imide derived from a dicarboxylic acid; R_{2} is $=\mathrm{CH}_{2}$ or $=\mathrm{O}$; and X is chloro or bromo.
[II(2,4 -DIOXO-1-IMIDAZOLDINYL)AMINO]CAR-BONYLJAMINO)-ACETYLCEPHALOSPORIN
Dermann DERIVATIVES
Hermann Brener, and Uwe D. Treuner, both of Regensburg,
Germany, astignors to E. R. Squibb \& Sons, Inc., Princeton, N.J.

Division of Ser. No. 671,788, Mar. 30, 1976, Pat. No. $4,063,019$. This application Jul. 27, 1977, Ser. No. 819,64

U.S. CI. $541-25$

1. A compound of the formul

wherein R is hydrogen, lower alkyl, phenyl-lower alkyl, iphenyl-lower alkyl, tri(lower aikyl)silyl, trihaloethyl, alumi-

THIOCARBAMATEMETHYL-SUBSTITUTED CEPHALOSPEMETHYL-SUBSTTTUTE Fortuna Haviv, Montreal, Canade; Abraham Patchornik, Nes Zione, and Janina Altman, Haifa, both of Irrael, assignors to Yedia Research and Development Co., Ltd., Rehovot; Israel Thiser. No. 625,541, Oct. 24, 1975, Pat. No. 4,031,083. This application Jan. 14, 1977, Ser. No. 759,276 U.S. Cl. 54127

1. A compound selected from a base of the formula:

wherein each of R_{1} and R_{2} is selected from hydrogen and lowe alkyl of from 1 to 4 carbon atoms or $N_{1} \mathbf{R}_{2}$ taken togethe form a monocyclic heterocyclic group selected from pyr-
rolidino, piperidino and morpholino; \mathbf{R} is oxygen or sulfur rolidino, pipendino and morpholino; R is oxygen or sulfur hydrogen, chlorine, bromine, a straight or branched low group of from from 1 to 4 carbon atoms and a lower alkox

Aryl is 2-thienyl, \mathbf{Y} is hydrogen; \mathbf{Z} is selected from a bond, oxygen, sulfur and imino with the proviso that when Aryl is 2-thienyl Z is a bond; W is selected from hydrogen, methy from hydrogen and 5 -indanyl; n is zero, 1 or 2 with the proviso that when W is other than hydrogen or methyl, and Z is other than a bond, n is not zero; R_{4} is selected from hydrogen and methoxy; M is selected from hydrogen, a pharmaceutically acceptable non-toxic cation; alkanoyloxymethyl wherein the
alkanoyl moiety contains from 1 to 5 carbon atoms and may be alkanoyl moiery contains from straight or branched; alkanoylaminomethyl wherein the alkan oyl moiety contains from 1 to 5 carbon atoms and may be straight or branched and wherein the amino nitrogen atom
may be substituted with an alkyl group of from 1 to 4 carbo may be substituted with an alkyl group of from 1 to a carboiatoms; alkoxycarbonylaminomen atoms and may be straight or branched and wherein the amino nitrogen atom may be substituted with an alkyl group of from 1 to 4 carbon atoms; p-(al1 to 5 carbon atoms and may be straight or branched; and aminoalkanoyloxymethyl wherein the alkanoyl moiety con tains from 2 to 15 carbon atoms and the amino nitrogen may be mono- or di- substituted with a lower alkyl group of from 1 to 4 carbon atoms; X is selected from $1,3,4$ thiadiazol -5 -yilhio
 tetrazol-5-ylthio,
$1,3,4$-thiadiazol- 5 -ylthio, and $1,2,3$-riazol-5-ylthio; and phat $1,3,4$-thiadiazo- - -yptrable salts thereof.
maceutically

4,093,803
7 β - 2 -ETHERIFIED OXIMINO-2-(THIENYL, FURYL OR PYRIDYLACETAMIDO)] CEPHALOSPORINS Martin Christopher Cook; Gordon Ian Gregory, both of Chal font St. Peter, and Janice Bradshav, Harrow, all of England, assignors to Glaxo Labboratories Limited, Greenford, England Division of Ser. No. 587,064, Jun. 16, 1975, Pat. No. 4,024,133, which is a division of Ser. No. 304,524, Noor. 7 Ser. No. 252,666, May 12, 1972, abandoned. This application Jan. 26, 1977, Ser. Claims priority, soplication United Kingdom, May 14, 1971, 15082/71; Oct. 1, 1971, 45884/71
Int. C1. ${ }^{2}$ C07D 501/36
u.s. CI. 54-27 3 Claim 1. A compound selected from the group consisting of highly active cephalosporin

wherein R^{u} is thienyl, furyl, or pyridyl or any of these group wherein substituted by a chloro, bromo, iodo, fluoro, hydroxy, lower alkyl, nitro, amino, lower alkylamino, diloweralkylamino, alkylthio or carbamoyl group,
\mathbf{R}^{b} is phenyl, napththyl, benzyl, phenylethyl, diphenyl methyl, triphenylmethyl, thienylmethyl, furylmethyl, pyridylmethyl, pyrrolylmethyl or any of these group
substituted by a hydroxy, lower alkoxy, phenoxy, ben substituted, carboxy, lower alkoxycarbonyl, benzyloxycarbo nyl, mercapto, lower alkylthio, phenylthio, benzylthio, acetamido, benzamido, cyano, formyl, lower alkanoy benzoyl, amino, methylamino, ethylamino, dimetyciamino, lower alkoxycarbonylamino, benzyloxycar bonylamino, platale, bromo, iodo, fluoro, nitro, or azido
pivaloyloxy, chloro, pivaloyloxy,
group, and
Y is a group of formula -SW and W is thiadiazolyl, 5 -methy
ethyltetrazol- 5 -yl, 1 -ethyltetrazol- 5 -yl, thiatriazolyl, oxazolyl, oxadiazolyl, 2-phenyl-1,3,4-0xadiazol-5-yl, benmi nitrobenzothiazolyl, purinyl, pyridyl, pyrimidyl or an lkyl group of $1-4$ carbon atoms; said cephalosporin ant iotic being in the form of a syn isomer free of the corresponding anti-isomer to the extent of a least ish based on he total weight of said antibiotic an a physios acceptable salt thereof.

PYRIDINIUMMETHYLARYL-SUBSTITUTED CEPHALOSPORIN DERIVATIVES

veP, Montreal, Canada, and Abraham Patchornik, Ness-Ziona, LErael, ascignors to Yeda Research and Derelopment Co., Lud, Rehovot, Irrael ${ }^{2}$, 1975 , Pat. No. 4,026,887. Tision of Ser. No. 625,570, Oct. 24, 1975, Pat. No. 4,026,
This aplication Jan. 14, 1977, Ser. No. 759,466
U.S. Cl. 544-27

1. A compound selected from a base of the formula:

$\mathrm{N}^{+}-\mathrm{CH}_{2}$ Y $_{\text {Aryl }}+\mathrm{Z}-\left(\mathrm{CH}_{2}\right)_{n}-$

wherein Aryl is selected from phenyl and 2-thienyl; \mathbf{Y} is se lected from hydrogen, chlorine, bromine, a straight o lower alkoxy group of from 1 to 4 carbon atoms with the proviso that when Aryl is 2 -thienyl, Y is hydrogen; Z is selected from a bond, oxygen, sulfur and imino with the proviso | that when Aryl is 2 -thienyl, Z is a bond; W is selected from |
| :--- | hydrogen, methyl, amino, hydroxy,

wherein R, is selected from hydrogen and 5 -indanyl; n is zero 1 or 2 with the proviso that when W is other than hydrogen or methyl, and Z is other than a bond, n is not zero; R_{2} is selected from hydrogen or methoxy and is either cis- or trans-; M selected from an anion; hydrogen; alkanoyloxymethy whd the alkanoyl moiety concains from 1 lo carbon atoms and in alkanoyl moiety contains from 1 to 5 carbon atoms and may be straight or branched and wherein the amino nitrogen may be substituted with an alkyl group of from 1 to 4 carbon atoms alkoxycarbonylaminomethyl wherein the alkoxy moiety contains from 1 to 4 carbon atoms and may be straight or branched and wherein he a from 1 to 4 carbon atoms; p-(alkanoyloxy)an alyl wherein the alkanoyl moiety contains from 1 to 5 carbon atoms and may be straight or branched; and aminoalkanoyloxymethyl wherein the alkanoyl moiety contains from 2 to 15 carbon atoms, and the amino nitrogen atom may be mono- or di-substituted with a lower alkyl group of from 1 to 4 carbon atoms; with the proviso that when M is other than an anion the compound exists as a salt of a pharmaceutically acceptable inorganic or organic 2,4 thiadiazol- 5 -ylthio, tetrazol5 -ylthio, 1 -methyltetrazol 5 -ylthio, 2 -methyl-1,3,4-xadiazol5 -ylthio, 2 -methyl $-1,3,4$ thiadiazol-5ylthio and $1,2,3$-triazol5 -ylthio; and pharmaceutically acceptable salts thereof.

4,093,80
-HYDROXY-3,4-DIHYDRO-2(1H)-QUINAZOLINETH-
Thomas C. Britton, and Donald L. Trepanier, both of Midland Thomas C. Britton, and Donald L. Trepanier, both of Midland,
Mich, aselgnors to The Dow Chemical Company, Midland,
Mich.

$$
\begin{aligned}
& \text { Filed Feb. 17, 1977, Ser. No. } 765 \\
& \text { Int. C. } .^{2} \text { Co7D } 413 / 06
\end{aligned}
$$

U.S. C. $544-116$

wherein R^{\prime} represents alkyl, halo, and hydrogen, and $R^{\prime \prime}$ repr sents amino, dialkylaminoalkyl, (pyrrolidinyl)ethyl), (piperidi-pharmaceutically-acceptable salts thereof and wherein any alkyl refers to a moiety having from 1 to 4 carbon atoms.

4,093,806

Gregoire Kalopissis, Paris; Andree Bugnut, Boulogne-sur-Seine, and Francoise Estradier, Paris, all of France, assignors L'Oreal, Paris, France Ditision of Ser. No. 619,477, Oct. 3, 1975, Pat. No. 4,046,786, which is a division of Ser. No. 482,523, Jun. 24, 1974, Pat. No
$3,929,404$. This application May 20, 1977, Ser. No. 798,896 Claims priority, application Luxembourg, Jun. 22, 1973, 67860 Int. C1. ${ }^{2}$ O07D 295/14

1. An indoaniline having the formula

wherein
\mathbf{R}_{1} represents hydrogen, halogen, alkyl or alkoxy;
\mathbf{R}_{1} represents hydrogen, halogen, alkyl
\mathbf{R}_{2} represents alkyl and hydroxyalkyl,
R_{3} represents piperidinoalkyl, morpholinoalkyl or R_{2} and R R_{3} repretens piperidinaikyl, morpholinoakyl or R_{2} and R_{2}
together with the nitrogen atom to which they are at tached form a heterocycle selected from piperidino and morpholino;
$R_{4} R_{5}$ and R_{6} each independently represent hydrogen, halo gen, alkyl, alkoxy, acetylamino, ureido or carbalkox gen,
yamino,
with the proviso that at least one of R_{4}, R_{5} and R_{6} is other than hydrogen or halogen and that at least two of said R_{4} R_{s} and R_{6} are other than hydrogen when R_{4} or R_{6} is methyl and R_{5} can further represent amino, alkylamino, hydroxyalkylamino and carbamylalkylamino
wherein the alkyl and alkoxy groups contain from 1 to 6 carbon atoms.

10 Claims
R_{1} and R_{2} together are Y where Y is a straight or branched
chain alkylene of 4 to 8 carbon atoms having a pendant

1. A compound of the formula

wherein
R_{1} is hydrogen or alkyl of 1 to 8 carbon atoms, R_{2} is

$$
\begin{gathered}
(\mathrm{R}, \mathrm{O})_{2} \mathrm{P}-\mathrm{x}-. \\
\text { II }_{0}
\end{gathered}
$$

R_{3} is alkyl of 1 to 8 carbon atoms, and
\mathbf{X} is a straight or branched chain alkylene of 1 to 4 carbon atoms or a straight or branched chain alkylene of 3 to 6
carbon atoms containing an internal carbamido group, or
R_{1} and R_{2} together are Y where Y is a straight or branche

$$
\begin{gathered}
1 \\
\text { chain alkylene of } 4 \text { to } 8 \text { carbon atoms having a pendant }
\end{gathered}
$$

$$
\begin{aligned}
& \text { (b) from about } 20 \text { to about } 200 \text { parts by w } \\
& \text { the urea, of recycled cyanuric acid; and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) trem aboa, of recycled cyanuric acid; and wight, based upon } \\
& \text { the }
\end{aligned}
$$

$$
\begin{aligned}
& (\mathrm{R}, \mathrm{O}) \mathrm{P}_{1}^{\mathrm{P}-\mathrm{moiely}} \\
& \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) from about } 3 \text { to about } 40 \text { parts by weight, based upon the } \\
& \text { urea, of ammonium nitrate or concentrated nitric acid; }
\end{aligned}
$$

and
\mathbf{R}_{4} is hydrogen, methyl or ethyl

5-SUBSTITUTED PHOSPHONATE HYDANTOINS AND DERIVATIVES THEREOF Luther A. R. Hall, Woodeliff Lake, N.J., and David A. Gordon, Scarsdale, N.Y., assignors to Clba-Geigy Corporation, Ardeley, N.Y.

Filed Jun. 21, 1976, Ser. No. 698,623
U.S. Cl. 548-308

1. A compound of the formula

21 Claims 1. A compound of the formula

$$
\overbrace{\mathrm{HN}_{-\mathrm{CO}} \mathrm{R}_{2}^{\mathrm{R}_{1}} \mathrm{CO}}^{1}
$$

wherein
R_{1} is by
\mathbf{R}_{1} is hydrogen or alkyl of 1 to 8 carbon atoms,
R_{2} is
R_{3} is alkyl of 1 to 8 carbon atoms, and
X is a straight or branched chain alkylene of 1 to 4 carbon carbon ated chain alkylene of 3 to 6 carbon atoms containing an internal carbame 3 to

4,093,810

 PROCESS FOR PRODUCING PCARBOXAMIDO-5-CYANO-2-IMIDAZOLONE Takakazu Kojima, Yamato, and Yozo Ohtsuka, Sagamihara, both of Japan, assignors to Sagami Chemical Research Center, Tokyo, Japan Filed July 26, 1976, Ser. No. 708,974 Claims priority, application Japan, Jul. 25, 1975, 50-90211 Claims prority, appication Int. Cap. ${ }^{2}$ Co7D 233/90U.S. C1. 548-321 \qquad

1. A process for producing 4 -carboxamido-s-cyano-2-

$$
\begin{aligned}
& \mathrm{R}_{1} \text { is } \\
& \mathrm{R}_{2}
\end{aligned}
$$ imidazolone which comprises reacting diaminomaleonitrile in the presence of a basic catalyst selected from the group consisting of a trialkylamine having 1 to 4 carbon atoms in each of the

alkyl moieties thereof, triethylenediamine, hexamethylenetetramine, N -methylmorpholine, and pyridine with carbon dioxide in an organic polar solvent selected from the group consist ing of dimethyl sulfoxide, \mathbf{N}, N -dimethylformamide, an alcohol having 1 to 4 carboo atoms, tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, pyridine, acetonitrile and ethyl

$$
\begin{aligned}
& \underset{{ }_{0}}{\left(\mathrm{R}_{3} \mathrm{O}\right)_{2} \mathrm{P}-} \\
& \text { moiety. } \\
& \stackrel{(\mathrm{RaO})_{2} \mathrm{P}-}{\prod_{0}}
\end{aligned}
$$

2 Claims
chano-2.
2-ARYL-4CYANOMETHYL5-METHYLIMIDAZOLES Caris Royce Resmuseen, Ambler, Pan, aseignor to McNeil Laboratories, Incorporated, F. Washington, Pa. Continuation of Ser. No. 483,251, Jun. 26, 1974, abandone This application Jun. 3, 1976, Ser. No. 692,268 U.S. C1. 548-342 Int. C. ${ }^{2}$ CO7D 233/64 ected from the group consisting of 2 -aryl-4-cyanomethyl-5-methylimidazole having the formula:
(IV)

and mineral acid addition salts thereof, wherein Ar is a member selected from the group consisting of phenyl, methylenedioxyphenyl, loweralkanoylphenyl, loweralkylthiophenyl and
phenyl substituted with 1 to 3 members selected from the group consisting of loweralkyl, loweralkoxy, halo, hydroxy, phenoxy and nitro.
8. A compound selected from the group consisting of 2-aryl--isopropoxymethyl-5-methylimidazole having the fornula:

and the mineral acid addition salts thereof, wherein Ar_{r} is member selected from the group consisting of methylenedioxyphenyl, loweralkanoylphenyl, loweralkylthiophenyl and phenyl substituted with 1 to 3 members selected from the group consisting of loweralkyl, loweralkoxy, halo, hydroxy,
phenoxy and nitro. phenoxy and nitro
(NTROFURYL)PYRAZOLES, THEIR SYNTHESIS AND NTTROFURYL)PYRAZOLIONS CONTANTNG THEM Georg Rainer, Constance, Germany, asignor to Byk Gulde Georg Rainer, Constance, Germany, asignor to Byk Guid Filed Mar. 23, 1976, Ser. No. 669,611 25,1975 , Claims priority, application Luxembourg, Mar. 25, 1975 72129, Feb. 20. Int. Cl. ${ }^{2}$ C07D 231/12; A61K 31/415
U.S. C. 548- 374
7D 231/12; A61K 31/415

85 Claims

1. An antimicrobially-active pyrazole, the pyrazole ring of
which is substituted by 5 -nitro-2-furyl on a ring carbon atom which is substituted by 5 -nitro-2-furyl on a ring carbon atom ortho to one ring nitrogen atom and is unsubstituted on the ring
carbon atom ortho to the other ring nitrogen atom, the pyrazole having the formula:

wherein
\mathbf{R}^{1} is directly bound to one of the two nitrogen atoms of the pyrazole ring, is heterocycle-free, and is -H , substituted or unsubstituted hydrocarbyl, carboxylic acid acyl or carbonic acid acyl, the hydrocarbyl being saturated or A is $-\mathrm{CN},-\mathrm{CH}(=\mathrm{X})$, aminol, or $-\mathrm{C}(=\mathrm{U})-\mathrm{R}^{11} ;$
 X is $=\mathrm{O},=\mathrm{S},=\mathrm{N}-\mathbf{R}^{3},=\mathrm{N}-\mathrm{O}-\mathbf{R}^{4},=\mathrm{N}-\mathrm{N}\left(\mathbf{R}^{\mathbf{3}}\right) \mathrm{R}^{6}$,
\{-O-(lower)-alkyl $\}_{2}, \quad\{-\mathrm{S} \text {-(lower)alkyl }\}_{2}, \quad-\mathrm{O}-\mathrm{Y}-$
Y is or $-\mathrm{S}-\mathrm{Y}-\mathrm{S}$
Y is lower alkylene with from 2 to 5 carbon atoms and optionally substituted by alkyl with from one to 5 carbon ${ }^{\text {atoms; }}$ Z is $=0,=\mathrm{S}$ or $=\mathrm{NH}$
\mathbf{R}^{j} is one of the meanings of R^{1};
R^{4} is -H , alkanoyl with from 1 to 7 carbon atoms or aroyl;
R^{5} is -H or optionally-substituted alkyl;
R^{6} is one of the meanings of R^{7} or $-\mathrm{C}(=\mathrm{Z})-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{R}^{8}$;
each of
R^{7}
R^{7} and R^{8} is, independently, $-H$, optionally-substituted alkyl, organic acyl or optionally-substituted aryl;
$\mathrm{R}^{\prime 1}$ is - OH, alkoxy with from 1 to 11 carbon atoms, aryl with up to 12 carbon atoms, aralkoxy with up to 14 carbon atoms, halo, acyloxy, mercapto, azido, $-N\left(R^{12}\right) \mathrm{R}^{13}$, sub stituted or unsubstituted hydroxylamino or -N of
each of
R^{12} an
7 carbon atoms or hydroxyalkyl having from one to 7 carbon atoms;
each of
\mathbf{R}^{14} and \mathbf{R}^{15}, independently, has one of the meanings of \mathbf{R}^{7}; and 5 is 5 -nitro-2-furyl.
\qquad
4,093,813
INTER-OXA-13,14-DIHYDRO-9-DEOXY-PGF
COMPOUNDS
Gordon L. Bundy, Portage, Mich., assignor to The Upjohn
Company, K\&lamazoo, Mich.
This application Apr. 11, 1977, Ser. No. 786,713
U.S. C1. $560-121$ Int. C1. ${ }^{2} \mathbf{C 0 7 C}$ 177/00
1.S. A. prostaglandin analog of the formula

$$
\underbrace{-\mathrm{CH}_{2}-\mathrm{Z}_{\mathrm{s}}-\mathrm{COOR}_{1}}_{\substack{\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{C}-\left(\mathrm{CH}_{2}\right)_{m}-\mathrm{CH}_{3} \\ \mathrm{M}_{1} \mathrm{~L}_{1}}}
$$

wherein m is one to 5 , inclusive;
wherein M_{1} is

or
wherein R_{3} and R_{4} are hydrogen, methyl, or fluoro, being the same or different, with the proviso that one of R,
fluoro only when the other is hydrogen or fluoro; wherein R_{1} is hydrogen, alkyl of one to 12 carbon atom inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive
aralkyl of 7 to 12 carbon aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, pheny substituted with one, two, or three chloro or alkyl of on a pharmacologically ac ceptabie cation
wherein Z_{8} is
(1) $-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{2}-$
(2) $-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{s}-\mathrm{CH}_{2}-$ or
(3)
wherein g is one, 2 , or 3 .
, or 3.

STERS OF $4,093,814$

ESTERS OF 4[3-(SUBSTITUTED
AMINO)-2-HYDROXYPROPOXYY-5,6,7,8-TETRAHYDRO. Feder $1,6,7$-NAPHTHALENETRIOLS Fille and Rite T Fomerrille; Michael E. Condon, Lawrence Squibb \& Sons. Inc. Princeton, NJ. Division of Ser. No. 656,769, Feb. 9, 1976, Pat. No. 4,048,231 This application May 18, 1977, Ser. No. 798,275
U.S. Cl. $560-139$ 1. A compound having the formula

or a pharmaceutically acceptable salt thereof, wherein R_{1}, R_{2} and R_{3} are acyl, R_{1} is hydrogen and R_{2} and R_{3} are acyl, or R_{1} and R_{2} are hydrogen and R_{3} is acyl; and R_{4} is lower alkyl; with are the same acyl group; wherein acyl is $\stackrel{\mathrm{O}}{\mathrm{in}} \mathrm{C}-$
wherein X is alkyl having 1 to 11 carbon atoms, aryl, or aryllower alkyl; lower alkyl is alkyl of 1 to 4 carbon atoms; and
aryl is phenyl or phenyl substituted with one or two lower wherein R_{5} and R_{6} are hydrogen or methyl, with the proviso aryl is phenyl or phenyl substituted with on
that one of R_{5} and R_{6} is methyl only when the other is hydro- alkyl, lower alkoxy, halogen or nitro groups.
gen;
wherein L_{1} is

compound selected from the group consisting of a carboxylic acid and a carboxylic acid anhydride using a catalyst ylic acid and a carboxylic acid anhydride using a catalyst wherein said first component is a rare earth metal containing compound,
herein said second component is an alkali metal containing
compound,
wherein said third component is a halide containing compound,
pound,
herein the number of carbon atoms in the conjugated diolefin is within a range of from about 4 to about 12 , the conjugated diolefin is selected from unsubstituted compounds and substituted compounds wherein the substitu-
ents are selected from the group consisting of halogen cyano and carbalkoxy radicals, and the carboxylic acid
and carboxylic acid anhydride are selected from the group and carboxy of mono and dicarboxylic aliphatic and aro matic acids and acid anhydrides having from about 2 to about 18 carbon atoms per molecule
wherein the first component is selected from the group consisting of rare earth metal oxides, carboxylates, rates, halides, sulfates and mixtures thereof,
wherein the second component is selected from the group consisting of alkali metal oxides, carboxylates, halides and mixtures thereof, and
wherein the third component is selected from the group consisting of rare earth halides, alkali metal halides, oranohalides and mixtures thereof

ELECTRICAL

4,093,816
FURNACE HEATING APPARATUS omas L. Cane, Toledo, Onio, andignor to Midand-Row Corporation, Cleveland, Ohio

Filed Feb. 11, 1977, Ser. No. 767,927
U.S. Cl. 13-2 R int. Cl. ${ }^{2}$ HOSB $3 / 10,3 / 40$

FIRE-PROTET 4,093,818 Peter Joh Trcive CELLULAR SERVICE DUCTING pleford tom of Fegland, and Deanis Wilinem Green, Stapleford, both of E
Continustion of Ser. No. 642,511, Dec. 19, 1975, abmandoned. This application Ane. 13, 1976, Ser. No. 714,224 Claiman priority, application United Kingdom, Dec. 20, 1974,

1. Heating apparatus for a furnace enclosure comprising: a thin-walled
electrical power means attached to said ends of said tube for heating said enclosure by initially passing a high amperage current of about 3800 amperes but amperes through said tube
combustion means attached to an end of said tube for heating switching means for actuating said electrical power means
while deactivating said combustion means without remov-
ing said combustion means from said tube and actuating said combustion means while deactivating said electrical power means wid tube
means from said tur
\qquad
4,093,817 SUPERCONDUCTOR
Klaun-Peter Jingert, and Ginter Ries, both of Karkerube, Ger-
many, aedgroors to Gevellechaft fur Kernforrechung m.b.H.
Karlerube, Germany
Claims priority, application Germany, Apr. 23, 1975, 251792 Clims priority, appicatition Germany, Apt,
Int. ${ }^{2}{ }^{2}$ H01B 12/00

3 Claims

1. In a superconductor having a plurality of superconductin filaments embedded in a solid conductor of normal conducting material, ssid filaments being disposed on different radii within the cross section of said conductor, and each of said filaments being twisted about the longitudinal axis of said conductor and forming a helix which is concentric with respect to said longitudinal axis; the improvement wherein: each of said filaments is twisted in a first sense of rotation and then in a second sense of rotation in respective aternate sections of eciual prederming first length, said section, whereby the coupling effects between filaments on circles of different radii produced by the components of time variable magnetic fields are suppressed.

An assembly, for accommodating service lines, whic comprises a length of ducting, a pair of metal frames each having a peripheral fit with the interior of the ducting,
frames being speced apart in the length direction of the ducting to define a thermal conduction restricting gap between the frames, a block of structural cellualer material so shaped, dimen sioned and positioned as to have ends which engage within the
frames and to extend from within one frame and acrows the position of the gap to within the other frame, said material position of the gap to within which define cells extending in the length direction of the ducting and permitting service lines to be passed through the block in said direction, and an intumescent said cells under fire conditions. said cells under fire conditions.
\qquad
CLOSED USER GROUP FACILTY
Kyuta Saito, Hoyn, and Pukuya Ichimo, Kodaira, both of Japan, enderiors to Nippon Telegraph and Telephone Pab
tion, Tokyo, Japan \quad Filed Nor. 17, 1976, Ser. No. 742,673 Claims priority, application Japen, Nor. 29, 1975, 50-143499 Int. C. ${ }^{2}$ HOLL 11/00

1. A closed user group facility having a closed user group of 1rminals accommodated in a switching network for transmismeans responsive to a terminal registration request from an originating one of the terminals for registering a terminating terminal corresponding to said request with its respec-
tive one of codes with which each of the terminals accom-
modated in the switching network can be respectively identified individually;
means for verifying whether or not the codes of the originating and terminating terminals have been mutually regis tered; and
result of verification of the mutual registration of the terminal codes.

ELECTRONIC ECHO ${ }^{4,093,820}$

gen Yonic echo generation equipment Memehi Shithehata Takatsulici; Kazuo Masaki, Osaka, and Nitanan Henibahara, Kivhiwada, all of Japan, assignors to Hammond Kabushikic Knisha, Onaka, Japan
Filed Jul. 11, 1977, Ser. No. 814,748 .
Claims priority, application Japan, Jul. 16, 1976, 51-085240 U.S. CI. 179-1 Jit C. ${ }^{2}$ H01R 3/00; H03H 7/30

```
O-
    ****
```


and for detecting the presence of
second output indicative thereof
pitch frequency paive thereof; (b) pitch frequency processor means, coupled to the output of said FM demodulator and the first output of said detector means for producing an output having an amplitude
proportional to the frequency of the speech signal at said nulls;
(c) pitch null duration processor means, coupled to the first output of said detector means, for producing an output having an amplitude proportional to the duration of said nulls; and
(d) ratio processor means, coupled to the first and second outputs of said detector means for producing an output
proportional to the ratio of the total duration of all of said nulls within a word to the total duration of the word.

LOUDSPEAKER PROTECTION CIRCUIT
Günter Steinle, Monchweller, Germany, assignor to Dual Gebriuder Steidinger, St. Georgen, Schwarzwild, Germany Claims priority, Mar. 1 , 197, Ser. No. 103,46 2676 Claims priority, application Germany, Apr. 8, 1976, 261530
Int. Cl. ${ }^{2}$ H02H $3 / 28$ U.S. Cl. 179-1 VL

1. An electronic echo sound generation system having direct path and a delay path, the delay path comprising: frequency modulation means for frequency modulating an input audio signal on a carrier and having an output,
a purality of analog shif registers operable to to time delay the
a plurality of analog shift registers operable to time delay the
modulated signal, coupled in series at a first end from the modulated signal, coupled in series at a first
output of the frequency modulation means;
output of the frequency modulation means;
amplifier means coupled in series with the analog shift registers for compensating for the insertion losses of the analog shift registers; and
frequency modulation detector means coupled from the
second end of the series coupled analog shift registers for second end of the series coupled analog shift registers for producing at an output an echo audio signal derived from
the input audio signal.

4,093,821
SPEECH ANALYZER FOR ANALYZING PITCH OR
FREOUENCY PERTURBATIONS IN INDIVIDUAL FPEECH PATTERN TO DETERMINE THE EMOTIONAL John Decatur Williamson, Box 763, Theodore,
John Decatur Williamson, Box 763, Theodore, Ala. 36582 Filed Jun. 14, 1977, Ser. No. 806,49
U.S. CI. 179-1 SC

12 Claims

7. A speech analyzer for analyzing an FM demodulated speech signal said analyzer comprising:
(a) detector means for receiving said FM demodulated signal
and for producing a first output indicative of nulls therein

1. A circuit for connection of a loudspeaker combination to an amplifier with a control device for emphasizing the amplifi-
cation in the range of the treble frequencies comprising a first loudspeaker means for reproduction of low and mid dle tone frequencies,
first electrical connection means for connecting said firs loudspeaker means for reproduction of the low and mid-
die tone frequencies to the amplifier dle tone frequencies to the amplifier
second loudspeaker means for reproduction of high-pitch econd electric
second loudspeaker means for reproduction of the highpitch frequencies to the amplifier,
a first resistor with positive temperature coefficien a second resistor with a fixed resistance being connected in coefficient, thereby constituting a parallel resistor combi nation,
said parallel resistor combination being connected in series with said second electrical connection means for connect ing said second loudspeaker means and substantially via said first resistor having a value which during norma that of said second loudspeaker means for reproduction of the high-pitch frequencies, and further having a tempera ture coefficient such that by exceeding of a permissible constant load voltage for said second loudspeaker means its resistance value increases with respect to said second means is not thermally overloaded, whereby said second resistor limits the resistance increase of said resistor com bination to a predetermined value.

4,003,823 TATISTICAL MULTIPLEXING SYSTEM FOR COMPUTER COMMUNICATIONS Wesley W. Chu, 16794 Charmel La., Pacific Palizades, Calif 90272
Continuation-in-part of Ser. No. 717,341, Aug, 24, 1976, chandoned. This application Jul. 5, 197,
Int. Cl.
U.S. C. 179-15 BA

1. A statistical multiplexing system for transmitting user messages from a plurality of terminals to at least one remote
location over at least one common communication channel, location over at least one common communication chanderating the effects of statistically excessive demand, second buffer memory means for forming information from the first buffer memory means into data blocks, a plurality of interface circuits respectively connected to the terminal, means for introducing
data from the terminals into said first buffer memory means, means for transferring said data from the first buffer memory means to the second buffer memory means, transmitter means or transmitting the data blocks from the second channel to the remote location; receiver means coupled to the common communication channel for receiving multiplexed data blocks from at least one remote location over the common communication circuit interposed between the receiver means and the terminal circerface circuits for distributing the received data blocks, and microprocessor means for controlling the flow of signals be for multiplexing the data blocks to be transmitted over the common communication channel, and for controlling the flow of signals from the receiver means to the demultiplexing circuil for demultiplexing data blocks received over

4,093,824

RECEIVER HAVING A PHASE-LOCKED LOOP Peul Grosiean, Batarie, N.Y., assignor to GTE Sylvania Incorporated, Stamford, Coon.

Filed Nor. 15, 1976, Ser. No. 741,897 U.S. C. 179-15 $\mathrm{BT}^{\text {Int. Cl. }}{ }^{2} \mathrm{HO4H} 5 / 00$

In a receiver having a phase-locked loop demodulator data which causes a signal to appear repeatedly in a particular
comprising a phase detector, a VCO, and a loop filter circuit for demodulating a carrier signal modulated by a baseband signal which is derived from a pluraiity of reconstructing said signal components, the loop filter circuit comprising:
first resistor connected beiween a source of potential voltage;
resistive-capacitive branch cound, said bretween the input of second, variable, resistor and series-connected capacitor, wherein the loop filter circuit is characterized by a damping factor, Z, whose value is determined by the value of the variable resistive clement and whed to effect optimum the variable resistive element insodulated baseband signal, thereby allowing optimum separation of the reconstructed signal components.

DATA TRANSMISNSON SYSTEM
David John Gladstone, Chigwell, and Peter Andrew Moidram, Aylesbury, both of England, assignors to Post Office, London, England Filed Mar. 1, 1977, Ser. No. 773,265 Claims priority, application United Kingdom, Mar. 11, 1976 9870/76
Ins. C. ${ }^{2}$ H04J 3/06

1. A data transmission system for transmitting data between a first unit and a second unit comprising first digital multiplex way means to first digital demultiplex means located at said second unit, clock pulse generating means in the first unit connected to the first digital multiplex means to apply clock pulses thereto to effect the multiplexing of data on the first data clock pulse generating means to the second unit to enable clock pulses from the clock pulse generating means to be applied to the first digital demultiplex means to effect the demultiplexing of data received via the first data highway
means, second digital multiplex means located in the second means, second digital multiplex means locans to second digital demultiplex means located in the first unit, the second miultiplex means being coupled to the first clock highway means to effect multiplexing of data on to the second data highway means in responsend clock highway means connected from the nirst clock highway means at the second unit to the first unit, the second digital demultiplex means being connected to the end of the second clock highway means at the first unit to effect demultiplexing of data received via the second data highway means in response to the clock signal received via the source of data which causes a signal to appear repeatedly in a particular time slot of each multiplex frame of the first multi-
time slot of each multiplex frame of the second digital multi- output time-slots of a second set of output series PCM juncplex m
data. parallelizing memprising
parallelizing means for receiving simultaneously in serial form said input time-slots from said input series PCM junctions and delivering successively in parallel form sai
input time-slots; ime-division switch
slots from said parallelizing means according to a firs order, switching said input time-slots into said output time-slots according to a second order, and deliverin successively in parallel form said output time-slots accord
ing to said second order and
serializing means for receiving
switching means said output time-slots, for timedivisio output series PCM junction for a time-slot besed the position of said time-slot in the succession of outpu time-slots, and for delivering simultaneously in serial form said output time-slots to said output series PCM junctions.

4,093,828

SWITCHING NETWORES, E.G. SPACE-DIVISION
COCques Baudin, Lannion, France
Jecques Bavdin, Lannion, Frrance, , madgnor to Societe Lannion-
niise d'Electronique SLE-Cterel S. naise d'Electronique SLE-Citerel S. A., Lennion, F
Filed Oct. 6, 1976, Ser. No. 730,117 Filed Oct. 6, 1976, Ser. No. 130,117
Claims priority, application France, Oct. 15, 1975, 7531590 U.S. Cl. 179-18 FC

14 Caims

1. An interface arrangement for adapting a register normally responsive to pulse signaling appearing at the register's line terminals for operation with a converter responsive to combi-
natorial a.c. signals in which the line relay of the register normally directly controls pulse counting means in the regis-
er, said arrangement comprising:
means interposed between said line relay and said line termi-
nals for allowing seid line relay nals for allowing said line relay continuously to provide tion of said converter, and
means interposed at said line relay between said pulse counting means and said converter for permitting said converter directly to control said pulse counting means independently of said line relay.

4,093,827
SYMMETRICAL TIME DIVISION MATRIX AND A
NETWORE EQUIPPED WITH THN KIND OF MATRIX
Pierre Charrneol; Jecques Hauri, and Clavde Athenes, all
Paris, Frace, asplenors to Tiomson-CSF, Paris, France
Filed Feb. 14, 1977, Ser. No. 768,632
Cluims priority, application France, Feb. 17, 1976, 76 04345;
U.S. C. 179-15 AT Int. C. ${ }^{2}$ H04Q 1//04

15 Claims

1. A switching network comprising a matrix of cross-point witches disposed in a pattern at selected ones of the crosspoints in an array of mutually orthogonal inlets and outlests; wherein the pattern of selected cross-points is built up from a point switches distributed among the sixteen crose-points formed by a group of four consecutive inlets crossing a prow of our consecutive outlets, either the group of inlets or the row of outlets being disposed in four consecutively numbered lines;
the basic layouts being of two types: a first type having is the basic layouts being of two types: a first type having is
switches at the end cross-points of its odd numbered lines and at the inner cross-points of its even numbered lines, and a second type having its switches at its other cross-poinss; basic ayouts of both types being disposed in a pattern over the array n a single matrix, the pattern of bosic layout are arranged in a single matrix, the pattern of basic layout types being a
binary pattern such that the matrix has a first line of alternating ypes of layout, a second line of alternating pairs of layout ypes and so on, each n-th line having at least one set of 2^{n-1} onsecutive layouts of the same type, said lines in which the numbered lines within the layouts.

SINGLE LINE TELEPHONE HOLD CIRCUIT Robert LL. Silberman, 470 Groveland Ave., Highland Park, ml.
60035

Filed Mar. 14, 1977, Ser. No. 777,067
U.S. C. 179-81R Int. C. ${ }^{2}$ HOMM $1 / 00$
auxiliary hold circuit for maintaining line-current when said ductor coupling device whenever said operating signal is pres station set is placed in an on-hook state to prevent undesired ent on said control conductor
disconnection of an active call at said central exchange, said
hold circuit comprising, in combination
first and second semiconductor switching devices serially connected with a shunt impedance across said two-wire
$\underset{\text { means }}{ }$
for rendering said first semiconductor switching

device conductive whenever the voltage across said twowire line is less than a predetermined value;
manually-operated switching means for rendering said second semiconductor switching device conductive to connect said shunt impedance across said line; and

- control circuit for rendering said second device nonconductive whenever the voltage across said line exhibits a
substantial decrease while said shunt impedance is connected across said line.

4,093,830
KEY TELEPHONE SYSTEM LINE CIRCUIT
Jeffrey Pappas, Morden, Canada, saignor to Vortex Dealgn Ltin, Canada FIled Jan. 19, 1977, Ser. No. 760,747
US. Cl. 179-99 Int. C. ${ }^{2}$ H04M 1/72
3 Clinims

1. In combination with a key telephone system in which a telephone station-set is linked to a central exchange by at least one transmission line and in which said station-set includes wwitching means for applying an operating signal to a control conductor whenever said station-set is actively connected to said line, a line card circuit for supervising the operation of said
line which comprises, in combination, first and second relays, line which comprises, in combination, first and second relays, circuit operatively connected to said line and an output circuit operatively connected to energize said first relay upon the occurrence of ringing signals on said line, a second optical semiconductor coupling device having an input circuit operaively connected in series with said line and having an output circuit operatively connected to energize both said first and
said second relays when line current flows in said line, and said second relays when line current flows in said line, and a control conductor for disabling said second optical semicon-

TRANSCRIBER HAVING SELECTABLE WORD Walter M. Sharp REPRODUCTION RATE
 bus, Ohio

Flied Oct. 12, 1976, Ser. No. 731,462 U.S. C. $179-100.1$ VC ${ }^{\text {Int. Cl. }}{ }^{\text {G11B }} 19 / 20,27 / 22 \quad 16$ Claims

1. An apparatus for controlling the average word reproduc tion rate from a recording which is mounted to a playback means including an electrically operable drive motor and sound pickup and output means, said apparatus providing an operating cycle comprising alternate playback intervals and stopped intervals and comprising:
(a) means connected to said sound pickup and output means for detecting and counting syllables reproduced during a for detecting and
playback interval;
clock timing means for counting the elapsed time from the beginning of said cycle;
(c) rate selector means for selecting a time rate of word reproduction;
d) circuit means connected to the outputs of said rate selector means and said syllable counter means for computing a total cycle time;
(e) time comparator means connected to the outputs of said computing circuit means and said clock timing means fo signalling the coincidence of the computed cycle time and the clock time; and
(f) control logic means having a motor drive control output
coupled to said drive motor and having an input con coupled to said drive motor and having an input con-
nected to said time comparator means, for at times stop ping said playback and for initiating playback in response to the coincidence of said elapsed time and said computed total cycle time.
2. A method for playback of a recording at a selected (a) selecting a roproction rate, said method comprising.
(b) initiating and subsequently stopping the playback of a recording;
(c) counting the time elapsed from said initiating of said playback;
(d) detecting and counting the syllables reproduced during said playback
(c) computing a total cycle time by dividing said counted syllables by ssid selected reproduction rate; and (f) reinitating said playback when said counted time substan tially equals said computed time.

PROGRAMMABLE RECORD CHANGER Anson IEMecson, Chicago; Howard J. M.orrison, Deerfield, both
of Ill.; Ralph H. Beer, Manchester N.H. Arlington Heights, and Albert G. Keller, Chicago, both of III., assignors to Marrin Glese \& Associates, CCicago, both.

Filed Apr. 30, 1976, Ser. No. 682,079
U.S. Cl. 179-100.4 Dint C. ${ }^{2}$ G11B $19 / 14$ (39 Claims

1. A programmable phonograph record player providing automatic sound track selection from a record having a plural band land areas, comprising:
an electro-ptic scanner including a source of radiation and an electro-optic scanner including a source of radiation and surface of a record;
land sensing means connected to said detector and including means for developing a threshold signal which varies with
the record surface reflectivity characteristics and means controlled in part by said threshold developing means for detecting the presence of a land area below the stylus by providing an output signal as said stylus encounters said land area;
means for storing a predetermined selection of sound track bands to be played; and
ing the stylus on the reco said output signal for positiontrack bands an the record to play the preselected sound mands as stored in said storage means.

MOVING COIL CARTRIDGE WITH MAGNETIC MEANS TO AFFX STYLUS HOLDER TO CARTRIDGE CASING Kenkichi Trukrmoto, 47, Koyamashimofusa-cho, Kitra-Ku, Kyoto-Shi, Kyoto-Fu, Japan
Claims priots, Ju. 13, 1976, Ser. No. 704,802 Claims priority, application Japan, Jul. 15, 1975, 50-86422 U.S. C. 179-100.41 D

1. A moving coil cartridge device comprising:
a. a vibrator section (B) including a cantilever stylus with a stylus holder case (10) and stylus holding means (10b, 10c) b. a cartridge casing
(B), said cartridge casing (40) having retaining members (40a, 40b) for retaining said holding means ($10 b, 10 c$); generator means (A) within said cartridge casing (40) for translating said stylus motion into electrical energy, said
generator means (A) having a magnet (10) and yokes generator means (A) having a magnet (16) and yokes
$(17,18)$ with an air gap (G) for providing a magnetic field therein, a moving coil (15a) coupled to said vibrator section (B) in said air gap (G), a recess (20) in one of said yokes (17); and,
d. a magnet member (14) on said stylus holder case (10) so
disposed as to be trtacted by said disposed as to be attracted by said magnet (19) and enter generator means (A).

2. In a switch operating mechanism having a housing, a door overlying an access opening, the door being mounted for movement between a closed and an open position, and a mechanism control switch mounted externally on the housing, an
improved protective cover arrangement comprising. improved protective cover arrangement comprising:
hinge means mounted on the housing adjacent the cover means mounted on said hinge means for movement between first and second locations and for pivotal movement at both locations between a closed position overly-
ing the switch and an open position ing the switch and an open position exposing the switch; flange means mounted on the door adjacent said cover means for engaging said cover means when said cover
means is in its first location so that said cover retained in its closed position when the door is closed and for disengaging said cover means when said cover means is moved to its second location so that said cover mean can be pivoted to its open position even when the door is closed, said flange means moving out of engagement with
said cover means when the door is opened cover means can be pivoted to its open position when said cover means is in its first location; and
locking means on said hinge means for receiving a remov
able lock, the presence of the lock in said locking meal able lock, the presence of the lock in said locking means preventing said cover means from being moved from its first location to its second location, and the absence of the be moved to its second locationting said cover means to

ROTATION SENSOR SWITCH John B. Sevec, Joliet, III., assignor to The United States of
America as represented by the United States Department of Energy, Washington, D.C.

Filed Apro. 4, 1977, Ser. No. 784,401
Int. C1. ${ }^{2}$ H01H 35/02
U.S. C. $200-61.45 \mathrm{M}$

3 Claims

1. A switch to operate an apparatus for providing an alarm when a rotating shaft slows comprising
a pair of ferromagnetic weights;
pair of electrically conducting brackets, each connected at a first end to one of the pair of ferromagnetic weights;
pair of hinges connected in a fixed spatial relation to the rotating shaft and equidistant from the axis of rotation each one of the pair of hinges connected to a second end of one of the pair of electrically conducting brackets, the hinges placed to permit rotation of the ferromagnetic
weights about the hinges in a plane containing the axis of rotation of the rotating shaft, the hinges further supporting the weights in balanced rotation in a plane perpendicular to the axis of the rotating shaft;
conducting disk disposed concentrically with and perpen-
dicular to the axis of the rotating shaft at a distance from the plane perpendicular to the axis of the shaft that is less than the length of the combination of one each of the weights and the brackets; and
disk magnet touching the conducting disk on a side away from the weights, the disk magnet disposed and magneized in a direction to attract the weights toward the anduacted by the disk magnet to the conducting disk to attracted by the disk magnet to the conducting disk to make teccuical the weights, the brackets, and the hinges
disk throug when the rotating shaft slows.

ACCELERATION SENSITIVE SWITCH
Robert J. Emy, Olathe, and Robert P. Moore, Lawrence, both of
Kans., amsignors to King Radio Corporation, Olathe, Kans. Filed Jun. 28, 1976, Ser. No. 700,501
In ${ }^{2}$ H01H $35 / 14,67 / 02$
U.S. C1. 200-61.53

3 Clxims

1. An acceleration sensitive device comprising:
a housing having a spool-type post with a bore;
a ferromagnetic mass supported within said bore for movea ferromagnetic mass supported within said bore for move-
ment therein along an axis of acceleration; a pair of springs engaging said housing and opposite ends of said mass in a manner to resiliently urge said mass toward a preselected stable position along said axis of acceleration, said mass being displaceable in both directions along deceleration in the direction of said axis;
indicating means providing an indication of the displacement of said mass and the direction of displacement from said stable posiuion; and
test means for displacing said mass from its stable position
independently of acceleration to test the device, said test means including a pair of conductive coils wound concenends of said post and arranged to provide respective fields

having centers located along said axis on opposite sides of said stable position, whereby application of current to the respective coils acts tiole isplace sition independently of acceleration forces.

2IL CIRCUTT- 4,093,837
OIL CIRCUIT-BREAKER PUMP.ASSEMBLY WITH IMPROVED SHUNTING CONTACT STRUCTURE ichard J. Bohinc, Hempried Townhip, Westmoreland Comy; Carrie W. Tragemer, Murrysille, Westmoreland County;
 Francis R. Rechi, O'H Hra Tomphip, Allesteny Conaty, all of Ph., asignors to Weestingtomee Electric Corp, Phtt

Int. C1. ${ }^{2} \mathrm{H} 01 \mathrm{H} 33 / 92$
U.S. C. $200-150 \mathrm{G}$

7 Clames

1. The combination in an oil-type circuit-interrupter of an arcing-grid structure having an adjacently-disposed oil-pumping piston-assembly, said arcing grid structure having a pair of separable arcing contacts $(\mathbf{1 3}, 20)$ disposed therewithin, said oil pumping-assembly including an operating cylinder and a mov cylinder, said movable rigid silldable within said operating larged central aperature provided therein piston having an en driving said piston and actuated externally of the oil-pumping iston assembly, said piston rod extending with clearance hrough the enlarged hole provided in the rigid movable pis ton, and a resilient connection provided between the rigi
piston-rod and the movable rigid piston including one or more ture of the body of the tubing, means to adjust the ratio of the resilient washers surrounding said rigid piston rod and dis- power applied at said low frequency relative to the power posed on both sides of said eniarged hole in the piston for applied at the high frequency so that said body and said thickccommodating misalignment between the bore in the sur- ened portion attain substantially the same predetermined final rounding operating cylinder and the movable
uninhibited smooth circuit-breaker operation.

CIRCUIT BREAKER HOUSING, GRIP MEANS AND BUS TERMINAL
Romald Nicol, Trenton, N.J. anignor to Heineme Company, Treaton, N.J. Company, Trenton, N.J. which is a divisision of Ser. No. 384,702, Aug. 1, 1973, Pat. No. 3,863,042. This application Jan. 7, 1976, Ser. No. 646,988 U.S. Cl. 200-303 Int. Cl. ${ }^{2}$ H01H 9/02

1 Cleim

1. A circuit breaker comprising
a case defining a chamber enclosing a linkage, separable for opening said contacts on predetermined electrica
conditions,
said case being formed by two half-cases and including an approximately right angle wall structure defined by two
side walls and an end wall defining a space thereberween and two openings on two sides of said case at approximately a right angle to each other,
said space being in communication with sata
through a further opening in said end wall,
through a further opening in said end wall, side walls being opposed to each other,
a unitary switch device trapped between said side walls,
said switch device having a housing interfitting with said side walls so as to capture said housing therebetween,
said side walls and said end wall including complementary projections and recesses restraining said switch device in projections and recessecte movement, and
all directions of possible movement, and
said switch device extending through said two openings of
said two sides.

$$
4,093,839
$$

APPARATUS AND METHOD
4,093 FOR INDUCTIVELY

HEATING METALLIC TUBNG HAVNG AN UPSET
Louis J. Moliterno, Girard, amd Revel E. Jennings, Warren, both of Ohio, assignors to Ajax Magnethermic Corporation, Warren, Ohio

$$
\begin{aligned}
& \text { iled Apr. 2, 1976, Ser. No. 672,981 } \\
& \text { Int. C.2 H05B } 5 / 06
\end{aligned}
$$

U.S. C. 219-8.5

$$
\begin{aligned}
& \text { Apr. 2, 1976, Ser. No. } 672 \\
& \text { Int. CL. }{ }^{2} \text { H05B 5/06 }
\end{aligned}
$$

1. Apparatus for progressively inductively heating metallic 1. Apparatus for progresively having at least one relatively thickened portion, comprising at least one induction heating coil energized with
power at a relatively high frequency which will cause the power at a relaively high frequency which will cause the
temperature of the body of the tubing to rise at a faster rate temperature of the body of the tubing to rise at a faster rate induction heating coil energized with power at a relatitively low portion of the tubing to rise at a faster rate than the tempera-
temperature upon exiting from said apparatus.
2. Method for progressively inductively heating sections of metallic tubing, each section having at least one relatively thickened portion, comprising passing said tubing through at least one induction heating coil energized with power at a relatively high frequency causing the temperature of the body

of the tubing to rise at a faster rate than the temperature of said thickened portion, and passing said tubing through at least one induction heating coil energized with power at a relatively low
frequency causing the temperature of said thickened portion of frequency causing the temperature of said thickened portion of
the tubing to rise at a faster rate than the temperature of the body, the ratio of the power applied at said low frequency relative to the power applied at said high frequency being such that said body and said thickened portion of each section attain substantially the same predetermined final temperature upon exiting from the last of said coils.

PARALLEL ARRANGEMENT OF APPLICATOR AND PROCESS FOR APPLYING MICROWAVES TO A MATERIAL
Ouirier A. Jean, 12 avenue Lavoisier, 78600 Maibons Laftrte, and Georgea Rousy, 17 rue Erneat Renan, 54520 Laxou, both France Filed Jun. 24, 1976, Ser. No. 699,435 Chims priority, application France, Jul. 4, 1975, 7521064 U.S. C. 219-10.55 \mathbf{F} Int. C.2 ${ }^{2}$ H05B 9/06

1. Applicator for applying microwaves to a material divided two waveguides electromach has its inlet face comprising wo waveguides electromagnetically decoupled from each means for generating microwaves and for sending them onto
said inlet faces so as to obtain two separate beams re means for shifting the phase of said beams, so as to obtain in phase beams,
pheass for returning said in phase beams onto the inlet faces.
OW.TEMPERA, 4,093,841
LOW-TEMPERATURE SLOW-COOKING MICROWAVE
Raymond L. Dills, Louisrille, Ky, emignor to General Electric Company, Louisrille

y, Louisville, Ky, Filed Aug. 19,
 Filed Aug. 19, 1976, Ser. No. 716,015

 U.S. C. $219-10.55 \mathrm{E}$

1. In a microwave oven for slow cooking, said oven having walls forming an oven cooking cavity, a source of microwave energy, and means for coupling the energy from the micro wave source to the oven cavity, the improvement comprising a closed cooking vessel within the microwave oven cavity fo
supporting food to be heated throughout simultaneously, cir cuitry for adjusting the microwave energy to a predetermined reduced power level suitable for simmer-cooking and mean for monitoring the temperature of the food within the vessel and maintaining it to just below the boiling point, whereby the maximum sood cemperatura slow-cooking rate.

PORTED ENGINE CYLINDER WITH SELECTIVELY HARDENED BORE
David I. Seott, Homewood, IIl., sedigor to General Motors Corporation, Detrolt, Mich.
Filed Jan. 19, 1976, Ser. No. 649,969 Filed Jan. 19, 1976 , Ser. No.
Int. ${ }^{2}$ B23K $9 / 00$
U.S. C. 219-121 LM

4 Claims

1. The method of making a scuff resista
2. providing a coolant jacketed cast iron cylinder liner body defining a generally cylindrical interior wall with a plurality of ports through said wall and spaced al machining finish said liner body, including the inner surface
of said wall, to form approximately cylindrical upper and lower bore portions respectively above and below said ports and an annular band at and extending siighty yabove
and below said ports of slightly greater inner diameter than that of said upper and lower bore portions and blended into said adjacent bore portions to form a blended port relief area between said bore portions, and fully case hardening only the inner surface of said blended port relief area through localized heating to hardening
temperature by traversing a laser beam across said inner surface and subsequent ambient cooling such that a scuff resistant hardened surface is provided in said port relief ares without significant distortion of saic cast iron cyinder liner body and its previously machined surfaces.

4,093,843

ELECTRON BEAM WELDING MACHINE George Adam Lindstrom, Greenwood, and Robert Charles Holporation, New York, N.Y. Filed Mar. 17, 1977, Ser. No. 778,621
Int. C. ${ }^{2}$ B23K1 $9 / 00$ U.S. C. 219-121 EB

1. An electron beam welding machine comprising (a) a moveable weld table containing therein a plurality of openings each communicating with a weld chamber for housing parts to be welded and each opening being provided for passing an electron beam therethrough and for
evacuating said chambers to welding vacuum; evacuating said a top surface of said weld table; said seal plate having a flat seal and bearing surface which is coextensive with at least a substantial portion of the top surface of said weld table surrounding said openings and which is composed of a
low friction, compressible, wear resistant material, said low friction, compressible, wear resistant material, said
seal plate being in intimate contact with the top surface of said table and having a first pump chamber and a separate second pump chamber therein;
(c) means for moving said weld table in an indexing fashion against said seal and bearing surface;
(d) first vacuum pump means connected to the first pump (d) first vacuum pump means connected to the first pump
chamber in said seal plate to create a vacuum in said weld chambers as such chambers are indexed into registry with said pump chamber;
(e) second vacuum pump means connected to such second pump chamber in said seal plate to at least maintain said vacuum, the arrangement being such that said seal plate is table without destroying said vacuum; and
(f) an electron beam welding gun connected to said seal plate at said second pump chamber for passing an electron beam
from said gun through said second pump chamber into
said weld chambers for welding the parts therein. said weld chambers for welding the parts therein.

ARC LENGTH MEASUREMENT AND CONTROL BY OPTICAL SCANNING
James Erwin Fellure, Heath, and Eadre Lealie Toth, Lancaster,
both of Ohio, aedgaors to Arcair Company, Lancanter, Ohio
Filed Sep. 14, 1976, Ser. No. 723,362
US. C. 219-124.02
14 Claims

1. An optical system for controlling the length of a welding arc between a pair of electrodes comprising
optical means for optically sensing said arc and producing
arc signals related to said arc,
reference setting means for producing a
corresponding to a desired arc length,
corresponding to a desired arc length,
difference means coupled to said optice difference means coupled to said optical means and said reference setting means and responsive to said arc signals
for measuring the arc length and producing a difference signal related to the difference between said measured arc length and ssid desired arc length,
length and said desired arc length,
a plurality of control devices each operable for changing the
length of said arc in accordance with a respective set point controlling means including incrementing means responsive to said difference signal for producing a set point signal for each control device by an updating function of a prior respective set point signal.

CONTROLLER FOR DC ARC WELDING GENERATORS Nelson Hairerove, Sr., 5411 Northington, Houston, Tex. 77039 Continuation-in-part of Ser. No. 588,200, Jun. 19, 1975, Continuation-in-part of Ser. No. $\mathbf{3 6 8} \mathbf{2 0 0}$, Jen. $19,761,580$
U.S. C. 219-132 Int. C. ${ }^{2}$ B23K $9 / 10$ C. CL. ${ }^{\text {B23K }} 9 / 10$ Cleims 1. A controller for remotely starting and automatically stopping an internal combustion engine coupled to a DC generator han supplies DC power to the welding cables of an arc weldintake manifold, comprising in combination: a DC power source for providing a control current to said
welding circuit, a current-blocking device for blocking said control current from said generator, and a curren sensing device for sensing the flow of welding current, a vacuum-actuated switching means coupled to said intake
manifold and being responsive to the vacuum produced therein,
a switching circuit coupled to and controlled by said vacu-um-actuated switching means,
a starter coupled to said switching circuit,
an ignition coupled to said switching circuit,
a timer having a predetermined timing interval and being
coupled (1) to said switching circuit, (2) to said welding circuit, and (3) to said ignition,
said swicching circuik, upon clab corrent, continuity between
tion and said starter, thereby enabling the starting of said engine, and

said timer stopping said engine if welding current does not flow through said cables at any time during the timing interval of said timer

MULTI-JET ELECTRODE BOILLER Milton Eaton, Shavinigana, Canada, avignor to General Electric Company, Carmel, Ind

Filed Mar. 15, 1976, Ser. No. 666,894
U.S. Cl. 219-286 15 Clime

1. An electrode boiler comprising: at least one vertically elongated steam generating compartment surrounded by a control compartment; means for transferring water between
said compartments to provide a regulated water level in said a least one steam generating compartment for regulating the load; jet forming means positioned above the regulated water level in said at least one steam generating compartment and formed to direct a plurality of electrode forming jets of water downwardly within said at least one stream generating com partment for impingement on the surface of the water therein
means for providing said jet forming means with a supply of means for providing said jet forming means with a supply o
water; means for connecting said jet forming means to a source of electric energy and means forming an electric neutral posi-
tioned below the minimum regulated water level in said at least against but unsecured to the other, whereby it tends to retum one steam generating compartment; so that electric current to cir under the drawer and stressed to oval shape by the jets of water, will heat the water.

TEMPERATURE CONTROL SYSTEM FOR ELECTRIC
TEMPERATURE CONTROL SYSER FOR ELECTRIC John A. Walker, and Dimitri S. Dimitri, both of Northridge, Calif., assignors to Datametrica Corporation, Van Nuys, Casir. Divich is a division of Ser. No. 385,275, Aug. 3, 1973, Pat. No. which is ${ }^{3,909} 588$. This application Mar. 19, 1976, Ser. No. 668,470

Claims

1. For use with an electric fluid heater having spaced-apar electrodes for applying electrical current to a fluid, and having a temperature sensor forture control system comprising:
(a) power control means connectable to the electrodes and operable for applying power to the electrodes, said powe control means being responsive to application of a contro
signal thereto for controlling the electric power output in signal thereto for controlling the electric power output in
accordance with an electrical characteristic of the control
signal; and,
(b) control circuit means connected to said power control means and adapted to be connected to the temperature sensor, said control circuit means normally generating the control signal, said control circuit means being responsiv to signals from the temperature sensor for altering the electrical characteristics of the control signa whet valu, the temperature of the fluid varies rom a presen value,
said control circuit means including means for sensing the saicectric current supplied to the electrodes, and further including a power limiting circuit, responsive to the sensed electric current for output generating a power
detection signal whose magnitude represents the power detection signal whose magnitude represents the powe
being applied to the electrodes, said control circuit mean being applied to the electrodes, ser detection signal exceeding
being responsive to said power being responsive for altering the control signal to decreas a preset value for alderie the electrodes.

4,093,848
TOY CASH REGISTER CONSTRUCTION James E. Tbomson, Pleesant Lake, Mich, assignor to Westert James E. Thomson, Plensant Lake, Mich,
Stamping Corporation, Jackson, Mich. Stamping Corporateon, Jecr. No. 501,166, Aug. 28, 1974, Pat. No. 3,957,198. This application Apr. 19, 1976, Ser. No. 677,92 Int. C1. ${ }^{2}$ G07G 1/00; G06C 27/00
U.S. C. 235-1 E

1. In a toy cash register or the like having a pair of compo1. In a toy cash register or the lize having a pair of compo-
nents which comprise a housing and a drawer horizontally nents which comprise a
slidable in the housing, means biasing the drawer to a projected slidation with respect to the housing, characterized by an initially straight spring wire which tends to straighten when relaxed, said two ends to one of said components and reacting

drawer and housing when the drawer is closed, said spring wire biasing the drawer to projected position due to the ten dency of the wire to assume a circular shape.

AUTOMATIC BLOOD ANALYZING SYSTEM Robert Baxter, Jr,, Stratford; Frank J. Antoci, Milford; William J. Tynes, III, Stamford; Prequanle M. Petrucci, Orange, and Baker Chemical Co., Phillipobura, N.J.
Filed Apr. 28, 1976, Ser. No. 681,285 U.S. C. 235-92 PC

23 CTrims

1. A blood analysis system adapted to receive and analyze a lood sample comprising:
ing eer means responsive to the blood sample for providing electrical pulses representative of blood cells passing fluid path coupled to the transducer means and through which the blood sample flows after flowing through the transducer means;
first sensing means located along the fluid path for providing a first signal representative of the flow of a first predeterhrough the fluid path;
second sensing means located along the fluid path for providing a second signal representative of the flow of a second
eans responsive to the electrical pulses and to the firs signal for providing a first count of blood cell concenirasignal for providing a first count of blood cell concentra-
tion in the first predetermined sample volume; the means for providing said first representation being further responsive to the electrical pulses and the the second
signal for providing a second count of the blood cell

concen ume;

ume;
means for comparing the first and provide a determination of when said first and second counts differ by less than a predetermined difference; and
means operative only upon said determination and responsive to said first and second counts for providing as an output an average of said counts.

RATEMETER WHICH CALCULATES THE RECIPROCAL OF THE PERIOD
Thomas A. Karnowald, Milwaukee, and Michael W. Shawaluk, Watertown, both of Wis, asignors to Cutier-Hammer, Inc, Milwaukee, Wis.
Filed Feb. 22, 1977, Ser. No. 71, 169
Int. C. ${ }^{2}$ G01R $23 / 02$
U.S. CI. 235-92 TF Int. C. ${ }^{2}$ G01R 23/02 35 Claims

1. A ratemeter comprising
2. A ratemeter comprising:
clock means generating clock pulses at a known frequency; means responsive to recurring input events to generate event pulses defining event periods;
period counter means for accumulating said clock pulses;
means responsive to said event pulses for dividing the con tents of said period counter means accumulated during a previous event period into a known constant simultaof clock pulses occurring in the present event period; and means responsive to said dividing means to provide a signal representative of the rate of recurrence of said input
events. events.

4,093,851

MEANS AND METHODS FOR DETECTING THE OSSIBILITY OF A FAILURE OCCURRING IN THE OPERATION OF A DIGITAL CIRCUIT Conporation, Detroit, Moleh.

Filed Dee. 27, 1976, Ser. No. 754,31
U.S. C. 235-302.2
 1. Potential failure detecting means for detecting the possi-
bility of a potential failure occurring in a digital circuit while the circuit is operating in a data processing system in a normal circuit is operating in a data processing system in a norma
manner without failure, said potential failure detecting means comprising:
means co
means coupled to a communication line provided between said data processing system and said digital circuit for
deriving a test signal indicative of a signal communicated between said digital circuit and said system during actual operation of said circuit in said system;
criteria establishing means for generating a potential failure criteria signal indicative of predetermined criteria for said test signal, said criteria signal having a predetermined
timing characteristic; timing characteristic;
said test signal and said criteria signal; and
indicating means responsive to said comparing means for providing an indication of whether said test signal meets
said predetermined criteria. said predetermined criteria.

Norman Hunt, Leamington Spa, England, asedigor to Aeeocinted Engineering Limited, Leamington S. Sa, Emgnand
Flied Feb. 22, 1977, Ser. No. 770,363
${ }_{9035 / 76}$ Claims priorty, application United Kingdom, Mar. 5, 1976, 9035/76
U.S. CI. 250-231 SE ${ }^{\text {Int. Cl. }{ }^{2} \text { G01D } 5 / 34}$

1. A rotational speed transducer comprising rotatable means;
means mounting said rotatable means such that it can rotate at a speed related to a rotational speed input:
having a plurality of light reflector al tric current.
means mounting said plurality of reflector portions at an angle to the axis of rotation of said rotatable means; lamp means for emitting light;
photocell means for receiving light from said lamp means
and providing an electrical output in response thereto; and means mounting said lamp means and said photocell
means in relation to said rotatable means whereby to reflect light emitted by said lamp means from a first reflector portion to a second reflector portion and from said
latter portion to said photocell means each time said first latter portion to said photocell means each time said first reflector portion comes into a provide from said photocell means an electrical output which is a measure of the rotational speed input.

2. A photoconductor-switched electroluminescent matrix panel element for use in a laser addressed display system comprising: a photoconducting layer, deposited on a transparent posed parallel plate capacitor structure having at least two dielectric layers with a common electrode, said dielectric layers containing phosphor particles which emit visible radiation upon excitation by an alternating electric current; said photoconducting layer having a dark impedance such that insufficient alternating current may pass through said capacitor
structure to cause significant visible radiation light impedance such that when addressed by an incident light pulse provided by a laser source sufficient alternating current may pass through said capacitor structure to cause visible radiation emission; said photoconductor layer being adapted to maintain a sufficiently low light impedance, for a time period after said light pulse, to permit feedback of light emitted from one of said dielectric layers to build up and thereby sustain said
low light impedance until interruption of said alternating elec-
tric current.

LASER ADDRESSED DISPLAY
Graham Olive, Vancouver, Royston Erreat Walter Lake, Richmond, and Jooeph Guy Gilles Dionne, Ottawa, all of Canada, sasignors to Her Majesty the Quocen in right of Canada man
represented by the Miniter of Nantional Defence, Ottava, Canada Filed Sep. 29, 1976, Ser. No. 727,882 Filed Sep. 29, 1976, Ser. No. 727,882
Claims priority, 2 ppplication Canada, Jen. 30, 1976, 24634 U.S. C. 250-213 A $\quad 12$ Claims

WELL LOGGING SONDE INCLUDING A LINEAR PARTICLE AOCELERATOR Ronald E. Turcotte, and John S. Wash, both of Ridgefield, Nenn, York, N.Y. Continuation of Ser. No. 580,071, May 22, 1975, abardomed This application Nor. 16, 1976, Ser. No. 742,403
U.S. C. $250-269$
S. C. $250-269 \quad 26$ Cluims Nov. 16, 1976 Ser.
Int. C. ${ }^{2}$ G01V 5/00 1. A method of logging the media surrounding a borehole from the exit end of a device which separates as ions emerging accelerating charged particles to high energy levels number of individual cavities containing an accelerating field;
controlling the acceleration of said particles in response to variations of at least one condition of said cavities; bombarding a target with the accelerated particles to emit

detecting nuclear radiation returning to the borehole as a result of the interaction of the emitted radiation and the surrounding media.

4,093,855
DETECTOR FOR HEAVY IONS FOLLOWING MASS ANALYSIS
Wade L. Fite, Pittsburgh, and Richard L. Myers, Harmony, both
 of Pa, man
bargh, Pa .
Continuation of Ser. No. 465,163, Apr. 29, 1974, Pat. No. Dec. 29,1972 , Ph in continuantion-h.pert of Ser. No. 319,42, The porton of the Ser. No. 711,231 Npication Ang. 3, 1976,
 hass been disclaimed.
US. CI. $250-282$
surface evolving from said hot surface as fragment ions and producing address signals signaling the locations of radioactive
analyzing the fragment ions so produced by separating said fragment ions by their charge-to-mass ratios.

4,093,856

METHOD OF AND APPARATUS FOR THE ELECTROSTATIC EXCTTATION OF IONS Reiner L. Stenzel, Pacific Palisades, Calif., assognor to TRW Flled Jun. 9, 1976, Ser. No. 694,492
U.S. C. $250-293$

15 Claims

1. Apparatus for imparting more energy to a selected one of
2. Apparatus for imparting more energy to a selected one of
the isotopes of an element in a plasma, said apparatus compris-
the isot
ing:
(a) an
(b)
(a) an elongated evacuated container having a central axis;
(b) means for generating in said container a dense substan) means for generating in said container a dense, substan-
tially electrically neutral, and substantially collisioness tialy electrically neutral, and substantially collisionless
plasma including ions of an element having at least two plasma in
isotopes;
(c) means for generating a steady magnetic field within said
container, along said axis and container, along said axis and through said plasma;
(e) said anode being disposed substantially at right angles to said longitudinal axis and consisting of at least two separate spaced sections; and
(f) means for applyings a different alternating electric voltage otach section of said anode, the frequency of the alternating voluage applied to said anode corresponding to the varying electric field is applied to the plasope, whereby a varying electric field is applied to the plasma for imparting
more energy to the selected ionized isotope than to other more energy to the selected ionized isotope than to other
ions. ions.

RADIOGRAPHIC NORMALIZING SYSTEM
Stunley N. Lapidus, Burlington, Mess., assignor to Raytheon
Company, Lexington, Mass.
Filed Dec. 20, 1976, Ser. No. 752,650
S. C1. 250-369 ${ }^{\mathrm{Int} . \mathrm{Cl}^{2}{ }^{2} \text { G01T } 1 / 166,1 / 20}$

6 Clxims
 ents, said system comprising
means coupled to said camera and responsive to said address signals for measuring the activity of event signals of said camera wherein each of said event signals represents the occurrence of a radioactive event in a subject being imaged by said camera, said measuring means providing
activity signals including addresses of respective ones of said events which signal measures of said activity; and means coupled between said camera and said measuring means for mathematically operating on the relative energies of respective ones of event signals by corresponding ones of said activity signals, each of said event signals
having a common address with each of said corresponding ones of said activity signals, whereby data of said subject is normalized relative to said measurement of said activity.

4,093,858
CESIUM INJECTION SYSTEM FOR NEGATIVE ION DUOPLASMATRONS
Massaki Kobayashi, Oho, Japan; Krato Prelec, Setauket, and Theodorus J Sluyters, East Patchogue, both of N.Y., assignors States Department of Energy, Wushington, D. \mathbf{C} U.S. CT 250 Jun. 6, 1977, Ser. No. 804, 189
Int. C.2 ${ }^{2}$ H011 27/00 Int. CL. ${ }^{2}$ H01J $27 / 00$

1. The method of producing negatively charged hydrogen ions, comprising the steps of:
forming an annular hydrogen plasma ring containing energetic hydrogen atoms in the annulus thereof; lar, Cs coated metal surface in the annulus of the plasmling to form negative hydrogen ions; and
ring c. maintaining the flat, circular Cs coated metal surface in an electrical potential well for extracting the negative hydro gen ions along the axis of the annular hydrogen plasma
ring.

AXIAL TOMOGRAPHIC APPARATUS Gregory A. Davis, St. Charles; Kenneth E. Krippner, St. Louis Jan A. Roestel, Ladue; Gottfried Vonk, Maplewood, and Albert R. Zacher, Jr., University City, all of Mo., assignors to Artronix, Inc., St. Louis, Mo.
U.S. CI. 250-445 T

Int. Cl. ${ }^{2}$ G01M $23 / 00$

1. An apparatus for examination of an object having a sup port, means to position an object to be examinect having a supwith the support, an x-ray source mounted on the support, an x-ray detector mounted on the support in a cooperating rela tionship with the x-ray source and an object, the detector being positioned to receive x-rays emanating from the x-ray source
and passing through the object, means to rotate the support
about the object, and means providing power connections to the apparatus, the power connection means being capable of

supplying power through continu.
means in one rotational direction.

4,093,860

GANTRY FOR COMPUTED TOMOGRAPHY
Arnold Lloyd Kelman, Waukesha, and William Raymond O^{\prime} Dill wakee, both of Wis,n assignors to General Electric Company, Schenectady, N.Y led Feb. 25, 1977, Ser. No. 771,863
U.S. CI. 250-445 T

2 Claims

1. A tilting gantry for x-ray tomography comprising. a pair of generally L -shaped members spaced apart from each other in the transverse direction, each of said members comprising an upstanding leg portion and an angularly related base portion, each of said base portions havdownwardly convex curved track fastened to each of said base portions, the radii of curvature of each of said tracks passing through a virtual transversely extending axis which is above said tracks,
a stand fixed adjacent each of said tracks,
first and second sets of rollers supported on respective stands rollers, respectively, for translating thereon along a curved path about said virtual transverse axis, support means spanning between and connected with said upstanding portions of said L -shaped members,
pulley means journaled in said support means and rotatable ebout a litudinally directed axis which intersects and is perpendicular to said virtual transverse axis, said pulley perpendicular to
means being open within its circumference for permitting an examination subject to be translated along said longitudinal axis,
rotatable base fastened to said pulley means for rotation therewith,
x-ray source and x-ray detector means mounted to said rotatable base on opposite sides of said longitudinal axis for orbiting about said axis when said base is rotated means for driving said pulley means rotationally, and

4,093,861

GANTRY FOR COMPUTED TOMOGRAPHY Arnold Lloyd Kelman, Waukesha, and Thomas Eben Peterson, Greendale, both of Wis, assignors to General Electric Con pany, Schenectady, N.Y.
ied Feb. 25, 1977, Ser. No. 772,210
Int. C.2 A61B 6/02: G01N $23 / 08$
U.S. CI. 250-445 T

3 Chim

1. X-ray tomographic apparatus comprising. rame means and means for supporting said frame means for movement along a curved path about a laterally directed
virtual axis to thereby enable said frame means to be tilted between opposite angles with respect to vertical,
means for driving said frame means along said curved path means for driving said rrame means along said curved path
to thereby effect tilting of said frame means about said virtual axis of rotation,
ball bearing means having an outer race supported from said frame means and having an inner race and a plurality of
balls between said races, said bearing means having a center of rotation about a longitudinal axis that is perpendicular to said laterally directed virtual axis, said' outer race being fixed to said frame means,
said inner race having a single v-shaped groove encircling its v-shaped periphery and said outer race having a single grooves being presented tow its inside periphery, said said plurality of balls.
X-ray source and X-rays detector means mounted on said rotatable base means on opposite sides, respectively, of said longitudinal axis for jointly orbiting about said longitudinal axis,
pulley means coupled to said inner race and said rotatable base means being fastened to said pulley means, said pulley means and base means having aligned central openings for
enabling an examination body to be disposed along said enabiing an examination body to be disposed along said source, and
motor means and means for supporting said motor means on said frame means and means for coupling said motor means in driving relation with said pulley means. 2. X-ray tomographic apparatus comprising:
frame means mounted for movement along a curved path about a laterally directed virtual axis to thereby enable respect to vertical, respect to vertical
lateral direction at opps spaced from each other in the a pair of curved tracks disposed downwardly convexly at

opposite sides of said frame means, respectively, and mounted on one of said frame means and said stationary
support means, the radii of curvature of said tracks passing through said virtual transversely directed axis, hrough said virtual transversely directed axis, means and supported for rotation on the other of said frame means and said stationary support means for coop-
erating with said tracks, erating with said tracks,
shaped in cross section and the roller means with whial shaped in cross section and the roller means with which
said track cooperates have peripheral grooves which are substantially v-shaped, the other of said tracks having an edge that is substantially flat and the roller means with which said other track
rotatable base means supported for rotation relative to said frame means about a longitudinal axis which is perpendicular to and intersects said laterally directed virtual axis, X -ray source and X -ray detector means mounted on said
rotatable means on opposite sides, respectively, of said rotatable means on opposite sides, respectively, of said
longitudinal axis for jointly orbiting about an examination body which may be disposed along said longitudinal axis, means for driving said frame means along said curved path to thereby effect tilting of said frame means about said
virtual axis of rotation, and virtual axis of rotation, and
means for driving said base rotatably.

4,093852

GANTRY FOR COMPUTED TOMOGRAPHY Richard Thornton Brandt, and Paul Willimom Hein, both of New tady, N.Y. Filed Feb. 25, 1977, Ser. No. 772,209 Filed Feb. 25, 1977, Ser. No. 772,209
Int. Cl. ${ }^{\text {A61B }}$ 6/02; G01N 23/08
stationary means and to lock said frame means agains tilting.
 U.S. CI. $250-45 \mathrm{~T}$
U.S. C. 250 Mnt T

1. X -ray tomographic apparatus comprising frame means and means for supporting said frame means for virtual axis to thereby enable said frame means to be tilted between opposite angles with respect to vertical,
said means for supporting said frame means for movement including stationary support means spaced from each means,
curved track means disposed downwardly convexly at op-
posite sides of said frame means, respectively, and posite sides of said frame means, respectively, and mounted on one of said frame means and said stationary support means, the radii of curvature of said track means oller means at opposite sides, respectively, of said frame means and supported for rotation on the other of said frame means and said stationary support means for cooperating with said track means, and
means at opposite sides of said frame means constructed and arranged for being selectively operable to lift said frame rate and to support said frame means directly from said
\qquad nt
2. Apparatus for examining an object by radiation which comprises a support for said object, a source of radiation, a or, said mounting for said source permitting said source to move relative to said object in a predetermined path, said mounting for said detector permitting said detector to move relative to said object in a second path, at least one of said paths being arcuate in at least part thereof, and means to interrelate said predetermined path with said second path so a predeter-
mined point on said source and a predetermined point on said detector define a succession of translated parallel lines, as said source and said detector move, respectively, throughout said predetermined path and said second path.

PRIMARY X-RAY DIAPHRAGM ASSEMBLY Alfred Hahn; Ernat Steiner, and Rodoli Poeppicchill, all of Er. langen, Germany, sadignors
Berinin M Munich, Germany Claims priority, application, Ser. No. 723,067 Claims priority, application Germany, Apr. 8, 1976, 2615335 U.S. C. 250-505 16 Claims Int. C. ${ }^{2}$ G03B 41/16

1. In a primary X-ray diaphragm assembly for X-ray examination apparatus, including a plurality of diaphragm plates which define a cone of rays, said diaphragm plates being adjustable in a direction generally perpendicular to a symmetry
axis of the diaphragm plates and being rotatable about the symmetry axis, said diaphragm plates having cooperating front
edges for defining a diaphragm aperture with respect to an
aperture plane perpendicular to the direction of transmission of X-ray energy in said cone of rays, said front edges of said diaphragm plates being of X -ray absorbing material for relatively attenuating the transmission of X-ray energy impinging
on said ed ges in comparison to the cone of rays transmitred by on said edges in comparison to the cone of rays transmitted by
such diaphragm aperture, and motorized drive mechanism coupled with said diaphragm plates for adjusting said diaphragm plates relative to one another to vary the size of said iaphragm aperture, said edges of said diaphragm plates including angularly related edge sections and central edge secconfigurations as viewed in said aperture plane with the V shaped edge configurations opening toward the symmetry axis, the angularly related edge sections of each V-shaped edge onout 50° to about 150°, end the central edge section of from \checkmark-shaped edge configuration being rounded for defining diaphragm apertures accommodating distinctly rounded conours, said motorized drive mechanism having means for selecvely indivicually adjusting one respecive diaphragm plates while the other diaphragm plate remains station-

CODE SYMBOL SCAN 4,093,865
Pranklyn George Nickl, SATTERN Joce, Calif, asalgnor to National
Filed Apr. 29, 1977, Ser. No. 792,393
Int. Cl. ${ }^{2}$ G06K 7/10

J.S. C. $250-566$ Claims
lines that intersect with each other and disposed symmet rically in relation to the first bar; and
ourth and fifth bars in said reference plane disposed along lines that intersect with each other and disposed symmetrically in relation to the first bar,
herein the second and third bars intersect with each other and/o
and
wherein the second bar intersects with the fifth bar and the third bar intersects with the fourth bar; and said pattern further includes
first plane extending through the first bar into said defined said first direction, a second plane extending through the second bar into said defined scanning region at an acute angle to the reference plane at an acute angle to said first direction, a third plane extending through the third bar reference plane and at an acute angle to said first direction, a fourth plane extending through the fourth bar into said defined scanning region normal to said reference plane and at an acute angle to said first direction, and a fifth plane extending through the fifth bar into said defined
scanning region normal to said reference plane and at an acute angle to said first direction,
hereby when a said received object containing a said code symbol is moved within said defined scanning region from
said first direction with said code ence plane or facing opposite said first direction, light scanned into said defined scanning region by the scanning means is reflected by said code symbol to the detecting means, and the detecting means provides an electrical
signal indicative of said coded information.

4,093,866
DIFFRACTION PATTERN AMPLITUDE ANALYSIS FOR USE IN FABRIC INSPECTION Harrey Lee Kadan, Van Nnys, and Donald Carieton Meed Granada Hills, both of Calif, esedgoors to Greenwood Mills, Inc., Greenwood, S.C.
Continuation of Ser. No. 673,887, Apr. 5, 1976, abandoned. This
application Jun. 15, 1977, Ser. No. 806,827
U.S. CI. 250-563 Int. C. ${ }^{2}$ G01N $21 / 32$

14 Claims

1. A system for scanning a code symbol consisting of a combination of spaced parallel bars affixed to an object for providing coded information related to said object, and for providing an electrical signal indicative of said coded informaa housing for defining a scanning region adjacent the housing for receiving objects having said code symbol, means for providing a light beam,
means for scanning said light beam in a predetermined scanning pattern within said defined scanning region;
means for detecting light having at least a predet
 intensity and for providing an
to detection of said light; and
de din or said hight, and means for directing light from said scanned light beam that is reflected from a said code symbol on a said recciver
object to the detecting means; characterized by
the scanning means including an optical system for scanning said light beam at an acute angle to a reference plane defining a boundary of said defined scanning region and in a predetermined scanning pattern that includes
a first bar in said reference plane extending normal to a first
direction; second and third bars in said reference plane disposed along

2. A method of analyzing the shape of the amplitude envelope of a light lobe including the steps of:
a. scanning the light intensity of the lobe from one side of the lobe to the other to provide successive voltage signals whose respective voltage values are a function of the light intensity at successiver
side to the other side to the other
b. providing a series of reference voltages of substantially
less number than the number of spaced increments cach reference voltage having ver of spaced increments, each the preceding reference voltage in the series to define a voltage range encompassing the highest voltage in said series of voltage signals;
c. comparing each successive voltage signal with all of said reference voltages simultaneously; and
d. providing a numerical count of those voltage signals which have voltage values falling between the values of adjacent reference voltages in said series of reference
voltages so that a plurality of counts is provided which indicates the amplitude distribution of light in said ligh lobe, said plurality of counts being substantially less in number than the number of spaced increments thereby reducing storage data requirements in the analysis of the amplitude envelope of said light lobe.

APPARATUS FOR AUTOMOTM,
AND TOR AUTOMATICALLY CALIBRATING both of Conn., asalgnors to General Slgmal Corporation, Roch ester, N.Y. Filed Oct. 27, 1976, Ser. No. 736,036

(c) discharging the water from the chiller back into said source;
(d) circulating water returning from a space heating system through the refrigerant condenser, thereby raising the temperature of such water; and

(e) circulating the water from the refrigerant condenser back oo the space heating system to provide useful space heat-
ing. ing.

4,093,869
QUADRATURE AXIS FIELD BRUSHLESS EXCTTER Arthur H. Hoffmann, Monroevilles Dale I. Gorden, North Versailles, and Lee A. Kilgore, Export, all of Pan, assignors to Westinghouse Electric Corp., Pittsburah, Pa.

Filed Apr. 13, 1976, Ser. No. 6
Int. C1. ${ }^{2}$ Fo2N $11 / 04$
10 Claims

1. Appara
an enclosure defining a smoke chamber;
means for measuring the light obscuration produced by varying levels of smoke in said chamber, said means fo measuring including a light source and a photocell for
sensing the light output from said source; means for automatically increasing the obs
chamber at a predetermined uniform rate,
including means for comparing the obscuration due to a current or instantaneous level of smoke in the chamber with a programmed level, and
means for regulating or gating the intake of smoke to said chamber so as to reach the programmed level within a predetermined time period.

4,093,868
METHOD AND SYSTEM UTILZING STEAM TURBINE
John I. Manning, 22 AND HEAT PUMP
Frand St., Cobleskill, N.Y. 12043
Int. C1. ${ }^{2}$ F24D $9 / 00$
U.S. CI. 290-2 12 Claims

1. A method of conjointly operating a steam turbine generating plant and a mechanical compression heat pump for heating duty comprising:
(a) providing water from a source at ambient temperature to (a) providing water from a source at ambient tem
the steam condenser of the generating plant;
(b) providing at least a portion of the water discharged from the steam condenser to the chiller of the heat pump for
extraction of heat from such water by evaporation of refrigerant in the chiller;
2. In combination,
synchronous dynamoelectric machine having a stator member carrying a polyphase alternating current stator winding and a rotor member carrying a direct curren rotor field winding; and,
main exciter for said synchronous dynamoelectric machine having a rotatable armature winding and rectifier connected to conduct direct current to said rotor field windplurality of field coils disposed on selected ones of said salient poles, said field coils being connected together to constitute a direct current stator field winding, and at least one starting coil interposed between salient poles, the magnetic axis of said starting coil being disposed substan-
tially in space-quadrature relation with magnetic axes of adjacent field coils, said starting coil
being disposed to induce alternating current in said armacure winding when said starting coil is energized by a circuit comprising.
single phase alternating current source.

4,093,870

APPARATUS FOR TESTING REFLEXES AND/OR FOR FUNCTIONING AS A COMBINATION LOCK
Lavrence J. Epstein, 4216 Shoreclub Dr., Mercer Island, Wash.
980 Filed Apr. 26, 1976, Ser. No. 680,217
U.S. CI. 307-10 R Int. Cl. ${ }^{2}$ B60R 25/04

1. An electronic control apparatus comprising:
a. an input gate;
b. a first storage
c. said input gate and said first storage unit connecting with each other;
d. an output gate for producing an unlock signal;
e. said first storage unit and said output gate connecting with each other;
a second storage unit connecting with said output gate to
a aceive said unlock signal;
g. a first count
storage unit;
h. a clear gate;
said first counter and said clear gace conecting with each other;
j. a second counter connecting with said clear gate k. a third counter connecting with said clear gate;
2. said said cear gate connecting with said first storage unit;
m. said clear gate being capable of clearing said second s. said first counter and said second counter connecting with asaid input gate to send a signal to the input gate;
o. a third storage unit;
p. an input device connecting with said third storage unit; q. a pulse generator and delay unit;
r. said third storage unit connecting with said first counter and with said pulse generator and delay unit for sending a first signal to said first counter and for sending a second signal to said pulse generator and delay unit
s. said pulse generator and delay unit connecting with said input gate;
said pulse generator and delay unit controls the second
signal to said input gate;
u. a display unit, operatively, connecting to the second counter;
v. a device to receive said unlock signal, operatively, connecting with said second storage unit;
w. a clock connecting with the second counter;
x. said second storage unit
y. said first counter, operatively, connecting with said output gate to clear said unlock signal.

Coorge Arthur Plumb, Lower Withington; John Leo Thoma Bushell, Cheadle Hulme, and Patrick Louis Radiord, Liock port, all of England, assignors to P.C. Cheadle Hulme, England 1076 Ser. No. 730,033
Claims priority, application United Kingom, 41130/75
U.S. C. $307-106{ }^{\text {Int. Cl. }{ }^{2}} \mathbf{H} 02 \mathrm{~K} 3 / 00,3 / 648$ Chims 1. A correction circuit for correcting the output signal pro duced by a fluid flowmeter which produces an es representative output signal at a pulse repetition rate whicse flow rate is being of the volumetric flow rate or he eared by the flowmeter, said correction being effected in
a first input for flowmeter,
second input for receiving an iput signal representative of the magnitude of said parameter,
first circuit means responsive to the flowmeter output signal at the first input to generate a first pulse train at a firs average pulse repetition rate which is dependent upon sai pulse repetition rate of the flowmeter output signal,
difference circuit responsive to the input signal at the differench input to generate an auxiliary signal whose magnitude is dependent upon the difference between the magnitude of said parameter and a reference magnitude of said parameter,
means responsive to said first average pulse repetition rate and to the magnitude of the auxiliary signal to increase the pulses thereto at a rate dependent upon the magnitude of said difference when said difference is of one polarity, and to decrease the number of pulses in the first pulse train by blocking a fraction thereof at a rate dependent upon the mager polarity, whereby the pulse adding and blockin means produces an output pulse train at a second average pulse repetition rate which is representative of the volu metric flow rate of the fluid corrected for variations in said parameter,
an oscillator for producing test pulses of predetermined frequency,

witch means for applying the test pulses to the first circuit means in place of the flowmeter output signal, and counter means arranged to count the number of pulses produced by the pulse adding and blocking means during an internal defined between a selected one of two successiv adding operations and two succesive blocking operations
of the pulse adding and blocking means, whereby the count in said counter means at the end of said interval is indicative of the magnitude of said difference.
8. A correction circuit for correcting the output signal produced by a fluid flowmeter which produces an electrical puls output signal whose pulse repetition rate is representative o the volumetric flow rate of the fluid whose flow rate is being
measured by the flowmeter, said correction being effected in dependence upon at least one parameter of said fluid, the circuit comprising
a first input for receiving the output signal produced by the flowmeter,
second input for receiving an input signal representative of the magnitude of said parameter
first circuit means responsive to the flowmeter output signal at the first input to generate a first pulse train whose average pulse repeition rate is dependent on the pulse repetition rate of the flowmeter output signal second circuit means responsive to the input signal at the
age pulse repetition rate is dependent on the magnitude of said parameter,
means for combining said first and second pulse trains so as to produce an output pulse train whose average pulse repetitive rate is representative of the volumetric flow rate of the fluid corrected for variations in said parameter,
a power supply which, in operation, is continuously connected to energize a first portion of the circuit, said first
portion being arranged to consume a relatively small prroportion of the power required by the circuit, and
switching means connected to the power supply and responsive to each pulse of the flowmeter output signal to energize the remainder of the circuit for a relatively short period, whereby to reduce to total power required by the circuit.

4,093,872
CHARGE COUPLED DEVICE WITH INPUT FOR DIRECT INJECTION OF SIGNAL
John M. Hartman, Cocta Mesa, and Darrell M. Erb, Newport Culver City, Calif.
Continuation of Ser. No. 436,587, Jan. 25, 1974, abandoned. This application Sep. 2, 1975, Ser. No. 609,774
Int. C1. ${ }^{2}$ G11C 19/28; H01L 29/78, 27/14, 31/00 U.S. Cl. $307-221 \mathrm{D}$ (8 Claims

1. In semiconductor apparatus wherein a dielectric layer is disposed over a surface of a semiconductive storage medium and a series of electrodes are disposed in or over said dielectric
layer for causing a series of potential wells to be formed in layer for causing a series of potential wells to be formed in said potential wells being adapted to store packets of electric charge, said electrodes being operable in response to said voltages to transfer said charge packets along said potential wells, the improvement whereby charge ma
rectly into said storage medium comprising:
rectly into said storage medium comprising
(b) means connected to said injecting means for generating an analog signal so as to cause a charge proportional to said analog signal to be injected into said substrate through said injecting means;
(c) an electrode structure disposed between said injecting means and said at least one potential well; and
(d) a steady bias voltage source connected to said electrode structure, said electrode structure including a transfer portion nearest said injecting means and a storage portion nearest said at least one potential well and non-overlapping with said injecting means, said electrode structure and said steady bias voltage being arranged so as to mainis deeper under said storage portion than it is under said is deeper under said storage portion than it is under said
transfer portion whereby said charge injected through said injecting means is temporarily stored under said storage portion, isolated from said injecting means.

COMPENSATING DIGITALCOUNTER FOR QUARTZ

A digital counter for providing compensated timing sig. nals comprising:
a frequency reference source;
storage means for providing a predetermined digital number storage means for providing a predetermined digital number;
a plurality of counter stages coupled to said frequency referplurality of counter stages coupled to said frequency refer
ence source for reducing the frequency of said source to a ence source for reducing the frequency of said source to a
lower frequency, said plurality of counter stages including a first group of counter stages which are coupled to said storage means; interrupt means for interrupting the flow of signals through at least one of said plurality of counter stages; control means coupled to said interrupt means, said storage
means, and said plurality of counter stages for controlling means, anr said pluraility of counter stages for controliling
said interrupt means and said storage means such that the count in said first group of counter stages is selectively said predetermined number causing lesser countis said predetermined number causing lesser counting in said
counter stages for a slow one of said frequency source and counter stages for a slow one of said requuency source and
additional counting for a fast one of said frequency source. said predetermined number being introduced into said first group of stages when said interrupt means interrupts said whereby compensation may be provided for a fast or a slow
frequency source. frequency source.

4,093,874
CONSTANT IMPEDANCE MOSFET SWITCH lenn A. Polittt, Burnaby, Canade, amignor to GTE Lenkurt Electric (Cansd) Ltd., Burnaby, Cansda
Filed Dec. 29, 1976, Ser. No. 755,422
Claims priority, application Canada, Feb. 10, 1976, 245393 Int. C1. ${ }^{2}$ H03K 17/12, 17/14, 17/68; H03G 3/30 S. Cl. 307-251 4 Clnims

1. Apparatus comprising:
(a) MOSFET switching means having first and second mutually exclusive conductive states, said first conductive
state characterized by an internal resistance \mathbf{R}^{2} and said state characterized by an internal resistance $\mathbf{R}_{O N}$ and said stace characterized by an internal resistance R on and said
second conductive state characterized by an internal resis
tance $R_{\text {ON }}$ wherein $R_{\text {OFF }} \gg R_{\text {ON }}$ said means also having a source electrode for receiving an analog signal, a drain
a electrode for transmitting an output signal proportional to the analog signal when the means is in the first state, a gate b) bias means having an input, and a firsur
output, said input for receiving an external control signal, and first, second, and third outputs connected to said gate, substrate and source electrodes respectively, said bias means, in the presence of the externa control signal, place the switch means in the appropriate one of first and second conductive states; and
(c) compensation means having an input connected to said source electrode and an output connected to said gate
clectrode, said compensation means providing in the absence of said analog signal a compensating voltage across said electrodes such that the magnitude of $R_{O N}$ remains
constant despite ambient temperature variations, and said compensation means in the presence of the said analog signal providing a compensating voltage across said elecrodes such that the magnitude of $\mathbf{R}_{\text {oN }}$ remains constant despite analog signal variations.

> | 4,093,875 |
| :--- |

FIELD EFFECT TRANSISTOR (FET) CIRCUIT
FIELD EFACT UTILIZING SF DEPLETION MODE DEVICES
Ronald William Knepper, La Grangerille, N.Y., assignor to
International Businese Mechines Corporation, Armonk, N.Y.
International Businese Machines Corporation, Armonk, N.Y. Filed Jan. 31, 1977, Ser. No. 764,444
Int. C. ${ }^{2}$ H03K $17 / 60,17 / 04$
U.S. Cl. 307-251 Int. Cl. ${ }^{2}$ H03K 17/60, 17/04 18 Claims

1. A field effect transistor circuit, formed on a semiconductor substrate comprising:
first, second, and third sources of potential having potentials of unequal magnitude; an input stage having at least a first pair of field effect transissecond sources of potential;
an outputs stage having at least a second pair of field effect
transistors connected in electrical series between said first transistors connected in electrical series between said first and third sources of potential; and
means coupling said input stage to said output stage having at least a third pair of field effect transistors connected in potential;
 said input stage having an output from a circuit point be tween said first pair of field effect transistors to said means coupd third pair of field effect transistors;
said means coupling having an output electrically coupled from a circuit point between said third pair of field effect transistors to at least one of said second pair of field effect
whereby a binary logic signal having stable potential levels approximating said first and second sources of potential, applied to said input stage, provides a binary logic outpui signal having stable potential levels approximating said
first and third sources of potential at an output of said output stage, said third source of potential being derived from the substrate.

BASELINE RESTORER CIRCUIT Kamal Lablb Henein, Enty, and Veevolod Gouraky, Paris, botil of France, aseignors to Commiseariat a l'Energie Atomique, Paris, France
 Claims priority Jan. 5, 1977, Ser. No. 757,016 U.S. C. 307-264

1. A baseline restorer circuit of the type comprising: first circuit having an input connected to a coupling capac itor, an output and a control lead to which is applied a control signal which is capable of assuming either a first value or a second value, said first circuit being provided between the input and the output thereor with a resistor
having a value of resistance equal either to a first value R_{0} of a low order when the control signal assumes its first value or to a second value R_{∞} which is considerably higher than R_{0} when the control signal assumes its second value,
value,
second circuit of the threshold discriminator type whose input is connected to the input of the first circuit aforesaid and whose output is connected to the control lead aforeoutput said control signal whose first value is obtrined when the voltage applied to the input of the second circuit is lower than a threshold value and whose second value is obtained when the voltage applied to the input is higher said threshold value,
input is connected through s swises an amplifier \mathbf{A}_{3} whose one output either to the output of a first amplifier A_{1}, or the output of a second amplifier A_{2}, said switch being provided with a control lead which constitutes the control lead of said first circuit, said amplifier $A_{\text {, being provided }}$ capacitor through an input resistor \mathbf{R}, and on the other hand to the output of the amplifier A_{3} through a resistor R_{f} being provided with a positive input connected to a reference point, said amplifier A_{2} being provided with a negative input connected to the output of the amplifier A_{3} and additionally to a reference point through a resistor $\mathrm{R}_{\text {g }}$ and a positive input connected to the negative input of
the amplifier A_{1}.

SEMI-CONDUCTOR $\begin{aligned} & 4,093,877 \\ & \text { SWICCHING CIRCUIT WITH }\end{aligned}$ SEMI-CONDUCTOR SWITCHING CIRCUIT WITH
TRANSISTOR SWITCHING POWER LOSS REDUCTION Werner Poll puter AG, Peier, Veri, Germany, assignor to Nixdorf Computer AG, Paderborn, Germany
Division of Ser. No. 612,535, Sep. 11, 1978, Pat. No. 4,015,185. This application Dec. 30 , 1996, Ser. No. 755,437
U.S. CI. 307-270

6 Clàms
of the degree of coincidence of said asynchronous input signals;
first means for providing a signal the level of which is a function of the duration of said output sıgnal; and sensing a particular level of signal from said first means, for receiving one of said asynchronous input signals and including means for providing a circuit output when activation of said threshold means coincides with the receipt
of said one asynchronous input signal.

MAGNETOHYDROOM, 4,
MAGNETOHYDPODYNAMIC ELECTRODE David D. Marchant, Richland, Waskh., and Don H. Killpatrick,
Orland Park, Ill,, ascigigns to The United State of Americal as represented by the United States Department of Energy Washington, D.C.
iled Mar. 1, 1977, Ser. No. 773,360
U.S. C. 310—11

1. A semiconductor switching circuit comprising a direct current source; a semiconductor switch; and an inductor; said
semiconductor switch and said inductor connected in series combination to said direct current source; means for deriving
an output voltage from said inductor; a diode; a capacitor an an output voltage from said inductor; ; diode; a capacitor; an
additional circuit including said diode and said capacitor connected in a first series combination; means connecting said
series combination in parallel with said inductor; with said diode poled in the blocking direction as regards direct voltage applied to saic inductor from said direct current source; a
charging circuit coupled with said capacitor, said charging circuit including a further diode, with said further diode poled to pass current in response to direct voltage applied thereto from said source by way of said semiconductor switch; said
charging circuit further including a choke coil, with said choke coil connected in series combination with said further diode and connected between said further diode and said capacitor; whereby the power loss occurring upon switching off said
semiconductor switch is reduced.

DE-GLITCHABLENON-METASTABLE FLIP-FLOP ON-METASTABLE FLIP-FLOP
CIRCUIT James P. Paschal; Donald F. Nickel, and Charles J. Drozd, all of West Columbia, S.C., assignors to NCR Corporation, Dayton, Ohio

Filed Nov. 29, 1976, Ser. No. 745,740
U.S. Cl. 307-291 Int. C. ${ }^{2}$ H03K $3 / 286 \quad 10$ Claims

1. An de-glitchable non-metastable flip-flop circuit compris-
ing: first gate having a first and a second input for receiving asynchronous input signals and for providing an outp
2. An electrode for use in a magnetohydrodynamic generator comprising:
a base portion
a base portion of sintered powdered metal having a predetermined density, the base having a lower surface for attach ing the electrode to a magnetohydrodynamic genera a first layer of nickel aluminide on the upper surfac
an intermediate layer of nickel aluminide and refractory ceramic on the first layer, the refractory ceramic being electrically conductive at MHD operating temperature and an outer layer of refractory ceramic on the intermediat
layer, the refractory ceramic being electrically conductive at MHD operating temperatures.

4,093,880

MAGNETICALLY OPERABLE ENGINE Benjiman R. Teal, 611 Marion St. NW... Madison, Flas. 32340
Filed Apr. 28, 1977, Ser. No. 71.957 Filed Apr. 28, 1977, Ser. No. 791,957
U.S. CI. 310-24

Int. Cl. ${ }^{2}$ H02K 41/00 3 Claim U.S. Cl. $310-24$ Claims

1. An engine combination comprising a plurality of electromagnetic coil means for operating a like number of solenoids for converting electricity to mechanical power, a first separate bank of electro-magnetic coils and solenoids arranged about a single crank shaft and mounted upon a supporting plate to form a single power unit, and a base for supporting said first electric and solenoids arranged about a second single crank shaft and mounted upon a second single plate to form a second single power unit positioned above said first power unit, and means or connecting one end of the crank shaft of the first power unit to one end of the crank shaft of the second power unit, a unit to one end of the crank shaft of the second power unit, a
single timing mechanism arranged to connect all of the said the said power units, each of the sychronization with each of
having means extending upwardly from the base for support- compression by means including slot key closing off the en-
ing the said plates supporting each of the power units, and trance to the slot, the improvement wherein said resilient

means for connecting the said coils in each bank with a source of electric energy.

4,093,881
ARRANGEMENT FOR SUPPORTING WINDING
ELEMENTS IN THE STATOR SLOTS OF A
abbor Lipotik, and Roland Schuler, both of Wettingen, Switzer land, amignors to BBC Brown Boveri \& Company Limited, Baden, Switzerland . $\mathbf{5 6 6 4 5 0 , \text { Apr. 9, 1975, abandoned. Thi }}$ Continuation of Ser. No. 566,450, Apr. 9,1975, abbandonec. This
application Aug. 17, 1976, Ser. No. 715,181 Claims priority, application Switzeriand, Apr. 17, 1974, 5279/74 Int. C. ${ }^{2}$ H02K 3/48
U.S. C. 310-214

1. In an arrangement for supporting insulated conducto components within the slots of the stator component of a
dynamo-ecectric machine under compression so as to inhibit dynamo-electric machine under compression so as to inhio in vibration thereof, and wherein a resilient element is located in
the slots along with the conductor components, and the conductor components and resilient element are placed under element is constituted by a planar multi-layer structure possessing a spring characteristic which is degressive in relation to the cent a layer or hard material, the ratio of the thickness of said felt layer to said hard layer being substantially $3: 1$, and wherein said felt layer includes an interior layer of a synthetic rubber, the ratio of the thickness of said fell hayer to said synthetic rubber layer being in the range from 5:1 to $3: 1$.

4,093,882

Kenjl Furuta, Hachiofh, Japera, amignor to Olympas Optical Kenji Furuta, Hechioji, Japan, ameignor to Oiym
Company Limited, Tokyo, Japan
Fild Jul, 14, 1975 , Ser. No. 595,400
 83082[UF; JuI. 24, 1974, 49-88031[U]; Jul. 31, 1974, 49.
91509(U); Aug. 6, 1974, 49.93633 (U); Dec 17, 1944,
 Dec. 27, 1974, 50-271[U]; Apr. 17, $1975,50-52577$ U U; Jun. 6,
1975, 50-76638[UF, Jul. 19, 1974, 49-83014; Jul. 26, 1974, 49-85642
U.S. C. $310 _268$ Int. CL. ${ }^{2}$ H02K $1 / 22 \quad 9$ Claime

1. A coreless m
 a rotary shaf

rotor mounted on said rotary shaft and having a rotor he rotor and a plurality of flat type loop coils disposed on
motor housing including a magnetic yoke made of a magnetic material and having at least two spaced journal bearings for rotatably supporting said rotary shaft,
a stator including a pair of permanent magnetic poles op-
posed to said rotor within said bousing so as to provide a closed magnetic flux path in which a magnetic flux ema. nated from one pole of said pair of permanent magnetic poles passes through said rotor and yoke and enters into
the other pole, and the other pole, and
generally cylindrical thrusting magnetic member attached rotary shaft and said permanent magnetic poles, said magnetic member being displaceable axially of said rotor by a magnetic flux produced by said permanent magnetic poles least two journal bearings.

$4,093,883$

PIEZOELECTRIC MULTIMORPH SWITCHES Yujiro Yamamoto, 2001 S. Enatwood, Santa Ana, Calif. 92705 Continuantion-in-part of Ser. No. 589,255, Jon. 23, 1975, abandoned, which is 2 continuation-in-parto of Ser. No. 390,473 ,
Ang. 8, 1973, abandoned, which is a continumtion-in-part of Ser. 971 O.G. 13
multimorph of piezoelectric material having a fixed part carried by said frame and a movable part free to flex in a plane of movement upon excitation of the multimorph;
a pair of electrical contacts, at least one of which is resil-
iently mounted, movable relative to one another in response to multimorph flexure;
means for applying an electrical
means for applying an electrical potential to said multimorph
in a magnitude sufficient to cause fiexure of said mulin a magnituce sufficient to cause fiexure
timorph whereby to actuate said contacts;
means for developing an electric field polarized such that it extends in a direction having a component parallel with the plane of movement of said multimorph and positioned

such that a part of said multimorph is subjected to said field whereby flexure of said multimorph as an incident to excitation will be altered by said field;
said multimorph comprising strips of piezoelectric material, and a layer of conductive material fixed to a side of said strips;
said mean
said means for developing an electric field being effective to form the field such that it terminates at said layers of conductive material; and
said frame being electrically conductive and said field extending
rial.

TRANSDUCER ASSEMBLY VIBRATION SENSOR David Edward Brom, Redwood City, Calif., assignor to Ampe David Edward Brown, Redwood City, Calif., assignor to Ampez
Corporation, Redwood Ctyy, Calif. Continuation-in-part of Ser. No. 668,653, Mar. 19, 1976, abandoned. This application Apr. 16, 1976, Ser. No. 677,683 U.S. C. 310-331

1. A deflectable read
netic recorder, comprising: a deflectable support arm comprising a pair of piezo-ceramic elements bonded to a common electrically conductive substrate between said pair of elements, one of said ele
ments having a first conductive layer on the surface oppoments having a first conducthe layer on he having a second
site said substrate, the other element conductive layer opposite said substrate, said support arm being cantilevered at one end portion of its lengthwise
dimension and being free to deflect at its opposed end dimension and being free to
portion: portion
a read tra
the opposer mounted to one of said pairs of elements on the opposed free end portion of said support arm, said transducer being electrically isolated from said conduc-
tive layers so that voltage applied to said substrate tive layers so that voltage applied to said substrate and
said first and second layers does not produce a signal that said frirt an sead transducer; and, a support arm deflection sensor comprising a piezo-ceramic generator element bonded to said common substrate and a third conductive layer overlying said generator element, said third conductive layer being generally in the same dielectric gap, said third conductive layer being electrically isolated from said first and second conductive layers, whereby deflection of said support arm results in an electrical output signal between said substrate and said third conductive layer, which output signal is indicative or instantaneous amount of deflection of said support arm.

AEROSOL DETECTION DEVICE Lyman L. Blackwell, Boulder, Colo., assignor to Statitrol Corporation, Lakerood, Colo.

6, 1976, Ser. No. 702,909
U.S. Cl. 313-54 Int. C1.2 H01J $7 / 40$
U.S. C1. $313-54$

1. An aerosol detection device, comprising: 1. An aerosol detection device, comprising:
means for defining inner and outer ion chambers; means for defining a path of interconnection between said inner and outer ion chambers;
means for isolating said inner ion chamber except through means por isolh of ion chamber interconnection from atmosphere outside thereof;
means for connecting said outer ion chamber in communication with atmosphere to be monitored;
particle source means positioned within said inner ion chamber for emitting and radiating charged particles into said
inner ion chamber and through said path of ion chamber interconnection into said outer ion chamber;
a barrier of dielectric material formed across said path of ion chamber interconnection which is radiation permeable and aerosol impermeable, said dielectric barrier being
particles being radiated into said outer ion chamber, said dielectric barrier being impermeable to and preventing the passage of smoke aerosols and the like whereby to isolat

the p
and,
lectrode means for generating and sensing ion current flow through said ion chambers.

4,093,888 PLASMA VALVE CONFIGURATIONS Cisela Eckhardh, and Wilfried O. Eckhardt, both of Malibu, Calif.
Calif.

Filed Jun. 2, 1976, Ser. No. 692,173
U.S. C. ${ }^{313-163}$ Int. C. ${ }^{2}$ H01J 13/00 22 Claims

1. A liquid-metal plasma valve comprising:
an anode, a cathode and a condenser, an axis through said plasma valve, said anode facing said cathode to define an interelectrode space therebetween, said axis exiending
between said anode and said cathode through said interelectrode space, said condenser surrounding at least a portion of the interelectrode space;
said cathode having inner and outer pool-keeping walls defining a groove therebetween for containing a liquidmetal pool, said outer wall being divergent with respect to bisector between said walls being divergent away from said axis in the direction along said axis from said cathode toward said anode.

SPARK PLUG, PARTICUIARLY FOR INTERNAL
COMBUSTION ENGINES HAVING COMPOSITE
CENTER ELECTRODE
Rainer Corbach, Stuttgart, Leo Steinke, Waibingen-Heganch; Walter Benedikt, Sturttyart, and Radolf Jurinke, Schwieber Stutteart, Germany Filed Nov, 4, 1976, Ser. No. 738.936 Claims priority, application Germany, Nov. 7, 1975, 2549931 U.S. Cl. 313-140

13 Clin
LAMP
Jnn Bloem, and Albert Bonkknegt, both of Eindhoren, Netherlanden, Cluims priority, application Netheriands, Apr
${ }_{7602232}$
U.S. Cl. 313-229 Int. Cl. ${ }^{2}$ H01J 61/18

4 Claims

1. Spark plug having a center electrode formed with a spark ing end face comprising
an outer jacket ($\mathbf{1 7}^{7}, \mathbf{1 7}^{\prime}$) of corrosion resistant material;
mbedding matrix material (18) of high electrical and
thermal conductivity within the jacket (17, 17');
and at least one filamentary electrode element (19) of corro
sion resistant material embedded in the matrix material (18),
wherein, in accordance with the invention
he matrix material (18) is recessed with respect to the jacket (17, 17) at the sparking end face plane (20) of the spark
plug the distance of recess (d) being in the order of be tween about 50 to $500 \mu \mathrm{~m}$.

2. A low-pressure mercury vapour discharge lamp which comprises a discharge space and disposed in said space two thermally emitting electrodes and a mercury amalgam composed of mercury, bismuth, tin and lead.

TERBIUM-ACTIVATED LUMMNESCENT GARNET TERBIUM-ACTIVATED LUMINESCENT GARNET

 MATERIAL AND MERCURY VAPOR DISCLAMP CONTAINING THE SAME

 to U.S. Puliper Corporation, New Yort, N.Y.
Filed May 9, 1977 , Ser. No. 795,000
Filed May 9, 1971, Ser. No. 795,009 Ma 13, 1976, 7605094 Int. C. ${ }^{2}$ C09K 11/46
U.S. Cl. $313-486$

1. A terbium-activated luminescent material with Claims crystal structure charecterized in that the luminescent mate rial satisfies the formula

$$
\mathrm{Ln}_{3-x-}, \mathrm{Tb}, \mathrm{~A}_{3-x-2}, \mathrm{Me}^{\prime \prime}{ }_{x+}, \mathrm{Me}^{N}{ }_{x+}, \mathrm{O}_{12}
$$ wherein Ln represents at least one of the elements yttrium,

gadolinium and lutecium, \mathbf{A} is at least one of the elements aluminium and gallium, wherein upto 40 mole $\%$ of A is replaceable by scandium, Mell is at least one of the elements magnesium, calcium, strontium and zinc, and $\mathrm{Me}^{i V}$ is at leas
one of the elements silicon, one of the elements silicon, germanium and zirconium and wherein

$$
\begin{aligned}
& 0 \leq x \leq 2.8 \\
& 0 \leq y \leq 20 \\
& 0.4 \leq x+y \leq 2.8 \\
& 0.02 \leq p \leq 1.50 \\
& x+p \leq 3.0
\end{aligned}
$$

TRAVELING WAVE DEFLECTOR FOR ELECTRON BEAMS Alvin Benson Cluristie, Dundee, and Ronald Eugene Correll, neaverton, Oree Beaverton, Fived

Thec 10, 1916, Ser. No. 749,579
U.S. C. $315-3$

7 Claima

RING-AND-BAR SLOW WAVE CIRCUITS EMPLOYING CERAMIC SUPPORTS AT THE BARS Acrman R. Vanderplents, Sumayvile, Cailo, maignor Filed Jan. 16, 1907, Ser. No. 609,466 The portion of the term of this pitent mimbequent to Apr. 6, 1994,

1. In a microwave tube apparatus, means for forming a slow wave circuit having an array of spaced conxially aligned con-
ductive ring portions conductively connected together by an ductive ring portions conductively connected together by an
array of conductive bar portions, means for forming and projecting a beam of electrons axially through said ring portions for electronic interaction with the microwave fields of said slow wave circuit, means for forming a barrel structure surrounding said slow wave circuit, means forming an array of ceramic
tween said surrounding barrel structure and said slow wave circuit and spaced apart along the axis of said slow wave circuit, the improvement wherein, said support member portions are finger-shaped with the ends of said finger portions supportively contacting said connecting bar portions of said slow wave circuit, said support fingers are the finger portions said finger portions.
\qquad 4, 4,093,893
SHORT ARC FLUORESCENT LAMP
Cohn M. Andercon, Seotia, N.Y., semgaor to Gearal Electric Compeny, Schenectady, N.Y.

Frled Nor. 22, 1996, Ser. No. 743,761
Int. C. ${ }^{2}$ H01J $17 / 34,1 / 15$,
U.S. C. $315-48{ }^{\text {Int. }}{ }^{2} \mathrm{H} 01 \mathrm{~J} 17 / 34,1 / 15,17 / 20,61 / 1636$ Claims
said gas comprises inert gases at a pressure between
mately 0.2 torr and approximately 2.0 torr; and
each of said lecctrodes comprises a heated filament coated with an electron emissive material and disposed within substantially hollow cathode element which is adapted to provide a diffuse termination for an electric discharge for electron emission therefrom, each of said electrod having a dimension along the axis of the envelope no greater than its dimension across the envelope, whereby the arc distance is lengthened; and
said tubular envelope has a large diameter substantially half its length, whereby the envelope area is increased and 12. The lamp of claim 1 further comprising a lamp base ssembly, attached to one end of said envelope, containing neans for receiving electric power from a line source and said electrodes.

4,093,894

Leroy G. Leighton, Highland Heights, Ohio, assignor to General Electric Company, Schenectedy, N.Y

Flued Nov. 15, 1976, Ser. No. 741,898
Cli. $\mathrm{H01J} 7 / 44,13 / 46,17 / 34 ;$ H01K
U.S. CI. $315-64$
vertical scan frequency and to a shunt connected capacitor and impedance, the improvement comprising:
means coupied to said output winding for unbalancing the waveform applied thereto from said source of deflection
36

1. A traveling wave deflector for deflecting an electron beam emitted from a source of electrons, comprising:
a pair of helical deflection members, each of said members
having a plurality of spaced and substantially flat conductive ribbon turns positioned along and spaced relative to an axis of the electron beam and on opposite sides thereof;
a ground member disposed in coaxial relationship inside each of said helical deflection members and being supported in spaced relationship thereto; and
means for insulatively supporting said ground member and
said deflection members in said spaced relationship, said means disposed inside each of said helical deflection mem bers.

2. An improved short-arc fluorescent lamp of the type comprising two electrodes disposed in a gas and of the type comand at opposite ends of a substantially tubular, light-transmissive evacuable envelope; wherein, as an improvement:

current at a vertical scan frequency to provide asymmetric top-bottom pincushion correction, said means of a form to provide
said waveform.
3. A stay-on incandescent lamp comprising:
4. A primary filament;
primary filament; mary filament;
switch means within said lamp for closing a circuit includin said secondary filament in response to thermal radiation
from said primary filament and maintaining said closed from said primary fliamene and after thermal radiation from said primary filament ceases; and wherein
said lamp comprises three terminals, one of which is connected to both said primary filament and said circuit, a second of which is connected to the other end of the other end of said circuit.
$4,093,895$
ASSYMETRIC TOP-BOTTOM PINCUSHION ASSYMETRCRECTION CIRCUIT
Robert P. Collette, Ekba, N.Y., asigaor to GTE Sylvania Incorporated, Stamford, Conn.
Filed May 3, 1976, Ser. No. 682,640

Flied May 3, 1976, Ser. No. 682,640
Int. C.2
H01J $29 / 56$
U.S. CI. 315-371 Int. Cl. ${ }^{2}$ H01J 29/56 8 Claim

1. In a cathode ray tube scanning system having a cathode ray tube with an associated deflection yoke which includes of deflection current at horizontal and vertical scan frequen of deflection current and a top and bottom pincushion correction circuit havin a saturable reactor with a control winding coupled to the source of deflection current at a horizontal scan frequency and source of deflection current at a horizontal scan frequency an
an output winding coupled to a source of deflection current

EEED CONTROL FOR ROTATABLE ELEMENT DRIVEN BY DIRECT CURRENT MOTORS Gerald N. McAuliffe, Liccoln, Nebr,, assignor to Outboard Marine Corporation, Waukegan, II.

1. A drive control comprising a frame, an element rotatably supported by said frame, a first direct current motor on said frame, means drivingly conneciring saed first iirect current
motor to said element with a first speed reducing ratio, a second direct current motor on said frame, means drivingly connecting said second direct current motor to said element with a second speed reducing ratio lower than said first speed reducing ratio, a source of direcc currenh, and a swich mounted on said frame and electrically connected th said source of direct inclent and to said first and second direct current motors and current source to said first direct current motor whereby to drive said element at a slow speed, and for subsequently additionally electrically connecting said source of direct current to sid second direct current molor while maintaining electrical connection of said direct current source to said first direct

4,093,897
Masahiko Fuitr; Toshilikiko Gotoh, both of Yokohama, and Tsutomu Nakamure, Toyokawa, all of Japan, assignors to Flied Oct. 22, 1976, Ser. No. 735,032 Claims priority, Application Japan, Oct. 23, 1975, 50-127768 ,
U.S. CI. 218-138

An electric motor comprisin

1. An electric
rotary shaft, disk-shaped multi-pole magnet coupled to said rotary shat and having a plurality of discrete magnet poles,
a pair of drive coils arranged within a magnetic field of said magnet and having drive sections which are linked by magnetic fluxes of said magnet,
means for supplying drive currents to said pair of drive coils to cause them to generate a drive magnetic field,
a speed detection coil arranged within the magnetic field of
said magnet and the drive magnetic field of said pair of drive coils for generating a signal having a frequenc corresponding to the rotational speed of said magnet,
a cancellation coil arranged within the magnetic field of said
drive coil for generating a voltage having a frequency Crive coil for generating a voltage having a frequency and
an amplitude both of which vary with the change in the drive magnetic flux of said drive coils, and
means for adding the voltage generated at said cancellation coil to the signal generated at said speed detection coil to cancel a voltage generated at said speed detection coil due
to the change in the drive magnetic flux of said drive coils.
lectric power through a controlled rectifier bank connected o said stator comprising:
first means, including: a time-controlled sampling module switch, for detecting the instantaneous voltage in said
wound rotor at a predetermined point in time and provid ing an alternating current signal related thereto; second means for reducing, rectifying and inverting said alternating current signal and for providing a signal related thereto; and
third means for analog voltage signal proportional to instantaneous speed.

4 4,003,899 ,093,899
CIRCUIT AND METHOD FOR CONTROLLING SPEED OF AN ALTERNATING CURRENT MOTOR Dann W. Denny, Morriton, IIL, assignor to General Electric Company, Fort Wayne, Ind.
Division of Ser. No. 548,764, Feb. 10, 1975, Pat. No. 4,007,605. This appilcation Aug. 18, 1976, Ser. No. 715,280 U.S. C1. 318-227 Int. C. ${ }^{2}$ H02P 5/40 11 Claims

1. A circuit for controlling the speed of an alternating curunt motor comprising a gate controlled full wave alternating hase control circuit coupled in parallel relation with said witch and operable generally for providing signals indicative of the occurrence of preselected conditions, a dropping resisance respectively coupled in series relation with the motor and in parallel relation with said switch, said dropping resis-
ance being by-passed when said switch is conducting in either direction and providing a motor operating current path when said switch is non-conducting, and means for transmitting the indicative signals to the gate of said switch to control the duration of the conduction thereof in either direction and its speed in accordance with the occurrence of the preselected conditions.

DYNAMIC BRAKE $\quad 4,093,900$

DINAMIC BRAKE BLENDING FOR AN INVERTER PROPULSION SYSTEM Company, Erie, Pa. Filed Aug. 11, 1976, Ser. No. 713,491

$$
\begin{aligned}
& \text { Filed Aug. 11, 1976, Ser. No. 713,491 } \\
& \text { Int. C. }{ }^{2} \text { H02P 3/22 }
\end{aligned}
$$

U.S. C1. 318-370

1. In a traction motor propulsion system of the type comprising an adjustable speed a-c motor, a d-c power source, an inverter having d-c terminals connected to said source and a-c
terminals connected to said motor, and control circuitry connected to the inverter and responsive to a commanded torque signal and to motor feedback signals for varying a parameter of the alternating voltage at the a-c terminals of the inverter so as to regulate the torque output of the a-c motor, the control inverter $d-c$ terminal voltage during electrical braking from exceeding a predetermined maximum limit, an improved electrical brake blending system comprising:
a. a plurality of braking resistors and a corresponding plural-
ity of switches having conducting and non-conducting
corresponding one of said switches to thereby form a plurality of braking stages;

路 circuit arrangement with the $d-c$ power source; c. circuit means responsive to motor torque, motor rota-
tional velocity and inverter terminal voltage and operative during electrical braking when

than commanded torque for producing an error signa representative of a change in motor current required to d. switch control means responsive to said error signal achieving a predetermined value for changing states o selected ones of said switches to alter the combination of motor generated current.

4,093,90

DC MOTOR SPEED CONTROL CIRCUTT
Ronald N. Rove, 2701 Terrace View La., Wayzata, Minn. 55391 Filed May 25, 1977, Ser. No. 800,530
U.S. C. $318-476 \quad 9$ Claims

A DC power control circuit adapted to control power to load such as a motor comprising in combination: output means adapted to be connected to he load, output switching means connected to said output means;
control switching means connected to said output switching control switching means connected to said output swich means so as to control the output switching means pulse generating means;
pulse width modulating means connected to said puise generating means and to said manual control means so as to vary the duty cycle of the pulses from the puise generating
means in accordance with the position of the manual control means;
control signal transfer means connected between said pulse width modulating means and said control switching means; and
ol switching means and to said pulse width modulating trol switching means and the so so to reduce the duty cycle of the pulses to zero response to excessive current in the control switching eans, said automatic means connected to latch on and hold the duty cycle of the pulses at zero until said manual control means is set at zero.

4,093,902

HIGH SENSITIVITY ELECTRONIC INTEGRATING TORQUE RHEOMETER
Leonard W. Mentovay, 16 Fairmount Rd., Parsippany, N.J. 08859 , and Alex Palmer, 24 Westwood Dr., Fair Lawn, N.J. Flled Dec. 29, 1976, Ser. No. 755,359 U.S. C. 318-490 Int. C.2 ${ }^{2}$ GOSB I/O8 15 Cluims

1. A mixing control system for elastomeric materials comprising:
mixer housing forming a mixing chamber therein for receiving said elastomeric materials
a least one rotatable mixing means in the chamber
dynamometer coupled to and driving said rotatable mixing means;
mixing means; said sensing means providing a torque signal level for controlling said mixing means;
voltage-to-frequency conversion means for processing said
signal level and for converting said signal level into a signal level and for converting said signal level into a pulse signal in which the pulse frequency varies in corre-
to the por cof the sige leves
counting the pulses of said pulse signal;
display means for displaying the count of said pulse counting means as the value of the integral of said signal level with respect to time; and,
control responsive means automatically responsive to a predetermined integrated value of said display means for
controlling the total mixing energy input to the mixing control system.
\qquad
APPARATUS FOR EXTENDING THE LINEAR SIGNAL RANGE OF A ROTARY TRANSFORMER TYPE DEVICE Ronald E. Thomas, Phoenix, Ariz, assignor to Sperry Rand Corporation, New York, N.Y.

$$
\begin{aligned}
& \text { on, New York, N.Y. } \\
& \text { Flled Jan, } 1977 \text {, Ser. No. } 764,327
\end{aligned}
$$

U.S. Cl. 318-584 12 Clime 1. Apparatus for extending the linear range of a rotary trans Irmer type device including polyphase stator windings and ine and cosine rotor windings comprising,
means responsive to the signal of said sine winding for providing a first output signal proportional thereto between first and second predetermined values thereof,
eans for providing a predetermined constant reference signal,
means responsive to the signal of said cosine winding and
said constant reference signal for providing a resultan
second output signal proportional to the

thereof for values of said cosine signal in excess of said first and second predetermined values of said sine signal.

4,093,904
MULTT-AXIS MOTION GENERATOR UTILIZING
FEEDFORWARD CONTROL
obert G. Burig, Allison Park, and Paul F. McNally, Gibeonia, both of Pa, amilgnors to Contraves Goerz Corporation, Pittsboth of Pa
burgh, Pa .

Fled Feb. 4, 1976, Ser. No. 655,072
U.S. CI. 318-616

12 Claims

1. An electrical positioner for positioning a slave shaft in response to the position of a continuously rotating master shaft comprising:
a master shaft encoder providing a digital master shaft position indication;
position determining means connected to said master shaft encoder and providing a digital slave shaft position in response to the digital master shaft position;
Cirst digital storage connected to and storing the digital
output of the associated position determining means; a second digital storage device;
a shifting means for shifting the digital signal stored in said first storage device to said second storage device when a pair of digital-to-analog converters connected to said first storage device and said second storage device for converting the digital outputs to analog outputs;
multiplying means for multiplying the outputs of said digital-to-analog converters by the signal related to the velocity of the master axis;
said digital-t-analog subtracting the analog signals out of said digita--to-anal
the velocity feedforward sigil mental change in the digital master shaft position; and, positioning means connected for positioning the slave shaft to the digital slave shaft position from said position detersignal.

4,093,905
STEPPING MOTOR USING EXTENDED DRIVE PULSES Leopold von Braun, Chicago, III., assignor to Telet
tion, Skokie, Ill.
Filed Jun. 1, 1976, Ser. No. 691,678

Int. Cl. ${ }^{2}$ H02K $37 / 00$
14 Claims

PERMANENT MAGNET PULSE GENERATOR AND METHOD OF FORMING AND ASSEMBLY James Richard Draxier, Fond Du Lac, Wis, ergnor to Bruns wick Corporation, Skokie, III

Int. Cl. ${ }^{2}$ H02K Ser. No. 636,105 U.S. Cl. 322-51 ${ }^{\text {Int. Cl. }{ }^{2} \text { H02K 15/02, 21/22 }}$

1. A trigger pulse generator for coupling to a driven shaft fo establishing time spaced ignition control signal pulses sepa permanent magnet unit defining the only source of magnetic force in the pulse generator, said unit having a first annular
magnet member radially magnetized, said magnet member having first and second circumferentially spaced and circumferentially extended portions, said portions being reversely magnetized whereby the first portion defines a North pole a
the outer periphery of the magnet member and a South pole in the outer periphery of the magnet member and a South pole in
radial alignment with the North pole, said magnet unit having a second annular magnet member in axially spaced adjacent relation to said first annular magnet member with first and
second portions aligned with the first and second portions of the first annular magnet member, said second annular magnet he first annular magnet member, said second anposing said first and second portions oppositely mag etized from that of the first annular magnet member to define he opposite polarity first and second magnetic poles at the periphery of the magnet members to generate an axially diaid magnet portions being magnetized to a substantially con tant magnetic level about the circumference of the magnet unit to define areas of sharp flux reversal on the periphery said constant magnetic level in the opposite direction.
2. The method of forming an annular rotor unit for generat ing time spaced trigger pulse signals comprising, fixedly at taching a non-magnetized permanent magnet member to
tubular supporting hub, assembling an electromagnetic coi assembly in fixed relation about the periphery of said magnet member, energizng said assembly with a direct current to establish a unidirectional magnetic field about a selected elon ated portion of the magnet member with said magnetic fiel
passing radially from said coil assembly through one axial en portion of said magnet member and axially through the hub nd returning radially through the opposite axial end portion of said magnet member to the coil assembly and thereby form ing a magnetized magnet member, said magnetic field being
selected to saturate said magnet member to form permanen magnets of opposite polarization at the opposite axial ends of he annular magnet member, the magnets in said magnet mem ber being magnetized to a constant level about the selected net member from said electromagnetic coil assembly.

4,093,907
REFERENCE SOURCE FOR PRODUCING A CURRENT WHICH IS INDEPENDENT OF TEMPERATURE Kar-Diether Nutts, Heilbronn, Germany, zsaigoor to Licentia Patent-Verwaltungs-G.m.b.H., Frankfort am Main, Germany
Flled Nor. 18, 1976, Ser. No. 743,143 Cleims priority, application Germany, Nov. 28, 1975, 255343 U.S. C. 323-1

7 Claims
current branches and including a first transistor, whose emitter-collector path is connected in one of said curren branches, for producing an output vorage acrosse ence in the Zener voltages of said first and second Zener diodes; and
transistor Darlington circuit to which the output voltage of said first transistor is fed, said Darlington circuit includ ing second and third transistors, with said second transis tor having its base connected to the collector of said first of the output current of said reference source, connected in the emitter path of said third transistor; and wherein said transistors of said Darlington circuit and said diodes driven in the forward direction are selected so as to render said output current of said reference source independents over said two wrrent branches as forced by said current mirror circuit.

4,093,908

PHASE-CONTROLLED VOLTAGE REGULATOR
PHASE-CONTROLLED, N.Y., assignor to Vira-Tech Inc Rochester, N Y Yochester, N.Y., assignor to Viva-Tech Inc., Filed Sep. 13, 1976, Ser. No. 722,632 U.S. CI. $323-19$

16. A method for maintaining at a substantially constant value the RMS voltage applied to a load from an AC power source of sinusoidal waveform, such power source having an dues, said method comprising the steps of
(a) generathod comprising the steps of a period corresponding to the period of said sinusoidal waveform;
(b) comparing said bipolarity waveform with the sinusoidal waveform characteristic of the instantaneous RMS voltage of the source to produce a signal each time the instanlaneous algebraic difrence or said waveforms first changes sign after te stan waveform; and
which controls the RMS interrupting the power applied to the load at the start of each cycle of said power source until said signal is re-
itar each cycle of said po
ceived by said switch.

4,093,909

METHOD AND APPARATUS FOR OPERATING A

1. A reference source for producing an output current independent of temperature comprising:
a constant current source
first and second Zener diodes of different Zener voltage; two parallel-connected current branches supplied by said
current source with each said branch including one of said current source with each said branch including one or said
Zener diodes and at least one of said branches including a plurality of series connected diodes driven in the forward pluraity of
direction;
current mirror circuit having components in each of said

SEMICONDUCTOR INTEGRATED CIRCUTT AT
MINIMUM POWER REQUIREMENTS
Donald L. Watrous, and Daniel W. Dobberphul, both of Liverpool, N.Y, assignors to General Electric Company, Schenec${ }^{\text {pool, N.Y, N.Y. }}$ Filed Jul. 21, 1976, Ser. No. 707,278 Find Jui. 21, 1976, Ser. No. $70727 .{ }^{2}$ G05F $1 / 56$
U.S. Cl. $323-22 \mathrm{R}$
6. In 10 Claim adapted to be powered from a battery and a converter havin
a charge storage capacitor for providing a filtered DC voltage to said circuit, the improvement comprising:
voitage divider means in said integrated circuit for providing a semiconductor integrated circuit process parameter
dependent reference voltage; dependent reference voltage;
comparator means for comparing the magnitudes of said

parator means providing an output control signal indica tive of the relative magnitudes of said voltages; and trol signal for enabling said converter to charge said capaciton and maintain the magnitude of said DC voltage at he minimum value required for reliable circuit operation with minimum power consumption in the integrated cir-
cuit.

NUCLEAR MAGNETIC RESONA
FOR CONTROL OF RESONANCE PICK-UP CIRCUIT Howard D. W. Hill, Cupertino, Calif, ese CONDITIONS ates, Inc., Palo Alto, Calif.

Filed Feb. 22, 1977, Ser. No. 770,478
U.S. Cl. $324-0.5 \mathrm{AH}$

1. In a nuclear magnetic resonance spectrometer of the type having an analysis channel and a control channel coupled in radio frequency magnetic- field exchanging relation via sepa-
rate analyzing and control radio frequency coil means to a common region for containing both an analysis group of nuclear magnetic resonators and a control group of nuclear magnetic resonators for controlling the resonance conditions of both groups, the improvement wherein:
said control radio frequency coil means is formed and arranged relative to said analysis radio frequency coil means
so that one of said coil means includes first and second spaced portions wound on a common axis for flow of the
radio frequency current therethrough such that the RF magnetic field region produced by said spaced portions of region bounded by said in opposite region bounded by said other coil means.

NUCLEAR MAGNETIC RESONANCE SPECTROMETER EMPLOYING AN IMPROVED RESONANCE SIGNAL Howard D. W. Hill, Cuperting CIRCUIT
Howard D. W. Hill, Cupertino, and John R. Lsudermilch, Foster
City, both of Calif., assignors to Varian Associates, Inc., Palo City, both of Calif., assignors to Varian Associates, Inc., Palo Filed Feb. 22, 1977, Ser. No. 770,479 U.S. CI. $324-.5 \mathrm{AH}$

1. In a nuclear magnetic resonance spectrometer of the type having a probe circuit means disposed in radio frequenc magnetic field exchanging relation with a sample region fo containing a group of nuclear magnetic resonators for excitin and detecting resonance of the group of nuclear magnetic resonance signals coupled into said probe circuit means from the resonant group of nuclear magnetic resonators, and a gate circuit means, disposed in circuit with said probe circuit mean and said receiver means for gating ON and OFF the flow of electrical signals between said probe circuit means and said ment wherein
said gate circuit means includes first and second gate circuit branch means parallel connected to each other and between said probe circuit means and said receiver means, each of said first and second gate circuit branch means including a series connection of a pair of gating diode means, a control node means connected in between each pair of gating diode means for application of a control
potential to respective ones of said diode means for biasing said diode means between conductive and nonconductive modes of operation for gating ON and OFF the flow of signals between said probe circuit means and said receiver means; and
seid diode means of said first and second parallel branches being oppositely poled relative to their respective control
node means such that pulse signals of equal magnetic and opposite sign cancel each other on the signal line gated ON and OFF by said gate means.

4,093,912
NMR MAGNET ASSEMBLY WITH POLE FACE PARALLELISM ADJUSTMENT
Glen P. Doable; Vincent N. Kahwaty, both of Poughkeepsie; James D. Randall, Pleasant Valley, and Fritz M. Reinhart. Hopewell Junction, all of N.Y., assignors to International Business Machines Corporation, Armonk, N.Y. Filed Sep. 20, 1976, Ser. No.
Int. Cl.
U.S. C. $32-.5 \mathrm{MA}$
current, said emission current being responsive to the temperature variation of the cathode with variation of

1. In an NMR magnet assembly having a permanent magne ncluding two spaced cylindrical magnetic cores and a cylin-
drical hollow fux-return-path casing surrounding said cores, drical hollow flux-return-path casing surrounsu-assembly en closed in said casing and comprising:
two pole pieces supported between said cores and spaced therefrom and from each other, said pole pieces having
flat parallel pole faces spaced to provide a gap having a flat parailel pole faces spaced
homogeneous magnetic field;
a fixed support connected to said casing and supporting one of said pole pieces in a fixed position relative to said cores pivotable support pivotably connected to said fixed support and supporting the other one of said pole pieces whereby said pole face thereof is pivotable about
with two degrees of freedom of movement; and
two adjustment mechanisms connected between said sup ports for positioning of said pivotable pole face in accordance with said two degrees of freedom of movemen respectively;
each of said adjustment mechanisms comprising a first member movable radially of said pivotable pole face, a differ
ential screw connected between said first member and one ential screw connected berween said first member and of said supports and operative to move said first member
of radially in response to rotation of said screw, and a seconc member extending radially between said first member and
the other one of said supports, said second member having the other one of said supports, sacc second member translating radial movement of said first member into pivotal movement o movement ole sale face in one of said degrees of freedom of movement. \qquad
ACUUM MEASURING IONIZATION APPAPATUS
CACUUM MEASURNG CONTROL
Charles D. O'Neal, III Pepperell, Mass., assignor to Varian Asocintes Nal, III, Pepperell,
Associates, Inc., Palo Alto, Calif.
Filed Mar. 24, 1976, Ser. No. 670,512
U.S. C1. 324-33

Int. C1. ${ }^{2}$ G01N $27 / 00$
9 Chims 1. A controller for a pressure measuring device having a hot
cathode, an anode and an ion collector, said controller comprising:
first means for providing an output signal representative of
the ion current through the collector;
second means for providing an output signal representative
of the electron emission current from the cathode;
means for combining the outputs of said first and second means
puts;
puts; means responsive to said ratio to give an indication of pressure in the pressure measuring device; of pressure in the pressure meashode to generate emission
pressure in the device; and

said energizing circuit means being constructed to prevent variation in the emission current in response to variation in rent by operator control.

METHOD OF MEASURING PARAMETERS OF A CRYSTAL FILTER
Varry J. Peppiatt, and Gerald E. Roberts, both of Lymchbures, Vi., asignors to General Electric Company, Lynchbure, Va. Filed Apr. 6, 1977, Ser. No. 784,970 led Apr. 6, 1977, Ser. No. 784,9
Int. C. ${ }^{2}$ G01R 29/22, 27/26
U.S. C1. 324-56

9 Claims

7. A method of measuring selected parameters of a crystal filter having a piezoelectric plate, an input electrode on said plate, a common electrode on said plate, and an output elecrode on said plate, said method comprising the steps of: a. applying a band of frequencies to said input electrode and said common electrode are connected by a shor circuit; and
determining the frequencies which cause the voltage a said common electrode relative to said reference point to be a maximum and a minimum

CAPACTIANC,093,915 in K ACf ANCE MEASURING SYSTEM Dennis K. Briefer,
Inc., Natick, Mas.
Inc... Natick, Mase. Continuantion-in-pert of Ser. No. 648,490, Jan. 12, 1976. This inuantion-iin-part of Ser. No. 648,490, Jan. 12, 19
application Jun. 29, 1977, Ser. No. 811,385

1. A capacitance measuring system comprising A. an oscillator including means for providing at an output
terminal an oscillatory signal relative to a ground potenterminal an oscillatory signal relative to a ground potential, said oscillatory signal being characterized by a predetermined peak-to-peak voltage,
ing network, said first capacitive network peak detec coupling capacitor and a first sensor capacitor connected in series between said output terminal and said ground potential, said first sensor capacitor having one terminal connected to said ground potential, and said first peak
detecting network being connected to detecting network being connected to the junction being means to generate a first peak signal representative of the peak-to-peak voltage at said junction,
C. A second capacitive network and associated second peak
detecting network, said second capacitive network includdetecting network, said second capacitive network including a coupling capacitor and a second sensor capacitor ground potential, said second sensor capacitor having one terminal connected to said ground potential, and said second peak detecting network being connected to the junction between said coupling and second sensor capacitors and including means to generate a second peak signal signal representative of the peak-to-peak voltage at said
junction, junction,
first and second peak detecting networks for producing an output signal representative of the difference in magnitude of said first and second peak signals.
2. A system for generating a signal functionally related to the capacitive reactance of a sensor capacitor, comprising:
ing network, said first capacitive network including a first drive capacitor and a first sensor capacitor connected in series between a system input terminal and a first reference potential, and said associated peak detecting network being connected to the junction between said first drive ating a peak signal representative of the peak voltage at said junction,
B. an oscillator coupled to said system input terminal and having a control terminal, said oscillator including means to generate an oscillatory signal at said system input terminal, said oscillatory signal being characherized by an an. plitude p
nal, and
C. feedback network coupled between said first peak detecting network and ssaid control terminal, said feedback network including means responsive to said peak signal and a second reference potential to apply a feedback signal to sid control terminal whereby the peak amplitude of the voltage across said drive capacitor is constant.

DIGITAL TACHOMETER migr, 37 Vlew Rd., Setanket, N.Y. 11785 Filed Oct. 4, 1976, Ser. No. 729,212 U.S. C1. 32\& 166 Int. C1. ${ }^{2}$ G01P $3 / 48$

1. A speed measuring arrangement comprising, in combina tion, a source of pulses occurring at a frequency correspondin source for counting said pulses; means for generating a prede termined time interval connected to said counting means for actuating said counting means so that said pulses are counted
only within said time interval; and means connected between only within said time interval; and means connected between said source of pulses and said time interval generating means
for starting said time interval only at a predecernined and constant instant of one of said pulses; the number of pulse counted within said time interval being constant for any prede termined magnitude of the speed being measured, said speed being variable over time.

VELOCTTY MEASUREMENT SYSTEM Walter Heeussermann, Hantrille, Ala, menignor to The United States of America as represented by the Adminitretor N cional Aeronautica and Spece Adminitration, Washington, Filed Oct. 6, 1976, Ser. No. 730,046
Int. C1.2 G01P 3/48 U.S. C. 32ヶ173 Int. Cl. ${ }^{2}$ G01P 3/48

6 Claima

1. A velocity sensor for measuring the surface speed of a onductive body along a path of movement comprising an E-shaped magnetic core having a central pole and two spaced outer poles, the ends of said poles being configured to be closely spaced from the conductive surface of a
moving body the speed of which is to be measured, said poles being positioned, in line, along said path of movement of said body;
an energizing coil coupled to said central pole;
first and second Hall effect devices positioned
first and second Hall effect devices positioned in a spaced relation along said path of movement of said body on the Hall effect device having a bias input and signal output; bias means for applying a biasing current to said energizing coil and to the bias input of said Hall effect devices; and
difference means connected to difference means connected to the signal outputs of said Hall
effect devices for subtracting the signal outputs and pro- modulated signal derived by modulating a first carrier signal
viding a signal indicative of the velocity of a conductive by a modulating signal to a second amplitude modulated signal body moving across but spaced from the end surfaces of said poles and said Hall effect devices.

MEANS FOR DETERMINING THE REFRACTIVE INDEX PROFILE OF THE ATMOSPHERE
Herbert V. Hitney, San Diego, Calif., sasignor to The United States of America as represented by the Secretary of the Nery, Sartes of America 2s represented by
Washington, D.C.
Fled Aug 16, 1976, Ser. No. 714,86

Filed Aug. 16, 1976, Ser. No.
Int. Cl. ${ }^{2}$ H04B $17 / 00$

1. A method for determining the refractive index profile of he lower atmosphere comprising the steps of:
(a) observing the signal pattern of a signal received from a satellite transmitter as the satellitite moves thro
elevation angles over a selected period of time;
elevation angles over a selected period or time, calculating a number of hypothetical signal patterns;
(c) comparing each of said hypothetical signal patterns with said observed signal pattern until one of said hypothetical signal patterns matches said observed signal pattern to
within a selected limit of error, each of said hypothetical ignal patterns is calculated by hypothesizing a different efractive index profile, the hypothesized refractive index profile of said matching hypothetical signal pattern comproising the refractive index profile to be determined.

4,093,919
CARRIER CONVERTER COMPRISING A VARIABLE IMPEDANCE CIRCUIT PAIR OR AT LEAST ONE IMPEDANCE CIRCUID PAODE BRIDGE
Hiroshi Watanabe, Tokyo, Japan, assignor to Nippon Electric Co., Ltd., Tokyo, Japan Fled Aug. 16, 1976, Ser. No. 714,921
Claims priority, application Japan, Aug. 14, 1975, 50-98853; Claims priority, apppication Japan, Aug. 14, 1475, 190.9883 ; Aug-98856; Jan. 19, 1976, 51-5269
U.S. C. 325-316

14 Cleims derived by modignal to a seccond carrier signal substantially by said modulating signal, comprising a variable impedance cir cuit having a variable impedance dependent on the amplitude of an input signal, first means for supplying said first ampinder modulated signaa as said inpueans for supplying said second carrier signal to said variable impedance circuit, and a third means operatively coupled to said variable impedance circuit for deriving said second amplitude modulated signal, the im-
said variable imp
circuit having a first and a second pair of bridge termingls and being balanced with respect to a first bridge signal supplied to the first pair of bridge terminals and to a secterminals, said first pair of bridge second pair of bridge from said second pair of bridge terminals;
said first meamns supplying said first amplitude modulated bridge signal and ssid second means supplying said second carrier signal to said second pair of bridge terminals as said second bridge signal;
said third means being coupled to said second pair of bridge said second carrier signal tering applied to said third means.

4,093,920
DELAYED RESPONSE TRANSMITTER INDICATOR Martin L. Kniser, 115 Boaley Ave, Cockeysille, Md. 21030 Filed Jun. 29, 1976, Ser. No. 700,919
Int. C. ${ }^{2}$ H04B $1 / 06$
U.S. C. 325-364

2 Cluims

sence of a DC signal from the detector causes the level detector to activate the time delay to zero time and when
an RF input occurs the level detector triggers the time an RF input occurs the level detector triggers the time delay and the timing process begins;
e. an indicator driver fed by said time delay; and indicator means for detecting the output of said indicato input.

4,093,921
MICROCOMPUTER PROCESSING APPROACH FOR A NON-VOLATILE TV STATION MEMORY TUNING SYSTEM Senneth George Bues, Dalles County, Tex., assignor to Texas Instruments Incorporated, Dalles, T

Filed Mar. 17, 1977, Ser. No. 778,401
Int. C. ${ }^{2}$ H04B $1 / 26$
U.S. CT. 325-459 Int. C. ${ }^{2}$ H04B 1/26

23 Claims

1. A broadcast receiver tuning system for tuning said broad cast receiver to a selected frequency comprising:
ponsive to a word,
second means for storing said selected digital tune word and said binary address operably associated with said first means for storing,
a microcomputer
digital tune words in said for selectively changing said ing, and
means for co
second meanverting said digital tune word stored in said second means for storing into an analog voltage operative
to tune said broadcast receiver to said selected frequency.
by an increment value read from a data memory matrix; and

converting said digital tune word stored in said shift register into an analog voltage operative to tune said broadcast receiver to said selected frequency.

SIGNAL CANCELLING CIRCUIT
Karl MaCormick, Houston, Tex., asslgnor to Shell Oill Com pany, Houston, Tex.

Filed Dec. 22, 1976, Ser. No. 753,658
Int C. 2 G11C 27/02: U.S. C. ${ }^{328-165}$

1. A passive system for cancelling a noise signal while pre serving a desired signal having the same frequency, said system comprising:
a sample circuit, said sample circuit being disposed to sample said noise signal;
an enabling circuit coupled to said sample circuit to enable
said sample circuit at selected tion neous values of said noise signal and block said sampla circuit at all other times
an address means, said address means having N positions and being operable in synchronism with said noise signal; V storage units, said storage units being disposed to be cou pled by said address means to said sample circuit, to sample and store a signal related to the instantaneous amplifeedback circuit having a his
circuit being coupled by said addressance, said feedback stored signals to a circuit means to cans to supply the during time periods when said samplaincel said noise signal during time periods w
said enabling circuit.

DEVICE FOR APPL $4,093,924$ transistor for increasing its maximum power output: comprisBY A LASER OSCILLATOR ean-Claude Farcy, Brils-souss-Forges, France,
missariat a YEnergle Atomique, Paris, France
Claims priority, application France, Dec. 23, 1974, 7442592
U.S. Cl. 330-4.3

6 Claims

1. A device for amplifying a laser pulse
oscillator, wherein said device comprise
aling ligh-amplifying medium which is pumped by an auxiliary Is, one or a number of upper reserve levels, an upper laser level, a lower laser level and one or a number of lower reserve levels, the laser transition being intended to correspond to the laser pulse delivered by the oscillator and to take place between the upper laser level and the lower laser level,
lase
a series of mirrors placed around the amplifying medium to reflect said laser pulse from one mirror to the following arranged as to ensure that the time interval Δt_{1} which elapses between two successive passes of the pulse within the same volume of the amplifying medium is longer than the time interval Δt_{2} which is necessary for population transfer between on ther laser level and on the other hand the lower laser level and the lower reserve level or levels, with the result that the amplifying medium is regenerated by population exchange at the lower and upper levels between each traversal of the pulse through said amplifying medium,
herein the amplifying medium is placed between two paraliel planes which are perpendicular to an axis Oz and path of the light pulse between said mirrors is perpendicular to said axis Oz

METHOD AND SYSTEM OF DRIVING POWER FIELD EFFECT TRANSISTOR Kenil Yokoyama, Hamamatsa, Japan, assignor to Seizo Kabushild Kaisha, Hamamatsu, Japan
Filed Nov. 18, 1975, Ser. No. 632,899 Claims priority, application Japan, Jan. 27, 1975, 50-11076; Jul. 8, 1975, 50-83744
U.S. C1. 330-277 Int. Cl. ${ }^{2}$ H03F 3/16, $3 / 21$

9 Claims
U. Cl.

ing the step of over-driving said transistor by applying thereto

Com-

forward gate-to-source voltage which is greater in the forward biasing direction than zero volts.

4,093,926
SYSTEM FOR ADVANCING AN ELECTRICAL SIGNAL IN PHASE UNDER THE CONTROL OF AN EXTERNAL VOLTAGE MORE ESPECLALLY FOR AN ENGINE OF A MOTOR VEHICLE
Jean Luc Lamarche, Paris, France, assignor to T
Paris, France
Filed Feb. 23, 1977, Ser. No. 771,324 Claims priority, application France, Feb. 27, 1976, 7605587

1. A system for advancing in phase an electrical signal under he control of an external voltage, comprising:
a control oscillator circuit, delivering an output signal of which the frequency is controlled in dependence upon frequency control voltage;
a phase comparison circuit, with two input terminals delivering said frequency control voltage, and receiving at one of said input terminals the signal to which a phase advance lead is to be applied;
a controlled phase delay circuit included in a return loop connected between the output of said controlled oscillato and the other of said input terminals of the phase comparison circuit, said frequency control voltage thus being signal and the delayed signal, by which the output signal of the controlled oscillator circuit is advanced in phase relative to the input signal, by an amount which is dependent upon the value of a phase control voltage, said phase control voltage being provided by said external voliage circuit is formed by:
a second phase comparison circuit which delivers a correcting voltage in dependence upon the phase compariso between the input signal to be phase-shifted and the outpu signal of the controlled oscillator circuit;
a voltage comparator-amplifier circuit which respectivel receives at its inputs said correcting voltage and the exter
nal control voltage, said circuit thus delivering a voltag
which is dependent upon the difference between the two
voltages received, voltages received, and which constitutes said phase-control voltage applied to said phase-delay controlled circuit, phase delay circuit, is substantially independent of the frequency of the output signal.

4
(David Proctor, San Diego, Calif, assignor to The United States
of America as represented by the Secretary of the Nary, Washington, D.C.

Filed Dec. 20, 1976, Ser. No. 752,646				
U.S. C1. 333-11				
Int. ${ }^{2}$ H01P 5/22				

13 Claims

4,093,927
PULSED GAS LASER
Jeffrey Steren Levine, Lexington, Mass., assignor to Massa-
chuects Institute of Technology, Cambridge, Mose chusetts Institute of Technology, Cambridge, Mass.
Filed Jan. 21, 1976, Ser. No. 650,912 Filed Jan. 21, 1976, Ser. No. 65
Int. C.2 H01S $3 / 096$ U.S. C. $331-94.5$ PE 14 Claims

10. A microwave, microstrip hybrid ring coupler compris ing:
${ }^{2}$ a planar dielectric sheet having first and second opposing ground plane conductor supported on said dielectric shee second face;
first and second input-output strip conductor tabs supported on said dielectric sheet first face and defining a first com mon axis;
on said diel input-output strip conductor tabs supported on said dielectric sheet first face and defining a second common axis;
a substantially circular strip conductor connected in common to each said input-output strip conductor and having a pair of ends defining a gap therein; and
ducing a 180° phase reveral strip conductors for introthrough, each connected to one of said pair of ends said first and second strip con to one of said pair of ends, said other and being entirely disposed ong connected to each first face.

4,093,929
 METHOD OF SYNTHESIZING CYLINDRICALLY SYMMETRIC STATIC MAGNETIC FIELDS IN A LOCALLY SATURATED MAGNET AND APPARATUS

 PROVIDING SAID FIELDSFrederick R. Morgenthaler, Wellesley Hills, Mass, assignor to assachusetts Institute of Technology, Cambridge, Mass.
Filed Nor. 24, 1975, Ser No. $\mathbf{3 3 4} \mathbf{6 7 6}$ Int. C.2 H01P $1 / 18,1 / 20,9 / 30$; H01F $3 / 10$ U.S. C. 333-31 R

1. Apparatus that comprises, in combination: a magnetic 1. Apparatus that comprises, in combination: a magnetic
material; and means creating a magnetic bias field $\mathbf{H}_{B F R}$ in the region of the magnetic material of sufficient intensity to effect local saturation of the magnetic material, the shape and mag netic characteristics of the magnetic material and the contour of the magnetic bias field $H_{B F R}$ acting, in combination, to pro-
vide a spatially non-uniform internal magnetic field $H_{I R}$ of predetermined exacting characteristics within the magnetic
materia, said means creating a magnetic bias field $\mathrm{H}_{B F R}$ comMAGNETIC ARMATURE SOLENOID Avin P. Fenton, Oostburg, Wis, assignor to Kohler Con, Kohler,
Wis.

Filed May 19, 1977, Ser. No. 798,293
U.S. C. ${ }^{2}$ H01F 7/14

whose surface contours or pole faces are disposed along at least two equipotentials $\psi_{i R}$ of said magnetic bias field $\mathbf{H}_{\text {BFR }}$.

1. In a rotary solenoid which includes a stationery " E ". shaped electromagnet having a central axial hub with a central axial opening, a pair of opposed axially extending poles and a circular channel between said hub and said poles
a solenoid coil positioned in said channel about said hub, and to the rotor which extends through the axial opening in the hub and a pair of diametrically opposed magnetic the hub and a pair or dimproved armature assembly in which:
RADIO TUNING ARRANGEMENT Manfred Flüge, Nuremberg, Germany, assignor to Grundig E. M. V. Elektro-Mechanische Versuchsennstalt Max Grundig Germany Filed Feb. 28, 1977, Ser. No. 772,519 Filed Feb. 28, 1977 , Ser. No. 772,519
Claims priority, application Germany, Mar. 16, 1975, ${ }_{7608023[(U)}^{\text {prio }}$
U.S. C. $334-86$

Int. Cl. ${ }^{2}$ H03 $1 / 02$

1. A radio tuner arrangement for use with a radio of the type wherein tuning is accomplished by the rotation of a knob which, in turn, rotates a variable condenser drum via a cable, soid arrangement comprising: a cuning scale; an mounted to said indicator for movement therewith; a drive cable extending in a closed path between said drum, knob and indicator, said drive cable having sections thereof wound about said drum and knob, said drive cable further including a pair of insulated conductors each having a first end extending off said drum longitudinally and affixed to a terminal post and an opposite end connected to said lamp, said conductors expososite sides of said path; said conductors being fixed to an end of said drum and extending beyond said drum end to clamp means positioned between said terminal post and drum whereby to define a torsion section in said cable between said drum end and said clamp means.
(a) the output shaft is formed integral with the rotor;
(b) the poles are joined in a fixed relationship by relatively thin bridges to form a unitary magnetic armature piece; thin brid
and
(c) the m
(c) the magnetic armature piece and the rotor are each pro-
vided with alignment means which cooperate to properly align the magnetic armature piece on the rotor.

ELECTRIC ALL PURPOSE FUSE Frederick J. Kozacka, South Hampton, N.H, asedgnor to Gould Inc., Rolling Meadow, Il . Filed Mar. 7, 1977, Ser. No. 775,248 Int. Cl. ${ }^{2}$ H01H 85/04, 85/12

 U.S. CL. 337-161

multibreaks for the interruption of small overload currents (a) a tubul
lentular casing of electric insulating material having a (b) a pair of terminal elements closing the ends of said casing; (c) a granular quartz filler inside said casing;
(d) a pluraity of wire-like fusible elements whose cross-se
tional and periodically conductively interconfusible elements being stampings of sheet metal ; fe) a fusible element support around which satal; (e) a fusible element support around which said fusible ele-
ments are wound substantially helically, said supporit ments are wound substantially helically, said suppor
comprising rods of gas-evolving insulating material; and (f) the spacing of said plurality of fusible elements being such that initial break formation near the center of said plurality of fusible elements is followed by voltage surges and
concomitant electric breakdowns between windings of said plurality of fusible elements and hence formation of series breaks without shortcircuiting and formation of a
self-sustained electric discharge between said plurality of self-sustained electric discharge between said plurality of
fusible elements. fusible elements.

4,093,933
SCULPTURED PRESSURE DIAPHRAGM
Leslie B. Wilner, Palo Alto, Calif,, assignor to Becton,
Dickinson Electronics Company, San Juan Capistrano, Calif. Filed May 14, 1976, Ser. No. 686,419
U.S. C. $338-42$

11 Claims

1. In a pressure transducer
a diaphragm composed of a nonmetallic material, said diaphragm having at least two elongated slots separating thick rigid portions therein and forming at least two re spective thin flexures joining said thick rigid portions
whereby deflection of said diaphragm causes said flexures to bend about axes parallel to their lengths, and
strain sensitive means comprising piezoresistive semiconduc-
tive means secured to said diaphragm opposite one of said tive means secured to spid diaphragm opposite one of said
slots to detect relative movement of slots to detect relative movement of parts of the corre-
sponding thin flexure in response to bending theref to sponding thin flexure in response to bending thereof to
change resistance of said semiconductive means by an amount corresponding to a pressure change.
 FREE-FALLING SONOBUOY
Robert J. Urick, Silver Spring, Md., and Robert L. Parris, Annandale, Van, zasignors to The United States of America a represented by the Secretary of the Nary, Washington, D.C Filed Apr. 28, 1965, Ser. No. 452,460
Int. C1. ${ }^{\text {H04B }} 11 / 00$; G01S $9 / 66$
U.S. Cl. $340-2$

9 Claims

1. The met
the steps of:
submerging a hydrophone array characterized by its ability to receive sound emanating from vessels in the annular to receeive sound emanating from vessels in the annular
zone defined by a conical pencil of rays upwardly diver-
gent from the array and a hydrophone array characterized by its ability to receive sound emanating from vessels in wardly divergent from the array, lowering said hydrophone arrays

and continuously transmitting signals of any sound waves thereby received to the surface during the lowering of said arrays,
hereby a complete acoustic scan of the entire volume of the sea out to substantial ranges is thus acquired.

EXPANDABLE 4,093,935 Charle EXPANDABLE TRANSDUCER ARRAY Charles W. Ouellette, Portsmouth, R.II, assignor to Raytheon
Company, Lexington, Mass Continuation of Ser. No. 682,422, May 3, 1976, abandoned. This
application Apr. 29, 1977, Ser. No. 792,439 U.S. Cl. $340-8 \mathrm{~S}$ Int. Cl. ${ }^{2} \mathbf{H} 04 \mathrm{~B}$ 13/00

1. A transducer system comprising
a housing having an opening in an end thereof
loataion means secured to said housing at an end thereof opposite said opening for floating said housing in a fluid medium; an array of transd
of said array;
ap arras, cap closing said opening for securing said transducer elements within said housing, said cap being released upon
impact with said fluid, said transducer elements being impact with said fluid, said transducer elements being
slidably secured within said housing to permit their exit via said opening upon said releasing of said cap;
spring means for expanding seadid array of transiducer ele-
ments subsequent to their exit from said ments subsequent to their exit from said housing; and
a flexible enclosure extensibe then flexible enclosure extensible through said opening and
secured to said housing, said housing surrounding said array for constraining said transducer elements against forces of said spring means to occupy predetermined
locations upon the expansion of said array, said enclosure having apertures therein for admission of said fluid to having apertures therein for admission of said fluid to contact said elements for communication of radiation
thereto, said spring means comprising spring elements located between said transducer elements and symmetrically positioned about said axis for maintaining said trans-
ducer elements in a predetermined orientation relative to said axis.

4,093,937
 AUTOMATIC RUNWAY TRAFFIC DIRECTION

ax Habinger PO CONTROL
Fi. O. Box D, 500 Leo Ave., Landing, N.J. 07850

OGGING METHOD AA
LOGGING METHOD AND APPARATUS Howard C. Eberline, Edmond, and Jack L. Moon, Oklahoma Clyy, both of Okla, 2.
Oklahoma
Cly, Olda. Filed Dec. 27, 1976, Ser. No. 754,922
Int. Cl. ${ }^{2}$ G01V $1 / 40$
U.S. C. $340-18$ CM ${ }^{\text {Int. Cl. }{ }^{2} \text { GO1V } 1 / 40 \quad 12 \text { Claim }}$

10. A logging method utilizing a first downhole loggin device, a second downhole logging device, a first surface measuring apparatus, a second measuring apparatus, a surface establishing electrical continuity between the coaxial cable and the first surface measuring apparatus in a first mode of and the ins
establishing electrical continuity between the first downhole logging device and the coaxial cable in the first mode of operation, electrical continuity being thereby established
between the first surface measuring apparatus and the first downhole logging device via the coaxial cable in the first mode of operation;
establishing electrical continuity between the second surface measuring apparatus and the cooxial cable and about simultaneously interrupting electrical communication coaxial cable in a second mode of operation;
establishing electrical continuity between the surface pow
supply and the coaxial cable in the second mode of operation; and
stablishing electrical continuity between the second downhole logging device and the coaxial cable in response to
electrical continuity being established between the surface electrical continuity being established between the surface electrical continuity between the second surface measuring apparatus, the surface power supply and the second down.
U.S. C. $340-26 \quad 3$ Int. Cl. ${ }^{2}$ GOBG 5/00

1. A bidirectional sequential flashing light system for use in an airport runway lighting system comprising: an opto electronic wind direction sensing means generating an output signal indicative of the direction, bidirectional counting means,
said counting means responsive to said sensor output signal flashing airport runway light means including a plurality of runway lights,
solid state switch activating means responsive to the direction of said bidirectional counting means count,
said light means connected to said switch means whereby the pluraitity of lights are activat of in a sequ.
thereby indicating the direction of the

AIRCRAFT ALTTUDE ANNUNCLATOR
Michael A. Argentieri, West Orange, and James Michael A. Argentieri, Weast Orange, and James Lionetti, Northvale, both of N.J., assignors to Intercontinental Dynamics Corp., Englewood, N.J.

Filed Oct. 18, 1976, Ser. No. 733,180
.S. C. $340-27$ R
18 Claims

1. A system for use in an aircraft to announce altitude-related messages, said aircraft having means for generating a signal means for storing a plurality of verbal messages, at least some of said messages corresponding to respective aircraft altitudes, means for playing a selected one of said messages, means for selecting one of said messages when the altitude represented by said altitude signal is in a respective range of a first group of ranges, a different range ill sal the ranges being disconnected from each other, means for deriving a negative-rate signa representative of a decreasing altitude, means responsive to the simultaneous derivation of said negative-rate signal and the operation of said message-selecting means for controlling said aessage-playing means to play the selected message and thereing means independent of another operation of said messageselecting means, a second group of ranges all disconnected rom each other and all disconnected from the ranges in said first group, the ranges in said first and second groups alternating with each other in the order of increasing altitudes, and
means responsive to said altitude signal representing an altitude
in one of the ranges in said second group adjacent the range in said first group in accordance with which the last-played mes.

message-playing means.
AOCESSORY FOR $\quad 4,093,939$
OPERATION A VEHICLE FOR MONTTORING ITS Nerille Herbert Mitchell, Johannesburg South Africa, ems Nevile Ferbert Mitchell, Johannecsbure, South Africa, asedgnor
to Transputer (Proprietary) Limited, Johannesburg, South Africa
76/0973
Filed Feb. 16, 1977, Ser. No. 769,272
priority, application South Afric, Feb. 76/0973 Int. C1. ${ }^{2}$ G08B $19 / 00$
U.S. C. $340-52$ F ${ }^{\text {Int. Cl. }{ }^{2} \text { G08B } 19 / 00}$

7 Claims

1. An accessory for a vehicle having a drive means, the accessory including
a vehicle speed sensing means for sensing the travelling speed of the vehicle and for providing a vehicle speed signal;
differentiating means for differentiating the vehicle speed signal with respect to time to provide an acceleration signal representative of the linear acceleration of the vehicle;
cle speed cle speed sensing means for recording the amount of time that the vehicle is driven at a speed greater than a predetermined speed;
a vehicle excessive acceleration recording means responsive
to the differentiating means for recording the amount of time that the vehicle is accelerated at an acceleration greater than a predetermined value;
a vehicle operating time recording means responsive to the
vehicle speed sensing means for recording the amount of time the vehicle is in motion;
drive means operating speed sensing means for sensing the operating speed of the drive means and for providing a drive means speed signal;
drive means overspeed recording means responsive to the drive means speed sensing means for recording the greater than a predetermined speed; and
drive means operating time recording means responsive to the drive means speed sensing means for recording the amount of time the drive means is in operation.

SYSTEM AND EQUIPMENT $\stackrel{4,093,940}{ }$ OF A DIGITAL CONNECTION CTRCCHECKING OF A DIGITAL CONNECTION CIRCUIT Maurice Maniere, Confanss-Sainte-Honorine, France, assigno
to Lignes Telegraphiques et Telephoniqnes, Paris Cedex France

Filed Feb. 15, 1977, Ser. No. 768,782 Claims priority, application France, Feb. 27, 1976, 7605615 U.S. C. $340-146.1 \mathrm{E}$ Int. C. ${ }^{2}$ Gosce $25 / 00$

6 Claims

1. A system for checking the quality of a digital connectio circuit comprising:
a first device including transmitting and receiving means connected to the first end of said circuit for respectively transmitting a check message and a quality character sent
in a given direction of said circuit under test during transin a given direction of said circuit under test during trans-
mit cycles assigned to said first device and receiving check message and a quality character sent in the othe direction of said circuit under test during receive cycles assigned to said first device
a second device identical to the first device including trans-
mitting and receiving means connected to the second end mitting and receiving means connected to the second end sage and a quality character sent in said other direction of said circuit under test during transmit cycles assigned to said second device and coinciding with the receive cycles
assigned to the first device and receiving a check message assigned to the first device and receiving a check message
and a quality character sent in the given direction of said circuit under test during receive cycles assigned to said second device and coinciding with the transmit cycles assigned to the first device;
control units respectively
ontrol units respectively connected to the ends of said
digital connection circyit including digital connection circuit including means for periodically transmission and reception; each of said control units including means for respectively generating, transmitting and receiving a synchronization character having i bits repeated n times and forming the first part of said check message and further including ceiving a pseudo-random sequence of p bits, forming the second part of said check message, each covering one
further bit interval immediately following said synchronization character;
tore means connected to said control units for storing said received synchronization character, pseudo-random se ror detector means character;
store means, deriving from the errors in said received synchronization characters and pseudo-random sequence a coded result forming the quality character;
in means for dive is received:
and means for adding said quality character to the check message transmitted by each of said device during the transmit cycle following that wherein it is received.

$$
\begin{aligned}
& \text { SLOPE FEATURE DETECTION SYSTEM }
\end{aligned}
$$

Larry Wayne Bryan, Arlington; Darid Panl Himmel, and George Williem Worter, Jr., both of Dallas, all or Tex, 2 Ignors to Recognition Equipment Incorporated,
Filed Dec. 9, 1976, Ser. No. 749,200 U.S. C. $340-146.3$ AE

14 Caime

1. A method of detecting descriptive features of binary mages of characters stored in a memory means formed fro sensor cell responses generated by a sensor array scanning handprinted and multifont machine printed characters, which comprises:
(a) generating first signals representing the outer boundaries and inner loops of said characters by a vector contro means in communication with said memory means;
(b) generating second signals which are vector representations of said boundaries by a trace control means receiving said first signals, each of said representations comprising
one of a set of a plurality of equally divergent vectors.
(c) generating a first set of indicia representative of said characters representing averages of selected sets of said second signals by said trace control means;
(d) reducing each character to a one-cell stroke width by said vector control means and generating a second set o indicia representaive of reduces ones of said chard signals produced by said vector control means tracing the outer boundary of said reduced ones.

$\stackrel{4,093,942}{\text { MATRIX CTRCUIT }}$

Yasojl Suzuki, Kanngawa; Yoshio Kaneko, Kawasald, and Yoshilisisa Sblotari, Yokohams, all of Japan, amignors to Toky Shibaura Electric Co., Ltd, Tokyo, Japan Claime priority, application Japen, Jun. 5, 1975, 50-67870;

U.S. C. $340-166$ R

$$
\text { int. Cl. }{ }^{2} \text { HO4Q } 3 / 00
$$

1. A read-only memory matrix circuit comprising: first group of input lines, a second group of input lines, a output lines intersecting thand a plurality of groups of and third groups to form a matrix array
the third group of input lines being arranged in the matrix array between the first and second groups of input lines,
each of the plurality of groups of output lines having a common terminal connected to one end of a power source and another common terminal connected to ground,
a plurality of first switching elements, individual ones of the plurality of first switching elements being connected to first input signals applied to the input lines forming said first group,

a plurality of second switching elements, respective ones of which are driven by the same first input signals applied to he plurality of first switching elements and are connected array relative to the output lines in which the first switching elements are connected, and
plurality of third switching elements, individual ones of which form different combinations connected between input signals applied to the third group of input lines.

SEQUENTIAL POWER DISTRIBUTION CIRCUT Webster B. Knight, 2320 Abbey - No. 6, Fort Wayke, Ind. 46815

```
U.S. C. \(340-220\)
```


1. A power distribution circuit comprising; a power source; primary load being coupled to and selectively energizable by said source;
an energy reserve having a predetermined reserve capacity; first means for coupling said source to said reserve to provide said reserve with a flow of energy with the flow and accumulation of said flow being limited by said capacity when said load is not being energized; said load is being energized by said source;
a secondary load being coupled to the energy in said reserve; third means coupled to said reserve for generating a signal upon the sensing of a predetermined condition; operable by said signal and said reservecondary load and pling said secondary load to said power source upongeneration of said signal.

BREATH TESTING SYSTEM Donald W. Collier, Chicago; Joseph P. Hoppesch, Streamwood, Donand W. Collier, Chicago; Josept P. Hoppesch, Streamwood,
and Anthony C. Mamo, Arlington Heights, all of III, sssionors to Alcohol Countermensure Systems, Inc., Sarnia, Canada Fled Apr. 23, 1971, Sys.e. No. 136,921 Disclosure was also published under second Trial Voluntary Protest Program on May 29, 1976
Int. Ct. B60k 27/08; G08b 21/00
U.S. C1. $340-279$

34 Claims

34. A breath alcohol detection system for motor vehicles comprising:
a sensor
sensor responsive to exposure to alcoholic vapor in a
breath sample for producing a input means for communicating breath samples to the sensor;
means resp
means responsive to the application of a sample to said input means, for producing a second electrical signal independ ent of the alcohol content of the sample; and and second signals for producing an output condition to enable normal vehicle operation only when condition to tion of the first and second signals when the combinasample having less than a predetermined alcoholic content.

1. A silent awakening system with means adapted to induce sleep in a person, said system comprising: a first means for producing an electrical signal and being energized for quiesproducing an electrical signal and being energized cor querrent, a
cent operaion thereof from an external source of curs second means for receiving and directing said electrical signal through an electrical transmission medium to an electrical
signal receiving means electrically
coupled thereto; said secsignal receiving means electrically coupled thereto; said second means having therein a circuit adapted to process said
electrical signal into a continuous flow of direct current, and means disposed in said circuit for channeling said direct current into two circuit sections; one of said circuit sections is adapted to conduct said continuous flow of direct current and having therein a control means to vary the current flow therethrough, and the other circuit section having means therein to convert said continuous direct current into recurrent pulsa-
tions; electrical means for selecting one of said circuit section at a time and to direct the current from the selected circuit section into a physical aid means in detachable, electrical connection with said electrical means for selecting one of said circuit sections at a time; an electric motive means disposed in aid physical aid means and receiving a current from the sea mechanical tremor of varying intensities comprising of two types of actions, one of which being an awakening action produced by said means adapted to convert said continuous direct current into recurrent pulsations, and the other type of action being a sleep-inducing operation produced by said con-
trol means by varying the intensity of the current therethrough trol means by varying the intensity of the current therethrough
and thereby the intensity of tremor produced in said physical and thereby the intensity of tremor produced in said physical
aid means to suit the user thereof, said two types of mechanical aid means to suit the user thereof, said two types of mechanical
actions occurring independently of each other therein; and, a current outlet means, disposed in the circuit of said second means and connected to receive a current from an external 115 -volt source, is provided with a current interrupter in the circuit thereof to produce therein a recurrently interrupted electric lighting means electrically connected to said current interrupter, causing said standard electric lighting means to emit a recurrently flashing light therefrom.

TWO-WIRE, MULTIPLE-TRANSDUCER

 COMMUNICATIONS SYSTEM John T. Fowler, Winthrop, Mass,, aseignor to The Laitran Filed Mar. 1, 1976, Ser. No. 662,823U.S. CI. $340-310 \mathrm{R}$

1. A system responsive to data request signals for retrieving data from a selected one of a plurality of data gathering devices remotely located and connected in parallel to a single cable, mprising:
an interrogator responsive to data request signals including:
means for transmitting ta means for transmitting an address signal along the cable
indicatite indicative of the particular data gathering device from which data is to be retrieved; and
means for applying a constant signal to the cable after the address signal has been transmitted;
data gathering device and each including: 0 rresponding
means for comparing the address signal transmitted along the cable with an identification signal uniquely identify-
ing the decoder to produce an enabling signal upon ing the decoder to produce an enabling signal upon correspondence thereof for act
ing data gathering device; and
corresponding means responsive to the enabling signal for selectively connecting a low impedance across the cable conductors in response to digital data from the data gathering device;
the digital data from the selected data by detige being reproduced at the interrogator by detecting the variations in the signal level across the cable produced by the responding means.

RASTER DISPLAY POSITION DETECTION Charles C. Habeger, Jr., and Dennis A. Quy, both of Bartles rille, Okla, assignors to Phillips Petroleum Company, Bar dleaville, Olla.

Filed Dec. 30, 1976, Ser. No. 755,761
U.S. C. $340-324 \mathrm{AD}$

29 Claims

1. In a display system wherein a luminescent display is gen erated by raster scanning having a plurality of scans in a firs direction during each successive scan in a transverse direction which is generally perpendicular to said first direction, said display having at least one row of successive data locations nicating the position of a target data location selected from said data locations, said method comprising:
superimposing over said display a luminescent cursor associ-
ated with preselected, periodic, non-successive data loca
tions in each said row of data locations;
tions along each said row thereof during eac data locs
lected number of preselected scans in said transvers
direction to provide display of a cursor associated with
ach said data location of said display at least once during a preselected cursor cycle
naintaining a signal message representative of the position associated therewith; and
initiating communication of the signal message representa
tive of said target data location in response to the sensing
of luminance produced by a cursor associated therewith
TARGET DETECTION IN A MEDIUM PULSE
TARGET DETECTION IN A MEDIUM PULSE
REPETITION FREQUENCY PULSE DOPPLER RADAR REPETTTION FREQUENCY PULSE DOPPLER RADAR Electric Corp., Pittsburgh, Pa.

Filed Jun. 8, 1976, Ser. No. 693,98
Jed Jun. 8, 1976, Ser. No. 693,98
Int. C. ${ }^{2}$ G01S $7 / 28,9 / 02,9 / 42$
U.S. C. $343-7$ A

1. A pulse dopper radar receiver for detecting 10 Claims arget from received signals which include target returns, a
ain beam clutter returns, area sidelobe clutter returns and means for fil clutter returns, said receiver comprising: means for filtering the main beam clutter returns from said received signals;
means for providin
means for providing an adaptive threshold signal which
varies in response to the clutter returns, said providing means being responsive to said filtering means to remove said area sidelobe clutter returns from said received signals;
means for unfolding the output of said providing means over a predetermined range, said unfolding means being re-㲘 an unambiguous range signal;
means for thresholding the unambiguous range signal in
response to both the output of said unfolding means and

the adaptive threshold signal of said providing means, the threshold being such that the discrete sidelobe clutter returns are rejected over a selected range of said unambiguous range signal;
means for detecting discrete sidelobe clutter returns in the unambiguous range signal of said unfolding means, said detecting means being responsive to said unfolding means and to said thresholding means to provide a blanking signal;
means for blanking the discrete sidelobe clutter returns detected by said detecting means from the output of said
providing means, said blanking means being responsive to said detecting means to provide the target returns of the received signals; and
means for determining the range of the target in response to means for determining the range of the carget in respons.
said target returns provided by said blanking means.

4,093,949
CLUTTER TRACKER USING A SMOOTHED DOPPLER Norol T EvRe SaUENCY MEASUREMENT Col T. Evans, San Pedro, Caiwn, assignor to Hu mpany, Culver City, Calif. Int. Cl. ${ }^{2}$ G01S Ser. No. 990,330
U.S. C. 343-7 A
 quencies, said system having a dual channel delay subsystem, omprising the combination
anadrer analog-to-digital converter fed by pair of a first digital circuit

a crossing detector the input of which is electrically connected to
circuits.
output of said first addition circuit being a signal which in synchronized in time and phase with the signal in the sum output of said first forming means.

COMPENSATION FOR SIMULTANEOUS PLATFORM MOTION AND ANTENNA SCANNING IN MTI RADAR Tomos Le ap Rhyn, Ellicott Ctty, Md., sasignor to The United States of America as represented by the Secretary of the Nary Washington, D.C.

May 16, 1977, Ser. No. 797,207
Int. C.2. ${ }^{2}$ G01S $9 / 42$ U.S. CI. 343-7.7 Int. C.2 ${ }^{2}$ G01S 9/42

MOTION-COMPENSATION ARRANGEMENTS FOR MTI RADARS
Tomos L. ap Rhys, Ellicott City, Md., assignor to The United Tomos in ap America as represented by the Secretary of the United Washington, D.C.
Filed May 16, 1977, Ser. No. 797,209 Int. Cl. ${ }^{2}$ G01S $9 / 42$
U.S. C. 343-7.7

9 Claims

1. In radar system of the type wherein search pulses are periodically radiated in a directional beam, a system for com pensating backscattered signals for the effects of the radar's motion comprising:
an array antenna for receiving the backscattered signals including first and second sub-arrays for forming simila ly-shaped first and second receive beams, the lines of center of said first and second receive beams at the array
being separated by a predetermined amount. being separated by a predetermined amount;
first forming means coupled to said first and second sub-
arrays for forming sum and differece outputs of the arrays for forming
signals received;
first optimization means coupled to receive difference sig. nals corresponding to the difference output of said first forming means for adjusting the difference signals in phas
and amplitude; irst correction-for
irrt correction-forming means receiving the output of said
first optimization means as an input, said first correction forming means means as an input, said first correctionperiod and adding the delayed input signal to the follow ing input signal to produce a correction signal at its out
put; delay circuit coupled to receive sum signals corre irst delay circuit coupled to receive sum signals corre-
sponding to the sum output of said first forming means as its input, said first delay circuit delaying its input signal for an interpulse period; and
output of said fircst correctig a first input coupled to the input coupled to the output of said first delay circuit, the
 periodically radiated in a directional beam, a system for com pensating the backscatered signals for tha a system for comnotion between the radar and the backecaterer compriaing. an array antenna for receiving the backscattered signals, said antenna including first and second main sub-arrays for forming first and second similarly-shaped receive beams, the distance between the lines of center of said first and second receive beams at the antenna being related to a prodetermined linear velocity of the radar and to the
interpulse period, the lines of center of said first and second receive beams being parallel, said antenna including first and second auxiliary sub-arrays for forming third and fourth similarly shaped receive beams, the angle between the lines of center of said first receive beam and said third receive beam being related to the angular velocity of the
radar and to the interpulse period, the lines of center said first receive beam and said third receive beam intersecting at the antenna, the angle between the lines of center of said second receive beam and said fourth receive beam being related to the angular velocity of the radar and to the interpulse period, the lines of center of said second receive beam and said fourth receive beam intersecting at he antenna;
first scanning-motion-compensation optimization means array fod to receive the output of said first auxiliary suband amplitude. and amplitude;
Cond scanning-motion-compensation optimization means coupled to receive the output of said second auxiliary phase and or adjusting the signals from said sub-array in means for generating a delay
synchronized in time a delayed compensated signal that is layed signals in time and phase with the sum of the undearrays, said mom said first and said second main subsaid first maid means for generating receiving the outputs of first scanning-motion-compensecotion main sub-array, said first scanning-motion-compensation optimization means, tion means as inputs, the output of said means for generating being said delayed, compensated signal. Handel und Investments AG, Zug, Switzeriland Cluims priority, application United Kingdom, Sep. 16, 1975, U.S. Cl. 343-108 Rnt. Cl. ${ }^{2}$ G01S $1 / 10,1 / 18$

2. A guidance system for aircraft and ships, which system are sprises at in eleast two localion above a reflecting surface, at least two are spaced in elevation above a reflecting surface, at least two
distance measuring antenna arrangements which are spaced in elevation above the reflecting surface, and at least two gline
slope antenna arrangements which are mounted vertically
 ments on a common support structure such that the localiser antenna arrangements are at a mean height of at least 2 i wavelengths above the reflecting surface and are fed with signals having the same radio frequency but having a phase difference, the eight of at least 25 wavelengths above the reflecting surface and are fed with signals having the same radio frequency but
having a phase difference, and the glide slope antenna arrangehaving a phase difference, and the glide slope antenna arrange-
ments are fed with signals having the same radio frequency but ments afe fed wire signales of amplitude modulation to give by reflection from the reflecting surface at least two consecutive glide slopes in the same sense.

CONTROL STICK ASSEMBLY FOR RADIO CONTROL Carl A. Hemmone Vista, and Philip O. Kratt Ocenside, both of Calif, asaigorss to Kratt Systems, Inc., Vista, Calis. Continuation-in-part of Ser. No. 563,380, Mar. 31, 1975. This application Mar. 8, 1976, Ser. No. 664,867
Int. Cl. ${ }^{2}$ H04B 7/00
US. C. 343-225

1. A control stick assem
movable control stick;
feans for urging movable lever arms;
means for urging the first and second
armally latched movable member;
first pin the to the control stick and disposed between
the first and second lever arms, the first pin being movable as the control stick moves to carry the first lever arm urging means when the movable member is latched thereby resisting movement of the control stick; he normally latched movable member being adapted to track the movement of the first pin when unlatched, second pin attached to the normally latched, movable member and disposed between the lever arms, the second unlatched to permit the urging means to move the second lever arm toward the first lever arm, but being stationary and preventing the urging means for moving the second lever arm toward the first lever arm when the movable member is latched;
second in toward the movable member to move the means; and
means responsive to the movement of the control stick for producing a signal having a characteristic related to the control stick displacement.

4,093,954
MOTION RECORDER INDICATOR Richard H. Prewith, Jr., 439 N. Broadway, Lexington, Ky. 40505 Fled Oct 14 1075, Sen Filed Oct. 14, 1975, Ser. No. 622,221
Int. C1.2 33 147 D; GO1D 9/00, 15/6; G01B 5/00; F16F $11 / 18$

1. An instrument comprising a first and second support reans, marking means actuated by movement between said oven second support means, a target for recording the movement between said first and second supporl means, said ing point engaging said target and attacheod to a lever comprising point engaging said target and attached to a lever compris-
ing a thin flat sheet of material attached to said second suppor ing a thin flat sheet of material attached to said second support
means through a flat flex pivoh, said flex pivot formed in said lat sheet by removing material to form a hub and spokes.

WELL-LOGGING CAMERA USING PIODULATED LASER LIGHT PATH PROCESSABLE ELECTROGRAPHIC FILM ee Roy Brown, and Thomes M. Davison, both of Houston,
Tex., asignors to Sie, Inc. Fort Worth, Tee. Tex., somgns Filed Oct. 8, 1976, Ser. No. 730,743 US. C. 354-3 Int. C. ${ }^{2}$ G03G 13/06 12 Claims

1. A camera for producing well logging format with traces on a continuous strip of film in an online capacity from a omputer controlled system, comprising:
a roll of electrophotographic film mounted in the housing; corona means for charging the film to a controlled level; light in the red spectrum;
an acousto-optical modulator producing a modulated light
path;
path;
a galvanometer driven oscillating mirror delivering the modulated light to the charged film in the form of a digital ${ }^{\text {image; }}$
of the film; presenting the toner to the exposed areas
edge driving means precisely moving the film through the modulated light path and through the developing means; and
fusing m
fusing means permanetizing the developed image.

SOS EXTRINSIC INFRARED DETECTOR AND Rerard J. KEAD-OUT DEVICE Gerard J. King, Alexandria, and Joseph F. Martino, Falls
Church, both of Var., assignors to The United States of Amer ica as represented by the Secretary of the Army, Washington
D.C

Filed Jul. 15, 1976, Ser. No. 705,641 Int. Cl. ${ }^{2}$ H01L 29/78, $27 / 14$

AUTO-PROCESS $\begin{array}{r}\text { 4,093,956 }\end{array}$
Toshio Goto, Omiya, Japan, aselgnor to Fuil Photo Film Co., 1. An extrinsic silicon infrared detector array and chargeLdd, Minamilesedhigara, Japangnor to Fuil Photo Film Co., coupled device readout comprising
Filed Mar. 28, 1977, Ser. No. 782,128
Claims priority, application Japan, Apr. 2, 1976, 51.37911
U.S. Cl. $354-86$

4 Claims

1. In an auto-process camera employing film in the form of 1. In an auto-process camera employing film in the form of
individual film units contained in a pack loaded in said camera, forwarding means which subsequent to exposure of each film unit move said film unit separately from said pack via a slit defined in said pack and into engagement with a processing roll unit to cause processing solution to be spread through said film unit to develop a latent image carried by said film unit and camera via an exit slit, the improvement further comprising a mount portion defining enclosure wall portions and a base portion having defined therein a film unit passage slit which is aligned with said slit defined in said film unit pack;
slidable
slidable covering plate means provided in said base portion of said mount portion and movable to a first position in which said plate covers said film unit passage slit and to a second position in which said plate uncovers said slit; and positioning means connected to said covering plate means and being actuable to move said covering plate to said first position or to said second position.
a layer of electrical insulator substrate material a plurality of extrinsic silicon detectors mounted on the bare surface of one side of said substrate material, wherein said plurality of extrinsic silicon detectors are doped for sensi-
tivity in the infrared wavelength region a silicon CCD signal readout structure surface of said one side of said substrate material in proximity to but isolated from said plurality of extrinsic silicon detectors;
a plurality of input diffusions deposited in said silicon CCD signal readout structure;
a buss line voltage source commonly connected to the input
side of all of said plurality of an of all of said plurality of extrinsic silicon detectors; an insulating layer deposited over all of said silicon CCD signal readout structure except over said plurality of input
diffusions: diffusions;
a plurality of conductive leads electrically connected from an output side of said plurality of extrinsic silicon detectors to said plurality of input diffusions; a plurality of CCD pads depos a plurality of CCD voltage drive lines said CCD phased volage source connecled between CCD pads for driving phased voltages across said plurality of CCD pads;
an input CCD pad voltage source and driver; and plurality of input structure pads deposited on said insulating layer between said plurality of input diffusions and said plurality of CCD pads, wherein all of said plurality of input structure pads are commonly electrically connected
to said input CCD pad voltage source and driver and are intermittently connected to said CCD pads in some selected phasing from each of said plurality of extrinsic silicon detectors wherein said input CCD pad voltage source and driver sequentially switches a voltage on said plurality of input structure pads to readout signals from said plurality of extrinsic silicon detectors caused by infrapinging thereon and injecting said readout signals in the layer of said silicon CCD signal readout structure that is immediately below said intermittently connected CCD pads for signal readout therefrom in some desired mode.

SEMICONDUCTOR DEVICE ASSEMBLY WTTH IMPROVED FATIGUE RESISTANCE Joseph F. Riccio, Jr., Mesa, Ariz., assignor to Motorola, Inc Schaumburg, IIl.
Filed Dec. 9, 1976, Ser. No. 748,791

Filed Deec. 9, 1976, Ser. No. 748,791
Int. Cl. ${ }^{2}$ H01L 23/48, 29/44, 29/52 U.S. CI. 357-68

1. An axial-leaded semiconductor assembly comprising con1. An axia-leaded semiconductor assembly comprising con-
ducting studs soldered directly to the major surfaces of a semiconductor chip, each of said studs having a cross-sectional area larger than said major surface and having a tapered extremity away from said surfaces, said assembly being substantially symmetrical about said chip

4,093,959
CHROMINANCE SIGNAL TRANSCODING APPARATUS CHROMINANCE SIN ration, New York, N.Y.
Filed Mar. 14, 1977, Ser. No. 777,538 Claims priority, application United Kingdom, Mar. 8, 1977, Int. C. ${ }^{2}$ H04N 9/02
U.S. Cl. 358- 7 Clain

1. Chrominance signal transcoding apparatus, for use with a source of composite video signals representative of successive repetitions of two interlaced image fields constituting a single image frame and comprising a luminance signal component, a tion, including a color burst; said apparatus comprising:
means, responsive to said composite video signal, for identi-
fying the time interval occupied by each image frame;
means, subject to being coupled to the output of said source of composite video signals, for altering the phase of the
color burst in response to the output of said time interval identifying means;
circuit means, subject to being coupled to the output of said color burst altering means, including means responsive to the phase of the color burst, for stabilizing the chrominance signal component against spurious frequency variations;
means for effecting signal substitution in response to the detection of a defect in said composite video signal; and means, subject to being coupled to the output of said circuit means, for altering the phase of the chrominance signal component in response 1 dentifying means without altering the phase of the color dentifying means without altering the phase of the color burst.

TEST SIGNAL GENER $4,093,960$

TEST SIGNAL GENERATING SYSTEM AND METHOD City, Colo, sessignor to American Technology Corporation, Canon Clty, Colo.

This application. 52 is, 1976 . 14,1974 , abandoned. This application Apr. 15, 1976, Ser.
Int. $\mathbf{C l}^{2}{ }^{2} \mathbf{H 0 4 N} 9 / 62$
U.S. C. ${ }^{358-10}$

37 Claims

16. A test signal generating system for use in servicing colo V recelvers, said system comprising:
ignal producing means for producing a plurality of output signals of predetermined composition, said plurality of output signals including line-scanning and field-scanning synchronizing signals, said signal producing means includ-
ing a countdown chain having an input and an output ing a countoown conaignected with said signal producing means;
combining means for combining said plurality of output signals to produce a composite output signal suitable for producing a predetermined test pattern on a TV receiver connected with said test signal generating system, said ces
pattern being provided for the purpose of monitoring on the image-producing device of said TV receiver an indica tion of the magnitude of error in the free-running frequency of the color sync oscillator in said TV receiver said test pattern being produced by including a suitable
chroma signal in the composite output signal during the chroma signal in the composite output signal during the pressed to a lower level by suitable means during the sampling interval when the AFPC circuit in said TV receiver being serviced is enabled; and
an oscillator connected with the input of said countdown chain.

OPTICAL READING APPARATUS WITH SCANNER OPTICAL READING APPARATUS WITH SCANNER
LIGHT INTENSITY CONTROL Hitoshi Knnamara, Tokorozawn, Japan, assignor Electronic Corporation, Tokyo, Japan
Filed Nor. 18, 1976, Ser. No. 743,025 Cluims priority, application Japan, Nor. 21, 1975, 50-13931 Int. C. ${ }^{2}$ H04N 5/84; G11B $7 / 12$

1. In an optical signal readout apparatus including a source of laser light, a rotary disc record, a photo detector, and an optical scanner for focusing light from the source onto the record and directing light reflected back from the record ont the photo detector, the improvements characterized by nents from the photo detector output signal, said extracter
components being proportional to the average light intensity incident on the photo detector, beference voltage to derive an error signal, and
4
c. means for regulating the intensity of the source of laser light in response to the error signal, to thereby maintain
the light intensity on the photo detector substantially the ligh
constan

ADAPTIVE PREDICTIV

Tatsuo Ishiguro, and Norio Suzuki, both of Tokyo, Japan, as signors to Nippon Electric Co., Ltd., Tokyo, Japan Filed Dec. 1, 1976, Ser. No. 746,558 U.S. C. 358-138 Int. C. ${ }^{2}$ H04N $7 / 12$ 3 Claims

1. In a predictive encoder having means responsive to an input signal for producing a predictive error signal, quantizer means responsive to said predictive error signal for qroducing
information codes, means for converting said information information codes, means for converting said information
codes into variable length codes, a buffer memory for tempo rarily storing said variable length codes for transmission at a predetermined bit rate, and means operatively coupled to said buffer memory for producing a buffer status signal indicative
of buffer occupancy of said buffer memory of buffer occupancy of said buffer memory, wherein the im means for varying in response to said buffer status signal the amplitude of said predictive error signal relative to quantization levels of said quantizer means.

HORIZONTAL 4,093,963
RECENEAL AFC CIRCUIT IN A TELEVISION RECEIVER USABLE WITH A VIDEO SIGNAL Tomoakd Uchida, Iwai, Japan, asalgnor to Victor Company of Japan Ltd., Yokohama, Jappan Flied Jun. 10, 1976, Ser. No. 694,795
Claims priorty, appication Japan, Jun. 19, 1975, $50-73781$
 U.S. C. ${ }^{\text {Int. }}{ }^{358-158}$

1. A horizontal AFC circuit comprising:
phase detector means supplied with a horizontal synchroniz-
2. A half-tone image recording system comprising: means
ing signal separated from a television video signal and for generating a number of separate parallel beams of radiation
with a comparison signal and carrying out phase comparison, said phase detector means having a transistor supplie at the base thereof with the horizontal synchronizin
signal; filter means for filtering the output of said phase detector means;
horizontal
horizontal oscillator means supplied with the output of said filter means for oscillating with an oscillation frequency horizontal deflection
said oscillator means into a horizontal deflection pulse; wave shaping circuit means responsive to the output pulse o said horizontal deflection means for wave-shaping said output pulse and for supplying the resulting output signa
and phase detecto means;
means for supplying a control pulse having a pulse width corresponding to a vertical blanking period of the televi-
loop gain control means connected to the emitter of said transistor of said phase detector means in a manner to vary the emitter resistance in accordance with said control
pulse, the collector current of said transistor being varied by the resulting variation of the emitter resistance thereof, whereby a DC loop gain and an AC loop gain of the horizontal AFC circuit are simultaneously controlled to be relatively large during occurrence of said control pulse rence of said control pulle. rence of said control pulse.

IMAGE REPRODUCING SYSTEMS Sohn E. Aughto, London, England, sasigyor to Croafield Elec-
tronics Limited, London, Enelen tronics Limited, London, England
Flied Mar. 1, 1977, Ser. No. 773,211
Claims priority, application United Kingdom, Mar. 3, 1976 5
U.S. CI. 358-302 Int. C. ${ }^{2}$ H04N $1 / 46$

which, in cross section, form a line of spaced beams; a suppor for a recording surface to be treated by exposure to the bean cording surface on the one hand and the beams on the other hand, whereby the recording surface is scanned by the beams modulating means for individually modulating the beams incident at points on the recording surface as required by the
image to be reproduced and by the screen density variations image to be reproduced ald by the screen density variabions such that some or all of the modulated beams contribute towards the recording of a single half-tone dot; and an optical system for guiding the modulated beams to the recording
surface, the optical system including anamorphic means for surface, the optical system including anamorphic means
compressing the line of beams in the direction of the line.

4,093,965

SPEED-SWITCHABLE READBACK SIGNAL
EQUALIZATION AND DIRECT-CURRENT R RESTORATION
David B. Gish, Upland, Califr, aselgnor to Bell \& Howell Com pany, Chicago, ml . Fled Ang. 16, 1976, Ser. No. 714,926
Int. C. ${ }^{2}$ G11B $5 / 45$
U.S. CI. 360-65
,istance R_{2} of said second resistor means being such that $\mathbf{R}_{1} / \mathbf{R}_{2}$ plus one is at least two; and
said speed-switchable means including means for switching said speed-switchable RC network and second resistor means.

DJUSTABLE HOL 4,093,966 MOUNTING MAGNETIC HEADS
Dennis G. Hall, Wallington, England, assignor to Burroughs Corporation, Detrolt, Mich.

Apr. 29, 1977, Ser. No. 792,380
Int. C. ${ }^{2}$ G11B $/ 50$
U.S. C. $360-109$

11 Claims

1. In apparatus for recovering signals read back from a recording medium at different relative recording m speeds, the improvement comprising in combination:
speed-switchable means for equalizing readback signals ove frequency bands having different pead-to-bandedge rolloff reg
high-frequency equalization means in said speed-switchable means for equalizing readback signals in said peak-to-bandedge roll-off regions, including active low-pass filter means for providing speed-switchable frequency peaking characterisics and spes shifting said frequency peaking characteristics and cut-off frequency characteristics in company with each other to said different peak-to-bandedge roll-off regions for different relative recording medium speeds;
id active low-pass filter means including operational am. Taketer plifier means having input means and output means, a speed-switchable RC network connected to said input and sputput means, and series-connected first and speedswitchable second resistor means, said first resistor means being connected between said second resistor means being connected between $\begin{array}{lll}\text { said input means and a reference potential, with the ratio } & \text { 1. In a cassette carrying a record medium, a unitary pressura }\end{array}$ of the resistance, \mathbf{R}_{1}, of said first resistor means to the pad assembly for placing said record medium into sliding
contact with a magnetic head, said unitary pressure pad assem- amplifier are placed within the confines of said handle and are bly including pin means for positioning the record medium and connected to each other; said switch is also placed in said pressure pad means for urging the record medium against said
magnetic head, the improvement wherein said cassette includes
2. a wire lug affixed to one end portion of each said strap 5. mean
3. means notching said mounting block to erpose the end portion of each said strap as a terminal end portio end portion of each said strap as a terminal end portion
disposed in lapped relation with an associated one of disposed in lapped relation with an ass
said busbar terminal end portions, and
4. an insulative barrier wall upstanding from said mounting block intermediate said recesses and extending coex tensively with said straps as accommodated therein said barrier wall rising to a level well above said straps and said wire lugs; and
F. means formed in said terminal end portions of lapped
busbars and straps for suant to perfecting bolted joints theered fasteneres pursuant to perfecting bolted joints therebetween.

NODE TERMINATION $4,093,972$ 2N ELECTRICAL Crald A DEVICE COMPONENT erald A. Voyles, Indiannpolis, Ind,, assignor to P. R. Mallory \& Co. Inc.. Indianapolis, Ind.
Continuation of Ser. No. 639,371, Dec.

Cinuntion of Ser. No. 639,371, Dec. 10, 1975, abandoned
This application May 5, 1977, Ser. No. 794,299
Int. C1. ${ }^{2}$ H01G 9/00: H01L $23 / 28$
U.S. C. ${ }^{361-433}$

11 Claims

4,093,971
D-I.P ON ISLAND
Bing-Lun Chu; Wunnava Venkata Subbarao, both of Piscataway N.J., Jack Peale, Scarsdale, N.Y.; Kent McCune, Belle Mead
and Marvin Elroy Steiner, East Brunswick, both of N.J. assignors to Burroughs Corporation, Detrolt, Mich. Filed Dec. 10, 1976, Ser. No. 748,837 Int. C. ${ }^{2}$ H05K $7 / 20$
U.S. C. 361-382

1. A chtp type capacitor comprising at least two sides of pposite polarities and a termination means wherein the termination means includes a riser means in electrical contact with at joined to the riser means, and a metal containing end cap over the riser means having electrically conductive adhesive material therebetween whereby the metal containing end cap is lectrically and mechanically coupled to the elongated meta containing member

A packaging system for electronic equipment comprising at least one island, including:
at least one island, including:
pluraily of integrated circuit packages of the dual-in-line conpe,
connector means mounting said packages,
 thereon,
each of the connector means having a plurality of electrical contacts and operatively connected in a predetermined ing respective electrical paths between said integrated circuit packages and said interconnection medium conductors,
a cooling frame fastened to said interconnection medium configured such that a plurality of sections of thermally conductive material are situated in parallel, spaceed apart medium and containing fluid conduit means for carrying cooling fluid therethrough,
each of said connector means and packages being located in the space between an adjacent pair of said cooling frame sections, but out of engagement with said frame sections, cold bar disposed transversely of said frame sections and bar attached to the top of said frame sections so that said means engages said frame sections in thermal conductive relationship, and
clamping means urging said packages into thermal contact with said cold bar whereby heat generated by said packges is transferred to said cold bar and to the ends of said bar for transfer to said frame sections.

1. Costume jewelry comprising

(a) a transparent body
b) means within said body for imparting color thereto at ceast when illuminated;
(c) illuminating means within said body for causing said
 illuminating means;
(e) switching means coupled to said battery and illuminating means; and
wherein said transparent body has a hollow core and said core containing said color imparting means.

FLORESCE 4,093,974
FLORESCEET LGGHT FIXTURE
91364 Gills, Calif. Filed Oct. 1, 1976, Ser. No. 728,783
U.S. C1. 362-216 Int. C. ${ }^{2}$ H05B 33/02

4 Claims

1. A florescent light fixture for installation in a mounting for incandescent bulbs, comprising
a plug of capable of mating with a standard light socket for incandescent bulb
a transformer box;
a backing plate including a coupling for a florescent light, said backing plate being mounted to said transformer box an exte
an extensible member including a first shaft and a second
shaft, shaft, one of said shafts extending into the other of said shafts and being resistively extensible in an axial direction with respect thereto, said plug being mounted at a first end of said extensible member to one end of first shaft and said transformer box being mounted at a second end of said
extensible member to one end of said second shaft, said extensible member ro one ent of said second shaft, said to said second shaft.

4,093,975

HIGH-VOLTAGE APPARATUS FOR SKIN THERAPY Wallice A. Roberts, 88 N. Main St., Bellingham, Mass. 02019 Flled Jan. 5, 1977, Ser. No. 757,041
U.S. C. 363-27 Int. C. ${ }^{2}$ H02M $5 / 44$

1. An impro comprising: low voltage outputs;
a DC-to-DC converter, having (i) a converter oscillator powered by the variable voltage output of the DC power
source, (ii) a converter step-up transformer, the primary source, (ii) a converter step-up transformer, the primary
winding(s) of which are fed by the oscillator, (iii) a rectifier circuit connected to the secondary winding of the converter step-up transformer, and (iv) a filter capacitor in shunt across the rectifier output;
an output transformer;
the DCta-DC connected in series with the output from output transformer;
a silicon-controlled rectifier, the anode and cathode of Which are connected so as to cause discharge of the second capacitor across the primary winding of the output transformer whenever the silicon-controlled rectifier is
triggered into conduction by a suitable pulse between its gate and source;
second oscillator, powered by the fixed output of the DC power source; amplifier, also powered by the fixed output of the DC power source, the input of which ampli-

fier is connected to the second oscillator and the output of which is connected to the gate of the silicon-controlled rectifier, so as to trigger the rectifie
output of the
a skin therapy electrode oscillater; and of the output transformer.

4,003,976
Pankaj K ACOUSTO-OPTIC IMAGE SCANNER Pankaj K. Das, Cohoes, N.Y., amignor to The United States of America as represented by the Secretary of the Nary, Wembington, D.C.

U.S. Cl. $358-53$

1. A 1-D acoust-optic colored image scanner, comprising in combination
a piezoelectric crystal;
eans for launching pulses of acoustic surface waves along a planar boundary surface of said crystal;
pattern which a colored image of the light distribution pattern which is to be scanned within said crystal, the light beam producing said colored image propagating within said crystal in a plane which is parallel and adjabeam and said pulses of acoustic surface wave interact with said pulses behaving as a traveling phase grating to diffract said light beam;
means for Fourier transforming the diffracted light emerg ing from said piezoelectric crystal; and
means for detecting the light appearing at the first-orde
diffracted image locations.

GROUND FAULT P PROTECTIVE DEVICE
John T. Willoon, Brighton Township, Beaver Connty, Pa,
signor to Westinghouse Electric Corp.. Pittrburgh, Pk signor to Westinghouse Electric Corp., Pittrburgh, PL
Filed Jun. 15, 1976, Ser. No. 696,326
U.S. Cl. $361-44$ Int. Cl. ${ }^{2}$ H02H $3 / 28$ Climes

1. A self-powered ground fault protective device, compris-
ing: current transformer secondary coil;
latching relay comprising main contacts adapted to control an associated interrupting device; amplifying means connected to said coil for triggering said relay;
rectifier
rectifier means connected to said secondary coil for power ing said amplifying means and said relay; and
housing supporting and enclosing said coil, said triggering
said relay comprising auxiliary contacts connected in series
with said secondary coil and said rectifier means.
METHOD AND APR,093,978
METHOD AND APPARATUS FOR PROTECTING ELECTRICAL SYSTEMS FROM LIGHTNING STRIKE
John A. Plumer, Jr., Dalton, Mess., assignor to General Electric Company, Schenectady, N.Y.
Continuation-in part of Ser. No. 554,127, Feb. 28, 1975 , Continuation-inn-part of Ser. No. 554,127, Feb. 28, 1975,
abandoned. This application Dec. 24,1975 , Ser. No. 644,340

15 Claims

5. A lightning protection device adapted to
an electrical system, said device comprising
firt and second parallel wound, magnetically couts terminals, said first terminals being the input terminals of said protection device;
salid protection device; a third inductor having first and second terminals, said first terminal of said third inductor connected to said second terminal of said first inductor, said second terminals of said
second and third inductors being the output terminals of said device; and
a voltage limiting element connected to said first terminal of said third inductor and the second terminal of said second inductor, whereby a voltage or current surge applied to the input terminals output terminals.
11 o.g. 14
the D.C. source owing to inductance of the transmission line during interpulse periods, the improvement comprising control means for repeatedly discharging the reservoir capacitor dur--
ing each interpulse period so as to limit the voltage to which during said interpulse periods the reservoir capacitor charges above the voltage of the source.

MICROPROCESSOR SYSTEM Dale Arthur Heuer, Stewartrille; Phillip Christian Schloss, and Larry Lloyd Schroeder, both of Rochester, all of Minn., sssignors to
Armonk,
N.Y. Armonk, N.Y.
Filed May 3, 1976, Ser. No: 682,803
Int. C1.2 G06F $13 / 00$ Int. Cl. ${ }^{2}$ GO6F $13 / 00$

DATA COMMUNICATIONS PREPROCESSOR John P. McAllister, Wayne, Pa.; Franklin Theodore Schroeder, Goleta, Calif., and Charles Terrrice Stimson, est Fled Jan. 28, 1976, Ser. No. 653,087
Fissiors to Burroughs Corporan S. Cl. 364-200 ${ }^{\text {Int. Cl. }{ }^{2} \text { G06F 13/00, 3/00 } 2 \text { Claims }}$

1. A data processing system including a processor on a single semiconductor chip wherein said processor comprises a central processing unit;
n-chip control storage;
plurality of input-output registers;
local scratch pad memory;
memory addressing means for addressing off-chip data store memory;
memory;
control storage addressing means; and data path means connecting said central processing unit with said control
storase addressing means, said local scratch pad memory storage addressing means, said local scratch
and said plurality of input-output registers;
said processing system further comprising an external data store memory connected to at least one of said input-output registers and said memory addressing means and; supplemental off-chip control storage
2. A data communications preprocessor for processing detailed line procedures between a central processing unit with a main memory and a plurality of data communications lines, each line therein connected to an individually associated
set, said data communications preprocessor comprising:
a plurality of line adapter means, each line adapter thereof individually associated with a data communications line in said plurality of data communications lines the data communications therewith;
serial byte microprocessing means for controlling the processing of detailed data communications line procedures on an individual data communication ine between said central processing unit and said plurality of line adapter means, said serial byte microprocessing means including a serial byte microprocessor, a micromemory means for storing control data bytes and a scratch pad memory for storing data communications parameter information relar-
ing to each data communications line in said plurality of ing to cach data commitions
direct memory access means for permitting direct transfer of at least one byte of data between said main memory and said micromemory under the control of said serial byte microprocessor; and
automatic operation means bypassing said serial byte microprocessor and utilizing said direct memory access means for automatically transierring through said direct memory said scratch pad memory and said main memory.

4,093,983

FAST AND NORMAL RATE INSTRUCTION FETCHING Charles Raymond Masog, Jerome Urban Petrie, both of RochesCharles Raymond Masutsugu Mishima, Pickering, Canada, as-
ter, Mind
signors to International Business Machines Corporation,

$$
\begin{gathered}
\text { N.Y. } \\
\text { Filed J J }
\end{gathered}
$$

$$
\begin{aligned}
& \text { N.Y.e Jun. 15, 1996, Ser. No. 696,446 } \\
& \text { Int. Cl.2 G06F. } 9 / 00
\end{aligned}
$$

U.S. CI. 364-200

Int. C1. ${ }^{\text {G }} \mathbf{}$ O6F $9 / 06$

1. In a computer system having fixed length machine cycles
I. and where instructions consisting of a plurality of segments are metched from storage in a timed relationship to said fixed leng ively to completely fetch an instruction, said instruction including first and second predetermined types of instructions, he improvement comprising:
means for fetching a first segment of an instruction during a first portion of said fixed length machine cycle to enabl determination of the type of instruction being fetched, and generating one type of signal when the type of instruction being fetched is analyzed as being said firs predetermined type of instruction and generating another type of signal when the type of instruction being fetched is analyzed as being said

[^6]ating said one type of signal for fetching at least another segment of said instruction during the same fixed length

machine cycle that was used for fetching said first seg.
ment.
dATA PROCESSING SYSTEM HAVING A CYCLE CONTROL FUNCTION
Masahiko Ono, Tokyo, Japan, assignor to Tokyo Slibsura Electric Co., Ltdd, Ka wasakd, Japan
Filed Sep. 30, 1976, Ser. No. 728,204 Claims priority, application Japen, Sep. 30, 1975, 50-117906 U.S. CI. 364-200

3 Claims

1. A data procesing system for processing data arithmetically and transferring the processed data between an inputoutput unit and a central processing unit, the data proc
a register file consisting of registers each to be addressed and
being adapted to store transfer data and the results of an arithmetic logic operation;
an arithmetic logic unit for arithmetically processing particular data read out from the register file;
instruction register means for storing an instruction word read out from the memory means during each machine
cycle to designate an arithmetic logic operation to be carried out by the arithmetic logic unit; at least one functional register addressed in the registr file and connected to the instruction register means to desig-
nate an arithmetic logic operation to be carried out by the arithmetic logic unit; and
signal generating means for generating a pulse representing the timing at which data are to be stored in each register addressed in the register file and a signal representing one
of at least two partial cycles forming the machine cycle, whereby during one partial cycle an arithmetic logic operation is carried out based on the contents of the functional register means in response to a signal which represents the partial cycle and during the other partial cycte an arimetic
logic operation is carried out based on instruction register means in response to a signal which represents the other partial cycle.

MEMORY SPARING ARRANGEMENT Santanu Das, Stamford, Conn., assignor to North Electric ComSantanu Das, Stamford
pany, Galion, Ohio

Inted Nor. 5, 1976, Ser. No. 739,356
S. Cl. $364-200{ }^{\text {Int. Cl. }{ }^{2} \text { G06F } 11 / 00,13 / 00}$

4 Claims

3. A digital processor system comprising;
memory means including an integral number, N , of on-line memory modules and one spare memory module, each of the $\mathrm{N}+1$ modules having module enabling
plurality of individually addressable words.
a central processor unit (CPU), an address bus and a data bus, both interconnecting the CPU with each of the $\mathrm{N}+1$ modules.
decoder having a plurality of inputs coupled to the CPU and \mathbf{N} outputs, the decoder being operative to convert binary coded information presented to the decoder inputs to a 1 -of-N code at the decoder outputs, and substitution control means having a first plurality of N inputs respectively colpted the N decoder outputs, a second plurality of inpus coupled to the CPU, and $\mathrm{N}+1$ outputs respectively coupled to corresponding module enabling means of the $\mathrm{N}+1$ memory modules,
the CPU including means for generating and coupling to the
decoder inputs a first portion of a binary coped memor decoder inputs a first portion of a binary coded memory
word address designating a particular memory module word address desitnating a particular memory modue,
means for generating and coupling to the address bus a second portion of a binary coded memory word address designating a particular memory word within a module, means or receiving from the dya burs contents of a mem portions, error control means operative, in conjunction with said means for receiving, to detect any malfunctioning memory module and to generate data identifying a malfunctioning module for presentation to the
plurality of substitution control means inputs,
the substitution control means operative as connected to alter the 1 -of-N code appearing at the decoder outputs to indicate instead the selection of the spare module when
ever the 1 -of-N code designates a malfunctioning on-line program segments outside the windows being prohibited from module previously identified at the second plurality of storing into the HCA, the system comprising
module previously identified at the second plurality of
substitution control means inputs by the error control means of the CPU.

4,093,986

ADDRESS TRANSLATION WITH STORAGE
PROTECTION Kiscaden, all of Rochester, Minn., sesigmors to Internations Filed Dec. 27, 1976, Ser. No. 754.39 U.S. CI. $364-200{ }^{\text {Int. C. }{ }^{2} \text { G06F } 13 / 00,9 / 20}$

1. In a computer system including an addressable selectively operable storage, a central processing unit and I/O devices the mprovement comprising
an addressable register,
a source of storage addresses for addressing storage and a for storage protection,
means for selectively loading said addressable register with a storage address from said source of storage addresses when said loaded storage address is to address an unpro tected storage location or with said special address fo storage protection
addressing means for addressing said storage and for selec tively addressing said addressable register,
means selectively connectable under control of said address translate control signal to said addressable register for
passing a storage address to said storage when said adpassing a storage address to said storage when said ad
dressable register upon being addressed contains a storage address,
means selectively connectable to said addressable register under control of said address translate control signal for generating a storage inhibit signal when said addressable register upon being addressed by said addressing means
contains said special address instead of a storage address, and
means for applying said storage inhibit signal to said storage.
HARDWARE CONTROL STORAGE AREA PROTECTION METHOD AND MEANS

Heights, and Raymond
Chries Willinms, Stuatstbare both of N. \mathbf{Y}, sasignors to Inter-
Charies Willimes, Stantsborg, both of N.Y, assignors to inter
national Busineas Machines Corporation, Armonk, N.Y. Filed Mar. 24, 1977, Sera. No. 780,937 Int. Cl. ${ }^{2}$ G06F 13/00, 9/18
U.S. Cl. $364-200$ \qquad 1. A system for protecting a hardware control area (HCA) in main storage from being erroneously changed by execution of programs in other storage areas assigned to the same protec
ion key as the HCA, in which the programs are segregated into segment windows permitted to store into the HCA, and all

HCA protection field in a system control register, the field being set to an on state to output a HCA protect state signal which prevents store accesses into the HCA,
means for providing an address stream for the main means for providing an address stream for the main storage,
detecting means receiving the address stream to detect detecting means receiving the address stream to detect HCA access control signal for each detected HCA address,

${ }^{\text {singen }}$
means for generating a store modify signal for each address making a store access request to the main storage, making a store access request to the main storage,
first logic circuitry having inputs including: the HCA pro-
tect state first logic circuitry having inputs including: the HCA pro-
tect state signal, the HCA access control signal, and the store modify signal; an output of the first logic circuitry providing a HCA protection interrupt control signal means for conectins are on, and
signal to processor interrupt circuection interrupt control program pocssoring incrupt circuits to interrupt a current program providing a HCA address responsible for gener-
ating a HCA protection interrupt control signal (

4,093,988
HIGH SPEED FREQUENCY RESPONSE Paul F. Scott, Niskayuna, N.Y., asalignor to General Electric Compeny, Schenectady, N.Y.
Filed Nor. 8, 1976, Ser. No. 739,628 Filed Nor. 8, 1976, Ser. No. 739,62
Int. Cl. ${ }^{2}$ GO6F $15 / 34$
U.S. Cl. $364-484$ Int. Cl. ${ }^{2}$ G06F $15 / 34$
U.S. C. $364-484$ \qquad 6 Claims ment by generating digital data samples from which the power spectra of an output test signal is computed by a Fast Fourier
Transform technique, comprising the steps of
deriving a binary sequence generator bit shift signal having a first frequency and also a sampling actuating signal cies being selected to synchronize and achieve a predeter mined ratio between the sequence bit interval and the sampling interval of an output test signal,
supplying said bit shift signal to a binary sequence generator
and producing at the output thereof a and producing at the output thereof a binary periodic
noise signal representing the binary pseudo-random senoise signal representing the binary pseudo-random se-
quence with a period given by $\left(2^{N}-1\right) \Delta \mathrm{T}_{\text {spo }}$ where N is an quence with a period given by $\left(^{N}-1\right) \Delta T_{s p e}$ where N is an reciprocal of the first frequency,
low pass filtering the binary peria
low pass filtering the binary periodic noise signal to retain
frequency components having a substantially tude,
pplying the filtered binary periodic noise signal to system under test to generate the output test signal, and

sampling the output test signal at a rate determined by said sampling actuating signal and converting the anal.
samples so produced to said digital data samples.

SPECTRUM ANALYZER USING DIGITAL FILTERS Joseph H. Fink, Monsey, and John Bertrand, Valley Cottage both of N.Y, Marignors to Rockland Systems Corporation,
West Nyack, N.Y. West Nyack, N.Y.

$$
\begin{aligned}
& \text { k, N.Y. } \\
& \text { FIled. Dec. 3, 1976, Ser. No. 747,053 } \\
& \text { Int. C.2 Go6F } 15 / 34 \text {; G01R } 23 / 16
\end{aligned}
$$

U.S. CI. $364-485$

18 Claims

1. Spectrum analyzer comprising:
(a) a source of an input signal to be spectrum analyzed, said input signal comprising a pluraity of digital input information data blocks, each data block being of a given time duration and each comprising a predetermined number of digital words, each data block representing signal energy
(b) means coupled to said source for weighting respective ones of said digital words as a function of a weighting function having a "smooth" function at its end points corresponding to the end points of said data blocks;
(c) means for digitally filtering each of the weighted digital
data blocks with a digital filtering means having at least one center frequency falling within the frequency range represented by each of said data blocks, each of the data repreckenced comprising \mathbf{N} samples satisfying the following equation:
$N>K f_{\mathcal{\prime}} B_{n}$
where K is a constant which is a function of the sampling rate and the falloff rate of the skirt of filter characteristics, B_{n} is the filter b
the filter; and
(d) means for effectively changing the bandpass frequencies
f aid digitel fiter means during spectrum analysis of said digital information data blocks of said input signal.

4,093,990

METHOD FOR THE PRODUCTION OF MASK PATTERNS FOR INTEGRATED SEMICONDUCTOR Konrad Koller, and Ulich Lauther, both of Munich, Germnny, Onrad Koiler, and Ulrich Lauther, both of Munich, Germany,
assignors to Slemens Aktiengesellechath, Berin \& Munich, Germany Filed Sep. 22, 1975, Ser. No. 615,357 Claims priority, application Germany, Sep. 23, 1974, 245336

1. A method for producing mask patterns for integrated miconductor circuits, comprising:
number of cell groustandard cells into a predetermined positioning eache connections required between groups; as few wiring levels as possible to obtain the paths of connection lines in co-ordinate terms:
onverting the co-ordinate terms to numerical control dat which may be used by a numerically-controlled drafting machine;
ceding the numerical control data to a numerically-controlled drafting machine; and
receipt of the with the drafting machine in response to receipt of the control data.

SPECTROPHOTOMETER-DIGITAL DATA PROCESSING
SYSTEM FOR APPEARANCE MEASUREMENTS
PROVIDING FAST AND ACCURATE
APDARDIZATION, EASE OF USE FOR DIFFERENT
APPEARANCE MEASUREMENTS AND FAST
APPEARANCE MEASUREMENTS AND FAST
RESPONSE
John S. Caristie, Jr., McLean; S. Upton Jenkins, Fairfax, and
George B. McConnell, Vienna, all of Va., assignors to Hunter

Int. Cl. ${ }^{2}$ G01N 21/22: G01J 3/02; G06F 15/20
U.S. CI. 364-525
pulse generating means and in response thereto, producing calculating signals representative of calculations performed
thereby, digital display means for receiving said timeter signals and said calculating signals, said digital display means being adapted to display actual time in response to said timekeeping signals and numerical information representative of said calculations performed by said calculating circuitry in
response to said calculating signals, input means adapted to response to said calculating signals, input means adapted to
receive at least one of said time standard signals produced by said timing pulse generating means, said input means being adapted to produce functional signals and numerical information signaps, said calculating circuit means being adapted to
receive said numerical infor receive said numerical information signals and function signals and in response thereto, produce calculating signals represen-
tative of the numerical information and calculating functions, said calculator circuit means including numerical information calculating means for receiving said numerical information signals and programmable control means for receiving said

1. A combined single beam scanning spectrophotometerdigital data processing system for appearance measurements
including in combination stabilized illumination means, speciincluding in combination stabilized illumination means, speci-
men holder means, means for illuminating a specimen to be examined supported by said specimen holder means for its
appearance characteristics with said stabilized ill appearance characteristics with said stabilized illumination
means and for producing an output single beam of light modulated with appearance characteristics information pertaining to the specimen being examined, visible spectrum scanning monochromator means disposed in said appearance information modulated single beam of light for deriving a plurality of
separate different wavelength monochromatic single light beams representative of the appearance characteristics of a specimen being examined, electro-optic detector means dis-
posed in the path of said separate different wave length monoposed in the path of said separate different wave length mono-
chromatic light beams for converting the same to a plurality of separate different electric signals representative of the appearance characteristics of a specimen being examined, analog to
digital converter means eloctrically coupled to digital converter means lecetrically youpled to saidelecectro-op--
tic detector means for converting the electric signals to digital tic detector means for converting the electric signals to digital
form, digital encoder means operatively synchronized with said monochromator means for deriving encoded digital electric output signals characteristic of the wave length of each
different frequency monochromatic lieht beam, and digital different frequency monochromatic light beam, and digital
data processing means responsive to said analog to digital converter means and said digital encoder means for processing said digital electric outputs and deriving output electric signals for display or other use indicative of the appearance characteristics of a specimen being examined.

$\stackrel{4,093,992}{ }$ ELECTRONIC WRISTWATCH

Yoshikazu Kawamura; Alvo Shimoi, and Yuichiro Iwai, all of Yoshikazu Kawamurz; Aldo Shimoi, and Yuichiro Iwai, all of
Suwn, Japan, assignors to Kabushiki Kaisha Suwa Seikosha, Tolyo, Japan Filed Nov. 8, 1976, Ser. No. 739,771 Claims priority, application Japera, Nov. N39,771 $1975,50-133717$ U.S. C. $364-705$ U.S. Cl. 364 -705

1. An electronic wristwatch comprising, in combination 1. An electronic wristwatch comprising, in combination,
timing pulse generating means for producing a plurality of time standard signals, timekeeping circuit means coupled to said timing pulse generating means for receiving at least one of said
time standard signals, and in response thereto producing tietime standard signals, and in response thereto producing time-
keeping signals representative of actual time, calculator circuit means coupled to said pulse generating means for receiving at least two of said time standard signals produced by said timing

function signals and in rsponse thereto controlling the calculations performed by said calculating means on said numerical information represented by said numerical information signals applied thereto, so that said calculating means produces signals
representative of said numerical information and calculating functions performed numercby, said calculating means further including a plurality of bit-serial regisler means for storing and processing numerical information in response to said numerical information signals being applied thereto, at least one of said bit-serial register means in said calculator means being coupled
to said timekeeping circuit means for storing and procesing to said timekeeping circuit means for storing and processing
timekeeping information therein, said timekeeping circuit means ingluding at least one bit-serial timekeeping register means for storing and processing information representative of actual time, said timereeping signal being a bit-serial signal, said calculator bit-serial register means being adapted to store produced thereby in bit-serial form.
BIT-SLICE TYPE LARGE SCALE INTEGRATED CIRCUIT WITH MULTIPLE FUNCTIONS ON A ONE-CHIP SEMICONDUCTOR DEVICE
Kazuyuki Sato, Koganei, Japan, assignor to Tokyo Shibaura
Electric Co, Ltd Electric Coo, Ltd., Japan
Claims priority, application Jappar, Aug. 28, 1975, 50-104239 U.S. C. 364-712 Int. Cl. ${ }^{2}$ G06F $1 / 00$ 1. A. bit-slice type large scale integrated circuit 5 Claims 1. A bit-slice type large scale integrated circuit formed on a a plurality of bit-sliced input control cir
functions a plurality of bit-sliced output control circuits with different functions,
gate circuits is
gate circuits including decoding gates and input and output
gates, the output terminals gates, the output terminals of said decoding gates con-
nected with input terminals of said input and for enabling said input and output gates, the output termi-
als of said input gates connected with said input control wal orders of said M filters in said filter bank wherein said circuits and input terminals of said output gates connected improvement comprises:
with said output control circuits, , ith input and output
signals to and from said integrated circuit, said signal lines connected with said input and output gates; and,
(a) subtracting means connected to the inputs of each order in said bank of filters for subtracting, term-by-term, from each weighted a_{n} term which is provided by said upstream weighting means, the said weighted a_{n} term which pre-
ceded it by 2 N positions and, ceded it by 2 N positions and,
 an input terminal and an output terminal,
a recursive filtering means having an input and an output and having its input connected to said input terminal of its said order filter in said bank and
constant coefficient weighting means having an input and output and, having its input connected to the output of the
corresponding recursive filtering means of said M filter corresponding recursive filtering means of said bank and its output, being the said output terminal for saic order of said filter, being connected to said adder means for adding the output of said order of said filter to the outputs of the other said orders of said filters in said bank, the combined output of which is connected to said downstream weighting means.

RANDOM ACCESS MEMORY APPARATUS FOR A WAVEFORM MEASURING APPARATUS
Steven R. Smith, and Frederick A. Rose, both of Fort Atkinson,
Wiss, assignors to Norland Corporation, Fort Atkinson, Wis. Filed Mar. 26, 1976, Ser. No. 670,890
Int. Cl. ${ }^{2}$ G06F 3/14, 13/06, 3/0s
selecting lines connected with the input terminals of said decoding gates for supplying selecting signals thereto to
cause said decoding gates to enable said input and output cause said decoding gates conenetions can be established between said input control circuits and said output control circuits and said signal lines through said input and output
U.S. Cl. $364-90$

14 Claims gates.

4,093,994
FAST DISCRETE TRANSFORM GENERATOR AND DIGITAL FILTER USING SAME Henri J. Nusbbaumer, La Gaude, France, assignor to International Busineses Machines Corporation, Armonk, N.Y.
Filed Mar. 18, 1977, Ser, No. 779,212 Claims priority, application France, May 21, 1976, 7616129 Int. Cl. ${ }^{2}$ G06F $15 / 34$

5 Cleims
 1. In a waveform measuring instrument, comprising a digita
andom access memory means having a plurality of address able physical memory cell means, a waveform signal input o sample a waveform signal and digitizing said signal wave form samples into digital representation data and storing said digital representation data in said memory cell means, saic random access memory means including a plurality of memory parts, each of said parts including a plurality of said physical memory cell means and an input port means for writing wave-
form data into said cell means, control means for selectively connecting said signal input means to said input port means and addressing the memory locations for continuously writing into
An improved generator of the terms of discrete transforms the memory cell means of the parts connected to said inpu of the so-called Fourier transform family, particularly useful in port means in a continuous cyclical writing sequence, said digital filters and operating to generate a series of blocks of control means including first means for logically connecting ransform terms [$\left.A_{k}\right]_{\substack{k=0}}^{N-1}$ from a series of blocks of N said parts into a plurality of individual memory arrays and digital samples $\left[a_{n}\right]_{n}-o^{N-1}$, where \mathbf{N} is a square of an integer connecting one of said input port means for storing an indepeneighting means for providing weighted sample $a_{\text {n }}$ terms and a means to logically connect said parts into a composite array downstream weighting means for providing transformed terms consisting of two or more of the parts, said composite arra A_{K} and having a filter bank comprising M filters placed be- being capable of accepting independent waveform representaween said upstream and downstream weighting means, and tion data in said cyclical sequence for storing an independen having adding means for adding the filtered outputs of individ- waveform composite into said composite array

CURSOR FOR AN ON-THE-FLY DIGITAL TELEVISION DISPLAY HAVING AN INTERMEDIATE BUFFER AND A REFRESH BUFFER Walter Joan Hogan, Fairfax, Va,; Alfred Alexander Schwartz, Warren R. Germer USochester, NAME Leander, Tex., and Joweph Robert Stewart, Lexington, Ky., tric Company, Somersworth, N.H. asciguors to In
Armonk, N.Y.

Filed Apr. 23, 1976, Ser. No. 679,543
Filed Sep. 17, 1976, Ser. No. 724,040
U.S. C1. 364-900
U.S. C. $364-900$

1. A portable programmer for programming a multiple rate electrical energy meter of the type including a first mechanical register for continuously registering the consumption of elec-
trical energy, at least one alternate mechanical register for trical energy, at least one alternate mechanical register for
registering the consumption of electrical energy during preseregistering the consumption of electrical energy during prese-
lected time intervals, a sync signal generator for generating a lected time intervals, a sync signal generator for generating a
sync signal, a controllable clock for generating signals norsync signal, a controliabie clock for generaing signals nor-
mally representative of real time, a recirculating storage for storing time data signals representative of a plurality of prede-
matal termined times and for storing function data signals representative of control functions to be performed at said predetermined times, a comparator for periodically comparing the signals from said clock with the time data signals, logic circuitry
responsive to an output of said comparator and to the function responsive to an output of said comparator and to the function
data signals from said recirculating storage for generating at least one function control signal in accordance with the function data signals when a comparison exists between said time data signals and the signals from said clock, and means responsive to said at least one function control signal from said logic circuitry for engaging or disengaging said at least one alternate signal, said portable. programmer comprising: (a) first clock means, operating at a specifit
(a) fenerating real time signals; (b) means responsive to said real time signals for displaying
real time: real time;
(c) means for setting said first clock means to a predetermined real time;
(d) second clock means for generating high frequency clock signals, said second clock means being stepped by said sync signal from said multiple rate meter at a substantially
greater frequency than the operating frequency of said first clock means;
(e) means for comparing the real time signals and the high frequency clock signals from said first and second clock means respectively; and
clock in said multiple rate operation of said controllable between said real time signals and a comparison exists clock signals.

PROGRAMMING MODULE FOR PROGRAMMABLE CONTROLLER USING A MICROPROCESSOR David D. Miller, Davenport, Iows, assignor to Gulf \& Western Industrie, inc., New York, N.Y.

Filed Sep. 29, 1976, Ser. No. 721,785
U.S. Cl. 364-900 Int. C. ${ }^{2}$ G06F 9/00

9 Claims U.S. C. $364-900$

1. In an electronic franking machine comprising: franking value selection means, operable selectively to proselected for a desired next franking operation of the machine, for setting the selected franking value into the machine;
digital electronic input register, having an input connected to said franking value selection means for receiving and holding said selected franking value;
an electrically adjustable printing device, settable electrically to any selected one of a plurality of different conditions enabling the device to be actuated respectively to print a plurality of different franking values;
setting control circuitry, connected with said input register and said printing device, operable in dependence upon said electrical input to bring about setting of said printing selected franking value;
digital electronic total register, for holding an accumulated value representative of the sum of the respective franking values used in preceding franking operations of the ma-
totalling circuitry, connected between said input register and said total register, for effecting addition of said selected franking value held in the input register to said provided, to be held in said total register, after printing of said selected franking value, in place of said accumulated value previously held there,
the improvement wherein said machine comprises an electronics unit which houses franking value eclection means, said input register, said total register and said totalling circuitry and a separate printing unit which houses the said electrically adjustable printing device and with which said electronics unit is engaged during the operation of the
machine, said electronics and printing units being readily separable one from the other and having complementary coupling means for setting up operative electrical connec-
tions therebetween when the electronics tions therebetween when the electronics unit is engaged
with the printing unit.

4,094,000

GRAPHICS DISPLAY UNIT
nn Brudevord, Wellesky, Misen, asaignor to Atex, Incorpo
Filed Dec. 16, 1976, Ser. No. 751,138
Int. CL. ${ }^{\text {G }}$ Co6F $3 / 14$
U.S. CI. 364900

1. A graphics display unit for providing a visual image tha corresponds to input data, said graphics display comprising A. matrix display means have a plurality of energizable display positions at intersections on a matrix including a
reference display position, individual display positions reference display position, individual display positio
being selected for energization in a predetermined quence.
B. memory means connected to said matrix display mean
said memory means having a plurality of addressable said memory means having a plurality of addressable storage locations for storing binary information that co
respons to the image to be displayed and that defines the energization level for each said display position of said matrix display means, said memory means storing th input data in a portion of said addressable storage loca C. addre
C. addressing means connected to said memory means fo generating storage location addresses for all said storag
locations in said memory means in an addressing sequence
D. initial address means conneccted to said addressing means
for storing an initial address that establishessing mean initial correspondence between one of said storage locations and
said reference display position;
E. altering means connected to
altering said initial correspondence between said on addressable storage location and said reference display position by changing the initial address thereby to gener ate a new initial correspondence and relocate the image on F. timing and control meand
means and said matrix display means for maintaining relative correspondence between the addressing of succeasive storage locations and the selection of successive display positions by synchronizing the predetermined initial correspondence.

4,094,001
DIGIAL LOGIC CIRCUITS FOR COMPARING ORDERED CHARACTER STRINGS OF VARIABLE LENGTH
Donald E. Miller, Waynesboro, Vh., asedgnor to General Electric
Company, Waynesboro, Va.
Fled Mar. 23, 1977, Ser. No. 780,446
Flied Mar. 23, 1977, Ser. No. 780,4
Int. C1.2 GOFF 7/22
U.S. CI. 364-900 17 Claims

1. Data processing system comprising a first continuously circulating storage register for storing a candidate string o ordered character signals having a length equal or less than M characters in $M+1$ register stages, where M is an integra register circulating upon than 3 , a second circulating storage tring of ordered character signals having a length requal less than \mathbf{N} characters in $\mathbf{N}+1$ register stages where \mathbf{N} is an integral number equal to or greater than 1 and $M-N$ is equa 0 or greater than 2 , means for comparing a candidate string of character signals stored in said first register with a reference tring of character signals stored in said second register to indicate any identity of stored strings of character signals comprising first means for causing said stored strings of candi-
date and reference character signals to synchronously circulate in their respective registers, means for comparing said last produce a first signal indins signals in character serial form to produce a first signal indicative of whether said strings of signals are identical or not, means for sensing that the number character signols is greater than the number in saide circulated reference string of character signals to produce a second sig. nal, second means responsive to said second signal and to said first signal for delaying circulation of reference character relative positions of register for a sufficient time to cause the elative positions of the candidate and reference character名nals in the stages of their respective registers to be shifted by causing said first means, said second means, said means for comparing and said means for sensing to repeatedly perform heir function until a first output signal is produced indicative said last named strings of signals are identical, and means for utilizing said last named output signal.

SACRIFICIAL ARC S,004,002
SACRHICLAL ARC SUPPRESSORS IN MAGNETIC ndrew Henry Bobeck Cuble MEMORIES
phone Laboratories, Incorthom, N.J., aerignor to Bell Teleaboratories, Incorporated, Murray Hill, N.J.
Filed Marr 21,197, Ser. No. 779,839
Int. C1.
U.S. C. 305-1
7. A magnetic bubble memory including a layer of magnetic material in which magnetic bubbles can be moved, said mem-
ory including first and second patterns of permalloy and elec-
trically conducting materials separated by an insulating layer,
said first and second patterns including portions thereof in
ing consecutive stages for advancing domains therethrough in response to consecutive cycles of a magnetic direction rows of eleme
said magnetic field being capable of magnetizing said elements,
each consecutive stage including a different number of said

close proximity and adapted to define a preferential arcing position therebetween.

4,094,003

SONIC MAGNETIC DOMAIN SENSOR Witold Kinsener, Hamilton, and Edward Della Torre, Toronto, both of Cannda, aserignors to Canadian Patents and Development Limited, Ottawna, Canade

Filed Mar. 29, 1976, Ser. No. 671,144
U.S. CI. 365-7

12 Claims

1. A device for sensing a magnetic bubble domain at a predeiermined location in bubble supporting material comprising:
magnetostrictive means positioned with respect to said bubmagnetostrictive means positioned with ressect to said bub-
ble supporting material to be magnetically influenced by le supporting material to be magnetically influenced by
he closure field of a bubble domain at said predetermined location;
conductor means in contact with said magnetostrictive s and
sonic means for launching a sonic wave pulse which propasonic means for launching a sates past the vicinity of said magnetostrictive means in a
gat gares past the vicinity or said magnetostrictive means in a
predermined direction for stressing said magnetostricprecelermined directians to magnetization of said magnetostrictive means when magnetically influenced by the clo-
sure field of a bubble domain, thereby inducing an electric signal in said conductor means to indicate the presence of the bubble domain.

4,094,004

CAPLESS MAGNETIC BUBBLE EXPANDER-DETECTOR CIRCUTT
aed Yousri Dimynn, San Diego, Calif, assignor to Burroughs Corporation, Detroit, Mich.

Filed Noir. 1, 1976, Ser. No. 737,203
Int. C.' ${ }^{2}$ G11C 19/08
U.S. Cl. $365-8$
t. C. ${ }^{2}$ G11C 19/08

3 Chims 1. A bubble domain expansion and detector circuit for expanding and detecting magnetic bubbles moving along a prede-
cermined path in a film of magnetic bubble material comprising:
a pattern of elements in an overlay of magnetic material positioned over a film of magneith
defining a bubble propagation path, said elements being arranged in consecutive rows and defin-
elements to expand a domain moved therethrough, means for spacing said elements from the bubble material to maintain a gradient between each of said elements and the bubble material in the direction of said propagation path and,
means
neans defining a detector also operative in response to said
field and disposed adjacent one end of said expanding consecutive stages to receive said expanded domains.

MAGNETIC BUBBLE 4,094,00 Thomas T. Chen, Yorbe Linde, Calif, assignor to Rockwell International Cled May 21, 1976, Ser. No. 688,651 U.S. C. 365-16

1. An comprisin
first and second propagation paths;
each of said first and second propagation paths comprising a plurality of passive components; said first and second propagation paths;
said first and second transfer switch means forming portion of said first and second propagation paths,
said first and second transfer switch means arranged such that the distance therebetween is different in said first and second propagation paths;
fer switch means to selectively control the opecration said first and second transfer switch means whereby saia first and second propagation paths are selectively inter connected by at least one of said first and second transfer switch means during one operating cycle.

GAPLESS MAGNETIC BBUBBLE PROPAGATION
CIRCUIT Magid Yourri Dimyan, San Diego, Ca Corporation, Detroit, Mich. Filed Nor. 1, 1976, Ser. No. 737,206
Int. C.2 ${ }^{\text {G11 }}$. $19 / 08$
U.S. C. 365-39

sistor being used as a constant current source and to make constant drain current of said MOS field-effect transistor, (e) an output resistor interconnected between the emitter of
said NPN transistor and a negative power supply, and (f) a constant voltage means connected to the base of said NPN transistor,
whereby, an input applied to the other terminal of said analog switching means being memorized and transferred output, a
non-volatile memory being made. non-volatile memory being made.

4,094,008
ALTERABLE CAPACITOR MEMORY ARRAY George C. Lockwood, Dayton, and Nicholas E. Aneshansley, Dayton, Ohio Jun. 18, 1976, Ser. No. 697,602

Filed Jun. 18, 1976, Ser. No.
Int. Cl.

1. A bubble domain propagating circuit for moving magnetic bubble domains along a predetermined path in a film of magnetic bubble material comprising:
a pattern of propagate elements in an overlay of magnetic
material. material,
nid magnetic material ber por netic bubble material and said propagate elementis defining netic bubble material and said propagate elements defining therethrough, in response to consecutive cycles of a magnetic field,
said magnetic field being rotated in the plane of said bubble material and being capable of magnetizing said elements, adjacent elements having ends which will have essentially
the same polarity when subjected to said magnetic field in a direction perpendicular to said propagation path, and means for spacing said propagate clements from the bubble material to maintain a gradient between each of the ele ments and the bubble material in the direction of said propagation path.

4,094,007
TEMPERATURE-COMPENSATED ANALOG VOLTAGE MEMORY DEVICE
Shunji Minami, Katano, Japan, assignor to Matrushilta Electric Industrial Co., Ldo., Japan

Filed Nor. 26, 1976, Ser. No. 745,226
Claims priority, application Japan, Dec. 4, 1975, 50-144871;
Dec. 12, 1975, $50-14898 ;$ Dec. 26, 195, 50
Int. C. ${ }^{2}$ G11C 11/40
8 Claims

1. A temperature-compensated analog voltage memory device comprising
fect transistor,
to the gate of said Mos having one terminal connected
(c) a nonpolarized capacitor interconnected between the
gate of said MOS field-effect transistor and ground, leak-
age of said capacitor being prevented by said MOS field-
(d) an NPN transistor having its colle
source of said MOS field effect transistor, said NPN tran-
ing:
rectangular aray pectangular array of non-volatile, alterable threshold ca-
pacitors disposed on a single semiconductor substrate and comprising a plurality of parallel source stripes formed in the substrate, and a plurality of non-volatile, alterablethreshold capacitor devices formed on said substrate in a plurality of columns each immediately adjacent one of ing dual gate insulator layers of thin silicon oxide and silicon nitride and a conductive gate element connected in common along each common gate row of said capacitor devices, and each of said capacitor devices being selectably preprogrammed to one of first and second threshold voitage states having associated first lower and second
higher capacitance values by application of selected signals to substrate, source stripe and gate element; and eading means comprising read signal means for applying a read voltage to a selected row of said capacitor devices, reference signal means for supplying a reference signal vaitage, at least one differential sensing circuit receivin
said refence signal voltage, and coupling operatively coupling said differential sensing circuit between a selected one of said source stripes and an output terminal, said read voltage having a magnitude at least equal to said second threshold voltage to couple a charge of first or second magnitude to said source stripe depend ing on whether the capacitor device associated with said
selected row and selected source stripe is in said first second threshold voltage state, staid differential sensin circuit comparing the voltage induced on said selected source stripe by said charge with said reference voltage to produce an output of a first value if said induced voltage said induced voltage is less than said reference voltage

2. A storage arrangement suited for use with CCD stores comprising a cCD storage area having a series-parallel-series arrangement of data flow in which between an input shift regiseach of length n bits are arranged between an input shint regis-
ter and an output shif register each being of length m bits; said $2 m$ parallel shift registers being constructed with one storage electrode for each storage location using the electrode-per-bit principle; a circular puise rain shin n storage locations with said n bits of said circular pulse train n sifr register each being connected to the gate termial of one of
n ${ }_{n}$ switching transistors, each of said switching transistors having a first input connected to a supply potential and a second
input connected to one of n pulse train lines of said storage input connected to one of n puse rrain irear a circulating charge in said circular shif register being the means whereby each one of said n switching transistors cyclicaliy
potential.

4,094,010
OPTICAL MULTI-CHANNEL DIGITAL DISC STORAGE OPTICAL MULTI-CHANELEM Rudiger Pepperl, Pineberg, Johann Kriger, Quickborn, and
Bernhard Hill, Hamburg, all of Germany, assignors to U.S. Bernhard Hill, Hamburg, all of Germ
Philips Corporation, Neت゙ York, N.Y.
Phillips Corporation, New York, N.Y.
Filed May 13, 1976, Ser. No. 686,120
Claims priority, application Germany, May 21, 1975, 2522405 U.S. CI. 365-215

15 Claims

1. A system for the optical storage of information in a plural-
ity of channels, comprising a rotating storage disc divided into

STORAGE ARRANGEMENT WITH MODULES CONSISTING OF CCD STORES
Peter Schnelder, Poecking, and Ernst Goettler, Munich, both of
Germany, asaigors to Slemens Aktiengeselschaft, Berlin \&
Germany, assignors to Slemens Aktiengeselischath,
Munich, Germany
Flied Sep. 21, 1976, Ser. No. 725,337 Filed Sep. 21, 1976, Ser. No. 725,337
Clamims priorty, application Germany, Sep. 26, 1975, 2543023 U.S. CI. 365-183 Int. C. ${ }^{2}$ G11C 11/40

a plurality of concentric channel areas, a plurality of concen-
fic guide tracks on the disc, each guide track bordering one of the channel areas, a separate periodically interrupted spiral information track in each channel area on the disc, optical means for sequentially directing a separate control beam of radiation onto each guide tation beam onto each spiral information track, a first radial scanning system for substantially uniormly moving the information beam radially along said information track, a second radial scanning system responsive to the interaction of the control beam with the guide track for radially moving both the control and information beams to correct for eccentricity of the guide rrack, and control beam concurrently with the passage of the information beam into the interrupted portions of the information tracks.

4,094,011

SYSTEM FOR RECORDING AND REPRODUCING HOLOGRAM Masao Nagao, Fuil, Japan, assignor to Asahi Kasai Kogyo KabuMasao Nagno, Fuili, Japan, abil

Filed Mar. 29, 1976, Ser. No. 671,615
Claims priority, application Japan, Apr. 1, 1975, 50-38567 Aug. 29, 1975, 50-104135; Sep. 22, 1975, 50-113737,
Int. C. ${ }^{2}$ G11C $13 / 04$

Int. Cl. ${ }^{2}$ G11C 13/04 20 Claima

1. A method for recording information as Fourrier transform 1. A method for recording information as Fourrier ransiorm
holograms which, in reproducing, are read out by relative continuous scan with a reproducing light beam, comprising the teps of;
preparing information in a form adapted to be recorded as holograms by dividing the original information to be recorded into a number of information groups each each consisting of a given amount of information, said predetermined number \mathbf{N} being at least two,
supplying the prepared information to an information inpu device having a single or a plurality of unit-informatio input positions beginning from a first unit-information of a first group sequentially, said plurality of information input surface without substantially overlapping one another, exposing each unit-information supplied to said unit-information input position to an object light beam to effect modulation thereof, and
ecording each unit--information as a hologram on a recording medium with a plurality of reference light beams on one different combinations of said single unit-informatio input position and said plurality of reference light beams or one-to-one different combinations of said plurality of unit-information input positions and said single reference light beam are used in sequence to record a series of holograms aligned on a track of the recording medium.

4,094,012
ELECTRICALLY PROGRAMMMBLE MOS READ-ONL MEMORY WITH ISOLATED DECODERS George Perlegoa, Santa Clara, and Phillip J. Salsbury, Sunny-
vale, both of Califn, assignors to Intel Corporation, Santa
vale,
Clara, Calif.

Filed Oct. 1, 1976, Ser. No. 728,789
U.S. Cl. 365-226 Int. C.2. ${ }^{\text {G11C }} 11 / 40,7 / 00$

1. An electrically programmable MOS memory comprising a plurality of memory cells, said cells requiring a first poten-
tial for reading and a second potential, higher than said first potential, for programming;
input means;
input means; output means, coupled to said plurality of memory cells; decoding means comprising:
said input means and for providing said first potential when said address signals are in a predetermined state, said decoder coupled to said input means;
voltage supply means for providing said second potentia coupling means comprising a field-effect transistor cou means, said coupling means including means for apply ing a first signal to the gate of said transistor during reading and a second signal to the gate of said transisto
during programming, said transistor for providing during programming, said transistor for providing a
electrical path during reading, and for providing a electrical path during programming if said addres signals are in other than said predetermined state;
said voltage supply means comprising a first and secon depletion mode transistor coupled in series, said firs ransistor having its gate and one of its terminals cou
pled to said field-effect transistor of said coupling mean and said second transistor having its gate and one of it
terminals coupled to receive said second, higher poten tial;
whereby hereby said decoding means may be employed to select cells in said memory for reading and programming.

4,094,013
OPTICAL STORAGE DISK SYSTEM WITH DISK TRACK Bermhard Hill, Hamburge SECTORS Eermanrd Hill, Hamburg; Rudiger Pepperl, Pinneberg, and
Johann Küger, Quickborn, all of Germany, assignors to U.S. Philips Corporation, New York, N.Y.
Claims priority, appllication Germany, May 22, 1975, 2522593; Mar. 3, 1976, 2608715 apicich U.S. CI. ${ }^{\text {Int. Cl. }}$ ($\mathbf{2 6 5 1 1 B}$ 7/00, 21/10; G11C $13 / 08$ 21 Claims

1. A storage disk for storing data in spiral or concentric tracks, comprising a disk-shaped storage medium having a recording surface divided into a plurality of equiangular guide sectors; each two of said data storage sectors being separated by a guide sector; said tracks thereby passing successively through data storage sectors and guide sectors; a data block of information being stored in substantially all of the track portions in each of said data storage sectors; guide segments being
stored along the track in the guide sectors only adjacent alternate data blocks; the number of data storage sectors being odd to maintain the radial distance between edges of the guide segments substantially euqal to twice the radial distance between data blocks; blank segments being provided along the tracks in the guide sectors and adjacent further alternate data
blocks, the tracks thereby containing repetitive successions of a data block, a guide segment, an additional data block and a blank segment.

William S. Leath BISPLAY STAND
William S. Leath, Birmingham, Ala, assignor to Hanes Corpora-
tion, Winston Salem N.C. Filed Mar. 21, 1977, Ser. No. 779,820 Term of patent 14 years
Int. C1. D6-04; $\mathbf{D 2 0}-02$
U.S. CI. D6-24

CONTAINER FOR TOILET TISSUE ROLLS OR THE
Gwendolyn Robles 917 StiKE
Gwendolyn Robles, 917 Sheridan Ave., Bronx, N.Y. 10451
Division of Ser. No 561781 Division of Ser. No. 561,781, Mar. 25, 1975, Pat. No. Des 240,682. This application Jan. 28, 1976, Ser. No. 652,978
U.S. CI. D6-97 Int. C. D23-02

SHOPPING BAC SHOPPING BAG HOLDER
Philip J. Catanzaro, and Lucy Ann Catanzaro, both of 3726 Lyndale Are., Baltimore, Md. 21213 Apr. 20, 1977, Ser. No. 789,204
Term of patent 14 years Int. Cl. D6-O4
U.S. C. D6-131

248,068
CHAIR
Hans Roericht, Neue Strasse 44, Ulm, Germany
Division of Ser. No. 633,593 , Nor. 19, 1975. This application Apr. 18, 1977, Ser. No. 788,674 Int. C. D6-01
U.S. C. D6-31

WINDOW SHELF 248,071
Earle G. Simmond 25 WesteL For PLANTS Earle G. Simmons, 25 Westchester Way, Warwick, R.I. 02886
Filed May 24, 1976, Ser. No. 689,519 Term of patent 14 years
Int. Cl. D6-06, 04
U.S. CI. D6-137

248,072 CABINET

Filed Apr. 26, 1976, Ser. No. 680,366 Term of patent 7 years
Int. C. $\mathbf{D 6}-04$
U.S. C1. D6-169

Industries Inc., Loe Angeles, Califi.
Flied Oct. 28, 1976, Ser. No. 736,678 od Oct 28, 1976, Ser. No. 78
Term of patent 14 years
U.S. C. D7-11

248,073
NESTABLE TABLE
Joceph P. Schneider, 3751 Poppy St. Long Beach, Calif. 90805

$$
\begin{aligned}
& \text { Term of patent } 7 \text { yeeu } \\
& \text { Int. } \mathrm{Cl} \text { D } 0-03
\end{aligned}
$$

U.S. C. D6-177

$\stackrel{248,074}{\text { JAR OPENER/POT HOLDER }}$
Mary Randall, 214 Woodland Dr., Eart Lalip, N.Y. 11730 Flied Jan. 7, 1976, Ser. No. 647,127 Term of patent 31 years
U.S. C1. D6-293

U.S. C. D7-20

11730
\qquad

PLATE OR TH
Robert H. C. M. Drenen, Hekelsen, Belfium, amignor to Dart Robert H. C. M. Dnenen, Hekelgem, Be
Industries Inc., Lo Angeles Calif. Flied Oct. 28, 1976, Ser. No. 736,68 Term of pateatt 14 yea
Int. CI. $\mathbf{D T O}_{1}$
U.S. C1. D7-23
 SQUEEGEE BUCKET

248,078
SORTING TRAY
ekroo, 1410 Clearview Rd., Santa Barbara, Calif.
Capper P. Warnekroe, 1410 Clearriew Rd., Santa Be
F3101
FLed Apr. 5, 1976, Ser. No. 673,935 Term of patent 14 years
U.S. CI. D7-37 Int. C. D7-99

248,079
248,079
ELECTRIC COOKING BASE AND VESSEL David L. Painter, Glenview, III, and Norman C. Milasky, West Bend, Wisu, assignors to Dart Industries Inc., Los Angeles,

Filed Sep. 20, 1976, Ser. No. 724,436 Term of patent 14 years
Int. C. D7-02
U.S. CI. D7-94
U.S. C1. D7-

 $\stackrel{248,080}{\text { COFFEE MII }}$
Husazo Mnejima, Tokyo, Japan, amerignor to Sachie Ando, To-
kyo, Jappan Flied Sep. 9, 1976, Ser. No. 722,056
Claime priority, application Japan, Jui. 7, 1976, 51-21070

,

May 13, 1976 , Ser. No. 6
Term of patent 14 years
Int Cl. D7-05
U.S. Cl. D7-187

\qquad

248,082
WRENCH
Floyd James Venable, Jr., MRENCH
Filed Jul. 7 , 197ir, Store, Prairie, Id. 83647 Term of patent 14 year
Int. CI. D8-0S
U.S. CI. D8-29

PORTABLE TORCH
 both of N.Y., sssignors to Bernzomatic Corporation, Roches-
ter, N.Y. Filed Nov. 10, 1976, Ser. No. 740,468

Term of patent 14 years
Int. Cl. D8-0S
U.S. C. D8-30

PULLER TOOL OR SIMILAR ARTICLE
PULLER TOOL OR SIMILAR ARTICLE
Daniel A. Brazek, Medford, Minn,, asaignor to Owato
Company, Owatonna, Minn. Term of patent 14 years
U.S. C. D8-61

248,087
Elwood Thomas Feldman, 8603 Delogge Rdn, Baltimore, Md. 21237 Flied Mar. 8, 1976, Ser. No. 664,702 Term of patent 14 years
Int. CI. D8-08

248,085
PORTABLE BAND SAW
Charles R. Stelljes, Fayetterille; Lars Frootad, Syracuse, and
Richard H. Chapman, Camillas, all of N.Y., amdzars to
Richard H. Chappman, Camillmas, all of N.Y., aseggnors
Rockwell International Corporation, Pittsburgh, PL.
Rockwell International Corporation, Pitsburgh, P2. 194,
Continuation-in-part of Ser. No. S15,11, Oct. 16, 1974,
abandoned. This application Aug. 29, 1975, Ser. No. 608,855 Term of patent 14 years

William James Britt, Gotile Brent wich Productes Inc., Greenville, S.C
Filed May 28, 1976, Ser. No. 691,062 Term of patent 14 yearr
Int. Cl. D9-01

CONTAINER FOR PILLS James M. Phillipe, 2310 Codding Dr, Modesto, Callif. 93350 248,086
HIVE TOOL
William T. Maxant, Harrard Rd., P.O. Box 454, Ayer, Mas.
01432 Filed Aug. 6, 1976, Ser. No. 712,350 Term of patent 14 years
Int. C1. D8-03

95351 Filed May 17, 1976, Ser. No. 686,72 Term of patent 14 years
Int. C. D9-03
U.S. C. D9-216

U.S. CI. D8-98

STORAGE CONTAINER FOR FOOD OR THE LIKE Theodor Box, 1108 Alleen Rd., Brielle, N.J. 08730 No. 674, Int. C. D9-03
 U.S. Cl. D9-237

\qquad

Tom Frydendal, OAR,091 CARTON COVER
kestad, Norway
CARTON COVER
Faina, Norway Apr. 15, 1976, Ser. No. 677,368
Clnime priority, application Norway, Oct. 22, 1975, 7557009 Terrm of patent 14 years
U.S. CI. D9-267

248,092

 Filed Aug. 2, 1976, Ser. No. 711,083 Claime priority, application Jappan, Apr. 5, 1976, 51-12570 Int. C. D10-03
U.S. C. D10-40
 $\stackrel{\text { 248,005 }}{\text { MOTOR CYCLE }}$ Japana, sapignon Filed May 18, 1977, Ser. No. 798,238
Claims priority, application Jappr, Nov. 27, 1976, 51/46368 Term of patent 14 years
U.S. CI. D12-205 Int. C. D12-16 -

One WiN
Charies W. Canciller, Palatine, $\mathbf{I}_{\text {. }}$, aseignor to C. W. Cancilier Flied Aug. 4, 1977, Ser. No. 821,930 Term of patent 14 years
Int. C1. D12-08
U.S. C. D12-99 Int. C1. D12-08

248,094
 Filed Jun. 16, 1976, Ser. No. 696,481 Term of patent 14 years
Int. Cl. D12-16 U.S. CI. D12-190
 MOTOR-CYCLE WHEEL Japan, sudignors to Yamiha Hattendoli Kabuechild Kortisha,

248,096
 CONNECTOR PANEL

CONNECIOR PANEL ANALYTICAL INSTRUMENT SYSTEM

Corporation, Oak Brook, il.
Filed Mar. 31,1976 , Ser. Term of patent 14 years
Int. Cl. D13-03
U.S. C. D13-24 Tint. CI. D13-03

\qquad

UNIVERSAL CONNECTOR BLOCX FOR FIBER OPTIC Corporation, Armonk, N.Y.
Flied Oct 2, 195, Ser. No. 619,105 Termin of pateat 14 year
U.S. CI. D14-40

Richerd E. Feimbloom, New York, and Leszio Endrodi, Jectron U.S. C. D14-4
Richard E. Feimblem,
Helghas, both of N.Y., sesignors to Dediges for Vision, Inc.,
New York, N.Y.
led Mar, 24, 1977, Ser. No. 780,961 Term of patent 14 years
Int. Cl. D13-03
U.S. C. D13-24

MAGNETIC $\quad 248,100$
MAGNETIC TAPE TRANSPORT Robert W. Bornachlegel, Mountain Vier, and Framcis Arden
Parey, Menlo Park, both of Calif, aselgors to Ampex Coppo Farey, Menlo Part, both of Ca
ration, Redwod Cly, Calif.

Filed Jun. 16,1976, Ser. No. 696,684
Term of pent Termo of patent 14 yea
Int. C. D14-02
U.S. C. D14-41

WAIL MOUNT TEL
WALL MOUNT TELEPHONE CASE
 Blake, 2931 Randy La., Dallas, Tex. 7523
Filed Jul. 26,1976 , Ser. No, 708.765 Filed Jul. 26, 1976, Ser. No. 708, Term of patent 14 years
Int. C. D14—03; D6-04 U.S. CI. D14-61

$\stackrel{248,101}{ }$
ELECTRONIC CONTROL AND DISPLAY CONSOLE Johna Budd Steinhillber, and Stunley Heima, both of Mill Valley Calif, seadgnors to Syntex (U.S.A.A.) Inc.., Palo Alto, Calif. Term of patent 14 year
Int. C. D14-02
U.S. CI. D14~4

POW DETERGENT DISPENSE Spencer Brian Larson, South St. Paul, and Duane Leroy Salmon-
oon, Weet St. Paul, both of Minn., asalenors to Economics
Laboratory, Inc. St. Paul Minn Laboratory, Inc., St. Paul, Minn.
T. 1, 1975, Ser. №. 639,84

Term of patent 14 years
Int. CI. D15-05
U.S. C. D15-36

$$
\begin{aligned}
& \text { 248,104 } \\
& \text { UPRIGHT VACCUM CLEANER }
\end{aligned}
$$

248,104
PRESENTATION FOLDER Earl R. Clowers, Anderion; John C. Davis, Greenwood; Fred E. William T. Moves, 3215 Stonehenge, Carrollton, Tex. 75006 Pearman, Jrs, Five Forks Community, and Don W. Vermillion, Anderson, all of S.C., assignors to The Singer Company US. C. $\begin{gathered}\text { Term of patent } 14 \text { yea } \\ \text { Int. C. D19-04 }\end{gathered}$ Term of patent 14 years
Int. Cl. D15-05
U.S. CI. D15-53

Thomas Brengord, and Robert D. Copeland, both of Erie, Pan, amignors to American Sterilizer Company, Erie, Pa.
 248, 105
PAIR OF SPECTACLES Anthony Shindler, Brookline, Mass., assignor to American OptAathony Sorporatition, Soutthbridge, Mass.
Filed Feb. 9, 1976, Ser. No. 656,563 led Feb. 9, 1976, Ser. No. 1 years.
Term of patent 14 years
U.S. C. D16-65

U.S. C. D23-55 Int. Ch. D23-02

BARREL HEATER DOOR

St

 Filed Apr. 26, 1976, Ser. No. 672,764 Term of patent 14 yeaInt C. D23-03
USS. CI. D23-128

24,109 DENTAL AIDES CABINET Filed Jul. 7, 1976, Serf. No. 703,217 Term of patent 14 years
USS. CT. D24-5

PORTABLE ANIMAL ENCLOSURE

 Neil A. Sorter, Rte. 1, Sylvia, Kans. 67581Continuantion-in-part of Ser. No. 704,462, Jul. 12, 1976. This Continuation-in-parto or Mar. No.
application Mar. 7,1977, Ser. No. 774,737 Term of patent 14 year
Int. C. $130-01$
USS. CI. D30-1

248,112
Loren A. Segerman, 14675 Admen Rd, Granger, Ind. 4653 cegerman, 14675 Adams Rd, Granger, I
Filed Nov. 1, 1976, Ser. No. 737,893 Term of patent 14 years
Int. C. D21-01
USS. CI. D34-2 B

248,110
HOLDER FOR OPTHALMIC INSTRUMENT CONTROL HOLDER FOR OPTHALMIC IN
John R. Wright, Tomawneta, N.Yn nit ar to American Optical
Corporation, Southbridee, Mmes.
Filed Feb. 19, 1976, Ser. . No. 659,434 Terms of patent 14 years USS. C. D24-31

Continuation of Ser. No. 523,998, Nov. 15, 1974, abandoned,
which is a continuation of Ser. No. 287,798, Sep. 11, 1972, abandoned Term of patent 14 years
USS. C. D34-5 K
Int. C1. D21-01

248,115
TOY FiGURE

Erik Peter Tapdrup, Virum, Denmark, assignor
A.G., Barr, Switzerland
Filed Aug. 2, 1976, Ser. No. 710,850 Aug. 2, 1976, Ser. No.

\qquad
248,113
ANE BOARD
led Dec. 5, 1975, Ser. No. 638,284 Term of patent 14 years
USS. CI. D34—5 SS

USS. CI. D34-2 R
rm of patent 14 years
Int. C1. D21-01

$\stackrel{248,116}{ }$
SE OR COME OR SIMILAR ARTICLE
John Zamkovec, coo Nancy Lavallee, 142 W. Meth St... and
Nancy Lavaliee, 142 W. 49 Sh St,. both of New York, N.Y.
10019

Filed Aug. 5, 1976, Ser. No. 711,9
Term of patent 14 years
Term of patent 14 year
USS. C. D34-5 CH

TORCH OR S4MILILAR ARTICLE
Bik Kwan Ho, 50-56 Mong Kolk Rd., 3rd Floor, Flat B Sun
Mong House, Kowloon, Hong Kong
Filed Jul. 5, 1977, Ser. No
Claims priority, application United Kingdom, Mar. 29, 1977,
Term of patent 14 years
U.S. CI. D48-24 A

\qquad
CARRYING CARTON FOR SHOES OR THE LIKE William Jay Coben, Hingham, Mass,, asignor to CTTC Industries, Inc., New York, N. \mathbf{Y},

Flied Jan. 23, 1976, Ser. No. 65195 Term of patent 14 yea
Int. C. D9-03
U.S. CI. D87-1 R

-248,
STORAGE TRAY FOR PHOTOGRAPHIC SLIDES Glen J. Brown, 386 E. Poppyfields Dr., Altadens, Calif. 91001 Aug. 30, 1976, Ser. No. 718,593 Term of patent 14 yea
Int. Cl. D3-02
U.S. CI. D87-1 D

248,125
TAPESTRY FABRIC OR SIMILAR ARTICLE Roland Ditzel, Beethovenstrasse 35, 6901 Bammental, Germany Cluims priority, application Germany, Aug. 15, 1975, 42 AR 348 Term of patent 14 years U.S. CI. D92-1 LI

LIST OF PATENTEES

то шном

PATENTS WERE ISSUED ON THE 6TH DAY OF JUNE, 1978 Note-Arranged in accordance with the first significant character or word of the name
A. J. Gerrard \& Company: See-

AB Akerlund \& R Rusing See- Linner, Hans Rolf Ingemar, 4,092,906, Cl. 93-49.00R.
AB Bofor: Hees Rolf ngemar, 4,092,900, Cl. 93-49.00R.
Gustavs.4000, Lars G. T.; and Svensson, Sven-Hakan, 4,092,901, C AB Hammars Mekaniska Verkstad: See-
Hellstrom, Nils Erik, 4,093,007, Cl. $144-326.00$ R. AB Kalle-Re evilatorer: SeeAB Malmo PAC: Se-,
Jonson. OCto Julius, 4,093,387, Cl. $402-19.000$.
 Sjogren, Borje Lennar, 4,093,062, C1. 198-380.000.
Abbot Laboratoies See
Winn, Martin: and Kyncl, Jaroslav, 4,093,726, Cl. 424-250.00
 Loruses, Simene, Bono, Pancola; Rasd Tamborin, Gino, to Montedison
S.p.A. Alpha-hdroxyimino-alkylquinolinum salis having fungicide
 Abraham, Nededupparambil A: Immer, Hans U.; and Sestanj, Kazimin
to American Home Products Corporation. Process for producing triglycyll-Iysine vame Prosessin and Corporation. Process intermediates therefor. $4,093,610, \mathrm{C}$.
260.112 .50 R . 260.-112.SOR.
Accumularererwerk Hoppecke Carl Zoellner \& Sohn: See
Sasmannshhusen, Gunter; and Hasenuuer, Dieter, 4,093,785, Cl. C ${ }^{429.149 .000 .}$
Acom Engineering Company: See-
Morris. Eanl L. L .and Fields, Larry D., 4,003,177, Cl. $251-54.000$. Acro Matic, Inc. See-
Terpening, George $1, ., 093,210, \mathrm{Cl}, 272-67.000$. Adams, Arthir Dowe hole-boring jig. 4,093,394, Cl. $408-103.000$.

 Adolph Corrs Company: See-
Wu, Samuel Chinlun; and Holick, Stephen Alan, $4,002,940, \mathrm{Cl}$. Agence Nationale de Valorisation de la Recherche (ANVAR): See-
Dreyus, Gerard; and Lewiner, Jacques, $4,093,884$, Cl $310-328.000$.

Ahlrich, Willard K. Electrostatic precipiator. 4,093,432, Cl.
S. 513.800.
Air Pollution Systems, Incorporated: See-
Schwab, James J.; and Goodson, David B., 4,093,430, Cl.
$55-107.000$.
Air Rotor Develomen Company, Inc.: See-
Ewers, Marion H., $4,002,748$, Cl 5.85 .000

Akatsuka. Shini.IIhiro; Akutsu, Shozo, and Uchida, Michio, to Eisai Co. 1 Itd.
$426-19.000$.
Aktiebolaget Asea-Atom: See-
Berens. Tadeusz; and Manson, Ragnar, 4,093,513, Cl. $176-37.000$.
Berens, Tadeusz; and Manson, Ragna, Shoo and Uchida, Michio,
Akutsul, Shozo: Ser:
Akatsuka

Albers, William Marion: Se-
Lucas.
214-16.40er

270-67.000.

Alers, George A. See-
Thempson, Robern $\mathbf{B} ;$ Alers, George A.; and Tennison, Marion A.
$\xrightarrow{\text { 4,092.868, Cl. }}$

Kovalevich, Evgeny Vladimirovich, Tinyakov, Viktor Gurie-
vich; Bolonov, Alexandr Modimiorvich; Chemov, ,

Alexeeva, Ljubo Antiononna: See-
Beleus, Viktor Mikhailovich, Yaguolsky, Lev Moiseevich, Alex.
eveva, Ljubov Antonovna;
eeva, Ljubov Antonovna, Sokolov, Sergei Vasilicvich; and
Ponomarev, Alexei lvanovich, 4033,665 , Cl. $260-612.00 \mathrm{D}$.

Novel.-3-4-4-quinolylamino)-2-thiophene-carboxylates. 4,003,724, Cl .
424250.000 .

Allied Chemical Corporation: See-
Narayn,
Nurendra D
. $4,029,767, \mathrm{Cl} .24-230.0 \mathrm{AL}$
Allis-Chalmers Corporation: See-

 Adoifo, to Eastman Kod
and thiadiazole photogra
66.0HD.
Heman, Janina: See- Patchomik, Abraham; and Altman, Janina,
Haviv, Foruna;
4,093,802,
lza Corporation: See-
Iza Corporation: See- Heller, Jorge, 4,093,709, Cl. 424.19 .000 .
Choi, Nam Sok and
Dickson, Thoma David, Jr; and Wright, Jeremy Corwin,
Dickson, Thomas David, Jr.; and Wright, Jeremy Corwin,
4.029.769. Cl. 29-234.000.
Zafaron,

me

 h, Ranko P.; and Simons, Courtney S.,

Abrahame Nedoducts Corporation: See-
mir
end
end

Bagli
326.12R
Sarantakis
Saranlakis, Dimitrios, 4,093,609, Cl. 260-112.50S.
merican Sterilizer Company: See-

 Andreww, Anthony Walter: SeeBall, Gerald Stuarr Morris; and Andrews, Anthony Walter.
$4,022,90$ Cl. $132-19.00 \mathrm{D}$. Aneshansley, Nicholes E.: See-
LOckwoor. George C.; and Aneshansley, Nicholas E., 4,094,008,
C. 365 , 149.000 .

 Swiss Aluminium Lto
4ntoc.54.000.
Antoci, Frank J. See-

 ap Rhys, Tomos L., to United Stutes of America, Navy. Compensation
for simultaneous platform
raders. 4, 4, 3,951 , C1. 343.7.700.

Apotheker. David. 10 Du Pont de Nemours, E. I., and Company
Peroxide vulcanization of oilextended elastomeric ethylene copoly

Applied Power Inc. Ske
Miller, Douglas P ., $4,093,406, \mathrm{Cl} .417401 .000$.

Sherman, Robert M.; and Fuerst, Charles $0 ., 4,003,547$, Cl.
Inali.

Arcair Company: Sees
Fellure,
2li. Arons, Jon Craig. Mobile directional high velocity air moving appara-

 C. 17.100 .000 .
Ammon, Ruth: See-

Armon, Ruth: See-
Sela, Michel; Armon, Ruth; Maron, Ruth; and Hurvitz, Esther,
4.093,607, Cl. 260 -112.008.

Augustinus Catharinus, Maria. Level measurement and control.
4.,.02, 8 .

 Ainl, Clarence M. ItII, to Roberrshaw Controls Company. Manifold-
ing means and ystem for celectical and//
and methoumatic control devices
 for inhibiting bud growth of plants. 4,093,441, C.
Ashand Oil Inc... See-
Jerkins. Norman M., 4,093,421, C1. $23.259,500$

Associated Engineering Limited: See
Hunt, Norman $4.03,833$, Cl. $250-231.05 E$.

Athenes, Claude: See-
Charansol. Peiere; Hauri, Jacques; and Athenes, Claude, 4,093,827,
Ci. 179 . 15.0 AT .

giros, Jaccues Juien, to Societe Anonyme dite: Arts et Techniques
Nouvelles. Removabie stopper for a screw-neck botle. $4,093,096$, Cl. 215-330.000.
August
Rutstein
Rutenbeck,

 4,093,706, Cl. 423-490.000.
Schwartz, Occar. Inc.: See-
339.177.00
Autorrol Corporation: See
Guarino, Carmen F., 4,093,539, Cl. 210-17.000

avery. Noyes L.: See -
Hurwitz, Marvin J.; and Avery, Noyes L., 4,093.567, Cl. $260-$
21.00E.

 Azurin, Salvador R. Fish trapping device. 4,092,797, Cl. 43-102.000
B. \mathbf{F}. Goodrich Company, The: See-

Babayan, Vigen K., to Stokely-V.Vn Camp Inc. Beverages containing
polly ylycrol ester cloud. 4003,750, , Cl. $426-250.000$.

 Siopper-covering capsule for a bottle. 4,093,095, Cl. $215-307.000$.
Bachelder, Albert
Land, Sedwe Se Land. Edwin H.;. Bachelder, Albert J.; and Perry, Sarah H.,
4,093,696, Cl. 264995.000 , Bachmann, Lothar Willy and Reise, Eberhardt Karl, to VEB Werk-
zeukgmbinat Schmalkaden Milling cutter head for making arcuate
toothing 4, zeughombinat Schamalialden. Milling cutter head for making arcuate
toorhing. 4, 43,3391, C. 407 -22.000. Bachner, George L.; and Bacher. Jerry G., to NIMCO Corporation.
Liqui-digh flat io container. 4,093,113, Cl. 229-17.00G.
Bachner, Jerry G.: SeeBachiquer, ferry G. See.
Bacher, George L.; and Bachner, Jerry G., $4,093,115$, Cl. 229 Bachner, George $\begin{gathered}\text { L } \\ \text { I7.oG. } \\ \text { Baer, Ralph } \mathrm{H}: \text { See- } \\ \text { Isol }\end{gathered}$

asiliev. Jury Nikolaevich: Petrenko, Andrei Viktorovich: Bagrov,
Georgy Nikolaevich; ; ordevn
 Bahre, Gerhard; Braun, Jurgen; and Struck, Willi, to Aros Dr. Ing.
Meier-w indhorst KG.
4. 2 .
 Bailey, Frederick Eugene; and von Dohlen, Werner Claus, to Union
Carbide Corporation. Crystlline
acenaphand teenpolymers of ethylene and

JUNE 6, 1978
1978 LIST OF PATENTEES

 Baird, James. L., to Artisan Industrise Inc. Thin-film processing appara
ius and method. $4,093,479$, Cl. 159-6.00W. tus and method. 4,093,479, Cl. 159-6.00W.
Baker. Don R. See
Ameklev. Duane R.; and Baker, Don R., 4,093,445, Cl. $71-100.000$. Ameklev, Duane R. and Baker, Don R. 4, 4,093,445, Cl. 71 1-100.000
Ball, Gerald Stuar Morris; and Andrews, Anthony Walter to Exxon

Salordi, Romano, to Crown Cork \& 12.

 Bamfield. Peier; Quan, Puter Michiet.
Imperial Chemical Indusries Limited. Reduction, of nitro compound
with aqueous solutions of a formate. 4,093,646, Cl. $260-588.000$. with aqueous solutic
Banfiai. Antal : See

Mayer, Gyorgy; Gyori, Janos, Rikker, Mihaly; Banfai, Antal; and
Estenyl, Ervin 40033,689 , Cl 26471.000 .
Bannister, Frederick Rober:
McGectil,
Patrick Terence;
smith,
McGrail, Patrick Terence; Smith, Stephen Richard; Bannister,
Frrederick Robert; and Boutc, David Leonard, $4,093,458$, Cl.
96 -87.00R.

 Barry. Dennis P. Po to Pu
Cl 273 .24.000.
Barthell, Eduard: See-

Barton, C. Dickinson. Galf practice device. 4,093,234, Cl. 273-200.00R.
BASF Attiengesellschaf:
Buechner, Oskar;

Burdorf, Donald L.; and Bjordahl, James, 4,003,150, Cl.
Dietrich2, Eromst; Guenther, Ersts; Hoeraur, Wermer; ;issel, Emst;
Linge, Hermann; Neumann, Eckart; and Schaefer, Eberharc,
$4.092,784, \mathrm{Cl}, 3413.000$.
Reiss Woifgangilocshek, Hans-Ingo; Schnur, Rudolf; Winderl,
Siegried; Dehler, Juergen; and Hof
Rmann, Herwig, $4,093,668$,

BASF Wyandotte Corporation See-
Compon. John William; and Eisenstein, Stephen Ellis, $4,003,418$,
C1. $8-142.000$.

 857.0PG.
Bastian, Gry.$:$.:
V,

Vannier. J.erald We-, and Bastian, Gary T., 4,093,873, Cl. 307 .
23..OOR. Basu, Samir: See-
Fuller, Panil-Gillender, John Brian; Shacklady, Michael; and Basu,
Sanir $4,033,999$, Cl. 364900.000 .

215-251.000. A.,
Winchell. David A, 4.093,169, Cl. 248-311.300.

S70.00D.
Maurer, Fritz; Riebel, Hans-Jochem; Hammann, Ingeborg; Behr-
enz.
 Metzger, Carl; Jager, Gerhard, and Lumsen, Klaus, 4,093,40, C1.
Reilichl, Aortur; Jabs, Gert; and Gonzalez-Dorner, Alberto Carlos,
 4,093.569, Cl. 260.2 .2 AM .
Scmidt, Robert Rudolf; and Rohe, Lothar, $4,093,442, \mathrm{Cl}$.

reder. 4,092.990, CI. 133-1.00R.
BBC Brown .

 any. The Bonded asbestos diaphragms. 4,093,533, Cl. 204296.000 .
Eeaver. Rieshard See. N .; and Becker. Charles W., 4,093,533, Cl. Beaver. Richard N.; and Becker, Charles W., 4,093,533, Cl .
204-296.000.

Beguin, Jean-Luc: See- Droz, Willy; and Beguin, Jean-Luc, 4,092,822, C1. 58-23.00R.

Manz. Wolifgang: See-
Maurer. Fint; Rebel, Hans-Jochem; Hemmann, Ingeborg; Bechrener, Fintz; Riebel, Hans-Jochem; Hammann, Ingeborgg, Behr-
ent-200.000.

 Bell, Lon E. 1 to Technar, Incorporated. Mechanical rolamite impact
sensor. $4,092,926$, Cl. 102 .204.00R.
Bell Telephhone Laboratories, incorporated: See-

350.147 .000.
Hargrove. LLe

Hargrove, Logan Ezral, 4,093,343, C1. 350.96.300.
Harlese Rey Lawson; and Trozzolo, Anthony Marion, 4,093,774,
Cl 428 , 379.000 .

20at, Rall 10 Andre; Reinhart, Franz Karl; and Sinclair, William
Robert, $4,03,345$, Cl. $350-355.000$.

Senatar, Leo: See- Watkin. Reh $229-40.000$.

Bendix Corporation, The: See-

Reddy Junuthila
Benedikt. Walter: See-
Corthech
Rudoif, $4,093,887$, Cl , C1. $313-140.000$. Ledikt, Walter; and Jurinke,
Benera, Leo L.: See-
Bationsy.
204.265. Andrew
D.; and Benezra, Leo L., 4,093.531, CI. Bennes Marrei: See
Tardy Marrelice, 4,093,002, Cl. 137-596.200.
Bentz, Gerard: See-
Bentz, Gerardd See-
Galey, Jean; Benta, Gerard; Karinthi, Pierre; Gilbern, Ghislain; and
Devois. Serge, 4,093,53, Cl. 252.-70.000.

 $4,093,723, \mathrm{Cl} .424246 .000$.
Bergstrom, Gary E. See-
Shapp. Walter M.; and Bergstrom, Gary E., 4,093,831, Cl. 179 -
100.1VC. 100. 1 VC .
Bermard, Arthur Alexander, and Bernard, Richard Allen, to Darex
Corportion. Chuck. 4,093,247, Cl. 279.53.000. Corporation. Chuck. 4,093,247, Cl. 279-53.000.
Bernar, Remaichard Alle: See.
Bermard, Arthur Alexander; and Bernard, Richard Allen, 4,093.247,

Beener. Godwin Se-.
Habermeier, Jurgen; and Berner, Godwin. 4,093,639, Habermeier, Jur
20019290 .
Bertrand John: See-
Finin, oseph H.; and Berrand, John, 4,093,989, Cl. $364-485.000$.
Betz Laboratories, Inc.: See-
Let Lat, Joserese. Inc. See-nan, Lewis, and Davis, Philip S., 4,093,580,

128-229.000.
Binkley Company, The See-
Baxter, Bobby G., 4,093,266, Cl. 280-91.00R.

 Jacobson, Ale alxnder I.; Grinberg, Jan; Braatz, Paul O.; and Bleha,
William P., Jr., $4,093,357$, Cl. 350.338 .000 . Block, Hans-Dietere, 1 to Bayer Aktiengesellschaff. Hydroxyalkyl or
aminoalkyl
anner
 Blocm, Jan; and Bouwkegt, Albert, to U.S. Philips Corporation.
Lw.-presure mercury vapor discharge lamp.
4,093,889, Cl Blun, Rey 129.000 Trevor: See-
C.
 Bobeck, A. Adr aw Henry, to Bell Telephone Laboratories, Incorporated,
Sacincial arc
Cl. 365 . 1.000 .

 Helmut; Ziegler, Harald; Ballhause,
achim, $, 4093,344$, Cl 424274.000 .
Boeing Company. The: See-
Groomi Kenneth Dale, $4,093,021$. Cl. $165-1.000$.

 3os..0hA.
Botcher, William
4.093,494, Cl .156 .577 .
 Bohinc. Richard J.; Tragesser. Charles W.; Vaill, Ronald E.; and Racki,
Francis R., to Westinghouse Electric Corp. Oil circuit-breaker pump. assembly...With improved shunting contact structure. 4,033,837, Cl.
$200-150.00 \mathrm{G}$. Bohanan. Goote Hubert, to B.V. Foco Nederland. Arrangement particu-
larly in goods vehicle for conveyance of lad carries
 double or multiple rows. 4,093,089, Cl. 214516.000.
Heine, , heiniorch; Weodisch. Peter; Bohmann, Theodor; and Rade,
Dieter, $, 093,777$, C1. 428 . 403.000 .
 Glass Works. Process
ics so obtuin transergarent colorless and glass-ceramBocllmer Jacob A., to D. Dyyco Corporation. Printing blanket holding
apparatus. 4,092, 923 , Cl. 101-415.100.
 Bjorklund, Gary Carl; Mollenauer, Linn Frederick; and Tomlinson,
Walter John, ill, to
tell Telephone Laboratories, Incorporated.
 Bleck Clawson Company, The: See-
Nowisch, Heinz K.. $4,092,886$, C1. 83-56.000 Bleck Robert R., Jr., to Plastics, Research Corporation. Variable atten-
uation support system. 4,033,02, 1 . $206-521.1 .000$.
 pany. Torque
$192-16.500$.
Blackburne. Owen Rodney; and Shapiro, Warren B., to Noxell Corpo
ration. Oral hygiene. $4,033,711$, Cl. 42444.000 .
 Blake, Eugene H. Chain elongation gauge, 4,092,781, Cl. 33-143.003. Blalock, Donald Reeford; and Carrington, Julian Lesco, III, to A AMP
Incorportud. M. Method for making electrical connectors. 4,093,480,
Cl. 156-54.000.

Blanco. Jorge .L.C Crnojevich, Ranko P.; and Simons. Courrney S., to
Amax Inc. Hydrometallurgical leaching and refining of nickel-copper Amax Inc. Hydrometalurgical leaching and refining of nickel-copper
concenrates, and electrowinning of copper. $4,093,526$, C1.
204104.000 .
apparatus. 4,022,923, Cl. $101-415.100$.
Bolotnou. Alexandr lidimion
Frantsenjuk,

 Massimo; De Zaiacomo, Tonino; and Bompanc, Gianfranco,
4.092,245, Cl. 73.28.000,
 Bonds, Kip M.. See and Bonds, Kip M., 4,093,770, Cl. 428-306.000.
Hetke. Adil;
Bonola, Giusepe. See
 Maria Jose, $4,093,648, \mathrm{Cl} .260-519.000$.

Borowski, Edward: See-
Falkwski,
Elibieta;
Conard;

 Borrajo, Orlando: See-
Verdesca, Anthony Fredrick; and Borrajo, Orlando, 4,093,279, cl.
$285-23.000$.
 Bost Pierre-EEienne, and Costantini, Michel, to Rhone - Poulenc Industries. Epoxidation of olefinic compounds. 4,093,636, Cl. 260-348.290.
 Bouchey-George. J. Seee-
Dashner. Fichard F.; and Bouchey, George J., 4,092,812, Cl.
$52-309$. 3 .
 outant, Jean-Jacquess to Regie Nationale Des Usines Renault, Suff.
ing-bo seal particularly for rotating shafis. $4,093,244$, Cl. 277-153.000.
Boutle, David Leonard: See-
MCGrail, Patrick: Terence

McGrail, Patarick Terencef Smith, Stephen Richard; Bannister,
Fredicick Roberr; and Boutle, David Leonard, 4,093,488, Cl.
$96-87.00$. Bouwnegt, Albert: See-
Bloem, Jan; and Bouwknegt, Albert, 4,093,889, Cl. $313-229.000$.
Boyer, Ambroise D . A pparatus for carying glass panels. $4,093,251$, 28046.000.
Bozeman, Ho

Bozeman, Hoyt W., Jr.: See-
Linsey. Keith E.: and Bozeman, Hoyt W., Jr., 4,093,183, C
254.134.3PA. 2S4.134.3PA.
Bratz, Paul O.: Sec -

Bracke, Willimem J. J. I., to to Labofina S.A. Polyphenylene resins. 4,093,790,
Cl. .526-144.000.
Bradshaw, Janice
See-

Walter, Lothar; Brandenstein, Manfred; and Burkk, Erich,
4.033.033. Cl. 1929.98 .000. of use of cementitious materials and sonic or energy-carrying wav
within subsurface formations. 4,093,028, C1. $166-281.000$. Brandon, Orpha B.: See
Brandon, Clarence
W. $4,093,028, ~ C 1.166-281.000 . ~$

Company.
Bran.eor Enter

graphic film. 4,093,532, Cl. 204271.000 .
 Sergei Borisovich; and Seraya, Vera Ivanovna. Copolymeriztion
product of Nvinylmethylpyazole and divini cross-inking agent

Bray. Thomas. Gauge for indicating available water supply. 4,092,948,
C. 116-114.OPV.
Bremer, Noolel. J.; White, James F;; and Milberger, Ernest C., to Standard
Oin Company The. Preparation or madericanh and
bon hydrocarbons. $4,093,635, \mathrm{Cl}$ 260-346.750.
Breneman, Inc.: See-
Erpenbeck, Paul J.,
$4,092,775$, Cl. $30-95.000$.

Company. The. 4 Hydra
4,003,85S. Cl. 544116.00 .
Bock, Andrew J.: See-

J., $4,093,782$, C1. 428.644 .000 ., Jons

vibration sensor. 4.0.03,885, Cl. $310-331.000$.
Schure, Ralph M.;- Kooi, John H.; and Brown, John M., 4,093,675,
Cl. $260-835.000$,
 ann, Thomas Henry; Durant, Graham John; Emmett, John Colin,
and Gellin, Charon Robin, to Smith Kline \& French Laboratorie
Limited Limited. Procearon Robin, to Smith h Kine \& French Laboratories
cyanogunidines and thiourcas $\mathbf{\text { ann }}$ heiterocyclicalkylthioalkyl-N.
 apparatus $4,093,500$, Cl. $156-510.000$.
Browning. . Veron D.,. to Dayco Corporation. Method of making a
rubber arricle having a permanent marking hercin. $4,093,694$, Cl. ${ }^{2644246.000 \text {. }}$, W. tion (Steam Turbine Divisiogn). Method for making a diaphragm with

 ubela, Nikolai Stepanovich: See-
Balyo. Goorgy
$4.033,131$, Cl. 24emenovich; and Bubela, Nikolai Stepanovich,

Buck Sove Marketing, Corp.: See-
Bucker, Carroi E., 12092,976, Cl. $126-63.000$.

Buckner, Carrol E., to Buck Stove Marketing, Corp. Air conditioner.
$4,092,776$, C. 126.6 .3000

Kugaul, Andree: See- Ka, Cl. $528-481.000$.
4.093,640, Cl. 260
K29.900. Kalopissis, Gregoire; Bugaut, Andrec; and Estradier, Francoise, 4,093,806, Cl. 544-165.000.

Burchers, Samuel A. Modular ball rebound apparatuss. $4,093,218, \mathrm{Cl}$.

Burdetre, Stephen D.: See-
Hakes Gary A.; Shook, Norma G.; Cackley, George W.; Burdette
 Brewster, Donald H. Hay baler. 4092 , 818425.000 .
Brian, William Stanley. Fulel-operated device. $4,093,405, \mathrm{Cl}$.
417.343 .000 . Briar, Thomas J.; and Reses, Walter J., to PPG Industries, Inc. Expand-
able collet. $4,093,137$, Cl. 2424640400
 Briston. Rodney J.; and Canning, Rodger G., to Reed International
Limited. Sheet materials. $4,003,686$, CI. 26445.500 British Hydromechanics Research Association. The: See-
Fisher, Martin John, 4,092,889, C1. 83-177.000.

Burgers. Geeritit.t. I International Business Machines Corporation. Single
revolution mechanism $4,093,056$, Cl. $192-127.000$.
 plymeriation process Burig, Rober G.a. and McNally, Paul F., to Contraves Geerr Corpora-
tion. Multi-axis motion generator utilizing feedforward control.
$4,093,904$, Cl $318-616.000$ 4,003,904, Cl. 318-616.000.

methyl---nitrophenyl)sulfonyl)-2-propenenitrile. 4,0093,644, Cl. 260-Canfield, David L., to Park Rubber Company. Railroad crossing struc-
ture. $4,093,120, \mathrm{Cl}$. 238 -8.000.

Hentidity

Butakoi, Jury Alexandrovich: See-
Elisev, Stanislav Borisovich; Bu
trievsky, Vladimir Sergevich; Golubeva, Albibina Andreevna

 Nexinn

cuntex

 Canadian Patens and Development Limited: See-
Kinnner. Witold; and Della Torre, Edward, 4,094,003, Cl.
365-7.000.

Cantor: Abraham: See- w.; and Cantor, Abraham, 4,093,744, Cl.
Winicon, Muray
424-33.000. 424.433.000.
Overon B.; and Milliken, J. Richard, to Edgewater Steel Com-

Inc ins

 Carr, Merle E.,. to United States of America, Agriculture. Xanthated
starch amine paper additives. 4,093,510, C1. 162.175 .000
 bearing. 4,093,324, Cl. 208.187 .100.

Carter, Christopher Frederick; Blunt, Roy Trevor; Lewis, James Cyril
Alexander;
Inverst Ganner, Geoffrey Michael,
Inesey
 Carter, John W., and K Kutsky, L. John, to Sears Manuracturing Com-
pany. Leaf sping suspension. 4,093, 197 , Cl. 267-131.000.
pany. Lear spring suspension. 4,093,197, Cl. 267-131.000.
Casad, Burton M.: See-
Oe

astrol Limited: See-
yon, Gerald John Joseph; Askew, Herbent Frank; and Harring.
Corin John, $4.033,544, \mathrm{Cl}$. 252.78 .300 .

 $\substack{\text { Sabiger. } \\ \text { H2 } \\ 214.64 .000 \text {. Cyril }}$
.;

 4,093,157, Cl. 24453.00 R .
Celanese Corporation: See-
Gordon, Mararion: See- Hannon, Martin J.; and George, Henry H., Jr.,
4.,.59,571, Cli. $260-2.50 \mathrm{~B}$.
Soehngen, John W.; and Gerken, Albert, 4,093,404, Cl.
417.317.000.
Celanese Polymer
Celanese Polymer Specialties Company: See-
Aderson Terry
Lestos.,
Ceskoslovanskat akademic ved. See -
Kalal. Jor.oslav; Zurkova, Eva; and Svec, Frantisce, 4,093,602, Cl.
260-73.00R.
 $4,092,841, \mathrm{Cl} .72 .320 .000$. Champenois, Michel Maurice Luce, to Produits Chimiques Uyine
Kuhmmann. Copolymers of anchraquinone dyes and acrylamide.
$4,033,793$, Cl. $526-221.000$.

Geary,
4.093,75seph, Cl $427-21.000$.

 Chang, Wen-Hsuan; Dowbenko, Rostyslaw; Hartman, Marvis E.; and Clare, Norval D.; and Lemke, Charles H., to Du Pont de Nemours, E.

Chen, Agoustin T.; and Onder. Kemal B., to Upiohn Company. The.
Copolymers of polyparabanic acids and polyamides. 4,093,604, Cl.
260.77.5CH. T., to Rockwell International Corporation. Magnetic

Chen, Thomas T., to Rockwell International Corporation. Magnetic C
Cubble datic transfer switch. 4,094,005, Cl. $365-16000$.
Cheng, Paul J.: See
Cheng, Paul J. See -
Kraus Gerd;
423 Stacy, Carl J.; and Cheng, Paul J., 4,003,

ransenjuk, Ivan Vasilievich, Belyansky, Andrei Dmitrievich;
Bobylev, Leonid
Beomenowichic Kareny, Zinovy Petrovich;
Alexandrov, Nikolai Nikiticievich; Kulikov, Vosily PVanovich;

 Cherry, Carl J James, , Clo Combustion
ries. $4,093,470, \mathrm{Cl}$. $106-56.000$.
Kit
Kerr. George T.; And Chester, Arthur W., 4,093,560, Cl. 252 -

Metal Complexes of nitrogen compounds. 4,0
CCicago Dryer Company; ene
Kober, Kasimir, $4,093,205$, Cl. 270.66 .000 .

Mrischiness Corporation. Method of winding a magnetic deflection

processing system for appearrance measurements providing fost and
accurate
astandardization

Rump | Bjijorn |
| :--- |
| R.2. Sigurd; and Dereux, Philippe Jean, 4, 4,093,416, Cl . |

Hari, Stefan; ind Roueche, Armand, 4,093,613, Cl. 260-154.000.

ZWahten, Gunther; Umonst, Gerhard; and Leely, Andreas,
$4,093,584$, Cl. 260.0000 .
Cincinnati Milacron Inc.: Seee.
Grove, George Luther, 4,092,807, Cl. 51-168.000.

Clavin, Edward A. A., to Mid, Al Precline Equisment Co. Traveling
support apparatus. $4,092,928$, C. 10419.000 .

4,092,739, Cl. 3.1 .1 .000 .
ews, Devid George, and Swecting, David, io Elliot Brothers (Lon-
don) Limited. Aipplane instrument with throtlec control selectively
regulated by

oca-Cola Company, The: See-
Mictell, Canles Ronald; and Sedem, Jason K., 4,093,066, Cl
198-861.000.
 45.00A.
Sfen, Did mid Lewellyn.

 242.56. R.90. c .

 Coker, Charles Milton; and Coker, Clif James, to Paramount Health
Equipent Corp. Dual function exercise machine. 4,003,214, CT. Eequipment Corp. Dual
272 I 11.000 .
Coker, Cliff James: See-
Colker, Charles Milton; and Coker, Cliff James, 4,093,214, C
272:118.000.

Research Orgenization. Curtuin ooating method and apparatus and
che manumature of ppertbard $4,033,016$, C1. 162 -124.000.
Colgate-Palmolive Company: See-
Steltenkamp, Robert John, 4.093,565, Cl. 252-522.000.

Collier, Do onald W.; Hoppesch, Josepp, P. P., and Mamo, Anthony C.
Brath
coling

colom beini, Bruno, to Industrie Pirellit S.p.A. Appartuous for removing a
tire from a building drum of a tire building machine. $4,093,49$, Cl. tire from a
156-39.400.
Dior Custom Compounding, Inc. See-
Danko, Edward M., 4,093,73, Cl. 428-365.000.
Schirmann, Jean Pierre; Combroux. Jean; and Delavarenne, Serge
Yvon, $, 003,566$, C1. 260.566 .00 B .
Combustion Engineering, Inc.: See-
Cherry, Carl
Sames
4,039,470, Cl. $106-56.000$.
mbustion Unlimited Incorporated: See-- 60.000 .
Strait, John F., III, 4,092,908, $1.98-60.000$.
Sirait Nationale per l'Energia Nucleare - Cnen: See-
Prodi, Vithoio
 4,0022.84, C. 73.28 .000 .
Commercial Resins Company: See-
Hatr, Robert., 4.0.92.90, , $118-8.000$,
Barraud Andre; Gras, Roger; and Vandevyver, Michel, 4,093,757,
C. 427-44.00.

Henein, Kamal Labib; and Goursky, Vsevolod, 4,093,876, Cl
$307-2654.000$.

 4,093,418, C1. 8. 142.000.
Cond, Frederic George to Ibsock Buiding Products Limited. Pro-
duction of surfacing unise $4.093,685$, C. 2648.000 .

Condon, Michacl E: See-
Hauck. Frecteric
P. Condon, Michace E.; and Fox, Rita T., Connor, Peifer

Connors. Charles W.. See-
Reven, Frederick V.; and Connors, Charles \mathbf{W}. ., $4,093,778$, Cl . Constin, Andre. 10 Industries et Techniques d'Ameublement. Mold
locking device. $4,093,776$, C1. $249-167,000$ locking, Advire, to Industries et Techniques
Ion, 176 , Cl. 249-167.000.
Conti, Vincenzo: See-
Pitcininin, Circlo; and Conti, Vincenzo, 4,093,541, Cl. 210-40.000
Continenul Oil Company: Sec-
Continenual Oil Company: See-
Oerle, Donald H:; Vennett, Richard M.; Casad, Burton M.; and

antraves Goerr Corporation: See-
Burig, Roberc G.i; and McNally P., 4,093,904, Cl. 318-616.000.
 Janice, to Glaxo Laboratories Limited. 7 B-[2-Etherinied oximino-2-
(thienyl- furyl- or pyridylectamido)] cephalosporins. $4,093,803$, \mathbf{l}. 54427.000.
Cooper indus

 Cope, Geoffrey Wilton, to Dresser Industries, Inc. Rotary coupler.
4.093.079, Ci. 213.62 .00 A .
 bustion engines
313.140.000.

Corning Glass Works: Seel
Boitel. Marius
Charles, and Renault, Serge Andre Maurice, Senford, Leon M.: and Wu, Che-Kuang, 4,093,469, Cl. 106-53.000.

 Deann. 123.000 :
Costantini, Michel:
 260-348.290.
Coughenour, Donald Jay; and Herr, John Addison, to Singer Company,
The Sewing machine with programmable memory. $4,092,938$, Ci.
 Method and apparatus for manufacturin
molten metal $4,093,43$, C.
C.
.
Coval, Myer Louis Meihod of producing intravenously injectable
gamma gobulin and a gamma goubin suitable for carrying out the
method. 4,033,606, Cl. 260-112.00B.

 Creusot-Lire: See-

 Crown Cork \& Seal Company, Inc.: See-
Balordi, Romano, $4,092,49$, C. $118-6.000$.

Cruthers. Larry R. See-
Haumwitr Rudiger D.; and Cruthers, Larry R., 4,003,732, Cl.
424-273.00R. Crystal Systems. Inc.: See- Schmid, Frederick 4,092,972, Cl. $125-16.100$.

hydrogen deterioration in a bipolar electrolyzer. 4,003,525, Cl
20498.000 .
Cuningham, Patrick J., to Dyne Corporation. Precision drive mecha-
nism for converting fred recipocating motion to adjustable recipro-
cating motion nism for converting fixed reciprocating motion to adjustable recipro
cating motion $4.092,87$, Cl
arley

 Currite, Robern Me, 10 Ford Motor Company.
nated windshelds. $4,093,438$, Cl. $65-62.000$.
Cutler.-Hammer, Inc.: See-
Kanomski, Thoms A.; and Shawaluk, Michael W., 4,093,850, Cl.
235-92.OTF. Cybuskk, Baratara: See-
Falkowski, Leonard

M27-299.000 making a liquid heal exchanger coaking. 4,03, 5, ,

Oihatsu Kogot Kasubhiki Saisha: See-
Ono, Junichi; Shimoura, Akira; and

Cehr, Josef, 4,093,233, Cl. 280.-799.000.
Meyer, Emst; Trube, Hans; and Grimm, Hermann, 4,092,907, Cl.
98,-40.00A.

 Damen, Theodoor Charlowis; Gornik, Erich; Nguyen, Van- Tran; and
Patel, Chandra Kumar Nranthi, to Beli Telephone LLeoratories.
Incorporated. Infrared

Darex Corporation: See-
Bernard, Arhhur Alexander; and Bernard, Richard Allen, 4,003,247,
rat

aliker. John A.; and Dimitri, Dimitri S., 4,093,847, Cl.
2l9.50.00.

 Davis John Brian; Skilling, Derek; and Wrigley, Nigel Edwin, to
Imperial Chemiaal Industies Limited. Cooling thermoplastics tubes.
4,093,412. Cl 425-71.000.

tin-lead alloy plating baths. 4,093,466, C1. 106-1.220.
Davison, Thom Mas M. See
Brown. Lee Roy; and Davison, Thomas M., 4,093,95s, CI. Dayco 354.3000 .

Duckett, John C.; and Gaworowski, Andrew J., 4,093,764, Cl. Diamond Shamrock Corporation: See-
4abe-113.200.

 DeCarlo, Joseph P., 10 Foxboro Company, The. Oscillating wing Howmeter 4,092,859, Cl. 73 -144.00B.
Deck, Charles F.: See-

Weck. Charles F. See-
Weiper, Fugene A.; and Deck, Charles F., 4,093,676, Cl. 260 .
857.0PG.
Decker, Robert Anthony: See-
Belias, Fredenic Edward; and Decker, Robert Anthony, 4,092,809,
Cl. $52-63.000$.
D. to Sperry Rand Corporation. Unloading tube
arrangement fres for combine harvester grain tank. 4,093,087, Cl.

Cere \& Company: See-
Gebauur. Themas
Cl. 64.27 .0 NM .
Cl. 64 . 27.0 NM .
Mocre. James Walter; and Braun, Stephen Alphonse, $4,093,039, \mathrm{Cl}$.
181-22.000.

Moore. James Walter; and Braun, Stephen Alphonse,
$181-122.900$.
Schreiber. Larry Donald, 4,002,904, Cl. $91-39.000$.

printing process for hydrophilic, synthetic fibre material or mixtures
of hydrophilic and synthetic fibre material. $4,4993,11$, C1. 8 -2.50A.

Siegrfied; Dether,
Cl. $588-85.000$.
De Jong, Eduard: See-
Raabe, Frit; and De Jong, Eduard, 4,003,492, Cl. 156-331.000.

DeLapp, Darwin Fiske; Gocbel, James Christopher; and Bunkowski,
Kenneth Dana, to Formica Corporation. Low presurue melamin
resins
$260-99.40$ R.

resins connain.
$260-29.40 \mathrm{R}$.

Corporation. Fiber bundle encapsulaing apparatus. 4,092,769, Cl 29-23.000. Grst; Guenther, Ernst; Hoerauf, Werner, Kissel, Ernst;
Linge, Hermann; Neumann, Eckart; and Schaefer, Eberhard, to

 269-296.000.
illengerg. . Electrolytic chromic acid bath for chrome plating.

Mills, Raymond L, to General Electric Company, Low-cemperature
sow-coking microwave oven. 4,093,841, C1. 219-10.55E.
imitri, Dimitri S.: Sea-
 Dimyan, Masid Yousri, to Burroughs Corporation. Gapless magnetic
bubble

bubile propagation circuit 4,044,006, C1. $365 \cdot 39.000$
Dionne, Joseph Guy Gilles: See-
Olive Grahm; Lake, Ryyston Ernest Walter, and Dionne, Joseph
Guy Gilles, 4.03, 82, , Cl. $250-213.00 \mathrm{~A}$.

 18.0PW

Dmitrievsky, Vladimir Sergeevich: See-
Elisec, Staislav Borisoovich; ;uskoi, Jury Alexandrovich; Dmi-
lowsing
trievsky, Vladimir Serrgevich: Gololubeva, Allinan Andrevevna
Ozerov, Vladimir Mikhailovich; Volkov, Valentin Stepanovich

Dobberphul, Daniel W. See-,
Wartus. DOnald L.; and Dobberphul, Daniel W., 4,093,909, Cl .
322-22.00R.
elavarenne, Serge Yvon: See-
Schimann, Jean Pierrec Cembroux, Jean; and Delavarenne, Serge
Yvon, $4,03,656$, Cli. $260-666.00 \mathrm{~B}$.
Yvon, 4,093,656, Cl. $260-566.00 \mathrm{~B}$.
Della Torre, Edward. See-
Kinsner, Witold; and Della Torre, Edward, 4,094,003, Cl
de Mast, Johannes Augustinus Catharinus Maria: See-

Dennison Manufacturing, Company: See- Joyce, Arhur W., 4,02,765, Ci.
Denny, Dann W., to Generaral Electric Company. Circuit and method
for controling speed of an alternating current motor. 4,003,899, Cl.
for controlling speed of an alternating current motor. 4,093,899, Cl.
318.227.00.
Deraedt. Roger: See-
Allais, Andree; Meier, Jean
424250.000 .
Dereux, Philippe Jean: See-
Rump, Borm Sigurd; and Dereux, Philippe Jean, 4,093,416, Cl.
8.2 .
DeSoto, Inc.. See-
Wood. . Donald C.
424-38.000. and McLaughin, Robert L., 4,093,745, C
Detwiler Corporation: See-
Detwiler, John H., $4,003,012$, Cl. $152-226.000$.
Detwier, John .., 4, Detwier Corporation. Skid preventive tire

Deutsche Gold- und Silber-Schecideanstalt vormals Roessier: See
Fahnenstich, Rudolf; Heese, Joachim; and Lewis, Dyfed, $4,093,740$, Cl. 424.39 .000 .
Devalois, Serge: See-

 troless deposition of metals on zirconium materials. 4,093,756, Cl .
Donahue. Ca.rroll F. Method for forming a clevis. $4,092,773$, Cl .
29.512.000. 20novan Construction Company: See-
Banber, Thomas wi
425.59.000. Doorakian, George A; and Duquette, Lawrence G., to Dow Chemical
Company, The. Process for pres

 magene assembly with poie face paralielism adjustment. $4,093,912, \mathrm{Cl}$.
324.5MA. 30uga, Thomas P., to Upjohn Company, The.
spring and matress. 4,092,752, Cl. $5-345.00 \mathrm{R}$.
Chemical Company. The: See- Cher ${ }^{2}$ Beaver, Richard N.; and Becker, Charles W., 4,093,533, Cl.
2042966.000.
 Burk, George A.; Goralski, Christian T.; and Mixan, Craig E.,
$\mathbf{4 , 0 9 3 , 6 4 4 , \mathrm { Cl } . 2 6 0 - 4 6 5 . 0 0 \mathrm { F }}$.
 Doorakian, George A.; and Duquette, Lawrence G., 4,093,650, Cl
$260-539.00 \mathrm{~A}$. Ham, Geoorge E;; and Krause, Ruben L., 4,093,615, Cl. $260-$ Ham, Geocrge E.; and Krause, Ruben L., 4,093,615, Cl. $260-$
Har9ios, Robert F.; and Wagener, Earl H., 4,093,663, Cl. 260 -
607.00B.

Dreace Indsustires. Inc. See-

 ${ }^{2}$

Dunn R.9.0.2000 Cete. Pool able construction and is method of construc.

Durene. . Peater, it Unitus Sutie of America, Amy Split.phese cooler

Kern, Georgs, 4.022,814, C1. 52-730.000.

E. Allman and Company Limite
E. Allman and Company Limited: See-
Allman. Denis John; and Taylor, Lionel Ivor Alfred, 4,093,107, Cl.
222 .
E. R. Squibb 222.200 Sons. Inc. See-

Eastman Kodak Company: See-
Alland, Henry Wolf; Cowan, Stanley Wray; and Olivares, Ismael

Masurekar, Prakash S.; and Goodhue, Charles T., 4,093,517, C1.
195-.66.0R.
Schmitz Alfons F.; and Dixon, Douglas L., 4,093,134, C1. 242-
18.0.OW, Richard D.; and Iversen, John E., 4,093,493, Cl.
Wech.-388.000.
 Eaton, Manford Lesclie. Resilient material which is electrically conduc-
tive under presure. $4,093,563$, Cl. $252-513.000$.

Ebauches SA: SeeEbel. Froz, H.:. H ;ee and Beguin, Jean-Luc, 4,

 Eberline. Howard C.; and Moon, Jack LL. to Kerr-McGee Corporation
Logging method and apparatus. $4,093,936$, C1. 340-18.8CM.

 Eckold, Gerd.-Jurgen; and Masss, Hans, to Paweck AG. Devicc for fanging the edges of shect sections. 4,092,840, Cl. 72.312 .000 .
Edgertion, Gene A. to United Sce

 Edmisten. John H. Method for identifying the load characteristics of a
centerfire fircearm carridge. 4,092,924, Cl. 101-126.000.

Eggern, Frank, to Schlegel (UK) Limited. Edge protector trim strip.
$4,092,813, \mathrm{C}$.
$2 .-397.000$

Tsustui, Koichi; and Eguchie, Yoshio, 4,093,674, Cl. $260-830.00$ P. Eheim, Franz: See-
Hofer, Gerald; Eheim, Franz; and Kopse, Odon, 4.092.964, C 123.139.0AT.
Ehrenteich Photo-ppical. Industries, Inc: See-
Weiner, Manfred, 4,093,379, C1. $355-77.000$.
 425-110.000.
Eichorn, Roger
eneceased; by Lincoln First Bank of Rochester,
 Eisai Co., Lid. See-
Akatsuka, Shino
Shine

Compton. John William; and Eisenstein, Stephen Ellis, 4,003,418,
C1. $8-142000$ Ekis, Robert W. See

Electric Power Rer Rearch Institute. Inc.: Sel.
Glenn. Robert
S., $4,033,399$, Cl. $4 \mid 6-95.000$.

 from ora conncenintates-4, Pe93,441, Cli. $75-3.000$. Knofel, Hartmut; and Ellendt, Gunther, 4,093,658, Cl. 260
570.000
 Elliot, Steven P., to Du Pont de Nemours, E. I. and Company. Process
for preparing polyesters from diphenols and aromatic dicarboxylic
 Sl-30 Co.00.
Elmpany, Limited: See
Kato, Masakathu, 4, 93,362, Cl. $352-27.000$.
Eltra Corporation: Ree
Miel
R3ame
R.

 tion, The. Paper coated with am
tions. $4,093,779$, C. $428-41.000$.
Brown, Thomas Heerry; Durant, Graham John; Emmett, John
Colin; and Ganellin, Charon Robin, 4,093,621, Cl. 260-294.80H.

 Epstein. Lawrence J. Apparatus for testing reflexes and/or
ing as a combination lack. 4,0),
221.00D.
Erb, Lee--
Dahler Michace M.; and Erb, Lester D., 4,093,75s, Cl. 427-299.000.

 Inc. Composite prosthetic polymeric devices. $4,003,361$, . .
351-16.000.

 tion devices and method for
7.3.113.0.00.
Escher Wysimited: Lee
 $100-174.000$.
Escuce, Jesse W. Sock winding apparatus. 4,093,143, Cl. $242-75.510$.

 Estes, Warl M., to A American Technology Corporation. Test sig
generating system method. $4,093,960$, Cl. $358-10.000$.

Kalopissisi, Gregoire; Bugzaut, Andrec; and Estradier, Francoise,

Eszenyl, Ervin: See
Mayer, GYorgy Gyori, Janos; Rikker, Mihaly; Banfai, Antal; and
Essenyl, Ervin, $4,003,689$, Cl. 26471.000 .

 Scher, Herber 1.; Lex, Joseph A.; and
Cl. $488-165.000$.
Vannice, M. Albert; and Garten, Robert L., 4,093,643, Cl. 260 Vanis. 4900 M . Toyoto Jidosha Kogyo K. K. Protective frame struc
zaki, Toshi, to Tor vehicle fuel tank. $4,093,254$, Cl. $280-783.000$.

 applying a
330.300
and
Frham, Alford Gailey: See-
Fan, YourLing; and Farnham, Alford Gailey, 4,093,600, Cl. Fan, You-Ling
$260-19000$

27e, Paul R. Window lock. 4,093,285, Cl. 292-251.000
 Feichtinger, Gerhard; and Wagner, Johann, 4,092,956,
123 ,
Hendrik J.J. See-
 enton, Alvin P, to Konler Co. Magnetic armature piece for rotary
solenoid 4,03931, , Cl. $335-272.000$.
erdinandi, Eckhardt: See-
Begli,
326.12R.
3.; Ferguson. Charles L. Safety device for welding torch. 4,093,191, Cl.
$266-18.000$
 anguson, Gerald D., to United Sates of America, Navy. Narrow
antle, narrow bandwidth optical receiver system. 4,093,384, Cl.
356-186.000. Ferguson, willinm C., to Cooper Indusstries, Inc. Cutting tool.

 Lutician. Mincromolecular materials suitable for forming antithrom.
bogenic prosthesis and arificioin organs and proceces for preparing

> ReFit Inc. SeeVerdecanc: Anthony Fredrick; and Borrajo, Orlando, 4,093,279, C1. Fields, Larry D: See-

Finger, Gunther: See-
Hausherg, Gerhard; Hegemann, Karl-Rudolf; Finger, Gunther;
Schafer, Hans; and Weiser, Helmut, 4,093,434, C1. $55-226.000$.

Firmenich. S.A. Seer P. 4,092,989, Cl. 131-17.00R.
Demole, Edouard
Fischer, Rudolf; and Frey, Rudolf, to Alber-F Frankenthal AG. Device
 isher, Martin John, to British Hydromechanics Research Association,
The. Sloted worktable. 4,02,889, C1. 83-177.000. isher, Michael H., to Merck \& Co.. Inc. Derivatives of antibiotic
sutssunce milbemycin and processes therefor. $4,093,629$ Cl
$260-326$.

 Ite, Wade L. and Myers, Richard L., to Extranuclear Laboratories
Inc. Detector for heavy ions following mass analysis. $4,093,855$, Cl . Fitrpatrick, John D.; and Smith, Gary L. to General Motors Corpora-
tion. Independent suspension system. 4,093,273, Cl. $280-696.000$. tifon. Independent suspension system. 4,093,273, C. 28069.000 .
Fleischer, Helmut: See-
Schneinele

 Fletcher, 6 , Orval K.
Fletchic, Donald K.: See-

Furutat Kenijit 10 Olympus Optical Company Limited. Coreless motor.

Forenade Fabilikverken: Sces-0.02, Cl. 192-88.008.

Forbort Compans, hie S. Sone

 reed paul S . See-

Freire Antumes Carlos Jorge: Se-

 Fridedich. Hellmut 10 vercinigte Fluytcennische Werke-Fovker

Furumini, Yasumse: Seo

 Gangi. Robern.i.to Joan Minurfecuring Corporation. Yan guide tubes

Cass Rubter, Bernoo and Gassner, Johann, 4,093,248, C1. 280-6.100.

Gazzani, ini.a.0.000: See

Products Inc. Method of applying Iock to a substrate. $4,003,733$, Cl.
427-21.000.
Gebauer, Thomas Edward; and McMullen, Larry Gene, to Deere \&
Company. Tossionali isolator coupling. $4,092,837$, C1. 6427.0 NM .
Gebuider Buhler AG: Seeal
Company. Torsional isolator coupling. 4,092,837, Cl. 6427.0 NM .
Gebruder Buhler AG
Schllhon, Wea
425 Solitio. Schollhorn, Woligg
425 Sillo.000
Company: See
Bul Company: See-
Burrough.
100-88.000.

Bancuci, Eugene George; and Olander, Walter Karl $4,093,998$, Cl.

 Kelimen Amold Lloyd and Peterson, Thomans Eben, 4,033,861, C.

General Sigent A .ino

Gescellschaf fur Kernforschung m.b.H. See-
Hadi, Ali S Smeth Addel Mentiler Peter-Michacl; and Reinhardi

 Gillberg, Torsten. Method of liguid rreating celluluse fibres with elastic

The. Semi-a
244187.000 .

Gimbel. Jurgen: See-
Scholz Hansurgen; Gimbel, Jurgen; and Jahn, Walter, 4,093,274,
Cl. 280.747 .000 ,

Girchanismited: See- Giring Limiter.

Midorikawa, Y Oashio, 4,093,769, Cl. 428-295.000.
Glass Johk Pe. Ses
Hollander, EdWard F., Jr., 4,093,067, Cl. 206-219.00

Phillipos Gordon H.; and Bain, Brian M., 4,093.721, Cl.
424243.000 .

ski, Kenneth Dana, $4,093,579, \mathrm{Cl}$. $260-29.40$ R.

4..00A.
Golde. Chene:
Coun Simo
Golden Siten

Si42.42.000.
Voldrin Vituly Naumich: See-
Vasiliev, Jury Nikoliacich; Petrenko, Andrei Viktorovich; Bagrov,

Vild
Uninted Soward E . See-
Ser

Falkowski, Leonard, Bobrowski, Miroslaw; Buluk, Helend: Bylec, Seva, Allima; And Bervas Sce
Elisev, Sunislav Borisovich; Butskoi, Jury Alexandrovich; Dmi-

Goodhue Charles .. See-:
Masurckar, Prakesh S.; and Goodhue, Charles T., $4,003,517, \mathrm{Cl}$. Goodsell, Mellon Archie. Irrigation pipe laying and pick up vehicle. Goodelll, Melton Archie. Irrigation pipe layig and pier up velicic
Goodson, David B. See-
Schwab, Jomes J.;
$55-107.000$.
 Kline. Richard H., 4,093,591, Cl. 260-45.85H.

 Timur I Iaskovich, Telegin, Vasily Dmitrievich,
Vintaly Nauovich $4,093,578$, Cl. $260-28.00$.

 Gordon, Marvin; Hannon, Martin J.; and George, Henry H., Jr., to

powider coating compositions 4,093,577, C1. $260-2.500$.

Fujita, Meashiko; Gotoh, Toshihiko; and Nakamura, Tsutomu,
$4,093,897$, Cl. 218 , 138.000 .
Eoth Hens; Ritter, Josef; Ritter, Klaus; and Ritter, Gerhard, to EVG Entwick lungeru' Verwertungs Geesellschaf mbit. Apparatus for
detuching wires cut to length from a disordered bundle of wire detuching wires cut to leng
4.033.106 Cli. 2122.224 .000 .

Scherg. Gerhard; Hegemann, Karl-Rudolf; Finger, Gunther;
Scharr, Hansa and Weisert, Helmut, 4,033,434, Cl. 55-226.000.

Gowing. Ellis, to St. Francis Hospital. Inc. Cardiopulmonary resuscita-
tion Leaching aid 4,02,788, Cl. 35-17.000.
Gozzo. Franco: See,
 Grammotopoulos. Nick G. . to Groman Corporation. Plural chamber
sher metal gat burner
126-41.00R. Shect metal gas
120-4.1.0RR
Gras Roger: Se-

Barraudd. Andre: Gras, Roger; and Vandevyver, Michel, 4,093,757,
C. 427 , 43.00 O

Meyer, Ernst; Trube, Hans; and Grimm, Herman, $98,029,907, \mathrm{Cl}$.
Grio. Grinberg, Jan: Se-
Jacobson, Alexand
William P. JI.,

Grammatopoulos, Nick G., 4,002,975, Cl. 126.-1.00R.
Groom, Kennienh Dale, to Boing Compan, The. Instrument and panel
Crooing apparatus.

 Catalyst section control. 4,093,537, Cl. 208-164.000.
Gross Gerd. See.
Seybold, Rolf; and Gross, Gerd, 4, 093,019, Cl 164.52000

 R., Jr., 4,092,988, Cl. 131 -17.00R. Grundig E. M. V. Elektro-Mechanische Versuch
See $\begin{aligned} & \text { Fugrge, Manfred } \\ & \text { 4,093,930, Cl. } 334-86.000 \text {. }\end{aligned}$ (rundmann, Petter: See-

 424.321 .000 .
Gryglas
114218.8000 .

Dietrich, Errst; Genther, Ernst: Hoeraur, Werner; Kissel. Ernst;
Linge, Hermann;
L.
Guenther, Joachim, to Xerox Corporation Pre-sparated recirculating
document copyin system. $4,093,372$, Cli. 355 -50.000.

Gryytone Corporation: See-
Greavees, Jeffrey Chestenter: See-
Il. $91-36.000$.
 Greco, ${ }^{526-62.000} \mathrm{C}$. See-
Honig, Milton L. Greco. Carl C.; and Walsh, Edward N.,
Green Croose Corporation, The Green Croses Corporation, The: See-
Ing, Yoshiro ind Shign, Maseshi, 4,093,608, Cl. 260-112.008.
Green, Denniis Willim: SeeThweanes. Peter John; and Green, Dennis William, 4,093,818, Cl. Greenwell, Joseph Daniel; Hughes, Charles C ; and Kinney, Robert W.,
to R. A. Jones
$4,093,207$. Cl . $271-3.100$. Inc. Magazine and feeder for carton blanks.
 Gregg, Edmund; and Melocik, Grant C., to Towmotor Corporation.
Lood moment sensing system for lift trucks. $4,093,091, \mathrm{Cl}$.

Janice 4 , 4,093,8033, Cli. $544-27.000$.
Greier, Josef: See-
List, Hans Sketsce, Othmar, Greier, Josef; Obermayer, Berram;
Feichbinger, Gerhard; and WWgner, Johann, $4,092,956$, Cl. Feichtinger, Gerhard; and Wagner, Johann, 4,092,956, Cl.
12341.70,
ceig. Ian Robert Kennedy, to Pikington Brothers Limited. Glass fiber

 Grifin, J. Curtis; and Grifin, Clyde C., to Harrington Manufacturing
C. Metho and apparatus for seed tape planting. $4.022,936$, Cl.
II-1.1000.

 Guyer, Augus.
4,033 . 552 , Cl. $210-297.000$.

 Eszenyl, Ervin, 4,093,689, Cl. 26471.000.
Haag. Wemer O.: See
Rodewald, Paul G.; and Hasg, Werner O., 4,093,543, Cl.
210.59.000. Habeger, Chasles C., Jr., and Quy, Dennis A., to Phillips Petroleum
Company. Raster display position detection. $4,093,947, \mathrm{Cl}$ 340-
324.0AD.

 National Aeronautits and Space Adminis
ment system. $4,093,917, \mathrm{Cl} .324173 .000$.

 exhaust syatem uxing fither containing calcium cartonate costing.

 Hale, C. Marion. Net holding stanchion assembly. 4,093,224, Cl. 273-
9s.0.

 Hall, Dennis C., to Burroughs Corporation. Adjustable holder particu-

 Ham, George
The. Cyylic.
2manache.
Hemade. Mitruh

ing and applying appparatus. 4,092,918, Cl. 101-288.000.
Hammen, Ingers
Maurer, Finiz; Kiebel, Hans-Jochem; Hammann, Ingeborg; Behr

stick
$343-22$ sesembemly for radio
endy, Robert Maxwell

$126-270.0000$. See-
annon, Martin

 Charge coupled device with in
4.003,82, Cl. $37-221.000$ D.
Chatman, Marvis E. See-
Chand Won-Hsung Dowbenko, Rostysaw; Hartman, Marvis E:;
and
 thal AG. Folding device for roller routing printing preses. Hatmann, Luwidg Maxha, Paul F.; Gerking, Luder, Ruzck, Ivo; and
Schafer, Eberhard, to Lutravil Spinvvies Gmb $\%$ Co. Multiple-laySchafer, Eberhard, to Lutravil Spinnvlies GmbH \&
eren nowoven frobic. $4,093,763, \mathrm{Cl} .428-99.000$.
 Hashimoto, Takasahi: See-

 Inc. Sulfoxide derivavives of benzimidazoles. $4,093,732, \mathrm{Cl} .424$
27.30). Chacqunsol. Peeerere; Hauri, Jacquess; and Athenes, Claude, 4,003,827,
CI. 179 -15.0AT.

 Hauser, oscar G.i. Mannik, Kallis H., and Whited. Charles A.. to Xerox

 Cl. 3 K32.198.000.

Uyame Noborr; and Hara, Katsuaki, 4,093,032, Cl. 177-165.000.

Hargrove, Logen Eral, to to Bell Tellephone LLaboratories, Incorporated.
OCtical waenuide having peridic spatial perturbations. $4,093,343$,
Hari, Steffin, and Roueche, Armand, to Ciba-Geigy Corporation.
Triser Didments containing two barbituric acid coupling compo
 Harnicshfeger Corporation: See
Mortere, Ronald Wi; and Milloni, Lawrence A., 4,093,898, Cl Mortere Ronald W.; and Millonzi, Lawrence
3ieschel. Joohn E., 4, 003,184, Cl. 254.139.100.

Kaplity Mich Bhecl;- Hyyden, Daniel B.; and Smith, George W., Heccelisterg, Louis F.. to Phillips Pecroleum Company. Catalytic cracking and denydrocyclizing of alkenes using alkexine. crarth oxyides
promoted with mengenese oxide and/or rhenium oxide. $4,093,536$ Cl ${ }_{2}^{208-121.000 .}$
Ecckmaier, Joseph: See-
 Hedlund, Lee Vent. io RCA Corporation.
cocing apparatus. $4,093,999, \mathrm{Cl} .3884 .000$.
Heese, Joachim: See-
Hesese, Josachim: See-
Fahnenstich, Rudif; Heesese, Joachim; and Lewis, Dyfed, 4,003,740,
Cl. 424 , 19.000 . Heffer, Paul, to Stewart Ralph, a part intercst. Rotatable engine sup-
porting apparatus. $4,093,199$, ci. $269-61.000$.
 Hein, Pruil Willian: see- Weissert, Hetmu, 4,093,43, Cl. $35-226.000$.
 ein, Woifgngg and Grundmann, Peter, to Carl Schlecicher \& Schull.
Syyinge adapied to overcome a pressure resistance. 4,093,108, C . Eeine, Heinrich; Woditsch, Peter; Bohmann, Theodor, and Rade
 challogegenide pigments $4,093,777$, Cl. $428-403.000$
Heinemann Electric Company: See-

mincterial. 4.093,417, C1. 8-137.000.
inz, David M.
 eirbaut, Wilfred Addre, 1 AGFA-GEVAERT N.V. Process for
making polymeric film $4,093,695, \mathrm{Cl}$. 264289.000 . Hellerer, Joorge: See-
Choi, Nam Sok; and Heller, Jorge, 4,093,709, C1. 424-19.000.

JUNE 6, 1978
LIST OF PATENTEES

enz, Wolifgang; and Homeyer, Bernhard, 4,093,718, Cl.
424.200.00.
nda Giken Kogyo Kabushiki Kaisha: See-
Honda Giken Kogyo Kabushiki Kaisha: See-
Ishihara, Takeo Yamamoto, Hitoshi; and liga, Tsuyoshi, 4,093,264,
C1. 280-296.000 Yamamoto, Hitoshi; and Iiga, Tsuyoshi, 4,093,264, Hunley. ESEnjamin L. L.; and Packard, James C., to Hunley and Packard.

 Akira $4,093,527$, C1. 204 129.000

 molded
mong kille Process for laminating photographs and the like into
I56-245.00.
 Chemical Company. Production of perchloromethyl mercaptan
$4,003,61$. Cl. 206 -54....oot. Honkanen, Arto; and LLaiho, Erkk, to Pekemm OY. Method and appara--
tus for manufacturing an even laminated product by extrusion.
top

4iner, Donald 340 -27ppesch, Joseph P., and Mamo, An Horak., Anthony, to Burroughs Corporation. Disc ink ribbon. 4,093,061,
Cl. 40.
Horn, Hans. too. to TMC Corporation. Ski brake. 4,093,267, Cl. Cli.
Hom, Hans, to
280-605. To Horner, Terry. A. Static mixer and method of mixing fluids. 4,093,188,
Ci. 366 . 336.00 F ,
Horr, Andrew Frederick; and White, William Frederick, to Interna
 Horton, John P.; and LCW. Lend, Susan H.. to Newark Brush Company.
Cast power brush $4,092,788$, C1. $15-180.000$. Hosokawa, Teruo: See-
Nishio, Hiseshi; Hosokawa, Teruo; and Hioki, Ikuo, 4,0033,346, Cl .
siso Hotinger, Conrad; Ruppen, Brung; and Schaffrer, Kuur, to Werkzeug.

with reloadiding contuiner. 4,092,900, Cl. 89-33.00B.
Hrouda, Oldri. See
Dokoupil, Ludvik; Hrouda, Oldrich; and Zila, Josef, 4,092,757, CI. Hrovat, Milan; and Rachor, Lothar, to Hobeg Hochtemperaturreakto - Brennelement GmbH. Process for che prs. 4,093,682, C1. 2644.0 .500

 Hudelmaier, Gerhardi, and Rudolf, Anton, to Hudelmaier, Ingrid.
Apparatus for making ready-mixed concrete. 4,993,085, C1. 214 . Apparatus for making ready-mixd
Hudeomaier, Ingrid: See-
Hudelmaier, Gerhard; and Rudolf, Anton, 4,093,085, C1. 214 Hudelmaier, Gerhard; and Rudor, A.0.
Hudson, Frederick W., to Xerox Corporation. High speed tank devel
 Hupmerd, Charrles D., to t iniversity of Mississippi. Antimicrobial compo
sitions. $4,003,777$,ci. $424-19.500$.
 Hughes Aircraft Company: See-
Echardt
31sela; Evans, Norol T. . $4,003,949, \mathrm{Cl} .343-7.00 \mathrm{~A}$
Hatran .
221.00D.

 Hughes, Gary W. Highly versatile dock trailer. 4,092,75s, Cl. 9-1.200.
Hughes Mieroelectronics Limited: See-

Fowler, Alberron Lewiss, Walker, David Martin; Stevenson, Alastair
Kerhaw and Henderson, Alan Graham, 4,092,852, Cl.

Inc.: See-
ghes. Robert T.; and Matthews, R. Hurley, 4,093,178, C.
R. 104.000 .
Ciley and Packard: See-
Hunly,
52.00 J .enjamin $\mathrm{L} ;$ and Packard, James C ., $4,003,010, \mathrm{Cl} .150$ -

Hunt Norman, to A. Associacted Engincering Limited. Rotational speed

 Hurwiti, Marvin J ; ; and Avery, Noyes L.t. to Rohm and Hass Com. pany. Aminated crosslinked copolymers of bis(chloromethyl) scyrene
Which . mhibitit improved anion exchange properties. 4,093,567, C1. $260-2.000$ E.
2utheson,

Hutchinson, John W., to . American Sterilizer Company. Rubber dia-

avarone, Anthony; and Iavarone,
device., ,o90,300, C. 150 . 50 .
varone, Richard Anthony: See-
lavarone, Anthony; mid I laverone, Richard Anthony, 4,093,009, Cl.
ish

Ide, Yusakhid Seee Risaburo; Kaino, Keisuke: Ide, Yusaku; and Hiroce Take Yoshida, Risaburo; K Kiho, Keisuke; Ide, Yusaku; and Hirose, Take-
shi, $4,03,44$, , 1.44 .300 C . eaal Industries, Inc.: See-
Trethewey, Thomas E.; and Wells, Peter M., Jr., 4,092,780, Cl.
$33-1199.000$. Jemitsu Kosan Company Limited: See-
Hamanakn Michito; Sano, Toshio;
Hamanaka, Michito Sand Sano, Toshio; and Kumura, Noriharu,
4.093, S18, Cl. $195-142.000$.
O AB: See
Paabo,
U10.201.00; and Alberssen, Erik Horskijar,

igan Tsuyoshi. See-
Ishihata Takeo. Yamamoto, Hitoshi; and Iiga, Tsuyoshi, 4,003,264,
C1. 280-296.co.
1 karishi, , 2 oichi; Kiondo, Kanji; and Teshiba, Tolo, to Kawasaki Steel
Corporation. Taper journal bearing for rolls for use in rolling mills.

Keda, Akira: See-
Konno, Pyozo; Iede
Akira;
4,093,577, Cl. 260.22.0CB: Akira, Ugai, Toshimitsu; and Hirose, Akio,
Akiri, Akira3. Naite, Michihisa, Mashimo, Yukifumi; and Ikeda,
H28-35.000.

 bringining nuclear power phmelev, Anatoly Nikolaevich. Method of bringing nuclear power plan
4.037.54, Cli. $17-655.000$.
Miyake, Tetsuys; Takeda, Kunihiko; 1kede, Akihiko; and Imamura
Kazuo, 4,093,70, C1. $260-2.50 \mathrm{~B}$.

7

Hirdes, Rudiger Denti, 4,033,502, C. 150-624.000. $4,093,277, \mathrm{Cl}$. $282-24.00 \mathrm{R}$.

Fewler Albert Lewis; Walker, David Martin; Stevenson, Alastair
Fown, Alan in. K17.300.
 Henrick, Clive A.; and Stand, Gerardus B., to Zoecon Corporation.
Pryidine esters of cyclopropane-carboxylic acid. 4,093,622, Cl. 260 . Pyridine
295.00R.
Hencid inc electron, and Wild, Robert E. Eathe to Wild, Edward B. Brigh the waste watern of the waste liquors of sulfate cellulosese digestion and
Multi-2 2 is load cell. $4,092,854$, Cl. 73.133 .00 R . Clis $233-26.000$.

 Cl. 242 -18.0PW.
Hermandez. Gilbert Villanueva it National Semiconductor Corpor tion. Jorrew back removal tool. 4,092,879, C1. 81-6.000.
Cough Addison: Selel.
Cougr, Donald Jay: and Herr, Iohn Addison, 4,092,938, Cl. Hesecesk 112.188 .0 .00 E E,
Hectrk, Adolf; and Bonde Kip M 1 For Mor
 Lloy, to Intermationol Bushilles Christian; and Schroeder, Larry
procesor syster. $4,093,982$, C1. 364 anchines Corporation. MieroHeuer, D Dennis M. Seec
Eberharth Rober M. Me Me
Heuer, Di.eter: See- Cl. 140 - 123.600 . Theuber, Manfred; and Heuer, Dieter, 4,093,419, Cl. 21-102.00R.
Heuer. Peeter: Seed Staroste, Joachim; and
Heveai, Josect F P. Se
Christina Chistinnan. William R.; and Hevesi, Joseph F., 4,093,132, Cl.
Hewith Robert E., to Xerox Corporation. Cleaning system. 4,093,369,
C. 3 , Cl. $355-15.000$. Lickitod See
Davidson. Hught Johnson, Ke

 proved resonance signal gating circuit. 4, 4, $093,911, \mathrm{Cl}$. 324 .5AH. Holcroff
Hilzensauer. Volkme

JuNE 6, 1978

Jenoptit Jena G.m.b.H: See-
Feisst Wieland; Junghanns, Klaus; and Kunz, Alfred, 4,093,383, Cl.
356. 132.000. Jensen, Marvin E.: See
Jensen, Marvin E.: See-
Nolan, John
$4,093,277$, C. $1.282-24.4 .00$.

 Joan Manufacturing Corporraion: See-
Gengi, Robert J., 4,092,838, C1. $66-214.000$.

John E. Mitchell Compeny: See-
Bicakbum, Jomes
192 -116.sco.

22.379.000.
Johns. Dana Corportion. Belleville demper for torque
transmatrin D., to

Johnson, Peter Walton, to Olin Corporation. Noise and fouling reducer
for powder ctuated tool $4,093,110$, C1. $227-9.000$.

Joly, Michel: See-
Denninger Claude; Joly, Michel; and Tabeet, Jean-Noel, 4,093,440,
Cl. $71-65.000$.

C1. 568 -855.000.

fibrik. Cutting-out mactine for flat material. 4,002,
Jun-2727.3000, Klaus: See-
Feist Wieland; Junghanns, Klaus; and Kunz, Alfred, 4,093,383, Cl.

 Jurgens, Rexiner, and Otertag, Alfred, to Christensen, Inc. Apparatus
for
81.57 .30 kin . for mati.30.
Jurinke Rudol

Kabushiki Knishis Shikutani: She- Hitoshi, 4,093,240, C1. 277-15.000.

 Paise Aluminum \& Chemical Corporation: See-
 Kaiser, Martin L
3ass
Kalal, Juerosilav
Jual, Jarooslav: Zurkova, Evv, end Svec, Frontisek, to Ceakostovante.

 Giligan, William H.; and Kamlet, Mortimer J., 4,093,623, Cl.
260.299.000.

 Kanamaru, Hitooshi, to Pioneer Electronic Corporation. Optical reading
apperas with scanner light intensity control. 4,093,961, Cl.
358-128000, apperatus
3p8-12.000.
Kand
Kande Richard
anda, Richard, to United Suates of Americe, Army. Kilobar range
strese gauge , 4,092,856, C1. 73 -141.00A.

 to Hitechi, LL. Gr. Groved
4,093,320, Cl. 308 .9.000.
aneko, Yoshio: See.

Canner, Bermard: See-
Schilling. CortisL; Prokai, Bels; and Kanner, Bernard, 4,093,642,
Cl. S4t-106.000.
Schiling. Curtis L.; Prokai, Bela; and Kanner, Bermard, 4,093,642,
Cl. $54+1.10600$.

 pany. Liquid phase oxidataion of unsturrated aldehydes to ca
acids with a bismuth catays. $4,093,649, \mathrm{Cl} .260 .530 .00 \mathrm{~N}$.

 display. $4,003,355, \mathrm{Cl}, 350-334.000$.
tion. 4.029.96, ClCectric-18180.000.
Karaming Notor having planelary gear reducKaramian, Na.
3abs-51.00.
Karetny, Zino

 Jury Grigorievich, $4,093,023$, C1. 165
Gi-89.000.
Galey

 Inc. Rutemeter which calculates the reciprocal of the period.
$4,03,850, \mathrm{Cl} .235-92.0 \mathrm{TF}$. Karsh. IVving, to tellid \& Howell Company. Web transporting apparatus
and web carridges 4,093,151, C1. 242-i98.000.
 Inc. Diffrey Lion paterern amplitude analysis for use in fabric inspec-.
Iion. 4,093,866, C1. 250-663.000.
 Hokuriku Pharmaccutical Co., Ltd. Dizzabicycloalkane derivatives.
K.093,30, C. 200.320 .850.
Kato, Masakathu, to Elmo Company. Limited. Pinch roller moving devices for simultaneous image and sound recording cinecameras.
$4,093,362, \mathrm{Cl} .352-27.000$.

 istration; Goldascin, Howerd E.; Leiser, Daniel B.; and Katvilu
Victor W., $4,093,771, \mathrm{Cl}$. $428-312.000$.

 Kereny, Thomens R,

 Sterkenurg. Join
,

Kisick. Thiomese Pi. Ser Kis.

 Kert.Mocese Corpportion: Seme

 Killotatick, Don D

 Kohler co. see

Koloow, Thoodor, io United States of America, United Sluse: Lami.

and mechaical beam and structuras buir
Koutsty, Li. Jont ohn: See-

 Company,
Kraus Mox Man H .

 tuil

 Kulle Donild E, to Pifizer Inc. Quatemary salts as hypoglycemic

 Uumue Noribar: s,

Kwot., Seamuel W.T. Movabile door for a vehiclec. 4,093,301, Cl. 296 -

JuNE 6, 1978
LIST OF PATENTEE
Lindsey, Keith E.; and Bozeman, Hoyt W., Jr., to Lindsey Manufactur- Ludvik, George F. Device for curting yarm. 4,003,200, C1. 269-295.000.
ing Company. Unitary yrounding assembly for bundle conductor Ludwig Berrme GmbH \& Co
Leggeter, Brian Ermest: See-
Davidson, Hught Johnon, Keith Trevor; Leggeter, Brian Emest;
and Moore, Anthony John, 4,093,645, Cl. $260-505.00 \mathrm{C}$.
 Lehigh Valley Ind ustries, Inc.: See
Bronne.
Lehr, Josef, Tho
Do

 Leiser, Deniel B. $315-64.000$

Uninovy Abramovich: See-

Lemelson, Jerome H . Method for making composite articles. 4, $4,093,693$,
Cli.000. emike, Charices H
Clare, Norval

Leroy, Pierre Jean: See-
Sprunck. Emice and Leroy, Pierre Jean, 4,093.190, Cl. $266-47.000$
LeRoy, Rodncy LLes, to Noranda Mines Limited. Treatment of zind

Gurtier, Richard Warren; Handy, Robert Maxwell: Keeling, Mi
chael Chancey; and Lesk, Israel Amold, 4,092,977, Cl
126-270.000. $1126-270.000$.
Ever Lever Brothers Company: See-
Lamberti, Vincent; and Gutierrez, Eddie Nelson, 4,093,634, Cl
206.340 .740.

 Pulsed gas laser. 4,093,927, Cl. .331.94.4PE.
evine, Richard S . Solar energy collector. $4,092,978$, Cl. 126-270.000

 Dreyfuss Gerard; and Lewiner, Jacques, 4,003,884, Cl. 310.328.000.
Lewis, Dysel
Fahnenstich, Rudolf; Heese, Joachim; and Lewis, Dyfed, 4,093,740, Fahnenstich, Rudolf; Hecese, Joac
C. 24.39 .0 .001
Lewis, James Cyril Alexander: See
C.
Carter, Christopher Frederick; Blunt, Roy Trevor; Lewis, James
Cyrit Aleander; and Gamer, Geoffry Michace, 4,0033,534, Cl.
350.355.000. Lewis Nats. Natanial H. Bike traction attachment. 4,093,013, Cl.
152-240.000.

 ejecting from
312.333 .000 .

and pharmaceutically scceptable salis theroof. 4,093,716, Cl.

grated di. dergent exhaust nozze thrust reverser. 4,093 , 122, C. Cl.
$239-127.30$.
ing Company. Unitary grounding 2sembly
stringinn blocks. 4, 093,183, cl. 254 . 134.3 PA.

Linsey, Keth 134.3 PA E.;

Lindskog, Per Folke: See
Svenson, LLare-Erik; Tenzzelius, Jan Robert; and Lindskog, Per
Folke, $4,093,449$, Cl. 75-0.50R.
 Lindstrom, Gep
Catride Corpo
219-1 1.1 .0 EB .
Linge. Hereman: See-
Dietrich, Emst; Gu

 Lintong Edward Robert, to Luces Industring
devices. $4,022,965$, 123 . 140.0 FG .
devices, 4,092,965, Cl. 123-140.0FG.
Argentieri, Michacl A.; and Lionetti, James, 4,093,938, Cl. 340 -
Lipuk, G.00bor, and Schuler, Roland, to BBC Brown Boveri \& Com-
pany yimited Arangent for supporing winding lementis in the

cooled internal 12 combustio
$4.092,956$, C. 1231.740.

Lo, Young.Sek: See- Sas J., Shechan, John C.; and Lo, Young-Sek,
Commons. Thoman
4,093,625, Cl. $260-306.70 \mathrm{C}$.

Loctite Corportion: See- Wojciak, Stunley, 4,093,556, Cl. 252-316.000.

Loprest, Frank JJ; and Mcinerney. Eugene F., io GAF Corporation.
Positive working thermally sable photoresist composition, article

Kilopisisio Gregegirec Bugzaut, Andrec; and Estradier, Francoise,

Lucas Indostries Limited: See-
Lintots, Edward Robert, 4,092,965, Cl. 123-140.0FG.

 Industries
134. 10.000 .
ind. Noman:
 tudgren, Sii. Gunan; and Tornell, Lars Johan. Device for applica-.
tionof liguid product, such as painh, glue and the like $4,093,386, \mathrm{Cl}$.
iol-21 tion of hiquid
Lol. 19.000.
Lursen, Klaus:

Corli; Jager, Gerhard; and Lursen, Klaus, 4,093,447, Cl. unsen, Klaus: See
Metzer Carl;
71-111

 Alericia, A. Amy.
Cl
. 25 S.-52.000.

Magser Company: See- Shi
Kurohiji,
$4,022,942$, Chichi;
Shigyo. Genshichi; and Arai, Nobujiro,
ajeaty, $\mathbf{4}, \mathbf{2} 2,942$, Cl. 114222

Lekarev, Zinovy Abramovich, 4, (033,

aloney, John E., Jr,; and Zaccagni, Richard F., to ZMC, Inc. Combi-

methon of making sme. 4,092,808, C1. $52-11.000$.

Mannesmenn Atriengesecllschaf: See-
Miller, Hermann; and Kelijens, Heinz, 4,003,003, C1. 137-615.000.

Manning. $1,0 h 1$ I. Method and system utilizing steam turbine and heat
pump $4,033.868$, Cl. $290-2.000$.

Seli, Michacel: Amon, Ruthb, Maron, Ruth; and Hurvitr, Esther,

Marin. Linin. Screve divere having capped handie with rouble cap. Matrin Toilis. ALe-conodet io Mead Johnsen \& Company Mercap. ${ }^{\text {toaccy }}$ yhnididoben

 280-240.000.

Chisiti, Sonh S. J.j.j.jenkine s. Upron; end McConnell, George

 Nally. Paut FonM. Seo-

 MDT Instrumen Compay: Secese

Mclanditi. Cario: sec
 Cemolan Als sise

Crtcel,
deluminum complex Ser

Zafironi, Aleiendro: Michacti,
 Miler Donald F : Se-

Memotau ANS. See-
Memorex Coporortion: Sene
Withop
Anthur;

Meallulurii franceise des Poudre:Melifran: Ser
Metwwin Machinery Conporioion sese.

 Melere, Emmst Trube, Hans; and Grimm, Hermann, to Disimerer-Bnz

 Miiler. Donver W. Wind driven power mechanism. 4,093,398, Cl. Mizuno. Hitosti Ssee

Miler, Doughas P., to Applied Power Inc. Fuid operated hydrulic

 Miiler, Keith G. Doual path photogzaphic camera for use in motor

 Capa
 Mills: 1.8 .2727 .000 .1 . Mils, Gorge i.jit Norntrop Corporation. High renectivity laser

Mineoit Mining and Manifacturng Company: Sece-

Yaukucuni, Miscuo, 4,093 348, Cl. $350-2060.000$

 Incorported.
351.13.00.
Molchan, Andrew John, to Bell Telephone Laboratories, Incorporated.
Conaminat resistant female connector. 4,093,331, Cl. 339.39 .000 .
Contaminant resistant femel
Moldrim, Peter Andrew: See
Gildodsone
Gledstone, Devid John; and Moldram, Peter Andrew, 4,093,825,
Cl. 17 . 15.0 .
Molin. Neil
Molin, Neil Leroy, to Danfoss A/S. Spring brake asembly 4,093,038,
Cl $180-82.00$. Molins Deserond Walter, to Molins Limited. Ejection devices. Molins, Desmond Walter, to. Molins Limited. Apparatus for assembling
rood-like aste. Mot-like articlese 4, 4,033,496, Cl. 156-499.000.

 Corporation. Conitrol system for re
motor. $, 093,398$, C. 1 188.227.000.

 S42-422.000.
Moseheret Michel: See-
Fletcher, George Leland
Flictecher, GGoorge Leland; and Mosehauer, Michace, 4,003,463, Cl
ofMoskw.itr, Myron Alan. Horse racing game. 4,003,238, Cl.
273.277.000. 273.277 .000.
Ooser Industrict
Cond

Mosser Industries. Inc: See-
Motoronor, Peter Inc.: See- $4,093,245, \mathrm{Cl}$ 277-237.00R.

 426 Ms56.000.
Moon, Firma: See-
Mikstrand, Nils, 4,093,250, C1. 280-11.372.
Moon, Jeck L.: See-
Moon, Jeck L.: See-
Eberline, Howard C.; and Moon, Jack L., 4,093,936, Cl. $340-1$
18.OCM.
Moone. Romald. Hole forming machine. 4,092,892, Cl. 83-413.000.
Moordine

Moordikn, Arman: See-; and Mooradian, Arman, 4,092,952, Cl.
Wilitee Roneld N.;
$118-58.000$.
118-98.000. John: See
More, Anthony
Devideon, Hught Jobnon, Keith Trevor, Leggeter, Brian Emest;

 Morris Earl L;
Dishho mech
251-4.000.

 $2611-122.0000$. Sman
ueller, Siefriod: See
 Muller. Francois to Proetuits Chimiques Pechiney. SSint-Gobain. Si-
multaneous preparation of orgnic
opt

for controlling advance of underground armored conveyors.
$4.093,309, \mathrm{Cl} .2999-1.000$.
ullins
Wayne
L. Combination die and pallet. 4,093,174, Cl Mu9ford, George V., to Owens-illinois, Inc.

 Muntianoff, John Richard; and Lemport, Ivan Richard, to Caterpillar
Tractor Co. Push
C1. 277-24.000.

 evich, 4,093.514, Cl. $176-65.000$.
Murnhy John R. See-
Ramlow, G.

 Phillips Perroleum Company . Hydroalikylation using multi-metallic
zeolite catal zeolite cata yst. $4,003,671$, Cl. $260-668.00 \mathrm{R}$.
Muschaweck, Roman: See-
Bormand
Bormann, Dieter, Merkel, Wulf; and Muschaweck, Roman,
4,03, , 2 ,

 yasocolva, Galina Vladimirovas: See-
Brastlavskaya, Alla Luovna
 Mushy, Roman Yakovlevich, Myasoedowa, Galina Vladimi-
ronas Savin, Sergei Borisovich; and Seraya, Vera Ivanovna,
4.093,792, Cl. $226-200.000$. 4,093,792, C1. 526 20.2000

 V. TTechnische Maatschappij Marchand-Andriessen: See-
van
Staverk
Disk

Nagao, Masso, to Asahi Kasei Kogyo Kabushiki Kaisha. System for Nicol, Ronald, to Heinemann Electric Company. Circuit breaker hous
recording and reproducing bologram. 4,094,011, C1. 365-216.000.
ing, grip means and bus terminal. $4,093,838, \mathrm{Cl}, 200-303.000$.
recording and repper
Naito, MMachinisa Se
Ossuki, Akire; Osukki, Akira, Naito, Michhihso, M
Akir. $, 409,359, \mathrm{Cl} .428-35.000$.
Naito, Norinao: See-
Ogata, Mitsutoshi; and Naito, Norinao, 4,093,482, Cl. $156-210.000$
Naka, Hiromitsu. Apparatus for producing fexexible non-skid strip.

Nakajima, Takeshi
Komai, Tee Takeshi; Matsushima, Masaru; and Nakajima, Takeshi,
Nakamura, Toru: See Se
Nakamura, Torn: See-,
Kuroda, Nobuyuki, Nakamura, Toru; Shiraishi, Takeichi, Mats

Nashilannentes
yalknon
National
Nat

National Force Company: See
Ford Hugh;
$220-3.000$ Mraz, George J.; and Simier, Jean Noel, $4,003,100, ~ C l . ~$
220-3.000.
Nation Recerch Development Corporation: See-
Pearson, Leonard Charles $4,093,290$, Cl.
. 293 - 15.000 .

148.32.000. See
Navin, Robert For
Cords
Howard

Navin, Robert F.: See-
Cordst . Howard
4.033.
Nayyor, Thomas H. Self-watering apparatus for plants. 4,092,803, Cl.
NCR Corporporation: See-
NCR Corporation: See-
Lockword George C.; and Aneshansley, Nicholas E., 4,094,008,
Cl

heogi, Amar N. See
Neogi, Amar N. Ser
Erickson, Charles E.; and Noogi, Amar N., $4,093,361, \mathrm{Cl}$.
Nstio. Neumann, Eckart: See

Dietrich, Ensit, Guenther, Emsi; Hoerauf, Werner, Kissel, Erast;
Linge, Hermanni, Neumann, Eckart; and Schaefer, Eberhard,
4,092,784, Cl.
 Neumann, Joachim, wo Vollswegenwerk Aktiengesellischaf. Catalytic
device for the calalytic purification of exhaust geses. $4,093,423$, Cl.
23-288.0FC.
 polyhaloisopropyl-subsituted aryureas. 4,033, 142, C1.
New Archery Products Corp. See
Simo. Mirosilav Andrew, $4,093,230$, C1. 273-106.50B.

Nielsen, Rober A. See-
McInnis, Adrew M.; and Nielsen, Robert A., 4,092,921, Cl. 101.93 .210.
Niemann
Klaus:
See

Wull, Helmut and Niemann, Klaus, $4,092,931$, Cl. $104-247.000$.

Kinpei, 4,003,3,30, cl. $\mathbf{3 0 8 9 . 9 0 0 0 .}$
Bachnerporation: Seorge Lee and Bechner, Jerry G., 4,093,115, Cl. 229

Nippon Telegraph and Telephone Public Corporation: See-
Saito, Kyuak; and Ishino, Fukyya, 4,093,819, Cl. 178-2.00R.

Srano Kasushhi; Hookawa, Teroo, and Hioki, Ikuo, to Minolta Cam
162.0SF.
Vissan Motor Company Limited: See-
Kishide Kalsuhiro; and Oyamada, A

Newark, Brush Company: Se, Se and, Susan H., 4, 4092,788 , CI. 15 - 180.000 .
Horono, John P.; and Lew

Nickl, $4,033,878$, Cl.

LeRoy, Rodney Laske 4,093,780, Cl. 428-458.000.
olan, Joyhn L. Ne- Nordby, Harvey M.; and Jensen, Marvin E.,
4.093,27, Cl. $282-24.00 \mathrm{R}$.
Nordrchan, John: See
Shrof. Bansi. . Dekker, Frank; and Nordrehaug, John, 4,093, 149,
Cl. 242-198.000.
Norland corporation: See-
Smith, Steven R.;
364
R.; and Rose, Frederick A., 4.093,995, Cl.

Northe Elecerric Company: See
Das, Santanu, 4,093,985, Cl. $364-200.000$.

Novotny, John: Seee-
Wetadele, irgill ; and Novotny, John, 4,093,459, Cl. 96-1.0SD
 apparatus
aps.es.
Noxell Corpo

Blackburne. Owen Rodney; and Shapiro, Warren B., 4,093,711, Cl
$424-54.000$.

 USTEP Trenndusen Emtwicklungsund Patentverwertungsgesell Wenzel, Wermer, 4,093,436, cl.

Fichtitiger, Gerhard; and Wagner, Johann, 4,0022,956, Cl.
L23. $1.74+0$.

Greakovich, Charles D.; and O'Clair, Chester R., 4,093,687, Cl.
26665.000 .
Oda, Takeshi, Mori, Toshito and Yamaguchi, Takashi, of Kowa Com.
pany Lot. Novel aminocyclito sand process for production thereof.
4,093,797. Cl. $536-17.000$

Ohio Siate Uninersitit Mesearch houndation, The: See-
Ghilon. Richro D., $4,093,159$, Cl. 244-187.000.

Okamoto, Shoouske; Hijiksta, Akiko; Kikumoto, Ryoji; Tamao, Yo-
shikuno; Ohkubo, Kazuo; Tezuka, Tohruw; and Tonomura, Shinji, to

Oki Electric Industry Co., Ldd. See-

Olander, Walter Karl: See-
Banuchici Euugene George; and Olander, Walter Karl, 4,093,598, Cl.
260.47.0ET.

Oldham, Vern L. Seeed 4, 4,093,128, Cl. 241-82.500.
Barnes, J. Haywood,

Gilles to Canada. Her Majesty the Quecen in right of, as represented
by the Minister of National Defence. Laser addressed display.
4,003,852, CI. $250-213.00 \mathrm{~A}$.
liver, Robert John, to Zimm-Zamm Akciengesellechaff. Anchoring
device for captive ball and cord for a game. 4,093,225, Cl. 273-
95.0 AA
schewski, Aomin: See-
Errst Horst Manfred; Olschewski, Armin; Schurger, Reiner;
Weater Lothri Brandenstein, Manfred; and Burkl, Erich, Wast Horst Manfred; Olschewski, Armin; Schurger, Rainer;
4.093,033, Clhar, 192 Prandenstein, Manfred; and Burkl, Erich,

Tsuda, Hiroshi, 4,093,377, Cl. 355 -76.0000.
OMalley. Martin Bemard. to tohns-Maville Corporation. Skid pipe
insulation for stel mill reheating furnaces. 4,093,760, Cl. 428.36 .000 .
insulation for steel mill reheating furnaces. 4,093,760, Cl. 428 -36.0.000.
Oin. Mirokiay See- Masaya; Omi, Naoki; Nakano, Yuji; and Oshiba,

Onder, Kemal B. See -
Chen. Augustin T; and Onder, Kemal B., 4,093,604, Cl. $260-$
77. CCH.
O^{O} Neal, Charles D., III, to Varian Associares, Inc. Vacuum measuring

Ono, Junichi; Shimoura, Akira; and Tanako, Yukiyasu, to Daihatsu
Kogyo Kabushiki K Kaish. Gasoline engine fed with lean mixture
only $4,092,969$, C. 123 -19,
only 4,092,969, Cl. 123 -191.00s.
Ono Mashe engiko to Toko Shibaura Electric Co., Ltd. Data processing
system havin

Development Company. Pro
$4,093,650$, Cli
ono. Hideshi:
See-
Ono. Hideshi: See-
Kume, Kazuna; Watanazbe. Minoru; Oono, Hideshi; and Tamaru,
Munctaka, 4,092,820, Cl. $58-23.00$.

Ormsten, Roberr L. Method for forming a hot melt adhesive carridge.
$4,093,485$, Cl. $156-244.130$.
Oropalio. Rober A...t. American Brass \& Aluminum Foundry Co.,
Inc. Drain structure. $4,092,745$. C1 4.288 .000 .
Inc. Drain structure 4.092,744, CI. -4888.000.
Ziels, Gecertical A.; Porpation: See- Williams, Bernard L., 4,093,400, Cl.
$156-245.000$.
Osakeyhtio, A. Ahlstrom: See-
Hennicson, Kaj Olof, 4,093,508, Cl. $162-30.00 \mathrm{~K}$.

rated. Process for producing 2 ccyano N.substituted herterocyclic
compounds and products produced
chereby. $4,093,620$, Cl.

ration. Deceply emboseds shhect product and mothod
the production thereof 4,092,842, Cl. 72.379 .000 .
Oshise Tetsuro: See-

Crior, Ferdinand Ph. See-
Chro-299.000.
.

array, 4, Maine
Outboard Marin Corrooration: See-
McAulifin, Gerald

417-246.000.
vermyed Mould Company of Pennylvania: See-
Kindelan, James S., 4.092,883, Cl. $82-3.000$.

Go, Santos W., $4,093,593, \mathrm{Cl}$. 26045.85 P .
Mumford, Gogrge $\mathrm{V} ., 4,093,103, \mathrm{Cl}$ 220-283.000.
Smalley, Ned J.; and Whitney, Ralph H., 4,093,094, Cl .
21S-276.000.
Oyama Georre Clement. Sprouter for home use with automatic irriga-
tor. $4,092,802$ Cl $47.47-16.000$.

Ozerov, Vladimir Mikhailovich: See-
Elisev, Stanislav Boriovich; Buskoi, Jury Alexandrovich; Dmi-

P.C. Compteunn Limited: See -

Plumb, Georrge Arrhire Bushell, John Leo Thomas; and Radford,
Patrick LOuis, $4,033,871, \mathrm{Cl} .307-106.000$.

Pawifying
purin-201. 000 .
Pace
Pace, E. Alan: See- Thomas, Arthur E.; and Pace, E. Alan, 4,092,764, Cl. 19-107.000.
Packard, Jomes C.: See-; and Packard, James C.. 4,093,010, Cl. 150-
Hundey, Benjamin L.;
S2.00S. Inc. See-
Packer Plastics, Donald A.; Wison, Eddie A.; and Little, Eric A.,
Morris,

Piinter, Alen, $4,093,148$, Cl. $242-182.000$.
Palmer, Ale:

Mee | Mntevay, |
| :--- |
| $318-490000$ |

Paramount Health Equipment Corp. See-
Coker, Charles Milton; and Kling, Gary Marvin, 4,093,213, Cl.
Coker, Charles Milton; and Coker, Clif James, 4,093,214, Cl.
cokr, cha.ines.
Park Rubber Company: See-
Canfill, David L., $4,093,120, \mathrm{Cl} .238-8.000$.
Parke, Dovid \& Company: See- 1

427-259.000. . and Hardy, Edgar E., to Monsanto Research Corpora-
Parts. Leo Po Pidis solderable polyurethane data signal recording medium.
tion. Sis.

Corl 0 oration. DD-glitchablenon-metastable flip-flop circuit. 4,093,878,

Patchornik, Abraham: See- Sechomik, Abraham; and Altman, Janina,
Haviv, Fortuna; Patchom,
$4,093,802$, Cl. 54427.000 .

of a digitial circuit. 4,093,851, C1. 235-3022.200.
Paweck AG: See
Eckold, Gerd-Jurgen; and Masss, Hans, 4,092,840, Cl. 72-312.000.
Eccold, Gerd-Jurgen; and Mass, Hans, 4,002,840, Cl. $12-312.000$.
Pawlak Jan: See -
Followski, Leonard; Bobrowski, Mirosiaw; Buluk, Kelena; Bylec,

Peach, George Albert: See -
Harison, Reginam;
Cilliand Peach, George Albert, 4,093,484, Harrison, Reginald.

retion. Vehicle with safety device. 4,03,20,
Pekema OY. See
Honkanen, Arto; and Laiho, Erkki, 4,093,486, Cl. 156-244.190.

Pelensly, Joseph: See

epelin, Boris Alexeevich: See-
Soloko, losif Borisovich; Katysheva Ning Yledimirovns; Belyecv,

 Corporation. Optical. multi.
4.044.10. Ci. 365 -215. 000 .
Cepperi, Rudiger: See-.
Hill, Bernhard; Pepperl, Rudiger; and Kruger, Johann, 4,094,013,
Cl. $365-234.000$. P . pany. Method of measuring parameters of a crysta filter. 4,093,914,
Cl. 32 2456.000. Crimiques: See- pour le Developpement et la Vente de Specialites Chimiques: See- Cliude; Vial, Jean; and Dumont, Louis, 4,093,444, Cl.
Clpol.92.000.

Cerchonock, Carl David, to Smithkline Corporation. Tricyclic β-lac-
tams. 4,093,807, Cl. 544183.000 .

erregos, George; and Salsbury, Phillip J., to Intel Corporation. Electri-
cally programmable MOS read-only memory with isolated deocoders.
$4,044,012$, Cl. $365-226.000$.

Land, Edwin H -
Land, Edwin H.; Bachelder, Albert J.; and Perry, Sarah H.,
$4,093,696, \mathrm{Cl}$ 264-295.000.

Petersen, Tom Lindhardt.
Peter.77.9000,
Khomas Eben: See-
Eterson, Thomas Eben: See-
Kelman, Amold Lloyd; and Peterson, Thomas Eben, 4,093,861, Cl.
$250-45.00 \mathrm{l}$ Pectrenko, Andrei Viktorovich: See-
Vasilicv, Jury

Georgy Nikolacvich; Gordecva, Galing Nikolsevnaic; Kazinstev, Timur rsaakovich; Telegin, Vasily Dmitrievich; Kind Goldrain,
Vitaly Naumovich, 4,093,578, Cl. $260-28.00 \mathrm{P}$.
Masog, C Urban: See-
Masog, Charles R Reymond; Pertic, Jerome Urban; and Mishima,
Yasutsugu, 4093,983, Ci. 364200.000 .
 trucci, Pasquale M.: and Martin, George F., 4,003,849, Cl. 235-
q2.0PC.

Kirsch, Xurt; Hilzensaucr, Volkmar; Pflug, Gunther; Wehrmann
Felix; and Maresch, Gerald, 4,093,488, Cli. $156-245.000$.
Osd
Orris Incorporated: Seed
Oporris Incorporated: See-
260 Thomas S.; and
2enders, Edward B. B., $4,0033,620$, Cl. Van Auken, Thomas V.; Grubbs, Harvey J.; and Johnson, William
R., 1 r., $, 092,988$, Cl. $131-17.00 \mathrm{R}$. R... J.., $4,092,988, \mathrm{Cl} 1.131-17.00 \mathrm{R}$.

4.002.909, C1. 99-444.000.

Habever. Charles C., Jr.; and Quy, Dennis A., 4,093,947, C1. 340
324.0AD.

 Murtha, Timothy P.; Jones, William A.; and Zuech, Ernest A.)
4,093, 61 , Cl. 260.688 .00 R
Ltapp, Paul R. Stapp, Prupl … 4,093,815, Cl. $560-246.000$.

the removil. of metallic mercury. 4,093,541, Cl. 210.40.000.
Pickles, Wilred. Selt.
les, Wilfred: See-
Randell, Donald Richard; and Pickles, wilfred, 4,093,680, Cl.
260.966 .000 .

 ${ }_{p}^{10202100}$.

 Cillourity Con Rober K Kennedy, 4,093,411, C1. $106-999.000$.

\qquad

 Poppleweli,

 Portan wililiam E, to Trine Temper Corporation. Pendulum type hoe

Prelece. ${ }^{424240.0000}$

 Prewaski,

Iusucino 4,033.677, cli: 2608888.000 .

Lil. $42+5181,0000$,

Pryde, Everett H : See-
Miller. William R.; and Pryde, Everett H., 4,093,637, Cl

Purrmann, Robert: See-
Shmitr, Wertiner
Wolf-Dietrich, 4,093,555, Cl.
 Qualitrol Corporation: See-
Romanowsi. Robere. $\mathbf{F}, 092,864, \mathrm{Cl}$. 73-363.000.
Quan. Peter Michac: See-,
Quan, Peerer Michec: See-,
Bamfied Peter;
anan Quandd, 4,093 erhard and ind Rice. Werner, to Teldix GmbH . Rotor bearing.
Quigley, Joseph R: R See
Qase Bopy E.. Coste, David W.; and Quigley, Joseph R., 4,093,451,
C. 7543.000 .

R. A. Jinen \& Co. Inc.: See-

Greenwelll Joseph Deneiel: Hughes, Charles C.; and Kinney, Robert
W., 4,033,207, C1. 271.3 .1100 .

 Beschrankter Haftung. Copolyamides conteining Caprolactam, lauri-
clactam and 11-2minoundecanoic acid. 4,093,492. Cl. $156-331.000$.
 ${ }_{3}^{\text {Howell }}$ Com
335-68.000.
Rachor, Ohthar: See-
Hrovat, Milan; and Rachor, Lothar, 4,093,682, Cl. 2640.500 .
 Rerrle, Donald. ; : Veneth, Richard, M.; Casad, Burton M.; and
Radd, Fred J., 4,092,844, Cl. 73-23.000.

 merchandise display equiie
Radfor, Patrick Louis:
Plumb Gee

Raidel. John E. Unitary lif and spring vehicular suspension. 4,093,22
ci. $280-686.000$.

 Reddy, Junuthul/ N. H. Be Bendix Corporation, The. Roughness sensor
Reed internationall Limititd: See
Briston is
Rodney
J.;

Bachmañ, Lothar Willy; and Reise, Eberhardt Karl, 4,093,391, C
407-22.002.

Rees, James G.: See
Page, Willisen Re; and Rees, James G., 4,093,315, C1. 303-59.000.
Rese, Walter J.: SeeResese, Walter J.: See- Briar, Thomas R and Rese, walter J., 4,093,137, Cl. 242-46.400. Regie Nationale Des Usines Rennault See-
Boutant, Jean-Jaccuese 4,093,244, Cl. $277-153.000$.

 and loadddependent brake control system for a motor vehicle.
Reinecke, Erich: Seeous, Weise, Lutz; and Reinecke, Erich, 4,093,317,
Lindemann, Klauus

Reinhart, Franz Karl: See-
Legan, Relleh Andres Reinhart, Franz Karl; and Sinclair, william
Robert
4.093,345, Cl.
Robert, 4,093,345, Rl. $350-355.000$.

Reischi, Artur; Jabs, Geet, and Gonzalez2.Dorner, Alberto Carlos, to
Byyer Aktiengesellschaft. Polyurethane resins
hydr
Bayer Aktiengesecilschaf. Polyurethane resins produced from active
hydrogen contuining material which is a dispesing
nate-nate-polyaddition products in hydroxyl containing of polyisocya dispersing agents. 4, 4, 3,569, $\mathrm{Cl} .260-2.5 \mathrm{AM}$.

Kanderer, Soachim; Komornic
4.03,538, Ch. $209-172.500$.

 ing,
REPA GmbH Fifinsianzwerk. Sece
Klink, Wolf-Dieter, 4,093,145, C

3,145, Cl. 242-107.40A.
Lin, Thi-Shan; Prusoff, H. William; and Ward, David C.. 4,093,715,
Cl. 424,180000 Lin. 4 , 24-1.180.000. Phusoft, H. William; and Ward, David C., 4,093,716,
C. 4.24180 .000 . Travis, James; and Pannell, Ralph, 4,093.612, C1. 260-122.000.
 cals, Inc. 1,2,4 Thiadiazolidine--3,
Revankar, Gannpathi, R.: Se-
 Reven, F.ederick, V., and Connors Charles W., to Nalco Chemical
Company
Ingot mold for producing steel ingots. $4,093,778, \mathrm{Cl}$. $428-111.000$.

 Ricaralo \& Co., Engineers (1927) Limited: See-
Hasleth, Robert Alan, 4,092,967, Cl. $123-143.00 \mathrm{~B}$.

 for effecting even distribution and mixing of high consistency pulp
and treatment fluid. 4,093,506, C1. 162-17.000.

 Rioxide from process gas using
Ci. $16-2566.000$.
Riebel, Hans-Jochem: See-
 Riedel-12ect Hasen Aktiengesellischaf: See-
Stahl. Kur-Wilhelm; and Schuppe, Ekkehard, 4,093,550, C1. $210-$ Riegler. Emss; and Schmidt, Manfred, to Vercinigte Osterreichische
Eisen-und Stanlwerke. Alpine Montan Aktiengesellichaff Tilting Eisen-und Stahlwerke - Alpine Montan Aktiengesecllschaffo Tilting
drive Jungst, Klausu-Peter; and Ries, Gunter, 4,093,817, Cl. 174-32.000.
Ries, Werner: SeeRies, Werner: See- Quand , errand, and Ries, Werner, 4,093,323, Cl. 388 -121.000.
Rihm, Peter L. Safety bicycle sceat reflector. 4,093,263, C1. 280-289.00R.

Rikker, Mihaly: See-

 Company. Film applying
4.002,817.C.5 3 .298.000.
Gott, Hanas; Ree- Riter, Josef; Ritter, Klaus; and Ritter, Gerhard,
4.033, 106 , $1.221-224.000$.

Riva, Ferrando: See-
Feruti, Paolo. Martuscelli, Ezio; Riva, Fernando; and Provenzale,

 Roberts, Gerald E.: Se-: and Roberts, Gerald E., 4,093,914, Cl.
Peppiatt Hery $\mathrm{J}:$.
324.56.000. Robers. W24. Wallacece A. Highh-voltage apparatus for skin therapy. 4,093,975,
Robersshaw Controls Company: See-
Asbill, Clarecce M.III, 4,093.329, Cl. $339-16.00$ R.

dines. 4,093.6177, Cl. $544,281.000$.
(obins. Roland K. See-
Revankar. Ganapathi R.; and Robins, Roland K., 4,093,624, Cl.
$260-302.00 \mathrm{D}$
260.302 .00 D .
obinson.
26649.000 .

Robinson, Tom E:. See-
Habiger Cyri W.; and Robinson, Tom E., 4,093,092, C

Cen. Thomas T. 4,094,005, Cl. $365-16.000$.
Henin. David. M.; and Whitcomb, Eugene C., 4,093,781, Cl.
4hompso.
Thompson, Robert B.; Alers. George A.; and Tennison, Marion A.,
4.O22.868. Cl. 3 . -683.000 .
Rodewald, Paul G.; and Hiag, Werner O., to Mobil Oil Corporation.
Decomposition of formic acid in very low concentration. 4,993,543,
Cl. 210.59 .000 .

Doltrieg; and Zacher, Albert R., Jr., 4,093,899, Cl. 250-445.00T:
Rohe, Othar: See
Schmi.d.
7.1 .0000 .

Cl. 111.109 .000 .
Hurwiti, Marvin J.; and Avery, Noyes L., 4,093,567, Cl. $260-1$

Hurwitz, Marvin J.; and Avery, Noyes L., 4,093,567, Cl. $260-$
Millere. .eorge A.; and Fleischresser, Marvin H., 4,093,655, Cl.
260.564.0RF.

Linderman, Duane L.; and Hom, Felix, 4,093,122, Cl. 239-127.300.
Rohriner, Gerhard:
Peerkis. Charles W .; and Rohringer, Gerhard, 4,093,351, Cl.
Rohrs, Marvin K., to Metalwash Machinery Corporation. Cleaning

Rolls-Royce Limited: See--
Pakk, Georgec $4, \mathbf{0} 2,826$, Cl. $60-39.74 R$.

 Rookyn, 248.188 .000 . Construction of metal articles. $4,093,167$, Cl.
Rosch, Hubert. J., to Kawasaki Motors Corp. Snowmobile suspension
system. $4,093,033$, Cl. $180-5.00$.

Saint Gobain Industries: See- \quad Serand Amannati, Piero, 4,093,439, Cl. Schafer, Eberhard: See-

 2.00R.
Saito Yuichi, and Mayama, Osamu, to Mitsubishi Kinzoku Kabus
Kaisha. Nickel-base sintered alloy. $4,093,454, \mathrm{Cl}$ I. $75-236.000$.

Saito. Yuichi; and Mayama, Osamu, to Mitsubishh Kinzoku, Kabus
Kaitha. .ivclel.-base sintered alloy. 4,093,454, Cl. 75 -236.000.

Sakai. Takeo Sece- Simai, Takeo; Takai, Seizaburo; and Komori, Sekiro,
Araki,
4.093,425; Cl.

alsbury, Phillip J.: See-
Perleges. .George; and Salsbury, Phillip J., 4,094,012, Cl
365.226 .000 .

Sand, Leomard B.i, to Zeochem Corporation. Synthetic zeolite.

Sanders, Edward B.. See-
Ostene, Thomas S.; and Sanders, Edward B., 4,093,620, Cl.
$260-291,000$ 260.291.000. S . See
2.ers, Ellsworth E: Se

Sanders, Ellsworth E.: See-
Stahh, EWWard L.
206-507.000. Sandin, $200-501.000$. F . E., to AB Kall-Regulatorer. Excess flow valve.

Tre, Michael Ray. See
Trecker, David John;

Sando. Inc. See
Sass, Rober N.; and Wie, Chwang Tek, 4,093,710, Cl. 424-44.00
Sanford, Leon M.; and Wu, Che-Kuang,

Sampson, Ronald
280-610.000.
Toshio: See-
Sano, Toshio: See- Michito; Sano, Toshio; and Kumura, Noriharu,
Hamana,
4,033,518, Cl. $195-142.000$.

Sass, Robert Ni; and wic, Chwang Tek, to Sandoz, Inc.
solving effervescent granules. $4,093,710, \mathrm{Cl}$. 42444.000 .
assi, Frank V: See-
Sassi, Frank V. See-
Mayer. EdWard A.; and Sassi, Frank V., 4,092,959, Cl. 123-
19.00A.
Sassmannshausen, Gunter; and Hasenaver, Dieter, to Accumulatoren-
werk Hopecke Car Zoollner $\&$ Sohn. Lighter lead storage battery.
4.093,785. C. 429.149 .000 .

Sato, Kazuyuki, to Tokyo Shibaura Electric Co.,
large scald integrated circuit with multicle function
semiconductor device. $4,093,993$, Cl 136412.000 .

4,093,633, C. 260 -346.110.
and

Chan, Ka-Kong, and Saucy, Gabricl, 4003,632, Cl. 260.343 .500
Saunders. Charles A.; and Saunders, Thomas Allen, 4,093,227, Cl.
273.102.1.EE.
sunders, Charles A; and Saunders, Thomas Allen, to Saunders Ar-
Saunders. Charles A ; and Saunders, Thomas Allen, to Saunders Ar-
chery
C. 273 . Trarget
Thith
C1. $273-102.10 \mathrm{E}$.
Watson, Kenneth; and Saunders, James Edwin, 4.093,049, Cl.
19247.000.
Saunders. Thomas Allen: See-
Seunders, Charles A.; and Saunders, Thomas Allen, 4,093,227, CI.
273.1.22.10E.
Savvin, Sergei Borisovich. See
 Mushy, Roman Yakovlevich; Myasoedocov, Galina Vladimi-
rouna, Savvin, Sergei Borisovich; and Seraya, Vera Ivanovna,

Sayer, Trevor Anthony, to Burroughs Corporation. Apparatus for use
in depositign artices in a receptacle end a sequence controller utilized
iherein.

Dietrich, Errst; Guenther, Ernst; Hoerauf, Werner; Kisel, Ernst,
Line, Hermann Neumann, Eckart; and Schaefer, Eberhard,
$4,092,784, \mathrm{Cl} .3413 .000$.

Hotringer, Conrad; Ruppen, Bruno; and Schaffiner, Kur, 4, $4,02,900$,
C1. 89-3.0.00B.

chere, Herter 1.i. Lex, Soseph A.; and Ungar, Israel S., to Exxon
Research and Engineering Company. Three-color high presure
Recorartive an Elaminate hatering Company. Threc-color high prosesur

Teige, Woligang; and Schickfluss, Rudolf, 4,093.585, Cl. 260
to.00P.

changer. 4,093,020, Cl. $165-1.000$. and Kanner, Bernard, to Unio
chilling, Curtis L. Proki, Bela,
Castide Corporation. Surface active silicones. $4,093,642$,
Castide Corporation. Surface active silicones. 4,093,642,
S44ilob.000
Jean Pierre; Combroux, Jean; and Delavarenne, Serge

Schlichi.000.
Buthecerle, Gotrfrier: Ostar, Sce-

Schloss, Phillip Chnistian: See-
Heuer. Dale Arhur Schos
Lary Lle A
Larry Lloyd, 4,093,982, Cl. 3644200.000

schmid, Frederick, to Crystal Systems, Inc. Process of cutting wafers
$4,40,2,972$, Cl 125 - 16.00 .
Schmid, Walter: See-
Wiifert, Karl; and Schmid, Walter, 4,093,25s, Cl. 280.78 .000
Schmidt, Charles F. Power wrench. 4,093,179, Ci. $251-133.000$.

Schmidt Honss Soachim: Seecher, Gunter; Schmidt, Hens-Joachim
Ferhnolz, Hans, Roscher,
Schmitz
Heinz; and
Schmitz, Hein
252 M3.000

Curtemey Francis M.; and Schmitt, James L., 4,093,034, C1. $180-1$.

252-188.30R.
Schmitz, Alfons F; and Dixon, Douglas L., to Eastman Kodak Com.

eernholz, Hanss Roscher, Gunter; Schmidt, Hans-Joachim;
Schmitz. Heinz; and Wunder, Friedrich, $4,093,559$, Cl.
\qquad
Ledeen, Howard L.: Schmon, Franz; and Tupker, Willem E.,
4.0.02, 77 , 1.74 .625 .000 .

schneiderman. Max, Li. pipo. Hospital Supply Corporation (Whaledent
Internaional Divison). Constant output electrosurgical unit.

Siegfried, Dether, Juergen; and Hoffmann, Herwig $4,093,668$,
Cl. $568-855.000$.

JUNE 6, 1978
Sheritit Gordon Mines Limited: See-
Doyle, Barry N.: Seibtt, Willie H ;

Shiba, Haruo: See- Satou, Takateru; and Shibe, Hervo, 4003.967, $1360-132.000$
Satou, Takaterry; and Shiba, Haruo, 4,093,967, Cl. $360-132.000$.
Shibhara, Masashi: See-
Yamashitas Shigeru; Masaki, Kazuo; and Shibahara, Masashi,

 Kurohiji, Sinichi, Shisyo, Genshichi; and Arai, Nobujiro, Sing
4,02,92, Chile
, 114222.000 .
Shimizu, Naoki: See-,
Tsurut, Hidemas; Itoh, Shoij; Oisuka, Masayuki; and Shimizu,
Nnaoki, 4,03,505, Cl. $159-9.00$ A.

Shimokawa, Wataru) See
Murakami, Saburo, 4,092,873, Cl
.
Shimoura, Akiris: See-
Ono, Junichi; Shimoura, Akira; and Tanaka, Yukiyasu, 4,092,969,

Suzuki, Yasoiit Kann
Cl.
400-166.00R.

Shirrashi, Takerecicii. See-
Kuroda, Nobuyuki, Nakamura, Toru; Shiraishi, Takeichi, Matsu-
 Shirey, Robert D., to Emerson Electric Co. Reistors with heat sink.
$4.093,968$, Cl. 1661.58 .000 .

Murogov, Viktor Miikhailovich; and Shmelev, Anatoly Nikola-
evich, 4,093,514, Cl. 176-65.000.

Cl. 2424.1988 .0000 .
Sianesi, Enrico; Bonden Giuseppe; Setrikar, Ivo; and Magistretti, Maria

Sianesi, Ennico; Bonola, Giuseppe; Setnikar, Ivo; and Magistretti, Maria
Jose, to Recordat
Th. Cher
Therapeutically active benneoic acicid de.ivatives and a process for
preparin them. $4,093,648$, Cl. 260 - 19.000 .

Hahn, Alfred; Steiner, Emst, and Pospischil, Rudolf, 4,093,864, Cl. Kolles, Konrad; and Lauther, Ullich, 4.0033.999, Cl. 1.364 .520 .000
Scher

Simko Peaul S.. to Bunker Ramo Corporation. Power connector.

Automated apparatus for molding or
425S 110.000
Scholz, Hanjurgen: Gimbel Jurs

285-747. 000 .
polyder, Mifford J. Expansible trough apparatus for use in producing

fourgimiderzolidone subustituted ecphalosporins, antibibcteriail compo
sitions containing tem, and methods of combating bacteria employ.

Sinn, Hartmut; Schroder, Dieter; and Stallmann, Hans, 4,093,118,
Ci. 233-26.000.
chrooder) Franklin Theodore: See-
McAlister, John P;; Schroeder,
Charter
Charles Serrance, 4,093,981, Cl. 364 200.000.
Heuer, Dale Arthur Scehoss, Phillip Christian; and Schroeder,
Lary Lloyd $4.093,982$, Cl. $364-200.000$.

Eckehard, 4,093,375, Cl. 355-68.000.
Schuler. Roland:
Lipeak, Gabor and Schuler, Roland, 4,093,881, Cl. 310-214.000

$266 .-99.1 .000$.
Schuppe Ekkehard.
Stahl, Wurc-Wilbelm; and Schuppe, Ekkehard, 4,093,550, Cl. 210
$\left.1 \begin{array}{l}18.000\end{array}\right)$

260.835.000.
Schurgers Reiner:
Emst, Horsi

Schurgi, Herberti. Coniact lens application and removal instrument.

 Schwartz, Alfred Ale exnder: See
Hogan, Walter John; Schwart,

 Scor Peper Company: See-
Schmidt, Frank P., 4,093.765, C1. 428-134.000.

 Sealy, Incoriporated: See- K.02,749, Cl. 5-267.000.

Beibt, Willic H. . See-
S.
Doyle, Barry N
Benz,

Mohs.
31.-13.000. Richard C.; and Seidenberg, Richard L., 4,093,360, Cl.
331-13.000.
Mitsunoobi; Yamakoshi; Yasumichi; Miyauchi, Hirotsugul, Fukumoto, Kyoji; Watanabe, Itaru; and Yokoyama, Shigeo,

 Resarch and Development Co., Ludd, Immunulogic chemotherapeu tic agents comprising antigen binding dimers covalently bound to
drugs. $4,090,3007, \mathrm{Cl}$ 20.112.00B.
 4.092,.920, Cl. 90-11.00D.

 rovny, Savvin, Sergei Borisovich; and Seraya, Vera Ivanovna,
4,003.792, Cl. $526-200.000$,
Service D'Exploitation Industricle des Tabacs et des Allumettes: See-
Imbert, Pierre, $4,092,987$, Cl. $131-8.00 \mathrm{O}$.
 vous system activit.
4estanj, K.jopo.
Serimir

 Hubertus, 4,093,890, Cl. 113 -486.000.
Sevco Limited: See-

 Shefer, Rebir, 4,093, E. Porrable hole holder for ribbon-like material. 4,093,138,

Blackburne, Owen Rodney; and Shapiro, Warren B., 4,093,711, C
42454.000. Shapp. Walter M. Mand Bergstrom, Gary E., to Business Education
Proucucs. Inc. Trancsibeb having selectable word reproduction rate.
$4,093,831$, C1. 179 -100.1VC.
 Thomas, Manion E.. to Ampco Foods Inc. Wz
forming paparatus 4,033,125, Cl. 239-533.300.

 tional Business Machines Corporation. High eff
miin display devivece 4,033,388, Cl. $350-357.000$.
Shawaluk, Michael W.: See-
Kanmowski. Thomas A.; and Shawaluk, Michael W., 4,093,850, Cl
235-92.OTF Shechan, John \quad 235-92.07
 Sbeldon-Sodeco Printer, Inc. See-
McIInnis Andrew M.; and
Miden
Shell Oil Company: See-
McCormick, Karl, 4,093,923, C1. 328-165.000

 Lixill

Sind inamemid
snextuoim fixe in se

ger Company, The: See-
Coughenour, Donald Jay; and Herr, John Addison, 4,092,938, Cl.
$112-188.00 \mathrm{E}$. Knowles, Warren Dean, 4,092,939, C1. 112-254.000.
Landlus, John Vernon, ror: Hentse, Barney Dean; Rupinski, Freder-
ick Alexander; and Zenger Alfred John, 4,092,937, Cl.
Mindill, Marvin $1.4 .093,142$, Cl. $242-71.100$.
Christ GmbH. Centrifige, parricularly for use with automatic analys.
sis apparatus, especiallye, porriculanical, biological, or medical use.
$4.033,1118$, cl. 233-26.000.
W.

Sjogren, Borje Lennart, to AB Wicanders Korkfabri.ier. Method of and
appantur for fedidg artices. $4,033,062$, Cl. 198 -380.000.
 Feichtinger, Gerhard; and
123-1.700.
Kugellagerfabriken GmbH: See-
 4,093,053, Chit. 192 -98.000.
Skilling, Derek: See: Ser
Davis, John
Brian;
Skilling, Derek; and Wrigley, Nigel Edwin,

Kobayashi, Masaki; Prelec, Krsto; and Sluyters, Theodorus J,
$4,033,888$, Cl. $250-24.000$.
malley. Ned d. IT and Whitney Ralph H., to Owens-Illinois, Inc. Home
canning system. $4,093,094$, Cl. $215-276.000$.
Ketanns Andrem: Soe-
Kewley, Normen

Smi.th, Gary. L.: Se-
Fitzpatrick
sohn
D.; and Smith, Gary L., $4,093,273, \mathrm{Cl}$.

Roe. Anthony Maitland, Slatact, Rooest Anthony; and Taylor,

Rand 0 access memory appara.
tus. $4,09,9955$ Cl. 364 .

Sociecewe Hemennitise

lite miter. 4.093,404, C1. 417-317.000
Denni. 7 Ter, Clasude; Joly, Michel; and Tabet, Jean-Noel, 4, 4,093,440,
C1. 71.500 .

Sonl. Giorson. IO Xerox. Corporation. Character stug construction.

Southwirt Compmeny: See Ketre, George H. 4, 4,03,700, C1. 423-120.000.

Sparton Corgorsion: seo.

Si. homenesw Ronald

Phenyllaknoi,

 the pronection
2606710.000

${ }^{\text {Grayson }} 3$

Stauffercher, Duane R; and Baker, Don R. 4, 4,093,45, Cl. 71-100.000.

Steiner, Marsin Eiroy: See
Chu
Bing L-Lun; Subba
 Steince beo See-

Steinl., Runtit.

acisis and esters and stabilized

 Stevns. Robern C-

June 6, 1978

LIST OF PATENTEES

Stoetzer, Richard P.t. See-
Russell, Walter \mathbf{W}.; and Stoetzer, Richard P
 Babayan, Vigen K., 4,093,750, Cl. 426-250.000
Stokic, Bozidar M. Device for determining angle between planes. 4,092,779, Cl. 33-1.0SD.
StorkWe.

 Stover, Fred Dougilas; and Thatcher. George Carl. to Cooper Indus-
tries, In. Engine gition system. $4,092,968$, Cl. $123-148.00$. trirs inc. Esgine igwiten system. Jams M, Carroil Company. Geare hand wheel for butterfly valvess 4,003,180, Cl. $251-248.000$. Fluidic 5 seal. $4,092,908$, Cl. $98-60.000$
st
 Straser, Theman. Jewelry display rack. 4.093,077, Cl. 211 -194.000.
Strobech, Carl G., to Rheem Manufacturng Company. Resistor anod
 Strom, Torssen. Erik Theodor,

 Stubenruss, Paul. Multiple valve with aur aice sequenal operalio $4.092,995$, Cun. 137.199 .000 .

McCune, Kent; and Steiner, Marvin Elroy, 4,093,971, Cl.
$361-382.000$.

 Sulzer Brothers, LLd. Leet,
deWijn, Joost Robert, 4,093,576, Cl. 260-17.00R
 Sumner, John S. Domical structure. 4.092,810, C1. S2-81.000. Pocs for the
Sun, Yun Chug, to Dow Chemical Compan, The
recovery of ultrahigh purity indene. $4,093,672$, C1. $260-674.00$. recovery of crapratition Steen
Sundstran
Gravelle, Homer $\mathrm{E} .4,093,401$, Cl. 416-185.000.
Gravelle, Homer E., 4,003,401, C. 416-185.000.
Suntech, Inc.: Seer .

4,093,58, , cl.- 204 i 80.00 P .
ntory Ltd:

Sursh, Dev D. See- K. Suresh, Dev D.; and Miller, Robert C.
Grasellit Rober
4.03
 Zino Ay Abramovich. Device for electrochemical treatment
pieceas. 4,03, ,30.
Suppa
 Sussman. Edw

 Shibaura
Sve.
Sver
 260.73.00R.
Svensson. Lass.Erik; Tengzelius, Jan Robert; and Lindskog, Per Folke,
to Hoganas AB, Fack. Phosphorus stefl powder and a method of

Gustavsson, Lars G. T;; and Svenson, Sven-Hakan, 4,02, 891, C1.
Svet.

 Matvecvich; Burmistrov, Gernady Nikolacvich
Jury Grigorievich, $4,093,023$, Cl. $165-89.000$.
Svobodaz Josefigeovel Sel, 4,093,023, CI. $165-89.000$.
Krob, Erwin; and Svoboda, Josef, 4,093,270, Cl. 280-626.000.

Sweethears Plastics, Inc. See
Davis Paul; and Sheider, David, 4,093,041, Cl. 186-1.00D.

equipment. 4.093,119, Cl. 237-12.30A.
wiss Anumium Ldd.:
Anthony. We. William H. Popplewell, James M; and Brock, Andrew
 $4,003,474$, Cl. $148-2.000$.
withenbank, Colilin: See-
Baycer, Horst O . Swithenbank, Colin; and Yih, Roy Y., 4,093,446,
C1.,.
Cl. 71.109 .000 .
semger, Emery C ., to United States of America, Navy. Gas/iquid

 et, Jean-Noel: See- Soly, Michel; and Tabeb, Jean-Noel, $4,003,440$,
Denninger Claude; Joly,
Cl. $71-6.000$, aborky, 1iri. Biological filter. 4,093,546, Cl. 210-150.000.
Takai, Seizaburo: Seee-
Araki, Eimi; Sakai, Take; Takai, Seizaburo; and Komori, Sekiro,
$4,093,22$, Cl. $44-10.00 \mathrm{~F}$.
${ }^{4}{ }^{4}, 093,425$. Cl. 44. 10.00F.

umepiece circuit. 4,092,819, $\mathrm{Cl} .58-23.00 \mathrm{R}$.

 of a transporitation system. 4,092,930, C1. 104247.000.
 Yoshikuno, Ohhubo, Kazuo, Tequke, Tohru; and Tonomura,
Shini, 4,033,712, el. 424-177.000.

Tanabe, Yasuo; Toriya, Jun; Sato, Masato; and Shiraga, Ken, to Mi

Nohira His Heaka; and Tanaka, Massakki, 4,092,960, Cl. 123.
Ni9.00

Tanaka, Yukiyasu: See- Solra, Akira; and Tanaka, Yukiyasu, 4,092,969,
Ono. Junichi; Shimora
Tanguy, Pierre; and Faivre, Andre. Electrical appliance for making

204129.000.
aplin
pin
J.h.hn F. Automatic pressure regulator. $4,0022,998, \mathrm{Cl}$.

137, J 1.0 ohn . F. Automatic prasure reguiator. $4,002,998$, Cl.
ardy, Maurice, to Bennes Marrel. Control device of a large hydralic
distributor, in particular for public works appliances. $4,093,002$, Cl.
137-596.200.

arvin, Lariy. Truck ladder. 4,093,257, Cl, 280-166.000.
 4.0.mbi,419, Cev. 121-1020.00R.

Tor 4,03,722, Cli. 428.339 .000 .
Alliman Denis Sohn; and Taylor, Lionel Ivor Alfred, 4,003,107, Cl.
222-23.000.
Taylor, Philitp W., to Taylor Industries, Inc. Sheet with breakaway line.
$4,093,761$, Cl $428-43.000$.

TDK, Electronics Co... Led. Swe. Haruo, 4,093,977, Cl. 360.132 .000 .

Technnarl. Incorporated: See- Bell. Lon .. 4,092,926, CI. 102 -204.00R.
 Teige, Wirgng; and the dy

Christic, Alven Benson; and Correll, Ronald Eugene, 4,093,891, Cl.
315.3.000.

Quandt, Gerhardd and Riss, Werner, 4,093,323, Cl. 308-121.000.

 Temtool Pry. L Ld. See-
Willins
Patrick Robert, 4,092,805, C1. 51-85.0BS
Tengzeliums, JJan Robertio See

Tennison, Marion A.: See-

 Teplyakov, Sergei Dmitrievich, 4,093,467,
Terminal Data Corportion Se-
Frech, Roger A.r $4,093,370, \mathrm{Cl} .355-43.000$.
Terminater Products Inc.: See- Stevenson, Jame Santon, 4,092,993, Cl. 137.15.000

Terry, Ruel C., to In Situ Technology, Inc. Methods of fuidized pro-
duction of coal in situ $4,093,020$, Cli.
Terry, Ruel

Teshibe, Toko: See-
Ikarishi, Koichi; Kondo, Kanji; and Teshiba, Toko, 4,093,321, Cl.
308.20.000
Teessndori, Joseph L.: See-
Tessandori, Josecph L .: See-
Manzo
148.32.0.000.

Mayer. Edward A.i and Seasi, Frank V., 4,092,959, Cl. 123
19.00 A.

Necuwes, Felix: See-
Zaffironi, Alejand
4,

4,093,708, Cli. 424 is 5.000 Michaels, Alan S .; and Theeuwes, Felix,
mas. Arthur E.; Cleanan, Arthur Ev; and Pace, E. Alan, to Envirotech Corporation.
system. 4,092,764, Carraing manchines including an air recirculating System. 4,022,764, Cl. 199.107 .000 .
 4,092,848, Cl. 73.86 .000 .

Chanransol. Sieerre; Hauri, Jacques; and Athenes, Claude, 4,093,827,
Cl. $179-15.0$ AT:
Lamarche, Jean Luc, 4,093,926, Cl. $331-11.000$.

 methods for their production. 4,093,611, Cl. 260-112.5LH.

Polansky, Henry J. 4, 4,033,129, Cl. 241-186.00R.

Suuruki, Yasoiii, Kaneko, Yoshio; and Shiotari, Yoshihise, 4,093,942,
Cl. 340.166 .00 .

Okamoto, Shosuke; Hijikata, Akiko; Kikumoto, Ryoji; Tamao,
Yoshilu
Shini Yoshikuno; Ohkubo, Kazuo; Tez;
Sinjik 4,093,712, Cl. 424177.000 .
 424241.00
Toriya Jun
Tenabe.
Yee

JuNE 6, 1978
 Osuki, Akiriz. Nation, Michihise; Mashimo, Yukifumi, and Ikeds,

Toy Kogyo co., Lidd: See-
Inatoyyuhi, Akira and Watee, Jun, 4,093,289, Cl. 292-336.300.

 Trembley. Willigm H. See-
Whelpon, Hugh G.;
156-309.000.

Inc. Electricien's fish tupe. 4,092,780, Cl. $33-139.000$.
Treunere UWe D. Se-

Trozzolo. Anthony Marion: See
Hartesen, Rey Lemion; and Trozzolo, Anthony Marion, 4,093,774,
Cl. 428.379 .000 .
Trube, Hens: Seec: Trube, Hans; and Grimm, Hermann, 4,092,907, Cl
Meyy, Erast

(Engineers) LLd. Compresuion ignition internal combustion engin Tsuden Hirothi, 10 Olympus Optical Company Limited. Copying ma
chine $4,093,377, \mathrm{Cl} .355-76.000$.

 Turbodyne Corporation (Steam Turbine Division): See-
Browning.
29-156.80R.

 248, 339.000.

 Uchider, Tomoaki, to Victor Company of Japan Led. Horizontul AFC

Mationo, Yoashee- Uedaira, Satoru; and Ito, Shigeyasu, 4,093,453,
Cl. 75 , 129.000 .
nishi, Akira: See-

 lmann, OHTo; 2nd Stephan, Norbert, to Marshall Richards Barcro Limited. Tube drawing method and apparatus. $4,002,875$, Cl.
72.275 .000 .

Scher, Herbert 1.; Lex, Joseph A.; and Ungar, Isreel S., 4,093,766,
C. 428 -165.000.

Lindstrom. Georole Adam; and Holland, Robert Charles 4,003,843,
C. 219921.08B.
C. 219.121.0EE.
Schilling. Curtis.; Prokai, Bela; and Kanner, Bermard, 4,093,642,
C. 544106.000 .

Trecker, Devidid John; and Sandner, Michael Ray, 4,093,661, Cl.
260.595.000.
Unitech Chemica. Inc.: See-
Schure. Ralph M: Koi, John H.; and Brown, John M., 4,093,675,
II. 26.035 .000 ,

dministrator, National Aeronautics and Space Administration:
See-e
Heusermann, Waller, 4,093,917, CI. 324-173.000.

Army: see -

Mis2.527.000.
Ricks, Erarl C., 4,092,793, C1. 42-1.0ST
Knergy:
Ked

 $310-11.000$.
Sevec. John B. 4, 093,835, Cl. $200-61.45 M$
ational Acronautics and Space Adminis

 Lect, Walter Robert, to United States of America, National

June 6, 1978

Labrecque, Jean P, 4,092,947, Cl $1116-118.00$
 White, Matthew B., 4,03,38, Cli. $356-9.0000 .9$
U.S. Philiopew. Coporeadion, See-,

Cl. 365 -234.000.

$156-656.000$.
Verriet Johnes Gerandus; and Seuter, Antonius Maria, Josephus,
U.S. Terrizzo Pahels, Inc: See- 251200

53.00R. Robert Charles, 4,093,400, Cl. 416-141.000.
Rybicki,

University of Misisisippi: See
Hufford, Charle D.: $, 093,717, ~ C 1 . ~ 424-195000 ~$
Hufford, Charles D., 4,093,717, CC. 424 . 195.000 .
Unterber. Hermut
4,093,04, Cl. $188-73.300$.
Upiohn Compeny The: See

Nelson, Norman A
Urban, Friedrich:
Buecher

anderplants, Norman R., to Varian Associates. Inc. Ring-and-bar slow
wave cirituits employing ceramic supports at the bars. $4,093,892$, Cl.
3is. -500 .

Berraud, Andre; Gras, Roger; and Vanderyver, Michel, 4,093,757,
Can Holiten, Theoodo. Ther. Propeller or a set of wings for a wind mill.

Van Rens, Rusel J.: See-
Schrimp Crarl F.; and Van Rens, Rusel J., 4,003,403, Cl.

 Varimen Associates, inc.. see-
 O'Neal, Charles D., III, 4,093,913, Cl. 324-33.000.

Vasderplaats, Norman R., 4.093,892, Cl. .315-3.500

 Naumovich
260-28.00P
VAnin
Vassinova-Shipulina, Iya Petrovna: See-
Eliseev, Stanislav Borisovich; Butskoi, Jut
Eliscev, Stanislav Borisovich; Butskoi, Jury Alexandrovich; Dmi-
trievskk, Vladimir Sergevich; Golubeva, Albina Andrevna;
Ozerov, Vladimir Mikhailovich;

 Velsicol Chemicht Corporation: See-
Krenzer, Johnn $4,093,443$,
Cl. $11-90.000$

Oertice Donald $\mathrm{H} . \mathrm{He}$ Vennett, Richard M.; Cased, Burton M.; and
Redd, Fred J., 4002,844 , Cl. $73-23.000$.

Vereninigte Oaterraichushische Eiene-und Stah1werke - Alpine Montan
Aktiengevellechaft: See-

Verriet, Johnane Gemerrius and Seuter, Antonius Maria, Josephus,
Hubertus, to U.S. Philips Corporation. Tertium-ctivated lumines

Vial, Jean Scechine; Vial, Jean; and Dumont, Louis, 4,093,44, Cl
Clapor
71.92

Withycombe, Donalid Althur; Mookherjec, Braje Dulal; Vock,
Manfred Hugo and Vinals, Joaquin Francisco, 4,093,752, Cl.
426-536.000.
Viscount, Kenneth \mathbf{W}. Self-contained, multi-blade peckage for slurry
Viscount, Kenneth W. Selif-contained, multi-blade package for slurry
saws nad the like $4,092,971$, Cl. $125-16.00$.

Volkov. Vaventin Stecpanovich: See-

Volkswagenwerk Aktien gesellschaf: See-
Neumann., Soochim, $4,093,423$, Cl. $23-288.0 \mathrm{FC}$

 Cottried; and Zacher, Abbert R., Jr., 4,093,859, Cl. $250-45.00 \mathrm{~T}$.

Prosen, Giloo, 4,002,966, Cl. 123-141.000.
Orex Design Lt. See
Pappas, Jefrey, $4,093,830$, Cl. 179-99.000.

 Hudale, Carl F., 4,092,992, Cl. 135-3.00R.
120.-133.000.
Rhard A. Vaporizer-regulator, liquid fuel. 4,092,963, Cl .

 Reinecke, Erich
Reinecke, Erich, 4,003,316, Cl. 303-100.000.
Wachendor, Fricdich Sel
Hoffmann , Hercerti; end Wachendorf, Friedrich, 4,093,133, Cl.

Wacker-Chemie G mbh: See-
Bauer, Johann; and Heckmier, Joeeph, 4,003,791, Cl. $526-200.000$.

Triazoloisoindolee. 4,093,728, Cl. 424269.000.

Wagner, Johann: See-
List,
Fiens;
Seatichec. Othmar; Greier, Josef; Obermayer, Bertram;
List, Hans; Skatcche, Othmar; Greier, Josef; Obermayer, Bertram;
Feichisiger, Gerhard; and Wagree, Johann, 4,092,956, Cl.

Abstract

\section*{}

Walker, Devid Martin: See- Waite, Herold K., 4,092,897, Cl. 87-29.000.
Fowler, Alber Ane wili; Walker, David Martin; Stevenson, Alastuir
Kerhaw;
Henderoon, Alan Graham, $4,092,852$, Cl.

4,003,283. Cl. $285-243.000$.
Weinstein, Leonard M. Contras
of phoo

 2606.857.0PG.
Weice Lutz: See-
 C1. 303.-11.01.00s. Chess board game. 4,093,237, C1. 273-260.000.

4,0393,498, Cli. Autiomentic
enzel, Werner, to NUSTEP
verwertungesgeselischaft mbH \& Co. Kommenditgexelluchaft Uri

 Walter G. Finch: See-

Walter, Lethar Bred; Ondenchewski, Armin; Schurger, Reiner;
4.093.033, Ch. 192.98.000.

Watanabe Akira: See-

 comprising a varimble impedance circuit pair or at least one balanced
diode brige $4.033999, \mathrm{Cl}$. $325-316.000$.
 Lucses Lester Wade; and Albers, William Marion, 4,093,086, C1.
214.16.40A.

Watantbe, Minoru: Se

 Limined. Freewhecel devices 4, 4093,049, C. 19247.000 .
Watson, Roy E.: Seed

 to Phytox Corporstion. Vegetation control. 4,092,800, C1. 47-1.300.
Wehrmann, Flixi See-

 Minnesous Mining, and
 Karl Peetr. Chuck key holder. 4,093,396, Cl. 409-241.00R.
 Wiecthel, Jonn E.e., ho Harmischreger Corporation. Hydraulic brake
wyster for crane hoist drum. 4,093,184, C1. 244-139.100. Wiezer, Hertmut: See-
Mayer , Notreert: Pahler, Gerhard; and Wiezer, Hartmut, 4,093,592,
C

 tive device. 4,093,977, Cl. 361 H4.006

 Winderl, Siegtried: See

 Witherppon, John F., to United States of America, Navy. Shock-
excurrion, ppparatus for retrecting the umbilical plug of a missile.

 Method of making manganexe-zinc ferrite. 4,093.688, Cl. 26665.5000.

Noif winade Alt

, ind

 Nindititemy

 Woll

Hutut

Soll

${ }^{2}$ Yamgauchi. Yoshichika. Poxitive cam type compressor. 4,093,408, Cl Amakoshi, Yasumichi: See-

 Yamamoto. Yujiro. Piezoelectric multimorph swithes. 4,003,883, Cl . 310.-317.000.
amaski, Harumase.
 Mashita, Shigerui, Masaki, Kazuo; and Shibahara, Maseshi, to Nionhon Yang Y onecliylou: SeeYang, Yue Chyou: See- Yeng, Yue-Chyou, 4,092,811, Cl. 52-224.000.
Lin, Tung Yen and
Yen
 Yasukuni, Mitsuo. to Minolta. Lens system with frontal aperture stop.
$4,093,348, \mathrm{Cl} .350-206.000$.

Yeda Research and Development Co., Led.: See- Lukac, Frederick S.; and Zbryski, William P., 4,093,472, Cl. aniv, Fortunk; Patchomik, A
$4,033,802, \mathrm{Cl} .54427 .000$.
 Sela, Michnel; Arnon, Ruth; Maron, Ruth; and Hurvitr, Esther, Lendau, John Vernon, Jr.; Hunts, Baerney, Dean; Rupingki, Freder-

Yih, Roy Y. Sece- Swithenbank, Colin; and Yih, Roy Y., 4,093,446,
Cl. $71-109.000$.
Yokoham Rubber Ce., Le., The: See-
Tomodede Hejime: Mitsuh hei, Kenhachi; and Morikawa, Tuneo,

Yokoyams, Ke,
and system
$330-277.000$.
$\begin{aligned} & 330-277.000 . \\ & \text { Yokeyman. Shig } \\ & \text { Seko. Mio }\end{aligned}$

recinusus pipicjoint made up in one-piece with a metallic male ccrew.
$4,03,280$. $285-39.000$.
4,

Minoney. John E., Jr.; and Zsccagni, Richard F., 4,092,808, Cl.
S2.-1.000.
Zacher, Abert R., Jr., to Antronix, Inc. Tomographic apparatus.

Zenzaburo, Iwamoto, to International Business Development Com-
zeonchyem Pocker comp siove. $4,092,974$, Cl. $126-38.000$.
pany. Pocket camp stove. 4,092,974, C1. 126-38.
Zoochem Coportion: See
Send Leonard B.
4,093,699, C1. 423-118.000.
Shand, Leonard B. 4. 4e03,699, Cl1, 423-118.000.

Ziegier, Heplanavid, Seergei Dmind
Kruger, Gerd; Keck, Johannee. Noll

Corporn
zile , 1 losef
Do
Dokoupi. Ludvik; Hroude, Oldrich; and Zile, Josef, 4,092,757, Cl.

Zitone, ofocph. Auxiliary rider support for jog cars. 4,093,306, Cl.
$297-217.000$. 297. 217.000.
Ma. Inc.: Se-
Maney. John

Joney. John E., Jr.; and Zaccagni, Richard F., 4,092,808, C1.
22.11.000.
Zoecon Corportion: See-
Henrich Clive A.; and Sual, Gerardus B., 4,093,622, Cl. 260 -
295.00R.
Zucker, Edivin. Shogren. Devid K; end Redden, David N., to Xerox
Corporation. Multiple range varisble magnification reproduction

ahlen, Gunnther, Umsonst, Gerhard; and Leely, Andrees to Cibe-

LIST OF DESIGN PATENTEES

LIST OF DEFENSIVE PUBLICATIONS

APPLICANTS TO WHOM

DEFENSIVE PUBLICATIONS WERE ISSUED ON THE 6TH DAY OF JUNE, 1978
Published at the request of the applicant or owner in accordance with the Notice of Dec. 16, 1969, 869 O. G. 687 . Caterpillar Tractor Co.: See-

International Business Machines Corporation: See-
Collier, William Wilkinson, T971,003, $\mathbf{C l}$. 364300.000 . Mitchll, Thomas L...T971,002, Cl. 1846.140 .
Collier, William Wilknoon, to International Business Machines Corpp
ration. Method for symchronizing sels of interacting proceses. ration. Method for synchronizing sets of interacting processes.
T971,00s, $6-6.78$, Cl. $364-300.000$. Dunn, Colin Malcolm Roy, to Imperial Chemical Industries Limited.
Foam piastics. T971,004, $6-6.78$ C. 264.53 .000
Fu Pont de Nemours, E i, and Companyy See-

Hansen, David R., to Shell Oil Company. Foxing primer. T971,008,
$66-678$, Cl. 4228.66 .000
Hecht J,
Hecht, Jumes LL., to Du Pont de Nemours, E. I., and Company. Micro-
wave tratien of package foods. 9771,007, 6-6-78, Cl. 426-234.000.
Imperial Chemicil Industries Limited: See-
Dunn, Colin Malcolm Roy, T971,004, Cl. 26433.000 .

Lint-cotton reclaiming apparatus for cotton gins. T971,001, $6-6.78$,
Mitchell, Thomas L ., to Caterpillar Tractor Co . Adjustable nozzle
Tphanides Gus George. to Du Pont de Nemours, E. I., and Company
Synthesis of dimaleimides. T971,003, 6-6.78, Cl. 260-326.260.
Synthesis of dimaleimides. T971,003, 6-6.78, Cl. 260-326.260.
Shell Oil Company:

Agriculture: See-
Mangialardi, Gino J., Jr., T971,001, Cl. 19-202.000

LIST OF REISSUE PATENTEES

TO WHOM

PATENTS WERE ISSUED ON THE 6TH DAY OF JUNE, 1978 NoTE-Arranged in accordance with the first significant character or word of the name
(in accordance with city and telephone directory practice).

Abbott Laboratories: See-
Chittenden, Richard
Chanden, Richard Marion; Bryant, Peter Lorin; and Classen,
Re. $29.656, \mathrm{Cl} .128-272.300$.
 Bildner, Heinz Helmut. Radial ski having a profiled running surface. Bildaer, Hecin2 Helmut. Radial
Re. 29.659, Cl. $280-608.000$.
Bryant Pheter Lorin: See-
Cintenden. Richard Marion; Bryant, Peter Lorin; and Classen,
Charles Carlock, Re. 29,566 , Cl. 128 -272.300.
 Chevron Reacarch, Company: See- King, John M., Re. 29,661, C.
Hendrickoon.
$252 \rightarrow 2.700$.

Slidable piercing member. Re. 29,656, Cl. 128-272.300.
Clasench Cherles Carcock. See.
Cittenden, Richard Marion; Mryant, Peter Lorin; and Classen,
 Hendricksoon, Yngve Gust; and King, John M., to Chevron Rescarch
Compeny. Sulfurized metal phenates Re. 29,661, C1. 25242.700 .

Husted, Royce H ., to Saroy Enginecring. Power driven aki. Re. 29,657,
Cl.
180-5 King, John M. $\left.\begin{array}{c}\text { Mend } \\ \text { Hendickon } \\ \text { 252-42.700. Yngue Gust; and King, John M., Re. 29,661, Cl }\end{array}\right]$

 Armatrong, William E., Re. 29,660, Cl. 148-1.500
RCocroration: See
Yocom, Perry Neil, Re. 29,662, Cl 252.301 .40 .
 improved opener. Re. 29,658, Cl. 206-124.000.
Saro Enginecris See
Husted Roys Stone Container Corporation: See- Cl. 180-5.00R.
 P28.-36.
Yocon, Pery. num and lu
301.405 .

LIST OF PLANT PATENTEES

 PI 44
Inc. Universal connector block for fiber optic cables and the like.

$248,097,6-7,7$, C. D13-24.000. | Feldman, |
| :---: |
| 372.00 |

Stelijea, Charles R.; Frostad, Lars; and Chapman, Richard M., 248,085, Cl. D8.64.000.
Frydenal. Tom, to
Tlopalk Fuijita Teizo; and Ohashi, Toshiro, to 1 zumi Denki Company Limited.

Macchines Corporation. Analytical instrument system. 248,098, $6-6-78$, Grethy, Albern K. SeeHanes Corporation: See-
Heet, Gregory S. Hand held musical string vibration initiator and $2,6-6-78$, Cl. DS6-1.00A.
Steinhiiber, John Budd; and Heins, Stanley, 248,101, Cl. D14
4.

 Interlego A. G.: See-
Interlego A.G. See-
TTpprup, Erip Peter, 248,115, C. D34-2.00R.
tererational Business Machines Corporation: See-
Giancarlo, Eugene N.; and Ledue, James J., 248,098, Cl. D14
40.000.
Izumi Denki Company Limited; See- Fuita Teizo and Ohashi, Toshiro, 248,092, Cl. D10-40.000.

Ladue. James J. See-
Giinnacali, Eugene N.; and Ladue, James J., 248,098, Cl. D14
40 . Larson, Spencer Brian; and Salmonson, Duane Leroy, to Economics
Liboratry, Inc. Powder detergent dispensers. 248,103, $6-6.78$, Cl. D15.36.000.
 Leath, Willians. J., to Hanes Corporation. Display stand. 248,067,6-6.78,
 Mangiapane, Prilip. Exerciser. 248,114, 6-6-78, Cl. D34-5.00K.
Nix, Donald Fi; and Morrison, Howard J., 248,119, Cl. D3415.OAAJ. T.
Maxant. Willizm T. Hive tool. $248,086,6-6-78, \mathrm{Cl}$. D8-98.000.
 Mondy, Peter. Golf putter bead. 248,117, 6-6.78, C1. D34-. 0 . 9 H . Moore, Walter E.; and Grethey, Abeert Ke, 10 UMMC Industries, Inc.
Front display panel for vending machines. $248,121,6-67$, Cl. D 52 .
\qquad
M

Morton-Norwich Products. Inc. See-
Britt Willim Jame
148.088 C.

Moges, William T. Presen

Ohashi, Toshiro: See-
Fujith, Teizo; and Shashi, Toshiro, 248,092, Cl. D10-40.000. Phillips, James M.; and Ormonde, John A., 248,089, C1. D9-216.000. watorna Tool Company: See-
Bruck, Daniel A., 248.084, C1. D8-61.000.

Randall, Mary, JJo opener/ pot holder. 248,074, 6-6.78, Cl. D6-293.000.
Robles Gwendolyn. Container for toilet tisuce rolls or the like. 248,069, Robles, Gwendolyn. Con
$6-6.78$. Cl. D $6-97.000$.

Roericht, Hans. Chair. 248,068, 6-6-78, Cl. D6-31.000 Lalmonson, Duane Leroy: See -
 Schneider, Joseph P. Nestable table 248,073, 6-6.78, Cl D6-177000 Shuzuki, Toshiyuki; and Suzuki, Tedeo, 248,095, Cl D12-205000 Seggerman, Loren A. Marionette duck. 248,112, 6-6.78, C1. D342.000
Shell Oil Company: See-

Anderson, Victor F., 248,062, C1. D2-291.000. Anderson, Victor F., 248,063, CI. D2-293.000.
Anderson, Victor F., 248,064, C1. D2.301.000.
Shinder, Anthony, to American Optical Corporation. Pair of specta
 Simmons, Earle G . Window shelf for plants. $248,071,6-6-78, \mathrm{Cl}$. D6.
137.00 C . Singer Com
ger Company, The: See-
Clower, Inarl R; Davis, John C.; Pearman, Fred E., Jr.; and
Vermillion, Don W., 248,104, Cl. D15.53.000. Sotz, Leermimard. Barrel heater door. $248,108,6-6.78$, C1. D23-128.000.
 Electronic control and display console. 248,101, $6-6.78$, Cl. D14. Stellijes. Charles R.; Frostad, Lars; and Chapman, Richard H., to Rock.
well International Corporation. Portuble band saw. $248,085,6-6.78$,
C1. D8-64.000.

Steinhilber. Inc.: SeeSteinhiliber, John Budd; and Heins, Stanley, 248,101, C1. D14 Tapdrup, Erik Peter, to Interlego A.G. Toy figure. 248,115, $6-6.78, \mathrm{Cl}$.
D342.00R.
Tomy Kogyo Co, Inc.: See-

 Wright, John R., to Am

 Zagara, Frank A.i und Nelson, John M., to Berions Cli. D12-20. 0000 .

CLASSIFICATION OF PATENTS

ISSUED JUNE 6, 1978

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{CLASS 3} \& CLASS 35 \& CLASS 62 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 93 \\
& 96 \\
& 99
\end{aligned}
$$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 4,093,499 \\
& 4,093,470 \\
& 4,093,471
\end{aligned}
$$} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}}

\hline 1.7 \& 4,092,739 \& \& ${ }_{123}{ }^{6}$ \& \& \& \& \&

\hline 1.911 \& \& ${ }^{8} \mathrm{R}$ R ${ }^{\text {17 }}$ \& ${ }_{136}^{123} 4$ \& \& \& \& \&

\hline $1_{1.9}^{1.93}$ \& 4,0092,743 \& $29 \mathrm{R} \quad 4,092,787$ \& CLass 4 \& \& $$
24.1
$$ \& 4,092,9: \& 89 \& 4,093,473

\hline \multicolumn{2}{|c|}{CLASS 4} \& \multirow[t]{2}{*}{12} \& \multirow[t]{2}{*}{$\begin{array}{ll}13 & 4,022,836 \\ 27 & 4,092,837\end{array}$ CLASS 65} \& \multirow[t]{3}{*}{3,

311} \& \multirow[t]{2}{*}{186} \& 4,092,933 \& \multicolumn{2}{|c|}{CLASS 137}

\hline ${ }_{122}{ }^{7} 17$ \& - $4,002,744$ \& \& \& \& \& ${ }^{41102}$ \& ${ }_{65}^{15}$ \& 4,092,993

\hline \& 4,0,92,774 \& CLASS 40 \& \multirow[t]{2}{*}{	62	$4,093,438$
65	$4,093,439$	} \& \& \multicolumn{2}{

\hline \multicolumn{2}{|l|}{${ }_{288}^{268}$} \& \multirow[t]{3}{*}{${ }_{697}^{36}$} \& \& \multirow[t]{2}{*}{$$
\begin{array}{ll}
& \begin{array}{ll}
1.021 .893 \\
31.02 & 4,0293 \\
34,092,895 \\
345
\end{array}
\end{array}
$$} \& \& \& \&

\hline \& \& \& CLAss 66 \& \& 121 \& 4,0022937 \& 471 \&

\hline 85 \& 4,002, 748 \& \& 4,092,838 \& 58 \& \& ${ }_{4}^{4} \mathbf{4}, 092929398$ \& 49 \& ${ }^{4}, 003,0001$

\hline ${ }_{34}^{26}$ \& 4,0,02, 70 \& 1 LPT \& CLASS 68 \& ${ }^{50 \mathrm{R}} \quad$ 4,092,896 \& \& 113 \& ${ }_{554}$ \& 4,003, 0000

\hline 345 R \& +,0,022,751 \& CLass 43 \& 4,092, \& ${ }_{29}$ CLASS 87 \& 29 \& 4,092,940 \& ${ }_{615}^{596.2}$ \& 4,0033,000

\hline \& \& 4,092, \& 65 4,093 \& \& \& \multirow[b]{2}{*}{4,092,941} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{${ }_{140}$ CLASS ${ }^{138} 4.093,004$}}

\hline 188 \& 4,092,75 \& 102 4,092,797 \& ${ }_{90}^{78}$ \& 4.092 \& ${ }_{22}^{218}$ \& \& \&

\hline \& \& CLass 4 \& 90 \& ${ }_{\text {coser }}^{\substack{1.816}}$ \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{4,092}} \& \multicolumn{2}{|l|}{CLASS 140}

\hline 2.5 A \& 4,093,415 \& \multirow[t]{2}{*}{| | |
| :---: | :---: |
| ${ }^{3} \mathrm{C}$ | |
| 10 F | $4,093,424$ |
| $4,093,425$ | |} \& 92 \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{123.6 4,03,005}}

\hline \& 4,093,417 \& \& \multirow[t]{2}{*}{(110} \& \& \multicolumn{2}{|c|}{CLASS 115} \& \&

\hline 142 \& 4,093,418 \& CLASS 46 \& \& $11 \mathrm{D} \quad 4,092,902$ \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{18 E $\quad 4,092,946$}} \& ${ }_{3268}^{288}$ \& 4,003,006

\hline \multicolumn{2}{|c|}{class 9} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\begin{array}{c}
41,092,798 \\
4,0927,99 \\
52 \\
\text { CLASS } 47
\end{array}
\end{gathered}
$$} \& CLASS 72 \& CLASS 91 \& \& \& \multicolumn{2}{|c|}{Class ins}

\hline \& 4,092,754 \& \& \& \multirow[b]{2}{*}{${ }^{399}$ 499 ${ }^{\text {4,0,022,904 }}$} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{$\begin{array}{ll}114 \mathrm{PV} & 4,02,98 \\ 118 \mathrm{R} & 4,092,97\end{array}$}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{61 EA $4,093,008$}}

\hline 8 R \& 4,092,736 \& 4,092,800 \& ${ }_{320} 3$ \& \& \& \& \&

\hline \multirow[b]{2}{*}{127} \& 12 \& ${ }_{10}^{16}$ \& 379 4,092 \& CLASS 93 \& \& \& 1.5 \& Re. 29,600

\hline \& 4,092,75 \&	46.12
62	\& CLASS ${ }^{73}$ \& $49 \mathrm{R} \quad 4,092,906$ \& 6 \& 4 \& 32 \& ${ }_{\text {4, }}^{4} \mathbf{4 , 0 9 3 , 4 7 4}$

\hline \& 13 \& $4,092,80$ \& ${ }_{23}^{17 \mathrm{R}} \quad \begin{array}{ll}4,092,8 \\ 4,002,84 \\ 4\end{array}$ \& \% \& so \& 4.092 \& ${ }_{32}^{32 .}$ \&

\hline 2 R \& 4,093, \& 51 \& ${ }_{28}^{23}$ \& 4,003,456 \& \& 4 \& 108 \& 4,093,477

\hline \multirow[b]{2}{*}{${ }_{257}^{180}$} \& 15 \& 85 88 ${ }^{\text {8 }}$ \& 29 \& \& ${ }_{658}^{64}$ \& ${ }_{4}^{4} \mathbf{4}, 022,985$ \& \& 149

\hline \& 4,099,788 \& \multirow[t]{2}{*}{${ }_{108}^{1008}$} \& (100 \& 1.2 \& \multicolumn{2}{|c|}{CLASS 123} \& \multicolumn{2}{|r|}{4,093,478}

\hline \multicolumn{2}{|l|}{CLASS 16} \& \& \multirow[t]{2}{*}{退} \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|c|}{CLASS 150}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multirow[t]{2}{*}{111} \& \& \multirow[t]{2}{*}{(10,} \& \& \& \multicolumn{2}{|l|}{${ }_{52} \mathrm{~J} \quad 4.093$}

\hline \& \& \& \& \& \multirow[t]{2}{*}{${ }^{\text {che }}$} \& $$
\begin{aligned}
& 4,092,9567 \\
& 4,02,957 \\
& \hline, 02959
\end{aligned}
$$ \& \multicolumn{2}{|c|}{ass 151}

\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{4,0922}} \& \& 121 R \& \& \& 4,0,02,959 \& 57 \& 4,093,

\hline \& \& \multirow[t]{2}{*}{${ }^{\text {a }}$} \& ${ }^{134} 14 \mathrm{~A}$ \& ${ }_{40} \mathrm{~A}^{\text {Class }}$ 4,092,907 \& 119 EC \& 4,029296 \& \multicolumn{2}{|r|}{152}

\hline \& \& \& \multirow[t]{2}{*}{170 ${ }^{174}$} \& \multirow[t]{2}{*}{CLASS 9} \& \multicolumn{2}{|l|}{$133 \quad 4$} \& \multirow[b]{2}{*}{${ }_{362}^{240} \mathrm{CS}$} \& ${ }^{4,093,012}$

\hline 107 \& 4,092,764 \& CLass 3 \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{${ }_{1}^{139}$ AT ${ }^{\text {FT }}$}} \& \& 4,093,014

\hline \& 21 \& 234 \& | 304 R | 4 |
| :---: | :---: |
| 314 | | \& 44 4,092,909 \& \& \& \multicolumn{2}{|c|}{CLass 156}

\hline R \& 4,093 \& \multirow[b]{2}{*}{class ss} \& \multirow[t]{2}{*}{} \& ${ }_{4}^{472}$ \& \multicolumn{2}{|l|}{143 B} \& \multicolumn{2}{|l|}{${ }_{95}^{54}$}

\hline \multicolumn{2}{|c|}{CLass 23} \& \& \& \multirow[t]{2}{*}{CLASS 100} \& \& \multirow[t]{2}{*}{退} \& \& ${ }^{4} 4,0033,482{ }^{\text {4, }}$

\hline \& ${ }_{\text {c }}^{4,093,420}$ \& CLASS Ss \& \multirow[t]{2}{*}{} \& \& ${ }^{198}$ \& \& \multicolumn{2}{|l|}{- 4}

\hline ${ }_{284}^{239 .}$ \& 4,0,03,422 \& \multirow[t]{2}{*}{} \& \& (1) ${ }^{\text {3 }}$ \& \multicolumn{2}{|l|}{CuAss 125} \& ${ }_{24.13}^{227 .}$ \& ${ }_{\text {a }}^{4,0033,485}$

\hline 288 FC \& 4,093,423 \& \& \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|r|}{4,092} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 244.16 \\
& \\
& \hline 244.19
\end{aligned}
$$} \&

\hline \multicolumn{2}{|c|}{CLASS 24} \& \multirow[t]{2}{*}{} \& 756 4 \& \& Cuss 126 \& \& \& 4,093,466

\hline ${ }_{6}^{16}$ P8 \& 4,022, 763 \& \& CLASS 74 \& 176 \& \& 126 \& $$
\begin{gathered}
24.19 \\
2459
\end{gathered}
$$ \& 4,093,459

\hline 230 AL \& 4,092,767 \& 226-4,4,093,433 4 \& ${ }_{40}{ }^{\text {R }}$ \& CL \& \& ${ }_{4}^{4.0,022,974}$ \& \&

\hline \multicolumn{2}{|c|}{CLASS 29} \& 4,003, 434 \& ${ }_{41}^{40}$ \& ${ }_{77} 3$ \& 413 \& $4.092,975$ \& ${ }_{31}^{331}$ \& 4,093,422

\hline \& 4,092,768 \& 487 \& \& 93.21 4.0922, \& 270 \& 4 \& 338 \& 4,093,493

\hline ${ }_{263}^{234}$ \& ${ }_{4}^{4,0922.770}$ \& \& \& 283
363 \& \& ${ }_{4}^{4,092,978}$ \& $4{ }^{49}$ \& $4.099,396$

\hline ${ }_{4}^{2015}$ \& 4,092.771 \& $341 \quad 4,092,818$ \& | 625 | $4,022,87$ |
| :--- | :--- |
| 801 | | \& 415.1

426 \& 271 \& \& 4,43 \& +,003,4998

\hline ${ }_{512}^{43}$ \& ${ }_{4}^{4,092,773}$ \& CLass ${ }^{\text {s }}$ \& CLASS 75 \& ${ }_{467}^{461}$ \& \multicolumn{2}{|r|}{4,002,980} \& \multicolumn{2}{|l|}{}

\hline \multicolumn{2}{|r|}{ass 30} \& 23 BA \& \& CLASS 102 \& ${ }_{2.18}$ \& 4,002,981 \& \& 4,093.500

\hline \multicolumn{2}{|r|}{4,09} \& \multirow[t]{2}{*}{$23 \mathrm{R} \quad 4.0$} \& \multirow[t]{2}{*}{${ }_{3}^{0.9} \mathrm{R} \quad 4$} \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|l|}{$\begin{array}{ll}82.1 \\ 214 \mathrm{R} & 4,002 \\ 4,092\end{array}$} \& \multicolumn{2}{|l|}{580}

\hline \& ${ }_{4}^{4}, 092,2$ \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{${ }_{273}^{233}$} \& 4,092,776 \& \multirow[t]{2}{*}{$$
{ }^{125} \text { C } \begin{gathered}
4,092,828 \\
\text { CLASS } 60
\end{gathered}
$$} \& \multirow[t]{2}{*}{(129} \& CLASS 100 \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{${ }^{628} \quad 4.4,0,033,503$}

\hline \& CL \& \& \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| 303.13 $4,022,983$
 $3031.092,986$ |
| :--- |
| CLASS 131 |}} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& $39.02 \sim 40.092 .824$ \& \& \& \& \& \&

\hline \& \& \multirow[t]{5}{*}{} \& CLASS 81 \& CLASS 105 \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}}

\hline \multicolumn{2}{|l|}{1 SD 4 4,092,79} \& \& \& \& \& \& \&

\hline \& 4,092,781 \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \& \& \multicolumn{2}{|r|}{Ass 162}

\hline \& \& \& \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{180 R CLASS 34}} \& \& CLASS 82 \& 22 4,093,4 \& \multicolumn{2}{|l|}{CUASS 134} \& \&

\hline \& \& \multirow[t]{2}{*}{${ }_{51}^{45}$ D 4} \& \multirow[t]{2}{*}{4, 4} \& $\begin{array}{ll}38,35 \\ 389 & 4 \\ 4\end{array}$ \& \& \& $$
\begin{aligned}
& 122 \\
& 158
\end{aligned}
$$ \& 4,0093,0109

\hline \multicolumn{2}{|r|}{4,02, 784} \& \& \& 39,7 4,093,468 \& 104 \& 4,093.472 \& \& 4,093,509

\hline
\end{tabular}

PI 48

CLASSIFICATION OF PATENTS

CLASSIFICATION OF PLANTS

DEFENSIVE PUBLICATIONS APPLICATIONS

GEOGRAPHICAL INDEX OF RESIDENCE OF INVENTORS
(U.S. States, Territories and Armed Forces, the Commonwealth of Puerto Rico, and the Canal Zone)

Alabam		Kentucky	21	Oregon	41
Alaska	2	Louisiana	22	Pennsylvania	42
American Samoa	3	Maine	23	Puerto Rico	43
Arizona	4	Maryland	24	Rhode Island	44
Arkansas	5	Massachusetts.	25	South Carolina	45
California	6	Michigan	26	South Dakota	46
Canal Zone	7	Minnesota	27	Tennessee	47
Colorado	8	Mississippi ...	28	Texas	48
Connecticut	9	Missouri	29		49
Delaware	10	Montana	30	Vermont	
District of Columbia	11	Nebraska	31	Virginia	51
Florida	12	Nevada	32		52
Georgia	13	New Hampshire..	33	Washington	53
Guam	14	New Jersey	34		53 54
Hawaii	15	New Mexico	35	West Virginia	
Idaho	16	New York	36	Wisconsin	
Illinois	17	North Carolina	37	Wyoming .	56
Indiana	18	North Dakota	38	U.S. Air Force	57
Iowa	19	Ohio	39	U.S. Army	58
Kansas	20	Oklahoma	40	U.S. Navy	59

(First number in listing denotes location according to above key. Refer to patent number in body of the Official Gazette to obtain details
(Firrt number in listing denotes lo

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{PATENTS}

\hline \multirow[t]{10}{*}{1
4

4} \& \& 4,093,149 \& \& 4,093,911 \& \& 4,02,948 \& \& 4,093,117 \& \& 4,093,750

\hline \& (4,022,899 \& ${ }_{\substack{4 \\ 4 \\ 4 \\ 4 \\ 4,093,151,150}}$ \& \& ${ }^{4} \mathbf{4}, 093,9198$ \& \& \& \& ${ }_{\substack{\text { S }}}^{4,003,3,120}$ \& \& 4,093,800

\hline \& 4,0,03,382 \& 4,0033,167 \& \& 4,003,933 \& \& ${ }^{4}$ \& \& 4,033,143 \& \& 4,093,943

\hline \& 4,003, 8221 \& 4.093 , 170 \& \& $4.033,94$ \& \& 4,093,147 \& \& 4,033,164 \& 19 \& ${ }_{\text {l }}^{4,093,932}$

\hline \& 4,092,748 \& 4,093,180 \& \& 4,0,03,933 \& \& 4,093,217 \& \& 4,093,230 \& \& 4,0, $, 02,904$

\hline \& 4,002, 783 \& 4,093,183 \& \& 4.033,965 \& \& 4,093,218 \& \& $4.093,241$ \& \& ${ }^{4} \mathbf{4}, 093,01019$

\hline \& 4,092,810 \& ${ }^{4,093,185}$ \& \& ${ }_{4}^{4,093,9044}$ \& \& \& \& 4,003,247 \& \& 4,0933,197

\hline \& ${ }_{4}^{4,0,093,037}$ \& ${ }^{4} 4,0933,200$ \& \& 4,094,005 \& \& 4,093,318 \& \& 4,03,257 \& \& 4,033,49

\hline \& 4,003, 174 \& 4,093,213 \& \& 4,094,006 \& \& 4,093, 432 \& \& 4,093,239 \& \& ${ }^{4,093,998}$

\hline \& 4,003,903 \& ${ }^{4}, 0,093,214$ \& \& ${ }^{4.0990012}$ \& \& \& \& ${ }_{4}^{4,093,265}$ \& 20 \& 4,092, 4

\hline \multirow[t]{30}{*}{\%} \& ${ }_{4,0,02,7,95}$ \& ${ }^{4}, 0,033,222$ \& 8 \& ${ }_{4}^{4,092}$ \& \& 4,093,64 \& \& 4,093,27 \& \& 4,093, 179

\hline \& Re.2,960 \& 4,093,237 \& \& 4.092794 \& \& ${ }^{4}, 0,093,880$ \& \& ${ }_{4}^{4}, 093,313$ \& \&

\hline \& | Re.29,601 |
| :--- |
| 4,092745 | \& ${ }^{4}, 0,033,286$ \& \& 4,022,900 \& 13 \& 4,093,066 \& \& 4,093,352 \& 21 \& 4,093, 7.73

\hline \& 4,0,02, 7 , 7 2 \& 4 \& \& 4,093,025 \& \& ${ }^{4}, 0,093,1126$ \& \& ${ }_{4}^{4,09393,366}$ \& \& 4,0,093, ${ }^{\text {a }}$, 1918

\hline \& 4,0,022,789 \& ${ }^{4} \mathbf{4}, 0933,3,392$ \& \& ${ }^{4}, 0,093,1,187$ \& \& 4,093,612 \& \& 4,093,393 \& \& 4,093,207

\hline \& 4,0,02,796 \& 4.093,330 \& \& 4,093,310 \& 16 \& 40.097785 \& \& 40093,410 \& \& 4,093, 2.22

\hline \& 4,092,798 \& 4,093,351 \& \& 4,033,401 \& \& \& \& 4,093,43 \& \& ${ }_{\text {a }}^{4}$

\hline \& 4,022,799 \& 4,093,357 \& \& ${ }^{4,093,700}$ \& 17 \& \& \& 4,03,494 \& \& 4,003

\hline \& 4,0,022,811 \& 4,093,300 \& \& 4,093,886 \& \& 4,092749 \& \& 4,093,523 \& \& 4,093, 241

\hline \& 4,092,825 \& $4.093,397$ \& \& 4,093,960 \& \& $4,092.762$ \& \& 4,093,529 \& \& 40093,956

\hline \& 4,092,827 \& 4,093,409 \& 9 \& 4.092882 \& \& 4.0922772 \& \& 4,093,637 \& 22 \& ${ }^{4,002,246}$

\hline \& 4,022,888 \& ${ }^{4.093,429}$ \& \& 4,0,02, 2,920 \& \& 4,0927880 \& \& ${ }^{4} \mathbf{4}, 0,093,7275$ \& \& +0,093.425

\hline \& +,002,861 \& 4,093,324 \& \& 4,02,947 \& \& 4,092855 \& \& 4,093,745 \& 24 \& 4,099.874

\hline \& 4,092,869 \& 4.0993 .37 \& \& 4,093, 157 \& \& 4,0928885 \& \& 4,090,7788 \& \&

\hline \& +,002,877 \& 4,0,093,6067 \& \& 4,033,474 \& \& 4,092912 \& \& 4,093,829 \& \& 4,093,098

\hline \& 4,022889 \& \& \& ${ }^{4} \mathbf{4}, 093,356$ \& \& \& \& ${ }^{4}, 0,093,382$ \& \& ${ }^{4.0903,178}$

\hline \& - $4,0,022,8988$ \& 4,093.688 \& \& 4,093, 004 \& \& 4,0929291 \& \& 4,093,835 \& \& 4.093,34

\hline \& 4,0,02,909 \& 4,093,708 \& \& 4,093, 616 \& \& 4.0029351 \& \& $4,093,642$ \& \& 4.093,381

\hline \& 8,029,911 \& ${ }^{4,093,37171} 4$ \& \& ${ }^{4,0,093,715} 4$ \& \& - \& \& -4,093,3999 \& \& 4,0,03,433

\hline \& 4,0,02,926 \& 4,093, 223 \& \& 4,093,762 \& \& 4,0292979 \& 18 \& 4,092,895 \& \& $4.093,515$

\hline \& - \& ${ }^{4} 40093.847$ \& \& ${ }^{4.0093,854} 4$ \& \& 4,002980 \& \& 4.002929 \& \& 4,0,03,7,7115

\hline \& 4,0,02,993 \& 4,093,856 \& \& 4,093,970 \& \& 4,0093,003 \& \& $4.0903,046$ \& \& 4,093,766

\hline \& 4,003,013 \& 4,093,865 \& \& 4,093,983 \& \& 4,093.015 \& \& ${ }^{4,093,034}$ \& \& 4,093, 3 ,20

\hline \& 4,093,027 \& 4,093,866 \& ${ }_{6}^{6}$ \& 4,093,154 \& \& 4,093,024 \& \& ${ }^{4}, 0,093,216$ \& \& 4,093,934

\hline \& 4,093,037 \& ${ }^{4} 4,093,8872$ \& 10 \& \& \& 4,003,034 \& \& 4,093,331 \& \& 4,093,9950

\hline \& ${ }_{4}^{4,0093,072}$ \& 4,093, ${ }^{4,873}$ \& \& 4,093,595 \& \& 4,093,078 \& \& \& \& 4,093,991

\hline \& $4,093,109$ \& 4,0093,885 \& \& 4003,601 \& \& 4,093,092 \& \& 4,093, 382 \& 25 \& 4,092,763

\hline \& 4,093,122 \& 4,093,888 \& 11 \& 4,093,623 \& \& 4,093,093 \& \& 4,093,590 \& \& 4.092859

\hline \& 4,093,123 \& 4,093,892 \& 12 \& 4,029,936 \& \& 4,093,102 \& \& 4,093,739 \& \& ${ }_{\text {a }}^{4.009282893}$

\hline \& 4,093,148 \& 4,093,910 \& \& 4,092,943 \& \& 4,093,115 \& \& 4,093,71 \& \&

\hline
\end{tabular}

DESIGN PATENTS

PLANT PATENTS | $6:$ | 4,258 | 4,259 | 4,260 | 4,261 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DEFENSIVE PUBLICATIONS APPLICATIONS

${ }_{10}^{10}$	$\stackrel{\text { T971,006 }}{\text { T971,003 }}$	17	T971,002	28	T971,001	36	T971,005	48	T971,008	51	T971,007

SUBSCRIPTION ORDER FORM
ENTER MY SUBSCRIPTION TO:

@ \$ Domestic; \$ Foreign.	
	Remittance Enclosed (Make checks payable to Superin. tendent of Documents)
	$\square \begin{aligned} & \text { Charge to my Deposit } \\ & \text { Account No. }\end{aligned}$
	MAIL ORDER FORM TO: Superintendent of Documents Government Printing Office Washington. D.C. 20402

OFFICIAL GAZETTE of the

UNITED STATES PATENT and TRADEMARK OFFICE

The following are malled under direction of the Superintendent of Documents, Governmen Printing Omice, Washington, D.C., 20402, to whom all subseriptions should be mado payable and all communicatlons addressed:
THE OFFICLAL GAZETTE (PATENTS SECTION), isuoed weekly, zabseription 8300.00 per nnum for frot-clast malling, also avallable ass fourth-clase mail at s200.00; foreilsn frrt-clasa mailing rates will be furnished apon request; single copies each, 84.00 domestic, 85.00 foreign. THE OFFICLAL GAZETTE (TRADEMARK SECTION), lanued week
general information coneerning trademarks, price $\$ 1.50$ each.
PRINTED COPIES of PATENTS are furnished by the Patent and Trademark Omee a cents each; PLANT PATENTS in eoior, $\$ 1.00$ each; caplee of TRADEMARKS AND DESIG PATENTS at 20 centes each. Address orders to the Commianioner of Patents and Trademarki, Washington, D.C., 20231.

PATENT AND TRADEMARK OFFICE NOTICES

Patent Cooperation Treaty Information
\qquad of the fees thereunder and the States that may be destgnated In International applications consult the Nothice entitled
"Patent Cooperation Treaty (PCT) Implementation. mation for Prospective Applicants" appearing in the Orficial Gazette of Mas 16, 1978.
May 2, 1978
Lutrellef oinmorn

Lutrelle f. parker
ner of Patents
and Trademarks.

REISSUE APPLICATIONS FILED
Notice under 37 CFR 1.11 (b). The reissue applications listed below are open to inspection by the general public in the indicated Examining Groups and conies may be
obtained by paying the fee therefor (37 CFR 1.21(b)).

4,019,527, Re. S.N. 893,482, Filed Apr. 4, 1978, Cl. 137/ Warren H BLATING FLOW CONTROL VALVE, Burren h. Brand, Owner of Record: Yanway Corporation, Attorney or Agent: al., Ex. Gp.: 341 4,035,197, Re. S.N. 885,050 , Filed Mar. 9, 1978, Cl. $136 / 89$
CD, CDTE BARRIER TYPE PHOTOVOLTAIC CELLS WITH ENHANCED OPEN-CIRCUIT VOLTAGE, AND PROCESS OF MANUFACTURE, Pranab K. Raychaudhuri., Antorney or Agent: Dana M. Schmidt, et al., Ex. Gp.: 114
4,057,717, Re. S.N. 896,953, Filed Apr. 17, 1978, Cl. 364/ 802, TRANSFORMER WITH ACTIVE ELEMENTS, Michel V. Ferry, Owner of Record: International Business Machines Corporation, Armonk N.Y., Attorney or Agent: Maurice H. Klitzman, et al., Ex. Gp.: 236

PATENT NOTICES

Re. 29,383	4,031,127	4,055,370	4,067,369
Re. 29.474	4,032,430	4,055,386	4,067,454
Re. 29,543	4.033.871	4.055,466	4,067,667
D. 237,434	4,033,881	4,055,684	4,067,711
D. 245 5,999	4,034,850	4,056,326	4,067,903
3,665,007	4,035.196	4,056,424	4,0688.017
3.680,696	4,035,878	4,056,536	4,068,051
3,781,936	4.036.416	4,056,712	4.068,069
3,793,279	4,036,963	4,058,970	4,066,086
3,867,365	4,037,288	4.057,763	4,068,094
3,893,682	4,038,605	4,058,312	4,068,136
3,911,242	4,039,401	4,058,494	4,068,223
3,920,579	4,040.523	4,059,150	4,068,260
3,920,717	4,041,781	4,059,153	4,068,265
3.922,148	4,042,811	4,059.166	4,068,327
3,928,001	4,043.054	4,059.428	4,068,3+0
3,932,301	4,043,535	4,059,684	4,068.525
3,933,702	4,044,109	4,059.706	4,068,904
3,935.195	4,044,946	4,060,492	4,069,062
3,935.787	4,045,004	+,060,660	4,0699.397
3,952,239	4,045,119	4,060,713	4.070 .243
3,954,767	4,045,629	4,060,.867	4,070.256
3,958,041	4,045,946	4,061,580	4,070.427
3,971,010	4,046,003	4.061.622	${ }^{4,070,706}$
3,976,337	4.046,244	4,061,776	4,071,029
3,977,568	4,046,871	${ }^{4.061,958}$	4,072.123
3.978.712	4,046,951	4,062,916	${ }_{4}^{4.072,363}$
3,984,455	4,047,009	4.063,357	4,072,934
3,998,552	4,047.328	4.063.632	+,073,003
4,006,544	4,047,547	4,064,216	4.073.334
4,008,690	4,048.506	4,064.450	4,073.412
4,010,595	4,048,983	4,065, 197	4.073,668
4.011 .038	4,049,497	4,065.381	4,074.146
+.012.497	4.050 .173	4,065.402	4,074,575
4,015,192	4.050.237	4,065.406	4.074 .848
4,017,839	4,050,938	4.067 .455	4,075,122
4,019.033	4,051.128	4,065,502	4,075.165
4,020,270	4,051.201	4,065,576	4,075.280
4,021,494	4,051,347	4,063.601	4.075 5,441
$4,023,885$	4,051.511	4,065,612	4,075.461
4,024,312	4,051,905	4,065,799	4,075,613
4.024,480	4,052.170	4,065,858	4,075,695
4,025.353	4,052,434	4,065,980	${ }_{4}^{4,075,849}$
4.026.680	4,053,330	4,066.487	4,076,017
4,026,911	4.053.475	4.066,628	4,076,122
$4,026,925$	4,053,629	4,066,730	4,076.404
4.027.676	4,054,175	4,066,850	4.076.559 4.076 .629
4,027,855	4,054,499	4,067,021	+4.076,629
4.028.292	4.054,530	${ }_{4}^{4,067.157} 4$	${ }_{4,076,871}^{4,07607}$
4,030.210 $+, 030,937$	${ }_{4,055,137}^{4,055,035}$	${ }_{4}^{4.0677,242}$	4,06.s71

3,364.929-Walter 8. Ide . William H . Nic erson, Tuckahoe, X.Y. METHOD FOR ADMINISTERING ergun, Tuckahoe,
MUSCLE RELAXANT DRUG. Patent dated Jan. 23, 1963. Disclaimer Aled A
Burroughs Wellcome Co.

Hereby enters this disclaimer to all clatms of said patent.
-
Ester. and Willia
3.565,000-Walter S. Ide, Eastchester. and William H. Nick-
erson, Tuckahoe, N.Y. NEUROMUSCULAR BLOCK Mositorivg APPARATUS. Patent dated Feb. 2L, 1971.
MOM,
Disclaimer fled Apr. 20, 1978, by the assignee, Burroughs Disclaimer flied Apr. 20, 1978, by the assignee, Burrough
Wellcome Co. Hereby enters \qquad
3.612.080.-John E. Colyer, Longueville, New Solth Wale Australla. PERIPHERAL NERVE STIMULATO Patent dated Oct. 12. 1971. Disclalmer flled
1978, by the assignee, Burroughs Wellcome Co
Hereby enters this disclalmer to all clalms of sald patent.
484.-John E. Colver, Longuerille, New South Wales, Aiguration Palator output circuit confled Apr. 21, 1978, by the assignee, Burroughs Wellcome Here

3,659,285.-Ralph H. Baer, Manchester, William T. Rusch, Hollis, and William L. Harrison, Naghua, N.H. TELEHISION GAMING APPARATUS AND METHOD. Patent dated Apr. 25, 1972. Disclalmer filed Apr. 17, 1978, by
the assignee, Sanders Associates, Inc. $\underset{\text { sald patent. }}{\text { Hereby }}$

3,682,162.-John E. Colyer, Longuerille, New Soutb Wales, Australla. CMBINGE NEEDLE Patent dated Aug. 8, 1972 IIC SYRINGE NEEDLE. Patent dated Aug.
Disclaimer filed Apr. 20,1978 , by the aseignee, Burroughs Disclaimer
Wellcome Co.
Herebs enters the declater to all clatme of sald patent.

Patents Available for Licensing or Sale

 Huntington. READING STAND. Dorothy Domino, 5283 East 3,680.237. Fresno. OUT-DOOR ILLUNMINATED SIGN. John G. 3.734070 IMPROVEMENTS IN OR RELATING TO THE
 nedi. Mank M1was,
Madhya Pradesh, Inda.
 3.884.465. WEIGHT FOR BOWLERS. Leon Milsner, 90
 3.953.933. REFRIGERATION METHOD AND REFRIG.
ERATION APPARATUS FOR CARYING OUT THE

 $4,004,820$ TRANSPORT CART. Kurt Weber. Correspond
nce to
Rider Machine Works, Lita. CH- 8406 Winterthur.
 4.040. 17 . METHOD FOR THE REDUCTION OF IRON
ORES

 4.054.234. COMBINATION GARMENT HANGER. Joh
Chomas. 2105 Tomlingon Ave., Bronx. N.Y. 10461 .

 4.064.880. SANITARY TIVBULAR NAPKIN FOR MALES
exter J. Logan, P.O. Box 1012, West Covina, Calli., 91793 . 4.068.087. PEA SHELLING DFVICE. Rolza
Cent Criterall square No. 5. 1755 Jefferson
Vas., 22202.
4.067.451. ROLL FLIP MACBINE. Willam L. Winters

 Drelser Loop, Bronx, N.Y. 10475.
CUO82,977. SOLAR COLLECOR AND DRIVE CIR.
CUTTRY CONTROLMEANS. George L. Haywood, Box 2602, vergreen, Colo., 80439 .
 241,978. BоАт.
3.989,002. MOTOR POWERED WATERCRAFT FOR RID-
ING IN STANDING POSITIO.

The followng two patenta are offered by John 0 . Rlchards,
Mo M111 Circle, Apt. \#99, Alllance, Ohlo, 44601 .
.578,840. REVOLVING REFLECTOR
3835,507. ROPE HOLDING DEVICE

 3,740,599. dyNamoelectric machine assembly. 3,743,872. DYNAMOELECTRIC MACHINES AND ASSEM.
3,848,837. MOUNTING ADAPTER MEANS FOR DYNAMO-
$4,032,807$. INSIDE-OUT INDUCCOR MOTOR/ALERNA.
4,063,060. METHODS OF MAKING TORSIONAL VIBRA.
TION ISOLATING MOTOR NOUNTING SYS.
TEMS AND ARRANEEMETS. Applcations for Hicense under the followlng patent should
be addresed to. Patent Counsel Drive Syitem Department 24153 . Electric Company, 1501 Roanoke Blvd., Salem, Ya., 3,862,685. DATA PROCESSING SYSTEM HAVING PYRA-
 Diviston, General Electric Company, 6901 Elmwood Avenue.
3,663,906. ELECTRCAL CIRCUIT BREAKER WITH MAG-
3,812,404. NCREASING THE INTTIAL FLOW RATE IN
 $4,025,886$. ELECRRICAL CIRCUIT BREAKER WITH
 3,320.777. AUTOMATIC WASFING MACHINE INCLUDING 3,727.434. ADDITIVE DISPENSING SYSTEM.
3,738,767. AUTOMATIC ICEMAKER INCLUDING RE3,760,612. ADDITIVE DISPENSING SYSTEM.
3,767,334. HERMETIIALLY SEALED COMPRESSOR AS.
3,785.566. SEALING SYSTEM FOR washing machine. 3,794.443. WIDE DISPERSON FAN IMPELLER.
3.903,392. DUAL CONTROL COORDINATING APPARATUS
FOR A REFRIGERATOR. 3,808,394. WATER-DISPENSING SYSTEM.

3,926,001. HOVABLE $\begin{gathered}\text { FREEZER. }\end{gathered}$ DECK FOR A TOP-OPENING 4,062,205. REUSABLE WATER SOFTENER SYSTEM FOR 4,066,393. REUSABLE WATER SOFTENER SYSTEM FOR 4,068,815. SELF LOCKing support mechanism. 4.069,596. AIR SEAL ARRANGEMENT in A CLOTHES
 3,195,082. ELECTRICAL REACTOR.
3,242,879. RAILROAD TRANSPORTATION OF LARGE 3,349,357. TRANSFORMER CORE REINFORCING PLATE. 3,387,208. IMPEDANCE COMPENSATED HIGB PRECIHV CURRENT TRANSFORMER HAVING RIGID
SECONDARY EFE BOLT AND FLEXIBLE
PRIMARY CABLES IN HV TANE. 3,528,046. INTERLACED DISK WINDING WITH IM3,544,847. FLIP-FLOP LIGHTNNG ARRESER WITH 3,559,457. HYDROGEN DETECTOR.
3,579,165. WINDING CONNCETION FOR SINGLE PHASE 3,619.708. SURGE VOLTAGE ARRESTER ASSEMBLY
HAVING INTEGRAL CAPACRTR
ING AND CONECTING MEANS. 3.714.318. METHOD OF MAKING A SEALING GASKET. $3,819,301$. SINGLE VALVE VAPOR PUSH PUMP.
3,820,466. MAGNETIZED CRANE RAIL TROUGH-ANTI-
CONTAMINANT TROUGH. 3,834,835. DOUBLE VALVE VAPOR PUSH PUMP. 3,859,568. OVERVOLTAGE SUROE ARRESTER WITH IM.
PROVED VOLTAGE GRADING CIRCUIT. 3,859,569. OVERVOLTAGE SURGE ARRESTER WITH IM. 3,913,056. VARISTORS WITH PATTERNED ELEC4.003.653. METHOD OF PRODUCING COLOR SLIDES
FROM BLACK AND WHITE ORIGINALS.

 4,078,095. SLURY PROCESS FOR COATNG PARTICLES
UPON THE VIEWING-WINDOW SURFACE OF A CATHODE-RAY TUBE.
4,078,206. DIFFERENTIAL AMPLIFER.
4,078,207. PUSHPULL TRANSISTOR AMPLIFIER WITR
DRIVER CIRCUTRY PROVIDING OVER
CUREET PROTECTIOXR 4.078,212. DUAL MODE FREQUENCY SYNTHESITER FOR 4,078,247. INVERTER CIRCUIT CONTROL CIRCUIT FOR
PRECLDING SIMUTANEOUS CONDUC-
TION OF THYRISTORS. 4,079,282. PHOTOTUE RAAING APERTVRFD FLEC.
TRODE RECESSED IN CUPSHAPED ELEC4,079.286. GRID HAVING REDUCED SECONDARY FMIS
SIO CHARACTERTSTICS CNDDELECRON
DISHARGE DEVICE INCUDING SAME. 4,079.293. SWITCHED MODE
WVTH ELIMMNATION OFICAL FEDAMPLIFIFR
WNG. 4,079,295. POWER SHPPLY ARRAGFMENT WITH MINI-
MUM
LOADS. 4.079,325. MICROWAVE FREQUENCY DISCRIMINATOR 4,079,411. DIFFRACTIVE PRASE FILTFR RAAING NEAR
FFLLD FRAEELFNGTH DEPENDENT FOCUS-
IVG PRORERTIES. 4,079.424. AUTOMATTC TRANSIENT BEAM CURRENT 4,079.455. MICROPROCESSOR ARCHITFCTURE. 4,079.456. oUTPUT BUFFER STNCHRONIZING CIRCUIT
HAVING SELECTIVITY VARIABLE DELAX

June 13, 1978 U. S. PATENT AND TRADEMARK OFFICE
971 O.G. 17

4,079,522. APPARATUS AND METHOD FOR CLEANING
4.080,539. Level shift circuit.

4,050,571. APPARATUS FOR MEASURING THE CUR-

4,080,626. DISCONTINOUS MOTION SPECLAL EFFECTS
4,080,630. LINE SCAN CONVERTER FOR AN image dis-
4,080,641. GROUND FAULT DETECTOR
4,080,722. METHOD OF MANUFACTRING SEMICON-
GTHOD OF MANUFACTVRING SEMICON.
DUCTOR DEMICES HADING
HEAT CAPACITOR AND/OR COPPER HEAR
SINK.
4,080,763. SKylight frame construction.
4,081,721. CONDUCTION OVERLAP CONTROL CIRCUIT
FOR SWITCHED OUTPUT STAGES.
4,081,722. SIGNAL PROCESSOR FOR SWITCHED VERTI-
4,081,7,5. LOW DISTORTION SIGNAL AMPLIFIER AR-

Disclaimer and Dedication

4,002,911.-Godfrey Seubold Hounsfleld, Newark, England. DATA ACQUISITION IN TOMOGRAPHY. Patent dated Jan. 11, 1977. Disclaimer gled Apr. 28, 1978, by the
assignee, EMI LIMmited. assignee, EMI Limitted
Mereby disclalms and dedicates to the Public the entire re-
maining term of all claims of sald patent.

National Technical Information Service
Governaent-Owned inventions
Notice of A tailability for Licensing
The Inventions 1 sted below are owned by the U.S. Govern-
ment and are avallable for domestic and possibly forelgn ment and are avallable for domestic and possibly forelgn
Ithensing in accordance with the licensing pollcles of the
agency-sponsors agency-sponsors.
Coples of the
Coples of the patents cited are avallable form the Commls.
sioner of Patents and Trademarks, Washington. D.C. 20231. sloner of Patents and Trademarks, Washington. D.C. 20231,
for $\$.50$ each. Requests for coples of patents must include the
patent number.

Coples of the patent applications can be purchased from the
National Technical Information Service (NTIS). Springfild. Sational Technical Information Service (NTIS), Springield,
Va. 22161 for $\$ \$.00$ ($\$ 8.00$ outside North American Continent). Requests for coples of patent application must include the Patent Appllication number. Cladms are deleted from patent
application coples sold to the public to arold premature disclosure In the event of an interference before the Patent and Trademark Office. Claims and other technical data will usually
be made avallable to serlous prospective llcensees by the be made avaliable to ser
agency whtch fled the case.
Requests sor iliecening information on a particular invention
should de directed to the addreas clted for the agency-sponsor. ress clted for the agency-8,
Docalas J. Cupio Patent Program Coordinator,
National Technical Information Service. u.s. Defartment of aghiculture Research Agreements and Patent Branch, General Services Rivision, Federal Bldg., Agricultural Research Service,
Hyatteville, Md. 20782
Patent appllcat10n 853,717. Precooked Potato Products. Flled
 Patent 4.061,094. Mannetic Seed Dellsery Autodbble Planter.
Flided Aug. 19; 1976. Patented Dec. 6, 1977. Not avaliable Patent 4.072.869. Prenaratlon of Protetn Yoolates from Saf-
fower Seeds. Filled Mar. 7, 1977. Patented Feb. 7, 1978. Not ational Defaryest of Commerce Vational Technical Information Service
$\mathbf{5 2 8 5}$ Port Royal Road, Springfeld. Va. 22161
Patent application 851, 326. Frequency Stabilization Utilizing
Multippe Modulation. Filed Nov. 14, 1877. Patent applleatlon 870.384 . Frequency Stabillzing System and
Method for Beam Type Device. FYled Jan. 18, 1978. U.s. department of health, Edecation and Welfare Natlonal Instltutes of Health, Chief, Patents Bran Patent applicatlon 823.186. Random Phase Difuser for Reflec-
tive Imaing. Flled Auk. 9 , 1977.

 putesable STIS.
avalla,
Pa, 1976. Pat

PATENT EXAMINING CORPS RENE D. TEGTMEYER, Assistant Commissioner william feldman, Deputy Assistant Commissioner CONDITION OF PATENT APPLICATIONS AS OF MAY 6, 1978
chemical examining groups

Intill Po and Oxy; Quinones; Actas, Carboxylc Acla Esters: Nid

milectrical examining groups

mfchanical. examining groups

Palents
Plunt
Patenis.
\cdots

Re. 29,664
HYDRAULIC PULLEY APPARATUS
Charles Joeeph Kuhn, Lujunga, Calif., assiguor to Kansas Jack, Inc., McPherron, Kans.
Original No. 3,589,680, dated Jun. 29, 1971, Ser. No. 738,450, Original No. 3,589,680, dated Jun. 29, 1971, Ser. No. 738,450,
Jun. 20, 1968. Application for reissue Sep. 5, 1972, Ser. No. ${ }_{286,182}^{\text {Jun. } 20,1968 \text {. Appication for reissue }}$
U.S. Cl. 72-444
Int. Cl. ${ }^{2}$ B21D $1 / 14$
Claims

1. A pulley apparatus adapted to rest on a floor comprising:
a frame having a base and an upper vertical stanchion; a frame having a base and an upper vertical stanchion attachment means located on said base;
hase above said attachment means and having a piston rod
bited axially movable therein and extending out of one end of the cylinder for substantially horizontal reciprocation; a first pulley rotatably mounted on the end of said pisto
for substantially horizontal reciprocation therewith;
a second pulley rotatably mounted on said frame above said hydraulic cylinder, said first pulley adapted to travel in a direction away from said attachment means and said second pulley;
means connec
means connected to said frame adjacent said second pulle
adapted for anchoring adapted for anchoring said frame relative to said floor; exible chain means removably connected at one end to said attachment means, said flexible chain means further ex-
tending around said first pulley in one direction and tending around said first pulley in one direction and
around said second pulley in the opposite direction, with around said second pulley in the opposite direction, with
the other end adapted to be attached to a workpiece; and selectively operable lock means mounted on said frame adjacent said second pulley for preventing travel of said chain in a direction toward said workpiece whereby, upon
extension of the piston rod, the displacement of the first pulley draws the flexible chain means over the two pulleys causing the end of the flexible chain means attached to the workpiece to be displaced toward the second pulley in a direction opposite that of the first pulley

Re. 29,665
 APPARATUS FOR EJECTING A M

Frederick E PLURALITY OFing Carl W. Sundberg, Jr Chatham, both of N.J., and Joseph E. Hayes, Jr., Woodiand Park, Colo., assignors to Gusmer Corporation, Old Bridge,
N.J. Original No. 3,876,145, dated Apr. 8, 1975, Ser. No. 435,685, Jan. 23,
771,810

Int. Cl. ${ }^{2}$ B05B $15 / 02$
U.S. CI. 239-112

$$
15 / 02
$$

1. Apparatus for ejecting a mixture of a plurality of liquids 18 Claim comprising a mixing chamber having an outlet opening and a plurality of spaced inlets which are spaced different distances from said outlet opening, means for separately introducing different liquids into the chamber through said inlets, a plunger reciprocable in the chamber between forward and rear posi tions, the differently spaced inlets communicating with the
chamber and with each other in said rear position of the plunger, and means sealing against the plunger in the forward

REISSUES

JUNE 13, 1978
e original patent but forms no part
position of the plunger to seal said inlets from each other, the aid forward position of ther being forward of all said inlets in sid inlets in pait rear of the plunger and being rearward of all of said plunger and sealing means being an elastic deformable

which said plunger reciprocates with an interference fit, said plunger being in sealing contact with said throat in said forward position and exposing all said inlets to each other in said rear position, said forward end of said plunger being disposed on oppo-
site sides of said throat in said forward and rear positions said site sides of said throat in said forward and rear pod
inlets being disposed on opposite sides of said throat.

Re. 29,666
ELECTRICAL CONTACT TERMINAL HAVING IMPROVED WIRE-RECEIVING SLOT Charles Edward Reynolds, Mechanicsburg, and John Clinton Swarth, Harrisbure, both of Pa, assignors to AMP Incorpo rated, Harrisbarge, Pa.
Apr. 18, 1975. Application for reissue Feb. 25, 1977, Ser. No. Apr.
772,207

Int. Cl. ${ }^{2}$ H01R 3/04
U.S. C. 339-15

II. In an electrical contact terminal of the type intended for application to one end of a coil spring conductor, said terminal contact portion said conductor-receiving pertion berition and a U-shaped in cross-section and comprising a web and sideralls said contact portion extending from said web at one end thereof, said sidewalls having parallel free edges which are remote from said web, each of said sidewalls having a wire-receiving slot means ent to said tern from its free edge towards said web, the improveent to said terminal comprising:
reverse fold in each of said sidewalls extending parallel to the axis of said conductor-receiving portion whereby each of said
sidewalls comprises a pair of parallel plate-sections connected by one of said folds said fold in each sidewall constituting said free edge thereof, said slot means in each sidewall comprising a slot in each of said plate-sections, whereby,
upon insertion of an end portion of said coil spring into said slot
means edge portions of soid slot means will engage, and establish means edge portions of soid slot means will engage, and establish electrical contact with said wire, and said contact portion
extend from soid contact portion parallel to the axis thereof.

Re. 29,667

Kermit I. Harner, Whedbor, Conurn, meliger to Ualted Technotogles Corporation, Hertiord, Conn.
Original No. 3,809,490, darted May 7, 1974, Ser. No. 356,648 May 2, 1973. Application for recieve Apr. 26,1976 , Ser. No.
680,623 U.S. C. 415-28

9 Claims

Re. 29,669

4HYDROXY-1,2-BENZOTHIAZINE,3-CARBOXAMIDES Joeeph G. Lombardino, Niantic, Conn., assignor to Pfizer, Inc., Now York, N.Y. Original No. 3,853,862, dated Dec. 10, 1974, Ser. No. 353,607, Apr. 23, 1973. Application for reisue Nov. 30, 1976, Ser. No.
U.S. C. 544-49 Int. C1. ${ }^{2}$ C07D 279/02

1. A process for the preparation of a compound of the formula:

wherein \mathbf{R}_{1} is selected from the group consisting of phenyl; monosubstituted phenyl wherein said substituent is selected from the group consisting of fluoro, chloro, methyl and me yl-2-pyridyl, and 5 -methyl-3-isoxazolyl; R_{2} is alkyl containing from 1 to 3 car
\mathbf{X} is a substituent selected from the group consisting of hydrogen, methyl, methoxy, fluoro, chloro and bromo which comprises contacting a compound of the formula:
cose
wherein R_{3} is alkyl containing from 1 to 3 carbon atoms, wit a metal bydride selected from the group consisting of alka and alkaline carth metal hydrides, in a reaction-inert solvent a $50^{\circ}-150^{\circ} \mathrm{C}$.

MULT-COLOR Re. 29,670
MUTICOLOR ACOUSTOOPTIC MODULATOR Richard A. Spaulding, Rochester, N.Y., assignor to Eestman
Kodak Company, Rochester, N.Y. Original No. 3,783,185, dated Jan. 1, 1974, Ser. No. 221,668, Jan. 28, 1972. Application for reissue Dec. 17, 1975, Ser. No 641,470 U.S. C. 358 Int. C. ${ }^{2}$ H04N 5/84, 9/12

1. An apparatus [including an acoustooptic cell] for [mod ulating and] diffracting source light of different wavelength [impinging on said cell] into a composite, collinear output beam of light comprising a selected number of the different wavelengths present in said [impinging] source light, the [combination] apparatus comprising.
source light:
electrical-to-acoustical transducer means operatively attached [thereto] to said cell; [means signals fin acerating a [plurality] number of electrical
sidance with a] correeponding to the so signals [in accordance with a] corresponding to the se-
lected number of wavelengths in the collinear output [beams] beam, each signal being of a predetermined different fixed frequency selected to couse diffraction of at
least a portion of light of each of the selected wavelengths along a common output axis; and
means for applying said electrical siguals to said transducer means to form acoustic waves in said cell which diffract said source light [impinging on said cell] to form said composite, collinear output beam of light of said selected number of different wavelengths.

PLANT PATENTS

GRANTED JUNE 13, 1978
Illustrations for plant patents are usually in color and therefore it is not practicable to reproduce the drawing.
impatiens plant
James C. Mikkelsen, Ashtabula, Ohio, assignor to Mikkelse nc., Ashtabula, Ohio

Filed Apr 12,1977 Ser. No 786
U.S. C. Plt.- 68

Int. Cl. ${ }^{2}$ A01H $5 / 00$
A new and
he cultivar name Freedom and particularly y plant known by
uniqueness by the Freedom and particularly characterized as to self-branching characteristics; soft pink flower color, green foliage with distinctive, variegated zones of yellow, color; separated top and lower flower petals, with the color in the throat being of a deeper tone than the petals; excellent outdoo growth characteristics, and excellent keeping an outcor potted plant.

4,263

Charles Lyle Kinney, 1356 Siskiyou, Medford, Oreg. 97501 Filed Jul. 19, 1977, Ser. No. 817,101
U.S. CI. PIt.- ${ }^{-36}$ Int. Cl. ${ }^{2}$ A01H $5 / 03$
1 Clain , shown and described herein, distinguished principally from 1 Clain rowing seasong a substantially solid red color throughout the class, substantially as shown and described, characterized right yellowish, with little or no purplish tint and having very particularly by high centered, recurrent flowers of light yellow slight yellowish undercoat when ripe, having substantially coloring which are long lasting on the plant until dropping and thicker and tougher skin, and having a rounded shape more grown on a vigorous plant with abundant foliage and virtually
nearly similar to the standard Doyenne Du Comice.
no thorns which can grow well in reduced light.

PATENTS

GRANTED JUNE 13, 1978

PATENTS

GRANTED JUNE 13, 1978
ERRATA

For	See
CLass	Patent NO.
128-294	4,094,020
042-090	4,094,098
072-238	4,094,174
400-161.4	4,094,397
431-202	4,094,632
544-026	4,094,872
544-243	4,094,873
544-258	4,094,874
568-802	4,094,912
568-778	... 4,094,913
568-862.	... 4,094,914
542-422.	... 4,095,023
526-001.	... 4,095,031
526-011.1	... 4,095,032
526-090.	... 4,095,033
235-462	... 4,095,091
235-304.1	... 4,095,094
235-419.	... 4,095,095
235-463.	... 4,095,096
340-147 MD 4,095,239
358-288. 4,095,248

registering with the in assemblies one cam having a pair of opposed cam surfaces for registry
with forefinger and means biasing said
against said cams;
reversible electric motor within said howsing position axial output shaft;
gear means interconnecting said cam shaft and output shaf; a power source;
a switch means within said housing; and
switch means and motor; may be activated in one direction for a short period, said cams rotating in one direction moving said finger and position;
posctivating said switch means stopping said fingers to hold said object;
successively activating said switch for a short period in the opposite direction reversing said motor, said cams rotar
ing in the opposite direction permitting said thumb and finger assemblies to move toward a release position, releasing said object, deactivating said switch stopping said fingers in an open position.

4,094,017

XNEE JOINT PROSTHESIS WITH
Larry Stanford Matthews; Herbert Kanfer, and David Ansel Sonstegard, all c// Howmedica, Inc., 235 E. 42nd St., New
York, N.Y. 10017 Filed Feb. 16, 1977, Ser. No. 768,952

U.S. C. 3-1.911 | Int. C.2. ${ }^{2}$ A61F $1 / 24$ |
| :--- |

hereby substantially total contact is maintained between the idge and facets on the patellar component and the trough ubstantially throughout the entire range of movement of the rosthesis, the femoral and tibial components being made of a ar component being made of a very strong and wear-resistant plastic material, and patellar attaching lugs on the anterior of the patellar component for connecting it to the patella.

BOTTOM DOUCHE FOR FLUSH TOLLETS
 ohannes Bemthin, Bremerthaven, Germany, assignor to MFB Neuwerk GmbH, Bremerhaven, Germany Filed Jan. 5, 1976, Ser. No. 646,666
 Claims priority, application Germany, Jen. 7, 1975, 2500345 U.S. $C . \longleftarrow 7 \quad$ Int. Cl. ${ }^{2}$ E03D 9/08

1. A bottom douche for flush toilets comprising opposed arms, one for each side of the toilet, and each arm being supported with one of its ends on the toilet; oppositely disposed, at the free ends of said arms duct means for pozzesing carried at the free ends of said arms duct means for passing water
through said arms to said nozzles; a handle provided on the through salet, and a linkage connecting said handle and said arms, the
to said linkage including a rack-and-pinion drive attached to the toilet seat and linking said handle to said arm and nozzles and said rack-and-pinion drive causing the arms to swivel about a horizontal transversal axis by rolling of the said pinion means a slide surface supporting the pinion means forwardly of said rack means whereby the pinion means after revolving on said rack means exercises a shifting movement in horizontal direction by sliding on said slide surface under the action of said handle.
2. A knee joint prosthesis comprising a femoral component, a tibial component, coupling means connecting said femoral
and tibial components for movement relative to each other said coupling means including a pair of spaced substantially spherically curved condyle runners, a femoral attaching mean
in the top of the femoral component, the tibial componen in the top of the femoral component, the tibial componen
having a base, tibial connecting means on the bottom of the base, the coupling means also including a pair of spheriodall curved spaced parallee concave shoes on the base having upper
surfaces intimately mating with the condyle runnes for surfaces intimately mating with the condyle runners fo
smooth relatively sliding movement between them a pair broadly inclined and smoothly merging anterior and superior extensions of the condyle runners on the femoral component, the extensions smoothly merging with each other to form a substantially circular arcuate trough disposed midbetween and curvature slightly posterior and somewhat superior to the center of movement of the femoral component relative to the tibial component, a patellar component, the posterior portion of the patellar component having a concave arcuate ridge fo
substantially matching the circular trough, the patellar composubstantially matching the circular trough, the patellar compo which substantially match the lateral sides of the extensions

4,094,019
RETRACTABLE TOILET BOWL ASSEMBL Cont Moore, Fairrier, Pa., and Paul N. Levesque, Bristol, Conn., assignors to Altair, Inc., Plymouth, Conn. and American Sterilizer Company, Erie, Pa.
Filed Jul

Filed Jul. 29, 1976, Sar. No. 709,941
Int. Cl. ${ }^{2}$ E03D $1 / 00$ 3/00, 5/00
U.S. Cl. $\leftarrow 312$

7 Claims

1. In a toilet bowl assembly, a base for rotatahly supporting and communicating with an element having a cylindrical sur
bowl having up and down positions and secured to said element and emptying thereinto, a valve element axially aligned with and fixed to said element, means for delivering water from said valve element to said toilet bowl, said valve element
in the down position of the toilet bowl communicable with a in the down position of the toilet bowl communicable with a and abutting relationship with and communicating with said valve element and operable to deliver wetting action flow when the toilet bowl is moved from its up position.

URINE SPECIMEN COLLECTOR
Howard Franklin, 3365 Chisholm $\mathrm{Tr}_{\text {r., }}$ Boulder, Colo. 80302 Filed Aug. 26, 1976, Ser. No. 717,580 U.S. Cl. 128-294

prevent the movement of air therebeneath when the sheet is in place on the surface of the water in the pool, said means com rising a depending skirt disposed along the periphery of said while the sheet is supported on the pool water by said strap and clip members, the strap members of each pair being super posed, one above and one below the sheet, rivet means attach ing the common ends thereof together, the sheet having plurality of slots formed therein for the threading therethroug of the strap members below the sheet and subsequent connec of said complemental fastening means.

4,094,022

APPARATUS FOR THE REMOVAL OF WATER FROM SWIMMING POOL DUCT Weith Hil Rotano, 10 Woodiside DT, and Ronad L. Conte, 6 Filed Nor. 22, 1976, Ser. No. 743,685

Int. C.' ${ }^{\text {EOSH }}$ 3/I6: EO3B
U.S. C. $4-172.17$

1. A urine specimen collector comprising:
a first tube closed at its lower end and having a mouth at its
a second tube disposed alongside said first tube and open at its lower end;
a duct positioned for passing an ov
first tube into said second tube:
lirst tube into said second tube;
and means projecting downwardly within said first tube and and means projecting downwardy within said first tube and
having a lower end spaced above the the lower end of said first tube and below said duct for enabling retention of only a
tube.

SWIMMING POOL COVER
Robert A. Rapp, 5033 Maiden La., Santa Rosa, Calif. 95405
iled Feb. 3, 1977, Ser. No. 765,419
U.S. C. $4-172.12$

1 Claim

1. A swimming pool cover comprising a flexible pliable 1. A swimming pool cover comp to substantially cover the
plastic sheet having a size and shape
surface of the water within a pool, a plurality of pairs of strap surface of the water within a pool, a plurality of pairs of strap members, each pair having common end portions attached to 7 Claims disattachable complemental fastening means attachable to- a piping for communication with a sewer line and provided gether to form a closed strap member loop, a clip member for with a trap above said passage and with an upper rim portion each such loop to secure the same directly to the side wall of on which a seat that is hinged to the bowl is adapted to rest each such below the pool deck, said sheet having means to with a normal pool of water being in the bowl above the trap
so as to provide a water seal to prevent any gases from entering into the bowl from the sewer line; a ventilating arrangement for removing odors from the bowl comprising a suction line communicated with the interior of the bowl when the seat is
rested on the rim portion, a power driven suction blower unit mounted adjacent the bowl and having an inlet end connected to the suction line and having an outlet and an exhaust tube connected to said outlet and having a portion positioned verti-
 common drive trans
transmission means coupling means actuatable for operatively coupling and uncoupling the individual motion transmission means with the common drive transmission means, and
to the coupling means for uniselectively actuating the coupling means for coupling the common drive transmission means with a selective individual motion transmission means and for simultaneously preventing the coupling of the common drive transmission means with the remaining corresponding motion transmission means, said common linear tension means operatively interconnected with the coupling means for limited range actuating displacement for controlling the coupling of such common drive transmission means with only one such motion transmission means at a time, whereby to control such selective relative positional movement.

4,094,025
WATER MATTRESS
cally within the bowl with said vertical portion having an elbow positioned within the bowl trap and provided with a
free terminal outlet portion positioned behind the trap and free terminal outlet portion positioned behind the trap and having opening means disposed in arrangement with the pool of water so as to form a trap in the exhaust tube whereby odors
from the bow are conveyed directly to the discharge passage from the bowl are conveyed directly to the discharge passage
of the bowl for passage to the sewer line while the normal water pool in the bowl provides a water seal to prevent any
sewer gases from entering the exhaust tube through the elbow sewer gases from entering the exhaust tube through the elbow.

4,094,024

SYSTEM FOR CONTROLLING RELATIVE MOVEMENT OF PORTIONS OF A BED
Roland A. Benoit, Daniecion, and Edmund Guillot, Putnam, both of Conn., meelgnors to InterRoyal Corporation, New York Filed Aug. 30, 1976, Ser. No. 718,507
Int. Cl. ${ }^{2}$ A61G $7 / 10$ US. C1. 5-66

WATER MATTRESS
an Nystad, Amundsvingen 16, 5093 Uset, Norway
Filed Jul. 12, 1976, Ser. No. 704,556 Claims priority, application Norway, Jul. 30, 1975, 752682 U.S. Cl. 5-365 Int. Cl. ${ }^{2}$ A47C 27/08

1. System for controlling selective relative positional movement of portions os a bed structure with
supporting bed base frame which comprises:
a plurality of independently operable individual motion cransmission means connectable to such portions of the bed structure for correspondingly effecting the selective main supporting bed base frame,
2. In a water mattress assembly, a container having a bottom and upright side walls and an open top and a length and breadth to receive a patient, an elastic, flexible water-tight
cover sealed to the side walls and closing the open top of the cover sealed to the side walls and closing the open top of the container to form a water space, a water inlet and a water outlet connected with the water space, a supporting arrange-
ment mounted in the water space for vertical movement toward and away from the cover, the supporting arrangement being essentially coextensive with the cover so that in a raised position the arrangement supports the cover to render the same hard, said supporting arrangement including a plurality of parallel spaced-apart straps extending transversely across the water space between the supporting arrangement and the cover and essentially coextensive with the supporting arrangement and the cover, means maneuverable from outside the container for raising and lowering the supporting arrangement, said means including means for tightening and loosening the straps, whereby upon loosening the straps and inflating the air
mattress the latter floats up into engagement with the cover mattress the latter floats up into engagement with the cover
and upon tightening the straps and deflating the air mattress and upon tightening the straps and dellating the air mattress
the latter lies on the straps and evens out the spaces between the latter, and means controllable from outside the container for adjusting the degree of inflation of the air mattress, whereby the hardness of the cover may be adjusted between
wide limits by varying the vertical position of the supoting wide limits by varying the vertical position of the supporting mattress.

4,094,026

 Donald J. Simoni, 177 Pixley St., San Francisco, Calif. 94123 Flled Oct. 13, 1976, Ser. No. 731,964 U.S. C. 6^{-1} Int. C1.2 A01K 47/00, 47/06 2 Clxims

1. An observation bechive comprising a first chamber for enclosing brood nest; a second chamber for enclosing removble honey frame; first and second passageways between said means for excluding a queen bee and a first gate for blocking and unblocking said first passageway, said second passageway including a second gate having a first closed position and a second open position, and means for permitting one-way passage of bees from said first closed position and a second open
position, and means for permitting one-way passage of bees position, and means for permitting one-way passage of bets passageway communicating with said one-way passage permiting means, said one-way passage permitting means comprising at least one bee exit opening, said tube containing a pair of flexible reeds convergent to said exit opening for permitting a single bee to pass in only one direction, said side wall defining said second gate, said tube further including means for defining longitudinal slot adjacent said reeds, said second passageway including a lateral opening alignable with said tube slot to
allow insertion of a rod transverse of said tube between said reeds.
4,094,027
NTERLOCKING TWO $4,09,027$ PIECE HULL FOR A
Eugene G. Vernon, 2622 Crestriew Dr., Newport Beach, Calif.
92105 Filed May 9, 1977, Ser. No. 794,726

2. A hull for a catamaran, comprising:
3. a first member which has a sidewall that includes a firs layer of fiberglass and polyester resin forming the exterio
surface of said sidewall and a second layer of fiberglass surface of said sidewall and a second layer of fiberglas and polyester resin folly ming is coupled to the first layer to form a
which
structurally strong member, said first member having band adjacent to its peripheral edge that is indented to form a ledge;
a second member which has a substantially vertical side wall that includes a first layer of fiberglass and polyester resin forming the exterior surface of said sidewall and second layer of fiberglass and polyester resin forming a the first layer to form a structurally strong member, said second member having the second layer of its said sidewall bent inwardly a slight amount adjacent to its peripheral edge in order that it may rest on said ledge of said firs member along which it is joined, the lirst layer of said sidewall being adapted to rest directly on said ledge said first member; and
a third member which is mechanically coupled to said
second member adjacent to its said peripheral edge alons the interior surface of said vertical sidewall and which is adapted to be mechanically coupled to the interior surfac of said first member and to be secured thereto by a glue.

UTOMATIC TFI, 4T4,028
AUTOMATIC INFLATING LIFESAVING BUOY Hikaru Fuilyamas; Tsuneo Kasama, both of Kawagoe, and
Shigenobu Higuchi, Ashikgat, all of Japan, axsignors to Nippon Oil and Fats $\mathrm{Co}_{\text {o, }}$ Ltd. and Kokuku Chemical Industry Co. ted, both of Tokyo, Japan
Claims priorto 21 , 197, Ser. No. 781,424 Int. C. ${ }^{2}$ B63C $9 / 18$

1. An automatic inflating lifesaving buoy comprising a ga generating device, an inflatable bag and an electric cell or battery, the gas generating device being provided with the
electric cell or battery at the rearward end and the inflatable bag at the forward end, the gas generating device being a substantially hollow body in which an electric ignition device is arranged adjacent to the electric cell or battery and/is elec-
trically connected with the electric cell or battery and surrounded with a gas generating composition, anc a spacer pro-
vided in contact with and in the forward direction of the gas generating composition, a multi-perforated partition plate provided in contact with or integrated with the spacer, another multi-perforated partition plate provided in the forward direction of the first multi-perforated partition plate and at an approcharged, and an outlet for supplying generated gas to the inflatable bag through the second multi-perforated partition plate.
$4,094,029$
SHOE FASTENER
Alfred E. Carlile, 572 Chestnut St, Meadrille, Pa. 16335 Filed Apr. 14, 1977, Ser. No. 787,698
Int. Cl. ${ }^{2}$ A43D 5/00; F16G $11 / 00$; A44B $17 / 00$.S. Cl. 12-113
A fastener for a shoe which has 13 Clai herein, the fastener comprising
a pair of elongated carriers,

hinge means connecting one ends of the pair of carriers gated condition, said spring and said bellows expelling air
together, together
means for he pair of carsiaty securing the carriers together through said air chamber venting means and said tubing by
operating said spring in conjunction with said air chamber, flap operating said spring in conjunction with said air chamber, flap
means within said tubing for the passage of air and water away means within said tubing for the passage of air and water away
from said air chamber and allowing the passing of debris only in the direction toward said air chamber, preventing and re-
for mounting said cleaning body in said housing for adjustment bearing and to join the main stream only after cooling said of the spacing of said longitudinal axis from a surface to be older berre from said space.
having two mounting portions extending transversely of, and
through said tubing when air is expelled through said tubin through said tubing when air is expelled through said tubing being expelled from said air chamber, and a water-tight spring loaded sliding trap door on said tubing between said air chamber and said flap means proximate to said/flap means for selectively retaining said debris passing through said tubing.

4,094,032
CLEANING DEVIC
Johannes Liebecher, Nassau (Lahn); Rolf G. Schulein, Sing hofen, and Waldemar Fobbe, Nassua (Lahn), all of Germany assignors to Leifhelt International Gunter Leifheit $\mathbf{G m b H}$ (Lann), Germany
Filed Jan. 21, 1976, Ser. No. 650,942
Claims priority, appilication Germany, Jas. 24, 1975, 2502763 U.S. Cl. 15-A1 R Int. C1. ${ }^{2}$ A47L $11 / 33$

1. In a device for cleaning surfaces, a combination compris ing a housing; an elongated cleaning body having a longitudiClim nal axis and including at least two separate cleaning sections
each having an elongated shaft and a cleaning portion surrounding said shaft, and means for coaxially connecting said shafts, including a coaxial spherical male end portion of one of said shafts and a coaxial female end portion of the other shaft which includes elastically yieldable wall means embracing said male portion for independent rotation, and engaging behind said male portion with a snap action to prevent axial displace
ment, of the connected shafts relative to one another; means
an elongated connecting portion extending along, the mounted cleaning body and interconnecting said mounting portions, and a bracket affixed to said connecting portion intermediate said mounting portions, those end portions of said shats
remote from said male and female end portions being each mounted on one of said mounting portions of said mounting element, and at least one of said male and female end portions being supported on said bracket, for rotation relative therel spacing; means for supporting said housing on the surface to be cleaned for movement relative thereto with said cleaning portions of said cleaning sections in contact therewith, including a plurality of wheels mounted on said housing for rotation in engagement with the surface being cleaned; and at least two one of said wheels and one of said cleaning sections and operative for independently rotating the latter about said longitudinal axis in response to the rotation of said one wheel.

CLEANING DEVICE
Klaus Stein, Velbert, Miroulay Aigl, Eneppal, and Gerhard Co. Interholding GmbH, Wuppertal, Germany
Filed Apr. 30, 1976, Ser. No. 682,173
Claims priority, application Germany, Apr. 30, 1975, 2519155 U.S. C. $15-1 \mathrm{R}$ Int. C. ${ }^{2}$ A47L $11 / 33 \quad 15$ Claims

4,094,034
FLOOR TREATMENT MACHINES John Thomas Wilkins, Bushey Henth, and Haydn Frank Mayo Hazlemere, both of England, assignors to R. G. Dixon \& Company Limited, Wembiey, Englinnd
Flied Mar. 2, 1977, Ser. No. 773,843 Chinim
U.S. CI. 15-4 P Int. C. ${ }^{2}$ A47L 11/162

1. A floo
chassis; reating machine comprising in combination:
a drive element within said chassis;
means for rotating said drive element only about a vertical bointly rotatable member adjacent said drive element and having a substantially horizond brush mounting member upper and a lower side:
pluraility of resilient elements carried on said drive elemen engaging said brush mounting member on said upper and lower sides thereof and suspending said brush mounting member on said drive element for limited rocking of sai and
brush fixed to said brush mounting member and jointly displaceable therewith, whereby said brush rotates abou the vertical axis passing through the chassis while rockin with a floor surface.
2. In a cleaning device, particularly in a carpet-sweeping device, a combination comprising a housing bounding an interriving said cleaning means, including an electric motor accommodated in said space and having a stator and a rotor
having an elongated shaft which has end portions, and means having an elongated shaf which has end porthousing that said end portions of said shaft project from said stator, including at least two bearings each interposed between said housing and one of said end portions of said shaft at a distance from said tator; means for advancing a stream of a cooling medium through said space in a direction from one of said bearings
toward said electric motor and toward the other of said bearings; and partitioning means located within said housing and including an L-shaped partition which has two arms one of which commences upstream of said electric motor as considered in said direction ans extending from said one arm transversely of and beyond said shaft between said electric motor and said other bearing, said partition subdividing said space into a first channel for a main stream of the cooling medium and accommodating said electric motor and a second channel for a branch stream of the cooling medium and accommodal- 1. A broom comprising an elongated resilient means, a haning said other bearing, for the branch stream to bypass said dle having one end secured to one end of said resilient means,
electric motor and thus remain effective for cooling said other and aligned therewith, fibers made of synthetic material, fixing
means securing said fibers to said one end of said handle, said into said recess; and an actuating handle rigid with said one-
fibers extending longitudinally of said resilient means, encom. fibers extending longitudinally of said resilient means, encom- piece holding member and operative for moving the same with passing the latter, and arranged for flexion with said resilient said plate-shaped mounting member and cleaning element ing loosely surrounding said fibers and maintained against longitudinal displacement relative to said handle, said low binding keeping said fibers against said resilient means, said
resilient means including a bundle of coarse fibers of synthetic thermoplastic material, each having a cross-sectional area much larger than the cross-sectional area of the first-named fibers, said low binding lossely stitched through said bundle of
coarse fibers, the ends of said coarse fibers secured to sid coarse fibers, the ends of said coarse fibers secured to said
handle being embedded in a solid plug, said plug holding said handle being embedded in a solid plug, said plug holding said
fiber ends together, and wherein said handle has a tubular portion and said plug and end portions of said coarse fibers perbedded in said plug ane fitted in sortions or tubulaid pootrion and sibid
tubular portion is flattened over said coarse fibers below said
t. nnected thereto over the surface being cleaned with the respective cleaning edges in contact therewith.

3. A wiping device, particularly for cleaning windows and the like, comprising an elongated wiping blade having a pair of
longitudinal marginal portions each having a pair of edges longitudinal marginal portions each having a pair of edges
bounding a respective marginal face and spaced a predetermined distance from one another, and a central portion intermediate said marginal portions, said wiping blade having a thickness at said central portion which is smaller than said distance, and said wiping blade tapering in a direction from
adjacent each of said marginal faces toward said central poradjacent each of said marginal faces toward said central por-
tion; a handle; and means for replaceably mounting said blade on said handle in four different orientations in each of which one of said edges is in a working position for use as a wiping edge, including wall means bounding an elongated cavity which is open at least at one longitudinal end thereof, and an said wall means along said cavity, said cavity being adapted to receive either one of said marginal portions of said blade whereas said central portion is accommodated in said slot and the other marginal portion extends beyond said wall means to the exterior thereof for said one edge thereof to be used for wiping.
4. A device for cleaning surfaces, particularly floors, com prising a pluraility of elongated cleaning elements of foam
rubber which are symmetrical with reference to their central longitudinal and their central transverse ares, a plurality of
cleaning edges extending longitudinally of each of said cleancleaning edges extending longitudinally of each of said clean
ing element at a predetermined distance from said axes, and ing element at a predetermined distance from said axes, and a
plurality of transverse passages which are distributed along said central longiudinal axes with spacing from one another in the central region of said cleaning element and extend through the latter; means for so receiving said cleaning element that any
of said cleaning edges is in an exposed working position for of said cleaning edges is in an exposed working position for
cleaning movement over a surface to be cleaned, including a elongated one-piece holding member of a generally U-shape cross section having a bight and two arms rigid with on another and together bounding a recess for so partially accom-
modating said cleaning element that said passages extend from modating said cleaning element that said passages ent said arms; means for connecting said cleaning element to said holding member, including a plate-shaped mounting member juxtaposable with said one arm within said recess, a plurality of connecting members of a number and
distribution corresponding to those of said passages to be respectively received therein and affixed to said mounting member to extend therefrom toward said other arm, and derachable securing means for removably securing said plateshaped mounting member to said one arm of said one-piece holding member, so that, upon release of said securing means mounting member from said recess and the cleaning element carried thereby, said cleaning element can be reoriented rela tive to said plate-shaped mounting member to put any other of aid cleaning edges thereof into said exposed working positio
sidd cleaning edges thereof into said exposed working position and a blade detachably mounted on the free end of the arm, a
upon reintroduction of said plate-shaped mounting member pin secured to one of said arm and blade and journaled in a

4,094,038

WINDSCREEN WIPERS FOR AUTOMOBILE VEHICLES Theodore Hancu, Genera, Switzerland, maignor to Societe d'Exploitation de Brevets J.B., Fribourg, Switzerland
Filed Dec. 2 , 1976, Ser

Filed Dec. 2, 1976, Ser. No. 746,962
priority, application Switzeriand, Jan. 27, 1976,

975/76

975/76
U.S. C. 15—250.32
U.S. C. 15-250.32

1. A windscreen wiper of the type $\quad 7$ Claims and a blade detachably moune lype comprising a pivotal arm
bore formed in the other of said arm and blade, said blade comprising a hook member which laterally projects with re-

spect to the blade and is adapted to cooperate with the arm in the operating position to hold said pin in said bore.

4,094,040
HINGE Ginter Schmid, Freudenstadt-Dietersweiler, and Christian Schaber, Lowbure, both of Germany, saignons to Hetal-Werk Franz Hettich KG., Alpirsbech, Germany Filed Jun. 3, 1976, Ser. No. 692,352
Claims priority, applicaton Germany, Jun. 3, 1975, 2524454 U.S. CI. 16-191

WINDSHIELD WIPER 4,094,039
LATCH CLIP WITH DOUBLE Peter G. Waterman, Burlington, and Donald Earl Emmons, Brampton, both of Canada, assignors to Tridon Limited, Burlington, Canada
Continuation-in
Continuation-in-part of Ser. No. 678,494, Apr. 20, 1976, abandoned. This spplication Feb. 4, 1977,
Int. Cl. ${ }^{2}$ B60S I/42

8 Claims

1. A connector clip for connecting a bayonet type wind shield wiper arm to the superstructure of a windshield wiper assembly, said clip comprising a clip body having a first end
portion including means for connecting the clip body to a portion including means for connecting the clip body to a
windshield wiper superstructure and a second end portion windshield wiper superstructure and a second end portion
adapted to operatively engage the free end of a windshield wiper arm, said second end portion having a top wall and an axially extended recess formed therein below said top wall defining a pocket which is generally complementary to said free end of the windshield wiper arm, for receiving said free ing a spring mounting wall located adjacent said recess extending generally perpendicular to the recess and having a slot formed therein, and a relatively flat leaf spring element mounted in said slot and including an integral centrally located mounted in said slot and including an integral centrally located
resilient tab in said spring adapted to be inserted with said spring through said slot, said tab extending in a downward direction opposite to te direction positioned to engage said support wall after insertion of the spring to prevent removal of said spring from the clip body, said spring element being located along said recess for engagement with said bayonet arm to aid in holding said arm in the clip; and an abutment wall located in spaced relation to said support wall on the side thereof opposite said pocket for engaging the end of the spring inserted through said slot and
preventing movement thereof beyond the abutment wall preventing movement thereof beyond the abitment wall
whereby the spring is captured in a relatively fixed position in the clip body.
2. A hinge for mounting a structure such as a frameless glass oor or the like on a fixture, said hinge comprising a substan lally part-cylindrical body portion which is arranged to be ross-section opening in the structure, the opening having a drical surface of the by a chord so as to provide, on the cylinwhen the hinge is assembled on the structure is aligned with a longitudinal edge of the structure, said hinge including a pin extending parallel to the body portion and being spaced therefrom such that its axis lies on an imaginary line which passes hrough the axis of the body portion normal to said chord, to said pin being arranged to be inserted in a bore in the structure and a connecting member hinged on the body portion and adapted to be mounted on the fixture.

4,094,041
DRESSING HOLDER FOR SMALL GAME Earl B. Steed, P.O. Box 742, Jackronville, Ark. 72076 Filed Apr. 18, 1977, Ser. No. 788,181 U.S. CI. 17-44.2

1. A holder for facilitating dressing of small game comprising an upstanding diamond-shaped frame adapted for use in a position in which the vertices of the obtuse angles are diametrically opposed and the longitudinal axis of the diamond-shaped acute angle defined by the upper pair of legs of said frame, a pointed projection extending outwardly and upwardly from
each of the junctions of the upper and lower legs of said frame gin width having outer edges located to sweep through an which define one of said obtuse angles, and a downwardly arcuate cylindrical path whose diameter is a small fraction of directed loop portion joined cooxtensively to transversely spaced lower ends of the downwardiy converging lower legs
of said frame, the maximum transverse width of the enclosure defined by said loop portion being less than the maximum
transverse width of the enclosure defined by said diamondtransverse width of the enclosure defined by said diamond-
shaped frame, and the separation of said transversely spaced shaped frame, and the separation of said transversely spaced
lower ends being less than the maximum interior transverse width of said arcuate loop portion.

4,094,042

METHOD FOR REMOVING MEAT FROM BONE FRAGMENTS
Roy Settle Rouscena, Bettendorf, IA, assignor to The Kartridg
Palk Con, Davenport, Iowa Pak Co., Daveaport, Ioma

This application Oct. 15, 1976, Ser. No. 732,766
C. 11-46 Int. C. ${ }^{\text {A } 222 \mathrm{C}} 17 / 00$

5 Claims
the ginning roller diameter downwardly toward, over and
forwardly beyond the edge of the knife and the rotobar member having outwardly facing interconnecting surfaces between ber having outwardily facing interconnecting surfaces between
the successive blade formation edges shaped to extend from he successive blade formation edges shaped to extend rom axis effectively forming seed-receiving spaces between successive blade surfaces for advancing the seed cotton coactively
with the ginning roller surface toward and over the knife edge, with the ginning rolier surface toward and aver the ermined sur-
means for rotating the ginning roller at a predetermen mace speed, means for feeding seed cotton to the surface of the inning roller at a location upstream of said knife edge to cause the ginning roller to strip lint from seeds which are restrained the knife edge and convey the lint to a point of removal, and means for rotating said rotobar member at a speed causing the
surface speed of the edges of said blade surfaces to be slightly less than the surface speed of said ginning roller such as to restrain seeds in said seed-receiving spaces during seed ad${ }^{\mathrm{ms}}$

1. A method for removing and recovering meat from a mass of bone fragments comprising the steps of: compressing said mass in means providing a chamb collecting the meat which extrudes from the mass dur said compression through an extrusion head having an extrusion block including at least one recess for passing
extruded meat from said chamber, and at least one extrusion member interspaced therein; and extendable from and retractable in said recess, said extrusion block and said extrusion member
extending each said extrusion member from said recess to release residual solid matter retained within the foramina of said foraminous surface; and
removing said press cake from said chambe

4,094,043

ROLLER GIN WITH GROOVED SQUARE ROTOBAR Arrel L. Vandergriff, 1701 Heffier St, Corcoran, Calif. 93212 Filed May 9, 1977, Ser. No. 78 Int. ${ }^{2}{ }^{2}$ D01B $1 / 06$
U.S. C. 19-53

In. C. ${ }^{\text {D }}$, $1 / 00$
21 Claims 1. A roller cotton gin comprising a ginning roller having a friction surface for conveying the lint fibers from cotton seed having an upstream facing working edge at the pinch point located substantially tangentially of and in contact with the surface of said ginning roller, a rotary feed blade rotobar member spanning the width of the gin having a center axis and shaped at circumferentially spaced locations to form at least
pivot pin connecting the opposite side leg members of said handle means to the other end of a corresponding bracket arm portion,
a strap ring adapted to receive the free end of a holding strap,
said strap
said strap ring having opposed portions defining a ring hingportion being disposed contiguous to said transverse edge portion in the tensioned position of said device,

means for pivotally connecting said ring hinging portion to
said web portion whereby the pivot means of said strap said web portion whereby the pivot meals of said strap ring is disposed between the ends of said arm portions in
the loosened position of a strap, and he loosened position of a strap, and
ing said handle means approximately 180° so that the pivo means of said strap ring is located beyond the end of said arm portions of said bracket means, and whereby said
transverse edge and strap holding portion clamps said strap therebetween upon rotating said handle means toward a tightened position.

4,094,045

ancement over said knife edge from said pinch point toward release point while the ginning roller strips lint from such estrained seeds and then releasing the seeds from blade restraint at said release point spaced from the pinch point a
distance whereby the fiber attached to any incompletely ginned seeds in sufficiently held between the knife and ginning roller to cause return of the incompletely ginned seed to the knife edge before the next blade applies advancing force to the seed, thereby to witdraw substantially all the fibers from the ced so long as sufficient fibers remain attached to the seed to continue drawing the seed back to the pinch point after each
elease thereof, and a narrow strip-like pad of flexible material fixed on and spanning the axial length of each of said outwardly facing interconnecting surfaces substantially midway between each of the successive blade formation edges to press sive blade formation edges against the ginning roller surface immediately upstream of said working edge of said knife and reduce the occurrence of unginned locks.

TENSIONING DEVICE FOR TIGHTENING AND SECURING A HOLDING STRAP Filed Aug. 23, 1976, Ser. No. 716,436
 U.S. CI. 24-68 CD

1 Claim 1. A strap tensioning device for tightening and securing a
and a bracket means including a pair of spaced apart arm por tions,
a pin interconnected between said arm portion adjacent one handle means including a pair of opposed side leg members and a web portion interconnected therebetween, said web portion having a transverse edge portion at one end handle portion disposed opposite to said edge portion,
channel in
a gap disposed intermediate two adjacent coils of said continuous uninterrupted spring member for segregating said hirst coil section from said second coil section, said
gap providing access to penetration intermediate two coils gap providing access to peneicilded intermediate two coils
of said first section by the folded over segment of the second length of flexible line extending from said second terminal coil and along the outer periphery of said second coil section;
whereby, opposed pulling forces exerted upon the first and second lengths of flexible line compress the coils of said firs
coil section to grip the loop of the first length of flexible line penetrably engaged by said first terminal coil and the folded ver segment of the second length of flexible line disposed intermediate two coils of said first coil section.
$\stackrel{4,094,046}{ }$
SEAT BELT BUCKLE Takede Takata Kojyo Co Ltd., Tokyo, Japan Claims priority, application Japan, Aug. 19, 1975, 50-113475 U.S. CI. 24-230 AK ${ }^{\text {Int. Cl. }{ }^{2} \text { A44B } 11 / 25}$
$\frac{9}{40}$

1. A seat belt buckle in which a tongue piece (1) is engaged or disengaged with the buckle characterized in that a frame (2) consisting of a base plate (14) and opposed side plate (12) tha are directed upwardly from both sides of said base plate (14) has an engaging protrusion (15) and a base surface (10) that wil accept said tongue piece (1); slots 13 that are nearly paralle at near a tip position of said tongue piece (1) that is inserted beyond said engaging protrusion (15), and an elevation preventing pin (3) which prevents the elevating motion of the ongue piece (1) slideably engages and extends between said length greater than the width of and engaging said elevatio preventing pin, a transversely extending guide plate (11) which is fastened between the two side plates (12) of the frame (2) above the protrusion (15) restricting said slide member to a longitudinal movement; a buckle cover (5) having an exposure hole to expose said operation slide member is mounted on said
frame 2 , and a spring (6) is provided between said buckle cover (5) and said operation slide member in a manner that said elevation preventing pin (3) is resiliently biased to a forward position; and said operation member is operated to move the levation preventing pin () dise backward direction in orde that the tongue piece ($\mathbf{1}$) is disenaged.

NAP SHACKL

Gunille A. Carlsson, Skidbacken 38, S-172 45, Sundbyberg Sweden Filed Feb. 11, 1976, Ser. No. 657,314 Claims priority, application Sweden, Feb. 18, 1975, 7501798
Int. Cl. ${ }^{2}$ A44B 13/00; B64D $17 / 38$ U.S. CI. 24-241 R
a generally U-shaped closure link (3) rotatably mounted to said fastener body (1) via a shaft (9) and rotatable through an angle of about 90 degrees relative to said fastener body an angle of about (1) degrees relative to said fastener body
defining an defining an openable loop which is restricted by at least part of said fastener body (1) and by at least part of said
closure link (3), said openabje loop being separated from said attachment means (2);
said generally U-shaped closure link (3) having first and
second longitudinally extending shanks (4,5) which are second longitudinally extending shanks $(4,5)$ which are
adapted to be bridged by at least part of said fastener body adapted to be bridged by at least part of said fastener body
(1), said first shank (4) being at one end rotatably and linearly laterally displaceably mounted in said fastener linearly laterally displaceably mounted in said fastener
body (1) via said shaf ($)$, said one end of said first shank
being further provided with bearing means (9) which is beeing further provided with bearing means (9) which is
guided in said slot (10) to permit rotational movement of guided in said slot (10) to permit rotational movement of
said first shank through an angle of about 90 degrees as said first shank through an angle of about 90 degrees as
well as linear and lateral displacement of said first shank relative to said fastener body (1), and said second shank (5) at one end being provided with locking means (7) for
selective engagement with said locking means (8) of said fastener body ($\mathbf{1}$), said locking means being disengagable by a lateral movement of said link relative to said fastener by a laterad
body;
said shaft (9) being fixedly connected to one of said fastener body and closure link (3), an elongated laterally disposed
groove (12) being provided in the other of said fastener

body (1) and closure link (3), said shaft (6) passing through said groove (12), and wherein a spring (14) is arranged in
said groove (12) between said shaft (9) and one end of said said groove (12) between said shaft (6) and one end of said groove (12) to bias said shaft (6) toward the other end of said groove (12) and to permit said linear lateral displace--
ment of said closure link (3) relative to said fastener body
(1);
said first shank (4) at its said one end being further provided with a manually engagable first pressure surface (16) direction of said U-shaped closure link (3), said fastener body (1) having a manually engagable second pressure surface (15) on the opposite side of said shaft (σ) and
sut spaced laterally and longitudinally away from said shaft
(6) in the direction away from the closure link (3), said (6) in the direction away from the closure link (3), said
first pressure surface (19) facing away from said second pressure surface (15) and said pressure surfaces being oriented fop application of a compressive force therebe. tween to simultaneously laterally displace and rotate said closure link (3) in the opening direction relative to said fastener body (1), whereby upon manual application of a
compressive force substantially perpendicular to said pressure surfaces said first pressure surface (16) is displaceable towards said fastener body (1) to displace said one end of said second shank (5) away from said fastener body (() to bring said locking means ($)$ or said second
shank (5) and said locking means (8) of said fastener body (1) out of engagement with one another, thereby permitting said closure link (3) to rotate at least partially under
the influence of said compressive force through an angle of about 90 degrees relative to said fastener body (1) to an open position to open said openable loop.

4,094,048
METHOD OF HEAT FORMING OF WORKPIECES Gerhard Broder, Dusseldorf, Germany, assignor to Franz Ber renberg, Hann, Germany
Claims priority, application Germany, Sep. 25, 1976, 2643340 U.S. C. $29-6$ 3 Clams

1. A method for heat shaping of workpieces with at least two secondary form elements lying nonsymmetrically to the axis of the main form elements and spaced slightly from one another, particularly crankshafts, comprising the steps of
heating rod shaped starting material in the range of second ary elements to be formed thereon,
xially compressing the heated rod shaped starting materia and producing one enlarged material concentration in common for all secondary form elements which subsequently are to be produced,
drop-forging the material concentration and producing the two secondary form elements axially spaced from one another by an enlarged spacing relative to a final form and
final spacing to be produced, forming an intermediat shape having the secondary form elements connected by an integrally adjoining necked down form part, rimming the intermediate shape
axially compressing the adjoining necked down form part
lying between the secondary for lying between the secondary form elements into a final
enlarged cylindrical shape with simultaneous calibrain of the final spacing between timultaneous calibration thereby producing the final form secondary form part, performing the compresing form and final spacing, form part lying between the secondary form elements as well as the simultaneous calibration of the final spacing between the secondary form parts by inserting a floating gauging saddle therebetween and axially compressing the main form elements.

4,094,049

CASTING ROLLING MILL FOR WIRE
Ali Binderangel, Wermelskirchen, Germany, asignor to Frie drich Kocks GmbH, Dusweldorf, Germany
Claims priority, application Germany, Sep. 6, 1975, 2539697 Int. C1.2 B21B 15/00; B23P 19/02; B22D 11/124 U.S. Cl. 29-33 C

1. A continuous casting and rolling plant for wire, Claim continuously casting a comprising a continuous casting unit able coiling means spaced from the to be formed, replacemeans intermediate the casting unit and coiling means having a
roll pass line receiving said strand for conversion to wire, said rolling unit beeing movable selectively from a position adjacent said casting unit to a position adjacent said coiling unit and back to the position adjacent the casting unit, means adjacent the casting unit for selectively severing the strand, means acting on the rolling unit each time the strand is cut moving

4,094,051
METHOD OF MAKING SHEAVES Homer J. Woolslayer, Cecil Jenkins, and Robert D. Woods, all of Tulsa, Okla, assignors to Lee C. Moore Corporation, Tulsa, Okla.

Filed May 16, 1977, Ser. No. 797,333
U.S. CI. 29-159 R

rate of advance of the cast strand with the rolling unit operating at normal operating speed, means for replacing the coiling means each time a coil is completed, means for attaching a wire reversing the rolling unit to move it back to a position adjacent the casting unit with the strand continuing to pass through the roll pass line for conversion to wire.

4,094,05
BACKUP ROLL OF THE BUILT-UP TYPE Hiroshi Goto, Muroran, Japan, assignor to The Japan Steel Works, Lidd., Tokyo, Japan
FLled Feb. 14, 1977, Ser. No. 768,616
U.S. CI. 29-129.5

Int. C1.2 B21B $31 / 08$ \qquad
6 Claims

1. In a backup roll of the built-up type comprising an arbour and a sleeve which is shrinkage-fitted on said arbour, the combination of an inward stepped shrinkage-fitting portion and outward shrinkage-fitting portions provided on the shrinkage-
fitting surface formed between the outer surface of said arbour and the inner surface of said sleeve, said inward stepped shrink-age-fitting portion being formed on substantially a mid portion or said shrinkage-fitting surface by an annular, protrusion tenth to one fourth of the axial length of said shrinkage-fitting surface and an annular dent around said sleeve of a size corresponding to said protrusion, said outward shrinkage-fitting portions being formed on said shrinkage-fitting surface at both sides of said inward stepped shrinkage-fitting portion so as to extend to the outer ends of said shrinkage--kiting surface, the
shrinkage ratio of said inward stepped shrinkage-fitting portion shring a value which can afford a torque transmission between said arbour and said sleeve and the shrinkage ratio of said outward shrinkage-fitting portions being less than that of said inward shrinkage-fitting portion.
2. A method of making a set of wire line sheaves to be mounted side by side on a common axis, comprising selecting width of the desired sheave rims, cutting from the plate a series of adjoining concentric rings all having substantially the same adial thickness, cutting from plate material circular hubs all of er same size for the sheaves, cutting from plate material annuar web plates each having a central opening for receiving one
of said hubs, the outer diameters of said web plates being of said hubs, the outer diameters or said web plates being
different from one another with each adapted to fit in a differint one of said rings, assembling each ring with a web plate and circumferential groove in the periphery of each ring to form grooved rim for receiving a wire line.

LOCK REMOVAL TOOL
George V. Isccino, New Rochelle, N. \mathbf{Y}., nology, Inc., New Re Rochelle, N.Y., asignor to Lock TechFiled May 25, 1977, Ser. No. 800,319
U.S. C1. 29-263

9 Claims

6. A tool for removing a lock cylinder from a lock housing he cylinder being of the type having a shell with a plug rotat ably mounted therein, said plug having a circular flange projecting out
prising:
a cylindrical inner member having forward and rearward longitudinal portions, said forward portion having an overall diameter less than that of said rearward portion,
said forward and rearward portions having first and second circumferential grooves cut thereon, respectively, the
overall diameter of said flange being substantially equal to overall diameter of said flange being substantially equal to
one of the overall diameters of said forward and rearward portions;
a hollow outer shell having an axial bore extending from one end thereof, said outer shell having a wall at its other end provided with an opening therein, the diameter of the bore being a predetermined amount greater than the over
all diameter of said rearward portion; all diameter of said rearward portion;
said coupling means being formed with means at its ends
saing means for said coupling means being formed with means at its ends
for engaging one of the first and second circumferential grooves on said cylindrical inner member and the underside of said flange, respectively; and
means for drawing said cylindrical inner member into the bore of said outer shell toward the other end of said outer
shell, said drawing means extending out through said opening in the other end of said outer shell in operative engagement therewith and being connected to the end of the rearward portion of said inner member, whereby when said coupling means engages a selected one of the first and second grooves and the underside of said flange,
and said drawing means is operated, said inner member transmits an outwardly directed force onto the lock cylinder through said coupling means and said flange to withdraw the cylinder from the housing when said outer shell is maintained stationary with respect to the housing.

4,094,053
FORGING PROCESS
Elbert K. Weaver, Westboro, Mess,, assignor to Wyman-Gordon Company, Worcester, Mass.

Filed May 21, 1976, Ser. No. 688,620
U.S. Cl. 29-420
t. Cl. ${ }^{2}$ B22F $3 / 24,1 / 00$

3. A process for forming a workpiece of a predetermined shape from powdered metal, comprising the steps of:
(a) forming a semi-rigid liner of heat-decomposible material having generally
a foamed polymer,
(b) adding a quantity of said powdered metal into the liner (c) providing the liner with a liquid-impervious sealing element which completely envelops it,
(d) isostatically compacting the sealing element, the line and the contents,
(e) heating the liner and contents to cause decomposition of the liner and sintering the contents, and
(f) forging the contents, wherein the sealing element is a thin elastomer bag in which the liner is enclosed, which bag is removed before the liner and contents are heated.

METHOD OF SECURING AN OBJECT TO A LOW-STRENGTH SUPPORT STRUCTURE Artur Fischer, Weinhalde 34, Tumlingen, Germany Continuation-in papart of Ser. No. 616,072, Sep. 23,1975 ,
Cor abandoned. This application Och. 1, 1975, Ser. No. 617,832 Claims priority, application Germany, Oct. 3, 1974, 244718
Int. C. ${ }^{2}$ B23P $3 / 00,19 / 04$ U.S. C. 29-460

1. A method of instaling an expansion anchor member in a low-strength support structure having internal cavities bounded by walls, comprising the steps of providing an an-
choring hole in the support structure: inserting leading end choring hoie in the support structure; inserting a leading end
portion of an expansion anchor member having an internal portion of an expansion anchor member having an ind
passage and leg portions into the hole so that a leading end region of the passage communicates with an internal cavity of the structure; providing an injection device with a source of quick-setting substance; inserting the injection device into a
trailing end region of the passage; only partially filling the trailing end region of the passage; only partially filling the
internal cavity with the quick-setting substance by actuating the injection device and injecting the quick-setting substance through the passage to the circumambient region of the leading end portion of the expansion anchor member at a rate such that hardening of the quick-setting substance begins upon the emer-
gence of the substance into the internal cavity and is completed gence of the substance into the internal cavy and is completed
upon the partial filling of the same, so that the quick-setting substance forms about the leading end portion of the expansion anchor member a plug which prevents withdrawal of the expansion anchor member from the anchoring hole and relative to the internal cavity, said plug surrounding the leading
end portion of the anchor member but being spaced from the end portion of the anchor member but being spaced from the
walls of a respective cavity; removing the injection device from the passage of the anchor member; and screwing a mounting screw into the passage of the anchor member only after the injected quick-setting substance is hardened, so that the leg portions move apart from one another by a limited
distance and the screw becomes secured in the anchor member.

- 4004055

AUTOMATIC WORKING METHOD OF CASTINGS oshiki Morimoto, Kawasald, Japan, assignor to Mitsui Mining and Smelting Co., Ltd., Tokyo, Japan 17267

Filed Mar. 29, 1977, Ser. No. 782,367
U.S. C. 29-527.6 Int. C1. ${ }^{2}$ B22D $17 / 32$

15 Claims 1. An automatic working method of castings which comprises the operation of a casting machine including the steps of spraying a release agent, injecting raw material into a casting
die, opening the casting die, and ejecting a casting from the asening the casting die, and ejecting a casting from the restoring said robot to its or an indinal position, advancing the robot arm, gripping the casting by the robot arm, pulling out the casting from the casting die by the robot arm, retracting the robot arm, quenching the casting, and transferring the
quenched casting to the succeeding trimming press; the operaion of the trimming press including restoring the press to it original position, setting the casting in a prescribed position
relative to the trimming press, separating the upper and lowe relative to the trimming press, separating the upper and lower
press die members, removing the trimmed casting from the trimming press and discharging scrap from the trimming press, detecting whether the casting is properly set in the trimming

press for trimming; removing the casting from the trimming press without trimming, in case the casting fails to be properl set; detecting whether the casting machine, industrial robo and trimming press are carrying out the prescribed steps unde a normal condition; and immediately stopping the machine which has been found by the delecting step to prest a caper tion of said machine.

4,094,056
 DECORATIVE TRIM STRI

Shinji Takeda; Shoji Kobayashi, and Yutak Watanabe, ail of to Aisin Seikd Kabushild Kaish Kariya, Japan ${ }_{\text {Filed Mar. 2, 1977, Ser. No. 773,757 }}$ Claims priority, application Japan, Aug. 20, 1976, 51-99481 U.S. C1. 29-527.2

7 Cleims

1. A process for forming a decorative strip comprised of a elongated metal strip and a thermoplastic portion affixed thereto, comprising the steps o
(a) supplying and transporting a continuous length of said metal strip;
extruding thermoplastic material onto said strip while transporting said strip, said strip being at least partially surrounded by said material;
(c) forming said material around said strip to a first predetermined cross sectional shape, said shape including at least one longitudinal groove in said material; and
(d) sequentially shaping said strip and said material sur-
rounding said strip by bending said strip and said material rounding said strip by bending cross sectional shape, said strip being bent longitudinally at a location adjacent the root of said groove, thereby closing said groove, said shaping step including heating of said thermoplastic material to induce fusion of said material where said material on one side of
ssid groove is in contact with material on the other side of said groove is
said groove.

FIELD EFFECT TRANSISTOR LOST FILM FABRICATION PROCESS Arup Bhattacharyya, and Ronald Silverman, both of Essex Junction, Vt., assignors to International Business Machines Corporation, Armonk, N.Y.

Fled Mar. 29, 1976, Ser. No. 671,907
U.S. CI. 29-571

12 Claims

1. A method for forming an electrical circuit in an isolated pocket of semiconductor material including a transistor having a control electrode and at least one current carrying electrode comprising the steps of:
material,
depositing a masking material on said insulator,
selectively etching said deposited mask, material to define a plurality of openings in said mask,
depositing an anodizable conductive material in the openings defined in said mask material,
selectively removing the remainder of said mask material, forming source and drain regions in said semiconductor material, and
depositing conductive material to form an electrical connection to one of said source and drain regions.

METHOD OF MANUFACTURE OF LIQUID CRYSTAL DISPLAYS
kira Yasutake, and Shigemiltsa Kiso, both of Kyoto, Japan, essignors to Omron Tateist Electronics Co. Kyoto, Japen to Omaro Tateiss Electronics Co., Kyoto, Japan
Flied Jul. 2e, 1976, Ser. No. 708,027
Int Cl. ${ }^{2} \mathbf{G 2 F} 1 / 13$ U.S. Cl. 29-592 R

9 Claims

1. The method of forming a plurality of individual crystal isplays which comprises the steps of applying a conductive pattern to one surface each of a pair of substrates, said pattern lurality of when the substrates are face to face to form said aid surfaces prior to broviding sealing means on at least one of attern isolating each of said plurality of displays to form lurality of display cells, filling said cells with liquid crystal rial, sealing said cells by bringing said substrates together and cutting said substrates to form said displays.

METHOD FOR PRRDDUCING COMPOSITE Kyoji Tachikawa, Tokyor, and Kikuo Itoh, Y Kyoji Tachikawna, Tokyo, and Kikuo Itob, Yokohama, both of
Japan, assignors to National Research Institute for Metals, Japanan Filed Sep. 15, 1975, Ser. No. 613,274 Claims priority, application Japan, Sep. 18, 1974,49
Int Cli. U.S. CI. 29-599 C. ${ }^{2}$ H01B 12/00; H01V 11/00

1. In a method for producing $\mathrm{V}_{3} \mathrm{Ga}$ superconductors whic 1. In a method for producing V_{3} Ga superconductors which
comprises forming a composite of a core portion and a sheath
portion surrounding said core portion, said sheath portion portion surrounding said core portion, said sheath portion
being composed of a gallium-containing alloy selected from being composed of a gallium-containing alloy selected from
the group consisting of copper-gallium, silver-gallium and the group consisting of copper-gallium, silver-gallium and
coppersilver gallium alloys, and said core portion being com-copper- of a vanadium metal selected from the group consisting of vanadium and vanadium alloys containe group fom 0.1 to 10
otomic percent of titanium, zirconium or hafnium, elongating atomic percent of titanium, zirconium or hafnium; elongating
said composite; and heat-treating the resulting elongated comsaid composite; and heat-treating the resulting elongated com-
posite to form a V_{3} Ga layer between said sheath and core portions; the improvement comprising including a continuou portion of aluminum or an aluminum alloy in said composite prior to elongating the same, wherein said continuous portion
of aluminum or aluminum alloy is provided between said sheath and core portions and completely surrounds and is in contact with said core portion at the beginning of said heat treating, and wherein said aluminum or aluminum alloy dif fuses into said sheath portion by said heat treatment and pro
motes the formation of $\mathrm{V}_{3} \mathrm{Ga}$.
: MFM,060

SUPERCONDUCTING MEMBERS AND METHODS OF MANUFACTURE THEREOF and Derek Armstrong, Wallingford, all of Engiand, assignors to United Kingdom Atomic Energy Anthority, England Continustion of Ser. No. 383,476, Jul. 30,1973 , abandoned. This Claims priority, application United Kingdom, Aug. 4, 1972, Int. C1. ${ }^{2}$ H01V 11/14, 11/00

1. A method of manufacturing a superconducting member which method comprises the steps of forming an alloy consist ing essentially of a carrier material and at least one elemen
from the group consisting of aluminium, gallium, indium, silicon, germanium, gold, platinum, antimony, rhodium, zirco con, germanium, oolladium, osmium, ruthenium, cobalt, thallium, lead nam, paliadium, osmium, ruthenium, cobalt, thallium, lead, base material consisting essentially of niobium or vanadium consolidating into a unitary structure components comprising
the alloy and the base material together with a metal, which is
eventually to provide stabilisation, a barrier material consisting essentially of tantalum or molybdenum being present and positioned to protect the said metal from diffusion thereinto of any
of the other components; mechanically working the said unitary structure to form a wire therefrom, and heat treating the said wire to cause a solid state reaction between the base material and the clement or elements from the said group to form a superconducting compound therewith, the carrier material being so selected as to be substantially non-reactive with the
base material under the heat treatment and the barrier material being so selected and positioned as to prevent permeation therethrough of the element from the said group and to be insoluble in and substantially non-reactive with the said metal,
and the heat treatment temperature being controlled for avoidand the heat treatment temperature being controlled for avoid-
ing melting of the alloy in contact with the base material at any ing melting of the alloy
stage during reaction.

4,094,061
METHOD OF PRODUCING HOMOGENEOUS SINTERED ZNO NON-LINEAR RESISTORS apan K. Gupta, Monroerille, and William D. Struub, Penn Hills Township, Allegheny County, both of Pa, essignors to
Westinghouse Electric Corp. Pittsburgh, Pa Westinghouse Electric Corp., Pittsburgh, Pa,
Filed Nov. 12, 1975, Ser. No. 631,297

Int. C. ${ }^{2}$ H01C $7 / 02$
U.S. C. 29-612

9 Claims

1. A method of making a homogeneous, sintered, resistor body, having a substantially uniform density, which can exhibit (A)
(A) mixing:
(1) a solid particle composition admixture of 75 mole $\%$ to
98 mole $\%$ of small, finely divided 98 mole $\%$ of small, finely divided ZnO and 2 mole $\%$
to 25 mole $\%$ of a small, finely divided additive com. pound effective to produce non-linearity characteristics within the body, with
(2) an aqueous binder solution comprising an organic, water soluble binder that will decompose at tempera-
tures of between about 150^{\prime} to about 600° C leaving on tures of between about 15 to about $600{ }^{\circ}$ c leaving no
carbon residue, wherein the weight ratio of solid particles:binder is between about 100:1 to about 100:10, to
provide a mixed particle-binder slurry, and then
(B) simultaneously drying, mixing and agglomerating the slurry to form a mass of larger spherical particles, the between about 0.5 micron to about 500 microns diameter, and at least $50 \mathrm{wt} . \%$ of the agglomerated particles have an average particle size between 25 microns to about 500 microns, said particles containing binder, ZnO and addi(C) pressing a mass of the agglomerated particles in
C) pressing a mass of the agglomerated particles in a uni-
axial press, at between about 36 kg . $/ \mathrm{sq}$. cm . to about 1,500 $\mathrm{kg} / \mathrm{sq}$. cm., to provide a body having a substantially
uniform density, and then (D) heating the pressed body
(D) heating the pressed body:
(1) first at a temperature of between 25° and about $600^{\circ} \mathrm{C}$, (1) first at a temperature of between 25° and about $600^{\circ} \mathrm{C}$, about $45^{\circ} \mathrm{C} / \mathrm{hr}$., effective to slowly decompose and (2) betweene about 625° to about
(2) between about 625° to about $1,400^{\circ} \mathrm{C}$, at a temperature
rate increase of between about $75^{\circ} \mathrm{C}$ / to abo rate increase of between about $75^{\circ} \mathrm{C} / \mathrm{hr}$. to about 150°
C / hr., for a time effective to sinter together the parti-
cles of the pressed body, thereby forming a homogene- ing force thereon, said handle comprising a single molded us sintered body having a substantially uniform den- plastic unit
sity, exhibiting non-linear V-I characteristics.

ILLUMINATED 4
ILLUMINATED RAZOR
ind Church St., Hasbrook Helghts, N.J.
Filed Mar. 4, 1976, Ser. No. 663,980
U.S. Cl. 30-34 R

Int. Cl. ${ }^{2}$ B26B $19 / 46$

1. A razor having a head and a handle on the head compris
ing: means for mounting a razor blade on the front of the
head; head;
(b) a razor blade mounted on the front of the head facing outwardly from the head and the handle;
(c) an electrical circuit entirely within the handle of the razor;
(d) a power source in the electrical circuit;
(e) a light bulb in the circuit,
surface arranged at an angisparent material having a rear saxis of the razer at an angle between 30° and 60° to the and the razor handle for directing the light from the which the razor blade faces; (g) a coating of an opaque ry
surface of the razor head;
) a switch in the circuit; an
(i) means for sealing the electrical circuit from water

RAZOR ASSEMBLY WITH PIVOTALLY MOUNTED Cobert Anthony Troth Gllette Company, Boston, Mass.

Filed Dec. 15, 1976, Ser. No. 750,958
Int. C. ${ }^{2}$ B26B 21/06, 21/22
U.S. CI. $30-47$
 1. Razor assembly comprising a shaving unit and a handle,
said shaving unit having platform means, blade means, firs pivotal mounting means for pivotally connecting said shaving unit to said handle, and cam means for receivng a biasing force from said handle, said handle including a head portion having arm means with second pivotal mounning meansemplemenber
to said first pivotal mounting means and a resilient member anchored at either end thereof to said head portion, said resilient member comprising first and second legs upstanding from said head portion and a bridge portion extending between the first and second legs and otherwise removed from said head ment with said shaving unit cam means for exerting said bias-

SHEARING TOOL | $4,094,064$ |
| :---: |

SHEARING TOOL FOR SYNTHETIC RESIN TUBES Japan, assignors to Matsuraka Iron Works Inc Tsu, Japan Japan, assignors to Maisuzakn Iron Worka, Inc, Tsu, Japan Claims priority, application Japena, Apr. 16, 1996, 51. $48576[\mathrm{U}$; Dec. 9,1976 , $51-164945[\mathrm{U}]$ U.S. C. $30-92$

1. In a shearing tool for synthetic resin tubes comprising an upper handle portion;
a lower jaw connected to the leading end of said upper hande portion by means of an intermediate neck portion integral with the upper handle portion, said upper handle portion being formed with an opening extending from the forward portion of said handle portion to the leading end of the lower jaw;
a lower handle portion pivoted at the leading end to said shearing blade pivoted to said upper handle portion withing said opening, said shearing blade being formed at the rear portion positioned between said upper and lower handle portions with a guide slot, said guide slot including planer side edge along the opposite or other side edge of the slot;
rocking bar pivoted at one end to the lower handle portion and including at the other end of the rocking bar a pin freely received in said guide slot for selectively engaging
said series of notches formed on the slot, said rocking bar being adapted to urge said shearing blade toward said lower jaw when said upper and lower handle portions are pivoted toward each other by a gripping force applied to
the handle portions;
spring for urging said pin to engage in said series of

notches;

a return spring for urging said lower handle portion away
from said upper handle portion to the initial position when rom said upper handle portion to the initial position when said gripping force is released from the upper and lower hriction washer
said shearing blade to about said pivot connection of said opening for applying friction force to the side of the blade so as to hold the blade in position; and
a pin provided on said lower handle portion for engaging cald rocking bar so as to stop the bar against rocking; arderized in that said pivoting of said shearing blade to said upper handle portion is in an intermediate position of the length of said blade, said planar side edge of the guide slot formed in the blade being disposed in an inclina-
tion with respect to the cutting edge of said shearing blade in the counterclockwise direction, said upper and lower handle portions being fabricated from light metal having a U-shaped cross-section, both of said rear portions of said shearing blade and said rocking bar being disposed beportions, said lower jaw being formed with an arcuate tube receiving recess on the upper surface of the jaw, and
thereby the user being able to shear said tubes by applying between adjacent windings being selected from the group gripping force with one hand to the handle portions. consisting of 1.0 to $2.0 \mathrm{~mm} ; 2.0$ to 3.0 mm and 3.0 to 4.0 mm , and wherein said blade is stile and is packaged in such condi-
tion tion for one time use only.

4,094,067

William R. C. Geary, 4/18 Kensington Rev., South Yarra, VicWiliam R. C. Geary,
toria, Australia (3141) Filed Dec. 7, 1976, Ser. No. 748,203 Int. C1.2 B26B 19/24, 19/34

8 Claims METHOD FOR PRODUCING ARTIFICIAL DENTURE
Mitchell M. Hzarar, 3120 N. Roge Cir., Phoenix, Ariz. 85018 Mitchell M. Hazar, 3120 N. Rose Cri., Phoenix, Arlz
Filed Jul. 15, 1976, Ser. No. 705,570
U.S. C. 32-2

2 Clnims

1. A shearing device comprising a body provided with a 1. A shearing device comprising a body proviced a comb
pivoted arm for oscillating a cutter across the face of
fixed to the body, a hydraulic cylinder arranged laterally on fixed to the body, a hydraulic cylinder arranged laterayly on
the body at one side of the pivoted arm and forwardly of the pivotal axis thereof, a plunger in the cylinder, a connecting rod
extending between the plunger and the arm so as to transmi inward movements of the plunger to the arm and thereby displace the latter towards the opposite side of the body, means
for atteching a hydraulic supply tube to the body thereby to for attaching a hydraulic supply tube to the body thereby to ing apparatus, a second cylinder on the body at the opposite ing apparatus, a second cy and in coaxial alignment with the
side of the pivoted arm and
firstmentioned cylinder a plunger in said second cylinder, and firstmentioned cylinder, a plunger in said second cylinder, and
a second connecting rod extending between the lastmentioned plunger and the arm thereby to displace the latter towards the firstmentioned side of the body when the secondmentioned plunger is moved inwardly; each connecting rod having a
semi-spherical head at each thereof which is seated in a corre-semi-spherical head at each thereof which is seated in a corre-
spondingly shaped socket on the respective plunger or pivoted arm, and the connecting rods are maintained in engagement with the coacting socket by the inward pressures constantly
exerted on the opposed plungers. with the coacting socket by the in
exerted on the opposed plungers.

SURGICAL RAZOR BLADE WITH INTEGRAL GUARD Donald S. Daniel, Jr, 102 Windsor Way, Richmond, Va. 23221

U.S. Cl. $30-346.58$

1. A surgical razor blade with an integral guard for its cut1. A surgical razor blade with an integral guard for its cut-
ting edge in the form of a plurality of spiral windings of thread ting edge in the form terial capable of being pressed against the
being of flexibe mate
blade cutting edge under pressure in shaving contact with the being of fiting edge under pressure in shaving contact with the
blade cuting
normally unshaven areas of the skin withouts severance of the normally unshaven areas of the skin withour sever the range of 0.2
thread, said thread having a diameter within the inead, said thread having as extending around the cutting
mm to 1.0 mm , said winding
2. A method for producing a denture comprising: forming a enerally U-shaped assembly of prosthetic teeth, bonding said U-Shaped assembly of teeth into a generally U-shaped hard disposed a short distance rearwardly of the incisor areas of said assembly of prosthetic teeth; mechanically and removeably connecting a soft deflectable formable layer onto said hard ofhaped base by means of resilient plugs projecting from said ockets in said formable layer and removably received in shaped base and deflectably formable layer into a patient's mouth and finger forming said deflectable formable layer into close proximity to the edentulous areas of the patient's mouth; lacing removing said base and deflectably formed layer and form on the soff deflectably formed layeria the impressionable serting the base and layer and curable material into the human individual's mouth and impression forming the curable impres tulous guaterial into impression conformance with said edenable impressionable material to cure over the deflectably form able layer and bond thereto, to form a liner which conforms able layer and bond thereto, to form a liner which conforms
intimately to the features of the edentulous gum areas of the intimately to the feasures of the edenturous gum areas of the mouth, hereby forming a nitted denture module; then making ule; then making a second impression model of the opposite
side of said fited denture module; then removing the impresside of said fitted denture module; then removing the impres
sionable material and sof deflectably formed layer from the
1 Claim $\begin{aligned} & \text { sionable material and } \\ & \text { hard } U \text {-shaped base assembly of prosthetic teeth, then casting }\end{aligned}$ hard U-shaped base assembiy of prosthetic teeth, then casting
uncured denture base resin in a formable form between said second impression model and with said first impression model with the U-shaped hard base structure imbedded therein; and
allowing said uncured denture base resin to cure in bonded allawing said to said hard base structure to form said denture.
relationship

4,094,068

ORTHODONTIC BRACKET ASSEMBLY
Karl Schinhammer, IIeriohn-Letmathe, Germany, amignor to
Scheu-Dental Ih. Rdolf Schen Herstelling \& Vertrieb Von Scheu-Dental Irh. Rodolf Schen Herstellung \& V
Dentalbedarf, Letmathe, Gerranany

Filed Jul. 16, 1976, Ser. No. 705,89
Claims priority, application Germany, Aug. 1, 1975, 2534368 Int. C. ${ }^{2}$ A61C 7/00
ic bracket a surface for fastening said bracket upon a tooth, said seat and held retainably against said retaining abutment bracket wings extending laterally from said base of said bracket and a through-passage structure having at least one side supand defining therebetween a slot adapted to receive therein a port wall and an arch barrier-structure extending laterally regulating arch, a self-adhesive strip removably adhered on from the side support wall, the barrier-structure extending one side thereof to said fastening surface of said bracket base mod adapted to have its opposite side removably adhered to ${ }^{2}$

bracket wings and said bracket base and also extending to saic adhesive strip in surrounding relationship with said bracke base, said protective foil being arranged to prevent penetration
of the material forming said transfer matrix to the space be of the material forming said transifer matrix to the space be-
tween said bracket base and said bracket wings when said bracket is being mounted upon said positive tooth model with
said ransfer matrix. said transfer matrix.

4,094,069

DENTAL INSTRUMENT RETRACTION DEVICE
DENTAL INSTRUMENT RETRACTION DEVICE
Raymond Cope, 3 S411 Springsvally Rd., Birmingham, Ala. 35223 Cope, 3541 Springssally Rd., Birmingham,
Filed Feb. 10, 1977, Ser. No. 767,498
Int. C.2. A 61 C U.S. CI. 32-22 Int. C1. ${ }^{2}$ A61C $1 / 14$

3 Claims

1. A dental instrument retraction device comprising in com bination: an elongated tubular recess structure forming a seal
for alternately holding a body of an instrument and a tub for alternately holding a body of an instrument and a tube
anchored to a rearward portion of an instrument and the rect anchored to a rearward portion of an instrument and the reces
structure including bottom wall structure and side wall structures extending upwardly therefrom, and there being formed tures extending erearward ports adjacent the seat and an open structure-free space above each of the seat and the forward and rearward ports, and there being formed an inwardly-directed
retioining abument substantially at said rearward port posiretaining abument substanthat a structure of a predetermined size larger than a cross-section of said tube anchored to a rearward portion of an instrument is prevented from further rearward retraction thereby providing for limiting rearward retraction of the anchored tube, and there being formed an inwardures substantially above said seat and said forward and rearward ports, the inwardly-directed overhang being of a predetermined dimension sufficiently great to prevent dropping into said seat a structure of said predetermined size larger than said cross-section of said said overhang being limited to a maximum dimension such that the tube having said cross-section is enabled to drop into each of said seat and said forward and rearward ports, and said forward port being of a predeter-
mined width at least as large as a width of said structure having mined width at least as large as a width of said structure havial rearwardly into the forward port beneath said overhang into
above a through-space aligned with and in juxtaposition to said forward port, the barrier-structure being at a height above said overhang sufficient for uraver face of said overhang, and said through-space of said barrier-structure being of a width at least as large as said predetermined size, and the through-passage structure being mounted in fixed relationship relative to said recess structure; and said tube adapted to have a dental insirument operatively atachection arficient for travel to and fro through each of said forward and rearward ports and downwardly past the overhang into said seat; and retainer structure mounted on said tube and being adapted for positioning at
different alternate positions axially along said tube; the retainer different alternate positions axially along said tube; the retainer
structure having a width cross-section of said predetermined structure having a width cross-section of said predermen the
size larger than the cross-section of the tube such that when tube is advanced axially forwardly the retainer structure rides on top of said overhang to a location forward thereof, and
when thereafter the tube is retracted axially rearwardly the when thereafter the tube is retracted axially rearwardly the
retainer structure may be directed upwardly by flipping the retainer structure may be directed upwardly by flipping the
tube upwardly above said overhang, and alternately when the tube is not flipped during retraction thereof, the retainer structure is drawn through said forward port into said seat against
said retaining abutment.

4,094,070

MICROMETER HEAD ${ }^{4,094,070}$ WTH DOUBLE COUNTER Tetsunori Tende, Kure Jopen essignor to Kabushiki Krisha Mitutoyo Seisalkusho, Tokyo, Japan Claims priority, application Japan, Sep. 23, 1975, $50-$ 130623[U] U.S. Cl. 33-166 Int. Cl. ${ }^{2}$ G01B 5/00 2 Claims

1. A micrometer head comprising:
a tubular body including a central sleeve fixed to the body and having an axial opening with female threads.
a spindle having male threads engaging said female threads a spinde having male hreads engaging said female threads
of the body, said spindle being movable axially of the body upon rotation of the spindle,
said tubular body having a generally cylindrical exterior and defining chamber means between said spindle and said exterior
meid spindie further comprising a circular end, and a tubular member secured to said end and extending axially into said body, said tubular member extending around said central sleeve,
gear within said body, and adjacent said chamber means, spect to said body, a collar mounted for rotation with respect to said central sleeve and between said sleeve and said tubular member of
the spindle, said gear being fixed to said collar for rotation
with the collar, and drive means connecting said tubular member to said collar for rotating said collar in response
to rotation of the tubular member and spindle, while perto rotation of the tubular member and spindle, while per-
mitting axial displacement of the spindle and tubular member with respect to the body,
a first digital counter mounted in said chamber means to indicate the displacement of said spindle in a first direction relative to said body, said first counter having a zero-reset mechanism,
a second digital
second digital counter mounted in said chamber means on to indicate the displacement of said spindle in a second direction relative to said body, said second counter having a zero-reset mechanism,
gear means connecting said first counter to said gear for operating the first counter to indicate axial displacement of said spindle in a first direction with respect to said ody, and
second gear means connecting said second counter to said gear for operating the second counter to indicate axial
displacement of said spindle in a second direction with respect to said body.

DJUSTABIE TEM

Denaro, 543 Bedford St., Concord, Mass. 01742
Filed Nov. 11, 1976 Ser. No 740
Filed Nor. 11, 1976, Ser. No. 740,869
U.S. CT. $33-174$ B

4,094,072
GOLF CLUB FIXTURE
C J Erb, 22621 Beech, Dearborn, Mich. 48124,
Flied Feb. 11, 1977, Ser. No. 767,804 Filed Feb. 11, 1977, Ser. No. 767,80
U.S. Cl. $33-174$ F

1. In a fixture for use with a typical golf club known as an iron having a head connected to a hosel interfitting coaxially with the lower end of a shaft, the head comprising a plane forward face having a plurality of parallel horizontal score ines thereon and terminating outwardly at a toe spacing a ottom sole and a top edge, the combination of a guide having an indexing surface defining a plane for receiving said head to position said forward face in a predetermined angular align-
ment with respect to said fixture with said face flush with said surface, horizontal indexing means for providing a reference line capable of visual alignment with a parallel portion of one of said horizontal score lines to enable the positioning of the sore lines of said head in alignment with said reference line, in said fixture after said head has been placed in a properly aligned position.

4,094,073

Gilbert T. Parra, Sungle detector States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, D.C. Filed Not. 10, 1976, Ser No, 740,457

1. An angle detector comprising:
a capacitive pickup member;
an inductive element suspended as a pendulum and angularly movable past the capacitive pickup element, the inductive ${ }^{\text {element divisable into two parts } \mathrm{L}_{1} \text { and } \mathrm{L}_{2} \text { formed between }}$ the electrical center of the capacitive pickup element the two ends of the inductive element in accordance with
the angular displacement of the inductive element with respect to the capacitive pickup element;
digitally positionable potentiometer electrically shunting and \mathbf{R}_{2} of a bridge circuit;
an alternating current source connected to the bridge circuit to provide an alternating current signal therein, no curren flowing from the inductive element to the capacitiv means connected to the capacitive pickup element and sponsive to the flow of current thereto from the inductive element for generating an error signal;
phase detector connected to the error signal generating means for detecting the phase difference between the the phase difference; and
means responsive to the indicating of the phase difference for digitally positioning the potentiometer to balance the bridge circuit and null the error signal.

METHOD AND ARRANGEMENT FOR DRYING MeSt
Alfons Schrader, Waldemar Schreiner, and Anton Gessner, all of
Remscheid-Lennep, Germany, asignors to Buttser-SchildeHase AG, Krefeld-Uerdingen, Germany
Filed Oct. 4, 1976, Ser. No. 729,144
Claims priority, appliction Germany, Oct. 4, 1975, 2544589 U.S. C. $34-33$

10. Method of drying articles in a drying arrangement, par ticularly a tenter, comprising conveying articles to be dried in a path through the drying arrangement; heating air in the
drying arrangement to a temperature of approximately $250^{\circ} \mathrm{C}$; directing the heated air into contact with the articles to be dried by circulating air with cross-flow blower means in direc tion transversely of the path at a velocity of $40 \mathrm{~m} / \mathrm{sec}$ and at a pressure of 100 mm water column measured at $20^{\circ} \mathrm{C}$.

4,094,075

SYSTEMS FOR DRYING PARTICULATE MATERIAL Ster M. Can 559 Cing St Geterer Il 614 Peter M. Caruso, 558 Cherry St., Galesburg, II. 61401 Iled Mar. 21, 1977, Ser. No.
Int. Cl. ${ }^{2}$ F26B $21 / 06$ Mar. 21, 1977, Ser. No. 779,868
Int. Cl. ${ }^{2}$ F26B $21 / 06$
or drying moisture-entrained particulate mate-U.S. C1. 34-72 1. A system for drying moisture-entrained particulate mate-
rial, comprising: means defining a pressurizable chamber for receiving the outlet;
inlet means for enabling the material to be dried to flow into said chamber via said inlet;
outlet means for enabling the dryed material to flow out of said chamber via said outlet;
fluid means disposed within said chamber for dispersing the material within said chamber between said inlet and sai outlet;
ing means for heating the material to be dried flowing into said chamber
ompressing means for drawing air through said chamber to
tere mostre from the moterial and for compressing remove moisture from the materiat andt and

means for guiding the flow of heated moisture-entrained air from said compressing means to said heat exchanging means to supply heat to it

means to supply heal to

FIXTURE FOR PORTABLE HAIR DRYER

1. A fixture adapted to cooperate with an electricallyoperated portable hair dryer having a tubular nozzle from torage holster for the hair dryer when it is not in use and as a fabric dryer for which the hair dryer supplies the necessary hot air, said fixture comprising:
A an upright holster section supported in an upright position against a wall and constituted by a rigid tube whose upper end is formed into an open socket for nessing the nozzle of hot air stream emitted from the nozzle to be projected into the tube, said holster holding said portable hair dryer in readiness for immediate withdrawal for drying hair, and B a hollow rack section attached to said hoister section and communicating with the tube for supporting a fabric article to be dried, said rack section having perforations is activated, the resultant stream of hot air is conducted by the holster section to the rack section and emitted through said perforations to provide hot air jets to dry the article.

DRYER ARRANGEMENT

Alfons Schrader, Waldemar Schreiner, and Anton Gessner, all of Remecheid-Lennep, Germany, asignors to Buttner-SchildeHans AG, Krefeld, Uerdingen, Germany
Claims priority, acplication Germany, Oct. 4, 1975, 2544590 S. C1. 34-155 Int. CI. ${ }^{2}$ F26B $13 / 00$

7 Claims

1. An apparatus for drying articles, particularly a tente comprising a housing having an interior; means subdividing
said interior into two compartments, including a partitioning wall; means for conveying articles to be dried in an elongated path through one of said compartments; means for directing plurality of streams of drying air against the articles, including a pair of discharging arrangements juxtaposed with one another across said path so as to bound a gap extending along said
path from two opposite sides thereof and each including a path from two opposite sides thereof and each including a
plurality of channel elements successively arranged at a predepluraity of channel elements successively arranged at a prede-
termined spacing from one another along, and each extending transversely of, said path, and having outlet ports facing said path, and means for feeding the drying air into said channel elements of said discharging arrangements for the drying air to emerge through said outlet ports of said channel elements and
impinge against the articles from both of said two sides; and impinge against the articles from both of said two sides; and
means for guiding the flow of the drying air away from the articles after the impingement thereagainst, including at leas one side wall extending longitudinally of said path between said discharging arrangements to close said gap at least at one transverse side thereof, a plurality of air outlet passages formed between each adjacent two of said channel elements and each sectional area and an inlet port open into said gap, means for partially obstructing each of said outlet passages at said inlet port thereof, and an elongated discharge outlet extending longitudinally of said path and centrally through said partition ing wall and communicating with said outlet passages of said
discharging arrangements and with the other compartment of said housing.

> 4,094,078

PARTICLE FEEDING AND TREATING SYSTEM Adolf Lesk, and Woifgang Hagelett, both of Osterburken, Germany, assignors to Ingenieur-Boero, Osterburken, Germany Filed Mar. 17, 1976, Ser. No. 667,822
Claims priorty, application Germany, Mar. 19, 1975, 2511996 Int. C. ${ }^{2}$ F26B $21 / 06$ 13 Claims

means for withdrawing fluent particulate material from said vessel adjacent said floor:
vessel adjacent said floor;
a flexible support lining in said vessel on said floor defining therewith a generally closed variable-volume space and constituted as a gas-impervious foil formed with a multiplicity of throughoing holes and a gas-pervious textile
sheet bonded to said foil over said holes; and sheet bonded to said foil over said holes; and
blower means for injecting a gas into said space and thereby
flexing said lining, whereby said material is loosened by said gas passing through said holes in the foil and disseminating through said sheet.

SINGLE MEDIUM AUDIO-VISUAL TEACHING AUDIOVIS
Loyd G. Dorsett, Norman, Okla, assignor to Dorsett EducaHonal Systems, Inc., Norman, Okle

Flied Apr. 5, 1977, Ser. No. 784,737
U.S. Cl. 35-8 A

8 Claims

1. In an audio-visual teaching machine for use with a source 1.
having video display pulses entrained therein, and a source control portion having a control pulse entrained therein in one a predetermined number of response states, the teaching achine including:
a source record playback unit including a playback portion for receiving the source record, providing a composite
source output signal having an audio portion corresponding to the audio portion of the source record, a video control portion corresponding to the video control por-
tion of the source record, and a corresponding to the source control portion of the source corresponding to the source control portion of the source
record; and a pause control portion for interrupting the operation of the playback portion thereof in response to a pause signal applied thereto;
an audio output unit for providing an audible output signal in response to an audio signal applied thereto; and,
video display unit for providing a visual output response to a composite video signal applied thereto; the improvement comprising:
a source control unit means connected to the source record playback unit, the source control unit means including a
response control portion having a plurality of actuatable response control portion having a plurality of actuatable
response input elements, each response input element providing a response input signal in a predetermined one of the response states in response to the actuation thereof, the source control unit means for receiving the source control portion of the composite source output signal,
detecting the control pulse entrained in the source control portion, initiating production of the pause control signal for application to the pause control portion of the source record playback unit in response to detecting a control pulse having one of a selected plurality of the response states, receiving each of the response input signals pro-
vided by the response input elements upon actuation thereof, comparing the response state of the detected control pulse and the response state of the received response input signal, and terminating production of the
pause signal when the response state of the detected pause signal when the response state of the detected con-
trol pulse is equal to the response state of the received response input signal; respons control unit co
back unit and to the video display unit, the video control unit comprising
an asyncronous interface circuit means connected to the source record playback unit, the asynchronous interface circuit means for receiving the video control portion of
the composite source output signal, detecting the video display pulses entrained in the video control portion, providing an input data signal having input data pulses entrained therein corresponding to the detected video display pulses, and providing an input clock signal sponse to detecting a predetermined number of the video display pulses;
a timer circuit means for providing an output clock signal having output clock pulses entrained therein at a prede termined output clock rate, providing an end-of-scan-
line signal having end-of-scan-line pulses entrained therein at a predetermined end-of-scan-line rate, and providing an end-of-field signal having end-of-field
pulses entrained therein at a predetermined end-of-field
rate: rate;
a memory control circuit means connected to the asynchronous interface circuit means and to the timer circuit the input data signal, the input clock signal and the output clock signal, storing each input data pulse en trained in the received input data signal at a predeter mined storage location in response to receeiving each input clock pulse entrained in the input clock signal, and providing a video output signal having a video data
pulse entrained therein corresponding to the input data pulse entrained therein corresponding to the input data
pulse stored at a predetermined storage location in response to each output clock pulse entrained in the output clock signa,
a video processing circuit means connected to the memory control circuit means, to the timer circuit means,
and to the video display unit, the video processing and to the video display unit, the video processing,
circuit means for receiving the video output signals, the end-of-scant-line signal, and the end-offifld signal, pro-
ducing a horizontal sync pulse in response to receiving ducing a horizontal sync pulse in response to receiving
each end-of-scan-line pulse entrained in the end-of-scaneach end-of-scan-line pulse entrained in the end-of-scan
line signal, producing a vertical synch pulse in respons line signal, producing a vertical synch pulse in response
to receiving each end-of-field pulse entrained in the end-of-field signal, and adding the horizontal and vertical sync pulses to the received video output signal fo application to the
video signal; and,
means connected to the source record playback unit and to the audio output unit for receiving the audio portio of the composite source output signal and applying the received audi
audio signal.

4,094,080

BOOT OR SHOE HEATING DEVICE James
73159

Filed May 2, 1977, Ser. No. 793,095
Fuled May 2, 1977, Ser. No. 793,095
Int. C1. ${ }^{\text {A } 43 \mathrm{~B}} 7 / 02$; A41D $17 / 00$ A61F $7 / 06$ US. C. $36-2.6 \quad 1$ Claim 1. A footwear heating device, comprising: adapted to overlie and be secured, in a partial wraparound fashion, to the toe and vamp areas of a shoe or buot, said ections being pockets;
rality of flameless heaters disposed within said
pockets;
a plurality of eyelets secured to the respective stitched together end portions of said sections;
plurality of flexible strands extending through and joining oppositely disposed cooperating pairs of said eyelets in one said end portion; U-shaped rod adapted to extend
transversely across the depending surface of the toe portion of a shoe or boot,
said toe clip having arcuately curved legs forming a pair
of closed loops; and of closed loops; and,

other flexible strands joining said closed loops to cooperating eyelets in the other said end portion.

BEACH SANDA
Soseph Reiner, 30 Sutton Pl.; Kenneth Vigigicel, 103 Crest Rd.,
and Micheel Reiner, 30 Sutton Pl, all of Toms River, N.J. and Mi
08753
S. C. $36-116$

1 Claim

1. A beach shoe for walking on sand surfaces, comprising: non-pivotable, flat sole surface in the general shape of the user's foot;
a continuous wall projecting substantially perpendicular to the sole surface and integrally-formed therewith and extending about and adjacent to the periphery of said surthe sand and defining an unobstructed cavity in the bottom surface of the sole extending from the toe to the heel section of said sole, said peripheral wall being tapered from its widest portion adjacent to said sole surface, to it narrowest portion in contact with the sand surface, the depth of said cavity, defined by said projecting wall sur face, being sufficient to preve
surface from contracting; and
eans on the top of the
eeans on the top of the sole surface for securing the sole to
the user's foot, said means including the top of said sole surface ading a foot pad secured to foot pad for engagement over irst strap coupled to said second strap having a buckle-and-belt arrangement fo securement over the user's ankle.

PERPETUAL CAI
Pedro Nicolas Canneretual calendar gentina
Flaims priority, Sep. 30, 1976, Ser. No. 728,400 Claims priority, application Aggertino. Oct. 7, 1975, 260713

VEHICLE PLACARDING APPARATUS

 Harry Fund, Chicago, Ill, aseignor to Modular Products, Chicago, III.Division of Ser. No. 714,840, Aug. 16, 1976, Pat. No. 4,058,918. This application Jul. 20, 1977, Ser. No. 817,429 3 Claims U.S. Cl. 40—536

1. A perpetual calendar, comprising in combination, a frame
defining an enclosure which is open at its top, and including defining an enclosure which is open at its top, and including
two substantially upright, spaced and elongated prisms facing two substantially upright, spaced and elongated prisms facing each other and each having a rear surface, a front surface and said spaced prisms and being connected to the rear surfaces of said prisms; an at least partially transparent, substantially upright front sheet spanning said spaced prisms in such a manner that said front sheet is spaced a substantially constant distance from said rear sheet and being connected to the front surfaces
of said prisms; a J-shaped unitary curviform first support havof said prisms; a J-shaped unitary curviform first support hav-
ing a substantially constant horizontal breadth and including a curved portion intermediate a substantially horizontally extending rectilinear portion and a substantially upright rectilinear portion having a free horizontally directed end face, the free end face being unitarily bonded to the bottom surfaces of
said spaced prisms and extending from one prism to the oner said spaced prisms and extending from one prism to the other; an upper end face and a lower end face, said second support longitudinally extending below and in substantially the same plane as said rear sheet, and having a top end face and a bottom end face, the top end face being unitarily bonded with the substantially upright rectilinear portion of said first support and the bottom end face being located in a horizontal plane in
which the horizontally extending rectilinear portion of said first support lies, the substantially horizontally extending rectilinear portion of said first support having an elongated substantially horizontally extending upper surface, whereby writing instruments and the like can be supported in a horizontal position on this upper surface, said front sheet being rectangular,
and the curved portion of said curviform first support curves and the curved portion of said curviform first support curves
outwardly relative to said front sheet and away from the horizontally extending rectilinear portion; and further comprising seven elongated prismatic bodies removably mounted within the enclosure defined by said frame and provided with indicia representing the days of the month, each prismatic body is a column having a length equal to the vertical distance between the free end face of the substantially upright rectilinear portion
of said first support and the top of said front sheet, said front of said first support and the top of said front sheet, said front
sheet being provided with indicia representing the days of the week, the indicia being located in such a manner that each of them are above the indicia represented on each of said pris-
matic bodies, said seven prismatic bodies completely filling the matic bodies, said seven prismatic bodies completely filling the enclosure defined by said frame, and each of said prismatic bodies having lateral sides equal to the lateral sides of said than the upright length of said front sheet, so as to facilitate removal of said prismatic bodies.
2. An apparatus for providing changeable placarding for a
3. An apparatus for providing changeable placarding for
roll-up vehicle door formed of a plurality of articulated, rigi rectangular door sections, consecutively hinged along horizonalirst base membe
a first base member for attachment to a first rectangular door a seciond; base member for attachment to a second rectangu lar door section adjacent the first rectangular door section;
first plurality of generally congruent, right triangular
plates plates;
first moun
first mounting means for pivotally attaching each of the first plurality of plates to the first base member, so that the plates are pivotable about a common axis approximately parallel with parallel congruent edges of each of the plates;
second plurality of generally congruent, right triangular plates;
second
seconounting means for pivotally attaching each of the second plurality of plates to the second base member, so mately parales are pivotable about a common axis approximately parallel with paralle! congruent edges of each of
the plates; and the plates; and
manually operable
nanually operable means on said first and second base mem
bers for clipping the triangular plates to their respective bers for clipping the triangular plates to their respective parallel to the plane of the door sections to which the respective base members are attached,
said triangular plates having indicia and being located such
that surfaces of four riangular that surfaces of four triangular plates facing outwardly
simultaneously are adapted to collectively simultaneously are adapted to collectively define a dia
mond-shaped area bearing an inscription zontal axis along which the first and second door sections are hinged and split at the common pivoting axes.

in a horizontal attitude, said suspension means comprisin a finger extending from a radially inner surface of said

member; and, whereby said member may rotate freely in response to air currents.

4,094,085
PICTURE FRAME APPARATUS
Ronald M. Nolan, Jr., 5739 Roanwood Way, Concord, Calif. Filed Aug. 2, 1976, Ser. No. 710,782
Int. C1. ${ }^{2}$ GO9F $1 / 12$ U.S. CI. 40-152.1

6 Claims

1. A picture frame apparatus for displaying a plurality baseball cards, photographs, or the like, comprising: a frame portion including a top edge strut having a top edge second side edge struts wherein said edge struts are de fined such that said frame portion extends away from a wall or other structure at a fixed angle when said frame portion is affixed thereto, as a function of the distance
from the outer perimeter of said frame portion, with the outer perimeter of each edge strut coming in contact with said wall or other structure, said top edge flange formed such that one surface thereof will lie flush against said wall or other structure when the outer perimeter of said edge
nger means in
hanger means including mounting plate means, means for
affixing said mounting plate to said wall or other strucaffixing said mounting plate to said wall or other struc-
ture, hook means attached to ssid mounting plate means, said hook means defined in a shape such that said top edge flange will mate therewith to thereby removably affix said means, wherein said hook means comprises a plurality of hooks each said hook including two surfaces which engage to define an angle therebetween which is substantially identical to the angle existing between saic top edge lange and the body of said top edge strut such that seach
top edge flange and strut will mate securely with each hook; and
strut means comprising at least one strut interconnecting two of said edge struts such that a plurality of window openings are defined within said frame portion thereby;
said struts including elongated slot defining means posisaid struts inclucing elongated
tioned adjacent each said window opening such that a card, photograph, or the like may be seated therein to
thereby position the card or the like in said opening, said elongated slot defining means comprising
two opposite front flange portions, one positioned on either side of said window opening and oriented to face one with the other in a common plane, said front flange
portions defining thereby left and right edges of said window opening;
i. two opposite rear flange portions, one positioned on either side of said window opening and oriented to face one with the other in a common plane, said rear flange portions being positioned in parallel and behind said front and rear flange portions, two elongated slots are defined thereby, one each along each side of said window openings said rear flange portions sized such that said card or the like is enabled to be slid into said elongated slots without impediment; and
ii. base means positioned at the bottom of said window
opening and defining thereby the bottom edge of said window opening, said base means acting to stop the card or the like from exiting through the bottom of said elongated slots.

ADJUSTING DEVICE FOR DOUBLE-BARRELLED GUNS Ceorges A. Gevers, Liege, Belgium, assignor to Fabrique Na. Ceorges A. Gevers, Liege, Belgium, assignor to Far
tionale Hertal S.A. en abrege FN , Herrall, Belgium tionale Herstal S.A. en narege FN, Herstal, Beigium
Fled Nor. 15, 1976, Ser. No. 741,987 Claims priority, application Belgium, Jan. 22, 1976, 254770 U.S. Cl. 42-1 R

1. Adjusting device for double-barrelled guns, comprising two elements provided with accessory parts located between
the barrels, one of these parts forming an axially extending the barrels, one of these parts forming an axially extending
incline for the other which acts as a wedge, one at least of aforesaid elements being movable axially with respect to the other.

FISHING LURE AND HOOK
4,094,
Jerry W. Jerry W. Carpenter, 713 Western Ave., Orange, Tex 7763 Fled Fer 4, 1977, Ser. No. 765,57
U.S. C. 43-42.24 Int. Cl. ${ }^{2}$ A01K 85

4 Claims

The combination of a fishing lure and a fishing hook the fishing hook comprising:
a shank,
a hook, and
the eye, the eye,
lure body of flexible, plastic material inert to water simulat ing bait and having action in the water, and
fibrous material embedded within the leading end of the lure body; and
the shank of the fishing hook extending through the leading said platform upper surface is aligned with said base upper
the barb disposed within the fibrous material, and
the hook hooked into the plastic material of the lure body downstream from the fibrous material,
whereby, the lurie obdy is restrained by the barb within the
fibrous material from movement away from the eye fibrous material from movement away from the eye and
down the shank of the fishing hook as the fishing lure and hook are pulled through the water by the fishing line.

MOBILE INSECT COLIECTIN

MOBLLE INSECT COLLECTING AND DESTROYING Robert C. Harrell, 616 N. St. John, Dyersburg, Tean. 38024 Filed Nor. 15, 1976, Ser. No. 741,694
U.S. Cl. 43-144 Int. Cl. ${ }^{2}$ A01M $1 / 20 \quad 14$ Claims

1. Tractor mountable apparatus for collecting and destroy ing insects from multiple rows of growing plants comprising supporting frame including a pair of transversely spaced longi--
tudinal support members mountable upon the front end of a tudinal support members mountable upon the front end of a
tractor to project forward thereof, and a pair of front and rear tractor to project forwara thereef, and a pair of front and rear
longitudinally spaced transverse pan support and vine agitator members carried by the longitudinal support members, a plurality of open top elongated metal pans directly below the front transverse pan support and vine agitator member to
receive bugs therefrom, suspension means for suspending said metal pans from said pair of transverse support members a spaced intervals so that said pans move adjacent the ground between the rows of plants as the apparatus moves along the plant rows, burner means in each of said metal pans for heating said pans and for burning insects falling into said pans, each o above and transversely across the pan for agitating mounted side branches of adjacent plants along which the pan moves, and
for knocking insects into the pan, said suspension means includfor knocking insects into the pan, said suspension means includng yieldable independent suspension means for each of said
pans permitting each of said pans to swing rearwardly and pans permitting each of said pans stone or other low lying
upwardy when encountering a stor rround object, and motor operated means for selectively raising and lowering all of said pans simultaneously.

4,094,089

Hiroshi Sano, Tokyo, Japan, assignor to Tomy Kogyo Co., Inc.,
Tokyo, Japan
Hied Jan. 4, 1977, Ser. No. 756,701 Climims priority, application Japan, Apr. 22, 1976, Int. Cl. ${ }^{2}$ A63H 18/16
U.S. C1. ${ }^{46-1 ~ K}$

1. A jumping rail, comprising a base having an upper surplatform to said base to move between a first position wherein
surface and a second position wherein one end of said platform
is raised upwardly from said base, means urging said platform to said second position, a striking member projecting upwardly from said base beyond said upper surfaces, means mounting said striking member to said base to move between a first

position wherein said striking member engages said platform retaining said platform in its first position and a second position wherein said striking member is disengaged from said platform permitting said platform to move to its second position, means
urging said striking member to its first position, and releasable means maintaining said platorm in its first position regardless of the position of said striking member.

4,094,090 OLL HOUS

Harry E. Walmer, 721 N. Overlook Dr., Alexandria, Va. 22305 Filed Feb. 11, 19977, Ser. No. U.S. Cl. 46-19

8 Claims

1. An easily assembled knock-down doll house having fitted together and held together only with pegs comprising a. a generally rectangular first floor member comprising left, right and front grooves in the top surface thereof, at least one intermediate groove in said surface parallel to said le
and right grooves, and a series of in-line holes dispose forward of said front groove: b. a front wall member having a bottom edge engage said front grooves of said first floor member, comprising vertical L-shaped of side beams, a top horizontal beam member disposed on the inner front wal shaped beam member disposed on the outer side at an intermediate position; . left and right side walls, having respective sizes and shapes
to have their front edges engage said L-shaped beams of said front wall and their bottom edges engage said respecside walls containing a top, inner horizontal beam membe having an inward side groove, an inner second horizontal
beam member having an inward side groove and disposed
between said side wall top beam and the lower edge of between. said side wall top beam and the lower edge of said side wail, inwardly angled top edges, and
posed at the terminus of said angled top edges;
d. at least one intermediate wall member adapted to have it lower edge engage a respective said intermediate groove in said first floor and a said vertical slot of said front wall top beam member, comprising an intermediate horizontal
e. a second floor member adapted to have its side edges engage said grooves of said inner second beam members of said side walls and comprising a stairwell near the front
edge and at least one horizontal slot extending rearwardly edge and at least one horizontal slot extending rearwardly
from the front edge, said slot adapted to engage said horizontal slot of said intermediate wall member;
f. a third floor member adapted to have its side edges engage
said grooves of said inner top beam members of said side said grooves of said inner top beam members of said side
walls, and comprising a beam member disposed along the walls, and comprising a beam member disposed along the
rear edge having at least one slot disposed on the underside thereof adapted to engage the top edge of a said intermediate wall member,
g. front and rear roof panels each comprising a horizontal beam member disposed along the underportion of one constructed and arranged to adapt said roof beams to enter said terminus slots of said side walls and to adapt the slots of said beams to receive the edge of said terminus slots with said respective roof beams disposed adjacent to edges of said side walls;
h. a porch roof panel member adapted to have its rear portion be disposed on said L -shaped beam member of said
front wall member comprising, a rear horizontal beam member having a longitudinal downwardly protruding lip, and a front horizontal beam member having a series of in-line holes disposed along the under side thereof;
a series of vertical porch columns having respective sizes front portion of said porch panel member and said first floor member with each column having its bottom portion disposed in one of said first floor series of holes and its top portion disposed in one of said porch front beam member
a plurality of p
in said beams, grooves, wall and floor members at their in said beams, grooves, wall and floor members at their junctures with eagh
structure together.

4,094,091
INTEGRALLY FORMED PLASTIC SPINNER TOY UNIT NTEGRALLY FORMED PLASIC SPINNER TOY UNTT Sam Kupperman, Chicago, and Denis Kupperman, Glenview, both of III., assignors to R B Toy Derelopment Co., Skokie, III.

Flued Feb. 17, 1977, Ser. No. 769,704
U.S. CI. 46-53

11 Claims

1. A one piece molded plastic unit, comprising a frame member, a spinner positioned within said frame member and spaced therefrom, a pair of journal pins extending outwardly ormer for ready removal therefrom, said frame membe
including means for supporting said journal pins, and attach ment means connected to said frame for attaching same to support, member and molded integrally therewith, whereb detachment of said spinner from said frame member followed by mounting of said journal pins in said supporting mean rotatably mounting said spinner in said frame.

TWO DIMENSIONAL ANIMATED CHARACTER orey Bunin Ner York, N \mathbf{Y}, assignor to Aniforms, Inc., N Morey Bunin, York, N.Y.
 Filed Mar. 17, 1975, Ser. No. 559,013
 Int. C.2 ${ }^{\text {A } 63 H} 7 / 00 \quad 9$ Claims

6. An animated puppet, comprising
means for supporting a plurality of facial features of said puppet;
mouth background means having a mouth feature thereon; aaid puppet including a portion through which said mout feasure may be viewed from the front of said puppet. varying means including a pair of plates mounted in fron of said mouth background means at a location which covers the field of view of at least a portion of said mouth feature;
ontrol means connected to ssid plates for moving said plates between a first position which exposes the full
mouth feature and a second position which sides of said mouth feature to portion thereof;
whercby the simulation of a broad smile of said puppet.

-4,04,093

DOLL HAVING SELF.SUPPORTING SITTING AND Bette M. Kaelin, Chicago, III., assignor to Marvin Glase \& Associates, Chicago, III.

Filed Aug. 18, 1976, Ser. No. 715,526
U.S. C. $46-160$
U.S. C. $46-160$

1. A doll, comprising
a torso portion;
a pair of legs; and
means for securing the legs to the torso for movement between a self-supporting standing position and a self-sup-
porting sitting position, said means comprising a porting sitting position, said means comprising a receeiver
mounted within the torso of the doll for accepting and concealing a substantial length of the legs to permit the
doll to be supported by said legs in a standing position while permitting movement of said legs outwardly rela-
tive to said receiver to support the doll in a sitting posi tive to said receiver to support the doll in a sitting posi-

ETHOD AND APPAR, CURRENT TO DESTROY WEEDS IN AND AROUND Willis G. Dykes, V assignor to Lasco, Inc., Filed May 9, 1977, Ser. No. 795,087 U.S. Cl. 47-1.3 May 9, 1977, Ser. No.
Int. Cl. ${ }^{2}$ A01M 21/00

14 Claims

tion, and a flexible strap for each leg, one end of each strap being secured to the top of the respective leg and having the other end of the strap secured within the receiver.

SOUND MAKT, 4,04,094

 suiku Ono, Tokyo, Japan, assignor to Stiron Chemical Indus. Filed Jan. 25, 19Claims priority, application Japan, Oct. 4, 1976, 51 33988[[]

Int. Cl. ${ }^{2}$ A63H $5 / 00$
3 Cleims

1. A sound making movable toy which is provided with a sound making device and driving wheels driven by a driving power source, said sound making device comprising: a blowing chamber being provided with a sounding aperture and a fan driven by said driving power source; a main resonance chamsaid sounding aperture; a tubular resonance control chamber one side end of which communicates with said main resonance chamber and the other end of which is opened; a piston reciprocating within said resonance control chamber with sealed engagement; and a crank mechanism consisting of a movabl crank rod and a rotating crank piece, one end of said rotating
crank piece being connected to an end portion of a rotary shaft crank piece being connected to an end portion of a rotary shaf
which is rotated by said driving power source by way of a series of gears and the other end of said rotating crank piece being pivoted to one end of said movable crank rod, and the
other end of said movable crank rod being pivoted to the other end of said movable crank rod being pivoted to the
center of the outer surface of said piston; thereby various pitch sounds being produced by changing the resonant viston.

A machine for destroying weeds growing in and around crop rows without destruction of crops growing therein, com prising;
(a) a vehicle adapted to travel in a given direction
b) a source of high-voltage electricity mounted on and movable with said vehicle, (c) means for connecting said tricity to ground,
(d) a plurality of conductive spring members,
(e) means for mounting said conductive spring members so (f) means for providing a larger dwell time of conestact be tween said spring members and relatively flexible weeds than the dwell time of contact between said spring mem bers and relatively stiff crop plants, so that weeds contacted by said spring members generally receive sufficien electrical energy to result in destruction thereof while crop plants do not receive sufficient electrical energy to
result in destruction thereof, said means comprising a first portion of each spring member having an end connected to said mounting means and making a first angle a with respect to a line along said direction of travel of said vehicle, and a secong portion of each spring membe respect to a line along said direction of travel of said vehicle, said second angle β being substantially greater than said angle a, and said connected end adapted to be disposed between rows of crops as said vehicle travels in said given direction; and wherein the length of said firs portion of each spring member is significantly greater than and wherein each spring member has a spring constan such that relatively stiff crop plants will deflect said spring member while relatively flexible weeds will not deflect said spring member

4,094,096

FLOWER HOLDER
Phillip H. Huyssen, 407 Lakeland Dr., Hot Springs, Ark. 71901 Phillip H. Huyssen, 407 Lakeland Dr., Hot Springs,
Filed Jun. 3, 1977, Ser. No. 803,230

Filed Jun. 3, 1977, Ser. No. 803,2
Int. Cl. ${ }^{2}$ A01G $5 / 00$
U.S. C. $47-41.13$

1. A flower
2. A flower holder comprising a standard having a pair of vertically-spaced loops for receiving the stems of flowers, said standard having a lower end portion projecting downwardly substantially less than said lower end portion and slidably
receiving said lower end portion, said lower end portion termi-
nating in a beveled end face and said mounting tube having an
through said top face, each of said shot holes having uniform diameter substantially equal to the caliber of the muzzle of a gun to be loaded, (c) each of said shot holes having a height great enough to (d) a plurality of cylindrical locater recesses formed in said

bottom face, equal in number to said shot holes, eac locater recess having a uniform diameter substantiall equal to the outer diameter of the muzzie of a gun to be and coaxially receive said gun muzzle for loading, and (e) each of said locater recesses being vertically coaxially aligned with, and opening into, a different shot hole
angled lower end wall for engaging said end face and restrain ing rotation of said standard.

$$
\begin{aligned}
& \text { METHOD FOR PREPARING A PESTICIDALLI } \\
& \text { RESISTANT RHIZOBIUM AND AGRONOMIC } \\
& \text { COMPOSITION THEREOF }
\end{aligned}
$$

Martin Alexander, and Oluwasuyi Odeyemi, both of Ithace, N.Y., nevignors to Cornell Revearch Foundation, Inc., Ithace,

$$
\begin{aligned}
& \text { Filed Sep. 10, 1976, Ser. No. } 722,318 \\
& \text { Int. Cl. }{ }^{2}{ }^{212 K} 102,3 / 00 ; \text { A101C } 1 / 00,21 / /
\end{aligned}
$$

$$
\begin{aligned}
& \text { Int. C1. }{ }^{2} \mathbf{C 1} 1 \\
& \text { U.S. C. } 47-57.6
\end{aligned}
$$

1. A method for 8 Clime 1. A method for the preparation of a bacteria preparation
intended for inoculation of leguminous seed, which prepara intended for inoculation of lesuminous a fungicide resistant strain of Rhizobium, which train has good infecting and nitrogen-fixing abilities in symbiosis with plants of the leguminosea family which method com prises:
amitivating, in the presence of a Rhizobium medium and an 90% of the Rhizobium culture initially present, a culture of Rhizobium bacteria of selected strain and inoculatio group having good infecting and nitrogen-fixing ability,
whereby bacteria strains and sensitive to said amount of said fungicide are killed; subjecting the residual fungicide resistant bacteria to at least one additional cultivation step as above, in the presence of an increased amount of sasid fungicide; and recovering a Runicide; said fungicide being increased resistance to staid fungicide; said fungicide being
selected from agricultrually useful legume seed or soil fungicides which adversely affect the Rhizobium bacteria being cultivated.
2. A leguminous seed having coated thereon a symbioticallyby the process of claim 1 .

4,094,098

LOADING BLOCEFOR MUZZLE-LOADING GUN Charles R. Gourley, 1131 Neelys Bend Rd., Madison, Tenn. 37115 Filed Apr. 4, 1977, Ser. No. 783,985 Int. C1. ${ }^{2}$ F41C $27 / 00$
U.S. C. 42-90 3 Claims comprising:
ar a a vertical dimension,
(b) a plurality of longitudinally spaced, cylindrical shot holes
extending vertically through said block and opening

1. A screen door hinged for cooperation with and activation seperate from another closure door, said screen door comprisseper
ing;
peripheral freme including a full length hinge supported side rail, a second laterally spaced and relatively parallel id rail having an interruption between its ends, and cross rails connecting the outer and inner ends of said second elatively seperate upper and lower screen receptive sections,
朝 bridging the interruption in said second side rail received and offset inwardly between the inner ends of said second side rail,
like inwardly offset member provided on said full length hinge supported side rail,
and a pair of structural reinforcement members provided on offset members for boxing the opening provided between said two screen receptive portions and structurally reinforcing said screen door at the mid-section thereof.

FREE MOVEMENT PREVENTING DEVICE FOR WINDOW GLASSES OF AUTOMOBILES Ryoichi Fukumoto, Nagoya, and Touhiro Igrarashi, Hoi, both of
Japan assignors to Aisin Japan
Filed Jul. 29, 1976, Ser. No. 709,599
Claims priority, application Japan, Jul. 29, 1975, $50-1$ 05513[U]

Int. Cl. ${ }^{2}$ EOSF 1//38
U.S. Cl. 49-348

1. In an automotive vehicle including panel means which has at least one window opening and a window glass mounted in tion between a closed position wherein the window glass closes the window opening and an open position wherein the window opening is fully opened and weather strips mounted along said window opening on each side of said window glass,
the improvement comprising window glass mounting means the improvement comprising window glass mounting means
including window glass support bracket means secured to the window glass, substantially vertically extending guide rail means stationarily disposed in said panel means, guide follower
means for slidably connecting said bracket means to said guide means for slidably connecting said bracket means to said guide
rail means and for guiding said window glass along said guide rail means and for guiding said window glass along said guide
rail means, power means for moving said window glass in the vertical directions, and pressing means secured to a part of said panel means spaced substantially below the weather strips tional contact with only the inside of said window glass and to continuously limit the rotation of a lower part of said window continuously limit the rotation of a lower part of said
glass toward the inside of said automotive vehicle.

4,094,101

CFSEATE SHARPENER
Bertrand Robinson, 455 de la Nandiere Street, Montreal, Can-
adr Flled Apr. 1, 1977, Ser. No. 783,897
$\underset{13178 / 76}{\text { Climims }}$ priority, application United Kingdom, Apr. 1, 1976, Int. Cl. ${ }^{2}$ B24B 53/06
U.S. C. 51-5 D

3 Claims

1. In an ice-skate sharpening machine including a frame, a
grinding wheel rotatable about a rotation axis, a motor to otate said wheel, a diamond bit for dressing said wheel, an arm pivoted to said frame about a pivot axis perpendicular to said
rotation axis and carrying said bit in a position facing the peripheral face of said grinding wheel, so arranged that pivoting of said arm back and forth will dress said grinding wheel peripheral face along an arc of a circle lying in a plane contain ing said rotation axis, the improvement consisting in an ice-
skate clamp comprising a bracket, a pair of jaws each pivoted skate clamp comprising a bracket, a pair of jaws each pivoted
on said bracket about a jaw pivotal axis lying in a plane perpendicular to said rotation axis and each having a straight jaw face for engaging an ice-skate blade, means to close and open said jaws and retain the same in adjusted pivotal position, so that said jaw clamping faces are always equally distant on each side through said pivotal axis of said arm, means to adjust and set the position of said bracket in a direction parallel to the rotation axis of said grinding wheel, means supporting said brackel for universal movement in said datum plane, said jaws each having a U-shape to encircle an ice-skate, said ice-skate blade
 at the free edge of the other leg of said U -shaped jaws, and wherein said means to close and open said jaws include an extension for each jaw projecting away from the ice-skate lade contacting faces relative to said jaw pivotal axis, a
threaded bushing carried by the outer end of each extension, said bracket having a leg extending between said jaw extensions, an adjusting screw having an intermediate portion rotatably mounted in the outer end of said bracket leg, means to prevent axial movement of said screw relative to said bracket leg, said screw having threads of opposite pitch on each side o
said central portion respectively engaging the threaded bushing of the jaw extensions whereby rotation of said screw in one direction will open said jaws equally away from said datum plane and rotation of said screw in the opposite direction will close said jaws equally towards said datum plane

OSCLLLATING CUT-OFF SAW
Robert Lavern Lauze, deceased, late of Paramount, Callf, and
by Vicki Suzanne Brown, edministrator, 5731 Mnngrum Dr, by Vickd Suzanne Brown, admini

Filed Apr. 18, 12977, Ser. No. 788,555
Int. C1. ${ }^{2}$ B24B 27/04
U.S. CI. 51-33 R

7 Cluims

1. A power saw comprising
a stationary bed having four upright posts, two of which are disposed at the two rear corners of a rectangle and the pair of parallel and horizontal disposed rods, each of whic is mounted by its ends near the top of two of said posts so that said rods extend fore and aft,
relatively narrow frame having a top edge and a pair of opposing and alligned beams extending outwardly from
a pair of bearing means, each of which is fixed to one of said beams and make sliding 360° bearing contact around and with a respective one of said rods so that said frame depends from and between said rods;
a horizontally disposed axte mounted on the top edge of said frame and disposed perpendicularly to said rods;
a boom mounted on and disposed to rotate about said axle so
that one end of said boom extends forward of said axle and that one end of said boom extends forward of said
the other end extends rearwardly of said axle;
a rotatable saw, rotatably mounted on the forward end of said boom;
motor mounted on the rear end of said boom and having means for coupling energy to said saw to rotate said saw; means for coupling energy to said saw to rotate said saw;
a first fluid piston and cylinder assembly, horizontally disposed and having one end directly engaging said frame
and the other end fixed to said stationary bed for moving said frame along said rods; and
a second fluid piston and cylinder assembly having one end coupled to said boom and the other end coupled to said
frame near the lowest portion thereof for maximum vertical movement of said saw by maximum stroke of said
second assembly. cal movement
second assembly.

WORKPIECE-HOLDING FIXTURE FOR HONING MACHIN
in each of which a respective one of said stations is aligned in said direction with said tool; and
means for displacing said upper plates transverse to said direction into and out of position with the respectiv with said lower aper ture.

4,094,104

FINISHING MACHINE
Arthur S. Zerfahs, Elk Grove, and Robert J. Jurin, Chicago, both of Ill, assignors to Synergetics, Inc., Millwaukee, Wis. Flied Oct. 7, 1976, Ser. No. 730,306
U.S. Cl. 51-76 R

15 Claims

1. A finishing machine having a plurality of work stations including a continuously moving conveyor mechanism, a plurality of work piece fixtures traveling with said conveyor, each means in each fixture adapted to rotate said rotatable means to position the work piece for said work stations, said drive mean including a follower mechanism translationally moveable with respect to said rotatable means in a direction transverse to the direction of movement of said conveyor, said machine includ
ing stationary guide means near said conveyor contactable ing stationary guide means near said conveyor contactabe
against said follower mechanism whereby said guide means will cause translational movement of said follower mechanism with respect to said rotatable means and will actuate said drive means to position the work piece as the fixture travels on th conveyor.

CAM CRINDING MAC944,105
Shiro Hatanaka, Toyotra; Tsuyoshi Tamesui, Okszaki, and Tsuneharu Matsuura, Kariya, all of Japan, assignors to Toyo de-Koki Kebushiki-Kaiche and Toyote Jidosha Kogyo Kabr hiki Knisha, both of Japan
Flaims priorited Jun. 8, 1977, Ser. No. 804,596 Claims priority, application Japan, Jun. 18,
Int. C. ${ }^{\text {B }}$ B24B $17 / 00,5 / 42$
U.S. C. $51-101$ R

1. A machine for honing a recess in a workpiece with honing tool, said machine comprising:
ceans for rotating said tool and for simultaneously recipro cating said tool in a predetermined vertical direction; a receiving station displaceable transverse to said direction receiving station displaceabie ransverse said tool and having a pair of clamping stations each provided with
a lower table formed with a lower aperture, centering formations for said workpiece arou lower aperture,
means for vertically displacing said lower table, an upper abutment plate formed with a throughgoing upper aperture vertically in line with said lower aperture, and centering formations for said workpiece around said upper aperture and directed toward said lower table;
eans at each of said stations for holding a respective workmeans at each of with respective recess directed at said tool; piece with its respective recess directed at said too;;
means for displacing said frame between a pair of position

2. In a cam grinding machine having a wheel head for rotatably carrying a grinding wheel, a rocking table being pivotable oward and away from said wheel head, a work support
work spindle for supporting a cam to be ground, a work drive mechanism including a master cam and a cam follower for imparting rotational and rocking movements, synchronized rocking table, so as to generate a predetermined contour on said cam, a speed-switchable drive motor for driving said work drive mechanism selectively at fast and slow speeds, and feed means for infeeding one of said wheel head and said rocking table toward the other to cause said grinding wheel to grind said cam roughly in a first grinding step and thereafter finely in a second grinding step, the improvement of which comprises:
detecting means for generating a switch signal when the infeed movement of said one of said wheel head and taid
ind rocking table is switched from said first grinding step to said second grinding step;
delay means responsive to said switch signal for generating a speed-down signal when said work spindle is rotated at least one revolution after receiving said switch signal; and
a motor control circuit connected with said drive motor and said delay means for controlling said drive motor to switch the operational speed of said work drive mechanism from said fast speed to said slow speed in response to
said speed-down signal. said speed-down signal.

4,094,106

Thomas D. Harris, Jonesboro, Ga., asslgnor to Southern Saw Service, inc., Atlanta, G.

Filed Oct. 8, 1976, Ser. No. 730,781
U.S. C1. 51-214

1. A honing device comprising, a handle, an elongated generally cylindrical hone secured by its proximal end to and erally cylindrical hone secured by
projecting from said handle, said hone having an exposed and unobstructed peripheral sharpening surface extending from the
vicinity of said handle throughout substantially its entire length vicinity of said handle throughout substantially its entire length
to its distal end, and a knife guide disposed between said handle to its distal end, and a knife guide disposed between said handle
and said exposed surface of said hone, said guide having a large and said exposed surface of said hone, said guide having a lare
major base adjacent to said handle and a small minor base adjacent to said exposed surface of said hone, the surface of said guide tapering toward said hone from its major base adjacent to said handle to its minor base adjacent said surface for establishing the angle at which the cutting edge portion of a knife will pass unimpeded axially from the guide to and thence
axially along the length of said exposed surface of said hone, axially along the length of said exposed surface of said hone,
said guide at its minor base being of approximately the same said guide at its mino
diameter of said hone.

4,004,107
FEED MECHANISM FOR USE IN A CENTERLESS GRINDING MACHINE
Frederick Henry Naul, Coventry, England, assignor to TRW Valves Limited, Bilston, England
Filed Jan. 14, 1977, Ser Claims priority, application United Kingdom, Jan. 14, 1976
U.S. C. 51-215 CP
${ }_{\mathbf{P}}{ }^{\text {Int. }}$ Cl. ${ }^{2}$ B24B 47/20

1. A feed mechanism for feeding a workpiece from a first position to a second position, comprising a drive member reciprocatable between said first and second positions, a carriage engaged with said drive member and movable relative thereto, locking means for selectively locking said carriage to said drive member for movement therewith, a clamp assembly
having movable jaws adapted to grip said workpiece, said clamp assembly being carried by said carriage, actuating means operative to open and close the jaws of said clamp assembly in accordance with relative movement between said drive member and said carriage, and releasing means for rendering said locking means inoperalle when said drive member is adjacen said first and second positions respectively so as to permi
relative movement between said drive member and said carriage and cause said actuating means to open or close said jaws, said releasing means including a positive stop with which said carriage is engagable when said drive member approaches said second position so that the workpiece is gripped by said clamp assembly at said first position and released by said clamp as moved in one and the same direction.

4,094,108
CONTROLLED DESTRUCTIVE PANEL ASSEMBLY Harley D. Scott, Wexford, Pa., asslgnor to Cyclops Corporation Harley D. Scott,
Pittsburgh, Pa.
Continuation-inn-part of Ser. No. 681,820, Apr. 30, 1976, Pat. No 4,050,204. This application Jul. 1, 1977, Ser. No. 812,119 The portion of the term of this patent subsequent to Sep. 27, Int. C1. ${ }^{2}$ E04 $9 / 00$
U.S. C1. 52-1

4 Claims

L

1. A wall panel construction comprising
A. a plurality of spaced, horizontal structural girts secured to vertical, structural columns
B. liner panels extending between each three girts with B. hertically adjacent panels terminating at end girts of the three in slightly spaced relationship;
C. a plurality of spaced, horizontal subgirts secured to the liner panels with certain of the subgirts positioned on either side of the end girts;
three girts so that the corrugations are parallet of the vertical, structural columns and connected to the subgir with vertically adjacent panels overlapping in unattached relationship, the corrugated exterior panels having a plurality of notches positioned on the exterior panel transverse of said corrugation and aligned midway between the a
E. a clip having angular flanges and secured to said end girts
between the adjacent spaced liner panels said clip pinching the adjacent liner panels, against the end girts;
F. means to attach the liner panels to a middle girt of the three girts;
whereby an external force of predetermined magnitude agains the wall panel construction causes the adjacent liner panels to deform about the middle girt as the liner panels pivot about and release from the clip flanges while simultaneously the overlap release from the clip hanges whie simuand ater their overlapping
ends.

BUILDING SYSTEM AND METHOD Lather I. Dickens, Radford, Va., and Willinm C. Nanny, San Francisco, Calif., assignors to Radva Plastics Corporation, Radford, Va. Filed Mar. 24, 1976, Ser. No. 670,057 U.S. C1. 52-80 Int. C1. ${ }^{2}$ E04B $1 / 32$

1. A method of building fabrication comprising the steps of (a) attaching together a plurality of expanded plastic panels with reinforcing strips bonded thereto to form a building shell having integral walls and roof;
thereof in offset relaire mesh mounted on the outer faces wire mesh of colation thereto and lacing together the covering on said shell:
(c) applying wet concrete to the exterior of said shell on said mesh to form an integral concrete wall and roof of a building with the shell attached thereto, and
(d) applying a plaster coating to the interior of said shell to completely seal said panels between concrete and plaster
as an insulating core of the resultant building as an insulating core of the resultant building.

STRUCTURAL STEEL $\begin{aligned} & \text { 4,094,111 } \\ & \text { BULDING FRAME HAVING }\end{aligned}$ RESILIENT CONNECTORS
Patrick J. Creegan, KM. 5 Carretera A, Masaya Apart. 4397, Managua D. N., Nicaragua
Continuation-in-part of Ser. No. 558,975 , Mar. 17, 1975, abandoned. This application Aug. 18, 1976, Ser. No. 715,264 U.S. C1. 52-167 Int. CC. ${ }^{2}$ EO4B $1 / 98$

11 Claims

CONSTRUCTION OF HOUSES OR SIMILAR BUILDING BY MEANS OF AN INFLATABLE STRUCTURE Francois Prourost, 53, av. Montaigne, Paris, France (75008) U.S. C1. 52-2

1. An inflatable support structure for constructing houses o similar buildings comprising an upper membrane and a lowe ripheral zone thereof wherein the dimensions of the upper membrane are larger than the corresponding dimensions of the lower membrane and the upper and lower membranes form a first pressure chamber constituting an inflatable envelope, a second inflatable pressure chamber fixed to the basis of said first pressure chamber, said pressure chambers being formed of a suitable material for their utilization as support and framing in the construction of houses or similar buildings of concrete or
similar or analogous materials, and wherein said first pressure similar or analogous materials, and wherein said first pressure
chamber is inflated to a pressure lower than that of said second pressure chamber.

SHADED AREA REPRESENTS
ENERGY ABSOREED

1. A building comprising: a frame having a plurality of frame

mbers of structural metal, each frame member having a sun adjacent frame member, there being a number of holes through each frame member and terminating at said surface thereof, the holes of each frame member being aligned with corresponding holes of the adjacent frame member; and a of a corresponding pair of frame members, each connector including a bolt having a head at one end and a nut threaded on the opposite end, and resilient sleeve means surrounding the bolt, each connector extending through a respective pair of
aligned holes with the head of the corresponding bolt engag aligned holes with the head of the corresponding bolt engaging
one frame member and the corresponding nut engaging the other frame member and forcing the corresponding surfaces into said face-to-face sliding engagement with each other.

METAL DOOR FRAME
 Edmard A. Smith, 6641 W. 6 th St, Los Angeles, Calif. 90048 ,
and Robert L. Day, 1518 Grismer St., Burbank, Calii. 91504 Flied Jui. 23, 1974, Ser. No. 491,102
Int. C.2 ${ }^{2}$ EO6B 1/04
U.S. C. 52-211

least one side channel having a width not exceeding the lateral depth of said channel and movable laterally therein to clear the depth of said channel and movable laterally therein to clear the
outer edge of said channel, the web of said channel having a outer edge of said channel, the web of said channel having a
longitudinal internal rib, clip means mounted on said rib for releasably holding said spline in a position medial of said outer edge, and said spline being engageable by traversing a resilient dge of said channel for moving said spline laterally in said channel.

4,004,114
DETACHABLE WALL MOUNTING SYSTEM . Burcham, P.O. Box 235, Mountain Vlew, Calif. 94040 2 Claims U.S. C1. 52-489 Int. C1. ${ }^{2}$ E04B 5/52

1. In a door frame structure
(a) a frame part having a flange extending from a corner with the body of the flange adapted to lie flat along a wall
surface adjoining a wall opening; said flange having a surface adjoining a wall opening, said flange having a
distal edge that deviates from parallecism with said corner;
(b) said flange having a series of integrally formed longitudinally spaced discrete clip registers each located at the same constant predetermined dimensionally controlled distance from said corner;
(c) a series of molding clips fitted
clip registers respectively; and
chip registers respectively; and
(d) a trim molding member attached to said flange by said molding clips;
(e) the distal edge of said flange having a series of preformed
notches of variable depths interfiting corresponding ends of said clips to assist in accurate location thereof.

MODULAR WALL PANEL 113 Whyne W. Good, Sturgis, Mich, assignor to Harter Corpora-
tion, Sturgis, Mich. tion, Sturgis, Mich.
Filed Sep. 30, 1976, Ser. No. 728,433
Int. C. ${ }^{2}$ E04B $2 / 74$
U.S. C1. 52-222

11 Claims SELF-COMPENSATING SIDING OR ROOFING STRIP Paul Naz, 20502 Harper, Harper Woods, Mich. 48225
Filed Jan. 27, 1277 Ser

Filed Jan. 27, 1977, Ser. No. 762,847
Int. Cl.
U.S. C1. 52-521 10 Claims 1. An integrally formed, interlocking strip for use as siding, 1. An integrally formed, interlocking strip for use as siding,
roofing and the like to cover surface areas of buildings com-

1. A system for supporting a plurality of side-by-side individually detachable wall panels in a wall plane comprising: (a) a plurality of vertically disposed support studs each
having at least one flange portion oriented perpendicular to said wall plane;
(b) a bead formed on a surfe of said flange portion and (b) a bead formed on a surface of said flange portion and
extending vertically along said flange surface substantially the entire length thereof;
(c) a plurality of panel retaining clips each having a panel attachment portion formed for piercing an edge of one of
said wall panels and a stud attachment portion formed for slideable insertion onto said stud flange; and
(d) a barb formed on said stud attachment portion of each of said clips, said bart being oriented toward said wall plane
or sala clips to assist in accurate to for positive interlocking engagement behind said bead
when said clip is slideably inserted onto said flange, when said clip is slideably inserted onto said liange,
whereby forces exerted on said clip in a direction transverse to said wall plane and away from said stud act to further reinforce said positive interlocking engagement.

A wall panel module having a rectangular frame comprising outwardly open side channels with laterally outwardly extending resilient outer edges adapted for abutting the resilient outer edges of like modules to form a vertical partition
wall and the like having a resilient butt joint spacing apart the interfacing edges of adjoining panels, a vertical spline in at
prising:
a generally rectangular panel having an interior surface, an exterior surface, an upper end portion, a lower end por tion and a generally flat intermediate central portion between said upper and lower end portion, said upper end portion being generally coplanar with said intermediat
central portion and the interior surface of said upper end central portion and the interior surface of said upper end
portion being integrally contiguous with the interior surface of said intermediate central portion;
a first spacing and interlocking assembly integral with and extending outwardly from said exterior surface of said panel and disposed a first distance from the distal end of said upper end portion for spacing the lower end portion
of a later installed strip whis second spacing and interlocking assembly integral with and extending outwardly from said interior surface of said panel adjacent said lower end portion thereof for spacing
said lower end portion a second spaced distance away said lower end portion a second spaced distance away
from the surface of said building being covered while operatively engaging said exteriorly extending first assembly of a previously installed strip for
strips together one above the other; and
strips together one above the other; and
only a portion of said upper end portion disposed between only a portion of said upper end portion disposed between
said first assembly and the distal end of said upper end

portion including corrugation means extending from said upper distal end toward and terminating short of said first distance, said corrugation means having alternate ridge
and valley portions adapted to engagably receive fastenand valley portions adapted to engagably receive fasten-
ing means therethrough for fixedly securing said strip to ing means therethrough for fixedily secered, said corruga
the surface of said building being cover tion means cooperating with said building surface being
covered and said fastening means for (1) compensating for covered and said fastening means for (1) compensating fo expansion and contraction of said strips with changing
weather conditions and (2) achieving a spring-type buckle weather conditions and
washer effect for maintaining a tight fit therebetween washer effect for maintaining a tight working lose and
thereby preventing said strips from win thereby prevening
eliminating ratting and the like.
$4,094,116$
WEB TUBE WTTH SEPARATED END WALLS Tyrell T. Gilb, Berkeley, Calif, assignor to Simpoon Manufac turing Co., Inc., S Sn Leandro, Calif. U.S. C. 52-693

1. In medium and heavy series composite wood chord and metal web member trusses having double wood members for the top and bottom chords and joint means including transverse bores formed in said chords, a metal joint connector connected to said chord and formed with an opening therethrough in registration with said transverse bores in said chord and a single metal pin at each sid opening in said metal joint
said bores in said chords and samprising: connector the improvement comprising:
open ended cylindrical metal tube formed with openings
at both ends connected to said chords by said pins; and b. said tubular metal web members are f
2. an elongated tubular body portion; including a bulb section integrally connected to said body portion and flat side portions on both sides of said bulb section;
3. a smooth sided, unshouldered flattened end portion formed adjacent the transition portion with a pin open4. said walls of said tubular member are separated from one another in said transition portion and said flattened end portion between said opening and said body por tion; and
4. said walls of said distal ends of said tubular web mem sers beyond said openings are in touching contact for maintaining the separation of said walls between said opening and body portion.
ar for the fopmation of METHOD AND TE BAR FORAGES
Giovanni Torti, Pavie, and Andres Tomiolo, Milian, both of Italy, assignors to Ing. Glo
zioni Speciali S.p.A., Italy
Filed Nov. 22, 1976, Ser. No. 743,918
Claims priority, atiction Italy, Nov. 26, 1975, 29655 A/75 U.S. C1. 52-698 Int. C1. ${ }^{2}$ E21D 20/2

5. A method of forming an anchorage for a plurality of cables subject to tensioning, comprising excavating the ground to form a hole, arranging a plate in a plane substantially perpendicular to the axes of said cables adjacent the common ends thereof and securing the plate to the cables, coating the length of each of said cables spaced from the ends engaged with the
plate with an insulating sheath having a low friction characteristic so that cables may slide, enclosing the plate and the uncoated portions of the cables in the vicinity of the plate and the ends of the cables with a large resinous mass of a size smaller than the width and depth or he hole, insering the cables with the resinous mass into the hole, leaving a remaining space in
the hole around the sides, top and bottom of the mass, and injecting mortar into the remaining space so as to form a mortar bulb around, above and below the resinous mass in said tar bulb around, above and below
cables and permitting it to harden.

4,094,118
METHOD AND APPARATUS FOR FEEDING OF ROWS OF BLOCKS
Hans Lingl, Sr., Nea-Ulm, Ludwigsfeld, Germany, assignor to Lingl Corporation, Paris, Tean.

Filed Oct. 8, 1976, Ser. No. 731,095
\qquad
U.S. C. 52-747

1. Apparatus for fabricating 10 Claims a width \mathbf{W}, comprising
(a) a first conveyor belt system, said first conveyor belt
system having an upper transporting surface thereof tha
is generally is generally horizontal and at a horizontal level L , and a
least W in length (b) a second conveyo
(b) a second conveyor belt system disposed as a continuation
of said first conveyor belt system and having an upper of said first conveyor belt system and having an upper
transporting surface thereof that is generally horizontal and is normally disposed at the horizontal level L, and is at least W in length,
(c) a third conveying system disposed as a linear continuation of said second conveyor belt system, said third conveying system including a track that is generally horizon-
tal and at a horizontal level L. (d) a wheeled pallet disposed on ,
respect thereto and at least W in tength movable with (e) track means formed with said second
system, said track means including two separate track together in a pattern defining a closed loop periphery to
seal the reservoir material between the backing and permeable materials, said fusing step compressing and sealing the reservoir material to prevent transfer of the substance through the fused periphery.

METHOD OF MANUFACTURING A PAIR OF PLASTIC GLOVES AND PACKAGING THEM WITHIN A SHEET OF WRAPPING MATERIAL France Filed Nov. 22, 1976, Ser. No. 743,629 U.S. Cl. $53-21$ FW $\begin{aligned} & \text { Int. Cl. }{ }^{2} \text { B65B 63/04 } \\ & 8 \text { Claim }\end{aligned}$
 rails, one disposed on either side of the conveyor belt of
said second conveyor belt system and so disposed with respect to said second conveyor belt system that when
said pallet cooperates with said track means said pallet is said pallet cooperates with said track means said pallet is
disposed above the upper transporting surface of said second conveyor belt,
(f) means for vertically moving said second conveyor belt
system so that a row of blocks disposed thereon may be system so that a row of blocks disposed thereon may be said pallet to be disposed in cooperation with sad allow said paliet to be disposed in cooperation with said track
means and beneath a row of blocks when the row of blocks is in the vertical position to which it may be ele-
vated, and (g) means for
(g) means for selectively holding rows of blocks in an elecally moving means.

4,094,119

METHOD OF MAKING A PRODUCT FOR DISPENSING WHiam E SUllive CATILE SUBSTANCE
William E. Sullivan, Columbia, S.C., assignor to The Risdo Manufacturing Company, Nangatuck, Conn.

Int. Cl. ${ }^{2}$ B65B 29/00; A24F 25/00
U.S. CI. 53-4

10 Claims

1. A method of producing a product for holding and dispens ing a volatile substance in vapor form into the environment, ing a volatile substance in vapor for
said method comprising the steps of:
A. providing a backing material;
B. placing a reservoir material, capable of holding the vola-
tile substance, in close proximity to the backing C. placing a material permeable to the volatile substance in C. placing a material permeable to the volatile substance
close proximity to the reservoir material;
D. supplying the volatile substance to the reservoir material
to be held thereby; and
E. fusing the backing, reservoir and permeable materials

2. A process of making and wrapping a pair of plastic gloves in a sheet of wrapping material comprising, the steps of, posisuperposed relation to a sheet of fexible wrapping material welding edge to edge and cutting out a flat member from said plastic sheets of an outline to form said pair of gloves connected together along a cuff region, said step of positioning further comprising positioning the wrapping material only
under that part of the superposed plastic sheets which forms a first one of said gloves upon cutting and welding, adhering said first glove to said wrapping material during said step of cutting and welding, forming a weakened tear line through the cuff region of said member, folding said gloves over each other and then folding the assembly of the wrapping sheet and the
two gloves into a package.

METHOD AND APPAPA,094,121
IN SUBSTANTALARATUS FOR PACKING PRODUCTS IN SUBSTANTIALLY OXYGEN FREE ATMOSPHERE Bo Olor Ganholt, Vallingby, Sweden, assignor to Esseltepac Aktiebolag, Jarfalla, Sweden
Filed Dec. 14, 1976, Ser. No. 750,397
Claims priority, application Sweden, Dec. 12, 1975, 7514648
U.S. Cl. 53-22R $\quad 12$ Claims

1. A method of packing products, without vacuum suction
or compression and in a substantially oxygen free atmosphere,
or compression and in a substantially oxygen free atmosphere,
in bottom closed containers of cardboard, plastic, glass, tin or the like, said method comprising mounting a bottom-closed container in a substantially air tight condition on a holder funnel; forcing a piston in sealed engagement with the inner sides of the container down through the container to the bottom thereof so that air which is present in the container is piston from the container to thereby exhaust the air which is present above the piston; introducing a protective gas underneath the piston simultaneously with the withdrawal of the piston and without subjecting the interior of the container to
the infuence of air as the container is filled with the product to the influence of air as the container is filled with the product to be packed; and thereafter transfering the container to a station
for sealing and closing the container after the same is filled with the product and the protective gas, said container being maintained under substantially air tight conditions by the holder funnel during the entire filling operation and during at least an initial portion of the sealing operation

APPARATUS FOR HANDLING EXTRUDABLE
APPARATUS FOR HANDLING EXTRUDABLE
SUBSTANCES Raymond S. Edmunds, Jr, 817 Eventide 78209

Flled Jun. 3, 1977, Ser. No. 803,050
U.S. C. ${ }^{53-23}$
a trough which is divided
multiple transverse barriers; moving said batch through said trough toward the down

1. A method of handling and individually wrapping packages of a continuously extruded substance, said method includ ing the following steps:
dispensing a wrapping material by dispensing means; receiving and cuttins
first roller means
verlaping sid sheets received from said first roller means by second roller means;
depositing said extruded substance along said overlapped sheets;
sheets;
cutting said extruded substance at least at the point of overlap of said sheets with a perpendicular cutter; separating said sheets with said extruced substance thereo wrapping said sheets wackage; and
conveying said package to a container

4,094,123
METHOD AND APPARATUS FOR THE ALIGNMENT OF
Bayard L. Carison, Wilsonville, Oreg, asignor to Amfac Foods, Inc., Portland, Oreg.

Filed Mar. 7, 1977, Ser. No. 774,804
U.S. Cl. 53-24
t. Cl. ${ }^{2}$ B65B $1 / 22,35 / 56$
U.S. Cl. 53-24 $\quad 36$ Claims 25. A process for aligning multiple articles comprising:
depositing a batch of said articles onto the upstream end of
stream end thereof; and

alternately bunching up said articles of said batch against downstream barrier whereby said articles tend to move into alignment with said barrier and dispersing the articles in said trough without substantially changing their alignment in relations to said barrier.

PROCESS AND APPARATUS FOR THE MANUFACTURE OF FLLLED, CLLOSED CONTAINERS Billy Ljungerantz Chatel-St.Denis, Switzerland, assignor to La Coulaz, Switzerland
Claims Filed Jan. 27, 1977, Ser. No. 763,139 27, 1976, 999/76 U.S. Cl. 53-29 Int. C1.2 B65B 1/02, 3/02 24 Claims

1. In a process for manufacturing filled, closed containers made of a foldable material and having a tubular wall section of any cross-section, a bottom and a lid, wherein the material for he wall section, the bottom and the lid is fed in separaiely and the container is filled and closed with the lid after fixing the comprising:
(a) providing a first rotating tier located at a first level of operation,
(b) providing a second rotating tier located at a second level of operation, and
(c) effecting at least one of the operations of shaping and welding the tubular wall section and the attaching of the bottom and lid to said wall section in said first rotating tier and effecting the remaining operations in said secon rotating tier.

4,094,125
PACKAGING MACHINE Larry C. Gess, 13345 Dunlap Rd., LeSalle, Mich. 48145 iled Nov. 1, 1976, Ser. No. 377,602
Int. C.' ${ }^{2}$ B65B $5 / 02.43 / 00$
U.S. C1. 53-29

7. A method for making packages sequentially from a length of plain flexible tubing, said method comprising maintaining the tubing flat with the tubing positioned in a given plane,
advancing the tubing lengthwise with the leading edge transversely sealed and stopping the advance, forming a sealed strip transversely across the tubing at a distance from the sealed leading edge at a first station, severing the tubing on the leading edge side of the sealed strip, transferring the severed section to a second station to one side of the first station in a
direction parallel to the plane of the tubing, opening the sevdirection parallel to the plane of the tubing, opening the sevarticle in the section at the second station, closing the severed edges at the second station, forming a transverse seal across the section near the severed edges at the second station, and discharging the package from the second station.

4,094,126

METHOD FOR FILLING DOWN GARMENTS George D. Lamb, Longmont, Colo., assignor to Camp 7, Long mont, Colo.

Filed Jun. 27, 1977, Ser. No. 810,523
Int. Cl.' B65B $1 / 00,29 / 00,39 / 00$
U.S. C. 53-35

APPARATUS FOR $\quad 4,094,127$ FRMING, FILLING AND CLOSING Andrea Romagnoli, Via Madocs TRAYS del Boechi, 18, S. Lazzaro di Savena (Pror. of Bologna), Italy

Filed Nor. 29, 1976, Ser. No. 745,939 U.S. C1. 53-51 ${ }^{\text {Int. C. }{ }^{2} \text { B65B 41/18, 47/02 }}$

1. An apparatus for manufacturing blister packs comprising means for continuously entraining a web of thermodeformable carriage slidingly supported along said path and paralle of superieating means for heating the web consisting of a pair of superimposed plates mounted on said carriage between downstream from said heating means for forming produc containing cells on said web, means for driving the carriage with reciprocating motion comprising an advance stroke in the web direction during which the carriage reaches and maintain forming means to engage with the latter and to form the cell and a return stroke opposite the web direction after the cells have been formed, a filling station located along said path downstream from said forming means for filling the cells formed in the web, a cell closing station for applying a metal
strip over the filled cells, said strip being provided with ald strip over the filled cells, said strip being provided with word
ings relative to the nature of the product contained in the ings relative to the nature of the product contained in the cellis,
said wordings being spaced apart by a distance slightly les
2 Claims ing the position of said wordings with respect to the relative cells and a stretching device controlled by said detectin are in misalignment with the relative cells and to restore alignment of the wordings with the relative cells wherein according to the improvement the stretching device is of the type comprising a plurality of stationary parallel bars having edges metal strip so as to deviate it according to a zig-zag path sapaid of rollers arranged upstream and downstream from said bar on which the metal strip is partially wound and braking means controlled by said detecting means for braking the roller arranged upstream and causing the strip to be put under tension
and to elongate by sliding on said bars.
2. The method of inserting down in garment compartment having one open side, and in which a tubular plastic film packet of down is provided with the down quantity necessary for the down compartment, comprising:
(a) placing the down packet in an essentially rigid tube
(b) opening one end of the down packet
(c) placing the open end of
down compartment, and
down compartment, and
pu compermentar packet back over the rigid tube from ment bags including
the compartment outwardly to turn the same inside-o
and deposit the down in the garment compartment.

4,094,128

AUTOMATIC BAGGING MACHINE
incent N. Vulcano, New York, N.Y., and Maurice W. Fried man, 548 Barnard Ave., Woodmere, N.Y. 11598, assignors to Maurice W. Friedman, Woodmere, N.Y. 11598, assignors to Filed Sep. 10, 1976, Ser. No. 722,322 44. Apparatus for means for tocing a garment at a loading station;
said loading station, to an operative station, to an unloading station;
c. means for supplying a length of tubular material; rial over a forming a garment bag from the tubular mat e. means for sensing said garment bog so that it has a lengt e. means for sensing said garment bag so that it has a length
corresponding to the length of the garment comprising gripping means to grip the edge of the tubular materia and means to move the gripping means, and
f. control means for actuating the means of paragraphs (a) garment at the operative station;

wherein the sensing means determines the presence of a garment at the operative station and further including means for mounting a photoelectric decection mosition at which the photoe-
tive to gripping means between a posit lectric detection means and the gripping means are adjacent each other and a position at which the photoelectric detection means and the gripping means are distant each other, and
means for moving the photoelectric detection means from its means for moving the photoelectric detection means from its ent of the gripping moving means in a downward direction.

COUNTING AND FILLING APPARATUS FOR TABLETS, DRAGEES OR SIMILAR ELEMENTS Hans List, Leustrasse 51, 7 Stuttgart 70, Germany Int. C. ${ }^{2}$ B65B $57 / 10,57 / 20$
U.S. C. 53-54

51 Claims

1. A counting and filling apparatus for tablets, dragees or similar elements, comprising, in combination, a plurality of
being each provided with cutouts spaced from each other in the longitudinal direction of each bar and each extending transversely through the respective bar; carrier elements carrying said bars substantially normal to said carrier elements with the side faces of the bars closely adjacent and parallel to ach other and forming with said bars an endess receiving and said endless unit is guided to form between said reversing means substantially planar upper and lower runs; means to move said unit in an endless path about said reversing means; means for filling said cutouts in said bars during movement of the latter along said upper run with said element; scanning means at said upper run downstream of said filling means for
scanning the presence or absence of elements in each of said cutouts of each counting bar; means downstream of said scanning means and controlled by the latter and cooperating with hose bars in which said scanning means senses the absence of an element in at least one cutout of the respective bar; and bundary mans dire freventing elements in said cutouts to fall out of the latter.

4,094,130
APPARATUS FOR COMPRESINS AND PACKAGING ARTICLES
Norman Kelly; William T. Fletccer, both of Sarnin; Derek J Hoiden, Caminchie, and James J. Welsh, Sarnia, all of Can ada, assignors to Fiberglas Canada Limited, Toron
Filed Jul. 13, 1977, Ser. No. 815,356 Claims priority, application Canade, Apr. 19, 1977, 276433 C. mt . C. ${ }^{2}$ B65B 63/02, 13/20

1. Apparatus for compressing and packaging articles, com prising:
 comprising a stack of the articles
compression chamber;
means for displacing the batches in succession from said first position to a second position in said compression chamber; second position to a third position in said compression
seans chamber to allow the displacement of the next succeeding batch from the first position to the second position;
means for compressing the first batch and the next succeeding batch together in said compression chamber; and means for applying to the compressed batches retaining mean
tion.

Sylvia C. Mctict ANIMAL, HALTER U.S. C1. 54-24 ey, Box 107, Middleburg, Va. 22117 Ded. Ce. 12, 1975, Ser. No. 640,193 Int. C1. ${ }^{2}$ B68B $1 / 02$

1. An animal halter comprising a crown member for positioning behind the ears and across said animal, band means for surrounding the nose of said animal, cheek strap means fo attaching said band means to said crown member on opposite sides of said halter, means extending from one side of said
halter to the other and positioned to pass beneath the head o said animal rearwardly of said band means, and means for releasably holding said crown member intact on said animal, said releasably holding means being operative to disunite said crown piece upon the imposition of a force on said halte
which is less than that otherwise needed to break the halter, and means for inactivating said releasable means, said means for releasably holding said crown member comprising a relatively weak strap portion in said crown member, and said means for inactivating said releasable means comprising
member adapted for releasable connection in a bridging position across said relatively weak strap portion of said crown member to relieve stress on said relatively weak strap portion.

4,094,132
MOWER-CONDITIONER
Frans J. G. C. Decoene, Zedelgem, Belgiom; Cornelis G. M Muja, Vougeot, France; Roger H. Van Eecke, Blankenberg, ors to Clayson N.V., Zedelgem, Belgium Fified Occ. 18, 1976, Ser. No. 733,631

Int. Cl. ${ }^{2}$ A01D 49/00
U.S. CI. 56-14.4

1. A mower-conditioner comprising
chassis adapted to be moved across a field;
transversely extending rotary mower means mounted to the chassis, the mower means having at least one pair of op-positely-rotated side-by-side extending cutter units for
cutting standing crop and for conveying cut crop rearcutting stand
wardly; and
wardly; and
a pair of rotary units mounted to the chassis and rearwardly ing cut crop from the cutter units, for conditioning said
crop and for widely spreading and depositing said crop in a fluffy pattern on the field; and each rotary unit being rotary unit of each pair being located closer to the mower means than the other rotary unit of the pair.

4,094,133

METHOD AND APPARATUS FOR CONTROLLING AN OPEN-END SPINNING MACHINE
dwin Furrer, Winterthur, Switzerland, assignor to Rieter Ma
chine Works Limited, Winterthur, Switzerland
Filed Jun. 25, 1976, Ser. No. 700,061
Claims priority, application Switzerland, Jul. 16, 1975,
9298/75
Int. C1. ${ }^{2}$ D01H $1 / 32$
U.S. Cl. 57-34 R

In. C.2 Do1H $/ / 32$

1. In a method of controlling the start-up, the normal spinning operation and the stopping of all spinning positions of an unit supplied with power from a power source via a power line, and control circuits extending from the electronic control nit to devices which influence the operation of the spinning positions, the improvement comprising maintaining the normal spinning operation of the spinning positions of the open-end
spinning machine in case of failure of the electronic control unit by continuing to supply power for the normal spinning operation from said power source to at least some of said ontrol circuits.
2. An apparatus for controlling the start-up, the normal operation and the stopping of all spinning positions of an open-
end spinning mat end spinning machine comprising an electronic control unit, a power supply line for delivering power to the electronic control unit, control circuits extending between the electronic
control unit and the spinning positions for operation of such spinning positions, a relay provided with a self-holding contact, a switch connecting the relay with the electronic control unit, first contact means and second contact means, said relay being operatively connected with the first and with said second contact means for sornentrol circuits some of said control circuits with the power supply line.

THREAD END 4,094,134 hread end cutting apparatus in spinning MACHINE
Nakanishi Kazuo, Ujisbi, Japan, assignor to Murata of America Fitte, N.C. N.C. 14, 1976, Ser. No. 686,398 May 14, 1976, Ser. No. 6
Int. C. ${ }^{2}$ D01H $11 / 00$
U.S. C. ${ }^{57-56}$ ing apparatus in 1 1. A thread end cutting apparatus in combination with a fine spinning machine, which fine spinning machine includes a row of rotatable spindles and in combination with a separate bobbin meatal fitting on one end thereof and wherein the leading end of
thread to be wound on a bobbin on rotation of the associated spindle is placed between the bobbin and spindle as the bobbin spindie is placed between the bobbin and spindle as the bobbin
is sleeved over the spindle and wherein the leading end of the thread so placed between a bobbin and spindle is passed over the metal fitting prior to being wound on the bobbin, which cutting apparatus includes a guide bar positioned adjacent the row of spindles and parallel thereto and a cutter device mounted on the guide bar for movement therealong parallel to arm extending longitudinally of the bar, a roller adjacent each end of the support arm, shafts rotatably mounting the rollers, each roller having a peripheral configuration whereby the roller is guided along the bar on engagement of the roller with the bar, screw means securing the shafts to the support arm at
output in response to said second output pulse stored in the circuit means of said second memory circuit; and discrimination gate means including a first gate responsive to said first output and said second output pulse for thereby rating a first output signal representative of a firs

sequence of actuations of said first and second contro switches, and a second gate
mine, for thereby generating a second output signal represent for thereby generating a second output signal representa-
tive of a second sequence of actuations of said first and tive of a second control switches.
the opposite ends thereof, a U-shaped body portion having a pair of leg portions with free ends and a connecting portion, the support arm, a cutting member secured to the free end of the other leg portion of the U-shaped body portion, said cutting member including a plurality of L-shaped attachments ting member incluaing a plurality thereto in spaced apart relation longitudinally of the bar, a pair of leaf springs connected to each attachment providing cutting surfaces extending longitudinally of the bobbins in spaced apart relation longitudinally of the bar with the cutting
device positioned on the bar for movement therealong, said cutting surfaces being adapted to resiliently engage the annular metal fittings on the bobbins on movement of the cutting deice along the bar to engage and cut the leading end of the vice along the bar toenged the bobbin and spindle.

SWITCH CONTROL U UNIT FOR ELECTRONIC

SWITCH CONTROL UNIT FOR
Yasushl Nomura, Tokorozaw, and Shigeru Morokawa, Higashiyamato, both of Japan, assignors to Clitizen Watch Com pany Limited, Tokyo, Japan
Filied May 24, 1976, Ser. No. 689,021
Claims priority, application Japan, May 26, 1975, 50-61945; Claims priority, applic
Aug. 14, $1975,50-98808$
Aug. 14, $1975,50-9800$ Int. C1. ${ }^{2}$ G04C $3 / 00$
U.S. CI. 58-23 R
12 Claims
U.S. A. switch control unit for an electronic timepiece compris-
1.
ing:
ing: first control switch adapted to provide a first output pulse
when actuated;
a second control switch adapted to provide a second outpu pulse when actuated;
first memory circuit connected to said first control switch and including circuit means for storing said first outpu pulse when said first control switch is actuated before said
second control switch is actuated, the circuit means of said first memory circuit generating a first output in respons to said first output pulse stored in the circuit means of said to said memory circuit;
a second memory circuit connected to said second contro switch and including circuit means for storing said second output pulse when said second control switch is actuated
before said first control switch is actuated, the circuid before said first control switch is actuated, the circuit
means of said second memory circuit generating a second

ELECTRONIC TIMEIECE ${ }^{4,094,136}$ INSPECTION CIRCUTT tomi Aizawa, Suwa, Japan, assignor to Kabushild Kaisha Suwa Seikoohh, Tokyo, Japan
Filed Dec. 22, 1976, Ser. No. 753,129
Claims priority, application Japan, Dec. 24, 1975, 50-15428 U.S. Cl. 58-23 R Int. C. ${ }^{2} \mathbf{G} 04 \mathrm{C}$ 3/00 $\quad 9$ Claim

1. In an electronic timepiece having oscillator means for producing a high frequency time standard signal, a divider means for receiving said high frequency time standard signal sponse thereto, or frequency time slans for producing timekeeping signals representative of actual time in response to said lower frequency time standard signal being applied said timekeeping signals being applied thereto, the improvement comprising auto-clear means coupled to said timekeeping counter means and said divider means for detecting a power-on condition and in response thereto for applying a reset pulse signal to said counter means and divider means to reset the
counts thereof, and first inspection means coupled intermediate said divider means and timekeeping counter means, said first inspection means being adapted to receive said reset signal and in response thereto apply a first inspection signal to said display means until said lower frequency time standard signal is applied to said inspection means at a predetermined interval of plied to said inspection means a a predetermined interval of
time after said reset signal is applied to said inspection means so
that a first inspection of said display means is effected during
said predetermined interval of time said predetermined interval of time.

$=$: Enticiy flow
2. An electronic timepiece having a power source, comprising: $\begin{aligned} & \text { a freq } \\ & \text { a }\end{aligned}$
frequency converter coupled to said frequency standard to divide an output frequency of said frequency standard to provide output pulse signals;
a timekeeping circuit driven by said output pulse signals; ing circuit; and
a voltage conversion system coupled to the power source to provide a lower output voltage than that of the power source to operate at east one of said frequency standard
frequency converter, timekeeping circuit and display means at the lower output voltage from said voltage conversion system, said voltage conversion system including a plurality of electric energy storage means, and means fo
switching connections of said plurality of electric storage means relative to the power source for thereby storage means relative to the power
providing said lower output voltage.

4,094,138

U.S. C. 58-39.5

1. An electronic chronograph for calculating the difference between two intervals of time, each decimal digit of which is a subtracting circuit including a pluratit
similar subtracting units connected to form a plurality of sets of parallel groups, each group representing a decima digit and comprised of a plurality of parallel subtracting units, said subtracting circuit comprised of subtracting units for each word including a group of sdifracting units for each word for producing the time
diferences between each corresponding word of said intervals of time, the subtracting unit of highest significance of each group having a carry-over output, and second set of said subtracting units including groups of subtracting units interconnected each with a group of
said first set, each group of said second set said first set, each group of said second set having a
control input of at least one of its subtracting units connected to said carry-over output of the corresponding group of said first set of subtracting units for subtracting a correcting cipher from each of said differences whenever said carry-over output has a carry-over
signal such that each group has its signal such that each group has its own correcting group corresponds and hence at least two groups have different correcting ciphers,
said first and second sets of subtracting units having first groups of outputs delivering a first corrected time dif-
ference, whereby said
whereby said first output groups represent the time differ-
ence between said intervals when said subtrahend is less ence between said intervals when said subtrahend is less
than said minuend, and the complement of said set of output groups represent the time difference between said intervals when said subtrahend is greater than said minu-

4,094,139
DISPLAY CONTROL CIRCUIT FOR ELECTRONIC TIMEPIECE
Yasushi Nomura, Tokorozaima, and Yesuhiko Nishikubo, Iruma, both of Japan, assignors to Clitizen Watch Company Limited, Tokyo, Japan
d Sep. 10, 1976, Ser. No. 722,242 Claims priority, application Japen, Sep. 12, 1975, 50-110649 Oct. 21, 1975, 50-142541[(U); Oct. 28, 1975, 50-146070[U] U.S. Cl. 58-50 R

Int. Cl. ${ }^{2}$ Gt4B 198130

1. In an electronic timepiece having a frequency standard, a frequency converter connected to the frequency standard, a time counter providing a time information signal in response to a low frequency signal from the frequency converter, a decoder providing decoded outputs in response to the time infor mation signal, an electro-optical display device responsive to the decoded outputs to provide a display of time information and a switching gate coupled between the decoder and the state to inhibit the supply of said decoded outputs to said electro-optical display device and operative to assume a second state to allow the supply of said decoded outputs of said electro-optical display device to cause said display device to display said time information, the improvement comprising:
a first external control switch to provide an output signal a second external control switch to provide a control signal when actuated; and
a display control circuit responsive to said output signal to render said switching gate to assume its second state for thereby causing said electro-optical display device to
display said time information, said display control circui including a timer circuit composed of a first section of flip-flops for setting a predetermined length of time in response to said output signal generated upon actuation of said first external control switch and a second section of
fip-flops coupled to said first section of flip-flops, first flip-flops coupled to said first section of flip-flops, first
gate means having first inputs coupled to outputs of said glip-flops of said first section and a second input coupled to outputs of the flip-flops of said second section, and second gate means coupled between the outputs of the flip-flops of said second section and said second input of said first gate means, said second gate means responsive to said
control signal for passing the outputs of the flip-flops of control signal for passing the outputs of the flip-flops of
said second section to the second input of said first gate said second section to the second input of said first gate
means which consequently produces an output for a time interval in addition to said predetermined length of time.

4,094,140
TIMEPIECE-GAS LIGHTER ASSEMBLY
Hidekid Ohue, $3-6-13$, Kitaurama, Urawa-shi, Saitama-ken, and Mastoothi Katayama, 1-650, Higashiohnari, Ohmiya-shi, Saitrama-ken, both of Japan
leed Aug. 24, 1966, Ser. No. 717,342
U.S. Cl. 58-152 R

6 Claims

1. A unitary electronic digital display watch and liquefied gas-fueled lighter comprising a casing, a watch module digital display means for displaying a digital output, and circui means for interconnecting said quartz oscillator with saic digital display means for providing a readout representing the time, a d.c. power source connected to said watch module, and a first switch means connectorce with said watch module, blocking oscillator, a second switch means for interconnecting said d.c. power source to said blocking oscillator, a step-up transformer having a primary winding and a secondary winding, said primary winding provided at the output of said blocking oscillator, said secondary winding connected to a sparkgap ignition circuit, saic spark-gap ignt a spark-gap, means for amplifying a pulse output across said secondary winding to a high-voltage pulse across said spark-gap of sufficient magnitude to ignite an ignitable gas appearing across said spark-gap, means for providing an ignitable gas across said spark-gap, diode means connected between said secondary winding anse said pair of electrodes for prevening sald means for positioning said digital display means and said spark-gap in said casing such that the light emitted by the ignited gas across said sparkgap is applied to said digital display means for providing a visual readout of said digital display means.

TERMINAL CHAIN LINK $\mathbf{4}, 094,141$ edhelm Rethein Ober-Oesbern Germany, essignor to Angust Thiele, Kalthof, Germany Continuation of Ser. No. 592,047, Jun. 30, 1975, abandoned. This application Jan. 18, 1977, Ser. No. 760,469 Claims priority, application Germany, Mar. 12, 1974, 2411725

1. A terminal chain link with built-in indicator, comprising a link body having two arm portions each formed with a recess and having an end section, and a brace portion of one-piece
with said arm portions and extending between said end sections of the latter, said link body having an interior passage extending through said arm portions and said brace portion, said link body also having a polygonal shield portion having equiangularly spaced vertices and inwardly curved edge portions inter-
mediate said vertices, said shield portion being of one-piece mediate said vertices, said shield portion baide have portion of said link body and having opposite sides which lie along a plane in which said arm portions lie and bear information as to load factor and other analogous information, said shield portion having a ransverse omension in sections of said arm portions and that of said brace portion so as to both reinforce the link body in the region of said brace portion weakened by said passage. and also make the loadbearing characteristic of the chain link readily determinable whereby the one-piece construction portion strengthens the chain
brace portion and said shield link; a shackle having spaced end portions each insertable into a respective one of said recesses and each having an interior bore which registers with said passage upon insertion of said end portions into said recesses; and a boot extending through shackle with said link body for movement in a path which is emote from said shield portion so as to prevent mechanical iterference with the latter during pivoting movement of said interferen
shackle.

URBINE SYSTEM METHOD
METHOD AND APPARATUS William C. Pfefferie, Middletown, N.J., assignor to Engelhard
which is a continuation-in-part of Ser. No. 227, 420, Feb. 18, 1972, abandoned. This application Sep. 20, 1976, Ser. No. Int. C1. 724,654 FO2C $7 / 22$
2. C1. 60-39.03 8 Claims 2. A method for operating a gas turbine by combusting, ove accur in the fuel derion of said turbine during which variations carbonaceous fuel which when burned with a stochiometric amount of air has an adiabatic flame temperature above about
(a) forming an intimate admixture of said fuel and said com bustion air, while controlling the ratio of said fuel to said combustion air in said admixture to maintain the adiabatic
flame temperature of said admixture, despite said varia-
tions, at about a preselected value in the range of about tions, at about a preselec
, 500° to about $3,300^{\circ} \mathrm{F}$;
(b) introducing said admixture into a combustion zone wherein combustion is proceeding under essentially adiathe combustion zone;
(c) mixing said fuel-air admixture with combustion products so formed to bring said admixture above its instantaneous
auto-ignition temperature within said combustion auto-ignition temperature within said combustion zone,
thereby combusting the fuel-air admixture at an approximately constant temperature in the range of about $2,500^{\circ}$ F to about $3,300^{\circ} \mathrm{F}$ over a period of turbine operation in which the rate of introducing fuel into the combustio

combustion being above the maximum flame-propagating velocity of the admixture at or upstream of the inlet to the
combustion zone; combustion zone;
combustion zone;
(e) combining ane; with the combustion products so comover, additional air with the combustion products so removed to provide a
combined gas at a substantially lower temperature wherein the temperature of the combined gas is maintained essentially constant at a temperature within the
range of about $1,100^{\circ}$ to about $\underset{2,700^{\circ} \mathrm{F} \text { over a period of turbine }}{ }$ amount of fuel introduced into the combustion in which the (f) passing the combined gas to a turbine as a motive fluid.

VARIABLE TÖRQUE HYDRAULIC CLUTCH
VARIABLE TORQUGE HYDRAULIC CLUTCH William R. Schlegel, and Harry E. Mayber, Jr., both of Wilmington, Del., ams

Filed Dec. 13, 1976, Ser. No. 750,264
Int. C1. ${ }^{\text {F }}$ F16D $33 / 02$
U.S. Cl. $60-352$

Int. Cl. ${ }^{2}$ F16D $33 / 02$
9 Claims

1. A variable torque hydraulic radially comprising a casin
\qquad

having a toroidal cavity and an inner wall containing a liquid a rotatable input shaft mounted upon the casing, an input roto input shaft, a rotatable output shaft mounted on the casing, an output rotor blade ring disposed within the casing peripherally adjacent the input rotor blade ring and connected to the output shaft whereby the output rotor ring is caused to rotate in response to rotation of the input rotor ring, the input and substantially rdially disposed rotor blades, a toroidal flow-control ring disposed in the casing which is separated from the inner wall by a surrounding space having short and long circumferences, the flow-control ring being disposed adjacent the sides of the rotor blade rings whereby liquid flowing through shorter circumference of the space surrounding the flow-control ring and back through the rotor blade rings, an annular recess in the flow-control ring adjacent one of the rotor blade ings, an annular blocking plate means constructed and ar ranged to be capable of closing off the flow through one of the otor blade rings, transiating means connected to the annular blocking plate means for moving it from a position in the the rotor blade rings to a position disposed outside the annula recess which blocks the flow of liquid from circulating hrough one of the rotor blade rings whereby the force transmitted through the clutch is varied, and the annular blocking plate means comprises an annular channel having a pair of legs which are disposed on both sides of the blades on one of
annular rotor rings to block off flow through the blades.
(20
HYDRAULIC PRESURE REGEGULATING ARRANGEMENT
Pavel Italy; Ondrej Kilik; Jozef Barancok, all of Nova Dubnica, and Anton Miski, Dubnica nad Vahom, all of Czechoslorickia assignors to Strojarake a metalurgicke zavody, Dubnica nad Vahom, Czechoslorakia

Filed Mar. 16, 1977, Ser. No. 778,136
U.S. CI. 60-445

6 Claims

1. An arrangement for automatically controlling hydraulic ressure, comprising: a hydrostatic pump having an inlet and outlet pressure conduit, a servocylinder coupled to said hydrotatic pump and having a control piston to control the fluid volume thereof, a slide valve having an inlet conduit, a piston,
and first and second outlet conduits, a control cylinder having a control pressure inlet and outlet, a piston within said control cylinder connected to the piston of said slide valve, a spring within said control cylinder acting on said piston thereof in one direction, a plunger connected to said control cylinder piston, double acting return valve connected between the inlet and outlet pressure conduits of the hydrostatic pump, said return
valve controlling via a pressure conduit the position of said plunger, the first and second outlet conduits of the slide valve being connected to the servocylinder of the hydrostatic pump.

UNDERSPEED ACTUATOR FOR A HYDROSTATIC TRANSMISSION HAVING A SHUNT VALVE Cyril W. Habiger, Joilet, Ill., assignor to Caterpillar Tracto
Co., Peoris, ill. Co., Peoria, IIl.

Filed Jun. 16, 1977, Ser. No. 807,277
U.S. CI. 60-447

Int. Cl. ${ }^{2}$ F16H $39 / 46$
4 Claims

1. In a control system for controlling the displacement of a first pump driven by a prime mover, comprising:
control means for adjusting the displacement of said first pump;
an underspeed actuator having a piston, first and second actuating chambers at opposite ends of said piston, and a
biasing means, said piston being connected to the control biasing means, said piston being connected to the control
means and movable between a first position at which said first pump is at minimum displacement and a second posi-
tion at which said first pump is at maximum displacement. said biasing means urging the piston toward the first position and said piston being movable between said first and second positions in response to pressure differential in said first and second chambers;
signal means for controllably developing first and second
control signals in response to control signals in response to the operating speed of the
prime mover, said signal means having a first conduit for prime mover, said signal means having a first conduit for
delivering said first control signal to said first chamber and a second conduit for delivering said second control signal to said second chamber; and
shunt valve means connected to the first and second con-
duits for passing fluid expelled from the firse duits for passing fluid expelled from the first chamber to the second chamber in response to said flow of fluid ex-
pelled from the first chamber exceeding a preselected flow pelled from the first chamber exceeding a preselected flow
rate.

4,094,146 SOLAR ENGINE

Earl O. Schweitzer, 29353 Luxona Rd., Wickliffe, Ohio 44092 Filed May 7, 1976, Ser. No. 684,115
Int. Cl. ${ }^{\text {FO3G }} 7 / 02$; F02C $1 / 04$
U.S. C. 60-641

6 Claims

1. A solar engine comprising a thin-walled pressure vessel capable of containing and heating air by means of solare energy, adapted to be driven by a mass of heated air from said vessel, said air motor including a housing defining a chamber having a movable diaphragm therein dividing said chamber into
spaced chamber portions, one of said portions comprising air spaced chamber portions, one of said portions comprising air pump means adapted for pumping a substantially equal mass of
cool air into said vessel as compared to the first mentioned mass of heated air, said air motor having excess power output means capable of doing work, and including check valve means on the output side of said pump means and the intake
side of said vessel for preventing reverse flow of air from said side of said vessel, for preventing reverse flow of air from said
intake side in a direction toward said pump means, said diaintake side in a dirreced adjacent its periphery to said housing, phragm being secured adyacent including a generally central head portion to which a rod
is secured, said rod extending exteriorly of said housing, and
adapted for coupling to means for doing work, the central sections of the interior surface of said housing that are disposed in confronting relation to said head portion being of a configuration to generally snugly receive said head portion in generally engaged relation in the respective maximum stroke posi-

tions of said rod and attached head portion, the interior surface ections of said housing laterally of said central sections being generally convex, and engaging the portions of said diaphragm
utwardly from said head portion in generally surface-to-surace relation from said head portion in generally surface-to-surad rod and attached head portion, for stroke positions of ciency of said engine.

(IRCUTT FOR THE SUP094,147
 ONDENSABLE FLUID TO A SOLAR ENGINE
 ble, both of France, assignors to Commissariat al'Energie Atomique, Paris, France
 Claims priolty Mar. 8, 1977, Ser. No. 775,476 Int. Cl. ${ }^{2}$ F03G 7/02; F01K 3/00 US. C. $60-641$

1. An improved circuit for the supply of a condensable fluid o a solar engine comprising a primary circuit in which a first and an evapolatod, and comprising at least one solar collector secondary circuit in which a condensable fluid is circulated said secondary circuit including the secondary portion of said evaporator, an oulet for said evaporator supplying a solar
engine coupled with a condenser, an oulet for said condenser connected by a re-supply pump to an inlet of said secondary portion of said evaporator, said re-supply pump being coupled with said engine, wherein said secondary circuit comprises a
start-up storage tank located at a higher level than said evaporator and connected by a pipe to said secondary circuit at a pump and including said secondary portion of said evaporator, and regulating means for said storage tank for bringing the wid therein to a temperature lower than the temperature of the condensable fluid within said evaporator.

THERMAL STORAGE $\stackrel{4,09,148}{ }$ WITH MOLTEN SALT FOR
PEAKING POWER
Engineeres Cen, Acton, Mise., aspignor to Stone \& Webster
Eagineering Corporation, Bootton, Mass.
Fled Mar. 14, 1977, Ser. No. 777,458
U.S. Cl. $60-652$

13 Claims electrical power during peak demand periods comprising:
(i) passing a heat exchange gas in contact with said heated
exhaust gases to heat said heat exchange gas with heat released by said exhaust gases;
(ii) introducing said heated heat exchange gas into a thermal storage zone wherein during non-peak demand periods a
portion of the heat released by said heated heat exchange gas is stored in said thermal storage zone for use during peak demand periods;
(iii) passing said heat exchange gas discharged from said thermal storage zone into a first steam generation zone exchange gas is utilized to generate ste said heated heat electrical power during non-peak demand periods;
(iv) during peak demand periods admixing said heated heat
exchange gas from step (i) with additional heat exchange
gas;
to heat said said admixture into said thermal storage zone storage zone;
storage zone;
vissing the heated admixture discharged from said thermal storage zone into a second steam generation zone steam for producing increased electrical power during peak demand periods;
(vii) recirculating a portion of the admixture discharged from said second steam generation zone back into said thermal storage zone to heat said recirculated admi
with the heat stored in said thermal storage zone; with the heat stored in said thermal storage zone;
viii) directing the remaining portion of the admixtur charged from said second steam generation zone into said

1. In a process for the generation of electrical power wherein coil is gasified and these gases are burned to produce electrical power generation zone to generate electrical power during peak and non-peak electrical power demand periods and wherein heated exhaust gases are released from said electrical power generation zone, the improvement which utilizes
the heat released by said exhaust gases to generate increased nvironment comprising: Corming an artificial ice island extending
to above the surface of the water; and
the water; and installing a caisson entirely through said island to below said sea floor, said caisson being formed in two parts, one part
extending through said island to said sea floor and the extending through said island to said sea floor and the
other part extending from said sea floor to below said sea floor, said caisson being separable at said sea floor upon movement of said island.
first steam generation zone to generate steam for produc ing electrical power;
(ix) heating the admixture discharged from said first steam generation zone with said exhaust gases; and
(vii) with said heated admixture of step (ix) and introducing same into said thermal storage zone.

ANTI-FREEZING METHOD GROUND SURROUNDING AND APPARATUS FOR GROUND SURRO NNDING LIQUIFIED GAS STORING
UNDERGROUND TANE Hiroobi Fuilta, Tokyo; Munetaka Kubota, Hino; Takeshi Makita, Yokosake, and Yukichige Takshashi, Mitaks, all of
Japan, assignors to Kajima Kensetsu Kabushiki Knisha, ToJapan, assignors to Kajima Kensetsu Kabushild Knicha, To-
\qquad Filed Apr. 19, 1977, Ser. No. 788,960
Int. C1. ${ }^{\text {E022 }}$ 27/38; F11C 13/10
U.S. C. ${ }^{61-36 ~}{ }^{\text {Int }}$

6 Cluims

1. Apparatus for warming ground about an underground cryogenic storage tank comprising: a vertically disposed water impermeable envelope embedded in the ground adjacent to said tank, said envelope being filled with granular material; a
source of water for said envelope; water conveying means in said envelope extending from the upper to the lower portion of said envelope; said water conveying means being in communication at its lower end with the interior of said envelope and
being in communication at its upper end with water impelling being in communication at its upper end with water impelling
means adapted to move water through said envelope; and means adapted to move water trough said envelope.

$$
4,094,152
$$

APPARATUS FOR LAYING A PIPE LINE
Hana Jütte, Dortmund-Brechten, Germany, assignor to Gewerkschaft Eisenhutte Westffili, Lunen, Germany Claims priority, application Germany, May 21, 1976, 2622671 Int. C1. ${ }^{2}$ E21D $5 / 12$

7 Claims

COMPOSITION OF 4,094,150
OF MATTER USEFUL FOR EARTHEN FORMATION TREATMENT iliam J. Clarke, Ridgewood, N.J.,

Company, Stamford, Conn.
Filed Apr. 15, 1976, Ser. No. 677,355
S. C1. $61-36 \mathrm{C}$

1. A method for treating earth formations around 7 Claims of underground pipes and concrete foundations comprising injecting into the earth formation a gel-forming composition comprising an aqueous solution containing from about 5% to about 20%, by weight, based on the total weight of the solution of aixture of (A) from about 80% to 99.5%, by weight, of monomeric acrylamide and correspondingly (B) from about
20% to 0.5% by weight of monomeric N, N^{\prime}-methylenebisacylamide wherein the percentages by weight of said menebisacotal 100%, and (C) from about 4% to 20%, by weight, of an unfired natural diatomaceous earth, 80% of which has a partile size between about 2μ and 10μ the percentigch has a partiaid diatomaceous eath being based on the tage by weight of solution and (D) an effective amount of a polymerization cat solution and (D) an effective amount of a polymerization cataearth formations is substantially reduced.
supplementary members is at least twice the length of one of supplementary me

BREAST ROOF SUPPORT,094,153促 Günter Blumenthal, Westerhold; Karlheinz Bohnes, and Peter Mart, both of Bochum, all of Germany, amgors io Bochumer Eisenhïtte Heintzmann GmbH \& Co., Germany Claims priority, application Germany, Oct. 15, 1976, 2646563 U.S. C. 61-45 D

1. A prop system for supporting the roof of a breast extenda mine and having a face side at a working
ing: at least three similar props one of which is relatively close to said mine simar is relatively far from said mine, and one of which is flanked by the other two props, said props each including erally parallel to said mine,
roo-engaging upper part extending generally parallel to the respective lower part and having a pair of opposite ends extending longitudinally past the respective lower means for dis
means for displacing each upper part vertically relative to
the respective lower part; means extending longitudinally between adjacent props for displacing each prop longitudinally generally parallel to props along said breast parallel to said mine;
an upright and transversely extending solid shield on each of said props extending transversely to said mine between the respective upper and lower parts at the ends thereof upright and longitudinally ex
ing longitudinally generally parallel to solid shield extendthe upper and lower parts of the prop said mine between mine said trawerse and longitudin furthest from said partitoning said stowage area off from said working area

4,094,154

ROOF PROP APPARATUS AND METHOD FOR LONGWALL MINING
Gunter Blumenthal, Westerholt, Karlheinz Bohnes, and Peter Marr, both of Bochum, all of Germany, assignors to Bochumer Eisenhutte Heintumann GmbH \& Co., Bochum, Germany Claims priorty, applitention Cermidy, Oct 15, 1976, 2646562 Int. C1. ${ }^{2}$ E21D $15 / 44$
turn supported at one mine wall by a respective leg, said appa-
ratus comprising: a pair of similar frames each having an elonratus comprising: a pair of similar frames each having an elongated upper part juxtaposable with said arches and a lower part lel next to each other; a plurality of discrete holders each engageable between said upper parts and said arches; means for
$4,094,156$
METHOD AND APPARATUS FOR DRIVING SHEET PILES INTO THE GROUND Baugesellschatt Klamme KG. Hagen, Germany Filed Mar. 6, 1974, Ser. No. 488,764 Cluims priority, application Germany, Mar. 10, 1973,
2312032; Feb. 9, 1974, 2406283 US. C. 61-53.5 Int. CI. ${ }^{2}$ E02D 7/26
U.S. C. $61-53.5$

Cut. CI. ${ }^{\text {E02D }} 7 / 26$
expanding said holders and bracing seid holders between either of said upper parts and respective arches; means for displacing
said frames relative to each other in the direction of elongation said frames relative to each other in the direction of elongation
of said upper parts; and a support platform mounted on one of said frames adapted and constructed to support mining equipment.

4,004,155

MINE ROOF SUPPORT
Ginter Blumenthal, Westerbolt, Gustar Neu, Bochum, and
Hans-Ferdinand Bemmerl, Hern, all of Germany, asignors to Hans-Ferdinand Bemmerl, Hern, all of Germany, assignors to
Germany Filed Jan. 21, 1977, Ser. No. 760,949
Claims priority, application Germany, Feb. 3, 1976, 2603953
U.S. C. $61-15 \mathrm{D}$

18 Claims

1. A method of driving a sheet pile into the ground comprising driving a sheet pile into the ground and boring a hole
adjacent said sheet pile, at least one part of the boring step adjacent said sheet pile, at least one part of the boring step
being performed at a time when the pile is already in a partially driven-in state, said hole being of such distance from the pile as to provide at least partial space for the soil displaced by the pile.

4,094,157
ANCHORING APPARATUS FOR ANCHORING A MINING INSTALLATION
Werruer Karten, Gelsenkirchen, and Helmat Erwien, Lunen, falia, Germany
Filed Dec. 3, 1976, Ser. No. 747,434 Claims priority, application Germany, Dec. 5, 1975, 2554690

1. A mine roof support for an underground mine gallery comprising elongated sole plate means integral in the longitu-
dinal direction thereof and adapted to engage the floor of a dinal direction thereof and adapted to engage the floor of a
mine gallery; a rear shield having a lower and an upper end; mine gallery; a rear shield having a lower and an upper end;
link means connecting said rear shield in the region of the lower end thereof to said sole plate means; a roof shield having a front end adapted to be directed towards the face of the mine gallery and an opposite rear end; pivot means connecting said roof shield intermediate the ends thereof to the upper end of said rear shield, with a portion of said roof shield between said pivot means and said frean end piver means and the opposite rear end of said roof shield; at least one extensible and collapsible prop means between said sole plate means and the portion of said roof shield means which is located forwardly of said pivot means; and at least one additional extensible and collapsible prop means between said sole plate means and said rear shield means.
2. Anchoring apparatus for anchoring a mining installation o the floor of a mining excavation, said apparatus comprising: (a) an anchor beam;
mining excavationent for anchoring in a borehole in said mining excavation floor; and
ment, said tensioning device comprising:
(i) a pivot bearing rigidly attached to said bean
(ii) a support member pivotally mounted in said pivo bearing which permits pivoting of the support member about an axis parallel to the longitudinal axis of saic (iii) a connection
(ivement; and
connection member for adjusting the position of said ber.

LOADING GATE $\begin{array}{r}4,094,158\end{array}$
LOADING GATE FOR MINE ROOF BOLTER
Richard W. LeVere; Joseph M. Vocaturo, both of Trenton, and James L. Finney, Cranbury, all of N.J., assignors to The United States of America as represented by the Secretary of the Interior, Washington, D.C. S. Cl. $61-63 \quad$ Int. C1. ${ }^{2}$ E21C $1 / 02$
U.S. CI. 61-63

1. In combination with a mine roof bolter apparatus having an access opening in an end wall thereof for loading and un-
loading said apparatus, a door forming a protective canop loading said apparatus, a door forming a protective canopy
attached to said apparatus above said access opening for pro ective of personnel loading or unloading said apparatus; said door when in a closed position extending substantially the
entire length of the access opening; and entire length of the access opening; and
means engaging said mine roof and floor for fixedly mount means engaging said mine roof and floor for fixedly mo
ing the mine roof bolter apparatus therebetween.

4,094,159
SUBMERSIBLE CHAMBER
Frederic L. Hettinger, Japiter, Fla, assignor to Perry Oceano graphics, Inc., Riviere Beach, Fla. No. 694,833 S. C. $61-69 \mathrm{R}$ Int. Cl. ${ }^{2}$ B63C $11 / 40$

9 Claims

1. Diving apparatus comprising:
(a) a guide member system extending from a location at the seabed where work is to be performed and the sea surface
and including member disposed laterally of the work location;
(b) a normally negatively buoyant bell assembly including a
positively buoyant bell and a negatively buoyant balla weight removably connected thereto;
member system beneath the sea surface between an upper
position at the sea surface and a lower position sufficiently above the subsea surface to permit vertical movement of the bell assembly to the vicinity of the work location, , he position by abutment with a portion of said guide member system; and
(d) bell assembly moving means connected between said bell assembly and said frame means for moving said bell assem-
bly between a lower position adjacent the subsea surface bly between a lower position adjacent the subsea surface
work location and an upper position adjacent said frame means when the latter is in its lower position.

DIVING BELL WITH TRANSPARENT DOOR FOR
DIVING BELL WITH TRANSPAREN Undre Galerne, Larchmont, N.Y., assignor to International Underwater Contractors, Inc., Bronx, N.Y. Filed May 9, 1977, Ser. No. 795,112
U.S. C. $61-69 \mathrm{R}$ Int. C.2 EO5C 1/00 3 Claims

1. In a diving bell having a hollow frame in which is defined a cut-out portion; an improvement comprising a transparent closure adapted for being positioned in front of said cut-out
portion and moveable between an opened position and a closed position; and means mounting said transparent closure in front of said cut-out portion so that said transparent closure is in alignment with said cut-out portion when said transparent closure is in its closed position, whereby panoramic observations may be made from within the bell; said transparent clo-
sure comprising a transparent, hemispherical portion having a sure comprising a transparent, hemispherical portion having a
circular end portion; a hollow cylindrical extension having a first end for supporting said circular end portion of said hemispherical portion thereon, and a second end spaced from said first end; and means mounting said circular end portion of said hemispherical portion on said first end of said hollow cylindrical extension; said means mounting said circular end portion on said first end comprising: a flange positioned about said first lar end portion of said hemispherical portion each having a canted surface of the same angle; and an annular ring positioned on said flange in a direction away from said second end of said hollow cylindrical extension, said annular ring having a canted surface that is perpendicular to the canted surface of said flange, said annular ring engaging said hemispherical
portion adjacent said circular end portion, whereby the canted surfaces of said flange and said annular ring hold said circular end portion of said hemispherical portion so that said hemispherical portion is supported therein.

SUBMERGED APPARATUS AND METHOD FOR SUBMERGED APPARATUS AND ME
SUBMERSING THE SAME
Michel Moimard, Bizanoes, Michel Leturcq, Rueil Malmaison,
and Catherine Delcroix, Putenux, all of France, asignors to and Catherine Deleroix, Putenux, all of France, assignors to
Soclete Nationale EIf Aquitine, Prese Soclete Nationale Elf Aquitinine, Paris, France,
Filed May 7, 1976, Ser. No. 684,086 Claims priority, appllcention France, May 7, 1975, 7514447 U.S. C1. 61-95 Int. C. ${ }^{2}$ E02D 23/02

1. A method for submersing and positioning a structure in a body of water through a series of separate and consecutive ubmersion stages so as to cause said structure to come to res on the floo
teps of
rately bringing to a location near the surface of the body of water above the submersion site said structure an a plurality of columns having several float means fo ballast, said structure and columns being unattached to one another;
(b) positioning said structure which includes ballast means above the submersion site;
(c) acting on the ballast means of said structure in order to submerge said structure until its top is near the surface of the body of water and the apparent weight of said structure is reduced to about zero;
(d) pivotally attaching the top of said submerged structure to one end of a first of said plurality of columns;
e) acting on the float means of said first column for pivotally displacing said attached one end of said first column downward until the column is brought into a vertical, submerged position in the water with the other end of said first column being close to the surface of the body of water, said structure being further submerged vertically downward at the submen:
ment of said first column;
(f) pivotally attaching said other end of the first submerged column near the surface of the water to one end of a second column;
(g) acting on the float means of said second column for pivotally displacing said attached one end of said second column downward until the second column is brough into a vertical, submerged position in the water with the
other end of said second column being close to the surface of the body of water, said structure and said first column being further submerged vertically downward at the submersion site by the pivotal displacement of said second column; and
(h) maintaining the pressure within said structure at a value substantially equal to the pressure of the water surround stage.

METHOD FOR INSTALING AN OFFSHORE TOWER Mohn W. Allee, Houston, Tex., assignor to Brown \& Root, Inc., Houston, Tex.
Houston, Tex.
Filed Jun. 21, 1977, Ser. No. 808,520
Int. C1. ${ }^{2}$ E02B $17 / 100$ U.S. Cl. 61-96

1. A method of installing a to
water, comprising the steps of: floating to the worksite a tower subassembly comprising a base, a plurality of upright, open-trussed initial leg seg-
ments and fiotation means; ments and flotation means;
floatingly disposing open-trussed add-on leg segments in the vicinity of said worksite;
ballasting said flotation means to partially immerse said `subassembly so that buoyant jacking units disposed within and connected to respective ones of said initial leg seg. ments floatingly support said subassembly, with top por-
tions of said initial leg segments projecting above the water surface;
mounting add-on leg segments onto said leg portions projecting above the water surface;
while suspending said subassembly from said jacking units, lowering said subassembly so that said jacking units enter said add-on leg segments as said add-on leg segments pass downwardly therearound;
repeating said mounting and lowering steps unt
supported on the floor of the body of water
lifting said jacking units from the top ends of said uppermost add-on leg segments; and
installing a work platform thereupon above the water sur-
$4,094,163$
OFFSHORE STRUCTURE

John William Ells, Bexleyter and David Eaird Leyheath; Ian David Parker, Basingstoke, assignors to The Lritey Walker, London, all of England, don, England
Claims priority, application United Kingdom, Jun. 13, 1975, Int. Cl. ${ }^{2}$ F16L I/04; B23Q 3/00 U.S. C. $61-111$

1. A method of aligning and connecting two pipes at an
underwater location, each pipe having a flange at the terminus casing to direct discharge vapor therinto; a motor within the thereof, wherein at the commencement of the method the first casing and coupled to the compressor for driving the same, the pipe is supported in a stationary position beneath the surface motor having a housing provided with air gaps therethrough of the water, which method comprises:
means coupled with the casing for directing pressurized liquid (i) attaching an anchoring tool having a substantially flat ing means for spraying the liquid into the path of travel of the portion to the flange of said first pipe so that the flat portion of said anchoring tool engages said flange thereby protecting said flange from damage during the connecting ing a plurality of guide wires at spaced apart locations from said flange;
(ii) anchoring a plurality of guide wires to the attached
(i) anchoring tool;
(iii) attaching a guide tool to the second of said pipes to engage said guide wires and said anchoring tool, said geans for aligning anchoring tool having cooperating anchoring tool with the guide tool aligns and axially spaces apart said pipes;
(iv) lowering said attached guide tool from above the surface of the water along said guide wires into engagement with said anchoring tool so that said pipes are aligned and
axially spaced apart prior to being joined together (v) removing the anchoring tool and the guide tool and
joining the two pipes together; and
(vi) fastening the two pipes in a fluid tight relationship.

METHOD AND APPARATUS FOR REDUCING THE TEMPERATURE OF A FLUID
Louis T. Cope, Grayson, Gan, assignor to H \& T Enterprises,
Filed Feb. 18, 1976, Ser. No. 659,122
Int. Cl. ${ }^{2}$ F25C $1 / 00 ;$ F28C $1 / 00$; B01F $3 / 04 ;$ F25D 3/12
U.S. C. $62-74$

1. In a method for reducing the temperature of a fluid: sup. plying pressurized liquid gas and releasing said gas beneath the fluid permitting same to become a moving gas within said fluid
directing said gas thru said fluid to reduce the temperature, and irecting said gas thru said fluid to reduce the temperature, and providing vapor sweep cy
of solid CO_{2} in the supply lines including, in response to an
anwanted unwanted pressure drop, supplying a small amount of vapor to
maintain the pressure above a specified amount until all liquid maintain the pressure above a specified amount until all liquid reaching of the desired pressure.

4,094,165

LOSS HEAT SUPPRESSION APPARATUS AND METHOD FOR HEAT PUMP
Trancis J. Sisk, Apollo, Pa, assignor to Electric Power Research Institute, Inc., Palo Alto, Calif. Filed Nor. 19, 1976, Ser. No. 743,422
U.S. C. 62-115 Int. Cl. ${ }^{2}$ F25B $1 / 00$

12 Claims 1. A compressor unit for a heat pump system comprising: a casing; a compressor mounted in the casing and having an inle

971 O.G. 20
timer period in response to the temperature of the air from
timer period in response to the temperature of the air from
said motor fan means on the downstream side of said hea exchanger being above and below, respectively, a prede termined level,
the ratio of said first and second periods remaining constan regardless of the ambient temperature responded to by said control means.

HEAT PUMP ASSEMBLY
Henning Brinch Madsen, Greve Strand, Denmark, assignor to
Svenska Geotherm Altiebolags, Karistad, Sreden
Filed Mar. 4, 1976, Ser. No. 664,028
Int. C1. ${ }^{2}$ F25B 27/02, 13/00; F25D $11 / 00$ U.S. C1. $62-238$

1. An assembly for dehumidifying air, comprising a heat pump system including a compressor, an evaporator, a condenser and a thermostatic expansion valve; a brine liquid sys. em forming a closed system and including means for circulatbrine liquid at a temperature below the dew point of the air; a heat exchanger for heat exchange between the air to be dehumidified, the brine liquid and the evaporator, said heat exchanger forming a coo the cooling surface and from the cooling urface to the condenser. surface to the condenser.

4,094,168

ICE MAKING REFRIGERATION SYSTEM
George F. Hamner, and Richard M. Hamner, both of Tusca-
loosa, Ala., assignors to Precision Fabricators, Inc., Albany, locsa,

Filed Jan. 26, 1977, Ser. No. 762,477
U.S. C1. 62-347 Int. Cl. ${ }^{2}$ F25C $1 / 12$

5 Claims
to be cycled

1. In an ice making refrigerating system adapted to be cycled
alternately through a freezing phase and an ice harvesting alternately through a freezing phase and an ice harvesting
phase and including a compressor, a condenser and an evapophase and including a compressor, a condenser and an evapo-
rator having a closed refrigerant chamber with an ice forming rator having a closed refrigerant chamber with an ice forming
surface thereon for applying a substance to be frozen during the freezing phase,
(a) an accumulator tank above and externally of said refrigerant chamber,
(b) valve means communicating said accumulator tank with said refrigerant chamber and disposed to deliver liquid
refrigerant by gravity flow to said refrigerant chamber during the freezing phase,
(c) a suction conduit communicating the upper portion of
said accumulator tank with the suction side of said com-
pressor for separating liquid from vapor and returning vaporized refrigerant to said compressor,
(d) a vapor-liquid return conduit communicating an upper portion of said refrigerant chamber with said accumulator tank and disposed to convey vaporized refrigerant and iquid refrigeran
accumulator tank,
(e) conduit means communicating
compressor with said condens
f) conduit means communicating the liquid side of said condenser with said vapor-liquid return conduit down-
stream of said refrigerant chamber so that high pressure stream of said refrigerant chamber so that high pressure
makeup liquid replaces the liquid evaporated in the referigeration process and is delivered from the condenser to said vapor-liquid return conduit in the general direction of flow of refrigerant therethrough to form a mixture of said liquid delivered from the condenser and said vaporized

refrigerant and liquid refrigerant delivered from said r frigerant chamber and to aid in conveying said mixture
toward said accumulator tank g) valved means for
under pressure from the discharge side of said compressor to said refrigerant chamber during the harvesting phase to warm said ice forming surface and displace refrigeran from said refrigerant chamber to said accumulator tank
(h) contro
stream of eans in said vapor-liquid return conduit dow liquid side of point said conduit means communicates the conduit for restricting flow whith said vapor-liquid return conduit for restricting flow through said vapor-liquid
return conduit during the harvesting phase to maintain a predetermined pressure in said vapor-liquid return conduit and allow liquid to pass from said refrigerant chamber to said accumulator tank when a predetermined pressure is reached in said vapor-liquid return conduit.

EXPANDER-COMPRESSO
EXPANDER-COMPRESSOR TRANSDUCER Lamrence Jay Schmerzler, 539 Laurel Pl., South Orange, N.J.
07079 Continuation of Ser. No. 59,306, Jul. 29, 1970, abandoned. This application Nov. 21, 1973, Ser. No. 417,958
Int. C. ${ }^{2}$ F25B 1/02; F04B $17 / 00$ U.S. CI. 62-498 tut. C. ${ }^{2}$ F25B 1/02; F04B $17 / 00$ U.S. Cl. 62-498 -compressor transducer for 2 Clain erant fluid from a high pressure source into a low pressure hea absorbing heat exchanger while simultaneously precompressing the same fluid stream drived from the low pressure hea absorbing heat exhanger for delivery through suitable conduit heat exchangers to the suction side of the high pressure source, comprising
a body me
sing a chamber for confinement of uid responsive piston means arranged to oscillate in sai chamber and dividing said chamber into an expansion
\qquad
\qquad return spring control means in said compression chamber for locating said piston means into initial start-up position, erant fluid into and out of said expansion chamber and into said compression chamber, and
check valve means for permitting refrigerant flow out of said

compression chamber whenever the pressure in said compression chamber is higher than the fluid pressure immediately downstream of said check valve means.
thereby effecting oscillatory movement of saids. fluid responrently the refrigerant fluid stream to expand in said expansion chamber and to compress in said compression chamber, and producing simultaneously a cooling effect and a work output.
or
ROTARY THERMODYNAMIC APPARATUS rederick W. Kantor, 523 W. 112th St, New York, N.Y. 10025 Fivision of Ser. No. 461,452, Apr. 16, 1974, Pat. No. 3,981,627, which is a division of Ser. No. 864,112, Oct. 6, 1969, Pat. No. $3,808,828$, which is a continuation-in-part of Ser. No. 608,323 , Jan. 10, 1967, Pat. No. 3,470,704. This application Sep. 16, 1976, Ser. No. 723,733 $\begin{gathered}\text { Snt. C1. }{ }^{\text {F25B }} 3 / 00\end{gathered}$
U.S. CI. 62-499
 1. A thermodynamic apparatus comprising a rotor, mean
for rotating said rotor, conduut means in said rotor having a pair of closed working fluid flow loops, one of said lops having a first heat transfer chamber, the other of said loops including a third heat transfer chamber forming a common section for each of said loops, said loops sharing a common flow point at a location situated radially outwardly from the largest radial location of any free liquid surface in any of said chambers, means for removing heat from said third chamber and means in said conduit for creating a difference in nuiud
vapor pressure in said second and third chambers whereby said vapor pressure in said second and thir conambers whereby is adapted to discharge heat by condensation in said third
flum chamber and absorb heat in said second chamber.
8. A thermodynamic apparatus comprising, a rotor, means
for rotating said rotor, conduit means in said rotor having a pair of closed working fluid flow loops, one of said loops having a first heat transfer chamber, the other of said loops
having a second heat transfer chamber, said conduit means having a second heat transfer chamber, said conduit means section for each of said loops, means for removing heat from said third chamber, and means in said conduit for creating a difference in fluid vapor pressure in said second and third chambers whereby said fluid is adapted to discharge heat by second chamber; said working fluid comprising a pair of immiscible fluids, one of said fluids flowing through said one loop and the other of said fluids flowing through said other of said loops and having a density different from the density of said one fluid, said fluids being separated in their liquid forms at the
periphery of said third chamber by the centrifugal effects of periphery of said third chamber by the centrifygat effects of
said rotor, and means in said loops for separately returning said one fluid to said first chamber and said other fluid to said second chamber.

U.S. CI. 66-176

1. A method of knitting a blank for a sleeved jacket or cardigan having overlapping front body panels, on a knitting machine with opposed needle beds containing independently operable needles, said method including the steps of
(a) knitting a set of sleeve fabrics for the blank on the two opposed needle beds, and
b) kniting a set of body fabrics for the blank on the two opposed needle beds, the body fabrics comprising two front body panels and a rear body panel, the method also including,
needles out of action one of said sets of fabrics, of taking needles out of action progressively on both needle beds in tive needles of the knitting machine, and holding loops on the needles taken out of action, and
(d) the step, in knitting the other of said sets of fabrics, of bringing the needles made inactive progressively back into knitting action in outwards directions towards the ends of the bank of operative needles of the machine thereby causing wales of the sleeve fabrics to be inclined to wales of the body fabrics in the blank, and further (e) the step,
said front body panels before the other, casting one body
said front body panels before the other, casting one body
panel at least partly off the needles before knitting the other body panel and knitting said other body panel partly on needles already used to knit said one body panel to form a garment blank with overlapping front panels.

DEVICE FOR ADDING 4 OR ADDING AND/OR REMOVING FLUID MEDIA IN A ROTATING DRUM Filed Jpa 30, 1976, Ser No. 0 , Weinert., Germany Cinims priority, application Germany, Aug. 30, 1975, 2538694 U.S. C1. $68-58$ Int. CI. ${ }^{2}$ Go6m 39/08

7 Claims

1. A device for adding and/or removing fluid media in a (a) a rotatable drum of hollow cylindrical configuration defined by a wall;
(b) a pair of annular flange members attached to the outer periphery of the drum and spaced apart to define an annular space extending around the drum;
(c) an elastically yielding sealing member attached to each of said flange members in annular relationship with said drum, each sealing member extending inwardly into said annular space and terminating in a sealing lip, with the
respective sealing lips abuting against one another to form a seal in a generally radially extending plane;
(d) at least one fluid media passageway extending through the wall of the drum in the region between the flange members; and
(e) means positioned in said sealing plane for spreading said sealing luit havi apart, said lip-spreading means comprising a conduit having a generally flattened mouthpiece with a cross-sectional shape having its leading and trailing edges converging to a taper, said lip-spreading means extending
into said annular space from the exterior to effect commuinto said annular space from the exterior to effect commu-
nication with the annular space, said fluid media passageway effecting communication between the annular space and the interior of the cylindrical drum.

Filed Mar. 9, 1977, Ser. No. 775,712 92064 Flied Mer. 9, 1977, Ser. No. 775,712
Int. C1.2 ${ }^{2}$ (05B $65 / 12$
U.S. C1. 70-237 1 Claim 1. An anti-theft device for releasably locking an engine block
of a motor vehicle to an abutting transmission, the transmissio having a housing with a plurality of bolt holes disposed in the peripheral portion thereof and the engine block having a pluthe engine block, comprising:
a bolt having a head portion on one end and a threaded portion on its other end, said bolt receivable in one of said engine block and transmission housing registered bolt head portion having a flat end and an arcuate end opposit said flat end;
a cup member having a closed end, a cylindrical wall extend ing upwardly from said closed end and an open end at the
top of said cylindrical wall, said closed end having an aperture for receiving said threaded portion of said bolt said bolt and being disposed within said end portion of spaced fro being disposed within said cup member and spaced from its open end, said nut being capable of being tightened on said threaded portion to draw the bottom
closed end of said cup into engagement with the flanges of the engine block;
spaced inwardly from the open end of said cup are a pair of apertures with one aperture being on the opposite side of the cylindrical wall from the other aperture;
padlock having one of its shackles passing through said opposing aperture in said cylindrical wall thereby pre
venting a tool such as the socket of a socket wrench sel from being inserted on to said nut;

said cup cylindrical wall being free from any additiona aperture that would give access to said nut by a too utilized to tighten or loosen said nut; and
floating disc disposed within said cup
floating disc disposed within said cup member between the hhat passes through the apertures in the cylindrical wall that passest through the apertures in the cylindrical wall,
said floating disc having a diameter slightly smaller than the interior diameter of said cup member, said floating disc being restricted in rotation due to abutment with the threaded end of said bolt and the shackle when attempts special probe into said cup in order to gain access to said special probe
threaded nut.

DRIVE MECHANISM FOR VERTICAL ROLLING MILLS iroji Okuda, Nara, and Hiroyoshi Narikiyo, Yaoshi, both of Japan, assignors to Koyo Seiko Company Limited, Osaka,

Filed Jul. 25, 1977, Ser. No. 818,958 (1) U.S. C1. $72-238$ Int. Cl. ${ }^{2}$ B21B 31//os
chanism for vertical rolling mills, compris a drive shaft section comprising an inner shaft and an outer sleeve shaft which are axially slidably fitted together, a universal joint which connects one end of said drive shaft section to the drive side, said universal joint having its fitting yoke fixedly fitted on a drive shaft element,
aniversal joint which connects the other end of said shaft section to the neck of a working roll, said joive having its coupling adapted to be mounted on and dismounted from said roll neck in such a manner as to permit the transmission of torque,
an extensible operating mechanism attached between said
inner shaft and said outer sleeve shafe inner shaft and said outer sleeve shaft, said mechanism from the roll neck by extendinpling on and dismount it from the roll neck by extending and collapsing the drive shaft section,
a spring contain
a spring contained in the drive shaft section, said spring
acting in a direction in which it reduces the length of the drive shaft section, and
fixing means provided between said drive shaft section and
said drive universal joint for fixing said drive shaft section and said universal joint together when the drive shaft

section is reduced in length and for canceling said fixing by the extension of the drive shaft section.

INTERNAL TUMBLER LOCK KEY CHANGE SYSTEM INTERNAL TUMBLER LOCK SEY CHANGE Sther, 16010 Blackhawk St., Granada Hilla, Calif. 91344

Filed Dec. 20, 1976, Ser. No. 752,08

U.S. CI. $70-364 \mathrm{~A}$

23 Claims

1. A pin tumbler cylinder lock comprising
an external housing,
a cylindrical opening therein
a plug rotatable within said cylindrical opening,
said housing and plug having a row of axially aligned lock ing bores therein,
a key slot in said plug in alignment with said bores,
each of said locking bores having space for springs, wafers, and locking tumbler pins adapted to be positioned and sized to permit the plug to be operated with an operating predetermined key to lock and unlock the lock when th operating key is inserted into the slot, said springs bein adapted to bias said pins toward the key slot,
said housing having a row of axially aligned auxiliary bores
angularly offset from and transversely aligned with re-
spective locking bores,
each of said auxiliary bores adapted to have springs and
master wafers therein, said springs being adapted to bia said master wafers inwardly toward the plug,
a relatively thin-walled shutter sleeve fitted for rotation in
said plug being fitted within said shutter sleeve for rotatio
therein and therewith,
a row of axially aligned locking bores in said shutter sleeve
in respective radial and axial alignment with the locking bores in said housing and said plug
first means within the housing and the shutter to preven rotation of the shutter during operation of the lock when said operating key rotates the plug to lock and unlock the lock, and
second means within the housing, the shutter, and the plug actuated by a lock-combination-changing predetermine mined key to rotate the plug and the shutter in the housin from the operating position of the lock to a combination changing position of the lock by respectively aligning sai bores in the housing

PICK FOR TUBULAR CYLINDER LOCKS Donald R. Hughes, 2600 Brower Ave., Simi Valley, Calif. 93065 Flied Sep. 12, 1977, Ser. No. 832,279
U.S. C. 70-394

11 Claims

1. A pick for tubular cylinder locks comprising. substantially cylindrical first member having a front end end having a hollow interior chamber wall, said front end having a hollow interior chamber;
a plurality of elongated spaced apart pins slideably mounted within grooves located within said side wall of said first member;

said first member

said first member; \quad sing said pins in connection with head locatable within said hollow interior chamber of seid first member, said head having an internal recess for connection with the rotatable cylinder portion of a lock, said pins connecting with said head being movable in respect thereto, whereby said head is connected to a cylinder portion with each said pin in contact with a lock tumbler and upon slight axial in and out movement of said head the said pins act against said tumbler and said pins are moved

4,094,177
TAMPER-RESISTANT LOCK AND KEY ASSEMBLY John F. Wellekens, 41 Crescent Ave., New York, N.Y. 10301 Filed Aug. 16, 1977, Ser. No. 825,022
U.S. C. 70-423 Int. C. 2^{2} EOSB 17/14

11 Claims . Aype including a generally hollow cylinder, a circular, pin-type tumbler mechanism housed within said cylinder and be inserted a fixed distance to permit rotation thereof bey may
a release and locking position, and a key including a post and
a release and locking position, and a key including a post and secured to one end of said post and extending generally radially outwardly therefrom and a generally cylindrical sidewall secured to said base and extending generally axially outwardly from said end of said post, said sidewall having a bitting said key bit having a notched portion formed therein in wardly of said bitting thereof; and

means for obstructing direct access of said key bit to said keyway, said means including an obstruction member spaced above and generally overlying said keyway, which necessitates laterally shifing of said key bit therebelow to effect alignment thereof with said keyway, said membe including an abutment shoulder spaced above and overly
ing a portion of said keyway, which is configured and dimensioned to mate with said notched portion of said key to permit alignment of said bitting of said bit with said keyway.

4,094,178
METHODS FOR CONTINUOUS EXTRUSION Francis Joseph Fuchs, Jr., Princeton Junction, N.J., assignor to Western Electric Co., Inc., New York, N.Y.
Filed Mar. 8, 1976, Ser. No. 664,611 Int. C1.2 B21C 31/00; B21B 45/02
U.S. Cl. 72-41
of the first n
(b) gripping the elongated workpiece between said radially extending first surface of the first member and said second surface of the second member; while
(c) rotating the first member about said axis and simultaneously moving the second member in such direction as to deforming agency, whereby an elongated product is produced.
dRIVING DEVICE FOR HIGH SPEED ROLLING MILLS Hiroji Okude Nera AND THE LIKE
Hiroji Okuda, Nara, Japan, assignor to Koyo Seiko Company Limited, Osaka, Japan
Filed Jul. 25, 1977, Ser. No. 818,959
Claims priority, application Japan, Apr. 19, 1977, 52/50028 U.S. CI. 72-238 Int. C. ${ }^{2}$ B21B 31/08

1. A driving device for high speed rolling mills and the like, comprising:
two shaft members on the drive and driven sides, respec tively, adapted for rotation as a unit as by a spline connec tion and axially extensibly coupled together,
a spring interposed between said two shaft members and acting in a direction which lengthwise extends said two shaft members,
a coupling connected to said driven shaft member by a joint member and loosely fitted on a driven shaft element, said
coupling having a center of the ing a fitting hole of large diameter at the
a cylindrical body projecting from the end surface of said driven shaft element coaxially with the center hole thereo and adapted to enter said fitting hole when the coupling
and the driven shaft element are fitted together, said cylin drical body cooperating with said fitting hole to define an annular space therebetween, and
number of taper rollers interpsid and
number of taper rollers interposed between said fitting hole
and said cylindrical body, said taper rollers and said cylindrical body, said taper rollers being sup-
ported for arrangement in said annular space by suitable retaining means and serving to bring the axes of the coupling and the driven shaft element into alignment with each other when the coupling and the driven shaft ele ment are fitted together

4,094,180
MULTIPLE STAGE WIRE DRAWING MACHINE Evan Griffiths, Newington, Conn., assignor to Amtel, Inc., Prov idence, R.I.

Filed May 18, 1977, Ser. No. 798,266 Int. Cl. ${ }^{2}$ B21C $1 / 10,1 / 12$

1. A method of continuously deforming an elongated workpiece of indefinite length to produce an elongated product indefinite length, said method comprising the steps of:
(a) providing, in a location adjacent to a deforming agency,
a rotary first member and a moveable second member, the a rotary first member and a moveable second member, the
first and second members being so disposed that a radially extending first surface on the first member, said radially extending first surface on the first member, said radially having an input drive shaft and a plurapity of draw capstans of extending first surface being oriented to intersect an axis for drawing a wire back and forth through successive wire
drawing stages respectively, a final stage draw capstan for final wire drawing stage, a plurality of drawing dies of decreas ing die diameter for said successive and final drawing stages respectively for drawing a wire to successively smaller sizes
respectively, a machine drive motor, and transmission means respectively, a machine drive motor, and drive shaft of each
connecting the drive motor to the input dind multiple step capstan assembly and to the final stage draw capstan for driving the input drive shafts and the final stage draw capstan at fixed relative angular rates of rotation in ac cordance with the relative diameters of the respective draw
capstans and the dies at the respective drawing stages, the
dIE APPARATUS FOR PRESS MACHINE Shohel Kusada, and Tomoyoshi Kaneko, both of Komatsu, Japan, sssignors to Kabushiki Kaisha Komatsu Seisalkusho, Tokyo, Japan
Caime filed Jan. 24, 1977, Ser. No. 761,626 Claims priority, application Japan, Jan. 23, 1976, 51.005595

2. A die apparatus for press machine comprising a die set having a piercing hole formed therein,
a cylindrical plate having a hole formed therein disposed within said die set,
a die disposed on said cylindrical plate within said die set, said die having a die hole formed therein, and a knockout slidably disposed within said cylindrical plate said knockout having a plurality of first grooves formed in the upper part thereof and a plurality of second grooves
formed in the lower part thereof, whereby compressed air
mprovement wherein the plurality of draw capstans of increasing diameter of each multiple step capstan assembly are independently rotatably mounted on the respective input drive shaft in axially spaced coaxial relationship, and wherein each multiple step capstan assembly comprises adjustable slip coupling means providing a slip drive between the respective input drive shaft and each draw capstan rotatable thereon for driving the capstan with an established slip drive torque, the adjustablie slip coupling means being adjustable for estafishing the draw
drive torques between the input drive shaft and capstans respectively.

4,094,181
METHOD IN DESTRUCTING CHILLS AND A DEVICE FOR CARRYING OUT THE METHOD

Torsten Bor
Sweden
Sweden Filed Sep. 29, 1975, Ser. No. 617,838
Claims priority, appilcation Sweden, Oct. 9, 1974, 7412664
U.S. C. 72-325

8 Claims US. C. 72-356
Int. Cl. ${ }^{2}$ B21D 22/00 may be introduced through the piercing hole in said die
set the hole in said cylindrical plate and the pluraity of set, the hole in said cylindrical plate and the plurality of blowing off lubricant and particles deposited in the die hole when said knockout is raised and wherein particles of grooves to the outside of said die when said knockout is grooves
lowered.

4,094,183

METHOD OF FABRICATING A SUBSTANTIALLY METHAD OF BABRI AND APPARATUS FOR THE PERFORMANCE THEREOF

1. A method for destructing chills, characterized in that a 1. A punch and die arrangement for extruding two legs for tool comprising at least two reciprocally movable parts a a substantially bifurcated part a Cardan join from a substanintroduced into the cavity of the chill, and that said parts are tially parallelpiped-shaped blank having four side surfaces and set in motion relative to each other substantially across the two end surfaces comprising: length of the chill, preferably by one part bewall pushed oulls from the ons thereof, said tool, during operation, being supor portions therech,
ported on a vehicle.
the partial extrusion of the legs from the blank to form pre-formed extruded legs;
pre-formed extruded legs;
a second die and a second punch cooperating with one
another for bringing the pre-formed legs into their final
shape;
the first die and the first punch confining part of the four side surfaces and one end surface of the blank in order to prevent deformation of such surfaces;
each cooperating die and punch limiting a hollow compartment composed of a large substantially parallelpipedshaped part
shaped parts;
shaped parts;
the large part of the hollow compartment formed by the first die and the first punch serving for the reception of the blank;
the large part of the hollow compartment formed by the
second die and the second punch serving for the receptio second die and the second punch serving for the reception
of the blank having the partially extruded legs formed in the two small parts of the hollow compartment of the first punch and the first die;
both of the two small parts of each hollow compartment of
both dies and punches serving for both dies and punches serving for forming and confining legs to be extruded from the blank.

MACHINE FOR FORMING JOINING PIPES
Alain Edouard Plegit, Asaleres, France, assignor to Societe Anonyme des Usines Chausson, Asnieres, France Filed Sep. 30,1975 , Ser. No. 618,052
Claims priority, application France, Oct. 16, 1974, 7434835 U.S. C. 72-392

1. A machine for forming one end of a pipe to be particularly used for heat exchangers so as to exhibit a substantially oblon angle with respect to the longitudinal axis of said pipe, the machine comprising a fixedly mounted holder maintaining the pipe on whole periphery thereof in a position in which the end
of the pipe which is to be formed is free and extends in of the pipe which is to be formed is free and extends in a
horizontal plane; two complementary or mating shaping pins adapted to be inserted into said free end of the pipe only; and pin supporting and driving means from which said pins protrude for moving said two pins on a trajectory in opposite directions for a distance corresponding to the deformation to
be given to said end of the pipe; the machine further comprising at least one fixed die placed opposite at least one of the pins ing at east one fixed die pictary
on the trajectory thereof.

4,094,185

DOUBLE-ENDED HEADING PUNCH
William Hsien-Kuang Wang, Burlington, Canada, assignor to Procor Limited, Oakville, Canads

Filed Jul. 5, 1977, Ser. No. 812,928
U.S. C. 72-477 Int. Cl. ${ }^{2}$ B21D $31 / 00$

1. A double-ended heading punch that produces a 7 Claims tool engaging recess in an end of a metal blank by a single blow delivered at room temperature, comprising:
(a) a hardened steel punch member having an enlarged generally cylindrical, central body portion terminating in opposed, flat annular shoulders; a recess-forming projec
tion at each end of said punch member extending beyon its associated shoulder along the longitudinal centroidal
axis of said punch member; a groove in the surface of said body portion between said shoulders;
) a holder for said punch member having an opening passing longitudinally through its center; said opening including an enlarged chamber at one end defining a ledge on the interior of said holder surrounding said opening; said chamber receiving said punch member with one shoulder

tion surrounded by said one shoulder extending into said opening; the opposite shoulder of said punch member and its associated projection extending beyond the end of said holder; and
c) means for securing said punch member in said holder comprising a tapped hole extending transversely through
said holder into said chamber; and a threaded screwed into said hole and extending into said slot and bearing against said punch member.

4,094,186

MIXTURE CONTROL MONITOR APPARATUS Woif Wessel, Oberriexingen, Germany, assignor to Robert Bosch GmbH, Stuttgart, Germany
Filed Feb. 25, 1977, Ser. No. 772,151 Claims priority, application Germany, Feb. 28, 1976, 2608245 U.S. Cl. $73-1 \mathbf{~ G}$

10 Claims
 1. A method for monitoring the operation of an oxygen ensor in a fuel control system comprising the steps of:
applying a test voltage to said oxygen sensor; applying a lest volage to said oxygen sensor
vplyitage compurator ciage from said sensor to at least two point values associated, respectively, with the upper set lower nominal values of said sensor in normal operation thereof;
applying the output signal from said comparator circuits to a timing circuit for enabling a switch which changes the control based on oxygen sensor signals from closed loop ward control based on signals from transducers of engine variables.

4,094,18
 STACK GAS ANALYZING SYSTEM WITH
 CALIBRATING/SAMPLING FEATURE

 Anatole Joseph Navarre, Jr., Houston, Tex, assign.International Corporation, Stamford, Conn.
Filed Jul. 22, 1977, Ser No. 818,161
Filed Jul. 22, 1977, Ser. No.
Int. Cl. ${ }^{2}$ G01N $1 / 22$ to ChamU.S. CI. 73-1 G Int. Cl. ${ }^{2}$ G01N 1/22 23 Cleims
the measuring contact piece is separated from the speci-

MICRO-004EEPMETER U.S. Cl. 73-1 G
U.S. C. 73 Filed Mar. 24, 1977, Ser. No. 780,800

1. For use in an efluent analyzing system having one more analyzers for detecting the levels of suspected constituents, a calibration/sampling system including:
a. a chambered probe including a first inlet for receiving effluent samples, a second inlet and an outlet; b. sample delivery means connected to the outlet for trans-
ferring the contents of said chambered probe to the anal zers at a predetermined rate of flow;
a calibrating fluid supply connected to the second inlet for selectively supplying known concentrations of fluids at a
rate of flow greater than the rate established by said samrate of flow greater than the rate established by said sam-
ple delivery means to force efluent from the chambered probe thereby permitting the analyzers to selectively receive calibrating fluid samples through the probe to the exclusion of effluent fluid samples.

APPARATUS FOR MONITORING THE APPLICATION OF A FORCE TO A SOLID BODY Fourt sur Essoonne, both of France, assignors to Societe Nadonale des Poudres et Explosifs, France
Filed Dec. 10, 1976, Ser. No. 749,253
Claims priority, application France, Dec. 16, 1975, 7538474
Claims priority, application France, Dec. 16, 1975, 7538474
Int. Cl. ${ }^{2}$ G01N $3 / 42$
U.S. CI. 73-81

16 Chaims

16. A method of measuring the adhesivity or roughness of a material which comprises:
a. applying a measuring contact piece to the material unde
a. a predetermined force and during a predetermined period,
b. applying a tensile force to the measuring contact piece to
cause it to be displaced at a constant velocity in the direction opposite to that in which the said force is applied, c. measuring the maximum tensile force at the moment when

1. A device for quickly determining micro-creep velocity by accurately measuring relative displacement between two objects, comprising a housing; a linear variable displacement ransformer disposed within said housing; anchoring means for securing said housing to one of said objects, said transformer field of said transformer; and means for joining said transformer core means to the other of said objects, including a piston rod slidably disposed within said bousing, said transormer core means extending from the inner end of said piston pensating wire means extending between said piston rod and said other object.

COMPRESSION MEASURING APPARATUS ames A. Jindrick, Kenosha, Wis., assignor to Snap-on Tool Corporation, Kenosha, Wis.
Filed Sep. 26, 1977, Ser. No. 836,597 lnt. Cl. ${ }^{2}$ G01M $15 / 00$
 11. Apparatus for measuring peak compression in each of a
plurality of compression chambers of an internal combustion engine, said apparatus comprising means for producing a se quence of compression pulses respectively corresponding to the compressions in the chambers, comparator means coupled
to said transducer means and being responsive to current to said transducer means and being responsive to curren
caused by the compression pulses exceeding a threshold level caused by the compression puises exceeding a threshold level
to produce an enable signal, circuit means including a clock for producing a sequence of clock pulses at a frequency many times the frequency of the compression pulses, said circuit means having an output and a control input coupled to said enable signal to couple clock pulses to said output and being responsive to the absence of said enable signal to isolate the clock pulses from said output, feedback counter means coupled
o the output of said circuit means for counting clock pulses eset input coupled to receive the counter means having rese input coupled to receive the compression pulses and
being reset after the peak of each compression pulse, a variable current sink coupled to said feedback counter means and being operative to drain a quantity of current that increases with the
number of clock pulses applied thereto, said variable current number of clock pulses applied thereto, said variable curren
sink being coupled to said transducer means and in paralle sink being coupped to said transducer means and in paraile
with said comparator means and being operative to divert current therefrom in accordance with the value of said sink, he commencement of a compression pulse causing current to said comparator means to be greater than said threshold level
to enable said circuit means to couple the clock pulses to the output thereof, said feedback counter means counting the clock pulses to increase the current diverted by said variable
current sink and thereby decrease the current to said comprat current sink and thereby decrease the current to said comparator means below said threshold level to preclude additional
clock pulses from being coupled to the output of said circuit means, whereupon current into said comparator means again increases above said threshold level to cause said circuit means then to couple to the output thereof additional clock pulses
which are further counted by said feedback counter means to increase the current diverted by said variable current sink, said circuit means thereby being periodically enabled to couple to the output thereof clock pulses until the amplitude of the compression pulse reaches a peak and begins to decrease,
means for producing a sequence of a plurality of gating signals corresponding in number to the number of compression chambers and respectively corresponding to the compression pulses, plurality of counting channels coupled in parallel and correponding in number to the number of chambers of which the input coupled to the output of said circuit means and a control input coupled to said gating signal producing means, each hannel being rendered operative by a gating signal to count
he clock pulses and to store such count, and annunciator he clock pulses and to store such count, and annunciator means coupled to said counting channels for expressing
mation in accordance with the counts stored therein.

FUEL PUMP DIAGNOSTICS FOR INTERNAL COMBUSTION ENGINE Henry E. Goetsch, Broadbrook, and Henry J. Mercik, Jr.,
Enfield, both of Conn., assignors to United Tel Enfield, both of Conn., assignors to United Technologies ration, Hartiord, Conn. Mar. 2C, 1977, Ser. No.
Int. C1. ${ }^{2}$ G01M $15 / 00$ U.S. CI. 73-118

1. In a method of diagnosing an engine fuel system of the ype having a fuel pressure-regulating bypass valve, which is normally closed to provide fuel at full pump pressure at low peeds, and opens proportionally to bypass fuel to limit the pressure thereof at higher speeds, the steps of:
operating the engine at substantially a low idle speed and at at each of said speeds, measuring the pressure of fuel provided to the bypass valve by a pump; and
providing a manifestation of the race ressure bypass valve is 1. In a system for measuring the speed of flow of a current in

8 Claim
high idle speed is substantially the normal rated high idle peed fuel pressure for the engine under test and the presnormal rated low idle speed fuel pressure for the engine under test.

4,094,192
METHOD AND APPARATUS FOR SIX DEGREE OF FREEDOM FORCE SENSING aul C. Watson, Arlington, and Samuel H. Drake, Lexington, both of Mass., assignors to The Charles Stark Draper Laboraory, Inc., Cambridge, Mass.

Filed Sep. 20, 1976, Ser. No. 724,623
Int. C1. ${ }^{2}$ G01L $5 / 16$
U.S. CI. 73-133 R

28 Claims

1. A six-degree of freedom force sensor, comprising. a first section;
three physically distinct and separate intermediate sections spaced apart from one another, each of the intermediate sections being disposed between and connecting the first and second sections;
means for measuring shear strain in each of the intermediate sections and producing an output signal representative thereof; and
means for measuring extensional strain in each of the inter
mediate sections and producing an output signal represen tative thereof.
$4,094,193$
ACOUSTIC SYSTEM FOR MEASU
ACOUSTIC SYSTEM FOR MEASURING THE SPEED OF Claims CURRENTS IN A BODY OF WATER

Gesed Geriach, Bremen, Germany, assignor to Fried. Krupp Gesellischaft mit beschrankter Haftung, Essen, Germany
Filed May 6, 1977, Ser. No. 794,660 Filed May 6,197 , Ser. No
Claims priority apalication Germ Claims priority, application Germany, Jun. 24, 1976, 2628336
Int. Cl. U.S. CI. 73-170 A

9 Claims
transducer disposed in the body of water along one side of the current and a second electroacoustic transducer disposed in the body of water along the opposite side of the current, each transducer having an electrical signal terminal and presenting a directional acoustic signal radiation pattern, the transducers being located at respectively opposite ends of a first path extending through the water, across the current and oblique to
the direction of current flow and each transducer being orithe direction of current flow and each transducer being oriented so that the axis of its radiation pattern extends along the
first path toward the other transducer, the improvement comfirst path toward the other transducer, the improvement com-
prising: a third electroacoustic transducer disposed in the body prising: a third electroacoustic transducer disposed in the body
of water along the opposite side of the current and a fourth of water along the opposite side of the current and a fourth
electroacoustic transducer disposed in the body of water along the one side of the current, each of said third and fourth transducers having an electrical signal terminal and presenting a directional acoustic signal radiation pattern, and each of said third and fourth transducers being located at respectively and across the current and being oriented so that the axis of its radiation pattern extends along the second path toward the other one of said third and fourth transducers; response generator means located at the opposite side of the current and having an input and an output and arranged to produce an electrical response pulse at its output upon appearance of an electrical
signal pulse at its input; first connecting means connecting the signal pulse at its input; first connecting means connecting the terminal of one of said second and third transducers and connecting the output of said response generator means to the electrical signal terminal of the other one of said second and third transducers for causing receipt of an acoustic pulse by said one of said second and third transducers to result in the mission of an acoustic pulse into the water by said other one of said second and third transducers; trigger circuit means output and arranged to produce an electrical trigger pulse at its output upon appearance of an electrical signal pulse at its input; second connecting means connecting the input of said trigger circuit means to the electrical signal terminal of one of said first and fourth transducers and connecting the output of said trig. ger circuit means
one of said first and fourth transducers for causing receipt of an acoustic pulse by said one of said first and fourth transducers to result in the emission of an acoustic pulse into the water by said other one of said first and fourth transducers, said other one of said first and fourth transducers and said one of said second and third transducers being located at respectively opposite ends of one of said paths, while said one of said first and fourth transducers and located at respectively opposite ends of the other one of said paths, whereby the other one of said first and fourth transsuiders constitutes a first measuring sound generator for emit ting an acoustic pulse into the water along its respective path in response to each electrical trigger pulse applied to its signal terminal from the outpt of said trigger circuit means, said on of said second and third transducers constitutes a first measurinput of said response generator means in response to each acoustic pulse incident thereon, said other one of said second and third tranducers constitutes a first response sound generaor for emitting an acoustic response pulse into the water in response to each electrical response pulse applied to its signal terminal from the output of said response generator means, an said one of said fist and for applying an electrical signal pulse to the input of said trigger circuit means in response to each acoustic pulse incident thereon; and means connected in said system for evaluating the repetition rate at which acoustic pulses are produced by said first measuring sound generator to provide an indication of the current flow speed.

4,094,194

SENSING SYSTEM FOR VORTEX-TYPE FLOWMETERS eter J. Hera, Morrisville, Pa., assignor to Fischer \& Porter Company, Warminster, Pa.
Filed Feb. 14, 1977, Ser. No. 768,4
Int. Cl. ${ }^{2}$ G01F $1 / 32$
U.S. Cl. 73-194 vs ${ }^{\text {Int. Cl. }{ }^{2} \text { G01F 1/32 }}$

1. A noise-rejecting sensing system for a vortex-type flowmeter adapted to measure the flow rate of a fluid passing
therethrough by generating fluidic pulses whose frequency which varies within a low-frequency range is a function of flow rate, said system comprising:
A. a sensor constituted by a variable reactance element included in the frequency-determining circuit of a carrier osciliator
signal;
B. means to apply said fluidic pulses to said sensor to vary the reactance thereto to thereby frequency- and ampli tude-modulate said carrier signal in accordance with said fluidic pulses;
C. means to maintain the amplitude of said frequencyto produce arrier signal at a substantially constant level means to maintain the amplitude at a substantially constant amplitude level being constituted by means overdriving amplitude level being constituted by means overdriving
said carrier oscillator to produce an output signal of constant amplitude regardless of the shift in frequency; and D. demodulator means responsive to said frequencymodulated carrier to produce a noise-free, low-frequency output signal indicative of the flow rate.
4,094,195
NOVEL SEAL AND APPARATUS INCLUDING SAME
David R. Friswell, Holliston, and Lawrence J. Finn, Millis, both
of Mass., assignors to Waters Associates, Inc., Milford, Mass.
Filed Feb. 25, 197, Ser. No. 772,144
Int. C. ${ }^{2}$ G01N $1 / 100$
U.S. CI. $73-422$ C U.S. Cl. 73-422 GC

2. In a liquid sample injection apparatus of the type comprising a sample loop, means to supply discrete samples to said loop from a first end thereof and means to supply solvent from
the second end thereof to push said sample out of said injection the second end thereof to push said sample out of said injection
apparatus at an injector outlet port, and wherein said apparatus
also comprises means to supply solvent through a conduit
bypassing said sample loop and thence to said injector outtet port at the same side at which seid sample loop is emptied into said outlet port, the improvement wherein
(a) said means to supply discrete samples to said loop comprises a sampling conduit that forms part of said sample loop and is moveable in a vertical channel between a
(b) wherein said sampling conduit comprises a discharge orifice on one side thereof which, in the sample-discharge position, is adapted to discharge fluid into said outlet port
and and
(c) wherein said sampling conduit comprises a plug member sampling conduit is in the raised position, and
(d) wherein a pair of fluid seals is maintained be
sampling conduit and the walls of said vertical ceen said a position above and at a position selow verid channel at each said seal comprising: (i) a sleeve of compressible resi, each said seal comprising: (i) a sleeve of compressible resin
about said conduit and within the walls of said channel, (ii) stress rings mounted adjacent above and below each of said sleeves, said stress rings each having a protrusion facing the adjacent sleeve to indent the axial upper and lower extremities of each of said sleeves toward each
other when each sleeve is compressed between the rings other when each sleeve is compressed between the rings
to form a sealing contact between said sample-intake conduit and said walls, and (iii) means to compress each sleeve between a pair of said stress rings.

4,094,196
SAMPLE INJECTION WITH AUTOMATIC CLEANING David R. Friswell, Hollimplon, Mass,, assignor to Waters Associ-
ates, Inc., Milford, Mass.
U.S. C. 73-422 GC ${ }^{\text {Int. C. }{ }^{2} \text { G01N } 1 / 14}{ }^{\text {Filed }}$
U.S. C1. 73-422 GC

1. In a liquid sample injection apparatus of the type compris ing a sample loop, means to supply discrete samples to said the second end thereof to push said sample out of said injection apparatus at an injector outlet port, and wherein said apparatus also comprises means to continuously supply solvent through a conduit by-passing said sample loop and hence to said injecto
$-$ outlet port at the same site at which said sample loop is emptied into said outlet port, the improvement
wherein said means to supply discrest
wherein said means to supply discrete samples to said loop
comprises a sampling conduit that forms part of said sam comprises a samp ping conduit that forms part of said sam
ple loop and is moveable in a vertical channel between sample-intake position and a sample-discharge position,
wherein said sampling conduit comprises a discharge orifice on one side thereof which, in the sample-discharge posi
tion, is adapted to discharge fluid into said outlet port wherein said sampling conduit comprises a plug member below said discharge orifice to seal said channel when seid sampling conduit is in the raised position, and wherein said means to supply solvent through a conduit
bypassing said sample loop includes an annular pascage bypassing said sample loop includes an annular passage
proximate said orifice when said orifice is in its sample-disproximate said
charge position.

SEMI-AUTOMATIC AND AUT
INJECTORS MATIC FLUID
Rano J. Harris, Sr., 1945 Carolyn Sue Dr., Baton Rouge, La
$70815 ;$ Rano J. Harris, Jr 5443 St Le. 70816 , and Julius P. Averette, Jr., 4332 Dela ware, Baton Rouge, La. 70805

Filed Jul. 21, 1977, Ser. No. 817,817
U.S. C. $73-423$ A

23 Claima

1. A fluid injector, or apparatus, for use in withdrawing a fluid specimen from a fluid specimen containing septum type vial, for accurately measuring, and then injecting in pre-
selected quantity prises
(a) a fluid injector sub-assembly, inclusive of
a barrel,
hollow needle mounted on an end of the barrel providing an opening from the dispensing end of said needle means for said needie and barrel, and
means for opening said barrel to permit flow of fluid specimen through said barrel and needle, and closure to
interrupt said flow, interrupt said flow,
(b) an injector feed sub-assembly, inclusive of
fixed probe assembly comprising
a gas supply conduit with gas inlet and gas outlet means, a fluid specimen supply conduit with fluid specimen
inlet means, and outlet means connected to the barrel and operatively associated with the means of said fluid injector sub-assembly whith the means of said fluid injector sub-assembly which opens and closes
said barrel to the flow of said fluid specimen, and means for puncturing the septum of the fluid specimen containing vial so that the gas and fluid specimen supply conduits can enter into and lie within the vial, (c) a magazine sub-assembly, inclusive of
means adapted to carry a fluid specimen containing vial in
an inverted position with its septum side face down an inverted position with its septum side faced down-
wardly, in reciprocatable fashion, such that wardy, in reciprocatable fashion, such that on down-
ward movement the septum portion of the vial can be impaled upon and pierced by the puncturing means of said fixed probe assembly such that the gas and fluid specimen supply conduits lie within the vial, the fluid contents of the vial can be pressurized by injection of gas into the vial via the gas inlet conduit and fluid specimen transported via the fluid specimen outlet to
the barrel, whereby on the ingress of an initial portion of the fluid specimen the barrel and needle can be purged and cleaned, an accurately measured portion of
the fluid specimen can then be trapped, and then in jected on insertion of the dispensing end of the needle into said medium.

4,094,198
MACHINE FOR BALANCING A BODY OF REVOLUTION André Moulinoux, Marnes-la-Coquette, France, assignor to Facom, Morangis, France

Filed Jun 1, 1977, Ser. No. 802,585
Claims priority, application France, Jun. 4, 1976, 7617003
U.S. C. $73-160$

Int. C. ${ }^{2}$ G01M 1/16
12 Claims

1. In a machine for balancing a body of revolution, such as a vehicle wheel, comprising a housing, a shaft mounted in the housing to rotate about a horizontal axis and also to oscillate about a vertical axis which intersects said horizontal axis and is
located near to a first end of the shaf, mounting means for located near to a first end of the shaft, mounting means for
mounting the body of revolution provided adjacent to said first mounting toteting said body about said horizontal axis, driving end for rotating said body about said horizontal axis, driving
means for driving the shaft in rotation, an elongated indicator member, a ball articulation mounting the idicator member on a second end opposed to said first end of said shaft so that the
indicator member is in the extension of said shaft, a measuring incale disposed adjacent to an end of the indicator member opposed to said articulation, and means for deviating the indicator member and adapted, in the course of rotation of the ber at a predetermined place in the length thereof so as to achieve a deviation of the indicator member with respect to the scale which is a function of the magnitude of the unbalance of the body of revolution, the ball articulation being provided
with means for ensuring the remanence of said deviation; the with means for ensuring the remanence of said deviaions in the form of a cam mounted to rotate about an axis which is parallel to the axis of the shaf and associated with driving means, the cam having a radially outermost portion capable of coming momentarily in contact with the indicator member in the
course of a revolution of the cam and the peripheral speed of course of a revolution of the cam and the peripheral specd of
the cam being approximately equal but of opposite direction to that of the indicator member.

$$
\begin{aligned}
& \text { 4,094,199 } \\
& \text { ACCELEROMETER }
\end{aligned}
$$

Frederick V. Holdren, Redmond; Hans W. Hugli, Bellerve
John M. Kubler, Bellerve; Marth E. Larson, Bellevue, and Michnel M. Van Schoinck, Bellerwe, all of Wash,, assignors to Sundstrand Data Control, Ince., Redmond, Wash.
Filed Jul. 6, 1976, Ser. No. 702,781 Int. Cl. ${ }^{2}$ G01P $15 / 08$
U.S. C1. 73-517 B
lerometer comprising. a housing configured in a generally cylindrical shape; a pendulum including a paddle at one end;
support means secured to said support frame, including an axle, for supporting said pendulum generally parallel to secured transversely to said pendulum;
a pair of spaced parallel capacitor plates secured within said housing wherein said paddle is located in a space parallel relationship between said plates and movable transversely forces perpendicular to the surface of said paddle;
restoring means, including a magnetic assembly secured to said support frame and a torque coil secured to said pendulum, for moving said paddle to a predetermined position between said plates
a generally rectangular shaped circuit support member se-

cured to each end within said support frame above and generally parallel to said pendulum; and
onectronic circuit secured to one side of said circuit support member and electrically connected to said capacitor plates, said pendulum and said torque coil effective to generate a restoring current in said torque coil for moving said paddle to said predetermined position when said paddle has moved closer to one or an
response to an acceleration force.

METHOD AND EQUIPMENT FOR MAKING ROLL AND PITCH DATA INPUTS INTO A PILOTING INSTRUMENT Pierre Andre Chombard, Boulogne-sur-Seine, France, assignor to Societe Francise d'Equipements pour la N
Aerienne S.F.E.N.A., Velizy-Villacoublay, France Continuation-in-pert of Ser. No. 448,022, Mar. 4, 1974 abandoned. This application Oct. 6, 1975, Ser. No. 620,218 Claims priority, application France, Mar. 5, 1973, 7307784;
Oet. $7,1974,74$ 3361 Oct. 7, 1974, 7433661
Int. Cl.2 G01C 19/02, 19/00; G08G 5/00
U.S. C. $74-5 \mathbf{R}$ Claims

1. Apparatus for facilitating the piloting of aircraft compris-
a gyroscopic horizon including a vertical instrument gyro scope with a built-in erector means, and pitch and roll indicator means,
ransducer means to transmit electrical signals proportional to pich and roll changes attached on the pitch and roll suroscopic reference means having stable gyroscopic mean and pitch and roll electrical transducer means attached to said gyroscopic means.
the signals and praducennected to receive and compare difference in signals from said pitch electrical transducer
means of said gyroscopic reference means and said pitch transducer means of said vertical instrument gyroscope, second comparator means connected to receive and com
pare the signals and produce a signal output proportional pare the signals and produce a signal output proportional
to the difference in signals from said roll electrical trans ducer means of said gyroscopic reference means and said
shaft, thereby producing rotation or the cam drive mechanism and the pump plunger; and cam ring bonded to the support member, and manufactured of a casehardened wear-resistant material.

4,094,202 PISANN STROKE VARYING MECHANISM FOR MACHINES
MASIBLE CONVERSION MACHINES Yves Jean Kempar, Mimingham, Min Corporation, Troy, Mich. ${ }^{\text {Filed }}$ Nov, 3, 1976 Ser. No. 738,704 iled Nov. 3, 1976, Ser. No. 738,
Int. Cl. ${ }^{\text {F }}$ F16H 23/00 U.S. CI. 74-60

1. An expansible chamber energy conversion machine comprising:
4 Claims a torque transmitting member supported by said frame for rotation about a first axis,
 on said frame a piston to define a working fluid chamber axis through a stroke distance to establish relatively large and small chamber volumes, said chamber having an end face fixed relative to said frame and spaced from said piston by a clearance distance when said piston is positioned to establish said small chamber volume;
transmission means drivably interconnecting said piston and said torque transmitting member, said transmission means inclucing a nutatable member having a third axis intersecting said first axis at an angle to establish a point of axes
intersection, said third axis being revolvable about said first axis, and extension means having one end connected to said nutating member and another end connected to 1. In a fuel injection pump for an internal combustion engine,
including: a rotatable drive shaft; a reciprocating and simultaneously rotating pump plunger; and a cam drive mechanism engageable with the pump plunger, said cam drive mechanism including: a two part cam disk; and roller means engageable with the cam disk for imparting to the cam disk, and pump pump plunger, said two part cam disk, comprising:
a support member manufactured of an elastic material which exhibits a high degree of core toughness, said support member having coupling means for coupling to the drive
said piston; and
eans for modifying said angle of first and third axes intersection to vary the stroke distance of said piston and to
shift the locus of piston reciprocation for controling sid shift the locus of piston reciprocation for controlling said
clearance distance in accordance with selected working clearance distance in accordance with selected working
chamber operating parameters, said last mentioned means comprising swivel means movable with said nutating member in a generally circular path about a fourth axis intersecting said point of axes intersection, the diameter of said path in a plane containing said first and second axes
being proportional to the stroke distance of said piston.

NFINITELY VARI, $4,094,203$
INFINITELY VARIABLE DRIVE METHOD AND
Petrus Henricus van Deursen, Deurne, and Hemmo Hermannes
Johannes Ludoph, Heeze, both of Netherlands, assignors to
Johannes Ludoph, Heeze, both of Netherland
Van Doorne's Transmissie B.V., Netherlands
Van Doorne's Transmissie B.V., Netherlands
$\underset{7601287}{\text { Claim }}$
U.S. Cl. 74-230.17 F ${ }^{\text {Int. C1. }{ }^{2} \text { F16H 55/52 }}$
U.S. Cl. $74-230.17 \mathrm{~F}$ Cli ${ }^{2} \quad 3$ Claims

1. A transmission assembly for transmitting a torque from a drive motor to a driven apparatus, with an infinitely variable transmission ratio, comprising:
an input shaft adapted to receive the output of the drive motor, first and second V-shaped pulleys, a hydraulically
operable clutch, the clutch being operatively connected to transmit torque between the input shaft and the first pulley, an output shaft, the output shaft being connected to the second pulley, an endless transmission member or belt wound around the first and second pulleys, each of said pulleys comprising a pair of facing, conical pulley halves, assembled for rota ion first and second pulleys for adjusting the distances between the respective pulley halves thereof, said adjusting means being responsive to hydraulic fluid pressure, a pump for supplying hydraulic fluid under pressure to control said adjusting means, the pump being driven by the input shaft, a hydraulic control line operatively cor suplying hydraulic fluid to the clutch to effectuate clutch operation, a reducing valve, and a control valve operable in response to the fluid pressure supplied thereto the reducing valve and control valve being operativel connected to the hydraulic control line to control the pressure of the fluid supplied to the cluch, whereby the clutch is engaged and the transmission driven only when the belt wound around the pulleys is tensioned by means the absence of sufficient fluid pressure, disconnecting the drive motor from the transmission.

Claims

DRIVING APPARATUS AND METHOD Akinori Yamamoto, Kariya, and Masumi Kato, Toyoake, both of Japan, assignors to Nippondenso Co.. Lid., Kariya, Japa
Filed Jul.
Claims priority, application Japan, Aug. 9, 1975, 50-9682
 1976, U.S. C. 74-230.17 E

1. A driving apparatus comprising:
driving shaft to be connected with a driving power source driving belt pulley connected to said driving shaf
a driven belt pulley connected to said driven shaft; and
a V belt on said driving and driven belt pulleys to link them together, wherein at least one of said belt pulleys com prises:
pulley disk secured to said driving or driven shaft for rotating integrally with said shaft
generally cylindrical first pulley plate secured to the pegenerally cylindrical first pulley plate secured
riphery of said pulley disk at one end thereof, said firs pulley plate having a first slope portion at the other end pulley pla
an outer straight spline formed on said driving or driven shaft;
slidable helical gear having an inner straight spline engag ing with said outer straight spline, said helical gear rota
ing integrally with said shaft but slidable relative to said shaft along said splines;
shant along said slines;
generally dish-like second pulley plate fixed to said helical gear for rotating and sliding integrally with said helical gear,
a second slope portion formed on the periphery of said second pulley plate and facing on said first slope portion of said first pulley plate for forming with said first slope portion a V shaped annular groove in which said V belt is disposed, the width of said annular groove being changed by the slide of said second pulley plate;
an end plate fixed to said shaft;
at least one return spring interposed between said end plate and said second pulley plate for biasing said second pulley
plate and hence said helical gear; and at least one weight having a foot portion rotatably supported on said driving disk, said foot portion having at the periphery thereof a helical gear portion engaging with said helical gear, said weight rotating with said shaft and being acting thereon thereby to shift said helical gear against the force of said return spring, whereby the width of said annular groove and hence the effective diameter of at least one of said pulleys is changed in response to the rotational speed of said driving power source to change the speed ratio of said driven shaft to said driving shaft.

2. In a self-propelled vehicle having a power source, a belt drive means connected to and driven by the power source, a
variable ratio hydrostatic drive including a pump, connected to and driven by the belt drive means, a motor, and a hydraulic conduit means connecting the pump to the motor, and means connecting the motor to the vehicle drive wheels, the improve-
ment comprising: a belt tensioning means associated with the ment comprising: a beit tensioning means associated with the
belt drive means and including a belt engaging element shiftable in opposite directions to respectively increase or decrease the belt tension in the belt drive means; a hydraulic actuator operatively connected to the belt engaging element for exert-
ing a force thereon that urges the element in a tension increasing direction; and means operatively connecting the hydraulic actuator to the conduit means of the hydrostatic drive so that the force exerted by the hydraulic actuator and consequently the belt tension is responsive to the pressure in the conduit
means. means.

4,094,206 EAR TRANSMISSIO

Yoshitaka Sogo, and Shuichiro Ida, both of Toyota, Japan, asignors to Tokyo Jidochan Kogyo Kabushiki Kaisha, Toyota, Japan Filed Sep. 18, 1975, Ser. No. $\mathbf{6 1 4 , 5 2 8}$
 U.S. C. 74-360 5 Claims 1. A gear transmission comprising:
(a) a transmission case having front and rear end walls; b) an input shaft and an output shaft rotatably and coaxially
disposed within said transmission case, said input shaft extending through said front end wall and said output shaft extending through said rear end wall of said transmission case;
(c) a countershaft rotatably disposed within said transmission case and parallel to said input and output shafts, said
countershaft extending transmission case;
(d) first and second drive gears housed in said transmission case, said first drive gear being mounted on said inpu
shaft and meshed with said second drive gear mounted on said countershaft for transmitting torque from said input shaft to said countershaft;
(e) a plurality of pairs of transmission gears of different gear ratios housed in said transmission case for obtaining differ
ent speed ratios of said input shaft to said output shaf first gear of each transmission gear pair being rigidly mounted on said countershaft and the corresponding second gear of each pair rotatably mounted on said output shaft, and wherein said pairs include a first speed gear first drive gear, a second speed gear rotatably fitted on
said output shaft between seid first drive and first speed gears, said first and second speed gears being meshed with corresponding first and second speed gears fixedly rotatably fitted on sauntershaft, and a reverse speed gear speed gear and operatively engaged with the correspond ing reverse speed gear fixedly mounted on said countershaft;
fo a plurality of transmission synchronizer assemblies mounted within said transmission case on said output sha
and selectively said transmission gears rotatably mounted drive gear and shaft for coupling said gears to soid output shaft, and wherein said assemblies include
(i) a first assembly mounted between said first drive gear and said second speed gear rotatably fitted on said output shaft, said first assembly comprising a first clutch to said first drive gear, a second spline element fixed to said second speed gear rotatably fitted to said output saide a fecond specd gear rotatably fitted to said output
shable sleeve splined over said first clutch

hub for axial movement and engagement with said first or second spline elements, a first synchronizer ring adjacent to said first spline element, a second synchronizer ring adjacent to said second spline element. springs, and a plurality of shifting keys biased by said springs and interposed between said first clutch hub and
said first slevee. and said first sleeve; and
(ii) a second assembly mounted on said output shaft be-
tween said first speed gear and reverse speed gear tween said first speed gear and reverse speed gear rotat-
ably fitted on said output shaft, said second assembly comprising a second clutch hub attached to said output haft, a third spline element fixed to said first speed gear otatably fitted to said output shaft, a fourth spline element fixed to said reverse speed gear rotatably fitted over said clutch hub for axial movement and engage. ment with said third or fourth spline elements, a synchronizer ring adjacent to said third spline element, econd springs, and a plurality of shifting keys biased by clutch hub and said second sleeve:
(g) an overdrive mechanism mounted outside and adjacent to said rear end wall of said transmission case including with each other, said first overdrive gear being rigidly mounted on that portion of said countershaft adjacent to and extending through said rear wall, and said second overdrive gear being rotatably mounted on that portion of said output shaft adjacent to and extending through
said rear wall and being formed with a boss portion said rear wall and being formed with a boss portion
extending in the direction remote from said rear wall, and
(ii) an overdrive synchronizer assembly comprising a
spline element rigidly mounted on said spline element rigidly mounted on said output shaft
rearwardly of said second overdrive gear and adjacent said boss portion remote from said rear wall, a synchronizing ring, a clutch hub integrally secured to said boss portion, a slidable sleeve spline-coupled to said overdrive clutch hub and selectively actuated for axia novement rearwardly to mesh with said overdriv spline element tor shaf, springs, a plurality of shifting keys biased by said overdrive springs and interposed be ween said overdrive clutch hub and sleeve, and a stop per plate interposed between said overdrive clutch hub and said second overdrive gear for maintaining said
verdrive shifting keys between said overdrive clutch overd and sleeve, and wherein the gear ratio of said firs and second overdrive gears are such that when saic second overdrive gear is coupled to said output shift said output shaft is rotated at a higher rotational speed than said input shaft; and
(h) a gear shift mechanism for selectively actuating one of
said transmission synchronizer assemblies or said over drive synchronizer assembly for changing the speed ratio of said input shaft to said output shaft as said gear trans mission is shifted from one gear position to another, and wear shift pattern for actuating said overdrive synchro nizer assembly is opposite to the position of said gear shif mechanism for actuating the one of said transmissio synchronizer assemblies obtaining the highest transmis sion gear ratio,
includes
includes
(i) a gear shift lever having first,
overdrive and neutral positions
ii) a first-and neurral positions;
third gear fork shaft for fork shaft and a second-and being parallel to each other and lateral to said first and second synchronizer assemblies;
into engagement with one of said first drive, transmission or overdrive gears.

DRIVE ARRANGEM 4,094,207
 Germany

Filed Feb. 4, 1977, Ser. No. 765,801 Claims priority, application Germany, Feb. 12, 1976, 7603968[U] Int. Cl. ${ }^{2}$ F16H 1/16
U.S. CI. $74-425$

1. A drive arrangement, particularly for a toy model assembed of component parts, comprising a housing having a wall; extending through said wall; a gear wheel adapted to mesh with said drive screw and being mounted on an axle; a first onnecting portion provided on said wall and being elongated a first direction, said first connecting portion comprising longated undercut projections mounted on said wall of said ver said undercut projections of said first connecting portion said first direction so as to be mounted on said wall of said ousing, said adapter member having a recess for passage of said drive screw therethrough; a second connecting portion provided on said adapter member and being elongated in a and an axle supporting member supporting said axle of said ear wheel, said axle supporting member being engageable with and movable over said second connecting portion, in said econd direction so as to be mounted on said adapter member aid
(iii) a first shift fork coupled to said slidable sleeve of said first synchronizer assembly and to said second-andthird gear fork shaft, and a second shift fork coupled to
said slidable sleeve of said second synchronizer assembly and to said first-and-reverse gear fork shaft;
(iv) means for retaining said first-and-reverse gear fork
(iv) means for retaining said first-and-reverse gear fork
shaft in a neutral, first, or reverse gear position, and shaft in a neutral, first, or reverse gear position, and
means for retaining said second-and-third gear fork
shaft in a neutral second or third gear position; means ar in a neutral, second or third gear position;
shaft
(v) means for preventing simultaneous axial displacement
of said fork shafts;
(vi) an overdrive gear fork shaft for axial displacement parallel and adjacent to said firs
cond-and-third gear fork shafs;
(vii) an overdrive shiff fork coupled to said slidable sleeve
of said overdrive synchronizer assembly and to said
overdrive fork shaft;
(viii) means for limiting
overdrive fork shaft;
(ix) means for retain,
neutral or overdrive gear position; and
(x) internal selection means responsive to the position of id gear shift lever for selectively engaging one of said ear fork shafts for moving one of said slidable sleeves

4,094,208

TOGGLE MEANS
Shigeru Tsutsumi, No. 1165, Toyama-cho, Yonezama-shi,
Yamagata-ken, Japan
Filed Dec. 8,1975, Ser. No. 638,250 Filed Dec. . 8,1975 , Ser. No. ©38,250
Clams priority, application Japan, Dec. 12, 1974, 49-142018
U.S. CI. 74-520 Int. Cl. ${ }^{2}$ G05G $1 / 04$
U.S. Cog. $74-520$
6 Cluim
1.
means mounted between two relatively movable 1. Toggle means mounted between two relatively movable
nembers comprising supports on each of said members, cylin drical shaft engageable with each of said supports, said sup-
ports having partial circular end portions engaging the respecports having partial circular end portions engaging the respec-
tive cylindrical shaft, each of said supports having opposed projections spaced from one another along the transverse width of the respective support, said spaced projections defining spaced, extended circular portions engageable with the eespective cylindrical shaft, whereby the respective shaft is engageable by said partial circular end portion and the ex-
tended circular portions of the spaced projections of the supports, first compression links engageable with one of sai said shecond compression links engageable with the other of said shafts, a third cylindrical shaft engageable between said
first and second compression links, said compression links ing outwardly from one of said members in overlapping rela
having transverse partial circular end portions engaging the having transverse partial circular end portions engaging the tionship to an exposed end of said lever whereby said end of
respective cylindrical shaft, each of said compression links having opposed projections spaced from one another an ling the the lever is protected from contact by the hand of an operator transverse width of said end portions, said spaced projections defining spaced, extended circular portions engageable with
the respective cylindrical shaft, whereby engageable by said circular end portions and the extended

$4,094,210$

KNOB FOR SEAT-ANGLE ADJUSTER OF MOTOR-VEHICLE SEAT

Egon Wirtz, Remscheid-Lennep, and Klaus Berghaus, Wupper tal, both of Germany, asslgnors to Kelper KG, RemscheldHasten, Germany Division of Ser. No. 544,780, Jan. 28, 1975, Pat. No. 3,976,327,
and Ser. No 572,300 , Mar. 28.1955 , Pr and Ser. No. 572,300, Mar, 28, 1975, Pat. No. 3,966,253. This Claims
$7521224[\mathrm{U}]$ priority, application Germany, Jul. 4, 1975, $7521224[\mathrm{U}]$
U.S. CI. $74-553$ Int. Cl. ${ }^{2}$ G05G $1 / 10$; B60N $1 / 02$

1. In combination with an automotive-vehicle seat-angle adjustment device having a pair of hinge parts and means including an adjustment member rotatable about an axis and
having a periphery formed with a plurality of radially out-
circular portions of the spaced projections of the compression upper and lower fion links having generally flat and parallel pression links generally forming continuations of said faces, and means defining sloping surfaces disposed in the spaces
between said spaced projections of said compression links said sloping surfaces extending from said circular end portion of said compression links to the respective face of the compres sion links. wardy open recesses for varying the relative position of an annular collar closely surrounding said periphery, a plurality of entrainment formations projecting radially inwardly from said collar into respective recesses, and a plurality of radially outwardly deflectable hooks each
engaging axially through a respective recess with said engaging axially through a respective recess with said
member, said hooks alternating with said formations around said periphery and each having a stem engaging through the respective recess and a hook head engaging behind said member, whereby said hooks and said formations can transmit force angularly between said member and said knob.

HYDRAULIC S $4,094,211$

HYDRAULIC SYSTEM FOR AN AUTOMATIC
TRANSMISSION OF AN AUTOMOTIVE VEHICLE bert Bosch G mbi, Ludigsburg, Germany, assignor to RoFert Bosch GmbH, Suttgart, Germany
Filed Aug. 18, 1976, Ser. No. 715,433 Claims priority, application Germany, Aug. 20, 1975, 2537006 U.S. Cl. 74-868

Int. Cl. ${ }^{2}$ B60K 41/18 $\quad 15$ Claim

1. A system comprising:
a source of pressurized fluid
a pressure-operated load;
an engine having an accelerator pedal;
valve connected between said source and said load and
having a valve body displaceable to said fluid to said load and having a plurality of tiow of stepped pilot surfaces; means defining a pressu faces;
a plurality of solenoid valves each between said load and a clock means for periodically
clock means for periodically generating a "shif" signal;
having a length substantially shorter than that of said shield so as to be in contact with the casing between said end caps; and
a block on the outside of said shield forming a handle for said fuse mate, said shield, said jaws and said block being integral with each other and being fabricated from a single molded piece of synthetic plastic material.
electrical circuit means connected to said pedal and said solenoid valves for electrically energizing said solenoid valves in accordance with pedal position, said circuil switchable through a plurality of steps, said circuit means being responsive to said "shift" signal and maintaining electrical contact between at least a one of said solenoid

valves and said source of electricity while moving through said steps;
and
and means for comparing said output with a reference value and for generating an error signal controlling said means fo generating said "shift" signal.

4,094,212

Irring Hyams, Philadelphia; Harold S. Koch, Piymouth Meet ing, and Herman Aafjes, Hatfield, all of Pa., assignors to Fischer \& Porter Company, Warminster, Pa. Apr. 7, 1977, Ser. No.
Int. C.2. ${ }^{2}$ 25BB 27/14
U.S. C1. 81-3.8

5 Claims

1. A fuse mate of insulating material adapted to be coupled to a cartridge-type fuse having a fuse wire disposed within a cylindrical casing whose ends are enclosed by terminal caps,
said caps being engageable by the spring clips of a fuse holder said caps being engageabe by
said mate facilitating the insertion or extraction of said fuse and comprising:

A a shield dimensioned to protectively cover said fuse and having a length which is at least equal to that
so as to overlie the caps and the spring clips;
B a as to of ellongated resilient jaws projecting from the
B a pair of elongated resilen said jaws having an inlet opening

COMBINED WIRE $4,094,213$
Marion W. Bradley, Magalia, Calif., assignor to Farinon Electric, San Carlos, Calif.

Filed Jul. 18, 1975, Ser. No. 597,238
U.S. CI. 81-9.5 R

1 Claim

1. A device for stripping a cylindrical electrical insulating sheath that is formed from a highly resilient and compressible material from a wire predermined length, said device being of the type that includes: first and second elongate rigid members that overlying said first member; pivot means that pivotally connect said first end portion of said second member to said first member intermediate said first and second end portions of the latter; spring means that at all times tend to maintain said second member in a first angular position reative to said second member, but permitting said second member to be pivoted o a second position where said second end portions of said
first and second members lie in a common plane; first and second cutters disposed said predetermined length from said second end portions of said first and second members and so supported from said first and second members as to slidably engage one another as said second member moves from said tion sheath and wire situated therebetween; first and second rigid extensions extending towards one another and defining said second end portions of said first and second rigid members, said first and second extensions including first and second transverse edges of substantial width that are separated by a distance greater than the diameter of said sheath when said characterized by first and second semi-cylindrical aligned recesses formed in said first and second transverse edges of said first and second extensions, said first and second recesses each having a diameter slightly larger than the diameter of said bare wire, and said first and second recesses being of sufficient widths that when said second member is moved to said second position, said first and second recesses compress a cylindrical
section of said sheath therebetween to have such a thin wall that said thin wall may be broken and a portion of said sheath that has been cut to said predetermined length by said first and second cutters may be slid from an end portion of said wire hat is also of said predetermined length by moving said device longitudinally relative to said wire in an appropriate direction the that slidably interlock to maintain said first and second recesses which is normally narrower han
casing, the inlet opening being dilatabe to permit the jaws in alignment as said first and second recesses pressure contact
to clamp onto and to conform to said casing, said jaws said insulation sheath to form said thin wall cylindrical section.

WIRE INSULATION STRIPPING DEVICE Marion W. Bradley, Paradise, Calif,, assignor to Farinon ElecFiled Jul. 18,1975, Ser. No. 597,240
Int. Cl. ${ }^{2}$ H02G $1 / 12$
U.S. Cl. 81-9.5 R

Int. Cl. ${ }^{2}$ H02G $1 / 12$
1 Claim

with a thumb portion protruding beyond the side of the body portion adjacent said gear and resiliently urged into engagebody the gear rotates and the rack slides the movable jaw toward the fixed jaw, said gear and said thumb portion being exposed for simultaneous manual engagement by a single finger so that when the tab is disengaged from the gear, the gear
may be manually rotated to adjust the position of the movable may be manually rotated to adjust the position of the movable
jaw. jaw.
$4,094,216$
Rapidly adjustable tool
RAPIDLY ADJUSTABLE TOOL
Fison, 102 E E. Falcon Run, Pendeton, Ind. 46064 kson, 102 E. Falcon Run, Pendeteon, In
Filed Mar. 4, 1977, Ser. No. 774,333
Int. Cl. ${ }^{\text {B25B }}$ /3/16 $\begin{array}{ll} & \text { Filed Mar. 4, 191, Ser } \\ \text { Int. Cl. }\end{array}$ g U.S. C. 81-156

1. A device for stripping a cylindrical electrical insulating sheath that is formed from a highly resilient and compressible electrical conductor of the latter, said device of the type that includes: first and second elongate members that each have first and second end portions, said second member overlying
said first member and angularly disposed relative thererto said said first member and angularly disposed relative thereto, saii
first end portions lying in a common plane, said second end portion of said second member bonded to said first member; first and second rigid extensions extending towards one another and defining said first end portions of said first and sec-
ond rigid members, said first and second extensions including ond rigid members, said first and second extensions including
first and second transverse edges of substantial width that are separated by a distance greater than the diameter of said sheath when said second member is in a first position relative to said second member, with said device being characterized by first and second semi-cylindrical aligned recesses formed in said
first and second transverse ed ges of said first and second extensions, said first and second recesses each having a diameter slightly larger than the diameter of said bare wire, and said first and second recesses of sufficient widths that when said second member is moved to a second position relative to said first
member, said first and second recesses compress a cylindrical section of said sheath therebetween to have such a thin wall hat said thin wall may be broken and a portion of said sheath slid from said wire to expose a bare end portion of the latter when said device is moved longitudinally relative to said wir second position; and first and second rigid engageable means on said first and second extensions that slidably interlock to maintain said first and second recesses in alignment as said first and second recesses pressure contact said insulation sheath to
form said thin wall cylindrical section.

4,094,215
PLIER WRENC
Robert H. Hudson, 103 Valley St., Seekonk, Mass. 02771 Filed Apr. 1, 1977, Ser. No. 783,81 U.S. CI. 81-127 Int. Cl. ${ }^{2}$ B25B 13/14, $13 / 22$

2 Claims

1. A wrench comprising an elongated body portion having a fixed jaw at one end, a movable jaw slidable in said body
portion for cooperation with the fixed jaw and having a rack, gear rotatably mounted on a pin in the body portion meshing with the rack and of a size and at a position to protrude beyond the side of the body portion, a lever pivotally mounted on said pin, said lever having a locking tab in the plane of said gear and

2. An adjustable tool comprising:
at least two tool parts, each having a work engaging surface, said parts being interconnected such that said work engaging surfaces are relatively movable;
an elongated rotary and reciprocal, threaded actuator operatively associated with said parts such that upon rotation or said parts will occur;
a tool base, mounting said parts and said actuator; and clutch on said base and receiving said actuator for selectively engaging or disengaging the threads on said actua-
tor, said actuator being substantially freely reciprocable within said base when said threads are disengaged to allow rapid relative movement between said surfaces to occur to effect rapid adjustment of the relative positions of said urfaces, said actuator being rotacabe when said hreads cation of clamping force by said surfaces, said clutch comprising a housing surrounding said actuator, said housing including a first component secured to said base and a second component rotatable on said first compo-
nent, a pair of split nuts generally radially movable within said housing and about said actuator, and cam means on said housing and said split nuts for effecting bidirectional radial movement of said split nuts within said housing upon relative rotary movement between said components.

SAFETY SLITTER FOR THERMOPLASTIC SHEET Roger Edsel Exline, Parkersburg, W. Va., assignor to Borg Warner Corporation, Chicago, III.

Filed Jun. 28, 1971, Ser. No. 810,696
Int. Cl. ${ }^{2}$ B26D $3 / 08$
U.S. Cl. $83-6$

1. An improved
2. An improved, auto 1 Claim cutting therrovoplastic sheet as it exitr from the sheet die of an extruder comprising a housing, a cutter blade mounted in an length of said holdead housing of a length greater than the holder, an elongated slot sldably and retractably receiving said an elongated pin secured to said holder haved edetent means, versely through said elongated slot, tension extending trans-
tween said holder and said housing adapted to be relaxed when ses at the bottom of said shear stands, said coupling means said holder is in its retractable position within said recess, said having elements brought together by weight of said shear
stands when installing said shear stands into said base plate;

pin being adapted to rest in said detent when a cutting force is applied to said blade and to disengage from said detent when no force is applied to said blade.
$4,094,218$
HYDRAULIC SYSTEM FOR TENSIONING BAND SAW BLADES J, Hoion bere Richard J. Flanigan, and Robert Duane Hooton, both of
McMinnville, Tenn., assignors to Hoodallie Industries, Inc., Buffalo, N.Y.

Filed Jen. 31, 1977, Ser. No. 764,000
Int. Cl. ${ }^{2}$ B27B $I 3 / 14 ;$ B23D $55 / 10:$ B27B U.S. Cl. $83-62.1$

1. In a machine having spaced wheels driving a band traine therearound and at least one wheel being shiftable relative to ments of a closed hydraulic conduit having fluid sealed therein adjustable means supported on fluid from said conduit adapted ojustabet to position said one wheel and simultaneously load said sealed fluid, hydraulic brake means for said one whee and means biasing said brake means to closed position for stopping rotation of said one wheel whenever fluid pressure in pris said conduit falls below a predetermined minimum.

SHEARING ARRANGEMENT Wolfgang Fablan; Werner Plumer, Theodor Sevenich, and Heribert Zehnter, all of Dortmund, Germany, assignors Filed Mxy 16, 1977, Ser. No. 797,062 Claims priority, application Germany, May 20, 1976, 2622558 US. C. 83-345 Int. CI. ${ }^{2}$ B26D $1 / 40,1 / 26$ 10 Claims 1. A shearing arrangement for cuting moving bars, compris ing shear stands; two counter-rotating knife drums rotatable in ing: shear stands; twa stands; a base plate; said shear stands being spaced from each other and being located on said base plate; a disconnectable yoke, said shear stands being connected to each other above said knife drums by said disconnectable yoke; said two knife drums being mounted directly in said shear stands, each coupling means, said shear stands being inserted into said base
plate and being connected to said base plate by said quick-displate and being connected to said base plate by said quick-dis- U.S. Cl. $83-762$

1. Apparatus for attachment to support surims
7 Claims planect coupling means; said coupling means engaging reces- 1. Apparatus for attachment to a support surface to facilitate
comprising a fulcrum support member, said member being a second portion extending from the end of said first portion L-shaped plate with one leg adapted to be vertically disposed intermediate the ends of said shank toward the second end of along side a cutting block, means on the other leg of said said shank, said first and second portions being co-axial and
member for facilitating attachment of said member to a cutting member feans on said one leg providing a plurality of discrete

fulcrums at different elevations for contact with the upper
edge of a cutting blade while receiving therein the tip of the edge of a cutting blade while receiving therein the tip of the
blade so that the cutting blade can be used as a lever pivotable downwardly about the fulcrums during a cutting action, said fulcrums being spaced transvers
one leg of said support member.

4,094,222

ADHESIVELY SECURED ANCHOR BOLT Gusztar Lang, Nüremberg, and Wolf Kuhlmann, Munich, both of Germany, assignors, to Hilti Aktiengesellischant, Schaan, of Germany,
Lechtenstein
Claims priority Jun. 4, 1976, Ser. No. 692,929
Claims priority, applicition Germany, Jun, 9, 1975, 2525579
Int. C. ${ }^{2}$ E04B $1 / 48 ;$ F16B $13 / 04$ U.S. CI. 85-63

1 Claim

1. An anchor assembly comprising an anchor bolt and an adhesive material for securing the anchor bolt in a prepared
borehole, the adhesive material comprising at least a first component and a second component with one of said components effecting the hardening action when they are mixed together, a
cartridge containing one of said first and second components, cartridge containing one of said first and second components,
said cartridge formed of a destructible material, wherein the said cartridge formed of a destructible material, wherein tially
improvement comprises that said anchor bolt has an axiall extending shank, at least a portion of the other one of said first and second components disposed on said shank, a destructible protective sheath enclosing said at least one portion of the
other one of said first and second components deposited on other one of said first and seccond components deposited on
said shank, said shank having a first end arranged to be inserted first into the prepared borehole and an oppositely directed second end, a collar formed on said shank intermediate the first
and second ends thereof, said collar extending radially outand second ends thereof, said collar extending radially out-
wardly from said shank transversely of the axial direction wardly from said shank transversely of the axial direction
thereof, said cartridge having an inner surface spaced outwardly from said shank and the outer circumferential periphery of said collar disposed in continuous contact with the inner surface of said cartridge, said shank has a first portion extend-
ing from the first end of said shank toward the second end ing from the first end of said shank toward the second end again
thereof to a point intermediate the ends of said shank and a ture.
said second portion having a larger diameter than said firs
portion, said collar being formed on the end of said second portion, said collar being formed on the end of said second
portion connected to said first portion said protective sheath located on said first portion of said shank, said cartridge laterally enclosing said first portion of said shank and extending in the axial direction of said shank from the first end of said shank away from the second end thereof, a stripping plate mounted
on the first portion of said shank adjacent the first end thereof and extending transversely of the axial direction of said shank, said cartridge comprising a cap laterally enclosing said stripping plate and extending in the axial direction of said shank from the first end of said shank away from the second end hereof, and a sleeve secured to said stripping plate radially outwardly from the said first portion and laterally enclosing of the second portion of said shank adjacent to said first portion, and the opposite end of said sleeve from said stripping plate having a radially outwardly directed flange extending transversely of the axis of said shank and said flange arranged to extend outwardly beyond the diameter of the prepared borehole into which the anchor assembly is inserted UEICE FOR USE IN MASONRY AND THE Artur Fischer, Weinhalde 34, D. 724

LIKE Germany Claims priority, application Germany, Jan. 24, 1976, 2602635 U.S. Cl. 35-77

$$
10
$$

1. A mounting device in combination with a masonry strucure and the like, comprising an expandable member received expand at least a leading; an expander member adapted to shaft member having a first portion located in said hole and connected with said expander member, and a second portion outwardly projecting from said hole in a first direction from said structure towards an object being mounted and carrying
sistance from said structure; and a sleeveshaped element of a corrosion-resistant material enclosing said first portion of said shaft member located in said hole and also enclosing said second portion of said shaft member outwardly projecting from said hole over a length corresponding to said distance, said sleeve-shaped element having a section abutting ure. ture.

4,094,224
THREAD PROTECTOR AND SEAL
Joseph C. Homko, Oxford, N.J., assignor to The United States Joseph C. Homko, Oxford, N.J., assignor the The United States
of America as represented by the Secretary of the Army of America as
Washington, D.C.

$$
\begin{aligned}
& \text { Washington, D.C. } \\
& \text { Filed Jul. 20, 1977, Ser. No. 817,305 } \\
& \text { Int. C1. }{ }^{2} \text { F42B 33/02 }
\end{aligned}
$$

U.S. Cl. 86-31

1. A thread protector and seal device for use in automated
nose end funnel loading of a projectile with explosive materinose end funnem loading of a projectile with explosive materi-
ais, which comprises:
a tubularly shaped body member having a plurality of paral-
lel longitudinally disposed flexing slots extending through lel longitudinally disposed flexing slots extending through
the bottom end of said body member, annular seal grooves disposed in an interior and an exterior wall of said body
member, a plurality of transversely disposed seal through member, a pluraility of transversely disposed seal through
holes positioned in the bottom end of said body member, and an integrally disposed flange located on an upper end of said body member; and molded compliant means located in said interior and exterior
seal grooves for preventing injury seal grooves for preventing injury to internal threads in
the nose end of said projectile during funnel loading and for preventing explosive materials from flowing upward into said internal thread area of said projectile.

TARGET DETECTING 4,094,225
TARGET DETECTING AND LOCATING SYSTEM Eugene C. Greenwood, 468 Prospect 250 Colton, Newpo Filed Feb. 3, 1969, Ser. No. 795,844
Int. C. ${ }^{2}$ H04N $3 / 00$
U.S. Cl. 89-41 L

Int. Cl. ${ }^{2}$ H 04 N 3/00
14 Claims

and second signal indicative of the instantaneous scan direction of said detector means along
ond orthogonal axes, respectively; and
utilization means responsive to the occurrence of a radiation indicating signal and said first and second direction indicating signals for indicating the instantaneous direction to a received source of radiation, wherein sald system is
operative to aim a weapon in the direction of said source of radiation, said weapon being movable in two orthogonal directions under the control of a pair of variable members connected between first and second stationary points and said weapon, and wherein said utilization means comprises:
means responsive to said first and second signals for deter-
mining the required length of said variable members to mining the required length of said variable members to aim said weapon in the direction or said source and means for generating fifth and sixth signals indicative of the instantaneous actual length of said variable members; and
means responsive to said third through sixth signals for determining the difference between the actual and required lengths of said members and for generating an error signal as a function thereof, said weapon adapted to be moved to reduce said error signal to zero.

HYDRAULIC CONTROL APPARATUS WITH FEEDBACK geques Faisandier, 32 Bd Felix Faure, 92320 Chatillon-sur-
Bagneux, France
Filed May 25, 1976, Ser. No. 689,796 Claims priorty, application France, May 26, 1975, 7516265 U.S. C. 91-39

Claims

1. A hydraulic control apparatus having a mechanical feedback system, said apparatus comprising
ck system, said apparatus comprising:
means providing an input signal in the form of a shaft rotameans p
tion;
hydraulic motor means for generating an output signal commensurate with said input signal, said output signal being
in the form of a change in the position of an output shaft of said hydraulic motor means;
differential comparator means for comparing said input and output signals, said comparator means including a pair of differential gears and bevel gear means coupled to two
said differential gears, said comparator means also includsaid differential gears, said comparator means also including a rotatable output shaft on which said bevel gear is mounted;
valve said hydraulic motor;
first transmission means connecting said input signal gener ating means to one of said differential gears of said comparator means;
second transmission means coupling the output shaft of said hydraulic motor means to the other of said differential gears of said comparator means;
able length first crank arm connected at a first end to the ing said fluid control valve means with said fluid port, said output shaft of said comparator means;
second crank means, said second crank means including a control valve means being operatively connected to said
second adjustable length crank arm connected at a first
second adjustable length crank arm connected at a first
end to said valve means for effecting control of said valve means; and
connecting rod
connecting rod means interconnecting the second ends of said first and second crank arms of said first and second
crank means. crank means.

4,096,227
FLID MOTOR
Samuel A. King, P.O. BLUID 6, Alturas, Fla. 33820
Filed Jun. 6, 1977, Ser. No. 803,934
Filed. Cl. ${ }^{2}$ 601L $193 / 02$; F01B $7 / 04$
U.S. Cl. 91-180

1. An opposed piston fluid motor comprising a pair of angularly related cylinders having adjacent ends rigidly joined in a
common plane oblique to the axis of each cylinder and remote open ends, a base, means mounting said pair of cylinders open ends, a base, means mounting said pair of cylinders
spaced above said base with said common plane in which the adjacent ends of the cylinders lie perpendicular to the base, and
with the cylinders inclined downwardly from said common with the cylinders inclined downwardly from said common
plane toward said base in the manner of an inverted V a pair plane toward said base in the manner of an inverted V, a pair
of pistons, there being a different one of said pistons reciprocaof pistons, there being a different one of said pistons reciproca-
by mounted in each of said cylinders, a separate piston rod for each piston, each of said piston rods extending outwardly
through the open end of a cylinder and having an inner end through the open end of a cylinder and having an inner end
pivotally connected to one of the pistons and an outer end pivotally connected to one of the pistons and an outer end
located outside of the cylinder in which the piston reciprocates, a pair of oscillating arms, each arm having one end pivotally supported from said base and another end pivotally connected to the outer end of one of the piston rods, means mounting each of said oscillating arm to oscillate about an axis
parallel to said common plane and in a plane normal to said parallel to said common plane and in a plane normal to said
common plane, a crank shaft, means rotatably mounting said crankshaft above said base to rotate about an axis parallel to said base and lying in said common plane, said crankshaf having a pair of axially displaced cranks, angularly displaced 180° from each other, a pair of connecting rods having oppo-
site ends, one of said connecting rods having one end pivotally site ends, one of said connecting rods having one end pivotaally
connected to one of said cranks and an opposite end pivotally connected to one of said cranks and an opposite end pivotannection between one of said pisto rods and one of the oscillating arms, the other connecting rod having one end pivotally connected to the other of said cranks and having an opposite end pivotally connected to the pivot connectos seillating arms, a fly wheel mounted on said crankshaft
of said osil to rotate therewith, said pistons each having a working face the working faces of said pair of pistons facing each other
within kaid cylinders, an expansible working chamber within within said cylinders, an expansible working chamber withid port communicating with said expansible working chamber at the adjacent ends of said cylinders, a fluid control valve means for cylically admitting pressurized fluid to said expansible working chamber and exhausting exhaust fluid from said ex-
pansible working chamber, and fluid conduit means connect-

2. In a fluid system having a source of fluid, a control valve, first and second hydraulic jacks each having a load supporting first and second comprising:
first and second pilot operated valve assemblies positioned between the control valve and the load supporting ends, each vavle assembly having
a first check valve positioned in said chamber and being movable between a first position at which communication between the associated load supporting end and the control valve is blocked and a second position at which
the associated load supporting end is in fuid con the associated load supporting end is in fluid communi-
cation with the control valve, second check valve associated and being movable between a first position at which communication between the chamber and the control valve is blocked and a second position at which the chamber is in fluid communication with the control valve,
first piston means for urging the second check valve seco ${ }^{\text {ard }}$ the first position, and
vecond piston means for initially moving the second check valve to the second position and for subsequently mov-
ing the first check valve to the second position; and ignal means for sensing the load pressure in the load supporting ends and for delivering first and second control signals to the first piston means of the respective first and
second valve assemblies.

said transmitter means including a first transmitter having
said transmitter means including the variable pressure
(a) passage means for conveying the fluid and from which the variable pressure fluid is pro-
vided, (b) source connection means for connecting said vided, (b) source connection means for connecting said
passage means to a source of pressurized fluid, (c) restricpassage means to a source of pressurized fluid, (c) restric-
tor means for restricting fluid flow from said source contor meation means to said passage means so that fluid supplied to said passage means from such source has a drooping pressure versus rate of flow characteristic, (d) transmitter reservoir connection means for connecting said passage
means to a rservoir means having a pressure less than that means to a rservoir means having a pressure less than that
of such source, and (e) transmitter obstructor means for variably obstructing flow through said transmitter reservoir connection means;
a responder including
(b) primary means for providing a supply of fluid, said primary means including a primary cylinder and a primary piston movable axially in said primary cylinder, said primary cylinder beeing connected to said passage
means for relative axial movement of said primary means for relative axial movement of said primary
piston and primary cylinder in response to variation in piston and primary cylinder in response to variation in
the pressure of the fluid of said transmitter passag the pressure of the fluid of said transmitter passage
means, the supply of fluid being in accordance with the relative positions of said primary cylinder and primary piston, and
(c) secondary means for mechanically displacing said output member in an amount dependent upon the sup-
ply of fluid provided by said primary mans, said secondary means including a plurality of secondary cylinders each such secondary cylinder connected to said pridisposed therein; and
feedback means for variably venting fluid from said passage means to the reservoir means having a pressure less than
that of the source to stop displacement of said output that of the source to stop displacement of said output
member, the extent of venting of said feedback means meing variable according to the position of at least one of the secondary pistons of said responder with respect to the secondary cylinder within which such one of the second-
ary pistons is disposed and being independent of the time ary pistons is disposed and being independent of the time
rate of the displacement of said output member, said feedback means including feedback reservoir connection means for connecting said passage means to the reservoir means and feedback obstructor means for variably ob structing
means,

means,

portion of said feedback reservoir connection means being separate from a portion of said transmitter reservoir connection means at least to the extent tht the flow obstructed flow obstructed by said transmitter obstructor means.

1. Fluidic repeater comprising: 1. Fluicic repeater comprising:

4,094,230

SELF-ALIGNING AND END FIXITY CONNECTOR FOR CONNECTING A HYDRAULIC CYLINDER PISTON ROD TO ITS RESPECTIVE SECTION IN A MULTI-SECTION William E. Wright, and Huber D. Bock William E. Wright, and Huber D. Bock, Jr., both of Hagers-
town, Md., assignors to Walter Kidde \& Company, Inc., Cliftom, N.J. Continuation of Ser. No. 511,606, Oct. 3, 1974, abandoned. This application Jan. 18, 1977, Ser. No. 760,323
U.S. C. 92-51 ${ }_{6}^{6}$ Clhims 1. A self-aligning and end fixity connector for connecting a
hydraulic cylinder piston rod to its respective section in a
multi-section telescopic boom assembly comprising, a hydraulic cylinder mounted within one section of a multi-section boom assembly, a member connected to the cylinder and trun-
nioned to the boom section for pivotal movement only relative thereto, a piston rod slidably mounted in said cylinder, a piston on one end of said rod disposed within said cylinder, a block member rigidly connected to the free end of said piston rod, a pair of spaced, parallel, depending plate members secured to the sing positioned adjacent the inwardly facing surfaces of the side walls of another section of said multi-section boom assembly, a rectangular frame member having integral end and side walls secured to each inwardly facing side wall, each rectangular frame member and the respective inwardly facing side wall forming a recess receiving a respective depending plate mem-

ber, each depending plate member on the free end of the piston ber, each deeing rectangular, the side edges of each depending plate member engaging the corresponding side edges of the frame to prevent rotation of the piston rod about a horizontal transverse axis, the end edges of each depending plate member being spaced from the corresponding ends of the frame member to thereby provide a clearance for permiting a coating action of the rod in a vertical plane only, whereby the connection points
of the cylinder and piston to their respective boom sections are maintained in alignment with each other, with the opposite ends of the piston rod subtantially fixed against rotational movement about a horizontal transverse axis, thereby increasing the column loading capacity of the rod and associated
boom section. boom section.

ROTARY ACTUATOR AND METHODS OF
Paul Carr, Massillon, Ohio, assignor to Flo-Tork, Inc., Orrville, Paul Carr
Ohio Ohio Continuation-In-part of Ser. No. 477,763, Jun. 10, 1974, abandoned. This application Jun. 2, 1975, Ser. No. 582,401 U.S. Cl. 92-128 Int. Cl. ${ }^{2}$ FO1B 9/00 5 Claims

1. A fluid actuator, comprising:
(a) a housing structure defining a pair of spaced piston re ceiving portions and a communicating chamber;
b) the housing having an opening communicating with one of the receiving portions;
c) an output shaft structure journalled in the housing structure and having a slotted portion positioned in the cham-
ber; (d) the slotted portion including walls which define a shaft slot;
(e) a piston and lever assembly including:
(i) a piston structure movably carried by the housing structure and having a pair of end portions each in an associated one of the receiving portions, the piston
structure also including a central portion which inter strucure also including a central portion which inter
connects the end portions and which defines a pisto slot;
(ii) a lever member having one portion in the piston slot and pivotally connected to the piston structure, and drivingly interconnect the piston structure and the output shaft structure; and
(f) the lever member having an end extending into the piston slot, the piston slot being of sufficient size to permit the entire length of the lever member to be nested therein, the housing opening being of a size to permit the piston and in the housing structure.
a first central one of the air delivery means being adapted to said valve includes probe means adapted to be energized by supply air at a first velocity,
and a second outer one of the air delivery means being adapted to supply air at a second velocity lower than the first velocity,
the different air delivery means having different permeabili
he different air delivery means having different permeabili
ties for attaining the desired flow velocity differential

4,094,234

FILTER PAPER CUP FOR A PERCOLATOR AND PROCESS FOR MAKING THE SAME Wallace E. Olney, and Robert G. Wright, both of Portage, Mich., assignors to Brown Company, Kalamaroo, Mich. Filed May 13, 1976, Ser. No. 686,111
Int. C ${ }^{2}$. A47J 3 31/08
U.S. CI. 99-310

6 Claims

AUTOMATIC COFFEE MAKER WITH INLET WATER CONTROL MEANS IN RESPONSE TO COLD WATER AND HOT WATER LEVELS
 Corporation, Springfielld, Ill.
II

Filed Oct. 12, 1976, Ser. No. 731,716
Int. C.2 A47J
U.S. CI. 99-305

11 Claims

1. In a percolator for brewing coffee comprising a cylindrical basket concentric with a tubular wand, the combination therewith of a filter paper cup having a flat annular bottom
coextensive with and lying flat on the bottom of said basket and having an integral upstanding steam and heat-set sidewall only at the outer periphery of said annular bottom, said up. standing sidewall being fluted with accordian pleat-type flutes

U.S. CI. 98-36

Frederick Hugh Howorth, Choriey, England, assignor to Ho worth Air Engineering Limited, Farnworth, Bolton, England Continuation-In-part of Ser. No. 568,614, Apr. 16, 1975, Pat. No Claims priority, application United Kingdom, May 8, 1976 19024/76
The portion of the term of this patent subsequent to Mar. 1, 1994, has been disclaimed.

Int. C1. ${ }^{2}$ F24F 9/00
9 Claims

2. Apparatus for providing a clean air zone comprising a plurality of air delivery means, pluraity of air supply means for supplying sterile air to the
a pluraity of air supply
air delivery means, upstanding sidewall normally flares outwardly when uncon-
fined by said basket, but is constrained to a vertical position by said basket, in which the filter paper is composed essentially of bleached cellulose fiber from chemically processed wood pulp, is uncalendered, is unsized, is creped from about 6 to about 15 percent, and has a basis weight between about 28 and about 40 pounds, in which the sidewalls of the filter cup have at least
flute every 15°, and in which said flutes are steam and heat set by heating the cups to a temperature of about 400° to $420^{\circ} \mathrm{F}$ to a moisture content between about 3 and about 6 percent while the sidewall is constrained in a cylindrical position, and substantially only the outermost apices of said flutes are substan-
tially entirely in contiguous relationship with the inner wall of tially entirely in contiguous relationship with the inner wall of
said basket into which said paper filter cup is placed said basket into which said paper filter cup is placed.
a cylinderical basket concentric with a tubular wand compris-

1. In brewing apparatus comprising, a cold water basin, an ing an annular bottom having an integral upstanding steam and inlet water line for supplying cold water to said basin from a heat-set wall only at the outer periphery of said annular botsource under pressure, a valve in said inlet water line, means tom, said upstanding wall flaring outwardly and being fluted basin, means for closing said valve when said cold water basin is composed essentially of bleached cellulose fiber from chemiis filled to a predetermined shutoff level, a hot water tank cally processed wood pulp, is uncalendered, is unsized, is under said basin, means for heating water in said tank, a cold water inlet from said tank to brew coffee extract, and means for closing said valve in the event that the water in said tank rises least one about 28 and about 40 pounds, in which there is at said cold water inlet includes siphon means arranged to start to heat set by heating the cup to a temperature of about 400° when said shutoff level is reached by water supplied at or quality, and then above a predetermined pressure and likely to start when water F to a moisture content between about 3 anout 400° to 420° is supplied at a pressure below said predetermined pressure and while the sidewall is constrained in a cylindrical position, the said shutoff level is not reached whereby water continues to outermost apices of said flutes being rectilinear so that, when
flow into said tank, said means for withdrawing hot water from the filter cup is inserted into the cylindrical basket of said said tank includes siphon means, and said means for closing percolator with the annular bottom of said filter cup being
coextensive with and resting on the bottom of said basket and extending from said tubular wand to the outer wall of said said flutes wall be in substantially entirely contiguous relationship with said inner wall.

4,094,236
ICE-CREAM SANDWICH FORMING APPARATUS Gordon W. Holmes, Mississauga, and Roy W. Nelham, Chelten
ham, both of Canada, assignors to R. Nelham \& Associates Incorporated, Willowdale, Canada

U.S. Cl. $99-450.4$
$4,094,235$
APPARATUS FOR THE PRODUCTION OF TEXTURED PRODUCTS
Francois Castaigne, Cap Rouge; Marcel Boulet, Ste-Foy; Rene
R. Riel, Ste-Foy, and Eric Liber Ste nssignors to Universite Laval, Sainte-Foy, Cand of Canada assignors to Universite Laval, Sainte-Foy, Canada
Filed Jul. 31, 1974, Ser. No 493, 455 Filed Jul. 31, 1974, Ser. No. 493
Int. Cl. ${ }^{2}$ A23J 3/00
U.S. CI. 99-450.1 Int. Cl. ${ }^{2}$ A23J 3/00 1 Claim

Apparatus for producing protein fibers which comprise
(a) a first mixer for producing a dispersion of sodium algi nate,
(b) a second mixture for producing a dispersion of proteins, (c) a third mixer for mixing the two dispersions obtained in (a) and (b),
(d) ducts to feed said two dispersions into said third mixer, (e) a disintegrator for homogenizing said two dispersions and for breaking off small lumps therein, and a duct to a ballast tank to receive homogenized disp
said disintegrator and a duct to connect said ballast tank to said disintegrator,
(g) a pump connected to said ballast tank by means of a duct, h) at least one spinning tube leading away from said pump. and a spinneret at the end of said spinning tube,
a 1 -shaped tubular member provided with a first, a secthrough the first opening inside the T-shaped tubular member and thereafter bending towards the second open ing of said T-shaped tubular member
(j) said second opening being provided with a coagulating tube for each spinning tube, the end of said spinning tube (k) a tank to contain a coagulation liquid and a duct and pump assembly to feed said coagulating liquid through said third opening into said T-shaped tubular member, (l) a slowing down unit to receive filaments which have been precoagulated and picked up in said coagulating tubes, ments in the next unit,
(m) said next unit comprising a coagulation bath and a conveyor in said coagulation bath for moving the filament along therein and providing a final coagulation thereof, and
(n) a duct to recirculate the coagulating bath in said tank defined in (\mathbf{k}) and means along said duct for monitoring and regenerating acids and salts in said coagulating bath.

1. An ice-cream sandwich making machine including
stack holding means for holding stack holding means for holding a substantially vertical stack of face-abutting edible wafers of rectangular shape;
dispensing means located at the lower end of said dispensing means located at the lower end of said stack
holding means for controlled dispensing of said wafers one at a time downwardly from said stack thereof; said stack holding means being a vertically-aligned chute of
cross-sectional dimension substantially cross-sectional dimension substantially that of said wafers
and having an open lower end for the feeding of said wafers to said dispensing means;
said dispensing means comprising a box-like frame member having openings in the upper and lower faces thereof for downwardly through said chute and for passage of wafers said dispensing means further comprising plate support means located in said frame member and first and second pairs of plate means;
each mermber of said pairs of plate means being mounted for sliding movement in said support means, the individual
members of each pair being in horizontal atignmet one member of the first pair of plates being vertically space above the one member of said second pair a distance slightly greater than the thickness of one of said wafers vertically spaced above the other member plates being pair a distance slightly greater than the thickness of one of said wafers,
first spring biasing means operatively associated with each member of said first pair of plates for biasing said first pair of plates towards each other to suspend said stack of
spring engaging means engaging said first spring biasing means at the end thereof remote from said first pair of plates,
secand
second spring biasing means operatively associated with each of said spring engaging means for biasing said spring
engaging means away from each other and the respective member of said first pair of plates to cushion the force
applied to said first pair of plates by said first spring biasapplied to said first pair of plates by said first spring bias-
ing means upon movement of said spring engaging mean into greater biasing relationship with said first spring biasing means,
third spring biasing means operatively associated with each member of said second pair of plates normally biasing said second pair of plates away from each other; and
ctuation means operably associated with said dispensing

APPARATUS FOR THE TREATMENT OF BRINE
Patrick Brian Riordan, 92 Roselawn, Castleknock, Dublin,

Ireland

Filed Dec. 12, 1975, Ser. No. 640,144 Claims priority, application Ireland, Dec. 12, 1974, 2564/74; Feb. 25, 1975, 390/75 Int. C. ${ }^{2}$ A23L 3/28
U.S. CI. 99-451

d. a rotary cutting knife mounted adjacent said guage wheels,
the said rotary cutting knife, said impaling blade having sharp teeth inclined in the direction of rotation,

f. means for rotating said knife and said blade whereby, g. the teeth of said blade engage and impale the stem of a head of lettuce and positively force it into said knife.

4,094,239

APPARATUS FOR CUTTING HAY BALER TWINE John Leroy Murr, R.F.D., Laplata, Mo. 63549 U.S. CI. 100-5

1. In combination with a bacon curing machine, apparatu for treating contaminated brine from said bacon curing machine comprising a collecting tank for the contaminated brine means for directing contaminated brine from said machine to
said tank, a filter located in said collecting tank and adapted to receive said contaminated brine and having a filtrate outlet in fluid connection with the inlet of at least one ultra-violet liquid irradiating device, supply means for mixing substantially con caminated fresh brine with the contaminated brine in the collecting tank whereby the ultra-violet transmission value of the stream of said substantially uncontaminated fresh brine onto the back of said filter so as to back-wash the filter, means for passing the mixture of brines through the ultra-violet liquid purifying device, and means for thereafter returning the irrad ated brine to said bacon curing machine.

4,004,238

LETTUCE HAPVESTER
Charles D. Striplin, Concord, Calif., assignor to Striplin Me chine \& Engineering Company, Benecia, Calif. Engineering Company, Benecia, Caiif
Filed Oct. 20, 195, Ser. No. 623,9 Int. C. $\mathbf{2}^{2}$ A23N $15 / 00$

1 Claim
U.S. Cl. 99-643

1. A lettuce trimming machine for trimming the stem of 1. A lettuce trimming machine for thimming sottom of the head
lettuce head substally even with the boter comprising in combination: a. a pair of counterrotating flat guag,
about the width of a lettuce stem
b. a crowder belt mounted over said guage wheels,
c. means for rotating said guage wheels and said crowder beit in synchronism whereby a lettuce head is propelled against said guage wheels,

2. An apparatus for wrapping a large round bale formed in a large round bale forming machine comprising.
a. frame means of said large round bale forming machine; containing a supply of wrapping material c. a material directing member adapted to dispense said material;
d. means for mounting said member to said frame means in the vicinity of said large round bale;
means operably associated with said member for moving said member whereby material is dispensed from said under conditions wherein said member is moving in such way as to feed said material around said bale;
cutting means having no moving parts positioned along said path for cutting said material solely upon said mate directing member, said material being fed unimpededly from said supply to said material directing member and unimpededly from said member to said bale for wrapping.

MACHINE FOR SHEARING AND COMPRESSING SCRAP METALS
Masao Suzula, 880 Sezaki-cho, Soka-shi, Saitama-ken, Japan
Claims priority Jul. 9, 1976, Ser. No. 703,761
U.S. Cl. $100-97 \quad$ Int. C. ${ }^{2}$ B30B $15 / 08 \quad 5$ Claims

first ink supply enters the interior of said rigid hollow tube

1. A machine for shearing and compressing scrap materials comprising:
a pair of spaced apart plates to define a carriage,
base connected to said carriage and disposed between said
pair of spaced apart plates,
sid base having a U-shaped
for receiving the scrap material
an arm pivotally connected at one end to said carrias, said arm having a limb connected at its other end,
drive motor means connected to said arm for driving said arm toward and away from said base,
complementary blades connected to seid arm
base along the respective edges thereof to effect a shearing action on the material adapted to be supported on said base as said arm is pivoted toward said base,
a ram slideably mounted along said base,
a drive means for actuating the drive of said ram for successively compressing said material between said ram
said limb, and ejecting said compressed material, a supply table pivotally mounted to said base,
a linkage assembly connected to said supply table for pivoting said table relative to said base between an operative an actuating means connected to said linkage assembly an actuating means connected to said linkage assembly for
activating said linkage assembly for moving said supply table between operative raised position and inoperative lowered position,
and a put-out table connected to said linkage assembly for receiving the compressed material as said ram pushes the
compressed material onto said put-out table whereby said put-out table functions to eject the compressed scrap material as said supply table is raised to position other scrap material to be compressed onto said base.

4,094,241

PERFORATED DOCTOR ROLL
$\underset{\substack{\text { Edgar } \\ \text { tria }}}{\text { and }}$
er, Schachter/weg 24/52, A-9020 Klagenfurt, Aus-
tria Filed Aug. 23, 1976, Ser. No. 716,687
Cleims priority, application Austria, Aug. 29, 1975, 6665/75
U.S. Cl. 101-120 Int. Cl. ${ }^{2}$ B41F $15 / 44$

2 Claims
comprising:
U.S. Cl. 101-120

1. An apparatus for applying ink to a substrate comprising: 1. An apparatus
bearing means disposed beneath said substrate; a stencil having
openings in the desired pattern arranged in superimposed openings in the desired pattern arranged in superimposed
relationship to said substrate; a doctor roll contacting said relationship to said substrate; a doctor roll contacting said
stencil under a positive contact pressure; a first ink supply stencil under a positive contact pressure; a first ink supply
located in front of said doctor roll, said doctor roll applying located in front of said doctor ront, said from the openings of said stencil; wherein: said doctor roll being defined as a rigid hollow tube having a plurality of perforations about its periphery, said perforations being adapted tored part of the ink from said
sure in said first ink supply, whereby
first ink supply enters the interior of said nigid her ink supply;
through said perforations to form a second inner ink sumer

said doctor roll being further defined by a rod-shaped member disposed in said hollow tube, said rod-shaped member provid-
ing a second internal doctor roll for said second ink supply.

LIFIING DEVICES FOR FLAT SCREEN PRINTER Shiro Ichinose, 11-8,4-Chome, Shinohara Kita-machi, Nada-ku; Kobe-shi, Hyogo-ken, Japan
Filed Jun. 14, 1976, Ser. No. 695,392 Filed Jun. 14, 1976, Ser. No. 695,392
Int. Cl.' ${ }^{\text {B41F }}$ 15/08, $15 / 44$
U.S. Cl. 101-123

1. An automatic screen printing machine comprising a trans porting mechanism for supporting thereon a material to be printed and transporting it continuously or intermittently to a printing operation zone, a flat screen disposed in the printing
operation zone above a running passage for the material to be printed, a squeegee member disposed above said screen to squeeze out a printing paste or ink onto the material to be printed through said screen, and a lifting device disposed in said operating zone for causing the material to be printed to come into contact with the screen during a printing step and of separating the material from the screen during a non-printing
period by moving vertically at least one of said transporting mechanism and said squeegee member and screen relative to each other by means of a lifting member; said lifting device comprising a lifting cam mechanism and a gear mechanism for driving intermittently said lifting cam mechanism and restrain ing intermittently said lifting cam mechanism, said gear mecha-
nism comprising a first partially toothed wheel including nism comprising a first partially toothed wheel including a toothed small diameter circumferential portion, said partially toothed wheel being continuously driven and rotated by driving means connected therewith and a second partially toothed wheel including at least one toothed circumferential portion and at least one projected portion having a concave face capable of engaging the non-toothed smooth circumferenial po
tion of the first partially toothed wheel, said first and second partially toothed wheels disposed adjacent to and in operable
contact with each other such that the first and second partially plate cylinder axis toward the form roller plus an amount equal toothed wheels are intermittently engaged with each other and to the added thickness of the packing. are intermittently restrained by each other whereby engagement of the teeth of said first partially toothed wheel with the reeth of said second partially toothed wheel, drives and causes the second partially toothed wheel to rotate, and engagement of the projected portion of said second partially toothed wheel
with the non-toothed smooth circumferential portion of said first partially toothed wheel, restrains the rotation of the second partially toothed wheel; said lifting cam mechanism in cluding a cam and said second partially toothed wheel wherein said cam is fixed to said second partially toothed wheel to rotate together and said cam mechanism is operably connected partially toothed wheel and said cam causes the lifting member to be lifted or lowered and to be held at an elevated position or lowered position by resto be held the rotation of said section or

HAND-HELD BAR CODE LABEL MARKING DEVICE ichard A. Edwards, Alameda, and Cecil G. Olison, Castro partially toothed wheel.

1. A label marking device for printing selected bar code and lpha-numeric character information upon a label, said device
a plurality of scribe elements mounted on the frame for location of selected scribe elements, corresponding to
ments mounted on the frame for location of selected print elements, corresponding to selected alpha-numeric character information, at a second location at the printing station, the second location being adjacent
to and spaced from the first location;
pressure means mounted on the frame for placement at the pressure means mounted on the frame for placement at the
first location; second location; and
actuating means on the frame capable of actuation through a cycle of operation for moving a label, from the supply, together with a portion of the printing medium juxtaposed
with the label, between the pressure means and the sewith the label, between the pressure means and the se-
lected scribe elements at the first location while urging the pressure means to press and continue to urge the juxta posed label and printing medium against the scribe ele ments while he scribe elements remain stationary so as to scribe information on the label in the form of a bar code having code bars running parallel to the direction of
movement of the label as a result of such movement of the label relative to the scribe elements during a first portion of said cycle, and actuating the impact means to impact the juxtaposed label and printing medium momentarily with the selected print elements at the second location so as to print information on the same label corresponding to said selected alpha-numeric characters during a second
portion of said cycle.
a frame;
a fram
a printing station
a supply of labels; selected bar code chan at the printing station;
2. In printing press, the combination comprising a frame, a plate cylinder journaled in the frame and mounting a printing plate with a layer of packing interposed between the cylinder and the plate, a cooperating cylinder journaled in the fram running in engagement with the plate, the plate cylinder having at least one fitiolly spaced from said cooperating cylinder, an eccentric bushing interposed between the plate cylinder and the frame rockable from a reference position t an adjusted position for increasing the spacing between the axes of the plate cylinder and its cooperating cylinder as necessary to accom sector rockably mounted at the end of the plate cylinder having a spirally curved segment for radially supporting the form roller bearing with respect to the plate and mounted for rocking movement for camming the roller relatively away from the axis of the plate cylinder, the cam sector being rotatively coupled to the eccentric bushing for rocking movement in unison therewith accompanied the roller bearing, the spiral slope of the curved segment being such that the degree of rocking of the eccentric bushing necessary to accommodate a predetermined increase in packing thickness causes a total predward throw at the form roller equal to the movement of the
DEVICE FOR ADJUSTING FORM ROLLERS PROVIDING AUTOMATIC COMPENSATION FOR CHANGE IN PACKING THICKNESS Roir Braun, Ofrenbach, Germany, assignor
maschinenfabrik Faber \& Schlecher AG., Germany
maschinenfabrik Faber \& Schleicher AG., Germa
Filed Jun. 20, 1977, Ser. No. 808,033
Cluims priority, appilication Germany, Jun. 23, 1976, 2627963 U.S. Cl. 101-349

Parachute flare having a variable burn RATE Joseph R. Matura, Ironia, N.J., assignor to The United States of America as represented by the Secretary of the Army, Washington, D.C.

Filed May 2, 1977, Ser. No. 793,007
Int. C1. ${ }^{2}$ F42B 4/28
U.S. C. 102-35

1. A parachute flare having a variable burn rate comprising: an elongated container having a closed end and an open end;
a thin liner of uniform burn-inhibiting, heat-insulating matea thin liner on uniform burn-inhibiting, heat-insulating mate-
rial coating the inner surface of said closed end and at least rial coating the inner surface of said closed end and at least
the first third of the inner side wall of said container, starting at said closed end; with the opposite end of said liner spaced substantially from said open end to leave a
substantial bare area of said side wall adjacent to said open sund;
end; \quad a mass of substantially-iniform, combustible, illuminating material completely filling said container and in contact with said liner and said bare area; and
means for igniting said illuminating material at said open
end;
whereby said flare can be transported to a given altitude
over an area to be illuminated, where it is isnited and over an area to be illuminated, where it is ignited and
burns a a a given intensity for a first predetermined time, burns at a given intensity for a first predetermined inme,
during a first portion of its fall, and then burns at a substantially lower intensity for a second predetermined time, during a second portion of its fall.

FLUID STABILIZING INSERT FOR PROJECTILES Bruce W. Travor, Holland, Pa, assignor to The United States of America as represented by the Secretary of the Army, Washington, D.C.
Filed Dec. 8, 1975, Ser. No. 638,724
Int. Cl. ${ }^{\text {F42B }}$ I3/14
U.S. CI. 102-66

3 Claims
 1. In a spin stabilized projectile having a main projectile
body and a forwarded nose member secured thereto, said body body and a forwarded note member secured liquid arrangement for minimizing rotational spin loss of the projectile, a cellular structure within said body and extending radially
outward of said burster tube, said cellular structure having a plurality of longitudinally extending contoured ribs defining elongated chambers containing portions of said liquid, said cellular structure including a substantially
cylindrical slotted tube surrounding said burster tube, the sidewall of said slotted tube having a plurality of circumferentially spaced longitudinally extending slots, each of said ribs having a head portion, a blade portion and an
intermediate reduced neck portion, each of said neck portions extending longitudinally within a corresponding one of said tube slots, each of said rib head portions having a width larger than that of its corresponding slot and each head portion extending inwardly adjacent to its corresponding slot.

WITCH ACCU
SWITCH ACTUATOR
Albertus E. Schmidlin, Caldwell, N.J., assignor to The United States of America as represented by the Secretary of the Army, washington, D.C.

Feb. 23, 1977, Ser. No. 771,214
Int. C.' ${ }^{\text {F F }}$ (2C is $/ 00$ U.S. Cl. 102-228

5 Claims

1. A switch actuator for safing and arming a missile a housing;
optical transducer means fixedly disposed in one end of said housing for converting a coded optical input pulse signal into a coded el
optical signal;
amplifier means electrically coupled to said optical transducer means for generating an amplified coded electrical output signal in response to said coded electrical signal;
solenoid means having a magnetically operated flapper solenoid means having a magneicically operated happer
valve member pivotally connected therewith, said solenoid means being electrically coupled to said amplifier means for converting said amplified coded electrical sig nal into a reciprocating mechanical motion of said flapper valve member;
pneumatic supply cover means proximately positioned adjacent to said solenoid means, said pneumatic supply cover
means having two preumatic pascageways transversely means having two pneumatic passageways transversely
diametrically disposed therethrough, for alternatively generating, in cooperation with said solenoid means, coded pneumatic output pulse from each of said pneu matic passageways;
otating valve plate means operatively disposed adjacen pply cover means, for mechanically decoding each of said coded pneumatic output pulses into sequential pressure pulses;
neumatic piston-cam type prime mover means having a pneumatic input pneumatically connected to the output of said rotaing valve plate means, said prime mover means
rotate said valve plate means at of the prime mover means speed;
geneva movement means having a driver gear assembly and a follower assembly, said geneva movement means being gear connected to said prime mover means, said geneva
driver gear assembly driver gear assembly rotating at i the prime mover means
speed, said geneva movement means requiring full 270° speed, said geneva movement means requiring full 277°
rotation of said driver gear assembly prior to said switch rotation of said driver gear assembly prior to said switch
actuator being placed in an intermediate arming position, and requiring two additional complete turns before said driver gear assembly causes said follower assembly to missile in an armed condition; and biasing means operatively disposed on said prime mover means intermediate said geneva movement means and said primer mover means for returning said switch actuator to a fail-safe position when said optical transducer means
fails to receive a coded optical signal of a specific signature for a given duration.

HIGH PACKING DENSTTY PROPELLANT GRAINS Sidney S. Jacobeon, Chester, N.J., assignor to The United States of America as represented by Secretary of the Army, Washington, D.C.
led Apr. 21, 1977, Ser. No. 789,59
U.S. CI. 102-100

4 Claims

1. A propellant charge which comprises: pluraity of extrued polygonally longitudinal shaped propellant grains, saic grains having a plurality of equally through, a plurality of longitudinally disposed external vertex grooves in parallel alignment with said internal
perforations, and a plurality of semi-circular longitudinally disposed external grooves located at the midpoint of each polygonal side, said semi-circular grooves being in parallel alignment with said internal perforations and said external vertex grooves, said plurai-circular grooves each being separated by a web of equal thickness

APPARATUS FOR LAYING TRACK

Josef Theurer, Vienna, and Manfred Brunninger, Linz, both of Austria, assignors to Franz Plasser Bahnbaumaschinen-Indus triegesellschaft m.b.H., Vienna, Austria | Filied Dec. 13, , 1976, Ser. No. 74, |
| :--- |
| Claims priority, application Austria, Feb. 2, 1976, | Int. C. ${ }^{2}$ E01B 27/11, 29/06

U.S. C. $104-6$ \qquad

1. An apparatus for laying track comprised of rails and ties on a ballast bed, comprising the combination of
(a) an elongated bridge--ike carrier frame having a rear end, a a rear undercarriage for moving the carrier frame in working direction on the track rails, the undercarriag supporting the carrier frame adjacent the rear end thereof, (c) another undercarriage supporting the carrier frame adjacent the rear undercarriage and retractably arranged o
the carrier frame for selective engagement with the ballas bed for moving the carrier frame in the working direction
on the ballast bed in the absence of a track for the rear undercarriage,
(d) an endiess scraper conveyor chain vertically adjustably mounted on the carrier frame and including a transversel extending stringer arranged for engagement with the
ballast bed upon vertical adjustment of the conveyo chain for planing the ballast bed and conveying exces ballast from the planed ballast bed, the stringer of the conveyor chain being arranged in front of the other undercarriage,
e) conveyor means mounted on the carrier frame and ar ranged to convey ties in a direction opposite to the work-

ing direction to the planed ballast bed behind the other undercarriage and comprising a mechanism for laying successive ones of the conveyed ties spacedly on the
planed ballast bed between the other undercarriage and planed ballast bed between the other undercarriage and
the rear undercarriage, and the rear undercarriage, an
(i) a ballast conveyor moving in a path arranged to enable
the ballast conveyor to receive the excess ballast and to convey the excess ballast in a direction opposite to the working direction to the rear end of the carrier frame where the ties have been laid on the planed ballast bed, a
transversely extending portion of the path of the ballast conveyor intersecting the path of the conveyor means in conveyor intersecting the path
the region of the mechanism.

MOBILE TRACK TAMPING MACHINE MOBILE TRACK TAMPING MACHINE
Josef Theurer, Vienna, Austria, wssignor to Franz Plasser Bahn-baumaschinen-industregeselischant m.b.H.H.Vienna, Austris
Filed Mar. 22, 1976, Ser. No. 699,207 Claims priority, application Austria, Jun. 20, 1975, 4773/75 U.S. C. 104-12

12 Claims

1. A mobile track tamping machine for substantially simultaneously tamping ballast underneath five successive track ties resting on the ballast, the ties having elongated edges extending ransversely of the track and two ends extending in the direction of the track, the elongated edges of adjacent ones of (a) a machine frame, and
(b) two like tamping tool assembly units mounted on the machine frame for vertical movement, each tamping tool assembly unit being a structural unit including
(1) a carrier for the tamping tools mounted on the machine frame for vertical movement and adjustably spaced rom each other in the direction of the track.
(2) no more than four tamping tools immersible in the
ballast and arranged on the carrier in two like pairs of vibratory tamping tools spaced from each other in the
direction of the track, the spacing being such that each pair of tools is in vertical alignment with a respective
one of two successive one of two successive ones of the cribs whereby the tamping tools of each pair may be immersed in the
respective crib upon vertical downward movement of the carrier,
(3) a pivot mounting each one of the tamping tools on the carrier for reciprocation of the tamping tools of eac pair in opposite directions towards and away from a respective one of the elongated edges of an adjacent on of the ties, the pivots of each of the pairs of tamping
tools being spaced from each other in the track direc tion less than one crib width, and the pairs of tamping tools having tamping jaws for immersion in the ballas whose closest spacing in the track direction is smaller than the average size of the ballas,
(4) a common drive for vibrating the two pairs of tamping
tools arranged on the carrier centrally with reset the pairs of tamping tools,
(5) a drive for independently recipro
tamping tools about their pivots, and
(6) a drive arranged centrally with respect to the pairs of tamping tools for
tamping tools;
tamping tools; verically moving the carrier with the
being such that the tamping tool assembly unit carriers being such that the pairs of tamping tools may be im-
mersed in four successive ones of the cribs upon the vertical movement of the carriers.

4,094,251

MOBILE TRACK TAMPING MACHINE Josef Theurer, Vlenna, Austria, assignor to Frank Plasser Bahn-baummaschinen-Industriegeeellschaft mob.H., Vlenna, Austria Cleims priority, application Austria, Jun. 20, 1975, 4774/75 U.S. C. 104-12

14 Claims

1. A mobile track tamping machine for substantially simulta neously tamping ballast underneath three successive track ties resting on the ballast, the ties having elongated edges extending transversely of the track and two ends extending in the direction of the track, the elongated edges of adjacent ones of the ties defining cribs therebetween, which comprises
(1) a machine frame; and
(2) a tamping tool assembly mounted on the machine frame and including
a) a carrier for the movement on the frame,
(b) no more than four tamping tools immersible in (b) no more han four tamping tools immersible in the tory tamping tools spaced from each other in the direction of the track, the spacing beang such that each pair of tools is in vertical alignment with a respective one of two successive ones of the cribs whereby the tamping crib upon vertical downward movement of the carrier, (c) a pivot mounting each one of the tamping tools on the carrier for reciprocation of the tamping tools of each pair in opposite directions towards and away from a respective one of the elongated edges of an adjacent one
of the ties, the pivots of each of the pairs of tamping tools being spaced from each other in the track direction less than one crib width, and the pairs of tamping
tools having tamping jaws for immersion in the ballast whose closest spacing in the track direction is smaller whose closest spacing in the track
(d) a common drive for vibrating the two pairs of tamping tools arranged on the carrier centrally with respect to the pairs of tamping tools,
(e) a drive for independently reciprocating each of the tamping tools about their pivots, and
tamping tools for vertically moving the carrier with of tamping tools.
\qquad
4,094,252
-CONIROLLED ON-GRADE MONORAIL TRACK Hendrik Pater, 4154 Parkview Dr., Salt Lake City, Utah 84117; G. Earl Torgersen, Salt Lake Crty, and Fritz R. Brunner Murray, both of Utah, assignors to Hendrik Pater, Salt Lake Murray, both
City, Utah

FLied Apr. 22, 1976, Ser. No. 679,266
Int. Cl. ${ }^{2}$ E01B $7 / 00$
U.S. CI. $104-130$

20 Claims

18. An automated mass transit switching system comprising in combination
a plurality of converging tracks;
least one vehicle adapted to travel on said tracks said vehicle causing a control signal to be transmitted alon
the tracks ahead of it so as to sense any onen track ahead of of it so as to sense any open portion of reack ahead of it, said vehicle automatically stopping in response to an open portion of track sensed; and
a junction switch disposed between the ends of said con-
verging tracks, said junction switch comprising: verging tracks, said junction switch comprising:
means for sensing the approach of any porconing by detecting the electric signal originating with the vehicle;
means for moving the switch into alignment with the path of the nearest oncoming vehicle in response to the vehicle originated signals;
means for disabling said moving means when the track is in alignment with the path of the nearest oncomin vehicle until said nearest oncoming vehicle has passed the switch; and
means for securing
means for securing the switch in alignment position.
4,094,253
RAILWAY TRUCK FLOATING PEDESTAL WEAR LINER Paul E. Gage, Wyomissing, Pa, assignor to The Polymer Corpo ration, Reading, Pa.

Filed Jul. 26, 1976, Ser. No. 708,661 Fine Pul. 26, 1976, Ser. No. 708,661
Int. Cl.2 B61F $5 / 30,5 / 50,17 / 36 ;$ F16C $33 / 20$ U.S. Cl. 105-225

1. In a pedestal truck for railroad locor 4 Claim a pair of spaced-apart, vertically-disposed pedesal less
journal box open at its lower end; relationship to the pedestal legs;
pedestal tie bar extending between the ends of the pedestal said table top, and a cross-beam attached to the underneath legs closing the lower end of the jaw;
generally channel-shaped pedestal liners made from tough, generally channel-shaped pedestal liners made from tough, wear-resistant plastic mounted on each of he pedel bal and
with the bight of the channels facing the journal box and
aid table top, and a cross-beam attached to the underneath

interposed as bearing surfaces between the journal box and the pedestal legs and with the sides of the channels extending over a portion of the side faces of the pedestal the opposing side-edge of the table top, said cross-beam being legs; the improvement comprising mounting the pedestal liners in sliding frictional engagement with the journa
on one side and the pedestal legs on the other side.

LOCK FOR RAILWAY HOPPER CAR GATE RAILWAY
 \qquad

Clarence J. Koranda, 5042 Lavn Ave.,
 6

$$
\begin{aligned}
& \text { Filed Dec. 27, 1976, Ser. No. 754,835 } \\
& \text { t. Cll. }{ }^{\text {B61D }} 7 / 20,7 / 26,49 / 00 ; \text { F05B } 6 .
\end{aligned}
$$

he opposing side-edge of the table to
attached to an upper end of said post.

Filed Dec. 27, 1976, Ser. No. 754,835
Int. Cl. ${ }^{2}$ B61D $7 / 20,7 / 26,49 / 00 ;$ F05B $65 / 18$

$$
\text { U.S. Cl. } 105-282 \mathrm{P}
$$

WORK TABLE HAYING $4,04,256$ Manfred Hölper, Günter Schertel, and Egon Kösters, all of Pohlheim, Germany Flaims Filed Jun. 7, 1996, Ser. No. 693,173 Int. C.1. ${ }^{2} 447 \mathrm{~B} 35 / 00,77 / 08 \quad 10$ Claims U.S. CI. 108-50

1. A work table having a work surface thereon, comprising: a pair of horizontally spaced and hollow side supports each having adjacent their upper ends a cross piece, said cross pieces being parallel with each other and suppor
a channel in each of said cross pieces which extend parallel with said lateral edges of said work surface, at least one of said channels having at least one opening therein for guiding electrical wires therethrough from the interior of said cross piece to the exterior thereof;
cavity in each of said side supports for housing said electrical wires, said cavity extending along the height thereof and communicating with at least one of said channels in said cross pieces; and
electrical socket means connected in electrical circuit with said electrical wires and mounted in said opening in at least one of said channels in at least one of said cross pieces.

FOLD UP ARTIST PALETM, PAINT AND ACCESSORY
Nathan J. Zaccaria, 257 Glenn Are., Palisades Park, N.J. 07650 Flled May 2, 1977, Ser. No. 792,664
Int. Cl. ${ }^{2}$ A47B $3 / 00$
U.S. C. 108-115

1. A fold up artist palette, paint and accessory stand comprising, in combination: a base having a flat lower surface and front
and rear sides; a single leg pivotally connected to said front and rear sides; a single leg pivotally connected to said front
side of said base; a brace pivotally connected to said rear side side of said base; a brace pivotally connected to said rear side
of said base; coupling means for detachably coupling an upper ond of said brace to an intermediate portion of said leg, said coupling means comprising a bifurcated member having a
support surface between the bifurcation; and a stud member fitting into said bifurcated member and having a cooperating surface engaging said support surface, said bifurcated member being positioned on one of said brace or leg, and said stud
member being positioned on the other, whereby secure enmember being poistioned on the other, whereby secure en-
gagement is maintained in an assembled condition while permitting easy separation thereof for disassembly; and a stand top pivotally connected to the upper end of said leg and in assembled condition lying parallel to said lower base surface.

6 Claims
guide position, means on said rocker arm to mount a fur guid and a blower nozzle, air compression means, means connecting said air compression means with said nozzle, means to actuate
said air compression means, cam means on said rocker arm adapted to selectively interact to release said rocker arm from selectively interact with said rocker aim cam means when said rocker arm is held in said sewing guide position to effect said rocker arm release, means to selectively rotate said rocker arm adapted to selectively actuate said sewing machine, said moto actuating means and air compression actuating means being single foot pedal, said air compression means being individually actuatable first, another foot pedal means to rotate said rocker arm to said sewing guide position, said other foot peda means including means to actuate said cam means in said hea rocker arm from said sewing guide position, and said means to hold said rocker arm in sewing guide position being two-pa interlockable means, one part of said interlockable means being on said rocker arm and the other part of said interlockable means being in said head cover, said two-part interlockable means including a detent and a grasp means.

BUTTON ORIENTATING 4
ENTATING LIFTING MECHANISM Heights, and Anthony D. Forte, Chicago, all of Ill., assignor to Union Special Corporation, Chicago, III.
Filed Apr Filed Apr. 29, 1977, Ser. No.
Int. C.2. ${ }^{\text {D }}$ (5BB 3/14
U.S. C. 112-110

1. A cyclically operated sewing machine having a work support means, a clamp means mounted for movement toward or away from said work support means, lever means operable way from said means for delivering articles to and removing them from the wing station including orientating means verically movable and removal means wherein the mpromber comprises
carried by said sewing machine for vertical sliding move
2. A sewing guidance system installable in the convention
cover of the head of a fur-sewing machine, said sewing guid cover of the head of a fur-sewing machine, said sewing guid
ance means comprising a fur-sewing machine head, a head ance means comprising a said rocker arm rotatably mounted in said head cover, said rocker arm adapted to rotate to a sewing guide position and to rotate away from said sewing guide position, said rocker arm including spring means, said spring means normally beans to hold said rocker arm in said sewing

4,094,258

FUR GUIDE FOR A FUR-SEWING MACHINE FUR GUIDE FOR A FUR-SEWING MACHINE Filed Oct. 29, 1976, Ser. No. 736,891 U.S. C. 112-20 Int. C.'2 D05B 23/00, 35/00 11 Claims

ment relative thereto; and
actuator means secured to said lever means and angularly responsive to movement thereof and operative to effect movement of said member means for effecting placement of said orientating means in timed relation to the sewing
cycle.

METHOD AND APPARATUS
METHOD AND APPARATUS FOR AUTOMATIC
for adjusting the position of said rib member relative to the Johann Otto Kleinschmidt, Karlsrube, and Wolfgang Niem,
Leonberg, both of Germany, assignors to Union Special Leonberg, both of Germany, assignors to Un
G.m.b.H., Stuttgart, Germany
Filed Aug. 12, 1976, Ser. No. 713,949
Cluims priority, application Germany, Aug. 14, 1975, 2536260;
Claims priority, application Germany, Aug. 14, 1975, 2536260;
Jun. $5,1976,2625503$; Jun. $5,1976,2625504$

Int. Cl. 2 D05B 27/04 U.S. C. 112-121.15

35 Claims

1. In combination with a sewing machine mounted on a table top having stitch forming instrumentalities, a feed mechanism for feeding material workpieces to said stitch forming instru mentality, and an edge guide means for guiding an edge of sai workpieces to said stitch forming instrumentalities, an apparacontinuously feed workpieces to said instrumentalities, comprising:
prising:
guide uide rail means, a portion of wh
stitch forming instrumentalities;
stitch forming instrumentalities; means carried by and guided through said stitch forming instrumentalities by said guide rail means and adapted the movement imparted to said workpieces by said feed mechanism means continuously draws the next succeeding workpiece into the stitch forming instrumentalities to be sewn.

4,094,261

ADJUSTABLE NEEDLE GUARD Stanley J. Ketterer, Jamesburg, and William J. Edwards, Cran bury, both of N.J., assignors to The Singer Company, N York, N.Y. Filed Mar. 22, 1977, Ser. No. 779,957
U.S. C. 112-228 4 Claims U.S. A. rotary loop taker for a sewing machine having a recip rocatory needle operating in a path for cooperating with said loop taker, said loop taker including a cup-shaped body formed by a bottom wall, a vertical side wall extending from said side wall, a loop seizing beak formed in said annular ribl, a ser being rib member formed in said bottom wall,
spaced from said vertical side wall and disposed at a location $\begin{array}{lll}\text { spaced from said vertical side wall and aisposed an means for } & \text { I. In a sailboat } & \text { Claims }\end{array}$ substaniaily beneart said loop seizing beak, and means for iol in a sailboat assembly including a huill, a mast disposed
deflecting said rib member away from said vertical side wall from said hull, a plurality of fore and aft stays and lateral stays
disposed between said mast and said hull for providing support to said mast and a ballasted keel disposed on the underside of pivotal support means fomprising:
hull for engazeans formed on the upper surface of said support means having a first axis of pivotal motion paitinged in common with the juncture of said fore and aft stays within said hull;
a plurality of first pulleys disposed within said hull respecively along lateral edges thereof for engaging corresponding ones of said lateral stays;
a pluraity of second pulleys disposed within said hull in
substantial corresponding longitudinal alignment below said first pulleys for engaging said lateral stays directed from opposite ones of said first pulleys;

pivotal attachment means interposed between said hull and said ballasted keel including a second axis of pivotal mo-
tion aligned in substantial parallel alignment with said first axis, said pivotal attachment means including a pivot rod extending longitudinally in a pocket formed on the underside of said hull, said pivot rod being secured to said keel in rotation; and,
be attached thereat to said lateral stays extending from said second pulleys, said articulating means including an arm secured to said pivot rod in the interior of said hull to extend radially therefrom, whereby lateral articulation of
said mast is accompanied by an opposite articulation of said mast
said keel.

QUICK-RELEASE, SURESET ANTI-FOULING ANCHOR Richard W. Nickerson, P. O. Box 294, and Thomas R. Nickerson, P. O. Box 654, both of Frazier Park, Calif. 93225 Filed Jul. 28, 1977, Ser. No. 820,04
U.S. CI. 114-304

2 Claims
forming edges of the cut-out control means being cam like;
like;
wo flukes shaped like truncated triangles, one located wo flukes shaped like truncated triangles, one located on
each end of the shank with the bases thereof parallel to the control means of the shank;
two U-shaped anti-roll rods or stocks attached at right angles to the center of the flukes and joined within the control means of the shank so that vertical forces applied
to the shank cause the rod farthest from the enlarged end of the shank cause the rod farthest from the enlarged end
of the shank to engage the cam surfaces of the control means positioning the base of the flukes in parallel rela. tionship with the shank;
two support rods joining the flukes at the center of the bases thereof and passing through the cut-out control means of to engage the control means cam surfaces positioning the base of the flukes at an angle greater than 30° and less than 40° on either side and parallel with the shank, such support rods being larger in diameter and located at right angles to the plane of the anti-roll rods one being above ircular support and anti-foul
of the base of each fluke th rings attached to the center of the base of each fluke the anti-roll and
passing through the center of said rings; least two plates mounted on each of the circular suppor
rings parallel to the flukes which plates shield the cm-lite rings parallel to the flukes which plates shield the cam-lik
control means and rods passing therethrough and act as control means and rods passing therethrough and act as
tripping palms to form guide and support surfaces for tripping palms to form guide and support surfaces for
movement of the anchor into the holding position and reversing the holding position;
an arcuate anti-fouling rod attached to the shank just above the upper end of the flukes to protect the mechanism from engagement with marine vegetation.

DEVICE IN COLL $4,094,265$
DEVICE IN COLLAPSIBLE ANCHORS
arvid Isaksson, N-Torngatan 17, Lidkoping, Sweden (S-531 00) Claims Filed Feb. 24, 1977, Ser. No. 711,517 Claims priority application Sweden, Mar. 3, 1976, 7603000 U.S. C. 114-307

1. A quick-release marine anchor comprising
an attachment means
a shank with an enlarged end portion on the extremity said end portion axial attachment means;
said end portion axially cut-out to form a control means the

2. A device in preferably collapsible anchors of the type having two flukes, said flukes being mounted on two shanks
making an angle with each other, and each fluke, which has a making an angle with each other, and each fluke, which has
sharp point, being fixed to the shank in such a manner that the major portion of the surface of said fluke is located at the side of and, in the operative position outside, each respective shank and spreads out in an inclined plane located transversely of the ongitudinal direction of the shank, wherein there are pro inclined portions with through-holes; wherein a bolt, suitably provided with a ring for an anchor line or chain, extends hrough the holes; wherein the bolt, which is intended to resi with an end abutment against one outer side of the mutually adjacent, inclined portions, is provided with a resilient means inserted under tension between an opposing abutment pro
vided on the bolt and the other outer side of the mutuly adjacent portions and holding said portions together in a paral.
el position; wherein an end portion extending radially from cylinder at right angles to said passageway, said screw shaft the bolt hole of one inclined portion is located at a greater having a knob for controlling its lateral travel, which will distance from said bolt hole than an opposing abutment surface cover and uncover a passageway leading to an offset and adjacent and connected to the second inclined portion, and signed such that said extending end portion is movable out of and into locked position upon the shifting of said extending end ortion of said one inclined portion in a direction away from aid second inclined portion against the action of said resilient means.

4,094,266
ELEVATOR AUDIBLE SIGNALING DEVICE P. Artt, 37090 Jordan, Mt. Clemens, Mich. 4804 Flled Apr. 21, 1977, Ser. No. 789,613
U.S. Cl. 116-64

4 Claims

connecting passageway in the base of said cylinder, and said base of said cylinder includes a washer and a hollow stem for entering the neck of said tank containing said helium gas.

1. An audible signaling device for an elevator car of the type having an access opening and a door slideably carried by saii elevator car across said opening and movable from a closed comprising:
a housing means having a gong;
a striker carried by said housing means and operable upon engagement to strike said gong; magnetic responsive lever biased arm pivotally mounted in
said housing for engaging said striker to cause said strik said strike said gong said laver striker to cause said striker sought adjacent , said lever arm being movable when brought adjacent to a magnet;
said magnet comprising at least one permanent magnet
mounted on a floor for actuating said lever arm to mover mounted on a foor for actuatitg said lever arm to mov ing means coacting with the lever arm for maintaining said lever arm in a pivoted position while said lever arm is adjacent said magnet;
said housing means being mounted to said door of said eleva tor car such that, upon opening of said elevator car door, said lever is moved adjacent said magnet and activated to strike said striker, said magnet being so positioned that said lever remains
commences to close.

4,094,26

DISTRESS SIGNAL DEVICE
John Davis, Jr., Rte. 1, Box 172D, Eatonville, Wash. 98328 Filed Apr. 14, 1977, Ser. No. 787,441
B . FU9F 9/00

$$
24 \text { B }
$$

U.S. CI. 116-124 B \qquad 1. A distress signal device, comprising a colored balloon, fitting secured to said balloon, with a cord secured fixedly hereto, a slidable sleeve secured within said fitting for th passage of helium gas for inflating said balloon, a cylinde cylinder including an extending stem having a passageway herein, which intersects with a side port, and said side port, when said stem is received within said slidable sleeve, aligns with a port of said slidable sleeve for the passage of said helium with a port of said slidable sleeve for the passage of sadid helium
gas into said balloon and a screw shaft is threaded into said

4,094,268

APPARATUS FOR GROWING HGI CRYSTALS Michael M. Schieber; Israel Beinglass, and Glora Dishon, all of
 Energy, Washington, D.C
Division of Ser. No. 681,639, Apr. 29, 1976, Pat. No. 4,030,964. his application Mar. 30, 1977, Ser. No. 782,875 Int. Cl. ${ }^{2}$ B01J $17 / 30$; CO1G $13 / 04$ U.S. Cl. $118-49.1$

4 Claims

1. An apparatus for vapor phase growth of mercuric iodide crystals comprising: a horizontally extending furnace divided into two distinct temperature zones and having a central heating box extending through said temperature zones, means for
independently controlling the temperature of each of said temperature zone, an evacuated ampoule containing purified mercuric iodide source material rotatably located in said heating box of said furnace and positioned substantially equally in each of said temperature zones, means connected to said ampoule for rotating same, air supply means comprising a tube xtending into said heating box along the length of said amdirected outlets for providing spaced axial airflows along said mpoule, air tube means extending into said heating box for providing a radial airflow about at least one end of said ampoule, means for varying air flowing through said air supply
length of said ampoule, and means for varying air flowin through said air tube means, and means for axially moving said air supply means in a direction axially away from said one end
and said air tube means in an opposite directions axially away from said one end.

FISH EGG INCUBATING DEVICE David W. Whitlock, Bartlesville, Okla, assignor to Federation of Fly Fishermen, El Segundo, Calif.
Filed Oct. 22, 1976, Ser. No. 735,001
U.S. Cl. 119-3

VAPOR DEPOSITION APPARATUS FOR COATING CONTINUOUSLY MOVING SUBSTRATES WITH
Yordan Petrov Malinorski; Stefan Todoror Bakardjier, and Georgi Mircher Martinov, all of Sofia, Bulgaria, assignors to
Znfop pri Ban, Sofie Butgrig Zlafop pri Ban, Sofia, Bulgaria ${ }_{3}$ Int. Cl. ${ }^{2}$ A01K 61/00, 63/00

Nov. 18, 1975, Ser. No. 632,916 Claims priority, application Buigaria, Jun. 14, 1974, 26894 U.S. C1. 118-49.1

1. A device for incubating spherical fish eggs and for provid5 Claim ing a protective rearing area for fry hatched from such eggs
a closed container having an upper egg incubating chamber, and a lower fry rearing chamber separated by a horizontal dividing wall,
said upper portion of said container being defined by said dividing wall and a top, side and end walls,
said dividing wall being provided with a plurality of apereggs but gre width slightly less than the diameter of said egsich hatch from than the smallest dimension of the fry which hatch from said eggs,
said side, end and top walls having a plurality of apertures therein of a width less than the smallest dimension of the newly hatched fry to inhibit the entrance of predators and
the escape of fry whereby escaping fry will tend to move the escape of fry whereby escaping fry will tend to move
when hatched through said dividing wall aperture into
2. Apparatus for the continuous production of volatizab solid material-coated substrates which comprises wall means adapted for connection to a vacuum producing means and defining an essentially closed chamber in which the vacuum is produced by said vacuum producing means, crucible support
means forming a part of said wall means and defining a reces therein, an elongated and closed crucible formed of materia which is inert when heated to an elevated temperatur mounted to the crucible support means outside of said chambe and substantially within said recess, the walls of the crucible support means being generally spaced from the walls of said
crucible, said crucible having a rectangular neck portion ex crucible, said crucible having a rectangular neck portion ex-
tending upwardly through the crucible support means and into the chamber terminating in a restricted, rectangular outlet opening into the chamber for discharging vapor from said crucible therethrough, the interior of the crucible thereby communicating with the vacuum while the exterior of the crucible lies substantially completely outside said chamber an the transverse cross-sectional area of the elongated crucible
being at least five times the cross-sectional area of the crucible outlet so that a direct collimated and rectangular beam of vapor of said solid material issues from the restricted outlet, radiant heating means located in the crucible support mean and outside of the chamber for substantially uniformly heating the exterior of the crucible to vaporize solid material located ber for supporting a moving substrate during travel over said rectangular outlet of the crucible, the substrate supporting means being positioned so that the surface of the substrate passing over the outlet will be located not more than 10 mm from the outlet whereby a layer of the material completely free from impurities can be continuously deposited on the surface of the moving substrate.
said lower fry rearing chamber,
said lower fry rearing chamber being defined by said dividing wall, side, bottom, and end walls,
said fry rearing chamber side, bottom and end walls having width to inhibit the entrance of predators, but sufficiently wide to permit the escape of the fry after absorption of the egg sac and attainment of a free swimming state.

4,094,271
AQUARRUM BACKSTRIP
4nthony Louis, 437 Grinneli Dr Bent Filed Nor. 1, 1976, Ser. No. 737,542
${ }^{\text {Int. C. }{ }^{2}}{ }^{2}$ A01K $63 / 00$
U.S. C. 119-5

1. An aquarium top backstrip having, in combination: 1. An aquariated to be supported in a position overlying a
a bortion of an aquarium;
\qquad
means defining a plurality of openings extending through said body for receiving aquarium equipment; and

4,094,273

AIR-FUEL RATIO ADJUSTING SYSTEM plurality of plastic covers for said openings sized and Tadashi Hettori, Okazald, and Taksmichi Naksere, Gamagori,
shaped to close the openings when installed on said body, both of Japan, assignors to Nippon Soken, Inc., Nishemo, Japan said covers having plate-like top members at least as large as the openings to be closed thereby, and means on the undersides of the covers for fitting into the openings and holding the covers tightly but releasably in place on said body;
t least one of said covers including means extending acros the cover and weakening the cover along at least one
preselected break line, whereby the cover may rated into at least two sections to produce a partial cover for the associated opening held in place in the opening by said means on the underside thereof, and a replaceable cover for the remainder of the opening, and said sections may be rearranged in the associated opening to expose an cover different portions of the opening.

EXTERNALLY IGNITED FOUR CYCLE INTEPNAL COMBUSTION ENGINE
Michael G. May, Bel Air, CH 1180 Rolle, Switzerland
Continuation-in-part of Ser. No. 545, 023, Jan. 29, 1975, Pat. No. $4,000,722$. This application Nor. 10, 1975, Ser. No. 630,624 Claims priority, application Italy, Jan. ${ }^{\text {Int. C. }}{ }^{2}$ F02B $3 / 00$
U.S. C. 123-30 D

13 Claims

1. An internal combustion engine, the combination compris ing a cylinder head, an inlet valve and an outlet valve including respective face portions and respective stem portions having respective axes which terminate in spaced relation relative to , id face portion of said outlet valve and lying at least substan tially within the extended geometrical surface defined by the ath of said piston, and a passage leading from said face portio of said inlet valve to the said chamber surrounding the said outlet valve, so that in said chamber will be created near the end of the compression stroke a substantially single gaseou wirl flow, which is substantially parallel to the area of the piston top opposite said chamber, and further comprising a cated in proximity to that side of the terminus of said passage which is nearest to the center of said swirl flow.

Claims priority, application Japan, Jul. 14, 1975, 50-86565
S. CT. Int. Cl. ${ }^{2}$ F02B 3/00; $\mathrm{F02M} 7 / 12,23 / 0$

US. Cl. 123-32 EE

4 Cleims

FUEL INJECTION CONTROL SYSTEM Susumu Harada, Oobu, and Masakszu Ninomiya, Kariya, both of Japan, assignors to Nippondenso Co., Ltd,, Kariya, Japan
Filed Aug. 4, 1976, Ser. No. 711,603 Claims priority, application Japan, Aug. 8, 1975, 50-96879 U.S. C1. 123-32 EL

1. A method for controlling fuel injection in an internal combustion engine which includes means for generating fuel injection control pulses whose duration depends on engine
parameters, comprising the steps of: parameters, comprising the steps of:
determining a reference pulse duratio
determining a reference rpm;
comparing the control pulse width with said reference pulse
duration;
comparing the engine rpm, with said reference rpm; interrupting fuel supply to the engine when the control pulse
duration is less than said reference pulse duration and the engine rpm is greater than said reference rpm.

VAPORIZED LIQUID FUEL DELIVERY AND METERING SYSTEM James E. Auller, Ann Arbor, Douglas R. Hamburg, Birmingham; James E. Hyland, Trenton, and David F. Moyer, Ann Arbor, Mich.

Flued Feb. 23, 1976, Ser. No. 660,281

1. A fuel delivery and metering system for use in conjunction 1. A fuel delivery and metering system for use in conjunction
with an internal combustion engine having a source of fuel, which fuel is a liquid under standard temperature and pressure which fuel is a liquid under standard conditions, comprising in combination
coarse liquid fuel delivery means communicating with the
source of liquid fuel;
heating means in fluid communication with said delivery
means operative to substantially completely vaporize means operative to substantially completely vaporize
liquid fuel delivered to said heating means by said delivery means;
vapor reservoir means spaced apart from, and in fluid communication with, said heating means operative to define
variable volume vapor storage space for receipt of said
storage of vapor generated by said heating means, furthe operative to maintain the vapor stored therein at substan tially atmospheric pressure;
storage space operative to control said delivery means whereby the generation and supply of vaporized liquid fuel may be controlled to maintain a predetermined volume of vapor within the vapor storage space; carburetor means in fluid communication with said vapor
reservoir means operative to receive vaporized liquid fuel reservoir means operative to receive vaporized liquid fue
from said vapor storage and further operative to mix the from said vapor storage and further operative to mix the
fuel vapor with air to establish a combustible air/fuel mixture; and
means cooperative with said vapor reservoir means for
maintaining the air/fuel ratio of the combustible mixture maintaining the air/fuel ratio of the combustible mixtur estabished by said
stant for variations in the rate of establishment of the combustible mixture.

4,094,276

INTAKE MANIFOLD FOR INTERNAL COMBUSTION ENGINE
Akihisa Nakamura, Tokyo; Takashi Umemoto, Tokorozawa, and Sakuil Arai, Wako, all of Japan, asslenors to Honda Giken Sakuji Arai, Wako, all of Japan, assign
Kogyo Kabushikd Kaisha, Tokyo, Japan Filed Apr. 16, 1976, Ser. No. 677,669 Claims priority, application Japan, Apr. 24, 1975, 50-49087 U.S. Cl. 123-52 M

1. An intake manifold for delivering an air-fuel mixture to an internal combustion engine having a plurality of cylinders, supplying air-fuel mixture to one of the engine cylinders, a second pipe leading from the same mixture source for supply ing air-fuel mixture to another cylinder of the engine, the pipes having substantially the same constant internal cross sectional area, with smooth internal contours without discontinuities,
the pipes each being non-circular in cross section, one of the pipes having an asymmetrical internal sectional contour in pipes having an asymmetrical internal sectional contour in
which the lower portion thereof is smaller than the upper portion thereof, the other pipe having an asymmetrical interna sectional contour in which the lower portion thereof is larger than the upper portion thereof.

4,094,277
INTAKE VALVE MECHANISM FOR PREVENTING INIAKE BACK FLOW OF EXHAUST GA
BACK FLOW OF EXHAUST GAS
Kenji Goto, and Daisaku Sawade, both of Susono, Japan, asslg ors to Tokyo Jidosha Kogyo Kabushiki Kaisha, Toyota, Japan Filed Jun. 9, 1976, Ser. No. 694,445
Claims priority, application Japan, Jun. 24, 1975, $50-076441$.S. C. 123-52 MF Int. Cl. ${ }^{2}$ F01L $1 / 28$
engine out of an intake port of the chamber, said intake valve first outlet port means of said working cylinder means with mechanism comprising
(a) poppet valve means for alternately opening and blocking
the intake port, said poppet valve means including intake valve having a stem and further having a disc por tion mounted on one end of said stem, said poppet valv
means further including a valve guide for supporting said stem to allow said disc portion to selectively open and block said intake port of the engine;
(b) back-flow valve means positioned between said poppet port in response to pressure in the combustion chamber said back-flow valve means including a back-flow preven tion valve having a hollow base and further having an expanded portion mounted on one end of said base, saic hollow base being mounted concentric to said stem to
allow said expanded portion to slide back and forth between said intake port and said disc portion, said disc

portion of said intake valve extending parallel said ex panded portion of said back-flow prevention valve, said
intake port including a recessed seat to receive said ex inake port including
(c) means for continuously biasing said back-flow valve means toward said disc portion of said poppet valve
means, said biasing means having sufficient strength means, said biasing means having sumfien stocking said
prevent said back-flow valve means from blole intake port when said poppet valve means is open until th pressure in the combustion chamber reaches a predeter mined value, said biasing means including a spring posi
tioned concentric to said hollow base of said back-flow prevention valve, said spring being proportioned for biasing said expanded portion substantially against said disc
portion when said poppet valve means is closed, and for portion when said poppet valve means is closed, and fo leaving a gap between said expanded portion and said dise
portion under conditions of back-flow pressure when said poppet valve means is open

TWO-STROKE COMBUSTION ENGINES
Walter Franke, Hittfelder Kirchweg 22, 2105 Seevetal 3, Ger many
Dirision of Ser. No. 443,922, Feb. 19, 1974, Pat. No. 3,981,280 This application Jan. 13, 1976, Ser. No. 648,652 Claims priority, application Germany, Feb. 19, 1973, 2308127 Int. C1. ${ }^{2}$ F02B 75/20, $57 / 00$
U.S. C. 123-59 EC

1. A two-stroke internal combustion engine comprising working cylinder means; auxiliary cylinder means; working piston means reciprocally operable within said working cylinder means; auxiliary piston means reciprocally operable within said auxiliary cylinder means; working chamber means define by said working cylinder means on one side of said working piston means; auxiliary working chamber means defined by
said auxiliary cylinder means on one side of said auxiliary piston means; ignition means provided in both said working piston means; ignition means provided in both said working first inlet port means and first outlet port means in both said working cylinder means and said auxiliary cylinder means, said
first inlet and first outlet port means for each being controlled respectively, by movement of said working piston means and respectively, by movement of first channel means connecting said
said auxiliry piston means;
said first inlet port means of said auxiliary cylinder means to said first inlet port means of said auxiliary cylinder means to chamber means into said auxiliary working chamber means at the end of a power stroke of said working piston means; said auxiliary piston means operating to effect compression within

said auxiliary working chamber means of the total exhaust gas quantity thus transferred from said working chamber means; said ignition means operating to effect ignition of said compressed exhaust gasses within said auxiliary working chamber
means thereby to effect a power stroke of said auxiliary piston means as a result of said ignition of said exhaust gasses.

DUCTILE IRON ROLL $4,094,27$

OLIER TAPPET BODY AND METHOD Fonneth E. Kueny, North MAKING SAME son Products Div. of Sealed Power Corporation Mor to JohnMich Power Corporation, Muskegon, Filed May 7, 1976, Ser. No. 684,250 U.S. Cl. 123-90.51 Int. C. ${ }^{2}$ F01L $1 / 14$

1. In a roller tappet of the type including a central valve lifter body having a bifurcated end supporting a roller, the formed in a cast iron engine block, wherein the improvement omprises:
said body being formed from nodular iron.

valve rotating device

Stanley H. Updike, Painestille, Ohio, assignor to TRW Inc. Filed Jul. 6, 1976, Ser. No. 703,071 U.S. C1. 123-90.3 Cl. ${ }^{\text {In }}$ FO1L $1 / 32$; F16K $29 / 00$

8 Claims
said induction passage means being fixedly secured to and supported by said engine, said first resilient means being opera-
tively connected to said throttle valve means as to apply tively connected to said throttle valve means as to apply
thereto a first resilient force for urging said throttle valve means in a closing direction, and said second resilient means being effective regardless of whether or not said engine is operating to at times exhibit an added resilient resistance force
resisting further resisting further opening movement of said throttle valve
means by associated throttle lever means after said throttle valve means has been opened to a preselected degree, said second resilient means said induction passage means said throt tle valve means and said connecting means all being commonly supported by said engine, said second resilient means compris
ing torsion spring means preloaded as to cause said added ing torsion spring means preloaded as to cause said added
resilient resistance force to be of a preselected minimum value upon initiation of said further opening movement, wherein said spring means comprises a generally angularly deflectable end, and wherein said throttle lever means operatively engages and
angularly deflects said deflectable end upon said initiation of said further opening movement.

IGNITION TIMING CONTROL APPARATUS FOR
5. A valve rotator for rotating a spring biased valve about he axis of ha sve ror the compring: (a) a body to be located comxial with: 10 and rotatable with the annular groove therein;
(b) a valve spring retainer coaxial with ad ado body and adapted for contact with the valve biasing spring; co ang, (c) a garter spring disposed in said annula
garter spring comprising a series (d) a Belleville comprising a series of coils; (d) a Belleville washer located between said garter spring
and said valve spring retainer and which applies a force on and said valve spring retainer and which applies a force on
the coils tending to tilt the coils when said body and said valve spring retainer move axially toward each other; (e) means located internally of the coils of said garter spring and extending coextensively therewith, said means engaggarter spring and clamping the coils of the garter spring garter spring and clamping the coils of the garter spring
betwen said Belleville washer and said body to minimize distortion of said coils as well as to minimize oscillation of he garter spring coils upon axial loading of the garter
spring due to said body and said valve spring retainer moving axially toward each other.

4,094,281

RESILIENT THROTTLE STOP MEANS
Milton J. Kittler, 48 Casablanca Est's., Scottsdale, Ariz. 85253 Ision of Ser. No. 522,236, Nov. 8, 1974, Pat. No. 4,016,842. This application Sep. 20, 1976, Ser. No. 724,5
Int. C1. ${ }^{\text {F FO2D }} 11 / 02 ;$ G05G $5 / 04$ U.S. C. $123-98$

7 Claims

1. Resilient throttle stop apparatus for use in combination with a combustion engine wherein said engine comprises an intake structure, induction passage means, formed in said in-
take structure, and throttle valve means for controlling flow through said induction passage means, said throttle stop apparatus comprising first resilient means, second resilient means,
differential pressure across said diaphragm to advance the differen timing then equalizes pressure across said diaphragm to place the ignition timing at a value between retard and advance, and finally causes differential pressure across said
diaphragm to retard the ignition timing advance, and inaily causes differential
diaphragm to retard the ignition timing.
```
INTERNAL COMBUSTION ENGINE
Douglas Leslie Sutton, Solihill, England, assignor to British Douglas Leslie Sutton, Solihull, England, assigno
``` Filed Aug. 20, 1976, Ser. No. 716,208 Claims priority, application United Kingdom, Aug. 19, 1975, U.S. CI. 123-119 Int. C. \({ }^{2}\) F02M 25/06

5 Claims

1. An internal combustion engine incorporating a plurality of carburetters mounted on the engine by way of a common structural member having a primary duct for each carburetter
to allow the passage of fuel/air mixture from a carburetter to to allow the passage of fuel//air mixture from a carburetter to
the engine and a secondary duct for liquid through the member the engine and a secondary duct for liquid through the member
characterised by the provision of a third duct in the member in characterised by the provision of a third duct in the member in ship with, the primary duct; a pipe linking the third duct up-
stream of the hat exchange path to an exhaust manifold of the stream of the heat exchange path to an exheust manifold of the
engine; and a passage downstream of the heat exchange path engine; and a passage downstream of the heat exchange path linkimg tuct duct which is downstream of the heat exchange path.

EMISSION \(\begin{gathered}4,094,284 \\ \text { CONTROL SYSTEM }\end{gathered}\)
Willinm Fred Gesell, Huron, Ohio, asslgnor to Eltra Corpora tion, Toledo, Ohio
Filed Oct. 21, 1975, Ser. No. 621
Int. C. \({ }^{2}\) F02M 25/06
U.S. C. \(123-119\) A
43 Claims
1. In an ignition timing control device for an internal combustion engine during warm-up, the engine having an intake passage, the combination of: an ignition timing device for the engine, an actuator for said device having two vacuum chambers separated by a flexible diaphragm, first means including a
first valve for subjecting the first of said chambers to atmospheric pressure or to suction pressure from said engine intake passage, second means including a second valve for subjecting the second of said vacuum chambers to atmospheric pressure or to suction pressure from said intake passage, a first tempera-
ture responsive mechanism controlling operation of said firs ture responsive mechanism controlling operation of said firs
valve so that below a first predetermined temperature said firs valve causes suction pressure to be introduced into said first chamber, a second temperature responsive mechanism controlling operation of said second valve so that above a second predetermined temperature said second valve causes suction increasing engine temperature during warm-up first causes

IGNITION TNMING CONIRGL APPARATUS FOR Teruyuki Nakano, Tokyo, and Syolchi Otrka, Miyoshl, both of
Japan, assignors to Honda Giken Kozyo Kabushiki Kaisha, Japan, assignors to Honda Giken Kogyo Kabushiki Kaisha
Tokyo, Japan
Claims priority, applicitic 1977, Ser. No. 771,107, 51-20431[U] U.S. Cl. 123-117 A \({ }^{\text {Int. Cl. }{ }^{2} \text { F02P 5/12 }} 5\) Claims

1. An emission control system for an internal combustion engine, the combination comprising:
a fluidic amplifier having a supply port and an outlet port, recirculation passageway for connecting the supply port of said fluidic amplifier to a source of exhaust gas having a
pressure variable in accordance with the operation of the internal combustion engine and for connecting the outlet
port to an intake manifold for recirculating exhaust gas through the engine,
said fluidic amplifier having a power jet chamber in fluid communication with the supply port and a receiver chamber in fluid commu uaving wall means defining an diate space between a receiver chamber and the power jet chamber with the nozzle portion of the power jet chamber directed toward the receiver chamber
said fluidic amplifier having a vent chamber opening into the port for venting to a relatively low fluid pressure so as to create a differential pressure with the power jet chamber to form a relatively high velocity stream of recirculating exhaust gas acting as a beam for passage through the
intermediate space to the receiver chamber with the amount of recirculated exhaust gas varying in accordance with the pressure of the exhaust gas supplied to the supply port,
low pressure means for generating a low pressure relative to the pressure of the exhaust gas being supplied to the inlet port of said fluidic amplifier
posed in engine, and
vent passageway connecting the vent port of said fluidic amplifier to said low pressure means.

4,094,285
GAS MIXTURE FEED SYSTEM FOR INTERNAL
COMBUSTION ENGINE Teruo Yamauchi, Katsuta, all of Japan, assignors to Hitachi, Ltd., Japan
Filed Aug. 5, 1976, Ser. No. 712,089
Claims priority, application Japan, Ang. 8, 1975, \(50-95809\) US. C. 123-119 A Int. Cl. \({ }^{2}\) FO2M 25/06, 11 Claims

1. A gas mixture feed system for an internal combustion engine wherein said gas mixture feed system comprises: carburetor including an intake passageway; a throtlle valve in said intake passageway, a movable air valve in the
intake passageway upstream of said throttle valve, fuel jet means adjacent said air valve for supplying fuel into fresh air passing thereby, and fuel metering means between a fuel supply source and said fuel jet means and controlled by said air valve;
intake passageway means communicating the outlet of said intake passageway with the internal combustion engine; and
exhaust gas recirculating means for recirculating the exhaust passageway said exhaust combustion engine to the intake passageway, said exhaust gas recirculating means having
an outlet opening disposed in a wall surface of said intake
passageway between said air valve and said throttle valve such that the exhaust gas is fed into the air-fuel mixture downstream of said air valve and said fuel jet means.

4,094,286
NTERNAL COMBUSTION ENGINE AND METHOD OF REDUCING TOXIC COMPOUNDS IN THE EXHAUST Hiroshi Kuroda, Tokyo; Yasuo Nakajime Hiroshi Kuroda, Tokyo; Yasuo Nakajima, Yokosuka; Yo-
shimasa Hayashi, and Shin-lchi Nagumo, both of Yokohama, salimasa Hayashi, and Shin-lchi Nagumo, both of Yokohama,
all of Japan, anssignors to Nisan Mour Company, Ltd., Japan Flied Ang. 24, 1977, Ser. No. 717,408 Claims priority, appication Japan, Aug. 25, 1975, 50-103243; Int. C.
U.S. CI. 123-119 A

8 Claims

1. A multiple-cylinder spark-ignition internal combustion engine comprising exhaust-gas cleaning means in the exhaust ystem; mixture control means by which the ratio of the weight of inactive compounds in the mixture gases produced in the combustion chamber of each of the engine cylinders during
each cycle of operation of the cylinder to the weight of the fuel component in the air-fuel mixture inducted into the combus-
tion chamber is maintained within a range between about tion chamber is maintained within a range between about 13.15:1 and about 22.5:1, each of said engine cylinders having a bore diameter less than 95 millimeters and a bore volume less than 600 millimeters and effective to provide a compression
ratio within the range between about \(8.0: 1\) and about \(10.5: 1\), ratio within the range between about \(8.0: 1\) and about \(10.5: 1\),
said mixture control means including an exhaust gas recirculasaid mixture conrrol means including an exhaust gase from the
tion system operative to recirculate the exhaust gases former exhaust system into the intake manifold of the engine at a rate providing a recirculated exhaust gas ratio which is varied in accordance with such characteristics as are indicated by cosed-loop isoplethic curves in terms of the revolution speed
and load of the engine and which peaks up during normal steady-state operating conditions of the engine; and an ignition system which includes in the combustion chamber in each of the engine cylinders, a spark plug having a firing point which is located at a distance within a range between about 2 millime ers and 7 millimeters from the internal surface of a wall porcion of a combustion chamber in which the spark plug is the space enclosed within a spherical envelope having a radius \(r\) in the combustion chamber about the firing point of said spark plug occupies at least 35 percent of the clearance volume of the combustion chamber, wherein said radius \(r\) is given, when measured in meters, by the relation \(r=(\theta \cdot V c) /(6 \mathrm{~N})\) where \(\theta\) is the degree of the top dead center, Vc is the combustion rate in meters per second of the combustible charge in the combustion chamber and \(\mathbf{N}\) is the revolution speed in rpm of the engine within a predetermined range.

4,094,287
EXHAUST GAS RECIRCULATION SYSTEM Hidetake Nohira, Susono, Japan, assignor to Toyota Jidosh Kogyo Kabushiki Kaisha, Toyota, Japan
Filed Dec. 13, 1976, Ser. No. 750,141 Claims priority, application Japan, Sep. 7, 1976, 51 1-106212 U.S. CI. 123-119 A
of said fuel control valve and upstream of said engine control portions of said screens in the space therebetween, wherein valve, a damper plate having a center line, means mounting said plates have oppositely raised rims around said opening and said damper plate in said second air inlet for pivoting from a first position obturating the same, to a second position, the pivot axis of said plate being offset from its center line, thus urging said plate to second position by differential absolute pressures within and without said housing, and resilient means
1. Apparatus for improved preconditioning of the fuel-air mixture in the induction tube of a mixture compressing and externally ignited internal combustion engine with an arbitrarily manipulatable throttle valve, which cooperates wioh covice pivotable against a restoring force by means of the induction air quantity, further characterized in that the induc tion tube contains an integral laterally extending chambe having an arcuate interior surface into which the throttle valve and a multiple vaned pivotal throttle valve can be rotated
1. A carburetor comprising, a housing including walls defin ing a passageway extending from a first air inlet to and through of an internal combustion engine, an engine control valve mounted in said throat portion and operable to vary the effec tive opening therethrough, a first damper pivoted in said first air inlet and operable to vary the effective opening thereof, a stream of said first damper and upstream of said engine contro valve, and operable to introduce atomized fuel into said pas
sageway, manually controlled means positivel sageway, manually controlled means positively and directly
interconnecting said engine control valve and said fuel control interconnecting said engine control valve and said fuel contro diesel fuel to said fuel control valve at pressures of the order of 300 pisi, there being a second air inlet in and through the wall
of said housing and opening into said passageway downstream

1. An improved exhaust gas recirculation system for recirculating exhaust gases to an intake system through exhaust ga recirculating valve means operated in response to a vacuum in
the intake system in an internal combustion engine, wherein the improvement comprises an intake system vacuum operated valve means which controls the amount of the exhaust gases to be recirculated therethrough in response to the intake system vacuum and a vacuum pump operated valve means which by said first mentioned valve means in response to a vacuum of an engine-driven or an electrically-driven vacuum pump which always produces a vacuum above a predetermined value during the driving of the vehicle.

CARBURETOR FOR ENGINES USING DIESEL FUEL William E. Davis, 762 Lindo La., Port St. Lucie, Fla. 3345 Filed Dec. 18, 1975, Ser. No. 642,053
U.S. CI. 123-127
against the urge of differential pressure

4,094,289
APPARATUS FOR IMPROVED PRECONDITIONING OF PPARAIUS FUEL-AIR MIXTURE
Wolf Wessel, OberriexIngen, and Volkhard Stein, Stuttgart, both of Germany, asslgnors to Robert Bosch GmbH, Stuttgart, Germany
U.S. CI. 123-141

Filed Nov, 4, 1976, Ser. No. 738,92 Claims priority, application Germany, Dec. 12, 1975, 2555997 said

8 Claims
said screens have marginal edges extending in between said rims.

4,094,291
VAPORIZED LIQUID Douglas R. Hamburg, Birmingham, Mich., assignor to Ford Motor Company, Dearborn, Mich.
Filed Feb. 23, 1976, Ser. No. 660,310
U.S. Cl. 123-141 Int. C1.2 F02M 29/00 5 Claims

1. A carburetor for mixing a vaporized liquid fuel with air to establish a combustible air/fuel mixture for delivery to an engine comprising in combination
a carburetor body;
metering venturi means within said body communicating on an upstream end with a source of air and adapted to gener-
ate, in use, a low pressure zone having a pressure indicative of the rate of air flow therethrough;
vapor delivery nozzle means situated within the low pressure zone defined by said venturi means and having a vapor delivery orifce operative to deliver a stream of to air flow therethrough;
air swirl inducing means situated dowstream from said venturi means arranged to intercept air flowing through said venturi means and operative to cause air flowing through said venturi means to acquire a component of motion at an
angle to the direction of flow whereby air flowing therethrough may become a swirling air mass;
aperture in alignment with the vapor delivery nozzl operative to permit a stream of vaporzied liquid fuel issu ing from said delivery nozzle to pass therethrough with out sub
mixing section means downstream from said swirl inducing means for fluid communication with the engine;
said mixing section means having surface wall portions operative to define a mixing space whereby the swirling
gir mass and the vaporized liquid fuel may be mixed to air mass and the vaporized liquid fuel may be mixed
establish a combustible air/fuel mixture prior to introduc tion into the engine
said swirling mass being operative to prevent contact be tween the vaporized liquid fuel and the surface wall portions of the mixing section means.

\section*{4,094,292}

HOT STARTER SYSTEM FOR ENGINES Tadao Takagi, Salitama; Toru Yagi, Tokyo; Mitsuo Ehara,
 Saitama, and Tritsumi Yamada, Yokyo, allo, Japan, assan to Honda Giken Kobyo Kabushikd Kaisha, Toker Claims priority, application Japan, Feb. 25, 1976, 51-20427[U] U.S. C. \({ }^{123-179 ~ G}\)

1. A starter means for internal combustion engines in a heated state and of the type having an air-fuel mixture intake passage downstream of a throttle valve provided in a carbure-
or, the starter means comprising: means forming a supplemenlor, the starter means comprising: means forming a sutake pas-
tal air induction passage communicating with the intak sage; a normally closed first valve for controlling flow of supplemental arr int the first valve to permit flow of supplemen-
means for opening tal air through the induction passage to the intake passage on starting of the engine, thereby reducing the richness of the air-fuel mixture therein; and a normally open second valve interposed in the induction passage, the second valve being
movable toward a closed position in response to vacuum inten sity in the intake passage on complete firing of the engine sity in the intake passage close off flow of supplemental air
thereby to reduce and therebygh the induction passage to the intake passage, as th richness of the air-fuel mixture therein is reduced.

\section*{4,094,293}

ENGINE PREOILER AND LUBRICANT RESERVOIR John W. Evans, Rte. 41, Sharon, Conn. 06069 Filed Apr. 16, 1976, Ser. No. 677,590 Int. C. \({ }^{2}\) F01M I/00
U.S. C. 123-196 S int. C.2 \({ }^{2}\) F01M \(1 / 00\)
-
pressure sensing means for sensing said engine's oil pressure;
eans for forcing said lubricant from said reservoir when means for forcing said
said oil pressure falls below said level; and valve means communicating with said reservoir, said valve means allowing unrestriced when of engine's oil pressure said reservoir one
is below the
is

restricting lubricant flow to said reservoir during increas ing oil pressure in said engine while said pressure is below said specified level, and said valve means allowing unrestricted lubricant flow to said reservoir once said oil pres valve means including actuating means for controlling said valve means in response to said engine oil pressure sensed by said pressure sensing means.
ball PROJECTING DEVICE eer, Ware Neck, Va. 23178 , Filed Jan. 31, 1977, Ser. No. 764,197
Int. Cl. \({ }^{2}\) F41F \(1 / 04\) U.S. C. \(124-56\)
1. In a pneumatic device for projecting a ball, the device
26 Clims U.S. CI. \(124-56\)
1. In a pneumatic device for projecting a ball, the device
26 Clice comprising a ball-directing tube defining a generally tubular 1. A preoiler and lubricant reservoir assembly useable to to a first end of the tube to provide gas under pressure thereto, lubricate and internal combustion engine when the engine's oil pressure is below a specified level, said assembly comprising:
a reservoir, said reservoir being an elongated cylinder, said cylinder having an internal
storing a quantity of lubricant when said engine oil presstoring a quan said specified level;
sure is above sal
an inflatable, elastically biased membrane within said tube, inflatable, elastically biased membrane wirmint sura extend ing into the tubular inner space, so as to define a substan tially pressure-tight detent volume, and being biased towards the inflated configuration, so as to constrict the tubular inner space and
ball therethrough; bessure valve mean
pressure valve
atmosphere;
bias mense, means and acting to move the pressure valve means into a means anosition;
a pressure-responsive means operatively connected to the pressure valve means and acting against the bias means, tending to move the valve means into an open position
and and pressure chamber and a pressure-connecting means be
tween the pressure-responsive means and the pressure
about \(35^{\circ}\) to about \(50^{\circ}\); a feeder disk having a plurality of openings formed therethrough, the disk being rotatably connected to and disposed above the inclined floor surface and being substantially parallel thereto, the floor surface with the openings through the disk at the apogee of each opening as the disk rotates; drive means for rotating disk a raised central portion on the disk extending outwardly and upwardly into the chamber and having a circumferen-
tial side surface; a ledge member supported from a side wall surface of the chamber, and having a shelf surface extending outwardly above the upper portion of the disk so that the outer edge of the ledge shelf surface extend along a line forming a chord of the disk and of a disk feed opening; a transverse ledge surface extending down wardly from the outer edge of the shelf surface, towards the disk; and movable sealing means for the ball feed pening capable of permitting a bail to be fed from the feeder opening and of sealing the opening after feeding of a ball, whereby pressure in the air box can be increased to a desired pressure for ejecting the ball.

CHARCOAL AND WATER SMOKER AND COOKER Curl Boswell, and Heyman J. Manhein, both of Shreveport, La, assigoors to Bosman Industries, Inc., Shreveport, La. Filed Jun. 28, 1976, Ser. No. 700,136
Int. C. 2 A \(47 \mathrm{~J} 37 / 04\); F24B \(3 / 00\)
U.S. CI. \(126-25\) R

7 Claims

chamber, the pressure in such chamber being increased when a ball is in place in the tubulare while gas under peing restrained by the detent membrane, while gas under presat a predetermined pressure in the pressure chamber, the pressure valve means is moved into the open position, as to substantially immediately permit the deflation of the membrane when a ball is pressed
10. A pneumatic device for projecting a ball, the device comprising an air box; and gas pressure flow means located comprising an air box; and gas pressure how means loir box and having an outer portion through which the balls are pro-
jected and an inner portion in fluid flow connection with said jected and an inner portion in fluid flow connection with asd air box; ball feed channel means extending the
ball feeding means for feeding balls, one at a time, to the feed channel, the feeding means comprising:
a chamber having side walls disposed in a substantially vertical direction and a floor, a portion of the floor being
inclined to the horizontal at an angle in the range of from

1. A charcoal-water smoker and cooker comprising a vertially A charcoal-water smoker and cooker comprising a verti-
cansing comprising a separable main body, supporting base and lid oriented in vertically superimposed relation with the base disposed under the main body and the lid ing pan on the main body, said base including a fuel receivdisposed above the water pan for receiving food items, said water pan being spaced inwardly of the periphery of the main body to enable passage of smoke and heat upwardly between the pan and main body with the heat vaporizing water in the pan for smoking and cooking the food items on the grille, handle means adjacent the upper end of the main body to
nable the main body and lid along with the water pan and enable the main body and lid along with the water pan and
grille to be lifted off of the base as a unit with the fuel receiving pan remaining stationary thereby enabling the supply of fuel to be replenished without disturbing the water pan, grille and food items thereon from their position in the main body, the major weight components of the main body including the
water pan and grille being disposed so that the center of grav water pan and grille being disposed so that the center of grav
ity of the combined unit is substantially below the handle means in order to facilitate retention of the lifted unit in vert
cal orientation, said base including a base pan having supporting legs thereon, said fuel receiving pan being in the form of a liner adapted to receive a quantity of charcoal and supported in
concentric spaced relation to the base pan and including a generally horizontal outwardly extending peripheral flange overlying and supported on the base pan with the bottom of the liner spaced from the bottom of the base pan, said liner including openings in the bottom and peripheral wall thereof to provide passage for combustion supporting air, the bottom
of said base pan including combustion supporting air inlet means therein, said main body including a lower edge freely resting on the flange of the charcoal receiving liner generally
in vertical alignment with the upper edge of the base pan.

> 4,094,296 PORTABLE ADJUSTABLE OUTDOOR COOKING ACCESSORY George Beagley, 7545 W. 3100 South, Megna, Utah 84044 Filed Mar. 14,1977, Ser. No. 777,345
U.S. CI. 126-30 Int. Cl. \({ }^{2}\) F24B 3/00

12 Claims

1. A portable adjustable cooking accessory comprising:
a stake member having a first end formed into a point and a
second end formed with a flange extending substantially
normally to the longitudinal axis of said stake member;
first adapting means secured to the second end of said stake
member to extend axially away therefrom; member to extend axially away therefrom;
second adapting means removably and cooperatively associ
ated with said first adapting means to adapting means to rotate about said axis;
an adjustment member secured to saids second adapting
means, said adjustment member being comprised means, said adjustment member being comprised of a first
plate having a plurality of apertures formed therein in accordance with a preselected pattern;
a pin sized to coact with said apertures for removable positioning in a selected aperture;
an elongated arm member pivotally secured to said plate and having a handle on one end and a first hook adapted to its a chain having links sized to coact with said first hook;
a second hook adapted to one end of said chain to exten
a cooking utensil suspended from said second hook.
CERAMIC-GLASS BURNER
Earle W. Ballentine, 127 Lomita St., El Sesundo, Calif. 90245 Contineation-in-part of Ser. No. 6S4,113, Feb. 2, 1976, abmandoned, which is a continuation-in-part of Ser. No. 518,473, No. 69,793
Int. C. \({ }^{2}\) F24C \(3 / 04\)
these apertures being equal to 2.4 to 2.5 times \(\mathrm{R} d_{o}\) \(T_{R G} / T_{R A}\) wherein \(R\) is the stoichiometric air-to-gas ratio for the fuel gas, \(d_{0}\) is the aperture diameter; means including the glass plate and the burner means for defining a mixing chamber and a combustion chamber between said burner means and said plate;
the free turbulent jets of gaseous fuel being discharged from
the stoichiometric burner means into the mixing chambe at the temperature \(T_{R G}\) for entraining combustion air entering the mixing chamber for combustion after ignition of the stoichiometric mixture in the combustion chamber above the mixing chamber thereby producing combustion products which have a maximum temperature

counterflow recuperator means having an upper section and a lower section, the upper section having fins in hea exchange relation with said combustion products so that heat captured by the fins of the upper sections of the counterflow recuperators is transferred to fins of the
lower section being disposed in the flow path lower section being disposed in the flow path of the combustion air entering the mixing chamber means, so that the
combustion air is preheated to the temperature \(T\) combustion air is preheated to the temperature \(T_{R A}\); and
means for forcing the combustion air to flow through the lower section of the counterflow recuperator means into the mixing chamber.

\section*{SEPARATOR IN \(\quad 4,094,298\)}

Frederick P. Kober, Bayside, N.Y., assignor to Chem-E.W Corporation, Racine, Wis.

Filed Nor. 19, 1976, Ser. No. 743,187
U.S. Cl. 126-263

1. In an electrochemical heat-generating element of the type having two electrode layers, including an anode and a cathode, separator layer of porous, absorbent material therebetween, hrough said electrode and separator layers, the improvement comprising annular spacer means interposed between said lectrode layers, said connector means extending through said nnular spacer means, whereby to limit compression of said separator layer.

HELIOTHERMODYNAMIC SYSTEM
4,094, 299
Percy Voelker, 455 Grant Ave., Brooklyn, N.Y. 11208
Filed Oct. 28,1975 Ser. No, 626,368

U.S. C1. 126-39 J 22 Claims
1. A ceramic-glass burner for heating a cooking pan, com-
prising:
apertures for discharging free turbulent jets; a ceramic glass plate above said burner means the linear spacing of
.S. CI. 126-270
1. A helio
a balloon adapted to be floated in the upper roar energy
atmosphere where the atmospheric absorptions of solar energy is minimized,
means for maintaining said balloon inflated, means for maintaining said balloon inflated,
means for maintaining said balloon in spaced relationship relative to earth,
said balloon having a transparent portion for transmitting a light reflector covering an internal portion of said balloon light reflector covering an internal portion of said balloon
opposite said transparent portion for concentrating the incident reflected solar radiation toward a focal area thereof, and a heat receiver located in the focal area of said light
reflecting portion of said balloon, reflecting portion of said balloon,

said heat receiver comprises a solar boiler having a pluraiity of nested, serially connected heating stages including an inner most stage and an outermost stage, and solar radiasaid nested heating stages,
and a light transmitting jacket means enclosing said nested
stages to define an outermost heating stage, surroundin said nested stages,
said jacket means including a pair of spaced apart light ets defines an area of negative pressure.

SOLAR HEAT COLLECTOR
Sam W. Young, 1305 White Rd., Opelika, Ala. 36801 Int. Cl. \({ }^{2}\) F24J \(3 / 02\)

1. A solar collection comprising, a plurality of metal soft drink or beer cans of the type which have body portions and tops across the ends of said body portions, the tops having openings therein formed when the cans were opened, each of said cans having an open bottom received by the top of the next adjacent can for forming a series of connected juxtaposed
tandem coaxial cans defining successive compartments of a tandem coaxial cans throughout its length and in which said ops of said cans form longitudinally spaced generally radially extending baffles which, when said tubular body is inclined
with said openings being respectively spaced above the lowermost inside portions of the adjacent body portions, successive spillways for liquid fed by gravity from the uppermost can of said series and permit the liquid to collect in successive compartments while cascading down through said successive com partments.

\section*{4,094,301}

SOLAR COLLECTOR PANEL Edward Fredrick Sorenson, 998 Barrett, Chula Vista, Calif.
92011 , and Edward Fredrick Sorent Dr., Santee, Celward Fredrick Sorenson, Jr., 10136 Swanton Dr., Santee, Calif. 92071

Filed Mar. 19, 1976, Ser. No. 668,441
U.S. CI. 126-271

1. A solar collector panel comprising:
a heat absorbing surface
plural heat collector tubes in the heat conducting relation-
ship with ship with said heat absorbing surface,
manifold tubes connected to the opposite ends of said heat collector tubes,
said heat absorbing surface and said heat collector tubes being mounted on a base
said base having an
said base having an up
at least one glass pana
a seal molding secured over the upper edge of said base and positioning said glass panel above said heat absorbing surface,
said heat absorbing surface comprising means including a plurality of sheet sections having part cylindrical end flanges for producing a spring action against said heat collection tubes and holding said sheet sections in position on said tubes,
substantialit U-shaped clips secured over the junctions of at least one of said flanges and holding said sheet sections in
heat conducting relationship with said heat collector heat
tubes.

4,094,302
FURNACE WITH HEAT STORAGE ELEMENTS
Eduard Rohr, Magenvil, Svitzeriand, asslgnor to Ed. Rohr AG Magenvil, Switzerland
Cleime priced Jui. application Ser. No. 708,218 29 , 1975, 9841/75

Int. C1. \({ }^{2}\) F24H \(7 / 04\)
U.S. CI. \(126-400\)
\[
104
\]
1. Furnce and boiler unit having a bousing (18) 12 Claim (2) within the housing, an exhaust connection (24) leading from he housing, and a combustion gas chamber (4) located in the housing,
penings (6) formed in the housing and providing access to the combustion gas chamber, and doors
closing off the openings, and comprising
heat storage elements (10) located in the combustion ges chamber (4,34) and positioned therein in the path of flow
of the combustion gases to increase the flow resistance to the combustion gases, said heat storage elements (10 having a size which is smaller than the largest opening (6
\(36,37,44,46\)) providing access to the combustion gas chamber (4, 34) to allow introduction and removal of the

heat storage elements (\(\mathbf{1 0}\)) into and from the combustion gas chamber (4,34), the heat storage elements (1) including a metallic housing (10) formed with openings (12) in least a portion thereof, and a compact mineral material of (16).

4,094,30 ETHO AND APPARATUS FOR MEASUREMENT O ACOUSTIC IMPEDANCE TRANSITIONS IN MEDIA Hubert A. Wright, Jr., Lexington, Mass,, assignor to Bolt Beranek and Newman Inc., Cambridge, Mass.
Continuation of Ser. No. 298,027, Oct. 16, 1972, abandoned. This application Aug. 5, 1974, Ser. No. 494,907 U.S. Cl. 128-2 V Int. Cl. \({ }^{2}\) A61B \(10 / 00 \quad 17\) Claims

1. Apparatus for identifying and diagnosing parts within the human and animal bodies that comprises means for illumina ing at least a portion of a body with acoustic impulse wave energy outgoing along a predetermined direction, whereby the wave energy is returned back in substantially the opposite drom, means responsive to the outgoing and returning wave energy to produce a resulting reflection impulse-response function, means for integrating the said reflection impulseresponse function to provide a measure of impedance transi tions in the body portion and means for correlating the sam with body portion properties to identify the nature of said -4,09430 4,094,305
METHOD AND AN ARRANGEMENT FOR ONTINUOUSLY MEASURING THE PARTIAL PRESSURE OF A GAS IN A SAMPLE
Manfred Kessler, Dortmund-Solde, Germany, assignor to Ma Planck Gesellschaft, Munich, Germany
Filed Aug. 6, 1976, Ser. No. 712,248 Clesims priority, application Germany, Apr. 23, 1976, 261776 U.S. Cl. \(128-2 \mathrm{E}\)
1. A tympanic membrane vent comprising a piece of porous hydrophobic material having pores therein and of a size and shape to be inserted through and held in place extending aving a first end surf membrane of the human ear, sa the mid dle ear space, a second end surface adapted to be positioned in the ear canal, and exterior side surfaces extending between said end surfaces adapted to engage the tympanic membrane when said piece is in place extending through the tympanic mem
brane, said end surfaces and said side surfaces defining a closed brane, said end surfaces and said side surfaces defining a closed
three-dimensional volume, the interior enclosed by said end surfaces and said side surfaces being filled with said porous material, said pores being interconnected to permit air passage through said interconnected pores between the ear canal and the middle ear space when said piece is in place extending
through the tympanic membrane, said pores having a size small through the tympanic membrane, said pores having a size smal
enough so that the hydrophobicity of the material prevents passage of water therethrough from the ear canal into the middle ear space when water under atmospheric pressure in said ear canal comes in contact with said piece.

1. An arrangement for continously measuring the partial pressure of oxygen dissolved in blood flowing through muscle ing a support probe having first and second sides which are respectively adapted to engage the underside of the skin layer and the surface of the muscle tissue so that said probe is fixedly held in position against the muscle tissue; and a polarographic
cell mounted at said second side and cell mounted at said second side and having a gas-measuring ate a signal indicative of the amount of gas being diffused from said muscle tissue, said probe further including a tubular sec-
tion connected to said first side thereof, said first side of said probe comprising tapered wall surface portions which diverge in direction from said tubular section towards said muscle be positioned in sealing engagement with the underside of said skin layer.

\section*{4,094,306}

APPARATUS FOR ULTRASONIC EXAMINATION George Kossoff, Northbriage, Australia, assignor to The Co monwealth of Australia, c/o The Department of Health, Phil lip, Australia
Claims priority, application Australia, May 1, 1975, PC1443 U.S. C. 128-2 V

5 Claims

1. Apparatus for use in the ultrasonic examination of an object, said apparatus comprising:
a housing adapted to be filled with a liquid coupling medium, said housing having a substantially horizontal upper face;
flexible coupling membrane covering said aperture in a
liquidtight seal;
haducer means, to be immersed in said coupling medium, said transducer means comprising means for transmitting pulses of ultra sonic energy through said aperture into an object positioned adjacent said aperture and means for receiving echoes of said pulses of ultrasonic energy reflected through said aperture by acoustic impedance discontinuit ies win the obect; and
in communication with said housing and the atmospher in communication with said housing and the atmosphere
to maintain the pressure of said coupling membrane con stant during flexing of the membrane.
 each of the placed electrodes;
ecording the amplified analog response signal from each electrode;
esynthesizing the broadband visual stimulus; visual stimu lus with the recorded analized response signal for each placed electrode to obtain at least a first, second and third order Wiener kernel representation thereof;
miting the bandwidth of the visual stimulus by masking out those portions which produce non-significant electrical analog responses;
umming the bandwidth-limited visual stimulus on the retina and associated networks of the subject:
mplifying the bandwidth-limited electrical analog response signal measured by each of the placed electrodes; ecording the amplified bandwidth-limited electrical analog response signals from each electrode
resynthesizing the bandwidth-limited visual stimulus;
cross-correlating the resynthesized bandwidth-limited visua ross-correlating the resynthesized bandwidth-limited visua
stimulus with the stored bandwidth-limited analog re sponse signal for each electrode first, second and third order thereof
synthesizing an optimal kernel-defined visual stimulus \(\Lambda\) fo
each of said electrodes by multiplying the resynthesized each of said electrodes by multiplying the resynthesized
bandwidth-limited visual stimulus by the recomputed Wiener kernel representation of the system;
 presenting an optimal -leftrode;
ject for each placed electron
ject for each placed electrode;
summing the \(\Lambda\)-defined visual stimulus on the retina and associated neural network of the subject

determining which of the \(\Lambda\)-defined visual stimuli produced neurophysiologically significant responses in the subject and
utilizing
utilizing the known locations of those placed electrodes whose \(\Lambda\)-defined visual stimuli produced said significant responses and the nature thereof to specifically isolate the anatomical location of the dysfunction.
18. A system for synthesizing a set of " \(n\) " discrete optimal visual stimuli, one optimal visual stimulus for each different the anatomical localization of brain dysfunction, said system comprising:
means for generating a pseudorandom input signal having the general characteristics of Gaussian white noise; means responsive to said input signal for displaying a color video visual stimulus representation thereof, said visual stimulus being displayed so that it may be summed on the retina and associated neural network of the subject whose brain is being examined;
pluraiity of \(n\) individual electrodes, one of said elecdistinct brain areas to be examined for monitoring the electrical spikes and slow potetrial response produced in said areas when said subject observes said displayed visual stimulus
high impedance, low noise amplifier means having " \(n\) " channels, each of said channels being coupled to a different and distinct one of said " \(n\) " electrodes for amplifying the spikes and slow potential electrical analog response signals therefrom;
means for storing the amplified output of each of said " \(n\) " interval events, and finally indicating said systolic time inter-
channels; channels; to said input signol responsive to said storage means and a resynthesized input signal with said stored electrical analog response signal for computing a Wiener kernel representation of the response from each of said electrodes
for determining which portions of said input signal gave for determining which portions of said input signal gave
rise to insignificant responses;
means responsive to a determination of which portions of
said input signal were responsible for insignificant said input signal were responsible for insignificant responses for masking out the subsequent generation thereo so as to limit the bandwidth of any subsequently generated input signals:
sized subsequently regenerated bandwidth-limited inpu signal and to the subsequently stored electrical analog response signals measured by said electrodes in response
to the subject's observation of the displayed bandwidth to the subject's observation of the displayed bandwidth
limited visual stimulus resulting from said bandwidth limited input signal for cross-correlating to obtain a re computed Wiener kernel representation of the output of each of said electrodes; and
array processor means responsive to said recomputed Wie ner kernel representation of the output of each of said
electrodes and to the resynthesized bandwidth-limited input signals for multiplying same to produce an optima input signal for each of " \(n\) " electrodes which can be sup. plied to said display means for displaying an optimal visual stimulus for testing each of said different and distinct brain
areas being examined to anatomically localize brain dys function.

METHOD AND SYSTEM FOR RAPID NON-INVASIVE DETERMINATION OF THE SYSTOLIC TIME Denny Charles Cormier, Coral Gables, Denny Charles Cormier, Coral Gables, Fla, assignor to Cormier Filed Aug. 19, 1976, Ser.
 its shape.

\section*{MEDICAL ELECTRODE}

Robert M. Grzenla, 9717 S. Homan Ave., Evergreen, III. 60642 Filed Mar. 7, 1977, Ser. . No. 774,858
U.S. Cl. 128-2.06 E

10 Clams

4,094,310 PHPARATUS FOR ENHANCED DISPLAY OF 18 Claims Robert A. McFachern, WEFIBRILLATION Robert A. McEachern, Wellesly, and George A. Cavigelli, Lex
figton liston, both of Mass,, assignors to American Optical Corpora tion, Southbridge, Mass.
Filed Oct. 4, 1976, Ser. No. 729,442
U.S. Cl. \({ }^{128-2.06} \mathrm{G}^{\text {Int. Cl. }{ }^{2} \text { A61B 5/04 } \quad 19 \text { Claim }}\)

1. In a system for displaying a physiological waveform, 1. In a system for displaying a physiological waveform,
means for generating an electrical signal representative of a particular physiological waveform; means for generating an electrical signal indicative of the occurrence of a preselected event in timed relation to said physiological waveform signal; a cathode ray tube; and display control means responsive to
said physiological waveform signal and to said event said physiological waveform signal and to said event signal for
controlling the display by said cathode ray tube, said display control means including means for providing time-successive samples of said physiological waveform signal, a recirculating memory for the storage of a successive pluraity of waveform samples, means for entering data representative of said even waveform samples as said event bears to selaid physiological waveform signal, means responsive to said successive wave form samples in memory for controlling the deflection of the
beam of said cathode ray tube in at least one coordinate direc
tion to provide a trace representative of said waveform and tion to provide a trace representative of said waveform and trolling the intensity of the beam of said cathode ray tube as primary modulation of the waveform trace to provide a visibly distinguishable event marker and for secondarily modulating said primary modulation of said
enhance display of the event marker.

4,094,311
ENTAL SYRINGE
Raymond A. Hudson, Ft. Collins, Colo., assignor to Teledyne Industries, Inc., Ft. Collins, Colo.
U.S. Cl. 128-66 Int. Cl. \({ }^{2}\) A61H 9/00 7 Claims

1. In a hygienic appliance having means for delivering liquid 1. In a hygienic appliance having means for delivering liquid
under pressure through a hose to a detachable elongated noz-
zle and including a base assembly together with a removable \(z\) le and including a base assembly together \(w\). cover therefor, the improvement comprising
a shelf assembly supported on said base asse a shelf assembly supported on said base assembly for slidable
moventent between a first position concealed within said movement between a first position concealed within said
cover when the latter is in place and a second position projecting outwardly from said base assembly when said
cover is removed; cover is removed;
means defining an opening in said shelf assembly receptive of means defining an opening in said shelf assemble to hold the latter in an upright
one end of said nozer position; and means included within said shelf assembly for effecting an outward tilt of the upper end of said nozzle away from
said base assembly when said shelf assembly is moved to said second position.

WALKING BOOT \(\begin{aligned} & 4,094,312 \\ & \text { FOR SURGICAL LEG CAST }\end{aligned}\) Francis Whyte, 2 Cascade Dr., Halifax, Nova Scotia, Canad Filed Dec. 13, 1976, Ser. No.
Int. Cl. \({ }^{2}\) A61F \(5 / 04\)

11 Claims

1. A boot, for use with a surgical plaster of Paris leg cas comprising:
shoe formed of a sheet member of substantially rigid, weight supporting material having an outline substantially
similar to the profile of the underside of a foot, a pair of wells of similar depth formed in the sheet member, one
nember and of an area substantially covering the weigh bearing area of the sole portion of the foot, the other wel and of an area substantially covering the weight bearin area of the heel portion of the foot, the edge portion of the sheet material forming a peripheral flange; and
flexible upper constructed and arranged to receive therein the foot portion of the cast, a botom having apertures therein to receive the wells of the shoe whereby the wells project downwardly through the apertures.

INTRA-UTERINE \(\quad 4,094,313\)
INIRA-UTERINE DEVICE AND TOOL FOR INSERTION Takeo Komamura, 4-9.11 Nishigahara, Kitaku, Tokyo; Tadao Okamto 1-12.8 Kolinte Bunkyoku, and Atsumi Ishihama 3-6-30 Kagano, Morioka, all of Japan
Filed Oct. 29, 1976, Ser. No. 737,017 Claims
\(79399[\mathrm{U}, \mathrm{jul}, 16\) ity, application Japan, Jun. 13, 1975, 50 79399[U]; Jul. 16, 1975, 50-5097816[[]]
U.S. Cl. 128-130 13 Claims

1. An intrauterine device comprising a stem, a plurality of rms integrally formed with said stem and projecting from ree, there being a line of integration of each of said arms with said stem about which the respective arms are flexible, said arms being biased for normally presenting the longitudinal axes thereof at an angle of less than \(90^{\circ}\) to the longitudinal axis of said stem and within the plane of said stem, the line of integration of each arm forming an angle of less than \(90^{\circ}\) with the
longitudinal axis of said stem whereby upon flexure the outer portions of said arms will depart from the plane of said stem.

PRESSURE REGULATOR FOR BREATHING
Jacques Le Cornec, Saint Estere, Frence, assignor to Gilles Atlan, Marseilles, France Claims priority, application Frarce Jun. 30, 1975, 7520858 US. CC. 128 -142.2 Int. C1. \({ }^{2}\) A62B 7/00
U.S. C. \(128-142.2\)
1. A pressure regulator for a breathing apparatus compris-
6 Clims ing: a hollow casing, a semi-rigid, deformable membrane mounted in said casing and separating the casing into first and second compartments; said casing havien said first compartment and the exterior of the casing; and a mouthpiece and a ow pressure air inlet conduit connected to said second compartment; a regulating valve loca of in said second comparo said second compartment, said valve including a valve seat; a valve head, a sealing pellet mounted in said valve head, a ontrol rod having a first end secured to said valve head and a second free end, opposite said first end, and return spring valve seat, lever located in said second compartment having
one end operatively connected to the free end of said control od and an opposite end operatively connected to said semi rigid membrane for automatically displacing said control rod
and said valve head away from said valve seat when the pres sure in said first compartment is sreater val when the pres said second compartment, said regulating valve including a cylindrical chamber mounted in said second compartment in communication with said inlet conduit, said valve head and control rod slidably mounted in said cylindrical chamber, a
nozzle slidably mounted in said cylindrical chamber for sliding movement coaxial with said valve head, said nozzle having axially opposed front and rear ends with said front end facing said valve head and defining said valve seat and said rear end

including a hollow piston having two opposite front and rear aces located within said cylindrical chamber; said cylindrical chamber having two opposite ends including a rear end connected to said inlet conduit for low pressure air and a front end orming an abutment for the front face of the piston, whereby when said inlet conduit is supplied with compressed air the ard chamber and the piston is maintained in a fixed position with its front face in abutment against the front end of said cylindrical chamber by said pressure, and when the inlet conuit is not connected to compressed air the rear face of the inside said chamber and draws back the nozzle and valve seat.
 Filed Oct. 29, 1976, Ser. No. 736,885
S. Cl. 128-152 Int. Cl. \({ }^{2}\) A61F \(11 / 02\)

1 Claim

1. An ear plug for insertion into an ear canal which includes a plurality of hollow cylindrical members of progressivel closed at its free end, and each cylinder being cornecter to the next larger cylinder by a transition member
the wall thickness of said cylindrical members being varied from the thinnest in said smallest cylinder to the thickest in said largest cylinder; and
end connected to the largest of said cylindrical members
y a transition member, said conical member having hickness greater than any of said cylindrical members and mechanical strength sufficient to enable it to be grasped o remove said ear plug from the ear whereby, the wal the collapse of said cylindrical members while permitting said cylindrical members to conform to the shape of an ear canal and said transition members act to stiffen said cylindrical members.

\section*{4,094,316}

ADHESIVE BANDAGE WITH REUSABLE APPLIQUE Eric Nathanson, 2618 Batchelder St., Brooklyn, N.Y. 11235 Filed Aug. 26, 1976, Ser., No. 717,600
Int. Cl.2 A6uL \(15 / 00\) : A41H \(27 / 100\) : B32B \(35 / 00\) U.S. Cl. 128-156 \(\quad 7\) Claims

A combined adhesive bandage and applique comprising
a adhesive tape having an adhesive coating on at least one face thereof;
bandage pad smaller in area than said tape secured by the a bandage pad smaller in area than said tape secured by
adhesive coating to a central portion of said tape; adhesive coating to a central portion of said tape;
a decorative applique clothing patch strip dimensioned of an area substantially congruent to that of said adhesive cape area formed with a continuous web of material having a
and pressure sensitive reusable adhesive layer along one entire
surface of said web releasably secured with respect to said surface of said web releasably secured with respect to saic
tape on the side thereof opposed to the side of the tape to tape on the side thereof opposed
which said bandage is secured.

09317
NEBULIZATION SYSTEM
Richard D. Wasnich, 2408 Halekos Dr., Honolulu, HI. 96821 Filed Jun. 11, 1976, Ser. No. 694,95 U.S. CI. 128-194

Int. Cl. \({ }^{2}\) A \(61 \mathrm{M} 11 / 00\)
16 Cluims

1. A nebulization system adapted to provide a nebulized erosol for inhalation therapy of a patient to be treated, which omprises:
an interaction chamber having a reservoir means positioned near the bottom thereof for containing a small amount of liquid to be nebulized,
ultrasonic nebulizer means disposed below said reservoir
means and said interaction chamer means and said interaction chamber for nebulizing said smal amount of liquid into an aerosol to be received by said interaction chamber;
means positioned within said interaction chamber above said the absorbent pad being shorter and narrower than the back nebulizer means for initially maintaining the position of sheet, the improvement comprising plural folds in the opposing said aerosol herebelow for increasing he concentration end margins of shia back sheet and including correspondin to be impacted thereon and thereby be recovered by doubled back over themselves to form waistbands extending renebulization;
outlet tondwit me
outlet conduit means in communication with said interaction chamber for receiving said aerosol and including means
for delivering same to the patient upon commencement of inspiration by said patient; and
air inlet conduit means in communication with said interac-
tion chamber including means for providing air flow behind said aer
said patient.

4,094,318
ELECTRONIC CONTROL MEANS FOR A PLURALITY OF INTRAVENOUS INFUSION SETS
George K. Burke; Robert J. LeFerre, both of Bethlehem, and Robert E. Thomas, Wind Gap, all of Pa., assignors to Burron Medical Products, Inc., Bethlehem, Pa.
Filed Jul. 9, 1976, Ser. No. 703,907 U.S. C. 128-214 E,

23 Claims
ELECTROSURGICAL SAFETY CIRCUIT AND METHOD
David W, New and Frank Alford, both of Boider, Colb assignors to Valleylab, Inc., Boulder, Colo.

Filed Sep. 9, 1976, Ser. No. 721,82
Int. Cl. \({ }^{2}\) A61B \(17 / 36\); A61N 3/00
U.S. C. \(128-303.14\)

1. An electrosurgical generator comprising
radio frequency generator;
an electrosurgical instrument having an active electrod suitable for application to a patient;
active electrode for ed between said generator and said tor to said active electrode;
23. A multiple intravenous infusion means for independently and consecutively controlling flow of separate intravenous fluids through a plurality of intravenous infusion sets, includ
ing: a plurality of intravenous infusion sets; valve means associing: a pluraility of intravenous infusion sess; val fo meansins and
ated with each set; valve operating means for opening and closing each valve means at a preselected rate; selector mean for enabling one valve operating means and disabling the other; and alarm means associated with at least one of said
valve operating means for detecting deviations between the valve operating means for detecting deviations between the
actual rate of delivery of fluid and the selected rate and opera tive in response to a deviation to operate said selector means to disable the valve operating means associated with the alarm condition and to enable the alternate valve operating means, whereby in travenous fluid automatically continues to be sup. plied through another sel

\section*{4,094,319 \\ SANITARY PAD WITH MULTIPLE END FOLDS Curt G. Joe, Box 1121, Boynton Beach, Fla. 33435 \\ Flued Nov. 1, 1996, Ser. No. 731
Int. C. \({ }^{2}\) A61F \(13 / 16\) \\ Int. Cl. \({ }^{2}\) A61F \(13 / 16\)}
U.S. C. 128-284 atient electrode adapted for connection to said patient to provide a low impedance path for curran to said patient provide al
electrode;
patient lead connected between said generator and said patient electrode for conducting current from said patient electrode back to said generator; and
safety circuit means for detecting only an excess of active lead current with respect to patient lead current to
thereby indicate a discontinuity in a patient circuit including said patient electrode and said patient lead;
the level of the output signal from said radio frequency generator being adjustable and said safety circuit means detecting an excess of current in the active lead with old means for indicating an alarm condition when the active lead current exceeds the patient lead current by a threshold level established by said threshold means, said hreshold means including compensating means for dynamically varying said threshold level, said compensating means being responsive to adjustments in the ourput signal responsive to expected differences of said active and paient lead currents under normal conditions to thereby both provide a sensitive threshold in a variety of condi-
tions and to offset the tendency of said signal adjustments conductive plate and an insulating plate connected to the face
to prematurely generate said alarm condition when there of the conductive plate and adapted to be contacted by the
is no danger to said patient.

SHALLOW, DOME-SHAPED PACER WITH BOTTOM STORAGE MEANS FOR CATHETER
Rudolph Muto 24 Willias St, Andover Mess. 01810 Filed Feb. 7, 1977, Ser. No. 765,888 U.S. CI. 128-4 \({ }^{19} \mathbf{P}^{\text {Int. Cl. }{ }^{2} \text { A61N } 1 / 02}\) patient, and a detecting means, operative respective to the monitoring means being touched by the patient, arranged detecting means comprising an indicator device which is energized when a said voltage is being applied to said main electrode and which is not energized when a voltage is not being applied to said main electrode to thereby enable faults to be
detected in the said circuit formed by the main electrode and the conductors. the conductors.

\section*{4,094,323}

SMOKING ARTICLE AND METHOD
Thomas Cecil Frazier, Hopewell; John Thomas Ashworth, Richmond; Richard Douglas Chumney, Jr., Mechanicsville, all of Va., and Rene' Wilhelm Meyre, Reidsville, N.C., assignors to American Brands, Inc., New York, N.Y.

Filed Feb. 9, 1976, Ser. No. 656,264
Int. Cl. \({ }^{2}\) A24B 3/I8; A24D \(1 / 06\)
U.S. Cl. \(131-8\) R
\[
\begin{aligned}
& \text { Int. } \mathrm{Cl} .^{2} \mathrm{~A} 24 \mathrm{~B} 3 / 18 ; \mathrm{A} 24 \mathrm{D} 1 / 06 \\
& \text { od of making expanded and fiberized }
\end{aligned}
\] 1. The method of making expanded and fiberized tobacco 1. A heart pacer of the type having a casing with a power supply and pulsation control lircuitry therewithin and having
a catheter connector socket with a clamp screw operable a catheter connector socket with a clamp screw operable
therein for removably receiving a catheter prong, said pacer therein for removal
a hollow casing of shallow dome configuration, enclosing a hollow casing of shallow dome configuration, enclosin
said power supply and pulsation control circuitry, sai casing having a substantially flat, planar, bottom wall and a shallow domed, top wall, said top, domed wall having tapered edges, merging a juxtaposition with the peripher
of said flat bottom wall, in an arcuate cross-section of small radius of curvature;
and catheter storage means in the exterior surface of said
bottom wall of said casing, for releasably receiving an extram length of said catheter when said pacer is implanted in a human body. \(\qquad\)
THERAPEUTICAL APPARATUS USING ELECTRIC stem and stalk materials having increased filling capacity and tioning said stem and stalk materials by adjusting the moisture content to a level of at least about 10 to about \(50 \%\) by weight while maintained at a temperature of about \(115^{\circ}\) to \(170^{\circ} \mathrm{C}\). and pressures ond mechanically fiberizing the thus treated materials while it is under a pressure of about 10 to 100 psig between iberizing surfaces maintained from about 0.05 to 0.3 inch apart uch that the materials are fiberized and expanded when exposed to ambient conditions.

\section*{a}

PERFORATED CIGARETTE TIPPING PAPER Otto Bolstinger, and Ingolf Seckelmann, both of Herne, Ger-
many, assignors to Deutsche Benkert GmbH \& Co., K.G., many, assignors
Herne, Germany
Filed Apr. 14, 1976, Ser. No. 676,984 , application Germany, Jul. 12, 1975, 2531285 Katsumasa Hara, Tokyo, Japanc, assignor to Hakuju Institute for U.S. Cl. 131-10 A Int. Cl. \({ }^{2}\) A24D \(1 / 02\) Katsumasa Hara, Tokyo, Japan, asssignor to Hakuju
Healith Science Co.. It.., Tokyo, Japan
Fled Science Co., Ltd., Tokyo, Japan
Flied Jun. 18, 1966, Ser. No. 697,3
Int Cl. U.S. C. \(128-419\) N

4 Claims

therapeutical apparatus using electric field compris a 1. A therapeutical apparatus using electric field comprising
main electrode arranged at the head end of a support surfac main electrode arranged at the head end of a support surface
on which a patient lies, a further electrode arranged at the foo
end of on which a paienties, a sur, nsulated conductors, connected to
end or said suppor surface in
the respective electrodes, for enabling a voltage having an AC the respective electrodes, for enabling a voltage having an \(A C\)
component to be applied to the electrodes, a monitoring means component to be applied to the electrodes, a monitoring means
for enabling monitoring of the continuity of an electrical cirfor enabling monitoring of the continuity of an electrical cir-
cuit formed by said main electrode and the said conductors connected thereto when a voltage is applied to said main electrode, said monitoring means being disposed adjacent to the main electrode and being connected in a circuit which includes
said electrodes and which is completed through the body of said electrodes and which is completed through the body of said monitoring means, said monitoring means comprising a
1. In a cigarette having at one end, an air permeable filter pping paper receivable on the exterior of the filter to form a filter tip having a porosity approaching that of the filter alone, said tipping paper having a width in excess of the length of the iter and a length which is at least as great as the circumferwhich is arranged in the longitudinal direction of the paper and having a width corresponding to a fraction of the width of the paper, said zone being bordered by first and second unperfoated edge strips which receive the tobacco containing portion of the cigarette and the lips of the user, respectively, said perforated zone containing a plurality of minute perforations
normally invisible to the naked eye and formed by high tension spark erosion, said perforations being irregular in shape, size
and location within said zone and present in a sufficient num- causing said damper cushion to diminish the audible signal of ber to provide a porosity to the zone for establishing the porosity of the filter tip inclusive of the tipping paper at that approaching the porosity of the filter alone.

4,094,325
METHOD AND APPARATUS FOR MAKING WRAPPERS FOR CIGAR BUNCHES Helmut Stoffers, Geesthacht, and Rudolf George, Hamburg,
both of Germany, assignors to Hauni-Werke Korber \(\&\) Co \(^{\text {on }}\) both of Germany, assignors to Hauni-Werke Ko
KG, Hamburg, Germany Filed Aug. 19,1976, Ser. No. 715,693
Claims priority, application Germany, U.S. C. 131-21 R application Germany, Sep.
Int. Cl. \({ }^{2}\) A \(24 \mathrm{C} 1 / 00,1 / 04\)
\(\mathbf{R}\)

1. A method of making wrappers for cigar bunches or the like, comprising he steps wing the ang lines leaves with outline of a satisfactory wrapper and producing signals when said comparing step indicates that a monitored leaf is capable of yielding at least one satisfactory wrapper; and utilizing said
signals for the cutting of wrappers from the respective leaves.

4,094,326
FIRE PROOF CIGARETTE bOX
Robert Newman, 1891 Oakland Ave., Wantagh, N.Y
Filed Sep. 8, 1976, Ser. No. 721,206
U.S. C1. 131-234

3 Claims

1. An ashtray comprising: a housing; a removable cover 1.ted thereto for closing the ashtray and thereby snuffing out lit combustible material in the ashtray; audible alarm means having a wind-up spring type alarm including a timing mechanism, a bell and a hammer for striking the same; and alarm interrupter means within said housing including a spring urged
plunger, a pivoted link, and a damper cushion, said spring plunger, a pivoted link, and a damper cushion, said spinger cooperating with said cover on one end thereof, urged planger of said plunger contacting one end of said pivoted link, the other end of said pivoted lint having said damper cushion secured thereto, the closing of said cover urging said
plunger which then pushes said one end of the pivoted link

4,094,327
FLUID CONTROL DEVICE
Brandelli, 2418 W. 256 th St., Lomita, Calif. 90717 Brandelli, 2418 W. 256th St., Lomita,
Filed Feb. 7, 1977, Ser. No. 766,366 37-403

1. A liquid level responsive valve for mounting in a tank having bottom wall inlet and outlet ports which comprises: valve housing having a cover member received on a bot-
tom plate member defines an interior chamber, the latter om plate member defines an interior chamber, the latter outlet port means for discharging into said tank;
a vertical, liquid conduit with a first end in open communica-
tion with said tank inlet port and supporting said valve tion with said tank inlet port and supporting said valve housing at an
valve closure member contained within said valve housing and moveable between open and closed registration with said valve seat means;
valve member actuator means extending from the chamber
of said valve housing exteriorly thereof;
fiexible valve actuator arm with one end secured for piv-
otal mevent otal movement to the exterior of said housing and intermember between said open and closed positions upon member between said open and closed positions upon
pivotal movement of said actuator arm; pivotal movement of said actuator arm;
an actuator housing formed of a cover plate member re-
ceived on a cup member for mounting on the fllor of said tank;
a flexible diaphragm peripherally sealed to the inner walls of said actuator housing and extending thereacross to subdia central aperture in said cover plate member of said hous-
ing; a vertical vent conduit extending through said central aper-
ture and vertically coextensive with said liquid inlet conduit, centrally carried on said flexible diaphragm in open communication with said subjacent chamber
liquid vent means opening said superior chamber to said tank; and
attachment
lever and securing the free end of said actuato lever arm to the upper end of said vertical vent conduit.

DENTAL FLOSS MANIPULATING INSTRUMENT
Gerald E. Ray, Rte. 1, Wakk Forest, N.C. 27587

> Filed Jul. 8, 1976, Ser. No. 7 Int. C. \({ }^{2}\) A61C \(15 / 00\)
U.S. CI. 132-91

A dental floss manipulating instrument comprising: an
elongated handle means; a fork means at one end of said handle and including a central prong having a base portion adjacent WALKER
and including a central prong having a base portion adjacent
said handle disposed in general longitudinal alignment with Slosson B. Jong, 20722 Hunter La, Huntington Beach, Calif. such handle; an elongated side prong pivotably connected at releasably pivetable from one side of central prong and being U.S. Cl. 135-67 Jan. 14, 1977, Ser. No. 759,458

other with an extreme limit of travel of approximately \(90^{\circ}, 45^{\circ}\) on either side of said central prong; and means for tensioningly attaching a strand of dental floss between said central prong and said side prong whereby said instrument can be readily manipulated to dispose the floss between the teeth of the user
of the same regardless of which side of the flossed.

4,094,33 Filed Jan. 14, 1977, Ser. No.
Int. Cl. \({ }^{2}\) F16M \(13 / 08\)

PPARATU 4,094,329
COASHINE AND SANITIZING Grover C. Evans, P.O. Box 1124, Little Rock, Ark. 72203 Filed May 27, 1977, Ser. No. 801,165
U.S. Cl. 13456 R Int. C. \({ }^{2}\) B08B 3/02

1. Apparatus for washing and sanitizing containers compris ing:
a housing having a plurality of treatment zones comprisin wash, pre-rinse, primary rinse, and final rinse zones dis posed successively along a predetermined path betwee loading and unloading zones;
a conveyor orbitally movable along said path, said conveyor comprising a plurality of container supports each adapted ohold a container in upside down condition for move壁ay means in each of said treatment zones posi
spray inside and outside walls of a container on said conveyor;
liquid conduit means connecting the spray means in the final rinse zone to a source of fresh water under pressure;
means for collecting and combining liquid sprayed in both
said primary rinse zone and said final rinse zone and di-
said primary rinse zone and said final rinse zone and di-
recting such combined liquid to a common reservoir
first pump and conduit means for using rinse water at least second time by directing it from said common reservoir to the spray means in said pre-rinse and primary rinse zones, and
second pump and conduit means for recycling sanitizing solution between a sanitizing solution reservoir and the spray means in the wash zone.
1. A walker comprising:
the two hands of a user, ande portions to be gripped by wardly projecting support legs:
individual ones of said legs including a lower removable extension assembly having a lower part and an upper part in the form of a tube telescopically interfitting with said of the lower part relative to the upper part, a detent element carried by one of said parts and releasably receivable within any of a plurality of detent openings in the other part to releasably retain the parts in differently adjusted positions providing a coarse length adjustment for the
individual legs, and a screw having a lower portion secured within an upper portion of said second part in fixed relation thereto and having a threaded shank projecting upwardly beyond said second part; said individual legs also including a third part above said lower portion assembly, and a nut received within nd ereadedly and said third part in fixed relation thereto and threadedly and adjustably engaged with said shank of
said screw for relative rotary adjusting said screw for relative rotary adjusting movement about a
generally vertical axis and providing a threaded adils generally vertical axis and providing a threaded adjust-
ment between said second and third parts longitudian the individual leg lengths finer than and between the coarse settings of the detent elements.
dUAL PURPOS,094,331
HANDICAPALED PEDSRNE FOR HANDICAPPED PERSONS
eter Rozsa, Mazal Dagim 11, Old Jaffa, Jaffa, Israe Fied Feb. 16, 1977, Ser. No. 769,151
Int. Cl. \({ }^{2}\) F16M 13/08; A61H 3/00
U.S. Cl. \(135-67\)
1. A dual purpose invalid walking frame for 8 Claims furfaces and on stairs comprising: irst support means defining at least three support points lying in two vertically separated planes and arranged to engage two stair surfaces;
lying in a plane and defining at least three support points lying in a plane and arranged to engage a walking surface, said first and second support means being fixedly joined
together in a rigid configuration to define generally oppo site ends of a frame;
first handle means disposed on seid frame at a lect able for supporting the hands of a person descending stairs when said frame is positioned in a firston orientation wherein said first support means are oriented downwardly and in stair engagement;

second handle means arranged on said frame and disposed a a location suitable for supporting the hands of a person when said frame is positioned in a second orientaia wardly and in engagement with a walking surface; and third handle means disposed on said frame at a location suitable for supporting the hands of a person ascending engagement. wardly and in stair engagement.

EARTHQUAKE-RESPONSIVE 4,09432 FUEL SHUT-OFF DEVICE EART F. Poff, and Jerry W. Poff, both of 89 Bishop Rd., Crock-
ett, Calif. 94525

Filed Oct. 12, 1976, Ser. No. 731,362
Int. Cl. \({ }^{2}\) F16K \(17 / 36\)
U.S. C. 137-46

6 Clims

1. An earthquake-responsive fuel shut-off device adapted for insertion in a fuel line connected to a fuel source under pres sure comprising:
a main valve and a fluid-pressure-responsive actuator there-
for maintaining said valve in fluid flow open position in response to a fuel-line-imposed pressure differential and
including means biasing said valve to tion in the absence of said, differential;
means providing a fluid-line-connected passage to said actuator for placing said line pressure in opposition to and said valve by said biasing means;
a second valve in said passage movable between open and closed positions therein;
a spring urging said valve to open position;
a member having a position engaged with and supporting
said valve in closed position against the urge of said spring; and
an earth-movement-responsive actuator connected to and displacing said member from its said position in response to a predetermined minimum sever
permitting opening of said valve.

4,094,333
REGULATING VALVE SYSTEM
Sigurdur G. Petursson, 2169 Linby Street, Mississa
Canada (LAY 1VO)
Filed Apr. 14, 1976, Ser. No. 676,980
Int. C1.2 G05D
U.S. C. \({ }^{137-100}\) Int. Cl. \({ }^{2}\) GOSD 11/02 Claims

6. A pressure equalising valve having a pair of inlet chambers, each having an inlet to receive in operation a respective
pressurized fluid supply in connected relation therewith, a pair of outlet chambers, and valve means interposed in flow regulating relation between each said inlet chamber and the respective outlet chamber for maintaining in predetermined relation
the output pressure of two fluids supplied thereto, said valve means having a balancing valve mechanism comprising a slide valve means mounted in each said inlet chamber and supported in axially positioned pressure controlling relation by a diaphragm arranged in chamber dividing relation with said pair of outlet chambers, and substantially immoveable piston means portion of each said slide valve means from exposure to the respective fluid inlet pressure, to provide a predetermined area of said valve means in pressure responsive axially unbalanced relation within the respective said inlet in direct axially facing elailin sid

\section*{4,094,334}

OCEAN THERMAL ENERGY CONVERSION VALVE OCEAN THER 3300 SW, 8 , Okleheme Cty, Okle 73108 Filed Jun. 23, 1977, Ser. No. 809,345
S. 1 137- 19 Int. Cl. \({ }^{2}\) F16K 31/46
U.S. C. 137-219 ections of casing, said upper casing having a depending end, omprising:
end at hing a closed depending end and having an upper enct at least diametrically equal with and coaxially
nected with the depending end of said upper casing, above its closed end; ports;
sleeve val
said tube having a plurality of ports in its wall spaced
for fluid cons connecting said tube with said lower casing for fluid communication therebetween through the tube
upper and lower hollow ring members surroid tube an upper and lower hollow ring members surrounding and
secured to said sleeve in vertically spaced relation for forming upper and lower floatation chambers each having

BACK DRAFT FOR EXHAUST FANS AND HOODS P. Urschel, 727 Solano Dr Tr., Tempe, Ariz. Ar2281, and Fred P. P. Urschel, 727 Solano Dr., Tempe, Arz. 8521 , and Fred \(P\). Urschel, 5302 N. Woodmere Fw.,
Filed Apr. 19, 1977, Ser.

Filed Apr. 19, 197 , Ser. No.
Int. Cl. \({ }^{2}\) F16K \(15 / 03\)
U.S. C. 137-512.1

a drain port and being slidably received by the inner wall a drain port and being sidably received by the inner wall
surface of said tube, the spacing between said ring means
being at least slightly greater than the vertical extent of the tube ports, for opening and closing the ports;
sealing means carried by said upper and lower ring members
for sealing fluid tight with the inner wall surface of said
twbe and, control ing said sleeve means.

BEER TAP ROD RETAINER
William C. Haensech, 2163 Arapahoe St,., Denver, Colo. 80205 Flied Oct. 18, 1976, Ser. No. 733,161 U.S. Cl. 137-317 Int. CI. F16k 43/00

A beer tap rod and tap retainer bracket for mounting on hollow tap rod having a tubular tap affixed to the upper end tapping hole therein, said bracket including a lower clampin ring for receiving the tap rod, said ring being clamped to said keg tapping hole, substantially flat and centrally apertured plate means spaced above said clamping ring for receiving said
tap rod, and spaced arm means pivoted to and interconnecting tap rod, and spaced arm means pivoted to and interconnecting
said ring and plate means for relative pivotal movement therebetween whereby said tap is arranged therebetween and said tap extends through both said ring and plate means and is secured to the keg and prevented from being dislodged therefrom, and said arms and plate means are pivotal to permit of
the installation of said tap through the clamping ring thereof

1. A back draft damper for exhaust fans and hoods compris ing: a generally stationary valve plate having a pair of opening therein; said plate having a bar portion extending across said plate between said openings; said bar portion having an elon-
gate slot therein; said slot having opoosite sides; a pair of gate slot therein; said slot having opposite sides; a pair of
flapper valve plates having curved edge portions disposed in said slot; said flapper valve plates having overlapping portions while overlap the extremeties of respective ones of said openings; said flapper valve plates, at said curved edge portions, being freely pivotally moveable in said slot.

\section*{4,094,337}

PRESSURE REGULATOR VALVE
Alfred D. Robinson, El Monte, Calif., mssignor to Delphi Instruments, Inc., South El Monte, Calif.
ments, Inc., South El Monte, Calif.
Continuation-in-part of Ser. No. 516,024, Oct. 18, 1974, abandoned. This application Mar. 26, 1976, Ser. No. 670,668 U.S. Cl. 137-505.42 \({ }^{\text {Int. Cl. }{ }^{2} \text { F16K 31/12 }}\)

1. A water pressure regulator comprising
a body having a water inlet passageway, a water outlet chamber communicating with the inlet passageway and a water outlet passageway for conveying the water entering
the inlet passageway out of the outlet chamber through the water outlet passageway,
valve control means secured in the water inlet pas-
sageway for controlling the volume of water flow into the outtet chamber,
manually controllable means secured to the body for con-
trolling the water valve control means to thereby contro the quantity of water flow into the outlet chamber for controlling the output pressure of the water exiting from
the outlet chamber, the manual means being adjusted for the outlet chamber, the manual means being adjusted fo normally maintaining a preselected
water flow out the outlet chamber,
said water valve control means including a val
ing a stepped bore extending therethrough,
ing a stepped bore extending therethrough,
a sapphire ring mounted in the larger bore of the valve body means secured to the stepped bore for securing said ring against the inner wall of the bore, said means having a longitudinal passageway coaxial with the stepped bore for passing water therethrough,
sapphire ball mounted on the opposite side of the inner with the bore and engaging the ring for coaction therewith,
eans mounted in the bore for resiliently urging the sapphir ball against the sapphire ring, and
means mounted in the bore and extending through said
longitudinal passageway of the securing means for urging longitudinal passageway of the securing means for urging
the ball away from the ring, said means for urging the bal away from the ring includes an element that engages the ball that is constructed of sapphire,
the water to be sampled flows into the water pressure regu-
lator through the valve body from the ball side of the lator through the valve body from the ball side of the
bore, past the ball and through said longitudinal passage bore, past the ball and through said longitudinal passage
way and the bore into the outlet chamber and out throug the outlet passageway,
said manual adjustable means including diaphragm means positioned in the water outlet chamber for responding to
the pressure build-up in the outlet chamber and the changes in pressure for automatically responding thereto for varying the initial adjustment thereof for causing said water valve control means to respond to the changes in valve control means to automatically adjust for maintaining the water pressure downstream of the water pressur regulator essentially constant.

4,094,338
CONSTANT RATE FLOAT INTAKE William J. Raner, 422 S. Park Rd., La Grange, Ill. 60525 Wiliam J. Bauer, 422 S. Park Rd., LaGrange, III. 60525 Int. Cl. \({ }^{2}\) G01F 11/00; E03B 11/00 U.S. Cl. \({ }^{137-578} 7\) Claims

1. Liquid flow control apparatus for use in a reservoir liquid of fluctuating level comprising a buoyant float member an intake weir element carried by said float member, a condu having one end thereof communicating with said weir elemen and extending downward therefrom to conduct flow yildable to ity of liquid from the weir, said weir and float member, and counterbalancing springs which counterbalance the change in
rise and fill hember and connerid in which rise and
disposed.

\section*{4,094,339}

HIGH TEMPERATURE COMBUSTION SHOCK DEBURRING SYSTEM Ernst Leisner, Gerlingen; Woifgang Ulbricht, Tamm, and Hel. mut Kaufmann, Bischberg, all of Germany, assignors to Ro-
bert Bosch GmbH Stuttoant Germany bert Bosch GmbH, Stuttgart, Germany Division of Ser. No. 579,118, May 19, 1975, Pat. No. 4,015,815 This application Dec. 6, 1976, Ser. No. 747,490 mas priority, application Germany, May 17, 1974, 2424148 S. Cl. \(137-604\) Int. C. \({ }^{2}\) F16K \(19 / 00\)
U.S. C. 137-604

1. High-temperature combustion shock deburring system comprising
two debu
wo deburring valve units \((\mathbf{1 2}, 13)\) having gas duct inlets and outlets,
means defining a mixing chamber (15) having gas duct inlets; gas duct inlet of means (32) conducting oxygen to the gas duct inlet of one of the valve units (12); second gas conducting means (28, 32) separate from said first
means and conducting a combustion gas to the gas duct inlet of the other of the valve units (13);
and separate connecting lines (27) connecting the gas duct outlets of each of said deburring valve units (12, 13) to the gas duct inlets of said mixing chamber (15),
closed and while in closed condition, being subjected to thermal and pressure shock,
at least one of said connecting lines (27)
being characterized in that
encloses therein a a volugth of such extent that the line elaced under pressure due of the respective gas when (15), so that the gas will compress and extend in the respective connecting line (27) for a distance from the rerespective valve unit from the to thermally isolate the compressible thermally isolating shock cushion for the respective valve unit and thus protect the respective valve unit against thermal damage and shock.

\section*{4,094,340}

RELAY LOCK-OUT
Ned A. Bergeron, Houma, La., assignor to B.W.B. Controls,
Ned A. Bergeron,
Inc., Houma, La.
Filed Dec. 13, 1976, Ser. No. 749,745
S. 123 Int. C. \({ }^{2}\) F16K 17/00
U.S. C. 137-625.66
ntrolling a first fluid signal from 1. Aluid supply to an actuator as a function of a further fluid signal received from a further fluid supply, comprising:
an axially bored housing;
said housing including further fluid signal inlet means com municating with said further fluid supply, first fluid signal
outlet means communicating with said actuator, and first fluid signal inlet means; slide valve member movable within said housing bore from
a first position allowing communication bet a first position allowing communication between said
actuator fluid supply and said actuator, to a second position blocking communication between said actuator fluid supply and said actuator; and
means preventing a fluid signal through said further fluid

signal inlet means from causing said slide valve member to signal inlet means from causing said slide valve member to
move from said second position to said first position, said preventing means including a) means for causing said fluid signal through said further fluid signal inlet to bias said slide valve member toward said second position whenever said slide valve member is in said second position, and b) means for causing said fluid signal from said actuator fluid
supply to bias said slide valve member toward said second position at all times.

LOOM PICT,094,341 Williem T. Wagner, Dayton, Ohio, assignor to Dayco Corporation, Dayton, Ohio Filed Jun.

Filed Jun. 22, 1977, Ser. No. 809,131
Int. Cl. \({ }^{2}\) D03D 49/36
U.S. C. \({ }^{139-159}\)

18 Claims

1. In a loom picker construction having a picker stick, a shuttle-engaging block, and means holding said block on said stick; the improvement in said holding means comprising, a
pair of projections extending from opposite sides of said block, pair of projections extending from opposite sides of said block,
and a spring clamp engaging said projections and stick and yieldingly urging said block against said stick, said spring
clamp comprising a pair of similar roughly V-shaped portions clamp comprising a pair of similar roughly \(V\)-shaped portions
cach defined by a bight and a pair of diverging legs and each each defined by a bight and a pair of diverging legs and each
being disposed with its bight and legs in a common plane, with being disposed with its bight and legs in a common plane, with
a pair of planes associated with the \(V\)-shaped portions being a pair of planes associared with the -shaped portions being
disposed in spaced approximately parallel relation and with the V -shaped portions symmetrically arranged.
 Mitsuo Nishikawa; Hideo Hosaka, und Jun Maemori, all of Taknsaki, Japan, assignors to Max Co., Ltd., To9
Filed Feb. 22, 1977, Ser. No. 77,988 Cluims priority, application Japan, Feb. 23, 1976, 51-17984;
Mar. 6, 1976, \(51-24438 ;\) Mar. 12, 1976, \(51-26039\), Mar. 12 1976, Mar. 6, 1976, 51-24438; Mar. 12, 1976, \(51-26039\); Mar. 12, 1976,
\(\mathbf{5 1 - 2 8 5 9 6 [U] ; ~ M a r . ~ 1 3 , ~ 1 9 7 6 , ~ 5 1 - 2 7 2 6 6 ; ~ M a r . ~ 1 2 , ~ 1 9 7 6 , ~ 5 1 - 2 6 0 4 0 ; ~}\) 51-28596[U]; Mar. 13, 1976, \(51-27266 ;\) Mar. 12, 1976, 12-26040;
May 20, 1976, 51-58300; May 20, 1976, 51-63382[U]; Jun. 5, May 20, 1976, 51-58300; May 20, 1976, 51-63382[U]; Jun. 5,
1976, 51-65788; Oct. 28, 1976, 51-14078[U]; Nov. 4, 1976, 51-131637; Dec. 18, 1976, 51-152601; Feb. 21, 1976, 51-18328 U.S. CI. 140-93.2 Int. C. \({ }^{2}\) B21F \(9 / 02\)

1. An automatic binder for binding an object with a continu1. An automatic binder for binding an
ous flexible lacing material, comprising:
a main body;
guide means within said body for guiding said lacing material around the object to be bound, comprising mating guide elements, defining a central opening therewithin in a closed position of said mating guide elements, and being
provided with lacing material lead-in and lead-out holes, provided with lacing material lead-in and lead-out holes,
said holes being connected with a continuous guide channel having the configuration of a knot;
feed-in primary tightening means for feeding said lacing material into said guide channel and rewinding said lacing
material on said object to be bound to form a knot in a material on said object to be
primary tightening operation;
primary tightening operation;
lacing material gripping means actuated by a free end of said
lacing material lacing material for gripping said free end of said lacing
material during primary and secondary tightening material during primary and secondary tightening opera-
tions, said means generating a first pilot signal for actuattions, said means generating a first pilot signal for actuat-
ing said feed-in primary tightening means to effect said primary tightening operation and a second pilot signal for actuating a secondary tightening means to effect said
secondary tightening operation; said secondary tightening secondary tightening operation; said secondary tightening
means effecting said secondary tightening operation by meaving said lacing material gripping means away from moving said lacing material grippi
said lacing material lead-out hole;
cutting means for cutting a portion of said lacing material which has been used for binding said object from the tightening operation; and
means for driving and controlling said guide means, said
feed-in primary tightening means, lacing material sriping feed-in primary tightening means, lacing material gripping means, secondary tightening means, and cutting means in said closed position of said mating guide elements.

SLIDING COVER \(\begin{array}{r}4,094,343 \\ \hline\end{array}\) ER FOR DUPLICATING FLUID
Peter Koreska, Vienna, Austria, assignor to Kores Holding Zug AG, Zug, Switzerland

Filed Jan. 24, 1977, Ser. No. 761,678
Claims priority, application Austria, Feb. 4, 1976, 765/76
U.S. Cl. 141-86

Int. C1. \({ }^{2}\) B65B 3/04
1. In a sliding cover, for use in connection with a duplicating
fluid canister of a duplicating machine and including outlet means for discharging the fluid into a duct for the duplicating machine;
said outlet means comprising a raised lip forming a discharge
opening and being operative to form an interconnection opening and being
with the duct; and

a collar formed by a tapering wall thereby defining an outwardly flaring funnel, said collar circumferentially sur-
rounding and being spaced apart from said raised lip defining with said lip a reservoir for retaining duplicating fluid which may have leaked from the interconnection
whereby any duplicating fluid leaked into said reservoir is whereby any duplicating fail
easily removable therefrom.

4,094,344
APPARATUS FOR MENDING SURFACE APPARATUS FOR MENDING SURFACE
IRREGULARITIES OF WOODEN PLATES
Katsuji Hasegana, Nagoya, Japan, asslgnor to Meinan Machin ery Works, Inc., Obbu, Japan

Filed Aug. 17, 1976, Ser. No. 715,010
U.S. C. 141-125

9 Claim

1. An apparatus for mending surface irregularities of a wooden plate which is red past the apparatus in a selecte
ing:
support means;
head means mounted on said support means in an angled relationship with respect to said path, and cooperating means between said head and support means for permi-
ting slight angular movement of said head means, said head means being located over the path of said wooden plate and having a putty outlet formed in the lower portion thereof, said head means also having passageway means
outlet;
supply means connected to said passageway means for supplying pressurized putty to said outlet;
a plurality of elongated needles positioned closely adjacent
each other, said needles being disposed in a slanaving the tionship witions thereof mounted on the lower portion of

971 O.G. 22
cup, the top portion of the cup wall progressively engaging said slot during downward pivoting of said trough.
\(4,094,346\)
K MANIFOLD
Joseph V. Milo, Elizabeth, N.J., assignor to Universal Valve Co., Inc., Elizabeth, N.J.

Filed Aug. 12, 1976, Ser. No. 713,641
Int. Cl. \({ }^{2}\) B65B 3/18: F16X \(1 / 14\)
U.S. C. 141-286

1. In a vapor recovery system for a liquid and vapor containing tank, the combination of
manifold aled to be mouted upor the turk fold comprising
a fill section and a vapor recovery section, said fill section having a fill opening in communication with the tank, said vapor recovery section having a boss defining a firs vapor return opening for recovering vapor from the
tank,
tank,
said vapo
said vapor recovery section having a smaller bottom opening in registry below the first vapor return opening, said first and second openings being in communica-
tion and defining a vapor channel through which the vapor to be recovered passes;
eans to admit vapor from the
through the fill opening;
toat means mounted in
loat means mounted in the vapor recovery section at the said second opening to prevent liquid from exiting th
manifold through the vapor return opening, the said float means being of size and conf upwardly pass through the first opening to permit remote removal from above;
an inclined baffle affixed interiorly at the manifold intermediate the float means and the fill section; and
wherein the manifold comprises a floor which slopes down-
wardly from the vapor recovery section towards the fill section, the baffle being secured to the floor and bein provided with a drain opening, said opening permitting the passage of liquid along the floor from the vapor recov-
ery section to the fill section and thence back to the tank.

\section*{4,094,347}

BALLOON NECK FITTING
Kikuil Ikemoto, 100-27, Shin-marita, Hirono-cho, Uji-shi,
Kyoto, Japan Filed Dec. 23, 1976, Ser. No. 753,944
Claims priority, application Japan, Jul. 10, 1976, 51-135307
U.S. Cl. 141-313 Int. Cl. \({ }^{1}\) B65B \(3 / 04\)
1. A balloon neck fitting, for use in a balloon vending machine having a transporting mechanism to transport the balloons therethrough a a a cylindrical check valve section having a configuration
adapted to be fitted in the neck of a balloon, and being closed at the one end to be inserted into the neck of the balloon and open at the other end, and having several openings in the lateral wall thereof
b. guide means for engaging the transporting mechanism of
the balloon vending machine, ssid guide means comprising an open-ended cylindrical guide section; c. frangible connecting means for connecting said guide section with the open end of said check valve section in such a manner as to readily permit breaking of the connection;

d. a string connected at one end to said check valve section, and connected at the other end to said guide section; and e. said open ended cylindrical guide section and said check valve section open end being sized to receive therein the gas supply nozzle of the balloon vending machine,
whereby, after the balloon is filled with gas by means gas supply nozzle, said frangible connecting means is caused to be broken, leaving said sections connected only by said string.

4,094,348
TREE AND \(4,094,348\)
Robert H. WPMP SPLITTER Foir, 408 S. Willow St, Flora, Ind. 46929
Filed Nov. 19,1976 , Ser No. 743,487 Filed Nor. 19, 1976, Ser. No. 743,481.
Int. Cl. \({ }^{2}\) A01G 23/08
U.S. Cl. 144-34 F

4 Claims

1. A stump splitter attachment for a bulldozer having a bulldozer blade, said attachment comprising a vertical sharp edged stump splitting blade exiending forwardly of said attachment, at least one horizontally extending generally triangular cut off blade secured to said splitting blade from a position near the forward end of said splitting blade and having a rear edge ying in a plane normal to said splitting blade, and means to
secure said attachment to the bulldozer blade in which said means to secure said attachment to the bulldozer blade consists of at least three ball means disposed in a triangular configuraton secured to said attachment, socket means swingably mounted on said balls said socket means being provided with flanges including holes to receive bolts by which said socket

\section*{4,094,349}

HAND SABRE SAW
William C. Lajuck, and Joseph J. Lasack, both of 3446 Berk shire, Warren, Mich. 48091 U.S. Cl. \(145-31\) B

9 Claims

(a) the root portion extending from the screw driver shank to join the transverse portion,
(b) the transverse portion interconnecting the root and
oblique portions, the transverse portion having a size obulique portions, the transverse portion having a pass through a clearance passage extending under a bridge portion of a screw,
(c) the oblique portion extending obliquely from the transverse portion to an outer end of the oblique portion, the transverse portion sufficiently to accept the screw retained on the transverse portion,
and the screw engaging means further includes. (d) a separable stop member to engage releasably the stop engaging means at the outer end or the

4,094,351

Filed Oct. 5, 1976, Ser. No. 729,724 Int. C1. \({ }^{2}\) A4SC \(11 / 00\)
1. A saw including an elongated, U-shaped body member constructed of an elongated metal band folded centrally to provide a short connecting portion and two elongated leg portions defining a slot capable of receiving a saw blade therebetween, which leg portions extend longitudinally of the body member, a handle constructed of an elongated \(U\)-shaped metal band folded centrally to provide a connecting portion and two elongated leg portions positioned over the body member with the leg portions of the handle immediately adjacent and outsic of the leg portions of the body member and with the connec ing portion above the body med ter, a collar constracted or the body
continuous metal band secured to the other end member extending above the body member for guiding a saw blade therethrough, means for securing the collar to the other end of the body member and for supporting a saw blade guided through the collar, means for securing one end of a saw blad to the handie above the body member with the saw bat
extending into the slot defined between the leg portions of the body member, and means for guiding the handle in movemen longitudinally of the body member.

\section*{4,094,350}

Ralph Spencer
SCREW DRIVER
2790. 27970 Le Dunne Ave., Aldergrova
Division of Ser. No. 680,715, Apr. 27, 1976, Pat. No. 4,033,244 This application May 12, 1977, Ser. No. 796,348
U.S. CI. \(145-50 \mathrm{D}\)

10 Claims FASTENERS HAV mill J. Hinsky, Oak Brook, Ill, assignor to MacLean-Foge Lock Nut \(\mathrm{Co}_{0}\), Mundelein, III.

This application Oct. 21, 1976, Ser. No. 734,680
U.S. C. 151-37

18 Chims
1. In a fastener for a threaded joint, a body having an end portion symmetrical about a central axis with a plurality o teeth in an annular array integrally formed in said end portion
said teeth having individual top bearing surfaces comprising discontinuous sections of said end surface, said individual top bearing surfaces being flanked in opposite circumfer ential directions respectively by an abrupt side surface and a gradually sloping side surface;
whereby said top bearing surfaces limit the indentation of said teeth into the coacting surface of a workpiece in accordance with the combined areas of said top bearing
said individual top bearing surfaces each having generally
the shape of a triangle with a base and an apex respec
tively at outer and inner margins of said annular array; and
tively at outer and inner margins of said annular array; and

the height of each abrupt side surface as measured parallel to
said central axis progressively increasing from the base to the apex.

TIRES HAVING A SOLID POLYURETHANE CORE Peter Ford, Birmingham, England, assignor to Dunlop Limite London, England Filed Feb. 27, 1976, Ser. No. 662,020 \({ }_{9254 / 75}^{\text {Cluims priority, application United Kingdom, Mar. 6, 1975, }}\) U.S. Cl. \(152-310\)

1. A tire and wheel rim assembly comprising a tire having a reinforced carcass, a wheel rim on which the tire is mounted to define a chamber, the chamber having a filling of resilient solid polyurethane material consisting of the reaction product of a) at least one liquid polyoxpropylene polyether polyol and b) a
diphenylmethane diisocyanate chemically modified by known diphenyimethane disocyanate chemically moorified by known that the ratio of functional isocyanate groups to hydroxyl groups is in the range 0.65 to 0.9 .
9. A process for puncture-proofing a pneumatic tire mounted on a wheel rim comprises filling the tire with a liquid
reactant mixture of (a) at least one liquid polyoxypropylene reactant mixture of (a) at least one liquid polyoxypropylene
polyether polyol and (b) a diphenylmethane disocyanate polyether polyol and bo a anown means to liquid form the amounts of these reactants being such that the ratio of functional isocyanate groups to hydroxyl groups in the reactants is
in the range 0.65 to 0.9 , and cross-linking said mixture to form in the range 0.65 to 0.9 , and cross-linking said mixture to form a resilient solid polyurethane material filling the tire.

PREAEP PEINFORCING TAPE FOR BELTED PNEUMATIC TIPES AND TIPES TAPE FOR BELTED Wesley Ferrell, Southbury, and Daniel Shichman, Trumbull, both of Conin., assignors to Uniroyal, Inc., New York, N.Y. Filed Mar. 9,1977 , Ser. No. 775,803 U.S. C. 152-361 R

21. An uncured belted pneumatic tire, comprising a carcass composed of at least one body ply, and a belt-forming structure
surrounding said body ply in the medial re-ion of aid carcass surrounding said body ply in the medial region of said carcass,
said belt-forming structure being constituted by a tape of cords wound substantially helically around said medial region of said carcass with a multiplicity of turns having a pitch of substan tially zero degrees relative to the median equatorial or mid-circumferential plane of said carcass, and said tape comprising a crimped strip having continuous undulations, a pluraiity of said
cords extending side by side in parallel relation longitudinally along said crimped strip, each of said cords having respective undulations corresponding to and nesting in the undulations of said crimped strip, first means for anchoring each of said cord to said crimped strip, a flat strip having a width substantial
corresponding to the width of said crimped strip, secon means for anchoring said flat strip to alternate ones of the apexes of the undulations of said crimped strip, and frangible means coextensive with said flat strip for releasably reinforcing
and stabilizing said flat strip against inadvertent expansion that and stabilizing said flat strip against inadvertent expansion that
would prematurely reduce the amplitude and frequency of the undulations of said crimped strip and of said cords.

HEAT RECOVERY PROCESS
George C. Blytas, Houston, Tex., asslgnor to Shell Oil Com pany, Houston, Tex.
Filed Sep. 23, 1976, Ser. No. 725,759
U.S. Cl. 165-1 Int. C.2 F25B is/00 20 Claim

1. A process for transferring thermal energy comprising contact zone under conditions to absorb water, dilute the solution, and raise the temperature of the solution, the solution
being in indirect heat exchange with an aqueous stream and raising the temperature of the aqueous stream and converting at least the bulk of the aqueous stream to steam,
passing diluted solution from the first contact zone to a second contact zone
passing the aqueous stream of raised temperature produced in the first contact zone to a second contact zone wherein first contact zone, under conditions to absorb water and heavily dilute the solution, and raise further the temperature of the solution,
and transferring heat from the heavily diluted solution to a medium to be heated.

GEOTHERMAL HEAT RECOVERY SYSTEM
Whewell Frank Ash, 1095 Capital Hill, Renor, Ner. 89502 , and Frank Robert Asb, 834 Shriver Blvd., Sparks, Ne.
Filed Jan. 6, 1977, Ser. No. 757,379 Filed Jan. 6, 1912,
Int. C1.
U.S. CI. 165-39

1. A geothermal heat recovery device, comprising a hea absorber containing a variable quantity of working fluid, said heat absorber being disposed within a hot zone of a geor heal absorber ou of said well, heat exchanger means connected to said gas deliv ery pipe for condensing the gas from said delivery pipe to liquid and conducting heat therefrom, reserve ther means for connected to the output of said working fluid, a supply pipe
storing a reserve quantity of said storing a reserve quantity of said weans down said well to said exten absorber to supply said working fluid thereto, said suppl pipe being substantially full of said working fluid in liquid phase to create a substantial pressure head in said heat absorber, insulation means surrounding said suppily pipe fe heating entire portion thereod preventing vaporization of said working and expansion of and prevenide, and thermostatic valve means including a sensing element operatively associated with the operating temperature of said heal means interposed bewter said reserve tank means and said supply pipe for selecively controlling the feed rate of said working fluid to said heat absorber.

\section*{\section*{4,094,357} \\ HEAT TRANSFER BLANKET} Bethpage, N.Y.

Filed Apr. 9, 1976, Ser. No. 675,301
Int. C1. \({ }^{\text {F2 }}\) 28D \(15 / 00\); A47C 19/00; H5BB \(1 / 00\) S. C. \(165-105\)

1. A heat transfer blanket comprising a plurality of flexible sheath heat pipes, a pair of juxtaposed fabriclike layers having the marginal edges of one of said pair substantially in intimate
contact with the marginal edges of the other of said pair, a contact with the marginal edges of the other of said pair, a portion thereof fixedly secured to and between said fabric-like ayers disposed in spaced apart relationship, said spaced apar relationship providing substantially uniform distances between adjacent heat pipes, the other end of said pluraity of said hea mate thermal contact with a source of thermal energy.

4,094,358
LIQUID COOLING APPARATUS René Neveux, Les Clayes-sous-Boiss, France, assignor to Societ René Neveux, Les Clase
Anonyme Francaise du Ferodo, Paris, France
For Claims priority, application France, Apr. 2, 1975, 7510251 Int. C. \({ }^{2}\) F28D 7/12

1. Apparatus for cooling liquid, such as oil, including an xchanger disposed within a container having a wall and being liled with a cooling medium, such as water, said wall having passages therethrough, fluid connectors fixed to said exand extending through the passages in said container wall, each connector comprising two parts, each part extending through said container wall from opposite sides thereof, one part penerating the other part, said two parts, when assembled together, orming an annular cavity closed on at least one side of said container wall and enclosing the rim of the passage associated therewith and an annular seal arranged in said cavity astride volume of said cavity gradually diminishing and compressing said seal during assembly of said two parts.

APPARATUS AND METHODS FOR TESTING EARTH David W. Kine, Fort Formations
Industries, Inc., Fort Worth, Tex and to Gearhart-Owe Carecta, Vinc, Fort Worth, Tex. and Petro-Data C. A Caracas, Venezuela
Filed May \(\mathrm{R}_{\text {Int. Cl }}\)

3 Clims
U.S. Cl. \(166-65\) R
means on said sleeve valve means so that said sleeve valve means may be actuated and controlled by movement of said latch arm means;
. link means pivotally connected at one end to the upper end of said latch arm means and at the other end to a second slidable collar means that is free to move rem
to said drive shaft and said wireline tool body;
ii. stop means for limiting downward movement of said
second slidable collar means such that when said drive si. stop means slidable collar means such that when said drive
shaft is in its lowermost position said latch arm means is shaft is in its lowermost position said latch arm means is
retracted; retracted;
ii. second spring means for biasing said second slidable is in said intermediardly so that, when said drive shaft is in the open position and said latch arm means is at least partially extended; and, when said drive shaft is moved to its uppermost position, said sleeve valve means is moved by engagement
latch arms to its closed position.

4,094,360
SELF-LOCKING MULE SHOE
Sharon Parr
Nelson, Houston, Tex., assignor to
thies, Inc., Houston, Tex, Tex, Tex., assignor to W
Filed Jul. 1, 1977, Ser. No. 812,062
U.S. Cl. 166-243 Int. Cl. \({ }^{2}\) E21B 41/00

3 Claims

1. A mule shoe comprising:
a member having an axis therethrough and having a long and short axially extending edge therein, said edges being angular distance and cooperating to define a key-receiving slot therebetween;
cam surface disposed between short edges, said cam surface winding about the axis of the member for a second angular distance such that the sum of said first and said second angular distances is equal to at least \(360^{\circ}\) such that an axially directed reaction force imposed on said cam surface by abutting engagement with a key imposes a torque on said member in a predetermined
direction. direction.

PERMISSIBLE MINE CAR ADAPTER ASSEMBLY effry R. Yago, Barboursville, W. Vh., assignor to Lester Con struction Company, Hurricane, W. Va.
Filed Apr. 20, 1976, Ser. No 678,631
U.S. Cl. 169-48 Int. Cl. \({ }^{2}\) H02K \(5 / 10\)
U. A fire-safe torque transmission apparatus comprising
walled walled explosion proof container, a sleeve member defining a throughgoing bore secured to a wall of said explosion proof container, the bore allowing communication of the interior of
said container with the atmosphere, an adapter plate assembly said container with the atmosphere, an adapter plate assembly
removeably mounted to said sleeve member, said adder removeably mounted to said sleeve member, said adapter plate
assembly comprising a support member and a shaft support member connected to said support member, said shaft suppor member defining a throughgoing bore with first, second and third annular steps at each end, the third step forming a com-
mon step for both ends and defining a cylindrical bore adapted mon step for both ends and defining a cylindrical bore adapted
to receive a rotatable shaft, the first step serving as a bearing fixed by first shear pin means to said drive shaft, said latch to receive a rotatable shaft, the first step serving as a bearing
arm means adapted, when extended, to engage shoulder race seat and the second step serving as a flame baffle, ball-
1. Motorized sleeve valve shifter apparatus for use in a. a drive shaft extending longitudinally within the body said wireline tool and powered by an electric motor for controlled reciprocatitng movement;
the body of said wireline tool and adapted, when tended, to engage shoulder means to prevent movement of said wireline tool in the upward direction;
i. first spring means for biasing said latch dog means out wardly;
ii. means on said drive shaft for compressing said first spring means to retract said latch dogs when said drive
shaft is in a lowermost positiond of said latch dogs when said drive shaft has moved upwardly to an intermediate position;
c. upwardly facing latch arm means pivotally fixed at the
lower end to a first slidable collar means that is in turn
bearing race means mounted on each end of said shaft support member in said bearing race seats, a rotatable shaft of smalle the common third step mounted on said ball-bearing race means and rotatably positioned within said cylindrical bore, one end of said shaft being connected to a motor mounted

inside said explosion proof container and being adapted to be otated by said motor with the spacing between the inner wall of the shaft support member defining he cylindicaldore and he outer surface of the las in inches inches and extending a length of not less than a

\section*{4,094,362 \\ APPARATUS FOR \(4,094,362\) GRADING COMPACTED \\ EARTH \\ Melvin O. Hild, 923 W. 15th, Grand Island, Nebr. 68801}

Filed Dec. 6, 1976, Ser. No. 747,662
Int. Cl. \({ }^{\text {A01B }} 33 / 02,33 / 10\)
U.S. C1. 172-120
1. Apparatus for fine grading com
cutting blade, said blade comprising:
(a) a substantially planar circular base member having a hole through the center thereof and a pluraity of \(90^{\circ}\) notches evenly spaced about the circumference of said base memturn, are each perpendicular to the plane of a radius of said base member;
(b) a collar affixed to one side of said base member, said collar having a hole therethrough substantially the same
size as said hole through said base member and aligned size as said hole through said base member and ailans
therewith, said collar further having fixing means thereon for decreasing at least partially the diameter of said ho for deccreasing allar
(c) a slot in said first leg of each of said \(90^{\circ}\) notches;
(d) an L-shaped bracket having a threaded hole through the
long leg thereof fixed to said first leg of each of said \(90^{\circ}\) long leg thereof fixed to saia first leg of each of said \(9{ }^{\circ}\)
notches such that said threaded hole is aligned with said slot and the short leg of the bracket is in contact with said second leg of said \(90^{\circ}\) notches;
(e) a rectangular blade having a sharpened edge positioned
on each of said L-shaped brackets and projecting past the on each of said \(L\)-shaped brackets and projecting past the
periphery of said base member, each of said blades having

a hole therethrough aligned with said threaded hole in a hole L-shaped bracke
(f) a substantially planar rectangular fixing plate positioned on each of said blades, each of said fixing plates having a hole therethrough aligned with said hole in said blade an said threaded hole in said \(L\)-shaped bracket; and (g) a bolt projecting through each of said aligned holes and shaped bracket whereby said blades are fixedly held in position on said base member.

Cultiv 4,094,363 CULIVATING IMPLEMENTS John Michael McCoomb, Anckland, New Zealand, assignor to Spintiller International Limited, Auckland, New Zealand
Continuation of Ser. No. 633,949 , Nor. 20, 1975, abandoned, Chich is a continuation of Ser. No. 485,597, Jul. 3, 1974, abandoned, which is a continuation of Ser. No. 340,747 , Mar. 13,
1933, abandoned. This application Jul. 28, 1977, Ser. No. 1973, abandoned. This application
Claime
16562
U.S. Cl. 172-349

Int. C. \({ }^{2}\) A01B \(21 / 04\)
5 Claims
1. A cultivating implement for cultivating the ground by movement thereover, said implement comprising a head member disposed so as to be movable over the ground; a pair of axles extending one on each side of said head nember outwardly and at an inctielly in a plane parallel to the ground; at least one tined spider means of diameter D freely rotatably mounted on each said axle about a center axis of the spider means, each spider means being unitarily and integrally formed and having a boss of diameter of approximately 0.23 D and four or five cantilever mounted tines radiating from said boss each to a free end, each tine having a base of circular cross section
adjoining said boss, the tine extending radially from said base to a plane at a distance of approximately 0.2 D from the center axis of the spider means and then being arcuately curved along its remaining length curving forwardly in the direction of movement in use of the implement with a radius of approximately 0.3 D from a center on a tangent to a circle of radius approximately 0.2 D , said tangent being normal to the axis of
the base of the tine, adjacent sides of adjacent tines curving the base of the tine, adjacent sides of adjacent tines curving
smoothy into each other, the tines progressively reducing in cross-section from the boss to their free ends, the base of each tine having a diameter of approximately 0.2 D where it adjoins the boss, a diameter of approximately 0.06D at said plane,
thereafter the cross section of the tine becoming oval towards hereafter the cross section of the tine becoming oval towards the free end of the tine and the tine terminating at said free end parallel to the axle upon which the respective spider means is mounted; the progressive reduction in cross section of the tines resulting in any particular cross section of a tine having a perimeter length no greater than the perimeter length of ansaid particular cross section.

PERCUSSION DRILL ROD Hans Per Olof Lundetrom, and Ernst Lennart Johansson, bo of Sandriken, Sweden, assignors to Sandrik Aktiebolag, Sand viken, Sweden \(\begin{gathered}\text { Filed Jun. 25, 1974, Ser. No. 483,045 }\end{gathered}\) Cliaims priority, application Switzerland, Jul. 5, 1973, 7309455 U.S. CI. 173-80

1. Drill rod structure for use
a plurality of rod members (10)
a plurality of tubular members (11) connected to each other said tubular members being disposed around said rod nembers a drill bit (12) having
receiving surface;
rid red members beins mind butment with each other to transmit only longitudina forces to said drill bit;
said tubular members being rotatably connected to the drilling machine at one end portion and having a slideable interlocking connection (13) with said shank at the oppobit shank;
said bit shank also having means (28) to prevent said shank and bit from sliding out of said tubular members;
ither of said rod and tubular members being provided with as guides and to provide passageway for flushing medium to pass through said space and thereby also to pass be ween said protrusions, said slideable interlocking connecion consisting of splines connecting said bit shank with the foremost tubular member, said bit shank being pro-
vided with a centrally extending fushing channel (27) and t least one channel (26) extending laterally at an acute angle from and in communication with said first channel and with the aforesaid space.

4,094,365
ELECTROHYDRAULICALLY OPERATED PORTABLE POWER TOOL
Karl Wanner, Echterdingen, Germany, assignor to Robert Bosct GmbH, Stuttgart, Germany
Continuation of Ser. No. 574,715, May 5, 1975, Pat. No. 3,995,703. This application Aug. 6, 1976, Ser. No. 712,247 Claims priority, application Germany, May 20, 1974, 242439
U.S. CI. 173- 117
1. A portable power tool, particularly an impact type powe tool, comprising a hollow housing
holder means carried by said housing and arranged to receive a tool adapted to reciprocate with respect thereto; a hydraulic pump mounted in said housing;
a receptacle provided in said housing and arranged to con tain a supply of hydraulic fluid for said pump; hydraulic motor means mounted in said housing. driven by pressurized fluid supplied by said pump and including a
double-acting cylinder which has a first and a chamber and in which said tool is received so as to reciprocate therein;
a valve assembly
a valve assembly mounted in said housing, connected with

said pump and operative to alternately admit pressurized fluid into said first and second chambers and to thereby effect reciprocation of said tool;
means for cooling the supply of hydraulic fluid in said recep tacle including blower means mounted in said housing and an electric motor mounted in said housing and arranged to
drive said hydraulic pump and said blower mens said drive said hydraulic pump and said blower means, said
blower means being arranged for sucking air into said housing and then inducing the flow of sucked air from said blower means first along said electric motor and thereupon along the exterior of said receptacle.

\section*{\(4,094,366\)}

PNEUMATIC PERCUSSION MACHINES
braham Gien, and Bernard Lionel Gien, both of PO Box 196, Swartruggens, Transvaal, South Africa, 70 of PO Box 196, Claims Friority, application South A0. 128,027 75/6257 priority, application South Africa, Oct. 2, 1975,
.S. CI. 173-138
\[
\text { Int. CC. }{ }^{2} \text { H01B } 17 / 00
\]
1. A pneumatic percussion machine including:
a hollow casing;
a valve assembly at one end of the casing;
a piston for reciprocation in the casing between a first position in which it is in contact with the bit assembly and second position in which it is removed from such first position, the piston being stepped along its length; a first chamber formed between an end of the piston and the valve assembly;
a second piston about formed inwardly from the other end of first fluid supply a first chamber;
second fluid supply path though a second fluid supply path through the valve assembly to the
second chamber, such second fluid supply path pasin second chamber, such second fluid supply path passing
for at least part of its length through the piston first fluid discharge path from the first chamber between the wall of the casing and the piston and the through the piston, such fluid discharge path being open
in particular positions of the piston along the length of the hollow casing;

the arrangement being one in which the valve assembly is adapted, on operat fluid supply paths.

004367
SYSTEM FOR SINGLE DRAFT WEIGHING OF CARS COUPLED IN MOTION William F. Jones, Glenvien, and Gerald J. Hochberger, Clicngo, both of III,, asslgnors to Rail welght, Inc., Elk Grove Village,

Filed Feb. 16, 1977, Ser. No. 769,032 Int. Cl. \({ }^{\text {G }} \mathbf{}\) (1 IG 19/04

1. A method for weighing railroad cars coupled in motion each of which railroad cars has a front truck and a rear truck, comprising the steps of
(a) providing a first scale and a second scale located forwardof said first scale;
(b) moving said railroad cars over said first and second scales;
(c) weighing the rear trucks on said first scale and storing said weight;
(d) while the rear truck of a railroad car under consideration (d) while the rear truck of a rairroad car under consideration
 rear truck of the just preceding railroad car;
(e) totaling the weights on the first and second scales; and (f) subtracting the stored weight of the rear truck of the just
preceding rairroad car to obtain the full draft weight of the railroad car under consideration.

4,094,368
LOAD CELL OVERLOAD PROTECTION SYSTEM FOR WEIGHING SCALES Robert I. Sann, Englewood Cliffs, and Arthur Goldberg, For Lee, both of N.J., assignors to Howe Richardson Scale Con pany, Clifton, N.J.
Filed Feb. 3, 1976, Ser. No. 654,752 U.S. C. 177-128 Int. C.2 \({ }^{2}\) G01G 21/10 25 Claims

1. In a weighing scale, a load-receiving structure for receiving a load to be weighed, force-transmitting means supporting force resulting from application of a load to said load receiving structure, and a self-contained module comprising a rigid support structure and an assembly supported by said support structure and detachably connected to said force-transmitting means, said assembly comprising a load cell receiving said
load-induced force for converting said load-induced force into a weight-indicating signal other than a mechanical force, a preloaded spring in series with said load cell and biased to protect said load cell from overload, and means enabling selecive preloading of said spring to sec a se parts not forming a part of said module and without requiring assembly of said module with any other scale parts, said load cell being stationarily and rigidly mounted on said rigid support structure so that it reloading said spring.

\section*{MONITORING DEVICE FOR NUCLEAR REACTOR} CONTROL RODS France Blasc, and Roland Jacquelin, both of Mationique, France, assign
Paris, France
Claims priorty Oct. 7, 1975, Ser. No. 620,4167, 7433852 Claims priority, application France, Oct. 8, 1974, U.S. CI. 177-147

9 Claims
1. A monitoring device for nuclear reactor control rods including an assembly for the continuous weighing of a control
rod and at least the moving portion of a rod-position control rod and at least the moving portion of a roa-position contro
mechanism, comprising at least one strain gage and a circuit for said strain gage for measuring the electrical resistance of said gage which resistance varies with elongation of said strain
gage, said elongation being a function of the weight to be gage, said elongation being a function of the weight to be
measured, a drive mechanism of the screw-and-nut type for said control rod, said mechanism being carried on a fixed reference plane by a supporting head applied against beams inset at a stationary extremity with respect to said reference plane, said mechanism being subjected to bending stress under
the action of the weight of said control rod and said drive sponds to the opposite change in the elastic force of the con-
bracket assembly extends rearwardly from said rea wheels, motor means, having an output shaft, mounted rearwardly on said bracket assembly and
drive means connecting the output shaft of said motor means drive means connecting said rear wheels for selectively driving
with only one of sect to the output the same comprising a first sprock countershaf rotatably shaft of said motor means, a countershart sprocket mounted on said bracket assemultershaft, an endless first secured to a fhred about said first and second sprockets, a third sprocket secured to a second end of said one rear shaf, a fourth sprocket connectible with said one rear
wheel and an endless second chain entrained about said wheel and fourth sprockets.

4,094,373
METHOD AND APPARATUS FOR CONVERTING AN METHOD AND APPARATHINE TO A TRACTOR Arthur F. Crow, Jr., R.F.D. 3, Milford, Ill. 60953 \begin{tabular}{c}
Filed May 4, 1977, Ser. \\
Int. \({ }^{2} \mathbf{C l}^{2}\) A01B \(71 / 00\) \\
\hline
\end{tabular} U.S. Cl. 180-1 F 12 Claims

\({ }_{7510033}^{\text {Claim }}\)
U.S. Cl. 177-168 Int. C. \({ }^{2}\) G01G 23/14, 3/18

5 Claims

1. In apparatus for weighing and handling a fluid material of the kind including a weighing vessel, a measuring beam fixed a spaced positions against downward movement and suspending said vessel between said positions so that said measuring beam
is deformed by the weight of said vessel, a measuring member is deformed with said measuring beam for measuring the deformation of the latter and hence for indicating the weight of said vessel, and a material supply line for supplying fluid material to said vessel, the improvement wherein said supply line has a one end a resilient conduit-portion adapted to be elastically
deformed said conduit-portion being in communication with said weighing vessel for the flow of fluid material, and the conduit-portion at its other end being connected to an adjustable suspension point on a fixed base and being subjected to a prestressing force by means for adjusting the suspension point so that the required prestress is obtained such that the change in this prestressing force due to the change with the working
temperature of the elasticity modulus of the conduit corre-
1. In apparatus for providing a digital signal indicative of the load on a scale having a member operatively connected to the
member for providing first and second electrical signals which meange from a first level to a second level and return to the firs level each time the member moves a predetermined amount the first signal leading the second signal when the member moves in a first direction and the secon signal leading the firs
signal when the member moves in a second direction, a firs signal when the member moves in a second direction, a firs
pair of cascaded flip-flops to which the first signal is applied, a second pair of cascaded flip-flops, a first exclusive OR gate connected to the outputs of the flip-flops in the first pair, a second exclusive OR gate cond flip-flops in the second pair up/down counting means, and flip-fliops in the second pair, up/down counting means, and
muttiplexing means responsive to the outputs of the flip-llops for delivering pulses from the OR gates to the counting means to be counted in a direction corresponding to the direction in which the displaced member moves.
digITAL display \(\begin{aligned} & 4,094,371 \\ & \text { FOR WEIGHING SCALES }\end{aligned}\)
Ferrell, 38799 Jonquill Dr, Newark, Calif. 94560 led Feb. 4, 1976, Ser. No. 655,01 U.S. C. 177-210 \(\mathbf{R}^{\text {Int. Cl. }}{ }^{\text {G G01G }}\) 23/37

\(4,094,372\)
MOTORIZED SKATEBOARD WITH UNI-DIRECTIONAL REAR MOUNTING
Michael A. Notter, 115 Greenwood Ave., San Francisco, Calif. Filed Feb. 28, 1977, Ser. No. 772,647
U.S. Cl. \(180-1 \mathrm{G} \quad\) Int. C. \({ }^{2}\) B62D 51/02 \(\quad 16\) Claims

1. A skateboard comprising
a horizontally disposed rider's platform,
\({ }^{a}\) a pair of laterally spaced front wheels connected beneath a parward end of said platform,
a pair of rear wheels,
mounting means connecting said rear wheels beneath a rearward end of said platform for solely permitting verti-
cal pivotal movements of said rear wheels about a pivo axis disposed in a vertically disposed plane intersecting a longitudinal axis of said skateboard, said mounting means comprising a bracket assembly pivotally mounted beneath wheels rotatably mounted thereon and wherein said
being coupled to one of said wheels to facilitate the steerseing coupled sehicle when said steering column is rotated ing of respect to said frame;
an upper portion of said steering column being longitudinally slidably received in said lower portion and movab between a raised position and a lowered position; lock means for releasably securing said upper portion that said
lower portion when in said raised position, such upper portion of said steering column is rotatable wid sadid lower portion when sald upper portion is said lower raised po
portion;
metlebar means carried by said upper portion of said steering column, said handlebar means having opposite pro jecting ends extending from said upper portion, said portio diebar means being movable with said uppor wherein selaid handlebar means extends transversely with respect to

the longitudinal axes of said frame, said handlebar means being movable with said upper portion relative to said handlebar means is disposed in a front-t-r-rear fashion, said handlebar means being sized that one end of said handle-
1. Apparatus for converting an agricultural machine having 1. Apparally wide traction wheel assembly into a tractor having a traction wheel assembly of substantually hess machine, than the traction whecl assembly of the agriculitural machine, ncluding in combination a driven part and a racwering said
assembly of substantial width, drive means poly raction wheel assembly, further means reca part said traction said traction wheel assembly to said driven part said cranction heel assembly formed in wo sections machine and said sections ogether for use with the agnicultural maing separable and slideable when released frem ans, and one of said sections being removed from the driven part, and mechanism connected at one caid driven said other of said sections and ar the ther en said other section part, said mechanism being operable to to to each other to alig
and said driven part laterally them in fore and aft relationship for oper

\section*{4,094,374}

TWO WHEELED ELECTRICALLY POWERED VEHICL Tho 1036 San Carlos Rd., Pebble Beach, Cali Herbert Adama, 1036 Continuation of Ser. No. 500,389, Aug. 26, 1974, Pat. No. 3,934,669. This application Nor. 13,1975 , Ser. No. \(\mathrm{C}, \mathrm{a}, 27\) The portion of the term of this patent subsect
1993, hass been disclaimed.

Int C1.2 B62M 7/10; B62K \(15 / 00\)
Int
U.S. C. 180- \(\mathbf{3 1}\)
1. A powered vehicle comprising:
an integrally formed body frame bound
front wall, a rear wall, and side walls;
a pair of wheels protid frame:
for supporting said
for supporting said frame;
a steering column having a lower portion rotatably carried
for supporiumn having a lower portion rotatably carried
a teering colum said frame, said lower portion of said steering column
by bar means is in close proximity to said top wans between frame while the portion of said handion of said steering col
said one end and said upper portion said one end and said the mid-section of said frame, said lock means releasably securing said upper portion to said lower portion when same is in said lower position; and the other end of said handlebar means projecting outwardly from said front wall of said vehicle, wer front-to-rear lower position,
handlebar means is in said said one end of said handlebar means serving as a means for lifting and carrying said vehicle, said oiner end prope handlebar means serving to facilitate the manual ling of said vehicle on at least one of

\section*{4,094,375 RIGID CONNECTION DETOR CYCLES}

RIGID CONNECTION DEVICE AND ITS APPLICATION Pierre M. Doneque, Amiens, France, assignor to Agence Nationale de Valo
Seine, France
Seine, France
Filed Mar. 26, 1976, Ser. No. 670,943 Claims priority, application France, Apr. 3, 1975, 7510461 U.S. C. 180-33 A Int. C.2 \({ }^{2}\) B62K \(11 / 04\) 1. A motorcycle having an engine block and steering colmn, in which the engine block is joined to the steering column y an intermediate solid which extends rigidy from two connection points on the steering column, and comprises two other connection points disposed on a cross-member the engine block lance from the steering cild are joined to one another by a strucand the intermediate soneting bars whose junctions are at least ure of at least six coints of the intermediate solid and at leas three connection points of the intermediate solid and at least three connection points of the engine block not in straight line

alignment with each other, two of said three points of the block ach being connected to at least two connection points of the

intermediate solid and two of said three points of the block being longitudinally spaced from each other.

4,094,376
BEARING ASSEMBLY FOR A WHEEL HUB Hans-Heinrich Welschof, Rodenbach, Germany, assignor to Lohr \& Bromkamp GmbH, Offenbach am Main, Germany
Filed Oct. 29, 1976, Ser. No. 736,888 Claims priorty, application Germany, Oct. 31, 1975, 2548722 U.S. CI. \(180-43\) R

6 Claims

1. In a bearing assembly for a wheel hub, the combination of a constant velocity universal joint mounted on a wheel support bers, a wheel hub, bearing means journaling said wheel hub within the wheel support and comprising an inner bearing race mounted on said wheel hub and an outer bearing race on the wheel support, said wheel hub having one end non-rotatably but detachably connected to said inner joint member and the
other end of said hub having a flange to which a wheel can be attached, and a flexible boot having one end mounted upon said rotatable outer joint member and another end mounted upon one of said wheel support and said wheel hub at said wheel support to enclose said universal joint and extend over the bending range of the outer joint member and the inner joint rotatable elements.

\section*{4,094,377}

ELECTRICALLY POWERED VEHICLE
Herbert W. Biggs, P.O. Box 1510, Hobe Sound, Fla. 33455 Filed Apr. 15, 1976, Ser. No. 677,366
U.S. Cl. \(180-65\) C
1. A. Claims 1. A battery powered drive system for vehicles comprising
an electric drive motor and drive shaft adapted to propel a vehicle,
a pair of electrical storage batteries,
ircuit means for selectively connecting one or the other of said batteries to said motor,
steam engine having a shaft and a generator mounted on said shaft, a steam boiler,
solar heater mounted in operative relation to the boiler for heating liquid in the boiler to generate steam, conveying steam generated by the boiler to the steam

engine and returning the exhaust of the steam engine to the boiler
switching means connected between the generator and the batteries for selectively connecting the generator to on or the other of said batteries for recharging the batteries, as burners disposed immediately adjacent the boiler for heating liquid in the boiler
and means for selectively operating the burners to heat the liquid in the boiler.

4,094,378
VEHICLE CONSTANT SPEED CONTROL CIRCUIT Hans Scheyhing, Leonberge Helmut Fleischer, and Karl-Ludwis Abend, both of Schwieberdingen, all of Germany, asaignors to Robert Bosch GmbH, Stuttgart, Germany
Filed Jul. 16, 1976, Ser. No. 705,923
Claims priority, application Germany, Aug. 22, 1975, 253741 U.S. Cl. \(180-105 \mathrm{E}^{\text {Int. Cl. }{ }^{2} \text { B60K 31/00 }}\) 10 Claims

1. Vehicle constant speed control system to control an en gine input to maintain the speed of the vehicle at a commanded alue, comprising
means (12) generating an actual vehicle speed signal means (1) coupled to the engine of the vehicle controlling energy input thereto;
controller (13) having proportional-derivative (PD) characteristics comparing said actual speed signal and said d positioning means (14,15) responsive to and positioning means (\(\mathbf{1 4 , 1 5 \text {) responsive to the error signa }}\) and controlling said energy input control means (10) and hence affecting the speed of the vehicle, said positionin
means and said vehicle responding to the error signa proportionately, with substantial time delay;
and wherein the PD controller (13) includes a control ampli fier (30) having a feedback circuit comprising a T-resis-
ance-capacitance circuit including two serially resistors (31, 32) and a cross connected capacitor (33).

SOUND-ABSORPTION PANEL
David I. Steinberger, Columbus, Ohio, assignor to Body Guard Inc., Columbus, Ohio

Filed Sep. 13, 1976, Ser. No. 722,358 U.S. CI. 181-284

11 Claims

1. A sound-absorbent structure comprising an outer shell of high-density sound-deflecting material forming a cavity with
sound-deflecting walls and a mouth adapted to open toward the sound emitter, and a body of low-density sound-absorbent material disposed within the cavity and extending outwardly relative thereto in spaced relationship to the walls of said cavity; said sound-deflecting walls having inner plane surfaces diverging at an angle less than ninety degrees from an inner vertex, said sound-absorbent body being in the form of a strip
of material having opposed plane surfaces and inner and outer edges with its inner edge at the vertex between said sounddeflecting walls and with its outer edge exposed at a position substantially outwardly thereof, said sound-absorbent strip bisecting said cavity formed by said diverging sound-deflecting walls to provide pockets at each side of said strip, each of
said pockets having a plane sound-deflecting surface formed sy pock of said sound-deflecting walls and a plane absorbing surface adjacent thereto and on said sound-absorbing strip which are disposed relatively at an angle of less than \(45^{\circ}\).

\section*{4,094,380}

MULTI LAYER SOUND-PROOFING STRUCTURE Hiroshi Kobayashi, Chofu, and Nobuyoshi Kuwabara, Yokohama, both of Japan, assignors to Chiyoda Chemical Englneering \& Construction Co., Ltd., Yokohama, Japan Flied Jun.
Claims priority, appllication Japan, Jun.
Int. C.2 U.S. C. 181-285

A multi layer sound-proofing structure for absorbing
sounds having frequencies of from about \(100-4000 \mathrm{~Hz}\), coma fising: having layer (2) comprising a light aggregate and a binder fraction as continuous void of from 15 to \(60 \%\);
a second layer (4) on said first layer (2), said first layer having at least a major surface uncovered by said second layer so as to serve as an incident surace bor sounds; third layer (3) on said second layer (4) with said second
layer (4) interposed between said first and third layers, said third layer comprising a light aggregate and a binder, each of which is the same as or different from those of the first layer and having a bulk density of from 0.1 to 2.0 \(\mathrm{g} / \mathrm{cm}^{3}\) and void fraction as continuous void of from 15 to
\(\qquad\) said second layer (4) being of a material having a quality to
insulate relatively insulate relatively high frequency sounds and to permit penerration of relatively low requency sounds; and ing ability, and covering all free surfaces of the layered ing ability, and covering all free surfaces of the layered
structure of said first, second and third layers except for said uncovered major surface of said first layer (2) such that said uncovered major surface of said first layer a least substantially defines the direct incident surface fo sounds impinging on said sound-proofing structure.

\section*{4,094,381 \\ AERIAL EXTENSION LADDER}

Darrell \(F\)
73106
Filed May 2, 1977, Ser. No. 793,201
Int. C1. \({ }^{2}\) E06C 5/06
J.S. CI. 182-67

4 Chims

1. An aerial ladder including a base ladder section and a ladder section in combination with a vehicle having a flat bed and a turret mounted on the flat bed for pivoting movement an a vertical axis, the improvement comprising: a support frame underlying and secured to said base ladder said sup
nected wid frame having a lower end pivotally consaid turret said turret for pive
vertical plane;
hydraulic lift cyline the surport cylinder extending between the turret and axis;
double acting hydraulic extension cylinder longitudinally
secured within said support frame intermediate the ends of the latter,
said extension cylinder having a double end piston rod recip-
pair of pulleys connected with the respective end portions of said base ladder section
a pulley bracket, journalling a plurality of pulleys, secured to each end of said piston rod and to the respective en portion of said support frame forming cooperating pairs of
pulley brackets and,
pulley brackets; and
respective ends of said support frame and entrained around said pair of pulleys and between the plurality o pulleys of the respective pair of pulley brackets for move longitudinally of said base ladder section, said base ladder cable being connected intermediate its ends
with said top ladder section.
LUBRICANT FEED SYSTEM
Arthur Lee, North Vancouver, Canada, assignor to Trail Manu
Arthur Lee, North Vancouver, Cannda,
facturing Ltd., Trail, Canade
Filed Jun, 21, 1976, Ser. No. 699,00
4-15 R Int. Cl. \({ }^{2}\) F10N \(13 / 08\)
U.S. CI. 184-15 R

5 Claims

1. A lubricant feed system for use in providing a normal lubrication oil flow and a purging oil flow to cutting attach ments of a chain saw having an internal combustion engine
with a crankcase, a lubricant tank, means communicating the crankcase and the lubricant tank to put the lubricant tank at crankcase and the lubricant tank to put the lubricant tank a
crankcase pressure when the engine is running, a bar pad and a guide bar for the chain, the feed system comprising: a first passageway communicer
rior of the lubricant tank
a check valve in the first passageway permitting lubricant oil
check valve in the first passageway permitting lubricant oil
to flow out of the lubricant tank and openable by the to fiessure within the lubricant tank;
a plunger in the first passageway spaced from the check valve and extending to the exterior or thanual depression: for manual depression;
valve and the plunger;
a second passageway communicating the chamber with the bar pad of the chain saw;
dly movable towards the check
the plunger being manually movable towards the check
valve to close the valve and increase the pressure in the chamber and the second passageway to a purging pressure to purge the second passageway;
metering valve in the second pass
a metering valve in the second passageway to regulate the
normal lubrication oil flow from the chamber to the normal lubrication oil flow from the chamber to the bar
pad under the influence of the pressure in the lubrican \({ }^{\text {pad }}\) tank;
tank;
manually operable control means for the metering valve
linked to the metering valve by a link and extending to the linked to the metering valve by a link and extending to the
exterior of the chain saw to permit manual movement of the metering valve to a predetermined position ranging from a closed position to an open position to regulate normal lubrication oil flow;
resilient means urging the metering valve to the predeter mined position against the nermar iubrication oin flaw
under the influence of the pressure in the lubricant tank the link between the control means and the metering valve
co-acting with the resilient means to maintain the meter-
ing valve in the predetermined position under normal
ubrication oil flow at lubricant tank pressure but permit ting (a) the metering valve to move from the predeter mined position to a fully open position upon application of parging pressure to the chamber, to the second passagemetering valve to return to the predetermined position upon cessation of the purging pressure.
\(4,094,383\)
AIR LINE LUBRICATOR
George E. Thrasher, Jr., Sterling Helghts, Mich., assignor to Master Pneumatic-Detroit, Inc., Sterling Heights, Mich. ed Oct. 6, 1976, Ser. No. 730,142
Int. Cl.2 F16N 7/32 Int. Cl. \({ }^{2}\) F16N \(7 / 32\)

32 Claims

1. In a lubricator which introduces lubricant from a reservoir into an air line at a metered rate under pressure differential
induced by air flowing through a passageway in the lubricator connected into the air line, improved structure which comprises,
tubing
tubing which has an upstream end positioned to receive lubricant from said reservoir under said pressure differen tial,
said tubing having a downstream end through which lubrisaid tubing having wall portions between said ends which can be squeezed inwardly to reduce the effective area of the tubing interior,
and means operable to squeeze said wall portions sufficiently
so that the reduced effecter tion lime reduced effective area thereof forms a restriction limiting to said
through said tubing

AYO 4,094,384
AYONET CONNECTING SYSTEM FOR COLLECTOR COMPRESSED AIR CONDITCCING HOUSING OF Confressed air conditioning device Festo-Maschinenfabrik Gottlieb Stoll, Essslingen, Germany Festo-Maschinenfabrik Gottlieb Stoll, Esslingen, Germany
Filed Oct. 19, 1976, Ser. No. 734,268 Claims priodity aplication Germany, Claims priority, application Germany, Oct. 22, 1975, U.S. Cl. 184-55 A Int. Cl. \({ }^{2}\) F16N 7/32
1. A device such as an oil atomizer, a pressure regulator, or separator, which can be used in a compressed air conditioning apparatus, which device includes a connecting housing having an open end and a separate collector bowl having an connecting housing, said collector bowl having near its open end thereof multiple external shoulder means extending peripherally outwardly therefrom to form multiple counter--lugs, said connecting housing having internal means forming in-
wardly extending open areas to form multiple lugs at its open
end thereof with discontinuity areas therebetween, such that he multiple counter-lugs fit through the discontinuity area when said open end of said collector bowl is fitted within said pen end of said concelis houter-lugs will engage behind the bowl is turned the multiple counter-lugs will engage behind the

SPEED COMMAND GENERATOR FOR ELEVATOR SPEED COMMAND GENERATOR FOR ELEVATOR Kazuo Suzuki, Katsuta, and Hiroyuki Kataoka,
both of Japan, assignors to Hitachi, Ltd., Japan
Filed Apr. 30,1976 , Ser. No. 682,043 Filed Apr. 30, 1976, Ser. No.
Claims priorty, application Japan, May 7, 1975,
50-54986

1. A speed command generator for an elevator comprising means for generating a first speed command signal varying depending on the distance between the existing position of an elevator car and the target floor position, means for generating multiple lugs to connect said collector bowl to said connecting a second speed command signal varying with the lapse of time ousing; both said collector bowl and said connecting housing in response to the applican orn for comparing said first speed having interengageable means for locking said collector bowl so that said multiple counter-lugs fully engage said multiple lugs. command signal with said second speed command signal thereby delivering an output when said first and second speed command signals satisfy a predetermined relationship, and
means for storing the value of said second speed command signal in response to the appearance of the output from said comparing means, thereby to drive the elevator car according to a continuous speed pattern consisting of a sequence of speed patterns provided by said second speed command signal, said stored value and said first speed command signal, wherein the command signal varying depending on the variation of said second speed command signal, said comparing means being responsive to said reference command signal for delivering an output when the difference between said first speed command
signal and said second speed command signal is reduced to a value less than that of said reference command signa!.
33 Coims
U.S. C1. 187-29 R

1. A levelling apparatus for an \(A C\) elevator system compris 1. A leve. ghase induction motor, motoring torque contro means for controlling the motoring torque produced by said motor, braking torque control means for controlling the brak ing torque produced by said motor until a speed of said motor reaches a very low speed in the vicinity of zero, and an elev tor car driven the improvement comprises level error detect ing means for detecting dislocation of a floor level of said elevator car in either direction from the floor level of a target floor and means for controlling the torque produced by said motor by actuating said motoring torque control means and said braking torque control means in response to an output of said level error detecting means.

INERTIA DEPENDENT DEVICE FOR PREVENTING AND PERMITTING RELATIVE ROTATION BETWEEN Roger Patrice Pelat Paris Man Gide Le Pierres La Ferte Roger Patrice Pelat, Paris, and Gildas Le Pierres, La Ferte Alais, both of France, assignors to
Engineering, Boutigny-sur-Esoonne, France
Engineering, Boutigny-sur-Essonne, Fronce
Filed Oct. 8, 1976, Ser. No. 730,946
Fied Oct. 8, 1976, Ser. No. 730,946
Claims priorty, application France, Oct, 81975, 75 30848;
Jan. 30, 1976, 76 02561; Jan. 30, 1976, 7602562
U.S. Cl. 188-1 B Int. Cl. \({ }^{\text {F F }}\) (22 Claims 1. A device for inhibiting rela
articles, which device comprises
a support connected to one of said articles
a sliding member connected to the other article and capable through said support without rotating with pect to said support,
a rotating member adapted to be rotated by relatively slow movement of the said sliding member to permit said relative movement between said articles, and to resist rotation and thereby inhibit said relative movement in response to two braking surfaces connected to said suppor,
said rotating member having two abutment surfaces positioned to be applied against the said braking surfaces upon relative axial movement between said rotating member aid device surport in one dire won the other
for normally maintaining said rotating member spaced from said braking surfaces, and abutment means for preventing each of said elastic means for moving said rotating member, when said rotating member is not urged agains said elastic means,
wheel and attached
spring finger; and
spring finger; and adusting screw are rotated by said) retainer means ached to caid adjuster nut for retaining said star wheel adjacent said adjuster nut.

\section*{4,094,389
DISC BRAKE}

DISC BRAKES Hermann Josef Brix, Koblenz, and Hans-Jurgen (enitena, Ste mel, both of Germany, assignors to Giring Ling
ham, England
Fliled Mar. 28,1977 , Ser. No.
Claims priority, application United Kingdom, Apr. 1, 1976, Claims priority, application United Kingdo
13264/76
Int. Cl. \({ }^{2}\) F16D 55/224
U.S. C. 188-73.3

acceleration of said sliding member, and to be drive acceleration of said sliding member, and to be driven
longitudinally toward one of said braking surfaces of said support against the resistance of one of said elastic means when said acceleration is greater and sufficient to drive said rotating member with
stress of said elastic means.

4,094,388
AUTOMATIC BRAKE ADJUSTING MEANS
Edward J. Falk, St. Louis County, Mo., assignor to Wagne Electric Corporation, Parsippany, N.J.
Division of Ser. No. 703,933, Jul. 9, 1976, abandoned. This
application Mar. 14, 1977, Ser. N
Int. C.2 \({ }^{2}\) F16D \(65 / 56\)
U.S. CC. 188-71.9 Int. Cl. \({ }^{2}\) F16D 65/56 7 Claims

1. In a vehicular disc brake system having at least one fric tion member retained in a brake caliper and actuated by applying mechanical motion thereto and wherein brake wear results
from braking friction, the improvement of an automatic disc brake adjuster mechanism comprising:
(a) an adjuster nut containing a threaded hole;
(b) a threaded adjusting screw engaged in said threaded
(b) a th
hole;
(c) a star wheel on said threaded screw;
(c) a star wheel on said inreaded screw;
(d) means for relatively non-rotating connecting of said star
wheel to said threaded adjusting screw;
(e) a spring finger resiliently connected to said adjuster nut
(e) ratchetable contact with said star wheel;
(f) means for connecting the mechanical motion applied to
(g) means for compensating for said wear when said star
bridge member and means securing said members together along a parting plane, said body member having two separat co-planar parting faces in said parting plane with respective
bolt holes therein and having a cylinder portion which projects forwardly beyond said parting plane, and said bridge member having two complementary parting faces with respective bolt holes therein aligned with said bolt holes in said body member and having a recessed portion between the last-mentioned parojecting cylinder portion of said body member, said securing means comprising two bolts passing respectively through said meansed bolt holes.
\(\qquad\)
BIDIRECTIONAL CLEARANCE SENSING BRAKE ADJUSTER
ADJUSTER Richard F. Neuman, Farmington, Mich., assignor to Eaton Corporation, Cleveland, Ohio
Filed Mar. 31, 1977, Ser. No. \(\mathbf{7 8 3 , 2 5 8}\) U.S. C. \({ }^{188-196 ~ D}\)
U.S. Cl. \(188-196 \mathrm{D}\). 17 Claims 1. In an automatic adjuster for controlling clearance be-
tween a moveable friction member and a rotating member, said tween a moveable friction member and a rotating member, said
adjuster including a lever defining a housing having first and adjuster including a ever defining a housing having fecons means, and means operative to apply a force for inhibiting rotation of said gears by said adjusting means in at least one direction relative to said lever; said first gear adapted for driving con-
nection with said moveable member; said second gear operaive to adjustably lock said first gear to said lever and to transmit forces between said lever and said first gear for moving said friction member into engagement and disengagement with torque to rotate said second gear relative to said lever and ffect a clearance adjusting rotation of said gear in response to pivotal movement of said lever; and wherein said improvement omprises:
a two-way torque limiting ratchet clutch having torque transmitting capacity in both drive directions, said clutch allow a clearance decreasing rotation of said second gear
while said forces transmitted are below a first predeter
mined level, said clutch operative in said one drive direc-
LUGGAGE LATCH MECHANISM in response to said forces transmitted exceeding said first of Colo., assignors to Samsonite Corporation, Denver, Colo. in response to said forces transmitted exceeding said first Fredetermined level, said clutch operative in the other Mar. 1, 1977, Ser. No. 773,
Int. Cl. \({ }^{2}\) A45C 13/10
2. In a luggage case having first and second case sections closable upon each other, the first case section including a latch mechanism for releasably joining the case sections together when they are closed, said latch mechanism being released by moveing a drive plate along a first direction, com prising:
influence of gravity alone in a plane transversely of the direction of movement of said drive plate from a first
rotation in response to said transmitted forces excerative in
position preventing said drive plate movement to a second second predetermined level, and said clutch operative in
said other drive direction to slip and prevent said clear said other drive direction to slip and prevent said clear-
ance increasing rotation in response to said inhibiting ance when said transmitted forces fall below said second predetermined level.
position out of the path of movement of said drive plate.

\section*{409393}

CLUTCH MECHANISM
Romas Balys Spokes, Rockford, Ill., assignor to Borg.Warner
Corporation, Chicago, III.
Filed Apr. 27, 1977, Ser: No. 791,370
Int. Cl.2 F16D 43/25, \(25 / 08,13 / 74\)
U.S. C. \(192-82\)

7 Claims

1. A temperature responsive drive mechanism comprising a driving member and a driven member, a friction clutch con-
nected between said members adapted to provide a releasable coupling therebetween, an actuator mechanism associated with said members and adapted to engage said clutch in response to fluid pressure, a source of pressure and a sump for 1. A suitcase engaging hook having a handle, a support said mechanism, a fluid for connecting a said source to said member configured to engage suitcases, a shank connecting the actuator, said fluid circuit including a valve having temperarelatively long portion having first and second ends, the first ature, said valve having two positions, a pair of fluid passages end connected to the shank at an angle, retaining means con- connecting said drive mechanism and said valve, said valve nected to the second end for preventing accidental removal of being connected to said source, one of said passages connected suitcases from the support member, wheel carrier assemblies to said actuator to supply pressure thereto, said valve being connected to a suitcase engaged by the suitcase engaging hook, operative to alternatively connect said source to either of said and wheel assemblies rotatably supported by the wheel carrier conduits connected to said drive mechanism and to alterna-
tively connect said conduits to a return passage to said sump,
whereby one of said passages will supply pressure to the actua- flange, said barrel extending entirely from one side of said or to engage the clutch when supplied with fluid pressure by flange, said flange having spring pockets receiving the coil the valve when the temperature of said medium exceeds a springs with each pocket having an inner and an outer spring predetermined maximum, and the other of said passages when retaining lip, and pivoting means on said flange for positioning
supplied with pressure providing lubricant supply to said drive of supplied with pressure providing lubricant supply to said drive of said friction clutch plate including a plurality of bosse
nechanism when said valve is the other position and said projecting from the side of said flange opposite but closely medium is below a predetermined temperature; said pair of adjacent to said barrel, said bosses being extruded from the passages alternatively acting as return fluid passages when the flange during a stamping operation to form the hub element. ther passage is connected to said source.

4,094,394
CLUTCH THROW-OUT DEVICE
CONTROL DEVICE FOR A COIN OPERATED CE MECHANISM Germany, assignors to SKF Kugelligerfabriken GmbH, Harry Greenwald, Whitestone, N.Y., assignor to Walter Kidde Schweinfurt, Germany
Filed Mar. 30, 1977, Ser. No. 783,005
Claims pr
priority, appilication Germany, Apr. 10, 1976, U.S. CI. 194-1 M
Mar. 7, 1977, Ser. No. 774,963
Int. C1.
761433
Int. Cl. \({ }^{2}\) F16D \(19 / 00\)
U.S. C. 192-98

1. A control de
device comprising
1. In a clutch throw-out device having a self-centering thrust bearing with a fixed bearing ring, the fixed bearing having a bearing with a fixed bearing ring, the fixed bearing having a
radially extending flange, a pressure plate, and means coupling radially extending flange, a pressure plate, and means coupling
said pressure plate to said flange to inhibit relative rotation between said flange and pressure plate, the improvement wherein said coupling means comprises projection means on
one of said plate and flange and positioned to extend into a recess in the other of said plate and flange, said recess being ufficiently large to permit substantial radial play between said rojection means and recess, and elastic means in said recess between said pressure plate and projection means

\section*{4,094,395}

TWO PIECE DRIVEN PLATE ASSEMBLY William Lee Brown, Chicago, Ill., assignor to Borg.Warner Corporation, Chicago, III.
Flied Sep. 2, 1976, Ser. No. 720,040
U.S. CI. 192-106.2
1. A one-piece stamped hub element for a two-piece clutch late assembly having coil springs between such element and plate assembly having con sprion clutch plate, comprising a barrel and an integral
(a) a mounting plate
b) a shaft projecting from said mounting plate
c) a ratchet wheel and a star wheel rotatably mounted on said shaft in axialy spaced relation, each of said wheel
having a pin thereon projecting toward the other whee and said pins each being located at an equal radial distance from the axis of said shaft;
(d) first stepping means oscillatably mounted on said shaft and operatively connected to the coin operated mecha nism, said stepping means comprising a pawl assembly engagable with the teeth of said ratchet wheel to step-wise
rotate said wheel in one direction by rotate said wheel in one direction by a distance of one tooth upon movement of said stepping means; (e) switch means mounted on said plate having a switch
movable from a normally closed state to an open state; fi a spring biased switch operating arm pivotally mounted on said plate and operatively connected to said switch said arm having a follower portion engagable with the teeth of said ratchet wheel;
(g) said switch being in its closed state when the follower portion of said switch operating arm is located between
the teeth of said ratchet wheel, and said switch being moved to its open state when said follower portion is displaced to the outer end of a tooth of said ratchet wheel
(h) an electrically operated timer mounted on said plate having an energizing circuit controlled by said switch, said timer comprising second stepping means operable when said switch is in its closed state to engage with the teeth of said star wheel and intermittently rotate said star wheel in the same direction of rotation of said ratchet
wheel, such rotation of said star wheel causing the pin thereof to engage with the pin of said ratchet wheel; (i) the follower portion of said switch operating arm bein displaced to the outer end of a tooth of said ratchet wheel upon conjoint rotation of said star wheel and said ratche to open said switch; and (j) a spring biased lever me plate and engeg evis member pivotally mounted on said restraining means located to engage one of the having said star wheel upon said conjoint rotation of said star wheel and said ratchet wheel to prevent counterrotation
of said star wheel in a direction opposite to said one direc- first, single-priced coin-operated vend mechanism for estabtion when said switch is in its open state, the engagement as least a first value, and of a second, multi-priced circuil of said pins preventing counterrotation of said ratchet at least a first value, and of a second a second multi-priced wheel in said opposite direction wherein said swith for- conifguration adapied o
lower portion is held in its displaced position on the outer coin-operated vend mechanism for establishing at least a secend of said ratchet wheel tooth to prevent the inadvertent ond energization circuit in response to coin deposit of at leass movement of said switch to its closed stat

TYPEWRITER SELECTION DRIVE FOLLOWER BLOCK AND SHUTTLE ASSEMBLY Frank Marion Hughes, Paris, Ky., assignor to In
Business Machines Corporation, Armonk, N.Y. Business Machines Corporation, Armonk,
Filed Jan. 3, 1977, Ser. No. 756,307 U.S. Cl. 400- 161.4

2 Claims

1. A sh
comprisin
a shuttle
shaff;
hant, of said rotating shaff to engage a cam groove formed in of said rotating shaft of at least one follower membe
at least one follower member;
biasing means for biasing said follower member against said shuttle body and in an axial direction, said follower member having a stop engaging surface thereon whereby said
follower member upon the engagement of said engaging follower member upon the engali cease to translate and said
surface with a stop member surface with a stop member wo translate and said biasing
shutle bontinue thougs said follower member means will provide a force through said follower membe
against said stop member.

COMPOSITE VENDING CIRCUIT DISPOSABLE IN COMPOSITE VENDING CIRCUIT CISPGIGURATIONS Yingle d. Camp, Chattranooga, Tenn., and Raymond D. Bow man, Fort Oglethorpe, Ga., assignors to Cavalier Corporation Chattanooga, Tenn.
n. 27, 1975, Ser. No. 590,855
U.S. CI. 194-10 Int. C1. \({ }^{\mathbf{G}} \mathbf{G} \mathbf{0} 7 \mathrm{~F} 11 / 00\)

A composite vending circuit disposte in either of a first, single-priced circuit configuration adapted to be coupled to a
a second value and for establishing a third energization circuit from the second value, said composite vending circuit comprising:
a. a plurality of vend motors each corresponding to one of a plurality of columns of articles adapted to be selectively
dispensed from its corresponding column, one-at-a-time, dispensed from its corresponding column, one-at-a-time plurality of selector switches, one for
b. a pluraily of selector swiches, one for each vend to energize a corresponding vend motor for dispensing an article from a selected column;
c. a plurality of selector relays, one for each corresponding vend motor and selector switch, having an operating winding adapted to be selectively energized
tion of its corresponding selector switch; and tion of its corresponding selector switch; and switch means disposable to a first position for connecting said selector relays in series with each other and for connecting the first energization circuit of the single-priced selector relays whereby said circuit is disposed in its sin gle-priced circuit configuration, and to a second positio for connecting independently the second and third ener gizing circuits, respectively, to first and second groups of dently said first and second groups of selector relays to corresponding first and second groups of selector switches, whereby said composite circuit is disposed in it multi-priced circuit configuration.

\section*{OSCILLATING FEED ASSEMBLY AND DRIVE ESPECING FEED ASSEMBLY AND DRIVE A. George, Levittown, Pa., assignor to Procter \& Schwartz, Inc., Philadelphis, Pa,
Filed Jul. 28, 1976, Ser. No. 709,494 \\ U.S. C1. 198-535 \\ Claims}

1. A dryer for particulate material comprising a dryer housing;
deyor means having a conveyor carrying run adapted to convey particulate material to said housing; a distributing feed-chute including a discharge end for uni formly distributing pa
pivot means pivotally supporting said feed-chute so that the discharge end is above the conveyor carrying run; drive means adapted to pivot said feed-chute so that traverses the conveyor carrying run with quick reversal of
the feed-chute discharge end at the end of each traverse, said drive means thereby being subjected to rapid acceleration and deceleration forces, said drive means including a continuous chain drive;
said chain drive comprising a double strand roller chain, a
plurality of pins connecting successive links of said chain strands, an adjacent pair of said pins extending laterally from said chain strands, and a bearing pin supported by said pairs of pins;
a pair of spaced-apart sprockets on which said chain drive is mounted, said sprockets being of relatively small diameter adapted to effec
a lever arm to pivot said chute; and
linkage means between said chain drive and lever arm connected to said chain drive bearing pin whereby the feedchute discharge end reciprocatingly traverses the conveyor means carrying run on movement of the bearing pin
between the chain drive sprockets.

CONVEYOR FOR CONVEYING FINE MATERIAL
Ernst Braun, and Gert Braun, both of Essen-Heisingen, Ger many, assignors to Halbach \& Braun, Germany
Filed Sep. 27, 1976, Ser. No. 727,250
Claims priority, application Germany, Oct. 2, 1975, 2543987 U.S. C. \(198-607\)

1. A conveyor for conveying fine materials, particularly a fine coal conveyor for underground operations, comprising a ing with a bottom horizontal leg, a vertical leg connecting one ing with a bothom horizonta leg, a vertical leg connecting one
end of said horizontal leg and an upper leg extending back wardly from said vertical leg over said horizontal leg, a hori zontal section in said housing horizontally movable in a transport direction and a vertical section in said housing vertical leg connected to the opposite end of the horizontal section from
the beginning of the transport direction in a position to direc the fine materials received from the horizontal section vertically upwardly, and an upper section extending backwardly from said vertical section over said horizontal section, a second conveyor unit mounted on the horizontal housing leg and located adjacent said first conveyor unit including upper and conveyor sections running in respective upper and lower troughs, said horizontal section of said first conveyor unit having a reversal end and being disposed to traverse at least a
portion of said lower section of said second conveyor in the portion of said lower section of said second conveyor in the
vicinity of said reversal end and substantially at right angles to vicinity of said reversal end and substantially at right angles to
the direction of transport on said horizontal section, said horithe direction of transport on said horizontal section, said horizontal section receiving the fine materials from the lower
section and delivering the fine materials to the vertical section for movement thereon, said vertical section having a discharge directed to said upper section.

1. A quick release mechanism for a catenary carrier for a 1. A quer belt comprising:
a support having walls defining a cylindrical opening; a link adapted at one end for attachment to one end of a catenary carrier for a conveyor belt moving in a predeter-
mined direction and including wall means at its other end defining an elongated slot with opposite closed ends, said wall means including a pair of spaced walls defining a channel portion of said slot of predetermined width and an arcuate wall defining an annular portion at the closed end of said slot nearest said carrier, said annular portion hav-
ing a diameter of greater dimension than the width of said channel portion of said slot; and
a locking pin having
a cylindrical bearing portion pivotally mounted in said cylindrical opening, and
cally opposite in said slot presenting a pair of diametrically opposite concentric annular surfaces and a pair of diametrically opposite faces spaced a distance from one another less than the diameter of said annular surfaces
and less than the width of said channel portion and less than the width of said channel portion of said
slot; slot;
said pin be said pin being pivotable between a locking position wherein
said annular surfaces engage diametrically opposite porsaid
tions of said arcuate wall whereby said annular portion of said slot is supported on said neck of said pin and a release position wherein said faces are aligned with said channel
portion of said slot thereby allowing said link to slide on said pin to place said catenary carrier in a lowered position wherein said pin abuts the wall means at the closed end of said slot remote from said carrier.

\section*{4,094,402
INLAY FABRIC}

INLAY FABRIC
Hugo Heeke, Hamburg, Germany, assignor to Conrad Scholtz
Hugo Heeke, Hamburg, Germany, assignor to Co
AG, Hamburg, Germany
Filed Apr, 27,1976 , Ser. No 680,693
Filed Apr. 27, 1976, Ser. No. 680,693
Claims priority, application Germany, Apr. 30, 1975, 2519448 U.S. C. 198-847 Int. C. \(2^{2}\) B29H 9/02 1. A conveyor Int. C.1. \({ }^{2} \mathbf{~ B 2 9 H} 9 / 0211\) Claims 1. A conveyor belt which is transverely stiff, has low longi-
udinal stiffness, and is capable of accommodating tensile orces, comprising, in combination, an elastomer and an inlay abric embedded within said elastomer, said inlay fabric com-
coms prising:
warp thr
warp threads to be arranged longitudinally of the conveyor belt; and
relatively stiff
relatively stiff weft threads extending transversely of the
warp threads, said weft threads having a diameter in the
range of 0.2 mm . to 1.0 mm ., the density of said weft be swung open to merchandising positions after shipping; and threads ranging from 60 to 120 threads per 100 mm . of means for holding said flaps in said merchandising position

fabric length, and said warp threads having a crimp be tween \(6.5 \%\) and \(22.5 \%\).
\(\stackrel{\text { dispLAY CARTON }}{ }\)
Bram A. Takefma
both of III.
Filed Jan. 17, 1977, Ser. No. 760,028
U.S. Cl. \(206-55.13\)

1. A combined shipping and merchandising carton compris ing opposite top and bottom panels and two opposing side panels joined to margins of the top and bottom panels to form
a carton of generally rectangular cross-section, inner and outer a carton of generally rectangular cross-section, inner and outer
flaps forming an end closure for said carton; said inner flap flaps forming an ene closure for sarid carton; said inner fap
being hingedly joined to an end margin of said bottom panel to being hingedyly yoinel do ant outardly relative to latter from a closed position in whing outwardy relative to ine flap is disposed substantially perpendicular to said bottom panel to an open position in which said inner flap
is disposed substantially in the plane of said bottom panel, side flaps hingedly joined to end margins of said side panels and also hingedly joined along their bottom margins to the adjacent margins of said inner flap, a fold line extending across each of said side flaps and permitting each side flap to fold upon itself and swing to a closed posito unfold and swing to an open position when said inner flap is swung to its open position, each of said side flaps, when in its closed position, underlying said inner flap and being disposed substantially perpen-
dicular to its respective side panel and, when in its open position, being disposed substantially in the plane of its respective side panel; a said outer flap being hingedly joined to an end margin of said top panel to swing outwardly relative to the latter from a closed position in which said outer flap is disposed in a plane substantially perpendicular to said top panel and outer flap is disposed substantially in the plane of said top panel, means for fastening a lower end portion of said outer flap to a lower end portion of said inner flap when said flaps are in said closed positions thereby to hold all of said flaps in said closed positions during shipping, means enabing the freeing of an upper portion of said outer flap thereby to permit all of said flaps to face

4 Claims including tabs projecting from each side flap, each tab being
joined to its respective side flap along a hinge line which joined to its respective side flap along a hinge line which permits each tab to underly said inner flap when in closed position and to be swung inwardly to a position in which said
tab is disposed in an upright plane when said inner flap is in tab is disposed in an upright plane when slaid defined by a main body portion extending outwardly from said bottom panel to a location adjacent said tabs when the latter are in said merchan dising positions, said inner flap also including a first panel hingedly joined to the outer end of said body portion to swing upwardly to a merchandising position along the outer faces of
said tabs when the latter are in their merchandising positions, said tabs when the latter are in their merchandising positions,
said inner flap further including a second panel hingedly joined to said first panel to wrap downwardly around the upper ends of said tabs when the latter are in their merchandising positions and to fold to a merchandising position lying along the inner faces of said tabs, an ear on the free edge of said second panel, and a slot in said body portion for receiving said ear to lock
said tabs and said first and second panels in their meerchandissaid tabs and sad
ing positions.

COMBINED DISPLAY AND SHIPPING PACKAGE Paul D. Miller, New York, and V. Lorenzo Porcelli, Ossining both of N.Y., assignors to GAF Corporation, New York, N.Y FLled Mar. 14,
Int. C. \({ }^{2}\) B65D \(5 / 50,5 / 52\) U.S. C. 206-45.15
1. An improved shipping and display package comprising an outer sleeve, and an inner shell, said outer sleeve having an
outer and inner surface, said inner shell having a front, back, outer and inner surface, said inner shell having a front, back, the front surface of said inner shell, a display tray within and secured to said inner shell, an upper surface of said display tray ying in the same plane as the front surface of the inner shell, a well located on the front surface of said inner shell for support ing said display tray within the inner shell, said display tray alternate positions, a first position in which the display item is totally enclosed within said tray with no portion of said item extending above the top surface of said tray and a second position in which the displayed item protrudes above the top surface of said display tray, when the display item is in said second position said outer sleeve is in a position above said display item, thereby enlarging the surface area of the display
package in a telescoping manner, the combined centers o gravity of the displayed item and the display package being ocated in a position that prevents the display package from upping when said package is resting on said inclined end surface.

相
\(\square\)

4,094,405
Walther Ruger MuLES PACKAGING
Waither Ruger, Munich, Germany, assignor to Refeka Werbe
mittel GmbH, Munich, Germany Filed May 12, 1976, Ser. No. 685,514 U.S. CI. 206-423

1. A rigid container having foldable portions, said container designed to protect fragile contents while allowing said contents access to air comprising:
a. a base;
b. compartments mounted essentially on said base defining a folding compartment zone, each compartment foldable access to air;
c. a cover wall ring surrounding the folding compartment zone having an opening defining the area of said zone, said
cover wall ring having outer edges defining the outer cover wall ring having outer edges defining the outer
periphery thereof, and inner edges defining the opening thereof; d. outer side walls extending downwardly from said outer d. outer side walls extending downwardly from said outer
edges, respectively, for supporting and elevating said
cover wall ring in spaced relationship to said base; and e. a cover hingable on said cover wall ring, said container having air passage means operable when the cover is in the closed position for passage of air between the compartment zone and the area exterior to the container.

PACKAGE FOR A GROUP, 09406
Jurgen Zietzschmann, Kordel, Germany, assignor to The M Jurgen Zetuschman, Kordio
Corporation Dayton, Ohio
Filed Mar. 28, 1977, Ser. No. 782,302

Filed Mar. 28, 1977, Ser. No. 782,
Int. CC. \({ }^{2}\) B65D \(65 / 18\)
U.S. C1. 206-432

Int. Cl. \({ }^{2}\) B65D \(65 / 18\)
14 Claims

1. A package for a group of articles, particularly bottles, cans, or the like, comprising a wrapper placed around the group of articles and open at opposing ends, said wrapper
being formed from a substantially rectangular blank which has being formed from a substantially rectangular blank which has
two oppositely disposed closure portions adapted to be joined together for securing said wrapper, characterized in that the
blank is provided at both of said closure portions with a closure strip (3, 4) made of paperboard and in that the area of said blank intermediate said closure portions having end portions and being partially of a film of plastic material (2) which is joined at its end portions to the closure strips (3, 4), and in that tightening apertures (5) are formed in said closure strips and in that locking tongues (\()\) are formed in one of said closure strips and apertures (7) are formed in the ooher of said closure sidper
said tongues received by said apertures to form said wrapper

NONPANELLING PLASTIC OIL CONTAINER Jack Hurst, Houston, Tex., assignor to Gulf Oil Corporation, Pittsburgh, Pa.

Filed Feb. 4, 1977, Ser. No. 765,502
U.S. CI. 206-524.3

1. A filled plastic container of hydrocarbon lubricating oil having a reduced tendency to panel which consists essentially
(a) a wide mouth cylindrical container fabricated from an ethylene polymer having a density of at least about 0.950 \(\mathrm{gms} / \mathrm{ml}\) in which at least the inner surface of the container contains about \(10-1,000 \mathrm{ppm}\) of carbon black and th \(\%\) of \(\mathrm{TiO}_{2}\) pigment, (b) a liquid hydrocarb the container, and
(c) a cap affixed and解

CONTAINERS FOR PILI
Ohn B FOR FILLS AND THE LIKE John B. Ford, 6118 Webber-Cole Rd., Kinsman, Ohio 44428 Filed Feb. 14, 1977, Ser. No. 768,141
Int. C. \(2^{2}\) B65 \(83 / 04\)
U.S. Cl. 206-534 3 Claims 1. A container for carrying medical capsules, pills, and the like on one's person for handy and convenient use, comprising: tubular center section and two tubular end sections con-
nected to opposite ends of said center section in axielly aligned relation,
said center section being \(H\)-shaped in longitudinal section and providing tubular cylindrical portions at its opposite ends and an intermediate transverse wall which block communiction between the interior of said cylindrical each of said
barrel adapted to being closed at an outer end and open at an inner end, the open inner end of each barrel having a smooth surfaced cylindrical recess of a size closely and rotatably receiving a respective one of said center section cylindrical portion
thereby to effect assembly of said end sections with said center section, with the interiors of said end sections isolated from each other by said transverse wall, said center section cylindrical portions and said end section
cylindrical recesses having like diameters whereby either said end section may be cooperatively associated with either end of said center section
each said center section cylindrical portion having a circumid cylindrical uniformly spaced projections and each cylindrical recess of said end sections having a complementary series of circumferentially uniformly spaced projection-receiving recesses, thereby effecting snap fit
within the slot, a sidewall of said enclosure being resil iently formed with a throated detent opening outwardly to receive a corresponding boss element formed on an projecting away from a corresponding sidewali of sair
recess in the edge portion of the display surface, the width of the throat of said detent being slightly less than the diameter of said boss.

4,094,410
, \(, 094,410\) IUS FOR CONVEYING, TING AND SORTING ARTICLES AND STRAIGHTENING THEIR LEADS Charles R. Fegley, Laureldale; Richard H. Morrow, Temple, and Arthur G. Naylor, Wyomissing, all of Pa., assignors to West Arthur G. Naylor, Wyomissing, ail of Pa, assi
ern Electric Co., Inc., New York, N.Y. U.S. CI. 209-73
Int. Cl.

and further retiond sections with said center section and further retaining either said end section in a selected
rotational position with respect to said center section, and, indicia associated respectively with each said end sections and said center section and circumferentially related to said projections and recesses for indicating selected rota-
tional positions of said center and end sections with respect to each other.
\[
4,094,409
\]

SAMPLE DISPLAY TRAY
Douglas M. Spranger, Brooklyn; Malcolm J. Brookes, New York, both of N.Y., and Paul J. Mulhauser, Paramus, N.J. assignors to Seiko Time Corporation, New York, N.Y

Filed Apr. 8,
Int. Cl.
B65D
\(1 / 36, ~ 85 / 40 ~\)
U.S. CI. 206-566

9 Claims

1. Apparatus for releasably holding articles to be displayed comprising:
a generally planar display surface having a raised edge por tion formed with a recess;
a clasp assembly to be releasably secured over one end of an article and consisting of a slotted enclosure having a pivotally mounted member formed with a generally inwardly
depending finger movable upon pivoting of said membe depending finger movable upon pivoting of said member
alternately to press against and release the article inserted
improvement for rejecting abnormal containers laterally from means for positioning each of the objects in a predetermined a curved support rail on which the container rests and a curved orientation relative to the ram means prior to said displacemen guide rail spaced above the level of the said curved support rail into the accumulator means, said carriers bether by a predetermined distance along a path of fravel to form in a spacing between the guide and support rails and of the conveyor, and means responsive to unloading of the
intermediate said transfer points an abnormal container reject.

ing gap, said gap being longer than the container diameter and higher than the abnormal container, said, rails being substan
tially concentric to the star wheel, said guide rail being disposed outside the path of that part of the container which bears against it by centrifugal force, whereby abnormal containers o height less than said spacing will be rejected by centrifugal force through said gap.

4,094,41
ROLLING METHOD OF SORTING PARTICULATE
Kurt H. Hoppmann, Falls Church, Va., and George W. Ed Kurt H. Hoppmann, Mails Church, Va., and George W. Ed
munds, Derwood, Md., sssignors to Hoppmann Corporation, Springtield, Va.

Nor. 30, 1976, Ser. No. 746,02
U.S. Cl. 209-106

Int. Cl. \({ }^{2}\) B07C \(5 / 04\)
22 Claims
1. Rolling method of sorting particulate articles comprising
(A) radially distributing said articles upon a member having (B) advan;
spaced rotating spindles extending radially outwardly of spaced roxs, and
(C) discharging s
(C) discharging said articles from said spindles

POULTRY WEIGHING AND PACKING METHOD William F. Altenpohl, 1315 Robin Hood Rd., and Paul J. AltenWilliam F. Altenpohl, 1315 Robin Hood Rd., and Paul J. Altenpohl, 1411 Longcreek Dr., both of High Point, N.C. 27260
Division of Ser. No. 571,005, Apr. 22, 1975, Pat. No. 3, 3988,874.

U.S. C. 209- \(\mathbf{1 2 1}\)
nith a sorting mechanism having a claim 1. In combination with a sorting mechanism having a con-
veyor from which objects are suspended by a plurality of carriers and means for releasing sorted objects from the carriers at a sorting station, a container filling machine, including inlet means operatively positioned relative to the sorting sta
tion for receiving sorted objects released from the carriers accumulator means connected to the inlet means for storing said objects, ram means for displacing each of the sorted ob jects received in the inlet means into the accumulator means to compact the same, and guide means connected to the inlet

sorted objects from the carriers at said sorting station for delaying operation of the ram means until the unloaded carrie is advanced by the conveyor a predetermined distance from
the sorting station to synchronize operation of the machine with movement of the conveyor.

\section*{with movement of the conveyor.}

\section*{CLOTHES HANGIN}

Richard E. Thiot, and Phyllis J. Thiot, both of 4981 Cedar Bay St., Orlando, Fia. 32806
U.S. C. 211-1.3

Iot. Cl. \({ }^{2}\) A47F \(7 / 24\)

1. A clothes hanging rack comprising in combination
a container having a pair of adjacent bores therein;
telescoping rod mounted for telescoping into and out of one of said bores in said container;
rod for pivotal movement thereon and having a horizontal support positon and a folded storage position with said clothes hanging bar being positioned the other of said bores in said container in said folded storage position;
support bracket means for supportin said col support bracket means for supporting said clothes hanging
bar in a generally horizontal position whe
hanging bar is in its working poosition; and
hanging bar is in its working position; and scoped position whereby a foldable clothes hanging rack scoped position, whereby a foldable clothes hang
may be conveniently stored in a laundry room.
unit adapted to engage one end portion of the dispensing package and each holding unit comprising first and second brack ably with the panel body through said slot, slotted fastener

DISPLAY RACK DEVICE Co., Sterling ilison, Sterling, Ill., assignor to Chas. O. Larson Continuation of Ser. No. 372,411, Jun. 21, 1973, abandoned. This application Dec. 3, 1974, Ser. No. 529,154 U.S. Cl. 211-57.1 of each holder unit adjustably along an axis perpendicular to

1. A display rack device for attachment to an apertured vertical panel, said device including a plurality of generally
elongate arms each having a free extremity for telescopically accommodating goods for display purposes, mounting mean associated with the opposite extremity of said arms and extend ing laterally thereof, an elongate horizontal support membe extending substantially normal to said arms for accommodar ing a plurality of said mounting means in horizontally spaced
relation, a plate to which the elongate support member is secured along the length thereof for attaching said elongate member to an apertured verical panel and with the ends of the support member terminating syord each end of the support member, said plate having at least two longitudinally spaced apertures, one through each of said plate end portions and offset outwardly of adjacent ends of the support member to be placed in registry with panel and rod means having a first bent portion for insertion through the aligned apertures of said plate and said apertured vertical panel and moved into position behind said apertured vertical panel, and a forwardy seid plate end portions, and placed over tine finger formed as an integral part of each said plate end portion and extending forwardly from the front face thereof and presenting an open throat between the ends of the support member and the plate to receive the second bent portion of said rod means transversely across the plate end por-
tions and spaced from adjacent ends of the support member for tions and spaced from ady
resiliently and removably securing it in place in direct surface contact against the front face of the plate end portions, thereby securing said plate and said support member to said apertured securing said
vertical panel.

> 4,094,416 SUPPORT FOR DISPENSING PACKAGES James A. Smith, 19 Donelon Dr., Harahan, La. 70123 Filed Apr. 29, 1977, Ser. No. 792,103 Int. C. \({ }^{2}\) A47F \(7 / 17\)
U.S. C. 211-71
1. A support for dispensing packages and the like comprising a panel body adapted for attachment to the interior of a cabinet door or the like, said panel body having at iesast one eanel body,
adjustment slot formed therethrough across the adjustment slot formed therethroush ach package holder units and at least a pair of panel body adjacent said slot, each holding
on one side of the pall

the panel body, each first bracket part having a lower flange adapted to engage beneath opposite end portions of a dispensing package to support the package, and each second bracket part having a flange perpendicular to the last-named flange forwardly of the panel body and in a plane parallel thereto.

\section*{SHELVING AND DISPL}

SHELVING AND DISPLAY SYSTEMS AND THE LIKE England, Casires, and Derrick John Maltby, both of London, England, assignors
London, England

Filed Jan. 24, 1977, Ser. No. 761,955
Claims priority, application United Kingdom, Jan. 29, 1976, 3618/76
U.S. C. 211-183

1. A bracket device for shelving systems, display systems and the like, comprising:
said body having a plurality of recesses disposed in and about the periphery thereof with the axes of said recesses being substantially parallel;
said recesses being opened at both ends of the body;
at least one support member for supporting an element of
said systems from said body;
said support member comprising a body - engaging part and a projecting part;
said body-engaging part being slidable into a selected recess
via either one of said via either one of said open ends thereof with said projec ing part projecting from the periphery of said body;
cooperating means on said body-engaging part and said wardly, and a removing gear comprising a second trolley body for retaining said support member in position when wavable along said second trackway, a support depending said support member is inserted into said recess, said coop- from said second trolley with a pivoted arm member at its erating means including shoulders on said body-engaging part and said body, each recess in the body having one of when said body-engaging part is inserted into a selected recess via either open end, the shoulder on the bodyengaging part abuts one of said shoulders adjacent the said recess.

\section*{4,094,418}

APPARATUS FOR SIMULTANEOUSLY PIVOTING, TILTING AND ROTATING A LINING BRICK
Alois Altendorfer, Linz, and Anton Stahrlinger, Stadl Paura, both of Austria, assignors to Vereinigte Osterrelchische Eis-
en- und Stahiwerke-Aipine Montan Aktiengeselis
enna, Austriz
Filied Oct. 13, 1976, Ser. No. 732.144
Claims priority, application Austria, Oct. 20, 1975, 7947/75

1. An apparatus for simultaneously pivoting, tilting and rotating a lining brick, in particular a converter lining brick having a trapezoidal cross-section, into a position adequate for
stacking comprising
a carrying arm journaled on the stationary supporting stand to be pivotable around a stationary axis,
a bracing means for holding the lining brick journaled on
one end of the carrying arm to be rotatable around an axis one end of the carrying arm to be rotatable around an axis arm, and
a planet gear capable of being disengaged provided to rotate the bracing means and having a central axis coinciding
with the stationary axis of the carrying arm and an orbit with the stationary axis of the carrying arm and an orbit
axis coinciding with the axis of rotation of the bracing means whereby as the carrying arm and bracing means are
each caused to turn about their respective axis by a drive each caused to turn about their respective axis by a drive
means, the lining brick may be selectively turned end for meand in the process of being transferred from one location to another location

\section*{4,094,419}

HANDLING PLANT FOR DUMPING AND
DISCHARGING BULK MATERIALS
Rolf Kriger, Lubeck, Germany, assignor to \(\mathbf{O}\) and \(\mathbf{K}\) Orenstein \& Koppel Aktiengesellischaft, Germany
Claims priority, application Germany, Oct. 18, 1975, 2546757 S. Cl. 214-10 Int. Cl. \({ }^{2}\) B65G 65/28
U.S. CI. \(214-10\) A handling plant for dumping and discharging 9 Claims rial into or from a pile, comprising only one loading bridge dapted to span and be moved over the pile, said bridge having first and second support beam portions extending longitudinally of said bridge, each having a respective first and second trackway thereon, a dumping gear comprising a first trolley for receiving the bulk material and for dumping it down-

lower end, a roller guide at eaich end of said arm member and a conveyor entrained about said support and arm member, said removing gear and said dumping gear being capable of inde-
pendent and combined operation over one area of the pile.

4,094,420
CHARGING OF AN OVEN CHAMBER OF A BATTERY OF COKE OVENS
Johann G. Riecker, Breitscheid, Germany, assignor to Hartung ohann G. Riecker, Breitschen, Cerm , assignor to Hartung Kivision of Ser. No. 563,115, Mar. 28
application Jun. 10, 1976, Ser. No. 694,522
Claims priority, application Germany, Apr. 3, 1974, 2416151 U.S. Cl. 214-35 R

5 Claims
of coke ovens with coal through charging openings in an oven roof, comprising a larry car movable over said oven roof and provided with coal feed hoppers each having an outlet hole, said hoppers corresponding in number of said openings in said oven roof; and conveying means adapted for conveying said coal from each of said hoppers into said oven chamber, said conveying means including a pluraility of pipes each operative of said charging opening in said oven roof, and a plurality of conveyor screws each located in one of said pipes and rotatable about its own longitudinal axis, each of said conveyor screws having a leading end as considered in the direction o coal conveying and is provided at said leading end with an extension conngurated as a hollow cylindrical segment, said
cylindrical segment being rigid with and in a fixed position elative to the respective conveyor screw for joint rotation therewith about said axis, said hollow cylindrical segment being adapted to close an associated one of said charging openings in said oven roof during a part of each revolution of the respective conveyor screw, so as to intermittently charge
the coal from said outlet hole of said hopper into the corresponding opening of the oven roof.

1. An apparatus for unloading timber from a loading plat form of a vehicle and the like, said timber being stacked on support such as, on timber bunks between at least two station ary stakes at one side of said platform and at least two remov a linearly reciprocating prime mover defined by a hydraulic jack enclosed in a non-circular tube extending beyond said jack and is provided with two longitudinal slots in two opposing side faces, said slots forming a guide for a slide member, and being secured to said platform beneath said said support, ex centrally between said stationary stakes, and at least two elongated flexible members, each having a first end secured to each one of said stationary stakes at a distance upward from said support, the second end of each of said elongated members for lateral displacement of said platform upon reciprocation of said prime mover, whereby said elongated members which normally are loosely disposed along said stationary stakes and pass in under said stacked timber, are caused thereby forming a said second ends are lateraly
sloping ramp along which said timber moves down from said sloping ra
support.

\section*{4,094,421}

DEVICE FOR UNLOADING OF TIMBER Bengt Anders Nordin, Tiadjo-Liorrik, Hoting, Sweden Claims priority, application Sweden, Nor. 3, 1975, 7512271; Sep. 24, 1976, 7610613; Sep. 24, 1976, 7610614 U.S. C. 214-82 Int. C. \({ }^{2}\) B60P \(1 / 00\)
\(\qquad\)

\section*{BUCKET LOADER BOOM}

Arthur David Thompson, Chorley, England, assignor to Dobson Park Industries Limited, Nottingham, England Claims priority, application United Kingdom, Oct. 7, 1975, 1111/75
lnt. Cl. \({ }^{2}\) E02F \(3 / 81\)
U.S. C. 214-145 R

Claims

means in a bucket loader which is particularly adapted for low headroom mine workings comprising:
a yoke having at least limited pivotal motion about a generally vertical axis,
two articularly connected boom elements pivotally coupled to said yoke, one a remote or forward boom element and one a yoke or rearward boom element, each comprised of channel sections having a web portion forming a top wall and a pair of flange portions depending from said web
portion forming a pair of downward inclined side walls portion forming a providing respective protected interior spaces therein,
a piggy-back channel section mounted forwardly on the top of said rearward boom element, also having a web portion forming a top wall and a pair of flange portions depending meeting the web portion of the boom element providing yet another protective interior space therein,
first ram actuation means extending along and at least partially within the interior space of said rearward boom element and between the rear end portions of said forward so as to be operable to adjust the relative angular position of said boom elements,
second ram actuator means coupled at one end to said yoke and extending into said yet another protective interior of said piggy-back chamel secton and coupled at its othe thereby to raise and lower the boom structure, and hird ram actuator means extending along and at least par tially within the interior space of said forward boom element being coupied at one end the end to a selected portion of said forward boom its other end to and operable to adjust the angular position of the bucket loader relative to said rearward boom ele ment,
aid channel sections thereby not only protecting the respec tive ram actuator means against mechanical damage bu said web portions thereof being additionally able to promine working which may foul the ram actuator means and thus render them inoperable.

TILTING ASSEMBLY FOR PICK.UP HEAD
Filed Jan. 31, 1977, Ser. No. 764,430
\(\mathbf{1 4 7}^{\mathbf{I n t}}\) C. \({ }^{2}\) B65G 67/46

bly of the type primily desized for use in positioning a boom supported pick-up head having a rotary shaft, said orienting assembly comprising:
frame means pivotally connected to the pick-up head in supporting relation thereto, said frame means disposed in movably interconnected relation between the head and the boom;
ctivating means disposed in driving , movable interconnection to the pick-up head;
to said rotary shaft of said pick-up head and movably the thickness of the uprights in each row being such as to
connected in driven relation to said activation means; permit their insertion into said gaps and their movement connected in driven relation to said activation means;
attachment means including a pivot shaft rotatably conattachment means including a pivot shaft rotatably con-
nected to said frame means and disposed for supported nected to said frame means and disposed for supported
attachment to the boom, whereby the head is pivotable relative to said frame means upon operation of said activa\({ }^{\text {tion means; }}\)
said frame means comprising at least two mounting plates
rotatably mounted on said pivot shaft and each disposed in rotatably mounted on said pivot shaft and each disposed in
spaced apart relation to one another and in at least partially surrounding relation to said activation means; and stabilization means mounted on said rotary shaft in slidin engagement with a peripheral edge portion of at least one
of said mounting plates, said stabilization means correspondingly configured to at least a portion of the length of said peripheral edge, said one mounting plate biased into stabilized position upon mating engagement between said stabilization means. \(\qquad\)
4,094,424
REFUSE CONTAINER DISCHARGE STATION Samuel E. Harrey, Knoxville; James Stephen Whitehead, Mary-
rille, and Paul L. Goranson, Knoxville, all of Tenn., assignors to Carrier Corporation, Syracuse, N.Y.

Filed Dee. 17, 1975, Ser. No. 641,524
U.S. CI. 214-304 Int. Cl.2 B65G 69/22 10 Claims

1. A refuse container unloading apparatus for discharging material from a transportable refuse container, comprising: carriage means for supporting a removable container during
unloading thereof, the carriage means being movable longitudinally thereof between a container receiving position and a container refuse unloading position;
positioning means connected to the carriage means for mov ing the carriage means between said positions, the posiinertial movement of the carriage means; and
ejection means for discharging refuse from said container when the carriage is in the unloading position.

DEVICE AND A METHOD FOR HANDLING MATERIAL DEVICE AND A METHOD FOR HANDLING MATERIAL
Franco Gabbrielli, Via Reginaldo Giuliani, 126, 50141-Firenze, Franco
Italy

Filed Dec. 10, 1976, Ser. No. 749,265
Claims priority, application Italy, Dec. 24, 1975, 9663 A/75 U.S. CI. 214- 310

11 Claims

1. A material handling device comprising a roller conveyo component which includes rows of uprights, the spacing and
through said gaps; crosspieces interconnecting the uprights of ne row only with curresponding uprights of other rows, said being insertable in said gaps means for effecting relative movement between said cage and said conveyor perpendicularly to each other such that said uprights and said crosspieces can move through said gaps.

APPARATUS FOR IMPARTING INDEPENDENT ROTATIONAL AND TRANSLATIONAL MOVEMENT Charles A. Vogel, Effingham, III., assignor to Fedders Corporation, Edison, N.J.
Filed Jun. 16, 1977, Ser. No. 807, 165 Int. C.2. \({ }^{2}\) B65H \(51 / 10\)
U.S. CI. 214-338

9 Claims

1. Apparatus for imparting independent rotational and axial movements to a workpiece and combining such movements, including
(a) first means to impart rotational movement to the workpiece in a first direction and rotational movement to the workpiece in a second direction opposite to said first direction;
(b) second means to impart axial movement to the workpiece in a first axial direction transverse to the direction of rotation of the workpiece and in a second axial direction (c) first timing meanst for sal direction;
(c) first timing means for said first means to control the rate (d) rotation of the workpiece;
(d) second timing means independent of said first timing piece; and, (e) common means intercoupling said first and said second means and responsive thereto for simultaneously imparting the rotational and the axial movement to the work.
piece, said common means being independently controlled by said first and said second means for independent axial and rotational movement of the workpiece.

4,094,427
METHOD FOR LOADING AND DISINTEGRATING
Bruce Lymn White, Nenton; Mark Winfield Kiner, Hesston, and Arlen Jacob Wiens, North Newton, all of Kans., assignors to Forporation, Hesston, Kans.
Filed led Aug. 25, 1976, Ser. No. 717,672
Int. C1. \({ }^{2}\) B60P \(1 / 16\)
U.S. C. 214—505 1h. C.2. \({ }^{2}\) B60P \(1 / 16\) 3 Claims ying, circumferentially supported cylindrical balge groundthe steps of:
gaging the circumference of said ground-lying bale from one end thereof;
swinging said bale in a first upright plane to an elevated, substantially horizontal support surface; substantially horizontal support surface;
end-supporting said bale on said surface in a stationary posiendion with the axis of the bale vertically disposed;
subsequently swinging said bale in a second upright plane from said position toward an upstanding zone of disintegration;

progressively shredding said bale in said zone while continuing to swing the bale in said second plane whereby the bale is disintegrated obliquely thereof; and
taining said bale against movement away from said zone until completely disintegrated.
\[
4,094,428
\]

METHOD AND APPARATUS FOR LOADING AND DISINTEGRATING SINGLE ROUND BALES Bruce Lynn White, Newton; Mark Winfield Kiner, Hesston, and
Arlen Jacob Wiens, North Newton, all of Kans., assignors to Arlen Jacob Wient, North Newton, all of Kans., assignors is
Heaston Corporation, Hesston, Kans. Division of Ser. No. 717,672, Aug. 25, 1976. This application Feb. 22, 1977, Ser. No. 770,637

Int. C1. \({ }^{2}\) B60P \(1 / 16\)
U.S. Cl. 214-505

13 Claims

1. A machine for loading and disintegrating large ground ying, cylindrical bales of crop material, said machine includ ing:
a disintegrator supported on said frame
normally horizontal feeding bed on the frame swingable to normally horizontal feeding bed
and from said disintegrator; and
loading structure pivotally mounted on said frame for verti cal swinging movement between the ground and said bed, said structure being adapted to engage said ground-lying, cylindrical bale and stand the latter on end upon said bed whereupon the bales are forcibly fed end-first into said disintegrator by said bed having a substantially flat support surface and being
pivotally secured along one edge to said frame adjacent said disintegrator,
said support surface being disposed below said disintegrator when said bed is in its horizontal position,
said bed including support means opposite said one edge and extending above said support surface for retaining said bales on said bed during swinging movement to said disintegrator.

STOPPER FOR TEST TUBE, AND THE LIKE Matthew C. Urbin, 4524 La Barca Dr., Tarzana, Calif. 91364 Filed Jul. 26, 1976, Ser. No. 708,402
U.S. Cl. 215-305 Int. Cl. \({ }^{2}\) B65D 41/00 4 Claim

1. A stopper for sealing the mouth of a test tube, and the like, said stopper being formed of a resilient material, and having a hat-shape with a closed outer end and an open inter end, and having a peripheral rim surrounding saic open inter end and test tube in which the wall of the stopper tapers from a thicker to a thiner dimension from the closed end of the stopper to said peripheral rim and with the central portion of the stopper being adapted to be pushed inwardly into the mouth of the lest tube to assume an inside-out comguration in sealing relation ship with the inner wall of the test tube adjace said edge.

\section*{4,094,430}

CARGO CONTAINER
John F. Csule 847 Montgomery Drive, Ancaster, Ontario,
Canads
Continuation-in-part of Ser. No. 570,949, Apr. 22, 1975, abandoned. This application Dec. 9, 1976, Ser. No. 748,918 Claims priority, application Canadd, Jul, 15, 1974, 204749
Int C. \({ }^{2}\) B65D \(87 / 00,7 / 44:\) E 04 C 1/10 U.S. C. \(220^{\text {Int. Cl. }}{ }^{2}\)

2 Claims

1. In a cargo container having a bottom, end, and side walls, and a top wall or roof, connected to said side and end walls, an
improved connection between said side walls and the top wall comprising a plurality of continuous grooved metal sheets connected to and extending from each said side wall and curving to extend across the top of the container and defining a smooth, long radius corner, said grooved sheets extendin
transversely of the longitudinal axis of the container;
each sheet having at least one flat trough part and a parallel,
adjacent flat top part joined to said trough part by flat side adjacent flat top part joined to said trough part by flat side
walls extending ninety degrees to said rough part and top walls extending ninety degrees to said trough part and top ously formed with the length of the sheet;
each sheet being joined to an adjacent sheet by said lip seam in combination with a curved metal reinforcing edge strip
contoured in cooperation with said long radious conter contoured in cooperation with said long radious corner upper corner between the side and top walls of the container; said edge strip overlying and being secured to the
flat top parts of the grooved sheets defining a box section flat top parts of the grooved sheets defining a box section
with the trough parts of the grooved sheets to thereby strengthen the grooved sheets both longitudinally with strengthen the grooved sheets both longitudinaily with
the length of the container and laterally about said radious corner in a direction transverse to said axis of said con-
tainer. tainer.

PAINT TRAY WITH BRUSH 4
PAINT TRAY WITH BRUSH HOLDING ATTACHMENT
Filed Feb. 2, 1976, Ser. No. 654,410
Int. Cl. \({ }^{2}\) B44D 3/12; B65D 21/02
U.S. CI. \(220-23.4\)

1. An assembly for simultaneously accommodating a paint roller and a conventional paint brush for painting the walls and ceiling of a dwelling, said brush having a handle with an aggregation of bristles extending longitudinally therefrom at one end
thereof, said aggregation of bristles having a lateral width several times greater than its thickness, comprising:
a paint tray having a bottom wall which has an incline for a least a part of its length, a front wall, a back wall and a pair of side walls, together defining a receptacle for receiving a paint roller;
a paint brush receptacle havng a front wall, a back wall, a pair of side walls, and a botron wall, the distance between said side walls of said paint brush receptacle being less
than the width of said paint brush at said bristled end hereof and greater than the thickness of said brush at said bristled end, said side walls and bottom wall of said pain brush receptacle having a length about equal to the length of one of the paint tray walls so that said paint brush receptacle will receive said paint brush with the wid
dimension of said aggregation of bristles inserted in dimension of said aggregation of bristles inserted in a
generally verticle plane with the handle of the brush extending outwardly from the paint brush receptacle in a position where it may be conveniently grasped by the to accommodate a second of said conventional paint brushes oriented in the same vertical plane; and
clamp means secured to said paint brush receptacle for
removably attaching said paint bsush receplacle
of said paint tray, said paint brush receptacle being attach-
ble to either of said side walls of said paint tray and also being attachable to said back wall of said paint tray.

INDUSTRIAL DRUMS
Seymour Zilbert, Demarest, N.J. Assignors to Bergen Barrel \& Drum Co., Demarest, New Jersey No 767137
U.S. Cl. \(220-404{ }^{\text {Int. Cl.2 }}{ }^{2}\) B65D \(1 / 12,25 / 14 \quad 21\) Claims

1. An industrial drum constructed of synthetic resin material 1. An industrial drum constructed of synthetic resin material apparatus to facilitate mechanized handling of the drum, said drum comprising:
a generally tubular body member extending longitudinally between opposite ends and including a cylindrical side first and tary wiecond end members, at least one of which is unitary with the tubular body member at one end thereof and closes said one end, the first and second members each including a circular end wall; and
at least one chime molded unitary with a member of the
drum, the chime having a configuration including portion drum, the chime having a configuration including portions
extending longitudinally and laterally outwardly for being gripped by the clamp of the drum-handling apparatus, the chime being annular and being located at the intersection of one of the end members and the body member so as to perimeter of said one of the end members, the longitudinally extending portion of the chime extending outwardly beyond the end wall of said one of the end members at said intersection and including an outer edge spaced longitudi-
nally from said intersection, and the laterally extending portion of the chime extending laterally beyond the cylindrical side wall;
the tubular body member, and at least the one of the end members unitary therewith, being rotationally molded of ability to crosslink as the drum is molded. 19. For use in an industrial drum having a generally tubular oody member extending longitudinally between opposite ends, irst and second end members, one of which is unitary with the ubular body member at one end thereof and closes said one the tubular body member, and an internal thread on the other of the end members, said internal thread being generally complementary to the external thread, the improvement comprising:
cupped liner of relatively rigid synthetic resin material for reception within the tubular body member, said cupped a liner haviar wall complementary to the tubular body member; a closed end complementary to the unitary end member; an opposite open end; and
portion turned longitudinally back toward the closed end and spaced laterally outwardly from the tubular wall of the liner, said annular portion being in the form of a thread complementary to the external thread of the tubular body
and the internal thread of the other of the end members for and the internal thread of the other of the end members for
reception interjacent the external thread and the internal reception interjacent the external thread and the internal
thread when the liner is in place within the drum and said other end member is threaded onto the tubular body mem ber.

4,094,433
DRINKING RECEPTACLE VALVE MEANS
Jody L. Numbers, Scottedale, Ariz., assignor to Thermo-Seal
Jody L. Numbers, Scottudife, Ark.,
Inc., Los Angeles, Callf.
Filed Jen
S. C. 220—90.4

2 Claims

1. In a drinking vessel of heat-insulating material:
(a) a receptacle;
(a) a receptacle;
(b) a cover for said receptacle, said cover including a top
wall formed with a dispensing wall formed with a dispensing opening and a cylindrical
wall depending from said top wall and formed with a wall depending
pneumatic vent;
(c) a valve for said dispensing opening in the form of a fla plate in sealing engagement with a valve seat on the derside of said cover about said dispensing opening; (d) a valve actuator integral with saig dispensing;
having a portion extending through said vent;
(e) a retainer flange on said actuator spaced from the inner
surface of said cylindrical wall;
(f) an O-ring seal between said reta
(g) an operating knob having a shank of lesser cross-sec
(g) an operating knob having a shank or lesser cross-se
tional area than said vent through which it passes and is secured to the portion of said valve actuator which ex tends through said vent;
the valve actuator to move the valve for said dispensing he valve actuator to move the vald dispensing opening is open.

DISPOSABLE CONTAINER FOR HEATABLE FOOD Williem A Cod

Coiner, 101 S. Indian Cir., Cocos, Fla. 32922
Filed Dec. 13, 1976, Ser., No. 749,888
Int. CC. \({ }^{2}\) A47G 19/22; B65D \(25 / 28\)

\section*{U.S. CI. \(220-90.6\)}

2 Cluims

1. A disposable container for a heatable food product comprising a metal body that defines an hermetically sealed chambri for the food product, said body having upper and lower
ends and being adapted at its lower end for placement on a ends and being adapted at its lower end for placement on a
tove or other heat source, an annular lip and a removable losure at said upper end, said closure having a perimeter and being surrounded at said perimeter by said lip, said lip being arranged to project above the perimeter of he means coveraving oppositely facing surfaces, and insulacing oppositely facing surfaces for protecting the lips of a aid oppositely container contents body having a peripheral ide wall section with an annular recess portion that surrounds the closure at said upper end, said annular recess portion having an outer surface that merges with one of said oppositely acing surfaces, said recess portion being adapted to receive lating means additionally covering said outer surface of the annular recess portion for protecting such fingers of the person from heat transmitted to said outer surface.
(h) a bar portion
cent to said O -ring retainer flange;
(i) a pair of spaced-apart rail members each having an end integral with said bar portion and extending therefrom on
opposite sides of said valve actuator;
(j) an outwardly extending flange on each of said rail members;
(k) a cross member integral with the other ends of said rail members;
(l) a leaf spring having an end portion secured to the underface of said cover and an intermediate bowed porrion depending from the cover with the other end of the spring
being secured to said dispensing valve, whereby said spring biases the dispensing valve into sealing position on said valve seat and the O -ring into sealing position relative to said vent; and
(\(m\)) a pair of cams depending from said cover on opposite in the flanges on said rail members, each of said cams
in having a cam surface that is normally spaced from that portion of a flange on one of said rail nange on said rail confronts but whe valve actuator has been moved inwardly member after the eave
from the cylindrical wall of said cover a distance sufficient to open said pneumatic vent whereupon the engagemen to open said pneumaic flanes with said cam surfaces causes

PULL TAB BEVERAGE
PULL TAB BEVERAGE CAN OPENER Filed Oct. 21, 1977, Ser. No. 844,277 Int. C1. \({ }^{2}\) B65D \(41 / 32\)

1. A beverage can opener comprising-in combination with he top of a metallic beverage can-a hinged-end tear strip defined on said top by scoring thereof, a hinged-nd tear flap lap being spaced but alined on the can top, a finger-engageable pull tab connected to the tear strip exteriorly of the can top and a tension strap connected between the tear strip and the tear flap internally of the can; pulling motion on the pull tab severing said rear strip, except at one end providing a hinge, such motion-at the same time and as a transmitted force imposed by the tension strap on the tear flap-severing said
tear flap, except at one end providing a hinge, from the can top cylindrical portion adapted to be received in the opening of and bending such tear flap into the can, thus producing a said reservoir, a flange integrally formed with and radially and drinking and pouring opening in the can top.:
\(\stackrel{\text { 4,094,436 }}{\text { APERTURE PLUG }}\)
Dougles William Birminghture Ickenham, England, assignor to TRW Inc., Cleveland, Ohio
application Oct. 21, 1976, Ser. No. 734,490
Int. C1. \({ }^{2}\) B65D \(45 / 16.45 / 00\) U.S. CI. 220-315

1. A one-piece plug for a panel aperture comprising a plate member having a flat, planar inside face portion, a peripheral
edge and a pluraity of resilient legs which depend from said edge and a plurality of resilient legs which depend from said
plate member from the inside face portion side thereof adjacent
said peripheral edge said plate member having a plurality of said peripheral edge, said plate member having a plurality of
spaced recesses emibossed on the inside face thereof and adjaspaced recesses embossed on the inside face thereof and adja-
cent each leg and said peripheral edge, said legs being formed by extensions of the plate member, each leg having: a firs portion integrally joined to said peripheral edge which is and is positioned within said recesses and abutting the bottom and is positioned within said recesses and abutting the bottom of ally in coplanar relationship with the said inside face portion of said plate member, each of said recesses having a width portion which extends substantially at right angles to said plate member, and a third portion extending from said second pormember, and a third portion extending rrom said second poreach of said legs projecting from the plate member at a position each of said legs projecting from te plate member ata ponition
radially inwardly of said peripheral edge thereby leaving said radialy inwardyy of said plate member unbroken
peripheral edge of said

CAP ASSEMBLY AND \(4,094,437\) THEREOF Yoshihiro Hayashida, Chigasaki, Japan, assignor to Tokico Ltd.,

Kawasaki, Japan Filed Aug. 25, 1977, Ser. No. 827,812 Claims priority, application Japan, Mar. 19, 1977, 52-30771 Aug. 30, 1976, 51 1116029[U] Int. Cl. \({ }^{2}\) B65D \(51 / 16\)
U.S. C. \(220-374\)

1. A cap assembly for the reservoir of a vehicular brake comprising a cap body and a cap cover, said cap body a bottom being provided with a vent hole communicating between the
interior of said reservoir and an air space, including a first

\section*{4,094,438}

METHOD OF DISPENSING LABELS
Ibert A. Neubauer, Centerville, Oblo, assignor to Monarch Mibert A. Neubauer, Centerrille, Ohio, assignor to Monarct
Marking Systems, Inc., Dayton, Ohi
Division of Ser. No. 604,290, Aug. 13, 1975, abandoned. This sion of Ser. No. 604,290 , Aug. 13, 1975, abandoned.
application Apr. 11, , 1971, Ser. No. 786,312 U.S. Cl. 221-1 6 Claims

1. Method of dispensing labels, comprising the steps of: providing a plurality of labels releasably secured by pressure ensitive adhesive to a longitudinally extending web of supudinally spaced apart locations, each cut means including three slits arranged in a generally \(Y\)-shaped configuration and spaced apart by a frangible portion, each slit of the cut means being inclined with respect to the transverse direction across the web, one of the slits of each cut means extending generally
longitudinally, each spaced apart cut means forming a respective generally \(V\)-shaped flap portion extending initially in the plane of the web, causing the web to undergo a sharp change in direction at a delaminating zone where labels are successively delaminated from the web, the web being oriented such hat the flap portions extend in the upstream direction as the having a plurality of teeth into contact with the web downstream of the delaminating zone to cause each tooth to press against portions of the web adjacent the respective slit to fold said adjacent web portions out of the plane of the web, to open hole in the web, to sever the respective frangible portion and to fold the respective flap portion out of the plane of the web about a respective fold line and to drivingly engage the flap
portion, and pulling on the delaminated part of the web by advancing the toothed driver to effect label delamination at the delaminating zone.

4,094,439
ARTICLE APPORTIONING APPARATUS HAVING A ROTATABLE DRUM
ans List, Laustrasse 51,7 Stuttgart 70 BRD, Germany
Flied May 10, 1976 , Ser. No. 6a4,
Claims priority, application Germany, May 9, 1975, 2520685; Clisims priority, appication Germany, May 9, 1975, 2520685; U.S. Cl. 221-9

\section*{lnt. Cl. \({ }^{2}\) B23Q \(7 / 12\)}

1. An apparaus for handling a multiplicity of like bodies said apparatus comprising:
a housing; ble in said housing about a horizontal axis an having a multiplicity of inwardly open pockets arranged in circumferentially extending axially spaced
each dimensioneaced end walls in and axially cl
a pair of axially spaced enc walls in and axially clo
drum and defining therewith a separating space;
connectors extending axially between and axially securing
together said end walls;
means for rotating said drum about said axis in a predeterined rotational sense relative to said end walls and to said housing:
input means for feeding a multiplicity of said bodies in random fashion into said space at a given input location therein;
and bolts extending axially between said end walls;
guide plates inclined downwardly at said input location and receiving said bodies from said input means;
a separating comb having a plurality of arcuate elongated separating elements defining a plurality of parallee slits an at least one rod extending transversely to and rigidly secured to said separating elements, said rod being held o and extending axially between said end walls;
means for joint sliding of said end walls, cunnectors, and comb axially cut of said drum and out of said housing; engageable over said rod for releasably securing said comb to said end walls in a position generally below said axis in said space downstream relative to said rotational sense from said location and with said shits each aligned with a respective one of said rows;
means for removing said bodies from said pockets at a reto said rotational sense; and
shields closely juxtaposed with said drum and fixed to said housing in such positions that said bodies cannot fall out of said pockets between said input location and said retrieval location, said shields having formations means for joint sliding
971 O.G. 23

SAFETY DOOR MECHANISM
Joseph A. Lotspelch, Eagan, Minn, assignor to Gross-Given Joseph A. Lotspelch, Eagan, Minn., assignor
Manufacturing Company, St. Paul, Minn. Filed Sep. 23, 1976, Ser. No. 725,881 U.S. C. 221-12 the flange adjacent said first cylindrical portion; and said cap cover including a third cylindrical portion fitted on said second cylindrical portion of the cap body and closed at one end, said second and third cylindrical portions having mating radial concave and convex engaging means and said closed end of the
third cylindrical portion covering said second cylindrical portion of the cap body to thereby close said opening of the reser-

2. In combination with a dispensing machine including dispensing chamber having a top supply opening and a
delivery opening, a safety door mechanism comprising: (a) a delivery door pivoted about a horizontal axis near the top of the delivery opening and normally positioned by gravity to close the delivery opening;
(b) a supply door pivoted about a horizontal axis near the front of the supply opening and normally positioned by gravity to clear the supply opening, said supply doo depending behind said delivery door; and c) linkage means interconnity said supply and deliver doors for closing said supply door in response to opening movement of said delivery door at a closing rate which initially exceeds the opening rate of said delivery door, so that said supply opening is substantially closed before said delivery opening is substanials opechanisms, one of said mechanisms interconnecting said doors at each side of said ispensing chamber, wherein each of said linkage mechaisms comprises:
(i) a delivery door lever arm pivoting with said delivery door and having a first drive pin adjacent its free end; (ii) a bell crank having a fixed center pivot, a first lever arm containing an arcuate slit receiving said first drive pin therein, and a second lever arm having a first pivot \({ }_{\text {(iii) a }}\) a supply door lever arm pivoting with said supply
door and having a second drive pin adjacent its free end;
(iv) a fixed pivot lever having a first lever arm containing an arcuate slit receiving said second dive pin therein,
and a second lever arm having a second pivot pin adjaand a second lever
cent its free end; and
(v) a link pivotally connecting said first and second pivot pins.

4,094,441
STAMP DISPENSING APPARATUS Daniel Davis Warren, 7317 Fisher Rd., Dallas, Tex 75214 Filed Nor. 1, 1976, Ser. No. 737,464
8. A. 221-18 10 Claims 8. Apparaus for dispening samp, having erein,
(a) a magazine for containing and positioning at least one
row of a stack of stamps, said magazine comprising more particularly
(i) means for urging the stamps toward the suction means (i) ,
(ii) pawl and cog means providing unidirectional movement of stamps in said magazine toward the suction means (b) herein, and
(iii) yieldable retention means for retaining stamps in the magazine but yieldable so as to release a stamp therefrom upon attachment of the suction means (b) herein to
(b) suction mea
b) suction means for releasably attaching to a stamp and
withdrawing said stamp from the magazine (a), said means comprising,
(i) a support slideable within the housing,
(ii) a tube slideably retained within the support (i), and
(iii) means urging the tube (ii) away from the suppot (iii) means urging the tube (ii) away from the support (i)
whereby said tube engages by suction a stamp within the magazine (a),

(c) coin actuated means for sliding the support (i) of the suction means (b) within the housing,
(d) means (c) upon insertion of a coin in the apparatus when the stamps in the magazine (a) are exhausted,
(e) means for releasing a stamp from the suction means (b) comprising a wall within the housing having a portal through which the tube (ii) of the suction means (b) passes such that upon contact with the wall by a stamp in suction engagemen
(f) a chute for gravitationally receiving a stamp upon release thereof from the suction means (b).

> 4,094,442 VAPKIN DISPENSER

John R. Redek, Hinsdale, Il., assignor to Ready Metal Manufacturing Compeny Ching , III
facturing Company, Chicago, III.
Continuation-in-part of Ser. No. 667,161, Mar. 15, 1976, abandoned. This application Apr. 13, 1977, Ser. No. 787,170 U.S. C. 221-59 Int. Cl. \({ }^{2}\) B65H \(1 / 26\)
of the approximate dimensions of said folded napkins and
four side walls fixed thereto, four side walls fixed thereto,
b) an ingress-egress wall secured to the sidewalls opposite said end wall and having a generally rectangular opening
therein for leading and dispensing napkins into and out of the container,
(c) a spring loaded follower within the container normally
urging napkins within said container toward said opeaing urging napkins within said container toward said opening,
(d) a pair of relatively narrow leaves having a longitudinal (d) a pair of relatively narrow leaves having a longitudina
edge hingedly mounted on opposite sides of said opening and spring biased normally to assume a horizontal position generally coplanar with said opening and resiliently rotat able into said container when napkins are inserted throug the opening against the follower, with the lifting ply
straight edge perpendicular to the sides of the opening and the leaves completely covering the side edges of the napkins,
(e) said leaves also having free longitudinal edges opposite their hinged edges gently sloping substantially from end
end of said leaves, so as to present an opening of tapering width for convenient egress of a napkin, whereby a napkin may be withdrawn from said stack of folded napkins within the dispenser by grasping the free edge of the
outermost ply extending transversely of said opening and outermost ply extending transversely
pulling it away from said opening.

4,094,443
PAINT STRAINER DISPENSER
James P. Whelan, N. Marshfield, Mass., 2ssignor to Ad-Te Products, Inc., Plymouth, Mass.
Filed Jun. 25, 1976, Ser. No. 699,66
U.S. C1. 221-63

Int. C1. \({ }^{2}\) B65H \(1 / 00\)

1. A dispenser for the dispensing of containers from an 1. A napkin dispenser for a stack of folded napkins each inverted stack of containers, said containers having diametri folded in multiple plies having a final rectangular contour, cally disposed, radially extending ears, comprising a vertically with the outermost lifting ply terminating in a straight edge elongate tubular structure open at ins bonom, sad thbulla parallel to the top width of the folded napkin along a line parallel to the top and bottom edges thereof, comprising
(a) a parallelepiped container having a rectangular end wall
structure having diametrically disposed openings at the back
and front sides extending from top to bottom of a width to and front sides extending from top to bottom of a width to
receive the diametrically disposed ears of a stack of containers
situated in the structure, a support bar adjacent the lower end spouts a like number of open containers at atmospheric pres of the structure extending across the opening at the back side, sure, discharging the beer into said containers simultaneously at the front side, said supports at the back and front side being of the containers, covering the open end of each container after so situated that when the inverted stack is disposed in the structure, the ears at the back side of the stack extend hroug the opening at the back side the opening at the front side and the rim of the lowermost container of the stack rests on the supports at the opposite sides of the opening at the front side said opening at the front side providing access to the stack to enable grasping the ear at he front side off the supports to conua permit the lowermost container to be pulled downwardly.

4,094,444
4,094,444
SEED METERING DEVICE HAVING HIGH FRICTION MATERIAL ON ROTATING WHEEL
Robert Anthony Willis, Hythe, England, asslgnor to Stanhay Robert Anthony will, , Ayland

Filed Mar. 18, 1977, Ser. No. 779,416 U.S. Cl. 221-266

1. A seed metering device comprising a seed hopper having a base defining an aperture; two sets of contra-rotated circular rotary members driven about adjacent substaniualy horite said axes and sealing said aperture in said base, one set of the said rotary members having the form of ee-beer pulays spaced single seed recepprovided with a plurality of regularly ypaced slinger and the othe set of said rotary members having Vee-shaped protruding rims set high friction material penetrating upper parts of the said lots with close tolerance to sweep open faces of said seed receptors; and at least one masking plate mounted in said seed
hopper and having an arcuate edge closely spaced from th said open faces of said seed receptors, said masking plate bein located beneath the location at which the Vee--shaped protrud
ing rims sweep said open faces of said seed receptors to main ing rims sweep said open faces of said seed receptors to main tain single seeds within the receptors until tre seeds recento position at which said seeds can be released

HIGH SPEED BEER DISPENSING METHOD Hevan, Hatboro, Pa., assignor to Elliott-Lewis Corpor James Bevan, Hatiobro,
tion, Philadelphia, Pa

Filed Mar. 29, 1973, Ser. No. 346,186
Int. Cl. \({ }^{2}\) B67D \(1 / 04 ;\) B65D 83/14
U.S. C. 222-1
U.S. Claim
1. A method of dispensing, from a tap having a plurlity pouring spouts, a beer having a foaming tendency which is directly related to its temperature, comprising the steps of flowing the beer through a supply line to the tap, maintaining the temperatue of the beer at the lap less than \(34^{4} F\) and within

pouring, and thereafter subjecting the liquid and containers to an ambient temperature above the pouring temperature for a sufficient period of time to permit foam to form on the liquid in Claims the containers.

HEATED DISPENSER FOR HOT TOPPINGS AND THE James W. Brutsman, Cheyenne, Wyo., assignor to Wyott Corporation, Cheyenne, Wyo.

Ciled Mar. 1, 1976, Ser. No. 662,363
Int. C1. \({ }^{\text {B6 }}\) 867D 5/62 Int. Cl. \({ }^{2}\) B67D \(5 / 62\)
ME

1. A heated dispenser for heat-softenable products susceptibe of being pumped which comprises: an outer shell with an within the opening in the outer shell cooperating therewith to define a double-walled insulated housing; an electrically powred heating element located between the walls of the housing position adjacent the inner shell; an open-topped storage
 said inner shell adace a heated jacket effective to warm the contents of said storage vessel; a pump subassembly detachably resting atop the storage vessel for removing the contents thereof, said pump assembly including lid-forming means for covering the open top of said vessel, externally-operable pump means extending down into the interior of said vessel through he lid-forming means, and a spigot posime over the side of the housing; and, means comprising an electrically-heated saddle carried by said housing in position to cradle the spigot of the pump assembly when the latter is in position atop the storage vessel, said saddle being operative upon energization to mainain any heat-softenable residues left within the spigot in a pumpable condition

HEATER CAST FOR MULTI-CAVITY HOT RUNNER EDGE GATE
Jobst Ulrich Gellert, 11 Newton Rd., Brampton, Ontario, Can
ada
Filed Dec. 6, 1976, Ser. No. 747,609 Claims priority, application Canads, Dec. 2, 1976, 266988 U.S. Cl. 222-146 HE

2. An improved heater cast for multi-cavity hot runner edge gate injection molding providing for hot melt to flow down-
ward through a central injection passage to a plurality of peripheral gates, the heater cast comprising
(a) a mid portion having a cylindrical outer wall and a sub-
stantially flat lower surface, and
(b) (b) a corresponding number of spac
extending downwardly around the lower nozzle portions portion to positions each adjacent one of the get the mid ively, each of the lower nozzle portions the gates respec cal outer wall and a substantially flat lower face; wherein the central injection passage extends downwardly to
the lower surface of the mid portion of the heater cast where it communicates with a corresponding number of radial chan--
nels each of which extends across the lower surface of the mid portion, down the inside of the wall of a nozzze portion and across the lower face of said nozzle portion, whereby the mel branches from the central injection passage through the chan nels to the area of each of the respective gates.

\section*{4,094,448}

DOSING DEVICE FOR PULVERULENT MATERIAL Helmut Hiseler, and Günter von der Kall, both of Leverksen Germany, assignors to Agfa-Gevaert Aktiengesellschaft, L verkusen, Germany
Claims priority, application Germany, Feb. 25, 1975, 2508066
U.S. C. 222-342

1. A device for dosing a pulverulent material into an open vessel, comprising a funnel-shaped storage container for pulverulent material, the container having an outlet aperture at it
ower end, a plate located beneath the said aperture at a disance therefrom so that in use a standing column of material is ormed between the plate and the aperture, a dosing rod which displaceable in a horizontal plane which passes through the a
move from positions disposed supporting the dosing rod
comply outside of the column of material and projected borders of the plate to positions passing through the column of material, means for periodically passing the rod from positions completely outside passage a predetermined quantity of material into the open vessel which is located beneath the dosing device, and a stripper is arranged above the plane of the dosing rod at such a oosition that with each passage of the dosing rod through the column the stripper carries any residues of substance left on the rod into the open vessel by wiping contact with the dosing rod
above the open vessel above the open vessel.

OPEN-TOP HOLSTER FOR REVOLVER Frank Pariante, Brooklyn, and Herry Parlante, Bayside, both of N.Y., assignors to Courtlandt Boot Jack Co., Ltd,
N.Y. U.S. Cl. 224-2 B

1. An open-top revolver holster to be strapped to the side of a wearer and so securing the revolver in the holster that only having a barrel, a trigger assembly, a cylinder and a grip, the holster comprising:
A. a pocket defined by a rear wall adjacent the wearer and a complementary front wall, said rear wall having being shaped to socket the barrel as well as the trigge assembly and the cylinder of the revolver, the grip of th revolver being exposed above the pocket; and
B. a catch plate formed of resilient synthetic plastic material whose profile conforms to that of the tongue to which it is the plate projecting into the pocket and including a fre depressible sector which normally bulges away from the inner surface of the pocket, the sector being so positioned depresses the sector to admit the revolver into the pocket, and when the revolver is fully inserted the edge of the sector springs out to intercept the upper end of the cylin-
der to prevent unauthorized withdrawal of the revolver, der to prevent unauthorizedy whereby for the wearer to
draw the gun he must first depress the sector to clear the
cylinder, the sector when released always reverting to its
normal bulge, said plate being molded of thermoplastic
normal bulge, said plate being molded of thermoplastic
polycarbonate material which has high impact strength
and is dimensionally stable and has a persistent memory. apposed rear ends and adapted to embrace said spout, a segmentally annular band having spaced apposed rear ends adapted to be separably juxtaposed to cause said band to grip said bowl portion at a position spaced above said bottom thereof, and a longitudinally split handle
having a first portion connecting one of said collar ends to having a first portion connecting one of said collar ends to other of said collar ends to the other of said band ends, and locking means defined by portions of said handle first and second portions immediately adjacent said rear ends of said band and collar for releasably locking said handle first and second portions together to retain said collar about said spout and said band about said bowl portion spaced
above said bottom thereof as a result of the releasable retention of said handle portions together to define a handle for carrying the decanter, each of said collar and band being free of fold portions and defining a continuous arcuate cross section at all times.

1. For use with a glass decanter having a globular bowl prtion having a bottom and terminating in an upper tubular portion defining a pouring spout, a handle structure compris-
and is dimensionally stable and has a

\section*{4,094,451}

LOTTERY TICKET DISPENSER FOR
BREAK-RESISTANT WEB MATERIAL
\[
\begin{aligned}
& \text { George F. Wescoant, Manchester, N.H., assignor to C } \\
& \text { Machine Co., Inc., Manchester, N.H. } \\
& \text { Filed Nor. 4, 1976, Ser. No. } 738,726 \\
& \text { Int.Cl. }{ }^{\text {B2 }} \text { BFF } 3 / 00
\end{aligned}
\]
U.S. C1. 225-96
1. A lottery ticket dispenser of the type having a continuous
6 Claims 6 Claims 1. A ottery icket dispenser of seperyen beted berforated lines, guided along a path from a supply compartment to a breaker bar station proximate a delivery chute, said dispenser having
friction feed mechanism advancing said web along said path, friction feed mechanism advancing said just in advance of said
breaker bar station, for rigidifying each successive endmos breaker to span said breaker bar station, and stop means includ
ticket ing a limit switch in the path of the leading edge of each said when closed by contact with said leading edge, characterized portio
ing
when
by breaker bar means including a pivoted breaker bar normally poised out of said path at said breaker bar station; power means for moving said bar in an upward path to separate each endmost ticket engaging said stop means along its perforated line of connection to said web and bed plate said station including a pair of bed plates separated by a slot in the path of said upward moving breaker bar, the perforated line of connection of each successive endmost ticket being located in said slot when the leading edge ot

with said bar in separating said endmost ticket despite flimsiness of said web and;
pre-breaking means comprising a set of three cylindrical rolls mounted along said path in advance of said breaker bar station for pre-folding each said ticket first in one direction and then in the opposide whid forated line of connection to said web;
said friction feed mechanism and said ticket bowing means
comprises a pair of smooth faced rolls forming a pressure comprises a pair of smooth faced rolls forming a pressure pair of annular, spaced apart centrally located grooves each of arcuate cross section and the upper roll having a pair of annular, spaced apart centrally located friction rings of yieldable rubber acranged to distort the adjacent portion of a ticket down into one of said grooves to bow the same in a smooth curved cross section.

\section*{4,094,452}

ARRANGEMENT FOR ADJUSTING THE COMPRESSION FORCE OF DRIVE ROLLS Markku Makela, Tampere, Finland, assignor to Rauma-Repola Oy, Finland
Claims priority, application Finland, Mar. 10, 1976, 760617
 U.S. Cl. 226-34 7 Claims

1. A system for adjusting the compression force exerted
upon a lengthy article as it is driven along a feed line compris-
ing: ing: a plurality of drive rolls disposed about the periphery of said article and in contact with the surface thereof; an arm means associated with each drive roll for pivotably
mounting each drive roll to a support structure; drive means for said drive rolls for advancing said lengthy article aiong said feed line;
means connected between ssaid arm means and operatively connected to said drive means and adapted to adjust the
compression force between said rolls in proportion to the force exerted by said drive means to advance said lengthy article along said feed line.

4,094,453
METHOD FOR PRESSURE WELDING METAL
Lloyd A. Cook, Parkersburg, W. Va.; Kim A. Reynoids, Shelburne, and Werner J. Mark, Orangeville, both of Canada assignors to Alforge Metals Corporation, Limited, Orange ville, Cannda
iled Aug. 2, 1976, Ser. No. 711,037
PARTITIONS WITH RELEASABLE GRIPPING EDGES Herbert Clarke Snyder, Brockway, Pa., assignor to Sonoco Products Company, Hartsville, S.C.
Filed Jun. 13, 1977, Ser. No. 805,853 U.S. C. 229-15
U.S. Cl. 228-265

11 Claims

1. A method of
which comprises:
(a) juxtaposing a longitudinal edge of a first workpiece
gripped between a pair of dies into substantilly spaced alignment with a longitudinal edge of a second workpiece gripped between a second pair of dies,
(b) maintaining the longitudinal edge of the first workpiec longitudinal edge of the second workpiece so as to form an elongated open rectangular channel therebetween,
(c) introducing a uniform stream of heated gases into the proximity of the opposed longitudinal edges and causing a portion of said stream of heated gases
elongated open rectangular channel,
(d) maintaining the flow of heated gases through said elongated open rectangular channel for a time sufficient to heat the surfaces of said opposed edges to a temperature within the range of from about \(200^{\circ}\) to \(900^{\circ} \mathrm{F}\) and to form a core of relatively cooler and harder material within each
edge, elongated open rectangular channel by moving the long tudinal edges of said workpieces into abutting relationship with each other to obviate the flow of said heated gases therethrough whereby said edges are heated only when the rectangular channel is formed, and
(f) immediately applying pressure to the abutting heated longitudinal edges of said workpieces while they are at a
temperature of between about \(200^{\circ}\) to \(900^{\circ} \mathrm{F}\) to create solid-phase weld bond between the cores and to upset a portion of heated adjacent surfaces and cause heated metal to be substantially displaced out of the plane of said pres-
sure welded interface.
1. A partitioned container comprising a box, a partition removably received within said box, said box having an inner wall surface, said partition having vertical edge portions, top edge portions, and bottom edge portions engageable with the inner wall surfaces of the box, and a movement resisting substance primarily adhered to at least a portion of said partition
vertical edge portions and releasably adhered to the inner wall surface for separation from the inner wall surface while retaining the integrity of the inner wall surface and the partition vertical edge portions.

\section*{4,094,455}

COMBINATION SHIPPING AND STORAGE CONTAINER AND METHOD Robert A. Bamburg Farris N. Duncan, both of West Monroe, and Roger M. Foyd, Monroe, all of La., assignors to Olime Division of Ser. No. 736,987, Oct. 29, 1976, Pat. No. 4,056,913, Which is a division of Ser. No. 557,420, Mar. 11, 1975, Pat. No. 4,040,558. This application Oct. 28, 1977, Ser. No. 846,348 U.S. CI. 229-15 Int. C1.2 B65D 5/35, 5/02

1. A production blank for forming an inner cell structure for use in a combination shipping and storage container compris
and a bottom portion and having a pair of end panels and pair of centrally located panels positioned petween and pair of centrally located panels positioned between the end panels on the production blank forming the cell struc(b) mean
(b) means, associated with one of the end panels, for fasten ing to the other of the end panels to form the cell struc (c) flap means formed on the bottom portion of the cell for forming a bottom for the cell; and
(d) at least two notches, formed in the top portion, said aiches adapled to face each other by being positioned
,094,456
RECLOSABLE DISPENSING CARTON
Harry I. Racciforte, Western Springs, III., assignor to Cham-
plon International Corporation, Stamford, Conn.

1. A reclosable dispensing carton made of a single sheet of carton blank and comprising an elongated tubular enclosure carton blank first and second side panels, and first and second end panels; said enclosure being closed at one end while the other end is closed by, in turn and in overlapping relationship, a first tab extending from said first side panel and including an apersure therein, said aperture disposed intermediate the length of and extending for only a portion of the length of said first tab so as to not obstruct said aperture; an elongated closure tab extending from said second end panel and covering the aper ture; and a cover tab extending from said second side panel and ncluding a first section overlapping said closure tab and an tab and a second section that is adhesively bonded to said firs side panel; said closure tab being connected to a portion of said second end panel that is pivotally connected to said tubular enclosure whereby said closure tab is slidably received inter mediate the first tab and said first section of the cover tab, and may be slidably displaced in a direction opposite to said second tered aperiures in the first tab and the cover tab, said first side panel including a depressed glue area receiving wholly therein panel including a depressed glue area rectid
said second section of said cover tab.

COLLAPSIBLE DRUMM-TYPE CONTAINER
George A. Spillson, Monroe, Mich., assignor to Consolidated Packaging Corporation, Monroe, Mich.
Filed Oct. 17, 1977, Ser. No. 842,590
U.S. C. 229-21

Int. C1. \({ }^{2}\) B65D \(3 / 02\). \(5 / 00\) 1. A drum-shaped container
foldable material comprising:
(A) eight vertical equal and substantially rectanguler side
panels forming an octagonal prism with an open top and
closed bottom,
(B) a pair of flaps at diametrically oppositc corner edges of said prism, each flap being attached to one side panel and
overlapping and attached to the adjacent side panel,
(C) alternate straight angular upwardly and downwardly
foldlines between the bottom of each side panel and th bottom of the container, which angles of
are about riangularly shaped panels separated by creas
diagonally from each corner of the octagon forming said bottom,
(E) two opposite triangular double-thickness flaps hinged to
(F) means for fastening said
iwo opposite triangular double thickness flaps to said bottom.

4,094,458 ennie Charles Nelson, Jr., Chicago, Ill., assignor to The Continental Group, Inc., New York, N.Y.
Filed Mar. 7, 1977, Ser.
U.S. C. 229-39 \({ }^{\text {R }}\)
the botom edges of opposite adjacent pairs of said panels and folded under said container against said bottom, and

9. A container blank comprising a scored and cut sheet of 9. A container blank comprising a scored and cut sheet of versely hinged to a first side panel, a second side panel being transversely hinged to said second end panel, a tab being transversely hinged to said second side panel, said first and second end and side panels each having a top end and a bottom end, a sid first and second end and side panels, a bottom flap being longitudinally hinged to said bottom end of each of said first and second end and side panels, said bottom flaps each having a longitudinal hinge line dividing each bottom flap into first \(d\) second portions, said longitudinal hinge lines of said bottheass being positioned in generally longitudinal alignment respective top and battom faps having a generally centrally ocated transverse hinge line whereby upon the setting up of said container blank into a container the latter is collapsible by elative folding movement of said first and second panels about aid transverse hinge lines and by relative folding movement of said bottom flaps of at least said first and second side panels said bottom flaps of at least said first and

CONTAINER WITH EASY TUCK-UNDER FLAP FOR OVIAINER WITH EASY TUCK.UNDER FLAP
OVLAPPING CLOSURE AND METHOD Everett A. Coons, West Monroe, La., assignor to Olinkraft, Inc West Monroe, La.
\[
\begin{aligned}
& \text { onroe, La. } \\
& \text { Filed Dec. 12, 1977, Ser. No. 859,672 } \\
& \text { Int. Cl. }{ }^{2} \text { B65D } 5 / 10,5 / 02
\end{aligned}
\]
U.S. CI. 229-41 B

1. A container blank comprising
a plurality of side panels serially hinged together so that the side panels can be folded to form an enclosed wall for a container,
container,
a joint flap on one end panel of the side panels for being
secured to the other end panel of the side panels to secured to the other end panel of the side panels to form
the enclosed wall, the enclosed wall,
bottom means attached to the bottom edges of
panels for closing the bottom of the container,
plurality of trapezoidal closure flaps each
plurality of trapezoidal closure flaps each having the edge of the respective side panel,
said closure flaps having dimensions for being sequentially folded together so that one side portion bordered by one
of the non-parallel edges of each closure flap is overof the non-parallel edges of each closure flap is over-
lapped by another side portion bordered by the other non-parallel edge of an adjacent flap,
one of the closure flaps having a slit extending along a seg
ment of the longer parallel edge thereof from the one ment of the longer parallel edge thereof from the one
non-parallel edge thereof to an inner end of the slit non-parallel edge thereof to an inner end of the slit,
said one closure flap also having a first scoreline exten across the one closure flap from the inner end of the slit a an acute angle relative to the longer parallel edge thereo toward the other non-parallel edge thereof to form
fold-down portion between the first scoreline and the one fold-down portion between the first scoreline and the one
non-parallel edge thereof to permit the one side portion of non-paraile edge thereof to permit the one side portion o
the one closure flap to be inserted beneath the another side portion of the corresponding adjacent closure flap, and
said one closure flap having a second scoreline extending said one closure flap having a second scoreline extending
from the slit across the fold-down portion intermediate the from the silit across the fold-down portion intermediate the
first scoreline and the one non-parallel edge of the one first scorerine and the one non-parallel edge of the one
closure flap to define a reverse folding portion between the second scoreline and the one non-parallel edge for being reverse folded relative to the remaining portion of
the fold-down portion to substantially reduce the extent of the fold-down portion to substantially reduce the extent of
protrusion of the folddown portion into the container during insertion of the one side portion of the one closure flap beneath the another side portion of the corresponding adjacent closure flap.

4,094,460
CLOSURE ASSEMBLY AND PACKAGE
Theodore P. Scanga, Lower Burrell, and Robert E. Callender, Aluminum Company of America, Pittsburgh, Pa.

Company of America, Pittshurgh, P
Filed Apr. 26, 1276, Ser. No. 680,36
U.S. Cl. 229-43

Int. C1. \({ }^{2}\) B65D \(53 / 02\)
5 Claims U.S. C. \(229-43\)
1. A closure assembly for sealing a container having a closed 1. A closure assembly for sealing a container having a closed
end and an open end and having a metal foil layer on the inside
surface thereof with a heat seal resin on the foil layer, comprisend and an open end and has seal resin on the foil layer, compris-
surface thereof with a
ing a molded plastic sealing ring having inner and outer walls ing a molded plastic sealing ring having inner and outer walls defining a channel therebetween for receiving and sealing
against the foil layer at the open end of such a container, with against the foil layer at the open end of scich a conainer, winh
said inner wall including an outwardly facing frusto-conical said inner wall inceasing outward extent toward the bottom of the
surface of increal
channel, said surface being adapted for exerting pressure against the foil layer in order to facilitate induction heat sealing of the ring thereto, a sealing surface defined by the top of the ring, and an outer shoulder below said sealing surface, a metal
foil liner having an upper and lower surface and overlying said roil liner having an upper and lower surface and overiyng said
ring including said sealing surface thereon and disposed agains such sealing surface, and having a heat seal coating on at least

the outer portion of the lower surface thereof in contact with the sealing surface on the ring to be heat sealed to the ring uporcap having a top wall portion overlying said ring and line
over and a depending skirt around the overcap with an inwardly projecting lip on said skirt engaged under the shoulder on said sealing ring.

CENTRIFUGE COLS4,461
CENTRIFUGE COLLECTING CHAMBER cott, bothoy Kellogg, Endwell, and Alfred Paul Mulzet, Endicott, both of N.Y., assignors to International Business Machines Corporation, Armonk, N.Y.
U.S. CI. 233-40 Int. C1. \({ }^{2}\) B04B 11/06 12 Claims

1. Apparatus for continuous collection of an intermediat e outlet end of a centrifuge container comprising:
means forming a chamber
dam across said chamber for blocking flow only of one of first withdrawal priactions,
first withdrawal port means extending interiorly of said chamber into the stratum of said blocked intermediate fraction; and
second withdrawal port means at the downstream side of said dam extending into said chamber substantially the same distance as said first withdrawal port means whereby the location of said intermediate raction is
having removal of the other of said fractions.

METHOD AND MEANS FOR PROVIDING AND TESTING SECURE IDENTIFICATION DATA TESTING SECURE IDENTIFICATION DATA
ohn L. Moschner, Centerville, Ohio, assignor to NCR Corpora-
tion, Dayton, Ohio

Filed Aug. 2, 1976, Ser. No. 710,827
Int. Cl. \({ }^{2}\) G06F 7/02; G06K 7/08
U.S. C. \(235-\mathbf{4 1 9}\)
5. Apparatus for testing the legitimacy of an identification element, comprising
sensing means for sensing first, second and third categories of information from said identification element; first storage means for storing the first category of information sensed from the identification element;
second storage means for storing the second category of information sensed from the identification element; third storage means for storing the thion element;

THREE DIMENSIONAL DOSPLAY DEVICE USING WATER FOUNTAIN oichi Kawamura, and Yoshiko Kamamura, both of No. 66, Jomyoji, Kamakura City, Japann
Filed Nov. 5, 1976, Ser. No. 739,104 Claims priority, application Japan, Nov. 14, 1975, 50-136351 U.S. CI. 239-17

Claims

information processing means to generate output data from a specified sequence of operations performed upon said first and second categories of information transmitted to said information processing means from said first and second storage means; and
third category of information transmitted from said thir storage means and capable of indicating whether or not said output data and said third category of information are identical.

1. A three dimensional water fountain display device comranged a nozzle matrix in which the nozzles thereof are arozzles being thus yertical steps and in aligned relation, said elected ones of said nozzles to display desired characters, numerals and other notational representations, an electromagnetic valve operatively connected to each of said nozzles, and a controller circuit associated with each of said valves so as to enable the display of the desired pattern of characters, numer als and other notational represen of aid in ?

4,094,465
SYSTEM HAVING RESET ACTION Sylvester Milewskl, Morton Grove, Ill., assignor to
Inc., Minneapolis, Minn.

Filed Mar. 23, 1977, Ser. No. 780,636 U.S. CI. \(236-82\)

A system for providing reset action comprising: pressure dividing means having a first input adapted to receive an input signal, a second input connected to resignal which is a division of said input signal and said feedback signal;
output means having an input and an output;
connecting means connecting said output of said pressur divider means to said input of said output means and input of said pressure divider means; and,
capacity means connected to said connecting means for
delaying a change in said feedback signal upon an occur rence of a change in said input signal,
said output means producing an oupal siga

1. A diesel engine fuel injector having an elongated injector nozzle body, a nozzle holder at one end of said body, the body and holder having glazed mating surfaces in a plane transverse to the longitudinal axis of the nozzle body, a bore through the body and holder, an injector push rod and needle in said bore, a fuel leakage recovery passage in the holder, and coolant inlet and return passages extending lengthwise of the body and holder across said transverse plane, the coolant passages being paced from the fuel leak
a counterbored section in each of the coolant inlet and return
passages in one of the injector nozzle body and holder adjacent said transverse plane;
so that one tend thereof term of said counterbored sections an annular relief passage being provided adjacen periphery of each sleeve at said one end; and
channels at least one of said mating sufces
channels at least one of said mating surfaces communicating between each of said annular grooves and the leakage fuel recovery passage to provide a low pressure fuel leakage
return path and prevent fuel contamination of the coolant.

IRRIGATION APPARATUS
Oscar DeRomano, Rue du Stade, Fontrielle, Monaco Continuation of Ser. No. 649,339, Jan. 15, 1976, abandoned. This application Jan. 24, 1977, Ser. No. 762,138 U.S. Cl. 239-145

An irrigation apparatus for use with a cylindrical distribu1. An irrigation apparatus for use with a cylindical having apertures at spaced locations along the pipe, oody formed by sintering a quantity of plastic particles leaving interstitial spaces therebetween and thereby permitting flow of water therethrough, said body having a generally cylindrical shape with a central longitudinal axis adapted to be parallel
with the axis of said distribution pipe, the lower portion of said body having a hollow portion extending therethrough with the longitudinal axis thereof parallel to the central axis of said ody, said hollow portion having a cross-section which is at ceast semi-circular and wherein the greatest extent of said said hollow portion forming with said body two longitudinally extending, transversely depending sections which are adapted to conform to the exterior surface of said distribution pipe so that the apparatus can be engaged and retained in a self-sup-
porting position by clipping the body in place about the distribution pipe over at least one of said apertures to distribute and diffuse a flow of fluid from said aperture into the area surounding the apparatus at low pressure and low flow rates.

\section*{4,094,467}

SPRINKLER HEAD SELECTIVELY OPERABLE IN A to Nelson Irrig Larry P. Meyer, Walle Walle, Wash., assignor to Nelson IrrigaFiled Apr. 1, 1977, Ser. No. 783,758
U.S. C. 239-230

Int. C.2 \({ }^{2}\) B05B \(3 / 08\)
13 Claims 1. A sprinkler head selectively
or a full circle mode comprising:
a sprinkler body having an inlet and an outlet;
stationary means for mounting said sprinkler body for controlled rotational movement about a generally vertical axis with said inlet in communication with a conduit ar-
ranged to communicate a source of water under pressure therewith;
said outlet being disposed to direct water under pressure communicated with said inlet in a stream flowing there-
from in a direction upwardly and outwardly in generally
symmetrical relation to a plane passing through the axis of rotation;
cam follower means mounted on said sprinkler body for movement with respect thereto between (1) a first position wherein said cam follower means moves rotationally with said sprinkler body along a first arcuate path and (2) spaced second position wherein said cam follower mean moves rotationally with said sprinkler body along a sec ond arcuate path spaced from said first arcuate path,
means operable by the flow of water communicated said sprinkler body (1) for effecting a movement of said sprinkler body about its axis in one direction of rotation when said cam follower means is disposed in said first position, (2) for effecting a movement of said sprinkler body about its axis in the other direction of rotation when saio, and (3) for providing a yielding bias on said can follower means to maintain the same in either one of its positions during the movement of said sprinkler body in the corresponding direction of rotation;
first and second adjustable means mounted on said stationary means for independent movement with respect to each
other into any one of a plurality of variably spaced fixed positions of arcuate adjustment with respect to the axis of rotation of said sprinkler body,

first cam means carried by said first adjustable means within the second arcuate path of said cam follower means and outside the first arcuate path of said cam follower means
so as to be operable during the movement of said sprinkle so as to in said other direction of rotation when engaged by said cam follower means to move the latter out of said second position toward said first position for biased main tenance in said first position as aforesaid
fecond cam means mounted on said second adjustable means for movement between (1) a part-circle operative position within the first arcuate path of said cam follower means so as to be operable during the movement of said sprinkler body in said one direction of rotation when engaged by
said cam follower means to move the latter out of said first position toward said second position for biased maintenance in said second position as aforesaid and (2) a full circle operative position out of said first arcuate path of said cam follower means so as to permit movement of said sprinkler body in said one direction with said cam fol a multiplicity of rotations; and
means for selectively moving said second cam means be tween said part-circle operating position and said full circle operating position to thereby selectively determine
the mode of operation of said sprinkler head.

4,094,468
Günter Volle, Bad Liebenzell, Germany, assignor to Schlafer G.m.b.H. \& Co.n Bad Lebenzell, Germany Filed Dec. 2, 1976, Ser. No. 746,040 1975,255879 U.S. C. 239-394. C. \({ }^{2}\) B05B 1/18; A47K 3/22 12 Claims

A hand shower, which comprises head body defining an inter
end and an outiet end,
having a screw-receiving opening whid flow passage and said outlet end,
screw which extends coaxially in said outlet end, and said screw-receiving opening is detachably fixed in said head
body, U-hhaped baffle carried by said head body in said flow passage, and spaced around said socket and opet in said passage through said inlet end,
passage chrough said iniet end,
a stationary cover plate coaxially mounted on said screw disposed in said outlet end, and formed with an axially
open and eccentric counterbore, which is disposed on that open and eccentric counterbore, which is disposed ond,
side of said socket that is opposite to said inlet end,
side of said socket that is opposite to sad in said screw in
a nozzle plate which is rotatably mounted on said outlet end, axially outwardly of said cover plate and in close proximity thereto
an annular sealing element which is in sealing contact with said counterbore and protrudes from said cover plate to engage said nozzle plate,
a coil spring disposed in said counterbore, axially inwardly of said sealing element, and engaging the latter to urge it against said nozzle plate and adapted to mpart
to liquid flowing through said counterbore, and
a plurality of different nozzle passages, which extend a pluraily of dificren nozzle plate and are eccentrically disposed therein, peripherally spaced apart and have the same eccentricity as said counterbore, so that each of said noz-
zle passages is adapted to selectively register with said zle passages
counterbore.

FUEL INJECTION NOZZLLE ASSEMBLY
Theo Woringer, Zurich, Switzerinad, assignor to BBC Brown, Theo Woringer, Zurich, Switzeriand, assignor to
Boverl \& Company Limited, Baden Switzerland
Filed Nor. 24,1976 , Ser. No. 744,781
Claims
US. C. 239-405
Int. C. \({ }^{2}\) B05B \(7 / 10\)
12, 1975,
U.S. C1. 239-405
1. A fuel injection nozzle assembly particularly for gas tur ines comprising a nozzle holder, a nozzle plunger extending generally centrally of said holder, fuel inlet passage mean defined between said holder and said plunger, means defining a nozzle exhaust opening, said nozzle plunger having an en terminating adjacent said nozzle exhaust opening, means defin ing a swirl chamber extending to between said plunger end and
said nozzle opening, tangential port means through which fuel
flows between said fuel inlet passage means and said swirl chamber, and additive supply means for introducing a fuel dditive into said nozzle assembly, said additive supply means omprising an additive inlet duct provided in said nozzle

plunger and being arranged to maintain the flow of additives through said nozzle assembly separate from the fuel flowing chamber.

\section*{4,094,470}

COMMINUTOR FOR USE IN A GASIFYING
Reinhard Waldhofer, Essen, Germany, assignor to Krupp-Koppers GmbH, Eseen, Germany
Claims priority, application Germery, Fo. 764,433, 1976, 2606039 Claims priority, applicanan Germany, Feb. 2, 1976, 2006039 U.S. CI. 241-46 R

1. In an arrangement of the type having a gasifying vessel for gasifying solid combustible substances therein with an atter. dant development of ashes and cinders, a combination comprising means defining a chamber at the bottom of the gasifying vessel; comminuting means situated below said chamber and communicating therewith; and means for maintaining in said chamber and in said comminuting means a body of a liquid which captures the ashes and cinders in the form of clinker which gravitationally descends through said liquid body from
said chamber toward said comminuting means to be comminuted by the latter to particles of at most a predetermined size, including means for supplying the liquid into said chamber, means for discharging at least some of the liquid from said chamber including at least one outtet port located upwardly of chamber including at leass one outiet port locased upwaray of
said comminuting means, and shielding means in said chamber
for preventing the clinker from reaching and entering said upon which it is wound, after said core and newsprint paper outlet port.

DEVICE FOR FEEDING THREAD INTO A TRAVERSING DEVICE IN A WINDING MACHINE Alfred Tschentscher, Cologne, Germany, assignor to FMN
Schuster \& Co... Hurth-Emferen, Germany Schuster Cu., Hurth-Efieren, Germany
Filed Sep. 22, 1976, Ser. No. 725,58
Claims priority, appplication Germany. Oct. 4, 1975, 254453
Int. Cp. \({ }^{2}\) B65H \(54 / 02.54 / 34,54 / 20\)

1. A device for feeding thread into a winding and traversin mechanism of a winding machine having an entrainment mean device having a thread guide and a reverse thread roller and the start of the thread is fed to said entrainment means via sai slot that is open at one end in the winding machine, the combi (a) a traversing:
housing rotatably mounted on the b) rotational adjustment
about a longitudinal means for rotating the housing wherein the traversing device is guiding the thread position the winding operation of said winding machine and out of said operating position before said guiding of the thread starts;
(c) said rotational adjustment means being effective to rotate
the traversing device housing throush an angle about sid the traversing device housing through an angle about sai into said slot;
(d) said angle being such that the thread guide of the travers ing device lies outside a vertical plane tangential to sai housing to prevent premature engagement of said thread
by the thread guide.

4,094,472
CORE STRIPPING PROCESS FOR DEPLETED ROLLS Robert Charles Berndt, Lutz, and George B. Eady, Tampa, both of Fia., assignors to Dar-Mar, Inc., Lutt, Fla. Filed Sep. 27, 1976, Ser. No. 726,970
Int. C1. \({ }^{2}\) B65H \(75 / 00\) U.S. Cl. 242-54 R

1. A method for separating newsprint paper from the core
have been utilized in a newspaper printing process, comprising a. Starting with
core upon which a depleted amount of newsprint paper is wound,
iii. An open-end, rotatable shaff located in parallel proximity to said cradle,
iv. A friction bar located in parallel proximity to said between the center of said any imaginary line drawn placed in any location of said shaft and the center of a core
v. A drive motor, housing and frame to which said shaft, cradle and friction bar are attached, and
vi. A switching means for energizing said motor;
b. Placing said core with newsprint paper in said cradle;
c. Pulling the exposed end of said newsprint paper to slide
over said friction bar then to surround said shaft;
d. Cuusing said shaft to rotate by activating said swit
d. Causing said shaft to rotate by activating said switching
e. Transferring said
e. Transferring said newsprint paper from said core to said
open-end shaft;
f. Causing said shaft to cease rotating by de-activating said
switching means and motor; and
g. Removing said newsprint paper while in rolled configuration from the open-end of said shaft.

PORTABLE DEVICE FOR SUPPPORTING A ROLL OF PORTABLE DEVICE FOR SUPPOR DISG A ROLL OF
ALUMINUM SHEETING FOR DISENSING Lawrence P. Salvino, 285 Milton Rd., Wauconda, III. 60084
Filed May 9, 1977, Ser. No. 795,293 Filed May 9, 1977, Ser. No. 795,2
U.S. C. 242-55

4 Claims

4. A device of the class described comprising pairs of spaced base, side and rear frames: (a) said side frames affixed at one
end to said base frames adjacent one end thereof extending end to said base frames adjacent one end thereof extending
upwardly and one towards the other end of said base frames at approximately \(105^{\circ}\); (b) the
(b) the upper portions of each of said side frames being bent
inwardly and upwardly; inwardly and upwardly;
(c) said rear frames secured
(c) said rear frames secured at one end to said one end of said base frames and extending upwardly and forwardly
(d) a fixed lower curved plate spanning said base frames having a forward marginal end bent outwardly and down. wardly and fixed to said base frames;
(e) the opposed marginal end of said lower plate being bent
upwardl/ and rearwardly;
forward margine curved plate, said plate having the an opposed end, a hinge, means for fixing said hisg and said opposed ends of said upper and lower plates;
(g) a sleeve pivoted to the upper ends of said side frame (g) a seeve pivoted to the upper ends of said side frame
members, a rod slidable in said sleeve, one end of said rod pivoted to said upper plate for adjusting said plate towards and away from said lower plate, and means for adjustably
fixing said rod in said plate; fixing said rod in said plate;
(h) a pair of elongated sleeves affixed to said lower plate, and
lying in a plane normal to the plane of said plate and laying in a plane normal to the plane of
adjacent the bend on said opposed edge;
(i) a pair of tubes each slidably positioned in one of said elongated sleeves, respectively, with one end of each having a right angled bend, a rotary drum on each of said
ends; and ends; and
removing the contents therebetween.

\section*{4,094,474}

SLITTING APPARATUS
Joseph August Stoilenwerk, Oakville, and Reinhard Muhs, Orangeville, both of Canada, assignors to Rotoflex Engraving Limited, Mississauga, Canada

Filed Mar. 3, 1977, Ser. No. 773,882
U.S. Cl. 242-56.2

1. Appartus for longitudinally sitting traveling webs of paper and the like to form strips, the apparatus comprising: means for supporting a rolled web to be slit;
take-up means for winding into rolls, strips of paper and the like formed by slitting the web;
means for guiding the web in a path which ext
support means to said take-up means; and,
suppor means to said lake-up means; and, cutter unit disposed adjacent the path of the web and
comprising: at least one cutter head including a knife for forming a slit in the web; and means supporting said cutter forming a sitit in the web; and means supporing said cutter
head for adjustment in a direction transversely of the path head for adjustment in a direccion ransversely or he py said
of the web to vary the position of the slit formed knife in use; said support means including: an elongate
member disposed parallel to the direction of adjustment of member disposed parallel to the direction oxajends longituthe cutter head; a locking element which extends longitu--
dinally of said member over the range of adjustment of dinally of said member over the range of adjusimes said
said head, the member including a slot receiving said locking element and having an internal cavity communicating with said slot, and the element being movable in the lot between a locking position in which it engages and prevents movement of the cutter head lateraly on the
web, and a release position permitting adjustment of the web, and a release posite in inflable member disposed in said cavity in the elongate member and arranged, when inflated, to move the locking element to its locking position; and means for selectively delivering a fluid pressure medium
to said inflatable member to inflate the same and thereby to said inflatable member to infate he same

\section*{4,094,475}

AUTOMATIC LOCKING SAFETY BELT RETRACTOR Juichiro Takada, Tokyo, Japan, assignor to Takata Kojyo Co. Ltd., Tokyo, Japan Claims priority, application Jape. No. 683,574 Claims priority, application Japan, May 1 , 1975 , 1 Int. \(\mathbf{C l}{ }^{2}\) A62B 35/02; B65H 75/48 U.S. C. 242-107.4 A
1. A vehicle acceleration responsive safety 10 Claim comprising:

U-shaped frame (A) including side walls reel (E) mounted between said side walls and having a belt (D) coupled thereto and being rotatable in opposite belt means spring biasing said reel in a bell
a pair of ratchet wheels \((\mathbf{1 , 2})\) located on opposite sides of said reel and rotatable and coaxial therewith, the teeth of one of said reels being peripherally offset relative to the teet of the other reel by one-half the pitch of said teeth; a pair of independently operable pawls \((7,8)\) rockable into \((\mathbf{1 , 2})\) to respectively lock and release said reel in the belt extraction direction;

a cross piece (9) having its opposite end portions engaging substantially transversely aligned eccentric points on said pawls;
condition sensing member (\(\mathbf{1 3}\)) responsive to a predetermined value of the acceleration of said vehicle; and an actuating member (\(\mathbf{1 0}\)) movable in response to said sensing member, said cross piece being movable by said actuating member to advance said pawls toward ratchet wheel engage positions and being so disposed ha cest state proxi-
ate portion of said cross piece assumes a mate said actuating member under normal conditions.

\section*{4,094,476
THREAD SPOO}

THREAD SPOOL stein-Billenbach, both of Germany, assignors to Amann \& Sohne, Bonnigheim, Germany
Filed Sep. 29, 1977, Ser. No. 837,844 Claims priority, application Germany, Oct. 1, 1976, 2644882 lnt. Cl. \({ }^{2}\) B65H 75/28

1. Thread spool having a sleeve and two flanges, at least on of the flanges having a notch like peripheral groove for inserting the end piece of a thread, the improvement comprising, the tion of a spool axis, the sections establishing a single closed groove.

TENSION DEVICE FOR HORIZONTAL YARN
McBride, Jr., P.O. Box 311, Moorestown,
Filed Sep. 7, 1976, Ser. No. 720,904
U.S. C. \(242-152.1\)

1. A ball tension device comprising a body having a longitunal axis and defining a channel in which at least one ball can
e positioned to vary yarn tension;
channel to define a yarn inlet passageway
second opering through the body commy,
channel to define a yarn outlet passageway;
at least one passageway being angularly inclined from the
axis to define an angularly inclined conduit through which the yarn passes,
said angular inclination being greater than ninety degrees, whereby the yarn is tensioned by
conduit and enters the channel.

DUAL MOTOR TAPE RECORDER SYSTEM
Bansi K. Shroff, Irvine, and Stephen K. Shu, Fountain Valley,
both of Calif., assignors to Honeywell Inc., Minneapolis, botho
Minn.

Filed Nor. 28, 1975, Ser. No. 635,940
Int. C. \({ }^{2}\) G11B \(15 / 32,15 / 46,23 / 10\) U.S. C. \(242-192\)

1. A tape transport system comprising a pair of coplana hubs rotatable about fixed axes and a length of pliable tape carried in rolls on said hubs; a transducer cooperative with a span of tape intermediate said rolls; and drive means for drivthe other said tape roll, said drive means comprising a first capstan movable into engagement with the periphery of a first

3 Claims
with the periphery of the second of said tape rolls, a first variable speed motor drivingly connected to said first capstan and a second variable speed motor drivingly connected to said second capstan, biasing means for biasing said capstans into driving engagement with the peripheries of said tape rolls, and
control circuit means connected to both said motors for controlling the speed of each of said motors, said control circuit means further comprising acceleration/deceleration means for controlling the rate of acceleration and deceleration of the system, said acceleration/deceleration means comprising lope for accelerating said system, means for deriving from ssid first voltage ramp a first reference signal for controlling he acceleration of said first motor, means for generating a second voltage ramp having a pre-selected slope for deceleratramp a second reference signal for controlling the deceleration of said second motor, and means for deriving a reference signa from said first voltage ramp for controlling the acceleration o said second motor, and means for deriving a reference signal from said second voltage ramp for controlling the deceleration of said second motor, said reference signals being digital, and said voltage ramps for producing a first train of pulses from said first voltage ramp and a second train of pulses from said
second voltage ramp and further including first means for second voltage ramp, and further including first means fo for controlling the instantaneous speed of said first motor and second means for deriving from said trains of pulses secondmotor reference signals for controlling the instantaneous speed
of said second motor, said second-motor reference signals having a lower instantaneous frequency than said first-motor reference signals.

\section*{4,094,479}

SIDE SLIP ANGLE COMMAND SCAS FOR AIRCRAFT Thomas W. Kennedy, Jr., Phoenix, Ariz., assignor to Sperry Rand Corporation, New York, N.Y.
tinuation of Ser. No. \(653,555, \mathrm{Jan}\). 29,1976 , abandoned. This application Mar. 25, 1977, Ser. No. 781,226
U.S. CI. 244-179

8 Claims

1. In a yaw axis stability and command augmentation system for aircraft having a manually actuated rudder controller and a primary and secondary rudder actuator means for positioning the rudder to command a substantially steady state side-slip
angle attitude of said aircraft proportional to a substantially angle attitude of said aircraft proportional to a substanially
steady state force on said manually actuated rudder controller, the combination comprising,
(a) means for supplying a first signal proportional to the side slip angle of the aircraft, including substantially steady state values thereof,
(b) means for supplying a second signal proportional to the
force applied to said manually actuated controller including substantial steady state values thereof,
(c) summing means responsive to said first and second signals for supplying a control signal in accordance with the difference therebetween, and
(d) means supplying said control signal to said secondary actuator for positioning said rudder in accordance there with, thereby commanding said substantially steady stat substantially steady state force on said manual controller

4,094,480
John M. Nixon, Mineral Wells, Tex., assignor to Edo-Aire Mitchell, Mineral Wells, Tex
inuntion of Ser. No. 716,442, Aug. 23, 1976, abandoned. This application Apr. 4, 1977, Ser. No. 784,525
U.S. CT. 244-180

23 Claims

17. A system for maintaining aircraft altitude in combinatio with aircraft control surfaces, comprising:
means responsive to altitude pressure and generating an output signal varying with altitude,
means for generating a reference altitude signal,
means for combining the reference altitude signal with the signal varying with altitude and with the standard refer ence signal to generate an altitude hold signal, and
means for comparing the altitude hold control signal with the standard reference signal to generate a control signal.
to said means for generating a reference altitude signal.

4,094,481
MOTOR SPEED SERVO WITH CONTINUOUS
AND ACCELERATION AND MONITORING
Michael P. DeWalt, Phoenix, Ariz., assignor to Sperry Rand
Corporation, Nem York, N.Y
Filed Jun. 30, 1977, Ser. No. 811,653
Int. Cl. \({ }^{2}\) G05D \(1 / 00\); G05B 9/03
U.S. CI. 246-194

1. A monitored multiple channel automatic pilot for aircrat having a control surface controlled thereby for controlling the attitude and flight path of the aircraft comprising
first and second substantially identical closed loop control解
signals and including corresponding first and second servomotors normally supplying substantially identical outputs for controlling said control surface, respectively to he outputs of ssid first and second servo motors and an output connected to drive said control surface for controlling the attitude and flight path of said aircraft in response to said control signals, and
onitor means continuously responsive to the ratio of the absolute values of the accelerations of said first and second servomotors and the ratio of the absolute values of the
velocity difference between said first and second servomotor outputs and the velocity of each of said servomotors outputs for clamping that input to said differential means having the highest acceleration when said velocity ratio exceeds a predetermined value.

DECK MOUNT FOR FISHING MOTOR Lester C. Weaver, Fayetterille, Ark,, mssignor to Shakeeppeare of Arkansas Inc., Fayetterille, Ark.,

Int. C. \({ }^{2}\) B63H \(21 / 26\)

1. A deck mount for mounting the motor tube of a fishing motor on a boat deck, comprising a base bracket adapted for attachment to the deck, a yoke for holding the motor tube, means for clamping said motor tube in said yoke, said yoke wiveled on said bracket for swinging said motor tube between vertical operating position and horizontal stowed position, single latch means having two angularly disposed intersecting
legs adapted selectively to engage and lock said yoke in operating and stowed positions, said latch means pivoted on said bracket at the intersection of said legs, and spring means bearing against said intersection for biasing said latch means into locking engagement with said yoke in either position.

MOUNTING DEVICE
Richard E. Busch, La Puente, Calif,, assignor to Addmaster Corporation, San Gabriel, Calif.
Filed Jun. 6, 1977, Ser. No. 803,665
U.S. Cl. 248-73 2 Claims
1. A device for mounting an article on a support comprising a one-piece member of plastic material having spaced relatively stiff legs,
said legss having upper, lower, and mid portions,
said lower portions adapted to straddle opposite sides of said article,
said lower portions having inwardly extending barbs at the lower ends thereof for latching engagement with said support,
a relatively flexible cross element connected between said mid portions of said legs,
said upper portions being movable toward each other
whereby to rock said arms to release said barbs from latching engagement with said support, and

inward extending yieldable arms integral at their outer ends with said lower portions for engagement with said article.

\section*{4,094,484}

Edward bilanced portable pedestals Edward Richard David Gallione, Bury St. Edmunds, England, assignor to W. Vinten Limited, Bury St. Edmunds, England Claims priority, application United Kingdom, Mor 13, 1976, 10168/76

Int. C1. \({ }^{2}\) A47F \(5 / 12\)
U.S. C. 248-162

1. A portable pedestal for instruments such as cameras or the like, comprising a base member having an outer column mnunted thereon, at least one inner column slidably locatable creasing means operable to pressurise said inner column vid creasing means operable to pressurise said ine meaid inner and outer columns to produce a pressure of gas within said inner against an externally applied force on said inner column.
RADIO MOUNTING BRACKET

James S. O'Callaghan, Gilford, N.H., assignor to Tram Diamond Corporation, Winnisquam, N.H. \({ }^{\text {Con }}\), 1976, Pat. No. 4042,201. This application Jun. 27, 1977, Ser. No. 810,031 Int. Cl. \({ }^{2}\) B60R \(11 / 102\)
U.S. Cl. 248-221.3 21.3
1. A bracket for mounting electronic equire 8 Claims comprising:
(a) a U-shaped bracket having a first slot and a second slot in each upright of the " \(U\) " for receiving mounting studs attached to opposite sides of an equipment unit, each slots having an entrance at one end of an entrance leg and a foot formed substantially perpendicular to the other end of said leg so as to form an shape;
first punched tab in a respective said upright having an upper arm extending to a second bend about a second punched tab and having a lower arm extending through a

(c) a third punched tab providing upward support for said lower arm; all whereby said spring element resists passage of equipment mounting studs into said first slot and then secure said equipment unit in place.

8 Claims \(\begin{gathered}\text { CB RADIO MOUNNING BRACKET } \\ \text { Frank Sunderlin, Rte. (1, Box 120A, Pickens, S.C. } 29671 \\ \text { Filed Nov. 2, 1976, Ser. No. 738,248 }\end{gathered}\) U.S. Cl. 248-225.4 Int. Cl. \({ }^{\text {A47F }}\) S/00 9 Claims

1. A mounting bracket for use in a motor vehicle for securing a CB or the like to the upper and lower sides of a dashboard, said mounting bracket com:
(1) a base adapted to be secure to the CB or the like, (2) a wall extending upwardly from said base, (3) An upper rail extending outwardly from said wall in substantially overlapping relationship to said base, and
(4) a lower rail extending outwardly from said wall intermediate and in substantially overlapping relationship to said upper rail and said base and terminating in a front end, the dashboard adapted to extend within the channel formed between said rails and beyond said front end, b. mounting means operatively associated with said rails in
said channel to provide the necessary suspension of the mounting bracket relative to the dashboard, said mounting
means including:
(1) a pair of spaced apart protrusion extending upwardly from said lower rail into said channel and proximate said wall for en
dashboard, and
(2) a pair of spaced apart adjustable prongs extending downwardly from said upper rail into said channel and outwardly of said protrusions, said prongs adapted to engage the upperside of the dashboard so as to engage
same, each said prong having a threaded stud extending in threaded engagement through said upper rail and a
wing nut thereon to adjust the extension of said prong within said channel,
c. locking means mounted outwardly of said prongs on said lower rail and including a pair of levers pivotally mounted intermediate their ends to said lowerch lever that in a locking position a forward end of end of said
extends above said lower rail and a rear lever extends below said lower rail, each of said levers being individually manually operable between a locking position in which the forward end thereof engages the position between each said prong providing a downposition between each said prong providing a down-
ward clamping force and each said protrusion and lever providing an upward clamping force, to a release position in which each said lever is disengaged from contacting engagement with the dashboard.

4,094,487
SECURING DEVICE
Robert Arthur Henderson Heard, Church Farm, 63 Church
Lane, Backwell, Bristol, England Filed Jun. 14, 1976, Ser. No. 695,411 \(\underset{25618 / 75}{\text { Clasims }}\) \(\begin{array}{lll}\text { U.S. CI. 248-231 Int. Cl. }{ }^{2} \text { E01F 9/01 } & \\ \text { Claims }\end{array}\)

Int. Cl. \({ }^{2}\) E01F \(9 / 01\)

1. A device for securing a first body to a second body, the second body comprising a channel member having a mouth
restricted by inturned lips, the device comprising an elongate restricted by in insertion lengthwise into the channel to extend across its mouth and be retained in the channel by the inturned lip thereof, a pair of attachment members arranged for channel and to the elongate member through the mouth of the cham passed
connected or arranged for connection to a strap to be persaround the first body, one of the attachment members compris ing a flat body part slotted to receive said strap and a narrow stem part to extend through fre the body part to an end connected at its elongate plate, the other attachment member portion of L -shaped configuration comprising a first limb con-
being nected or arranged for connection to said strap and a second limb at right angles thereto with an aperture herein, a adjacent bolt adjustably connecting said see so that the shank of the bolt
end portion of the elongate plate end portion of the elong channel mouth, the shank of the bolt
extends through the passing through an aperture in the elongate plate and one the side ture in said second limb, the head of the bolt lying on the side of the elongate plate remote from said secon said second limb
being carried on the shank on the side of sater remote from the elongate plate.

\section*{4,094,488}

HANGER FOR TENNIS RACKETS
Neil Bryant, 2800 Crouchwood, Little Rock, Ark. 72207 Filed Aug. 8, 1977, Ser. No. 82

Int. Cl. \({ }^{2}\) A47G \(29 / 00 \quad{ }_{6}\) Claims
r hanging a game racket in a clothes closet on
US. C. 248-359 1. An article for hanging a game racket in a clothes closet on A
in at least one direction, and outrigger elements mounted on inclined portion which inclines from the center portion; two said lever means for swinging movement about a second axis side walls fixedy mounted on the sides of the base and in which is offset from said first axis, said outrigger elements spaced apart relationship with the center portion; an end flap
being resiliently biased into engagement with another of said
hingedly a fived to each of the ends of the end sections pivatrecesses in the rail means whereby, when said lever means is hingedly affixed to each of the ends of the end sections, pivotactuated to disengage said one of the locking elements from able on a hinge and capable of being removably secured to the said one of said recesses in the rail means, one of the outrigger inclined portion oreach of the end sections; each end section
elements functions as a fulcrum member for supporting said second axis against displacement so as to cause a predeter- end flap holds the lid of the container over the recess so that mined displacement of the first axis with respect to said rail the foamable resilient material substantially fills the recess means for producing a corresponding displacement of the under the lid to adhere to the interior side of the container lid. bracket means.

\section*{4,094,490 \\ HARD WALL FASTENER}

Ruediger Einhorn, Katonah, N.Y., assignor to Coats \& Clark, Inc., Stamford, Conn.
Continuation-In-part of Ser. No. 555,737, Mar. 6, 1975, Pat. No 3,974,557. This application Jun. 21, 1976, Ser. No. 698,069 U.S. Cl. 248-489
int. Cl. \({ }^{2}\) A47G \(1 / 16\)
17 Claims U.S. CI. 251-212

\section*{4,094,492}

VARIABLE ORIFICE USING AN IRIS SHUTTER VARIABLE ORIFICE USING AN IRIS SHUTER
Raymond Beeman, El Cerrito, and Steven J. Brajkorich, FreRaymond Beeman, EI Cerrito, and Steven J. Braikorich, Fre-
mont, both of Calif., assignors to The United States of Amer-
ica ica as represented by the United States Department of Energy
Washington, D.C. Washington, D.C.

Filed Jan. 18, 1977, Ser. No. 760,305
U.S. CI. 251-212
1. In an article of the type having a base member with a firs
surface adapted to engage a wall, and at least one hardened pin
with a sharpened end initially extending into an aperture in the with a sharpened end initially extending into an aperture in the
base member from a surface opposite said first surface and driving end extending from said opposite surface, whereby sai pin may be driven into a wall for supporting said article on the wall; the improvement wherein said article further comprises
bushing mounted to support said pin in said aperture, said bushing mounted to support said pin in said aperture, said
bushing being releasably coaxially held in said aperture, wit one end thereof in said aperture and spaced from said firs surface and the other end extending from said opposite surface said bushing having a central coaxial hole into which said pi
extends whereby said bushing guides said pin in said aperture said bushing having a length less than the length of said pin.

CORE FORM FOR LINING CONTAINERS Jack E. Towers, Littleton, Colo., assignor to Sandoz, Hanover, N.J.
Division of Ser. No. 656,245, Feb. 9, 1976, abandoned, which is
application Nov. 1, 1976, Ser. No. 737,073
U.S. C. 249-83

1. A variable orifice forming mechanism for controlling flow of medium therethrough comprising: a mounting ring defining a central orifice and consisting of an inner section, an intermebers pivotally mounted on said mounting ring, said inner sec tion of said mounting ring having a plurality of spaced holes therein, said curved members each having an extending pivot said intermediate section of,said mounting ring having a thick ness greater than said inner section and having a countersink therein, and said outer section of said mounting ring having thickness greater than said intermediate section and being be secured to an associated system through which medium to be controlled flows, a drive ring having a plurality of grooves therein, said drive ring being positioned on said inner section of said mounting ring, said curved members having pins extending therefrom and movably secured in said grooves of said
drive ring, and drive means mounted in said countersink of intermediate section of said mounting ring for moving saic drive ring with respect to said mounting ring thereby movin
1 Claim said curved members such that said orifice in said mounting
ring is effectively changed in diameter.

\section*{4,094,493
GANTRY CRANES}

Karl L. Polen, Alliance, Ohio, assignor to The Alliance Machin
Karl L. Polen, Alliance, Ohio, assignor to The Alliance Machin
Company, Alliance, Ohio Division of Ser. No. 637,230, Dec. 3, 1975, Pat. No. 4,027,800 This application Jan. 5, 1977, Ser. No. 757,059
U.S. Cl. 254-144 Int. C. \({ }^{2}\) B66C \(23 / 60\)

3 Claims 1. A safety reeving system for gantry cranes comprising 1. A mold for applying a foamable resilient material to the pair of drums on each end of said gantry, an upper sheave interior surfaces of a container, comprising a base, a cen op- pair of independent cables reeving from the drum to said uppe posed wedge-shaped end sections, each end section defining an sheave assembly above it on the gantry, a lower relatively
ovable sheave assembly below each upper sheave assembly one cable from each pair of cables passing over one sheave of he upper sheave assembly and downward around the lower dead ending at the lower sheave assembly, the other cable from

METHOD AND APPARATUS FOR THE PRODUCTION OF QUALITY STEELS Horst Kitscher, Dortmund, and Gernot Zahs, Dortmand-Lich-
 ar Vakuum'-Metailiurgie mbH, Dortmand, Germ
Filed Apr. 22, 1976, Ser. No. 679,118 Claims priority, appication Germany, Mey 17, 1975, 2522194 U.S. C. \(266-143\)

each pair of cables passing over a sheave of the upper sheave assembly across the gantry to the opposite upper sheave assembly on the other side of said gantry and downwardly to the lower sheave assembly on said other side and back over the said opposite upper sheave assembly

\section*{FURNACE CHARGE PROFILE MEASURING PROCESS FURNACE CHARGE PRD APPARATUS} Rene N. Mahr, Howald-Hesperange, Luxembourg, assignor to S des Anciens Etablissements Paul Wurth, Luxembourg Luxembourg
Filed Jan. 25, 1977, Ser. No. 762,781
Claims priorty, application Luxembourg, Feb. 9, 1976, 74321 U.S. CI. 266-44

1. A process for monitoring the development of the surface 1. A process for monitoring the development of the charge burden on the hearth of a shaft furnace, the furnace employing a rotatable and angularly adjustable distribution chute which extends downwardly on the axis of the furnace, the angle of the chute with respect to the axis of the furnace being adjustable to deposit furnace charge material in predetermined pattern, said process including the it at a prese lected angle with respect to the axis of the furnace; owering a probe initially axially with respect to the furnace until it contacts the charge surface, the probe being de flected from the furnace axis by the distribution ch contact measuring the distance traveled by the probe
with the charge surface histance in accordance with the angular inclination of the distribution chute; and with drawing the probe from the charge surface.
1. An installation for producing high quality steels with nalyses within a very close range of tomes from solid raw materials comprising:
furnace including heating means by which the raw materials are melted down and at least partially decarburized metal;
a transfer ladle positioned to receive the melt produced in said furnace, said transfer ladle including means to discharge the metal; means to separate the slag component ladle positioned to component of said melt; a receiving lade posine
receive the metal component of said melt, discharged from said transfer ladle;
means to agitate a melt contained in said receiving ladle; a transporting unit by which said receiving ladle and its contents is moved to a plurality of locations at which it is selectively engaged in a vacuum tight relationship with one of the following:
(a) a hood under which vacuum treatment and degassing may be effected; made while the contents of said receiving ladle remains mader a vacuum; and
(c) a heating unit under which said receiving ladle and it contents may be heated;
a vacuum producing unit; and eans to operatively connect said vacuum producing unit to
each of said hood, said vacuum lifter and said heating unit.

4,094,496
ENCLOSURE FOR STEEL CONVERTING APPARATUS ahn P. Readal, Allison Park, Pa., assignor to Pennsylvania Engineering Corporation, Pittsburgh, Pa.

Filed Dec. 31, 1975, Ser. No. 645,535
Int. Cl. \({ }^{2}\) C21C \(5 / 46\)
U.S. C. 266-142 2 Claims 1. A converter vessel having a metal receiving opening ormed adjacent an upper end,
an enclosure having an upper wall portion disposed above said vessel and side wall portions extending downwardly along the sides of said vessel,
an access opening formed in one of said wall portions, door means mountad ajacent seid access opening for movement into open and closed positions relative to said access opening, away from the access opening to permit the charging away fre
thereof,
said vessel having submerged tuyeres for injecting oxygen jaw members and consitituting workpiece gripping faces of the and a hydrocarbon shielding fluid beneath the level of jaws, the second set of faces diverging rearwardly from the
molten metal in said vessel and for injecting non-oxidizing rear ends of the first set of faces, the first and second sets of gases into said metal when it is tilted toward said door faces being symmetrically disposed with respect to a first plane means, said gas injections tending to cause materials to faces being symmetrically disposed with respect to a first plane discharge from said metal receiving opening and to coat through said axis, said exterior surfaces of the jaw members
said door means, the improvement wherein
said door means including a plurality of generally horizon-
tally oriented support means disposed in vertically spaced tally oriented support means disposed in vertically spaced relation,
at least a substantial portion of said door means on the side thereof facing said vessel being defined by a plurality of
plates individually mounted on said support means, said plates individually mounted on said support means, said
plates being arranged in substantially horizontal rows with a plurality of plates in each row, said plates each having hanger means at their upper ends for pivotally and slid
ably engaging said support means as the sole suppor thereof, said plates being shorter and narrower than said door and longer than the distance between said suppor means so that the lower ends of the plates overlap and respect to said first plane and intermediate the forward and rearward ends of the jaw members, the second and third faces of each jaw member forming parallel intersections with second planes normal to said first plane and parallel to said axis; a
hollow nose member having open forward and rearward ends corresponding to said ends of the jaw members, the nose member having interior surfaces enveloping exterior surfaces of the jaw members concentrically with respect to said axis including fourth set of faces disposed adjacent the forward end of the loosely engage the upper end of the plate disposed in the \(\begin{aligned} & \text { jaw guide member extending between and fixed in opposite } \\ & \text { wall portions of the nose member rearward of its forward end }\end{aligned}\) row therebelow to cover the hanger means thereon, the the guide member intersecting said first axis and having extesurfaces of said plates presented to the vessel being free of projections,
said plates bei
bon content substantially higher than steel and are individ bolly content substantially higher than steel and are individ-
ually pivotal and slidable so that each plate may be moved relative to adjacent plates to facilitate the removal of said support means each com,
mounted on said door means and extenting of members spaced apart relation, each of the plates in said rows being said hanger means comprising first
said hanger means comprisi
over said support means,
the lower portion of said do outwardly away from said access opening the obliquely of said rows of plates defining the lower portion of said a second hook means formed thereon and engaging the a plate in the row disposed therebelow and to limit move-
ment away from said lower plate.

VISE FOR FLY TYING, \(4,094,497\) SMALL PARTS AND THE LIKE VISE FOR FLY TYING, SMALL PARTS AND THE
Paul E. Stratton, R.R. \#1, Box 220 , Fairfax, Iowa 52228
\[
\begin{aligned}
& \text { atton, R.R. \#1, Box 220, Fairfax, Iow } \\
& \text { Filed Dec. 27, 1977, Ser. No. 864,27e } \\
& \text { Int. C1. }{ }^{2} \text { B25B } / 1 / 22
\end{aligned}
\]
U.S. CI. 269-71
int. C1. \({ }^{2}\) B25B 1/22 10 Claims 1. In a vise having a pair of jaws, means for actuating the jaws in order to selectively hold and release a workpiece, and
means for mounting the vise, the improvement wherein: the jaws comprise a pair of finger-like jaw members having corresponding forward and rearward ends and corresponding opposed interior surfaces and corresponding opposite exterior surfaces symmetrically disposed with respect to a longitudinal
axis therebetween, said interior surfaces of the jaw members axis therebetween, said interior surfaces of the jaw members
including two sets of opposing faces, the first set extending parallel to each other rearwardly from the forward ends of the

nose member and complementary with the third set of faces;
 the guide member intersecting said first axis and having exte-
rior surfaces disposed between the second set of faces; exterior surfaces of the jaw members including the third set of faces and interior surfaces of the nose member including the fourth set of
faces faces respectively slidably engaging each other during conjoint
movement of the jaw members in forward and rearward directions in response to forces imposed upon the rearward ends thereof in opposite directions along said axis, exterior surfaces of the guide member also slidably engaging the second set of
faces throughout said jaw member movement; and means associated with the rearward ends of the jaw member to provide said jaw member movement.

\section*{4,094,498
SEPARATOR}

Marlin A. Schueler, San Leandro, Calif., assignor to Tion Equipment Company, Oakland, Calif. Filed Jul. 22, 1977, Ser. No. 818,074
U.S. Cl. 270—52.5 Int. C. \({ }^{2}\) B65H 41/00 8 Claims

1. A separator for removing the top layer of printout paper a first rotatable drive thereof comprising:
first rotatable drive roller having pressure wheels resil iently urged against said roller and a rotatably mounted a second rotatable drive roller spaced from
for defining a first folding station therebetween and having press roller
rotatably driven fork structure including at least two adjacent paraliel tines disposed intermediate and paralicel to said fira
and
at least one folding wedge disposed at a second folding

4,094,500
APPARATUS FOR THE FOLDING OF PAPER WEBS OR APPARATUS FOR THE FOLDING OF PAPE
Otto Kunzmann, Neufiren, Germany, acre Leuze \& Co., Neuffen, Germany
Filed Oct. 29, 1976, Ser. No. 736,800 Claims priority, application Germany, Nov. 12, 1975, 2550759 station adjacent and below said second roller on the oppothe form of a tetrahedron wherein one of the triangular faces of the tetrahedron forms an inclined upper surface for supporting the successive sheets as they are refolded in a stack, said upper surface having a common edge with the base of the tetra
whereby successive sheets of a separated layer of printout paper are refolded and deposited on said triangular upper surface with fold lines adjacent said common edge.

DEVICE FOR CONTROLING THE ACTUATION OF GRIPPING MEANS IN A SHEET ASSEMBLING Herme Thome Dermetedt Germ Hermann Thomas, Darmstadt, Germany, 2ssigno
chinenfabrik Goobel GmbH, Darmatadt, Germany chinenfabrik Goebel GmbH, Darmstadt, Germany
Filed Nov. 2, 1976, Ser. No. 738,268 Claims priority, application Germany, Nov. 6, 1975, 2549761 U.S. C. \(270-60\)

1. In an apparatus for assembling sheets which comprises a cylinder mounted for rotation about its axis and having a sheet gripping means thereon for holding at least one sheet thereo and for releasing the sheet for passage ot to a follower roll in engagement with a stantionary cam plate having a predeter
mined profile for effecting actuation of the gripping means as mined profile for effecting aceressed portion of the cam plate, a device for further controlling the actuation of the gripping means comprising, a rotatable cam plate eccentrically mounted relative to the cylinder axis, the rotatable cam plate having a profile for preventing actuation of the gripping means when the follower roll simulte which may overlie a depressed portio the rotatic lower roll from following the profile of the stantionary cam plate, said rotatable cam plate being mounted for rotation about the cylinder axis independent of said stationary cam plate and the cylinder, means for rotating said rotatable the plate to alter the phase cylinder during ratable cam plate into and out of an overlying position relative to said depressed portion.
U.S. CI. 270—79

1. An apparatus for the folding of paper webs or similar materials for the formation of a stack made up of folded layers, comprising: laying out the layers to form the stack, the laying arm being adapted for substantially cyclical, oscillator motion, each of said layers becingsive topmost layers bein formed during each of said half-cycles as said webs leave said arm, each of said topmost layers having an upper surface directed away from said stack;
least one folding screw which, in use, is located in the region of a corner of the stack having an axis of rotation yers and hatanially perpendicularly to the plane of the layers and having a leading edge for first engaging said ebs, he leading edge entering the stack from the insid. hereof between layers to be folded, the at least one folding screw being adapted to rotate twice for each sad
oscillatory cycle of the laying anm;
means for rotating the at least one screw in one direction; and
pressing-down element mounted for rotation in the opposite direction to the at least one folding screw about an axis of rotation extending substantially perpendicularly to said upper surfaces, so as to vertically position the web below the leading edge of the at least one folding screw, in the region where the leading edge enters in between the ment of the folded layers toward the middle of the stack.

> 4,094,501 ION APPARATUS

ILLUSION APPARATUS Filed Dec. 13, 1976, Ser. No. 750,282
U.S. C. 272-8 M
S. CI. \(272-8 \mathrm{M}\)
C. A635 5/02 1 Claim
ical illusion apparatus wherein an image is made to appear in a liquid-filled container, wherein the im(a) a compraprises
(a) a compartment having front, back and side walls and a partial top wall providing a partially open top for the
(b) an opaque wall member providing an opening of a size equal to the height and width of the compartment so as to receive a portion of the compartment therethrough, c) an opaque stand provided by a part of said partial top wall of said compartment projecting through said opening (d) a reflective surface angularly positioned over said partially open top of said comparment on one side of said wall member and adapted to reflect an image of the con-
tents within said compartment below said reflective sur- provement comprising said cross bar constituting an elongated
face in the direction of said wall member,
hollow body having ends, an interior cavity, exterior sides to (e) a pair of circular liquid-filled transparent receptacles (e) a pair of circular liquid-filled transparent receptacles
supported in horizontal alignment on said stand to either
side of said opaque wall member in the path of reflection supported in horizontal alignment on said stand to either
side of said opaque wall member in the path of reflection of said reflective surface, and
.

(f) a second opening in said wall member in the line of the substantially receive a portion of one of said liquid-filled receptacle positioned upon said stand on the other side of said wall member and in which appears the reflected image of the contents of said compartmen.

\section*{4,094,502}

AThur W SKIPPING EXERCISE DEVICE Arthur W. Cooki, 822 Rooserelt St., Lima, Ohio 45804 U.S. C. 272-74
int. C. \({ }^{2}\) A63B \(5 / 22\)
9 Claims

1. A skipping exercise device comprising a rectangula frame having two rigid long sides and two rigid short sides, a first of said short sides having means defining a handle, ann
hinge means located at a fixed predetermined point in each hinge side, said predetermined points being equally spaced from the second of said short sides a distance of from one-third to the second of said short sides a distance of form one-third the mitting said second short side to swing about said predetermined points in said long sides.

PLAYGROUND SWING WITH EXTRUDED CROSSBAR RLABYGR S. Wormser, 6900 SW. 19th Ave., Ocala, Fla. 32670 Robert S. Wormser, 6900 SW. 19th Ave., Ocala, Fla. 32610 Miled Mar. 30, 1977, Ser. No. 782,892
 U.S. C. \(272-85\)
Int. C1. \({ }^{2}\) A63G \(9 / 00\)
12 Claims
In playground swing including a crossbar supported 1. In a playground swing including a crossbar supported
upon leg columns affixed to the crossbar and angularly extendupon leg columns aswed oembers suspended from the crossbar
ing therefrom and swing
which the leg columns may be attached and a lower portion, said lower portion also having an interior cavity extending cavity of said body lower portion, rod restraining means within said body cavity engaging said rod preventing lateral rod displacement within said body lower portion cavity, a plurality of transverse notches defined in said body lower
 notches, and swing hanger members received within said notches pivotally mounted upon said rod. metal extrusion having a primary upper portion and a hollow peotion of reduced transverse dimension with respect to said upper portion, a longitudinal cavity within said lower portion for receiving a swing hanger supporting rod, and longitudinal spaced notches defined in said lower portion intersecting said cavity adapted to receive a swing hanger.

4,094,504
SIGNALLING DEVICE TO 4 BE USED WITH A SPORT IMPLEMENT FOR DETECTING AND INDICATING THE PROPER OR IMPROPER USE THEREOF
Kenneth S. Barasch 380 Lenox Ave., South Orange, N.J. 07079 Kenneth S. Barasch, 380 Lenox Ave., South Orange, N.J. 07079 Filed Mar. 3, 1976, Ser. No. 663,623
Int. C1. \({ }^{2}\) A63B \(69 / 38\)
U.S. CI. 273-29 A

Claims

1. A signalling device in combination with a tennis racquet for detecting and indicating the proper or improper use thereof, comprising:
air-actuable means comprising a plurality of reed members, each said reed member having a longitudinal axis, for means in an audible signal when air passes through said some of said reed members being n
racquet in a first direction so as to indicate a proper forehand stroke of said tennis racquet and other ones of said
reed members being mounted on said tennis racquet in a reed members being mounted on said tennis racquet in a
direction opposite said first direction so as to indicate a direction opposite said first direction so as to indicate a proper backhand stroke of said tennis racquet; said proper longitudinal axis is moved parallel to the direction of saic forehand and backhand stroke of said tennis racquet; and means mounting said reed members to said tennis racquet.

\section*{4,094,505
TENNIS RACKET}

Thomas E. Beall, Jr., 5350 Edgemoor Le., Bethesda, Md. 20014 Filed Jan. 4, 1977, Ser. No. 756,798
U.S. C. \(273-73 \mathrm{C}{ }^{\text {Int. Cl. }}{ }^{2}\) A63B 49/02

9 Claims
lexible cover means spacey
deflectable downwardly;
dellectable dowward, \(f\), means ap a preselected spacing above said playing surface and compressible to provide reduced spacing between and compressible to provide reduced spacing between
said cover means and said playing surface on downward deflection of said cover means; and
a playing piece mounted for movement over said playing surface between said playing surface and said flexible cover means, said piece inclucing means engageabl
said cover means when deflected downwardly for propelling said piece across said playing surface in a direction determined by the deflection of said cover means.

4,094,507
CHANNELED PIVOTING BALL GAME WITH Russell E. Kauffuann, 1604 Executive Lasure Glenview, III. 60025 Filed Feb. 9, 1977, Ser. No. 766,860
It Cl.2 A63F 7/04; A63B \(71 / 04\)
U.S. C. \(273-110\)
1. A racket, having orientations of an inner end toward the player and an outer end away from the player comprising: rigid handle having a gripping surface to be held by the playe
a bow having opposed sides and opposed inner and outer ends a bow having opposectring strung from end to end of said bow and crossstrings strung side to side on said bow; first shaft means extending cantilevered from said handle to a direct mechanical connection with only the inner end of said bow; second shaf means cantilevered from said handie outwardly to a mechani-
cal direct connection with only the outer end of said bow; said first and second shaft means extending from said handle indefirst and second of each other to flex as cantilevered beams separately according to forces exerted onlon thection to the inner through their respective mechanicacc of said first and second and outer ends of said bow; and tach and freely movable with shaft means being unconnected to
respect to said opposed bow sides.

\section*{COMPETITIVE GAME}

Howard J. Mortison, Deerfield, and Alan A. Hicks, Chicago,

III. Filed May 23, 1977, Ser. No. 799,706

Filed May 23, 1977, Ser. No. 999,06
Int. C1. \({ }^{2}\) A63F \(7 / 106,7 / 10,9 / 00\)
U.S. C. 273-85 R

19 Claims

1. A game apparatus comprising:
means for defining a relatively flat playing surface;

1. A rolling ball game apparatus comprising in combination, a table top height unit having an upper surface of approximately rectangular overall shape and on which is defined spaced apart walls which form a continuous spiralling track from a start position sized such that it generally wider than the ball so that the ball may roll over different paths while proceeding along the track;
means for mounting the table top height unit at that height such that the unit may be tipped about a central area in any means for allowing one or more players to control the dip and strike of the table unit;
said table top unit surface also defining a plurality of hazard holes spaced about the track and so sized as to allow a bal to fall through them and positioned such as to allow a ball ling in it;
povided in the unit for selectively closing alternatively one or more different ones of the plurality of holes such that a ball will roll over the closed holes withou material interuption, said means being selectively manu ally operable from the edge of the unit to alternatively holes
whereby one or more players may attempt to control the dip and strike of the table top height unit to maneuver a ball
past hazard holes and along the spiralling track from start past hazard holes and along the spiralling track from start
to finish, and the game's difficulty may be increased by alternatively manually latcching in in the closed or open
position the selected hole or holes.

COMBINATION PIPE \(\begin{gathered}4,094,508\end{gathered}\) Del Filel D. Kirsch, 4734 N. 79th Ave., Phoenix, Ariz. 85033
Filed May 21, 1976, Ser. No. 688,581 Int. C1. \({ }^{2}\) A63F 7/00; A24F 3/00, \(1 / 16\); A63H 33/2 U.S. Cl. \(273-118\) R \(\quad 5\) Claims

1. A combination game and smoking device comprising:
(a) a base;
(b) a hollow tube connected to said base and having an end (c) a mouthpiece associated with said end for reception in a
smoker's mouth; (d) a pipe bowl in

> uth; in free communication with the interior of d
(e) a game piece within said tube adapted to move therein and solely in response to smoke and/or air movement in either longitudinal direction of said tube and being se-
lected to permit passage of smoke through the tube in all lected to permit \(p\).
positions thereof.

FOOTBALL GAME
\(\left.\begin{array}{c}\text { 4,094,509 } \\ \text { William F. Barron, Ticonderoga, N.Y., assig } \\ \text { Lee Organization, Inc., New York, N.Y., }\end{array}\right]\) Lee Organization, Inc., Nem York, Nignor to The Raymond Lee Organization, Inc., New York, N.Y., a part interes
Filed Feb. 9,1977 , Ser. No. 766,866 247 Int. Cl. \({ }^{2}\) A 63 F 3/00
U.S. CI. 273-247

1. A football game, comprising
a gameboard providing a miniature football field having a
plurality of spaced parallel yard lines and side lines and a plurality of spaced parallel yard lines and side lines and a purang one of the side lines, holes being provided at each yard line
a football shaped peg of a first color adapted to removably fit in the peg holes;
a football shaped peg of a second different color adapted to
removably fit in the peg holes;
a plurality of pegs of a third diff
movably fit in the peg holes;
movably fit in the peg holes;
a dice box extending substantially perpendicularly from one
end of the gameboard and having a chute formed therein and opening at the surface of the gameboard, said dice box having a side facing the field and extending substantially substantially parallel to said yard lines which is greate than the width of the field and smaller than the width of the gameboard, the opening of the chute being greate than the width of the field;
a plurality of dice of the first color and a plurality of dice of the second color
and all types of cards indicating various offensive plays ball game wherebying variations which occur in a footof the dice of one a player rolls a predetermined number box via the of one of the colors into the chute of the dice box via the opening thereof to determine a yardage gain or
loss after referring to a play card to determine his play, the player placing the football peg on the correct yard line in the center of the field and the side line peg on the same yard line as the football peg to mark the line of scrimmage before the next play is called; and
a pair of scoring wheels on the side of the dice box facing the field, each of the scoring wheels being of a corresponding one of the first ând second colors.

\section*{ELL IT \(4,094,510\)}

TELL IT TO THE JUDGE GAME
Filed Nov. 5 , Finth St., Rankin, Pa. 15104
Filed Nov. 5, 1976, Ser. No. 739,114
Int. C1. \({ }^{2}\) A63F \(3 / 00\)
U.S. C1. 273-251

Int. Cl. \({ }^{2}\) A 63 F \(3 / 00\)
1. A game adapted to increase appreciation of the meaning
of actual traffic road signs and that there are penalties for actual traffic road signs and that there are penalties for
disobeying the signs, said game comprising in combination: A. a plurality of pieces at least one for each player of the
game, game,
B. a game board having a playing surface upon which said playing pieces are supportable,
C. said game board having its periphery divided into a roadway having a continuous right lane and a continuous left lane, said lanes being adjacent to each other and extending about said board so as to provide two paths of travel for the movement of said playing pieces in the same direction
from the beginning to the end of each of said lanes, each from the beginning to the end of each of said lanes, each
said lane affording a path of progression for the purpose of continuity of play and including a series of distinguishable D. saides on each of said lanes,
D. said game board is generally square in configuration with said lanes of progression arranged about the periphery of
said board to form a generally square closed figure of fur sides with a particular location in one of said corners of the square from which said game is started,
E. said lanes extending in substantially parallel spaced relationship to each other and terminating in an inwardly directed section prior to closing of said square, such that pieces along said lanes prior to reaching said inwardly directed section,
F. a pair of starting zones in said corner of the square from which said game is started, one of said starting zones positioned adjacent to said right lane and the other of said starting zones adjacent to said left lane, with a terminal zone for receiving thereon end thereo the conclu H. said inwardly directed section including aid lanes, said zones and extending in a plane adjacent a plurality of said zones and extending in a plane adjacent to said road-
way at substantially the one of said corners of the square way at substanialy the one or said
from which said game is started, traffic designations bearing differ sentative of road signs having varying identification indicia thereon along each of said lanes in a plurality of said
zones, certain of said traffic designations providing for the crossing of said pieces between said lanes,
J. first identifiable means distinguishable by the color thereof, being interspersed among said signs along each of said lanes in a plurality of said zones,
K. second identifiable means distinguishable by the color thereof, being interspersed among said signs and
L. a chance device operable by players of said game appara
L. a chance device operable by players of said game appara-
tus for determining the possible odd or even number of zones a particular playing piece shall move along the playing surface of said ind

ndicium in the other of said starting zones, so as to commence play of the game with each one of said pieces on one of said lanes depending if an even or odd number is
obtained by said chance device, means,
O. a second set of cards corresponding to said second identia a second set of cards corresponding to said second identi-
P. a set of chance cards, each said chance card having indicia thereon representative of an advantage one player must U.S. CI. 277-27 11 Claim exercise over another player or a hazard that a player able elements, said assembly comprising an external cylindrical must suffer relative to the movement of said pieces along surface on said first element, a ring of fexible material which said lanes, Q. said chance cards selected by a player when a preselected having inner and outer annular lips both directed in the same
number of said first set of cards are accumulated by a axial direction, an internal cylindrical surface in said second
player by landings on said zones of said first ideninable or player by which are equivalent to traffic violations, or
means and preselected number of said second set of cards are accumulated by a player by landings on said zones of said second identifiable
traffic violations,
R. first positioning means on said game board for placing said first set of cards corresponding to said first identifiable means,
S. second positioning means on said game board for placing said second set of car
T. chance positioning means on said game board for placing said set of said chance cards thereon.

BELT-DRIVEN RECORD PLAYER
Erhard Richter, and Dietrich Borzam, both of Kiel, Germany, assignors to Electroneustic GmbH, Kiel, Germany Claims priority, appilication Germany, Mar. 21, 1975, 2512403 Int. C1. \({ }^{2}\) G11B 3/60; F16H \(7 / 10\)
U.S. Cl. 274-39 A

1. A belt-driven record player, comprising a turntable having a circumferential rim and being rotatable about an axis, said turntable being in normal operation subjected to a first load but being intermittently subjected to a higher second load; means shaft parallel to said motor shaft and mounting a drive pulley, friction wheel on said pulley shaft rotatable therewith, and a drive belt trained about said pulley and transmitting torque to said turntable; and means responsive to changes in the load cting upon said turntable and mounting said pulley shast por tion which it assumes when said first load acts upon said turntabe and in which said friction wheel functionally engages said motor shaft but is spaced from said rim so that torque is transmitted to said turntable only via said drive belt, and a second osition which said pulley shaft assumes when said seceel fric tionally engages both said motor shaft and said rim so tha torque is transmitted to said turntable via said
as directly via said friction wheel to said rim.
\[
\begin{aligned}
& \text { 4,094,512 } \\
& \text { SHAFT SEALS } \\
& \text { Anthony Charles Back, Slough, England, assignor to Crane } \\
& \text { Packing Limited, Sloggh, England } \text { No. } 705,154 \\
& \text { Filed Jul. 14, 1976, Ser. No. } 705
\end{aligned}
\]
element disposed around said ring, said lips being capable of engaging and sealing respectively against the external cylin-
drical surface on said first element and against the internal drical surface on said first element and against the internal
cylindrical surface in said second element, the dimensions being such that in its free condition, said ring is normally out

of contact with at least one of said surfaces but comes into against that axial face of the ring which faces in the direction towards which said lips are directed.
fULLY CARTRIDGE AGITATOR SEAL FOR USE WITH GS LINED MIXER TANKS
Donald L. Kime, Vandelia, and Ronald G. Stogdill, Trotwood,
both of Ohio, assignors to Chemineer, Inc. Danton, Ohio
Ohio, ssaignors to Chemineer, Inc., Dayton,
Filed Sep. 13, 1976, Ser. No. 722,809
Int. C1.' F16J \(15 / 34\)
U.S. C. 271-41

6 Claims

1. A fully cartridge, corrosion-resistant seal and agitator shaft assembly for use on mixer tanks particularly adapted for effecting sealing between an agitator shaff and the wall defining the opening through which the shaft extends into the mixer tank, said seal and shaft being free of any metal surface exposed
to the contents of the tank, comprising:
a. a stationary, vertically elongated annular seal housing
an the tank defining an opening which opens mounted on the tank defining an opening which opens mounted on int the
b. an agitator shaft extending through said housing into said
c. bearing
bearing means supporting said shaft for rotation within
said housing,
d. a sleeve within said housing mounted at a predetermined axial position on the agitator shaft and fixed thereto for
upper and lowerewith,
relation in said housing,
relain it said housing, a therewith and enclosed within said for direct rotation stationary seal rings
g. upper and lower rotary seal assemblies carried by said retainer for direct rotation therewith and each including a
rotary annular seal member having a non-metallic surface
positioned for running sealing engagement with the adjacent said stationary seal ring,
h. said sleeve proportioned to terminate at the lower end thereof at a position axially intermediate said seal assemblies within said housing, the upper said seal member having an inside surface
adapted to form a fluid seal with the outer surface of said adapted
sleeve,
j. said shaft having a corrosion resistant coating thereon . said shaft having a corrosion resistant coating thereon
extending from a position axially above said lower seal extending from a position ax
assembly into said tank, and
k. said non-metallic surface of said annular seal member of said lower seal assembly being proportioned to form a fluid seal directly against said shaft on the coated surface thereof to prevent access of the contents of the tank to said sleeve.

METAL ALLOY COMPOOSITION WITH IMPROVED Wenald L RESISTANCE Ronald L. Johnside Manuacturing Company, Elojn, assignor to Chicago Filled Nor. 28,1 1977, Ser. No. No. 855,216
Int. Cl. \({ }^{2}\) C22C \(38 / 18 ;\) F16J \(15 / 28,15 / 32\) U.S. C. 277-92

1. A tough, wear resistant metal alloy composition compris ing, in weight percent, from about \(3.10 \%\) to about \(3.35 \%\) carbon, not more than \(1.00 \%\) manganese, from about \(0.75 \%\) to
about \(1.40 \%\) silicon, from about \(16.5 \%\) to about \(19.0 \%\) chro mium, from about \(0.75 \%\) to about \(2.00 \%\) vanadium, from about \(2.5 \%\) to about \(4.0 \%\) molybdenum, from about \(0.25 \%\) to about \(1.25 \%\) cobalt, from about \(1.75 \%\) to about \(3.00 \%\) tung sten, not more than \(0.040 \%\) phosphorous, not more than
\(0.040 \%\) sulfur, and the remainder iron \(0.040 \%\) sulfur, and the remainder iron.

SEAL DEVICE IN AO4,515
SEAL DEVICE IN A ROLLER CHAIN
Ishikawa-ken, and Junichi Matshojl Seld-machi, Kaga-shi, Ishikawa-ken, and Junichi Motoya, I-13, Diashojil Honmachi, Filed Feb. 8, 1977, Ser. No. 766,678
Claims priority, application Japan, Feb. 20, 1976, 51-18280 . 20, 1976, 51-18281
U.S. Cl. 277-92 Int. \({ }^{2}\) F16J 15/34; B62D 55/00 3 Claims 1. A seal device in a roller chain comprising an annular body rich in rubber-like elasticity having square lips in an outer peripheral edge portion of a base portion thereof and having one surface formed into a substantially \(X\)-letter cross section between said lips by a triangular concave portion and curved body in opposed relation with a roller link plate, and a pia bocy in opposed relation with a rolier link plate, and a pin
receinto said pin link plate, said pin having ends caulked, characterized in that said lips are inwardly and outwardly pressed against said pin into slight contact with said roller link
are further brought into intimate contact with said roller link plate and said pin link plate by means of deformation of the side

\(4,094,517\) SEAL FOR A UNIVERSAL JOINT Erich Aucktor, Offenbach am Main, Germany, assignor to Lohr p GmbH, Offenbach am Main, Germa Filied Dec. 16, 1976, Ser. No. 151,166
Claims priority, application Germany, Dec. 17, 1975, 2556769 U.S. CI. 277-94
walls to prevent leakage of lubricating oil in the peripheral edge of the pin or to prevent entry of dirt.

4,094,516 TRACK PIN ASSEMBLIES AND SEAL THEREFOR James P. Morley, Arlington Helghts, and William J. Woods,
Bensenville, both of ill, asignors to Chicago Rawhide Manufacturing Company, Elgin, III.
Continuation-in-part of Ser. No. 694,265, Jun. 9, 1976, abandoned. This application May 10, 1977, Ser U.S. Cl. 277-92

1. An end face seal unit for use in severe service environments, said assembly comprising, in combination, a primary portion and a generally radially extending flange portion, said axial flange having respective inner and outer diameter surfaces and said axial flange having generally radially extending front and rear surface portions, said front surface porion o said radial flange having a portion hereor acgent therewith mating surface in snug a when sealing member of generally annular form, said secondary member including generally axially extending inner and outer diameter surfaces and front and rear surface portions, said front and rear surfaces being inclined forwardly and inwardly such that said secondary member, in the unstressed condition thereof, has a generally parallelogram shaped cross section, said inner diameter over said setecter of said axial flange portion of said primary seal ring, with at least a portion of said fron surface of said secondary seal member engaging at least a portion of said rear surface of said primary seal member, said primary member being made from a relatively stiff but resilien first elastomeric material, and said secondary member being made from a secon stiff than said first material, said axial flange substantialy less stim than said primary member being adapted to be supported in use on the inner diameter thereof by a portion of an elemen being sealed thereby.
1. In a sealing device for a universal joint, the combination of a trunnion pin having roller bearings adjacent thereto, a bearing element surrounding said trunnion pin and having an inner wall spaced from said pin, a resilient sealing ring rigidly mounted on said trunnion pin and having a ins pomen and said ing axialy pin toward said roller bearings, said sealing ring having a second portion extending radially from said firs portion and having an axially directed surface thereon engaging an end face portion of said bearing member, a sealing lip on said first portion extending substantialy ratia inner wall of said bearing element, said first and second portions together with said bearing element defining a chamber, said lip defining an angle with said bearing element inner wall of less than 90 with respect to the interior of the bearing elerers such mat ubricant can flow outwardly from the interior of the bearing element.

SHAFT SEAL Proprietary Limited, Australia,
Filed Ang. 23, 1976, Ser. No. 717,008 Claims priority, application Australia, Aug. 27, 1975, Int. C1. \({ }^{2}\) F16J 15/34

1. A fluid seal for installation as a unit between first and scond, relatively rotatable machine elements, said seal unit cluding a relatively rigid, annular seal case element having a and a radially extending flange portion having an axiaily directed first sealing surface facing toward the region to be sealed and an axially directed second sealing surface facing elastomeric seal element molded into a single piece, said elasto-
meric element having a seal body including a radially inwardly said working edge blends gradually into said frusto-conical directed portion adapted to engage the other of said machine surface portion.
elements to form a secondary seal therewh
elements to form a secondary seal therewith, and first an
second, axially inner and outer sealing lip portions extendin radially outwardly from the axial ends of said body, said lip portions being spaced apart from each other at the radially inner ends thereof by a radially outwardly facing, circumferentially extending seal body surface, said lips each including a sealing edge adjacent the radially outer portions thereof and
having said radially outer portions thereof extending axially towards each other in use, with said sealing edges of said axially inner and outer lips lying in use respectively axially inwardly and outwardly of the central plane of said radial
flange of said case element, said edges being also spaced radi flange of said case element, said edges being also spaced radi said elastomeric element is formed, in axially overlapping relation such that said radially outer edge of said axially inner lip lies axially outwardly of said central plane of said radial flange and said radially outer edge of said axially outer lip lies axially inwardly of said central plane of said radial flange, saii
case element being positioned in use such that said radial flang thereof extends between said lips, such that said lip edges engage said first and second flange surfaces, respectively, in snug engagement, said lips being thereby biased towards each
other and toward said first and second flange surfaces by other and toward said first and second flange surfaces by the
inherent resiliency of said lips, thereby furnishing an axially directed sealing force for application to said first and second sealing surfaces respectively. 4,094,519
SHAFT SEAL WITH HELICAL PUMPING ELEMENT William O. Heyn, and Glenn W. Peisker, both of Barrington, Ill, assignors to Chicago Rawhide Manufacturing Company Continuatio
of Ser. No. 225,862, Feb. 14, 1972, abandoned. U.S. Cl. 277-134 Int. Cl. \({ }^{2}\) B61F \(15 / 22\)

1. An oil seal including a relatively stiff mounting portion and an elastomeric sealing lip portion, said sealing lip portion including a pair of convergent frusto-conical surface portions, one of said surface portions facing the interior or a region to be
sealed and the other of said surface portions facing a region exterior thereto, said exteriorly facing surface being only a single surface with a fixed angle of inclination relative to the axis of the seal, said surface portons meeting each other to form an annular seal band of intended contact with an associated orly facing surface, each of said elements being partially defined by a pair of side faces meeting to define a working edge portion which is straight throughout its entire extent, each of said elements being of continuously varying height throughou its entire extent and having substantially no height near said which are radially and axially offset with respect to each other, said points being also spaced apart from each other by an angle measured paralled to the plane of said seal band, and with one of said points lying substantially on said seal band, whereby

SELF CENTEPING 4,094,520
Wall fing ge gasket assembly N.J., assignors to The United States of America as represented by the Secretary of the Army, Washington, D.C. Divion of Ser. No. 793,023, May 2, 1977. This application Oct.
11, 1977, Ser. No. 841,092 U.S. C. 277-166 \({ }^{\text {Int. Cl. }}{ }^{2}\) F16. \(15 / 10\)

3 Claims

1. A self centering flange gasket assembly for use in making connections to pipelines of unequal size carrying molten explo-
sive materials therein which comprises: first circularly shaped pipe flange aligned bore therethrough, a raised annular circularly shaped first flange boss thereon and an annular shoulder section on an interior side, said first flange boss having face thereof, said first pipe flange having an integral tubu larly shaped transmission line connection section axially protruding from an exterior side thereof, and a first plura ty of diametrically disposed flange bolt hnles there secong i second circularly shaped pipe flange having a second
axially aligned bore therethrough, said second axially ligned bore being larger than said first axial bore of said first pipe flange, a second raised annular circularly shape lange boss thereon and an annular second shoulder sec concentrically ringed circularly serrated grooves in a face thereof, said second pipe flange having a second integral ubularly shaped transmission line connecticn section axially protruding from an exterior side thereof, and
second
plurality of diametrically disposed flange bol holes therethrough said second flange bolt holes being in axial alignment with said first flange bolt holes; circular rim shaped venturi gasket having an axially
aligned tubular protrusio section aligned tubular protrusion section extending perpendicuhaving an internally curved venturi section on one end which communicates with an axial cylindrical bore on the ther end, an annular counterbore surface disposed on the other face of said gasket adjacent said serrated grooves of nnular counterbore sealing surface disposed on said first ace of said venturi gasket, said second gasket sealin urface being disposed adjacent to and in sealing contact with said serrated grooves of said second flange boss, said said second axially aligned bore of said second pipe flange and a gasket locating rim operatively disposed intermediate said shoulder sections of said first and second pipe flanges; and
and second flange bolt hively disposed in said pair of firs and second flange bolt holes, for holding said rim shaped flanges, the rim of said gasket nesting intermediate said

\author{
\(\qquad\)
}

Frst and second flange shoulder sections, said annular sponsive solely to axial displacement of said control member in grooves of said gasket being located in sealing contact bosses. bosses.

COLLET CHUCK
Cuto
Suttons Bay, Mich.,
Charles Plotrowskl, SuLtons Bay, Mich., assignor to Sheffer
Collet Company, Traverse Ctyy, Mich. \(\begin{array}{ll}\text { Int. C. } .^{2} \text { B23B } 31 / 20 & 23 \text { Claims }\end{array}\)

axis of turning to displace said jaws radially of said chuck body, and restraining rotation of said control member.
1. A collet chuck comprising:
a chuck body having a spindle adapter mounted to one end and a collet retainer mounted to an opposite end; each of said body, spindle adapter and retainer including an axially extending aperture aligned with each other for the passage of a workpiece therethrough;
said adapter and retainer;
an axially movable piston mounted to said slip ring assembly;
an axially movable piston mounted to said slip ring assembly; and
actuator means slidably mounted to said body and engaging
said collet and biasing it into clamping position; said piston when actuated engaging said actuator means and shifting it axially to release said collet.

SKATE BOARD BRA,094,524
Mathev Ralph Carroll, 3516 Dond STEERING SYSTEM Filed Oct. 18, 1976, Ser Iled Oct. 18, 1976, Ser. No. 733,389
Int. C1. \({ }^{2}\) A63C \({ }^{17 / 14}\)
U.S. CI. 280-11.2

14 Claims

1. A skate board assembly comprising
a board having a longitudinal generally horizontal axis
a front truck secured to said board;
a rear truck secured to said board having a pair of wheels a brake assembly secured to said skate board assembly in
cluding a pair of brake shoes: actuator means for pivoting said
axis substantially pivoting said brake shoes about a first said board and selective into engagement with said wheels
by the application of force to said actuator by the application of force to said actuator means; ment about a second axis at an inclined angle with respe to the said longitudinal axis of the board whereby said actuator means may pivot said brake shoes into simultapeous engagement with both wheels of said rear truck by with one of said wheels by rotation of said actuator means about said second axis of rotation.

ROLLER SKATE TOE STOP CONVERTER
Cecill E. Davis, Tulsa, Okla, assignor to Unarco Industries, Inc.
Filed May 2, 1977, Ser. No. 792,698
U.S. CI. 280-11.2

Int. C1. \({ }^{2}\) A 63 C 17/14

1. An adjustable toe stop converter for converting a roller skate from use with a first toe stop having a threaded mounting stud of a given diameter and thread to use with a second toe
stop having a threaded mounting stud of a diameter larger than stop having a threaded mounting stud of a diameter larger than
the mounting stud of said first toe stop, said skate having on its forward end a toe stop mounting shoulder presenting a generally downwardly and forwardly facing toe stop bearing surface and defining a first threaded bore of a diameter and thread equal to that of the threaded mounting stud of said first toe stop, said ooe stop converter comprising:
end surface adapted to matingly abut said roller skate toe
stop bearing surface and having at the opposite end wall a
lower end surface, said one end wall defining a second
bore having a second diameter at least equal to the diame ter of said first bore in said roller skate toe stop mounting shoulder and less than the diameter of the mounting stud of said second toe stop, said opposite end wall defining a third threaded bore having a diameter and thread equal to that of the mounting stud of said second toe stop, said
third bore being coaxial and communicating with said second bore to define an annular shoulder between said second and third bores;
(b) a bolt having a head of a diameter greater than that of said second bore and having a shank with a diameter less means adapted to threadingly engage said first bore in said roller skate toe stop mounting shoulder; and
(c) means for securing the threaded mounting stud of said second toe stop against rotation within said third bore when said stud of the second toe stop is threadingly en.
gaged therewith, whereby said bolt can be inserted into said
the bearing surface of the bolt head bored member with annular shoulder in the counterbored bearing against said the shank projecting from said second bore to thread with engage said first bore in said roller skate toe stop mounting shoulder for matingly abutting said upper end surface of the counterbored member against said roller skate toe stop said stud of the seco
said stud of the second toe stop can be threadingly engaged
with said third with said third bore to adjustably position said second toe
stop relative to said roller skate at a distance from counterbored member lower end surface that is variable with the amount of thread engagement, and
said stud of the second toe stop can be secured in position by said securing means. position by said securing means.

PORTABLE DISPLAY VEHICLE
Richard Allen Clarke, Greenvich; William Jamea Chvala, and
Raymond Edward DeWitto
Raymond Edward DeWitte, both of Danburys, all of Conn.,
assignors to Po
 antion of Ser. No. 491,07, Jul. 23, 1974, abandoned. This
application Jun. 11, 1976, Ser. No. 694,987 5 Claims U.S. Cl. 280-47.35 Int. C1.2 B62B 3/02

12 Claims

1. A portable display vehicle for transporting, storing an displaying food, beverage and other displayable products comprising:
a base
base member having a rear edge, said base member includ-
ing a plurality ing a plurality of casters attached to the underside of said
base member for supporting the vehicle in an upright stable condition,
sidewalls attached in a vertical position to the sides of said base member,
wall attached to support member comprising a back Wall attached to a bottom shalf wherein said suppor
member is attached to said base member between sidewalls so that said bottom shelf slopes downwardly
toward the rear edge of said base member and wherein said sidewalls and said product support member form a open volume for containing the displayed products, said
sidewalls each being bounded by rigid frame members with a continuous skin member rigidly supported between said frame members and each having an upper frame slanting downward from
away from said rear elge, a substantially vertically
downwardy from the front edge of said bottom shelf to a position below said base member so as to shield at least a portion of said casters from view, and
extending the surface formed by
said bottom shelf,
said lower extension shelf comprising a horizontal shelf member extending from the front edge of said bottom shelf, a vertically oriented sign display panel for display-
ing written material extending downwardly from the ing written material extending downwardly from the
forward edge of said horizontal shelf member, a hinge member for attaching said horizontal shelf member and said sign display panel, and a plurality of supporting extending downwardly from said sign display pane.

\section*{4,094,527}

BOAT TRAILER
Richard L. Miller, 3612 Woolworth Bidg., 233 Brondway, New Iichard L. Miner,
York, N.Y. 1007
Filed Dec. 20, 1976, Ser.
U.S. C. \(280-14\) R Int. C.2 \({ }^{2}\) B60P 3/10 \(\quad 23\) Claims

1. A trailer for storing thereon a boat having a hull and keel,
and facilitating launching and landing of the boat, and compris-
and facilitating launching and ling a
ing:
parallel to the base, and two sides joining the edges of the paralle. the corresponding edges of the top; trapezoidal torsion box of fiber-reinforced plastic fitting snugly around the central member and comprising a base and a top corresponding in widm respectively, of the central member;
solid, resilient bottom member wider than the base of the trapezoidal torsion box, the box being firmly adherently joined to the upper surface of the bottom member to spite of fixed position relative the the bottom member ine spite of forces having lateral components acting on the trapezoidal torsion box and the bottom member,

solid, resilient top member wider than it is thick over at least most of its length, and rigidly, adherently joined to the top of the trapezoidal torsion box to position relative to the top membel in se to the trapezoidal acting to move the top member being wider than the top of the trapezoidal torsion box;
the rrapezoidal tosilion box, pair of solid, resilient side members joining edge sections of pair top member to corresponding edge sections of the bottom member to form an outer boxlike structure; and solid, foamed material free of mechanical directivity ar lezas dal torsion box and within the outer boxlike structure.

\section*{KI BINDING ADAPTE}

Harold
01944

\section*{SKI BINDING ADAPTER}

Filed Apr. 7, 1977, Ser. No. 785,519
U.S. CI. \(280-61412\) Claims wheels connected to the flatbed for moving the trailer into and out of cooperative relationship with the boat; support means connected to the flatbed and positioned to engage the hain the boat in position on the trailer, and
thereby retai pivoted rolling means positioned on the flatbed intermediate said support means for rotatingly engaging the hull to accommodate entry and elid during retention of the boat on the trailer, and positioning means for angularly positioning said pivoted roling mans fithed and facing rearward of said flatbed.

4,094,528
SKI STRUCTURE
John Michael Cluzel, 753 Hickory Hill Rd., Wyckoff, N.J. 07481 Filed Oct. 21, 1976, Ser. No. 734,60
U.S. C. \(280-610\)
1. A ski structure comprising: \(\quad\) material free of mechanicentral member of solid foamed material free of mechanistructure and having a trapezoidal cross-section definel sy a base, a top narrower than the base and substantiall

An adapter for use in conjunction with a standard down1. An adapter for use in conjuncill ski binding including toe
hill ski having a standard downhil and heel clamps secured thereto, said adapier beeng removably
retainable in the standard downhill ski binding and being adapted to clamp a cross-country ski boot so as to enable the standard downhill ski to be used for cross-cuniry skiing, sai adapter comprising
A. first and second elongated relatively thin adapter plate sections adapted to be supported on the downhill ski binding, said plate sections being adjustable lengthwise relative to one another,

B. means for securing said plate sections in different selected positions of lengthwise adjustment,
C. means projecting upwardly from the forward end of said first plate section adapted to be clamped to the downhill
ski by the toe clamp of the standard downhill bioding D. means projecting upwardly from the rear end of sid second plate section adapted to be clamped to the downhill ski by the heel clamp of the standard downhill bind-
ing, E. clamp
E. clamp means mounted on said first adapter plate section,
said clans means being movable frem said clamp means being movable from an open position
wherein it permits the cross-country ski boot to be positioned on said first adapter plate section to a closed position wherein it clamps the toe of the cross-country sk
boot to said first adapter plate section,
Foot to said first adapter plate section, and
locking said clamp means in its closed position.

\section*{4,094,530}

FRONT JAW FOR SAFETY SKI BINDINGS
Gerhard Sedlmair, Farchant, Germany, assignor to Hannes
Marker, Germisch-Partenkirchen, Germany \({ }^{\text {Filed }}\)
Claims priority, application Germany, Mar. 22, 1976, 2612069
U.S. CI. 280-625 int. C. A63c \(9 / 08\)
1. A front jaw for a safety ski binding, Comprision bar adjusing portion adapted to be fixed with respect to a ski and having Wortion, two levers a central abutment attached to the jaw ends of the levers serving as retainers for a solte of shafts, first restrain outward and upward movement thereof, a vertical screw which is rotatably mounted in the jaw portion for en-
gaging the tapped hole, the screw being prevented gasing the tapped hole, the screw being prevented from axial displacement, the spacer member being vertically displaceable upon rotation of the screw, spring means for urging second one of said spacer members and said second ends having an engagement surface formed as an oblique surface so that vertical movement of said spacer member varies the spacing be-
ween the first ends of said levers.

\section*{4,094,531}

FOLDABLE STROLLER FOR CHILDREN
Ramon Jane Cabagnero, Barcelona, Spain, assignor to Jane,
S.A., Barcelona, Spain
Filed Jan. 5, 1977, Ser. No. 756,974

Claims priority, application Spain, Jan. 14, 1976, 218.173
U.S. CI. 280-649 Int. Cl. \({ }^{2}\) B62B \(7 / 0\)

7 Claims 1. A orlabie stroller comprising:
a seat and seat back, said seat back being formed by a flexible laminar assembly reinforced lengthwise by juxtaposed strips which provide rigidity and which permit transverse
folding in zigzag form; a frame for said back, said back folding in zigzag form; a frame for said back, said back
being mounted in said frame, said frame having sidepieces; articulated front and rear scissor-type wheel carrying elements, said frame side-pieces being articulated in a lower portion thereof to the articulation between the pair of branches which are an extension or sided by
wheel carrying elements, said frame side-pieces being connected with the respective branches of the harness by
respective articulated divider-type elements, said dividertype element arranged for opening and closing for determining respective different positions of inclinations of the back, said rear wheel-carrying element being situated
between the side-piece of the frame and between the side-piece of the frame and the front wheel-
carrying element which is in external location; carrying element which is in external location; a first set of
two articulatedly crossed rods for connecting said front

wheel-carrying elements in a front lower portion thereof with a front upper portion of the rear wheel-carrying
element, a second set of two articulatedly crossed rods for connecting said front and rear wheel-carrying elements in rear portion; and two cross-pieces split into two articu iated sections which connect with the side-pieces of the means, the cross pieces maintaining the unfolded state of he carriage; and when raised the common control mean effect the folding of the stroller.
\[
4,094,532
\]
(b) first and second axially aligned torsion bar end receiving belt position to dispose said belt to actively restrain a passenger sockets rotatable within said collar and having integral in said vehicle when said door is moved to said closed position. radially outwardly extending arms passing through said slot; and
being individually adjustable to move an associated arm relative to said frame and thereby impart a rotation to the integral socket portion from which the arm extends within said collar through a number of degrees within the width of said slot
whereby a short center section of said housing tube in the suspension system of said car can be cut out and the collar of
said device secured to the housing tube in place of said section with the inner ends of said torsion bars being received in oppo site ends of said collar and respectively secured in said first and second torsion bar end receiving sockers, operation of said arm
engaging means imparting a twisting force into the torsion bars to thereby enable adjustment of the spring force provided by said torsion bar suspension system to each of the rear wheels of the car respectively

4,094,533
SEATBELT SYSTEM FOR MOTOR CARS Alfred Grossbach, Division of Ser. No. 59,293, Ju. 16, 1975, Pat. No. 4,047,737 Claims priority, application Germany, Jul. 19, 1974, 2434748; Jul. 4, 1975, 2529811

Int. Cl. \({ }^{2}\) B60R \(21 / 02\)
U.S. CI. 280-745

1. A seat belt system particularly for motor vehicles having doors which open and close by movement thereof forwardly and rearwaraly of said vehicle, said venicle including a vehicl body having a side wall, said vehicle body having a front, one sliding door mounted on said side wall of said vehicle body and movable from a closed position flush with the side wall of said vehicle body to an intermediate position parallel with and spaced from the closed position and then to an open position spaced in the longitudinal direction of the vehicle from the said vehicle including a first pivotal arm pivotally mounting said door to said vehicle body, each of said at least one sliding doors having an inner side with the inner side having a from end and a rear end, said seat belt system comprising at least one safety belt having a first end and a secondide, mons mounting said second end with said at least one safety belt extending freely in an unrestrained condition continuously from said first end to said second end, said means mounting said second end of said at least one safety belt including a second pivotal arm having said second end of said safety beit attached thereto and
operatively associated with said first pivotal arm, said second pivotal arm operating to effect pivotal movement in response to pivotal movement of said first pivotal arm to move said second end of said at least one belt relative to said door to a first belt position to dispose said sarety bell in an orientalio permitting ingress and egress of a passenger into and our of said

DETACHABLE BALLAST VEHICLE STABILIZER elmut Welke, and Karl Tullius, both of Cologne, Germany, assignors to Klockner-Humboldt-Deutz Aktiengesellschaft, Filed Dec. 6, 1976, Ser. No. 747,437 Claims priority, application Germany, Dec. 4, 1975, 2554581 Int. Cl. \({ }^{2}\) B60B 39/00; B60R 19/04, 27/00; B61C 15/04
8 Claims

1. In combination, a ballast weight means and agricultural motor vehicle: a holding device having said ballast weight eans detachably suspended thereon and releasably connected said motor vehicle, locking shaft means extending transverse selectively in the direction toward and away from said holding device, and means operatively connected to said locking shaft means as well as operable in response to said locking shaft means being adjusted toward said holding device thereby to fix nock said ballast weight means and said holding device to eleasable secure the same to each other to avoid undesired means with the vehicle, said means operatively connected to sid locking shaft means including clamping ively connecting the ends of said locking shaft means to said holding device, said holding device for each ballast weigh means comprising at least two supporting bearings spaced rom each other for respective engagement with said ballast vention of said locking shaft acting upon said clamping elements to exert a moment upon all of said supporting bearings.

CONDUCTI

Keith G. Minton, North Canton, Ohio, assignor to The Hoover Company, North Canton, Ohio

Jan. 10, 1977, Ser. No. 758,044
Int. Cl. \({ }^{2}\) A47L \(9 / 24\)
J.S. C. 285—7
1. A torsion bar adjusting device for insertion in the rear orsion bar suspension system of a cor wherein said system ing indirections generally parallel to the rear wheel axes ahead of the rear wheels within a torsion bar housing tube fixed to the frame of the car with the inner ends of the torsion bar secured to the housing tube and their oppositely extending outer ends secured to rear wheel supporting spring plates respectively, so twisting reaction torque from its associated torsion bar said a frame structure including a collar having an elongated slot parallel to its axis in its side wall;
inner
ery, member, said ridges being spaced from each coupling aert reliefs disposed between said ridges, said ridges having at least portions with substantially equal radial extent,
(e) terminations on said portions of said ridges bein generally tight abutting contact with portions of said internal periphery of said outer member, said portions having a generally constant annular extent,
(f) adhesive means disposed between said terminations,
portion on said inner coupling member of sufficient size to mount a strain relief.

\section*{4,094,536}

Judson C. Cole, Tulse, METER EIdon W. Morain, Broken Arrow, both of Okla, assignors to Continental Industries, Inc., Tulsa, Filed Dec. 20, 1976, Ser. No. 752,438
U.S. C. 285-21

6 Claims

8 Robert GROUND LEVEL METER RISER
Lyall, 9770 El Greco Cir., Fountain Velley, Calif
Filed Sep. 1, 1976, Ser. No. 719,613 U.S. Cl. 285-47 Int. C.'. \({ }^{\text {F16L }}\) 11//22, \(33 / 00\)
\(\qquad\)
\[
\underbrace{8}
\]
1. A meter rising comprising:
(a) a length of small diameter polyethylene pipe adapted for attachmen
pressure;
pressure; \(\quad\) one end to a line pipe carrying a fluid under) a selected length of high ambient heat tolecrant tube of substantially the same diameter as said polyethylene pipe
having a first end adjacent the second end of said polyethylene pipe.
(c) cup-like polyethylene bushing with a central opening placed over and attached and sealed at the second end of said polyethylene pipe;
(d) a short length polyethylene sealing tube received on said high ambient heat tolerant tube at its first end, and including sealing means between and sealingly engaging the
inside surface of said sealing tube and the outer surface of said high ambient heat tolerant tube, said bushing being heat sealed to said sealing tube in coaxial relationship; and (e) a meter riser body surrounding said high ambient heat tolerant tube and a portion of said polyethylene pipe comprising a selected length of metal pipe surrounding riser body to said high ambient heat tolerant tube and means to attach said riser body to a meter or the like.
1. A ground level riser for gas meters and the like for con necting the same to a plastic service line, comprising: valve and meter or the like a predetermined distance above ground level,
(b) a plastic transition fitting connected and joined to the inside surface of said mounting pipe, and having an inner first bore, said plastic fitting having on its end away from said mounting pipe a shorter second bore radially out (c) a predetermined leng th of a plast
received in and joined to said second bore so that said first bore is generally co-dimensional in diameter with the inside diameter of said tube,
d) a relatively thin wall lower steel protective casing exter-
nally of said tube having an upper end and a lower end and abutting said plastic fitting at its upper end and extending over a predetermined length of said length of tube, said first protective casing being bent if desired to give a specified amount of horizontal and vertical run in said riser,
said lower protective casing being generally said lower protective casing being generally coaxial with
said mounting pipe and plastic transition fitting and fursaid mounting pipe and plastic transition fitting and fur-
ther being generally of the same external diameter as said mounting pipe and as at least a portion of said plastic transition fitting,
(e) a seal means at the lower end of said lower protective casing for sealing the space inside of said lower casing and outside said tube from water and other containment fluid (f) an mapper pro
an upper protective steel casing secured to and extending
from below ground level and below the upper end of said lower protective casing to said mounting pipe above said transition fitting, said upper casing being generally of larger diameter than either said lower casing or said mounting pipe and secured as by welding to both, and g) a protective coating of plastic extending over said riser
from said seal means to above that end of said upper casing which is secured to said mounting pipe.

CONNECTION 4,094,538
Connection for evacuation pipes
91 Gif Yvette, France
Claims priorty, application France, Jun. 25, 1976, 7619356
U.S. CI. 285-150 Int. C. \({ }^{2}\) F16L 4//00

1. A hollow bodied joint for connection
secondary pipe to a principal pipe comprising
a first union for fluidly connecting the outlet of the principal
pipe to said joint
at least one other u
secondary pipe to said joint
annular member having ant internal surface spacedly positioned below and coaving said first union
annular support means for said annular member, said support means and said annular member forming an air channel for meons wardly directing air through the space formed by said annular member and said pipe union to propel the
liquid therein toward the center of the pipe and an outle for fluid flow.

RIGID CONNECTOR AND PILING
Larry E. Reimert, Camarillo, Calif., assignor to Vetco, Inc., Continuation of Ser. No. 712,491, Aug. 9, 1976, abandoned. Thi application Nov. 23, 1977, Ser. No. 854,356 S. Cl. 285-309 Int. C.1. \({ }^{2}\) F16L 21/00

1. A rigid pipe connector comprising a metallic tubular pia having an external transverse shoulder and a plurality of axially spaced outer peripheral grooves, sides of said groove
providing a plurality of axially spaced tapered surfaces, a providing a plurality of axially spaced tapered surfaces,
metallic tubular box telescopically disposed over said pin and having a transverse end engaging said shoulder, circumferentially spaced lock members slidable radially in said box into said grooves, said lock members having tapered surfaces axi-
ally spaced from each other and simultaneously engaging said ally spaced from each other and simultaneously engaging said axially spaced tapered groove surfaces, means for shirting said lapered surfaces of said lock members against said pin tapered
surfaces and shift said pin axially of said box to force said shoulder against said box end and apply compressive preload to said box end and pin shoulder, the other sides of said groove axially spaced from said lock members to enable said compresbox and the inner surface of said box confronting said periphery being shaped in such manner as to be free from axial force transmitting relation to each other so that the full preloading force produced by coengagement between said lock member tapered surfaces and pin tapered surfaces is transmitted to said

4,094,540
CLOSURE DEVICE FOR LOCKING A MOVABLE ELEMENT WITH RESPECT TO ANOTHER ELEMENT Joseph Antoine Rolg, Yerres, France, assignor to Agence NaJoseph Antoine Roiga Yerres, France, assignor to Agence
tionale de Valorisation de la Recherche, Michelig, France Filed Apr. 24, 1975, Ser. No. 571,322 Claims priority, application France, Apr. 24, 1974, 74 14138; Feb. 11, 1975, 7504195
U.S. C. 292-214 Int. C. \({ }^{2}\) EOSC 3/10

1. A closure comprising.
(a) two elements relatively movable toward and away from each other, and means for separably locking said elements a) ale member in the form of a fla plat
protruding from one of said elements, the plane containing said plate being in the direction of relative movement between said elements,
(c) a casing carried by the other of said elements, said casing having an opening through which said plate can move are brought together and separated, said opening extending continuously along two adjacent sides of said casing, (d) a female member within said casing, said female member being a flat plate movable about an axis perpendicular to between a position substantially perpendicular to the direction of relative movement between the elements and a position oblique to that direction, said plate having an elongated slot perpendicular to the direction of relative movement between said elements, said slot being aligned with said casing opening and slightly wider than the thickness of said male member plate, and said slot extending to one edge of said plate, and
its oblique position, said male male member plate toward female member plate toward its perpendicular position against the force of said resilient means when said elements are moved together to insert said male member plate through said casing opening and said slot in said wedged within said slot upon attempted separation of said elements.

CONCEALED SAFETY LATCH ASSEMBLY
Gimmes P.O. Box 1083, San Pedro, Calif. 94433 Filed Mar. 9, 1977, Ser. No. 775,740
U.S. Cl. 292-231

8 Claims

1. A concealed safety latch assembly for a cabinet having hinged door comprising
a mounting plate for
a latch member having a nose portion wall of a cabinet, said latch member also having an unlatching finger with a notch formed between them,
locking member for attachment to the door of a cabinet said eck, and member having means for engaging said latch member, and
plate comprising a shaft extending means to said mounting plate comprising a shaft extending outwardly from the
mounting plate and said latch member which said shaft is received, said bore being eccentrically located on said latch member thereby allowing the latch member to be pivoted to a position where it will not be
engaged by the locking member when the cabinet door is engaged by the locking member when the cabinet door is

DETESTABLE AUTOMATIC HATCH LATCH
Allen D. Siblik, Mundelein, Ill., assignor to MacLean-Fog Lock Nut Co., Mundeletin, III.

Filed Oct. 6, 1975, Ser. No. 619,857
U.S. Cl. 292-256.5 In. \({ }^{\text {Int. }}\) EOS \(3 / 30\); B63B 199114

a
lever means selectively in one of said latching and detent positions as selected, and repositioning means carried by and lever means, said repositioning means fer engaging operable in response to movement of said pedal lever means to said detent position striker bar said latch lever means out of engagement with said striker bar, said repositioning means further being opera-
ole when forcibly struck by said striker bar to move said pedal lever means from said detent position into said latching poiton, whereby said latch lever means is operably repositioned to releasably lock said striker bar.

4,094,543
Sabatino A. Fratini, 232 Crawford Ave., Lansdowne, Pa. 19050 Filed Jan. 10, 1977, Ser. No. 758,030 U.S. C. 294-54 Int. C. \({ }^{2}\) E01H 5/02

2 Claims

\(\qquad\)

C1. 294—54
he
he
lo
h
1. An apparatus for snow displacement which comprises: a semi-circular flat base plate;
a curved panel having a lower edge and straight diametric edge, said panel being substantially at a right angle with
respect to said base, rigidly connected to the curved respect to said base, rigidly connected to the curved por-
ton of said base plate such that the plane of the base is at a small angle with respect to the ground, and said lower edge and said straight diametric edge being in contact with the ground when said apparatus is in use; and a handle pivotally connected to said base plate which per-
mitt an operator to push said apparatus, thereby causing miss an operator to push said apparatus, thereby causing
the convex outer surface of said vertical curved panel to contact the snow and impact it so that the snow will flow around and be displaced by said apparatus.
\[
\begin{gathered}
\text { PALLET PULLING DEVICE }
\end{gathered} \begin{aligned}
& \text { 4,09,544 } \\
& \text { David L. Spaine Rte. \#4, Dixon, III. } 61021
\end{aligned}
\]
\[
\begin{aligned}
& \text { Spaine, Rte. \#4, Dixon, III. } 61021 \\
& \text { Filed Nov. 1, 1976, Ser. No. } 737,65
\end{aligned}
\]
\[
\begin{aligned}
& \text { Filed Nor. 1, 1997, Ser. No. 737,652 } \\
& \text { UTS. CI. } 294-82 \mathbf{R}
\end{aligned}
\]
\[
\text { U.S. Cl. } 294-82 \text { R Int. C.2. }{ }^{2} \text { B6C } 1 / 00 \quad 3 \text { Claims }
\]
1. A latch apparatus for automatically releasably latching a hinged hatch cover of the type having a striker bar which is
operable with closing movement of the hatch cover operable with closing movement of the hatch cover to forcibly
engage the latching apparatus, comprising, in combination: a housing means, a latch lever means pivotally mounted on said housing means and characterized by a gripping surface for engaging a striker bar, first spring means resiliently urging said latch lever means into a normal operating position whereat
said latch lever means is operable to releasably lock said striker bar, pedal lever means rotatably mounted on said housing means and operably movable to and between latching and detent positions, first cam means on said pedal means, second
cam means on said housing means, second spring means cam means on said housing means, second spring means opera-
bile to resiliently bias said first cam means against said second cam means whereby the same cooperate to secure said pedal

1. The combination with a load-bearing pallet embodying a
pair of longitudinally extending side ribs and a load-bearing panel consisting of longitudinally spaced transverse planks ROLL AWAY DECKING SYSTEM panel consisting of longitudinally spaced transverse planks
extending between said side ribs, of a pallet pulling device in
the form J. Glassmeyer , Glenwood, III., and Joseph T. Kelley, Ham-
titan, Ohio, assignors to Pullman Incorporated, Chicago, III. cal body portion having its forward end turned laterally at a right angle to provide a short linearly straight hook portion, said body portion being disposed with its forward end portion with the hook portion st one of said horizontal planks and plank and the next adjacent forward plank and resting squarely against the forward edge of the latter plank, the effective height of said hook portion being slightly less than the thickness of the planks, and a relatively short pull chain consisting
of a series of interlocked chain links, the forward link of said pull chain being fixedly welded to the rear end of said body portion in overhanging relationship, the individual links of said pull chain being designed for cooperation with a hook which is carried by one end of a pull line, the rear edge of said body portion being rounded to provide an arc on the order on with
thus affording a taper designed for camming engagement an object which may be in the pull path of the device.

4,094,545
TRACTORS OF THE AGRICULTURAL FOR THE
CONSTRUCTION TYPE
Peter Kramer, Spice, Germany, assIgnor to Klockner-HumboldtDeutz Aktiengesellschaft, Cologne, Germany
Filled Aug. 17, 1976, Ser. No. 715,938
Claims priority, application Germany, Aug. 19, 1975, 2536820
U.S. Cl. 296-28 C

1. A vehicle cab structure, especially for mounting on the frame of an agricultural or a construction tractor, and having
a roof section and a lower section respectively forming a side wall also forming a fender which takes up supporting forces effective parallel to the wall and posts extending in the up and down direction between said sections, said cab structure comprising in combination: a pair of laterally spaced member forming a portion of said lower section and each comprising a send extending outwardly from the upper edge of each vertical panel, and an inclined, transversely extending front panel have ing the inner edge, connected to the forward edge of said
vertical panel and the top edge connected to the forward edge vertical panel and the top edge connie the forward end of said of said horizontal panel and reinforcing the forward end of said
horizontal panel against deflection, a transverse beam interconhoeing the lower ends of said front panels, means connecting said beam to the tractor frame, upstanding bend resistant brace elements connected to the rear edges of said vertical panels and near the rear axle of the tractor when the cab structure is and to the rearward ends of said horizontal panels to brace a least the rearward ends of the latter against deflection, the posts extending between the roof section and the lower section engaging said horizontal panel near the forward and rearward ends respectively of said horizontal panels. ilion, Ohio, assignors to Pullman Incorporated,
Filed Oct. 26, 1976, Ser. No. 735,290 USS. CI. \(296-28\) M Int. C.'2 B62D \(25 / 20 \quad 23\) Claims

1. A rollaway decking system for transport vehicle provided with spaced vertical sidewalls, comprising;
a track mounted on each sidewall comprising a storage track section and an operative track section; and
flexible movable deck extending between said tracks and
means on each sidewall for operatively interconnecting means on each sidewall for operatively interconnecting the track sections of the track mounted thereon to permit
said deck to be moved between storage and operative positions, and means for selectively positioning said track sections at different operative elevations with respect to each other.

COMBINATION BUMPER TRAY APPLIANCE
Arthur T. Zampino, and Dolores V. Zampino, both of 120 Beach 19 St., Far Rockaway, N.Y. 11691

Filed Feb. 7, 1977, Ser. No. 765,922
U.S. CI. 297-182

8 Claims

1. An appliance adapted to be used with a chair as a combination bumper tray and toy holder which comprises a semigid, unitary circular or oval tray provided with an off-center dy of a child opening of sufficient size to accommodate the
 horizontal radial surface of lesser depth in tray comprising a he front portion thereof, integral with an upwardly and outbadly inclined circumferentially continuous surface of equal depth in its entirety, the front portion of said horizontal surface sing provided with round sized apertures for removably receiving toys and feeding plates mounted on round or oval equally sized ball ends adapted to frictionally fit into said sized apertures.

APPARATUS FOR C0,094,548
apparatus For Conveying and separating Ludwig Lorenz Schnell, Aufheserial Schuttgut fordertechnik, Aufhausen, Germs Continuation of Ser. No. 521,461 , Nov, 6,1974 ,
Claims priority applict. 19, 1976, Ser. No. 706,653 235831
U.S. Cl. 299-9 Int. Cl. \({ }^{2}\) E02F 3/88, 7/00 25 Claims

1. In an apparatus for conveying loose material, a combina tion comprising a substantially vertically extending conveyo line including at least an upper outer pipe which is immovable
in the axial direction thereof, and a lower inner pipe surrounded by said upper outer pipe and being extendable and retractable relative thereto, said pipes having respective tele-scoped-together portions which bound an annular interspace with one another; sealing means for sealingly closing longitudi nally spaced end regions of said interspace, including an upper sealing sleeve disposed at the upper end of said lower inne
pipe and having an elastically deflectable sealing lip which is pressed against the inner surface of said upper outer pipe with a predetermined force; and means for maintaining a fluid seal in said interspace, including a sealing medium feedline communicating with said interspace in the region of the lower end of said upper outer pipe, and a sealing medium pump communi-
cating with said sealing medium feed line and feeding said sealing medium into said interspace at an elevated pressure sufficient to overcome said predetermined force with which said sealing lip is pressed against said inner surface of said outer pipe, so that said sealing medium deflects said sealing lip and flows past the same out of said interspace to thereby prevent
contaminants from entering said interspace past said sealing contaminants from entering said interspace past said sealing
means even during said relative extension and retraction of said lower inner pipe resulting in decreasing and increasing of said interspace.
\[
\text { pROcFsS FOD hynd } \begin{gathered}
4,094,549
\end{gathered}
\]

PROCESS FOR HYDRAULICALIY MINING COAL EMPLOYING A CUTTING MONITOR AND A BREAKING
MONITOR
Kouichi Shoji, NIbonbashi-Muromachl, Japan, and Arthur W. T. Grimiey, Fernie, Canada, assignors ing Co., Ldod., Tokyo, Japan, by said Kouichi Shoji Continuation of Ser. No. 519,643, Oct. 31, 1974, abandoned which is a division of Ser. No. 350,509, Apr. 12, 1973, abandoned. This application Nor. 12, 1976, Ser. No. 741,489 Claims priority, application Canada, Apr. 13, 1972, 139608

\section*{U.S. CI. 299-17}

15 Claims
 coal of preselected average thickness comprising: ber having a circle of radially resilient teeth at one end thereof
(1) driving at least one entry upward through the panel to a and an initially radially directed and axially facing margin at
predetermined terminus thereof at an average slope of at predetermined lermin
least about \(S\) degrees
(2) installing a fluming system in said entry that slopes in the same direction as the entry;
(3) positioning a monitor within said entry, said monito comprising a nozze adapted for pivotal motion vertically and horiza tally, and being (4) ejecting a iet of high
the other end thereof and terminating in a sharp terminal edge, stantially rigid supporting element arranged outwardly of said and a trim ring member having an outer annular and axially facing margin;
wherein said margin of said retaining ring is provided with a
reinforced portion formed from the initial plane of said margin of poid ron formed from the initial plane of sail ness of the material of said margin of said retaining rin ness of the
member, wherein the sharp terminal edge of said margin is spaced and extends radially outwardly from said reinforced portion; and
wherein said annular margin of said trim ring member includes a portion which is folded over the axialily inwardiy
and outwardly facing sides of said terminal edge and and outwardly facing sides of soria clinched about said reinforced portion said retaining ring member, and wherein said folded over portion is provided with a series of circumferentially spaced inden-
tations on the axially inwardly facing side of said folded tations on the axially inwardly facing side of said folded
over portion which indentations project axially outwardly over portion which indentations project axially outwardly
to grippingly engage the axially inwardly facing side of said reinforced portion of said retaining ring member.

MATERIAL CONVEYING SYSTEMS
Robert James Fiain, Stevenage, and Roy Farley, Hitchin, both of England, aseslenors to National Revearch Development CorpoFiled Jun. 2, 1976, Ser. No. 692,050 Claims priority, application United Kingdom, Jun. 4, 1975
24124/75
U.S. C. 302-26

Int. Cl. \({ }^{\mathbf{2}}\) B65G 53/04
against the panel of coal to cut the coal from the face area of the panel and break the coal into pieces of varying size; further breaking the cut and broken coal with a jet of
high pressure water from a second monitor positioned in the same entry and located near said face area prior to transporting the coal from the face area;
(6) feeding the broken coal to said fluming system; and
(7) transporting the mined coal with the aid of gravity
through said sloping fluming system with water from the hrough said sloping fluming system with water from the
nozzle as a coal-water slurry. nozzle as a coal-water slurry.

4,094,550
VEHICLE WHEEL TRIM RING ASSEMBLY
Desmond J. Toal, Valdosta; John Matthew McKenzie, Lake Park, both of Ga., and Franklin Delano Hemby, Warren, Corporation, New York, N.Y.
Filed Feb
20, 195, Ser No. 551,095
U.S. Cl. 301-37 R

A conveyor system for materials, the conveyor system comprising a duct along which the material is to be convey for displacing material in the duct downstream of the separating means further downstream away from material in the duct upstream of the separating means, a detector device positioned at a specific duct location downstream of the separaing location to control the operation of the separating means and control means for causing further operation of said separating means for a further period when said detector devise inicates the of time.

\section*{4,094,552}

ARRANGEMENT FOR PNEUMAATIC TRANSPORTING
OF MATERIALS
Joachim Mellor, Blenrode, Germany, assignor to Buhler-Miag GmbH, Braunschwelg, Germany
Filed Dec. 22, 1976, Ser. No. 753,485
Unims priority, application Germany, Jan. 8, 1976, 2600546 Claims priority, application Germany, Jan. 8, commerials and having a resiliently deformable wall; a sub-
stantially rigid supporting element arranged outwardy of said
wall so as to define a gap with the same; and a hollow intermewall so as to define a gap with the same; and a hol intermittently
diate member located in said gap and adapted to in bulge to a size exceeding the size of said gap between said wall

and said supporting element and to thereby bear upon said supporting element and said wall so as to intermittently in-
wardly resiliently deform said wall whereby deposits of said materials which tend to form on an inner surface of said wall are dislodged.

4,094,553
BRAKE CONTROL SYSTEM HAVING AN ELECTRO-PNEUMATIC PILOT VALVE Glen O. Bohusch, and Walter E. Rojecki, both of Watertown,
N.Y., assignors to General Signal Corporation, Rochester, N.Y., assignors to General Signal Corporation, Rochester,

Filed Jul. 28, 1977, Ser. No. 819,907
Int. C1. \({ }^{2}\) B60T 7/12
U.S. C1. 303-3

1. A brake control system for governing fluid pressure con ol of friction brakes of a vehicle, the brake control system having an electro-pneumatic pilot valve device operably connected to a relay valve device ar of the friction brakes in accordance with at least one variable analog signal input to the pilot valve device, wherein an improved electro-pneumatic pilot valve device comprises; (a) a valve plunger having valves disposed thereon for gov erning development of a pilor fluid pressure control signal b) input, vent, and pilior cha times charging the pilot cham valves of the plunger for at imes charging the pilalves and
ber from the input chamber through one of the valv at other times reducing the pilot pressure through another one of the valves and the vent chamber,
(c) linear torque motor means governed by a variable inpu electrical signal for applying a force axially to the plunge in a direction to open said another valve for reducin crease in magnitude of the electrical signal input to the torque motor,
(d) self-lapping means for governing axial movement of the plunger to lap said another valve in accordance with a
by the torque motor and an axial force on the plunger generated by pressure in the pilot chamber substantially
balancing an opposing axial force on the ated by pressure in the input chamber, and (e) Whereby the improved electro-pneumatic pilot valve device is operable without requiring modification, either input to the input chamber indicative of a desired degree of braking and an input to the torque motor of an electrical signal variable in accordance with a degree of dynamic braking, or as a control valve device in response to a
constant pressure input to the input chamber and a variable electrical input to the torque motor inversely indicative of a desired degree of braking.

HYDRAULIC BRAKE \begin{tabular}{c}
\(4,094,554\) \\
\hline
\end{tabular}
HYDRAULIC BRAKE BOOSTER FOR A VEHICULAR
BRAKE SYSTEM Heinz Leiber, Leimen, Germany, assignor to Robert Bosch Fled Germany
Claims priority, application Geremany. Mar. 10, 1976, 2609905 U.S. C. 303-52 Int. Cl. \({ }^{2}\) B60T 13/16

1. In a master brake cylinder for two-circuit braking systems including a housing, a control piston sliding within an booster piston, a brake control valve, actuated by said control piston,
for establishing fluid communication between said master cylinder and the first and second of said two brake cylinders, said control piston having means for engaging and carrying along said booster piston after a predetermined amount of axial travel, and including a second main cylinder and piston for said said booster circuir, the improvement comprising:
of which is subjected to pressure from a resilient mean and the other of said surfaces being subjected to pressure flow from a pump and
ate with a stop means and further arranged to sense loss of pressure flow.

\section*{4,094,55}

ANTI-SKID CONTROL METHOD AND APPARATUS FOR A BRAKE-EQUIPPED VEHICLE WHEEL Peter Cyril Byrne, and Desmond F. Moore, both of Dublin,
Ireland, assignors to PCB Controls Ltd., Dublin Ireland Ireiand, assignors to PCB Controls Ltd., Dublin,
Filed Apr. 25, 1977, Ser. No. 790,693 Claims priority, application Ireland, Nov. 26, 1976, 2597/76
Int. Cl. \({ }^{2}\) B60T 8/08

\section*{U.S. Cl. \(303-100\)} Int. Cl. \({ }^{2}\) B60T \(8 / 08\) U.S. C. \(303-100\)
1. An anti-skid control method for a vehicle wheel compris-
\(\mathbf{3 5}\) Claims
and ing the steps of detecting deceleration of the vehicle wheel and eration and also with a reference value of maximum deceleration, controlling brake force based on the comparing step so that, independently of the position of the brake operating means controlled by the driver during braking, said brake force
is released from said wheel if the actual deceleration of said

Wheel exceeds said reference value of maximum deceleration, deceleration brake force is reapplied to the wheel if the actual value of minimum deceleration decreases below said reference value of maximum deceleration during braking in dependence value of maximum deceleration during braking in dependence
of a value characteristic of the maximum frictional force transferable between the wheel and the road surface, said

method further comprising applying the brake force by pressure from a brake pressure reservoir, and varying said pressure uring a braking operation by adjusting the reservoir brake
pressure to the pressure level which was actually operating on he brake at the time when the reference value for maximum eceleration value was reached, said adjusting of the reservoir reservoir brake pressure has been released from the brake.

\section*{NTI-SKID SYSTEM \(4,04,556\)}

ANTI-SKID SYSTEM FOR A VEHICLE
Atutoshi Okamoto, Toyohashi; Koichi Taniguchi, Kariya; Yoshiaki Nakano, Gifu, and Koichi Toyama, Toyohashi, all of Japan, assignors to Nippondenso Kabushiki Kaisha, Kariya, Japan
Continuation-In-part of Ser. No. 816,203, Apr. 15, 1969, 17, 1969, abandoned, andion andin-part of Ser. No. 816,928, Apr. 832,192, Jun. 11, 19999, ababandoned. This application Mar. 11, Claims priority, application No. 123,228 Claims priority, application Japan, Apr. 24, 1968, 43-27844; \(43-49499\)

Int. CI. \({ }^{2}\) B60T \(8 / 10\)
U.S. CI. \(303-109\)

Claims
3. An improved anti-skid system for vehicle which effecinvely utilizes an approximated slip ratio between vehicle velocity and wheel velocity to generate a brake release signal for brake release valve without actually utilizing a vehicle veloca wheel speed detector means for generating signal corresponding to the instantaneous wheel speed of at least one wheel of said vehicle;
a vehicle velocity estimation means connected to said wheel speed detector means for generating a vehicle velocity
tudes of instantaneous wheel speed but reduced from such
maximum values at a maximum values at a controlled rate; control circuit means connected with said wheel speed de tector means and with said vehicle velocity estimation
means and producing a brake release signal whenever the difference between the wheel speed signal and the vehicle velocity signal reaches a predetermined level;
feedback means connected to control at least one of said wheel speed detector means and said vehicle velocity estimation means in response to the occurrences of said brake release signal;
said feedback means being connected to the vehicle velocity estimation means so as to increase the controlled rate at
which the vehicle velocity signal is reduced in response to the occurrence of a brake release signal thereby advancing the phase of brake reapplication in anticipation for and compensation of inherent time lags in the hydraulic brake system of the vehicle.

4,094,557
COMBINATION LOW GROUND PRESSURE, LOW TURNING RESISTANCE AND SELF-CLEANING TRACK
Larry E. Miller, Bettendorf, Iown, assignor to J. I. Case Com pany, Racine, Wis.
cine, Wis.
Filed Oct. 18, 1976, Ser. No. 733,521
U.S. C. \({ }^{305-54}\)

Int. C1. \({ }^{2}\) B62D \(55 / 28\)

1. A combination low ground pressure, low turning resis tance, and self-cleaning shoe for an articulated endless track used on track-type vehicles comprising:
a body having a sloping forward surface and a sloping rearward surface, each said forward and rea
substantially converging toward the other;
a traction lug projecting from said body between said for a traction lug projecting irom said body between said for-
ward and rearward surfaces and terminating at opposit ward and rearward surfaces and terminating at opposite
ends at locations spaced from opposite ends of said body and
a high-flotation bearing surface on each end of said body between said forward and rearward surfaces, each said bearing surface having a portion adjacent to, and of the same wing as said lug and each said bearing surface
increasing in width with increasing distance from said lug toward an adjacent end of said body each of said bearing surfaces sloping away from said lug toward the adjacent surfaces sloping a
end of said body.

LOCKING NUT ASSEMBLY WITH DEFORMABLE LOCKING NUT ASSEMBLY SLEEVE
David Wayne Christiansen, Kennewick, Wash., assignor to The Babcock \& Wilcox Company, New York, N.Y. Filed Aug. 24, 1976, Ser. No.
U.S. Cl. 308-3 R \(\quad\) R 4 Claims 1. A locking nut assembly for attachment of a threaded element with at least one channel to a support member comprising: a nut for engagement with the threaded element, the
for insertion within the nut, the sleeve being formed with at least one prong in parallel alignment with the channel of the
threaded element, the prong being formed with a foot adapted threaded element, the prong being formed with a foot adapted

therebetween, and at least one portion of the inserted locking sleeve being deformed to fill the opening of the nut to restrain relative movement of the nut with respect to the threaded element.

FLANGED BEARING CARTRIDGE Ronald S. Slusarski, Berlin, Conn., assignor to Textron Inc.,
Providence, R.I. Providence, R.I.
iled Dec. 30, 1976, Ser. No. 755,655
U.S. CI. 308-194 \({ }^{\text {Int. Cl. }{ }^{2} \text { F16C 23/08, 35/06 }} 8\) Claims

1. A sintered compacted powdered steel bearing flan ousing, said housing comprising,
bearing mounting means in the form of a circular bore having a continuous inner wall of predetermined axial thickness located centrally of said sintered housing and passing id continuous inner of said housing
groove machined along its periphery for receiving an annular antifriction bearing assembly having inner and outer rings with a complement of bearing balls held therebetween, said outer ring being shaped for spherically mating with said spherical groove,
end flange means extending radially from said circular bore of said flange housing,
said end flange means being substantially flat and each having bolt-receiving holes therein, each located centrally along a line passing diametrically across said circular bore,
and a pair of diametrically oppositely disposed axial-access
slots located on said inner wall and extending partially axially into said circular bore and merging with the spheri-cally-shaped groove of said inner wall
each of said slots having a bevelled bottom shoulder formed by compaction,
the width of said slots being sufficient to enable the axial insertion of said annular antifriction bearing assembly across its diameter therein into said bore, such that when said bearing is inserted into said slots and rotated about its diameter, said annular bearing assembly is caused to fit snugly into the spherical groove of said steel composition and having a sintered density ranging
from about 80 to \(92 \%\) of the theoretical density of said steel composition,
said steel composition consisting essentially by weight of up to about \(6 \% \mathrm{Ni}\), up to about \(3 \% \mathrm{Cu}\), up to about \(2 \%\)
Mn and/or silicon, about 0.2 to \(1.2 \% \mathrm{C}\) and the balance at least about \(90 \%\) iron and any residuals normally present in steel,
said sintered hous
said sintered housing when employed in a flanged bearing cartridge being characterized by a metallographic
structure of pearlite by impoved resistance to wear at the machined spherically shaped groove, and by im proved strength properties and ductility as compared to a cast iron bearing housing.
5. A flanged bearing cartridge capable of self-alignment
hich comprises,
having a bearing mourdered steel bearing flange housing ore having a continung means in the form of a circular axial thickness located centrally wall of predetermined ing axially through the plane of said housing and passing axially through the plane of said housing,
said continuous inner wall having a spherical
groove machined along its periphery and a pair of groove machined along its periphery and a pair of
diametrically disposed axial-access slots located on saic inner wall and extending partially axially into said cir-
cular bore and merging with the spherically shaped cular bore and merging with the spherically shaped
groove of said inner wall, the width of said slots being groove of said inner wall, the width of said slots being
sufficient to enable the axial insertion and mounting o an annular antifriction bearing assembly into said bore in spherical mating relationship with said spherically shaped groove,
each of said slots having a bevelled bottom shoulder dormed by compaction, bore,
said bearing comprising inner and outer bearing rings with a complement of bearing elements supported therebeface in spherical mating rela a spherically shaped surgroove of said bore in said flange, position powdered flange being formed of a steel com position and having a sintered density ranging from abou tion,
tion,
said sted
to about \(6 \%\) sition consisting essentially by weight of \(u p\) to about \(6 \% \mathrm{Ni}\), up to about \(3 \% \mathrm{Cu}\), up to about \(2 \% \mathrm{Mn}\) about \(90 \%\) iron and any residuals normally present in steel,
said sintered housing in said bearing cartridge being ct:ir acterized by a metallographic structure of pearlite, by mproved resistance to wear at the machined spheri cally shaped groove, and by improved strength proper thes asing.

\section*{4,094,560}

V-GROOVE ROLLING CONTACT ROLLER BEARING Earl W. Trant, 8040 Palm Lake Dr., Orlando, Fla. 32811 Division of Ser. No. 511,237, Oct. 2, 1974, Pat. No. 3,989,32 This application Jul, 16, 1976 , Ser. No. 705,953
Int. Cl. \({ }^{2}\) F16C \(33 / 51\)
U.S. Cl. \(308-206\) Int. Cl. \({ }^{2}\) F16C 33/51
ct roller bearing comprising
1 Claim
an inner bearing race,
only one retainer race,
said inner beaaring race and said retainer race being circular and coaxial
said retainer race being located radially outwards of said an outer bearing race,
said outer bearing race being circular, coaxial with said inner race and said retainer race, and free to rotate relative thereto,
first rotating means,
said first rotating means comprising rollers,
said rollers each including a V-grooved portion at one end second rotating means, said balls being alternately interposed between said V .

grooves and in rolling contact therewith and with said retainer race, so as to prevent said rollers from contacting each other
making only one contact with said retainer race,
said rollers being in rolling contact with said inner race and with said outer race, so as to transfer loads therebetween.

WIPING ENCLOSURE
WIRING ENCLOSURE FOR DESKS
Douglas F. Wolff; Harold N. Minick, and Jay J. Reinhart, all of Marshall, Mich., assignors to Harter Corporation, Sturgis, Mich.

Filed Jun. 20, 1977, Ser. No. 808,188
Int. C1. \({ }^{2}\) A47B 77/08; H01R \(13 / 60\)
U.S. C. \({ }^{312-223}\)
1. An elongated tubular integral wiring enclosure adapted for mounting at and extending above the rear of a desk top comprising walls forming an upper longitudinal compartment having a front wall, a longitucinal access slot formed in said front wall with an angular attaching flange along its lower
edge for attachment to the desk top, walls forming a lower come for atachment to the desk top, walls forming a lower flexible wiper strip secured to the upper edge of said access slot and extending downwardly and forwardly over said attaching flange to conceal the same and to contact the desk top surface.

TRUCK BODY DOOR ASSEMBLY Irven R. Wilhelmsen, 6359 Dominica St., Cypress, Calif. 90630 Filed Sep. 29, 1975, Ser. No. 617,314
U.S. Cl. 312-290
1. In combination:

2 Claims
door assembly including a wall frame having a rectangular opening and a door supported on said frame to swing
downward about the lower downward about the lower edge of said opening;
a tool tray extending horizontally inwardly from the upper edge of said wall frame
key-lockable manually operable latch means mounted in said door for holding said door in opening covering position
said door, when unlocked, being swingable downwardly

and
and
closing relation with said opening lock said cover in closing relation with said tool tray, to automatically responsive to the opening of said door to release said cover permitting access simultaneously to said tray and to said door opening.

METHOD OF FABRICATING AN ELECTRON TUBE Rober A. Simms, Horseheads, and Gene R. Feaster, Elmira,
both of N.Y., ussignors to Westinghouse Electric Corp., Pittsburgh, P. burgh, Pa. Flled Aug. 9, 1967, Ser. No. 660,875 U.S. CI. \(316-19\)

1. A method of fabricating an electron discharge device including the steps of providing a first chamber portion having a first penetrable portion disposed between the interior an exterior thereoi, forming an electrode within said first chambe penetrable portion disposed between the interior and exterior thereof, forming a portion of said electron discharge device to
be associated with said electrode, connecting said first and
second chamber portions to form a third chamber portion therebetween, penetrating said first and second penetrable
members and moving said electrode and said portion of said electron discharge device together so that said portion of said electron discharge device and said electrode may be assembled to form an evacuated electron discharge device with said first and second penetrable portion exterior of said electron dis-
charge device. charge device.

MULTIPLE CONDUCTOR EL, 4
MULTIPLE CONDUCTOR ELECTRICAL CONNECTOR WITH GROUND BUS
\[
\begin{aligned}
& \text { nto J. Cacolicl, Mentor, Ohlo, } \\
& \text { Incorporated, Paninestille, Ohio }
\end{aligned}
\]

Filed Mar. 17, 1977, Ser. No. 778,580
U.S. CI. 339-14 L Int. Cl. \({ }^{2}\) H01R 3/06 22 Claims
tor cable termination assembly comprising a multiconductor cable, a plurality of contacts connected electrically to
respective conductors of said cable, bus means for electrically respecting respective conductors of said cable, and dielectric
connecting body means for holding together said contacts, said bus means, and said cable, said body means including carrier means molded directly about and to said contacts for holding the same in a fixed pattern, said carrier means also including fur-
ther means for holding said bus means thereto in electrical isolation from at least one of said contacts.

\section*{4,094,565}

SAFETY ELECTRIC CONNECTOR
Andre Parrier; Jean Parrier, and Henri Parrier, all of rue de la Sabliere, St. Genis les Ollieres (Rhone), France Cluims priority, application France. Dec. 12, 1975, 7539398 U.S. C. 339-14 P

10 Claims 1. A terminal cocric connector comprising a socket wherein ach terminal comprises at least one conductive tubular part connectable to an electric supply; a conductive pin slidably mounted inside each tubular part, said conductive pin being
connected to an earth terminal, each conductive pin further
being disposed inside an insulating sheath while the wires of the socket are connected to a fault detecting apparatus; and an

insulating moulding encapsulating said at least one tubular part.
when in said functional position and being spaced from a
onductor extending across said surface when in said conductor extending across said surface when in said non-functional position,
selected ground conductor receiving members being in alignment with said conductor-receiving portions of said
contact terminals, and at least one ground conductor receiving member being located between each two adjacent contact terminals whereby, signal conductors in said cable can be connected to said contact terminals by placing said selected ground conductor-receiving members in said non-functional positions and moving said signal conductors laterally of their axis and into said conductorductors can be commonly connected to said commoning conductor means by moving said ground conductors into said ground conductor receiving members, and said commoning conductor means can be electrically connected to one of said terminals by moving one of said ground conductors into one of said selected ground conductor receiv-
ing members and into the conductor receiving portion of the one terminal which is in alignment with said one selected ground conductor receiving member.

CONNECTOR HAVING W,04,566 LOCATING MEANS Frank Peter Dola, Port Richey, and Frederick William Rossler Jr., New Port Richey, both of Fla, assignors to A
porated, Harrisburg, Pa. Filed Feb. 18, 1977, Ser. No. 770 Int. Cl. \({ }^{2}\) H01R 3/06

34 Claims

U.S. C. 339-15

13 Claims

1. A mutli-contact electrical connector which is intended for 1. A mutii-contact electrical connector whe thithi-conductor cable of the type comprising a plurality of signal conductors and a
ductors, said connector comprising:
a connector housing, said housing having a mating end, a rearward end, and a laterally facing side which ext
between said mating end and said rearward end, between said mating end and said rearward end,
a plurality of contact terminals in said housing, each of terminals having a contact portion and a wire-receivin portion which receives a wire upon movement of said
wire laterally of its axis towards said side wire laterally of its axis towards said side and into said wire-receiving portion, said terminals being arranged in
side-by-side relationship on said side of said housing in a side-by-side relationship on said side of said housing in
row with said contact portions adjacent to said mating end and with said wire-receiving portions between said ends. a commoning conductor means on said laterally facing side extending across said side of said housing proximate to
said rearward end, a plurality of ground conductor receiv said rearward end, a plurality of ground conductor receiv-
ing members on said commoning conductor means, said ground conductor receiving members each having a func tional position and a non-functional position, said ground conductor receiving members being effective to receiv
1. A quick connect-disconnect coupling for simultaneously connecting and disconnecting fluid conduits and the ends of an electrical conductor comprising a combination, a socket at-
tached to one of said fluid conduits, a wall across said socket; a first electrical connector element supported by said wall; a fluid plug attached to the other of said fluid cond by said wall; a having a second electrical connector element disposed within and circumvallated by the leading end portion thereof, said leading end portion being dimensioned to fit within said socket and for telescoping movement with respect to said first electrical connector element to establish electric connection, means for holding said plug in said socket and means for directing a flow of fluid around said wall and through said plug to connect said conduits in fluid communication with each other including a manually operable valve member selectively movable between an open condition and a closed condition when said plug
and socket are in the connected condition, said valve member being effective to prevent fluid flow around said wall when said valve member is in the closed condition and block fluid flow between said conduits, said valve member being effective to allow fluid to flow around said wall when said valve is in the

4,094,568
ELECTRICAL CROSSOVER AND TEST CONNECTORS Laurence Saul Lee, New Hartford, and Joseph Phillip Roback, Utica, Noth.
Conca, N.Y This application Sep. 26, 1977, Ser. No. 836,190 U.S. C. 339-17 LM Int. C. \({ }^{2}\) H05K 1/07 2 Claims

1. A circuit board connection assembly, comprising. a first circuit board 12 having a first margin along which ar fixed a first pluraity of spaced apart contacts;
a second circuit board 14 having a second margin along
which are fixed a second plurality of spaced apart
means 13 fixing said first and second boards together in a spaced apart, parallel relationship with said first and second margins adjacent each other;
a receptacle body having
a first portion interlocked with said first and second boards,
a second portion having a first a fecond face, said first face being adjacent said boards and said second face being remote from said boards,
first plurality of transverse bores, each extending between said faces and having a progressive enlargement onto saic second face, disposed alternately in an upper and a lowe row, parallel to each other, and adjacent said first margin row, parairet board,
a second plurality of transverse bores, each extending between said faces and having a progressive enlargement onto said first face, disposed alternately in an upper and a
lower row, parallel to each other, and adjacent said second margin of said second board
said upper rows being spaced apart by a given distance,
said lower rows being spaced apart by said given distance, first plurality of contact elements 20 , each disposed in a
respective one of said upper and lower rows of said first plurality of bores, each contact element having a female portion disposed in said respective bore but not in said progressive enlargement thereof, and having a lead por-
tion 16 extending from said respective bore through said tion 16 extending froctive one of said first contacts of said
first face to a respect first board,
a second plurality of contact elements, each disposed in respective one of said upper and lower rows of said second plurality of bores, each contact element having a said progressive enlargement thereof, and having a lead portion extending from said respective bore through said irst face to a respective one of said second contacts of said second board,
cross-over connector body 24 having
a first face and a second face, said first face disposed adjacent said second face of said connector body and said second face remote therefrom,
a first plurality of transverse bores extending inwardly and having a progressive decrement from said second face of
said connector body, disposed alternately in an upper and a lower row, parallel to each other,
second plurality of transverse bores extending inwardly of said connector body, disposed alternately in an upper and a lower row, parallel to each other,
a third plurality of contact elements each communicating with a respective one of said upper and lower rows of said first plurality of bores of said connector body and passing through said first face of said connector body and through said second face of said receptacte bortion of a respective one of said first plurality of contact portents of said receptacle body,
a fourth plurality of contact elements, each communicating with a respective one of said upper and lower rows of said second plurality of bores of said connector body and passing through said first face of saic concle body into the female portion of a respective one of said second plurality of contact elements of said receptacle body,
said third and fourth pluralities of contact elements thereby forming an array of rows and columns wherein each column contains two contact elements,
a plurality of conductive elements 27 disposed within said connector body in predecermined ones,
columns, electrically connecting the respective third contact element of said one column with the respective fourth contact element of said one column

4,094,569
SAFETY CAP SLIDE
Ernest W. Dietz, Torrance, Calif, assignor to Pacific Elec-
tricord Company, Gardena, Calif.
tricord Company, Gardena, Calif.
Flled May 9, 1977, Ser. No. 794,845
Int. C1. \({ }^{2}\) H01R 13/44
U.S. C. 339-40

1. An electrical connector for receiving a prong type connector plug comprising:
a body bearing, on at least one of its faces, juxtapositioned, prong-receptacle means to receive a plurality of said connector plugs;
contactor strips carried internally of said body for electrical contact with prongs placed in said prong reeptactes: a plurality of protective plates, each overlying a respect a plurality of protective plates, each overlying a respective
face area inclusive of a respective receptacle means and face area inclusive of a respective recep
bearing prong-receiving aperture means;
attachment means comprising dependent brackets projecting from the undersurface of said protective plates inwardly into face-central apertures in said body in sliding relationship therein between aligned and misaligned position ot means in said body receptacles
 beneath and between adjacent face areas; and
resilient means for each adjacent pair of face areas comprising a spring having a central section received in said slot means and distal \(S\)-bowed sections, each resiliently biasin against the center of a respective brack tive plate into its misaligned position.

4,094,570
Ruy F. M. de Barros, Woluwe-St-Lambert, Belgium, assignor to Ruy F. M. de Barros, Woluwe-St-Lambert, Belgium, assignor to
Societe Anonyme belge d'exploitation de la navigation aerienne (SABENA), Belgium
Flied Mar. 11, 1977, Ser. No. 776,781
Claims priority, application Belgium, Nov. 19, 1976, 172530 U.S. Cl. \(339-75 \mathrm{M}\) Int. Cl. \({ }^{2}\) H01R \(13 / 62 \quad 11\) Clsim

said resilient tongue beeing in position to contact a grounding pad connector when received in the shoe.
1. An electric connector comprising first and second suppo means having an elongated shape, first and second sets of contact means arranged in at least one layer extending in port means, each contact means of each set being fixed at one end of a flexible strip having its other end fixed to the respective support means, each strip extending transversely to the lengthwise direction of the support means, each strip being arranged to allow it to bend in the plane of the respective laye arranged to be in an alternating relationship and insulated one from the other when the two sets are engaged one into the other, said contact means having an insulating element such that each contact means of one set electrically cooperates with one contact means of the other set; at least one pressure means
on the first support means extending transversely to the length wise direction of the support means, said pressure means having at least one face oblique to the lengthwise direction of the support means; and at least one blocking means on the second support means and being mounted for longitudinal movemen relative to said second support means, said blocking means
having at least one surface arranged to cooperate with the said having at least one surface arranged to cooperate with the said uous alternate contact means when the two sets of contact means engage one into the other so that transverse mating engagement of one support means with the other produces pressure in the lengthwise direction of the support means and against said contact means to cause said contact means on the together in vibration-free relation.

MULTI-WIRE EL 4,094,572 MEMBER MEMBER HAVING A MULTI-WIRE MATRIX OF
INSULATED WIRES MECHANICALLY TERMINATED THEREON Robert Page Burr, Huntington; Ronald Morino, Sea Clifr, and
Raymond J. Keogh, Huntington, all of N.Y., asesigors to Kollmorgen Technologies Inc
ivision of Ser. No. 604,204, Ang. 13, 1975, Pat. No. 4,065,850. This application Jan. 24, 1977, Ser. No. 762,118 U.S. C. 339—97 P

1. A multi-wire electrical interconnection circuit member, mprising:
a multi-wire matrix including insulated wires; and wire-retaining members having a body portion affixed to said circuit member, said body portion having a pin poranered entrant portion adjacent said circuit member, a cuit member and a slotted portion extending downwardly in said body from saide tapered entrant portion and away from said pin, said slotted portion including side wall dges for applying an insulation penetration force to the gas-tight electrical connection therewith.
U.S. C. 339-91 R 1. A grounding cable clip comprising a power plate and each other, said shoe having an upstanding tab portion, said

CIRCUIT BOARD EDGE CONNECTOR Arrin L. Langham, Canoga Park, Calif,, accignor to Elfab Cor poration, Dallas, Tex.
Filed Aug. 1, 1973, Ser. No. 384,776 U.S. Cl. 339-176 MP

1. An edge connector for a circuit board comprising: a plurality of contact terminals each having a contact head, each of said contact heads including a loop portion; an insulative housing comprising a shell having oppositely disposed outer each of said walls forming cavity means between said member and each respective outer wall, the bottom of each of said cavity means being open, said member having an upper surface portion facing upwardly into each of said cavity means, said sheard for insertion along a predetermined axis so that said contact heads establish electrical contact to respective portions on such circuit board, said upper surface portion being substanially normal to said predetermined axis; and mounting mean fixedly positioning each respective contact terminal with re-
spect to the bottom surface of said shell; each of said loop portions continuously engaging an edge of the upper surface
portion of said member for all operational conditions of the portion of said member for all operational conditions of the connector to bias said housing against said mounting means.

4,094,574
COAXIAL CABLE CONNECTOR DEVICE AND METHOD OF MANUFACTURE THEREOF Thomes L. Gunn, P.O. Box 246, Bonaparte, Iowa 52620 Filed Dec. 27, 1976, Ser. No. 754,407 U.S. CI. 339-177 E

6 Claims

1. In a coaxial cable having a center conductor, an insulatin sleeve surrounding the center conductor, and a tubular con ductor surrounding the sleeve, connector, means on at least on end of the cable comprising different conductive elementar conductor and moldable plastic electrical insulating material in the form of body means molded in situ on the end of said cable and in engagement with said conductive elements thereon fo
rial holding said conductive elements in spaced electrically insulated relation on the end of the cable; said conductiv
clements include a socket-like first element electrically engag ing the center conductor, a second element having an aperture to receive the insulating sleeve, and when mounted on the sleeve electrically engaging the tubular conductor, said body means of plastic material closely surrounding the cable on both sides of said second element and engaging both of said first and port the elements in spaced electrically insulated relation, said second element having reduced diameter portions extending therefrom from both ends, each said portion being imbedded in and interlocked with said body means of plastic insulating material.

HOLOGRAPHIC ARTICLE AND PROCESS FOR Holographi article and Truman F. Kellie, North St. Psul, Minn., assignor to Minnesota Truman F. Kelire, North S. Paul, Minn.,
Mining and Manufacturing Company, St. Paul, Minn. Filed Apr. 30, 1976, Ser. No. 682,090
Int. C.2. \({ }^{2}\) G02B 27/00 518 . U.S. CI. \({ }^{350} 3.67\)

1. A hologram comprising a sheet material having a permanent, optically detectable pattern which includes at least one linear grating, which grating has a preselected spatial fre-
quency and results from the interference fringe field produced quency and results from the interference fringe field produced wavelength passing through an optical transparency in substantial contact with a photosensitive medium to impart a holographic image of said transparency in said medium, which medium is then further processed to provide said sheet material with said permanent pattern containing said holographic im-
age, characterized by the feature that the grating is formed by two intersecting coherent light beams which are directed along non-colinear paths to pass through spatial filters and thence directly impinge onto said optical transparency at equal angles of incidence with respect to the plane of the transparency at he poifacts such as are produced by lens aberrations or dust.
\[
4,094,576
\]

STRAIGHT-LINE OPTICAL SCANNER USING ROTATING HOLOGRAMS Gerald Michael Helling, Pine Island, Minn, assignor to Internatonal Business Machines Corporation, Armonk, N.Y.
Continuation-in-part of Ser. No. 673,183, Apr. 2,1976, Continuation-in-part of Ser. No. 673,183, Apr. 2, 1976,
chandoned. This application Apr. 25, 1977, Ser. No. 790,

U.S. C. \(350-3.71\)
1. A method for producing straight-line optical scan-pat-
16 Clims terns, comprising the steps of:
(a) projecting a collimated coherent optical reference beam onto an area of a sensitized medium; a first cylindrical lens having a first focal line extending in
a first direction in an object plane, so as to produce an optical interference pattern in said area;
(c) developing said medium, so as to fix said interference pattern in said area;
(d) projecting a collimated coherent reconstruction beam onto said medium, so as to generate a reconstructed beam
converging toward a line image in said object plane;

(c) transmitting said reconstructed beam through a second cylindrical lens having a second focal line extending in a second direction in said object plane; and
(f) imparting rotary relative motion between said medium and said reconstruction beam.

HIGH-RESOLUTION 4,094,577
HIGH-RESOLUTION, WIDE-FIELD HOLOGRAPHIC
Erich Spits, and Guy Bismuth, bo
to Thomson-CSF, Paris, France
Continuation of Ser. No. 43,502 , Feb. 15 , 1021 , which is a contil abandoned. This application Jun. 28, 1976, Ser. No. 700,182 Climes priority, application France, Apr. 13, 1971, 71.12966

1. Holographic lens for optically conjugating a plurality of first elementary surfaces and an equal number of second ele--
mentary surfaces with aberrations less than a predetermined mentary surfaces with aberrations less than a predetermined limiting value using the angular selection properties caused by Bragg effect of 3 -dimensional network;
said lens being constituted by a thick plate of photosensitive
said plate comprising as many
networks made of recorded intimposed 3 -dimensional within the volume of said materference fringes mixed elementary surfaces;
each said network constituing a 3-diment elementary lens, each said elementary lens field of view bieng restricted by said angular selection properties:
bieng restricted by sald angular selection properties;
gating a single said first elementary surface and a single said second elementary surface;
the respective centers of said first elementary surface, said
second elementary surface and said holographic lens bein substantially aligned along a straight line; and
said plate thickness restricting each said elementary lens
field of view to the value for which said aberrations are at most equal to said limiting value.

\section*{4,094,578}

OPTICAL EQUALIZER FOR SIGNAL-TRANSMISSION SYSTEM USING MULTIMODE LIGHT GUIDES Pietro DiVita, Turin, and Riccardo Vannucel, Rome, both of traly, assignors to CSELT - Centro Studi e Laboratori Telecomunicazioni S.P.A., Turin, Italy
Filed Feb. 18, 1977, Ser. No. 770,232 Filed Feb. 18, 1977, Ser. No. 770,232
Claims priority, application Italy, Feb. 19, 1976, 67380 A/76 U.S. Cl. \(350-96.15{ }^{\text {Int. C. }{ }^{2} \text { G02B } 5 / 14}\)
a first and a second light guide with internally reflecting boundaries respectively connected to a transmitter and a receiver of luminous signals, said light guides having
proximal ends respectively emitting and collecting bundles of light rays with axes angularly intersecting in a common plane, each bundle being bounded by a pair of limiting rays on opposite sides of the respective axis; and a mirror confronting said proximal ends for reflecting light rays from said first light guide to said second light guide,
said mirror having a cross-section in said common plane in the shape of a segment of an ellipse whose foci are the center points of said proximal ends within said common plane, said segment extending between the intersection of the axis of said first light guide with the position of a limiting ray of said second light guide and the intersection of the axis of said second light guide with the position of a limiting ray of said first light guide.

MULTIMODE OPTICAL W, 4
MULTIMODE OPTICAL WAVEGUIDE DEVICE WITH ELECTRO-OPTIC PLANAR WAVEGUIDE Donald H. McMahon, Carlisle, and Arthur R. Nelson, Stom, both of Mass., assignors to Sperry Rand Corporation, New Filed Sep. 13, 1976, Ser. No. 722,898
Int. Cl. \({ }^{\text {G }}\) G02B 5/14
U.S. C. \(350-96.17\)

1. An optical waveguide device comprising a planar optic waveguide having an index of refraction \(n_{1}\)
and an end region whereat light energy is coupled for guidance therein; a fiber optic waveguide with core diameter \(W_{2}\) and an index of refraction \(n_{2}\) butt coupled to said end region of said an angle \(\theta_{2}\), other than zero, with a perpendicular to said end region such that light energy propagating in said fiber optic waveguide is coupled to said planar optic waveguide within a region \(W_{\text {, thereby accomplishing a magnificatio }}\)
\(\boldsymbol{M}_{\boldsymbol{W}}=\boldsymbol{W}_{1} / \boldsymbol{W}_{2}=\cos \theta_{1} / \cos \theta_{2}\)
and a divergence magnification \(M_{D}\) that is given by
\(M_{D}=\left(n_{2} / n_{n}\right)\left(1 / M_{\psi}\right)\)
where \(\theta\) is the angle
where \(\theta_{1}\) is the angle made by the propagation path, in said planar optic waveguide with said
end region and is determined from
\(n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}\)

\section*{4,094,580}

HERMAPHRODITE OPTICAL FIBER CONNECTOR John Stone Cook, Rumson, and Carl Ragnar Sandahl, Morristown, both of N.J., assignors to
Incorporated, Murray Hill, N.J.

Filed Dec. 27, 1976, Ser. No. 754,602
U.S. CI. \(350-96.21\)
shaped
a duplicate connector body disposed within said duplicate housing and having an end portion with three equally circumferentially spaced radially extending slots therein,
a second portion of said duplicate connector body adjacent to the end portion thereof having an aperture running axially therethroug cross section,
second portion thereof having an axially aligned aperture with a truncated conical cross section,
three substantially identical cylindrical inner rods partly disposed within the triangular cross sectioned aperture in
said duplicate connector body, said inner rods being thereby held in tangential contact with each other so that they form a holding channel,
an optical fiber disposed within the holding channel formed by the latter inner rods, the end of the fiber and ends of the latter inner rods terminating in a planar surface substantially perpendicular to the longitudinal axis of the fiber,
three substantially identical cylindrical outer rods interference fitted in said duplicate connector body slots with the ends of said outer rods extending beyond said planar surface to protect the end of the fiber, the diameter of the latter outer rods being substantially greater than the diameter of the latter inner rods, the ends of the latter outer教
of said inner rods being of the same diameter \(D_{\text {D }}\)
said first and duplicate housings being mated by slidably engaging each of said plurality of outer rods so that the interdig acd cargenially contacling outer rods form a six-sided nest containing each of the plurality of inner rods.

4,094,581
ELECTRO-OPTIC MOD, 4 COMPENSATION OF THERMALLY INDUCED
Gary D. Baldwin, Columbia, and Stephen J. Bepko, Cockeys ville, both of Md., assignors to Westinghouse Electric Corp. Pittsburgh, Pa. Jan. 31, 1977, Ser. No. 763,764
Filed Ja
1. A hermaphrodite optical fiber connector comprising: a first housing having a cylindrical opening extending axially a first housing having a cylindrical opening extending axially a connector body disposed within said first housing and having an end portion with three equally
tially spaced radially extending slots therein,
a second portion of said connector body adjacent to said end a second portion of said connector body adjacent to said end portion having an aperlure runing axialy therent
and being of substantially triangular cross section,
a third portion of said connector body adjacent said, second portion having an axially aligned aperture with a truncare substatially identical
three substantially idenical cylindrical inner rods partly
disposed within the triangular cross sectioned aperture disposed within the triangular cross sectioned aperture,
said inner rods being thereby held in tangential contact with each other so that they form a holding channel, an optical fiber disposed within the holding chanunel formed inner rods terminating in a planar surface substantially perpendicular to the longitudinal axis of the fiber, perpendicular to the longiuainal axis of the fiber,
three substantially identical cylindrical outer rods interference fitted in said connector body slots with the ends of said outer rods extending beyond said planar surface to
protect the end of the fiber, the diameter of said outer rods being substantially greater than the diameter of said inner

Int. Cl. \({ }^{2}\) G02F \(1 / 03\)
U.S. C. \(350-150\)

14 Claims
1. A method for modulating radiation which includes compensation for thermally induced birefringence comprising the teps of:
assing monochromatic radiation through a first electro-optic crystal having a predetermined crystalline structure and chemical composition,
passing radiation exiting from said first electro-optic crystal through an optical compensating element having rotatory power,
passing radiation exiting from said optical compensating element through a second electro-optic crystal having prdetermined crystalline structure and chemical composi-
genera
the object side and a negative lens being disposed apart from these two lenses on their axis, the rear sub-group being composed of a positive lens, a negative lens having concave face on the object side; and a positive lens numbered successively from the yiewing end where the curvature is the equivalent focal length of the lens, divided by th surface radius at the optical axis, and
FILTERS
William James Hannan, Concord, Mass,, assignor to RCA Corporation, New York, N.X. Filed Apr. 14, 1977, Ser. No. 787,702
Clasms priority, application United Kingdom, Sep. 28, 1976, 4,094,582
LIQUID CRYSTAL MATRIX DISPLAY DEVICE WITH
awtence Alan Goodman, East Windsor, 40134/76
 U.S. Cl. \(350-162\) SF \({ }^{\text {Int. }}{ }^{2}\)

1. A liquid crystal display device comprising
first set of a plurality of elongated, spaced, parallel elec trodes,
a second set of a plurality of spaced electrodes coplanar with said first set of electrodes,
a third set of a plurality of elongated, spaced parallel electrodes in a plane spaced from lhat of the first and second tially perpendicular to said first set of electrodes, with each of said third electrodes being opposite to at least one of the second electrodes,
a liquid crystal material between the second set of electrodes and the third set of electrodes, and
semiconducting material extending between and contacting
each of the second electrodes and a first electrode and wherein the liquid crystal material extends across an contacts the semiconductor material forming a transistor

\section*{4,094,583}

ACOUSTOOPTIC DEVICE
Yojiro Kondo, and Yoshinori Ohta, both of Tokyo, Japan, as. signors to Nippon Electric Co., Ltd., Tokyo, Japan Claims priority, application Japan, Dec. 11, 1975, 50-147982; Jul. 4, 1975, 50-82480
U.S. Cl. 350-358 Int. C. \({ }^{2}\) G02F 1/28

12 Claims

1. In a color-picture transparency comprised of three supermposed diffractive subtractive filters each corresponding to a different one of three primary subtractive colors, the picture being disposed in substantially registered relationship with each other, the improvement wherein said color picture transparency comprises
a plastic film divided into four side-by-side regions situated between a first outer edge and a second outer edge of said
film with first and second adjacent ones of said four regions located between said first outer edge and a midline gions located beeween said first outer edge and a midine with third and fourth adjacent ones of said four regions
located between said second outer edge and said midline; each one of said three filters being embossed as a relief pattern on the same given side of said film within a differpattern on the same given siue of saids
ent one of three of said four regions;
id film being first folded at the junction of sidd firse second regions to provide that said first outer edge substantially coincides with said midline and said given side of said first region is in face-to-face relationship with said given side of said second region;
said film being second folded the
said film being second folded at the junction of said third and fourth regions to provide that said second outer edge
substantially coincides with said midline and said given substantially coincides with said midaline and saic is
side of said third region is in face-to-face relationship with said given side of said fourth region, and
said film being third folded at said midline to provide that said outer edges are within the interior thereof and that all
three of said filters are superimposed and are substantially three of said filters are superimposed and are substantially in registration with each other.

4,094,585
LOUPE
Elis I. Betensky, Toronto, Canada, assignor to Opcon Associates of Canada, Ltd., Toronto, Canada
Filed Sep. 17, 1976, Ser. No. 724,323 iled Sep. 17, 1976, Ser. No. 724,32
Int. Cl. \({ }^{2}\) G02B 9/10, 25/00
U.S. C. \({ }^{350} \mathbf{- 1 7 5}\) E
1. A magnifier comprising from the viewing 16 Claim 1. In an acoustooptic device, an acoustooptic medium con- positive lens group comprising a singlet element, a second len sisting essentially of a single crystal of \(\mathrm{PbO} \cdot \mathrm{xb}_{2} \mathrm{O}_{5}\) in which group comprising a bi-convex element and a bi-concave elesisting essentialy of a
the mol composition of \(\mathrm{Nb}_{2} \mathrm{O}_{5}\) in said crystal is \(1.5 \leqq x \leqq 3.1\). ment forming a doublet having the overall shape of a meniscus,
having a convex face on the object side.
\(0.2<\mathrm{Cl}<0.75\)

\(1.0<\mathrm{C} 2<1.7\)
\(1.2<\mathrm{C} 3<1.9\)
\(1.0<\mathrm{C} 4<5.0\)
\(1.5<\mathrm{C} 5<3.5\). \(\qquad\)
COMPACT ZOOM LENS
4,094,586
COMPACT ZOOM LENS \(\quad \begin{gathered}\text { 1. A substantially afocal front attachment of variable magni- }\end{gathered}\) asuhisa Sato, Kawampld; SNdaliko Tsuli, Yokohama, and Kat- fication ratio for an optical objective, consisting of a first, a
sumí Tanaka, Tokyo, all of Japan, assignors to Canon Kabusumi Tanike, Toyyo, all of Jon Filed Nov. 1, 1976, Ser. No. 736,941 Claims priority, application Japan, Nor. 5, 1975, 50-133320 U.S. C. \({ }^{350-184}\) Int. Cl. \({ }^{2}\) G02B \(15 / 18\)

10 Claims

AFOCAL FRONT ATTACHMENT FOR ZOOM ATTACHME
Walter Besenmatter, and Trude Muszumanski, both of Vienna, Austria, assignors to Karl Vockenhaber and Raimund Hauser, both of Vienna, Austria
Flied Aug. 10, 1976, Ser. No. 713,222
Cleaims priority, application Austria Aug. 11, 1975, 6231/75 Int. C. \({ }^{2}\) G02B \(15 / 10\)
 other, said first and third lens members being negatively re-
fracting and rigidly interconnected, said second lens member being positively refracting and axially movable with reference to said first and third lens members;
said first lens member \(L_{1}\), said second lens member \(L_{2}\) and said third lens member \(L_{3}\) having radii of curvature \(r_{1}-r_{6}\) hicknesses \(d_{1}-d_{3}\), axial separations \(s_{1}-s_{2}\), refractive indices \(n_{d}\) and Abbe
the following table:
1. A compact zoom lens comprising:
a first lens group which has a positive refractive power and
consists of a positive lens formed by joining a negative a consists of a positive lens formed by joining a negative lens and a positive lens together and a positive meniscus
lens and a positive lens together and a positive menis
lens, the first lens group being movable for focusing; a second lens group which has a negative refractive power
and is disposed in the rear of the first lens group on the axis thereof, the second lens group consisting of a negative lens and another negative lens formed by joining a negative lens and a positive lens tog
being movable for variation;
a third lens group which has a positive refractive power and is disposed in the rear of the second group on the axis thereof, the third group consisting of a positive lens formed by joining a negative lens and a positive lens together, the thirr lens group being mith the second lens group, the locus
sation concurrently with of the movement of the third group being in a concave shape
and mage forming lens group which has a positive refractive first positive meniscus lens component, a second positive me power and is disposed in the rear of the third lens group on niscus lens component, a third negative meniscus lens compoof a front sub-group and a rear sub lens group consisting nent, a fourth negative cemented meniscus doublet lens comgroup having a positive refractive prouer, and being com- positive lens component, in which said large-aperture phot group having a positive refractive power and being com- positive lens component, in which said large-aperture
posed of two positive lenses each having a convex face on graphic lens system has the following numerical data:

wherein reference symbols \(r_{1} r_{2} \ldots r_{13}\) respectively represent radii of curvature of respective surfaces of respective lenses
reference symbols \(d_{1}\), \(d_{2} \ldots d_{12}\) respectively represent thick nesses of respective lenses and airspaces between respective lenses, reference symbols \(n_{1}, n_{2} \ldots n_{7}\) respectively represen
refractive indices of respective lenses, reference symbols \(\nu v, \nu\) refractive indices of respective lenses, reference symbols \(\nu_{1}, \nu_{\nu}\) \(\therefore \nu_{1}\) respectively represent Abbe's numbers of respective
lenses, reference symbol \(f\) represents the focal length of the lens system as a whole, reference symbol \(f_{B}\) represents the back focal length of the lens system.
\[
\begin{aligned}
& \text { DATA VIEWE }
\end{aligned}
\]

George J. Brown, 22 Grandiev Ave., Waterbury, Conn 06708 Filed Mar. 29, 1976, Ser. No. 671,109
Int. Cl. \({ }^{2}\) G09F \(11 / 24 ;\) G02B 27/02; G03B \(21 / 0\) U.S. CI. \(350-241\)

1. The combination comprising a viewer and at least two translucent information sources for positioning in said viewer, each of said information sources having data imprinted thereon
and related to data imprinted on the other of said information sources, at least one of said information sources comprising a and seion gear to said first and second driven means, said first

26 Claims
ransparency, one of said information sources having data imprinted thereon in one translucent color and another of said information sources having information imprinted thereon in another translucent color, said one color and said other color being additive colors, said viewer having a housing, lens means
supported on said housing, means for selective focusing said supported on said housing, means for selective focusing said lens means on each of at least two focal planes located sediaus-
along the optical axis of said lens means and within said housing, one of said focal planes being located between said lens means and the other of said focal planes, said one focal plane being outside of the field of focus of said lens means when said lens means is focused on said other focal plane, means for supporting said one information source in said one focal plane, means for supporting said other information source in said
other focal plane, and means for illuminating said information sources whereby data thereon may be viewed through said lens means.
\(4,094,590\)
ELECTROSTATIC \(\mathbf{D E V I C E}\) FOR GATING ELECTROMAGNETIC RADIATION Charles G. Kalt, Williamstown, Mass., assignor to Delectric Systems International, Inc., , Williamstown, Mass.
Filed Aug. 4, 1976, Ser. No. 711,610 Filed Aug. 4, 1976, Ser. No. 711,6
Int. Cl. \({ }^{\text {G02F }} 1 / 16\)

10 Claims

\section*{}
1. In an electrostatic device for the control of electromagnetic radiation in response to an electrical signal of the class having a fixed and a resilient variable electrode, and an insulaing said variable electrode being fixedly mounted in a portion thereof and extending therefrom to a line of tangency between said fixed and variable electrodes, said variable electrode further extending from said line of tangency away from said fixed electrode, said variable electrode having a bend in the region between said mounting and said line of tangency, said bend between said mounting and said line of tand
being convex toward said fixed electrode.

ELECTRIC DEVICE CONTROLLING THE MOVEMENT OF THE MIRROR IN AN EXTERNAL REARVIEW
Raymond Lafont, Paris, France, assignor to B.S.G. International Limited, Birmingham, England
Filed Jun. 25, 1976, Ser. No. 699,851
Claims priority, appilication France, Jun. 27, 1975, 7520407 U.S. Cl. 350-289 Int. Cl. \({ }^{2}\) G02B 5/08 10 Claims 1. A rear-view mirror assembly comprising a housing, a reflective surface mounted in said housing for movement on irst and second axes of rotation, said first axis of rotation being different to said second axis of rotation, an electrical motor, rotary drive means including a reduction gear coupled to said secerrical motor, first and second driven means for rotating respectively and selector means for selectively coupling said
and second engageable members, each of said first engageable and in engagement with said rotatable member for rotating it to members being constantly connected to said reduction gear circumferentially move said index.

INSTRUMENT BASE FOR OPHTHALMOLOGICAL INSTRUMENTS Andreas Kutscherauer, Oberkochen, and Orwin Müller, Konigsbronn, both of Germa
Oberkochen,
Germany
Fliled Sep. 1, 1976, Ser. No. 719,811 Claims priority, application Germany, Sep. 16, 1975, 7529211 U.S. C. 351-38 5 Claims
and selectively connected to a respective one of said second engageable members by said selector means.

4,094,592
OPHTHALMIC EXAMINATION CHART PROJECTOR Mitsugu Aokd, Tokyo, and Taketoshi Ishibara, Soka, both of Japan, assignors to Tokyo Kogaku Kikai Kabushiki Kaisha, Tokyo, Japan
Flied Jan. 25, 1977, Ser. No. 762,338
Claims priority, application Japan, Feb. 3, 1976, 51-11220[U] S. Cl. 351-30 Int. Cl. \({ }^{2}\) A61B \(3 / 02\)

6 Claims

1. Ophthalmic examination chart projector comprising circular chart carrying disc having a plurality of ophthalm examination charts disposed along a peripheral portion of the disc, a circular mask plate having a plurality of openings whic are peripherally spaced apar from each other, means for suppord rotatably about a horizontal axis, illumination light source means provided at one side of the chart carrying disc and the mask plate, projection lens means provided at the other side of
the chart carrying disc and the mask plate so as to define the chart carrying disc and the with the light source means a projecting optical path which pass through the peripheral portion of the disc, one of said chart carrying disc and said mask plate being in engagement with a first operating member extending co-axially from
said one of the chart carrying disc and the mask plate so that it said one of the chart carrying disc and the mast the of the chart carrying disc and the mask plate being in engagement with a second operating member which is located outside the periphery of said other of the disc and the plate and extending in parallel wh thereby one of the charts on the disc and one of the melmer, whereby one of the charts onthe disc ane optical path openings in the mask plate canst and the second operating members, said projector further including astigmatic index means comprising a rotatable member positioned in said optical path
and having an index, and a third operating member extending and having an index, and a third operating member extending motor; a diaphragm having an aperture of variable size; fade
1. An instrument base for ophthalmological instruments comprising a hollow housing having an upper surface which
serves as a table, said housing having means defining an opening in one side thereof, a guide plate within said housing and therefore beneath said table, at least a portion of said guide plate extending to the outside through the opening, means located within said housing for supporting said guide plate for movement along coordinate axes \(x-y\), and a control arm consmall area of the upper surface of said table.

MOVIE-CAMERA WITH AUTOMATIC FADE-OUT SHUTOFF
Hermann Mayer, Esslingen, and Hans-Friedrich Kiefer, Stuttgart, both of Germany, assignors to Robert Bosch GmbH, Stuttgart, Germany
Claims priority, application Germeny, Apr. 25, 1975, 2518369 U.s. Cl. 352-91 C

1. A movie camera comprising: a film-advance motor; a ource of electricity; switch means between said source and said motor and openable for disconnecting same to stop said means connected to said diaphragm for slowly closing same for
ade out and for slowly opening same for fade in; and circuit means connected between said fade means and said switch means for detecting the aperture size and opening said switch means when said aperture being closed after fade out, wherein phragm for opening and closing same, said circuit means in pluding a damping coil adjacent said drive coil and capable of generating a voltage.

CONTROL MECHANISM FOR THE PULL-DOWN PAWL OF A FILM PROJECTOR
Hans Lieckfeldt, Stuttgart, Germany, assignor to Robert Bosch GmbH, Stuttgart, Germany
Claims priorty, application Germany, Jan. 16, 1976, 2601503 U.S. CI. 352-180

In a control mechanism for the pull-down pawl means of projector for the projection of films with different film fre quencies, a combination comprising support means; a drive axis; a control drum coaxial with said drive wheel and ar ranged for controlling the movement of one end of the pullown pawl means into and out of perforations in a film to be projected; a pluraity of different cam curves extending axially
displaced from each other about the periphery of said control rum; and means connecting said control drum with said driv wheel for rotation with the latter and movable in axial direc ion relative thereto, said drive wheel being formed with a
recess extending in the direction of said axis and dimensioned so that said control drum may be moved in axial direction into and out of said recess.

ANIMATED IMAGE PRESENTATION APPARATUS Adnan Waly, Stamford, Conn., assignor to Izon Corporation Stamford, Conn.
Continuation of Ser. No. 291,589, Sep. 25, 1972, Pat. No. 4,033,686, which is a continuation of Ser. No. 135,996, Apr. 21, 1971, Pat. No. 3,704,068. This application Sep. 8, 1976, Ser. No.
The portion of the term of this patent subsequent to Nov. 28, 1989, has been disclnimed
U.S. C. 353-27 R 3 Claims
1. An animated image presentation apparatus comprising: A. a multiple microrecord on which a plurality of interre lated images are recorded on a reduced scale in a manner
in which each image thereof is dissected into a multiplicity of bits which are dispersed to form an image pattern that is distinct from and interlaced with the image patterns defined by the recordings of the other images;
B. means to support said microrecord in a plane;
B. means to support said microrecord in a plane;
C. a lens matrix disposed in parallel relation to said mia lens matrix disposed in paralilel relation to said mi-
crorecord to project an image pattern in registration
therewith, said matrix being constituted by an array of
ensettes that are dispersed on the matrix to assume posipattern;
D. means to illuminate the registered image pattern;
E. a screen disposed in parallel relation to said matrix to present the recorded images projected by the matrix; and

F. means to index the microrecord relative to the matrix to successively register in a predetermined sequence the array of lensettes for presentation on said screen and at a rate providing an animated display.

METHOD AND APPARATUS FOR PRODUCING COMPOSITE FILM IMAGES FOR IDENTIFICATIO Don L. Cloud, Springfield, Mo., assignor to I.I.C., Inc., Spring-

Filed Sep. 15, 1976, Ser. No. 723,664
int. Cl. \({ }^{2}\) C03B 21/26
24 Claims

1. A viewing device for illuminating and positioning a plurality of superimposed film images comprising
a light source within said housing spaced from said viewing lens,
a plurality of spaced roller pairs positioned about said light source, comprising a series of first rollers and a corre-
sponding series of oppositely spaced second rollers plurality of indicia-bearing roll films each film being cured at one end to a roller of said roller pairs,
guide means to direct each film from one of said first rollers past said light source and onto a corresponding second roller of said roller pair,
ing lens and said ligality of films between said viewing lens and said light source is approximately the same focal plane, and
indestioning control means for winding each of said films independently back and forth between its respective pair of spaced rollers without binding the film comprising only one rotatably external control knob,
an associated internal drive means driven by said external control knob, and
only one external
engage both rollers of the roller for each roller pair to engage both rollers of the roller pair with said drive
means.

4,094,598
MICRO DISPLAY WITH MAGNIFIER
Dewey W. Hodges, 1502 S. Boulder, Tulsa, Okla. 74119 Hodges, 1502 S. Boulder, Tulsa, Okla 741
Filed Jan. 21, 1977, Ser. No. 771,237 U.S. C. 353-76

2 Claims
closely adjacent to one side thereof, for directing ligh from a
station, movement along an endless, closed-loop path including two substantially straight side sections and two arcuate connecting sections at the opposite ends of said side sec-
tions, one of said end sections being located alongside said tions, one of said end sections being located alongside said
slide-projection station for swinging of slides along an slide-projection station our of the slide-projection station, through arcs of approximately ninety degrees and gener ally about an axis defined by said one arcuate section, saic lens having an inner side adjacent said one arcuate section, an outer side remote from upper and lower sides,
for feeding slides along said path and the improverent comprising
means movably supporting said condensing lens on said projector including:
st and second tracks associsted, respectively, with the outer and inner sides of said lens, said first track extending outwardly from said outer side substantially parallel said plane, and said second track extending ourwaraly from said inner side substantially radially of said ar path and being inclined relative to said first track and follower means on said frame for riding on said tracks and guiding the lens for movement thereon to swing the
lens about said outer side as the lens moves along said tracks;
lens-moving means for shifting the lens back and forth along said tracks in timed relation with the feeding of slides normal position in which said lens is closely adjacent the slide-projection station and a retracted position spaced outwardly from said normal position away from said one arcuate section and out of the slide path, including: a rotary crank mechanism having a laten
lected length during each revolution,
connecting rod connected at one end to said crank mechanism and at the other end to said lens, adjacent said outer side, to shift said outer side back and forth along said first track between said positions during each revolution, spring-loaded lost-mation connection between said crank nd means for stoppid outward movement of said lens at said retracted position before the lateral throw of the crank mechanism is complec, thereby to how he lens stationary in the r nd means driving means to produce one revolution of the crank mechanism during each slide change.

1. In a slide projector having
an optical system including an optical axis, a slide-projection station along said axis in a plane substantially perpendicu

MICRO-IMMAGE RECORDS
Adnan Waly, Stamford, Conn., assignor to Izon Corporation,
Adnan Waly, Stur
Stamford, Conn.
Continuation of Ser. No. 291,589, Sep. 25, 1972, Pat. No. 4,033,686, which is a division of Ser. No. 135,996, Apr. 21, 1971 Pat. No. 3,704,068. This application Sep. 23, 1976, Ser. No. 725,997

\section*{The portion of the term of this poter subeauent to Nor. 28 ,}

989, has been disclaimed
U.S. CI. 353-120
U.S. Cl. \(353-120\) Claima plicity of like lensettes in a planar array having parallel optical axes normal to the plane of said matrix, each lensette having a narrow angle of field, a microrecord in which a plurality of pages are recorded in a reduced scale, said microrecord comprising a planar record medium in parallel relation to said
matrix and in close proximity thereto and a plurality of data
sets formed on said medium, each of which is separately read ble, each data set formed on said medium representing reduced scale image of a distinct page having alphanumeric or other intelligence printed thereon and being dissected into multiplicity of data sub-sets equal in number to the number of
lensettes in said array, all of which sub-sets are generated alon corresponding optical axes which are parallel to each other and are normal to the medium, each sub-set constituting and are normal to the medium, each sub-set constituting a
minute portion of the intelligence printed on said page, the

sub-sets which together form a data set being dispersed on said medium according to a predetermined pattern, the dispersed
sub-sets forming the plurality of data sets being interlaced with each other whereby the multiplicity of data sub-sets constitut ing each data set occupies a distinct position on said medium nd is projected for reading when the parallel axes of the da set selected for reading are coincident with the paralleel axes the array of lensettes and each of the sub-sets in the selecte
data set lies within the field of a respective lensette in the array

REPRODUCTION OF PAGED MATERIAL FROM MICROFORM CARDS
Robert George Holliday, Ann Arbor, Mich., assignor to Xerox
Robert George Howis,
Corporation, Stamford, Conn.
Filed Jul., 8, 1977, Ser. No. 814,250
Int. C.2. G03B 27/32, 27/52, 27/42
U.S. CI. 355-26

1. A process for reproducing paged material from micro orm cards, comprising:
(a) photographing a first sequence of paged material to produce a first microform card containing at least some of the pages in said first sequence;
(b) photograping a second sequence of paged material corresponding to the respective reverse sides of said first sequence of pages, to produce a second microform card quence;
(c) aligning each microform card thus produced with spatially-defined test pattern;
(d) while the card is thus aligned, perforating the card;
(e) placing the perforated card in a microfiche holder of office-type microprint copier, the holder having at least
one raised pin per card perforation for securing the card (f) using said copier, reproducing enlarged copies of said first sequence of pages from the microform;
(g) repeating step (i) for said second sequence of pages using the reverse sides of said first sequence enlarged copies as
he copy members for the second sequence of copies, such hat the front and back portions of each resulting duplexed copy are sequentially-numbered pages of the paged mate-
rial; wherein the front and back portions of the copies have image areas which substantially coincide with each other.

MICROFORM CARD ALIGNMENT DEVICE Robert George Holliday, Ann Arbor, Mich., assignor to Xerox Corporation, Stamford, Conn.
Filed Jul. 3, 1977, Ser. No. 814,251

Filed Jul. 3, 1977, Ser. No. 814,25
Int. Cl. \({ }^{2}\) G03B \(27 / 32\) 27/42
U.S. CT. 355-40

1. An apparatus for aligning a series of microform cards with a spatially-defined test pattern, comprising:
a a plate hat least one substantially transparent area beearing a spatially-defined test pattern; and said test patter
(c) optical means proximate said platen for projecting said test pattern and that portion of said microfiche card overlapping thereon onto a viewing surface;
moving said retaining means and thius said microform card relative to said platen and said test pattern; and card is in contact with said retaining means. card is in contact with said retaining means.

\section*{4,094,603}

FLAT FIELD, ROLL FILM TRANSPORT Ben Fowler Evers, 10315 Madrid Way, Spring Valley, Calif. Filed Nor. 22, 1976, Ser. No. 743,782
U.S. CI. 355-64

1. A roll film transport for use with a paper printer or the like, comprising:
(a) a supporting base plate;
b) a supply spool and a take-up spool operatively mounted
(c) an exposure statio
having a film track definucture between said spools and spaced rails to receive the longitudinal edge portions only of a film being processed, and having a mask operatively
positioned slightly above said rails and having a window opening between the rails and dimensioned to expose a (d) means to bend a film sharply downwardly at at least one end of said film track in said exposure station structure immediately outside the exposure area thereof whereby the film is flattened temporarily in a portion thereof in cluding that portion at said window opening; and
(e) means to slip drive said take-up spool and means to advanct he film intermittently to expose succes.
portions of the film in said window opening.
\(4,094,604\)
APPARATUS FOR DETERMINING THE LIGHT ARPMISSIVITY OF FILM FRAMES OR THE LIKE Bernd Payrhammer, and Helmut Treiber, both of Munich, Germany, assignors to Agfa-Gevaert Aktiengesellschaft, Leverkusen, Germany
Claims priority, app U.S. Cl. 355-68 Int. Cl. \({ }^{2}\) G03B \(27 / 78\)
1. Apparatus for determining the light transmissivity of film frames or other originals of the type wherein a central field is
surrounded by a plurality of peripheral fields, comprising means for locating an original in a predetermined plane; means for directing light against one side of the ormiginal in said plane; a pluraility of signal-generating photosensitive elements at the other side of said plane, one for each of said fields; and a diaphragm interposed between said plane and said elements, said the central field of the original in said plane to impinge solely upon the associated element and for coninining light passing impinge solely upon the elements which are associated with the respective peripheral fields as well as upon the elemen which is associated with said central field.

\section*{4,094,605}

APPARATUS FOR PRODUCING IDENTICAL SHEETS
OF MATERIAL HAVING A NUMBER O
Bruno Zumbach, Orpund, Switzerland, assignor to Zumbach Electronic AG, Orpund, Switzerland
Continuation of Ser. No. 535,857, Dec. 23, 1974, abandoned,
which is a divislon of Ser. No. 176,767, Aug. 27, 1971, Pat. No. Claims priority, application Germany, Aug. 31, 1970, 2043121 U.S. Cl. 355-95 \(\mathrm{Int}\). C. \({ }^{2}\) G03B 27/04 9 Claims 1. A photocopying apparatus for producing sheets of mateeach having a number of representations thereon, compris ing rigid support means for fixing a sheet, a reproduction
device and means for the adjustment of the reproduction device in steps for applying representations on said sheet in different places, said reproduction device having a fluoroscopy bell and lifting means for lifting it transversely off said sheet, ancy of a representation can be fitted, said fluoroscopy bell

10 Claims fluoroscopy bell to said sheet and support means respectively if the fluoroscopy bell rests on said sheet and support means respectively, such that the bottom portion of the fluoroscopy bell may closely be applied against said sheet disposed below it substantially rigidly determined by said suspension means.

\section*{XEROGRAPHIC SYSTEM EMPLOYING WAVEGUIDE} ADDRESSING AND MODULATING APPARATUS Don L. Camphausen, Fairport, N.Y., assignor to Xerox Corpora tion, Stamford, Conn.

Filed Nov. 26, 1976, Ser. No. 745,276
U.S. CI. 355-3 R Int. C. \({ }^{2}\) G03G 15/00
including a source of illumination for illuminating said drawing or transparency, and the fluoroscopy bell being connected to a carriage by suspension means substantially rigid in a direction parailel to said sheet but elastic in a direction transversely to means and aid fluornection berween a portion of said liting

1. An imaging system for producing an image responsive to tical input from an original image, the system comprising: (a) a light sensitive imaging surface;
a plurality of individual optical waveguides having light popagating therethrough and impinging said surface, the aves the pres being formed from a material which modu(c) a means to modulate the propagating light in the individ. ual waveguides which comprises a common electrode adjacent to the waveguides, a charge-coupled device positioned to intersect the individual waveguides, the charge-coupled device including an individual electrode adjacent each waveguide opposite the common electrode, and a control means to optically scan an original and to selected ones of the individual electrodes responsive to non-image areas of the original so as to establish an elec-
tric field between each of the selected ones of the individual electrodes and the common electrode.

\section*{4,094,607}

APPARATUS FOR FLAMELESS ATOMIZATION OF A SAMPLE FOR ATOMIC ABSORPTION ANALYSIS Roir Gunther Arnold Tamm, Salem, Germany, assignor to
Bodenseewerk Perkin-Elmer \& Co., GmbH, Uberiligen, Germany

Filed Mar. 21, 1977, Ser. No. 779,559 Claims priority, appilication Germany, Mar. 27, 1976, 2613196
U.S. C. \({ }^{356-85}\)

1. Apparatus for flamesless atomization
atomic absorption analysis comprising:
a sample tube of electrically conductive material, said sample tube having a transverse bore offset axially towards
one end of the tube with respect to the transverse plane;
electrode means including portions in electrical contact with said sample tube at spaced locations for passing an electrical current through the tube to cause heating thereof; and
means for generating an inert gas flow inwardly from the
end opposite said one end of the sample tube and out-
wardly through said transverse bore
wardly through said transverse bore.
4,094,608
SPECTROMETER OF THE ELECTRO-OPTO-ACOUSTIC U.S. Cl. 401-195 Int. Cl. \({ }^{2}\) Ba3K 29/00 TYPE WITH CAPACTTOR-TYPE DETECTION
TYPE WITH CAPACIEROR-TYP DETECTION
Robert A. Young, Chatsworth, Calif., assignor to Xonics, Inc.,
Robert A. Young,
Vin Nuy, Calif.
Nuys, Ciled Oct. 14, 1976, Ser. No. 732,309
U.S. C. \({ }^{\text {Int. }{ }^{356}-97}\)

1. Pen lock apparatus, comprising in combination:
a barrel for receiving a spring biased pen cartridge, including
a first bore in the barrel in which the cartridge is disposed a first shoulder at one end of the barrel, and
an internally threaded portion in the first bore adjacent the shoulder;
a tip secured to the barrel, including
first bore means,
an externally threaded portion for matingly engaging the internally threaded portion of the first bore of the bar-
a third shoulder adjacent the externally threaded portion ing a flat mounting plate having a pair of side legs respectively and disposed against the first shoulder of the barrel insert means movably disposed in the firs?
tip, including
a fourth should
a fourth shoulder disposed against the second shoulder
the first bore means of the tip.
second bore means for receiving the spring biased car-
tridge, including ridge, including a fifth shoulder in the second bore means against which a portion of the spring biased
cartridge is disposed; and cartridge is disposed; and
a wrench for locking and unlocking the tip from the barrel, including
key means secured to the cylindrical portion and insertkey means secured to the cylingrical portion and inserthisd bore means for receiving a portion of the pen cartridge.

4,094,611
SECURING MEANS FOR MACHINE PARTS
John A. Harper, High Wycombe, and Terence V. Williams,
Marlow, both of England, assignors to Austin Hoy and ComMarlow, bo
pany, Ltd.
pany, Ltd.
Claims
\(3694 / 77\)
U.S. C. 403-14

Int. C. \({ }^{2}\) F16B 21/00

1. Means for securing together a first, \(U\)-shaped member and a second member received within the first member, comprising registering bores in the legs in
second member positionable in registration with and of equal cross section to the bores in the first member, at least one recess formed in one of said members to extend transversely from the bore therein, a cross pin having a cross section corresponding with said bores and being of a length equal to or less
than the overall length of said bores in registration, the cross pin being hollow and provided on part of its internal surface with a screw thread, the cross pin also having a transverse bore
extending from its internal to its external surface and adapted extending from its internal to its external surface and adapted for positioning opposite said recess, and a locking pin in fric-
tional force fit engagement with said transverse bore and seated below the external periphery of said cross pin and drivable along the transverse bore to extend into the recess.

TOOL MOUNTING APPARATUS
Adrian H. Krieg, Yorktown Heights, N.Y., \&ssignor to Widder Corporation, Mamaroneck, N.Y.

Filed Jul. 29, 1976, Ser. No. 709,890
Int. Cl. \({ }^{2}\) B23B 39/00, 47/00, 49/00 U.S. C. \(408-92\) 1. Apparatus for supporting a tool relative to a work piece having a curved or irregular circumferential surface, compris-
depending from first and second opposite sides of said plate,
each of said side legs having a substantially identical V-shaped each of said side legs having a substantially identical V-shaped
notch adapted to receive said work piece, the apex of each notch adapted to receive said work piece, the apex of each
notch being adjacent to and positioned substantially at the center of the mounting plate, and means attaching said plate to said work piece comprising a flexible fastener, first means

attaching one end of said fastener to a third side of said plate and second means depending from a fourth side of said plate and adapted to engage the other end of said fastener, said said other end of said fastener toward the bottom of said plate to engage the edges of the notches into tight gripping relationship with the surface of said work piece.

VARIABLE OUTPUT CENTRIFUGAL PUMP Robert L. Bracken, Rockford, III., assignor to Sundstrand Corporation, Rockford, III.

Filed May 7, 1976, Ser. No. 684,335
Int. Cl. \({ }^{2}\) F01B 25/04; F01D 17/08; F04D 29/44

1. A centrifugal pump for receiving fluid at one flow rate and pressure head and discharging the fluid at an increased pressure head including, a housing, a shaf journaled for rotamounted on said shaf for rotation therewith, an inlet chamber within said housing for receiving fluid into said housing and directing said fluid to one end of said impeller, a first diffuser continuously communicating whe whe ofter end portion of said impeller to receive fluid discharged from said impeller, a second diffuser axially spaced from said first diffuser for selec-
tive separate communication with said other end portion of said impeller, said diffusers each being fixed to handle fluid at a specific flow rate for producing a specific pressure head, an outlet passageway between said impeller and said second diffuser, a moveable member telescoped into said housing for
movement between an extended position closing off said pas-
sageway and a retracted position permitting fluid to flow from peripheral groove of the corresponding attachment piece, each said impeller into said second diffuser, and means for biasing pair of adjacent attachment pieces being in substantial abut said member toward one of its positions including a pressure chamber communicating with said member, means for seleciively pressurizing said chamber for moving said member
toward said one position, said means for selectively pressurizing including a passage communicating with one of said inlet chamber and said fluid discharged from said chamber.

\section*{4,094,614 \\ PROPELLLER}

PROPELLER
Torben Munk, Virum, and Nils Oluf Elrenskjold, Kolding, both of Denmark, assignors to Gori-Vaerk A/S, Kolding, Denmerk Filed Nor. 19, 1975, Ser. No. 633,417
Claims priority, application Denmark, Nov. 20, 1974, 6023/74 US. C. \(416-140\) Int. Cl. \({ }^{2}\) B63H 1/20

2 Claims

ment with each other to prevent gases in the vicinity of said blades from contacting the rotor disk.

\section*{4,094,617}

Ltd., Tokyo, Japan
Filed Nov. 3, 1976, Ser. No. 738,203 U.S. C. \({ }^{417-295}\)
1. A propeller such as a ship's propeller or screw and com1. A propeller such as a ship's propeller or screw and com-
prising at least one propeller blade, a propeller dive shaft,
means for mounting said propeller blade on the propeller drive means for mounting said propeller blade on the propeller drive
shaft comprising a hub having a free end secured on the propeller drive shaff, said hub being provided with a central bore in he free end thereof, means defining a pivot axis mounted
within said hub and perpendicular to the axis of the drive shaft comprising a pivot shaft, means pivotally mounting said blade about the inner end of the blade freely about the pivot shaft, said pivot shaft intersecting the longitudinal direction of the blade, abutment means for the blade for limiting the free piv-
otal movement of the blade between two extreme positions at otal movement of the blade between two extreme positions at
either side of the position in which the propeller blade extends substantially perpendicular to the axis of the shaft, said abutment means comprising a pair of abutment members, said abutment members being secured in said bore to serve as abutments for the blades, and means for adjusting one of said abutcentral bore, securing means for removably securing one of said abutment members to said clasp nut, said abutment member secured to said clasp nut having an abutment face for limiting the free pivotal movement of the blade.

BLADE ATTACHMENT STRUCTURE FOR GAS TURBINE ROTOR
Robert G. Glenn, Huntington Valley, Pa., assignor to Electric Filed Dec. 27, 1926, Ser. No. 554,725 U.S. C. 416-215 10 Claims U.S. C. 416-215 Int. Cl. \({ }^{\text {F FO1D }} 5 / 30\)

1. A device which heats and pumps a liquid or slurry, said device comprising:
a. an uprightly disposed pumping cylinder,
b. a heating tower disposed at a higher elevation than said pumping cylinder, said heating tower including, a cylin
drical container and conduits for injecting and disto pressurized steam into a liquid or slurry contained in said cylindrical container,
1. In a turbine rotor: a rotor disk having an outer periphery provided with a number of spaced, axially extending grooves provided with a number of spaced, axially extending grooves;
a plurality of ceramic turbine blades spaced outwardly from said outer periphery; and an attachment piece for each blade, respectively, each attachment piece having a root received within a respective groove of the rotor disk, each attachment piece extending outwardly from said outer periphery for coupling the blades thereto, and having an outer peripheral groove rotor disk, each blade having a root received within the outer
. a first pipe originating from the bottom of said heating tower and terminating at the bottom of said pumping cylinder, said first pipe having a check valve; whereby, a liquid or slurry in said heating tower may flow into said pumping cylinder, but not in reverse direction
bottom of said with a check valve originating from the slurry in said pumping cylinder, whereby, a liquid or through said second pipe but prohibited be pushed ou said pumping second pipe, but prohibited to flow back int said pumping cylinder, ized steam supply line, second port connected to the top of
said pumping cylinder and third port connected to said carbide at least in a sliding surface which is adapted to be conduits for injecting and distributing steam into said brought into sliding engagement with the inner wall of the
cylindrical container of said heating tower, and a valve controller operating said three port valve in such Vickers' scale at the sliding surface, said rotor housing includa way that said third port becomes shut when said first ing a base which is made of an iron-based material having a port is open to said second port, and said first port be-- hardness of not less than 105 in Vickers' scale and provided a
comes shut when said second port is open to said third comes shut when said second port is open to said third
port; whereby, firstly the pressurized steam directed into port; whereby, firstiy the pressurized steam directed into not less than 850 in Vickers' scale, the hardness of the rotor
said pumping cylinder pumps out a liquid or slurry in pumping cylinder through said second pipe and secondly, housing base and that or the chromion-paed regresenting the when the steam directed into said pumping cylinder is bled into said heating tower, a liquid or slurry in said pumping cylinder by the gravity force, said heating tower pumping cylinder by the gravity force, said heating tower
becomes refilled with a fresh liquid or slurry when the steam pressure in said heating tower vanishes as the result of condensation during the period of pumping of the liquid or slurry out of said pumping cylinder by said steam injec

AUTOMOTIVE AIR CONDITIONER COMPRESSOR
Tsunenori Shibuya, Konan, Japan, asslgnor to Diesel Kiki Co Claims priority, appilcation Japan, Nov. 10, 1975, 50/152645

1. A compressor comprising:
a housing provided with an inlet and an outlet;
a housing provided with an inlet and an outlet; a rotor operaiively rotatably supported within the housing
to displace fluid from the inlet to the outlet upon rotation thereof; and
variable occluder means connected to the rotor and operative to occlude the inlet to an extent corresponding to a rotational speed of the rotor, said occluder means comprising a drive member fixed to the rotor, a driven member yieldably connected to the drive member, biasing means urging the driven member in a direction opposite to ber fixed to the driven member and movable thereby into variable occluding relation with the inlet.

ROTARY P1STOTON ENGINES
Kuniaki Kakui, Hiroshima; Toshihiko Shigeta, and Koso Koike, both of Kure, all of Japen, assignors to Toyo Kogyo Co., Ltd.,
Japan Fied Mar. 30, 1977, Ser. No. 782,905 Claims priority, application Japan, Mar. 31, 1976, 51-36385 U.S. C1. 418-178 Iot. Cl. \({ }^{2}\) F01C 21/00

Cum 1. Rotary piston engine comprising a casing which includes rotor housing having a trochoidal inner wall and a pair of side housings secured the apposite substantially polygonal rotor disposed in said cavity for rotation with apex portions in slid ing engagement with the inner wall of the rotor housing, said rotor being proviced which includes 50 to \(75 \%\) in volume of

hardness of the rotor housing base and an abscissa representing the hardness of the chromium-plated layer by a line connecting a first point which corresponds to the base hardness of 180 and the plated layer hardness of 850 and a second point which hardness of 950 , and also by a further line connecting said second point and a third point which corresponds to the base hardness of 105 and the chromium plated layer hardness of 1200, all in Vickers' scale, said region being at a side of the lines
wherein the values of the hardness are greater than those on the lines.

\section*{4,094,619}

APPARATUS FOR STRETCHING AND STRIPPING BELTINC D A MUITIPLATEN PRESS BELTING IN A MULTIPLATEN PRESS United, Inc., Pittsburgh, Pa.
Filed Aug. 20, 1976, Ser. No. 716,329 U.S. C. 425-135 Int. Cl. \({ }^{2}\) B29H 7/22 7 Claims

1. In combination with a three or more movable platen press for processing belting, fed in a continuous manner through openings formed by the platens of the press and having alternate belting portions arranged between said openings, entry nd delivery tensioning devices for the belting comprising: entry clampi said press,
delivery clam
means for moving said entry clamping means to effect a clamping of a portion of the belting fed into said entry clamping means and for moving said entry clamping means,
said entry
said entry and delivery tensioning devices arranged on the entry and delivery sides of the press and including belting supporting means for receiving different portions of the
belting from different openings of the press during said
feeding and for supporting the belting during said tensioning,
means for mounting said belting supporting means relative to said press so as to only be movable in a direction parallel to the movement of said press platens, and
means for selectively moving said belting supporting means
in said direction parallel to said movement of said press platens, in concert with said press platens and independently of said press platens.

APPARATUS FOR THE MANUFACTURE OF HOLLOW BODIES OF A THERMOPLASTIC BY BLOW-MOULDING
Werner Daubenbischel, Bensberg-Refrrth; Alfred Thomas, Dambroich; Dieter Hess, SWistal-Morenhoven, and HansMaechinenban GmbH, Bonn-Holziar, Germany
Claims priority, application Germany, Oct. 3, 1975, 2544171 U.S. CI. \({ }^{425}-140\)

1. Blow-moulding apparatus for the manufacture of hollow 1. Bow-moulding apparatus for the manufacture of homprial said apparatus comprising, in combination:
(a) a screw-extruder for forming a parison;
(b) a receiving station into which said parison is extruded;
(b) a receiving station into which said parison is extruded;
(c) a mould release station spaced from said receiving sta-
tion;
(d) a blow-mould consisting of at least two openable parts, said blow-mould being movable to and fro between said receiving station and said mould release station, the open blow-mould encompassing the parison in the receiving station;
(e) means for detecting when the length of the parison extruded reaches a given length corresponding to the length
(f) control means operable only by said detecting means when the mould is at said receiving station, effective to
close the mould parts on the parison; close the mould parts on the parison;
(g) time-dependent open-loop control means effective to (g) time-dependent open-loop control means effective to
control the movement of the blow-mould, whereby it is in control the movement of the blow-mould, whereby it is in the open position in said receiving station before
length of said parison reaches said given length; and (h) means for controlling the speed of the screw of the screw-extruder with a change of speed proportional to a change of time outside a predetermined range of times at
which the parison reaches said given length, whereby the which the parison reaches said given length, whereby th
time for each mould cycle remains within said range.

DIE CLOSING UNIT \(4,094,621\) OVERIZE INJECTION MOLDING DIE
Karl Hehl, Arthur-Hehl-Str 32, 7298 Lossburg, Germany Division of Ser. No. 640,531, Dec. 15, 1975, Pat. No. 4,025,264 which is a continuation-in-part of Ser. No. 569,886, Apr. 21, 1975, abandoned. This application May 23, 1977, Ser. No. Claims priority, application Germany, Dec. 13, 1974, 2459025 Claims priority, application Germany, Dec. 13,
Int. C1. \({ }^{2}\) B29F \(1 / 00 ;\) B29C \(3 / 02\), U.S. Cl. 425-190
means to generally radially outwardly direct the hardenable foamable material by centrifugal force, the improvement which comprises
a rotatable mandrel affixed generally adjacent the dispensing

\section*{4,094,624}

CENTRIFUGAL CASTING APPARATUS Richard Halm, Silcherstrasse 54, D 7061 Baltmannsweiler Germany Filed Dec. 23, 1976, Ser. No. 753,885 Claims priority, application Germany, Dec. 27, 1975, 2558893 U.S. Cl. 425-434

1. In a die closing unit of an injection molding machine, defining a movement axis and having a stationary die carrie member and a movable die carrier member with opposing
axially oriented mounting faces to which the component parts of a multi-plate injection molding die are removably attachable, which die is thereby closable and openable, as a result of an axial reciprocating movement of the movable die carrie member towards and away from the stationary die carrier
member; in such a die closing unit, the combination compris-
ing:
at least two parallel cylindrical tie rods extending between said stationary and movable die carrier members, the rods being transversely spaced apart;
an equal number of tie rod bores in each of the two die carrier members, the bores in one die carrier membe bores in the other die carrier member form a seating en gagement with end portions of the tie rods, the latter and said other die carrier member defining means for releas
ably connecting the tie rods to said die carrier member; ably connecting the tie rods to said die carrier member;
multi-plate injection molding die having at least one sta-multi-plate injection molding die having at east one sti-
tionary die plate attached to the stationary die carrie member, and at least one movable die plate attached to the movable die carrier member, the die plates having such a extent in the transverse or radial sense that they enclose the tie rods, having tie rod bores engaging the la
to be guided and centered on the tie rods; and
means for forcibly retracting the tie rods from the connected die carrier member, after release of said connecting means, for the removal and insertion of die plates.

\section*{4,094,622}

FOAM DEPOSITION APPARATUS
Hubert Stacy Smith, Jr,, Bay Clty, Mich., assignor to The Dow
Chemical Company, Midarnd, Mich.
Division of Ser. No. 634, whlch is a continuation of Ser. No. 487,073, Jul. 10, 1974, abandoned, whlch is a continuation of Ser. No. 302,840, Nov. 1,
1972, abandoned. This application Oct. 15, 1976, Ser. No. Int. Cl. \({ }^{722}\) B29D 27/04
U.S. Cl. 425-224
U.S. Cl. 425-224 6 Claims 1. In an apparatus for the deposition of hardenable foamable cooperative combination a foam depositing head, the deposit cooperative combination a foam depositing head, the depositing head comprising a frame, the frame having at least first and
second foam restraining means, a drive means operatively sacond foam restrained with said depositing head to advance the depositing
assons head at a desired rate, a means operatively associated with said first and second restraining means to dispense foamable hardenable synthetic resinous material within the first and second
restraining means, the dispensing means having a deflecting
means connected to said mandrel to rotate said mandrel relative to the restraining means, the mandrel being disposed between the first and second restraining means and to contact the hardenable foamable resindening to thereby form a hollow foamed strip having a passageway therein of generally uniform cross section.

DOUGH DISPENSING AND SUPPORT APPARATUS Jecob T. Nelson, 105 W. Lee Rd., Taylora, S.C. 29682 Filed Dec. 27, 1976, Ser. No.
Int. C1.2 \({ }^{2}\) A21C \(5 / 00\)
U.S. Cl. 425-227

14 Claims

1. Dough dispensing apparatus comprising
a dough containing chamber having a dough dispensing
outlet;
rotatable cylindrical molding means carried across said rotatable cylindrical mold
outlet having spaced dough receiving cavities formed outlet having spaced a mass of said dough flowing from
therein for receiving said chamber and dispensing said do
outlet as said dough cavity is rotated;
a stationary disk carried between said space cavities:
an annular peripheral portion of said disk extending substantially coextensively with a peripheral portion of said cylintially coextensively
drical molding means providing a separator wall between said cavities for separating said dough mass between said
dough cavities; dough cavities;
abutment means carried by said disk extending therefrom into engagement with said chamber adjacent said outlet maintaining said disk stationary in relation to
as said cylindrical molding means is rotated.
1. A centrifugal casting apparatus for producing cast articles casting resin comprising the combination of a turntable having an axis of rotation;
means for supporting and rotating said turntable about said \({ }^{\text {axis; }}\)
supply tank having a supply chamber adapted to receive and hold a quantity a supply chamber adapted to receive resin before said turntable is rotated, casting nozzle means for conducting casting resin by
centrifugal force out of said supply chamber when said turntable is rotated and for preventing flow of resin out of said chamber when said turntable is at rest, filler means for receiving casting resin and for conducting said resin into said supply chamber, and
means in said filler means for indicating the degree to
which said supply chamber has been filled with resin which said supply chamber has been filled with resin
before the resin is conducted out of said supply chamber;
means for supplying casting resin to said filler means; and a casting mold on said turntable, said casting mold having means on said casting mold defining an inlet opening
directed toward said casting nozzle on said supply directed toward said casting nozzle on said supply
chamber; said supply chamber being located on said chamber; said supply chamber being located on say
turntable between said axis of rotation and said casting mold,
said supply chamber having a resin capacity substantially equal to the internal volume of said casting mold.

\section*{4,094,625}

METHOD AND DEVICE FOR EVAPORATION AND THERMAL OXIDATION OF LIQUID EFFLUENTS obert Wang, Wissous, and Didier Brun, Saint-Cloud, both of France, assignors to Heurtey Emutherm, Paris, France
 Claims priority, application France, Feb. 28, 1975, 7506303 Int. Cl. \({ }^{2}\) F23M 3/00; F23Q 9/00
1. A. \(431-9\) Chims 1. A method of evaporation and thermal oxidation of liquic effluents in which said effluents are continuously vaporized by a flame, comprising rotating a jet of gaseous oxidizer, introducthe oxidizer-fuel mixture into a chamber in a rotating out-
wardly diversing annular jet and introducing a jet of atomized liquid effluent into said chamber with said jet of atomized liquid effluent being concentric to and geometrically distinct in

the vicinity of the chamber inlet from the rotating jet of oxidiz er-fuel mixture whereby the combustible substances of said
liquid eflluents are evaporated and burned by the jet of ignited mixture within the chamber.

4,094,626
APPARATUS FOR PRODUCING CEMENT CLINKER
Donald S. Boybont, Nazareth, and Jay Warshawsky, Allentown both of Pa., assignors to Fuller Company, Catasauqua, Pa . Filed Nor. 23, 1976, Ser. No. 744,364 Int. C1. \({ }^{2}\) F27B \(15 / 00\)
U.S. CI. 432-58

11 Claims

1. Apparatus for burning
anker comprising: a pair of parallel suspension preheaters, each including
means for supplying hot gases to the bottom thereof for passage upwardly through the suspension preheater and means heater generally countercurrent to the flow of hot gas whereby the cement raw meal is heated by the hot gas; a single calcining furnace having an inlet for combustion gas,
an inlet for heated cement raw meal, means for producing an inlet for heated cement raw meal, means for producing
combustion within the calcining furnace for at least partially calcining the cement raw meal and an outlet for spent calcining furnace combustion gas and the at least partially calcined cement raw meal;
a single separator flow connected to the outlet of the calcining furnace for separating the at least partially calcined
cement raw meal from the spent calcining furnace combustion gas;
means for supplying the separated spent calcining furnace means for supplying the separated spent calcining furnace
combustion gas from said single separator to both of said
parallel suspension preheaters to thereby provide the means for supplying hot gases to the bottom of each suspension preheater;
cement clinkering furnace having an inlet for at least partially calcined raw material, an outlet for cement clinker, means for supplying combustion gas thereto, means for
producing combustion within the cement clinkering furnace and an outlet for spent clinkering furnace combustion \({ }_{\text {geass }}^{\text {gens }}\)
means for supplying at least partially calcined cement raw meal from said single separator to the inlet for at least partially calcined cement raw meal of said clinkering partially calce
furnace; and
means for supplying the spent clinkering furnace combustion gas from said clinkering furnace to said calcining furnace.

\section*{4,094,627}

Clare L. Milton, Jr., 9325 Snowden River Pkwy., Columbla, Md. Continuation of Ser. No. 521,525, Nov. 6, 1974, abandoned, and a continuation-In-part of \(\operatorname{Ser}\) abandoned. This application Sep. 15, 1975, Ser. No. 613,64
Int. Cl. \({ }^{2}\) F27B \(9 / 28\); F23J \(15 / 00\) U.S. C. 432-59 \({ }^{\text {Int. }}\)

21. In an elongated oven having openings at both ends for the introduction and removal of substantially flat sheet material conveyed therethrough, a hot air supply system for introducing hot air into said oven and an exhaust system for hausting hot air therefrom, a sealing system for maintaining the
amount of room air drawn by the exhaust system into said oven amount of room air drawn by the exhaust system into said oven
at a predetermined level, comprising, in combination, a seal at a predetermined level, comprising, in combination, a seal
chamber located adjacent an end of the oven, an air supply system for forcing air into said seal chamber through curtain ir jets located within said chamber and disposed on opposite sides of the sheet material and extending laterally thereacross, aid air jets containing inclined discharge openings to provide, both above and below said sheet, substantially identical cur-
tain-like air streams directed toward said sheet in the direction opposite to the travel thereof, an exhaust means opening hrough the top and bottom of said chamber for exhausting from said chamber air forced therein through said jet means, ants to provide control of leakage into the oven.

\section*{4,094, 628
ROTARY DRUM}

Poul Rasmussen, and Helge Carl Christian Kartman, both of Copenhagen,
Cresskill, N.J.
Filed Jan. 21, 1976, Ser. No. 650,920
Claims priority, application United Kingdom, Jan. 22, 1975, 2842/75 Int. C1. \({ }^{2}\) F27D 15/02; F27B 7/14 U.S. C. 432-80 \(\qquad\) 1. A rotary drum for treating materials comprising: a drum shell having a generally tubular confriguration wall. one or more material treating members, each comprising
unitary member having a circumferential portion which
forms a portion of said wall and a generally radial portin outwardly from said wall; and

means secured to said radial portion for supporting a coole tube or for facilitating the direct advancement of said materials.

\section*{VERTICAL KILN APPARATUS} Eddie Lee Greenawalt, Lake Jackson, Tex., assignor to The Dow Chemical Company, Midiand, Mich.

Filed Feb. 22, 1917, Ser. No. 770,861
Filed Feb. 22, 1771, Ser. No. 170,86
Int. C1. \({ }^{2}\) F27B 9/14; F27D 3/00 U.S. CI. 432-98

1. A vertical kiln apparatus for firing an aggregate material which comprises: a first upright cylindrical shaft defining a wall which has a
bottom end; a second upright cylindrical shaft defind a bottom end;
the second shaft enclosing the first shaft, with the second shaft wall being spaced from the first shaft wall to define an annular kiln chamber between said shaft walls; aggregate material;
a first cone member having a wall with a top end and a bottom end, the first cone wall sloping outwardly and downwardly from the top end, and the first cone wall being joined
shaft wall;
a second cone member having a wall with a top end and a bottom end, the second cone wall sloping inwardly and downwardy from the top end, and the second cone wall
\(\qquad\)
the bottom end of the second cone wall being spaced from the first cone wall to define an outlet for the annular kiln chamber;
a plate member fastened along its upper surface to the bottom end of the wall of the first cone member, the upper
surface of said plate extending beyond the outer edge of the bottom end of said first cone wall, the extended surface defining a shelf member below the kiln chamber outlet, the shelf member being adapted to support the aggregate material during a do ward movemen of the agregate material from the \(\mathrm{k} / \mathrm{m}\) utiet, and onto the sheif member

號 driven gear supported by said support member, and positioned above the shelf member;
driver gear which engages the driven gear
a drive means operatively connected to the driver gear; a means fastened to the driven gear, positioned above the ber in the same direction as the driven gear to continuously remove the downwardly moving aggregate material from the shelf member; and
collection means positioned below the shelf member, said collection means being adapted to collect the aggregate material removed from the shelf member

WELDING FLUX CURING APPARATUS James Franklining Turner, Signal Mountain, Tenn., assignor to
Combustion Engineering, Inc., Windsor, Conn. Combustion Engineering, Inc., Windsor, Conn.
Filed Sep. 8, 1976, Ser. No. 721,633 U.s. Cl. 432-134 Int. C.2 F27B 9/14 6 Claims

An apparatus for curing bonded welding flux comprising an upper inclined plane
a lower inclined plane, each of said planes inclined at an angle less than the angle of repose of material being cured d. a support supporting said inclined planes with the lower
end of said upper plane over an upper portion of the end of said upper plane over an upper portion of
intermediate plane and the lower end of said intermediate plane over the upperportion of said lower plane;
. means for vibrating said inclined planes;
f. means for feeding uncured flux to the upper portion of said upper inclined plane, whereby the flux traverses said inclined planes;
g. heating means for radiantly heating the flux as it traverses throughout a substantial portion of each of said inclined planes, said heating means being above and parallel to h. side plates joining each of said inclined planes with its respective heating means, whereby a flow passage is
formed therebetween, the flow passage being substantially sphere, of suddenly released flows of waste gases, said system unrestricted throughout its length.

MULTIPLE OUTLET BLOWER SCROLL FOR AN INDUSTRIAL OVEN
Dougles V. Grieve, 212 Hazzelwood Dr., Lindenhurat, Ill 60046 Doughes V. Grieve, 212 Hazzelwood Dr., Lindenhurst, III. 60046
Continuation of Ser. No. 49,406 , Jan. 15, 1976, abandoned. This application Mar. 28, 1977, Ser. No. 781,680 S. C1. 432-176 Int. C1. \({ }^{\text {F F27B }} 3 / 22\)
including;
(a) conv
supplying said waste gases to said stack;
(b) pneumatic fluid control means responsive to said flow sensing means;
(c) pneumatically controlled first valve means in a steam line for controlling the flow of steam as a smoke suppressant to the flame at the top of the flare stack; said pneumatically valve means responsive to said pneumatic fluid control means;
the improvement comprising;
(d) rapid-acting second flow sensing means in said conduit
supplying said waste gases;
(e) first and second pressure lines from said second flow sensing means connected to a fast-acting electrical pressure switch;
(f) said pressure switch controlling a solenoid operated second valve connected into said steam line in parallel with said first valve to supply steam to said flare stack, and (g) time delay mean
solenoid operated valve after it has been operated for a selected time interval.
\[
4,094,633
\]

GRANULAR BED ROASTER CONSTRUCTION Don G. Peterson, Frisco, and Judson M. Harper, Fort Collins, both of Colo., assignors to Food Proceseas, Inc., Saginam,
Mich. Filed Jun. 14, 1976, Ser. No. 695,826 Int. C1. \({ }^{2}\) F27B 7/14, \(15 / 00\)
1. An improved industrial oven of the type including a housing defining a work chamber, a duct system including a
pluraily of passages within said chamber, a plurality of heating plurality of passages within said chamber, a plurality of heating
elements mounted within said passages, a blower wheel elements mounted within said passages, a blower whed
mounted within said chamber and communicating with said mounted within said chamber and communicating with said
duct system for forcing air through said passages so as to circulate hot air through said chamber, wherein the improve ment comprises:
a blower scroll mounted around said blower wheel;
said scroll having a plurality of radial outlets, each said outlet being aligned with a single passage, to allow air to plurality of short, curved circumferentially extending individual plates equal in number to the number of said outlets, said plates surrounding said wheel and of a size such that the circumferential face area of said wheel surrounded by each of said plates is the same, said plates being of a short length such that circumferential portion of said wheel are uncovered.

ACCELERATED RESPONSE FOR DELIVERY OF SMOKE SUPPRESSANT TO FLARES
Robert D. Reed, and Vern A. Street, both of Tulsa, Okla, assignors to John Zink Company, Tulsa, Okla
Filed Feb. 7, 1977, Ser. No. 766,133 US. C1. 431-202 Int. Cl. \({ }^{2}\) F23D 13/20

1. A granular bed roasting apparatus usable with heat trans erring granular material for heating a product, said apparatus ferring granu
comprising:
a rotatable
granular material heating bin adapted to contain only heat transferring granular material, said heating bin comprising an internally defined granular material heating chamber and a plurality of granular material lifting flights disposed within said heating chamber and extending inwardly therefrom from said bin a predetermined distance rial through said granular material heating chamber in response to rotation of said bin;
heating means associated with said heating bin for directly heating the interior of said heating chamber and applied directly to granular heat transfer material dropped by said lifting flights and falling within said chamber; rotatable product roaster bin separate from said for heating a product;
means for inputting heated granular material outputted from said heating bin into said roaster bin;
means for inputting a raw product to be heated by said
apparatus into said roaster bin thereby commingling said product with said granular heat transfer material;
separation means adapted to receive material outputted from said product roaster binfor sparaing granular heat transrecycling means for returning
als separated from product to said rotatable heating bin and
means for controllably rotating said heating bin and said roaster bin

\section*{CHEMICAL}

4,094,634
ANIONIC AND NONIONIC EMULSIFIED OPTICAL BRIGHTENER SUSPENSION WITH A HYDROTROPIC
Carl Becker, Basel; Jacques Wegmann, Bettingen, and Andre Schaub, Biel-Benken, all of Switzerland, assignors to Ciba Gelgy AG, Basel, Switzerland
Division of Ser. No. 574,042, May 2, 1975, Pat. No. 4,042,320, which is a continuation-in-part of Ser. No. 506,775, Sep. 17, No. 797,374
Claims priority, application Switzerland, May 9, 197 6374/74; Sep. 2, 1974, 11896/74; Dec. 18, 1974,
U.S. Cl. \({ }^{8-1} \mathbf{W}\)

Int. Cl.
1. An aqueous stable, highly concentrated finely dispersed 12 Claims flowable optical brightener composition comprising at leas \(10 \%\) by weight of water, at least \(30 \%\) by weight of at least one finely dispersed optical brightener insoluble to difficultly soluble in water having a particle size smalier than \(10 \mu\) and a
mixture consisting of at most \(10 \%\) by weight of an anion-active mixture consisting of at most \(5 \%\) by weight of a nonionic dispersing agent and at most \(35 \%\) by weight of a hydrotropic agent capable of converting the optical brightener into a stable de
flocculated form.

4,094,635
META-AMINOPHENOL SULFONAMIDES A
META-AMINOPHENOL SULFONAMIDES AS
COUPLERS IN HAIR DYE COMPOSITIONS Andree Bugai, Bo uslgnors to L'Oreal, Paris, France
both of France,
Filed Sep. 13, 1976, Ser. No. 722,610 Filed Sep. 13,1976, Ser. No. 722,010
Claims priorty, application France, Sep. \(9,1976,7627125\)
U.S. C. 8-11 \({ }_{11}{ }^{\text {Int. }}\)

1. A dyeing composition for keratinic fibers or for hum hair, containing an aqueous solution of at least one oxidation base which contains as a coupler, at least one compound of the formula

in which \(\mathrm{R}_{1}\) represents an alkyl having 1 to 4 carbon atoms, \(\mathrm{R}_{2}\) in which \(R_{1}\) represents an and hydrogen or an alkying 1 to 4 carbon atoms, represents hydrogen or an alkyl having 1

\section*{4,094,636}

PROCESS FOR DYEING CELLULOSE FIBERS WITH WATER-INSOLUBLE AZO DYESTUFFS PRODUCED ON
THE FIBER Hans-Ulirich von der Eltz, Frankfurt am Main, Germany, as slgnor
many
\begin{tabular}{l}
Filed Jan. 28, 1977, Ser. No. 763,557 \\
Claims priority, \\
\hline
\end{tabular} Claims priority, application Germany, Jan. 30,
Int. Cl.
U.S. C. 8-46 nt. Cl. \({ }^{2}\) C09B 27/00; D06P 3/12 2603444 1. In a process for dyeing or printing cellulose fibers with azo dyestuffs produced on the fiber by treating with an aqueous liquor or printing paste containing an azizale primary aromatic amine, an alkaline agent and sodium nitrite with subsequent acid treatment, the improvement comprising using a diazotizable primary aromatic amine which contains a carboxylic acid ester or amide group, and which does not contain any
(I)

PROCESS FOR THE PRINTING WITH DEVELOPING DYES Gen Kelkheim, Ta Erich Feess, Hofheim, Taunus; Willy Gronen, Kelkheim, Tan nus, and Hasso Hertel, Muhheim (Main), all of Germany, assignors to Hoechst Aktiengeselischat, 62,338
\(\qquad\) Filed Oct. 17, 1975, Ser. No. 623,338 Claims priority, application Germany, Oct. 19, Unr. 17, 1975, In. th. Cl. \({ }^{2}\) C09B 27/00; D06P \(1 / 02\) 1. A process for printin inting paste containing or ar a forming developing dyes,
b. the dispersion of a diazotble amine capable of forming developing dyes, said amine having an average particle c. sod 0.002 mm or less,
c. sodium nitrite a
d. a thickener,
which process comprises printing said textile material with said printing paste, drying said printed material, developing the dilute aqueous solution of an organic acid of which at least 30 g are soluble in 100 g water, having at \(20^{\circ} \mathrm{Ca} \mathrm{pK}\) value of 4 to 2.5 and at normal pressure a boiling point above \(175^{\circ} \mathrm{C}\), and eaming said material with neutral steam or immediately drying it.

\section*{APPARATUS FOR THE CONTINUOUS THERMAL APPARATERILIZATION OF PACKING \\ Erich Todtenhaupt, Wolfgang Miller, both of Schopfheim; Hans} Schupper, Zell, and Walter Geng, Schopfheim, all of Germany, assignors to Ekato-Werk, Schopfheim, Germany Claims priority, application Ser. No. 740,017 1975,2556467 Claims priority, application Germany, Dec. 15, 1975,
Int.
I. \({ }^{\text {A6LL }} 1 / 00\); F16J 15/00; F16K 49/0 U.S. C1. \({ }_{21}^{\text {Int }}\) Cli
1. An apparatus for the continuous thermal sterilization of ackings on rotating and/or reciprocating shafts, comprising a steam ejector means for supplying steam as a source of hea ejector mens in communication with a mixing tank means,
a mixing tank means for mixing water with said steam to form hot water for said thermal sterilization of said pack ings,
eans for supplying water to said mixing tank means in communication with said mixing tank means,
an outlet means in communication with said mixing tank means at a level effective to maintain at least a portion of said water in said mixing tank means,
a temperature sensing valve means in communication with said outlet means for measuring the temperature of said water in said mixing tank means and for releasing wate
from said apparatus when the water temperature in said
mixing tank means falls below a pre-determined value thereby permitting additional steam to enter the apparatus and increase the water temperature, means and also in communication with said steam ejecto means containing packings for sealing a rotating and/or
reciprocating shaft, thereby permitting said hot water to reciprocating shaft, theriby permitting said hot
effect thermal sterilization of said packings, and
pump means in communication with said chamber means for circulating said hot water in a closed circuit through aid steam ejector means, said mixing tank means, said chamber means and again through said steam ejecto

4,094,639
Ronald J. McMillan, Fort Landerdale, Fla, assignor to The Raymond Lee Organization, Inc., New York, N.Y., a part Flied Apr. 15, 1977, Ser. No. 787,775 U.S. C. 21-74 \({ }^{\text {Rnt. }}\)

1 Claim
a. disposing \(20-30 \mathrm{~g}\) of a moist sample of the biomaterial in a b. closed pressure vessel
b. predrying said sample down to a residual moisture of c. cooling the wall of the pressure vessel to about \(10^{\circ} \mathrm{C}\). during the predrying; and

d. subsequently burning in oxygen, within the closed pressure vessel, he predried biomaterial in the presence of the water vapor generated during pre-drying and which
been condensed on the wall of the pressure vessel.

LOW LOSS SAMPLE BOTTLE ASSEMBLY David R. Friswell, Holliston, Mass., assignor to Waters Associates, Inc., Milford, Mass.

Filed Feb. 25, 1977, Ser. No. 772,146
U.S. Cl. \(23-230 \mathrm{R}\) Int. C.2 \({ }^{2}\) B01L 3/00 \(\quad 9\) Claims
1. A deodorizer, comprising
1. A deodorizer, comprising
an elongated perforated cylindrical housing sleeve having spaced opposite first and second ends with a partition at housing sleeve into a pair of separate equally dimensioned chambers; chambers;
a pair of deodorizing units mounted in the housing sleeve each in a corresponding one of the chambers thereof; a pair of cover caps each threadedly coupled to the housing sleeve at a corresponding end thereof for facilitating
placement of deodorizing units in the chambers; mounting means for mounting the housing sleeve on a sup porting surface; and
a cylindrical cover sleeve having a length equal to substantially half the length of the housing sleeve and slidably cover sleeve covers one of the chambers of the housin sleeve while freeing the other so that the deodorizing unit in the one of the chambers is preserved while the deodor izing unit in the other of the chambers deodorizes the
surrounding area, said cover slecve being freely slidab surrounding area, said cover slecevely veing fredte strength on said housing sleeve for selectively varying the stren
of deodorant transmitted from said housing sleeve.

4,094,640
METHOD FOR PROCESSING BIOMATERIALS
Georg Iwantucheff, Nuremberg, and Egmont Scheubeck, Er
langen, both of Germany, assignors to Slemens Aktiengesell schaft, Munich, Germany
ims priority, application Germany, Feb. 12, 1976, 2605560 U.S. C. 23-230 PC \({ }^{\text {Int. C1. }}{ }^{2}\) G01N \(31 / 12\)

12 Cluims
1. A processing method for breaking down biomaterial comprising:
mating with a said solid lower portion of a hollow needle to displace exces
portion upward,
whereby the displaced liquid may be sucked into said port anereby the displaced liquid may be sucked into said port
and said resilient means allows alignment and close mating
of said needle and bottle.

INDICATOR FOR ETHYLENE OXIDE GAS
Mitruhiro Sumimoto, Chiba, and Harco Kohama, Tokyo, both of
Japan, aseignors to Dai Nippon Insatrau Kabushild Kaishs,
Japan, amignon
Tokyo, Japan
ed Feb. 15, 1977, Ser. No. 768,850
Int. Cl. \({ }^{2}\) G01N \(21 / 12\)
U.S. CI. 23-254 R

11. An indicator structure for ethylene oxide gas which comprises a substrate and a layer of indicator composition pyridine, nitrocellulose, a basic substance, and a blue coloring agent.

\section*{4,094,643}

AMMONIUM NITRATE NEUTRALIZER Toby M. Cook; Gerald L. Tncker, and Marion IL Brown, all of Yazoo CIty, Mich., asignors to Missisatipl Chemical Corpo
ration, Yazoo Cly, Mich.

Filed Sep. 16, 1976, Ser. No. 723,929
Int. Cl
Int. Cl. \({ }^{2}\) C01C \(1 / 18\); B01F \(5 / 10\)
U.S. CI. 23-285

1. A thermal syphon-pressure pump neutralizer being adapted for neutralizing nitric acid with ammonia, comprises reaction vessel suitable for containing an aqueous reaction medium and having a gas outlet in its upper end and a produc outlet spaced below said gas outlet, at least one elongated fluid
impervious cylindrical member positioned substantially vertically within said vessel so as to define a second reaction zone within said member and a first reaction zone outside said member between said member and said vessel, the lower end of said cylindrical member being an inlet being situated in said vessel the bottom of the vessel, ammonia inlet means leading into the bottom of said reaction vessel being in close proximity to bui spaced below said inlet or said cylidrical member, nitric acid inlet means leading into said first reaction zone being spaced a
predetermined distance above said inlet of said cylindrical member and below the level of said product outlet of said vessel, said apparatus being operable for neutralizing nitric acid with ammonia by filling said vessel with an aqueous medium at least to the level of said product outlet and introducing nitric acid into said first reaction zone through said nitric acid inlet means and ammonia into the reaction vessel through sad nitric acid before entering said second reaction zone, so th
he major portion of nitric acid being introduced through said nitric acid inlet means will be neutralized with the ammonia being introduced through said ammonia inlet means in said
dilute concentration with whereby circulation mixing and turbulence of the aqueous medium, nitric acid and ammonia between said first reaction zone and said second reaction zone is facilitated by a thermal syphon and pressure effect caused by the heat of neutralization the reacted solution such that water vaporized by said heat of neutralization will be discharged through said gas outlet of said reaction vessel and ammonium nitrate product will be recov-
ered through said product outlet of said reaction vessel, ered through said product outlet of ssaid reaction vessel,
wherein the improvement comprises: said reaction vessel further containing a free gas zone between said reaction zones and said gas outlet being situated such that gases disengaging from said first reaction zone will enter said free gas zone, and then into said gas outlet, deflector means situated above said second
reaction zone and depending thereabout to at least the level of reaction zone and depending thereabout to at least the level of
said product outlet such that solution and gases evolved from the outlet of said second reaction zone are substantially completely reintroduced into the liquid in said first reaction zone before entering said free gas zone above said first reaction zone with sufficient force so as to create a scrubbing turbulence
within said first reaction zone, whereby turbulent contact within said first reaction zone, whereby turbulent contact
between said liquid within said first reaction zone and said gases will scrub the gases and cause dissolution of soluble components of said gases into said liquid, such that gases ema-
nating from said first reaction zone into said free gas zone are aating from said substantially completely scrubbed of soluble components.

CATALYTIC EXHAUST MUFFLER FOR MOTORCYCLES Melvin H. Wagmer, Bartlett, Ill., asaignor to UOP Inc. Des Plaines, III. Filed Dec. 8, 1975, Ser. No. 638,778

Int. Cl. \({ }^{2}\) B01J 8/00; F01N \(3 / 15\)
U.S. Cl. 23-288 F \(\quad 7\) Chima

1. An exhaust muffler comprising a metal exhaust inlet tube d a coaxial metal exhaust outlet tube, said tubes being longindinally spaced from each other and welded adjacent their far g member having a larger diameter than said tubes and being oined to said tubes by inlet and outlet transition portions; an longated, hollow, annular, radial flow catalytic converter nember comprising a monoithic ceramic substrate positioned herewith, said catalytic converter member having its radially uter surface spaced in wardly from the inner wall of said metal ousing, a plurality of bulkhead members fixedly mounted relative to portions of said tubes inwardly of the far ends inside and relative to said housing due to temperabes move ences between said tubes and said housing, at least one of said bulkhead members being inwardly axially spaced from both
said inlet and outlet tubes, said plurality of bulkhead members between said tube and said housing, said plurality of bulkhead
including axially extending flange poitions which including axially extending flange poitions which contact the members including axially extending flange portions which
inner wall of said housing around their periphery so as to inner wall of said housing around their periphery so as to contact the inner wall of said housing around their periphery
prevent radial movement of said tubes and bulkhead members so as to prevent radial movement of said tube and bulkhead phile permitting axial sliding movement of said memberkead members; said catalytic converter member being mounted
intermediate said inlet and outlet tubes and intermediate intermediate said inlet and outlet tubes and intermediate a pa member being mounted at its upstream end to said one of said slidably movable bulkhead members which is inwardly y axially
spaced from said inlet and outlet tubes and at it downtreal spaced from said inlet and outlet tubes and at its downstream
end to said outlet tube, blocking means for blocking gas flo end to said outlet tube, blocking means for blocking gas flow
through the downstream end of said inlet tube and through the throung the downstream end of said iniet tube and through the
dowstream end of said hollow catalytic converter member said tubes, and at least some of said plurality of bulkhead mem-
bers being perforated to force bers being perforated to force the exhaust gas flow within said
muffer to move radially outwardly and radially inwardly muffer to move radially outwardly and radially inwardly
between the inner vialls of said tubes and catalytic converter member and the inner walls of said metal housing in at least two cycles.
4. An exhaust muffler comprising a metal exhaust inlet tube
and a coaxial metal exhaust outlet tube and a coaxial metal exhaust outlet tube, said tubes being longi-
tudinally spaced from each other and welded adjacent their far ends to an elongated metal housing member, said metal housing member having a larger diameter than said tubes and being joined to said tubes by inlet and outlet transition portions; an
elongated, hollow, annular, radial flow catalytic converter elongated, hollow, annularo, , iadia flow catalytic converte intermediate the inner ends of said tubes and axially aligned therewith, said catalytic converter member having its radially outer surface spaced inwardly from the inner wall of said meta
housing, a plurality of bulkhead members fixedly mounted relative to portions of said tubes inwardly of the far ends thereof for axial movement with said tubes as said tubes move inside and relative to said housing due to temperature differ extension means mounted to the downstream end of said inle tube and having a bulkhead member fixedly mounted thereto for axial movement therewith, said plurality of bulkhead mem bers including axially extending flange portions which contac the inner wall of said housing around their periphery so as t
prevent radial movement of said tubes and bulkhead member while permitting axial sliding movement of said bulkhea members; said catalytic converter member being mounte intermediate said inlet and outlet tubes and intermediate a pair
of said plurality of bulkhead members, said catalytic converter member being mounted at its upstream end to said slidably movable bulkhead member which is affixed to said axial extension means and at its downstream end to said outlet tube blocking means for blocking gas flow between the downstrean through the downstream end of said hollow catalytic con verter member; said tubes, said axial extension means, and a least some of said plurality of bulkhead members being perfo rated to force the exhaust gas flow within said muffler to move walls of said tubes and catalytic converter member and the inner walls of said metal housing in at least two cycles. 7. An exhaust muffer comprising a metal exhaust inlet tube and a coaxial metal exhaust outlet tube, said tubes being longi-
tudinally spaced from each other and welded adjacent their far ends to an elongated metal housing member, said metal housing member having a larger diameter than said tubes and being joined to said tubes by inlet and outlet transition portions; an
elongated, hollow, annular, radial flow catalytic elongated, hollow, annular, radial flow catalytic converte
member comprising a pair of perforated inner and outer hous member comprisich a pain a catalyst bed containing a plurality of catalyst coated pellets, said converter member being positioned intermediate the inner ends of said tubes and axially aligned therewith, said catalytic converter member having its
radially outer housing portion spaced inwardly from the inner radially outer housing portion spaced inwardly from the inne
wall of said metal housing, a plurality of bulkhead member fixedly mounted relative to portions of one of said tubes fo axial movement with said one tube as said tube moves inside
and relative to said housing due to temperature differences
o as to prevent radial movement of said tube and bulkhead
nembers while permitting axial sliding movement of said members while permitting axial sliding movement of said
bulkhead members; said catalytic converter member being mounted intermediate said inlet and outlet tubes and being idably supported for axial movement at one end by one of said plurality of bulkhead members, and on the other end by a exible bulkhead member afixed to said metal housing and the inner and outer housing portions joined at one end by said hexible bulkhead member and at its other end by a transition nember, blocking means for blocking gas flow through the ownstream end of said inlet tube and through the upstream at least some of said plurality of bulkhead members being perforated to force the exhaust gas flow within said mufler to move radially outwardly and radially inwardly between the inner walls of said tubes and catalytic converter member and
the inner walls of said metal housing.

COMBDATION 4,094,645
COMBINATION MUFFLER AND CATALYTIC Charles H. Bailey, Mt. Prospect, III., asslgnor to UOP Inc., Des Plaines, III.

268 FC 7 Claims

1. In a combination mufler and catalytic converter having a housing with inlet and outlet openings for exhaust gases, a monolithic, axial flow catalytic converter element, secondary in inlet means and a venturi for introducing secondary air into ement and for stream before it reaches the catalytic converter atalytic converter element, the improvement comprising east two serially arranged expansion chamber means located within said housing between said inlet and said venturi, said a east two serially arranged expansion chamber means compris g a first expansion chamber positioned axially inwardly of the let end of said housing and spaced therefrom by a second portion of said venturi located therein and inlet means fo mmunicating the second expansion chamber with said firs expansion chamber, said second expansion chamber having of therein connecting and communicating the inlet opening xhaust gases entering said inlet tube must undergo at least \(60^{\circ}\) change in direction in passing from said inlet tube to said let cone portion, and gas restriction means extending over he entire gas flow path between the throat of said venturi and the inlet end of said catalytic converter element for controllin the expansion rate of the exhaust gases relatively uniformly
over said entire gas flow path to minimize the turbulation of e gas stream, said gas expansion restriction means limiting the expansion rate of the exhaust gases to a rate no greater tha the expansion rate of the exhaust gases to a rate no greater tha
the rate present in the expansion cone portion of the ventur
immediately downstream of the venturi throat which has an included angle with its axis no greater than about \(71^{\circ}\).

\section*{4,094,646}

RAPID METHOD OF ASSAYING COLLAGEN IN MEAT AND MEAT PRODUCTS
David L. Stern, Baltimore, and Daniel B. Samchuck, Towson, both of Md., assignors to The Baltimore Splce Company, Baltimore, Md.

> Filed Jun. 2, 1977, Ser. No. 802,600 Int. Cl. \({ }^{\prime}\) G01N \(21 / 24,33 / 16\)
U.S. Cl. 23-230 R 3 Claims 1. A rapid method for assaying collagen in a simple of meat or meat products comprising hydrolyzing the amino acids in said sample under conditions such that all of the tryptophan therein is destroyed and only a portion of the hydroxyproline therein is hydrolyzed and then determining the percent coilawhich has been hydrolyzed and extracted.

4,094,647
TEST DEVICE
Marshall E. Deutsch, Sudbury, and Louis W. Mead, Lexington, both of Mess., asslgnors to Thyrold Diagnostics, Inc., Bedford, Mass.

Filed Jul. 2, 1976, Ser. No. 701,762
U.S. C1. 23-253 TP \({ }^{\text {Int. }}\)

Int. C.

1. A test strip for the detection of an ingredient of a sample which comprises:
a length of strip characterized by
length of capillarity having a first and second end therealong,
a first zone located in said length of capillarity and spaced from said first end of the capillarity to permit contact of said first end but not said first zone with a developing liquid and impregnated with a first reagent, said reagent being chosen to be mixable
dient to provide a label therefor, and
a second zone located in said length of capillarity in the direction of said second end from said first zone and including a second reagent adapted to slow capillary movement of a portion of said first reagent carried by said developing liquid,
said length of capillarity being chosen to stop capillary transport therethrough while said portion of said first reagent is in said second zone, whereby a sample may from said first end of said capillarity to permit contact of said first end but not the place of sample reception with the developing liquid, said place of sample reception being in said length of capillarity between said first end and said second zone.

URINE SPECIMEN CONTAINER Leonard Seeley, Palatine, Ill., assignor to Plastofilm Industriea, Inc., Wheaton, III. Int. \({ }^{\text {Cl. }}{ }^{2}{ }^{\text {A61B }}\)
U.S. Cl.
\(23-259\)

1. In a urine specimen container including a cup-shaped receptacle and a cap therefor, the improvement which com the top of the receptacle and a skirt portion depending from the periphery of said top portion across the front and along the two sides of the receptacle leaving the rear of the receptacle exposed, said skirt portion being spaced from the sides of the receptacle whereby fingers of a hand approaching the recepta-
cle from the rear may pass under said shroud into the spaces on cle from the rear may pass under said shroud into the spaces on
the respective sides of the receptacle to grasp and support the same while shielded by said shroud against the hazard of urine spillage.

BRIQUETTE IGNITING \(4,094,64\) METAL CONE
Gordon A. Osterried, Box 65, Kelowna, British Columbia, Can ada

Filed Feb. 28, 1977, Ser. No. 772,498 U.S. CI. Int. \(^{\text {Int. Cl. }}\)

In a briquette igniting device, the combination of
(a) an open-top container having a bottom wall and an upstanding peripheral wall;
(b) a handle connected to said container;
adjacent said bottom wavling air inlet openings therein (d) said peripheral wall having an enlarged access opening therein adjacent said bottom wall;
e) a central, frusto-conical, foraminous member seated on said bottom wall and extending upwardly therefrom and (f) said foced inwaraly from said peripheral wall, and a tubular portion extending laterally to and communicating with said access opening.
2. A briquette igniting device as defined in claim 1 wherein said bottom wall is provided with a central depression to receive a liquid fuel.

INTEGRATED CATALYTIC GASIFICATION PROCESS Kwang K. Koh, West Bloomfield, Mich.; Nicholes C. Nahas
Morris Plains, N.J.; Robert E. Pennington, und Lonnie W, Vernon, both of Baytown, Tex,, assignors to Exxon Researct \& Engineering Co., Linden, N.J.
Continuation-in-part of Ser. No. 514,852, Oct. 15, 1974, abandoned, which is 2 continuation-in-part of Ser. No. 287,319,
Sep. 8, 1972, abandoned. This application Nov. 11, 1976, Ser. No. Sep. 8 , 1972, abandoned. This applicict 740,987
U.S. C. \(48-197\) R C. \({ }^{2}\) C10J 3/54; C10G 13/30 \(\quad 19\) Claims

1. A process for the production of methane from a heavy oi
or solid carbonaceous feed material and steam which or solid carbonaceous feed material and steam which comprises reacting said steam with said feed material to form essen-
tially methane and carbon dioxide while suppressing the net formation of carbon monoxide and hydrogen in a reaction zone at a reaction temperature between about \(1000^{\circ} \mathrm{F}\). and about
\(1500^{\circ} \mathrm{F}\) and at a reaction pressure in excess of about 100 psia \(1500^{\circ}\) F. and at a reaction pressure in excess of about 100 psia,
in the presence of a carbon-alkali metal catalyst comprising in the presence of a carbon-alkaii metal catalyst comprising a
carbon-alkali metal reaction product prepared by heating an intimate mixture of carbonaceous solids and an alkali meta constituent to an elevated temperature, said catalyst being present in a sufficient quantity to substantially equilibrate the gas phase reactions occuring during the reaction of said steam
with said feed material, and in the presence of sufficient added with saidiceed material, and sin reaction temperature and pres sure, of molecular hydrogen and carbon monoxide to provid substantially equilibrium quantities of hydrogen and carbon monowid reaction pressure, and withdrawing from said reactio zone a substantially equilibrium mixture, at said reaction tem perature and pressure, of steam, molecular hydrogen, carbo monoxide, carbon dioxide, and methane, and recovering meth ane from the withdrawn mixture.

4,094,651
PROCESS FOR PSEUDOHYDROSTATIC FEEDING OF Errest E. Donsth, P.O. Box 1068, Clristinanted, St. Croix, V.I 00820
Continuation of Ser. No. 683,810, May 6, 1976, abandoned. This application May 26, 1977, Ser. No. 800,847
U.S. Cl. 48-210
8 Claims
21. In a method for the continuous reaction of pulverized cos 1. In a method for the continuous reaction of pulverized coal
with gases or vapors at a pressure of at least 80 psi, and includwith gases or vapors at a pressure of at least 80 psi, and incluc ing shutdown of the operation as required the improvement reaction zone utilizing the pseudohydrostatic pressure of a fluidized column which is of a height of at least 200 feet and includes additions of fluidizing gas at selected points of the column, by passing said pulverized coal downwardly through column which is greater than the ascent velocity of the fluidizing gas relative to the pulverized coal, the average velocity of
the fluidizing gas in the column being between 0.01 and 0.1 feet
per second relative to the fuidized coal and the descent velo ity of said coal being at least 1 foot per second, said method

column during said shutdown and further comprising control ling the feed rate at the bottom of said column by throttling the flow of coal, a pressure reduction of up to 5 percent of absolut being effected by said throttling.

\section*{4,094,652}

ELECTRODESORPTION SYSTEM FOR ELECTRODESORPTION SYSTEM FOR Frank Eugene Lowther, Buffalo, N.Y - Co Ne Yor NY

Continuation-in-part of Ser. No. 625,237, Oct. 23, 1975, Nov. 27,1974 , which is a continuation-in-part of Ser. No. 527,832, o. 1,1944 , abandoned. This application Feb. 15, 1977, Ser

The portion of the term of this patent subsequent to Jul. 26,
1994, has been discliamed.
U.S. Cl. 55-33

1. A drying system comprising
a molecular sieve porous bed of synthetic crystalline metal alumino silicate material having an average particle size of about \(1 \mu\) to \(100 \mu\), said alumino silicate material consisting essentially of at least one zeolite selected from the mixtures of said zeolite with one another: eans for conacting the bed in a drying fluid to be dried; means for regenerating the bed including means for applying
\(a 0-10^{3} \mathrm{~Hz}\) frequency electrical field of at least \(0.2 \mathrm{Kv} / \mathrm{cm}\) across the bed directly through the zeolite particles to
maintain a current density during regeneration of about 0.01 to 100 microamps \(/ \mathrm{cm}^{2}\); and means for removing water from the bed during regeneration

4,094,653
PARTICLE CHARGING DEVICE AND AN ELECTRIC PART COLLECTING APPARATUS MAKING USE OF
SAID DEVICE
Senichi Masuda, 40-10-605, 1-chome, Nishigehara Kita-ku, Tokyo, Japan
Division of Ser. No. 496,537, Aug. 12, 1974, Pat. No. 3,980,455. Division of Ser. No. 496,537, Aug, 12, 1974, Pat. No. 3,98,
This application May 21, 1976, Ser. No. 688,636 Claims priority, application Japan, Sep. 7, 1973, 48-100904; Aug. 14, 1973, 48-91188
The portion of the term of this patent subecouent to Aug. 10 , 993, hass been disclaimed. Int. Cl. \({ }^{2}\) B \(03 \mathrm{C} 3 / 00\)
U.S. C. \(55-138\)

5 Claims
4. A two-stage electric dust collecting apparatus comprising: 4. A two-stage having an inlet port for receiving a dust containing gas and a gas outlet port for exhausting cleaned gas;
a particle collecting section in said duct comprising positiv and negative electrode groups disposed insulatively from each other in said duct and opposed to each other so as
intercept the gas flow in said duct and a D.C. high voltag source coupled to said electrode groups for applying a D.C. high voltage between said positive and negative electrode groups, and
particle charging section positioned in said duct and dis posed upstream of said partiocle collecting section and comprising a plurality of discharge electrodes having a relatively small radius of curvature, a plurality of opposite relectrodes opposed to and insulatively spaced from said discharge electrode and positioned in said duct in the flow of gases through said duct, third electrodes having a relatively large radius of curvature compared to said discharge electrodes and disposed in the proxid discharge electrodes on the upstream and downstream sides of each of said discharge electrodes, each of said discharge, opposite and third electrodes being insulatively mounted in said apparatus to said duct so as to be exposed in a gas flow in said duct, a first high voltage source coupled to said discharge electrodes for applying a periodicaly varying high
voltage of single polarity between said discharge electrode and said third electrode for developing negative ions intermittently, a D.C. voltage bias source coupled to said third electrodes of the same polarity as said single polarity for applying a D.C. bias voltage between said discharge electrodes and said third electrodes and a first D.C. high voltage source coupled to said opposite electrodes of a polarity opposite said single polarity for applying a D.C high velectrodes to continuously provide a steady electrical field between said opposite and said third electrodes.

\section*{4,094,654}

CABIN FOR AN ELECTROSTATIC POWDER COATING INSTALLATION Robert Prinzing, St. Gallen, Switzeriand, assignor to Gema AG Apparateban, SL. Gallen, Switzerland 722,134 Claims priority, application Switzerland, Sep. 29, 1975, 12578/75 Int. Cl. \({ }^{2}\) B01D 46/04
U.S. C. 55-290

1. A cabin for an electrostatic powder coating installation comprising in combination, means defining an internal comartment, means defining a chamber, a rotatable hollow inter having an axis, an inner side and outer side, guide means defining a slot-shaped opening connecting said internal compartment with said chamber for directing air and oversprayed powder transversely to said filter drum axis, said axis being
disposed substantially parallel to said slot-shaped opening, disposed substantialy tharalael suction means for subjecting said inner side of the filter drum oo the action of a negative pressure and for causing air and
versprayed powder to flow from said internal compartment through said slot-shaped opening into said chamber and to impinge on said outer side of the filter drum, a stationary suction nozzle spanning the outer side of the filter drum along surface line thereof for removing oversprayed powder thererom, a suction blower and a separator for connecting the

> 4,094,655

ARRANGEMENT FOR COOLING FLUIDS Heinrich Krieger, Leitlestrasse 16, 81 Garmiech-Partenkirchen, Germany Division of Ser. No. 392,812, Aug. 29, 1973, abandoned. This application Apr. 2, 1975, Ser. N
Int. Cl. \({ }^{2}\) F25J \(1 / 02\)
U.S. Cl. 62-40 1 Claim

1. An apparatus for cooling fluids, particularly for liquefyin 1. An apparatus for cooling
gaseous substances, comprisin
I. first conduit means (41) defining a first flow path (b) for he circulatin of a cooling fluid, said first flow path (b) including a first section (15) and including a second sec tion (12) downstream of said first section (15), said second section (12) extending through a first heat-exchanger (1) and second first section (15) extending through a second heat-exchanger (2) hat consiwues a frse coing substa said first and said second heal-exchanger reing
II. second conduit means (42) defining a second flow path (a) for the circulation of a precooling fluid, said second flow path (a) including a first path (11) extending through said first heat-exchanger (\(\mathbf{1}\)) and wherein said precooling fluid flows substantially countercurrent to said cooling fluid in said second section (12), said second section (12) and said irst part (11) being arranged in heat-exchange relationship in the first heat exchanger (1) so that said cooling fluid in said second section (12) is effective for cooling said precooling fluid in said first part (11), and said second flow path (1) also including a second part (13) downstream of said first part extending through said second heatexchanger (2) and wherein said precooling fluid flows substantially countercurrent to said cooling fluid in said first section (15), said first section (15) and said second part
(13) being arranged in heat-xchange relationship in the (13) being arranged in heat-exchange relationship in the
second heat exchanger (2) so that said precooling fluid in said second part (13) is effective for cooling said cooling fluid in said first section (15),
III. and said apparatus further comprising at least one phaseseparator means (34,36) having a vapor discharge side and a liquid discharge side; and at least one further heatexchanger (\(\mathbf{3}, 4\)) downstream of said vapor discharge side constituting at least one further cooling stage, said phaseseparator means being adapted for separating the liquid and vapor components of said cooling fluid subsequent to its passage through a cooling stage;
V. and said apparatus further comprising first compressor means (39,32) in said first flow path (b) upstream of said first section (15) for compressing said cooling fluid, said
first compressor means (39, 32) having an inlet side comfirst compressor means \((39,32)\) having an inler side com-
municating with said second section (12) and an outlet side communicating with said first section (15); first cooling communicating with said irst section (15); hirst cooling
means (40, 33) intermediate said first compressor means (39,32) and said first section (15) for cooling the compressed cooling fluid with a surrounding cooling medium; first expansion valve means (37) downstream of said phase-separator means having an inlet side communicat phase-separator means haith said liquid discharge side of the latter and an outlet side communicating with said second section (12) via a third section (17) of said first fow path (6) extending through at least one of said (50,55) in said second flow path second compressor mean (0, SSe (11) for con (a) upstream of said first part (11) for compressing said precooling fuid, said second compressin meaid second part (13) and an outlet side communicating with said first part (11) : second cooling means (57,54) intermediate saic second compressor means (\(\mathbf{5 0}, 55\)) and said first part (\(\mathbf{1 1}\) for cooling the compressed precooling fluid with a surrounding cooling medium; and second expansion valve means (56) intermediate said first part (11) and second part (13) having an inlet side communicating with said first part (11) and an outlet side communicating with said second part (13).

METHOD FOR FORMING GLASS CONTAINERS obert D. Colchagoff; Paul W. Fortner, both of Toledo; Richard T. Kirkman, Maumee; Thomas J. Naughton, Toledo, and George Zimmerman, Sylvania, all of Ohio, assignors to Ow . ens-Illinois, Inc., Toledo, Ohio

Mar. 7, 1977, Ser. No. 775,131
U.S. C1. 65-81

1. The method of forming glass containers by the "blow and low" process wherein a gob of glass is delivered to a parison and neck mold cavity and the gob is settled in the neck mold by the parison mold to thereby form a parison with the glass forming the parison having been continuously worked from the time of gob delivery until the parison is completely formed and, with the parison mold being removed from the parison, on parison then being inverted and transferred from the pariis expanded into final form, the improvement comprising: maintaining a condition of above atmospheric pressure within the interior of the formed parison at a sufficien level to prevent collapse of the parison during the transfer and inversion thereof to the blow or final mold; and releasing the pressure from the interior of the parison after
transfer to the blow mold is completed, whereby a glass transfer to the blow mold is completed, whereby a glass
container of a given capacity may be formed with less glass, be of more uniform wall thickness and have imglass, be of more
proved strength.

GLASS PRESSING PLUNGER COOLING Arieh Carmi, Big Flats; Zung S. Chang, Painted Post, and Thomas J. Rayeski, Corning, all of N.Y., assignors to Corning Division of Ser. No. 729,409, Oct. 4, 1976, Pat. No. 4,059,429 on of Ser. No. 729,409, Oct. 4, 1976, Pat. No. 4,059,
This application Jun. 3, 197, Ser. No. 803,153 U.S. Cl. 65-83

2 Claims

1. A method of differentially cooling a plunger for press forming glass articles in a cooperative forming mold, such
plunger having regions of sharp curvatures requiring high heat
removal rates joining with regions of lesser curvatures requirremoval rates joining with regions of lesser curvatures requir-
ing lower heat removal rates than said regions of shape curvatures, such method comprising:
(A) providing in said plunger a cooling fluid plenum chamber,
(B) supplying cooling fluid to said chamber
(C) dividing said cooling fluid in said chamber and flowing
the major portion of such fluid therefrom over said gions of sharp curvatures of said plunger and simulta neously directly flowing the minor portion of the fluid therefrom over said regions of lesser curvaiures of the
plunger, and
(D) exhausting the spent cooling fluid from said plunger.
plunger, and
(D) exhausting the spent cooling fluid from said plunger.
ORMING A FALLING CURTAIN OF MOLTEN GLASS
rank J. Lazet, Media, Pa., assignor to PQ Corporation, Valley Forge, Pa.

Filed Aug. 29, 1977, Ser. No. 828,140
U.S. C. \(65-90\)

Int. Cl. \({ }^{2}\) C03B 37/06, \(17 / 00\)
10 Claims
1. A method for forming a falling curtain of molten material, characterized by becoming viscous as it cools, said falling curtain being of controlled and uniform thickness and of uni(a) forming a bed of said molten materia
(a)
(b) drawing said material from the bed into a forehearth
which has a compound rate of fall;
(c) allowing said molten material to flow through the fore-
(d) applying heat to the material near the side walls of the
forehearth thereby preventing non-uniform cooling of the
material; and
(e) allowing the molten material to flow over the lip of the
(e) allowing the molten material to flow over the lip of the
forehearth, thereby forming the desired falling curtain.

4,094,659
PROCESSING OF GLASS SHEETS
Phillip Sydney Nixon, Skelmersdale, and Harold Woods, Pres. cot, both of England, assignors to Trip
Filed Mar. 15, 1977, Ser. No. 777,837
Claims priority, application United Kingdom, Mer. 17, 1976
10682/76
Int. C1. \({ }^{2}\) C03B 35/00
above the other over the furnace, a lifting device associated with said treatment stations and including means for engaging below one of said transpor members and lifing that ransppor
member and the heated glass sheet suspended therefrom vertically from the furnace at least into the lowermost one of said treatment stations, and means above said lowermost one of the treatment stations for subsequently supporting the transpor member and the suspended glass sheet independeng device, so that the lifting device can then be lowed to engage below the transport member of a further glass shee suspended in the furnace for the commencement of the lifting of such further glass sheet from the furnace to said lowermos one of the treatment stations while subsequent processing of said glass sheet is carried out.
the steps of suspending a glass sheet from a transport member the steps of suspending a glass sheet from a transport member
in a furnace, heating the glass sheet in the furnace to a temperature suitable for further processing, lifting the transport member with the suspended glass sheet from below vertically from the furnace into a lowermost one of a series of treatment sha
tions which are positioned vertically one above the other subsequently independently supporting the transport member and the suspended glass sheet at said lowermost one of said treatment stations, lifting the transport member and the suspended glass sheet from said lowermost one of said treatmen
stations to a higher one of the treatment stations, lifting a further glass sheet from the furnace to said lowermost one of the treatment stations by lifting a transport member from which said further glass sheet is suspended, and commencing processing of said further glass sheet at said lowermost one of glass sheet is carried out at said higher one of the treatment stations.

APPARATUS FOR THE PRODUCTION OF STEMMED
Emil Ilk, 8372 Zwiesel, Ahornweg 4, Germa
Emil Ilk, 8372 Zwiesel, Ahornweg 4, Germany Division of Ser. No. 565,573, Apr. 7, 1975, Pat. No. 3,955,954,
and a continuation-in-part of Ser. No. 415,640, Nov. 14, 1973, and a continuation-inn-part of Ser. No. 415,640, Nor. 14, 1973, abandoned, which is a continuation-inn-part of Ser. No. 224,595,
Feb. 8, 1972, abandoned. This application May 7, 1976, Ser. No U.S. C. 65-325 Int. C. \({ }^{2}{ }^{6}\) C03B 11/02
U.S. C. \(65-104\)

1. Apparatus for the processing of glass sheets comprising furnace for heating the glass sheets, a plurality of transpor members from each of which transport members a glass shee stations for the heated glass sheets positioned vertically one

14 Claims

1. An apparatus for the production of stemmed glassware having a cup and a stem in which a stem is formed with a stem smaller than the cross-sectional dimensions at the ends of the stem, the apparatus comprising.
a glass feeder for feeding a drop of glass having a temperature deviation of \(2^{\circ} \mathrm{C}\) to \(3^{\circ} \mathrm{C}\) within the temperature range of \(1100^{\circ} \mathrm{C}\) to \(1200^{\circ} \mathrm{C}\) and having a weight within plus or minus one gram of a predetermined weight, rotatable platen, at least one stem mold carried by said
platen and being divided longitudinally and rotatable by said platen into position beneath said glass feeder,
said glass feeder being spaced from said split stem mold
through a distance in the range of about 20 mm to 40 mm through a distance in the range of about 20 mm to 40 mm
from the feeder, the glass drop forming a skin and being from the feeder, the glass drop forming a skin and bein centered within said divided stem mold,
said platen being rotatable to a pressing station to bring said
divided stem mold with the drop therein to said pressin divided stem mold wies the drop therein to said pressing the glass drop with a pressure of at about 200 kgs to form the stem in said divided stem mold,
said stem mold being heated to a temperature in the range of about \(400^{\circ} \mathrm{C}\) to \(500^{\circ} \mathrm{C}\) during molding of the stem, cup forming mold on said second platen having an upper opening and a bottom opening,
transfer means for pushing the stem upwardly from said stem mold and for inverting said stem into bottom opening in said cup forming mold for joining to a cup mold molded i said cup mold.

\section*{4,094,661}

PLANT GROWTH REGULATORS
Gerhard H. Alt, Creve Coeur, and John E. Franz, Crestwood, both of Mo., sasignors to Monsanto Company, St. Louis, Mo. Division of Ser. No. 336,675 , Dec. 26, 1974, Pat. No. 3,985,773. This application Jul. 14, 1976, Ser. No. 705,316
U.S. C1. 71-88

14 Claims
of regulating the natural growth or develop1. A method of regulating the natural growth or develop-
ment of plants which comprises applying to the plants or soil a non-lethal amount of compound selected from those having the formula

wherein M is selected from the group of radicals consisting of naphthyl, tolyl, o- and m -monochloro and monobromo and dichloro- and dibromophenyl, o, m-dimethoxyphenyl, and o-chloro- or bromo-m-trifluoromethylpheny

4,094,662
MORPHOLINOBENZIMIDAZOLE N-OXIDES
Kelvin Kei-Wel Shen, Fountain Valley, Calif,, and Wayne Stuar Belles, Moscon, Id., assignors to United States Borax a

QUADRICYCLIC MORPHOLINOBENZIMIDAZOLE COMPOUNDS COMPOUNDS States Borax \& Chemical Corporation, Los Asmer to Calif. Fax Chemical Corporation, Los Anget
Filed Sep. 12, 197, Ser. No. 832,137
Int. C1. \({ }^{2}\) Co7D 498/04; A01N \(9 / 22\)
1. A compound of the formula

10 Claims

and the N -oxide derivative thereof.
6. The method for controlling weed growth which comprises applying to the locus of said weeds a phytotoxic amount of a compound according to claim 1 .

PLANT GROWTH REGUL
PLANT GROWTH REGULATING AGENTS La Roche Inc., Nutley, N.J. England, asslgnor to HoffmannFlled Feb. 4, 1976, Ser. No. 655,301
U.S. CI. 71-115 4 Claims 1. A method for regulating the growth of plants which
comprises applying to the plants, as the active ingredient, an comprises applying to the plants, as the active ingredient, an
amount of 6 -amino-o-toluic acid or an agriculturally acceptamount of bamino-oter is effective in regulating plant growth.

METHOD FOR SIMUT, 0 , 6
METHOD FOR SIMULTANEOUS COMBINED PRODUCTION OF ELECTRICAL ENERGY AND CRUDE Per Harald Collin, Falun, and Bjorn Widell, Vasteras, both of Sweden, assignors to Stora Kopparbergs Bergslags AB, Falun, Sweden

Filed May 13, 1977, Ser. No. 796,658
wherein \(\mathbf{X}\) is a branched-chain alkyl group of 3 to about 6 carbon atoms or trifluoromethyl.
8. The method of controlling undesirable plant growth which comprises applying a phytotoxic amount of a compound according to claim 1 to the locus of said plants.

1. In a method for production of crude iron from iron oxide and carbonaceous materials wherein electricity is generated as

4,094,667
part of the crude iron production and said generated electricity
is reutilized in said production of cude iron, the impovement is reutilized in said production of crude iron, the improvement comprising:
maintainin
maintaining a fast fluidized bed of solid fine-grained carbonaceous material and iron oxide, continuously adding iron
oxide and carbonaceous material to said fluidized bed, continuously adding an oxygen-containing gas to said fluidized bed, maintaining in said fluidized bed a temperature high enough to react the oxygen of said oxygen-con-
taining gas with the carbonaceous material to produce a taining gas with the carbonaceous material to produce a
reducing gas, withdrawing reducing gas and solid parti-cles of partially reduced iron oxide and carbonaceous material from the top of the fluidized bed, separating said reducing gas from said solid particles, conveying at least part of said separated solid particles to the fluidized bed a a level between its top and bottom, burning said separated reducing gas in a combustion zone to produce heat, con-
verting said heat into direct current electricity, withdrawing from the fluidized bed carbonaceous material and iron oxide having been partially reduced to a metallization degree of \(30-80\) percent, maintaining a pool of molten crude iron by maintaining a temperature sufficient to keep molten crude iron in said pool by having a direct current
electric arc between a tubular electrode and the surface of electric arc between a tubular electrode and the surface of
the pool, feeding said electric arc with said direct curren electricity, conveying the iron oxide, having a metallization degree of \(30-80\) percent, and at least part of the accompanying carbonaceous material to said pool through said tubular electrode and said direct current electric arc, and burning the gas produced in said pool in said cone to add to the production of electrity.
\(4,094,666\)
METHOD FOR REFINING MOLTEN IRON AND STEEL Tohel Ototani, Tokyo, Japan, essignor to Metal Research Corporation, Tokyo, Japan
\[
\begin{aligned}
& \text { Tokyo, Japan } \\
& \text { Filed May } 24,1977 \text {, Ser. No. } 800,140 \\
& \text { Int. Cl. }{ }^{2} \text { C21C } 7 / 02
\end{aligned}
\]
1. A method for refining molten iron and steel bath compris-
ing, feding a compressed and deformed composite clad materia of a solidififed core encassed in a sheath in wire and rod form having a sufficient rigidity obtained by clading a core consisting essentially of at least one element of metallic calcium, metalic magnesium, calcium base alloys and aseath of iron and mect deforming the resulting clad,
into the molten iron and steel bath at a feeding rate of 20-500 \(\mathrm{m} / \mathrm{min}\), a rate of feeding fast enough to avoid forming a fume or a flame of calcium or magnesium, whereby substantially \(100 \%\) of the added calcium or magnesium is
effectively reacted with said molten iron and steel bath, while deoxidizing, desulfurizing, spherodizing of graphit and inoculating said molten iron and steel bath are effectvely carried out.
U.S. CI. 75-58

MELTING OF FINE PARTICULATE MATERIAL IN A HIGH-SPEED ROTARY FURNACE tion, Pittsbargh, Pa. 1077 , Int. Cl. \({ }^{2}\) C22B \(5 / 02\)
U.S. CI. 75-92

5 Claims
1. The method of melting finely divided particulate material in a rotary furnace with a refractory lining and with opposed ranged to collect and retain a pool of molten metal during operation of the furnace of maximum depth near one end and nating within the furnace between the place of maximum depth nating within tae furnace between the place of maximum depth
and before reaching said open end whereby there is an area of the refractory lining between the pool and the open end beyond which the said pool of molten metal extends and which is continuously exposed to the atmosphere within the furnace, the steps comprising
feed pipe which enters the open end of the furnace onto the refractory lining at the furnace at the low point of evolution of the refractory lininge at the low point of and between the pool of molten metal and said open end; (b) projecting burning gases within the furnacia from burner place of discharge of the particulate material above the efractory wall and said place of dicshargerial onto the the direct path of the outflow of said gases through the open end of said furnace wall; and
of the furnace by centrifugal ferial on the refractory lining melted, and collecting the melted materil the material

\section*{TREATMENT OF COPPER REFINERY SLIMES} John C. Yannopoulos, Danbury, Conn., and Borham M. Borham, Grent Falles, Mont,
ited, Danbury, Conn.
U.S. C. 75-99 May 19, 1977, Ser. No. 798,564
Int. CI. \({ }^{2}\) C22B \(1 / 1 / 00\) Int. C1. \({ }^{2}\) C22B \(11 / 00\) copp
rises:
treating the raw slimes with a dilute solution of sulfuric acid at a temperature of between about \(40^{\circ}\) and \(100^{\circ} \mathrm{C}\). and at per square inch gauge to obtain a leach solution containing at least about \(98 \%\) by weight of the copper content of the raw slimes and to obtain a decopperized leach residue containing the gold, silver and selenium content of the containing thes,
raw slimes
raw slimes,
assting the leach residue in an oxidizing atmosphere at a
temperature of about \(400^{\circ}\) to \(800^{\circ} \mathrm{C}\). for at least about \(4^{\prime}\) hours to obtain eflluent roaster gases containing the sele-
nium content of the raw slimes in the form of selenium dioxide and to obtain a deselenized roaster residue containing the gold and silver content of the raw slimes, dioxide content thereof dioxide content thereof,
chloride to the roaster residue or nitric acid and ferric ing about \(20 \%\) by weight solids, and continuously bubbling chlorine and air through the slurry at a temperature

of between about \(25^{\circ}\) to \(90^{\circ} \mathrm{C}\). for a period of at least about 5 hours to obtain an extraction liquor containing the gold and residual selenium content of the raw slimes and a solid chlorination
of the raw slimes,
of the raw slimes, separating the chlorination extraction liquor from lie sol to
chlorination residue, treating said extraction liquor to recover the gold content thereof and treating said ch nation residue to recover the silver content thereof

\section*{4,094,669}

POLYTETRAFLUOROETHYLENE MEMBRANE
FILTERS FOR MERCURY RECOVERY
Edward Nicholsas Balko, Trenton, and Shyam Dattatreya ArEdward Nicholas Balko, Trenten, aodhaven, both of Mich, , sssig
ganse
dotte Corporation, Wyandotte, Mich.

Corporation, Wyandotte, Mich.
Filed Jan. 2,1976 , Ser. No. 645,969
U.S. C. 75- 108 6. The process of claim 1 wherein the reducing agent is
6odium borohydride. sodium borohydride.

WEATHEPING 4,094,670
WEATHERING STEEL WITH HIGH TOUGHNESS Roberto Bruno, and Valerio Faccenda, both of Rome, Italy, assignors to Italsider S.p.A., Italy
Ontinuation of Ser. No. 514,780, Oct. 15, 1974, abandoned.
This application Jul. 1, 1977, Ser. No. 811,391
Claims priority, application Italy, Oct. 15, 1973, 53141 A/73
U.S. C. \({ }^{75-124}\)
U.S. C. 75-124 \(\quad \begin{aligned} & 2 \text { Claims } \\ & \text { 1. A weathering steel consisting essentially of the following }\end{aligned}\) percent composition by weight:
C \(0.05-0.15\)
C
\(\mathrm{Mn} 0.5-1.5\)
\(\mathrm{Cu} 0.2-0.5\)
\(\mathrm{Mn} 0.5-1.5\)
\(\mathrm{Cu} 0.2-0.5\)
Al \(0.2-0.5\)
Al \(0.2-0.5\)
Si \(0.0-0.8\)
\(\mathrm{Cr} 0.1-1.5\)

S up to 0.02
P up to 0.04
Nb up to 0.020
N up to 0.010
Mo up to 0.15
Ti up to 0.1
balance essentially iron, the manganese, copper, chromium aluminum and niobium having the following weight relationshipp \(2.6(\mathrm{Mn} \mathrm{\%})+3.2(\mathrm{Cu} \%)+41.6(\mathrm{Nb} \%)+1.3(\mathrm{Cr} \% / \mathrm{Al} \%)\)
\(=7.4\) to 10.1 the weight ratio of chromium to aluminum being \(=7.4\) to 10.1 the weight ratio of chromium to aluminum being
from 2 to 5 .

GOLD COLOR COPPER ALLOY FOR RESTORATIVE DENTISTRY
Osamu Hayashi, No. 26-6, Okusawa 2-chome, Setagaya-ku, Tokyo-to, Japan

Flied Jul. 12, 1976, Ser. No. 704,553 Claims priority, application Japan, May 7, 1976, 51-51851
Int. Cl. \({ }^{2}\) A61C 13/00; C22C 9/04
U.S. CI. 75-157.5 \(\qquad\)
1. A gold color dental restoration formed of a copper alloy consisting essentially by weight of \(48-52 \%\) of copper, \(47-51 \%\)
of zinc and \(0.1-1.0 \%\) of zirconium, said dental restoration of zinc and \(0.1-1.0 \%\) of zirconium, saad dand and disolution in the mouth in which it is applied.

METHOD AND CONTAINER FOR HOT ISOSTATIC COMPACTING James N. Fleck, Pittsburgh, Pa.; Richard C. Palmer, East Liver.
pool, Ohio, and Charies L. Ruffer, Pittsburgh, Pa., assignors pool, Ohio, and Charies L. Ruffner, Pittsburgh, Pa., assigno
to Crucible Inc., Pitsburgh, Pa, Filed Dec. 22, 1975, Ser. No. 642,976
Int. C1. \({ }^{2}\) B22F 3/00
U.S. Cl. 75-226

Int. C1.2 \({ }^{2}\) B2F \(3 / 00\)
2 Claims
1. A method for isostatically compacting pow
(a) providing a cylindrical, metal container having a cylin drical body portion closed at each end by a generally disc-shaped end plate,
(b) applying to the interior of said cylindrical body portion a separating medium layer for preventing bonding be-
tween said coated portion of said container and a powde metallurgy compact produced therein during subsequen application of said fluid pressure
(c) providing said container with a powder metallurgy charge,
(d) sealing said container,
(f) heating said container and charge to an elevated tempera(g) apply
(g) applying fluid pressure to the exterior of said heated container to isostatically compact with charge therein to (h) reduceasing a sowder metallurgy compact, and
(ressure and cooling said container and compact,
(i) removing at least one end plate from said container including all end plates not coated with said separating medium layer,
(j) introducing to the interior of said container a fluid under pressure sufficient to cause said container to move away
(k) removing said compact from said container by withdrawing said compact through an end from which any said end plate has been removed,
whereby the cylindrical body portion of said container is pre-
served for reuse.
charges by the application of fluid pressure to produce a tubular compact by:
(a) providing a cylindrical, metal container having a cylindrical body portion closed at each end by a generally disc-shaped end plate,
(b) applying to the interior of said cylindrical body portion a separating medium layer for preventing bonding be tween said coated portion of said container and a powder
metallurgy compact produced therein during subsequen metallurgy compact produced therein during subsequen
(c) providing said container with a powder metallurgy charge,
(d) sealing said container,
(e) outgassing said container,
(f) heating said container and charge to an elevated tempera ture,
(g) applying fluid pressure to the exterior of said heated container to isostatically compact said charge therein to produce a powder metallurgy compact, and compact,
compact,
the improvement comprising:
(i) sxially positioning within said container a metal sleeve (i) axially positioning within said container a metal sleeve
substantially coextensive with said container and having substantially coexter less than the inside diameter of said
an outside diameter container to define an ammar paid and said container
(j) said powder metallurgy charge being provided within
said annular passage,
(k) applying to the exterior of said sleeve a separating medium layer for preventing bonding between said sleeve and a powder metallurgy compact produced within said
container during subsequent application of said fluid pressure,
sure,
(I) providing an opening in said end plates communicating with the interior of said sleeve, (m) removing at least one end plate from said container, including all end plates not coated with said separatingmedium layer, (a) pressure sufficient to cause said container and said sleeve pressure sufficient to cause said cont, and
to move away from said compact
(o) removing said compact from said container by withdrawing said compact through an end from which said end plate has been removed,

said sleeve are preserved for further use.
ABRADABLE SEAL MATERIAL AND COMPOSITION ABRADABLE SEAL MATERIAL Arnold Roderick Erickson, Orange City, Fla, and Carlino Panzera, Belle Mead, N.J., assignors to Brunswick Corporation, Skokie, III
Divislon of Ser. No. 440,794, Feb. 28, 1974, abandoned. This
application Nov. 2, 1976, Ser. No. 737,505 U.S. C. 75-246

6 Claims

1. A porous metal mat or high temperatures comprising:
(a) a sintered mass of fine metal particles composed of a
homogenous alloy consisting essentially of the composition \(\mathrm{I}, \mathrm{Cr}, \mathrm{Al}\) and Si , wherein I is at least one member of the group consisting of \(\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}\), and mixtures of Co and Ni ;
(b) the components of the alloy having essentially the following weight percents: \(10-27 \% \mathrm{Cr}\), not
Al, \(0.1-2.0 \% \mathrm{Si}\), and, \(\mathrm{I}=\) the remainder;
(c) the exposed surface of the particles being capable of developing a protective coating of \(\mathrm{Al}_{2} \mathrm{O}_{3}\) at least 0.5 mi cron in thickness \(4 \% \mathrm{Al}\) content.
\(4,094,674\)
METHOD OF FIXING A,044,674 POWDER IMAGE ON A SHEET OF MATERIAL
James P. Valancius, Elmhurst, IIl., assignor to Addressograph-
Multigraph Corporation, Cleveland, Ohio
Filed Jul. 22, 1976, Ser. No. 707,773
US. CI. 96-1 SD
6 Claims

1. A method of fixing to a sheet of paper a toner powder mage applied to a first side thereof comprising the steps of: providing an impact member having a hard smooth impac surface;
placing the side of the sheet of paper which is oppos
first side into contact with said impact surface;
roviding a plurality of compact, hard surfaced pellets each of which has an impacting area which is substantially smaller than that area of said sheet of paper carrying the toner powder image;
imparting kinetic energy to the pellers; and impacting the first side of said sheet of paper with the thus energized pellets to pressure fix the toner powder image thereto.

VAPOR DEPOSITION OF PHOTOCONDUCTIVE SELENIUM ONTO A METALLIC SUBSTRATE HAVING A MOLTEN METAL COATING AS BONDING LAYER Guder, Belecke; Hartmut Dulken, Belecke, and Karl-Heinz Kassel, Belecke, all of Germany, assignors to LICENTIA Patent-Verwaitungs.G.m.b.H., Frankuurt am Main, Germ Claims priority, application Germany, Jul. 23, 1973, 2337386; Claims priority, appli
Jul. 23, 1973, 7326993

1. A method of making an electrophotographic image car rier, comprising the fol' 'wing steps
comping (a) applying an intermediate selected from the group consisting of indium, gallium, bismuth, lead, tin, cadmium, the alloys thereof and sul-
phur; said alloys consisting essentially of the elements the weight amount ratio of said color developing agent to said
constituting members of said constituting members of said group;
(b) subsequent to step (a), vapor-depositing an amorphous
inorganic photoconductive layer made of selenium, a selenium alloy or a selenium compound, on said intermedi (c) at least at
(c) at least at the beginning of step (b), maintaining the
temperature of the substrate at a value which is melting point of the material of the intermediate layer and below the damaging temperature of the material of th photoconductive layer.

4,094,676
NON-SILVER SALTT TYPE PHOTOSENSITIVE COMPOSITION COMPOSTTION
Hiroshi Takano, Gotenba; Masatsugu Yoshino, Numazu; Hiro
shi Naka, Yokohama; Yoshinobu Ito, and Tadao Matsushik both of Fuil, all of Japana, ossignors to Asshi Kasel Kogyo Kabushiki Kaisha, Osaka, Japan
Filed Feb. 14, 1977, Ser. No. 768,507
Claims priority, application Japan, Fe, 10,

U.S. CI. 96-90 R

1. A non-silver salt type photosensitive composition which comprises (A) N,N'-diphenyl-p-phenylenediamine and tet-
amethylthiuram disulfide as a color developing agent, (B) an ramethylthiuram disulfide as a color developing agent, (B) an
organic halide compound as a photoactivator liberating thereorganic halide compound as a photoactivator liberating there-
from a free radical upon light irradiation, (C) as a storage stabilizer for an unexposed photosensitive material a salicylic acid selected from the group consisting of 5,5 '-methylenedisalicylic acid, 5-chlorosalicylic acid and 3-phenylsalicylic acid, D) thiourea as an agent capable of functioning as both an agent, and (E) at least one member selected from the group consisting of (i) 2 -methylindole, (ii) 2 -mercaptothiazoline and (iii) p-diethylaminobenzaldehyde as a color tone adjusting agent, the weight amount ratio of the N,N'-diphenyl-pphenyleneciamine to the terramethylthiuram disulfice ranging oping agent to said organic halide compound being \(1: 20-2: 1\),
the weight amount ratio of said color developing agent to said
salicylic acid being \(2: 1\) to \(1000: 1\), the weight amount ratio said color developing agent to the thiourea being 2:1 to \(1000: 1\)
and the weight amount ratio of said color developing agent to and the weight amount ratio of said color developing agent to
said color tone adjusting agent being \(1: 1\) to 200:1.

CHEMICAL \(4,094,677\)
CHEMICAL FABRICATION OF OVERHANGING WAVE GRATINGS FOR SURFACE Donald F. Weirauch, Dallas, Tex., assignor to Texes Instru ments Incorporated, Dallas, Tex Filed Dec. 28, 1973, Ser. No. 429,475
Int. C. \({ }^{2}\) G03C 5/00 U.S. CI. 96-36 1. A method of etching 2 Claims loyed in an acoustic surface wavece of a substrate to be emto be etched into the substrate surface produces an overhang to be etched into the substrate surface produces an overhang material of ST cut \(\alpha\) quartz, said method comprising: chemically polishing the surface of the substrate by applying a chemical mixture to the substrate surface effective to remove amorphous material from the substrate surface fo providing a polished crystalline finish to the substrate
surface, applying a layer of chromium over the polished substrat surface,
pplying a layer of gold over the chromium layer,
applying a layer of photoresist material over the gold layer, to a pattern of a desired image wherein the pattern is oriented so that its major axis is perpendicular to a line which falls within boundaries estabished by a first lin making an angle of \(30^{\circ}\) with the -X axis of the crystal
lattice of said ST cut \(\alpha\) quartz material and another making an angle of \(40^{\circ}\) with the \(+X\) axis of the said crystal making
lattice.
developing the photoresist layer to produce the pattern therein, photoresist layer
photoresist layer,
etching the pattern into the chromium layer
etching the pattern into said substrate surface by immersing the substrate surface with the patterned layers of chromaintained at a temperature of approximately \(25^{\circ} \mathrm{C}\)
removing the etched substrate surface with the patterned layers of chromium and gold thereon from the solution of hydrofluoric acid, and
ripping off the patterned layers of gold and chromium
from the etched substrate from the etched substrate surface.

METHOD OF MAKING \(4,094,67\)
Met or making curved color cathode RAY TUBE SHADOW MASKS HAVING APERTURE PATTERNS
Corporaticn, Carpentersville, Ill,, assignor to Zenith Radio rporation, Glenview, III.

Fiiled Dec. 7, 1976, Ser. No. 748,802
Int. Cl. \({ }^{2}\) G03C S/00; B4C \(1 / 22\). C25
.S. C1 96-36.1
1. An improved method of making a curved 10 Claims ray tube shadow mask comprising:
providing flat mask master means and curved mask master means, said flat and curved mask master means having correlative master stencil patterns;
sing said flat mask master means, photochemically forming in at least one side of a flat shadow mask blank a pattern of blind mask apertures whose individual blind aperture tion and whose individual blind aperture size, at least in a
direction corresponding to the direction of electron beam to swell the photosensitive resin layer is an alkaline aqueous scan across the mask is greater than the desired end prod- solution having a pH of at least about 9 but below about 11 , an uct mask aperture size by a predetermined misregister tolerance value;
precision-shaping said flat mask blank into a predetermine three-dimensional coniguration with the said pattern of the mask blank; and organic solvent selected from the group consisting of alcohols and hydroxyethers, or.an alkaline aqueous solution with a pH fless than about 11 containing an organic solventhers. from the group consisting of alcohols and hydroxyethers.

photochemically etching in the blank a pattern of through apertures coincident with said pattern of blind apertures but having individual through aperture size smaller by said predetermined tolerance value, at least in said scan
direction, than said blind apertures, including using said curved mask master means as a photographic stencil while referencing it to said indexing means defined by the mask blank.

\section*{4,094,679}

PROCESS FOR REDUCING HALFTONE DOT IMAGES Prosuo Washizara, and Tomoakd Ikeda, both of Asake, Japan, esignors to Full Pho Tomomil Coca, bou Minain Jipan, Japan Filed Feb. 7, 1977, Ser. No. 766,282 Cluims priority, application Japan, Feb. 16, 1976, 51-16305 U.S. CI. \(96-36.3\)
1. A process for reducing the size of the dots 15 Claims dot image comprising:
1) imagewise exposing, using active radiation, a metal im-
age-forming age-forming material comprising (a) a support, (b) a thin mecalicic layer comprised mainly of aluminum on said
support, which thin metallic layer is dissolved in the alka line developer solution of step (\()\), and (c) a photosensitive resin layer on said thin metallic layer, which photosensitive resin layer is dissolved or swollen and selectively removed at exposed or unexposed areas by
the alkaline developer solution of step (2);
the alkaline developer solution of step (2);
(2) developing said image-wise exposed metal image-form (2) developing said image-wise exposed metal image-form
ing material with an alkaline developer solution to cause ing material with an alkaline developer solution dissolving
the dissolving of the thin metallic layer and the or swelling and selective removal of the photosensitive resin layer, a half-tone dot image result
(3) applying a solution which is effective only to swell the (3) applying a solution which is effective only to swell the slight capability to etch the halftone dot image at thos parts of said metal image-forming material in which size of the halfone dots is to be reduced, thereby swelling the photosensitive resin; and then
(4) applying to said metal image-forming material a reducing (4) applying to said meata mage-
solution which reduces the size of said dots comprising the half-tone image, the reducing solution permeating be ween the support and the photosensive resin layer to contact the thin melalicic layer al sites where the thin metallic layer does not contact the phin metallic layer. 2. The process of claim 1 , wherein the solution effective only

4,094,680
METHOD AND APPARATUS OF CHANGING METHOD AND APPARATUS OF CHANGNG FONT CHARACIERS ON A FUPLICATE
Ciiford John Frazier, Wilmette, III., assignor to Casteraft In. dustries, Inc., Chicago, III.

Filed Jan. 19, 1977, Ser. No. 760,563
U.S. C. \(96-41\)

5 Claims
1. A method for altering an image including one or more 1. A method for aitering an image including one or matre characters located anywere on a hilled conditions, comprising the steps of:
a. exposing the first negative film matrix on film to produce
a first positive film matrix which is an exact duplicate; b. exposing the first positive film
a second negative film matrix;
c. overlaying a grid on the first positive film matrix;
c. overlaying a grid on transparent sheet over said grid;
e. positioning and mounting a replacing image on the light transparent sheet within the image to be replaced;
a third negative film matrix;
film matrix wiage to be replaced on the second negative hin marix with a photographically opaque substance; h. double exposing both the second and third negative it marrices on
exposing the second positive film matrix to produce a fourth negative film matrix which has the replacing image in the position of the replaced image.
3. A method for reproducing and altering a first film matrix ving images including one or more charaters located any where thereon, comprising the steps of:
a. mounting said first film matrix on a jig; mate size of a single character on said jig over said first film matrix;
c. mounting a light transparent sheet on said jig over said positioning;
d. aligning a replacing image within one or more cells of said positioning guide in the desired location over said first film matrix and fixing
e. double exposing said replacing image and said first film matrix on film to produce a film matrix which includes said replacing image inserted precisely in the desired location with respect to the other images on said first film matrix.

\section*{IMAGE AMPLIFICATION OF N \\ IMAGE AMPLIFICATION OF NEGATIVE-WORKING
DIAZO MATERIALS David P. Habib, East Greenwich, and GIlbert Z \(\mathbf{\text { welg, Barring }}\) ton, both of R.I., assignors to Trans World Technology Labo-
ratories, Inc., Fiskeville R I ratories, Inc., Fiskeville, R.I.}

U.S. C1. 96-49
1. A. method for the amplification of dye images formed in negative-working diazo pateration of dye images formed in a negative-working diazo material having a support and a nega- Nobuyuki Tsujino; Akira Ogawa; Tadao Shishido, and Keiichi
tive-working acid stabilized dizo layer tive-working acid stabilized diazo layer thereon wherein, on
continued exposure to actinic radiation, the diazo compound goes through a photolytic transition starting with an unreactable or non-coupling state, to a reactable state, and finally to an unreactable state, the steps of image formation and amplification which comprise: (1) initially image-wise exposing the negative-working diazo layer to actinic radiation sufficient to
convert a portion of the diazo compound contained therein to an active coupling constituent in the light-struck areas to form a first latent image, (2) developing the exposed diazo layer by means of an alkaline agent and/or heat to effect coupling so as
to form colored incipient dye images in the light-struck ares to form colored incipient dye images in the light-struck areas,
(3) exposing the entire diazo layer from the same side as initial image-wise exposure to actinic radiation of a greater amount than that used in the initial exposure, said amount of
actinic radiation being sufficient to substantially actinic radiation being sufficient to substantially completely photolyze the non-image areas while simultaneously creating
second latent images beneath the already-develo second latent images beneath the already-developed dye image areas, and (4) developing the exposed diazo layer again by
means of an alkaline agent and/or heat to effect coupling in said second latent image areas to form color therein and to amplify the initial colored incipient dye images.

METHOD FOR 4,094,682
SILVER HALIDE PHOTOGRAPHIC MENSITIVE Mitsuto Fujiwhara; Syunjil Matsuo; Toyoaki Masukrial Mitsuto Fuiwhara; Syunjl Matsuo; Toyoaki Masukawa, Miki
Kawasaki, and Yutaka Kaneko, all of Hino, Japan, assignors to Konishiroku Photo Industry Co., Ltd., Hino, Japan Filed Oct. 20, 1976, Ser. No. 734,271
Claims priority, application Japan, Oct. 24, 1975, 50-12793 U.S. C. \({ }^{96}{ }^{\text {Int. }}{ }^{\text {Int }}\) t. Cl. \({ }^{2}\) G03C \(7 / 00,7 / 16,5 / 32\) 3 Claim 1. An improved method for processing an imagewise exposed light-sensitive silver halide photographic material con taining a coupler, wherein the silver halide photographic mate rial is processed with a developing bath and thereafter pro cessed, in the presence of imagewise developed silver and a
color developing agent, with a solution containing hydrogen peroxide, the improvement comprising processing, after the development, the developed light-sensitive silver halide photographic material with a solution containing a deactivating
agent capable of being adsorbed on silver halide or reacting agent capable of being adsorbed on silver halide or reacting
with silver to form sparingly soluble silver salts and selected rom the group consisting of 2 -mercaptobenzimidazole, 2 -mer captobenzothiazole, 2 -mercapto- 5 -nitrobenzothiazole, 4 -meth yl-2-mercaptothiazole, 4,5 -dimethyl-2-mercaptothiazole, 1 phenyl-5-mercaptotetrazole, 1,2 -dimethyl-5-mercapto-1,3,4 rriazole, 2 -mercapto-5-phenyl-1,3,4 oxadiazole, mercaptoace acid, \(\beta\)-mercaptopropionic acid, thiosalicylic acid, benzotrichlorobenzotriazole, 5,5-diphenylhydantoin, 2 -methyl-3- \((\gamma\) sulfoxypropyl) benzoselenazole, 3 -methylbenzothiazole tolu enesulfonate, N -isopropyl- \(\alpha\)-picolinium bromide, N -ethyl-2methylbenzothiazolium chloride, phenosafranine, pinakryptol yellow \(1,1^{\prime}, 3,3,3^{\prime} 3^{\prime} 3^{\prime}\)-hexamethyl- 5,5 -dinitroimidocarbocyanine pyrazolyl)-vinyl]-imidazo-[4,5-b]-quinoxalium iodide, benzyladenine, 8 -hydroxyquinoline, o-phenanthroline and thiosugar, and thereafter subjecting the thus processed light-sensitive silver halide photographic material to spraying with

4,094,689 PHOTOGRAPHIC EMULSIONS AND ELEMENTS JUNCTIONS WITH A FI CMING EPITAXIAL JUNCTIONS WITH AGI CRYSTALS Joe E. Maskasky, Rochester, N.Y., assignor to Eastman Kodak
Company, Rochester, N.Y.
\[
\begin{aligned}
& \text {, Rochester, N.Y. } \\
& \text { Filed Feb. 18, }
\end{aligned}
\]

Filed Feb. 18, 1977, Ser. No. 770,241
U.S. C1. 96-108

Int. C.2 \({ }^{2}\) G03C \(1 / 02,1 / 28\)
1. A photographic emulsion comprised of a 20 Claims 1icle as a continuous phase and, as a discrete phose a phaphic n-sensitive composite silver halide crystals comprese, radia-multi-faceled, radiation-receptive silver iodide crysed of ing a minimum mean diameter of at least 0.1 micron silver ioride crystals forming epitaxial junctions with the silver iodide crystals,
nd/or intermittent dipping in said solution containing hydrogen peroxide. Adachi, all of Minami-ashigara, Japan, assignors to Fuji Adachi, all of Minami-ashigara, Japan, assig.
Photo Film Co., Ltd., Minami-ashigara, Japan
Filed Jun. 28, 1976, Ser. No. 700,365
Filed Jun. 28, 1976, Ser, No. 7 No0,365
Claims priority, application Japan, Jun. \(27,1975,50-79893\)
Int. Cl. \({ }^{\text {G }}\) GO3C \(5 / 24,1 / 06,1 / 28\) U.S. Cl. 96-95
U.S. C. \(96-95\)
1. A direct positive silver halide light-sensitive material capable of forming direct positive images comprising a support having coated thereon at least one internal image silver halide mulsion layer, wherein said light-sensitive material contains at east one hydrophilic colloid layer containing heterocyclic mount of about 5 mg to about 1000 mg per 1 mol of silver halide sufficient so that said compound acts as a fogging agent the silver halide photographic emulsion

(I)
\(\mathrm{X}_{n-1}^{\ominus}\)
wherein \(Z\) is an atomic group necessary for completing a 5 - or 6 -membered heterocyclic nucleus selected from the group 6 -membered heterocyclic nucleus selected from the group
consisting of a thiazole nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenozole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a benzimidazole nucleus, a pyridine nucleus, a quinoline nucleus and an
indolenine nucleus, \(R_{\text {, }}\) is an aliphatic indolenine nucleus, \(R_{1}\) is an aliphatic group, having 1 to 8
carbon atoms, which aliphatic group is selected from the group carbon atoms, which aliphatic group is selected from the group
consisting of an unsubstituted alkyl group, a sulfo substituted alkyl group, a sulfoalkoxyalkyl group, a hydroxysulfoalkyl group, a carboxyalkyl group, a hydroxyalkyl group, an alkoxyalkyl group, an acyloxyalkyl group, a dialkylaminoalkyl group, a sulfatoalkyl group, an aralkyl group, and a vinyl-
methyl group, \(\mathbf{R}_{2}\) is a hydrazonoalkyl group having 1 to 8 carbon atoms, in the alkyl moiety thereof, \(\mathrm{X} \ominus\) is an anion, and \(n\) is 1 or 2 , when \(n\) is 1 the compound forms an intermolecula salt.
at least half of the facets of the silver iodide crystals being

F162

silver chloride being limited to less than 75 mole percent
based on the total silver halide forming said composite
crystals.
ROAD-SURFACE ADDITIVE FOR PREVENTING ICE AND MELTING SNOW
Rober Do Croix, Lutry, Switzerland, assignor to Plastiroute S.A., Switzerland
Continuation-In-part of Ser. No. 477,338, Jun. 7, 1974, Pat. No. Continuation-In-part of Ser. No. 41,
4,0125337 . This application Nov. 24,1976 , Ser. No. 744,758 Claims priority, application Switzerland, Nov. 25, 1975, 15242/75

1. A road surface additive for incorporation in an asphalt or bituminous based road surface layer, comprising a mixture of discrete particles of a halide selected from the group consisting of calcium, magnesium and sodium chlorides and mixtures thereof and an alkali metal hydroxide selected from the group of sodium and potassium hydroxides in the ratio of 90 to 97
parts by weight of halide for 3 to 10 parts of hydroxide, said parts by weight of halide for 3 to 10 parts of hydroxide, said
particles having substantially water-tight coatings which are particles having substantialy warer-dight ceaintant at tempera-
inert to the halide and hydroxide and heat reser tures to which the admixed additive may be subjected for formation of a road surface layer and which coatings can be mechanically destroyed to expose said particles at the surface and melt snow on said surface.

EXPANDABLE POI, 4 COMPOSITIONS
Lester, Arlington, and Robert R. Alexander, Waltham, David Lester, Arlington, and Robert R. Nexander, Wal.
both of Mass,, assignors to Polymerics, Inc., Waltham, Mass. Filed Jul. 23, 1976, Ser. No. 708,167
U.S. Cl. 260-2.5 B \(\quad 26\) Claims 1. An expandable polymeric coating composition for admixture with paints, dyes and inks to form an expandab
coating upon the application of heat comprising:
first forming binder polymer latex normally in the form of said composition;
a dispersing agent to serve as a dispersant for expandable
volatile substances encapsulated in a monomeric film forming polymer;
a plurality of spheres each of which encapsulates at least one expandable volatile substance in a monomeric film form-
ing polymer dispersed within said first film forming binder polymer latex;
a defoaming agent to prevent excessive foaming when heat is applied to said spheres;
a bridge solvent to provide compatability with the substance into which said polymeric compositions will be mixed and to provide a wetting of said spheres to provide a homogeneous mixture;
a thickener to increase the viscosity of the composition to suspending action to said spheres.

\section*{4,094,687}

HEAT-SENSITIVE RECORDING COMPOSITION William R. Lawton, 6651 Jewett-Holmwood Rd., Orchard Park, N.Y. 14127

Continuation-in-part of Ser. No. 772,084, Feb. 25, 1977, and Ser. 4,210, Mar. 3, 1977, and Ser. No. 774,385, Mar. 4, 1977 This application Mar. 4, 1977, Ser. No. 774,330 U.S. Cl. 106-21.
1. A heat-sensitive, non-volatile, non-hygroscopic, and odor composition adapted to acquire a color conrasting visibly with a background color of the composition upon heating a selected region thereof to an elevated tempera ure, comprising
dimino sutituted condensation product of a heterocyclic diimino compound and an aromatic aldehyde, said hetero cyclic diimino compound being selected from the group consisting of piperazine, homopiperand
imethyl piperazine and
cyclic polyketo compound reactive with amines and amides at elevated temperatures to form a color, said cyclic polyketo compound being selected from the group contin, 5 -nitroisatin, alloxan, alloxazine, and hydrindantin.

4,094,688

,094,688

METHOD AND MOLDING CORE FOR MAKING A ON A NUMBER OF SIDES
Franz-Josef Wolf, Sprudelallee 19, -6483 Bad
Franz-Josef Wol
ster, Germany
Flied Apr. 30, 1976, Ser. No. 682,089
Claims priority, application Japen, Aug. 21, 1975, 253725 Germany, Feb. 18, 1976, 2606528 Int. C1. \({ }^{\text {B28B }}\) 7/36; B29C \(1 / 12\) U.S. CI. \(106-38.2\)

1. A method for making a flexible pipe manifold having a free passage therethrough comprising: injection molding plastic material around a brittle one-piece molding core containing at least one predetermined breaking point; after the removal of the manifold from the mold bending the hollow
molded body in such a way that the molding core breaks into parts at the predetermined breaking point; and finally withdrawing the parts of the molding core completely from the manifold providing a free passage therethrough.
6. A molding core for making a flexible pipe manifold characterized by the fact that the molding core is in one piece,
comprises a brittle material, and has at least one predetermined comprises a brittle material, and has at least one predetermined
breaking point which is so disposed that after breaking, the molding core may be withdrawn completely at this point from the manifold providing a free passage therethrough. GLASS \(\stackrel{4,004,689}{ }\)
Henricus Matheus Jacobus Marie van Ass, and Robert Georg
Goessink, both of Eindhoven, Netherlands, assignors to U.S. Philips Corporation, New York, N.Y.
Flled Mar. 16, 1977, Ser. No. 778,014
\({ }_{7603832}\) Claims priority, application Netherlands, Apr. 12, 1976,
US. C. 105-50 Int. Cl. \({ }^{2}\) C03C \(13 / 00\)
\begin{tabular}{l}
U.S. Cl. \(106-50\) \\
1. A glass composition suitable for processing into optical \\
3 Clims \\
\hline
\end{tabular} 1. A glass composition suitable for processing into optical
fibers with a radial gradient in the refractive index, consisting essentially of \(\mathrm{GeO}_{2}\), at least one oxide chosen from \(\mathrm{B}_{2} \mathrm{O}_{3}\) and \(\mathrm{SiO}_{2}\), an alkali oxide selected from the group consisting of \(\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}\), wherein
\(\mathrm{GeO}_{2} \geqq 25\) mole \%
\(\mathrm{SiO}_{2}+\mathrm{B}_{2} \mathrm{O}_{3} \geqq 25\) mole \(\%\)
and a totality of alkali oxide \(\geqq 15\) mole \(\%\). according 2. Optical fibers with a radial gradient in the refractive ind wherein a core having the highest refractive index wherein a core having the highest refractive index and a cladding having
the lowest refractive index have a continuous transition zone, he lowest refractive index have a coninuous transion zom obtained froma pair of glass compositions according to claim
in which the alkali metal oxide of the core is \(\mathrm{Li}_{2} \mathrm{O}\) and/or \(\mathrm{Na}_{2}\) O and the alkali metal oxide of the cladding is \(\mathrm{Na}_{2} \mathrm{O}\) and/o \(\mathrm{K}_{2} \mathrm{O}\), the alkali metal in the cladding being other than the alkal metal in the core.

10 Claims

LIQUID COMPOSITION Michael John Morton, Runcorn, England, assignor to Imperia Chemical Industries Limited, London, England Division of Ser. No. 382,198, Jul. 24, 1973, Pat. No. 3,994,740
This application Aug 30 , 1976, Claims priority, application United Kingdom, Aug. 7, 1972 693/72

Int. Cl. \({ }^{2}\) C04B 35/10
U.S. C. 106-73.4
1. A process for the preparation of a fiber comprising a metal
oxide and silica comprising the steps of xide and silica comprising the steps of
(a) providing a liquid composition
(a) providing a liquid composition having a viscosity of greater than 0.1 poise comprising an aqueous solution of
a water-soluble metal compound and a water-soluble organic silicon compound which is stable to hydrolysis in the liquid composition and in which silicon atoms are attached to carbon atoms directly or through an oxygen
atom and wherein the concentration of the metal com. atom and wherein the concentration of the metal com-
pound expressed as equivalent metal oxide exceeds the concentration of the silicon compound expressed as silicon dioxide;
(b) fiberizing the said liquid composition to form fibers; and (c) heating the said fibers to decompose the metal compound and the silicon compound to oxides.

MORTAR FOR 4,094,691 HEAT-INSULATINGNDENSATE, ANTIMOISTURE, Dinu Stefinsulating, and biocidal plaster tin Bogos, Iasi, all of Romania, of Bucharest, and ConstanCercetari, in Constructil si Economia Constructilior, Bucha-
rest, Romania
Filed Mar. 10, 1977, Ser. No. 776,268
U.S. C. 106-95

Int. C1. \({ }^{2}\) C04B \(7 / 355\)
1. A mortar for interior plastering having anticondensate. 4 Claims antimoisture diffusive, heat insulating and biocidal properties, antimoisture diffusive, heat insulating and biocidal proper
consisting essentially of a mixture in volume parts of: about 20 parts of 1 mm pearlite grains;
an effective amount up to 0.1 parts of a copper naphthenate solution in white spirit in proportions by volume of \(1: 1\);
0.1 to -0.2 parts of calcium stearate powder 0.1 to -0.2 parts of calcium stearate powder;
an effective amount up to 1 part of white spin
an effective amount up to 1 part of white spinit
about 5 parts of lime paste;
about 5 parts of lime paste
2 to 2.5 parts of Portland
about 5 parts of water.

D,L TARTARIC ACID 4,094,693 ACID AS RETARDANT FOR GYPSUM Helmut Knorre, Seligenstadt; Manfred Langer, Hanau, and Peter Leidl, Cologne, all of Germany, asslgnors to Deutsch Germany Filed Sep. 14, 1976, Ser. No. 723,173 Claims priorty, application Germany, Sep. 24, 1975, 2542535
U.S. CI. 106-111
1. Gypsum plaster having sufficient D,L-tartaric acid therein o delay the setting time of the plaster and having sufficient calcium hydroxide that a \(5 \%\) by weight aqueous paste of the
plaster has a pH of at least 11.5 , the content of \(\mathrm{D}, \mathrm{L}\)-tartaric acid being between 0.01 and 0.5 weight \(\%\).

\section*{4,094,694}

WATER-RESISTANT GYPSUM COMPOSITION AND PRODUCTS, AND PROCESS OF MAKING SAME Com J. Long, Clicago, II., assignor to United States Gypsum Continuation of Ser. No. 669,945, Mar. 24, 1976, abandoned. This application May 16, 1977, Ser. No. 796,926
U.S. C. \(106-111\) Int. Cl. \({ }^{2}\) CO4B \(11 / 14\)

44 Claims 1. A water-resistant cementitious composition consisting essentially of a set mass of hydrated gypsum crystals, and a waterproofing composition, said waterproofing compositio comprising asphalt and wax originally added as an emulsion,
borate-containing compound and polyvinyl alcohol, the dry borate-containing compound and polyvinyl alcohol, the dry
weight percent of the total of said asphalt and said wax based weight percent of the total of said asphalt and said wax based
on the dry weight of said cementitious composition being at
least about \(1.6 \%\), said polyvinyl alcohol being present in an least about \(1.6 \%\), said polyvinyl alcohol being present in an
amount of at least 0.015 weight percent based on the dry amount of at least 0.015 weight percent based on the dry weight of said cementitious composition, and said borate-con-
taining compound being present in an amount effective to taining compound being present in an amount effective to
cooperate with said polyvinyl alcohol and said asphatt and wa co enhance the water-resistance of said cementitious composi tion.

PLASTICIZED CELLULOSE ESTER COMPOSITIONS Robert R. Sanders, Kingsport, Tenn., asslgnor to Eastma Kodak Company, Rochester, N.Y.
Flied Aug. 5, 1976, Ser. No. 711,923
U.S. C. 106-179 Claims 1. A composition comprising an ester of cellulose and one o more carboxylic acids of two to four carbon atoms and plasticizing amount of (1) poly(terramethy, (2) a poly(alkylene a mocol) copolymer in which 10 weight percent or less is made up of units derived from ethylene oxide and the remainder is made up of units derived from propylene oxide, the copolymer having a molecular weight of about 800 to 1200 , (3) poly (propylene glycol) having a molecular weigh or (3) in which the carboxylic acid moiety contains about 2 to 8 carbon atoms. 8. A thermoplastic coating composition in the form of a powder having an average particle size of between about 10 and 300 microns in which the film-forming ingredient consists essentially of a cellulose acetate butyrate wherein the plasti-
cizer is (1) poly(tetramethylene glycol) having a molecular cizer is (1) polyt 800 to 1200 , (2) a poly(alkylene glycol) co-
weight of about polymer in which 10 weight percent or less is made up of units derived from ethylene oxide and the remainder is made up of
units derived from propylene oxide, the copolymer having a units derived from propylene oxide, the copolymer having a
molecular weight of about 800 to 1200 , (3) poly (propylene mol ecular weight of about 800 to 1200 , (3) poly (propylene
glycol) having a molecular weight of about 800 to 1200 or (4) glycol) having a molecular weight of (3 bou which the carboxylic acid moiety contains about 2 to 8 carbon atoms.

ASPHALT EMULSION PAVING COMPOSITION Michael V. Burris, 723 S. Third St., Les Vegns, Ner. 89101 Filed May 17, 1976, Ser. No. 686,733
U.S. C1. 106-277 Int. Cl. \({ }^{2}\) C08L 95/00

9 Claims
1. An asphalt emulsion composition consisting essentially of: an oil phase having between about \(S\) and about 15 parts by weight gilsonite, between about 5 and about 15 parts by weight naphtha and between about 70 and about 90 parts penetration less than 40 dmm at \(77^{\circ} F\), between about 0.1 and about \(2 \%\) of a cationic emulsifying agent, and water, the ratio of oil;water being between about \(1 ; 1\) and \(2 ; 1\) by weight, respectively.

ASPHALT CEMENT AND CONCRETE COMPOSITIONS AND FILLER COMPOSITIONS THEREFOR Fritz S. Rostler, Bakersfield, Calif,, asalgnor to Cabot Corporation, Boston, Mass.
tion, Boston, Mass.
Continuation-In-part of Ser. No. 696,926, Jun. 17, 1996, which is continuation of Ser. No. 495,003, Aug. 8, 1974, abandoned, 1973, abandoned This appllcation May 16, 1977, Ser. No.
Int. Cl. \({ }^{2}\) C08L 996/003 9 ; C09D 3/24
U.S. Cl. \(106-280\) Tat. Cl. \({ }^{2}\) C08L 95/00; C09D 3/24 1. A filler composition for asphalt which comprises a pel- 26 Clims teast about \(40 \mathrm{~m}^{2} / \mathrm{g}\) and a dibutyl phther- \(\mathrm{N}_{2}\) surface area of f east about \(40 \mathrm{~m}^{2} / \mathrm{g}\) and a dibutyl phthalate absorption value sphalt-solvating oil, the weight ration essentially nonvolatile aid oil being between 90 to 10 and 60 to 40; said pelleted ixxure having a 325 -mesh residue value, as determined by the esidue Value Test procedure described herein, of not more han about 4 weight percent thereof, and which pelleted mixieve analysis Ottawa sand and 2 parts by weight of asphalt cement by hand stirring of the combined ingredients for from cement by hand stirring of the combined ingredients for from an improved asphalt composition having reduced pellet abraion properties as determined by the Pellet Abrasion Tes procedure described herein.

DYE OR COLOR DEVELOPING INORGANIC Thomas D. Thompson, Flemington, N.J. nomast D. Thompson, Flemington, N.J., assignor to Yara EngiFiled Sep. 16, 1974, Ser. No. 506,103
U.S. C. 106-288 B
nt Cl. \({ }^{2}\) C04B \(31 / 00\)
1. An oxidizing clay for pressure sensitive record material bentonite and montmorillonity from the group consisting of ions.

PROCESS FOR
PROCESS FOR CONVERTING PREMILLED
QUINACRIDONE TO PIGMENTARY FORM
Patrick Henry Fitzgerald, Edison, N.J., assignor to E. I. Du
FORMED WITH ALUMINOUS BINDERS Eberhard Rauschenfels, Wiesbaden-Sonnenberg, Germany, ashaft, Wies-

Claims priority, application Cer. No. 757,423 S. Int. C.. \({ }^{2}\) CO4B 7/32 \({ }^{2}\) 8.S. C. \(106-104\) Int. C1. \({ }^{2}\) C04B 7/32
8 Claims 8. An aluminous binder suitable for forming cement stone crnace flue gases in an amount of at least 0.2 weight \(\%\) up to about 10 weight \(\%\) calculated as \(\mathrm{CaSO}_{3}\).

Filed Dec. 1, 1976, Ser. No. 746,299
Int. C. \({ }^{2}\).
Q Int. C. \({ }^{2}\) C09B 48/00
U.S. CI. 106-288 Q
1. A process for converting premilled quinacridone to pig mentary form by contacting the premilled quinacridone with an aqueous alkaline medium consisting essentially of water
having a pH of at least 10 in an amount sufficient to intimately contact the premilled quinacridone at a temperature of at leas \(85^{\circ} \mathrm{C}\). in the presence of at least one surfactant selected form
cationic and nonionic surfactants, wherein the cationic surfactant is in an amount from 2 to \(9 \%\) by weight, based on the
weight of the premilled quinacridone and the nonionic surfactant is in an amount from 2 to \(8 \%\) by weight, based on the weight of the premilled quinacridone.

METHOD FOR CIEANT, 401 ouglas D. Fekete, Warren, Mich., assignor to Oxy Meta Industries Corporation, Warren, Mich.
Filed Mar. 18, 1976, Ser
U.S. Cl. 134-2 Int \({ }^{2}\). Int. Cl. \({ }^{2}\) B08B \(3 / 08\)
A process for cleaning a tin surface without \(\mathbf{5}\) Claims etching thereof comprising contacting the surface with an aqueous alkaline solution having a pH value of at least 9.0 and containing an organic tannin in an amount sufficient to inhibit
etching of the surface.

4,094,700
APPARATUS AND PROCESS FOR THE PRODUCTION OF GLUTEN AND STARCH FROM WHEAT, RYE, OR Barti Rentey ruzwil, Switzerland, assignors to
to Gebrueder Buehler
ruc uzwil, Switzerland, assignors to Gebrueder Buehler AG interest to each
Filed Sep. 20, 1976, Ser. No. 724,839 Claims priority, application Switzerland, Sep. 23, 1975, US. Cl 122 Int. Cl. \({ }^{2}\) C13L \(1 / 02\)

22 Claims

1. In the method of producing starch and gluten from a grain such as wheat, rye or barley, comprising the steps of dispersing endosperm fractions derived through the grain milling process in water, separating the dispersion into a starch-rich fraction
and a gluten-rich fraction by centifugation, maintaining the gluten-rich fraction at an elevated temperature level for a predetermined period of time to allow the gluten to form filiform agglomerates, adding water to the agglomerate-con taining fluid to expand the size of the agglomerate, and separat ing the gluten accumulation from the resultant mixture, the improvement comprising the additional step of initially grind comprising the steps of:
(a) breaking and sifting the grain to obtain finished endosperm fractions, a fine product, a coarse product, and a bran waste product;
(b) sizing the coarse product by cutting and sifting to produce finished endosperm fractions and a sized product; fine product to produce finished endosperm fractions and tailings; and
(d) finally reducing the tailings to produce finished endosperm fractions and a fine bran waste product.

METHOD AND APPARATUS FOR CONTROLLING
BY-PASS LIQUID FLOW IN DISH-WASHING
Cergio Rabuffetti, Castronno, Italy, assignor to U.S. Philips Corporation, New York, N.Y.
Continuation of Ser. No. 596,970, Jul. 17, 1975, abandoned. This
application Jan. 13, 1977, Ser. No application Jan. 13, 1977, Ser. No. 759,058
Claims priority, application Italy, Jul. 11, 1974, 25019 U.S. Cl. 134-10 Int. C1. \({ }^{2}\) B08B 3/02, \(11 / 02 \quad 3\) Claims

1. A method of washing dishes in a dish-washing machine having a plurality of baskets for containing dishes, at least one washing liquid spray device associated with each basket and having spray nozzles, and providing at least one selectable liquid to said spray devices, comprising setting a reduced flow rate to each spray device independently of the flow rate of other spray devices and the operative cycles selected, by the step of by-passing a portion of circulated liquid from flowing hrough any of the spray nozzles and returning said portion for
recirculation by the single means. recircuation by the single means.

SOLAR ENERGY CONVERTER
Foundan Williams, Ithaca, N.Y., assignor to Cornell Research
Filed Dec. 30, 1976, Ser. No. 755,775
1. A. \(136-89\) TF 11 Claims
1. An improved converter for converting light energy to a plurality of electrically conductive electrode elements each having a first, photoemissive surface and a second, anode surface;
relationship, said firstrode elements in spaced, insulated relacing said second surf surface of each electrode element element, each pair of face of the next adjacent electrode space therebetween defining a voltage cell and said plura) space therebetween defining a voltage cell and said plurality of elements defining a plurality of voltage cells in
series, said mounting means securing said electrodes in geometrically arrayed, generally parallel relationship so
that incident light will produce photoemission from only standing elevated temperature without undue loss of strength the first surface of each voltage cell, the second surface of and formability properties which comprises

each voltage cell being so positioned as to intercept the electrons from its corresponding first surface.
dUAL ELECTRICALLY INSULATED SOLAR CELLS Arthur G. Milnes, 1417 Inverness Ave., Pittsburgh, Pa. 15217 Filed May 11, 1977, Ser. No. 795,811 U.S. Cl. 136-89 TF

1. A solar cell, adapted for superposition upon an underlyin solar cell, comprising a substrate transparent to a first range of sunlight, an intermediate solid rheotaxy layer of a semi-con
ductor compound transparent to a second range of sunligh ductor compound transparen to a second range or sunnigh
overlying said substrate, the first range being least as great a the second range, the intermediate layer being selected from the group consisting of: \(\mathrm{Se}^{2} \mathrm{As}_{2} \mathrm{Se}_{3}, \mathrm{As}_{2} \mathrm{~S}_{3}, \mathrm{Sb}_{2} \mathbf{S}_{3}, \mathrm{Sb}_{2} \mathrm{Se}_{3}, \mathrm{GeS}\) GeSTe, GeSe, \(\mathrm{SnSe}_{2}\) and \(\mathrm{In}_{2} \mathbf{S}\) and intercompounds of those constituents, and a solar pelycrystalline semiconductor com pound having a larger crystal grain size than the substrate. 8. The solar cell of claim 1 in combination with an underly ing solar cell electrically insulated therefrom, the bandgap o the overlying solar cell being greater than the bandgap of the
underlying solar cell.

4,094,705
ESSING IMPROVED
ALUMINUM ALLOYS P WELDABILITY
Philip R. Sperry, Chesterfield, Mo., and Frank N. Mandigo,
Northford, Conn., assignors to Swiss Aluminium Ltd., Chippis, Switzerland
\[
\text { 'erland Mar. 28; 1977, Ser. No. } 781,718
\]
U.S. Cl. 148-2
t. C1. \({ }^{2}\) C22F 1/04; C22C \(21 / 06\)
1. An aluminum base alloy having improved resistance weld ability plus excellent strength and formability, consisting essentially of 1.0 to \(5.0 \%\) magnesium, \(0.3-1.0 \%\) lithium, up to \(1 \%\) manganese, up to \(0.3 \%\) titanium, up to \(0.20 \%\) vanaaium, and
balance aluminum, wherein said lithium is substantially re balance aluminum, whe said alloy being capable of withstand-
tained in solid solution, ing elevated temperature without undue loss of strength and formability properties.
17. A method for the preparation of wrought products exhibiting improved resistance weldability plus excellen strength and formability, wherein said alloy is capable of with
A. providing an aluminum base alloy consisting essentially of 1.0 to \(5.0 \%\) magnesium, 0.3 to \(1.0 \%\) lithium, up to \(1 \%\) manganese, up to \(0.3 \%\) titanium, up to \(0.20 \%\) vanadium and balance aluminum
B. casting said alloy;
C. heating said alloy to a homogenizing temperature and thereafter homogenizing said alloy;
E. annealing said alloy whereby said wrought products are capable of plastic deformation to form automotive body parts.

\section*{4,094,706}

位 Erland Maxwell Schulson, Deep River, and Donald James Cam-
eron, Pinawa, both of Canada, assignors to Atomic Energy of Cron, Pinawa, both or Canada, asiman Continuation-in-part of Ser. No. 465,654, Apr. 30, 1974, sbandoned. This application Aug. 4, 1976, Ser. No. 711,744 Claims priority, application Canada, May 11, 1973, 171070 U.S. C. \(148-11.5\) F creep and 1. A method of producing a high tensile strength, creep and corrosion resistant zirconium alloy, consisting essentially of \(7.0-10.0 \mathrm{wt} . \% \mathrm{Al}, 0.3 \mathrm{wt} . \%\) in total of one or more elements selected from the group consisting of magnesium, tin, chro-
mium, iron, carbon, silicon, ytrium, niobium, molybdenum and beryllium, balance zirconium and incidental impurities, comprising annealing said alloy, in a state substantially devoid of untransformable \(\mathrm{Zr}_{2} \mathrm{Al}\) paricles, at a temperature below about \(992^{\circ} \mathrm{C}\) for a period of time sufficient to produce a substantially continuous matrix of the intermetallic compound \(\mathrm{Zr}_{3} \mathrm{Al}\) in said alloy

4,094,707
Mns Schre Germany, assignors to Mannesmann Aktiengesellschath, Dusseldorf, Germany
Claims priority, application Germany, Aug, 9, 1976, 2636199 U.S. Cl. 148-12 R Int. Cl. \({ }^{2}\) B21H \(/ / 14 \quad 7\) Claims

1. A method of making rollers for withdrawal of hot ingots, mprising the steps of:
making a roller body of high tensile material but requiring thermal treatment for enhancing toughness;
providing a relatively thick protective coating onto the roller, and sintering the coating,
treating the roller body carrying coating; and thermally carying the coating to enhance roughness and tensile strength of the roller.

\section*{4 4,094,708}

TITANIUM-BASE ALLOYS Roger Thomas John Hubbard, Satton Cloldield; Richard Ernest
Gooocy, Solihull, and Donald Francis Neal, Lichfield, Goovey, Solihuli, and Donald Francis Neal, Lichfield, all of
Engilnnd, zasiguors to Imperial Metal Industries (KYNOCH) Limited, Birmingham, England
Continuation of Ser. No. 305,329, Nov. 10, 1972, abandoned
which is a continuation-in-part of Ser. No. 797,674, Fed 1969, abandoned.
Filed Feb. 17, 1977, Ser. No. 769,786 Cluims priority, application Uulted Kingdom, Feb. 16, 1968,
\[
\text { Int. CC. }{ }^{2} \text { C22C 14/00 }
\]
U.S. CT. 148-32.5

2 Cliams
U.S. Cl. \(148-32.5\)
1. high strength creep resistant titanium-base alloy consisting of \(6 \%\) aluminium, \(5 \%\) zirconium, \(0.5 \%\) molybdenum, alloy having a creep strain less than \(0.1 \%\) in 100 hours at \(520^{\circ}\) alloy having a creep strain less than \(0.1 \%\) in 100 hours at \(520^{\circ}\)
C at a stress of 20 tonf \(/\) in \(^{2}\) and in the as welded condition a room temperature ductility of at least \(15 \%\) reduction in area
and \(10 \%\) elongation when measured on a gauge length of and \(10 \%\) elongation when measured on a gauge length of
\(4 \mathrm{~V} \mathrm{~S}_{\text {o }}\) where \(\mathrm{S}_{o}\) is the cross-sectional area, the alloy being beta \(4 \mathrm{~V} \mathrm{~S}_{0}\) where \(\mathrm{S}_{\text {o }}\) is the cross-sectional area, the alloy being beta
solution treated at \(1050^{\circ} \mathrm{C}\), cooled and aged for not less han 24 solution treated at \(1050^{\circ} \mathrm{C}\), cooled and aged for not tess han
hours at a temperature not less than \(500^{\circ} \mathrm{C}\), and air cooled, whereby the alloy has an alpha plate-like structure with precip-
itate at the alpha plate boundaries, said precipitate being a itate at the alpha plate boundaries, said precipitate being a
titanium/molybdenum silicide, and having a principally body centred cubic structure.

\section*{4,094,709}

METHOD OF FORMING AND SUBSEQUENTLY HEAT TREATING ARTICLES OF NEAR NET SHAPED FROM POWDER METAL
Walter J. Rozmus, Birmingham, Mich., assignor to KelseyHayes Company, Romuluas, Mich.
Flied Feb. 10, 1977, Ser.
U.S. CI. 148-126
. 767,522 Int. C.'. \({ }^{2}\) R22F \(1 / 00\)

1. A method of forming and subsequently heat treating articles of near net shape from powder metal including the
steps of producing a thickwalled container by forming a cavity of predetermined shape in a mass of suxtable container material uch that the walls of the container are of sufficient thickness 0 that the exterior surface thereof does not closely follow the onour of the cavity, filling the cavity of the container with such that the container material acts like a fluid to apply hydrotatic pressure to the heated powder metal contained in the cavity thereby consolidating the powder meral
densified compact; the improvement comprising the steps of

6 Claims
preparing the densified compact for heat treating by selec tively removing portions of the container to form a jacket of container material around the densified compact, heat treating the densified co
5. A method of forming and subsequently heat treating near
net net shapes from superalloy powder metal including the steps of producing a thickwalled container from a mass of fully dense cavity of predetermined shape in the mass such that the walls of the container are of sufficient thickness so that the exterio surface thereof does not closely follow the contour of the cavity, filling the cavity of the container with a powder metal selected from a group consisting of nickel, cobalt, and ferrous-
based superalloy powder and consolidating the powder metal by heating the container and powder metal to a temperature at which the powder metal will consolidate and by applying pressure to the heated container sufficient to cause plastic flow of the ferrous-base container material whereby the containe material acts like a fluid to apply hydrostatic pressure to the heated powder metal contained in the cavity thereby consoli improvement comprising the steps of preparing the densified compact for heat treating by selectively removing portions of the container to form a jacket of container material around the densified compact, heat treating the densified compact and ompleting removal of the container material

4,094,710
EXPLOSIVE COMPOSITION CONTAINING GUANIDINIUM PICRATE
Md., asslgoors to The United States of America as represented by the Secretary of the Nary, Washington, D.C.

U.S. CI. 149-3
1. An explosive composition comprising a layer of
8 Claims 1. An explosive composition comprising a layer of guanidinium picrate completely surrounding an explosive material which is selected from the group consisting of (a)
explosive materials having greater impact sensitivity than guanidinium picrate has, (b) explosive materials having lowe thermal stability than guanidinium picrate has, and (c) mixtures thereof.

TRACER AND COMPOSITION
Jawaharial Ramnarace, Dana Point, Calif, assignor to Ford Aerospace \& Communications Corporation, Dearborn, Mich. Filed Sep. 1, 1977, Ser. No. 829,993
Int. C. \({ }^{2}\) C06B \(45 / 36\)
U.S. C. 149-4

Int. C1. \({ }^{2}\) CO6B \(45 / 36\)
7 Claims
1. An improved tracer round comprising a projectile with a cavity containing tracer compositions wherein the tracer commixture which comprises:
(A) about \(30-60\) parts by weight magnesium;
(B) about 10-40 parts by weight polytetrafluoroethylene; (C) abo
C) about 10-25 parts by weight copolymer of hexafluorowherein a coating on (A) and (B) comprises the copolymer of (C).

CONSOLIDATED CHARGES INCORPORATING INTEGRAL IGNITION COMPOUNDS
Terrence P. Goddard, Aptos; Donald N. Thatcher, Hollister, and Charles G. Garrison, San Jose, all of Calif., zesignors to eledyne McCormick Selph, an operating division of Teledyne ndustries, Inc., Hollister, Calif.

> Filed May 10, 197 , Ser. No. 795,473
> -10 Int. C1. \({ }^{2}\) CO6B \(45 / 28\)
U.S. C. 149-10
1. In a process for consolidating a charge of nitroclluims based propellant grains, the improvement of incorporating an ignition compound matrix comprised of certain decahydrodecaborate compounds, through the steps of:
(A) wetting loose propellant grains on their exterior surfaces with a consolidatinn fluid having a solvating effect on said grains, the consolidating fluid being in the range of ap
proximately 0.010 to 0.100 milliliters of fluid per gram of propellant, and,
(B) introducing a layer of decahydrodecaborate compound Onto the exterior surfaces of said grains as the result of the wetting effect of said consolidating fluid, wherein said compound is in the range of approximately \(0.1 \%\) to \(4.0 \%\)
of the total propellant weight, wherein said compound further includes a salt selected from the class of salts having the common anion \(\mathrm{B}_{10} \mathrm{H}_{10^{-2}}\), and a cation selected
from the group consisting of from the group consisting of
\(\left.{ }^{(\text {(})} \mathrm{NH}_{4}\right)_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\);
(ii) hydrazinium, wherein the salt has the general formula
(iii) \(\mathrm{NH}_{2} \mathrm{NH}_{3}\)) \(\mathrm{B}_{10} \mathrm{H}_{10}\)
(iii) metal ions derived from the elements in Groups 1,2 \(5 a\), and \(6 b a b, 7 b\), and the elements of Groups \(3 a, 4 a\) \(5 a\) and \(6 a\) which have atomic
greater than \(5,14,33\) and 52 ; and
(C) consolidating the thusly wetted prom
consolidated charge by a compaction step, wherein the decahydrodechaborate compound layer on each grain becomes a matrix between the grain-to-grain boundaries of the consolidated charge.

SENSITIZING LIQUID
SENSTZING LIQUID EXPLOSIVES WITH HIGH
B. Arthur Breslow, Ridgecrest, Calif., assignor to The Unite
B. Arthur Breslow, Ridgecrest, Calif., aselgnor to The United
States of America as represented by the Secretary of the Navy, Wasshington, D.C. Filed Jan. 21, 1977, Ser. No. 761,189
Int. C. \({ }^{2}\) Co6B 47/08 U.S. Cl. 149-36
U.S. CI. \(149-36\)
1. A method for
for sensitizing a liquid explosive that desensitizing agent added, said method comprising the steps of A. providing a high gamma gas, bubbles of which are capable of overcoming the effect of said desensitizing agen and
a. bubb
B. bubbling said high gamma gas into said explosive.

\section*{4,094,714}

STABILIZED NITRATO-ALKANOL EXPLOSIVE COMPOSITION
George Henry Barnett, Ken, Australia, assignor to ICI Austr lia Limited, Melbourne, Australia
Division of Ser. No. 634,179, Nor. 21, 1975. This application Jul. 19, 1977, Ser. No. 816,931
Claims priority, application Australia, Dec. 9, 1974, PB9949
U.S. C1. 149-88
1. An explosive composition of the aqueous slurry type comprising:
an aqueous slurry of one or more inorganic oxygen releasing salts,
water, and
a sensitizer component comprising at least one nitrato-
alkanol and a stabilizingly effective amount of one or more derivatives of carbamic acid, the said sensitizer component being present in sensitizing amount and being soluble and dissolved in the aqueous phase of the said explosive composition.

4,094,715
METHOD AND APPARATUS FOR APPLYING FOAM INSULATION TO PIPE ademart Henderson, and Ralph Hielema, both of Calgary, Can. ada, assignors to Henderwood Industries, Ltd, Calgary, Can-
Filed Aus. 27, 1976, Ser. No. 718,39
Int. C1. \({ }^{2}\) B32B \(5 / 18\)
19 Claims

1. A method of applying a foamable liquid to a cylindrical bject, comprising
moving the object along its longitudinal axis;
simultaneously rotating the object about its longitudinal axis;
first sprayin first spraying the foamable liquid onto the object;
allowing the foamable liquid to rise substantially on the
object, and object; and
wrapping the foamable liquid with a flexible sheet material the risen foam is still deformable,
said wrapping step including applying sufficient pressure to
the risen foam through the sheet material density foam through the sheet material to increase the sursace. .

METHOD OF AND APPARATUS FOR DECORATING ARTICLES WITH DECALCOMANIAS Eduardo Valdez Lopez, Collioto (Oriedo), Spain, asaignor to Inerica de Calcomanniec, S.A.A., Spain Continuartion of Ser. No. 512,913, Oct. 7, 1974, abandoned. This application Nov. 8, 1976, Ser. No. 740,071
Int. C. \({ }^{2}\) B4C \(1 / 16\)
U.S. CI. 156-87

1 Claim

1. A method of decorating an article with a decalcomania, comprising;
perforating a decorative transfer;
wetting the perforated decalcomania transfer to remove it from a substrate thereof;
ger than the transfer to hold the traser, bect stronger than the transfer to hold the transfer, backed by the
backing sheet, over a surface portion of an article such as a ceramic plate, which surface portion is to be decorated with the transfer, while holding a marginal portion of the backing sheet to a marginal portion of the article surby and between the article and the backing sheet, the backing sheet having an aperture in the enclosed space,
and to hold the wetted perforated transfer in the e
space between the backing sheet and the article;
exhausting air from the enclosed space through the per rated transfer and the aperture of the backing sheet for drawing the transfer, backed by the flexible backing sheet transfer to the article;
subjecting the article with the wetted perforated bonded transfer to heat, and permitting any resulting steam to ing of the transfer ing of the transfer

METHOD OF ASSEMBLY OF AN INSULATING PANEL
ARRANGEMENT Irwin R. Barr, Baltimore
ration, Cockeysille, Md.
ration, Cockeysville, Md. Continuation of Ser. No. 583,248, Jun. 3, 1975, abandoned,
hich is a division of Ser. No. 465,845 , May 1, 1974, abandone hap is a dirision of Ser. No. 465,845, May 1, 1974, abandon
This application Jan. 31, 1977, Ser. No. 764,146 Cl. 156-197 Int. C1. \({ }^{2}\) B31D 3/02 U.S. C. 156-197

6 Claims
provement consisting of employing in said composition from about 2 to about 20 percent, by weight of the total starch from about 99 to aboutcohol having a degree of hydrolysis of tion viscosity at \(20^{\circ} \mathrm{C}\). of from 10 percent, a 4 percent aqueous sols less than about 3 percent by weight cold water solubles at \(30^{\circ}\) C., at least about 80 percent by weight hot water solubles at \(70^{\circ}\) C.. at least about 95 percent of said polyvinyl alcohol having a said polyvinyl alcohol having a particle size less than about 75 microns.

4,094,719
METHOD FOR DISPENSING ADHESIVE TRANSFER TAPE FOR ENGAGEMENT WITH A MOVING STRIP OF Herman L. Jones, 7302 84th St NIE Mer Prints Herman L. Jones, 730284 th St. N.E., Marysille, Wash. 98270 ,
and John H. Haugen, 9925 Davies Rd., Lake Sterens, Wash. \({ }^{\text {and }} 985\)
982258
Division of Ser. No. 505,253, Sep. 12, 1974, Pat. No. 4,001,073. This application Oct. 21, 1976, Ser. No. 734,467
Int. Cl.
B32B 31/00; B65C \(9 / 25\) U.S. CI. \(156-250\) Int. Cl. \({ }^{2}\) B32B 31/00; B65C 9/25 22 Claim

1. The method of assembly of an insulating honeycomb sandwich array; comprising
forming an insulating beal
forming an insulating bead along the edges of the cell walls and securing a sheet to said
said sheet to said insulating beycomb section by bonding from said cell wall edges and with said bead forming a separating insulating
tion and said sheet
tion and said sheet,
securing a second heat
section in substantially direct heat trassed honeycomb with the edges of said cell walls opposite to said insulated bead edges.
\(4,094,718\)
PROCESS OF PREPARING CORRUGATED PAPER OARD WITH A PARTICULAR POLYVINYL ALCOHOL MODIFIED STARCH-BASED CORRUGATING Edward Peter Czerwin, Wilmington, Del., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del.
\[
\begin{aligned}
& \text { Filed Nov. } 17,1975, \text { Ser. No. } 632,72! \\
& \text { Int. C. }{ }^{2} \text { B31F } 1 / 20 ; \text { C08L } 3 / 02
\end{aligned}
\]
U.S. Cl. 156-210
1. An improved continuous process of preparing corrugated 6 Claims board consisting of at least one liner and at least one fluted medium, which process includes the steps of (1) continuously
applying to the tips of the corrugations of the fluted medium a composition comprising at least \(15 \%\), based upon the weight of the total solids on a dry basis, of a potentially adhesive ungelatinized starch and up to \(85 \%\), based upon the weight of the total solids on a dry basis, of a viscous gelatinized starch carrier
therefor, (2) bringing a liner in contact with the adhesive therefor, (2) of inging a liner medium; and (3) applying heat and pressure to bond said liner and fluted medium, the im-
U.S. Cl. 156-304 10 Claims 1. A method of controlling the discharge of adhesive from
remotely actuated, pressurized gun onto one face of elonget remotely actuated, pressurized gun onto one face of elongated
material strips delivered in continuous, edge-to-edge, individ. ual succession to a collimating breech for face-to-face lami nated assembly production by cyclically reciprocating kicker A. Generating a first signol
A. Generating a first signal when said kicker means passes a first position in a \(360^{\circ}\) kicker cycle to operate said gun for
adhesive discharge onto B. Generating a second signal when said kicker
a second position in said cycle later than said first position to disable said gun from operation by said first signal; and,
1. A method for dispensing adhesive transfer tape, compris ing the steps of: dispensing a strip of pressure sensitive adhesive
ransfer tape composed of a transferable pressure sensitiv adhesive layer and a releasable backing strip; directing the dispensed cape strip into a course of travel aligned with the prints; and guiding the tape strip by confining and guiding along an elongated path in the course of travel during said drecty step, such that its adhesive layer and the back face of face-to-face relation

STRIP CORE SHEET \({ }^{4,094}\)
STRIP CORE SHEET LENCTH CONTROL
NGTH CONTROL vid F. Talbert, Millboro Springs, Va., assignor to Westraco Corporation, New York, N.Y

Feb. 8 , 1977, Ser. No. 766,698
C. Generating a third signal when said kicker means passes a third position in said cycle later than said second posi-
tion and in response to a positive, face-to-face addition of

a strip to a preceding assembly, said third signal being effective to inactivate the disabling result of said second sigr.al
signal.

\section*{4,094,721}

PARTIALLY CRYSTALLINE COPOLYESTERS USEFUL Karl Giinter Sturm AS ADHESIVES
Karl Guinter Sturm, St. Augustin, and Klaus Briuning, BergischAktiengesellischaft, Troisdorf, Germany
Cimes Filed Jul. 15, 1975, Ser. No. 596,048
Claims priorty, application Germany, Jul. 25, 1974, 2435863
U.S. CI. 156-309 Int. Cl. \({ }^{2}\) C09J \(5 / 00\) 4, 2435863
U.S. Cl. 156 Claims
1. A linear saturated crystalline polyester of an acid moiety 1. A minear saturated crystaline polyester of an acid moiet the acid moiety being a terephthalic acid moiety, said polyester containing as moieties of the dihydric alcohol moieties o
1,4-butanediol and 1,6 -hexanediol, the ratio of the 1,4 butanediol moieties to 1,6 -hexanediol moieties bein 10:90:-90:10, said polyester being further characterized by:
A. a glass transition temperature of \(-10^{\circ} \mathrm{C}\) to \(+30^{\circ} \mathrm{C}\);
B. a melting point of \(40^{\circ}-130^{\circ} \mathrm{C}\);
a difference between the glass transition temperature and
the melting being equal to or less than \(100^{\circ} \mathrm{C}\)
the melting being equal to or less than \(100^{\circ} \mathrm{C}\);
D. a maximum logarithmic damping decrement from 0.6 to \(>1.3\); and
E. a reduced viscosity, measured on a \(1 \mathrm{wt} . \%\) solution in a
\(60-40\) mixture
0.5 to 1.5 .
17. In a process for securing one substrate to another by disposing between said substrates a heat-fusible material and
maintaining the substrates in sufficient juxtaposition until said maintaining the substrates in sufficient juxtaposition until said
material has fused and bond one of said substrates to the other, the improvement which comprises employing a heat-fusible material of the polyester of claim 1 .

4,094,722
ETCHING APPARATUS USING A PLASMA
Shinichi Yamamoto; Yasusuke Sumitomo, both of Yokohama; Yasuhiro Horiike, Tokyo, and Masahiro Shibagalk, Hirat Ldd., Tokyo, Japan
Claims priority, application Japan, Jo. Jon. 29, 19766, 51-7957
U.S. Cl. 156-345 Int. Cl. \({ }^{2}\) C23F \(1 / 0210\) Claims
1. An apparatus for etching an object comprising:
(a) a source of gas activatable for providing an etching action;
(b) plasma generator means for receiving and activating said
(b) plasma generator means for receiving and activating said
gas; (c) an a
(c) an apparatus body including an airtight hollow substanan object-etching chamber wherein an object for etching is presented to a flow of said activated etching gas, saic object-etching chamber being spaced from said object
feeding chamber in a substantially horizo
remote from said plasma generator means chamber for rotation in said substantiolly substantially flat (e) at least one object holder provided on said support plate; for positioning in said object-feeding chamber when said support plate is rotated through a first angle to receive an object to be fed and for positioning in said object-etching chamber when said support plate is rotated through a
 of said activated etching gas;

N
(f) gas flow-guiding means for removing said activated etching gas from said plasma generator means, transferring said activated etching gas to said object-etching chamber, object-tching chamber substantially vertically above the object held by said object holder and withdrawing the how of said gas from said object-etching chamber substantially vertically below the held object; and
g) gas flow-baflling means for ensuring said substantiallypast the held object in said object-etching chamber and for preventing said gas from flowing from said object-tching chamber to said object-feeding chamber.

VARIABLE WIDTH FILM SPLICER
Herman L Jones, Marysville Wesh assignor to J H Mana facturing, Inc., Everett, Wash.

Int. Cl. \({ }^{2}\) G03D 1 , No. 676,061
U.S. CI. 156-353

11 Clims

1. A splicer, comprising: guide means for guiding strips along a run in end-to-end relation, said guide means including spaced apart edge guide elements sdjustable to accept strips of cent said run for effecting a splice between adjacent strip adjaaid splicing for effecting a splice between adjacent strip ends, said splicing means including applicator means adjustable to
apply different lengths of splicing tape between adjacent strip ends; and control means for controlling said guide means and acept strips of difere adjusting said edge guide elements to ccept strips of different widths, and adjusting said applicator
means to apply different lengths of splicing tape in relation to
the strip widths acceptable by said edge guide elements.

\section*{4,094,724}

LABEL CUTTING DEVICE FOR LABEL APPLYING
Sato, MACHINE MACHINE Kabushiki Knisha Sato Kenkyusho, Tokyo, Japan

Flued Oct. 6, 1976, Ser. No. 730,121 Claims priority, appication Japan, Oct. 18, 1975, 50-124892 U.S. C. 156-384 Int. C1. \({ }^{2}\) B41M \(1 / 00\)

26 Claims
1. A label cutting device for a label applying machine, comprising: an opera position; roler connected to said lever for being rotated thereby as having a periphery; a blade receiving means defined in aid roller periphery; said roller being rotatable to bring said blade receiving means to a cutting position;
a cutting blade held nonrotatively stationary with respect to rotation of said roller and positioned at said cutting position; said cutting blade being movable toward and into engagement with said blade receiving means when said
roller has rotated to position said blade receiving means at said cutting position; said cutting blade being connected to said cutting position; said cutting biade being connected and
said lever so as to be reciprocatingly moved toward and away from engagement with said blade receiving means as said lever is moved;
strip which is to be cut against said roller at said cutting position.
\[
4,094,725
\]

APPARATUS FOR HOT GAS WELDING OF A PAIR OF THERMOPLASTIC MATERIALS Shinjii Takeds, Toyota; Norlyoshi Mitsui, Okazaki, and
Nobuharu Kato, Nagoya, all of Japan, astignors to Aisin Seiki Nobuhare Kato, Nagoya,
Flied Jan. 24, 1977, Ser. No. 761,906 , 51/6981 Claims priority, application Japan, Jan. \(\mathrm{Int}\). Cl. \({ }^{2}\) B32B 31/00
U.S. C. 156-497 \(\qquad\) 7 Claims
1. An apparatus for welding a pair of thermoplastic wor pieces by means of hot gas blasting, which comprises: nozzle means including;
a housing having a central bore and side walls; and, tral bore in the longitudinal direction of said housing whereby a pair of chambers are formed between said partition walls and said housing side walls and wherein said partition walls include a plurality of bores which
communicate said pair of chambers with said central bore and wherein said housing side walls include a plurality of nozzles from which said hot gas blast is ejectable.
2. The apparatus of claim 1, which further comprises:
a first movable means supporting thereon a workpiece to be welded;
a second movable means supporting thereon the other workpiece to be welded, said first and second movable means being arranged in alignment for opposing said workpieces
to each other; and to each other; and, from which said hot gas blast is ejectable, said third mov-

able means being movable at right angles with respect to said first and second movable means,
whereby said workpieces are heated by hot gas blast ejected from said third movable means upon said thid movable means being moved to a position between said first and second movable means and whereby said workpieces are
pressurized to be welded into one piece upon relative movement of said first and second movable means.

APPARATUS FOR PROCESSING EXPOSED APPARATUS FOR PROCESSING EXPOSED
PHOTOGRAPHIC FILMS AND CASSETTES FOR SUCH Friedrich Hujer, Grunwaid, and Helmat Zangenfeind, PuchFriedrich Hujer, Grunwald, and Helmnt Zangenfeind, Puch-
heim, both of Germany, assignors to Agfa-Gevaert Aktienheim, both of Germany, assignors to Agra-Gevaert AktienFeled Oct. 5, 19 Germany Ser. No. 729,700 Filed Oct. 5, 1976, Ser. No. 729,700
Claims priorty, application Germany, Oct. 9, 1975, 2545214 U.S. Cl. 156—502

20 Claims

1. In an apparatus for processing photographic films and containers for such films, a combination comprising a substanand second inlets forsing having wall means provided with first nd discrete films, respectively; film removing means in said housing; means for conveying containems from said first inlet into the range of said removing means; film splicing means in said housing; means for transporting films from said removing
means said splicing means, including a first guide channel
which receives successive films from said removing means and a second guide channel which receives successive films from said first channel and directs such films toward said splicing means; and means for transporting films from said second inlet o said splicing means, including a third channel wherein films advance from said second inlet into said second channel.

\section*{SHEET SPLICE}

Joseph Martin Collins, Ontario, N.Y., assignor to Burroughs Joseph Martin Collins, Ontario
Corporation, Detrolt, Mlch.

\section*{Filed Dec. 17, 1976, Ser. No. 751,657
Int. Cl. \({ }^{2} \mathbf{~ B 6 5 H}\) 2l/00; B31F 5/06}
U.S. Cl. 156-505

6 Claims

1. A sheet splicer comprising:
a frame,
a table mounted on said frame.
clamping means pivotably mounted about a clamp axis on said frame to secure overlapping plies of the sheets to be joined against movement on said table,
said table being pivotably mounted on a first side thereof said frame about an axis which is parallel to and spaced from the axis about which said clamping means is pivoted such that said sheets to be spliced may be laid on said table
between a portion of the clamping means and said table,
said table being spring biased at the second free end side thereof remote from the pivoted axis for said table and adjacent the axis about which said clamping means pivots, aid clamping means having free end which is attached to be clamped to said frame adjacent the first side of the table
such that there is an equidistant interference clamping fit along the width of the table along the splice line of sheets to be joined by a butt splice in said splicer,
a cutter mounted on guide rail means running parallel to saic splice line and mounted above said clamping means
through overlapping plies of sheets to be spliced along the splice line to sever the sheet plies and to define a butt edge end of the upper and lower plies of said sheets which are to be spliced,
the opposite side of the defined cut of each ply being considered a selvage edge,
splicing tape applicator means being mounted on guide rails
beneath said tape, which guide rails seneath said tape, which guide rails are parallel to said splice line and mounted on said frame, said table applicaing the butt ends of the sheet together,
having selvage edge removal means and spring means for
 butt edges of the sheets to be joined,
the cutter and the applicator means being interconnected by a flexible position synchronization interlock extending from the cutter means around the pivot clamp axis of said clamping means down under said table about a second point and across under the table and around a third point and back across under the table to interconnect to said applicator means such that the clamping means may be
unclamped and lifted from the table while pivoting about said clamp axis without disconnection of the flexible interlock.

TIRE TUBE MAKING APPARATUS Yohachiro Nakagawa, Kodaira, and Akjo Tanihata, Aldgawn, both of Japan, assignors to Bridgestone Tire Company Limted, Tokyo, Japan
Filed Nor. 11, 1976, Ser. No. 741,030
Claims priorty, application Japan, Nov. 14, 1975, 50-136871 Int. C. \({ }^{2}\) B29H 15/00

2 Claims

1. A tire tube making apparatus comprising:
conveyor mechanism including a stationary frame and an endless belt travelled on said stationary frame by a drive source for conveying a tube material;
a perforating mechanism for perforating air introducing bores longitudinally equally spaced in an upper half porn of said tube material;
valve feeding mechanism for intermittently feeding a tube valve one by one to a predetermined position above the line passing through said air introducing bores perforated in said tube material which is coning
said conveyor mechanism; sald conveyor mechanism;
tube valve fed by said valve feeding mechanism to transfer said tube valve one by one on said air introducing bore in synchronism with the transfer of said air introducing bore of said tube material; and
valve urging mechanism for detecting said tube valve
transferred by said valve transferring mechanism and transierred by said valve transferring mechanism and including a movable frame movable on said stationary frame, a gripping device mounted on said movable frame
to grip said endless belt for moving said movable frame to grip said endless belt for moving said movable frame
jointly with said endless belt, and a valve urging device mounted on said movable frame for urging said tube valve against said tube material.

APPARATUS FOR MAKING OPEN PROFILE BAGS Salvatore Boccis, Blauvelt, N.Y., assignor to Minigrip, Inc., Orangebure, N.Y.
Division of Ser. No. 577,883, May 15, 1975, Pat. No. 4,024,010. This application Apr. 12, 1977, Ser. No. 786,858
U.S. CI. 156-515

6 Claims

1. A mechanism for preparing bags of thin plastic film having continuous reclosable fastener profiles on the surface thereof comprising in combination:
means for continuously advancing facing layers of thin plastic bag film having facing interlocking rib and groove
profiles on the inner surface extending along one edge of the layers with the profiles being interlocked;
a separating finger positioned between the rib and groove pure silicon into a ladle-shaped mold having a bottom and side profiles along the path traveled by the layers having a walls, maintaining the mold at a temperature sufficient to cause
leading separating edge so that the profiles are forcibly
silico crystals to leading separating edge so that the profiles are forcibly
separated as they are advanced by the rib element being pulled out of the groove element;
aligning means.positioned immediately
aligning means.positioned immediately after said separating edge holding said rib and groove elements in exact oppos-
ing alignment immediately after they are separated and ing alignment immediately after they are se
while traveling over the separating finger;
and a heat sealing means positioned immediately after the
separating finger intermittently separating finger intermittently pressing the layers to-
gether transversely joining the rib and groove profile gether transversely y joining the rib and groove profile
elements and heat sealing said layers and profiles by applying heat thereto, said heat sealing means moved intermit tently against the bag film at spaced locations to form a cross seal at spaced locations on the film with the rib and
groove elements remaining separated between said spaced groove elen
locations.

METHOD FOR FABRICA94,730
IOD FABRICATION OF HIGH MINORITY CARRIER LIFETIME, LOW TO MODERATE
RESISTIVITY, SINGLE CRYSTAL SILICON
W. Patrick Rahilly, Dayton, Ohio, assignor to The United States of America as repr
\begin{tabular}{l}
Filed Mar. 11, 1977, Ser. No. 776,803 \\
Int. C.2 \\
\hline 101 B01J \(17 / 40\)
\end{tabular}
U.S. C. \(156-606\)

2 Claims silicon crystals to grow thereon, providing relative movement
between the mold wall with the growing silicon crystals and the molten mother liquor to continuously wash the exposed growing surfaces of the silicon crystals with the mother liquor during the further growth of the silicon crystals and maintain-
ing the top surface thereof substantially liquid by providing ing the top surface thereof substantially liquid by providing
relative movement between the mold with the silicon crystals relative movement between the mold with the silicon crystals
thereon and the molten mother liquor, decanting the mother liquor from the mold before the liquor temperature reaches \(2206^{\circ} \mathrm{F}\). to leave a hollow ladle-shaped silicon ingot of less than about \(60 \%\) by weight of the original mother liquor having an outer zone adjacent to the mold and an inner zone centrally zones having more than one-twentieth of the iron concentration of the mother liquor, and discarding the outer and inner zones to leave an annular crystalline portion of the silicon ingot with an iron concentration less than about one-twentieth of the with an iron conceniration less than about one--w
iron concentration in the original mother liquor.

40432
SILICON ETCHING PROCESS
Alan R. Reinberg, Dallas, and Rao K. Rao, Houston, both of Alan R. Reinberg, Dalias, and Rao K. Rao, Houston, both of
Tex., assignors to Texas Instruments Incorporated, Dallas,
Tex. Tex.,
Tex.
Division
Division of Ser. No. 628,184, Nor. 3, 1975. This application May 26, 1977, Ser. No. 800,826
Int. C. \({ }^{2}\) H01L \(21 / 306\)
U.S. Cl. 156-643 5 Claims 1. A process for etching silicon comprising the step of: contacting said silicon with a plasma derived from a gas comprising \(\mathrm{CCl}_{4}\) and an inert gas.

4,094,733
METHOD OF NEUTRALIZING LOCAL DEFECTS IN CHARGE COUPLE DEVICE STRUCTURES
1. The method of fabricating a doped silicon single crystal of Robert C. Gallagher, Ellicott Clty, Md., assignor to Westing semiconductor material from a polycrystalline ingot rod of
silicon, comprising the steps of: silicon, comprising the steps of
\[
\begin{aligned}
& \text { lectric Corp., Pittsburgh, Pa. } \\
& \text { Filed Nov. 16, 1976, Ser. No. }
\end{aligned}
\]

8 Int. Cl. \({ }^{2}\) H01L \(21 / 3066\) Claims zone melt passes moving
b. are end of the ingot;
b. removing the said lower end of the said crystal providing a new clean end;
c. implanting near the new clean end a dopant
polycrystalline rod by ion beam implantation
d. fusing a single crystal ion beam implantation;
d. fusing a single crystal seed crystal to the said clean end;
e. converting the said polycrystalline rod ingot to single crystal structure by a pingle crystalline rone ingot pass to singleugh the said seed crystal and the said polycrystalline ingot,
stopping the said zone stopping the said zone melt pass before reaching the said upper end of the ingot; and
f. removing the upper end of the ingot providing a clean
doped single crystal for semiconductor doped single crystal for semiconductor element fabrica-
tion.

\section*{4,094,731}

METHOD OF PUUIFYING SILICON Namman H. Keyser, Hinsdale, II., and James C. Cline, Beverly, Namman H. Keyser, Hinsame, II., and Caime, C.
Ohio, assignors to Interlake, Inc., Chigigo Ill.
Filed Jun. 21, 1976, Ser. No. 697,865

Filed Jun. 21, 1976, Ser. No. 69,865
Int. C. C01b 33/02; B01j 17/08
U.S. C. \(156-616 \mathrm{R}\)
1. A batch method of producing crystalline silicon having an

1. A method of preventing charge leakages in potential wells of a charge coupled device which are caused by defects located in a semiconductor substrate in which the potential wells
are formed and which defects may intersect the potential wells, are formed and which defects may intersect the potential wells,
diffusing a dopant of
ductor substrate having a continuous surface to provide a first diffused region of approximately uniform depth and second deeper diffused regions surrounding any defect in said substrate; and
removing only said first diffused region from said substrate, said substrate having said second diffused regions sur-
rounding any defects in order to neutralize the effect rounding any defects in order to neutralize the effect of
any of said defects in the substrate in which the potential wells are to be formed. 1. A batch method of producing crystalline silicon having an
iron concentration less than about one-twentieth of the iron iron concentration less than about one-iwentieth of the iron
concentration of the mother liquor, said method comprising concentration of the mother liquor of silicon contaminated introducing a molten mother liquor of silicon contaminated removing
with iron at a temperature higher than the melting point of etching.

4,094,734
EVAPORATOR AND TREATMENT OF VISCOUS BRINES
GVape I Tir and Seate War Industrial Corporation, Seattle, Wash.

Flled Oct. 15, 1973, Ser. No. 406,635
Int. Cl. \({ }^{2}\) B01D \(1 / 22\)
U.S. CI. 159-13 A

1. An evaporator for concentrating a liquid comprising: a vertically disposed shell, a bundle of parallel open-ended tubes vertically disposed within said shell, said tubes being sealed to chamber for heating said tubes, said tubes carrying trap means on the exterior thereof for receiving condensate and for re-
moving the same from said steam chamber, a lower casing noving the same from said steam coitioned beneath said tubes to receive steam and liquid conpositioned beneath said sentes, means in said lower casing for sepa rating said liquid concentrate from said steam, means to with draw said steam from said lower casing, means to supply
heated steam to the upper end of said steam chamber, means to heated steam to the upper end withdraw said liquid concentrate from said lower casing and to pump the same at high velocity through a pipeline toward said tubes at the upper end thereof, header means including distributor arms to distribute the said liquid concentrate to a plurailit
of feed tubes, one for each of said open-ended tubes, said of feed tubes, one for each of said open-ended tubes, say
distributor arms having a graduated internal cross section and said feed tubes having a total internal cross-sectional area substantially equal to the internal cross section of the line through which said liquid concentrate is pumped to maintain
the velocity substantially constant throughout said header means.

4,094,735
METHOD OF PULPING WITH SULFITE LIQUOR METHOD OF PULPING WITH ACID ESTERS
sigbjorn P. H. E Holigersson, Gavle, Sweden, assignor to Kopparfors AB, Ockelbo, Sweden Continuantion of Ser. No. 610,075, Sep. 3, 1975, abbando application Jan. 17 , 197e Ser. No.
Claims priority, application Sweden, Sep. 6, 1974, 7411268
U.S. Cl. 162-76 Cl. \({ }^{\text {Int. }}{ }^{2}\) D21C 3/04, 3/06, 3/20 3 Claims 1. In the method of producing wood pulp by cooking wood
in a sulfite cooking liquid, the improvement comprising adding in a sulfitt cooking liquid, the improvement compit into contact with the wood, at least one formic acid ester having the formula
 where R is a hexyl group or an unsubstituted or methyl-sub971 O.G. 26
connection, a vertical steam generator positioned adjacent to being continued for a period of time adequate to effect solubilisaid vessel, said generator having a lower portion having a zation of said killed cells.
coolant connection with which said pipe is connected and
coolant connection with which said pipe is connected and
internally having a horizontal tube sheet above the gener internally having a horizontal tube sheet above the generator's
said connection and a horizontal partition below the tube sheet and horizontally aligned with and connected with the phepe's said horizontal partition wall and having a vertical partition
wall extending upwardly to said tube sheet transersely with wall extending upwardly to said tube sheet transversely with
respect to the generator's said connection and forming horizontally separated spaces below the tube sheet and above the generator's horizontal partition, one of said spaces being adjacent to and connected to said pipe above its said horizontal
partition wall, the generator's said horizonal partition a lower space therebelow, a vertical coolant pump vertically positioned in said lower space and discharging thereinto and having a suction inlet connected to the other of said spaces, said lower space being connected with said pipe below its said partition wall, and a vertical motor for driving said pump and
positioned below and outside of the generator's said lower portion, a vertical shaft extending through said lower portion and interconnecting said motor and pump; wherein the improvement comprises said horizontal partition wall at least
adjacent to said coolant connection being formed by at least wo sections extending radially from the inside of said coolant pipe towards each other and having outer edges rigidly fixed said inside and inner edges spaced from each other and interconnected by an expansion joint.

4,094,738
NUCLEAR FUEL PELLET DESIGN TO MINIMIZE
Walston Chubb, Franklin Township, Westmoreland County, Pa, assignor to Westinghouse Electric Corp., Pittsburgh, Pa. Fo Westinghouse Electric Corp., Pittsburg May 19,1976 , Ser. No. 687,838
Filed
U.S. CI. 176-67

7 Claims

1. A nuclear fuel pellet for use in a nuclear reactor, said fuel pellet consisting essentially of uranium dioxide and plutonium dioxide and having pores therein randomly distributed to prodioxide and having pores therein randomly distributed to pro-
vide a balance between pellet swelling and pore removal at a plurality of temperatures less than \(1000^{\circ} \mathrm{C}\), said pores being
less than 1 percent of the total pellet volume for pore less than 1 percent of the total pellet volume for pore sizes less than 2 microns, and up to 6 percent of total pellet vol
pore sizes between 0 microns and about 20 microns.

4,094,739
METHOD FOR PURIFYING MICROBIAL
POLYSACCHARIDES
brizol Corporchroeck, Eastiake, Ohio, assignor to The Lu-
rizol Corporation, Wickliffe, Ohio
Flled Dec. 27, 1976, Ser. No. 754,866
Int. Cl. \({ }^{2}\) C12D \(13 / 04\)
U.S. Cl. 195-7 9 Claims mixture comprising a polysaccharide produced by bacterial fermentation which comprises the steps of killing said bacterial tion with a Trichoderma sp. mold, said second fermentation

PREPARATION OF LIQUID FUEL AND NUTRIENTS FROM SOLID MUNICIPAL WASTE John L. Lang, P.O. Box 1242, Midland, Mich. 48640

U.S. CI. 195-27 U.S. C. 195-27
1. The process for preparation of useful materials, including
liquid fuels, from solidous municipal waste which comprises liquid fuels, from solidous municipal waste which comprises
the steps of : (a) Separa
(a) Separation of the metal materials present in said waste, pregnated par the non-friable plastic, hydrocarbon im (c) Separation paper and leather present in said waste; from said of friable materials, as plastics, glass, from said waste;
(d) Steeping to swell water-hydrolyzable material
e) Flotation separation of hydrolyzable from nonhydrolyza ble material
(g) acidcatalyzed of the hydrolyzable material part of the hydrolysis and saccharification of at leas sugars;
h) Filtration of solublized material of step (g), with recycle of the non-solubles to the hydrolysis step and transfer of) PH adjustment to about 3.4 and fermentation
(j) Filtration of the fermented mixture, recycling of solid material to the hydrolysis step;
(k) Distillation to produce (I) Liquid Fuel and (II) Residue suitable for use as plant- and animal-nutrients.

4,094,741
PROCESS FOR PREPARING
D.(-)-N-CARBAMOYL-2-(PHENYL OR SUBSTITUTED PHENYLIGLYCINES
Hideaki Yamada, Kyoto; Satomi Takahasshi, Takatsulk, and Koj Yoneda, Amagasald, all of Japan, assignors to Kanegafuchi Kagaku Kogyo Kabushilk Kaisha, Osaka, Japan
Filed Feb. 1, 1977, Ser. No. 764,635
Claims priority, application Japan, Feb. 4, 1976, 51-11575;
Dec. 3, 1976, \(51-145748\)
U.S. Cl. 195-29 Int. Cl. \({ }^{2}\) C12D 13/06

13 Claims
1. A process for preparing D-(- -N-carbamoyl-2-(phenyl substituted phenyl)glycines having the following general formula:

wherein \(\mathbf{R}^{1}, R^{2}, R^{3}\) and \(R^{4}\) are independently hydrogen atom, a halogen atom, hydroxyl group, a lower alkoxyl group or methyl group,
which comp
nyl)hydantoins having the following general fort phe

wherein \(R^{1}, R^{2}, R^{3}\) and \(\mathbf{R}^{4}\) are as defined above to the action of an enzyme which is in the form of a cultured broth containing microorganisms or the separated cells of said microorganisms in an aqueous medium, said enzyme being capable of hydrolyz ing 5 -(phenyl or substituted phenyl)hydantoins so as to sub tantially produce only D-(-)forms of N -carbamoyl-2-(pheny or substituted phenyl)-glycines, am.

RODUCTION OF ETHANOL FROM CELLULOSE USING A THERMOPHILIC MIXED CULTURE Winthrop D. Bellamy, Schenectady, N.Y., assignor to Generi Electric Company, Schenectady, N.Y.
Filed Mar. 4, 1977, Ser. No. 774,380 Filed Mar. 4, 1977, Ser. No. 77
U.S. CI. 195- \(\mathbf{3 3}\) 10 Claims 1. A process for fermenting cellulose to produce ethanol by the combined growth of a mixed culture of thermophilic cellu lolytic gram-negative sporocytophaga and thermophilic celluololytic gram-negative sporocytophaga always being assocellulolytic gram-negative sporocytophaga always being asso-
ciated with a gram-positive thermophilic bacillus, which com prises providing a particulate or fibrous cellulosic material wherein at least a major amount of the cellulose component is exposed, admixing an aqueous nutrient mineral broth with said particulate cellulosic material to form a suspension having a
pH ranging from about 7 to 8 , said aqueous nutrient mineral pH ranging from about 7 to 8 , said aqueous nutrient mineral
broth being a source of nutrients for said mixed culture, admixing said mixed culture with said suspension, and fermenting the resulting mixture at a temperature ranging from about \(50^{\circ} \mathrm{C}\) to
about \(65^{\circ} \mathrm{C}\) and at a pH of about 7 to 8 to produce at least a about \(65^{\circ} \mathrm{C}\) and at a pH of about 7 to 8 to produce at least significant amount of ethanol and recovering said ethano

\section*{4,094,743}

ENZYMES IMMOBILIZED ON CHITOSAN ENZYMES IMMOBBLIEED ON CHITOSAN
Jean-Louis Leuba, Crissier, Switreriand, asslgor to Societe
d'Assistance Technique pour Produits Neste S.A., La Tourd'Assistance Technique

Claims priority, application Switzeriand, Apr. 10, 1975, U.S. C. 195-63 18 Claims coal to conversion products for the production of metallurgi1. A process for the preparation of an enzymatically active cal grade coke and low suffur gaseous and liquid fuels, wherein product insoluble in aqueous medium, comprising creaing coal carbonizaion and sulfar coal containing from about 1 to chitosan as an insoluble inert support with a
provide an activated chitosan suppor and had activated chitoenzyme containing free amino groups to said activated chitosan support.
mical conversion of high sulfur
WATER-DISPERSIBLE PROTEIN/POLYURETHANE REACTION PRODUCT Frank Joseph Hartdegen, Columbia, and Wayne Elliott Swan, Frank Joseph Hartdegen, Columbia, and Wayne Eliott Swann,
Pasadena, both of Md., assignors to W. R. Grace \& Co., New York, N.Y.
Continuation-in-part of Ser. No. 743,035, Nov. 18, 1976, which is continuation-in-part of Ser. No. 660,982 , Feb. 24, 1996, abandoned, which is a continuertion in-part of Ser. No. 585,674,
Jun. 10, 1975, abandoned. This application Dec. 10, 1976, Ser. Jun. 10, 1975, abandoned. This applica
U.S. C. 195-63

No. \({ }^{\text {Nat. }}{ }^{749,430}{ }^{\mathbf{C o 7 G}} 7 / 02\)
\(\qquad\)
8. An aqueous solution of a water-dispersible, biologically.
active protein bound to a polyurethane characterized as having active protein bound to a polyurethane characterized as having
an essentially linear polyester backbone, said protein bound to said polyurethane through a ureido linkage, said polyurethanebound protein being water-soluble.
10. A method for preparing an aqueous solution of protein bound to a urethane polymer comprising: and an isocyanate-capped liquid polycally-active protein having a linear polyester backbone under essentially yer drous conditions to form a solution, said protein and prepolymer reacting to form a water-soluble reaction product polymer reacting to form a water-soluble reaction product
wherein the protein and prepolymer are bound together; and
b. dispersing the solution in water with agitation to form an b. dispersing the solution in water with agitation to form
aqueous solution of urethane-polymer bound protein.

METHOD OF STAINING \(4,094,745\)
METHOD OF STAINING MICROSCOPIC ORGANISMS Scotland Mieser, Moor Rond, Milingaite, Glasgo Continuaation-in-part of Ser. No. 479,583, Jun. 14, 1974, Clasdoned. This application Jan. 30, 1976, Ser. No. 701,083 29674/73 1/0
U.S. CI. 195-103.5 M

2K \(1 / 04\)
1. A method of staining viable microorganisms or a Clisims 1 viable and of non-viable microorganisms comprising reacting said microorganisms, suspended in a liquid medium, with hosphate ions, whereby phosphate ions react at active sites on he microorganisms to produce phosphate derivatives of the zroups, reacting the phosphate derivatives with phosphate eactive fluorochrome dye, which thereby combines chemcally with the microorganisms via the intermediate phosphate groups, and examining the thus-fluorochrome-dyed microoranisms with fluorescence-activating ultraviolet light for the presence, relative amouns
microorganisms suspended in the liquid medium.

\section*{COAL-CONVERSION PROCESS}

Philip X. Mesciantonio, Penn Township, Westmorelend County and Keneth A Schoon Ter, Manroe Wille Borizond County, and Kenneth A. Schowalter, Monroeville Borough, both of
Pa., assignors to United States Steel Corporation, Pittsburgh,
Pa.
Continuation of Ser. No. 205,248, Dec. 6, 1971, abandoned. This Continuation of Ser. No. 205,248, Dec. 6, 1971, abandoned. This application Nov. 25, 1974, Ser. No. 526,41
U.S. C. 201-5
1. A method for the economical conversion of high sulturcoal carbonization and liquefaction processes are integrated to cat particulate, high sulfur coal polaining from about 1 to (a) in a fluidized bed reaction zone ing temperature not greater than \(1600^{\circ} \mathrm{F}\), contacting
first quantity of said particulate coal with (i) an amount of relative to the flow path of the hot exhaust gas through said char at least sufficient to maintain the free flow of the bed boiler, the first section in the exhaust gas flow path constituting of coal particles and (ii) a gas containing at least an amount of \(\mathrm{H}_{2}\) sufficient to yield a resultant low sulfur char containing less than \(0.7 \%\) sulfur, said gas having no more than
about \(2 \%\) by volume \(\mathbf{H} \mathbf{2}\) Sand being substantially fre of about \(2 \%\) by volume \(\mathrm{H}_{2} \mathrm{~S}\) and being substantially free of \(\mathrm{O}_{2}\); the resultant carbonization reaction producing, in
addition to said low sulfur char, gaseous eflluents, and liquid effluents including tar acids and hydrocarbon oils,
(b) in a liquefaction reaction zone maintained at a temperature of about \(800^{\circ}\) to \(960^{\circ} \mathrm{F}\) and a pressure of 2000 to 10,000 psi, combining a second quantity of said particulate coal with carrier oil, a substantial portion of which is
hydrocarbon middle oil derived from step (e), and reacting the combination in the presence of \(\mathrm{H}_{2}\) to render said second coal quantity into gaseous effluents, and liquid effluents including light., middle., and heavy-hydrocarbon oils,

a steam generator for said steam turbine and the second section constituting a source of heat utilized in the desalination plant.

METHOD OF AND DEVICE FOR DISTILLING OFF
(c) recovering low sulfur char product and the gaseous and liquid effluents from steps (a) and (b),
(d) recovering \(\mathrm{H}_{2}\) from said gaseous effluents and passing at east a portion of the recovered \(\mathrm{H}_{2}\) to said lique
reaction zone to satisfy the \(\mathrm{H}_{2}\) demands thereof,
(e) recovering said hydrocarbon middle oil and passing at
least a portion thereof to said liquefaction reaction oone to least a portion thereof to said liquefaction reaction zone to satisfy the carrier oil demands thereof, said hydrocarbon middle oil containing tar acids from said carbonization
reaction for the promotion of said liquefaction reaction, (f) proportioning the ratios of coal fed to steps (a) and (b) so that said first quantity is between 30 and \(65 \%\) of the sum of said first and second quantities; whereby heavy-hydrocarbon oil is produced in a quantity at least sufficient to
serve as binder, for the low sulfur char recovered as prod. serve as binder, for the low sulfur char recovered as prod-
uct, in the formation of a green coke material, which, uct, in the formation of a green coke material, which,
upon calcination at temperatures of \(1500^{\circ}\) to \(2400^{\circ} \mathrm{F}\) will produce a metallurgical grade coke containing less than \({ }^{0.7 \%} \mathbf{S}\).

SURFACE TREATMENT WITH DURABLE LOW-FRICTION MATERIAL
Ronald R. Stange, Denver, Samuel B. McGuire, Arrada, and
Ronamas W. Woodring, Westminster, all of Colo., assignors to
Thools for Bending, Inc., Denver, Colo.
Filed Jul. 6, 1976, Ser. No. 702,333
Int. C.2
U.S. C. 204-25

1. The method of plating a metal surface comprising the steps of:
(a) cleaning the metal surface;
(b) electroplating th s.
(b) electroplating the surface; with chromium in a chromic acid bath to form a microcracked chromium plated sur-
face portion; face portion;
thereof;
(d) etching the oled surface 10 expand the craks for
the plating step; and
(e) followed by applying a perfluoroca
under pressure to fill the microcracks.
11. The method of forming a alubricant surface on a tube bending mandrel assembly which is comprised of a plurality o
interconnected metal balls and a shank portion at one end comprising the steps of:
(a) cleaning the external surfaces of the metal balls and shank;
(b) electroplating the external surfaces in a chromic acid
bath for a time period and at a temperature level sufficient
to form a hard chromium plated surface containing micro-
(c) heating the metal balls and shank at a temperature and for
a time period sufficient to oxidize the plated surface
(d) reverse etching the metal balls and shank to expand the
cracks formed in the plating surface; and
(e) applying a polytetrafluoroethylene to the external plated surfaces of the metal balls and shank at an elevated tem-
perature sufficient to cause the polytetrafluoroethylene to perature sufficient to cause the polytertafluoroethylene to
fuse into and to fill the microcracks formed in the plated furface portions.

CATHODIC DEPOSITION OF OXIDE COATINGS
Cack D. Meckey, El Segundo, Calif., assignor to Northrop Cor-
Jack D. Mackey, El Segundo, C
Filed Oct. 5, 1977, Ser. No. 839,581
led Oct. 5, 1971, Ser. No.
Int. Cl. \({ }^{2}\) C25D 9/12
U.S. Cl. 204-56 R
1. A process for depositing a tenaceous, adhesion-promoting
oxide coating on the surface of a metal part, comprising: cleanoxide the surfaces of said part, suspending said part as the cathing the surfaces of said part, suspending said part as the cath-
ode in a solution containing isoproponol and a metal salt selected from the group consisting essentially of aluminum nitrate, cupric nitrate, cobalt nitrate, and nickelous nitrate, electrolyzing said part at a current density ranging from 0.02 to 0.5 amp./in. \({ }^{2}\) for times ranging from 5-60 seconds.

1 Calms

4,094,751
PHOTOCHEMICAL DIODES
4,
Arthur J. Nozik, Summit, N.J., assignor to Allied Chemical Corporation, Morris Township, N.J. Filed Sep. 30, 1976, Ser. No. 728,474
U.S. Cl. 204-80

40 Claims

1. A method of distilling off unwanted by-products from an oily liquid by means of steam, the vaporization points of the y-products and of the steam lying below that of the oily iquid, comprising:
heaing and pressurizing said oily liquid and said steam; mixing said oily liquid and said steam in a contactor; sor to a pressure considerably below the in a decomprescontactor, causing said mixture to decompose into in surified liquid phase of said oil and a vapor phase of said steam and said by-products, said steam and said by-products having absorbed their heats of vaporization from the heat of the oily liquid; and separating said vapor from said which lies considerably below the pressure obtaining in the contactor.
1. A photochemical diode comprising two portions, a first portion comprising at least one appropriately doped \(p\)-type
semiconductor material provided with an ohmic contact over portion thereof and a second portion comprising at least one ppropriately doped \(n\)-type semiconductor material provided with an ohmic contact over a portion thereof and joined to said first portion through both said ohmic contacts.
5. A process for converting optical energy into chemical eactants which comprises suspending an assembly of discrete photochemical diodes in the reactant matrix and illuminating he diodes with optical energy, the diodes each comprising two ortions, a first portion comprising at least one appropriately and provided with an ohmic contact over a portion thereof, and a second portion comprising either metal which is joined a said first portion through said ohmic contact or at least one appropriately doped semiconductor material of a given conwith an ohmic contact over a portion thereof and joined to said irst portion through both said ohmic contacts.
9. The process of claim 5 in which the chemical reaction comprises photolytic decomposition of water into hydrogen lus at least one of oxygen and hydrogen peroxide.
\[
\begin{aligned}
& \text { 10. The process of claim } 5 \text { in which the chemical reaction } \\
& \text { comprises photolytic decomposition of hydrogen sulfide into }
\end{aligned}
\] hydrogen plus zero-valence sulfur.
25. A process for generating hydrogen from a portion of a body of water using solar radiation comprising

\section*{suspending an assembly of discrete photochemical diodes in} the water, the photochemical diodes comprising two portions, a first portion comprising at least one appropriately doped semiconductor material of a given conductivity type and provided with an ohmic contact over a portion thereof and a second portion comprising either metal
which is joined to said first portion through said ohmic which is joined to said first portion through said ohmic
contact or at least one appropriately doped semiconductor material of a conductivity type opposite to that of said first portion, provided with an ohmic contact over a portion thereof and joined to said first portion through both said ohmic contacts,

Confining the diodes to a fixed volume element by mem- contents being at least about \(80 \%\), and thereby selectively branes permeable to the water and impermeable to the
diodes, and diodes, and
collecting evolved hydrogen in a space above the water formed by a transparent polymer film.

4,094,752
METHOD OF MANUFACTURING OPTO-ELECTRONIC DEVICES
Jacques Vahe, Aunay, Odon, France, assignor to U.S. Philips Corporation, Nem York, N.Y.
Filed Dec. 8, 1975, Ser. No. 638,901
Claims priority, application France, Dec. 9, 1974, 7440216 U.S. CI. 204-129.95 Int. Cl. \({ }^{2}\) H01L 21/306 \(\quad 16\) Claims

1. A method of manufacturing opto-electronic devices start1. A method of manufacturing opto-electronic devices start-
ing from a semiconductor plate mainly constituted by stratified
layers of gallium aluminum arsenide of the general formula ing from a semiconductor plate mainly constituted by stratified
layers of gallim aluminum arsenide of the general formula
AsAl \(_{x} \mathrm{Ga}_{1-x}\) in which the molar proportion \(x\) of aluminum is AsAl \(_{x} \mathrm{Ga}_{1}-\mathrm{x}\) in which the molar proportion \(x\) of aluminum is
lower than 0,3 , wherein an etching treatment is carried out on lower than 0.3 , wherein an etching treatment is carried out on
said plate in a bath containing hydrofluoric acid, nitric acid and acetic acid for a time sufficient to obtain a desired configura
tion. tion.

RECOVERY OF GALIUMM FROM GALLIUM
COMPOUNDS
Thomas L. Chariton, Rossland, end Robert F. Redden, Fruitvale
Canada, assi innors to Cominco Ltd.,
Filed Jun. 1, 1977, Ser. No. 802,405
Int. C.' \({ }^{2}\) C25C 1/00; C01F 1/00

\section*{U.S. Cl. \(204-105 \mathrm{R}\) \\ S. C. 204- 105 R}
1. A process for the recovery of gallium from gallium com pounds containing at least one element selected from the group
consisting of antimony, arsenic and phosphorus which com prises the steps of:
(i) leaching said
(i) leaching said gallium compounds with an oxidizing agent selected from nitric acid and a combination of nitric acid
and hydrogen peroxide, said oxidizing agent being added in an amount at least sufficient to dissolve said gallium from said gallium compounds to form a gallium-contain ing solution;
(ii) forming a gallate solution from said gallium-containing
(iii) recovering gallium from said gallate solution.

LEACHING OF N-CU-FE-S MATTE Raymond D. Symens, Arrada; Paul B. Queneau, Golden; Eddie Colo, Sssignors to Amax Inc., Greenvich Conalden, all of Colo., 2ssignors to Amax Inc., Greenwich, Conn.
Filed Mar. 7, 1977, Ser. No. 775,169 Int. Cl. \({ }^{2}\) C2SC \(/ / 12\)
U.S. Cl. \(204-108\) ontrolling the atmospheric leachin Cla 3. A method of controlling the atmospheric leaching kinetic of comminuted nickeliferous sulfide matte containing about
\(20 \%\) to \(75 \%\) nickel, about \(5 \%\) to \(50 \%\) copper, non-stoichiometric sulfur in the range of about \(13 \%\) to \(16 \%\) and over \(0.5 \%\) to about \(8 \%\) iron, the sum of the nickel, copper and sulfur
contents being at least about \(80 \%\), and thereby selectively
effect the rapid dissolution of substantial amounts of nickel effect the rapid dissolution of substantial amounts of nickel
from said matte and leave a residue impoverished in said nickel, which comprises,
providing said matte in particulate leachable form,
providing said matte in particulate leachable form,
subjecting said particulate matte to atmospheric leaching under oxidizing conditions in a confined column of sulfuric acid-copper sulfate solution containing about 10 gpl to
\(200 \mathrm{gpl} \mathrm{H}_{2} \mathrm{SO}_{4}\) and 5 gpl to 100 gpl copper, with the mole ratio of \(\mathrm{H}_{2} \mathrm{SO}_{4}\) to copper in said leach solution ranging from about \(0.5: 1\) to 2.511 and the temperature from about \(50^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), the amount of solution being such as to provide about 0.4 to 0.8 mole of said \(\mathrm{H}_{2} \mathrm{SO}_{4}\) plus copper in
said solution for each mole of nickel in said matte while injecting a flow of air into the bottom of said solution column at a rate and a partial pressure of oxygen sufficient
to sustain said rapid disoltion to sustain said rapid dissolution of nickel,
selectively controlling the kinetics of said leach
selectively controlling the kinetics of said leaching to effect
rapid dissolution of substantial amounts of nickel from said rapid dissolution of substantial amounts of nickel from said
matte while controlling the residual amounts of copper and iron in the final pregnant solution to below predetermined amounts:
(1) such that to obtain a final nickel solution containing
less than about 20 ppm copper and less than about 100 less than about 20 ppm copper and less than about 100
ppm iron, the acid-to-copper mole ratio is controlled ppm iron, the acid-to-copper mole ratio is controlled to
at least about \(1.5: 1\) at a temperature of over about \(75^{\circ} \mathrm{C}\). and
(2) such that to obtain a final nickel solution containing less than 20 ppm copper and less than about 20 ppm
iron, the acid-to-copper mole rasio is cobtrotled at less iron, the acid-to-copper mole ratio is controlled at less
than about \(1.5: 1\) at a temperature of less than about \(70^{\circ}\)
4. The method of claim 3 , wherein following the completion of said atmospheric leach, the residue thereof is subjected to sulfuric acid leaching using air as an oxidant at elevated tem-
perature and pressure to dissolve the metal values nickel and copper therein, and the solution then subjected to copper electrowinning to produce electrolytic copper and a spent sulfuric acid-copper sulfate electrolyte, the spent electrolyte providing solution for use in the atmospheric leaching of said
matte. 5. A .
5. A method of controlling the atmospheric leaching kinetics
of comminuted nickeliferous sulfide matte containing about \(20 \%\) to \(75 \%\) nickel, about \(5 \%\) to \(50 \%\) copper, non-stoichiometric sulfur in the range of about \(17 \%\) to \(23 \%\) and over \(0.5 \%\)
to about \(8 \%\) iron, the sum of the nickel, copper and sulfur to about \(8 \%\) iron, the sum of the nickel, copper and sulfur
contents being at least about \(80 \%\) and thereby selectively effect the rapid dissolution of substantial amounts of nickel from said matte and leave a residue impoverished in nickel, which comprises,
providing said
providing said matte in particulate leachable form,
subjecting said
subjecting said particulate matte to atmospheric leaching
under oxidizing conditions in a confined column ric acid-copper sulfate solution containing about 10 gpl to \(200 \mathrm{gpl} \mathrm{H}_{2} \mathrm{SO}_{4}\) and 5 gpl to 100 gpl copper, with the mole ratio of \(\mathrm{H}_{2} \mathrm{SO}_{4}\)-to-copper ranging from about \(0.5: 1\) to \(2.5: 1\) and the temperature from about \(50^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\) while
injecting a flow of air into the bottom of said solution column at a rate and a partial pressure of oxygen sufficient to sustain said rapid dissolution of nickel,
selectively controlling the conditions of leaching to effect rapid dissolution of substantial amounts of nickel from said matte by:
adjusting
provide the ratio of leach solution to matte so as to provide about 0.4 to 0.8 mole of said \(\mathrm{H}_{2} \mathrm{SO}_{4}\) plus copper adjusting the mole ratio of \(\mathrm{H}_{2} \mathbf{S O}_{\text {, }}\)-to-copper in matte, tion to at least about 1.8 at a temperature of over about
\(75^{\circ} \mathrm{C}\) \(75^{\circ} \mathrm{C}\),
and continu
and continuing the leaching of said matte under said con-
trolled conditio said solution to to decrease the copper and/or iron in

WATER PURIFICATION METHOD Karl Moeglich, Williamsville, N.Y., assignor to Westinghouse Electric Corporation, Gateway Center, Pa.
Continuation-in-part of Ser. No. 613,289, Sep. 15, 1975, abandoned, which is a continuation of Ser. No. 487,730, Jul. 11 1974, abandoned. This application Mar. 4, 1976, Ser. No. 6 663,790
U.S. Cl. 204-149 C1. \({ }^{2}\) C25B 1/30; C02C \(5 / 12 \quad 39\) Claims
\(X\) is at least one polar functional group selected from the group consisting of hydroxyl (-OH); carboxyl (-COOH); amide (\(-\mathrm{CONH}_{2}\)); mono- and disubstituted amide (\(-\mathrm{CONHR}_{1}\) and \(-\mathrm{CONR}_{1} \mathrm{R}_{2}\)), where \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are the same or different lower alkyls containing one to four carbons; amino \(\left(-\mathrm{NH}_{2}\right)\); mon-
and disubstituted amino (\(-\mathrm{NHR} \mathrm{R}_{1}\) and \(N R_{1} \mathrm{R}_{2}\)), where \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are the same or different lower alkyls containing one to four \(\mathrm{R}_{2}\) are the
carbons;
\[
\text { trialkoxysilyl } \underset{\left(-\mathrm{S}_{1}^{\prime-}-\mathrm{OR}_{2}\right)}{\substack{\mathrm{OR} \\ \mathrm{OR}_{3} \\ \mathrm{OR}_{3}}}
\]
where \(R_{1}, R_{2}\) and \(R_{3}\) are lower alkyls containing one to four carbons; sulfonic acid (\(-\mathrm{SO}_{3} \mathrm{H}\)); hydrogen sulfate (\(-\mathrm{OSO}_{3} \mathrm{H}\)); dihydrogen phosphate (\(-\mathrm{OPO}_{3} \mathrm{H}_{2}\)); carboxylate (\(-\mathrm{COO}^{\ominus}\)); sulfonate (\(-\mathrm{SO}_{3}{ }^{\ominus}\)): singly charged sulfate (\(-\mathrm{OSO}_{\mathrm{O}}{ }^{\ominus}\)); singly
and doubly charged phosphate (\(-\mathrm{OPO}_{3} \mathrm{H}^{\ominus}\) and \(\mathrm{OPO}{ }^{\ominus}\)); and doubly charged phosphate (\(-\mathrm{OPO}_{3} \mathrm{H}^{\ominus}\) and \(\mathrm{OPO}_{3}{ }^{\ominus}\));
ammonium \(\left(-\mathrm{N}_{\mathrm{R}} \oplus \mathrm{R}_{2} \mathrm{R}_{3}\right)\), where \(\mathrm{R}_{1}, \mathrm{R}_{2}\) and \(\mathrm{R}_{3}\) are hydrogens ammonium (\(-N^{*} R_{1} R_{2} R_{3}\)), where \(R_{1}, R_{2}\) and \(R_{3}\) are hydregens
or lower alkyls containing one to six carbons; sulfonium or lower alkyls containing one to six carbons;
\(\left(-S S_{R} R_{2}\right)\), where \(R_{1}\) and \(R_{2}\) are the same or different lower alkyls containing one to six carbons; and phosphonium \(\left(-P^{\oplus} R_{1} R_{2} R_{3}\right)\), where \(R_{1}, R_{2}\) and \(R_{3}\) are the same or different lower alkyls containing one to six carbons.
1. A continuous method for agglomerating solids of colloidal size or larger suspended in aqueous media comprising:
size or larger suspented
providing at least a pair of metal electrodes having facing
surface areas substantially closely spaced with respect to surface areas substantially closely spaced with respect one another;
causing said media and suspended solids to continuously
flow between and past the facing surfaces of said spaced electrodes;
ceausing said suspended solids to agglomerate by applying an alternating \((\mathrm{AC})\) voltage ai a frequency betwe
Hz and 800 Hz across said electrodes while
controlling said AC voltage in relation to the spacing be-
tween said electrode surface areas and the conductivity of said media so as to provide an alternating electric current flowing between said electrode surfaces with the value of
said alternating current being between about 0.08 to 6.0 said alternating current being between abrace to produce
amperes per square inch of electrode surfach hydrogen peroxide at said surfaces as said aqueous media passes; and
providing fluid-induced agitation of said media so as to create turbulence of a Reynolds number of at least about
10,000 in said media as the same flows between and past the spaced facing surfaces of said electrodes whereby the suspending forces of said solids will be broken so that solids will agglomerate for removal from said media.

\section*{4,094,756}

PHOTOCHEMICAL MODIFICATION OF POLYMERS
Lynn J. Taylor, Toledo, Ohio, assignor to Owens-Illinois, Inc.,
Yyn J. Taylor,
Toledo, Ohio
on-in-part of Ser. No. 183,276, Sep. 23, 1971, sbandoned. This application Dec. 29, 1975, Ser. No. 645,103 The portion of the term of this patent subsequent to Mar. 16, 1993, has been disclaimed
U.S. Cl. 204-159.18
1. A process for preparing chemically modified 18 Claims orefin copolymers which comprises exposing to ultraviolet or visible radiation an intimately dispersed mixture containing a polyolefin or olefin copolymer, an organic sensitizer, and an organic co-reactant having a structure containing both a saturated aliphatic hydrocarbon residue and at least one highly polar functional group, said co-reactant being a non-polymeric organic compound having the generalized structure \(\mathrm{R}-\mathbf{X}\),
where R is a saturated linear, branched, or cyclic aliphatic hydrocarbon residue containing at least six carbon atoms, and

POLYTHIOL ACCELERATED RADIATION CROSSLINKING OF OLEFINICALLY UNSATURATED ALYLICALIY HALOGENATED POLYMERS obert L. Zapp, Short Hills, and Alexis A. Oswald, Mountainside, both of N.J. 531,628 , Dec. 11,1974 , abandoned Continuantion of Ser. No. 531,628, Dec. 11, 1974, aband 1971 Pat. No. \(\mathbf{3 , 8 6 4 , 2 2 9 \text { . This application Feb. 22, 1977, Ser. No. }}\) Int. Cl. 770,457
B015 Int. Cl. \({ }^{27015} \mathbf{B 0 1 5} 1 / 10,1 / 12\)
i. In 104 Claims 1. In a process for the curing of a polymer having a number radiation, wherein said polymer has at least \(0.5 \mathrm{~mole} \%\) chloine or bromine in an allylic position, the improvement which comprises incorporating into the polymer about 0.5 to 6 parts per hundred parts by weight of polymer of a cure enhancer comprising a hydrocarbon polythiol having a number average least three thiol groups. least three thiol groups.
\(4,094,758\)
PROCESS FOR PREPARING HIGHER OXIDES OF THE alKali and alkaline earth metals
and Space Administration, with respect an an invention of and Space Administration, with respect to an invention of;
Pasupati Sadhukhan, La Verne, and Alexis T. Bell, Oakland, Pasupati Sadh

Filed Jan. 19, 1977, Ser. No. 760,810
Int. C. \({ }^{2}\) B01K \(/ 100\); C01D \(1 / 02\)
U.S. Cl. 204-164
1. 6 Claims 1. A process for preparing the inorganic higher oxides of the (a) positioning the hyd
frequency discharge reactor in such a manner that about half of said hydroxide is within the glow discharge region of said reactor and the rest is outside of said region;
(b) introducing a flow of oxygen into said radio frequenc discharge reactor;

(c) establishing a glow discharge by applying between about 50 to 90 watts of power to the reactor until the higher
oxide formation is compleed ,

METHOD FOR SIMULTANEOUS QUANTTTATIVE ANALYSIS OF SEVERAL CONSTITUENTS IN A SAMPLE Gerhard Ruhenstroth-Bauer, Grafelfing, and Reiner Scherer,
Munich, both of Germany, assignors to Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.v., Gottingen, Germany
Division of Ser. No. 646,391, Jan. 2, 1976, Pat. No. 4,018,662. This application Jan. 12, 1977, Ser. No. 758,735 Claims priorty, application Germany, Jan
Int. Cl. \({ }^{2}\) G01N 27/26 U.S. C1. 204-180 G

10 Claims

1. A method for the simultaneous qualitative and quantitative analysis of a plurality of immunoreactive substances, especially of antigen-effective substances contained in a sample, comprising the steps of:
A. placing the sample to be tested in a first carrier material which is free from antibodies;
B. providing a second carrier material, adjacent to said first carrier material, said second carrier material containing
ingredients capable of undergoing immunoreactions with said substances in said sample, thereby forming precipitates;
C. causing the migration of said sample from said first carrier
material into said second carrier material. material into said second carrier material;
D. applying an electric field to the area of said first and second carriers for enhancing the migration of said sample material substantially in the direction of said electric field; the improvement comprising the steps of:
E. providing a plurality of second carrier materials, simultaneously adjacent to said first carrier material, and
F. providing in each of said plurality of second carrier materials a different ingredient, each different ingredient being
ion with one of the substances to be analyzed in said sample

4,094,760
METHOD AND APPARAATUS FOR DIFFERENTIALLY AND SIMULTANEOUSLY ELECTROCOATING THE David A. Smith, Murysille, and John J. Daviden Container sington, both of Pa., assignors to Aluminum Company of America, Pitssburgh, Pa.

Filed Jul. 25, 1977, Ser. No. 818,846
U.S. CI. 204-181 R

18 Claims

1. A method of simultaneously electrocoating the interior and exterior of a metal container, which comprises:
inserting a hollow electrically conductive probe into a con-
enclosing the container within an outer electrically conduc tive housing generally conforming to the container exterior shape;
sealing said outer housing with said probe to form a continu ous passageway from said hollow probe to the interior of the container to the exterior of the container between the
lowing electrocoating material th
outer housing and said continuous passageway therebe tween to flood the container in a transient bath of electro coating material;
mpressing an electrical potential between the container and
said probe to electrocoat the interior said probe to electrocoat the interior of the container and
simultaneously therewith impressing an electrical tial between the container and said outer housing to electrocoat the exterior of the container, said probe and said outer housing having the same electrical polarity.

\section*{MaGNETION 4,094,761}

俗 MATERIAL
Richard W. Wilson, Phoenix, Ariz,, assignor to Motorola, Inc Schaumburg, Ill.

Filed Jul. 25, 1977, Ser. No. 818,681
U.S. Cl. 204-192 M

1 Claim 1. An improved method for producing a magnetron sput g tered film having the properties of a ferromagnetic material
formed of said ferromagnetic material alloyed with a nonferromagnetic material to lower the Curie temperature of the alloy

to less than the temperature maintained by said cathode target during the magnetron sputering

METHOD FOR THE STORAGE OF MATERIAL David Watson Clelland, Appleton, England, assignor to United Kingdom Atomic Energy Authority, London, England Continuation of Ser. No. 524,995, Nor. 18, 1974, abandoned. This application Nov. 4, 1975, Ser. No. 628,783 \({ }_{47792 / 74}^{\text {Claims }}\)

6 Claims

1. A method for storage of a material comprising
providing an electrical glow discharge device comprising a including a wall forming a storage glow discharge elec trode, and a sacrificial glow discharge electrode located within said container;
introducing into said container a gas atmosphere containing the material to be stored;
intining the pressure within said continer at value suitable for electrical glow discharge;
suitable for electrical glow discharge;
electrically energizing the storage and sacrificial glow diselectrically energizing the storage and sacrinicial glow dis-
charge electrodes to effect glow discharge between the electrodes to ionize said material in said atmosphere;
controlling the electrical supply such that ions of said material bombard and are implanted into said wail orming said bombard said sacrificial electrode, the ion bombardment of said sacrificial electrode being sufficient to cause sputtering thereof such that the sputtered material is deposited on said wall forming said storage electrode;
whereby the thickness of said wall is increased and whereby ions of said material to be stored are implanted in the
container wall of increased thickness such that said material is entrapped and stored therein.
2. A method according to claim 1 wherein said controlling of the electrical supply comprises adjusting at least one parameter of value, polarity and time of potential applied to a particular electrode.

SPUTTER COATING OF GLASS WITH AN OXIDE OF METAL HAVING AN ATOMIC NUMBER BETWEEN 48 AND 51 AND MIXTURES THEREOF Frank H. Gillery, Allison Park; Jean P. Pressau, Evans City, and Robert E. Kubichan, Tarentum, all of Pa , assignors to PPG Industries, Inc., Pittsburgh, Pa.
Division of Ser. No. 241,858, Apr. 6, 1972, which is 2 nuation of Ser. No. 60,002 , Jul. 31, 1970, abandoned. This application Jan. 23, 1944, Ser. No. 435,788
Int. C. \({ }^{2}\) C23C \(15 / 00\)
U.S. C. 204-192 P \({ }^{\text {Int. C1. }{ }^{2} \text { C23C } 15 / 00 \quad 11 \text { Claims } ~}\)

1. A method of applying a uniform, transparent electroco ductive coating having an electrical resistance of less than
about 10 ohms/square and a visible light transmittance of least about 70 percent consisting essentially of the oxide of a metal taken from the class of metals having an atomic number between 48 and 51 and mixtures of said oxides on a ceramic substrate comprising,
supporting said ceramic substrate in a low pressure atmo-
sphere not exceeding \(10^{-1}\) torr and containing amixure of sphere not exceeding iovirr and containing a mixure of
oxygen and inert gas having an oxygen concentration of at least 1 percent while performing the steps of:
heating said substrate by applying heat throughout the area of said substrate from a radiant heat source spaced from and facing said substrate to heat said substrate to a temperwhich the substrate becomes distorted,
cathode sputtering said oxide of metal onto said
when its temperature reaches at least \(400^{\circ} \mathrm{F}\).,
when its temperature reaches at least \(400^{\circ} \mathrm{F}\).,
continuing to apply heat to said substrate to maintain its temperature at a preselected temperature within said temperature range whie corickness is formed, and \(u\), film of desired thing
discontinuing said cathode sputtering when said film develops a desired electroconductivity.

\section*{4,094,764}

DEVICE FOR CATHODIC SPUTTERING AT A HIGH DEPOSITION RATE DEPOSITION RATE
Bernard Boucher, Massy; Daniel Luzet, La Frette, and Claude
Sella, Meudon-la-Foret, all of France, assignors to CommisSelia, Meudon-la-Foret, ail of France, assignors so CommisValorisation de la Recherche (ANVAR), Neuilly-sur-Seine, both of, France
Claims priority, application France, Sep. 19, 1975, 7528778

1 Chim
1. A device for a a substrate comprising
a pumped enclosure adapted to be at a low pressure \(p\) less than atmospheric pressure ;
a circular bottom portion in
a target within said enclosure, said target being positioned within said cup-shaped anode and having a single, flat sputtering surface defined by a perimetric edge, said sur-
face being parallel to, opposed to, and spaced from said bottom portion;
means for providing a plasma creating electrical discharge between said target and said anode, said target being at a negative potential relative to said anode;
onduit means for admitting a gas at a high pressure \(P\) higher han said low pressure \(p\) into the space between said sputsaid anode;
means within said enclosure for holding said substrate outside of said cup-shaped anode, said substrate being opposed to and spaced from said orifice, communication etween said sputtering surface and said substrate being

established solely via said orifice, a high gas-pressure gradient P-p being estabilished between said sputtering surface and said substrate
means located externally of said anode for producing a
magnetic field H of at least a kilogauss paralel to said sputtering surface of said target, said parallel magnetic field being substantially confined to the space between said sputtering surface and said bottom portion of said cup-shaped anode;
a suppressor screen place around said perimetric edge of said sputtering surface and spaced equidistantly therefrom,
said suppressor screen around said perimetric edge being within said cup-shaped anode; and
means for bringing said substrate to a negative potential with respect to said anode wherein plasma is created by an arc aid substry static elctrical potentials applied betwe said substrate and said anode.

COAL LIQUEFACTION PROCESS
Roby Bearden, Jr., and Clyde L. Aldridge, both of Baton Rouge, La, assignors to Exxon Research \& Engineering Co., Linden,
\[
\begin{aligned}
& \text { Filed Dec. 17, 1976, Ser. No. 751,385 } \\
& \text { Int. Cl. }{ }^{2} \text { C10G } / 106
\end{aligned}
\]
U.S. Cl. 208-8
U.S. C. 208-8
1. A process for the liquefaction of coal, which comprises 1. A proces
the steps of:
(a) treating a slurry comprising coal and a diluent with a hydrogen sulfide-containing gas at a temperature ranging from \(100^{\circ}\) to about \(482^{\circ} \mathrm{C}\). and a pressure ranging from atmospheric to about 5000 psig, and
(b) subjecting at least a portion of the resulting product effluent to coal liquefaction conditions in a coal liquefac-
tion zone, substantially all of said hydrogen sulfide being removed from the treated product effluent prior to step (b).

4,094,766
COAL LIOUEFACTION PRODUCT DEASHING PRON PROD PROCESS Everett Gorin, San Rafael, Calif,, assignor to Continental Oil Company, Stamford, Conn.

Filed Feb. 1, 1977, Ser. No. 764,617
Int. C. \({ }^{2}\) C10G Int. Cl. \({ }^{2}\) C10G \(1 / 08\)

1. In a coal liquefaction process which uses a distillable liquefaction solvent in the presence of hydrogen in a coal
liquefaction zone, the improvement which comprises: (a) establishing and maintaining conditions in said cose
(faction zone effective to dissolve above 80 percent by weight of the m.a.f. coal and produce a major portion o the resulting coal liquefaction product as a distillable product, withdrawing an effluent slurry product from said lique-
faction zone which contains distillable and non-distillable fractions, undissolved solids, and liquefaction solvent, (c) subjecting said effluent slurry product to vacuum distillation to separately recover a distillable fraction composed
of liquefaction solvent and distillable coal liquefaction products and a flowable bottoms fraction composed of non-distillable residuum, undissolved solids and residual liquefaction solvent,
(d) mixing said bottoms fraction with a fractionating solvent comprising a saturated hydrocarbon boiling above \(150^{\circ} \mathrm{C}\)
which preferentially dissolves the lower molecular wer part of the non-distillables the lower molecular weight which is maintained at a temperature above the liquefaction point of said bottoms fraction
which is maintained ang mixture from step (d) to a settler luidity of the mian at an elevated temperature to ensure phases, the upper layer and the formation of two liquid phases, the upper layer being composed of the lower
molecular weight oil dissolved in the fractionating solvent and the lower layer being the remainder of said mixture, (f) separating the upper liquid phase from the lower liquid (I) separating
phase, and
(g) recoovering said lower molecular weight oil from said
upper liquid phase.

\section*{FIUIDIZED \(4,094,767\)}

FLUIDIZED BED RETORTING OF TAR SANDS Phillip H. Gifford, II, Carbondale, Colo., assignor to Phillips Filed Nor. 10, 1976, Ser. No. 740,525
Int C.
U.S. C. 208~ 11 R Int. C. \({ }^{2}\) C10G \(1 / 02 \quad 10\) Claims 1. A process for producing a raw oil from a
ing bitumen, which comprises the steps of:
(a) preheating a tar sand containing bitumen by indirect heat exchange with hot off-gas stream as hereinafter recited in
step (\()\). (b) feeding sad
(b) feeding said preheated tar sand from said step (a) contain-
ing bitumen into a fluidized bed of tar sands ing bitumen into a fluidized bed of tar sands wherein said
fluidized bed of tar sands comprises a contiguous upper
cracking zone, an intermediate decoking zone, and a lower heat recovery zone,
(c) converting said tar sand containing bitumen in said upper cracking zone of said fluidized bed at effective temperatures, pressures, and velocities of said fluidized bed in a substantially reducing atmosphere into a coked sand and a vaporous off-gas, wherein said substantial reducing atmosphere comprises steam, combustion gases, and recycle
gases, and said vaporous off-gas comprises said reducing atmosphere, hydrocarbonaceous material, and hydrogen,
(d) decoking said coked sand in said intermediate decoking zone of said fluidized bed with steam and oxygen in the presence of recycle gases, at effective temperatures, pressures and velociics,
reducing atmosphere.
(e) disengaging said vaporous hot off-gas stream from said coked sand,
(f) preheating said tar sand containing bitumen in said step (a) by indirect heat exchange with said hot off-gas stream,
and thereby at least partially cooling said off-gas stream, and thereby at least partially cooling said off-gas stream,
(g) separating said at least partially cooled off-gas stream into streams comprising a raw oil stream and a recycle gas (b) passing
(b) passing at least a portion of said recycle gas stream into said heat recovery zone to contact said hot spent sand at
effective velocities, thereby producing a cooled spent sand, and a heated recycle gas stream, and
(i) passing said heated recycle gas stream upwardly through said dortion of zone and thence into said cracking zone as a portion of said reducing atmosphere therein.

SEPARATION OF BITUMEN FROM TAR SANDS USING
ULUR AND WATER
Everett J. Fuller, Gillette, N.J., assignor to Exxon Research \& Engineering Co., LInden, N.J.
\[
\begin{aligned}
& \text { Filed Jan. 4, 1977, Ser. No. } 756,643 \\
& \text { Int. Cl. }{ }^{2} \text { C10G } 1 / 04
\end{aligned}
\]
U.S. CI. 208- 11 LE \(\qquad\)
1. A relativey low temperature process for separating bitumen from natural tar sand comprising mixing granular sulfur agglomerate phase, a sand phase and a water phase, separating said agglomerate from said sand and water and recovering bitumen from said agglomerate and wherein said sulfur-bituen asglomerate is formd separated from the water and sand at a temperature below about \(170^{\circ} \mathrm{F}\)

U.S. CI. 208-11 R
nd an outlet and sloped downwardly for gravity flow rom said inles to said outlet and having a rotating member in said retort having a conveyor portion extending out said inlet in a direction countercurrent to gravity flow and having a peripheral surface area defining an annular flow passage between said heated inner surface and said peripheral surface area for crushing oil shale and confining the
crushed oil shale to a layer to which heat is applied from said heated inner surface as the layer is moved from the inlet through an outlet to produce oil product vapors; means for removing and condensing the oil product vapors into oil product liquids; and
tively removing spent oil shale through said outlet.

\section*{PROCESS FOR REMOVING UN \\ FROM AN NILTERABLE SOLIDS hillip R. Bose, Pleasant Hill, Calif, assignor to Cherron Re} search Company, San Francisco, Calif.

Filed Jun. 22, 1977, Ser. No. 809,135
U.S. C1. 208-251 R
1. A process for

8 Claims 1. A process for sepa
(1) agglomerating said solids by admixing said oil with an agglomerating agent wherein the resulting mixtue con-
tains for each volume of said oil an amount of said the range of from about 0.05 to 3 volumes, said agen comprising a mixture of acetone and 2 -butanone and con taining, for each 100 volumes of acetone plus 2 -butanone, at least 2 volumes of acetone and at least 2 volumes of range of from about \(20^{\circ}\) to \(160^{\circ} \mathrm{C}\) and at a pressure at least sufficient to maintain said agent in the resulting liquidsolid mixture;
(2) \()\)
Sorming a sol
(2) forming a solids-reduced oil containing said agent by separating said agglomerated solid from said resulting mixture;
vaporizing said agent from said solids-reduced oil by (4) using as at leass a aportion of said agent in step (1) at least a portion of said separated agent.

4,094,771
PROCESS FOR PREPARATION OF A SPRAYABLE
PRECIPITATED SILICIC ACID SUSPENSION
Bernd Brandt, Wesseling-Berzdorf; Peter Nauroth, Wesseling; Albert Peters, Ertstadt-Liblar, and Helmut Reinhardt, Rodenkirchen, all of Germany, assignors to Deutsche Gold-
und Silber-Scheideanstalt vormas Roessler Frankfurt am Main, Germany Filed Jan. 13, 1976, Ser. No. 648,848
Int. Cl. \({ }^{2}\) B03B \(1 / 00\)
U.S. Cl. 209-4 Int. Cl. \({ }^{2}\) B03B \(1 / 00 \quad 18\) Claims

1. In apparatus for recovering oil pr
the like, the combination comprising.
means incluaing a generally cylindrically shaped retort with a heat-conductive wall having a heated inner surface
defining a retort chamber, said chamber having an inlet

1. Process for the production of a sprayable, highly concen-
trated, aqueous suspension of a precipitated silicic acid, said suspension having little grit and at least about 18 percent by weight solids, said process comprising:
(a) continuously feeding a silicic acid filter cake and a sus. pension agent into a dissolver container provided with stirring means;
(b) stirring said filter cake and suspension agent while maintaining a maximum pH value of about 4 in the suspension,
said stirring means having a peripheral speed of about \(20-30 \mathrm{~m} / \mathrm{sec}\); and
(c) continuously removing a portion of the resulting suspension from a zone of highest turbulence of the suspension in said container;
wherein said container and said stirring means each have a diameter and the ratio of container diameter to the diameter of the stirring means is about \(3: 1\) and the ratio of container diameter to level of filling of said container is maintained at a maximum of about \(1: 2\); and further wherein the silicic acid suspension in said container is maintained in an amount of at least 1.5 to about 2 kg . for each 1 kg of silicic acid filter cake which is added to the container.

METHOD OF AND APPARATUS FOR SORTING LIGHT Klaus Hillekemp REFUSE FRACTIONS Saus Hinckamp, Munich, and Hubert Kindler, Gröbenzell,
both of Germany, assignors to Krauss-Maffel Akill schaft, Munich, Germany
Filed May 19, 1977, Ser. No. 798,487 Claims priority, application Germany, May 22, 1976, 2623067 U.S. Cl. 209-12 25 Claims

\(\stackrel{\square}{4}\)
1. A method of sorting material including flat pieces of different rip resistance, said method comprising the steps of: suspending said material in a gas stream;
passing said stream with said material suspended therein over an entrapment element;
orienting said entrapement element relative to said stream so that pieces of said material catch thereon; and
seling the speed of said stream of gas relative to said element so that the less rip-resistant pieces tear free from said
element and the more rip-resistant pieces remain caught on said element.

PROCESS FOR SEWAGE TREATMENT WITH COUNTERCURRENT HEAT TRANSFER MEANS Danley Beaumont, 118 Macorna St., Watsonia, Australia Division of Ser. No. 66,171, Mar. 15, 1976 , which is continuation-1n-part of Ser. No. 603,623, Aug. 11, 1975,
bandoned, which is a continuation of Ser. No. 435,647, Jan. 23, 1974, abandoned. This application Jan. 24, 1977, Ser. No. Int. Cl. \({ }^{2}\) C02C \({ }^{2659} 1 / 06\)

1. A process for treating sewage, comprising
A. as a psychrophilic stage, flowing raw untreated sewage by gravity within a narrow and deep psychropilic compartment while:
(1.) heating the sewage along the bottom of said psychrorents and form thermally stratified bot convection curand top zones,
(2.) receiving transversely moving mesophilic sludge along said bottom from an adjoining narrow and dee
\(20^{\circ}-45^{\circ} \mathrm{C}\). to form a psychrophilic chrophilic supernatant;
B. as a mesophilic stage, as a mesophilic stage, transferring said psychrophilic
supernatant by displacement to said mesophilic supenatand flowing said psychrophilic supernatant therei while:
(1.) heating said supernatant along the bottom of the mesophilic compartment to create upward convection currents and form thermally stratified bottom, supernatant and top zones, and
(2.) receiving transversely moving bacterial slime along the bottom of said mesophilic compartment from an adjoining narrow and deep entrapment portion of a
thermophilic compartment and 3.) digesting said psychropht; and
(3.) digesting said psychrophilic supernatant at a tempera-
ture of about \(35^{\circ}-55^{\circ} \mathrm{C}\). to form a mesophilic supernatant and the mesophilic sludge;
C. as a thermophilic stage, transferring said mesophilic supernatant by displacement to said entrapment portion and flowing said supernatant therein while:
(1.) heating said supernatant along the bottom of said entrapment portion, to create upward convection currents and form thermally stratified bottom, supernatant,
and top zones, and and top zones, and (a) has 50-100 micron apertures, and
(b) provides sufficient surface area for entrapping any suspended solids greater than 50 microns in size, and (3.) digesting said entrapped solids caught on said filter at a temperature of \(45^{\circ}-70^{\circ} \mathrm{C}\) until said entrapped solids
are hydrolyzed and reacted by thermophilic bacteria to form said bacterial slime and a treated fluid and passing said treated fluid through said filter into an adjoining narrow and deep thermophilic treated portion along which said treated fluid flows while being heated along
the bottom thereof;
D. as a sterilizing stage, transferring said treated fluid to the bottom zone of a sterilizing compartment having a bottom heat-transfer surface and a heating means
E. heating said treated fluid from said bottom surface and heating said treated fluid from said bottom surface and a temperature above \(75^{\circ} \mathrm{C}\) to form a sterilized treated fluid at the top of said sterilizing compartment; and
F. as a heat-exchange stage, transferring said sterilized treated fluid to an underlying storage compartment, hav ing a top area and a sloping side area, from which heat is
transferred at successively decreasing temperatures from the top area to said bottom surface of said sterilizing compartment and, from said sloping side area, to said bottoms of said reated and entrapment portions of said thermophilic compartment, said mesophilic compartment, and said psychrophilic compartment.

\section*{4,094,774}

METHOD AND APPARATUS FOR OXYGENATING AEROBICALLY DECOMPOSABLE LIQUORS Eugene J. Smith, Storms Rd., Valley Cottage, N.Y. 10989 Coninuation-in-part of Ser. No. 476,856, Jun. 6, 1974, 5, 1974, abandoned. This application Mar. 10, 1975, Ser. No. Int. Cl. \({ }^{2}\) C02B 1/34; C02C \(1 / 02\)
U.S. C. \(210-12\)

1. A raw and treated sewage and wastewater emfuent oxy 1. A raw and treated sewage and wastewater
genating apparatus comprising, in combination:
genating apparatus comprising, in combination: constituting a cryogen;

1. A system for selectively removing urea from an aqueous lquid containing urea and positive metal cations comprising in combination:
container divided into a first chamber and a second champolymeric membrane selectively permeable to urea and having low permeability to cations;
said first chamber including means for receiving said liquid; and
said second chamber receiving a solution containing a urea decomposition agent whereby said cations are repelled by said membrane and retained in said liquid and urea permeates through the membrane into the solution and is decomposed into bicarbonate and ammonium, the ammonium
being retained in the solution in the second chamber.

4,094,776
METHOD FOR TREATMENT OF OIL-CONTAINING Wosaku Noguchi, Tokyo; Kiyoharu Yoshimura, Izumi; Honam Tanaka, Izumi, and Masao Hayashi, Irumi, all of Japan, assignors to Koa Oil Co., Ltd., Tokyo, Japan
Filed Jul. 26, 1976, Ser. No. 708,716 Claims priority, application Japan, Oct. 6, 1975, 50-119824; Nor. 27, 1975, 50-141180 Int. CC. \({ }^{2}\) C02B 9/02
U.S. Cl. \(210-27\)
(2) a closed receiver tank defining an oxygenating chamber having a gas head section to which is communicated conduit means extending from said source for supplying gaseous phase oxygen to said head sechen, why meinl acting with the oxygen flowing through the latter as a heat sink;
(3) supply means defining a substantially constant volume source of such sewage and wastewater efluent in raw or mixed liquor condition;
(4) means to transfer such liquor under pressure from said supply means to said gas head section for oxygenaling oxygenated liquor in said receiver tank below said head section and to deliver from said receiver the oxygenated liquor; and
(5) means defining a flow passage section of said transfer means through which such liquor is to flow with this flow passage section being associated in indirect hear exchanger exygen flowing in the latter for conversion to gaseous phase oxygen and for delivery of the latter to said receiver gas head section at elevated pressure and delivery of the liquor in cooled condition to said gas head section.

3. A waste water treatment method comprising passing an il-contaminated waste water through at least one oil-adsorbing vessel wherein there is packed a powdery or granular ai-adsorbent consisting essentially of a solid, particulate pitch temperature-treating a heavy petroleum hydrocarbon oitch having a softening point of at least \(200^{\circ} \mathrm{C}\) and a volatile matter content of about \(30 \%\) by weight to C . and a volatie mater 6. A waste water treatment method according to claim wherein the oil-contaminated waste water to be treated is subjected to sand filtration before it is passed through the oil dsorbing vessel, and the treated water coming from the oil ing it through is farther treated win active carbon by passing it through at least one active carbon-packed column.

4,094,777
OR A LIOURD BY ABSORPTION ON FROM A GAS R ALFIDE CONTAINING SOLID MASS André Sugier, Ridell Malmaison, and Folid MASS
terre, both of France, assignors to Institut Francais du Petrole, Rueil-Malmaison, France to insitut Fra
Claims priority, application France, Dec. 18, 1975, 75 39215; Jan. 23, 1976, 76 02029
U.S. CI. 210- 32 tut. C1. \({ }^{2}\) B01D 15/06
U.S. Cl. \(210-32\)
1. In a process for the elimination of mercury present in a gas or liquid comprising contacting the liquid or gas with an absorption mass in a fixed bed, the improvement wherein the absorption mass consists essentially of:
(a) a solid dispersant or support selected from the group
ans formed by silica, alumina, silica-alumina, silicates, alumi(b) copper whereof at least 30
wherein the copper sulphide is in the sulphide state and mass, calculated as copper, represents 2 to \(65 \%\) of the weight of the mass, and
(c) \(0-5 \%\) of silver in the sulfide state

SEQUESTERING OF \(\begin{gathered}4,094,778 \\ \mathrm{Ca}^{++} \\ \text {AND MG } \\ \\ \text { ++ } \\ \text { IN AQUEOUS }\end{gathered}\) MEDIA USING ZEOLITE MIXTURES
Arthur Francis Denny, Katonah, N.Y.; Anthony Joseph Gioffre, Ridgefield, Conn, and John Delano Sherman, Chappaqua, N.Y., assignors to Union Carblde Corporation, New York,
N.Y. Filed Jun. 27, 1977, Ser. No. 810,48

3 Claims
PROCESS FOR THE LIQU, \(\begin{aligned} & \text { 4, } 0980 \\ & \text { PHASE OXIDATION OF }\end{aligned}\) ORGGANIC SUBSTANCE-CONTAINING EFFLUENTS Yasuto Iwai, Takaishi; Masayoshi Okabe, Tokyo; Naotoshi
Seki; Atsuhiko Hiai, both of Takaishi, and Seiya Iguchi, Yokohama, all of Japan, assignors to Mitsul Toatsu Chemicals Inc., Tokyo, Japan
Filed Aug. 12, 1976, Ser. No. 713,845 Claims priority, application Japan, Aug. 14, 1975, 50.98077 ;
Aug. 14, 1975, \(50-98078 ;\) Aug. 14, 1975, \(50-98079\); Aug. 14, 1975, Aug. 14,
50.98080
U.S. C. 210—38 B \({ }^{\text {Int. CT. }{ }^{2} \text { C02B 1/34, 1/42 }}\)

4 Claims
Are A process for removing objectionable tastes and odor from a relatively small volume of water at an automatically controlled rate of flow which comprises allowing the water to cept for an outlet opening and superimposed above and discharging into and below the top of a filter which in turn is superimposed above a filtrate-receiving container, said filter holding a disposable activated carboncontaining filter medium, the rate of flow of the water from the upper container to the
filter being controlled automatically by the level of water in the filter with air entering said container exclusively through said outlet opening to replace water emptying through said outlet opening.

4,094,779
WATER PURIFICATION MEANS AND METHOD Abraham S. Behrman, 240 E. Delaware Pl., Chicago, III. 6061 Filed Dec. 27, 1976, Ser. No. 754,636 C. \({ }^{2}\) (14; B01D 23/14

1. Process for sequestering calcium and magnesium cations 1. A process for the liquid phase oxidation of an organic from aqueous solutions thereof which comprises contacting at substance-containing effluent comprising oxidizing said efflu a temperature of from \(40^{\circ}\) to \(200^{\circ} \mathrm{F}\). said aqueous solution \(300^{\circ} \mathrm{C}\) and under a pressure of 10 to \(100 \mathrm{~kg} / \mathrm{cm}^{2}\) in the presenc having a pH of from 7 to 10 and containing from 0.0005 to 0.005 gram ions of calcium per liter and from 0.000125 to 0.005 gram ions of magnesium per liter with a mixture of sodium
zeolite A and sodium zeolite X , said mixture containing from 40 to 70 weight percent of one of the said zeolite species and a complementary amount of the other.
\(f\) an oxidation catalyst system composed of a copper cataly having a copper ion concentration of 50 to 5000 ppm and an ammonium ion concentration of at least five times that of the copper ion and then recovering said copper catalyst from the contained in said treated effluent with strong alkali, separating
more than 70 weight percent of the dissolved gases from the in substoichiometrical amounts calculated for the amount of more than 70 weight percent of the dissolved gases from the in surssess-causing compounds present in the aqueous system. decomposition solution by ejection with air or steam, adjusting
the pH of the ejected decomposition solution to a level of 4.0 the pH of the ejected decomposition solution to a level of 4.0
to 9.0 whereby dissolved copper catalyst therein is precipitated, and separating the thus precipitated copper catalyst from the solution.

\section*{4,094,781}

SEPARATION OF SOLIDS FROM TAR SANDS EXTRACT George J. Snell, Fords, and Raymond H. Long, Morristow both of N.J., assignors to The Lummus Company, Bloomfield

Filed Nov. 10, 1976, Ser. No. 740,616
Int. Cl. \({ }^{\text {C C10G }} 1 / 04\); B01D 21/00
U.S. C1. 210-54

4. A composition for suppressing scale and deposit formation in aqueous systems, said composition containing, as scale and deposit formation suppressing agent, an N -acyl-1-amino al-
kane- 1,1 -diphosphonic acid of the formula kane-1,1-diphosphonic acid of the formula
\[
\xrightarrow[\substack{\mathrm{R}-\mathrm{C}_{\mathrm{PO}_{3} \mathrm{R}_{3} \mathrm{R}_{4}}^{\mathrm{PO}_{3} \mathrm{R}_{1} \mathrm{R}_{2}} \mathrm{~N}^{2}}]{\mathrm{R}^{\mathrm{R}^{\prime}} \mathrm{R}^{\prime \prime}}
\]
1. A process for separating finely divided sand from a tar in which
sands extract, comprising: \(\quad \mathbf{R}, \mathbf{R}^{\prime}, \mathbf{R}^{\prime \prime}\) are hydrogen or lower alkyl and tract by gravity difference separation in the presence of a promoter liquid, said promoter liquid having a character-
ization factor of at least 9.75 , 5 volume percent distillazation factor of at least 9.75 , a 5 volume percent distirecent distillation temperature of at least \(350^{\circ} \mathrm{F}\) and no
 cient to promote and enhance separation of a tar sands U.S. Cl. 210-63 R liquid essentially free of sand; and
recovering tar sands liquid essentially free of sand.
N-ACYL-1-AMINO ALKANE-1,1-DIPHOSPHONIC ACID COMPOUNDS AND COMPOSITIONS FOR AND COMPOUNDS AND COMPOSTIONS
METHOD OF USING SAME
Friedrich Krüeger, Edingen, and Walter Michel, Ilvesheim, both Friedrich Krueger, Eaingen, and Waiter Miche,
of Germany, assignors to Joh. A. Benckiser, Ludwigshafen am Rhein, Germany
Divislon of Ser. No. 677,286, Apr. 15, 1976, Pat. No. 4,029,697. This application Jan. 18, 1977, Ser. No. 760,368 Claims priority, app
\({ }^{39}\) Int. C1. \({ }^{2}\) C02B \(5 / 06\)
U.S. Cl. 210-58

Int. C1. \({ }^{2}\) C02B \(5 / 06\)
1. In a process of preventing scale and deposit formation in queous systems, the step which comprises adding to the aqueous system, as scale and deposit formation suppressing agent, an N -acyl-1-amino alkane-1,1-diphosphonic acid of the formula
\[
\underset{\mathrm{PO}_{3} \mathrm{R}_{3} \mathbf{R}_{4}}{\mathrm{~N}_{3}} \mathrm{PO}_{\mathrm{CO} \mathrm{R}_{1} \mathrm{R}_{2}}^{\mathrm{C}_{\mathrm{R}}^{\prime \prime}}
\]
in which
\(\mathbf{R}, \mathbf{R}^{\prime}\), and \(\mathbf{R}^{\prime \prime}\) are hydrogen or lower alkyl and
\(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}\), and \(\mathbf{R}_{4}\) are hydrogen or an alkali metal

10. In a multi-stage recycling centrifugal flotation separato system comprising a circular cylindrical closed vessel with vertical axis having a horizontal tray positioned inside the vessel near the top thereof, said tray having an axial tubular opening, the method of (a) introd
thereof; (b) introducing contaminated liquid into said vessel through a tangential inlet pipe near the top of said vessel but under said tray;
drawing off contaminated froth from an outlet positioned
(d) drawing off air to be recycled from the space above said tray, through a pipe near the top of said vessel;
(e) drawing off clean liquid from the bottom of said vessel the inlet contaminated liquid, and mixing the recycled air and liguid before entry into the vessel: (g) recycling liquid from the bottom of said tank into the tank through tangential pipe means at a point below the entry of the contaminated liquid; and
(h) introducing recycled air into the recycled liquid and into the vessel. \(\qquad\)
4,094,784
APPARATUS AND METHOD FOR FILTERING DEHYDRATING AND DRYING MATERIAL
Itsuro Hirano, Tokyo, Japan, assignor to B F Kogyo Kaisha, Ltd. (Bi Efy Kogyo Kabushiki Kaishan), Tokyo, Ja
Filed Jul. 27, 1976, Ser. No. 709,018 Cleims priority, application Japan, Dec. 30, 1975, 50-158696 U.S. C. \(210-68\)

a hollow valve plate positioned in said cylinder filter means for filtering the material to be filtered supported
on said hollow valve plate: auxiliary filter means positio filter means, said auxiliary in said cylinder above said mounting plate adapted to permit the passage of material to be filtered therepast and formed with a plurality of rods suspended from the lower surface thereof and an actuator
extending upwardly from the upper surface thereof through an opening provided in the top cover of said cylinder, whereby said auxiliary filter means may be moved upwardly and downwardly by moving said actuator to permit the lower end of said rods to engage with said filter means; and
eans for rotating said hollow valve plate and filter means
between a first position which is substantially horizontal between a first position which is substantially horizontal
with respect to the acis of said cylinder for receiving the material to be filtered, and a second position which is substantially vertical with respect to the axis of said cylin-
der for dumping the filtered material from said valve der for dumping the filtered material from said valve
plate, said rotating means including hollow valve stem plate, said rotating means including holiow valve stem
means defining the axis of rotation of said hollow valve plate and for communicating between said filter means and an outlet for discharging the liquid from the filtered material.

4,094,785
William Michact Booty CLARIFIER METHOD William Michael Booty, Corvalis, Oreg., assignor
Microfoc, Inc., Corvallis, Oreg.
Filed Oct. 26, 1976, Ser. No. 735,381 Filed Oct. 26, 1976, Ser. No. 735,381
Int. Cl. \({ }^{2}\) B01D 21/24 U.S. Cl. 210-70

1. A method for unclogging inlets of a siphon conduit used for discharging sludge from the bottom of a liquid clarification settling tank into an adjoining chamber and for maintaining a
substantially constant flow of liquid through a siphon conduit having inlets subject to clogging comprising:
causing a stream of liquid waste to flow into and a stream of clarified liquid to flow out of a settling tank at rates set to tially at a predetermined level; producing a flow of sludge by siphon action from the bottom of said tank into an adjoining chamber through a conduit having a plurality of inlets subject to clogging; emoving sludge from said adjoining chamber at a fixed rate
greater than the maximum rate of which sludge can flow greater than the maximum rate of which sludge can flow
through said conduit when one or more of said inlets are clogged and less than the maximum rate at which sludge can flow through said conduit when all of said inlets are unclogged so that when one or more of said inlets are clogged, the level of liquid in said adjoining chamber at
least momentarily drops to a level below the level at which liquid is maintained when all inlets are unclogged
and the vertical distance between the levels of the liquid in the two chambers increases to an amount greater than in the two chambers increases to an amount greater than
the amount maintained when all said inlets are unclogged thereby creating a greater amount of suction inside said conduit then is present when all said inlets are unclogged thus to urge the clogging material through the clogged inlet and into said conduit; and
maintaining said fixed rate of sludge removal from said adjoining chamber indefinitely until such time as all liquid is removed therefrom.

\section*{TREATMENT CONTROL APPA}

SYSTEMS
SOTUS FOR WATER
John R. Bury, 620 Hidden Valley, Kitchener, Canada
Filed Oct. 11, 1977, Ser. No.
Int. Cl. \({ }^{2}\) C02B \(1 / 18\)
U.S. Cl. 210-101

1. A system for introducing an accurate quantity of treating solution into a water reservoir to which make up water is added responsive to a predetermined drop in head, said water being added through a control orifice at a predetermined pressure at a constant rate of flow, and comprising in combination a tank in liquid communication with said reservoir the liquid
level in said tank corresponding to the liquid level in said reservoir; a normally open liquid level responsive first electrical switch closable upon a drop in liquid level in said tank corresponding to a predetermined drop in head in said reser voir; means for pumping make-up water at a predetermined switch; a totalizer device including a clock type motor electrically actuated responsive to closure of said switch; totalizer mechanism associated with said motor and driven thereby, said mechanism defining totalizing cycles responsive to a predetermined time base determined by said motor and responsive to the volume of make-up water delivered to said reservoir through said control orifice; a second normally open electrical switch associated with said totalizing mechanism actuably thereof; a treating solution container and a second electrically actuated pump of constant pressure characteristic for delivering treating solution from said container to said reservoir; a second control orifice for said treating solution between said second pump and said reservoir; means for actuating said second pump responsive to closure of said second switch; and means in maid reservoir rises to a predetermined level.

FILTER FOR PAINT OR OTHER LIQUIDS Glordano, 12820 S. Lafin, Chicago, IIl. 60643 Filed Dec. 6, 1976, Ser. No. 747,787
\(\qquad\) Int. Cl. \({ }^{2}\) B01D \(33 / 38\)
1. A. filter device for paint or other liquid, 14 Claims 1. A filter device for paint or other liquid,
said filter device comprising a filter housing Claims wardly tapering bottom wall and a closed top wall said bottom wall being in the shape of an inverted con downwardly tapering filter medium mounted in said housing and partitioning said housing into upper and lower compartments,
said upper compartment being disposed between said top wall and said filter medium,
said lower compartment being disposed between aid fier medium and said bottom wall,
said housing having a lower opening communicating with said lower compartment at the lower end of said bottom wall and having appurtenant liquid inlet and drain means
for connection to said lower opening. for connection to said lower opening, an outlet pipe extending from said upper compartment and a control valve connected to said lower opening and to said liquid inlet means and said drain means and selectively operable between first and second positions for switching said lower opening between said liquid inlet means and eans, respectively,
liquid under peble liquid supply means for supplying the liquid under pressure to said liquid inlet means to cause the medium into said upper compartment and out of said upper compartment through said outlet pipe to filter the liquid,
spray means in said u
said filter medium,
and selectively operable said spray means for causing the solveans connected to upon said filter medium and to pass through said filter upod said filter medium and to pastas int lower compartment and through said control valve to said drain means to backwash said filter medium.
 Int. Cl. \({ }^{2}\) E04H \(3 / 20\)
U.S. Cl. 210-169

1. For use with an aquarium carrying aggregate along its ottom, a device comprising,
a housing having an interior chamber, eans for drawing said aggregate into said housing chaming an intake line, fluid passage means open at one end to said housing chamber and adapted to engage the aggre gate at its other end, said intake line being coupled to said
housing chamber to thereby draw a water and aggregate operative to discharge water from said third compartment,
mixture through said fluid passage means and into said
mixture through said fluid passage means and into said
housing chamber, housing chamber,
means for washing s means for washing said aggregate in said housing chambe
said washing means further comprising a tubular and conically shaped sieve mounted in said housing chambe said seive having its interior open to the intake line and its exterior open to the fluid passage to the in
exterior open to the fluid passage means, means for returning the washed aggregate to said aquarium
and and
anerein
wherein said fluid passage means projects the water and aggregate mixture tangentially into said housing chambe
whereby said fluid stream circulates in a vortex aroun whereby said
said sieve.

SULFUR GAS REMOVONG \(\begin{aligned} & \text { 4,094 } \\ & \text { AND SOLID }\end{aligned}\) FILTER FOR WELL WATER Ronald J. Kemper, R.R. \#7, Deflance, Ohio 43512
Flied Mar. 17, 1977, Ser. No. 778,783 Int. Cl. \({ }^{2}\) B01D 19/00, 27/00
U.S. CI. 210-188

7 Claims

1. A combined sulfur gas removing and solid particle filter-
ing assembly for well water, said assembly including a hollow ing assembly for well water, said assembly including a hollow
housing having interior bafle plates dividing the interior o said housing into first, second and third compartments, means operative to discharge water from said third compartment
each of said baffle plates defining spaced water flow opening therethrough for the flow of water from the first compartment through the second compartment and into the third compart ment, water filtering material disposed in said second compart ment for filtering water flowing therethrough, and water and
air inlet means for said first compartment operative to admit air inlet means sor said first compartment operative to admit
jets of water and jets of air under pressure into the first com partment in a manner to thoroughly commingle said jets of water and air, said first compartment also including air vent
means operatively associated therewith for venting air from an means operatively associated therewith for venting air from an
upper portion of said first compartment, said housing being upper portion of said first compartment, said housing being
elongated and said compartments are spaced longitudinally therealong, said housing including one removable end wall, said baffle plates and water and air inlet means being supported
from said removable end wall for removal from said housing from said removable end wall for removal from said housin supply pipe having its discharge end extending and secured through said end wall, the terminal end portion of said pipe being plugged and having said bafles mounted thereon for support therefrom, said pipe having a cup-shaped splash plate
mounted thereon between said end wall and the adjacent bafle and opening toward said end wall, water outlet ports formed in said pipe and opening outwardly thereof into said cup-shaped splash plate, said air inlet means including a plurality of compressed air pipe discharge end portions spaced about said water pipe and opening toward and into said splash plate from the
side of said water outlet ports remote from the closed end of said splash plate.
5. A combined sulfur gas removing and solid particle filter ing assembly for well water, said assembly including a hollow housing having interior baffle plates dividing the interior of
said housing into first, second and third compartments, means
each of said baffle plates defining spaced water flow openings herethrough for the flow of water from the first compartment ment, water filtering material disposed in said second compartment for filtering water flowing therethrough, and water and air inlet means for said first compartment operative to admit jets of water and jets of air under pressure into the first com. partment in a manner to thoroughly commingle said jets of
water and air, said first compartment also including air vent means operatively associated therewith for venting air from an upper portion of said first compartment, said water inlet means including a water supply pipe having a discharge end portion opening through said housing and into said first compartment, the terminal end of said discharge end portion being plugged, said discharge end portion having a cup-shaped splash plate
mounted thereon between said terminal end and the portion of mounted hereon between said terminal end and the portion of
said housing through which said discharge end portion opens, said splash plate opening toward said housing portion, said pipe having water outlet ports formed therein and opening
outwardly thereof into said cup-shaped splash plate, said air inlet means including a plurality of compressed air pipe discharge end portions spaced about said water pipe and opening charge end portions spaced about said water pipe and opening
toward and into the open side of said cup-shaped splash plate.
\(44,094,790\)
DISTRIBUTOR COLLECTOR ASSEMBLY Henry Schmidt, Jr., Hinsdale, Iill, assignor to Industrial Filter \& Pump Míg. Co., Cicero, III.

Nor. 11, 1976, Ser. No. 740,815
Int. Cl. \({ }^{2}\) B01D \(23 / 20\)
U.S. CI. 210-289

99 Claim

1. In combination a rigid conduit provided with a plurality of apertures in the wall thereof and having an end portion,
an axially rigid tubular grid fitted over said
an axially rigid tubular grid fitted over said conduit, said end
portion of said conduit extending beyond one end of said grid,
an annular, resilient sealing gasket positioned over said tube and said conduit adjacent to and beyond said one end of said grid, one end portion of said tube being folded back
on the external side of itself over said gasket, and internally screw threaded closure means secured to said end of said conduit for sealing said end of said conduit,
said closure means having an annular skirt portion extending over said gasket and overlying portions of said tube for
compressing said gasket and overlying portions of said compressing said gasket and overlying portions of said 5. In combination,
a plurality of lengths of plastic tubing,
a plurality of plastic connectors sealably connected between respective lengths of said tubing, and a plurality of the combinations of claim 1 wherein each said

LUBRICATING OIL \(\begin{aligned} & 4,094,791 \\ & \text { FILTER WITH AN UPRIGHT MEMBRANE FLUID }\end{aligned}\) LUBRICATING OIL FILTER WITH AN UPR MEMBRANE FLUID TRANSFE assignor to Daimler- Donald J. Bentiey, Newport Beach, Calir Benz Aktiengesellschaft, Germany

Filed Nov. 23, 1976, Ser. No. 744,309
Claims priority, application Germany, Nov. 27, 1975, 2553293
U.S. Cl. 210-316

Int. C1. \({ }^{2}\) B01D \(27 / 08\)
5, 2553293
Laboratories, Inc., Irvine, Calif.
Filed Sep. 8, 1976, Ser. No. 721,458 U.S. C. 210-321 B Int. Cl. \({ }^{2}\) B01D \(13 / 00\)

A lubricating-oil filter comprising
a. a filter base having a bore therein;
b. a filter pot arranged generally upright at the filter base, said filter pot having a large inner space;
c. a bolt retained at its lower end in the bore in the filter base
and arranged centrally in the inner space of the filter pot
d. a first upper clean oil filter chamber centered around the
bolt in the inner space of the filter pot;
e. a second lower clean oil filter chamber ce
the bolt in the inner space of the filter pot
f. a first base channel means in the filter base for receiving oil emptied by way of the bore from the inner space of the filter pot from the first clean oil filter chamber, and from the second clean oil filter chamber;
3. an intermediate channel means in the bolt for connecting the first clean oil filter chamber with the first base channe h. a first oil discharge channel means in the filter base for connecting the second clean oil filter chamber by way of the bore in the filter base with the first base channe means;
i. a second base channel means for receiving oil emptied rom the second clean oil filter chamber by way of the first oil discharge channel;
. a second oil discharge channel means in the filter base for connecting the inner space of the filter pot by way of the bore in the filter base with the first base channel means;
whereby, upon removal of the lower end of the boll from the bore in the filter base, oil is emptied from the inner space channels by way of the bore in the filter base into the first base channel means.
1. A membrane fluid transfer device comprising a housing having a process fluid inlet and outlet;
an atrium chamber means for providing a reservoir for in coming fluid formed within said housing and in communication with said housing process fluid inlet;
a spirally wound, flattened, tubular permeable membrane having a transfer fluid inlet at one end of said tubular
membrane and a transfer fluid outlet at the opposite end of said membrane, said membrane forming passageways between adjacent windings of said membrane, one end of said passageways being in communication with said ventricle and the opposite end of said passageways being in communication with said housing process fluid outlet; fer fluid flow in communication with said transfer fluid inlet;
control means for maintaining a substantially constant transfer fluid pressure in communication with said transfer fluid outlet; and a ventricle means for pumping fluid to be treated through said passageways between said adjacent connected to said atrium by a fluid passageway having a valving means positioned within said fluid passageway, said membrane windings and a portion of said ventricle being formed by a member adapted to be actuated by a driving means, whereby me pressure of the fluid to be reated is pumped aiternately from a pressure lower than pressure higher than the controlled transfer flessid pressure and thus allowing for alternately opening and closing of said passageways between said adjacent windings of said membrane.

FILTER APPARATUS, ESPECIALLY FOR A LIQUID TO BE FED TO A POWER-PLANT CONDENSER Dieter Patzig, Ratingen-Tiefenbrolch, Germany, assignor to
Ludwig Taproge Reinigungsanlagen fur Rohren-Warmeaus. Ludwig Taprogge Reinigungsan
tauscher, Dusseldorf, Germany
Filed Mar. 7, 1977, Ser. No. 775,400
Claims priority, application Germany, Mar. 6, 1976, 2609332 U.S. C1. 210-323 R

1. A filter for removing solids from a liquid comprising a for said liquid, and a substantially cylindrical filter basket disposed in said housing and traversed by said liquid, passing from said inlet to said outlet, said filter basket comprising a stack of filter rings, each of said filter rings having an outwardly concave perforated periphery and a pair of inwardly lar to the axis of said basket, and means for connecting the flanges of adjoining rings together, said perforated periphery being constituted as a stamped sheet metal body of rotation centered on the axis of the respective ring and having in axial section a rounded convex configuration reaching inwardly,
said flanges being connected to said body of each ring on said flanges being connected to said body of each ring on
opposite sides thereof whereby each of said filter rings is fully opposite sides
self-supporting.

\section*{4,094,794}

Albrecht Kahmann, Weingarten, Germany, assignor to Escher ity. Wyss GmbH, Ravensberg, Germany
Wyss GmbH, Ravensberg, Germany
Continuation of Ser. No. 578,823, Apr. 14, 1975, abandoned.
This application Mar. 8, 1977, Ser. No. 775,624 Cluims priority, application Switzerland, Apr. 16, 1974,
 1. A hydrocy R
1. A hydrocyclone for separating impurities from a fiber suspension comprising \(\qquad\)
housing defining a separation chamber and having an an inlet duct an upper end,
an inlet duct connected tangentially to an upper part of said
housing below said aperture for introducing a fiber suspension directly into said separation chamber,
a hollow rotor rotatably mounted in said housing, said rotor defining an outlet duct extending from below said inlet ber through said aperture with a clearance to an upper
ber through said aperture with a clearance to an upper wherein \(\mathbf{X}, \mathrm{Y}\), and Z each being selected from the group conton extending in an outward direction angularly of said longitudinal axis and terminating at an orifice,
casing surrounding said orifice of said rotor and having a tangential outlet aperture therein for exhausting of a purified suspension, and
ennougal isce mounted on said rotor within said housing wherein one of \(R_{1}\) and \(R_{2}\) is hydrogen and the other is an alkyl above said iniet, said disc being disposed below and in group having from 1 to 6 carbon atoms with the alkyl to hy-
facing relation to said casing and said aperture of said drogen mole ratio being less than 0.4 and X being an integer of
housing upper part for preventing passage of heavy partihousing upper part for preventing passage of heavy parti-
cles from said housing through said aperture into said

casing, said disc including a plurality of fins thereon extending towards said casing.

\section*{4,094,795}

POLYGALACTOMANNAN ETHER COMPOSITIONS Ronald N. DeMartino, Wayne, and Anthony B. Conciatori,
Chatham, both of N.J., assignors to Celanese Corporation, New York, N.Y.
\[
\begin{aligned}
& \text { k, N.Y. } \\
& \text { Filed Jan. 28, 1977, Ser. No. } 763,372 \\
& \text { Int. C1.2 E21B } 43 / 25
\end{aligned}
\]
U.S. C. 252-8.55 R 6 Claims 1. A hydraulic well-treating fluid composition which comprises an aqueous solution containing \(\mathrm{N}, \mathrm{N}\)-dialkylacrylamide ether adduct of polygalactomannan gum as a gelling agent in an amount in the range between about 0.05 and 5 weight per-
cent based on the weight of the water component, wherein each alkyl group contains between one and about four carbon atoms; and a breaker additive for reduction of solution viscosatoms
ity.

4,094,796
UROCESS FOR PREPARING NOVEL COMPOUNDS FOR USE AS FABRIC SOFTENERS IN WATER SOLUTIONS THEREOF
Eckhard C. A. Schwarz, 115 N. Park Ave., Neenahh, Wis. 54956, assignor to Biax-Fiberfilm Corporation, Neenat, Wis.
iled Jun. 7, 1977 Ser. No. 804
Int. C1. \({ }^{2}\) D06M 13/34
U.S. CI. 252-8.8 11 Claims
structural 1. A composition of matter having the following structural formula:
```

                                    M-N-X
    ```
wherein \(X\)
sisting of
isting of
at least 1 and \(R_{3}\) is a diradical selected for the group consisting
\({ }^{\circ}{ }_{R_{3}}\) is a diradical of either: (a) 1 to 6 methylene groups
(b) a diradical of: \(-\mathrm{CH}=\mathrm{CH}-\) (b) a diradical of:

\[
\begin{array}{cc}
\mathrm{R}_{1} & \mathrm{R}_{2} \\
-1 \\
-(\mathrm{CH}-\mathrm{CH}-\mathrm{O})_{x}-\mathrm{H}
\end{array}
\]
where \(\mathrm{R}_{1}, \mathrm{R}_{2}\) and X are as defined above alkyl radicals having from 1 to 6 carbon atoms

wherein
is an alkylene radical having from 1 to 6 carbon atoms and herein at least one of \(\mathbf{X}, \mathbf{Y}\) and \(Z\) has structural formula (1) and

wherein B \& C are each selected for the group consisting of Wherein B\& are each selected for the group consisting of
radicals having above structural formula (1), above structural
formula (2) and alkyl group having from 1 to 6 carbon atoms formula (2) and alkyl group having from 1 to 6 carbon ator
with at least one of \(\mathrm{B} \& \mathrm{C}\) having structural formula (1).
1. A method for recovering petroleum from a subterranean, 12 Chaims petroleum-containing, permeable formation penetrated by at least one injection well and at least one production well, both
wells being in fluid communication with the formation, said wells being in fluid communication with the formation, said
formation containing water whose salinity is from about 50,000 to about 225,000 parts per milhon total dissolved solids, the formation temperature being greater than \(175^{\circ} \mathrm{F}\), comprising: a. introducing into the formation via the injection well an aqueous surfactant-containing fluid to displace petrol
toward the production well, said fluid comprising toward the production well, said fluid comprising
(1) from 05 to 5.0 percent by weight of an anionic o (1) from .05 to 5.0 percent by weight of an anionic organic
sulfonate surfactant having an average equivalent weight not to exceed 360 selected from the group consisting of water-soluble sodium, potassium or ammonium salts of petroleum sulfonates, alkyl sulfonates
having from 5 to 20 carbon atoms, alkylaryl sulfonates having from 5 to 20 carbon atoms, alkylaryl sulfonates
having from 5 to 14 carbon atoms in the alkyl chain and mixtures thereof;
(2) from .05 to about 5.0 percent by weight of a phosphate ester surfactant with an average molecular weight not
to exceed about 1,000 having the following formula:

\section*{\(\left(\mathrm{R}+\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{O}_{\mathrm{r}} \stackrel{\mathrm{P}(\mathrm{OR})_{y}}{\mathrm{O}}\)}
wherein \(\mathbf{R}\) is an alkyl or alkylaryl radical having from 12 to 24 carbon atoms, \(m\) is a number from 1 to \(20, x\) and \(y\) are 1 or 2 and the sum of \(x\) and \(y\) is 3 , and \(\mathrm{R}^{\prime}\) is hydrogen, sodium, potassium, lithium or ammonium;
(3) said surfactant fluid salinity being at least 50,000 parts per million total dissolved solids; and
b. recovering petroleum displaced by the surfactant fluid from the formation via the production well. 9. A method for recovering petroleum from a subterranean,
petroleum-containing, permeable formation penetrated by at least one injection well and at least one production well, both wells being in fluid communication with the formation, said ormation containing water whose salinity is from about
150,000 to 225,000 parts per million total

a. introducing into the formation via the injection well an aqueous surfactant-containing fluid to displace petroleum
toward the production well, said fluid comprising toward the production well, said fluid comprising: (1) from about .05 to abbut 5.0 percent by weight an anionic organic sulfonate surfactant having an average
equivalent weight not to exceed 360 selected from the group consisting of water-soluble sodium, potassium or ammonium salts of petroleum sulfonates, alkyl sulfonates having from 5 to 20 carbon atoms, alkylaryl sulfonates having from 5 to 14 carbon atoms in the alkyl体都 and mixtures thereof; and
(2) from about .05 to about 5.0 percent by weight of a phosphate ester surfactant with an average molecular formula:
and mixtures thereof; \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are the same or different and derived from lower alkylene oxides selected from the group consisting of ethylene oxide, 1,2 -propylene oxide and butylene aromatic compound containing at least two active hydrogens and \(\mathrm{R}_{4}\)
atoms.

OIL RECOVERY PROCESS USABLE IN HIGH TEMPERATURE FORMATIONS CONTAINING HIGH COLINITY WATER WHICH MAY INCLUDE HIG Jack F. Tate, and Jim Maddox, Jr., both of Houston, Tex., Cack F. Tate, and Jim Maddox, Jr., both gnors to Texaco Inc., New York, N.Y Q 0

OXIDATION STABLE FIBER LUBRICANT David Dudley Newkirk; Robert Bernard Login, both of Wood haven, and Basil Thir, Wyandotte, all or M, Mile
BASF Wyandotte Corporation, Wyandotte, Mich.
Flled Aug. 1, 1977, Ser. No. 820,405
U.S. Cl. \(252-8.9 \quad\) Int. Cl. D06m 13/10
1. A lubricant for thermoplastic fibers comprising a block or heteric copolymer polyoxyalkylene composition having the hermula:
\(\begin{array}{ccc}\mathrm{OH} & \mathrm{H} \\ \mathrm{H}_{1} & 1 \\ \mathrm{R}_{4}-\mathrm{C}-\mathrm{C} \\ 1 & 1 \\ \mathrm{H} & \mathrm{H}\end{array}\)
wherein \(n+m\) has a value to produce a molecular weight of about 300 to about ing of hydrogen, the residue of an aliph
acid, having 1 to about 24 carbon atoms
\[
\begin{aligned}
& \mathrm{H} \\
& \mathbf{1} \\
& \mathbf{O H} \\
& -\mathrm{C}-\mathrm{C} \\
& -1 \\
& 1 \\
& \mathbf{H} \\
& \mathbf{H}
\end{aligned}
\]
oxide; \(\mathbf{R}_{3}\) is a divalent radical derived from a difunctional

wherein \(R\) is an alkyl or alkylaryl radical having from 12 to 24 carbon atoms, \(m\) is a number from 1 to \(20, x\) and \(y\) are 1 or 2 an the sum of \(x\) and \(y\) is 3 , and \(R^{\prime}\) is hydrogen, sodium, potassium, ithium or ammonium;
per million total dissolved solids; and
becovering petroleum displaced by the su
from the formation via the production well.

SOLID PARTICLES-CONTAINING LUBRICATING OIL COMPOSITION AND METHOD FOR USING SAME Donald L. De Vries, South Holliand, and James M. DeJorine,
Homewood, both of III, ssignors to Atlantic Richfield Company, Philadelphia, \(\mathbf{P a}\)

Flled Dec. 20, 1976, Ser. No. 752,225
Int. Cl. \({ }^{\text {C }}\) C10M \(1 / 10,3 / 02,5 / 02,7 / 04\)
C. \(252-29\)
U.S. Cl. 252-29 1. A composition of matter comprising a major amount by
weight of oil of lubricating viscosity; a minor amount by Weight of oilid particles effective to improve the lubricating
weight of sid properties of said composition, said solid particles being selected from the group consisting of graphite, molybdenum disulfide, zinc oxide and mixtures thereof; and a minor amoun
by weight, at least equal to the amount by weight of said solid particles, of at least one co-polymer of (1) an \(\mathbf{N}\)-vinyl pyrro idone, and (2) an oil soluble acrylic ester, said co-polymer being present in an amount effective to reduce the deposi forming tendencies of said composition.

\section*{4,094,800}

ANTI-WEAR LUBRICATING OIL COMPOSITIONS Thomas M. Warne, Wheaton, III., assignor to Standerd Oil Thomas M. Warne, Wheaton, IIIL,
Company (Indiana), Cuicago, III.
Continuation-in-part of Ser. No. 705,128, Jul. 14, 1976, abandoned. This application May 9, 1977, Ser. No. 794,983
U.S. C. \(252-32.7\) Int
\[
\text { C10M } 1 / 48,3 / 42,5 / 24,7 / 46
\]
U.S. CI. 252-32.7 E \(\qquad\) properties comprising a major portion of lubricating oil and an effective amount of an oil soluble additive composition com prising a basic zinc alkyl dithiophosphate having alkyl groups
made from primary alcohols containing from about 6 to about made from primary alcohols containing from about 6 to about
20 carbon atoms and a nonacidic lubricant anti-rust compound 20 carbon atoms and a nonacidic lubricant anti-rust compound tuted with an alkenyl group which has 8 to 20 carbon atoms and an alcohol, an amine or mixtures thereof, wherein the ratio of zinc alkyl dithiophosphate to anti-rust is about \(1-50: 1\).

\section*{4,094,801}

MAGNESIUM-CONTAINING COMPLEXES, METHOD FOR THEIR PREPARATION, AND COMPOSITIONS CONTAINING THE SAME
John Wesley Forsberg, Mentor-on-the-Lake, Continuation-in-part of Ser. No. 681,627, Apr. 29, 1976,
abandoned. This application Jan. 18, 1977, Ser. No. 760,315 abandoned. This application Jan. 18, 1977, Ser. No. 760,315
acid, or an ester or alkali metal or alkaline earth metal salt of any of these;
(C) Water; and
(D) At least one organic solubilizing agent for component \(\mathbf{B}\); (D) At least one organic solubilizing agent for component \(B\),
the ratio of equivalents of magnesium to component \(B\), the ratculated as the free carboxylic or sulfonic acid or as the phosphoric acid ester, being at least about \(5: 1\), and the amount of water present being at least sufficient to hydrate a substantial pro 25. A
26. A complex prepared by the method of claim 1.

NOVEL LUBRICANT ADDITIVES Gerard Soula, Meyzieu, and Philippe Duteurtre, Le Havre, both of France, assignors to Societe Orogil, Paris, France
Claims priority, application France, Apr. 1, 1976, 7609513 Claims priority, application rance, Apr. 1, 1976, 760513
Int. 1.2 ClOM
\(1 / 32,3 / 26,5 / 20,7 / 30\) U.S. Cl. \(252-51.5 \mathrm{~A}\)
1. A novel additive composition based on alkenylsuccini1. A novel additive composition based on alkenylsuccini-
mides, comprising an alkenylsuccinimide of the formula (\(\mathbf{I}\) :

which formula R represents an alkenyl group containing rom about 20 to 200 carbon atoms, \(m\) represents an integer selected from the group consisting of zero, 1 and 2 , and \(n\) epresents an integer selected from the group of zero and 1 .
11. A lubricating composition having desirable dispersion, ati-rust and anti-foam properties, comprising an oil containing between about 1 and \(10 \%\) by weight of a novel additive according to claim 1 .

DEVELOPER COMPOSTIION COMPRISING AMINOL YZED COATED CARRIER Harry W. Gibson, Penfield, and Woifgang H. H. Gunther, Webster, both of N.Y., assignors to Xerox Corporation, Stamford, Division of Ser. No. 500,774, Aug. 26, 1974. This application Oct. 29, 1976, Ser. No. 736,781
Int. Cl. \({ }^{2}\) G03G \(9 / 14,9 / 10\)

\section*{U.S. C. 252-62.1 P}
1. An electrostatographic developer composition comprising finely-divided toner particles electrostatically clinging to the surface of carrier particles having an average particle diameter of between 50 microns and about 1,000 microns, each of said carrier particles comprising a core surrounded by an of styrene-alkylmethacrylate and styrene-alkylacrylate, said
polymer having been functionalized by ester group aminolysis to produce an aminolyzed polymer having the general struc. ture

where X may be \(\mathrm{NH}_{2}, \mathrm{OH}\), and H said carrier particles being characterized as having controlled triboelectric charging prop erties.

METHOD FOR PREPARING A WATER BASE MAGNETIC FLUID AND PRODUCT Junzo Shimoiizake, 1-1-14, Komegafukuro Sendai-shi, Miyagi ken, Japan
Continuation-in-part of Ser. No. 605,306, Aug. 18, 1975, abandoned. This applicatiton Jan. 5, 1977, Ser. No. 757,037 Dec. 18, 1974, 49-144546; Mar. 27, 1975, \(50-37120\) Int. Cl. \({ }^{2}\) H01F 1/25, 1/00; C10M 3/00; C09D \(1 / / 00\) U.S. Cl. \(252-62.52\)

22 Claims

19. A stable aqueous magnetic fluid having a pH of above about 4 comprising water having stable dispersed therein ferromagnetic oxide particles of a particle size below about 300 A each of said magnetic particles having a two layer surfactan coating comprising an inner layer and an outer layer, the inner
layer being a monomolecular layer of an 18 carbon atoms unsaturated fatty acid or salt thereof which completely coats said magnetic particle, and the outer layer being an outer coating free of cationic surfactants and consisting essentially of (i) an anionic surfactant having 8 to 30 carbon atoms in its hydrophobic radical other than said first surfactant, or (ii) a non-ionic surfactant having 8 to 20 carbon atoms in it hydrophobic radical and having a hydrophile balance of at least 12
which completely covers said inner layer, said aqueous fluid containing between about 0.005 and \(0.7 \mathrm{~g} / \mathrm{ml}\) of said coated ferromagnetic oxide particles.

4,094,805
PROTECTING PAVEMENT OR CONCRETE MATERIALS AGAINST THE EFFECTS OF THE DESTRUCTIVE ACTION OF FREEZING AND THAWING OF WATER Charles Nyberg Hansen, 1448 S. 17th East, Salt Lake City, Utah 84108

Filed Sep. 23, 1976, Ser. No. 711,575 Int. C1. \({ }^{2}\) C09K \(3 / 18\)
U.S. Cl. 252-70

31 Claims
1. An aqueous or dry composition to be applied to the surface of concrete to reduce the damage resulting from the freezing of solutions formed by the action of de-icing compositions, on water, snow or ice in contact with the concrete,
comprising a homopolymer of ethylene oxide with a molecular weight of 100,000 or more and one or more de-icing reagents from the group of sodium chloride, calcium chloride and urea; wherein the polyethylene oxide is present in amounts which reduce the damage caused to concrete resulting from the action of said de-icing reagents with the proviso that when sosition so applied must contain at least 2.5 percent sodium chlo-
ride. A method of reducing the destructive action which the freezing of water of of solutions produced by de-icing compositions have on concrete which comprises applying to the
concrete surface a de-icing water solution or suspension comconcrete surface a de-icing water solution or suspension com-
prising 0.01 to 50 percent homopolymer of ethylene oxide with a molecular weight of 100,000 or more and 0.00 to the saturation concentration of a de-icing reagent selected from the group consisting of sodium chloride, calcium chloride, urea or any combination of these de-icing reagents and which method that the contained polyethylene oxide is present and active during the freezing process.

\(4,094,806\)
PHOTOACTIVATED BLEACH-COMPOSITIONS Brandon Helmholz Wiers, Forest Park, Ohio, assignor to The Procter a Gamble Company, Cincinnati, Ohio
Continuation Continuation-in-part of Ser. No. 564,587, Apr. 3, 1975, (Int. C1.2 C11D 7/54, 7/50 Ser. No. 734,891
U.S. C1. 252-102 14 Claims
1. An unbuilt liquid detergent composition consisting essen-
tially of:
(a) from 10 to \(80 \%\) by weight of the composition of a watersoluble organic surfactant chosen from the group consist ing of water-soluble anionic and nonionic surfactants and mixtures thereof;
zinc phthalocyanine weight of the composition of sulfonated zinc phthalocyanine species characterized by RDV's for Its individual spe
Unsulfonated:0
Monosulfonated:0
Disulfonated: 0
Tetrasulfonated:84-94
Trisulfonated:(100)-(RDV for tetrasulfonated);
salt which is not an alkaline composition of an electrolyte (d) 1 to \(90 \%\) by weight of the composition of salt; which is chosen from the group consisting of water and alcohol in which the alcohol is a lower hydrocarbon monohydric alcohol containing from 1 to 5 carbon atoms; and
mine sele by weight of the composition of free alkanolatriethanolamine and mixtures thereof.

PREPARATION OF 4,094,807

ZINC OXIDE CONTAINING eter Franklin Humphreys, Great Sutton, and Edwin Willis,
Bromborough, both of England, asslgnors to Lever Brothers Company, New York, N.Y.
Continuation of Ser. No. 648,224, Jan. 12, 1976, abandoned, which is a continution of Ser. No. 554,879, Mar. 3, 1955,
abandoned. This application Jun. 6, 1977, Ser. No. 803.715 abandoned. This application Jun. 6, 1977 , Ser. No. 803,715
Claims priority, application United Kingdom, Mar. 7,1974, 10304/74; Aug. 23, 1974, 37136/74
U.S. Cl. 252-1n1. Cl. \({ }^{\mathbf{C}}\) C11D 3/12, 9/20, 17/00
U.S. C. 252-131
1. A method of preparing detergent bars containing froms about \(0.1 \%\) to about \(2 \%\) by weight of zinc oxide wherein
i. zinc oxide is formed into a slurry containing from about
\(\%\) to about \(80 \%\) by weight of said oxide with a liquid medium,
ii. the slurry is added to and mixed with a detergent material at the mixing stage, and
ii. the detergent material is milled, plodded and stamped to form bars.

\section*{4,094,808}

SOLUBILITY STABLE ENCAPSULATED DIPERISOPHTHALIC ACID COMPOSITIONS Dorothy A. Stewart, Pittsburgh, Pa.; Bobby D. Ricketts, and to PPG Industries, Inc.. Pittsburgh, Pa. to PPG Industries, Inc., Pittsburgh, Pa.
coninuation of Ser. No. 632,923 , Nov. 18, 1975, abandoned,
which is 2 continuation-in-part of Ser. No. 360,858 , May 16, 1973, abandoned. This application Apr. 19, 1977, Ser. No. U.S. Cl. 252-186 \({ }^{\text {Int. Cl. }{ }^{2} \text { C11D 3/395. } 7 / 544}\)
1. A bleaching formulation in the form of an encapsulated core wherein the core comprises particles consisting essen tially of tabular habit diperisophthalic acid in admixuure with from 1.0 to 90 weight percent of an ionic dispersing age
selected from the group consisting of hydratable inorgani salts, non-hydratable inorganic salts and organic acids said agent having a water solubility of 4 to 200 grams per 100 grams of water at \(15^{\circ} \mathrm{C}\). and whose water solutions have a pH below tabular habit diperisophthalic acid at the time the bleaching formulation is formed and being essentially completely encap sulated with a water dispersible encapsulating material capa ble, in the absence of free water, of preventing contact of the diperisophthalic acid with substances capable of causing its decomposition.

\begin{abstract}
4 Claims
\end{abstract}

PROCESS FOR SOLIDIFYING HIGH-LEVEL NUCLEAR WASTE oyne A. Ross, Richland, Wash., assignor to The United States of America as represented by the United States Department of Energy, Washington, D.C.

Filed Feb. 23, 1977, Ser. No. 771,130 Int. Cl. \({ }^{2}\) G21F 9/16 solutions containing molybdenum (VI) for long-term storage by heating the waste solutions to calcining temperatures whereby the solutions are dried to form a radioactive calcine, mixing the calcine with a glass frit containing alkali metals to form a molten glass and cooling the molten glass to form a solid containing high-level radioactive waste, the improve ment comprising adding to the calcine-frit mixture before melting, an effective amount of reducing agent having a free energy of formation higher than molybdenum to reduce the molybdenum (VI) compounds to a lower valence stat lower valence state which dissolves or disperses in the molten glass whereby the molten glass when cooled forms a leach resistant solid containing high-level radioactive waste suitable for long-term storag
\(4,094,810\)
AQUEOUS SLURRY OF ASH CONCENTRATE COMPOSITION AND PROCESS FOR PRODUCING
David C. Thomas, Oklahoma City, Okla., assignor to Kerr-
McGee Corporation, Oklahoma City, Okla. McGee Corporation, Oklahoma City, Okla.
Filed Jun. 1, 1976, Ser. No. 691,577 Int. Cl. \({ }^{2}\) B01J \(13 / 00\)

12 Claims U.S. Cl. 252-313 R for R 1. A process for producing an aqueous slurry of an ash said process comprising the steps of:
mixing a predetermined amount of surfactant with water to form a mixture in which the surfactant comprises at least about 0.1 percent by weight of the mixture of surfactant and water;
adding up to about 60 percent said ash concentrate composition to the mixture of surfactant and water; and mixing said ash concentrate composition, the water and the
surfactant while adding said ash concentrate composition to produce said aqueous slurry of the ash concentrate composition.

\section*{comprising:}
8. An aq
a predetermined amount of surfactant mixed with the water to form a mixture in which the surfactant comprises at least about 0.1 percent by weight of the mixture of surfactant and water; and
an ash concentrate composition comprising insoluble coal product mixed with the water and the surfactant to form an aqueous slurry containing up to about 60 percent of
said ash concentrate composition.

PROCESS FOR 4,094,811
DISPERSIONS FOR PREARATION OF SILVER DISPERSIONS FOR FILTER LAYERS AND
Artur Bottr; Anita von König, both of Krefeld; Franz Moll,
Leverkusen; Christian Rasp, Cologne, and Johannes Hartl,
Bechen, all of Germany, assignors to Agfa-Gevaert Aktiengesellschaft, Leverkusen-Bayerwerk, Germany

Claims priority, application Germany, Dec. 30, 1975, 2559191
U.S. Cl. \(252-313 \mathrm{R}\)
group consisting of alkyl and hydroxyalkyl.
ROCESS AND APPAR 4,094,813 AND COOLD APPARATUS FOR THE MANUFACTURE AND CARBON MONOXIDE Nicolaas Van Lookeren Campagne, Rotterdam, Netherlands, assignor to Shell Oil Company, Houston, Tex. Claims priority, application United Kingdom, Aug. 2, 1972,
36028/72 U.S. C. 252-373 Cl. \({ }^{2}\) C07C 1/02: B01J 7/00 1. In a process for the manufacture of a hydrogen and carbon monoxide-containing gas mixture by the partial combustion of a carbonaceous fuel with an oxygen-containing gas at a pressure of between 1 to 300 atmospheres and a temperature be-
tween about \(1300^{\circ}\) and about \(1500^{\circ} \mathrm{C}\) whereby a hot, carbon monoxide and hydrogen-containing gas mixture is obtained which is cooled in a waste heat boiler containing a helical tube in external contact with water through which the hot gas mixture is flowed, the improvement which comprises cooling the hot gas mixture to a temperature not exceeding \(1200^{\circ} \mathrm{C}\) b
passing it over a cooling tube which is externally insulated with a refractory material of between 10 millimeters and 100 millimeters thickness in a primary cooling zone prior to introduction of the gas mixture into said waste heat boiler.
1. A process of preparing a neutral grey dispersion of silver in a protective colloid which comprises the step of reducing
with a silver salt reducing agent, silver nitrate in an aqueous with a silver salt reducing agent, silver nitrate in an aqueoous solution in a mixture with an aqueous solution of a protective
colloid without using cadmium salt and in the presence of an colloid without using cadmium salt and in the presence of an
agent for providing the reduced silver in a neutral grey disperagent for providing the reduced silver in a neutral grey disper-
sion having a uniform absorption over the spectrum of visible light, wherein the agent for providing the uniform dispersion consists essentially from about 5 mg to about 500 mg per mol of silver salt of a heterocyclic 5 -membered or 6 -membere compound containing an

\section*{4,094,814}

REGENERATION METHOD FOR GRAVITY-FLOWING DEACTIVATED CATALYST PARTICLES Lester F. Smith, Itasca, ail of III., assignors to UOP Inc., Des Plaines, III.

Filed Jun. 15, 1977, Ser. No. 806,885
2/4.
U.S. CI. \(252-415\)
\(-\mathrm{N}=\mathrm{C}-\mathrm{N}-\)
group in its \(1,2,3\)-position and having in its 2 -position an amino akyl or hydroxy alkyl group or an alkylene chain attached to to the \(\mathbf{N}\) atom in 1 -position thus forming an anellated ring.

4,094,812
ANTIFOAM COMPOSITION AND PROCESS WITH \(a\)-HYDROXYAMINE DERIVATIVES
Rudi Heyden, Erkrath; Adoif Asbeck, Dusseldorf; Michael Eckelt, Dusseldorf; Manfred Petzold, Dusseldorf, and Gïnter Uphues, Dusseldorf, ail of Germany, assignors to Henkel Kommanditgesellschaft auf Aktien, Dusseldorf-Hoithausen,

Germany Filed Dec. 20, 1976, Ser. No. 752,244
Claims priority, application Germany, Dec. 22, 1975, 2557898
U.S. Cl. 252-321 Int. Cl. \({ }^{2}\) B01D 19/04
1. A process for the control of foam in a foamable liquid tive amount of an \(\alpha\)-hydroxyamine derivative of the formula
\[
\begin{aligned}
& \mathrm{R}_{1}-\mathrm{CH}-\mathrm{A}-\mathrm{R}_{3} \\
& \mathrm{R}_{2}-\mathrm{CH}-\mathrm{OH}
\end{aligned}
\]
wherein \(A\) is -NHCONH-, \(R_{1}\) and \(R_{2}\) are members selected from the group consisting of hydrogen and alkyl having from to 22 carbon atoms, at least one of \(R_{1}\) and \(R_{2}\) being alkyl and the sum of the carbon atoms in \(R_{1}\) and \(R_{2}\) is from 8 to 22 , and

1. A method for continuously regenerating hydrocarbon conversion catalyst particles comprising a Group VIII metal and a halogen component in combination with a refractory inorganic oxide carrier material, and which have become
deactivated (1) by deposition of carbonaceous matter thereo deactivated (o) by deposition of carbonaceous matter thereon
and, (2) through loss of halogen therefrom, in a regeneration zone comprising a first carbon-burning/halogenation section interconnected with and surmounted with respect to a second carbon-burning/halogenation section, said second being inter-
section, wherein said catalyst particles are downwardly and in situ, without reacting with either the carbon bed or the countercurrently movable through a descending column via materials adsorbed thereon, wherein the exothermic heat of gravity-flow with respect to the upward flow of vapors within reaction is used to heat the carbon bed to assist in stripping the said regeneration zone, said regeneration method comprising bed of materials adsorbed thereon.
2. The process of claim 1 wher the inter-related sequential steps of:
(a) introducing (i) said deactivated catalyst particles, (ii) a first air stream from an external source and, (iii) a tirst
mixture of steam and a halogen, or halogen-containing compound from an external source, into said first carbonburning/halogenation section;
(b) maintaining said catalyst particles within said first section for a time sufficient to (i) remove the greater portion of halogen content thereof;
(c) introducing (i) said catalyst particles from said first section, via gravity-flow and (ii) a second air stream from an external source and, (iii) a second mixture of steam and a halogen, or a halogen-containing compound from an external source, into said second section;
(d) maintaining said catalyst particles within said second of the remaining carbonaceous material therefrom and, (ii) further increase the halogen content thereof;
(e) introducing (i) said catalyst particles from said second section, via gravity-flow and countercurrent with, (ii) a
substantially dry third air stream from an external source substantially dry third air stream from an external source
into said lower drying section, and maintaining said catalyst particles therein for a time sufficient to remove substantially all the water therefrom; and,
(f) withdrawing substantially water-free, regenerated cata4yst particles from said regeneration zone.
4. The method of claim 1 further characterized in that said first air stream is introduced into said first carbon-burning-
/halogenation section through the same locus through which said first steam/halogen mixture is introduced.
5. The method of claim 1 further characterized in that said second air stream is introduced into said second carbon-burning/halogenation section through the same locus through which said second steam/halogen mixture is introduced. 7. The method of claim 1 further characterized in that excess
air and the combustion products resulting from the burning of air and the combustion products resulting from the burning of
carbon, are withdrawn from said first carbon-burning section, cooled and at least in part recycled to said first and second carbon-burning sections.
8. The method of claim
8. The method of claim 7 further characterized in that said
excess air and combustion products are cecred to said carexcess air and combustion products are recycled to said car-
bon-burning/halogenation sections without intermediate treatment.

REGENERATION OF ACTIVATED CARBON HAVING REGENERATERIALS ADSORBED THEREON
Vito Cedro, III, Pittsburgh; Donald L. Kinosz, Tarentum, both of Pa, and Thomas G. Lamberti, II, Palestine, Tex., assignors to Aluminum Company of America, Pittsburgh, Pe.
Filed Jun. 2 , 1977 Ser. No. 802,633 \({ }^{\text {1977, Ser. No. } 802}\)
U.S. CI. 252-415 Int. C. \({ }^{2}\) B01J 21/20
U:S. C1. \(252-415\)
1. A process for regeneration of an activated carbon bed
and having materials adsorbed thereon which comprises passing a mixture of reactive gases and/or vapors therethrough capable of reacting exothermically in the presence of activated carbon
hed of materials adsorbed thereon.
2. The process of claim \(\mathbf{1}\) wherein the space time of the
gases and/or vapors is at least 05 minutes to insure substangases and/or vapors is at least .05
tially complete reaction in the bed.

3. The process of claim \(\mathbf{2}\) wherein the flow of reactive gases and/or vapors into the bed is terminated when the temperaure in the reaction zone reaches \(623-673^{\circ} \mathrm{K}\) and an inert gas is
then passed through the bed to complete the stripping of then passed through the bed to complete the stripping of
adsorbed materials from the carbon bed. 6. The process of claim 2 wherein the reactive gases and/or vapors consist essentially of \(\mathrm{Cl}_{2}\) and a second reactant selected from the class consisting of \(\mathrm{H}_{2}\) and CO .
\(\stackrel{4,094,816}{ } \quad\) METHOD FOR STABILIZING A PHOSPHORUS-VANADIUM-OXYGEN COMPLEX CATALYST
Walter Partenheimer, Naperville, III., assignor to Standard Oil Continauntion- Cincago, III. Ser. No. 616,370, Sep. 24, 1975, Pat. No 4,020,174. This application Dec. 22, 1976, Ser. No. 753,551 The portion of the term of this patent subsequent to Apr. 26, 1994, has been disclaimed.
Int. Cl. \({ }^{2}\) B01J \(23 / 92,27 / 28\)
U.S. C. 252-415
1. A method for stabilizing 27 Claims ctalyst having an atomic ratio a phosphorus-vanadium-oxide catalyst having an atomic ratio of phosphorus to vanadium in
the range of about 0.5 to 5 , which comprises: the range of about 0.5 to 5 , which comprises:
(A) Contacting said catalyst at deactivation conditions in\(600^{\circ} \mathrm{C}\). with a gaseous mixture containing molecular oxygen for a period of greater than about 1 hour;
(B) Contacting said catalyst with an effective amount of a (B) Contacting said catalyst with an effective amount of
material selected from the group consisting of: material selected from the group consisting of:
(1) Molecular chlorine or fluorine or mixtures thereo (2) Halides of fluorine, chlorine, bromine or iodine being in the vapor state above about \(250^{\circ} \mathrm{C}\). at atmospheric pressure represented by the following formula:
\(\mathrm{C}(\mathrm{X})_{n}\)
where each \(X\) is a selected halide and \(n\) is an integer from 1 to 4, any remaining radicals being hydrogen or mixtures thereof; (3) Organic halides of fluorine, chlorine, bromine or io
dine being in the vapor state above about \(250^{\circ} \mathrm{C}\). at atmospheric pressure represented by the formula:
\(\mathrm{R}\left(\mathrm{X}_{1}\right)_{m}\)
where \(\mathbf{R}\) is alkane, alkene or alkyne of straight or branched structure having at least two carbon atoms and \(X_{1}\) is independently a primary, secondary, or tertiary halide and \(m\) is an
integer of from 1 to about 20 consistent with the number of carbon atoms of said structure or mixtures;
(4) hydrogen halides;
or mixtures thereof at reactivation conditions including a temperature in the range of from about \(300^{\circ}\) to about \(500^{\circ} \mathrm{C}\).; and
(c) repeating the sequence of steps \((\mathrm{A})\) and
(c) repeating the sequence of steps \((A)\) and \((B)\) at least once.
9. A method for stabilizing a phosphorus-vanadium-oxide catalyst having an atomic ratio of phosphorus to vanadium in the range of about 0.5 to 5 , which comprises:
(A) Contacting said catalyst at deactivating conditions in cluding a temperature in the range of from about \(350^{\circ}\) to \(600^{\circ} \mathrm{C}\). with a gaseous mixture containing molecular
oxygen and a hydrocarbon having less than about ten oxygen and a hydrocarbon having less than about ten
carbon atoms per molecule for a period of greater than
(B) Contacting said catalyst with an effective amount of a material selected from the group consisting of:
(2) Halides of fluorine, chlorine, bromine or iodine being
(1) in the vapor state above about \(250^{\circ} \mathrm{C}\). at atmospheric pressure represented by the following formula: \(\mathrm{C}(\mathrm{X})_{n}\)
where each \(\mathbf{X}\) is a selected halide and n is an integer from 1 to 4, any remaining radicals being hydrogen or mixtures thereof (3) Organic haides of fluorine, chlorine, bromine or io
dine being in the vapor state above about \(250^{\circ} \mathrm{C}\) a atmospheric pressure represented by the formula
\(\mathrm{R}\left(\mathrm{X}_{1}\right)_{m}\)
where \(R\) is alkane, alkene or alkyne of straight or branched structure having at least two carbon atoms and \(X_{1}\) is indepen-
dently a primary, secondary, or tertiary halide and \(m\) is an dently a primary, secondary, or tertiary halide and \(m\) is an
integer of from 1 to about 20 consistent with the number of carbon atoms of said structure or mixtures,
(4) Hydrochloric acid;
or mixtures thereof at reactiv
or mixtures thereof at reactivation conditions including a tem
perature in the range of from about \(300^{\circ}\) to about \(500^{\circ} \mathrm{C}\)
perature in the range of from about
(c) repeating the sequence of
REGENERATION METHOD FOR GRAVITY-FLOWING DEACTIVATED CATALYST PARTICLES Robert K. Olson, Elgin, and Lester F. Smith, Itasca,
assignors to UOP Inc., Des Plaines, III.
\[
\begin{aligned}
& 8 \text { to UOP Inc., Des Plaines, Ill. } \\
& \text { Filed Jun. 15, 1977, Ser. No. 806,886 } \\
& \text { Int. C.2. }{ }^{\text {B01J }} 23 / 966,21 / 20 ; \text { C 10G } 35 / 08
\end{aligned}
\]
U.S. Cl.
1. A method for continuously regenerating hydrocarbon conversion catalyst particles comprising a Group VIII metal and a halogen component in combination with a refractory inorganic oxide carrier material, and which have become
deactivated through use in said hydrocarbon conversion reac deactivated through use in said hydrocarbon conversion reac
tion by (1) deposition of carbonaceous matter thereon and through (2) loss of halogen therefrom, said continuous regeneration being effected in a regeneration zone wherein said partiles are downwardly movable through a descending column via gravity-flow in countercurrent relationship with the upward flow of vapors within said zone and wherein said regensection interconnected with and surmounted with respect to lower drying second section, which regeneration method comprises the interrelated sequential steps of:
(a) introducing (i) deactivated catalyst particl
(a) introducing (i) deactivated catalyst particles, (ii) a first air
stream from an external source and, (iii) a halogen or a
stream from an external source and, (iii) a halogen or a
halogen-containing compound from an external source
into said upper carbon-burning/halogenation first section;
(b) maintaining said catalyst particles within said first section
for a time sufficient to (i) remove substantially all of said
carbonaceous matter therefrom and, (ii) increase the halogen content thereof
burning/halogenatio catalyst particles from said carbonflow, and, (ii) a second air stream from an external source
flome into said lower drying section, and maintaining said catalyst particles within said lower drying section for a time suffic
and
d) withdrawing substantially wate--free, regenerated particles from said regeneration zone.

6. The method of claim 1 further characterized in that exces air and the combustion products resulting from the burning of
carbon, are withdrawn from said carbon-burning section cooled and at least in part recycled to said carbon-burning and drying sections.
7. The method
7. The method of claim 6 further characterized in that said excess air and combustion products are recycled to said car-bon-burning and drying sections without intermediate treatment.

\section*{\(4,094,818\) ZIEGLER TYPE CATALYST SYSTEM W. Langer, Jr., Watchung Ne Exion Arhur W. Langer, Jr., Watchung, N.J., assignor
Research \& Engineering Co, Linden, N.J.
Filed Feb 11,1977 ,}

Filed Feb. 11, 1977, Ser. No. 767,766
Int. Cl.' B01J 31/02, 31/12
U.S. C. \(252-429 \mathrm{C}\)
1. An improved catalyst composition adaptable for use in 1. Aha-olefin polymerization which comprises a mixture of:
(a) at least one Group IVB to VIII trasition (a) at least one Group IVB to VIII transition metal halide; (b) an alkyl metal cocatalyst, said cocatalyst being selected
from the group consisting essentially of a trialkyl metal or a dialkyl metal halide compound and mixtures thereof, said trialkyl metal compound having the structure of
\(\mathrm{R}_{3}^{\prime} \mathrm{Y}\)
said dialkyl metal halide compound having the structure of \(\mathrm{R}_{2}^{\prime} \mathrm{YX}\)
wherein \(\mathbf{R}^{\prime}\) is selected from the group consisting of \(C_{1}\) to \(C_{20}\) alkyl, branched alkyl, naphthenic or aralkyl groups, Y being indium and \(X\) being a halide group; and
(c) a nitrogen-containing metal alkyl compound, a structure
of said nitrogen-containing metal alkyl compound being due to the formation of a complex oxide under said oxidizing
selected from the group consisting of
\(\mathbf{R}_{2}^{\prime} \mathrm{YNR}_{2}\) or \(\mathrm{R}^{\prime} \mathrm{XYNR}_{2}\)
wherein \(\mathbf{Y}\) being selected from the group consisting of A ,
Ga or \(\mathrm{In}, \mathbf{X}\) being halide, \(\mathrm{R}^{\prime}\) being a \(\mathbf{C}_{1}\) to \(\mathrm{C}_{20}\) alkyl branched alkyl, naphthenic or aralkyl group and \(R\) being
selected from the group consisting of \(\mathrm{C}_{3}\) to \(\mathrm{C}_{10}\) bulky alky groups and cycloalkyl groups, with the proviso that the (wo R groups can be taken with N to form a pyrrolidyl or piperidyl and the alkyl substituted derivatives of pyrrolidyl and piperidyl, said compound being in a mole ratio of
0.05 to 5 moles of said compound to said transition metal 0.05 to 5 moles of said compound to said transition metal halide.

\section*{4,094,819}

CATALYST AND PROCESS FOR OXIDATIVE rent J. Bertus, Bartlesville, Okla, assignor to Phillips Petraleum Company, Bartlesille, Okla.
Division of Ser. No. 458,721, Apr. 8, 1974, Pat. No. 3,972,954, which is a continuation of Ser. No. 226,299, Feb. 14, 1972,
abandoned. This application Mar. 5, 1976, Ser. No. 664,216 Int. Cl. \({ }^{2}\) B01J 27/14 U.S. Cl. \(252-435\)
1. An activated catalyst composition prepared by admixing
7 Claims 1. An activated catalyst composition prepared by admixing
oxides, or compounds convertible to the oxide on calcination, oxides, or compounds convertible to the oxide on calcination,
of (I) cobalt or nickel, (II) molybdenum, and (III) phosphorus, of (I) cobalt or nickel, (I) molybdenum, and (11) phosphorus, atmosphere, such that the resulting activated catalyst compositon represents a cobalt or nickel content of 15 to 65 weight percent, molybdenum
1 to 25 weight percent.

\section*{4,094,820}

MANUFACTURE OF COBALT AND/OR NICKEL-MOLYBDENUM-ALUMINA CATALYSTS Grant A. Mickelson, Yorba Linda, Calif,, assignor to Union Oil Company of California, Los Angeles, Calif. Filed Mar. 11, 1977, Ser. No. 776,762
Int. Cl.' B01J \(21 / 04,23 / 88\)
U.S. Cl. 252-465
1. A single-calcination, ammonia-free method for the menucure of a finished cobalt- and/or nickel- molybdenum- alaina catalyst, which comprises:
hydroxide of cobalt or niclurry at least one carbonate or hydroxide of cobalt or nickel with at least a stoichiometric proportion of \(\mathrm{MoO}_{3}\) and/ or molybdic acid to form finely
divided undissolved crystalline cobalt- and/or nickel modivided undissolved crystalline cobalt- and/or nickel mo-
lybdate in aqueous suspension; lybdate in aqueous suspension;
hydrate consisting essentially of gelatinous boehmite to provide about \(50-90 \mathrm{wt}\) \% \(\mathrm{Al}_{2} \mathrm{O}\), in the finished (3) digesting and/or mulling the resulting mixture for at least about digesting and/or mulling the resulting mixture for at least
abs extrudable plastic mixture;
(4) recovering from step (3) and extrudable plastic mixture;
(5) extruding the plastic mixture (5) extruding the plastic mixture to provide extrudates of (6) drying and calcining the
(crying and calcining the extrudates at a m
perature between about \(800^{\circ} \mathrm{F}\) and \(1500^{\circ} \mathrm{C}\)

\section*{4,094,821}

CATALYSTS AND METHOD OF THEIR PREPARATION Gary B. McVicker, Westrield, and Robert L. Garten, Summit, both of N.J., assignors to Exxon Research \& Engineering Co Continuation

This application Oct. 4, 1976, Ser. No. 729,834
Int. C1. \({ }^{2}\) B013 \(21 / 04,21 / 12,23 / 58\) U.S. CI. \(252-466\) PT \(\qquad\) 1. A hydrocarbon conversion catalyst resistant to meta
conditions between a component metal of Group VIII and a
Group IIA metal oxide selected from the group consisting of Group IIA metal oxide selected from the group consisting of
calcium oxide, barium oxide, strontium oxide and mixtures thereof, comprising a Group VIII metal or mixture thereof supported on a Group IIA metal oxide selected from the group
consisting of calcium oxide, barium oxide, strontium oxide and consisting of calcium oxide, barium oxide, strontium oxide and mixtures thereof which Group IIA metal oxide is supported on an acidic refractory oxide wherein the Group IIA metal oxide acidic refractory oxide support and to supply an excess at a level of from about 0.5 to 50 moles Group HIA metal oxide per mole of said Group VIII metal or mixtures thereof, the Group
VIII metal or mixtures thereof on Group IIA metal oxide or mixtures thereof on neutralized acidic refractory oxide combination being supported on an acidic refractory oxide.

BIO-EVENT ELECTRON MATERIAL
John A. R. Kater, 583 Traverse Dr., Costa Mesa, Calif. 92626 Continuation-in-part of Ser. No. 566,335, Dec. 26, 1974, Pat. No 3,993,049. This application Oct. 21, 1976, Ser. No 734,405
U.S. C. 252-512 \(\qquad\)
1. An electrolyte material for use in producing electrodes 1. An electrolyte material for use in producing electrodes of the same kind as the metal of the salt and a solvent in which both said adhesive and said salt are soluble.

4,094,823
ETHYL-2-METHYL-3,4-PENTADIENOATE PERFUME COMPOSITIONS
John B. Hall, Rumson; Denis E. Hruza, Brick Town; Manfred Hugo Dock, Locust; Joaquin Vials, Red Bank, all of N.J. and Edward J. Shuster, Brooklyn, N.Y., assignors to Internat
tonal Flavors \& Fragrances Inc., New York, N.Y. tional Flavors \& Fragrances inc., New York, N.Y.
Division of Ser. No. 566,118, Apr. 8, 1975, Pat. No. 3,978,239. This application May 5, 1976, Ser. No. 683,330 U.S. C. 252-522 Int. C1. \({ }^{2}\) C11B 9/00

1. A perfume composition comprising from \(0.05 \%\) up to \(5 \%\) by weight of the fragrance components of ethyl-2-methyl-3,4 pentadienoate having the structure

and the remainder of said composition being at least one adjuvat selected from the group consisting of natural perfume adjsynthetic perfume oils other than said ethyl-2-methyl-3,4-pen tadienoate, alcohols, aldehydes, ketones, esters other than said ethyl-2-methyl-3,4-pentadienoate, lactone and nitriles.
a-OXY(OXO) SULFIDES IN PERFUME William J. Evers, Red Bank; Howard H. Heinsohn, Jr., Haslet, both of N.J.; Edward J. Shutter, Brooklyn, N.Y, and Freder
lick Louis Schmitr, Holmdel N.J Flavors \& Fragrances Inc., New York, N.Y. Division of Ser. No. 723,534, Sep. 15, 1976, Pat. No. 4,065,
This application Jul. 28, 1977, Ser. No. 819,961 Int. C1. \({ }^{2}\) C11B \(9 / 00\)
U.S. Cl. 252-522 4 Claims

1. A perfume comprising a carrier and a compound having

wherein \(R\) is one of hydrogen or methyl, \(X\) is

nd \(\mathbf{Y}\) is selected from the group consisting of methyl, methal yt having the structure:

ambient pressure, thereby
(d) producing a granular phenol silicate compound 5. The method of claim 1 , including the further steps, follow (a) step (d), of:
the ratio of 1 to 3 mols to each mol (b) heating said mixture at \(50^{\circ}\) to \(120^{\circ} \mathrm{C}\) for 20 to 90 minutes while agitating, thereby
(c) producing a resinous product.

FLUORIDATED GRAFT CATION EXCHANGE GOPAFI CAMEO
Masayoshi Tatemoto, Tbaraki, and Sinji Tamara, Suite, both of Japan, assignors to Daikin Kogyo Co., Ltd., Osaka, Japan Filed Aug. 23, 1977, Ser. No. 827,018
Claims priority, application Japan, Aug. 25, 1976,
51-102113 U.S. Cl. \(260-2.2 \mathrm{R}\) 10 Claim 10 Claims copolymer prepared by post-polymerizing at least one fluecopolefiner prepares by post-polymerizing at least one flue
reelected from the group consisting of tetrafluoroethylene, trifluoroethylene, trinfuorochloroethylene,
hexafluoropropylene, vinylidene fluoride and vinyl fur ide hexafluoropropylene, vinylidene fluoride and vinyl fluoride to
a perfluorovinylacetic acid-vinylidene fluoride copolymer containing not less than \(25 \%\) by mole of the perfluorovinyla cetic acid unit in an aqueous solution of said perfluorovinyla cetic acid-vinylidene fluoride copolymer in the presence of a organic or inorganic peroxide polymerization initiator wherein the proportion of the post-polymerized fluoroolefin monomer
is from 5 to \(60 \%\) by weight based on the weight of said per fluorovinylacetic acid-vinylidine fluoride copolymer.

SUBSTITUTED 4,094,827 SUBSTITUTED UREAS AS P Edward E. McEntire, Austin, Tex,, assignor to Texaco Develop rent Corporation, New York, N.Y.
Filed Oct. \(18,1976, ~ S e r . ~\)
filed Oct. 18, 1976, Ser. No. 733,547
Int. Cl.' C08G 18/16, 18/18
U.S. Cl. \(260-2.5 \mathrm{AC}\) USS. C. \(260-2.5 \mathrm{AC}\)
1. A method for producing a polyurethane which comprises reacting an organic polyisocyanate with an organic polyester polyount of a compound having the following structural for mola:
\[
\left({ }_{\mathrm{R}}^{\mathrm{R}} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NX}^{2}
\]

1-propyl, 2-methyl-1-propyl and acetyl.

4,094,825
PROCESS FOR THE PRODUCTION OF PHENOL SILICOFORMATE COMPOUNDS AND THEI
David H. Blount, 5450 Lea St., San Diego, Calif. 92105
Continuation-in-part of Ser. No. 672,559, Mar. 31, 1976, Pat.
No. 4,032,511, which is a continuation-in-part of Ser. No.
555,078 , Mar. 3, 1975, abandoned. This application Dec. 6, 1976,
The portion of the term of this 1994, has been disclaimed.

Int. C1. \({ }^{2}\) ConG \(2 / 00\)
US. C 260-2 S
15 Claims compounds by the following steps:
(a) mixing silicoformic acid and a phenol compound,
(b) adding an alkali catalyst equal to 1 to \(10 \%\) by weight of silicoformic acid and phenol compound,
(a) mixing silicoformic acid and a phenol compound, presence of a blowing agent and a catalyst of polyurethane
(b) adding an alkali catalyst equal to it to \(10 \%\) by weight of formation, an organic polyisocyanate and a polyol combing-
silicoormic acid and phenol compound,
(c) heating said mixture to just below the boiling point of the alcohol and styrene and \(15-95\) percent by weight of a p allyl

where \(R\) is lower alkyl and \(X\) is hydrogen or CONR \({ }_{1} R_{2}\) where \(R_{1}\) and \(R_{2}\) are independently selected from the group consisting \(\mathbf{R}_{2}\) may not be aryl.

RIGID PC YURETH
Howard P. Klein, Austin, Tex , assignor to Texaco Development Corporation, New York, N.Y.

Filed Sep. 30, 1976, Ser. No. 728,486
USS. CI. \(260-2.5 \mathrm{AM}\)
1. A rigid polyurethane foam obtained by
ther polyol having a hydroxyl number ranging from about 200 to about a0, said weight percentages being based on the iotal weight of said polyol combination.

\section*{4,094,829}

QUICK SETTING COMPOSITION
Herbert Jackson Shearing, Manchester, England, assignor to Imperial Chemical Industries Limited, London,
Filed Aus. 2, 1976, Ser. No. 710,884 Filed Aug. 2, 1976, Ser. No. 71,884
Claims priority, application United Kingdom, Aug. 29, 1975,
35707/75; Dec. 8, 1975, \(50235 / 75\)
U.S. CI. \(260-2.5\) AK
\(\qquad\) \({ }^{\text {Int. }} \mathbf{A K}\)

6G 18/38, \(18 /\)
1. A composition obtained by first preparing a claims 1. A composition obtained by first preparing a reaction
mixture by mixing together an aqueous solution or suspension of an ammonium or alkali metal borate and an organic polyisocyanate in amount such that the borate/polyisocyanate ratio is
from \(1: 0.5\) to \(1: 50\) by weight, the amount of water supplied by said aqueous solution or suspension being sufficient to render the total reaction mixture a spreadable paste or fluid mix, and allowing said reaction mixture to set.
5. A composition obtained by mixing an aqueous solution of an alkali metal or ammonium borate and an alkali metal or mmonium silicate, with (a) at least one non-silicate compound east 0.01 gm per liter and/or (b) a hydraulic cement, in amount from \(5 \%\) to 100 times that theoretically necessary to react completely with the alkali metal or ammonium borate, or borate and silicate together, to form an insoluble metal borate and/or silicate in the presence of (1) an organic polyisocyanate
or (2) an organic polyisocyanate and a mono and/or a polyfunctional organic isocyanate-reactive compound present in an amount up to that which is theoretically necessary to reac completely with all the isocyanate groups in the organic poly socyanate, and allowing the mixture to set.
13.on is obtained in foamed form by incorporating into the mixture of ingredients a blowing agent.

GRAFTING OF VINYLAROMATIC COMPOUNDS BY CATIONIC POLYMERIZATION ON
NON-HALOGENATED DOUBLE-BONDED CHAINS Cecile Baudin, Kremlin-Bicetre; Mihallo Miskovic; Alain Pol-
of France, assignors to Societe Chimique des Charbonnages,
Paris, France
Filed Nov. 14, 1975, Ser. No. 631,943
Cleims priority, application Luxembourg, Nov. 18, 1974,
Int. C. \({ }^{2}\) C08E 19/28; C08F 253/00, 279/02, 279/00 U.S. Cl. \(260-4 \mathrm{R} 4\) Claim 1. A process for preparing copolymers wherein a macromoecular hydrocarbon elastomer having a non-halogenated alky or branched alkyl double-bonded chain and a vinylaromatic and styrene having at least one alkyl substituent are reacted a a temperature from \(-80^{\circ} \mathrm{C}\) to \(+40^{\circ} \mathrm{C}\) in the presence of \(5.10^{-4}\) to \(5.10^{-2}\) mole \(/\) of a Lewis acid initiator and optionally in the presence of a co-initiator.

GREEN STRENGTH OF ELASTOMERS
Paul H. Sandstrom, Tallmadge, Ohio, assignor to The Goodyear Tire \& Rabber Company, Akron, Ohlo

Filed Oct. 22, 1976, Ser. No. 734,773
Int. Cl. \({ }^{2}\) C08F 8/00, 224/00; C08L 7/00, 63/00
29 Claim U.S. C. 260-5
1. A process, comprising:

Anmic elastomer interpolymer having im
proved green strength by reacting at least one type of a
synthetic elastomer forming monomer with an epox containing monomer
blend ranging from about 2 percent to about 98 percent by in which \(\mathbf{R}^{\prime}\) and \(\mathbf{R}^{\prime \prime}\) are equal or different and each represen class consisting of at least one monomer selected from the monomer having from 4 to 10 carbon atoms, and at lea one type of an olefin monomer having from 2 to 14 carbo atoms in combination with at least one type of a conjusaid epoxy containing monomer selected from the class of compounds having the formula
\[
\begin{aligned}
& \underset{\mathrm{CH}_{2}}{\substack{\mathrm{R}_{2} \\
\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{R}_{1}-\mathrm{CH}_{2}-\mathrm{CH} \\
\mathrm{H}_{2}} \stackrel{\mathrm{O}}{\mathrm{H}_{2}} \mathrm{CH}_{2} \text { and }} \\
& \mathrm{CH}_{2}=\stackrel{\mathrm{R}_{2}}{\mathrm{R}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{R}_{1}-\mathrm{CH}_{2}-\mathrm{CH}^{\mathrm{O}}{ }_{-}^{\mathrm{O}} \mathrm{CH}_{2}}
\end{aligned}
\]
where \(R_{2}\) contains from 1 to 4 carbon atoms and \(R_{1}\) contain from 0 to 8 carbon atoms,
the amount of said epoxy compound in said interpolymer ranging from about 0.5 percent to about 75 percent by weight based upon the total weight of said interpolymer partially cross-linking said interpolymer to improve the green strength of said interpolymer by adding and react said interpolymer of an epoxy cross-linking agent, said epoxy cross-linking agent selected from the class consis ing of monoamines, polyamines, monoanhydrides, monocarboxylic acids and polycarboxylic acids.
said monoamines and said polyamines selected from the class consisting of an aliphatic containing from 1 to 16 carbon
atoms, a cycloaliphatic containing from 4 to 6 carbon atoms, an aromatic containing from 6 to 16 carbon atoms, and combinations thereof,
said monoanhydrides selected from the class consisting of an phatic containing from 4 to 30 carbon atoms, an aromatic containing from 6 to 30 carbon atoms, and combinations thereof, and
said monocarboxylic acids and said polycarboxylic acids ing from 1 to 30 carbon atoms, an aromatic containing from 6 to 30 carbon atoms, and combinations thereof. 10. A process comprising.
forming a synthetic elastomer interpolymer having imelastomer forming monomer and from an epoxy contain ing monomer, said synthetic elastomer forming monomer selected from the class consisting of at least to type or a conj, and at leas
monomer having from 4 to 10 carbon atoms, and monomer having from
one type of an olefin monomer having from 2 to 14 carbo atoms in combination with at least one type of a conjugated diene monomer having from 4 to 10 carbon atons, said epoxy containing monomer se
compounds having the formula:
where \(\mathbf{R}_{2}\) contains from 1 to 4 carbon atoms and \(\mathbf{R}_{1}\) contain Where \(R_{2}\) contains from 1 to
from 0 to 8 carbon atoms
the amount of said epoxy compound in said interpolymer ranging from about 0.5 percent to about 75 percent by weight based upon the total weight of said interpolymer, improving the green strength of an elastomer selected from the class consisting of synthetic elastomers and natural
rubber by adding said interpolymer to form a blend the amount of said epoxy containing interpolymer in said
weight based upon the total weight of said blend, weight ased upon the total weight of said blend,
said synthetic elastomers selected from the class consisting of nitrile rubber, butyl rubber, chlorinated butyl rubber of nitrine red butyl rubber, polyalkenylenes, ethylene-pro-pylene-diene rubber, polymers made from at least one carbon atoms, and polymers made from at least one type of an olefin monomer having from 2 to 14 carbon atoms in combination with at least one type of a conjugated diene monomer having from 4 to 10 carbon atoms.
hydrogen or methyl, \(X\) is
\begin{tabular}{c}
O \\
\(-\mathrm{C}-\) \\
\hline
\end{tabular}
\(-\mathrm{SO}_{2}-\) or the group
\(\therefore\)
VINYLIC GROUP CONTAINING DEXTRAN DERIVATIVE GEL FOR USE IN ELECTROPHORETIC DERIVATIVE GEL FOR USE IN ELECTROPHORETIC

Fine Chemicals AB, Upsala, Sweden Filed Nov. 29, 1976, Ser. No. 745,903
Claims priority, application Sweden, Dec. 12, 1975, 7514093 US. C. \(260-17,4 \mathrm{GC}\) In. Cl. \({ }^{2}\) C08L \(\mathrm{S} / 02\)

2 Claims
1. A dextran derivative gel for use in electrophoretic separation processes, which gel comprises a polymerisate obtained by the free-radical homopolymerization of a dextran derivative
containing vinylic groups of the formula
in which A is \(-\mathrm{CH}_{2}\) or -O and R is a hydrogen atom, a
methyl group, a trifuoromethyl group, a fluorine, chlorine or bromine atom or a cyano group, or free-radical copolymeriza-
tion of such a vinylic derivative of dextran with a low-molecution of such a vinylic derivative of dextran win a low-molecu the vinylic groups in the starting dextran derivative being 0.3 \(-1.5 \mathrm{mmol} / \mathrm{g}\) of dextran derivative in the case of substituents of the formula (I) and \(0.05-1 \mathrm{mmol} / \mathrm{g}\) of dextran derivative in the case of substituents of the formula (II) and the amount of dextran derivative containing vinylic groups being \(20-100\)
by weight, calculated on the total weight of the reactants.

4,094,833
VINYLIC GROUP CONTAINING DEXTRAN DERIVATIVE GEL IN PARTICLE FO
Haldor Ingemar Johansson; Dag Torsten Lindström, and Joh Lennart Söderberg, all of Upsala, Sweden, assignors to Pharmacia Fine Cuemicals AB, Uppsala, Sweden
Filed Nov. 29, 1976, Ser. No. 745,904 Claims priority, application Sweden, Dec. 12, 1975, 7514092
Int. Cl. U.S. Cl. \(260-17.4\) GC \({ }^{\text {Int. Cl. }}{ }^{2}\) C08L 5/02
, U.S. Cl. \(260-17.4\) GC 1. A dextran derivative gel in particle form for use in the selected from the group consisting of molecular size and electrical charge by means of at least one technique selected from the group consisting of gel chromatographic and ion exchange techniques, which gel comprises a copolymerisate obtained by
the free-radical copolymerization of a mixture of \(20-80 \%\) by the free-radical copolymerization of a mixture of \(20-80 \%\) by
weight of a dextran derivative containing groups selected from the class consisting of vinyl and substituted vinyl groups, 20 \(80 \%\) by weight of a divinyl compound of the formula:
\[
\begin{aligned}
& \text { nnerenp of the formula, } \\
& \text { gro }
\end{aligned}
\]
\[
\begin{aligned}
& \stackrel{\mathrm{H}_{2} \mathrm{C}=\stackrel{\mathrm{R}^{\prime}}{\stackrel{\mathrm{R}^{\prime \prime}}{\mathrm{C}}-\mathrm{x}-\mathrm{C}}=\mathrm{CH}_{2}}{ } \\
& -\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OR}^{1}
\end{aligned}
\]
wherein \(n\) is an integer from 1 to 6 , and \(0-40 \%\) by weight of low-molecular weight monovinyl compound, calculated on he toal weight of the reactants, the degree of substitution of groups selected from the class consisting of vinyl and substi-\(-2 \mathrm{mmol} / \mathrm{g}\) of dextran derivative.

ABS-FORMALDEHYDE NOVOLAK and John L. Sulliven;; Rallston Lek. Jankowski, Schenectady Schenen L. Sullivan; Ballston Leke, all of N.Y., assignors to Schenectady Chemlcals, Inc., Schenectady, N.Y. This application Nor. 25, 1975, Ser. No. 635,074
\begin{tabular}{l}
Int. CI. 2 C08K \\
U.S/09; C08L 9/02, \(55 / 02,61 / 10\) \\
\hline
\end{tabular}
U.S. Cl. \(260-19\) UA
1. A composition suitable for use as a shell 9 Claims 1. A composition suitable for use as a shell process foundry
flake resin comprising a blend of a phenol-formaldehyde novo flake resin comprising a blend of a phenol-formaldehyde novo
lak containing 0.70 to 0.83 moles of formaldehyde per mole of phenol and 1 to \(20 \%\) of an acrylonitrile-butadiene-styrene erpolymer resin based on the phenol in the novolak.

> UNSATURATED POLYESESTER RESINOUS
> COMPOSITON mori. Ynnii A

Eiji Omori; Yuuil Aimono; Yoshiyuli Mukoyama, and Hatuo Sugitani, all of Hitachi, Japan, assignors to Hitachi Chemia

Filed Jan. 25, 1977, Ser. No. 762,266
Claims priority, application Japan, Jan. 28, 1976, 51-8811
Jul. \(30,1976,51.91947\) U. Cl 200 Int. Cl. \({ }^{2}\) C09D 3/66, \(5 / 25\)
U.S. C1. \(260-22\) Int.
1. An unsaturated polyester resinous composid

5 Claims
1. An (a) unsaturated polyester resinous composition compris monomer, (c) at least one compornd crosslinkable consisting of \(1,2,4\) triazole and its derivatives, (d) gremp agent and (e) a manganese salt of an organic acid, wherein the roportion of the unsaturated polyester (a) is \(80-30 \%\) by \(70 \%\) by weight, and \(0.000012-0.036\) tring monomer (b) is 20 (c), \(0.5-3.0\) geigh, and \(0.000012-0.036\) mole of the compound manganese salt (e) are present based on 100 g (h) 1.5 g of the components (a) and (b), and wherein 1,24 triazole and its derivatives in the compound (c) have the formula:

wherein \(R\) and \(R^{\prime}\) are independently hydrogen, amino or
wherein \(R^{\prime}\) is alkyl having 4 to 8 carbon atoms, phenyl, halogen substituted phenyl, cresyl, or halogen
and \(\mathbf{R}^{2}\) is alkyl having 8 to 10 carbon atoms.

AQUEOUS ALKYD RESINS Seimel Yasui, Ibaraki; Minoru Hino, and Kazuya Hayashi, bota of Toyonaka, all of Japan, assignors to Sumitomo Chemical Company, Limited, Osaka, Japan
Continuation-in-pprt of Ser. No. 670,957, Mar. 26, 1976, abandoned. This application Apr. 1, 197r. Ser. No.
Clims priority, application
Jpana, Mar. 26, 1975,
50-37260 S. C. \(260-22\) Int. CB. \({ }^{2}\) C09D 3/52, 3/66, 5/02 U.S. CI. \(260-22\) CB
1. An aqueous alkyd resin obtained by the neutralization o
a polycondensation resin with a base, the polycondensatio a polycondensation resin with a base, the polycondensation
resin being prepared by reacting a reaction mixture obtained by the transesterification or esterification of (a) a natural fat and oil or a fatty acid with a polyhydric alcohol with an adduc of (b) a liquid polybutadiene having a number average molecu-
lar weight of 150 to 900 a viscosity of 2 to 80 cps , at \(30^{\circ} \mathrm{C}\) an lar weight of 150 to 900 , a viscosity of 2 to 80 cps ;, at \(30^{\circ} \mathrm{C}\) and
at least \(50 \%\) of the cis-1,4 structure with an \(\alpha, \beta\)-unsaturated dicarboxylic acid or the anhydride thereof, and/or the half-
 the anhydride thereff, the proportion of the component (b) to the component (a) being in the range of 0 . 1 telculated by (b)/(a) + (b), the polycondenstion resin having
cal free carboxyl groups in the amount corresponding to an acid value of 30 to 70 and containing 5 to \(50 \%\) by weight of the component (b), wherein the total amount of the components (a) and (b) is in the
of the whole resin.
\(\qquad\)
CORROSION INHIBITING PRIMER PAINT FOR HAND CLEANED FERROUS METALS
William C. Johnson, Kintnerssille, Pa., assignor to Bethlehem
Steel Corporation, Bethlehem, Pa.
Filed May 10, 1977, Ser. No. 795,583
U.S. Cl. 260-22 A
\[
\begin{aligned}
& \text { Int. C } \\
& \text { nrimer D }
\end{aligned}
\]
1. A red lead primer paint for coating the surface of flerrous metals comprising between 0.25 to 2.2 pounds of an \(85 \%\) to
\(98 \%\) grade of red lead pigment per gallon (29.95 to 263.46 \(98 \%\) grade of red lead pigment per gallon (29.95 to 263.46
grams per liter) of paint solids well dispersed in a binder comrams per liter) of paint solids well dispersed in a binder comeetween \(1: 1\) to \(2: 1\), said primer paint having a pigment volume concentration of between about \(25 \%\) to \(30 \%\) and being characterized by having improved wetting and penetrating properties and improved corrosion inhibiting properties, and producing a is applied.

TRIGLYCERIDE OIL-DERIVED WATER-DISPERSIBLE TRIGLYCERIE URETHANE RESIN COATINGS
Wilma J. Schneider, and Lyle E. Gast, both of Peoria, III., assignors to The United States of America as re
the Secretary of Agriculture, Washington, D.C.

Fitary of Agriculture, Washington,
Filed Jun. 3, 197, Ser. No. 803
Int. C. \({ }^{2}\) CO8G \(18 / 28\)
U.S. C. \(260-22 \mathrm{TN}\)
1. A method of preparing water-dispersible urethane resin coating compositions comprising the following steps:
a. amidating a drying or semidrying triglyceride oil with a a. amidating a drying or semidrying triglyceride oil with a
diolamine in an oil:amine ratio of about \(1: 2\) to yield a or the 1,2 -dehydro derivative thereof, wherein \(\mathbf{X}\) is \(-\mathbf{S}\)-,
mixture of 2-monoglycerides and \(\mathrm{N}, \mathrm{N}\)-bis hydroxyalkyl atty amides in a 2 -mon
b. reacting the mixture of 2 -monoglycerides and \(\mathrm{N}, \mathrm{N}\)-bis hydroxyalkyl fatty amides from step (a) with a sufficient amount of an anhydride under sufficient conditions to convert a portion of said 2 -monoglycerides and said \(\mathrm{N}, \mathrm{N}\) bis hydroxyalkyl fatty amides to the corresponding 2 -
monoglyceride and \(\mathrm{N}, \mathrm{N}\)-bis hydroxyalkyl fatty amide half esters and to provide an acid value in the range of about \(30-70\) in said urethane resin coating compositions;
neutralizing unesterified anhydride carboxyl groups on said 2 -monoglyceride and \(\mathrm{N}, \mathrm{N}\)-bis hydroxyalkyl fatty amide half esters from step (b):
d. reacting the resultant 2 -monoglyceride, 2 -monoggyceride
half ester, \(\mathrm{N}, \mathrm{N}\)-bis hydroxyalkyl fatty amide, and \(\mathrm{N}, \mathrm{N}\)-bis hydroxyalkyl fatty amide half ester mixture from step (c) with a disocyanate in a molar ratio of disocyanate:2monoglyceride \(+\mathrm{N}, \mathrm{N}\)-bis-hydroxyalkyl fatty amide of from about \(0.85: 1\) to about \(0.58: 1\), thereby polymerizing
the components of said mixture into a urethane resin; and the components of said mixture into a urethane resin

\section*{\(4,094,839\)}

PREPARATIONS FOR COLORING MOLTEN THERMOPLASTIC POLYMERS Albert Riegler, Basel; Werner Sanr, Riehen, and Volkhard Wiese, Pratteln, all of Switzeriand, essignors to Ciba-Geigy Filed Oct. 14, 1975, Ser. No. 622,308 Claims priority, application Sweden, Oct. 22, 1974, 7414104 U.S. CI. \(260-23\) R Int. C1. \({ }^{2}\) C08L \(91 / 00\)
which contains 10 to \(70 \%\) by weight of a 1. A preparation which contains 10 to \(70 \%\) by weight of a
pigment or a polymer-soluble colourant and 90 to \(30 \%\) by weight of a carrier mixture which is composed of 51 to \(95 \%\) by weight of a metal salt of an aliphatic carboxylic acid containing at least 12 carbon atoms, said metal selected from the group consisting of calcium, barium, zinc, aluminum, and magnesium, and 49 to \(5 \%\) by weight of an elastomeric or thermoplastic
polymer selected from the group consisting of a copolymer of polymer selected from the group consisting of a copolymer of
ethylene and vinyl esters of aliphatic carboxylic acids of 2 to 6 carbon atoms, homo- or copolymers of ethylene, propylene carbon atoms, homo- or copolymers of ethylene, propyles
butylene, styrene, acrylonitrile, butadiene and polyamide.

4,094,840
4,094,840 (AND ARYLTHIO)
ANDROSTENO[16a,17a-b]BENZODIOXIN 3 -ONES Ravi K. Varma, Belle Mead, N.J., asslgnor to E. R. Squibb Sons, Inc., Princeton, N.J.

Filed May 12, 1977, Ser. No. 796,293
Int. C. \({ }^{2}\) C07J \(73 / 00\)
I. C. C. \(260-239.55\) R
1. A steroid having the formula
1. A steroid having the formula

he addition of a cross-linking agent to the dispersion, said addition being before, during or after the application of the dispersion to said substrate and
(d) drying said dispersion.
\(\mathrm{R}_{1}\) is alkyl, aryl or acyloxyalkyl; \(\mathrm{R}_{2}\) is fluoro, chloro, bromo, or \(R_{1}\) iso; \(R_{3}\) is hydrogen, fluoro, chloro, bromo or iodo; \(R_{4}\) is
carbonyl, \(\beta\)-hydroxymethylene or \(\beta\)-acyloxymethylene; and carbonyl, \(\beta\)-hydroxymethylene or \(\beta\)-acyloxymethylene; and R, is hydrogen or fluoro; wherein the term "ary") is phenyl o
phenyl substituted with 1 or 2 alkyl, alkoxy, fluoro, chloro phenyl substituted with 1 or 2 alkyl, alkoxy, fluoro, chloro,
bromo or iodo groups; the terms "alkyl" and "alkoxy" refer to groups having 1 to 10 carbon atoms; and the term "acyloxy refers to groups of the formula
\(\mathrm{Y}-\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{C}-\mathrm{O}-\)
wherein \(\mathbf{Y}\) is alkyl or aryl.
HIGHLY MONODISPERSE LATEXES OF NON-FILM mor Mani, Midland, Mich., assignor to The Dow Chemical Company, Midiand, Mich.

Filed Jun. 17, 1974, Ser. No. 479,957
U.S. C1. \(260-29.6 \mathrm{H}\)
\({ }_{\mathbf{H}}\) Int. C1. \({ }^{2}\) CosF 220/S6
10 Claims
1. A highly monodisperse latex of a water-insoluble copoly mer of an emulsion polymerizable \(\alpha, \beta\)-ethylenically unsaturated hard monomer and at least about one weight percent of
an emulsion polymerizable \(\alpha, \beta\)-thylenically unsaturated an emulsion polymerizable \(\alpha, \beta\)-ethylenicalle
amide selected from the group consisting of acrylamide, meth acrylamide, fumaric amide, maleic amide, itaconic amide, and citraconic amide; said copolymer being in the form of non-film
forming discrete particles having an average particle diameter forming discrete particles having an average particle diameter
in the colloidal range with a standard particle size deviation less than 2 percent.
\(\qquad\)
4,094,842
DISPERSING SOLID POLYURETHANE PREPOLYMERS INTO WATER Woligang Wenzel, and Dieter Dieterich, both of Leverkusen, , Germany

Filed Sep. 27, 1976, Ser. No. 727,088 Clxims priority, application Germany, Sep. 26, 1975, 2543091
In Int. C1. \({ }^{2}\) CO8J 3/04; CO8G 18/12; CO8J 3/24; C08G \(18 / 82\) U.S. C. \(260-29.2\) TN
1. A process for the production of polyurethane films and 1. A process for the production of polyurethane films and
coatings from oligomeric polyurethane prepolymers which ar free from isocyanate groups and cross-linking agents comprising: a) contacting solid oligomeric polyurethane prepolymers which are free from isocyanate groups in the iorm lumps or coarse pow the softening point of the prepolymer to form a dispersion, said oligomeric polyurethane prepolymers characterized in that
(1) they have an
(2) they contain at least about 4 to 120 milliequivalents of
ionic groups per 100 grams of prepolymer, said millie quivalents of ionic groups derived from groups selected from the group consisting of ionic groups and groups
capable of conversion into ionic groups before, during capable of converslymers are brought into contact with water, or at least about 2 to \(20 \%\) by weight of hydrophilic units of the formula \(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}\)-, and (3) they are solid at room temperature,
(b) applying the dispersion to a substrate,
(c) cross-linking the oligomeric polyurethane prepolymer by

QQUEOUS COATING COMPOSTTION AND PROCESS ROM A MERCAPTAN CONTAINING POLYMER AND A incent Daniel McGinise Valle Cty, assignor to SCM Corporation, New York, N.Y 4,035,272, which is of Ser. No. 708,106, Jul. 23, 1976, Pat. No. Jul. 14, 1975, abandoned, which is a continution-in-part of Ser. No. 519,409, Oct. 31, 1974, Pat. No. 3,925,181. This application Mar. 28, 1977, Ser. No. 781,549

Int. Cl. \({ }^{2}\) C08J \(3 / 00\)
U.S. Cl. 260-29.2 N

12 Claims U.S. A. coating composition in aque
1. \(\mathbf{2}\) curable film thereof, comprising:
a water-dispersed polymer having at least about \(5 \%\) by
weight pendant mercaptan groups; and
at least about \(5 \%\) by weight of said polymer of bis-maleimide cross-linking agent;
said bis-maleimide having alpha-, beta-ethylenic unsaturation for cross-linking said polymer through said mercaptan groups curable film.

> WATER-BORNE EPOXY RESIN COATING CCOMPOSTINS Roy A. Allen, and Leroy W. Scottrobth of Houston, Tex., assimnors to Shell Oil Company, Houston, Tex. Filed Mar. 28, 1997, Ser. No. 782,208

Filed Mar. 28, 1997, Ser. No. 782,208
U.S. Cl. \(260-29.3\)

9 Cluims
1. A hydrolytically-stable, heat-curable composition com-
(1) a water-soluble composition prepared by (a) condensing a chemical excess of a lower molecular weight epoxy resin with an amino-substituted benzoic acid, (b) reacting the terminal epoxide groups onen (c) solubilizing the product of (b) by neutralizing the carboxyl groups with a tertiary amine or ammonia, and
a curing amount of a water-miscible aminoplast or phenolplast resin.

4,094,845
METHOD OF REDUCING LOSS OF WATER BY TRANSPIRATION AND COMPOSITION THEREFOR Trading International, Inc., Washington, D.C.

Filed Sep. 19, 1975, Ser. No. 614,925
U.S. Cl. 260-29.4 UA
1. Compo-29.4 UA 12 Claims 1. Composition for decreasing the loss of water from leaves and stems of plants by transpiration and for protecting plants
from damage by wind and cold consisting essentially of an queous solution or dispersion of a carboxylated hydrophilic acrylic polymer, a cross-linking agent for the carboxylated hydrophilic acrylic polymer and an effective amount of an philic acrylic polymer and the cross-linking agent together comprise from about \(3 \%\) to about \(30 \%\) by weight of the aqueous solution or dispersion, said carboxylated hydrophilic acrylic polymer is a copolymer containing monomer units
from at least one \(\mathrm{C}_{1}-\mathrm{C}_{4}\) alkyl acrylate or methacrylate and from rom at least one \(\mathrm{C}_{1}\). \(\mathrm{C}_{4}\) alkyl acrylate or methacrylate and from
about \(5 \%\) to about \(20 \%\) by weight of at least one carboxylic monomer, and the amount of cross-linking agent is about \(1 \%\) to
about \(20 \%\) by weight of solids of said carboxylated hydrophilic acrylic polymer.

4,094,846
LOW PRESSURE MELAMINE RESINS CONTAINING
ELASTOMERS
Corporation, Cincinnati, Ohio
Filed Feb. 11, 1977, Ser. No. 767,720
U.S. Cl. \(260-29.4 \mathrm{R}\) Int C. \({ }^{2} \mathrm{COSL} 61 / 28 \quad 10\) Claims
1. A composition of matter comprising a mixture of
1. A composition of matter comprising a mixture of
(1) an aqueous melamine/formaldehyde resin solution
wherein the melamine to formaldehyde ratio thereof ranges from about \(1: 1.6\) to about 1:2.5,
(2) from about \(2.5 \%\) to about \(30.0 \%\), by weight, based on the weight of the resin solids of (1), of an elastomer compris\({ }_{\text {(a) }}^{\text {ing }}\)
about \(20 \%\) vinyl chloride copolymer containing from bout \(80 \%\) to about \(30 \%\) ethylene, from about \(65 \%\) to \(7.0 \%\), by weight, said percentages being based on the total weight of (a), of amide group
from about \(3.0 \%\) to ,
(c) a butadiene/acrylonitrile
about \(50 \%\) to about \(95 \%\) butadiener from about \(5 \%\) to about \(50 \%\) acrylonitrile and from about \(1 \%\) to about \(10 \%\), by weight, said percentages being based on the having a particle size of up to about 20,000 Angstroms. having
and
(3) from about 0.25 to about \(1.25 \%\), by weight, based on the total weight of solids in said composition, of an alkylene polyamine having the formula
\(\mathrm{H}_{2} \mathrm{~N}_{[} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\)
wherein \(n\) is a whole, positive integer of \(0-3\), inclusive.

ELASTOMER 4,094,847 ennett Robert Hw MODIFIED MELAMINE RESINS Kennethe Robert Huffiman, Stamford; Donald James Casey,
Ridgefield, and Walter Moreland Thomas, Darien, all of Conn., assignors to Formica Corporation, Cincinnati, Ohio Filed Feb. 11, 1977, Ser. No. 767,721
Int. Cl. \({ }^{2}\) C08L \(61 / 28\)
U.S. Cl. \(260-29.4 \mathrm{R}\)
1. A composition of matter comprising a mixture of 1. an aqueous melamine/formaldehyde resin solution a 2. from about \(2.5 \%\) to about \(30.0 \%\), by weight, based on the weight of the resin solids of (1), of an elastomer comprising
an ethylene/vinyl chloride copolymer containing from
about \(0.5 \%\) to about \(7.0 \%\), by weight, based on the total weight of (a), of amide groups or
b. a polyurethane resin containing from about \(3.0 \%\) to about \(10.0 \%\), by weight, based on the total weight of
(b) of carboxyl groups, (b), of carboxyl groups,
said elastomer having a particle size of up to about 20,000 wher
Angstroms.

\section*{4,094,848}

PROCESS FOR PRODUCING FINELY DIVIDED POROUS POLYMER PARTICLES
Kenji Naito, Odawara, Japan, assignor to Fujl Photo Film Co.,
Ltd., Minami-ashigara, Japan
Filed Mey 20, 1976, Ser. No. 688,191
Claims priority, application Japan, May 20, 1975, 50-59925 S. C1. \(260-29.6 \mathrm{E}\) Int. C.2. \({ }^{2}\) C08L \(33 / 04\)
1. A process for producing finely divided 12 Claims 1. A process for producing finely divided porous polymer
particles comprisin. particles comprising:
(1) forming a solution

(a) said copolymer comprising as one comonomer component of said copolymer, from about 10 to about 70 mol \% of a vinyl compound which contains a carboxyl group,
(i) from about 20 to about \(90 \%\) by weight of a solvent selected from the group consisting of sec-butanol, tertbutanol or mixtures thereof, and (ii) from about 10 to about \(80 \%\) by weight of a hydro-
phobic organic solvent Phobic organic solvent,
(2) forming a water drop containing polymer emulsion by ence of at least one emulsion stabilizer or surface active (3) recoverin
from said emulsionely divided porous polymer particles from said emulsion.

4,094,849
PROCESS FOR PRODUCING AQUEOUS DISPERSION OF ETHYLENE-VINYL ACETATE COPOLYMER Takeo Oyamada; Kazuhisa Satoh; Shinobu Tsuru, all of Ichihara; Masahiro Domoto, Toyonakk, and Shizuo Narisama Ichihara, all of Japan, assignors to Sumitomo Chemical Com pany, Limited, Japan
Filed Oct. 27, 1976, Ser. No. 736,100 Claims priority, application Japan, Nov. 4, 1975, 50-132694 U.S. Cl. \(260-29.6 \mathrm{MQ}\) \(\qquad\) U.S. C. \(260-29.6 \mathrm{MQ}\)
1. A process for producing an aqueous dispersion of an 1. A process for producing an aqueous dispersion of a
ethylene-vinyl acetate copolymer containing no formalin by emulsion-polymerization ethylene and vinyl acetate and op tionally other copolymerizable vinyl monomers in the pres ence of a redox catalyst consisting of an oxidizing agent and a reducing agent, which is characterized in that a reaction prod zinc salt of a reductive sulfur oxide is used as the reducing agent for the redox catalyst.

\section*{4,094,850}

FLAME RETARDANT COMPOSITION
Albert W. Morgan, Collinssille, Ill.; David S. Moorman, Hous ton, Tex., and William Vanderlinde, St. Louis, Mo., assignors Continuation-in-part of Ser No No , 19 . bandoned, which is a continuation of Ser. No. \(23,6,1975\), 1972, abandoned. This application Jul. 6 , 1976, Ser. No. 702,802
\(\qquad\) 1. A composition consisting essentially of a polyolefin said polyolefin having incorporated the resin a plasticizing amount of a compound of the formula

\((\mathrm{NCO})_{c}\)

\(\left[\begin{array}{l}\mathrm{CO}+\mathrm{CH}_{2} \rightarrow{ }_{\mathrm{X}} \mathrm{X} \\ \text { II } \\ \mathrm{CO}+\mathrm{CH}_{2} \rightarrow_{4} \mathrm{X} \text { : }\end{array}\right.\)
\(X\) represents halogen; and
\(n\) represents the integer 4 or 5 .
wherein
R is hydrogen, halogen, alkyl having 1 to 9 carbon atoms, phenyl, alkoxy having 1 to 4 carbon atoms or alkoxy carbonyl having 1 to 4 carbon atoms in the alkyl moiety, or two R substituents together on adjacent carbon atoms of the phenyl moiety to which they are attached together
form a hydrocarbon ring containing from 5 to 6 carbon form a hydrocarbon ring containing from 5 to 6 carbon heterocyclic ring. \(R^{\prime}\) has the same meaning as \(R\) or is the group

METHOD OF PREPARATION OF CLEAR CONCENTRATE COMPOSITIONS
Richard T. Haynes, Kirkwood, and Harry L. Young, Rock Hill, oth of Mo., assignors to Monsanto Company, St. Louis, M
Continuation in - 0 art of Ser. No. 407,372 Oct. 17,1973 Continuation-In-part of Ser. No. 407,372, Oct. 17, 1973, abandoned, which is a continuation-in-part of Ser. No. 274,156, ene substituted by phenyl or alkyl having 1 to 4 carbon atoms. Jul. 24, 1972, abandoned, which is a continuation of Ser. No. a divalent cycloaliphatic or aromatic 5 or 6 -membered ring or 770,088 , Oct. 23, 1978, abandoned. This application Jun. 3, 1975, said divalent ring including oxygen as a hetero atom, oxygen, U.S. C. \(260-33.6 \mathrm{UA}\) Int. C. \({ }^{2}\) \(\mathrm{Cl}^{2}\) C08K 5/01; D06P \(1 / 00\)
1. In a method for preparing a clear concentrate composition useful in forming a clear vehicle for cutting color concentrates wherein a bonding agent, a wetting agent, an organic solvent in 5 percent to 50 percen by wich to form said clear concentrate composition, said thickening agent comprising a \(\mathrm{C}_{2}-\mathrm{C}_{4}\) olefinmaleic anhydride interpolymer cross-linked with a cross-linking agent selected from the group consisting of a vinyl ester of an olefinically unsaturated carboxylic acid having from 3 to 24 carbon atoms and about 0.35 to about 0.55 mol percent of triallyl isocyanurated based upon he malerc anhyynde mono concentrate composition, prior to further dilution, to a pH greater than 7 , as measured by a \(1 \%\) aqueous dispersion of said clear concentrate composition, with an organic amine selected from the group consisting of acyclic primary monoamines and heterocyclic monoamines, said organic amines having a boiling point less than \(100^{\circ} \mathrm{C}\).
\(a\) is 0 to 5 when \(e\) is 1 and 2,5 when \(e\) is
\(b\) is \(5-a\) when \(e\) is 1 and \(6-a-d\) when \(e\) is 0
\(c\) is \(5-d ;\)
\(d\) is 0 to 5 ; an
\(e\) is 0 to 3
with the proviso that the sum of \(a+d\) is always from 2 to
a partially cross-linked prepolymer of said cyanic ester of said formula which is soluble in organic solvents and 0.1 to \(70 \%\) by weight of at least one high boiling ester plasticizer
having a boiling point above \(250^{\circ} \mathrm{C}\) at 760 Torr .

PROCESS FOR THE PRODUCTION OF POL YTRIAZINES IN THE PRESENCE OF HIGH-BOILING ESTERS
dolf Sundermann, New Martinssille, W. Va.; Günther Rott off, Cologne, Germany; Ernst Grigat, Odenthal-Gloebusch, Germany, and Rolf Putter, Dusseldorf, Germany, assignors to Bayer Aktiengesellschaft, Germany
Filed Jul. 22, 1976, Ser. No. 707,546
Claims priority, application Germany, Jul. 24, 1975, 2533124
U.S. Cl. \(260-37 \mathrm{~N}\). 7 Claims U.S. C1. \(260-37 \mathbf{N}\) Claims and \(\mathbf{R}^{\prime}\) is a monovalent organic group, the total number o
1. A polytrimerizable mixture of 30 to \(99.9 \%\) by weight of at carbon atoms in the three \(R^{\prime}\) groups in a molecule being no least one aromatic cyanic acid ester of the formula
alkoxy titanate silts
AGENTS Salvatore J. Moote, Staten Island, N.Y., and Gerald Sugerman, Allendale, N.J., assignors to Kenrich Petrochemicals, Inc., Hudson, N.J. Filed May 15, 1975, Ser. No. 577,922 Int. C. \({ }^{2}\) COBK \(9 / 04\)
.S. C. \(260-40 \mathrm{R}\) \(\qquad\) 1. A filled polymeric composition which comprises a perox解 compound having the formula (RO) Ti(OCOR'), wherein \(\mathbf{R}\) is monovalent alkyl, alkenyl, alkynyl, or aralkyl group having more than 14.

4,094,854 POLYOLEFIN COMPOSITION Taro Harada, Suitta; T Tisuke Okiti, Ibaraki; Takahisa Hara,
Toyonaka, and Yuji Ikezawa, Takatsuki, all of Japan, assignToyonaka, and Yuji Ikezawa, Takatsukd, all of Japan, assign-
ors to Sumitomo Chemical Company, Limited, Osaka, Japan ors to Sumitomo Chemical Company, Limited, Osaka, Japan
Filed Mar. 24, 1977, Ser. No. 780,705 Claims priority, application Japan, Mar. 31, 1976, 51-36539
Int. Cl. U.S. CI. 260-42.46 \(\qquad\) tat. Cl. \({ }^{2}\) C08K \(3 / 34\) 1. A polyolefin composition comprising (I) a crystalline
6 Claim panic fillers based on the total weight of a mixture of inorsaid inorganic filler mixture said weight of said polyolefin and \(95 \%\) of a powder mixture consisting essentially of 1 (40 to metasilicate and 0.2 to \(20 \%\) by weight of calcium carbonate, mead powder being in the long and narrow shape and more than \(98 \%\) by weight thereof being passable through a 200 -mesh
Tyler's standard sieve and (2) 60 to \(5 \%\) by weight of hydrated Tyler's standard sieve and (2) 60 to \(5 \%\) by weight of hydrated
magnesium silicate powder which is passable magnesium silicate powder which is passable through a 325 -
mesh Tyler's standard sieve.
polymer selected from the group consisting of polyester, poly amides, polycaprolactam, acrylic resins, modacrylic resins, acrylonitrile-butadiene-styrene terpolymers, polyolefins, polyoxides and a flame-retardant effective amount of a compound oxides and a flay
of the formula

4,094,855
HINDERED PHENYL PHOSPHITES
John D. Spirack, Spring Valley, N.Y., assignor to Ciba-Geigy Corporation, Ardsley, N.Y.

Filed Jul. 30, 1976, Ser. No. 710,063
Int. Cu. \({ }^{2}\) C07F \(9 / 145\). \(9 / 146.9 / 206\) U.S. CI. \(260-45.8 \mathrm{NT}\) formula 20 Claims

wherein \(R_{1}\) and \(R_{2}\) are independently lower alkyl or hydrogen, provided that only one of \(R_{1}\) and \(R_{2}\) is hydrogen,
\(R_{3}\) is \(-(A)\)
where
A is alkylene of 1 to 6 carbon atoms,
\(R_{4}\) is alkyl of 1 to 24 carbon atoms, phenyl or alkyl substi\(q\) is 0 or 1 ,
\(m\) and \(n\) are each 1 or 2 , the values of \(m\) and \(n\) being such that
the trivalent state of \(P\) is satisfied, \(R\) is trivalent state of \(P\) is satisfied,
R (a) halogen,
(a) halogen,
(b) hydroxyl, provided that \(m\) is 2 and \(n\) is 1 when R is
yydroxyl, or
hydroxyl, or
(c) \(-\mathrm{XR}_{5}\) wherein X is S or O and \(\mathrm{R}_{5}\) is alkyl of 1 to 2 carbon atoms, phenyl, alkyl susbstituted phenyl. 15. A composition of matter comprising an organic poly-
meric synthetic material normally subject to thermal, oxidative and ultraviolet degradation stabilized with

\section*{claim 1 ,}
(b) 0 to \(5 \%\) of a phenolic antioxidant,
(c) 0 to \(5 \%\) of a thio co-stabilizer,
(e) 0 to \(5 \%\) of a ligh absorber, and
(e) 0 to \(5 \%\) of a light stabilizer.

FLAME RETARDANT POLYMERIC COMPOSITIONS
FLAME RETARDANT POLYMERIC COMPOSITIONS
Randolph Joseph Guschl, Wilmington, Del., assignor to E. I. Du
Pont de Nemours and Company, Wilmington Del Filed Jun. 15, 1976, Ser. No. 696,278
\({ }^{\text {Int. Cl. }}{ }^{2}\) CosK \(5 / 16\)
15 Claims and said short chain ester units being represented by the for-

wherein each of \(R_{1}\) to \(R_{10}\) is a substituent of the formula

where
\(X_{1}\) to \(X_{5}\) is hydrogen, bromine and chlorine, \(\mathrm{R}_{11}\) is a linking group derived from bisphenol \(\mathbf{A}\), resorcinol, and
\(n\) is a number from 1 to 10

COPOLYMERIZABLE PHENOLIC ANTIOXIDANT ames Richard Wolfe, Jr., Wilmington, Del., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del.
Int. Cl. \({ }^{2}\) C08K 5/20; C07D 307/89, 307/93; C07C 101/42 1. An antioxidant having the structural formula: \({ }^{29}\) Claims

where \(R_{1}\) is hydrogen or a lower alkyl radical; \(R_{2}\) is a monovalent radical containing carbon, hydrogen, and oxygen, free of weight between about \(99-300\) and, further, containing two carboxyl groups or their ester-forming equivalents; \(R_{3}\) and \(R_{4}\) are tertiary alkyl radicals each containing not more than 8 carbon atoms; and \(x\) is an integer of from 0-4.
10. In a stabilized copolyetherester composition consisting essentially of a multiplicity of recurring long chain ester units
and short chain ester units joined head-to-tail through and short chain ester units joined head-to-tail through ester
linkages, said long chain ester units being represted by formula said long chain ester units being represented by the formula
where G is a divalent radical remaining after the removal of Where \(G\) is a divalent radical remaining alyer he terminal hydroxyl groups from a poly(aikhlene oxide) glycol and a carbon to oxygen atomic ratio of about \(2.0-4.3 ; \mathrm{R}\) is a divalent radical remaining after removal of carboxyl groups rom a dicarboxylic acid having a molecular weight less than oout 300 , and \(\mathbf{D}\) is a divalent radical remaining after remova of hydroxyl groups from a diol having a molecular weight less
than about 250; provided said short chain ester units amount to about 15-95 percent by weight of said copolyetherester and characterized in that said copolyetherester is stabilized against oxidative degradation due to the presence in the backbone of the copolyetherester of an effective concentration of antioxi dant units derived from:

where \(\mathbf{R}_{1}\) is hydrogen or a lower alkyl radical; \(\mathbf{R}_{2}\) is a monova lent radical containing carbon, hydrogen, and oxygen, free of ethylenic or acetylenic unsaturation, and having a molecular weight between about \(99-300\) and, further, containing two carboxyl groups or their ester-forming equivalents; \(R_{3}\) and \(R_{1}\) are tertiary alkyl radicals each containing not more than
carbon atoms; and \(x\) is an integer of from \(0-4\), said antioxidan units being connected to ester units in the copolyetherester through ester linkages.

PROCESS FOR THE PREPARATION OF COPOLYMERS OF ACID-METAL SULFATE CATALYST
Eugene Yue Chieh Chang, Bridgemater, N.J., assignor to Ameri-
Filed Mar. 18, 1977, Ser. No. 779,114
U.S. Cl. \(260-47 R\)
1. A process for the
lat. C1. \({ }^{2}\) C08G 75/12 A. ndensing a monomer charge comprising thiodiethanol or a major proportion of thiodiethanol with (A) one or more satuic phenolic emperature in the range of about \(150^{\circ}\) to \(200^{\circ} \mathrm{C}\), under condiions whereby water formed in the reaction is removed and in he presence of a catalyst comprising from about 0.01 to 3 3 percent by weight of phosphorous acid and from about 0.01 to 3 percent by weight of manganese, iron, cobalt, nickel, copper or zinc sulfate.
\(4,094,860\)
CONDENSATION PRODUCTS OF AROMATIC CONDENSATION PRODUCTS OF AROMATIC POLYHYDROXY COMPOUNDS AND POLYAMINO Joseph Kestutis Valaitis, University Heights, and Harold James Harwood, Stom, both of Ohio, assignors to The Firestone Tire \& Rubber Company, Akron, Ohio

This application Mar. 13, 1975, Ser. No. 558,038 Int. Cl. \({ }^{2}\) Co8G 73/00, 73/02
US. C. 260-47 R
9 Claims
1. The method of producing a polymer of (1) an aromatic polyhydroxy compound in which the ring portion of the compolyamine of the class consisting of (a) aliphatic polyamines in polyamine of the class consisting of
which the hydrocarbon contains 2 to 60 carbon atoms and (b) polyamines of the formula \(\mathrm{H}_{2} \mathrm{~N}\)-alkylene-X-alkylene- \(\mathrm{NH}_{2}\) in which X is oxygen, sulfur or an arylene or amine group, and prises heating substantially equimolar amounts of the reactants in the presence of a condensation catalyst and thereby obtaina polymer by condensation of amine groups with hydroxy groups.

\section*{PROCESS FOR THE PRODUCTION OF \\ NON-INFLAMMABLE POLYTPIAZINES}

Rudolf Sundermann, New Martinsville, W. Va.; Günther Rottloff, Cologne, Germany; Ernst Grigat, Odenthal-Gloebusch, Germany, and Rolf Putter, Dusseldorf, Germany, assignors to Bayer Aktiengeselischatr, Germany
Filed Jul. 22, 1976, Ser. N
Claims priority, application Germany, Jul. 24, 1975, 2533122 Int. C1. \({ }^{2}\) Co8G 73/06
U.S. CC. 260-47 P 10 Claims 1. A process for producing a polytriazine which comprises 5 mol and less than 3 mols of a compound the formula
wherein \(Z\) is bromine, \(m\) is an integer having a value \(m^{\prime}\) is an integer having a value of \(0-4 ;\) is an integer having a value of \(0-2\) and \(i\) is an integer having a value ore 1 , alom 1 to 6 carbon atoms; and \(A\) is chlorine; and (2) an enhancing agent which is antimony, arsenic, bismuth, tin or zinc-containing compound.

alkylene having 1 to 9 carbon atoms or said alkylene substituted by phenyl or alkyl having 1 to 4 carbon atoms, or a direct bond;
\(n\) is 1,2 or 3
\(m\) is \(i, 2\) or 3
\(m\) is 1,2 or 3 ;
\(a\) is \(5-n\) where \(c\) is 1 and \(6-m-n\) where \(c\) is 0 ; and
\(b\) is \(5-m\)
\(b\) is \(5-m\)
is condensed with 1 mol of a phosphorus compound selected from the group consisting of phosphorus trihalide and phosphorus oxytrihalide in the presence of a base selected from the group consisting of alkali metal hydroxides, alkali metal car-
bonates, alkaline earth metal carbonates and tertiary amines in onates, alkaline earth metal carbonates and tertiary amines in an amount oup to 3.2 mols of base per mol of said phosphorus
compond and at a temperature of from \(-40^{\circ}\) to \(250^{\circ} \mathrm{C}\), thereafter reacting the resulting compound with 1 to 1.1 mol of cyanogen halide in the presence of 1 mol of an inorganic base or a tertiary amine for every primary amino or every phenolic
hydroxyl group and at a temperature of \(-40^{\circ}\) to \(65^{\circ} \mathrm{C}\), and polytrimerizing the latter reaction product at a temperature of from \(50^{\circ}\) to \(350^{\circ} \mathrm{C}\) to form polytriazine product.

PROCESS FOR PREPARING THERMOPLASTIC AROMATIC POLYIMIDES Amernon L. Bell, Seaford, Va., assignor to The United States Aeronautics and Space Administration, Washington, D.C. Continuation-in-part of Ser. No. 448,321, Mar. 5, 1974, abandoned. This application Mar. 28, 1975, Ser. No. 562,992 U.S. Cl. 260-65 Int. Cl. \({ }^{2}\) C08G \(73 / 10 \quad 6\) Claims 1. A method for preparing insoluble thermoplastic aromatic
1. polyimide film having uniquely low softening temperatures
reacting, in a suitable inert solvent,
(a) an aromatic dianhydride with the structural formula

where \(R\) is an aromatic tetravalent radical, with b) a diamine of the structural formula

solution and including the further step of making a film from this viscous solution, drying the film at ambient room temperatures for \(4-16\) hours, further drying the film in an air circulat-
ing oven for 1 hour at \(100^{\circ} \mathrm{C}\)., and heating and maintaining the film to the temperature and range of \(200^{\circ}-225^{\circ} \mathrm{C}\). for at least 2 hours to effect imidization of the polymer film.

\section*{4,094,863}

CROSS-LINKING HYDROCARBON UNSATURATED POLYMER WITH
MONO-SULPHONYLOXYCARBAMATE COMPOUNDS John Langshav Brooks, and Richard Budzifrek, both of ManJohn LangssanN Brooks, and Richard Budziarek, both of Man-
chester, England, assignors to Imperial Chemical Industries chester, England, assignors
Limited, London, England
Filed Feb. 22, 1977, Ser. No. 770,569
Claims priority, application United Kingdom, Feb. 27, 1976,
Int. C1. \({ }^{2}\) C08F 18/24; C08G 18/00; C08C 19/20
U.S. C. 260-77.5 B

4 Claims
1. A process for the cross-linking of hydrocarbon polymers which contain ethylenically unsaturated groups which comprises forming an intimate mixture of the polymer with a no-sulphonyloxycarbamate of the formula
\[
\begin{equation*}
\mathrm{A}-\mathrm{O}-\mathrm{CO}-\mathrm{NH}-\mathrm{O}-\mathrm{SO}_{2} \mathrm{R} \tag{1}
\end{equation*}
\]
wherein \(\mathbf{A}\) is an alkyl group, a cycloalkyl group, an alkenyl group, a substituted alkyl group, a substituted aryl group or a
hetercyclic group, and \(R\) is an optionally substituted alkyl or aryl group and heating the mixture at a temperature within the range \(50^{\circ}\) to \(250^{\circ} \mathrm{C}\).

PREPARATION OF POLYAMIDEIMIDE FROM DIISOCYANATE WITH ALKALI METAL LACTAMATE esir K. Onder, North CATALYST
esir K. Onder, North Haven, Conn., assignor to The Upjohn Company, Kalamazoo, Mich.
on of Ser. No. 521,745, Nor. 7, 1974, Pat. No. 4,021,412.
This application Feb. 17, 1977, Ser. No. 769,312
 U.S. Cl. 260-78 TF 6 Claims 1. In a process for preparing an essentially linear, solvent
soluble solid polyamideimide by soluble solid polyamideimide by the condensation of an or-
ganic disocyanate with a compound containing one carboxylic acid group and one intramolecular anhydride group or the free carboxylic acids thereof in said solvent, the improvement which comprises adding to the solution of polyamideimide forming reactants a catalytic amount of a compound
\[
\begin{gathered}
\left(\mathrm{CH}_{2}\right)_{n} \mathrm{C}=\mathrm{O} \\
{ }_{\theta}^{\mathrm{N}} \mathrm{~m}^{\oplus}
\end{gathered}
\]
wherein \(n\) is an integer from 2 to 5 inclusive, and \(M\) is an alkali metal at a temperature of from about \(40^{\circ} \mathrm{C}\) to about \(140^{\circ} \mathrm{C}\).
where one or both of the amine groups is located in a meta POLYESTER OF A CYCLIC DIACID ANHYDRIDE WITH position on the phenylene ring to the function \(\mathrm{Z}, \mathrm{Z}\) con-
nects the two phenylene rings and is selected from the
group consisting of
\(\mathrm{R}_{2}\) being selected from the alkyl and aryl group, wherein the \(\mathrm{R}_{2}\) being selected from the alkyl and aryl group, wherein
diamine-dianhydride reaction produces a viscous polymer

James C. Hill, Chesterfield, and Walter R. Knox, St. Louis, both
of Mo., assignors to Monsanto Company, St. Louis, Mo. Filed Jan. 2, 1976, Ser. No. 646,215
U.S. Cl. 260-78.41 Int. Cl. \({ }^{2}\) C08G 63/00

6 Claims
1. A polymeric material comprising a polyester produced by a process which comprises:
minal epoxide and a mono-terial anhydride, a poly-tertotal epoxy groups to cyclic diacid anhydride groups
being from \(1: 1\) to \(2: 1\) and the epoxy-equivalent mole ratio of polyepoxide to monoepoxide being from 0.01 to 1.0 , nary salt in an amount that is from 0.0001 to 0.2 mole per mole of anhydride,
b. initiating a non-self-sustaining exothermic reaction between the epoxide and anhydride components of the mix ture,
raising the temperature of the mixture to a point at whit
the exothermic reaction becomes self-sustaining and d. controlling the reaction conditionsduring the self-sustain ing exothermic reaction such that the temperature of the reaction mixture is not substantially reduced until after the rate of evolution of heat by the reaction has begun to decrease; the time sp

4,094,866
PREPARATION OF POLYAMIDE FROM DIISOCYANATE WITH ALKALI METAL LACTAMATE Besir K. Onder, North Haven, Conn, essignor to The Upioh Company, Kalamazoo, Mich. Dirislon of Ser. No. 521,745, Nor. 7, 1974, Pat. No. 4,0
This application Feb. 17, 197, Ser. No. 769,313 U.S. CI. 260-78. R R. \({ }^{2}\) C08G 18/20, 18/22, 69/26 8 Claims 1. In a process for preparing an essentially linear, solven
soluble solid polyamide by the condensation of an organic diisocyanate with a compound containing two carboxylic aci groups in said solvent, the improvement which comprises preparing said polyamide in the presence of a catalytic amount of a compound

wherein \(n\) is an integer from 2 to 5 inclusive, and \(M\) is an alk metal at a temperature of from about \(40^{\circ} \mathrm{C}\) to about \(140^{\circ} \mathrm{C}\).

MANUFACTURE OF POLYSULPHONES Michael Edward Benet Jones, Runcorn, England, assignor to Imperial Chemical Indsstries Limited, London, England Continuantion-in-part of Ser. No. 320,508, Oct. \(\mathbf{4 1 , 1 9 6 3 , \text { Pat. }}\) continuation of Ser. No. 805,025, Mar. 6, 1966, abandoned, which is a continuation-in-part of Ser. No. 320,508, and Ser No. 474,933, Jul. 26, No \(\mathbf{3 2 0 , 5 0 8 \text { . This application Mey }}\) continuation-in-part of Ser. No. N2, No. 687,324
Claims priority, application United Kingdom, Nov. 6, 1962, 41976/62; Mar. 18, 1963, 10592/63; Oct. 3, 1963, 38973/63; 4ug. 6, 1964, 32016/64
U.S. Cl. \(260-79.3 \mathrm{M}\) Claims U.S. C. \(260-79.3 \mathrm{M}\)
1. A process for substantially reducing or eliminating entirely an increase in the viscosity of a molten film or fibre-forming polyaryl sulphone made from a reagent of the formula \(\mathrm{H}-\mathrm{Ar}^{-} \mathrm{SO}_{2} \cdot \mathrm{X}\) and \(/\) or an equimolar mixture of reagents of the formulae X. \(\mathrm{SO}_{2}\) - \(\mathrm{Ar}-\mathrm{SO}_{2} \cdot \mathrm{X}\) and \(\mathrm{H}-\mathrm{Ar}-\mathrm{H}\), in which some of the \(\mathrm{SO}_{2}\) groups may be replaced by -CO- groups where X is a halogen atom and Ar is a divalent aromatic radical atoms from
removal of two aromatically bound hydrogen ato removal of two aromatically bound hydrogen atoms
benzene, a polynuclear hydrocarbon containing no more than 2 aromatic rings, diphenyl, a compound having the structure

where \(\mathbf{Y}\) is - \(\mathbf{O}-,-\mathbf{S}-\), \(-\mathrm{SO}-\), a divalent hydrocarbon radical a substituted divalent hydrocarbon radical or a residue f diol containing only carbon atoms or groups of the structure
\[
-\frac{1}{c}-0-\frac{1}{c}-\text { or }-\frac{1}{c}-\frac{1}{c}-
\]
in the chain between the hydroxyl groups, or substituted derivatives of any such aromatic radicals in which at least one of the aromatically bound hydrogen atoms is substituted by a halogen atom, an alkyl group containing from 1 to 4 carbon atoms or an alkoxy group containing from 1 to 4 carbon atoms and Ar may vary from unit to unit in the polymer chain, which comprises
contacting the polymer below the temperature at which such viscosity increase would occur and in the presence of an inert olvent with an organic compound which will inactivate sulhonyl and carbonyl halide groups at temperatures at which he polymer is molten.

\section*{AZO DI-ESTER POLYOLS FOR GRAFT COPOLYMERIZATION} Kiran B. Chandalia, Cheshire, and Frank J. Preston, Meriden, both

Filed Mar. 22, 1977, Ser. No. 780,213 Int. Cl. \({ }^{2}\) C07C 107/02; C08G 63/00; C08J 9/00 U.S. A. 11 Cla
1. An azo di-ester polyol characterized by the formula:
\[
\begin{aligned}
& \left((\mathrm{HO})_{m}-\mathrm{R}_{1}-\mathrm{O}+\mathrm{C}+\mathrm{CH}_{2}^{\mathrm{C}}\right)_{n}-\stackrel{\mathrm{R}_{2}}{\mathrm{R}_{2}} \underset{\mathrm{CN}}{\mathrm{C}}-\mathrm{N}=\mathrm{N}-
\end{aligned}
\]
wherein:
\(m\) and \(r\) independently represent integers from 2 to 5 \(n\) and \(p\) independently represent integers from 0 to 5 ;
\(R_{2}\) and \(R_{3}\) independently represent alkyl of 1 to 4 carbons and \(\left(\left(\mathrm{HO}_{m}-\mathrm{R}_{1}-\mathrm{O}-\right.\right.\) and \(\left.-\mathrm{O}-\mathrm{R}_{4}-(\mathrm{OH})_{)}\right)\)independently represent residues of polyether or polyester polyols \(\mathrm{R}_{1}(\mathrm{OH})_{m+1}\) and \(\mathbf{R}_{4}(\mathrm{OH})_{r+1}\), wherein \(\mathbf{R}_{1}\) and \(\mathbf{R}_{4}\) indepenaverage equivalent weight of from about 250 to 5000 , after removal of one hydroxy hydrogen therefrom.

\section*{4,094,869}

THERMALLY STABLE, RIGID, CELLULAR SOCYANURATE POLYURETHANE FOAMS Jerome B. Biranowski, Bronx, N.Y., and Donald H. Lorenz,
Basking Ridge, N.J., assignors to GAF Corporation, New York, N.Y.

Filed Jun. 16, 1975, Ser. No. 587,063
.. C. Cl. \(260-2.5 \mathrm{AW}\)
1. A process for preparing a thermally stable, rigid cellular
socyanurate polyurethane foam that comprises reacting the alkyl, or halo and \(\mathrm{R}_{3}\) represents a lower alkyl or substituted polyols including an unhalogenated polyol and 2,3-dibromo-2- lower alkyl wherein the substitution is selected from the group intenediol-1,4; wherein said 2,3-dibromo-2-butenediol-1,4 is comprising hydroxy, morpholino, piperidino, dimethylamino, of about 30 percent to about 60 percent of the total polyol or diethylamino and further including the pharmaceuticallyincorporated in said reaction mixture; a polymethylene polyhenyl polyisocyanate in proportions such that the active
hydrogen groups present in the total of the polyols are less than fifty percent of the number of isocyanato groups present in the polymethylene polyphenyl polyisoccaanate of said reac-
tion mixture; antimony oxide and hydrated alumina; each of tion mixture; antimony oxide and hydrated alumina; each of
said antimony oxide and said hydrated alumina being present in said antimony oxide and said hydrated alumina being present in a proportion by weight of said polyisocyanate of about I per-
cent to 20 percent and 10 percent to 100 percent respectively; together with a blowing agent and trimerization catalyst; and
subjecting said reacion mixture to postcuring. subjecting said reaction mixture to postcuring

2-SUBSTITUTED THIO, 1,40-BENZODIAZEPINE DERIVATIVES
Ikuo Ueda, Yao, and Massakk Marsua, Toyonaka, both of Japan, assignors to Fujisama Pharmaceutical Co., Ltd., Osaka, pan, assi
Japan
Contin
Continuation-in-part of Ser. No. 559,886, Mar. 19, 1975 ,
abandoned. This abandoned. This application Oct. 15, 1976, Ser. No. 732,929
Claims priority, application Japan, Mar. 20, 1974, 49-31905

U.S. Cl. 260-239 BD
acceptable salts thereof.
7.(\(\beta\)-AMINOACYLAMINO) \(4,094,872\) OMETHYL-3-CEPHEO)-3-HETEROCYCLIC-TH OMETHYL-3-CEPHEM-4-CARBOXYLIC ACID Kunihiko Tanaka, Hattorivatives
Osamu Nishimalk, Saktori; Massaru Kurita, Takatsuki, and Pharmaceutical Co., Ltd., Osakk, Japan
Flled Sep. 12, 1973,
Claims priority, application Japan, Nov. 17, 1972, 47-115983 U.S. Cl. 5441 Cle \({ }^{2}\) C07D 501/54, 501/56: A61K 31/545 8 Claims U.S. Cl. 544-2

formula

and non-toxic pharmaceutically acceptable salts, wherein
\(\mathbf{R}_{\text {i }}\) is halogen or \(\mathbf{R}_{1}\) is halogen or nitro,
\(\mathbf{R}_{2}\) is hydrogen,
\(\mathrm{R}_{2}\) is hydrogen, halogen, alkoxy having 1 to 6 carbons or
hydroxy,
\(R\),
\(R_{3}\) is alkylene having 1 to 10 carbons, and
\(R_{4}\) and \(R_{s}\) \(R_{5}\) are alkyl groups having 1 to 6 carbons.

4,094,871
1,3,4-BENZOTRIAZEPINE-2-THIONES Donald L. Trepanier, and Thomas C. Britton, both of Midiand Mich., assignors to The Dow Chemical Company, Midland, Mich.

Filed Feb. 16, 1977, Ser. No. 769,126 U.S. Cl. \(260-239.3\) B
1. A compound having the formula

4 Claims

wherein \(R_{1}\) and \(R_{2}\) independently represent hydrogen, lower \(R_{1}\) and \(R_{2}\) are each independently AND PHENYLPHOSPHONOTHIOATES Mass., ass Division U.S. Cl. 544-243 Int. Cl. \({ }^{\mathbf{2} \text { Co7F 9/09, 9/165 }}\) 1. In the process of preparing a compound 17 Claims the formula

PROCESS FOR PREPARING PHOSPHOROTHIOATES Lorraine M. Kroposk, Walnut Creek, Calif.; Masao Yoshimine,
Midand, Mich, and Harold H. Freedm位 which is a divisison of Ser. No. 354,040, Apr 24, 1973, Pat. No. 3,917,621, which is a continuation-4in-patt Apr. 24, 1973, Pat. No. Feb. 24, 1972, abandoned. This application Jan. 21, 1977, Ser.

wherein:
X is nitro, cyano, halo, lower alkyl, lower alkoxy, lower alkylthio or lower alkylsulfinyl, with the proviso that \(R\) does not bear more than one nitro group, lower alkylthio group or lower allkylsulfinyl group; by reacting in an inert
liquid reaction medium and under neutral or alkaline conditions (a) a compound corresponding to the formula \(R-\mathrm{O}^{\ominus} \mathrm{M}^{\oplus}\) or \(\mathrm{M}^{\oplus \ominus} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{S}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}^{\ominus} \mathrm{M}^{\oplus}\)
with (b) a compound corresponding to the formula
\[
\begin{array}{ccc}
\substack{\mathrm{S} \\
\mathrm{R}_{2}-\mathrm{O}-\mathrm{P}-\mathrm{Cl} \\
\mathrm{R}_{1}-\mathrm{O} \\
1} & \text { or } & \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{P}-\mathrm{Cl} \\
\mathrm{R}_{1}-\mathrm{O}
\end{array}
\]
wherein \(M\) is an alkali metal and \(R, R_{1}\) and \(R_{2}\) have the aforesaid meaning
the improvement consisting of conducting the process in the presence of a small but catalytic amount of (1) a quaternary ammonium salt having a mininum solubility of at least I weight percent in the liquid reaction me-
dium at \(25^{\circ} \mathrm{C}\) and (2) a diazole corresponding to the formula

wherein \(R_{3}\) is hydrogen or alkyl of 1 to 6 carbon atoms.

\section*{4,094,874}

PROCESS FOR THE PRODUCTION OF AMINO-4 HYDROXY-6-METHYLPTERIDINE Enrico Catalucci, Visp, Switzeriand, assignor to Lonza, Ltd.
Gampel, Swiczerland 13, 1977, Ser. No. 759,047
Claims priority, application Switzeriand, Jan. 13, 1976, 13/7 Int. Cl. \({ }^{2}\) C07D 475/04
U.S. C1. 544-258

wherein M is a metal cation of cadmium, calcium, cobaltous, cupric,
ferrous ferrous, ferric, manganous, mercuric, nickel, silver, stannous or zinc;
X is a bromide, chloride, iodide, perchlorate, carbonate,
bicarbonate, nitrate, phosphate, sulfate, bisulfate, maleate, oxalate, or p -toluene sulfonate anion forming salt with the cation M in which the salt has sufficien solubility to form a complex with 3 -pyridylmethyl \(\mathbf{N}\)-(4 cyanomethylphenyl)carbamate;
\(a\) is an integer corresponding to the valence of cation \(M\); and cation M .

\section*{CHELATED LITH 4,094,876} Arthur W. Langer, Ji, Wiluminum Compo wibs Roselie, buater, Jr., Watchung, and Thomas A. Whitney neering Co., Linden, N.J. No. \(3,933,879\), which is a continuation-in-part of Ser. No. 808,328, Mar. 18, 1969, now Pat No. Re. 28,456. This application Oct. 16, 1975, Ser. No. 622,840
 U.S. C. \(260-270 \mathrm{PD}\)
1. A complex comprising: (a) an inorganic lithium salt hav ing a lattice energy less than 210 kilocalories per mole at \(18^{\circ} \mathrm{C}\) and (b) a chelating polyfunctional Lewis base selected from the group consisting of sparteine, \(\mathrm{N}^{2} \mathrm{~N}^{\prime}\)-di-(\(\mathrm{C}_{1}-\mathrm{C}_{4}\) alkyl) bispidins and those compounds having the formula:

1. The process for the production of 2 -amino-4 \(\mathbf{- 1 1 \text { hydroxy } \mathbf { 1 } - 6 \text { - }}\) methylpteridine from \(2,4,5\)-triamine-6-hydroxypyrimidine and 1,1-dichloroacetone which is characterized in that the \(2,4,5\) triamino-6-hydroxypyrimidine in the form of one of its stable salts is converted with 1,1 -dichloro acetone, such being present in a 1 to 2 times equivalent quantity, in relation to said 2,4,5-
triamino-6-hydroxypyrimidine, to 2 -amino-4-hydroxy-6methylpteridine, in a solvent of solvent mixture at a pH value of 3.5 to 4.5 in the presence of sodium bisulfite, from 1.2 mole of said sodium bisulfite per mole of said stable salt of \(2,4,5-\) triamino-6-hydroxypyrimidine at 5 liters of reaction solution p to 3 moles of the sodium bisume per mole of said stable sal solution being used.

4,094,875
3-PYRIDYLMETHYL
N.(4-CYANOMETHYLPHENYL)CARBAMATE AND DERIVATIVES
Ernest D. Weiler, Ambler, Pa., assignor to Rohm and Haas Company, Pulladenhia, P ,
Division of Ser. No. 475,709, Jun. 3, 1974, Pat. No. 3,929,810.
This application Oct. 3, 1975, Ser. No. 619,277
U.S. C. \(260-270\) PY
1. A metal salt complex of the structure
wherein \(e\) is an integer of 0 to 3 inclusive; \(Z\) is a radical selected from the group consisting of (1) \(\mathrm{C}_{4}-\mathrm{C}_{10}\) cycloaliphatic or
\(\mathrm{C}_{6}-\mathrm{C}_{10}\) aromatic radicals and their lower alkyl derivatives wherein said radicals are attached to the nitrogen atoms in Formula II at the 1,2 position on the aromatic rings or 1,2 - or
1,3 -positions on the cycloaliphatic rings, and (2) 1 to 4 methylenic radicals wherein each methylenic radical contains 0 to 2 monovalent hydrocarbon radicals of 1 to 6 carbon atoms. 7. A chelated mono- or di- lithio aromatic radical anion having the formula Chele \(\mathrm{Li}+[\mathrm{Ar}]\) wherein said Chel is a polyfunction Lewis base selected from the group consisting of
sparteine, \(N, N^{\prime}-\) di- \(-C_{-}-C_{\text {alk }}\) alkyl) bispidins, tris- \(-\left(-C_{1}-C_{-1}\right.\) dialkyl aminoethyl) amine and those compounds having the formulas
\[
\underbrace{\mathrm{R}^{\prime}-\mathrm{N}-\mathrm{Z}-}_{\mathrm{R}_{2}^{\prime}}\left[\begin{array}{c}
\mathrm{Y}-\mathrm{Z} \\
1 \\
\left(\mathrm{R}^{\prime}\right)_{b}
\end{array}\right]_{c}^{-\mathrm{Y}-\left(\mathrm{R}^{\prime}\right)_{a}}
\]
wherein \(a\) is 1 or 2 , depending on the valence of \(Y ; b\) is 0 or 1 , depending on the valence or, , is an ineger of \(b\), 4 , inclu-
ent \(C_{1}-C_{4}\) alkyl radical, \(R^{\prime \prime}\) is one selected from the grou consisting of \(\mathrm{C}_{1}-\mathrm{C}_{4}\) alkyl, \(\mathrm{C}_{6}-\mathrm{C}_{10}\) aryl or aralkyl radical; Y a nitrogen or oxygen atom; \(Z\) is a nonreactive radical selected from the group consisting of
(1) \(\mathrm{C}_{4} \mathrm{C}_{10}\) Cycloaliphatic or \(\mathrm{C}_{6}-\mathrm{C}_{10}\) aromatic radicals and attached to the nitrogen and oxygen ans in Formula and the nitrogen atoms in Formula II at 1,2 -positions on the aromatic rings or 1,2 - or 1,3 -positions on the cycloal (2) 1 to 4 methyle
(2) 1 to 4 methylenic radicals, wherein each methylenic radical contains 0 to 2 monovalent hydrocarbon radicals of 1 to 6 carbon atoms
that of biphenyl or greater.
\[
4,094,879
\]

TRI. OR TETRASUBSTITUTED DIPHENYLPHTHALIDES Nathan N. Crounse, Clicinnati, and Paul J. Schmidt, Sharonrille, both of Ohio, assignors to Sterling Drug Inc., New York, Continuation-inn-part of Ser. No. 527,757, Nor. 27, 1974, Pat.
No. 4,032.527, which is a continuation-in-part of Ser, No No. 4,032,527, which is a continuation-in-part of Ser. No. 314,443, Dec. 12, 1972. This \({ }_{740,592}\) 2pplication Nov. 10, 1976, Ser. No Clnims priority, application Canada, Dec.
Int. Cl. \({ }^{2}\) C07D \(307 / 87\)
, 187401
U.S. C. 260-293.58
1. 3 -(2-X-4-X-Phenyl)-3-(2-Y \(\mathbf{Y}^{2}-4-\mathrm{Y}^{4}\)-phenyl) \(-4-Z^{4}-5-Z^{5}-6-\mathrm{Z}^{6}\) \(7 \cdot Z^{\prime}\)-phthalide of the formula

wherein:
\(\mathbf{X}\) is dialkylamino wherein alkyl is non-tertiary alkyl of one to four carbon atoms;
\(\mathrm{Y}^{2}\) is hydrogen, non-tertiary alkyl of one to four carbon one to four carbon atoms, alkanoylamino of two to five carbon atoms, non-tertiary alkoxy of one to four carbon atoms or halo;
\(\mathbf{Y}^{4}\) is the same as \(\mathbf{Y}^{2}\) when \(\mathbf{Y}^{2}\) is dialkylamino; or dialkylamino, pyrrolidino, piperidino, alk kylbenzylamino, alkyl(4. alkoxypheny) amino or alkyl(\(\mathrm{Q}-\left(\mathrm{CH}_{2}\right)_{n}\)-amino, wherein
alkyl is non-tertiary alkyl of one to four carbon atoms, alkoxy is non-tertiary alkoxy of one to four carbon atoms, \(Q\) is hydroxy or chloro and \(n\) is two to four when \(Y^{2}\) is other than dialkylamino;
\(\mathbf{Z}^{4}{ }^{4}\) is hydrogen or halo;
\(\mathbf{Z}^{5}\) is hydrogen or halo; or non-tertiary alkyl of one to four is non-tertiary alkyl amino or dialkylamino wherein alkyl \(\mathbf{Z}^{6}\) and \(\mathbf{Z}^{\prime}\) are each hydrogen: \(Z^{6}\) is hydrogen or halo; or non-tertiary alkyl of one to four carbon atoms, nitro, amino or dialkylamino wherein alkyl is non-tertiary alkyl of one to four \(\mathbf{Z}^{5}\) and \(\mathbf{Z}^{7}\) are each hydrogen; and
\(\mathbf{Z}^{7}\) is hydrogen or halo.

CHEMICAL SYNTHESIS OF FLAVIPUCINE Norman L. Wendier, Summit; Narindar N. Girotra, Fords, both of N.J., and Zbigniem S. Zelawski, deceased, late of Piscataway, N.J. (by Maria W. Zelawski, administrator), assignors to
Merck \& Co., Inc., Rahway, N.J. Division of Ser. No. 705,201, Jul. 14, 1976. This application May 19, 1977, Ser. No. 798,28
U.S. Cl. \(260-297\) Z Int. Cl. \({ }^{2}\) C07D 211/40
U.S. C. 260-297 Z

4 Claims
1. A process for preparing (\(\pm\)) flavipucine and \((\pm)\) isovipucine comprising reacting a diester of the formula:

where \(R^{\prime}\) is \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) alkyl, phenyl, or \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) alkyl substituted phenyl with at least one equivalent of alkali and a hydroperoxtere R is H or a \(\mathrm{C}_{4}\) to \(\mathrm{C}_{10}\) t-alkyl hydroperoxid form the product

4,094,879
PRODUCTION OF 5-NITROTETRAZOLE SALTS Leslie Raymond Bates, Cheshunt, and John Michael Jenkins, Sevenoaks, both of England, assignors to The Secretary of
State for Defence in Her Britannic Majesty's Gotern State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland London, England Filed Nov. 1, 1976, Ser. No. 737,692 Claims priority, application United Kingdom, Nov. 11, 1975 S. C. 200 Int. Cl. \({ }^{2}\) C07F 3/14, 1/10, \(1 / 08\) 1. A method of preparing a silver or mercury 50 -nitrotet 1. A method of preparing a silver or mercury 5 -nitrotet
razole, which comprises forming an acid solution of a comple of cupric 5 -nitrotetrazole with an aliphatic chelating amine, adding to said acid solution at a temperature of at least \(50^{\circ} \mathrm{C}\) a solution of a soluble silver or mercury salt to precipitate the
required 5 -nitrotetrazole salt, and filtering off the 5 -nitrotetrequired 5 -nitrotetrazole salt, and filtering off the 5 -nitrotet razole salt.

BIS(CHLOROMETHYLTHIO)THIADIAZOLES Christian T. Goralski, Midland, and George A. Burk, Bay City both of Mich.,

Filed Sep. 24, 1976, Ser. No, 726,346
Int. Cl.2 CO7D \(28 / .08 .28 / 12\) U.S. Cl. \(260-302\) SD
U.S. C. 26
1. the
thiadiazole.
1. the compound 2,5 -bis(chloromethylthio)- \(1,3,4\)
thiadiazole. 2. The compound
hiadiazole.
\(4,094,881\)
PROCESS FOR PREPARING TRIAZOLETHIOLS David A. Berges, Wayne,
tion, Philadelphia, \(\mathbf{P a}\) tion, Philadelphia, Pa. Pa., assignor to SmithKline Corporatinuantion of Ser. No. 665,607, Mar. 10, 1976, abandoned This application Dec. 16, 1976, Ser. No. 751,243
U.S. Cl \(260-308\) Int. Cl. \({ }^{2}\) C07D 249/04
1. A process for preparing \(1,2,3\)-triazole-4(5)-thiol of the formula:

comprising (1) treating 1 -benzyl-1 \(\mathrm{H}-1,2,3\)-triazole of the formula

atoms, inclusive, chloro, bromo, iodo, fluoro, nitro, phenylalkyl of 7 to 12 carbon atoms, inclusive.
5.10006000 4,094883 5-IODO-6-OXO-3-(2'-ARYLMETHOXY-1'-HYDROXYE
THYL)-4HYDROXY-HEXANOIC THYL-4-HYDROXY-HEXANOIC ACID, \(\gamma\)-LACTONE Robert C. Kelly, Kalamazoo, Mich., assignor to The Upjohn Company, Kalamazoo, Mich. vislon of Ser. No. 676,895, Apr. 14, 1976, Pat. No. 4,032,542 This application Apr. 4, 1977, Ser. No. 784, 177
U.S. C. \(260-343.6\)
1. A thromboxane intermediate of the formula

2 Claims

with a base sufficiently strong to generate an anionic charge at wherein \(\mathrm{R}_{34}\) is an arylmethyl hydroxy-hydrogen replacing the 4 -position of said triazole (2) treating the resulting anionic group selected from the group consisting of triazole with sulfur to give a 4 -thiolate of the formula

where \(\mathrm{M}^{\oplus}\) is the cation of said base, (3) removing said benzy group be reductive means, and (4) acidifying the resulting 4thiolate with strong acid to give the triazole thiol

5-DIDEHYDRO-6-HYDROXY M, MDTHYL 0 -6-HYDROXY-2 \(\beta\)-ARYLMETHOX YMETHYL-3a-TETRAHYDROPYRANACETIC ACID ebert C. Keliy, Kalatictones
Robert C. Kelly, Kalamazoo, Mich., assignor to The Upjohn
Company, Kalamazoo, Mlch.
This application Apr. 4p, 1977, Ser. No. 784,176
Int. C1. \({ }^{2}\) C07D 493/02
1. A thromboxane intermediate of the formula
2 Claims

\section*{C-}
wherein \(R_{33}\) is an arylmethyl hydroxy-hydrogen replacing group selected from the group consisting of
(a) benzyl,
(b) benzyl substituted by one to five alkyl of one to four carbon atoms, inclusive, chloro, bromo, iodo, fluor (c) benzhydryl,
(d) benzhydryl substituted by one to ten alkyl of one to four carbom atoms, inclusive, chloro, bromo, iodo, fluoro, nitro, phenylalkyl of 7 to 12 atoms, inclusive, (e) trityl, and
(e) trityl substituted by one to 15 alkyl of one to four carbon
(b) benzyyl substituted by i to 5 alkyl of 1 to 4 carbon atoms, inclusive, chloro, bromo, iodo, fluoro, nitro, phenylalkyl of 7 to 12 carbon atoms, inclusive
(c) benzhydryl,
(d) benzhydryl substituted by one to ten alkyl of one to four
carbon atoms, inclusive, chloro, nitro, phenylalkyl of 7 to chloro, bromo, iodo, fluoro, trityl, and
(f) trityl substituted by 1 to 15 alkyl of 1 to 4 carbon atoms, inclusive, chloro, bromo, iodo, fluoro, nitro, phenylalkyl wherein \(\mathbf{R}_{33}\) is alkyl of 1 to 5 carbon atoms, inclusive.

4a-HYDROXY-6-OXO-2 \(\quad \stackrel{4,094,884}{ }\) TETRAHYDROPYRANACETIC ACID \(\gamma\)-LACTONES Robert C. Kelly, Kalamazoo, Mich., assignor to The Upjohn Company, Kilamazoo, Mich.
of Ser. No. 676,895, Apr. 14, 1976, Pat. No. 4,032,542.
This application Apr. 4, 1977, Ser. No. 784,173 This application Apr. 4, 1977, Ser. No. 784,173
Int. C1. \({ }^{2}\) CO7D 493/04
S. C. \(260-343.6\)
1. A thromboxane intermediate of the formula

wherein \(\mathbf{R}_{34}\) is an arylmethyl hydroxy-hydrogen replacing group selected from the group consisting of
(a) benzyl,
(b) benzyl substituted by one to five alkyl of one to four
carbon atoms, inclusive, chlorv, brom carbon atoms, inclusive, chloro, bromo, iodo, fluoro,
nitro, phenylalkyl of 7 to 12 carbon (c) benzhydryl,
(d) benzhydryl sum
(d) benzhydryl (d) benzhydryl substituted by one to ten alkyl of one to four nitro, phenylakyl of 7 to 12 carton ato,
(e) trityl, and
(f) trityl substituted by one to 15 alkyl of one to four carbon atoms, inclusive, chloro, bromo, iodo, fluoro, nitro phenylalkyl of 7 to 12 carbon atoms, inclusive.

66-SUBSTITUTED-2,5,7,8-TETRAMETHYL-2. CHROMANYL)-3-METHYL-HEXENOIC ACID Keriving Chan, Stunhope, and Gabriel S 1975, Pat. No. 4,000,169. This application Feb. 22, 1977, Ser. silyloxy group.
U.S. C. 260-345.5

Int. Cl. \({ }^{2}\) C07D \(311 / 72\)
1. A compound of the formula

wherein \(R_{6}\) is hydrogen, hydroxy, lower alkoxy,

\(\mathrm{R}_{1}, \mathrm{R}_{8}\) and \(\mathrm{R}_{9}\) are lower alkyl and R is lower alkanoyl, benzy benzhydryl or trityl.

4,094,886
PROCESS FOR PRODUCING ALLYL ALCOHOL DERIVATIVES USEFUL IN PROSTAGLANDIN SYNTHESIS
Kiyosi Kondo, Yamato, and Daiei Tunemoto, Sagamihara, both of Japan, assignors to (Zaidanhojin) Sagami Chemical Research Center, Tokyo, Japan Claims priority, application Japan; Mar. 1, 1976, 51-21161; Mar. 4, 1976, 51-22667
US. C. 260-345.9 \({ }^{\text {Int. Cl. }}{ }^{2}\) C07D 307/93
U.S. CI. \(260-345.9\) P
\[
\begin{aligned}
& \text { Int. C } \\
& .9 \mathbf{P} \\
& \text { producir }
\end{aligned}
\]
the formula

which comprises treating a \(\beta\)-hydroxysulfoxide derivative having the formula

\section*{4,094,885}

Ka-Kong Chan, Stanhope, and Gabriel Saucy, Essex Fells, both with a base; wherein \(R^{1}\) represents \(H\) or lower alkyl, \(\mathbf{R}^{2}\) repreof N.J., aesignors to Hoffmann-La Roche Inc., Nutley, N.J. Sents an alkyl group which can have an inert substituent, \(\mathbf{R}^{3}\)
Division of Ser. No. 638,382 , Dec. 8, 1975, Pat. No. 4,029,678, represents an aryl group which can have an inert substituent, Division of Ser. No. 638,382 , Dec. 8, 1975, Pat. No. 4, 29,68, , represents an aryl group which can have an inert subsituent,
which is a continuation-in-part of Ser. No. 544,153, Jan.
27, and X represents \(\mathrm{H}, \mathrm{OH}\), alkoxy, tetrahydropyranyloxy, or a

PROCESS FOR PREPARING CYCLIC ETHERS Yasuo Tanabe, Kurashiki, Japan, assignor to Mitsubishi Chemical Industries, Ltd., Tokyo, Japan Filied Mar. 1 , 1977, Ser. No. 744,899
Claims priority, appication Japan, Mar. 16, 1976, 51-28453 U. Cl. 260-346.11 Int. C1. \({ }^{2}\) O07D 307/08 .S. Cl. 260-346.11 \(\qquad\) 1. A process for preparing a cyclic ether by interacting an cetic acid ester of 1,4 -butanediol or 1,4 -dihydroxybutene-2 twater in the presence of a non-volatile liquid acid catalyst prises the steps of: prises the steps of:
(a) continuously feeding to the first reaction zone said acetic acid ester and a mixture of the cyclic ether and water
recycled from a first and a second distilling columns to effect the catalytic reaction,
(b) withdrawing a mixed gas composed of a produced cyclic ether, water and acetic acid from the first reaction zone and feeding said mixed gas to the second distilling column, (c) feeding the solution discharged from the first reaction further catalytic reaction and withdrawing the resulting mixed gas composed of the cyclic ether, water and acetic acid from said second reaction zone,
(d) feeding for distillation the mixed gas discharged from the second reaction zone to the first distilling column and from the column top to the first reaction zone while discharging acetic acid as a bottom product,
(e) feeding a mixture of the cyclic ether and water distilled from the top of the second distilling column to the firs reaction zone and at the same time, taking out a substan-
tially water-free cyclic ether-containing product from the tially water-free cyclic ether-containing product from th
bottom of the second distilling column, and (f) subjecting said product obtained in the step (e) to furthe distillation to obtain the cyclic ether.
(XI), Alan E. Straus, El Cerrito, Callif,. assignor to Cherron Research Company, San Francisco, Calii,
, San Francisco, Caliif.
U.S. CI. \(260-346.75\)
\[
{ }_{5} \text { Int. C }
\]
1. A process for the catalytic production of maleic anhy dride from \(n\)-butane with sustained high activity for the cata lyst which comprises contacting the \(n\)-butane feed with oxygen gas and a catalyst comprising oxides of vanadium and phos
 normal on-stream time.

RESTORING SELECTIVITY OF ALKALI METAL PROMOTED SILVER CATALYSTS AND PRODUCTION OF OLEFINE OXIDES
Percy Hayden, and Richard William Clayton, both of MIddes brough, England, assignors to Imperial Chemical Industries Limilted, London, England
Filed Feb. 25, 1977, Ser. No. 772,280
Claims priority, application United Kingdom, Mar. 5, 1976, U.S. CI. \(260-348.34\) Int. C1.
-348.34

701/10; B01J 23/96
1. A process of res
1. A process of restoring selectivity to unstable silver containing catalysts promoted with an alkali metal selected from the group consisting of sodium, potassium, rubidium and ceost selectivity in that reaction, which comprises wetting the catalyst with water and drying it
10. A process which comprises producing an olefine oxide by contacting an olefine with oxygen in the presence of an onstable silver containing catalyst promoted with an alkal metal selected from the group consisting of sodium, potassium restored by wetting the catalyst with water and drying it
restored by wetting the catalyst with water and drying it.

9ß,10a-CHOLESTA-5,7-DIENE-3 3,25 -DIOL
or a mixture of

wherein \(\mathbf{R}_{3}\) and \(\mathbf{R}_{4}\) are hydrogen, methyl, or fluoro, being the same or different, with the proviso that one of \(R_{3}\) and \(R_{4}\) is luoro only when the other is hydrogen or fluoro;
inclusive, cycloalkyl of 3 to 10 carbon atoms, incoms, aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, phenyl substituted with one, two, or three chloro or alkyl of one to 3 carbon atoms, inclusive, or a pharmacologically acceptable cation; and
(1) cis- \(\mathrm{CH}=\)
(2) cis- \(\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CF}_{2}-\),
(3) \(\mathrm{cis}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{2}-\),
wherein \(g\) is one, 2 , or 3 .

William G. Salmond, Kalamazoo, Mich., assignor to The Upjohn Company, Kalamazoo, Mich. Division of Ser. No. 551,698, Feb. 21, 1975, Pat. No. 4,001,096 This application Aug. 26, 1976, Ser. No. 717,876
U.S. Cl. \(260-397.2\)
\[
2^{\text {c. C1.2 }{ }^{2} \text { C07J 9/00, } 15 / 00 ~}
\] \({ }^{\text {Int. }}\)
, \(0 \alpha\)-cholesta-5,7-diene-3 3,25 -diol.
1 Claim

PROCESS T, 4,04,892
PROCESS FOR PREPARING OPTICALLY ACTIVE Ka-Kong Chan ESTERS
of N.J., asslgnors to Hefmann anial Seucy, Essex Fells, both Division of Ser No to Hoffmann-La Roche Inc., Nutley, N.J. which is a division of Ser. No. 544, 153, Jan. 27, 1995, Pat. No. \(4,000,169\). This application May 16, 1977, Ser. No. 796,918 U.S. C1. \(260-410.9\) Int. Cl. \({ }^{2}\) C11C 3/02
 Douglas Ross Morton, Jr., Portage, Mich., assignor to The Upijhn Company, Kalamazoo, Mlch.
Division of Ser. No. 614,242, Sep. 17, 1975, Pat. No. 4,016,184. This application Dec. 30, 1976, Ser. No. 755,990
U.S. Cl. 260-413

wherein \(m\) is one to 5 , inclusive; wherein \(M_{1}\) is

wherein \(R_{5}\) and \(R_{6}\) are hydrogen or methyl, with the proviso that one of \(R_{5}\) and \(R_{6}\) is methyl only when the outer is hydrogen; wherein \(L_{1}\) is
wherein \(n\) is an integer from 0 to \(1 ; \mathrm{A}\) and B are individually hydrogen or taken together form a carbon to carbon bond;
\(R_{s}, R_{1}\) and \(\mathrm{R}_{\mathrm{g}}\) are lower alkyl: \(\mathrm{R}_{6}, \mathrm{R}_{7}\) and \(\mathrm{R}_{8}\) are lower alkyl comprising subjecting an optically active isomer of the formula:
wherein \(n, \mathrm{~A}\) and B are as above, one of \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) is hydrogen and the other is

\section*{\(-\mathrm{O}-\mathrm{C}=\mathrm{CH}\)
1
OM}
\(\mathrm{R}_{1}\) is hydrogen, the 2-3 double bond has than hydrogen, the 2-3 double bond has a cis configuration, M is an alkali metal;
by Claisen rearrangement by reaction with an agent of the

wherein \(X\) is halogen, and \(R_{6}, R_{7}\)

\(\mathrm{CH}_{2} \mathrm{OH}\)
and \(R_{8}\) are as above.

4,094,893
ISONITRILE INTERCALATION COMPLEXES
Martin B. Dines, Westfield, N.J., assignor to Exxon Research Martin B. Dines, Westfield, N.J.,
Engineering Co., Linden, N.J.

Filed Nov. 24, 1976, Ser. No. 744,637
U.S. C. \(260-429 \mathrm{R}\)
1. Complexes of the formula:
\(\mathrm{TX}_{2}\) (RNC) ,
wherein \(\mathrm{TX}_{2}\) is the inorganic host in which \(\mathbf{T}\) is a transition metal selected from the group consisting of titanium, zicronium, hafnium, vanadium, niobium, tantalum, molybdenum
and tungsten and mixtures thereof and X is a chalcogenide and tungsten and mixtures thereof and \(X\) is a chalcogenide
selected from the group consisting of sulfur, selenium and tellurium and RNC is the isonitrile organic guest wherein \(R\) is selected from the group consisting of \(C_{1}\) to \(C_{18}\) linear and beranched alkyls, \(\mathrm{C}_{3}\) to \(\mathrm{C}_{18}\) cyclic alkyls and \(\mathrm{C}_{3}\) to \(\mathrm{C}_{18}\) aryl alkyls and \(y\) is a number ranging from 0.10 to 2.0 .

\section*{4,094,894}

PROCESS OF PURIFYING ALIPHATIC ISOCYANATES Julian Theron Blackwell, Wilmington, Del., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del.
Filed Mar. 23, 1977, Ser. No. 780,345

U.S. Cl. 260-453 SP

11 Claims
1. A process for purifying an aliphatic isocyanate containing
hydrolyzable chlorine which comprises mixing finely divided
hydrolyzable chlorine which comprises mixing finely divided
dry alkali metal carbonate with the aliphatic isocyanate con-
with sodium hydride in the presence of tetrahydrofuran; and (b) reacting the product of step (a) with a compound having the formula \(\mathbf{R}_{1}\)-SCN.

1-ALKOXIMINO-2-(\(\omega\)-SUBSTITUTED-ALKYL-2-CYCLO-
Karel Francis Bernady, SENTfern; John Frank Poletto, Nanuet, both of N.Y., and Martin Joseph Weiss, Oradell, N.J., assignors to American Cyanamid Company, Stamford, Conn.
Division of Ser. No. 552,686, Feb. 24, 1975, Pat. No. 4,006,179, which is a division of Ser. No. 480,908 , Jun. 19, 1974, Pat. No. 3,884,953, which is a dirision of Ser. No. 335,842, Feb. 26, 1973, Pat. No. 3,836,581, which is a continustion-in-part of Ser. No.
208,951, Dec. 16, 1971, abandoned. This application Dec. 2, 208,951, Dec. 16, 1971, abandoned. This app Int. Cl. \({ }^{2}\) C07C \(137 / 00\)
U.S. Cl. 260-45 the formula

3 Claims
1. Compounds of the formula:

wherein \(n\) is an integer from 3 to 8 , inclusive; \(R\) is lower alkyl 2. The compound Q iscordin.
2. The compound according to claim \(\mathbf{1}\) wherein \(R\) is methyl, \(n\) is \(S\), and \(Q\) is \(p\)-toluenesulfonyloxy.

RESIN-BONDED GRAPHITE 4
RESIN-BONDED GRAPHITE BODY FOR A DRY CELL Masahiro Nagasawa; Tomio Ishida, both of Hirakata, and Yo-
shitaka Yoshikawa, Neyagawn, all of Japan, assignors to Matsushita Eliectric Industrian, Co., Ltd.., Japan,
Filed Aus. 3, 1976, Ser. No. 711,377
direction of said first uniaxial pressure and parallel to the direction of the length of said powder rod as well as to the basal plane of said crystalline graphite particles;
ting resin so as to harden said thermosetting resin, said orientation being maintained after said curing; and removing the thus treated rod from said mold.
taining the hydro
\(180^{\circ}\) and \(235^{\circ} \mathrm{C}\). Filed Aug. 3, 1976, Ser. No. 711,377
Claims priority, application Japan, Aug. 12, 1975, \(50 / 98207\) Claims priority, application Japan, Aug. 12, 1975, 50/98207 U.S. C. 264-105

11 Claims

1. A method of making a resin-bonded graphite body, comprising:
uniformly mixing, to form a dry powder mixture, 3 to 12 weight \(\%\) of a thermosetting resin and 88 to 97 weight \% of a carbonaceous powder which includes at least 50 weight \% of natural crystalline graphite particles, compressing said dry mixture by a first uniaxial pressure into a compressed powder rod having crystalline orientation;
inserting said compressed powder rod into a hollow of a mold which has a shape similar to the shape of said com pressed powder rod;
pre-heating the thus inserted powder rod to the softening
in which X is hydrogen, mono- or dihalo or 2 -methyl and \(\mathrm{R}_{1}\) is (a) reacting an alcohol having the formula
(al
temperature of said thermosetting resin;
ompressing the thus pre-heated rod by a second uniaxia

4,094,898
PROCESS FOR THE PREPARATION OF SODIUM
PROCESS FOR THE PREPARATION O
METHALLYL SULFONATE
Wilhelm Knepper, and Dieter JUlergen Mueller, both of Marl, Germany, passignors to Chemische Werke Huels Aktiengeseilschaft, Marl, Germany
Claims priority, application Germany, Mar. 11, 1976, 2610092 U.S. Cl. 260-513 B Int. Cl. \({ }^{2}\) C07C 143/16 10 Claims 1. In a process for the preparation of an aqueous solution of
sodium methallyl sulfonate by the reaction of methallyl chlosodium methallyl sulfonate by the reaction of methallyl chloride and aqueous sodium sulfite solution in an emulsion, the chloride containing isocrotyl chloride; maintaining the pH of the reaction mixture at a constant value of from 7-11 during the reaction by metered addition thereto of sodium hydroxide solution; and conducting the reaction in two stages in a cyclical process wherein, in the first of the two stages, excess sodium methallyl chloride therein is substantially zotirely consumed and the resulting reaction product is fractionated by distillation to remove the isocrotyl chloride therefrom and leave as the residue an aqueous solution of sodium methallyl sulfonate and unreacted sodium sulfite; and wherein, in the second of the two stages, the thus-obtained aqueous solution of sodium methallyl sulfonate and unreacted sodium sulfite is reacted with excess
technical methally chloride containing isocrotyl chloride, the rechnical methallyl chloride containing isocrotyl chloride, the
reaction is continued until the sulfite therein has been substantially entirely consumed and the thus-obtained reaction product is fractionated by distillation to give as the distillate a mixture of methallyl chloride and isocrotyl chloride, which is recycled to the first of the two stages, and as the residue, an aqueous solution of sodium methallyl sulfonate.

\section*{4,094,899 \\ OXAPROSTAGLANDINS}

Hans-Jurgen E. Hexss, Old Lime, China /Taiwan, assignor to
Pfizer Inc., New York, N.Y.
Continuation-in-part of Ser. No. 259,215, Jun. 2, 1972,
abandoned. This application Apr. 30, 1973, Ser. No. 355,644
U.S. C. 260-514 Dint. C1. \({ }^{2}\) C07C 177/00

4 Claims
1. A compound of the structure

wherein \(R\) is hydrogen or alker mind in an integer of from 0 to 4 .

\section*{4,094,900} rin Low ARYLTHIOBENZOIC ACIDS Connelly, Darby, Pa, Moorestown, N.J., and Gerald Aloysius Philedele, Dation, Fa., assignors to Smilurine Corporation Philadelphin, Pa.
Filed \(\mathbf{N}\) Filed May 19, 1977, Ser. No. 798,283
U.S. CI. \(260-520 \mathrm{E}\) C1. \({ }^{2}\) C07C 149/40, 63/33
1. A process for preparing aryloxybenzoic and arylthioben zoic acids of the formula:

in which:
X is oxygen or sulfur;
R is halo, lower alkyl, lower alkoxy, thiomethyl or trifluoromethyl pound of the formula:

in which:
\(\mathbf{R}_{1}\), is hydroxy or mercapto; and
\(\mathbf{R}\) is halo, lower alkyl, lower alkoxy, thiomethyl or trifuoro\(R\) is halh,
methy;
in the presence of an alkali metal iodide and an alkali metal hydroxide or alkoxide base and heating at a temperature of from about \(150^{\circ}\) to about \(220^{\circ} \mathrm{C}\).

\section*{4,094,001}

PROCESS FOR PREPARING ACETIC ACID
mut Schaum, Bad Soden am Taunus; Friedrich Schenk, Gotzenhain; Hartmut Volgt, Tarragona, and Rudolf Sartorius, Frankfurt am Main, all of Germany, assignors to Hoechast Filed Mar. 29, 1976, Ser. No. 671,442
Claims priority, application Germany, Mar. 29, 1975, 2514095

U.S. C. \(260-530 \mathrm{R} \quad 5\) Claims 1. A process for preparing acetic acid by oxidation of acetal-
dehyde with oxygen or oxygen containing gases in the dehyde with oxygen or oxygen containing gases in the presing the crude acetic acid prepared by said oxidation of acetaldehyde and still containing from 1 to \(10 \%\) by weight of acetaldehyde, together with the gases formed in the acetic acid synthesis and still containing acetaldehyde, to an afteroxidation with oxygen or oxygen containing gases, distilling off the low-boiling by-products and acetic acid and directly recycling ing manganese acetate, high-boiling by-products and acetic acid.

\section*{PROCESS FOR THE MANUFACTURE OF PHOSPHORIC} ACID-TRIS-(DIMETHYLAMIDE)
Heinz Liberda; Hellmuth Spes, and Alfred Trommet, all of
Burghusen, Germany, assignors to Wacker-Chemie GmbH, Munich, Germany
Filed Dec. 6, 1976, Ser. No. 747,573
Claims priority, application Germany, Dec. 23, 1975, 2558186 U.S. C1. 260-551 P Int. Cl. \({ }^{2}\) Cormany, \(9 / 22\)

10 Claims
1. A process for the manufacture of phosphoric acidtris(dimethylamide), which comprises two stages carried out in repeated succession, wherein the first stage comprises reacting
phosphorus oxychloride, dimethylammonium chloride, in an phosphorus oxychloride, dimethylammonium chloride, in an
average amount of approximately 1.5 moles per mole of phosphorus oxychloride, and a member of the group consisting of hosphoric dimethylamide dichloride, phosphoric bis-dimehylamide chloride, and a mixture thereof, under anhydrous conditions and at a emperature withiting of phosphoric bis-
\(130^{\circ}-240^{\circ} \mathrm{C}\), to give a mixture consisting dimethylamide chloride and phosphoric dimethylamide dihloride; and wherein a second stage comprises reacting at least a portion of said last-mentioned mixture containing on
average approximately 1.5 gram-atoms of phosphorus-bonded average approximately 1.5 gram-atoms of phosphorus-bonded
chlorine per mole of phosphorus oxychloride used in the first tage and containing not more than 50 mole \(\%\) of phosphoric dimethylamide dichloride, with dimethylamine in an average mount of approximately 3 moles per mole of phosphorus
oxychloride used in the first stage, under anhydrous condioxychloride used in the first stage, under anhydrous condi-
ions; and wherein, after completion of the reaction of the econd stage, the phosphoric acid tris-(dimethylamide) pro-
duced in the second stage is separated off and the dimethylamduced in the second stage is separated off and the dimethylam monium chloride

4,094,903
UREA SYNTHESIS WITH IMPROVED HEAT RECOVERY AND CONVERSION Ivo Mavrovic, 530 E. 72 nd St., New York, N.Y. 10021 Division of Ser. No. 650,973, Jan. 21, 1976, which is a division of

ppplication Sep. 22, 1976, Ser. N
Int. \(\mathbf{C l} \mathbf{}^{2}\) C07C \(126 / 02\)
U.S. CI. \(260-555\) A

7 Claims
 1. In a urea synthesis process wherein fluid \(\mathrm{NH}_{3}\) and fluid
\(\mathrm{CO}_{2}\) are contacted and reacted at elevated pressure and tem\(\mathrm{CO}_{2}\) are contacted and reacted at elevated pressure and cem-
perature to form ammonium carbamate, and ammonium carba-
mate is converted to urea in a vertical cylindrical urea syntheperature to orm amto urea in a vertical cylindrical
mate is converted
sis reactor, the improvement which comprises
sis reactor, the improvement which comprises
(a) contacting from about 5 mol percent to less than 100 mol (a) contacting from about 5 mol percent to less than 100 mol
percent of a fluid \(\mathrm{NH}_{3}\) reactor feed stream and a fluid percent of a fluid \(\mathrm{NH}_{3}\) reactor feed stream and a fluid
\(\mathrm{CO}_{2}\) reactor feed stream at substantially reactor pressure in a heat exchanger external (1) to the urea synthesis reactor to form ammonium carbamate in said heat exchanger and simultaneously removing from said external heat exchanger (1) heal of reaction evelved from reaction of \(\mathrm{NH}_{3}\) and \(\mathrm{CO}_{2}\) from said external heat exchanger (1), the (1) being from about 2.5 to about 3.5 to 1 , (b) charging the resulting reaction mixture into the lower formula:
portion of a reactor having an indirect heat exchanger (2) positioned therein which extends from the top portion to the lower portion of the reactor, said heat exchanger (2) including a heat exchange medium therein and having its
inlet and its outlet located at the upper portion of the reactor,
(c) passing heated heat exchange medium from said inlet to said lower portion of said reactor thereby transferring heat therefrom to the total reaction mixture formed in (d) as the total reaction mixture passes upwardly in said reac-
tor, and removing heat exchange medium from said outlet, said heat exchange medium being substantially cooler at said outlet than at said inlet, and
(d) charging remaining \(\mathrm{NH}_{3}\) reactor feed stream to said lower portion of said reactor, and mixing said remaining \(\mathrm{NH}_{3}\) with said resulting reaction mixture of (a) discharged
from said external heat exchanger (1) into the lower porrom said external heat exchanger (1) into \(h\) hes
tion of said reactor to form a total urea synthesis mixture having a \(\mathrm{NH}_{3}\) to \(\mathrm{CO}_{2}\) molar ratio of from about 2.8 to about 7 to 1 .

PROCESS OF RACEMIZOM, 4,004 PHENYL GLYCINE AMIDE WITH OR WITHOUT A SUBSTITUTED PHENYL GROUP
Wilhelmus H. J. Boesten, Sittard, Netherlands, assignor to Stamicarbon, B.V., Geleen, Netherlands
Filed Dec. 8, 1976, Ser. No. 74
Claims priority, application Netheriands, Dec. 9, 1975, 514301
The portion of the term of this patent subsequent to Jul. 19, 1994, has been disclaimed.
U.S. Cl. 260-558 A

U.S. C. \(260-558\) A
1. A process for racemizing an optically active form of phenyl glycine amide, consisting essentially of:
mixing an optically active form of phenyl glycine amide, a solvent for said phenyl glycine amide, a ketone, selected cyclohexanone, and mixtures thereof, and an acid having a dissociation constant below \(1.8 \times 10^{-4}\), said ketone being present in an amount of at least 0.1 mole of ketone per mole of phenyl glycine amide; and heating said mixture to a temperature between \(30^{\circ}\) and \(150^{\circ}\)
C. C.

4,094,905
PROCESS FOR PRODUCING DIMETHYL FORMAMIDE Kinichi Mizuno; Massao Saito; Yuzi Onda; Tetsuo Aoyama, and Kumiko Kato, all of Niigata, Japan, assignors to Mitsubishi Gas Chemical Company, LLd, Tokyo, Japan
Flled Jun. 1, 1977, Ser. No. 802,524 Claims priority, application Japan, Jun. 10, 1976, 51-68122 and priority, application Japan, Jun. Int. Cl. \(^{2} \operatorname{CO7C} 102 / 00\)
U.S. CI. 260-561 R \(\qquad\) 12 Claim 1. A process for producing dimethyl formamide, which
omprises making monomethyl formamide react with trimethylamine and carbon monoxide in the presence of a catalyst.

ALKANOYL CHLORIDE PHENYLHYDRAZONES Girts Kaugars, Cooper Township, Kalamazoo County, Mich., assignor to The Upiohn Company, Kalamazoo, Mich. hich is a division of Ser. No. 874,976, Nov. 7, 1969, Pat, No. 3,745,215. This application Sep. 16, 1974, Ser. No. 505,965
U.S. Cl. 260—566 B
1. New alkanoyl chloride (trihalophenyl)hydrazones of the formula:

wherein \(R\) is alkyl of from 2 to 5 carbon atoms, inclusive; \(Y\) is halogen, and the \(Y\) 's may be selected independently.

4,094,907
PROCESS FOR THE PREPARATION OF POLYAMINES Hartmut Knöfel, Leverkusen, and Günther Ellendt, Krefeld, both of Germany, asslgnors to Bayer Aktiengesellischaft, LeFerkusen, Geried Dec. 17, 1976, Ser. No. 751,626 Clalms priority, application Germany, Dec. 19, 1975, 2557500 U.S. Cl. 260-570 D \({ }^{\text {Int. Cl. }{ }^{2} \text { C07C 85/24 }}\) 16 Claims 1. A process for the preparation of multinuclear aromatic polyamines by condensation of aromatic amines with hormal neutralization of the catalyst and processing of the resulting eaction mixture in known manner, characterized in that free amine is removed from the reaction mixture leaving the last condensation stage by means of a hydrophobic solvent, optionralization of the total quantity of catalyst put into the process, and the amine thus removed is returned to the catalyst-contain ing aqueous phase by return of the resulting amine-containing solvent phase into said aqueous, cation stage.

ALPHA-SUBSTITUTED BENZHYDROL DERIVATIVES Edit Toth; Jozsef Torley; Szabolcs Szeberenyi; Eva Palosi Laszlo Szporny; Sandor Gorog, and Csiilia Meszaros, all o Budapest, Hungary, assignors to Richter Gedeon Vegyesze
Gyar Rt, Budapest, Hungary Gyar Rt,, Budapest, Hangary 495847 , Aus. 8, 1974, Pat. No. 4,039,589. This application Sep. 9, 1976, Ser. No. 722,063 Claims priority, application Hungary, Aug. 15, 1973, 2251/RI-521

Int. C1. \({ }^{2}\) C07C 93/08
U.S. C. \(260-570 \mathrm{R}\)
U.S. C. \(260-570 \mathrm{R}\) \(\qquad\) 1. 4 - \((\beta\)-diethylaminoethoxy)-a-ethyl-
pharmaceutically acceptable salt hereof.
2. \(3,4,5\)-trimethoxy-a-ethyl-benzyhydrol
PROCESS FOR THE DECARBOXYLATION-OXIDATION OF BENZOIC ACID COMPOUNDS Johan P. H. Von den Hoff, Geleen, Netherlands, assignor to Ser. No. 373,201
Int. Cl. \({ }^{2}\) C07C 43/30 Filed Feb. 28, 1977, Ser. No. 773,127 \(\quad\) U.S. Cl. 260-615 A \(\quad\) 1. Linear functionally-terminated poly(perflans 11 Claims Filed Feb. 28, 1977, Ser. No. 773,127
Claims priority, 2pplication Netberlands, Feb. 28, 1976, \(\begin{gathered}\text { 1. Linear functionaliy-terminated } \\ \text { oxide) compounds having the formula }\end{gathered}\)
7602078; Aug. 27, 1976, 7609526 7602078; Aug. 27, 1976, Int. C1. \({ }^{\text {C }}\) COC 45/24, 27/26, 27/00, 29/24 U.S. C. \(206-586 \mathbf{P}\) Per 19 Claims 1. A process for the decarboxylation-oxidation of a substi-
tuted or unsubstituted benzoic acid compound, comprising: heating said substituted or unsubstituted benzoic acid compound and forming a liquid phase,
reacting said liquid phase substituted or unsubstituted benzoic acid compound with molecular oxygen in the pres ence of a copper catalyst thereby lorming a dubstitured or dation of said substituted or unsubstituted benzoic acia dation
compoun
and
group consisting of substituted or unsubstituted benzene, phenol, cyclohexane, cyclohexanol and cyclohexanone.

PROCESS FOR PREPARING HALOGENATED AROMATIC HYDROXY ETHERS AROMATh, Southgate, and William Walter Levis,
Arthur Lavrence Austi, Wyandotte, both of Mich., assignors to BASF Wyandotte Corporation, Wyandotte, Mich.

Filed Dec. 23, 1976, Ser. No. 753,650
50-613 B
Int. Cl. \({ }^{2}\) C07C \(41 / 02\)
1. A pross for 6 Claims 1. A process for the selective oxyalkylation of a halogenated phenol to produce hydroxy ethers wherein the process is carried out at a reaction temperature of a acou tors using a catalyst concentration by weight of about 50 to about 20,000 parts per million, comprising:
(a) reacting a composition comprising said halogenated
phenol with
(b) an alkylene oxide selected from the group consisting of ethylene oxide, propylene oxide, the isomeric normal butylene oxides, hexylene oxide, octylene oxide, dodecene oxide, methoxy and other alkoxy propylene oxides, styrene oxide, and cyclohexene oxide; halogenated alkylene oxides selected from the group consisting of epichlorohydrin, epiiodohydrin, epibromohydrin, 3,3 -dichloropropyene oxide, 3 -chloro-1,2-epoxypropane, 1 -ch-4-1, 2 -p \(-1,2\) epoxybutane, 1,4-dichloro-2,3-epoxybutane, 1 -chloro-2,3epoxybutane, and \(3,3,3\)-trichloropropylene oxide; and mixtures of any said alkylene oxides in the presence of (c) a catalyst selected from the group consisting of zinc, magnesium, a weak acid salt of zinc or magnesium, a zinc
or magnesium halide or nitrate and mixtures thereof wherein said weak acid salt is selected from the group consisting of the carbonate, silicate, acetate, benzoate, citrate, formate, oxylate, stearate, tartrate, and mixtures thereof.

4,094,911
POLY(PERFLUOROALKYLENE OXIDE) DERIVATIVES Ronald A. Mitsch, Little Canada, and Joseph La Mar Zollinger, and Manufacturing Company, Saint Paul, Minn.
Continuation-in-part of Ser. No. 805,885, Mar. 10, 1969, abandoned, which is a continuation-in-part of Ser. No. 70,540,
\(\mathrm{A}-\mathrm{CF}_{2}-\mathrm{O}-\left(\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{O}\right)_{m} \mathrm{CF}_{2} \mathrm{O} \mathrm{O}_{2} \mathrm{CF}_{2}-\mathrm{A}^{\prime}\) where \(A\) and \(A^{\prime}\) are \(-X_{X} Y_{b}\) or \(-X^{\prime}{ }_{6}^{\prime} Y^{\prime} \mathbf{Z}_{b}^{\prime}, X^{\prime}\) and \(X^{\prime}\) are each valent linking organic radical free of non-aromatic double bonds, Z and Z ' are each a polymerizable functional group, \(a\) and \(a^{\prime}\) are zero or one, \(b\) and \(b^{\prime}\) are integers of 1 to \(3, m\) and designate the number of randomly distributs, pespectively, the eneoxy and perfluoromerh \(m / n\) being \(0.2 / 1\) to \(5 / 1\) said compounds having a number verage molecular weight of 500 to 20,000 , a glass transitio temperature lower than \(-78^{\circ} \mathrm{C}\), and polymerizable to polymers having recurrent backbone units of the formula - CF \({ }_{2} \mathrm{O}\left(\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{O}\right)_{m}\left(\mathrm{CF}_{2} \mathrm{O}\right)_{n}-\mathrm{CF}_{2}-\) which impart to the polymers

PROCESS FOR CONVE 4,094,912
TO PHENOLIC COMPOUNDS Allen I. Feinstein, Wheaton; Shantaram G. Kane, Naperville, and Ellis K. Fields, River Forest, all of III., assignors to Stan Filed Nov. 2, 1976, Ser. No. 738,084
U.S. CI. 568-802

ture comprising up to \(50 \%\) of a hydroxyaldehyde obtained through the aldol condensation of unsubstituted aldehydes,
and a primary or secondary alcohol having 1 to 10 carbon atoms or an aldehyde or ketone which forms said alcohol, said alcohol being a solvent for and having a lower boiling poin than the divalent alcohol and further being a solvent for the hydroxyaldehyde.
11 Claims
of phenolic 1. A continuous process for the production of phenolic
compounds from aromatic aldehydes having the chemical compounds from aromatic aldehydes having the chemical
formula RCHO wherein \(R\) is selected from the group consisting of phenyl, biphenyl, naphtyl, anthacyl and phenanthryl radicals, which comprises the step of (1) continuously premix-
ing in a preceat zone a composition consisting essentially of
oxygen-containing gas said oldehyde and inert gaseous diluent oxygen-containing gas, said aldehyde and inert gaseous diluen
at a temperature of about \(300^{\circ}\) to \(350^{\circ} \mathrm{C}\) wherein ssid inert gaseous diluent is selected from the group consisting of nitrogen, argon, steam, carbon dioxide and mixtures thereof and is present in a concentration sufficient for said composition to be outside the explosive limits, (2) continuously introducing said oxygen-containing gas at a temperature of from about \(400^{\circ}\) to \(600^{\circ} \mathrm{C}\) in the vapor phase in mole ratios of from 0.4 to 1 to 40 to 1 in said reactor maintained at 1 to 10 atmospheres pressure, maintaining said reactants in said reaction chamber for up to 10 to phenolic compounds, and (3) quenching the reaction by continuously withdrawing and quenching the reaction products from said reactor at a temperature of from about \(0{ }^{4}\) to
about \(-80^{\circ} \mathrm{C}\).

\section*{4,094,913}

PROCESS FOR THE PREPARATION OF Arthur W. Carison, Crystal Lake, III,
Chemical Corporation, Chicso, IIII.,
Filed Jan. 7, 1977, Ser. No. 757,527
U.S. C1. 568-778

RECOVERY OF 12-DICHLOROETHANE FROM VINYL Utah ThLORIDE PRODUCTION EFFLUENT Utah Tsao, Jersey Clity, N.J., assignor to The Lummus Company, Bloomfield, N.J.
Divislon of Ser. No. 498,081, Aug. 16, 1974, Pat. No. 3,963,584.
This This application Jun. 11, 1976, Ser. Pa. 695,117
U.S. CI. \(260-656\) R

1. In the production of vinyl chlorine wherein there is sepa rated from a vinyl chloride production reaction effluent
mixture comprising 1,2 -dichloroethane and heavier chlori nated hydrocarbons, an improved process, comprising: introducing said mixture comprising 1,2-dichloroethane an heavier chlorinated hydrocarbons into a stripping column introducing a stripping gas comprising ethane, ethylene o
mixtures thereof into the heavier chlorinated hydrocarbo in the bottom of said stripping column to reduce the par tial pressure of 1,2-dichloroethane over the heavier chlorinated hydrocarbons and strip 1,2 -dichloroethane from
said mixture, said stripping gas being introduced in a molar proportion and said stripping column being oper ated at a temperature and pressure to produce an overhead of 1,2 -dichloroethane and stripping gas and a bottoms of heavier chlorinated hydrocarbons containing no greater covering from said stripping column a bo heavier chlorinated hydrocarbons containing no greater
1. A process for preparing 2,5 -dichlorophenol which com 1. A process for prepaning 2,5-dichlorophenol which com-
prises reacting 100 parts by weight 1 -bromo-2, 5 -dichlorobenzene with 40 to 150 parts by weight of an alkali metal hydroxide and at least 120 parts by weight methanol in the presence of from about 0.1 percent to about 5.0 percent by weight based on selected from the group consisting of cupric acetate, cupric ammonium chloride, cupric bromate, cupric bromide, cupric chlorate, cupric chloride, cupric formate, cupric lactate, cupric nitrate, cupric potassium chloride, cupric salicylate, cu-
pric sulfate, cuprous bromide, cuprous chloride and cuprous pric sulfate, cuprous bromide, cuprous chloride and cuprous
sulfite at a temperature of from about \(150^{\circ}\) to about \(210^{\circ} \mathrm{C}\), acidifying the products, and thereafter recovering the desired product.

PROCESS FOR THE PRODUCTION OF DIVALENT ALCOHOLS
Walter Rottigg Hans Tummes, both of Oberhausen-SterkradeNord; Boy Cornils, Dinsiaken, and Jurgen Weber, Oberhaus
en-Holten, all of Germany, assignors to Ruhrchemie Aktien gesellschant, Oberhausen-Holten, Germany
Continuation of Ser. No. 469,658, May 14, 1974, abandoned, which is a continuation of Ser. No. 193,994, Oct. 29, 1971, Claims priority, application Merm, 1976, Ser. No. 685,899

U.S. C. 568-862 \(\qquad\) 1.S. C1. \(568-862\) 1. In a process for preparing a divalent alcohol by 9 Claims lytic hydrogenation of the hydroxyaldehyde corresponding to said divalent alcohol, the improvement which comprises hy-
drogenating at a temperature of \(100^{\circ}\) to \(200^{\circ} \mathrm{C}\)., in a gaseo phase and in the presence of a hydrogenation catalyst, a mix-
than 1 weight \(\%\) of 1,2 -dichloroethane;
recovering from the stripping column an overhead product
of 1,2 -dichloroethane and said stripping gas; and
introdacing recovered overhead product into a dehydro
chlorination reaction zone to produce vinyl chloride.

\section*{4,094,916}

PROCESS FOR THE PRODUCTION OF ENDO-ENDO HEXACYCLIC DIMER OF NORBORNADIEN effrey R. Thomas, Aston, Pa., asslgnor to Suntech, Inc., Wayne, Pa. Filed Feb. 10, 1977, Ser. No. 767,600 led Feb. 10, 1977, Ser. No. 767,600
Int. Cl. \({ }^{2}\) C07C \(1 / 00\)
U.S. Cl. \(260-666\) A U.S. Cl. \(260-666 \mathrm{~A}\)
1. Process for the dimerization of norbornadiene to its endoprising: (a) con
with diethylaluminum chloride and a catalyst mixture of
ferric acetylacetonate and triphenylphosphine at a temerature between the range of from about \(100^{\circ} \mathrm{F}\) to about \(200^{\circ} \mathrm{F}\) and at a pressure between the range of from about atmospheric to about soide and the catalyst mixture is sufficient to dimerize the norbornadiene to the endo-endo hexacyclic dimer;
(b) maintaining the contacting for a residence time sufficient to form the endo endo hexacyclic dimer;
(c) removing from the contacting a product mixture containing the formed endo-endo hexacyclic dimer and treating diethylaluminum chloride and the catalyst mixture;
(d) separating from the treated contacting product mixture aluminum hydroxide sladge form
tion;
(e) ditilling the treated contacting product mixture from which the sludge was removed at a temperature below about \(500^{\circ} \mathrm{F}\) to obtain both a distillate mixture and a ottom mixture wherein the distillate mixture contains unreacted norbornadiene and any solvent used with the unreacted nornornadiene ande; and the bottom mixture con tains the endo-endo hexacyclic dimer, and other polymers
formed during the contacting and any residue from the formed during the contache ylaluminum chloride;
(f) vacuum distilling the bottoms mixture at a temperature below about \(500^{\circ} \mathrm{F}\) to obtain both a distillate and bottoms and wherein the distilite has a boils an initial boiling point
to about \(560^{\circ} \mathrm{F}\) and the bottoms has an of about \(550^{\circ} \mathrm{F}\) and contains the other polymers formed and any residue; and
(g) hydrogenating the about \(550^{\circ} \mathrm{F}\) to about \(550^{\circ} \mathrm{F}\) distillate so that essentially no unsaturation of the distillate containing the endo-endo hexacyclic dimer remains.

\section*{4,094,917}

PROCESS FOR THE PRODUCTION OF EXO-EXO
HEXACYCLIC DIMER OF NORBORNADIENE
Jeffrey R. Thomas, Aston, Pa., assignor to Suntech, Inc.
Wayne, Pa.
Filed Feb. 10, 1977, Ser. No. 767,598
U.S. Cl. \(260-666\) A

Int. C. \({ }^{2}\) C07C \(1 / 00\)
1. Process for the dimerization of norbornadiene to its exo exo hexacyclic dimer and hydrogenation of the dimer compris-
(a) contacting a feed consisting essentially of norbornadiene wath diethylaluminum chloride and a catalyst mixture o
with
ferric acetylacetonate and bis 1,2 -diphenylphosphino)eferric acetylacetonate and bis(1,2 -diphenylphosphino)e thane at a temperature between the range of from about
\(100^{\circ} \mathrm{F}\) to about \(220^{\circ} \mathrm{F}\) and at a pressure between the range of from about atmospheric to about 500 psig and the amount of both the diethylaluminum chloride and the catalyst mix exure-xo hexacyclic dimer
(b) maintaining the contacting for a residence time sufficient
to form the exo-xo hexacyclic dimer;
ing the formed exo-exo hexacyclic dimer and treating th ing the formed exo-exo hexacyclic dimer and treating the
mixture with methanol or water to deactivate the diethyl aluminum chloride and the catalyst mixture;
(d) separating from the treated contacting product mixture alin hy
tion;
(e) distilling the treated contacting product mixture from which the sludge was removed at a temperature below about \(500^{\circ} \mathrm{F}\) to obtain both a distillate mixture and a bottom mixture wherein the reacted during deactivation, any methanol or water not reacted solvent used with the diethaluminum chloride; and the bottom mixture contains the exo-exo hexacyclic dimer, other polymers formed
during the contacting and any residue from the ferric aceetylacetonate, bis(1,2 diphenylphosphino)ethane, and diethylaluminum chloride
(f) vacuum distilling the bottoms mixture at a temperature wherein the distillate has a boiling range of about \(450^{\circ} \mathrm{F}\) to about \(550^{\circ} \mathrm{F}\) and the bottoms has an initial boiling poin of about \(550^{\circ} \mathrm{F}\) and contains the other polymers forme and any residue; and
(3) hydrogenating the about \(450^{\circ} \mathrm{F}\) to about \(550^{\circ} \mathrm{F}\) distillat so that essentially no unstur aio the distillate containing the exo-exo hexacyclic dimer remains.

4,094,918
HYDROALKYLATION PROCESS USING
MYDRT-METALLIC ZEOLITE CATALYST
P. Murthe, and Ernest A. Zuech, both of Bartiesrille, Okle P. Murtha, and Ernest A. Zuech, boman, Bartlesville Okla.

Filed Feb. 10, 1977, Ser. No. 767,413
14 Chams
U.S. C1. 260-668 R
1. A process for prons
ont ching. conditions and in the presence of hydrogen with a catalyst comprising at least one component selected from the group consisting of rhodium and palladium compound and mixtures thereof supported on a calcined, acidic nickel and rare earth-treated crystaline zeoiite selected from the Group consisting of Type \(X\) and Type \(Y\) zeolite.

HYDROCARBON CONVERSION PROCESSES AND CATALYSTS
Ivan James Samuel Lake, and Roy John Sampeon, both of Middiesbrough, England, assignors to Imperial Chemical Indurtries Limited, London, England

Filed Mar. 29, 1976, Ser. No. 671,545
Claims priority, application United Kingdom, Apr. 10, 1975, 14794/75; Apr. 10, 1975, 14793/75 1
U.S. CI. \(260-668 \mathrm{~A} \quad 16\) Claims 1. A process which comprises isomerising an alkyl aromatic hydrocarbon in the presence of a silica/alumina catalyst of
which the alumina content has been reduced by at least \(1 \%\) of which the alumina content has been reduced by at least \(1 \%\) o the total alumina originally present, the catayst comprising
before treatment to lessen the alumina content 2 to \(40 \%\) by weight of alumina and containing, after treatment from 2 to \(5 \%\) of by weight.

4,094,920
HYDROALKYLATION USING MULTI METALLIC Zeolite catalyst Timothy P. Murthn, and Ernest A. Zuech, both of Bartiesville,
Okla, assignors to Phillips Petroleum Company, Bartlesville,
Filed Feb. 8, 1977, Ser. No. 766,640
Int. Cl. \({ }^{2}\) C07C \(15 / 00\)
U.S. Cl. \(260-668 \mathrm{R}\)

14 Claims
1. A process for producing monocyclicalkyl aromatic hylocarbon and alkyl-substituted moncyclicalkyl aromatic drocarbon which comprises:
droalkylation conditions and in the presence of hydrogen with a catalyst consisting essentially of at least one platinum compound supported on a calcined, acidic, nickel and rare earth-treated crystalline zeolite selected from th group consisting of Type X and Type Y zeolite whic

\section*{aromatic hydrocarbon.}

SELECTIVE ETHYLATION OF MONO ALKYL
Warren W. Kaeding WENZENES
Warren W. Koeding Westield, and Lewis B. Youre Kand Park, both of N.J., assignors to Mobil Oill Corporation, Nem York, N.Y.
Continuation-in-part of Ser. No. 706,981, Jul. 19, 1976. This application Apr. 15, 1977, Ser. No. 787,716 \({ }_{6}{ }^{\text {Int }} \mathrm{C}\)
U.S. C. \(\mathbf{2 6 0 - 6 7 1 \mathrm { C }}\) 1. Process for the ethylation 20 Claims wherein the alkyl substituent contains 1 to 2 carbon atoms to selectively produce the para and meta derivatives of said mono alkyl benzene to the substantial exclusion of the ortho deriva
tive thereof which comprises contacting said mono alkyl ben tive thereof which comprises contacting said mono alkyl ben-
zene under conversion conditions, with ethylene in the presence of a catalyst comprising a crystalline aluminosilicate zeolite, which zeolite is characterized by an activity, in term of alpha value, of between about 2 and about 5000 , a xylene sorption capacity greater than \(1 \mathrm{gram} / 100\) grams of zeolite and
an ortho xylene sorption time for 30 percent of said an ortho xylene sorption time for 30 percent of said capacity of
greater than 10 minutes, said sorption capacity and sorption greater han measured at \(120^{\circ} \mathrm{C}\). and a a cylene pressure of \(4.5 \pm\)
time being meacity and sor 0.8 mm . of mercury, said crystalline aluminosilicate zeolite further being characterized by a silica to alumina ratio of a least about 12 , and a constraint index within the approximat
range of 1 to 12 , said catalyst having been subjected to steam range of 1 to 12 , said catalyst having been subjected to steam
treatment at a temperature between about \(250^{\circ}\) and about \(1000^{\circ}\) C. for a period of between about 0.5 and about 100 hours. 14. A process for the ethylation of a mono alkyl benzene wherein the alkyl substituent contains 1 or 2 carbon atoms to selectively produce the para and meta derivatives of said mono alive thereof which comprises contacting said mono alkyl benzene, under conversion conditions, with ethylene in the pres ence of a catalyst comprising a crystalline aluminosilicate zeolite characterized by a silica to alumina ratio of at least about 12 , a constraint index within the approximate range of 1 percent, said catalyst having been treated, prior to use, with an atmosphere containing from about 5 to about 100 percent steam at a temperature of from about \(250^{\circ}\) to about \(1000^{\circ} \mathrm{C}\) fo a period of between about 0.5 and about 100 hours.

4,094,922
ALKYLATION OF AROMATICS USING AMPHORA ALK P PHAPED CATALYSI Chagrin Falls, both of Ohio, assignors to Standard Oil Con pany, Cleveland, Ohio
Cont, Cuation of Ser. No 550,992 Feb 18,1955, ComThis application Feb. 24, 1977, Ser. No. 771,482 US. CT. 260-671 C \(\begin{aligned} & \text { Int. Cl. }{ }^{2} \text { c } 07 \mathrm{C} \text { 3/52 }\end{aligned}\)

11 Claims
herein at least a part of said catalyst has the amphora shape and a diameter of \(1-10 \mathrm{~mm}\)

\section*{4,094,923}

ALKYLATION PROCESS UTILIZING DECREASING AMOUNTS OF OLEFIN IN RISER-REACTOR Rolland E. Dixon, Bartlesrille, Okla, assignor to Phillips PetroFiled Feb. 3, 1977, Ser \(683.48^{\text {Int. Cl. }{ }^{2} \text { C07C } 3 / 54} 4\) Claims U.S. CI. \(260-683.48\)
1. In a process for producing alkylate by reacting an olefin with an isoparaffin in the presence of liquid HF acid catalyst, herein said acid catalyst passes through a cyclic path through vertical extended reaction zone into a settling zone for sepahase reaction mass into an alkylate phase and an HF acid hase, and a cooling zone for cooling HF acid phase returning om the settling zone to the inlet end portion of said reaction ne, the steps of producing high octane number alkylate which comprise
isoparang the total isoparaffin feed, including recycle isoparaffin, along with HF acid catalyst to said inlet end ing mass that is flowing continuously through said reaction zone,
(b) introducing separate spaced streams of olefin into said reaction zone in decreasing quantities along the length of the reaction zone, the amounts of olefin introduced at each olefin molar ratios alicient to effect high isoparaffin to hereby increases in reaction detrimental effects of unavoidable path of said mass, and
(c) recovering high octar
ate phase

PROCESS FOR THE ALKYLATION OF LIGHT PARAFFINS WITH LOWER OLEFINS Nichael Siska, Map wood, and Ivan Mayer, Summit, both of d.J., asssignors to Exxon Continua
abandoned. This application Jul. 18, 1977, Ser. No. 816,801 U.S. CI. \(260-683.51{ }^{\text {Int. C1. }}{ }^{2}\) C07C \(3 / 5\)
1. An alkylation process wherein a paraffinic 28 Claims feedstock comprising a component selected from the group consisting of methane, ethane, propane, n -butane and mixtures thereof, is alkylated under substantially anhydrous alkylation conditions with a \(\mathrm{C}_{2}\) - \(\mathrm{C}_{\text {}}\) olerin in the presence of a substantially liquid phase catalyst comprising (a) one or more Lewis acids selected from the group consisting of the fluorides, chlorides
and bromides of vanadium, niobium, and bromides of vanadium, niobium, tantalum, chromium,
molybdenum, tungsten, arsenic, antimony, phosphorus bis molybdenum, tungsten, arsenic, antimony, phosphorus, bis-
muth and the chlorides and bromides of gallium and (b) a wherein the ins for the alkylation of an aromatic with an alkyl- hydrogen halide, wherein the hydrogen halide is hydrogen ating agent in the presence of a fixed-bed acid catalyst at an fluoride, hydrogen chloride or hydrogen bromide, the molar elevated temperature, the improvement
ween \(1: 1\) and about 100:1, and forming an alkylate having an
\(m\) and \(p\) are each independently integers from 2 to 6, \(n\) and \(q\) are each independently integers from 1 to 10 , 7. Flame retardant polyethylene terephthalate comprising a minor proportion of a compound according to claim 1.

\section*{4,094,925}

COMPOUND AND ITS USE IN SYNTHETIC RESIN MIXTURES HAVING HIGH REACTIVITY UNDER THE Karl Jellinek, Letmanthe, and Rudi Oellig, Duisburg-Melderich,
both of Germany, assignors to Rutgerswerke Aktiengesellboth of Germany, amsignors to kermater
schaft, Frankfurt am Main, Germy
Finath, Frankfurt am Main, Germany
Filed Aug. 12, 1974, Ser. No. 497,168
Claims priority, application Germany, Aug, 25, 1973, 2343085
U.S. C. \(260-836\) 1. A composition polymerizable by ionizing radiation said composition comrising a compound of the formula:
\(\mathrm{R}^{\prime}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{R}+\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\quad\) (I) I. \(A\)
ROCESS FOR IMPROVING THE PROCESSABILITY OF POLYOLEFINS, IMPROVED POLYOLEFIN COMPOSITIONS, AND MODIFIER COMPOSITIONS
William H. Harrop, Downingtown; David Witiak, Yardley, both William H. Harrop, Downingtown; David Witiak, Yardiley, both
of Pa., and Russell A. LaBar, Gratton, Wis., assignors to of Pa., and Russell A. LaBar, Granton, Pa,
Rohm and Haas Company, Philadelphia, Pa. Continuation-in-part of Ser. No. 587,492 Jun. 16, 1975, abandoned. This application Feb. 14, 1977, Ser. No. 768,514 Int. C. 2 C C08F 2/00; © 008 L 23/00; C08F 220/04, 4/38 .S. C. 260-897 B \(\quad 9\) Claims formula
\(\mathrm{CH}_{2}=\mathrm{CHR}\)
wherein R is \(\mathrm{H}, \mathrm{C}_{n} \mathrm{H}_{2 n+1}\) and \(n\) is 1 to \(4, \mathrm{C}_{6} \mathrm{H}_{5}\), or \(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\), and a minor amount of the acrylic polymer of one or more \(\mathrm{C}_{1}\) o. \(\mathrm{C}_{22}\) alkyl methacrylates with one or more monomers se
lected from the group consisting of acrylic acid, methacrylic ected from the group consisting of acrylic acio, methacryic atio of methacrylates to other monomers is about \(91: 9\) to ratio of
\(87: 13\).
wherein
\(R\) is an organic radical;
\(R^{\prime}\) is an alkyl, cycloalkyl, aryl, aralkyl or acyl group; at least half of all \(\mathbf{R}^{\prime \prime}\) radicals have the formula:

in which \(m\) is 1 or 2 ; and the remaining \(R^{\prime \prime}\) radicals are hydrogen atoms;
\({ }^{\text {III }}\) is a bivalent (when \(m=1\)) or a trivalent (when \(m=2\)) \(\begin{gathered}\text { alkyl, cy } \\ \text { group }\end{gathered}\)
\(\mathbf{R}^{H \text { is hydr }}\)
Pround
\(\mathbf{R}^{\text {tis }}\) is hydrogen or a methyl group; and
\(n\) is zero or a number up to 30 ; and
\(n\) is zero or a number up to 30 ; and
at least one vinyl monomer coplymerizable with said comat least one
pound.

\section*{4,094,926}

COMPOUNDS AND
POLYMERIC PHOSPHORUSRDANT
FLAME RETARDANT CONTAINING
POLYETHYLENETEREPHTHALATE CONTAINING
SAID POLYMERS
Dennis Richard Sheard, and Ian Stuart Fisher, both of HarroDennis Richard Sueard, nors
gate, England, assignors
Limited, London, England
Limiced, Filed Feb. 20, 1976, Ser. No. 659,628
Claims priority, application United Kingdom, Mar. 11, 1975, 0057/75
\(\underset{\substack{\text { Int. } \\ 860}}{ }\)
C1. \({ }^{2}\) C08G 65/40; C08L 67/02
(II) CARBONYLALDIMI 4,094,928
(ii) CARBONYLALDIMINOMETHANEPHOSPHONATES Van Russell Gaertner, Ballwin, Mo., sssignor to Monsanto
Company, St. Louis, Mo.
Company, St. Louis, Mo.
Continuation-in-part of S
Continuation-in-part of Ser. No. 531,586, Dec. 11, 1974,
abandoned. This application Jul. 29, 1977, Ser. No. 820,195
\(\mathrm{Int}^{\mathrm{I}}\) C. \({ }^{2}\) C07F 9/40
U.S. CI. 260-944 1. A carb
the formula
U.S. CI. \(260-860 \quad 12\) Claims

wherein \(X\) and \(Y\) are each individually hydrogen
alkyl and Z is hydrogen, hydroxyl or lower alkoxyl.

PROCESS FOR MANUFACTURE OF AMIDOPHOSPHATES Robringer, Basel, both of Switteriand, assignors to Ciba-Geigy Corporation, Ardsley, Filed May 10, 1976, Ser. No. 684,988 Claims priority, application Switzerland, May 15, 1975, 6264/75
U.S. Cl 260 Int. Cl. \({ }^{2}\) C07F 9/24: D06M \(1 / 00\) U.S. C. \(260-968\) D06M 1/00 1. Process for the manufacture of amidophosphate reaction products which comprises reacting together at temperatures \(20^{\circ}\) to \(80^{\circ} \mathrm{C}\). with or without acidic or basic catalysts
(1) 1 or 2 moles of an amidophosphate of the formula

wherein
\(R_{1}\) is alkyl with 1 to 3 carbon atoms, or both \(R\),'s together throttle valves mounted in said main and auxiliary carburetor are alkylene with 2 to 5 carbon atoms hyde,
(3) an aliphatic diol with 2 to 6 carbent releasing formald (4) an alkanol with 1 to 3 carbon atoms, and ifs, and/or (3) is used, \(\mathrm{R}_{1}\) in the amidophosphate of the formula \((1)\) is also alkenyl or halogenoalkyl with 2 or 3 carbon atoms.

\section*{4,094,930}

MOISTURIZED AIRFFITTER FO
COMBUSTMON
Henry F w COMBUSTION ENGINES Henry F. W. Mueller, P.O. Box 524,901 Edgar St., Yoakum,
Tex. 77995 \({ }^{5}\)

Filed Feb. 14, 1977, Ser. No. 768,166
Int. Cl. \({ }^{2}\) FO2M \(25 / 02\)
U.S. C. 261-18 A Int. C. \({ }^{2}\) FO2M 25/02

10 Claims

1. An apparatus for moisturizing air for an air intake of an internal combustion engine, comprising:
container means forming a chamber water to only partially fill same so as to leave quantity of sageway above the water;
gir inlet means for admitting is i one area thereof and communicating with ainer means at one area thereof and communicating with the air passage-
way; discharge
container means remote from said inlet means and com municating with the air passageway for meanveying moisturized air from the chamber to an internal combustion engine air intake;
said air inlet means
secured to an opening in the container means, with portion thereof extending internal to the container means;
and respectively, the improvement comprising:
temperature responsive means for pri temperature responsive means for producing a closing
movement of said second thro increases in the temperature of said engine negative pressure responsive means for produc
movement of said second means for producing a closing
with negative in accordance with negative pressures on a downstream side of said main
throttle valve; and

a mechanical linkage means interconnected directly between mechanical linkage means interconnected directly between
said second throttle valve, said temperature responsive
means, and said negative presure means, and said negative pressure respoansive responsive
effectuating the effectuating the closing of sasid second throttle means by
said negative pressure responsive means and by said temsaid negative pressure responsive means and by said tem.
perature responsive means displaceably engaging said perature responsive means displaceably engaging said
linkage means, said linkage means permitting said temperature responsive means to cause closing movement of said
second throtte beyond second throttle beyond that caused by said pressure re-
sponsive means and independent of said first thro sponsive means and independent of said first throttle
means as said engine warms up. means as said engine warms up.

CARBURETOR 4,094,932
enneth APPARATUS
Kenneth L. Knox, Sr., 1796 Hillboro Ave., Reno, Nev. 89502 Knox, Sr., 1796 Hillboro Ave., Reno, Nev. 89502
Filed Dec. 9, 1976, Ser. No. 749,079 U.S. CI. 261-41 D \({ }^{\text {Int. Cl. }{ }^{2} \text { F02M 3/08 }}\)

3 Claims and
aid portion internal to the container means having a semi-
tubular portion removed on a side which is tubular portion removed on a side which is opposite to the
discharge means thereby forming a substantially horizontal wall surface which is below the opening, at its lowermost point, in the container means and a remaining semitubular portion which extends substantially below the water surface in such a manner as to partially segregate
the container means into two areas and the container means into two areas and forming a passage-
way below the water surface permitting communication between said areas of the container means.

CARBURETOR ASSEMBLY
Kimiji Karino, Katsuta, Japan, assignor to Hitachi, Ltd., Japan
Filed Nor. 23,1976 , Ser. Filed Nor. 23, 1976, Ser. No. 744,399 Claims priority, application Japen, Nor, 28, 1975, 50-141618 U.S. CT. 261-23 B t. C1. \({ }^{2}\) F02M 13/04 12 Claims

1. In a motor vehicle of the type having an instrument panel
 of the type having a main carburetor for supplying a lean a thrountle valve controlled throat immediately adjacent the
air-fuel mixture to the engine, an auxiliary carburetor for sup- intake manifold and an idle mixture control plying an air-fuel mixture to the engine which is rich relative to in transverse slot, said screw being adjacent the screw having a
that supplied by said maine that supplied by said main carburetor, and first and second in combination with a carburetor checking and adjusting appa-
ratus comprising a vacuum conduit extending from the carburetor, a vacuum actuated normally closed electric switch connected to said vacuum conduit and responsive to the vacuum in he carburetor to open said electric switch, an indicator bult on said dashboard, electric wiring connecting said electric switch, said hand controlled electric switch and said electric energize said bulb when said switches are both closed, a flexible cable connected on one end to said idle mixture contro screw wherein said cable and said screw are interconnected by coupling means having a first blade which engages said slot of said control screw at one extremity and a second blade which engages a slot associated with said flexible cable remote from said first blade for transmitting rotation therethrough, and portion of the engine to maintain alignment between said cable and said screw, and a hand controlled knob on said dashboard connected to the opposite end of said cable to rotate said mixture control screw on rotation of said knob to control the mixture in said carburetor and thus varying the vacuum in said carburetor.

SUPPLYING FUEL 4,094,933 TO TINESAL COMBUSTION Marthinus Johannes Schoeman, 13-14th Avenue, Edenvale,
Transmal Province, South Africa Transwal Province, South Africe \(\underset{75 / 6062}{\text { Claims priority, application South Africa, Sep. 23, 1975, }}\) U.S. Cl. 261-50 A Int. C1. \({ }^{2}\) F02M 7/22

1. A carburettor for an internal combustion engine, whic includes a duct connectable to a combustible charge inlet of the engine; a butterfly valve pivotally mounted within the duct
and connectable to a throttle linkage of the engine to permit control of airflow through the duct; a fuel control vane and vacuum inducing vane pivotally mounted within the duct upstream of the butterfly valve and biassed by biassing means to operate in conjunction with airflow through the duct; and a housing provided exteriorly of the duct, the housing having an leading into the duct, and at least one valve means intermediate the inlet connection and the outlet passage for regulating fuel flow into the duct, the valve means including an independently operable control valve and a regulating valve which are con nected in series intermediate the inlet connection and the outlet passage, the fuel control vane being linked by a link to the
regulating valve to control fuel flow through the regulating regulating valve to contro rue now airflow through the duct as determined by the fuel control vane, and the vacuum inducing vane being linked by a link to the control valve thereby to control fuel flow through the control valve dependent upon the pivotal movement of the vacuum inducing vane caused by airflow through the duct.

HORIZONTAL UPDRAFT CARBURETOR Charles H. Tuckey, and Roy J. Tuckey, both of Caro, Mich., assignors to Tuckey Corporation, Caro, Mich.
Filed Feb. 23, 1977, Ser. No. 771,817 Filed Feb. 23, 1977, Ser. No. 771 .S. C1. \(261-64\) R \({ }^{\text {Int. Cl. }{ }^{2} \text { F02M 1/02 }}\)

1. In a carburetor having housing means defining a vertically extending mixing chamber communicating at its lower end projecting into the lower portion of said mixing chamber for discharging a fuel mixture into said chamber, and a choke plate mounted within said housing for pivotal movement about a horizontal axis extending transversely of said intake passage
between a closed position blocking said inlet passage and an open position wherein said plate lies in a horizontal general plane within said passage; the improvement comprising a pair of spaced parailel vertical side plates projecting upwardly from the bottom of said inlet passage at locations spaced in-
wardly from the sides of said inlet passage between said choke plate and said mixing chamber, a rear wall extending transversely between said side plates and curving smoothly upwardly from said bottom of said inlet passage beneath said nozzle means, said side plates and said rear wall defining a flow passage in the lower central portion of said intake passage of a
cross-sectional area substantially less than that of said intake passage for smoothly deflecting air flowing therethrough upwardly toward said nozzle means, said side plates having paralel front edges engageable with the rearward side of said choke plate when said choke plate is in said closed position, and constituting an inlet to said flow passage when said choke plate is in said closed position.

EVAPORATIVE COOLING SYSTEM
Wesley M. Walker, Robert W. Walker, and Dean M. Walker, all of Loveland, Colo., assignors to Walker Manufacturing Company, Ft. Collins, Colo. Filed Dec. 3, 1976, Ser. No. 747,396
Int. C1.2 B60H
U.S. CI. 261-80

1 Claim
1. An evaporative cooling system comprising:
a housing having generally upright respectively-opposing
side walls and end walls joined by generally horizontal top and bottom walls;
means defining a pair of inlet openings individually in re-
spective ones of spective ones of said side walls
saans defing hosing outlet opening in another of said walls of
sall
pair of vertically-oriented generally planar rigid frames
individually locatable within said individually locatable within said housing adjacent to and substantially spanning respective ones of said inlet open-
ings, each of said frames including space-opposed vertical ings, each
end bars;
vertical channelways secured to said end walls and disposed individually on each respective side of said inlet openings, said channelways slidingly receiving corresponding dif
ferent ones of said end bars pair of upper rollers individ
berween the upper end portions of the corresponding ones
ber of said end bars of respective ones of said frames; a pair of lower rollers individually journaled for rotation
between the lower end portions of the corresponding ones of said end bars of respective ones of said frames; a pair of endless belts individually wrapped around, respec-
tive different ones of the respective combinations of said tive different ones of the respective combinations of saic
rollers and frames so as to have a hollow oblong cros roliers and frames so as to have a hollow oblong cross
section elongated in a vertical direction, said belts each being of a material to which a liquid may cling and suffi-
ciently transparent to the flow of air therethrough to ciently transparent to the flow of air therethrough to
achieve evaporation of said liquid on means defining a reservoir of said liquid disposed in the means defining a reservoir of said liquid disposed in the
lower portion of said housing and into which said lower rollers normally are immersed in use so that a portion of said belts also are immersed;
motive drive means disposed within said housing
coupling means on each of said upper rollers for engagement
with said motive drive means to drive such rollers with said motive drive means to drive such rollers in
rotation, directly upon seating of said end bars within said channelways;
means, in addition to said belts, individually coupled be-
tween respective different ones of said tween respective different ones of said upper and lower
rollers for driving said lower rollers from the corresponding ones of said upper rollers;
and blower apparatus disposed in said housing and substan-
tially occupying the tially occupying the space between said frames for draw-
ing air through said inlet openings and said belts and ing air through said inlet openings and said
exhausting said air through said outlet opening.

\section*{4,094,936}

PACKED BED GAS-LIQUID CONTACTOR
Jorge M. Fernandez-Baujin, North Bergen, N.J., assignor to The Lummus Company, Bloomfield, N.J.
Filed Feb. 16, 1977, Ser. No. 768,958 U.S. CI. 261-96

1. A gas-liquid contactor apparatus, comprising:
a vessel;
a gas inlet in the lower portion of the vessel;
a gas outlet in the upper portion of the vessel;
a liquid inlet in the upper portion of the vessel
a liquid inlet in the upper portion of the vessel;
a packed bed within said vessel;
a plurality of liquid distributors for distributing liquid into
he packed bed, said plurality of liquid distributors being supported within and solely by said packed bed, said quid inlet introducing the liquid into the liquid distribuliquid distributors and an upper portion above the liquid distributors, said lower portion portion above the liquid comprised of process packing, said upper portion of the packed bed being comprised of an imperforate structure and non-process packing, said imperforate structure blocking a portion of the upper portion of the packed bed and being comprised of a plurality of separate imperforate columns which extend from liquid distributors upwardly to her toption of the packed bed being comprised of said non-process packing whereby gas flows through a limited portion of the upper portion of the packed bed defined by the non-process packing to reduce the gas residence time
in the upper portion of the bed.

CYLINDRICAL MULTI-FAN COUNTERFLOW COOLING TOWER
Gaylord E. Bodick, and Martin V. Gruber, both of Erie, Pa assignors to Zurn Industries, Inc., Erie, Pa.
Filed Apr. 15, 1976, Ser. No. 677,401

Filed Apr. 15, 1976, Ser. No.
Int. C1. \({ }^{2}\) B01F \(3 / 04\)
11 Claims

1. A round, counterflow, multi-fan, mechanical draft cooling wer comprising,
a cylindrical shell substantially the same size as said basin, closed at its upper end by a horizontal planar deck, means supporting said cylindrical shell over said cold water basin in spaced relation thereto,
said deck being attached to the upper end of said cylindrical
saced columns extending from said deck to said cold water basin supporting said deck at positions spaced inwardly
from said cylindrical shell. from said cylindrical shell,
said deck having at least five symmetrically arranged, uni-
formly spaced openings therein with al least fur adjacent the periphery of said shell and at least one open adjacent he perip,
ing in the center,
a fan supported in each said opening,
a fill pack of generally cylindrical configuration having a diameter substantially equal to the inside diameter or saic
cylindrical shell and positioned below said dect plenum chamber between said deck and said fill pack, a drift eliminator in said plenum chamber above and adja cent said fill pack,
and means below said drift eliminator above said fill pack for distributing water to be cooled generally uniformly ove said fans being
tween said cold water basin and said shell, through said be pack, and through said drift eliminator,
whereby some of said water is evaporated and discharged by
said fans,
the remaining portion of said water releases heat to said
evaporated water and is thereby cooled and flows to said eold water wasier and is thereby cooled and flows to said said cylindrical fill pack being supported below said drift eliminator in closely spaced relation to said drift elimina-
tor,
said drift eliminator being supported below said deck at a
distance approximately equal to the diameter of said fans, said fill pack being supported above said cylindrical cold water basin defining a generally cylindrical open space
between said fill pack and said basin adapted to contain air at a substantially uniform pressure throughout, whereby the air adjacent the lower side of said fill pack is at a generally uniform pressure, radially extending partition walls provided in said plenum chamber comprising barri-
ers preventing the recirculation of air inside said plenum ers preventing the recirculation of air inside said plenum
chamber and providing a flow passage for air to each said fan whereby said fans operate independently of one another.

\section*{4,094,938}

METHOD AND APPARATUS FOR LINING LADLES Seraffm Veillierich Kolpakov, ulitsa Ryazeng Lad les Serafim Vasillerich Kolpakov, ulitsa Ryazanskaya, 12; Zinory
Lvorich Gurkor, ulitsa Parkoraya, 4, kv. 42; Oleg LeonidoLvorich Gurkor, ulitsa Parkoraya, 4, kr. 42; Oleg Leonido-
rich Bondarenko, ulitsa M. Gorkogo, 13/2, kv. 1; Viadimir Viktororich Valtsor, ulitss Anoosora, 2, KV. 25; Alexandr
Mikhallorich Pozhiver Mikhillorich Pozhivanov, ulitsa Zhelyabova, 16, kv . 8; Eduard Dmitrrerich Gugnin, ulitisa Gagarina, 167, kV. 8;
Stanislar Vyacheslavorich Radilor, ulitsa Tereshkovol, 38b, kr. 34, and Alexandr Andreerich Bogdanov, ulitsa Parkoraya,

K, kr. 4, all of Lipetsk, U.S.S.R.
ation of Ser. No. 449,466, Mar. 8, 1974, abandone
application May 28, 1976, Ser. No. 691,079
application May 28, 1976, Ser. No. 691,079
Int. C1. \({ }^{2}\) F27D \(1 / 16\)
6 Slaims

1. A method for high-density lining inner spaces, confined by the inner surface of a ladle and by a backing shaping element therein, with a refractory mass along the inner circumfer-
ential perimeter of the ladle wall and along the entire height eniar perimeter of the ladle wal
thereof, comprising the steps of:
feeding the mass at a speed of \(60 \mathrm{~m} / \mathrm{sec}\). into spaces confined between the inner surface of the latile and the backing applying the fed-in mass to the inner surface with at least one applying ting means in close proximity to the inner ladle perim-
blas eter, with a force applied perpendicularly to the upper surface of the lining layer as the lining is beeing applied;
positioning the backing shaping element initially at a dispostionce equal to the initial thickness of the lining in the tance equal to the
botom of the lade;
imparting to the blasting means a continuous circular movement along the inner perimeter and parallel thereto; positioning the backing shaping element behind the blasting means and free of physical contact with the inner ladle perimeter to ensure a predetermined narrow gap being filled with the mass to deliver the refractory mass along the ladle wall being lined into
wall and the shaping element;
additionally imparting to the blasting means continuous additionaly imparting to the blasting means continuous
vertical movement along the entire height of the ladle as the lining is completing the perimeter; the backing shaping
tion to and simultaneously with its contit
movement along the inner ladle perimeter; upper movement to create identical conditions for the passage of the refractory mass applied to the blasting means; ining the lining layer at a minimum this dance with the narrow gap;
radially radially with respect to the surfaces being lined, together with the backing shaping element, thereby obtaining a continuous and succssive hing of the lining with the entire height of the ladle; and,
reducing the scattering of the mass by the blasting means during said feeding and said applying steps.

METHOD OF REPAIRING ADOBE MASONRY Robert J. Rowlands, \#20 3940 N. Romero Rd, Tucson, Ariz. 85705, assiguor to Robert J. Rowlands and Letis
lands, as JTWTROS, Tucson, Aria.
FUn

> Filed Jun. 30, 1976, Ser. No. 6
> Int. Cl.2 \({ }^{2}\) E04B \(/ / 16\)
U.S. Cl. 264-35
1. The method of repairing adobe members having 3 Claim rated, broken or chipped portion and a body portion comprischipped portion to expose a surface of said body portion cleaning said exposed surface; coating said cleaned exposed surface with a coating composition formed of a modified ace-
tate homopolymer and water; filling said chipped portion with ate homopolymer aitiong water; filling said chipped portion wit an admixture of water, Portland cement, washed sand and sufficient adobe dust to match the color of said body portion; hhaping the filling composition to conform to the shape or the coating composition. and coating coating composition.

INJECTION MOLDING MACHINE CONTROLS Peter Hold, Milford, Conn., assignor to USM Corporation, Frrmington, Conn.
Division of Ser. No. 435,348, Jan. 21, 1974, Pat. No. 3,937,776, which is 8 continuation of Ser. No. 194,280, Nor. 1, 1971, U.S. Cl. \(264-1\) Int. C1. \({ }^{2}\) B29F \(1 / 08\)

1. A method for controlling the parameters of an injection molding process, said molding process including: feeding ma erial into a plasticating chamber, applying, by the use of heatcalculated to cause the plasticated material to reach a predeter
mined standard temperature, rotating a plasticating screw located in the chamber at a predetermined speed to plasticate
the material, slidably retracting the screw during plastication, under a predetermined back pressure, to a charged position to collect a predetermined quantity of plasticated material ahead of the screw, and injecting the material into a mold by a forward sliding thrust of the screw, said control method comprising:
A. detecting the temperature of the plasticated material; B. comparing the temperature of the plasticated material with the predetermined standard temperature; and chamber to compensate for any difference in the temperature of the plasticated material and the standard temperature, for subsequent injection cycles by selectively adjusting rotational screw speed, back pressure, and the heat
applied by the chamber heaters according to a priority applied by the chamber heaters according to a priority
sequence which maximizes the input of mechanical energy.

METHOD AND 4,094,941
METHOD AND APPARATUS FOR MAKING Stanley H. Manners and Gerhard Borbonus, both of Boise, Id.,
assignors to Stanley H. Manners, Boise, Ind. assignors to Stanley H. Manners, Boise, Id., a part interest
Flled May 3, 1976, Ser. No. 682,893 Int. CI. \({ }^{2}\) B28B \(/ / 08,1 / 16\)
U.S. Cl. 264-71 Int. C. \({ }^{2}\) B28B \(/ / 08,1 / 16\)

6 Claims

The method of forming a multi-ply building panel includ-
ing a back ply and a face ply and with the face ply defining a
relief pattern, said method including:
(a) placing a first hardenable fluent mix layer material in an upwardly opening shallow receptacle;
grid including intersecting members defining said pattern grid including intersecting members definits secting members at least slightly downwardly depressed into said first layer while the latter is still fluent;
(c) placing a second hardenable fluent mix layer material, of an appearance when hardened different than the appearfirst mix layer within the voids of the grid defined and bound by adjacent intersecting members of the grid;
(d) vibrating and compressing said first and second layers thus causing the interface portions of the mix layer materials within the voids to intermix; and
(e) allowing said mix layers to at least slightly harden.

METHOD FOR REMOVING UNREACTED MONOMER Setsuo Nakai, and Hiroshi Ochi, both of Nilhama, Japan, assign-
ors to Sumitomo Chemical Company, Limited, Osaka and The Japan Steel Works, Ltd., Tokyo, both of, Japan Filed Jan. 19, 1976, Ser. No. 650
U.S. Cl. 264-102

6 Claims

1. A method for removing unreacted monomer or monomer from a molten ethylene homopolymer or a copolymer of ethyl ne with at least one monomer copolymerizable with ethylene during the course of pelletization by use of an extruder, said olymer having been formed by high-pressure polymerization y use of a radiation or a radical initiator, discharged from the reactor by way of a separator, and fed to said extruder to be ion of a mixing section of said extruder 0.1 to \(10 \%\) by weight based on said polymer of water or steam, intermixing the polymer and the water or steam in the mixing section of the xtruder screw, and removing the unreacted monomer and water or steam contained in the mix from the venting zone provided after the mixing section in the extruder under appl
cation of a vacuum of 500 mmHg absolute or less.

\section*{4,094,943}

PROCESS FOR SPINNING FLAME RETARDANT PROCESLASTOMERIC COMPOSITIONS James C. Fletcher, Administrator of the National Aeronautics and Space Administration, with respect to an invention of
John T. Howarth, Reading Suresh Sheth, Somerville John T. Howarth, Reading, Suresh Sheth, Somervile
Kenneth R. Sidman, Wayland, and Arthur A. Massuceo
Natick, all of Mass.
Divislon of Ser. No. 344,421, Jun. 28, 1973, Pat. No. 3,956,233. This application Feb. 13, 1976, Ser. No. 657,998
U.S. C. \(264-130\) Int. Cl. \({ }^{2} \mathbf{B 2 9 H} 21 / /\)

6 Claims
meric fila-
U.S. C. \(264-130\) ment comprising:
(a) forming a solution of an elastomeric composition in a
solvent, said elastomeric composition being selected from solvent, said elastomeric composition being selected from the class consisting of (1) a polyurethane comprising an the reactive groups of said polyol being hydroxyl groups (2) an elastomeric normally flammable polyurethane and a fire retardant additive selected from the class consisting of hexabromobenzene, decabromodiphenyl, tricresyl phos phate, tris-1-bromochloropropyl phosphate, tris-2,3 dibromopropyl phosphate and mixtures thereof and (3)) forming a pluralit
(c) passing said plurality of fibers formed in Step (b) throug an aqueous bath, said aqueous bath containing in addition the solvent of Step (a);
(d) removing said excess aqueous solution and forming saic (e) plurality of fibers into a coalesced filament; and (e) drying said coalesced filament obtained from Step (d).

MACHINE FOR AND \(4,094,944\)
MACHINE FOR AND CONTINUOUS PROCESS OF MAKING MOLDED TILE ing Fiberglas Corporation, Toledo, Ohio Filed Oct. 22, 1976, Ser. No. 734,772
Int. C1. \({ }^{2}\) B29C 27/22. B29D 3/02 U.S. C. \(264-137\)

1. A continuous process of making molded ceiling tile comprising intermittently feeding a strip of fibrous glass wool having uncured binder thereon and a strip of facing materia nto a molding press having multi-cavity upper and lower die
plates relatively movable toward and away from each other molding the wool and facing material in the molding press into a cluster of molded tiles by clamping them between the upper and lower die plates under pressure while applying heat to cure
the binder, said molding including the forming of a pair of oppositely projecting tabs on each of said tiles, feeding the press while feeding other portions of the strips attached to the cluster into the molding press, said feeding including drivingly engaging said tabs with movable driving means, and severing the cluster in the severing press from the strips and the molded
tiles in the cluster into separate tiles arranged in a plurality of tiles in the cluster into separate tiles arranged in a plurality of
rows of tiles by operation of the severing press while molding rows of tles by operation of the severing pres.
another

\section*{4,094,945}

SPINNING OF POLYPYRROLIDONE
Charles Tanquary, Birmingham, Ala, assignor to Research Company, San Francisco, Calif. Filed Aug. 16, 1976, Ser. No. 714,461
Int. C.2
D 01 F \(6 / 00\)
U.S. Cl. 264-184 forming filaments of polypyrrolidone which 1. A process for forming filaments of polypyrrolidone which polypyrrolidone, formic acid and methylene chloride.
and an outer extrusion path, the outer strand encompassing the inner strand and each strand having a different color, said extrusion being at an equal rate for each strand, passing saic within a radial cross-section whereby said two strands of colored soap are combined in a predetermined cross-section with said inner strand having a cross-section other than circular, and compressing said combined strand, cutting said compressed
combined strand and recovering two-colored striped pieces of soap.
2. A 2. A single extruder provided with a hopper at one end and a restricted nozzle at the opposite end and two press-screws arranged coaxiall sid screws being pne ared with male threed for feeding of said screws being provided with a male thread for feeding in outer annular space between said jacket and the outer pressscrew and extending into an inner annular space between said two press-screws, said threads being oppositely oriented, means to rotate the outer of said two press-screws and means outer press-screw being provided with window-like openings communicating with said inner press-screw in the area of said hopper and separate feed means in said hopper to separately feed to the area between said outer jacket and said outer pressinner press-screw through said window-like onenings whereby said material being conveyed by said outer pressscrew and said material being conveyed by said inner pressscrew are substantially equal and conveyed at substantially the same rate by rotation of the outer press-screw, the improvetwo channels having a predetermined outlet cross-section with the outer channel at the inlet completely encompassing the inner channel, said outer channel at the inlet being fed from said outer press-screw and said inner channel at the inlet being channel being other than circular, whereby the outer edge of said inner channel cross-section at the outlet is coextensive with the other channel cross-section.

MULTILAYER COEXTRUSION PROCESS FOR PRODUCING SELECTIVE REFLLECTIVTTY rner Alfrey, Jr, Midiand, and Walter J. Schrenk, Bay Ctry, both of Mich,, assignors to The Dow Chemical Company Midand, Mich.
ed Sep. 3, 1976, Ser. No. 720,481
Int. Cl.
B29F 3/06
STRIPED SOAP, ITS PRODUCTION AND APPARATUS U.S. C. 264-171 FOR ITS PRODUCTION

1. In a method for the preparation of a plastic film or shee composed of a plurality of generally parallel layers, the paralle or sheet, the film being composed of at least two diverse synthetic resinous materials arranged in layers in such a manne that selective reflectivity is obtained in the ultraviolet, infrared or visible region of the electromagnetic radiation spectrum, the steps of the method comprising providing at least a first strean material, dividing the first stream into a plurality of first sub streams and the second stream into a plurality of second sub1. A process for the production of two-color striped pieces streams, combining at least a major portion of the substreams of soap comprising the sleps of cole
deforming the composite stream to a generally sheet-like con- resin blend of a fluorinated elastomer and a poly(vinyliden figuration wherein the interfaces between the substreams are uration and at least one external surface of the substream being composed of material of the first stream, the number and inick sheet having said reflectivity characteristics after cooling below the thermoplastic temperature,
the improvement which comprises varying the reflectivity of the film or sheet by varying the quantity of material
supplied to the combining of first and second substreams supd a first substream forming an external surface of the sheet, the quantity of material provided for the first and
second streams being maintained generally constant to second streams being maintained generally constandio thereby provide bands of apparet
laterally across the film or sheet.

IMPROVED ACRYLONTTRILE POLYMER SPINNING IMPROVED ACRYLONITRILE PO
Robert Alan buckeastar, Claclotesvile, Va, assignor to E. I Du Pont de Nemours and Company, Wilmington, Del.
Division of Ser. No. 294,184, Oct. 2, 1972, Pat. No. 3,984,601, Dirision of Ser. No. 294,184, Oct. 2, 1972, Pat. No. 3,
which is a continuation-in-part of Ser. No. 189,202, Oct. 14, 1971, abandoned. This applicatton Jun. 4, 1976, Ser. No. 692,93 U.S. C. 264-206 Int. C1. \({ }^{2}\) D01F \(6 / 18\)

2 Claims
uoride) resin which comprises the steps of (a) mixing from 50 to 200 parts by weight of the poly(vinylinated elastomer at a temperature between the melting temperature of the poly(vinylidene fluoride) resin and the decomposition temperature of the same resin to form the resin blend,
(b) adding a curing catalyst to the thus formed resin blend, (c) shaping the resin blend into an article,
(d) heating the article under forced deformation at a temperature not lower than the melting temperature of the resin (e) cooling the article as such to a temperature below \(100^{\circ} \mathrm{C}\) at which the deforming force is released.

4,094,950
METHOD AND APPARATUS FOR FORMING A SOLE ON AN UPPER BY DIP-COATING Tilden Clark, Brighton Beach, South Africa
Claims priority, application South Africa, May 6, 1976, 76/2707
U.S. CI. 264-259
\[
\text { Int. Cl. }{ }^{2} \text { B29C } 13 / 00,5 / 00
\]
1. Process for spinning fibers of an acrylonitrile polymer which comprises adding water to an acrylonitrile polymer that
ontains at least about 40 weight percent units of acrylonitrile, in an amount equivalent as a minimum to either \(45 \%\) of that required to hydrate all the nitrile groups or \(80 \%\) of that re-
quired to hdrate the coupled nitrile groups (on a \(1 / 1\) water quired to hydrate the coupled nitrile groups (on a \(1 / 1\) water maximum the amount combined as hydrate plus 7 weight percent water based on polymer, the total water not to exceed he amount necessary to hydrate all nitrile groups in the polymer and maintaining the resulting substantially single phase composition under at least autogenous pressure at a temperaure ranging between about \(25^{\circ} \mathrm{C}\) less to about \(10^{\circ}\). more than Spectroscopy and then extruding the composition under pres-
sure through an extrusion orifice to obtain acrylonitrile polysure through an
mer filaments.

\section*{4,094,949}

METHOD FOR PREPARING SHAPED ARTICLES OF A
Kiyoshi Yokokawa, and Noboru Shimamoto, both of Annaka,
Japan Filed May 28, 1976, Ser. No. 690,971 Claims priority, application Japan, Jun. 9, 1975, 50-69303 U.S. C1. 264-234 Int. C. \({ }^{2}\) CO8F 29/22 \(\quad 9\) Claims \(1-60 \%\) by weight of expanded graphite material to form a
\(\begin{aligned} & \text { U.S. C. } \\ & \text { 1. A method for preparing a heat-shrinkable article from a mixture and then compression molding the resulting mixture. }\end{aligned}\) including dipping a last in a fuid plastics material and hardencomprising:
pporting an element spaced from a sole portion of said last during said dipping so that said last and said element are
immersed in said plastics material and said plastics mateimmersed in said plastics masterial and said plastics mand
rial flows between said last and said mold element; and retaining said material between said element and said last to form at least a part of said sole unit of said article.

\section*{4,094,951}

COMPOSITES OF OXIDIZED GRAPHITE MATERIAL AND EXPANDED GRAPHITE MATERIAL Toshikatsu Ishikawa, Tokyo; Toyonosuke Kanemaru, Zushi; Haruo Teranishi, Machida, and Kazumasa Onishi, Yokohama, all of Japan, assignors to Nippon Carbon Co., Ltd., Tokyo Filed Mar. 18, 1976, Ser. No. 668,112 Filed Mar. 18, 1976, Ser. No.
Int. C. \({ }^{2}\) B29C \(3 / 00\)
J.S. C. 264-325 5 Claims 1. A process for producing a composite graphite material in a molded form having high density, high tensile strength and impermeability, characterized by incorporating expanded \(-60 \%\) by weight of expanded graphite material to form a

1. In a method for making an article of footwear having an

METHOD OF MOLDING POLYMERIC MATERIAL Alan I. W. Frank, Pittsburgh, Pa., assignor to Alan I. W. Frank Continuation-in-part of
Candoned. This application Jun. 10.1976 , Ser. No. 694,597 U.S. Cl. 264-328 Int. Cl. \({ }^{2}\) B29F \(1 / 06\)

1. A method for producing a molded polymeric produc having a wistropic poperties in a mold having a varible having anisoropic properties in a mold having a variable
cavity defining said utility body and part of said handle and fixed mold adapted for communication with the variable mol fixed meld adapied for communictuion with the variable mold omprising
introducing into said variable mold cavity when said mold an amount of polymeric material a l least sufficient to form said product, said material being heated at least as
early as the introduction into the cavity;
tially simultaneously therewith, placing said variable and fixed cavities in communication to
(i) define said utility body of the product and said handle
and
nally from the variable camount of material longitud
c. cooling the polymeric material while reducing the volume
of the variable mold cavity whereby at least a portion of
the handie includes a greater sififiess alon.

PROCESS FOR RECOVERING MOLYBDENUM-99 FROM A MATRIX CONTAINING NEUTRON FROM A MATRIX
IRRADIATED FISSIONABLE MATERIALS AND
Ali Sameh Abdel Hadi, Ettlinger-Schluttenbach; Johann Reinhardt, Eggenstein-Leopoldshafen, and Jutta Knapp, Karls-
ruhe, all of Germany, assignors to Gesellschaft fur Kernforschung m.b.H., Karlsruhe, Germany
Filed Mar. 14, 1977, Ser. No. 777,627 Filed Mar. 14, 1977, Ser. No. 777,627
Claims priority, application Germany, Mar. 16, 1976, 2610948
Int. Cl. U.S. Cl. 423-2
1. Process for
which has been recovering molybdenum-99 from a matrix which haterials and fission products, wherein the matrix is is decomposed in an aqueous alkalis, whydrexide the matrix is de molybdenum-99 and part of the fission products are dissolved, the solution containing the molybdenum- 99 is separated from a residue of particles containing at least actinides and lanthanides and is treated with thiocyanate ions to form a molybdenum omplex comprising the steps of:
in the form of molybdate (\(\mathrm{MOO}_{4}^{--}\)) with an iodine reduction agent in a quanity corresongis to a concerration range between \(10^{-4} \mathrm{Mol}\) and Mol per liter alkali solu-
tion; \(\stackrel{\text { tion; }}{ }\)
(b) adding mineral acid to the alkali solution until a hydro-
nium ion concentration in the range from 0.1 to 6 Mol 1 has been reached;
(c) reducing the molybdenum contained in the acidified solution of step b) to form a three-valent molybdenum Mo(III) and complexing the Mo(III) with SCN- ions to
form [Mo(SCN) \({ }^{3-}\) ions, said \(\mathrm{SCN}^{-}\)ions being present in an ion concentration in the range between \(0.1 \mathrm{Mol} / \mathrm{and} 3\) \(\mathrm{Mol} / /\) of the solution being subjected to the reduction; (d) treating the \(\left[\mathrm{Mo}(\mathrm{SCN}]^{3}{ }^{3}\right.\) - ion containing acid solution from step (c) with a previously conditioned, organic ion axhanger of the type of civinyl benzene copolymer containing methylene nitrilo diacetate groups as functional groups and having a particle size in the range between \(35 \mu\) and \(840 \mu\) for selectively sorping the molybdenum; (e) separating the ion exchanger from step (d), which is
charged with molybdenum, from the solution now free of molybdenum;
(f) washing the separated molybdenum charged ion exchanger with a wash solution of diluted mineral acid containing a weak concentration of an iodine reduction
agent, the quantity of the wash solution corresponding to 5 to 10 times the volume of the quantity of ion exchanger employed, in order to remove residual quantities of the molybdenum free solution;
) eluting the molyodenum from the washed ion exchanger with a liquor at an elution temperature in the range from
about \(20^{\circ} \mathrm{C}\) to about \(70^{\circ} \mathrm{C}\) bout \(20^{\circ} \mathrm{C}\) to about \(70^{\circ} \mathrm{C}\).

\section*{4,094,954}

CIDATION OF FERRIC CHLORIDE FROM SELECTIVE CHLORINATION OF TITANIFEROUS MATERIAL mes Paul Bonsack, Aberdeen, and George R. Walker, Sererna Park, both of Md., assignors to SCM Corporation, Ner York,
N.Y.

Filed Apr. 8, 1974, Ser. No. 458,791
Int. C. \({ }^{2}\) C01G 49/06, 23/04; C22B \(1 / 08\)
U.S. CI. 423-69

1. In a process for the selective chlorination of a volume of titaniferous material with chlorine gas in a chlorination zone vapors are produced as a chlorination product and ferric chloride is oxidized with molecular oxygen in a ferric chloride oxidation zone under ferric chloride oxidizing conditions to obtain solid byproduct iron oxide and chlorine gas, the imin said oxidizing zone which is a single which comprises:
ing in said oxidizing zone which is a single oxidizing zone oxidiz-
ing between about \(40 \%\) and \(80 \%\) of the ferric chloride ing between abo
present therein;
venting from said oxidizing zone a stream containing unreacted ferric chloride vapor and chlorine gas;
converting unreacted ferric chloride vapor in said stream into solid state particles;
passing at least a portion of
ion zone, said particles being volatilized in the chlorinaon zone for absorbing heat generated therein and for xidation in said single oxidation zone

ACID PROCESS \(\quad 4,094,955\)
CLAY OF ALUMINA FROM Domald J. Baver Judith A ELiAY of Reno, Net andion to represented by the Secretary of the Interior, Washingtion

\section*{Filed Jun. 24, 1977, Ser. No. 809,882}
U.S. C. 423-123
U.S. C1. 423-123 Claim
1. A method for production of alumina monohydrate comprising:
forming an aqueous leach solution of aluminum nitrate by leaching calcined clay with nitric acid,
reating the leach solution to remove iron impurity,
subjecting the iron-free aluminum nitrate solution to a pres-
sure hydrolysis treatment at a tempertore to \(350^{\circ} \mathrm{C}\) and a pressure of about 500 to 2500 psig \(250^{\circ}\) time sufficient to convert a major proportion of the nitrate to monohydrate,
discharging the volatiles and heat resulting from the pres sure hydrolysis treatment into a chamber containing cal-
cined clay and water, whereby the calcined cined clay and water, whereby the calcined clay is
leached to produce an aqueous leach solution of aluminum nitrate.

\section*{PROCESS FOR REMOV, Hindo Sared amines and AMINO ACIDS} Guido Sartor, Linden, and David W. Savage, Summit, both of
N.J., assignors to Exxon Research \& Engineering Co., Linden, N.J. Filed Dec. 14, 1976, Ser eno 750,520

\footnotetext{
U.S. C1. 423-223
}

Filed D
Int. Cl. \({ }^{2}\) B01D \(53 / 34\)

METHOD OF \(4,094,956\)
CONTENT THE SODIUM SULFATE arrie H. Bieler, Willent OF halie
Barrie H. Bieler, Wainut Creek, Calif., assignor to The Dow Flled Aug. 12, 1977, Ser. No. 824,006
U.S. C. 423- \({ }^{\text {Int. }}{ }^{179}\)
1. The method of reducing the sulfate content 10 Claims which comprises:
(a) providing pi
greater than about halite which have effective diameters sodium chloride cry 2.5 millimeters and are aggregates of about 1 to about 20 volume percent of containing from chloride brine and from about 0.5 ent of saturated sodium sulfate bodies which have effective diameters percent of about 0.5 millimeters and are embedded in or between said crystals,
b) crushing said halite pieces and converting said aggregates to crystalline sodium chloride particles, all of which have effective diameters less than 2.5 millimeters and not more than 30 weight percent of which have diameters of less than 0.4 millimeters, thereby exposing a major propor-
tion of said sulfate bodies,
(c) attrition-washing said partid washing brine which is about \(80 \%\) or more saturated with sodium chloride and contains less than an amount of sulfate as specified below, said agitation being of such char acter and intensity that said particles make contact with each other and, as a consequence, a major proportion
said exposed bodies are dislodged from said surfaces,
(d) separating those sodium chloride particles larger than 0,5 millimeter in effective diameter from said brine, and from the dislodged sulfate bodies, the dissolved sulfate content of said washing brine and the amount thereof retained o said larger particles, after said separation, being controlled so that the amount of sulfates added to said particles by the retained washing brine is about 0.05 weight percent or
less of their sodium chloride content.
1. A process rom a gaseous stream containing \(\mathrm{CO}_{2}\) which comprises con tacting said gaseous stream (1) in an absorption step with a queous absorbing solution comprising (a) a basic alkali meta salt or hydroxide selected from the group consisting of alkal metal bicarbonates, carbonates, hydroxides, borates, phos
phates and their mixtures, and (b) an activator for said basic alkali metal salt or hydroxide comprising (i) at least one terically hindered amine containing at least one secondary amino group attached to either a secondary or tertiary carbon tom or a primary amino group attached to a tertiary carbo from the group consisting of aminoethers, aminoalcohols, di and triamines, and (ii) an aminoacid having 4 to 8 carbon atoms which has the capability to increase the solubility of said sterically hindered amines in alkaline aqueous conditions a
elevated temperatures; and (2) in a desorption and regeneration tep desorbing at least a portion of the absorbed [acidic omponents) \(\mathrm{CO}_{2}\) from said absorbing solution.
\[
4,094,958
\]

PROCESS FOR THE SEPARATION OF NH FROM A GASEOUS MIXTURE CONTAINING \(\mathrm{NH}_{3}\) AND HCN Ralph Miller, Plensantville, N.Y, eseignor to Clba-Geigy Corporation, Ardsley, N.Y.
Filed Apr. 5,1977, Ser. No. 784,771 Apr. 5, 197, Ser. No. 78
Int. Cl.2 \({ }^{2}\) C01C \(3 / 00\)
.S. C1. 423-238 8 Claims 1. A process for the separation of ammonia from a gaseous mixture containing ammonia and hydrogen cyanide which comprises contacting said gaseous mixture in an absorption
tage with an absorbent liquor comprising an acidified ammonium nitrate solution thereby semprisising an acidified ammofrom said gaseous mixture and forming a solution of diminished acidity, adding nitric acid to the ammonium nitrate-containing evel and recycling said restored solution to said absorption tage, said nitric acid being present in the liquid and vapor hase of said ammonium nitrate-containing solution in an amount sufficient to inhibit azulmic acid formation. 4,094,959
PROCESS MEASUREMENT AND CONTROL Donald H. Ball; Robert W. Rutledge, and James D. Voelkers, all of Bartlessille, Okla., assignors to Phillips Petroleum Company, Bartlesville, Okla.
Int. Cl. \({ }^{2}\) C01C \(1 / 04\); G06F \(15 / 18\), \(15 / 46 ;\) G06G \(7 / 58\)
S. C1. 423-359 23 Claims

15. A process for the production of ammonia comprising
a. introducing a fresh feed stream resulting from a first feed stream from a hydrogen source and a second feed stream from a nitrogen source into a reaction zone, said fresh feed stream being a portion of a total feed stream being intro-
duced into said reaction zone duced into said reaction zone,
vert hydrogen and nitrogen to ammonia and to sene to conhydrogen, nitrogen and ammonia-comprising reaction effluent,
c. separating an ammonia product stream from said reaction effluent as the product of the process,
d. recycling a portion of said reaction effluent comprising
hydrogen, nitrogen and ammonia as a recycle stream to said reaction zone, said recycle stream being another portion of said total feed stream
e. measuring the composition of said total feed stream and generating a first process parameter measurement signal stream,
f. generating in response to first pross ment signal and a process parameter setpoint signal a first ment signal and a process parameter setpoint signal a first
intermediate control signal related to the deviation of said first process parameter measurement singal from said process parameter setpoint signal,
3. generating a first transformed signal from said first process parameter measurement signal which is related thereto by
the relationship:
\[
P P_{1}=\frac{k_{41} S}{\left(1+c_{1} S\right)\left(1+c_{2} S\right) \ldots\left(1+c_{n} S\right)} \cdot M P_{1}
\]
wherein
\(T P_{1}\) is said first process parameter measurement signal \(P P_{1}\) is said transformed signal, \(S\) is the Laplace transform operator (\(d / d t\))
\(k_{41}\) is a constant not equal to 0 ,
\(c_{1}, c_{2} \ldots c_{n}\) are constants not equal to 0 ,
\(n\) is an integer of at least 2 ,
h. combining said first intermediate control signal and said first transformed signal to generate a first process variable signa constituting the weighted sum or difference of the first intermediate control signal and the transformed signal
. controlling the relative size of said first feed stream from said
hydrogen source and said second feed stream from said hitrogen source in response to said first process variable nigrogen
signal.

PROCESS FOR PRODUCTION OF CARBON BLACK John W. Vanderveen, Bartlesville, Okla, assignor to Phillipe Petroleum Company, Bartlesville, Okli

Filed Mar. 4, 1976, Ser. No. 663,891
Int. C1. \({ }^{2}\) C01B 3/ \(/ 02\) : \(\operatorname{cosc} 1 / 48\)
U.S. C. 423-456
1. A process for producing carbon black having a tint of about 13 or higher and a strut of about 117 or highe comprising:
A) introducing a normally liquid hydrocarbon feedstock along the reactor axis, said carbon black reactor comprising:
a. an
a. an upstream confining wall,
b. a downstream confining wall,
c. a tubular confining wall between said upstream and said downstream confining wall, which tubular confining wall comprises
aa. connected to said upstream confining wall a longituportion thereof having essentially triangular crosssection and confining an axial zone,
bb. in open communication and axial alignment with and operatively connected to said axial section a wall and connected to said essentially plane upstream
wall a cylindrical wall confining a vortex zone, said ylindrical wall having an internal diameter that larger than the diameter of a circle inscribed into the riangle cross-section of said axial zone, said axia zone opening through said essentially plane upstrea wall into said vortex zone
cc. in open communication and axial alignment with
and operatively connected to said vortex section a reaction section confining a reaction zone section d. first conduit means for the introduction of hydrocarbo
feedstock along the reactor axis into the axial zone,
e. vortex generating means for generating a vortex of hot combustion gases in said vortex zone, and
secock-containing smoke from the reactor, (3) generating a vortex of hot combustion vortex zone close to said cylindrical wall and close to said plane upstream wall,
C) introducing a stream of essentially oxygen-free gas into (D) contacting said
combustiong said hydrocarbon feedstock with said hot combustion gases in said reactor to produce a reaction admixture and to pyrolytically decompose said hydrocar bon feed to form carbon black,
(E) passing said reaction admixture through said reaction (F) withdrawing a carbon black-containing and second conduit means from said carbon black reactor.

HYDROGEN SULFIDE PRODUCTION David K. Beavon, Pasadenna, Calif., assignor to Ralph M. Par sons Company, Passdena, Callif.

Nov. 7, 1974, Ser. No. 521,83
Int. Cl. \({ }^{2}\) C01B

1. A process for the production of hydrogen sulfide from , Aental sulfur which comprises:
(a) forming a reducing gas containing hydrogen and carbo monoxide by combustion of a carbonaceous fuel in the presence of an amount of oxygen insufficient for complete oxidation of the carbonaceous fue
(b) passing the reducing gas through a sulfur vaporization
zone containing molten sulfur to simultaneously cool the reducing gas and vaporize sulfur while further cooling th sulfur vaporization zone to provide a resultant gaseou mixture containing hydrogen, carbon monoxide and sulfur vaporized by the reducing gas in which the mole ratio of the sum of the hydrogen and carbon monoxide to vapor at least approximately 1.15; and
(c) combining the resultant gaseous mixture with water in an amount sufficient to form a mixture having a water vapor content of at least 10 mole percent in a catalytic conversion zone wherein the sulfur is essentially completey hy tained from about \(500^{\circ}\) to about \(800^{\circ} \mathrm{F}\) by reaction main
hydrogen present in the reducing gas and hydrogen formed by the reaction of water with the carbon monoxide present in the reducing gas in the presence of a catalyst consisting of at least one supported metal selected from Periodic Table. \(\qquad\)
4,094,962
PROCESS FOR PRODUCING HYDROGEN AND SULFUR GROM HYDROGEN SULFIDE (Varese), bothuza, Catania, and Gluseppe Musso, Osmatign S.I.R. S.p.A., Milan, Italy Filed Apr. 1, 1977, Ser. No. 783,597
Int. C.2. C01B 17/04, 17/06, \(1 / 05\)
U.S. Cl. \(423-573\) R Claims
1. A process for producing hydrogen and sulfur from hydrogen sulfide, which comprises:
(a) contacting hydrogen sulfide and iodine in aider of said hydrogen sulfide with respect to said iodine, in an aqueous solution of hydriodic acid containing from 50 to
about \(20 \%\) by weight of hydrogen iodide, at a temperature of from \(10^{\circ}\) to \(80^{\circ} \mathrm{C}\) and at a pressure equal to or higher than atmospheric, thereby to convert said iodine into hydrogen iodide and form sulphur by reaction be
tween said iodine and hydrogen sulfide, the amount of tween said iodine and hydrogen sulfide, the amount of
iodine being such as to obtain an aqueous suspension o sudine being such as to obtain an aqueous suspension of
sulphur, containing in dissolved form unreacted hydrogen sulfide, having a content of hydrogen iodide not exceed ing \(50 \%\) by weight;
(b) recovering said sulphur from said suspension;
(c) desorbing hydrogen sulfide from the resulting solution and recycling said desorbed hydrogen sulfide to stage (a);
(d) rectifyying in a distillation column the residual solution obtained in (c), at superatmospheric pressure, thereby to recover hydrogen iodide at the top and an aqueous solution of hydriodic acid at the bottom, said aqueous solution
having a content of hydrogen iodide equal to or higher having a content of hydrogen iodide equal to or higher
than that of the water-hydrogen iodide azeotrope at the operating pressure, and recycling said aqueous solution o (d) to stage (a);
(e) forming hydrogen and iodine by thermal dissociation of the hydrogen iodide recovered in (d), at a temperature of
at least \(400^{\circ} \mathrm{C}\) and a pressure of at least 10 atmospheres, at least \(400^{\circ} \mathrm{C}\) and a pressure of at least 10 atmospheres,
while removing hydrogen from the resulting mixture by diffusion through one or more membranes of palladium
alloy and recovering said hydrogen having diffused, realloy and recovering said hydrogen having diffused, re-
covering iodine from the resulting residual mixture and covering iodine from the resulting residual
recycling said recovered iodine to stage (a).

MEANS FOR TESTING FOR PREGNANCY
Brij B. Saxena, Englewood, N.J., assignor to Cornell Resear Foundation, Inc., Ithaca, N.Y. \({ }^{\text {Division of Ser. No. } 522,760, \text { Nov. 11, 1974, Pat. No. 4,016,250, }}\) which is a continuation in-part of Ser. No. 454,145, Mar. 22 ,
1974, abandoned. This application May 20, 1976, Ser. No.
The portion of the term of this patent subsequent to Apr. 5, 1994, has been disclaimed.
Int. C. \({ }^{2}\) A61K 43/00, 39/00
U.S. Cl. \(424-1\)
1. Means for the determination of human choriciaims 1. Means for , luteinizing hormone (LH) or HCG-like gaterial
in an aqueous sample, comprising
(b) a separate second container having therein a second
reagent;
(c) said first reagent comprising in substantially pure form he specific corpus luteum of a species having the receptor for human in which:
chorionic gonadotropin capable of selectively binding biologically active human chorionic gonadotropin; and (d) said second reagent comprising labeled human chorionic gonadotropin capable of emitting radiation, said first rea-
gent being intended to be contacted with the sample containing the hormone to be measured and with the second reagent to bind part of the labeled and unlabeled hormone to said receptor
the emitted radiation therefrom being a function of the concentration of the hormone in the aqueous sample.

> 4,094,964

CLONIDINE ASSAY
4,094,964
Beryn Jarrott, Nutley, and Sidney Spector, Livingston, both of N.J., assignors to Hoffmann-La Roche Inc., Nutley, N.J. F.J., Flled May 10, 1977, Ser. No. 795,576 Int. Cl. \({ }^{2}\) G01N 33/16; A61K 43/00; C07G 7/00; A61K \(39 / 00\) U.S. CI. 424-1
6. \(A\) method
\(81 \mathrm{~K} 39 / 00\)
8 Claims 6. A method for the assay of clonidine in a sample, which
nethod comprises mixing said sample with a known amount of labelled clomidine and an antibody which will selectively complex with clonidine, measuring the degree of binding of said abelled clonidine compound with said antibody, and determining the amount of clonidine present in said sample by comparmixing known amount of clonidine with fixed amounts of said abelled clonidine and said antibody and determining the degree of binding for each known amount of clonidine.

4,094,965
DIAGNOSTIC AGENTS CONTAINING ALBUMIN AND METHOD FOR MAKING SAME
Warren W. Layne, Boston, and Eugene L. Sakclad, Sudbury, both
of Mass., assignors to New England Nuclear Corporation, of Mass., assignors to New England Nuclear Cor
Boston, Mass.
Filed Apr. 1, 1977, Ser. No. 783,673

Filed Apr. 1, 1977, Ser. No. 783,6
Int. Cl. \({ }^{2}\) A61K 29/00, 43/00
U.S. C. 424-1.5 29 Claims 23. A method of concentrating technetium -99 m in vivo in a arget tissue of a mammal comprising intravenously adminisering to the mammal a radioactive composition comprising a
mixture of technetium -99 m , a reducing agent and delipidized serum albumin.

ODOBENZENE \(4,094,966\)
MEDIA CONTAINES AND X-RAY CONTRAST
MENE Guy Tilly; Michel Jean Charles Hardouin, and Jean Lautrou, all of Aulnay-sous-Bois, France, assignors to Laboratoires Andre
Guerbet, Aulnay-sous-Bois, Frace Division of Ser. No. 579,279, May 20, 1975, Pat. No. 4,014,986. This application Dec. 7, 1976, Ser. No. 748,323 Claims priority, application United Kingdom, May 31, 1974, 24169/74; Jul. 31, 1974, 33900/74.
U.S. Cl. 424-5 \(\quad\) Claims I. An iodobenzene derivative selected from the group coning of a compound of formula

\(R_{1}\) is selected from the group consisting of hydrogen, a radical having the formula

\(R_{5}\) and \(R_{6}\) being selected from the group consisting of hydrogen, lower alkyl and lower hydroxy alkyl, and a radical of the formula

\(R\), being a lower alkanoyl radical and \(R_{8}\) being selected from the group consisting of hydrogen, lower alkyl and lower hythe group co
droxylakyl,
\(\mathrm{R}_{2}\) is selected from the group consisting of hydrogen, a
radical having the formula
radical having the formula

in which
which \(R_{9}\) and \(R_{10}\) have the meanings given for \(R_{5}\) and \(R_{6}\), and a radical of the formula

IODINE-POLYVINYLPYRROLIDONE SOLID PRODUCT AND METHOD OF PREPARATION Joseph G. Gilbert, Lighthouse Point, Fla., assignor to Allor
Foundation, Boston Mess Foundation, Boston, Mass.
Flled Oct. 22, 1976, Ser. No. 735,088
Int. C. \({ }^{2}\) A01N \(11 / 100\); A61K \(31 / 79,33 / 18\)
\({ }_{\text {Int. Cl. }}{ }^{2}\) A01N \(11 / 00\); A61K 31/79, 33/18 12 Cleim
1. A method of making a polyvinylpyrrolidone-iodine com 1. A method of making a polyvinylpyrrolidone-iodine com-
position in which the iodine is stored in solid form protected from light and air-exposure deterioration and is continuously
releasable for active pharmacological use by application of at least one of heat and moisture, that comprises, preparing an alcohol or aqueous solution of finely powdered crystalline iodine; forming a solution of polyvinylpyrrolidone; admixing the iodine solution with the polyvinylpyrrolidone solution; the iodine solution-polyvinylpyrrolidone solution; and drying the solution to solid state.

TREATMENT \(4,094,968\)
TREATMENT FOR ALLERGY AND METHOD OF Harold Francis Hodson, Hayites ther ind
Becenam Hotson, Hayes, and John Frederick Batchelor, come Co., Research Triangle Park, N.C. on of Ser. No. 394,423, Sep. 5, 1973, Pat. No. 3,939
This application Nor. 26, 1975, Ser. No. 635,768 Int. Cl. \({ }^{2}\) A61K 9/14; A61L 9/04; A61K 31/41
30 Cle U.S. Cl. \(424-46\) 1. A method of inhibiling the symptoms of asthma or allergic
rhinitis in a mammal susceptible to asthma or allergic rhinitis which comprises the administration to said mammal of a pro phylactically effective, non-toxic amount of a compound of formula (I)

\section*{Clos?}
in which
\(R_{11}\) has the meaning given for \(R_{7}\) or represents a hydrogen avom and \(R_{12}\) has the meaning given for \(R_{8}\),
\(R_{3}\) is selected from the group consisting of hydrogen, a
wherein one of \(Z^{1}\) and \(Z^{2}\) is a 5-(1-R)tetrazolyl or a 5 -(2-R) tetrazolyl group in which \(R\) is hydrogen or alkyl having 1 to 6
carbon atoms, and the other is selected from the group consisting of carboxy, \(5-(1-R)\) tetrazolyl and 5 -(2-R)tetrazolyl as defined, provided that when \(Z^{2}\) is \(5-(1-R)\) tetrazolyl or 5 -(2 R)tetrazolyl then \(Z^{1}\) is carboxy; and \(Z^{2}\) is also selected from the group consisting of hydrogen, nitro, cyano, halogen, alkylsul"alkyl" moiety of each of the acyl, alkyl, alkoxy, alkylsulphinyl and alkylsulphonyl groups has 1 to 6 carbon atoms; together with salts, and, when \(Z^{1}\) or \(Z^{2}\) is carboxy, alkyl esters having 1 to 6 carbons and unsubstituted amides or amides in which \(\mathbf{R}_{1}\) have the meanings given for \(R_{5}\) and \(R_{6}\), and a substituted compounds of formula (I).
radical of the formula

\section*{4,094,969}

PESTICIDE COMPOSITIONS STABILIZED WITH SULFONATED CATECHIN/LEUCOCYANIDIN COPOLYMER AND METHOD OF USING SAME Othmer F. Batzer, Libertyville, Ill., and Carlo M. Ignoffo, Columbia, Mo., assignors to Sandoz, Inc., E. Hanover, N.J. a continuation-in-part of Ser. No. 124,598, Mar. 15, 1971,
in which the meaning given for \(R_{1}\), or represents hydrogen \(\mathbf{R}_{16}\) has the meaning given for \(R_{8}\).
\(R_{\text {, }}\) is selected from the group consisting of hydro alkyl and lower hydroxylakyl, a lower alkyl ester thereof and a salt with a pharmaceutically acceptable base.
of an effective amount of a compound as claimed in claim 1.
a continuation-in-part of Ser. No. 124,598, Mar. 15, 1971,
abandoned. This application Jun. 16, 1975, Ser. No. 587,068 Int. Cl. \({ }^{2}\) A61K 31/74; A01N \(15 / 00\) U.S. Cl. \(424-78\)

An agricultural pesticidal composition 24 Claims ight-degradable agricultural pesticide selected from the group 971 O.G. 28
an amount sufficient to control a larget pest and as a stabilizer for said pesticide a sunlight degradation retarding effective amount of a sulfonated copolymer selected from the group
consisting of: (a) the products produced by sulfonating hemlock bark copolymers consisting essentially of catechin and leucocyanidin in a mol ratio of about \(1: 1\) to a sulfonic acid content expressed as sulfur dioxide of 9.5 to 12 percent by
weight of the total sulfonated copolymer, said sulfonated coweight of the total sulfonated copolymer, said sulfonated co-
polymer having a molecular weight in the range of about 3,000 to 6,000 , and (b) non-phytotoxic metal and ammonium salts thereof.

ELASTOMERIC POLYURETHANE-BASED ARTICLES HAVING AN INSECTICIDAL DEPOT GAS ACTION
Woifgang Behrenz, Overath-Steinenbrueck; Dietmar Schìip
asslgnors to Bayer Aktiengeseelischaft, Leverkusen, Germany
Flled Aug. 12, 1976, Ser. No. 714,077, Germany
Claims priority, application Germany, Aug. 26, 1975, 2537894
U.S. Cl. \(424-78\)
1. A solid insecticidal article comprising an insecticidams
effective amount of at least one volatile phosphoric or thio-

It. Cl. \({ }^{2}\) A01N \(9 / 36\) : A61K \(31 / 74\)
3 effective amount of at least one volatile phosphoric or thiophosphoric acid ester and about 1 to 10 times its weight of a
solid elastomeric polyurethane carrier material formed from a polyisocyanate and units of a long chain polyol having a mopolyisocyanate and units of a long chain polyol having a mo-
lecular weight of about 1,000 to 10,000 , and of at least one of a short chain polyol and/or polyamine having a molecular
weight of about 62 to 1,000 , the weight ratio of units of long weight of about 62 to 1,000 , the weight ratio of units of long
chain polyol to units of shor chain polyol plus polysmine ranging from about \(1: 1\) to \(9: 1\).
ciently large to ensure an adequate number of spermato zoa per volume of mixture of fertilization and sufficiently small to ensure easy and complete intermixing of seme and diluent.

4,094,975
O-ALKYLO-CHLOROMETHYLSULFONYLPHENYL O-ALKYLO-CHLOROMETHYLID ESTERS AND THIONICIDAL AND ARTHROPODICIDAL USE Fritz Maurer; Hans-Jochem Riebel; Rolf Schroder, all of Wu pertal; Wilhelm Sirrenberg, Sprockhoevel; Ingeborg Hapmmann, Cologne; Bernhard Homeyer, Leverkusen, and Herber tiengesellschaft, Leverkusen, Germany
MEDICAL PROTEIN HYDROLY OF USING THE SAME AND PROCESS Harry J. Robertson, Robertson Resource Ltd., Wesley Drive,
Salisbury Salisbury, Md. 21801
Continuation-in-part of Ser. No. 409,145, Oct. 24, 1973,
abandoned. This appliction Mis abandoned. This application May 10, 1976, Ser. No. 685,050
Int. Cl. \({ }^{2}\) A61K \(37 / 18,37 / 02\), \(35 / 12\) U.S. C1. 424-177
1. A therapeutic agent comprising a non-antigenic, protein 1. A therapeutic agent comprising a non-antigenic, protein
hydrolysate having polypeptides and amino acids derived by: comminuting the immature poultry feet and washing them dilute midd said commin an atice poultry feet with elevated temperature up to \(155^{\circ} F\) removing the fat constituent; and
the elevated tempered protein and dissolved minerals a the elevated temperature
1. The process of treating damaged higher animal tissue for effective amount of a non-antigenic protein hydrolysate a claimed in claim 1.

Filed Feb. 2, 1977, Ser. No. 764,798
Claims priority, application Germany, Feb. 13, 1976, 2605889 Int. Cl. \({ }^{2}\) A01N \(9 / 36 ;\) C07F \(9 / 18\)

10 Claims
U.S. C. 424- 216 . 4 -chloromethylsulfonylphenyl)thiono phosphonic acid ester of the formula
in which
\(\mathrm{R}^{\mathbf{R}}\) represents alkyl with 1 to 6 carbon atoms,
R" represensest alkyl with 1 to 6 carbon atoms or phenyl, and \(\mathbf{R}^{\prime \prime}\) represents hydrogen or halogen.

\section*{4,094,976}

IMMUNOLOGICAL ADJUVANT AGENTS ACTIVE IN

Louis A. Chedid, AQUEOUS SOLUTION
Louis A. Chedid, Paris, and Francoise Marguerite Audibert Neuilly-sur-Seine, both of France, sssignors to Agence Na
tionale de Valorisation de France Flled Aug. 25, 1976, Ser. No. 717,509 Claims priority, application France, Aug. 29, 1975, 7526704
Int. Co. \({ }^{2}\) A61K 39 (02 U.S. C1. 421-92 Int. Cl. \({ }^{2}\) A61K 39/02
1. A compound, a water-soluble adjuvant which has \({ }^{40}\) Claims nological activity in-vivo when administered to a host in an oil-free aqueous solution, which adjuvant is an acylated pep-
tidoglycane fragment having saccharide units of N-acetyl tidoglycane fragment having saccharide units of \(N\)-acetyl glucosamine and N -acylmuramyl, the acyl radical being glyco
lyl or acetyl, and the muramyl group having peptide chains linked thereto,
wherein the acyl groups of the peptidoglycane are of a in which
physiologically acceptable polycarboxylic acid or its
physiologically acceptable polycarboxylic acid, or its
anhydride, and the physiologically acceptable salts of the anhydride, and the acylated compound.

4,094,972
PROSTAGLANDIN USE IN PROLONGING AND INTENSIFYING FERTILITY IN POULTRY Bernard James Marquez, East Lansing, Mich., assignor Board of Trustees, Michigan State University, East Lansing Mich.

> Filed Aug. 4, 1977, Ser. No. 821,672 Int. C1. \({ }^{2}\) A61K \(35 / 52,31 / 215.3 / 19\)
U.S. CC. 424-105
1. A mixture comprising
(2) a conventional poultry
volume of said mixture to be in diluent containing per amount of a poultry-fertility insemmancing prostaglandin (POFEN-PG) effective to intensify or prolong fertility in an egg-laying hen into which said mixture is inseminated,
said semen and diluent being combined in a ratio suffi-

ISOXAZOLE PHOSPHATES AND PHOSPHONATES lewellyn W. Fancher, Orinde, Callf., assignor to Stauffer Chemical Compeny, Westport, Conn.

Filed Feb. 24, 1977, Ser. No. 771,716
Int. Cl. \({ }^{2}\) CO7D 261/14; A01N 9/36
1. A compound having the formula

\(\mathrm{R}^{1}\) is alkoxy having 1 to 6 carbon atoms, and
X is oxygen or sulfur.
9. A method of controlling insects comprising applying to
said insects or the habitat or feedstuff of said insects cidally effective amount of a compound having the formula

which
R is alkyl or alkoxy each having 1 to 6 carbon atoms, X is
X is oxygen or sulfur.

3-PROPENYL DERIVATIVES OF CEPHALOSPORIN, COMPOSITIONS AND THEIR USE
Philip J. Beeby, Melbourne, Australia, assignor to Syntex Philip J. Beeby, Melboura, Alf.
(U.S.A.) Inc., Palo Alto, Callf.

Filed Jul. 29, 1976, Ser. No. 709,696 1. A compound having the formula:

wherein
R is hydrogen or a group having the formula
\(-\stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{NHR}^{3}\)

ANTICOCCIDIAL CYCLICAMINO ETHANOLS AND ESTERS THEREOF
Richard A. Dybas, Somerville; Donald W. Graham, Mountain-
side, and Jeannette E. Brown, Summit, all of N.J., assignors to Merck \& Co., Inc., Rahway, N.J. Continuation of Ser. No. 586,006, Jun. 11, 1975, abandoned

This application Dec. 29, 1976, Ser. No. 755,
U.S. C. \(424-228\)
1. An anticoccidial composition comprising an anticoccidially effective amount of a cyclicamino ethanol compound of the formula:
\[
\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OR}
\]
wherein \(\mathbf{R}\) is hydrogen or an acyl radical derived from a nontoxic carboxylic acid selected from the group consisting of \(\mathrm{C}_{1.10}\) alkanoyl; substituted \(\mathrm{C}_{1.5}\) alkanoyl wherein the substituent is halophenyl and diphenyl; carbocyclic alkanoyl containing up to 5 carbon atoms; benxoy;; nitrobenzo \(n\), 3,4 or 5 or a oyl; and \(\mathrm{C}_{1.10}\) alkane dicarborent thereof, in a chicken feed.

\section*{4,094,977}

COMBINATION PREPARATION OF ESTROGEN AND PROSTAGLANDIN
Karl Seeger, Hofheim, Taunus, and Fritz Bauer, Bad Soden am Taunus, both of Germany, assignorst
Claims priority, application Germany, Jun. 26, 1975, 2528419 Int. Cl. \({ }^{2}\) A61K 31/56, 31/215, \(31 / 19\)
U.S. Cl. 42- 240
1. A leutolytically-active pharmaceutical composition comprising an injectable or orally-administrable carrier and, as the active ingredient, a combination of at least one luteolyicall effective prostaglandin or a physiologically acceptabie salt or thereof in a weight ratio from 1:1 to \(1: 5000\).
wherein \(R^{4}\) is hydrogen, hydroxy or carboxy; \(X\) is hydro gen or hydroxy; \(\mathbf{Y}\) is thiophen-2-yl, (1H)-tetrazol-1-yl, 4 -pyridylthio, phenoxy or cyano
\(\mathrm{R}^{2}\) is hydrogen or a protecting group selected from the group of benzhydryl, benzyl, o-nitrobenzyl, p-nitrobenzivaloyloxymethyl, phenacyl and polyhaloalkyl having two to six carbon atoms; and the pharmaceutically acceptable salts thereof.
\(\qquad\)
1. A compound of the formula
in which \(n\) is 0 to 3 , inclusive;

effect in a mammal which comprises administering thereto a non-toxic dose of from about 0.01 to \(10 \mathrm{mg} . / \mathrm{kg}\). of body
weight of said mammal of a compound selected from the group consisting of 10 -imidoylacridans having the formula

or a pharmaceutically acceptable salt thereof. 7. A pharmaceutical composition for oral administration
comprising an antibacterial amount of a compound of comprising

a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable non-toxic diluent therefor.

N-[1-(3,4'-METHYLENEDIOXY-PHENYL)-PROPYL-(2) N'PHENYLPIPERAZINES AND SALTS THEREOF Ernst-Otto Renth; Anton Mentrup; Kurt Schromm, and Wilhelm
Frölke, all of Ingelheim am Rhein, Germany, assignors to
Boehringer Ingelheim GmbH, Ingelheim am Rhein, Germany Continuation-in-part of Ser. No. 608,455, Aug. 28, 1975, sbandoned. This application Dec. 10, 1976, Ser. No. 749,344
Clims priorty, appliction Germany, Sep 3, 1974, 2442158 Claims priority, application Germany, Sep. 3, 1974, 2442158 U.S. C1. 424-250
1. A compound of the formula

wherein
\(R_{1}\) and \(R_{2}\) are chlorine, or
\(R_{1}\) is methyl and \(R_{2}\) is methox
or a non-toxic, pharmacologically acceptable acid addition sal thereof.
4. A pharmaceutical dosage unit composition consisting essentially of an inert pharmaceutical carrier and an effective anti-hyperlipidemic or anti-hypercholesteremic amount of a compound of claim 1

\section*{4,094,981}

SMOOTH MUSCLE RELAXANT EMPLOYING 10-IMIDOYLACRIDANS
Yao Hua Wu, and Walter G. Lobeck, Jr., both of Evansville, Ind., assignors to Mead Johnson \& Company, Evansville, Ind. Ind., assignors to Mead Johnson \& Company, Evanssille, Ind.
Division of Ser. No. 670,600 , Mar. 26,1976 , Pat. No. 4,046,891, which is a division of Ser. No. 561,462, Mar. 24, 1975, Pat. No. 3,962,252, which is a division of Ser. No. 336,671, Feb. 28, 1973, Pat. No. 3,888,852. This application Jul. 1, 1977, Ser. No. Int. C1. \({ }^{2}\) A61K 31/47
in which \(R_{5}\) and \(R_{6}\) may be the same or different and each gen atom and \(R_{6}\) represents an alkyl group of 1 to 4 carbo atoms, an alkenyl group of 3 or 4 carbon atoms or a benzy U.S. Cl. 424-257
C. \(424-257\)
The process for producing a smooth muscle relaxant 4 carbon atoms or alkoxy of \(I\) to 4 carbon atoms;
8 group optionally shbstituted with halogen, cyano,
and a non-toxic pharmaceutically acceptable acid addition sall thereof wherein
X represents a divalent methylene radical of the formula wherein
\(\mathrm{Z}_{1}\) and \(\mathrm{Z}_{2}\) are independently selected from hydrogen or straight chain lower alkyl of from 1 to 4 carbon atom
Y represents hydrogen, trifluoromethyl, halogen, dihalogen, lower alkyl of 1 to 4 carbon atoms inclusive, lower alkoxy of 1 to 4 carbon atoms inclusive; and
\[
\underset{\mathrm{R}_{2}}{-\mathrm{C}=\mathrm{N}-\mathrm{R}_{1} \quad \text { and }} \underset{\mathrm{R}_{1}}{-\mathrm{CH}} \underset{\left(\mathrm{CH}_{2}\right)_{n}}{-\mathrm{N}}
\]
wherein
\({ }_{1}\) is lower alkyl of 1 to 4 carbon atoms inclusive or cycloal \(R_{2}\) is hydrogen or lower alkyl of 1 to 4 carbon atoms inclu\({ }_{R_{3}}{ }_{\text {sive; }} \mathrm{R}_{\text {4 }}\) \(R_{3}\) and \(R_{4}\) are independent members selected from the group consisting of hydrogen or lower alkyl of 1 to 4 carbo atoms inclusive;
\(n\) is an integer of 3 to 5
4,094,98
PYRIDINE SULFONAMIDES AND THEIR USE AS ANTICOCCIDIAL AGENTS Yasuhiro Morisawa; Mitsuru Kataoka; Noritoshi Kitano, an Toshiaki Mastuzawa, all of Tokyo, Japan, assignors to Sankyo Company Limited, Tokyo, Japan Filed Apr. 28, 1976, Ser. No. 681,154
\(\begin{gathered}\text { Claims priority, application Japan, May 15, 1975, } \\ \text { Des.58180 }\end{gathered}\) U.S. Cl. 424-263 In. \({ }^{2}\) C07D 2/3/02; A01N 9/22 1. A compound having the formula
R
\(\mathrm{R}_{2}\) represents nitro group or an alkylamino group of 1 to 3
\({ }_{R}\) carbon atoms; \(R_{4}\) indivi
 group of 1 to 4 carbon atoms, an alkoxyalkyl group which
has 1 to 4 carbon atoms in the alkoxy moiety and 2 to 4 arbon atoms in the alkyl moiety, an alkenyl group of 3 or carbon atoms, an alkanoyl group of 1 to 18 carbon atoms or a benzyl group optionally substituted with halogen,
cyano, alkyl of 1 to 4 carbon atoms or alkoxy of 1 to 4 carbon atoms; provided that when \(R_{1}\) is hydrogen atom and \(R_{2}\) is nitro group, \(R_{3}\) and \(R_{4}\) may be the same or different and each represents said alkyl group or said alkoxyalkyl group or \(R_{3}\) is hydrogen atom and \(R_{4}\) is hydrogen nyl group, said alkanoyl group or said benzyl group, when \(R_{1}\) is hydrogen atom and \(R_{2}\) is said alkylamino group, \(R_{3}\) \(R_{1} R_{4}\) individually is hydrogen atom or they may be the same or different and each represents said alkyl group,
when \(R_{1}\) is amino group and \(R_{2}\) is nitro group, \(R_{3}\) and \(R_{4}\) when \(R_{1}\) is amino group and \(R_{2}\) mach represents said alkyl may be the same or \(R_{3}\) is hydrogen atom and \(R_{4}\) is said alkyl group or said alkenyl group, and when \(\mathbf{R}_{1}\) is said group
\[
-N_{R_{6}}<R_{R_{5}}
\]
and \(R_{2}\) is nitro group, \(R_{3}\) and \(R_{4}\) are the
with respect to the \(R_{\text {a }}\) and \(R_{6}\).
37. An anticoccidal composition containing an amount, formula
Cons
timately mixed with an inert carrier, wherein \(\mathbf{R}_{1}\) represents hydrogen atom, amino group or a group
\[
-N_{R_{0}}^{R_{5}}
\]
in which \(\mathrm{R}_{5}\) and \(\mathrm{R}_{6}\) may be the same or different and each represents an alkyl group of 1 to 4 carbon atoms or \(R_{5}\) is hydro gen atom and \(R_{\text {r }}\) represents an alkyl group of 1 to 4 carbon atoms, an alkenyl group of 3 or 4 carben atoms or a benzy
group optionally substituted with halogen, cyano, alkyl of 1 to group optionally substituted with halogen, cyano, at 4 carbon atoms or alkoxy of 1 to 4 carbon atoms;
\(\mathbf{R}_{2}\) represents nitro group or an alkylamino group of 1 to carbon atoms;
\(R_{3}\) and \(R_{4}\) individually represent hydrogen atom, an alky group of 1 to 4 carbon atoms, an alkoxyalkyl group which
has 1 to 4 carbon atoms in the alkoxy moiety and 2 to 4 has 1 to 4 carbon atoms in the alkoxy moiety and carbon atoms in the alkyl moiety, an alkenyl group of 3 o 4 carbon atoms, an alkanoyl group of 1 to 18 carbon atom or a benzyl group optionally substituted with halogen
cyano, alkyl of 1 to 4 carbon atoms or alkoxy of 1 to cyano, alkyl of 1 to 4 carbon atoms or alkoxy of 1 ato
carbon atoms; provided that when \(R_{1}\) is hydrogen atom and \(R_{2}\) is nitro group, \(R_{3}\) and \(R_{4}\) may be the same or differ ent and each represents said alkyl group or said alkoxyal kyl group or \(R_{3}\) is hydrogen atom and \(R_{4}\) is hydroge
atom, said alkyl group, said alkoxyalkyl group, said alkeatom, said alkyl group, said alkoxyaikyl group, said alk nyl group, said alkanoyl group or \(R_{2}\) is said alkylamino group,
when \(R_{1}\) is hydrogen atom and when \(R_{1}\) is hydrogen atiom indivally is hydrogen atom or they may be \(R_{3}\) and \(R_{4}\) in different and each represents said alkyl group, when \(R_{1}\) is amino group and \(R_{2}\) is nitro group, \(R_{3}\) and \(R_{4}\) may be the same or different and each iepresents
group or \(R_{i}\) is hydrogen atom and \(R_{4}\) is said alkyl group o group or \(R_{3}\) is hydrogen when \(R_{1}\) is said group
said alkenyl group, and

\section*{4,094,983}

METHOD FOR REDUCING INTRAOCULAR PRESSURE IN WARM-BLOODED ANIMALS
Nicholas S. Bodor, Lawrence, Kans., assignor to Intery Re search Corporation, Lawrence, Kans. 759 Filed Jan. 17, 1977, Ser. No. 759,779
Int. C1. \({ }^{2}\) A61K 31/455; A0iN \(9 / 24\) U.S. Cl. \(424-266\) looded animal in need of intraccular pressure in a warm opically applying to the suth thearment which amprime cically accepule her lowering introcular pressure of a compound selected from the group consisting of:

Formula 1

wherein \(R\) represents a memeber selected from the group consisting of hydrogen or a \(\mathrm{C}_{1}-\mathrm{C}_{5}\) straight or branched alkyl group; and wherein \(R_{1}\) and \(R_{2}\), whice selected from the group
different, represents an acyl member consisting of alkanoyl having 1-22 carbon atoms, alkenoyl having one or two douple bonds and having 4-22 carbon atoms,
cycloalkyl- \(\mathrm{C}_{n} \mathrm{H}_{2 n}-\stackrel{\text { On }}{\mathrm{I}}\)
having a total of 4-10 carbon atoms of which 3-7 are ring arbon atoms in cycloalkyl and wherein \(n\) is zero, one, or two, henoxyacetyl, naphthalenecarbonyl, pyridinecarbonyl,
\[
\underset{\text { phenyl-C } \mathrm{C}_{n} \mathrm{H}_{2 n}-\stackrel{\mathrm{O}}{\mathrm{C}}-2}{ }
\]
wherein \(n\) is zero, one or two and phenyl is unsubstituted or is substituted by \(1-3\) alkyl having \(1-4\) carbon atoms, alkoxy having \(1-4\) carbon atoms, halo, trifluoromethyl, dialkylamino on atoms carbon atoms, and alkanoylamino having \(1-6\) carsalt thereof.

6-PHENYL-8-BROM 4,094,984 [\(2,3 \mathrm{E}]-1,4\) - 4 OMO-4H-S-TRIAZOLO-[3,4C]-THIENO-Karl-Heinz Weber Gepines AND SALTS THEREOF Karl-Heinz Weber, Gan-Algesbeim; Adolf Bauer, Ingelheim am
Rhein; Peter Danneberg, Ockenheim, and Franz Joeef Kuhn Bingen, all of Germany, assignors to Boehringer Ingelheim GmbH, Ingelheim am Rhein, Germany
Continuation of Ser. No. 672,280, Mar. 31, 1976, abandore which is a continuation 1975, abandoned. This application Oct. 6, 1977, Ser. No. 839,79 1975, abandoned. This application Ott. 6, 1977, Ser. No. 839,792
Claims priority, applicaton Germany, Mar. 2, 1974, 2410030, Jul. 20, 1974, 2435041; Sep. 24, 1974, 2445430; Dec. 21, 1974,
2460776 2460776

Int. Cl. \({ }^{\text {A }}\) A61K 31/55; C07D 495/04, 495/14
424-269 1. A compound of the formula

wherein \(\mathrm{R}_{1}\) is hydrogen, fluorine, chlorine, bromine, nitro or \(\mathbf{R}_{2}\) is hydrogen, alkyl of 1 to 4 carbon atoms or hydroalkyl of 1 to 4 carbon atoms; or a non-toxic, pharmacologically acceptable acid addition salt thereof
8. The method of relieving anxiety, relieving tension, relaxing the muscles or suppressing convulsions in a warm-blooded
animal, which comprises perorally, parenterally or rectally administering to said animal an effective anxiolytic, tensionrelieving, muscle relaxing or anticonvulsive amount of a com pound of claim 1.

FUNGICIDAL ISOTHIAZOLES Susan Anne Vladnchick, Newark, Del., assignor to E. I. Du Pont
de Nemours and Company, Wilmington, Del. Continuation-in-part of Ser. No. 731,981, Oct. 13, 1976, abandoned, which is a continuation-in-part of Ser. No. 625,132 Oct. 23, 1975, abandoned. This application Mar. 17, 1977, Ser U.S. Cl. 42LT. Cl. \({ }^{2}\) A61K 31/42S; C07D 513/04
1. A compound of the formula

18 Claims

wherein
\(\mathbf{X}\) is cyano or \(-\mathrm{O}\)

Q is \(\mathrm{Cl},-\mathrm{OR}_{1},-\mathrm{SR}_{1}\) or \(-\mathrm{NR}_{2} \mathrm{R}\)
\(\mathrm{R}_{1}\) is hydrogen, alkyl of \(1-2\) carbon atoms
\(\mathrm{R}_{2}\) is hydrogen or methyl; and
\(R_{3}\) is hydrogen, alkyl of \(1-4\) carbon atoms or phenyl, with where \(R\) is an alkyl group of from 1 to 16 carbon atoms, benzyl the proviso that (a) when \(R_{2}\) is hydrogen, \(R_{3}\) is hydrogen or phenyl.
or alkyl of 1-3 carbon atoms or phenyl and (b) when Q is \(\mathbf{S R}_{1}, \mathbf{R}_{1}\) is not hydrogen.
7. A fungicidal composition consisting essentially of a fungicidally effective amount of a compound of the formula
wherein
X is cyano or

Q is \(-\mathrm{OR}_{1}-\mathrm{SR}_{1}\) or \(-\mathrm{NR}_{2} \mathrm{R}_{1}\)
\(\mathrm{R}_{1}\) is alkyl of \(1-2\) carbon atoms
\(\mathrm{R}_{2}\) is hydrogen or methyl;
\(\mathrm{R}_{3}\) is hydrogen, alkyl of \(1-4\) carbon atoms or phenyl; with the proviso that when \(R_{2}\) is hydrogen, \(R_{3}\) is hydrogen or
alkyl of \(1-3\) carbon atoms or phenyl, and at least one of (a) an inert diluent and (b) a surface active agent.
13. A method for controlling fungi consisting essentially of applying to the area to be protected a fungicidally effective
amount of a compound of the formula amount of a compound of the formula

X is cyano or
\(\mathrm{R}_{1}\) is \(-\mathrm{OR}_{1},-\mathrm{SR}_{1}\) or \(-\mathrm{NR}_{2} \mathrm{R}_{3}\)
\(R_{1}\) is alkyl of \(1-2\) carbon atom
\(\mathrm{R}_{2}\) is hydrogen or methyl;
\(\mathrm{R}_{3}\) is hydrogen, alkyl of
\({ }_{3}\) is hydrogen, alkyl of \(1-4\) carbon atoms or phenyl, with the proviso that when \(R_{2}\) is hydrogen, \(R_{3}\) is hydrogen or 2-R-SUBSTITUTED 4,094,986 2-R-SUBSTITUTED-1,2,5-THIADIAZOLE-3-ONE Joshua Rokech, ChnTIMICROBIALS
Joshua Rokach, Chonedey-Laval, and Grant W. Reader, Mon-
treal, both of Canada, assignors to treal, both of Canada, assignors to M. S. \& D. (I.A.) Corp., Rahmay, N.J.
Continuatio
abandoned. This application Jul. 5, 1977, Ser. No. 813,015 U.S. Cl. 424-270 Cl. \({ }^{2}\) C07D 285/10; A61K \(31 / 425\)
1. A compound of the formula:

8. A composition for inhibiting growth of bacteria and fungi ing to a person in need of such tra:
and
on agriculturally desirable plants and crops comprising a mi-
crobiologically effective amount of a compound of the for-
mula:

where \(R\) is an alkyl group of from 1 to 16 carbon atoms, benzyl, or phenyl and an inert carrier
12. A method of preparing compounds of the formula:

where \(R\) is a hydrocarbon of from 1 to 16 carbon atoms comwhere \(R\) is a hydrocarbo prising reacting a mole of a compound of the formula:
\[
\stackrel{\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CNHR}}{\|}
\]
with from 2 to 5 moles of sulfur monohalide.
4,094,987
2-3-M-HYDROXY-PHENYL-1-SUBSTITUTED-3-PYR 2-(3-M-HYD ROLIDINYL)-ETHANOLS
Klaus Hasspacher, Riehen, and Michael Strasser, Binningen, both of Switzeriand, assignors to Sandoz Ltd., Basel, Switzer-
land Filed Jan. 24, 1977, Ser. No. 762,209
Claims priority, application Switzerland, Jan. 28, 1976, 1070/76; Jan. 28, 1976, 1071/76
Int. Cl. U.S. C. \(424-274\)
1. A compound of formula \(I\),
1. A compound of the formula

wherein R is lower alkyl having from one to 6 carbon atoms or phenyl; \(\mathrm{R}^{1}\) is lower alkyl of from 1 to 6 carbon atoms and \(x\) and \(y\) are integers each having a from 1 to 4 .
and \(y\) being in the range of

METHYLENEDIOXY SUBSTTTUTED BENZENE Friedrich Karrer, Basel, Switzerland, asaignor to Clba-Geigy Corporation A Division of Ser. No. 460,404, Apr. 12, 1974, Pat. No. 3,987,102. This application Oct. 4, 1976, Ser. No. 229,055, 1973 5635/73; Mar. 18, 19p4, 3705/74
\[
\text { U.S. C. 424-282 Int. CT. }{ }^{2} \text { A01N } 9 / 28 \quad 12 \text { Claims }
\]

wherein
\(\mathrm{R}_{1}\) is alkyl of 4 to 8 carbon atoms; cycloalkyl of 4 to 6 carbon atoms; phenethyl or phenethyl monosubstituted in the phenyl residue with fluorine, ch
or alkyl of 1 to 4 carbon atoms.
a pharmaceutically acceptable salt form thereof.
4. A method of treating pains in animals which comprises administering to an animal in need of such treatment a theal eutically effective amount of a compound of claim 1.

\section*{4,094,988}

METHOD OF TREATING GASTRIC ULCERS USING 5,6-DIHYDRO-1,4-DITHIINOXIDES

5,6-DIHYDRO-1,4-DITHIINOXIDES
Rechard C. Johnson, Ambler, Pa.,
Iaboratories, Inc., Columbus, Ohio
Filed Oct. 12, 1276, Ser. \({ }^{2}\) No. 731,153
Int. C. \({ }^{2}\) A61K 31/385
U. C1 424-277
U.S. Cl. 424-2 7 Claim
\(\mathrm{R}_{8}\) represents hydrogen or n -propyl,
\(\mathrm{R}_{8}\) represents hydrogen or n -propyl,
\(R_{3}\) and \(R_{4}\) each represent hydrogen, methyl, ethyl, methoxy, ethoxy, nitro or halogen, and
\(\mathrm{R}_{1}\) represents hydrogen or \(\mathrm{C}_{1}-\mathrm{C}_{2}\)-alkanoyl.
11. An insecticidal or acaricidal agent containing an insecticidal or acaricidal effective amount of a compound of claim 1 together with a suitable carrier therefor.
order Acarina which comprises applying to the locus of the insecticidal or acaricidal effective amount of a compound of claim 1.

\section*{CERTAN PHYTOFUNGICIDAL N-FURANYL
CARBONYL AND TETRAHYDROFURANYL} CARBONYL, N-(SUBSTITUTED)PHENYL ALANINE Adolf Hubele, Magden, Switzerland, assignor to Clba-Gelgy Corporation, Ardsley, N.Y.
Continuation-inn-part of Ser. No. 563,035, Mar. 28, 1975,
abandoned. This application Jul. 27, 1976, Ser. No sbandoned. This application Jul. 27, 1976, Ser. No. 709,066
Claims priority application Switzerland Apr. Claims priority, application
452/74; Feb. 10, \(1975,1591 / 75\)
U.S. C. 424-285 Cl. \({ }^{2}\) CO7D 307/68; A01N 9/28
1. A compound of the formula

wherein \(R_{1}\) represents methyl, \(\mathbf{R}_{\text {is }}\) is in ortho-position to the
amino group and represents methyl, ethyl or chlorine, -X. \(\stackrel{\text { amino }}{-R_{3} \text { is }}\)
or, when \(\mathbf{Z}\) is oxygen, hydrogen, halogeno, lower alkyl, lower alkoxy, aralkoxy, hydroxy, carboxy, carbo(lower alkyl) or cyano;
\(R_{1}\) by hydroxy or lower alkoxy, unsubstituted or substituted \(R_{2}\) is hydrogen, lower alkyl or alkanoyl of 1 to 7 carbon atoms,
and the pharmaceutically acceptable salts thereof. 17. A pharmaceutical composition for reducing serum cho-
lesterol and triglycerides, which comrises a serum choles lesterol and triglycerides, which comprises a serum choles-terol- and triglyceride-reducing amount of the compound
claim 1 in combination with a pharmaceutically acceptable solid or liquid inert carrier.

BENTI 4,094,992
BENZYLIDENE DERIVATIVES
Jean-Pierre Kaplan, Plessis Robinson; Maurice Jalfre, Paris Cedex, and Don Pierre Rene Lucien Giudicelli, Fontenay Sous Bois, all of France, assignors to Synthelabo, Paris, France
Filed Jul. 16, 1976, Ser. No. 705,938 Claims priority, application France, Aug. 1, 1975, 7524065 U.s. Cl. 424-324 Int. C.2 \({ }^{2}\) C07C 103/29

NOVEL DI-(3'HYDROXYPHENYL)-ALKANE COMPOUNDS, PROCESS OF PREPARATION AND THEIR USE IN MEDICINE
Helmut Schonenberger, Unterhaching; Gerhard Kranzfelder and Helga Schmitt-Wallenborn, both of Munich, all of Ger many, assignors to Klinge Pharma GmbH, Munich, Germany Fany, assignors to May 3, Phar, Ser. No. 793,321
Filed, Germany
Claims priority, application Germany, Dec. 22, 1976, 2658
Int. Cl. \({ }^{2}\) A61K \(31 / 05,31 / 09 ;\) OOTC \(39 / 16,43 / 12\) U.S. Cl. 424. \(341 \mathrm{~A} 1 \mathrm{~K} 31 / 05,31 / 09 ;\) COVC \(39 / 16,43 / 12\) Claims

9 Claims
1. A di-(\(3^{\prime}\)-hydroxyphenyl)-alkane compound of the general formula (l)

PACKAGE OF CONVENIENCE FOOD Sakuichi Sakakibara, Kobe; Ko Sugisama; Takashi Kimura, b of Nara, and Atsushi Yasude Sakai, all of Japan, assignors to of Nara, and Acsushi Yasuda, Saka, all of Japan, assignors to Japan Filed May 12, 1977, Ser. No. 796,343 Claims priority, application Japan, May 14, 1976, 51. Int. Cl. \({ }^{2}\) B65B 29/06 U.S. C. \(426-115\) Int. C. \({ }^{2}\) B65B 29/06

wherein \(\mathbf{R}\) is a straight or branched alkyl of \(1-6\) carbon atoms and \(R^{\prime}\) is hydrogen or methyl.
. A method for treating breast carcinoma in a mammal ing to said mammal a breast-carcinomeously administeramount of the compound of claim 1 .
\(\mathrm{R}_{5}\) represents hydrogen, alkyl of 1 to 3 carbon atoms or halo\(R_{s}\), \(R_{6}\) represents hydrogen or methyl, the total number of
carbon atoms of the substituents \(R_{1}, R_{2}, R_{s}\), and \(R_{\text {s }}\) the phenyl carbon atoms of the substituents \(R_{1}, R_{2}, R_{3}\) and \(R_{6}\) in the phenyl
ring not exceeding 8, \(R^{\prime}\) is hydrogen, methyl or ethyl, and \(R_{4}\) ring not exceeding 8 , \(R^{\prime}\) is hydrogen, methyl or ethyl, and \(R_{a}\)
is 2 -furanyl or 2 -tetrahydrofuranyl which may be substituted by methyl or halogen, with the proviso that the phenyl ring contains a further substituent other than hydrogen if it is substi-
tuted in 2,6 or in 2,6 position by methy and tuted in 2,6 - or in \(2,3,6\)-position by methyl and if at the same
time \(R_{4}\) represents the 2 -furanyl radical and \(-X-R_{3}\) represents the \(\alpha\)-propionic acid methyl ester.
14. A phytofungicidal composition. comprising as active
substance a phytofungicidally effective amount of a substance a phytofungicidally effective amount of a compound
according to claim 1, together with a suitable carrier therefor.

N-cARBOXYMETHYLT)-3-AMINOPROPAN-2-OL
N_CARBOXYMETHYIVATIVES
Hiromu Miurai; Katstaya Ohata; Hiroshi Enomoto; Sboichi Cho- kai; Mitruhiro Machara; Katsubide Saito, and Takayuki Ozad, ail of Kyoto, Japan, assignors to Nippon Shinyaku Co.,
Division of Ser. No. 692,878, Jun. 4, 1976, Pat. No. 4,064,252. This application Jan. 24, 1977, Ser. No. 761,721,
Claims priority, application Japan, Jun. 17, 1975, 50.74014; Jun. 17, 1975, 50.74015 Un. 1t, Int. Cl. \({ }^{2}\) C07C 101/44; A61K 31/195, \(31 / 21\) U.S. Cl. 424-309
1. A compound of the formula:

wherein
\(Z\) is oxygen or sulfur
X is bydrogen, halogeno, lower alkyl, lower alkoxy, car-
\(\mathbf{Y}\), when \(\mathbf{Z}\) is sulfur, is hydrogen, halogeno or lower alkyl, U.S. Cl. 424-324
1. Compound of claim 1

in which one of \(X_{1}\) and \(X_{3}\) is halogen, methyl, or methoxy, and \(X_{2}\) and the other of \(X_{1}\) and \(X_{3}\) are each independently hydro gen, halogen, methyl or methoxy, \(n\) represents an integer from
1 to 10 , and R is \(\mathrm{NH}_{2}, \mathrm{NH}-\left(\mathrm{C}_{3}\right.\) cycloalkyl), NH -phenyl, NH benzyl, NH-(C \(\mathrm{C}_{14}\) alkyl), N -(\(\mathrm{C}_{14}\) alkyl) \({ }_{2}\) or N -(\(\mathrm{C}_{1,4}\) alkyl)-(benzyl), where each benzyl may be substituted by halogen and/or trifluoromethyl.

ETHYNYLBENZENE COMPOUNDS AND DERIVATIVES THEREOF TO TREAT PAIN, FEVER AND
Julius Diamond, Lafayette HMMATIM., Passignor to William \(\mathbf{H}\) Rorer, Inc., Fort Washington, Pa. Division of Ser. No. 574,837, May 14, 1975, which is a continuation of Ser. No. 431,254, Jan. 7, 1974, Pat. No.
\(\mathbf{9 2 3 , 9 1 0 , \text { which is a division of Ser. No. 268,419, Jul. 3, 1972, }}\) Pat. No. 3,852,364. This application Jan. 11, 1977, Ser. No.

\section*{\({ }_{-353}^{\text {Int. }}\)}
U.S. Cl. 424-353 1. A method of treating inflammation, pain or fever in a warm-blooded animal which comprises administering to the
animal an effective amount of an active agent which is a comanimal an effective am

\section*{4,094,993
ETHERS}

Friedrich Karrer, Zofingen, and Saleem Farooq, Aesch, both of Switzerland, assignors to Ciba-Gelgy Corporation, Ardsley N.Y. Filed Aug 18, 1976, Ser No, 715,353 Claims priority, application Switzerland, Aug. 26, 1975, 11036/75; Jul. 20, 1976, \(9281 / 76\)
Int.
I.7. \({ }^{2}\) A01N 9/12; C07C 149/32
U.S. C. \(424-337\)

1 Claim 1. A method for the combatting insects and acarids which comprises applying to the locus thereof an insecticidally and
 Camden, N.J.
ed Dec. 31, 1975, Ser. No. 645,61
U.S. Cl. 426-656
wherein \(R_{2}\) to \(R_{9}\) and \(R_{11}\) to \(R_{18}\) are the same or different, and gen, or a hydroxyl group; and \(R_{1}\) and \(R_{10}\) are the same genf, or a hydroxyl group; and \(R_{1}\) and \(R_{10}\) are the same o
different, and are an alkyl group containing from 1 to 4 carbo atoms, an acetyl group, a phenacyl group, or a benzyl group. \(\stackrel{4,094,999}{ }\)
Murray S. Cohen, Convent Station, N.J., and Donald E. O'Con nell, Marietta, Ohio, assignors to Borg-Warner Corporation Chicago, III. Filed Aug. 8, 1977, Ser. No. 822,599 U.S. C. \({ }^{426-547}\) nt. C1. \({ }^{\text {A2 }}\) A3D \(/ 1 / 04 ;\) A23L \(3 / 00\) tion stabilized by the presence there 1. A food composition stabilized by the presence therein of
a minor proportion sufficient to inhibit oxidation thereof a dialkyl pentaerythritol diphosphite wherein the alkyl group each contain 10-18 carbon atoms.

4,095,000
FOODSTUFF AND FODDER
PROTEIN-SAVING FOODSTUFF AND FODDER
Max Breaner, Basel, Switzerland, assignor to Max Brenner, Basel, Switzerland

Filed May 16, 1975, Ser. No. 578,228 Claims priority, application Switzerland, May 17, 1974, Int. C1.2 \({ }^{2}\) A23J 1/00, 3/00; A61K 37/00; C07C 103/52 U.S. Cl. 426-656 9 Claim the following linked components:
(1) nutritive substances consisting of and derivatives thereof selected from the group consisting of methionine, methionylmethionine, glycylmethionine, glycylglycylmethionine, methionylglycine, lysine, glycy Hysine, isoleucine, tryptophane and threonine; and mixtures of methionine and lysine, and mixtures of methio nine, lysine, leucine, isoleucine, valine, tyrosine, phenylalanine, tryptophane and threonine; and esters and amides of \(\alpha\)-amino- \(\gamma\)-methylmercapto-butyronitrile; and
(2) polyhydroxy compounds selected from the group con sisting of non-reducing disaccharides, oligosaccharides and polysaccharides, all being derived from pentoses and hexoses, derivatives of said polysaccharides which are thereof said polyhydroxy compounds being modified by cyanation or phosgenation;
whereby components (1) and (2) are linked by hydrolyzable carbon atoms which upon hydrolysis are released in the form of carbon dioxide, the bonding from said hydrolyzable carbon atoms to component (1) being to primary or secondary amino groups that constitute part of the amino acid or amino acic
derivative structure, and the bonding from said hydrolyzable carbon atoms to component (2) being to oxygen or nitrogen atoms attached to carbon atoms of said polyhydroxy com pounds, both mutually bonded components being liberated upon hydrolysis at the same time as the carbon dioxide origi nating from the bonding carbon atoms.

Aethod for producing texturized protein in the form of relatively dense protein segment having a unidirectional a. mixing untextured protein material and water protein dough, said dough containing from about 60 to about \(73 \%\) solids;
b. advancing said dough to an extrusion die at a temperature below that at which texturization takes place;
c. continuously extruding said dough in the form of a thin sheet of protein material through said extrusion die while
simultaneously texturizing both surfaces of said as it passes through said die by applying heat to both surfaces of said sheet from a source external to the die walls;
d. passing the surface-texturized extruded sheet directly into a confined treating zone while simultaneously directing a heated gaseous stream at said extruded sheet as it enters eing at pred treating zone, said heated gaseous stream protein material is retain that said extruded thin sheet of distance into said confined treating zone before the shear forces created by said gaseous stream reach sufficient strength to break off a segment of said sheet whereby said unbroken sheet is subjected to the conditions in said conined zone for an extended period of time
breaking off a segment of said extruded sheet with said sid stream, said gaseous stream further propelling said segments through said confined treatment zone, said heated gaseous stream being at a temperature such that the is texturized in said confined zone; passing said texturized protein se
for maintaining back pressure disposed at the discharge end of said confined treating zone; and g. recovering said texturized protein segments.
heat-Curable pulverulent coating agent of A MIXTURE OF COPOLYMERS CONTAINING GLYCIDYL GROUPS AND AN ADDUCT OF ALIPHATIC DICARBOXYLIC ACID AND
2,4,6-TRIS \(\mathbf{N}^{\prime}, \mathrm{N}^{\prime \prime}, \mathbf{N}^{\prime \prime}-\)-DIMETHYLAMINOMETHYL PHENOL
Themistoklis Katsimbas, Hamburg, Germany, assignor to Hoechst Aktiengesellschaft, Frankfourt am Main, Germany Filed Mar. 21, 1975, Ser. No. 560,636 Claims priority, application Germany, May 22, 1974, 2424809
U.S. C. 427-27 12 Claims 1. A pulverulent coating agent comprising a mixture of A. a copolymer which contains glycidyl groups and which is pounds and has a relatively low molecular weight, and B. an adduct of at least one aliphatic dicarboxylic acid, in an amount of from about \(0.8-1.1\) acid groups per glycidy group of the copolymer, characterized in that componen
(A) consists of 80 to 96 percent by weight of copolymers containing epoxide groups and hydroxyl groups, which copolymers have Durran softening points of about \(90^{\circ}\) \(120^{\circ} \mathrm{C}\) and are soluble in organic solvents, of
4 to 28 percent by weight of ethylenically usturated epoxide monomers with 6-12 carbon atoms of the general formula
\(\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{2}\)
\(\mathrm{CH}=\mathrm{C}-\mathrm{R}_{3}-\mathrm{CH}-\mathrm{O}^{\prime} \mathrm{CH}_{2}\)
\(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}=\mathrm{H}\) or \(-\mathrm{CH}_{3}\)
\(\mathrm{R}_{3}=-\underset{\mathrm{O}}{\mathrm{C}} \mathrm{O}-\mathrm{CH}_{2}-\quad\) or

b. 10-96 percent by weight of acrylic acid esters or meth acrylic acid esters of aliphatic saturated monoalcohols with \(1-8\) carbon atoms, and c. up to 70 percent by weight of styrene or vinyltoluene; and saturated straight-chain aliphatic dicarboxylic acid of the formula \(\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{COOH}\), wherein \(n\) is a whole number from 5 to 12 , and \(2,4,6-6\) ris \(\left(N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}-\right.\)-dime-thylaminomethyl)-phenol, and these components of the
adduct can be present in a weight ratio of \(97: 3\) to \(99: 1\). adduct can be present in a weight ratio of \(97: 3\) to \(99: 1\). of

DUPLEX COATING FOR THERMAL AND CORROSION DUPLEX COATING FOR THERMAL
Merle Howard Weatherly, Indianapolis, and Robert Clark Tucker, Jr., Brownsburg, both of Ind., assignors to Union Carbide Corporation, New York, N.Y.
U.S. C1. 427-34

C1. \({ }^{2}\) C23C 7/00; C23D 5/00 6 Clsim
1. Method for producing a duplex coating on a substrate to mpart thermal and corrosion resistance thereto comprising: a. plasma depositing on said substrate as a primary layer a

Irst sublayer wherein the particle size of the powder is less than 44 microns and then depositing a second sublayer or said first sublayer wherein the particle size of the powowder consisting fraction greater than 44 microns using onsisting of nickel alloys, cobalt alloys, iron alloys and mixtures thereof with additions of at least one metal selected from the group consisting of 10 to 50 wt . \% chromium, 5 to \(25 \%\) aluminum, 0.5 to 10 wt . \% of another metal selected from the class consisting of yttrium, rare earth metals, hafnium, tantalum, tungsten, zirconium, platinum, hodium, paladium, and silicon, and said layer havi
plasma depositing an oxide layer on said rough primary layer surface such oxide layer consisting of an oxide taken from the class consisting of zirconia, stabilized zirconia, magnesium zirco
less than \(88 \%\);
atmosphere at a time duplex coating in a non-oxidizing of the components of the primerature to permit sintering sealing of the primary layer.

PROCESS FOR LOW
PROCESS FOR LOW TEMPERATURE COMPOUND SEMICONDUCTOR FII MS Lewis M. Frass, Malibu, and William P. Bleha, Jr., Pacific
Palisades, both of Calif, assignors to Hughes Aircraft ComPalisydes, both of Calif.,
pany, Culver Clty, Calif.
Continuation-in-part of Ser. No. 563,890 , Mar. 31,1975, Continuaston-in-part of Ser. No. 563,890, Mar. 31, 1975,
abandoned. This application Mar. 31, 1977, Ser. No. 783,257

1. A vapor phase controlled processing method for produc ing recrystallized MX films with improved photoelectric prop eries where M is a metal taken from Group II or III Of the rom Group V or VI of the periodic table comprising the steps
(a) depositing an MX compound onto an amorphous sub strate taken from the group comprised of soda-lime glass soda-lime glass over cate glass, and fuse form a thin nilm
a means for film into a reaction chamber equipped with gaseous atmosphere
c) raising the temper, recrystallization tem with an inert gas;
or 3 and \(\mathrm{H}_{2}\) through and \({ }^{2} \mathrm{XH}_{n}\) where \(n\) may be sure ratio is induced and maintained at the MX compound
stoichiometric level while maintaining said recrystallization temperature over a period ranging from 5 to 50 min-
utes; and
(e) subsequently cooling said film by reintroducing an inert temperature. \(\qquad\)
4,095,005
METHOD OF PRODUCING LOW WEAR COATING REINFORCED WITH BRAZING SOLDER FOR USE AS RUBBING SEAL
Japan, assignors to Nissen Motor Compen, both of Yokohama,
Japan, assignors to Nissan Motor Company, Ltd.
Fled Aug. 10, 1976, Ser. No. 13,264
Claims priority, application Japar, Aug. 18, 1975, 50-99455
U.S. Cl. 427-376 B

\section*{}
1. A method of producing a low wear coating useful as
high temperature rubbing contact seal layer on a metal sub strate, the method comprising the steps of:
forming at least one intermediate layer on said substrate by
individually flame spraying a powdered material containing at least a major amount of a wear resistant metal oxide ing at least a major amount of a wear resistant metal oxide
selected from the group consisting of NO and COO optionally with the addition of a minor amount of a solid lubricating material selected from the group consisting of
\(\mathrm{MgF}_{2}, \mathrm{CaF}_{2}, \mathrm{BaF}_{2}, \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{CaB}_{4} \mathrm{O}_{7}\) and PbO \(\mathrm{MaF}_{2}, \mathrm{Car}_{2}, \mathrm{BaF}_{2}, \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{CaB}_{4} \mathrm{O}_{2}\), ant
powdered material used for at least an outmost one said at least one intermediate layer containing from 10 to
50 w \(\%\) of a powder of a brazing solder selected from the \(50 \mathrm{Wt} \%\) of a powder of a brazing solder selected from the group consisting of a nickel b
solder and a silver base solder;
solder and a silver base solder;
forming a surface layer on said
forming a surface layer on said outmost intermediate laye
by flame spraying a powdered material consisting of a major amount of said metal oxide and a minor amount of said lubricating material; and thereafter
heating said substrate with said at least
heating said substrate with said at least one intermediate
layer and said surface layer thereon to a temperature layer and said surface layer thereon to a temperature
about the melting point of said brazing solder thereby to cause said brazing solder to melt and partially permeate into an inmost region of said surface layer.

CADMIUM SSUFIDE FILM
John Francis Jordan, and Curtis Magill Lampkin, both of El John Francis Jordan, and Curtis Magil Lampkin, both of E1
Paso, Tex., assignors to Photon Power, Inc., El Paso, Tex. .S. C1. \(427-427\) Int. C. \({ }^{2}\) H01C \(31 / 00\)
1. The method of forming 14 Claims crystals, comprising the step of spraying a solutmium sulfide a water soluble cadmium salt other than cadmium compriside water soluble organic sulfur containing compound capable of reacting with a cadmium salt in the presence of chloride ions to form cadmium sulfide crystals, and a water soluble chlorine containing compound, other than cadmium chloride, which freely disassociates chloride ions in aqueous solution to catalyze a reaction involving said cadmium salt and said sulfur
containing compound to form a film of said cadmium sulfide crystals on a heated substrate.
1. In a biaxially oriented nonwoven fabric of fibers havin djacent and alternating striped areas of low fiber densitivy and
reas of high fiber density, a majority of the fibers in said low areas of high fiber density, a majority of the fibers in said low
fiber density areas being uniformly distributed therein and oriented in a direction substantially normal to the axis of the striped area and, a majority of the fibers in the high fiber
density area that lies directly adjacent to low fiber density density area that lies directly adjacent to low fiber density areas being uniformly distributed therein and oriented in direction substantially paraliel with the stripes of the low fiber fibers in said low fiber density area are pulled straight thereacross, while a majority of the fibers in said high fiber density area are accordian folded in a manner as to have the fibe said fabric having a machine direction to cross direction tensile strength ratio of less than 2 to 1 .

\section*{4,095,008}

SYNTACTIC FOAM MATRIX BOARD Donald W. Sundstrom, Storrs, and Richard L. Maine, Williman tic, both of Conn., assignors to Rogers Corporation

Filed Aug. 13, 1975, Ser. No. 604,1
Int. Cl.
B32B \(3 / 26,5 / 18\)
U.S. CI. 428-215

BIAXIALLY ORIENTED \(\mathbf{4 , 0 9 5 , 0 0 7}\) Preston F. Marshall, Wallpole, Mass., assignor Company, Boston, Mass. Continuation-in-part of Ser. No. \(\mathbf{5 0 6}, 843\), Sep. 17, 1974, Pat. No. 3,969,561. This application Jul. 12, 1976, Ser. No. 704,582 The portion of the term of this patent subsequent to Jul. 13, 1993, has been disclaimed.
Int. Cl. \({ }^{\text {B }}\) B2B \(5 / 12\)
U.S. C1. 428-113
1. A matrix board for molding printing plates including: a carrier sheet; and
layer of syntactic foam on said carrier sheet, said layer of
syntactic foam including, by weight syntactic foam including, by weight, from 25-50\% ther-
mosetting resin, said thermosetting resin being mosetting resin, said thermosetting resin being not more from \(5-25 \%\) an aqueous latex dispersion binder; said matrix board beeing deformable under pressure of from 25 psi to 125 psi and curable on exposure to heat to form
a matrix board for the molding of printing plates.

3. A matrix board as in claim \(\mathbf{1}\) wherein
said carrier sheet is a relatively thin layer of from 0.004 to
said carrier sheet is a relatively thin layer of from 0.004 to
0.020 inches; and
said syntactic foam layer is a relatively thick layer of from 0.060 to 0.500 inches.
a passivation layer on at least said emission surfaces, said passivation layer being of a material selected from the

group consisting of arsenic sulfide, \(\mathrm{As}_{2} \mathbf{S}_{3}\), arsenic selenide, \(\mathrm{As}_{2} \mathrm{Se}_{3}\), and arsenic telluride, \(\mathrm{As}_{2} \mathrm{Te}_{3}\)

ORIENTED NYLON AND LAMINATES THEREOF Henry G. Schirmer, Spartanburg, S.C., assignor to W. R. Grace \& Co., Duncan, S.C. Continuation-in-part of Ser. No. 535,772, Dec. 22, 1974, abandoned. This application Aug. 2, 1976, Ser. No. 710,511
Int. C. \({ }^{2}\) B28B 3/20; B29C \(1 / 00\); C08L \(77 / 100\); B32B 27/34 U.S. Cl. 428-474 5 Claim

\section*{4,095,010}

GLASS FIBER WOOL BINDER

Wede V. Zellar, and Carl R. Strauss, Newark, Ohio, assignors to Filed Feb. 9, 1977, Ser. No. 767,089 Int. C1.2 \({ }^{2} 32 \mathrm{~B}\) B \(17 / 02\); \(\mathbf{C 0 3 C}\) 25/02; C08L \(61 / 06,89 / 04\) U.S. C. 428-375
1. At least one glass fiber at least a portion 12 Claim which is in contact with a residue produced by removing which is in contact with a residue produced by removing
water from an aqueous composition comprising: (1) a phenolic resole resin, (2) animal bone glue, (3) a sulfite process lignin and (4) dicyandiamide.
7. An aqueous composition comprising: (1) a phenolic resole resin, (2) animal bone glue, (3) a sulfite process lignin, and (4) dicyandiamide.

1. A laminated film article comprising:
(a) a moisture-free layer comprising a blend of 20 to \(80 \%\) by weight of nylon 6 and 80 to \(20 \%\) by weight of nylon 66 ; (b) polymeric layers laminated to each side of said blended nylon layer, said polymeric layers comprising polymers selected from the group consisting of olefin polymers and polymers.
4. A film comprising:
(a) a blend of 20 to \(80 \%\) by weight of nylon 6 with 80 to \(20 \%\) by weight of nylon 66; and,
(b) said film being oriented in at least one direction.

4,095,013
REUSABLE SOLAR CONTROL FILM AND METHOD OF MAKING
Thomas J. Burger, St. Paul, Minn, assignor to Minnesota Min ing and Manufacturing Company, Saint Paul, Minn. Filed May 16, 1977, Ser. No. 7a96,873

6 Claims

\section*{4,095,011}

U.S. C. 428-522 ELECTROLUMINESCENT SEMICONDUCTOR DEVICE Frank Zygmunt Hawrylo, Trenton, and Henry Kressel, Elizabeth, both of N.J., assignors to RCA Corp., New York, N.Y. Filed Jun. 21, 1976, Ser. No. 698,48
1. An electroluminescent semiconductor device comprising a body of III-V semiconductor material having as a constit uent component arsenic, said body having a first surface, a second surface opposite said first surface, side surfaces
substantially perpendicular to said first and second surfaces, said body being capable of emitting electroluminescence from at least one of said side surfaces, and
1. In a solar control sheet material comprising a self-support-
ing transparent film, a transparent-reflective coat of metal
bonded to one face of said film, and a layer of polymeric mate rial protectively overlying said metal coat, said sheet material having particular utility for application to the room side of
windowpanes to reduce light transmission and heat transmiswindowpanes to
sion from outside
sion from outside
the improvement
the improvement comprising, bonded to said product over said
layer of polymeric material, a thin, transparent stratum of plasticized resin composition, said composition consisting essentially of a blend of
1. 100 parts by weight of solvent-soluble copolymer of vinyl onomers, consisting essentially of either
by weight of weight of vinyl chloride and 3-20 parts sisting of of monomers selected from the group con-
or
or vinylidene chloride:acrylonitrile copoly
b. vinylate,
2. 5 to 100 parts by weight of at least one plasticizer for vinyl resins,
. Ito 5 parts by weight of at least one lubricating, chlorinescavenging light stabilizer for vinyl resins, said stabilize essentially of
a. soaps of at least two divalent metals selected from the group consisting essentially of barium, cadmium and zinc, and
4. 5 to 200 parts of at least one tack-controlling, adhesion buildup-inhibiting polymeric modifier selected from the class consisting of polymethylmethacrylate, polyethylme crylate, poly-n-butylmethylmethacrylate, and n-butylme thacrylate: isobutylmethacrylate copolymer,
said stratum being further characterized by adhesion to glass in
the range of \(2-40\) grams per centimeter of width throughout a the range of \(2-40\) grams per centimeter of width throughout a temperature range of \(20^{\circ}-65^{\circ} \mathrm{C}\)., even after exposure to
temperature of \(65^{\circ} \mathrm{C}\). for 2 weeks, whereby said product can be repe being applied to and firmly bonded to utilized in the cycle of PROCESS FOR THE POLYMERIZATION OF \(a\)-OLEFINS after subjected to a wide range of sun exposur a pane, there res for a perid of excessive adhesive buildup, and removed without distortion \\ \section*{4,095,014 \\ \section*{4,095,014 \\ WEAR-RESISTANT ZINC ARTICLES}

Richard
60056
\[
\begin{aligned}
& \text { Filed Jul. 6, 1976, Ser. No. 702,533 } \\
& \text { Itt. Cl.2 } \mathbf{2} \text { B22B } 15 / 00
\end{aligned}
\]
U.S. C1. 428-658
U.S. C. 428-658
1. An article of manufacture which comprises a zinc base metau having a substantially continuous, wear-resistant chro-um-enriched subsurface layer of said zinc base metal immediately below said chromium skin zainc base metal immedicontaining at least about 0.1 percent by weight chromium having a gradually decreasing chromium content in a direction inwardly away from said skin layer, being at least as thick as said skin layer, and having a hardness greater than the hardnes of said zinc base metal below said subsurface layer.

4,095,015
GALVANIC PROCESSES AND ANODES FOR CARRYING THE PROCESSES INTO EFFECT
Oile Lennart Siwersson, Helsingborg, Arne Evert Wall, Landskrona, and Olle Nillsson, Lund, all of Sweden, assignors to AB S. T. Powercell, Helsingborg, Sveden
ion of Ser. No. 594;093, Jul. 8, 1975, abandoned. This application Aug. 2, 1976, Ser. No. 710,643 Claims priority, application Sweden, Jul. 15, 1974, 7409209 U.S. C1. 429-15 Int. Cl. \({ }^{2}\) H01M 8/20 1. A process of counteracting the formation of a passivating
anode coating in the operation of a galvanic primary cell com-
prising an alkaline electrolyte, an anode, a cathode and an electrolyte chamber therebetween which are interconnected via an outer circuit for tapping electric energy, the active iron powder, while the cathode is an oxygen or an air elec-

rode, comprising supplying oxygen in liquid complexed form agent which is an aromatic compound, and complexing the iron ions formed at the anode with a complexing agent for iron
ions. iron io
ions.
 \(\qquad\)

4,095,016
rederick Elias Carrock, Paramus; Peter Janes Perron, Pomp ton Plains, and Ediard August Zulkowsld, Clark, all of N.J., assignors to Dart Industries, Inc., Los Angeles, Callif.
Filed Dec. 15,1076 . Filed Dec. 15, 1976, Ser. No. 750,75
Int. Cl. \({ }^{2}\) C08F 4/66, 10/06
U.S. C1. 526-137
1. In a process for the continuous polymerization of at least \(\begin{array}{r}8 \text { Cladms }\end{array}\) 1. In a process for the continuous polymerization of at least
one \(\alpha\)-olefin monomer having from 2 to 8 carbon atoms per molecule wherein monomer feed and catalyst components are ubstantially continuous fashion as a slurry in liquid monn in a said slurry having a solids content between about 15 and about 50 percent by weight, the improvement which comprises: polymerizing the \(\alpha\)-olefin monomer at a temperature between about \(125^{\circ} F\) and about \(175^{\circ} F\) and at a pressure of at least 150 sia and sufficient to maintain monomer in the liquid phase in
\[
\text { (1) between about } 0.02 \text { and about } 0.3 \text { perce }
\]
based on the \(a\)-olefin monomer feed rate of a modified titanium trichloride component obtained by agitating in the presence of a liquid aromatic hydrocarbon diluent at a temperature of from about \(140^{\circ} \mathrm{F}\) to about \(176^{\circ} \mathrm{Fa}\) titaa value between about 1 and about 5 , with sufficient phosphorus oxitrichloride to provide a titanium to phosphorus mole ratio of about \(3: 1\) to about \(10: 1\) in the modified component, separating said component from the diluent and drying said component;
(2) an organoaluminum compound selected from aluminum trialkyls or dialkyl aluminum halides or mixtures thereof in amounts from about 1.9 moles to about 4 moles per mole of titanium chloride, and
(3) between about 40 and about 150 ppm by weight based on the \(\alpha\)-olefin monomer feed rate of a trialkyltrithiophosphite, wherein each of the alkyl groups contain from 1 to 20 carbon atoms.

VINYL MONOMER POLYMERIZATION OR COPOLYMERIZATION CATALYZED BY ORGANOALUMINUM-ORGANOPHOSPHINE-METAL SALT OF A BETA-DIKETONE CATALYST SYSTEM Henry L. Hsieh, Bartlesville, Okla, assignor to Phillips Petroleum Company, Bartiesille, Okia.
Division of Ser. No. 577,137, May 13, 1975, Pat. No. 4,020,018, which is a dirisislon of Ser. No. 416,816, Nor. 19, 1973, Pat. No.
\(3,925,317\). This application Jan. 21, 1977, Ser. No. 761,081

3,925,317. This application Jan. 21, 197,
U.S. Cl. 526-188 22 Claims 1. A process for the polymerization of at least one vinyl selected from the group consisting of vinyl esters, inyl ethers, and vinyl ketones, represented by
\[
\mathrm{CH}_{2}=\stackrel{\mathrm{R}^{\mathrm{S}}}{\mathrm{C}}-\mathrm{Y}
\]
wherein \(\mathbf{R}^{\mathbf{s}}\) represents hydrogen or an alkyl, aryl, alkaryl, o aralkyl, radical containing up to 8 carbon atoms, and \(\mathbf{Y}\) is
wherein \(\mathbf{R}^{6}\) represents an alkyl, aryl, alkaryl, or aralkyl, radica containing up to 20 carbon atoms under polymerization condiions, employing a catalyst system comprising (I) a hydrocar on aluminum compound \(\mathrm{R}_{n} \mathrm{AlH}_{m}\) wherein each R is a hydro carbon radical, \(n\) is an incesat \(n+m\) equals 3 , (II) a triorganohosphine compound \(\mathbf{R}^{\prime}, \mathbf{P}\) wherein \(\mathbf{R}^{\prime}\) is hydrocarbon or al koxy-substituted hydrocarbon, and (III) a beta-diketone substantially as the metal salt of said beta-diketone, in catalytically effective ratios, wherein said metal of said (III) is beryllium, magnesium calcium, stronium, barim, boron, aluminum, allium, indium, thallium, german or mercury.

N,N-BIS-HYDROXYALKYL-3,5-DI-T-BUTYL ANLINES ACCELERATORS FOR REDOX POLYMERIZATION OF rmann both of Starnb
Jochum, Hechendort, all of Germany, assignors to ESPE Fabrik Pharmazeutischer Praparate GmbH, Germany Filed Dec. 17, 1976, Ser. No. 751,726
Claims priority, application Switzerland, Dec. 24, 1975, 6787/7
\[
\begin{aligned}
& \text { Int. Cl. }{ }^{26-21}
\end{aligned}
\]
\[
1.2 \text { C08F 4/40, 20/04, 20/10, 20/14 }
\]
1. In a method for the redox polymerian 5 Claims compounds, the improvement which comprises using as the accelerator in said polymerization \(\mathbf{N}, \mathbf{N}\)-bis-hyd
di-t-butyl anilines having the structural formula

wherein \(\mathbf{R}_{1}\) and \(\mathbf{R}_{2}\) are the same or different and are \(H\) or a lower alkyl group having 1 to 4 carbon atoms.

FREE RADICAL \(4,095,019\) (UTILIZING NOVEL INITIATORS Senneth H. Markiewitz, and Alfred J. Restaino, both of WIIington, Del., assignors to ICI Americas Inc., Wilmington,
Del. Filed Apr. 5, 1976, Ser. No. 673,539 U.S. C. \({ }^{\text {Int. Cl. }}{ }^{2}\) C08F \(\mathbf{2 1 5}\) 4/00, 20/70, 26/00, \(116 / 0027\) Claim 1. A method of polymerizing a monomer composition containing one or more ethylenically unsaturated compounds initiating polymerization by contacting the composition with an effective amount of dissolved initiating compound of the formula \(\mathrm{R}_{1}-\mathrm{N}-\left(\mathrm{CH}_{2} \mathrm{COOH}\right)_{2}\) where \(\mathrm{R}_{1}\) is substituted or unsubstituted aryl radical, provided that the ethylenically unsaturated compounds do not contain any group with which the acid group of the initiator will preferentially react chem cally.

4,095,020
PROCESS FOR CONTROLLED PHASE TRANSFORMATION OF ALPHA PHASE OF
POLY(VINYLIDENE FLUORIDE) TO THE GAMMA
Pilliam M. Prest Jr PHASE Darid J. Luca, Marion Iliam M. Prest, Jr., Webster, and David J. Luca, Marion,
both of N.Y., assignors to Xerox Corporation, Stamford, Filed Feb. 25, 1977, Ser. No. 772,069
1. A process for enhancement in the electret behavior of poly(vinylidene fluoride), said process comprising
(a) providing a sample of poly(vinylidene fluoride), said sample comprising predominately the alpha and/or beta phase of said polymer;
contacting said sample with a phase transformation agonolymer having at least one siloxane segment and at least one oxyalkylene segment
he siloxane segment of said block copolymer comprising at least one trifunctional silicon atom and at least three difunctional silicon atoms,
he trifunctional silicon atom being bonded to three oxygens and a single monovalent hydrocarbon radical and joined to the
the difunctional silicon atoms having bonded thereto two morval hitcon atoms having bonded. thereto two segment of the block copolymer
he oxyalkylene segment of the block copolymer comprising at least five oxyalkylene groups bonded to one another by oxycarbon bonds and bonded at one end to the siloxane segment of the copolymer and encapped at the other end with a monoether radical
(c) heating the sample of poly(vinylidene fluoride) either號 hereby the temperature
below the point at which substantially is elevated to \(30 \mathrm{~K}^{*}\) he sample is melted and thereafter allowed to phase of rate of less than about \(5 \mathrm{~K}^{\circ}\) per minued to increase at region of the polymer \(5 \mathrm{~K}^{\bullet}\) per minute through the melt region of the polymer to a temperature about \(\mathrm{SK}^{\bullet}\) in (d) cooling the sample sufficiently to result in its recrystallization to the gamma phase of the polymer.

4,095,021
N-METHYCARBAMOYLOXYMETHYL OR N-METHYL-CARBAMOYLOXYMETHYL-7.[2-CARBOX-THIEN-2-YLLACETAMIDO|CEPH-3-EM-4L OR aCIDS AND DERIVATIVES THEREOF and Gordon Ian Gregory, Chalfont St. Peter, all of England, assignors to Glaxo Laboratories Limited, Greenford, England Division of Ser. No. 533,451, Dec. 16, 1974, abandoned. This Claims priority, application United Kingdom, Dec. 21, 1973, 59517/73
U.S. Cl. 544-22 C1. \({ }^{2}\) C07D 501/34; A61K 31/545
.S. C. 544 22 4 Claims 1. A compound selected from the group consisting of a
1.
cephalosporin antibiotic of the formula
\[
\text { R. }\left.\right|_{\mathrm{O} \cdot \mathrm{CO}} ^{\text {R }}
\]

\section*{wherein}
\(\mathbf{R}\) is thienyl or furyl; and
\(\mathbf{R}^{\prime}\) is hydrogen or methyl and a physiologically acceptable salt, ester or 1 -oxide thereof.

PRODUCTION OF BIS-(MORPHOLINO-N-ALKYL)
Michael E. Brennan; Philip H. Moss, and Ernest L. Yeakey, all of Austin, Tex., assignors to Texaco Development CorporaHion, New York, N.Y.
Division of Ser. No. 583,014, Jun. 2, 1975, Pat. No. 4,026,935. This application Apr. 23, 1976, Ser. No. 679,590
U.S. C. \(544-87\) Int. C1. \({ }^{2}\) C07D 265/28

13 Clalms
1. A process for producing a bis-(morpholino-N-alkyl) ether compound from the corresponding N-(hydroxyalkyl)morpholine compound, said N -(hydroxyalky)morpholine compound having the formula:

\section*{-}
wherein \(R\) is a straight chain or a branched chain alkyl radical of from 2 to 10 carbon atoms, \(\mathrm{R}^{\prime}\) is a lower alkyl radical, and n is an integer from 0 to 4 comprising the steps of和tacting said \(N\)-(hydroxyalkyl)morpholine compound with a catalytically efrective amounc the group consisting of
taining substance selected from then acidic metal phosphates, phosphoric acids and their anhydrides, or phosphorous acids and their anhydrides, alkyl or aryl phosphate esters, alkyl or aryl phosphite esters, alkyl or aryl substituted phosphorous and phosphoric acids, alkali metal monosalts of phosphoric acid, the thioanalogs of the foregoing, phosphoric acid-impregnated
silicas having from about 10 to about 30 wt . \% phosphoric acid and mixtures thereof, at a temperature of from about \(200^{\circ} \mathrm{C}\) to about \(300^{\circ} \mathrm{C}\) under a pressure sufficient to maintain the mixture substantially in liquid phase; and
recovering said bis-(morpholino- N -alkyl) ether compound from the reaction mixture.

6-METHOXY-N-VANILLYLIDENE-4-CHROMANAMINE G-Merge C. Wright, and Marvin M. Goldenberg, both of Norwich,
N.Y., assignors to Morton-Norwich Products, Inc., Norwich, Filed Jul. 1, 1977, Ser. No. 812,105 Int. Cl. \({ }^{2}\) C07D 311/68
U.S. Cl. 542-422 1 Claim 1. The compound 6 -methoxy-N-vanillylidene-4-chromana mine.

\section*{4,095,024}

PROCESS FOR THE MANUGACTURE OF 1-ARYL-3-CARBOXYPYRAZOLID-5-ONES Ian George Cameron Fleming, and Raymond Vincent Heavon Imperia Chemical Industries Limited, London, England Claims priority, application United Kingdom, Jan. 31, 1975, 4291/75
U.S. Cl. 548-367 Int. Cl. \({ }^{2}\) C07D 231/08
U.S. Cl. 548-367 Fleming et al

(1)
wherein \(\mathbf{R}^{1}\) and \(\mathbf{R}^{2}\) represent hydrogen and \(\mathbf{R}\) represents phenyl; phenyl substituted with a member of the group consisiing of methyl, chloro, nitro, carboxy and sulpho; naphthyl; sulphonaphthyl; nitro-disulphostilbenyl; diphenyl; diphenylamine; diphenyloxide; diphenyl sulphide; diphenylethane and
their mono- or di-sulphonated derivatives which comprises heating, in an aqueous medium and in the presence of an acidbinding agent, a mixture of a hydrazine of the formula R.NH.NH \({ }_{2}\) with an ester of the formula:

wherein \(R_{3}\) is an alkyl, cycloalkyl, aralkyl or aryl group.

4,095,025
AZOL-4ACRYLIC ACID AND
DERIVATIVES
Robert Anthony Newberry, Bourne End, England, assignor to John Wyeth \& Brother Limited, Maidenhead, Engla Filed Nov. 30, 1971, Ser. No. 203,458 Claims prisi/70
U.S. C. 548-378

Int. Cl. \({ }^{2}\) CO7D 231/12
U.S. C. . compound having the formula

in which Ar and Ar \({ }^{1}\) are aryl radicals selected from the grou consisting of phenyl, halophenyl, lower alkyl phenyl, lower alkoxyphenyl, dimethoxyphenyl, hydroxyphenyl, nitrophenyl,
di-(lower alkyl)aminophenyl, trifuoromethylphenyl, methyl thiophenyl, furyl, thienyl and pyrryl with the proviso that a east one of Ar and Ar is phenyl or substined phenyl; and is a member of the group consisting of hydroxy, lower alkoxy and amido.
\(\qquad\)
4,095,026
ACTIVITY
lands, asaignors to U.S. Philips Corporath of Weesp, Nether
Division of Ser. No. 547,991, Feb. 7 , 19975, Pat. No. 3,991,073, Which is a continuation of Ser. No. 329,690, Feb. 5, 1973, Claims priorty, application Netherlands, Feb. 9, 1972 7201674

19 Claims
U.S. C. 548-379
1. A compound of the formula

wherein
\(A\) is phenyl, phenyl substituted by 1 or 2 substituents selected from the group consisting of halogen, cyano, alkyl of from to 4 carbon atoms and may be substituted by halogen, cycloalkyl, alkoxy of from 1 to 4 carbon atoms, alkylthio of from 1 to to carbon atoms and amino substituted by 10 2 alkyls of from 1 to 4 carbon atoms or thienyl which may
is phenyl, phenyl substituted by from 1 to 3 substitue selected from the group consisting of a halogen atom, alkoxy consisting of from 1 to 4 carbon atoms, alkyl of from 1 to 4 carbon atoms and may be substituted by halo gen, cycloalkyl, thioalkyl of from 1 to 4 carbon atom sulfonylalkyl of from 1 to 4 carbon atoms, dioxy alkylen alkyls each of from 1 to 4 carbon atoms furyl or thieny which may be substituted by halogen or lower alkyl,
\(\mathrm{R}_{1}\) is halogen, alkoxy of from 1 to 4 carbon atoms, alkyl of from 1 to 4 carbon atoms and may be substituted by halo gen, cycloalkyl, thioalkyl of from 1 to 4 carbon atoms, sulfonylalkyl of from 1 to 4 carbon atoms, cyano, nitro or amino group substituted by 1 or 2 alkyls,
n is 1 or 2 , with the provisio that when A represents a disubsubstituents represented by \(\mathbf{R}_{1}\) are not attached to the 2 and 6 positions of the phenyl group to which they are attached.

4,095,027
2-CARBALKOXY-2'-AMINOCARBONYLDIPHENYL SULFIDES
Mehta, and Law
SULFIDES Nariman Bomanshaw Mehta, and Lawrence Edward Brieaddy, both of Ralelgh, N.C., sssignors to Burronghs Wellcome Co. Division of Ser. No. 597,697, Jul. 21, 1975, Pat. No. 3,997,540.

This application Sep. 23, 1976, Ser. No. 725,923
Int. C1.2 CO7C 149/41
U.S. C. \(560-18\)

10 Claims
1. The compound of the formula

where R and \(\mathrm{R}^{1}\) are the same or different and are each hydrogen or lower alkyl and ALK is alkyl of 1 to 4 carbon atoms, in
the above lower alkyl has 1 to 4 carbon atoms.
\(4,095,028\)
SUBSTITUTED DIOXAMIC ACID ESTERS Charles M. Hall, and John B. Wright, both of Kalamazoo, Division of Ser. No 382762 , which is a contion 382,762 , Jul. 26, 1973, Pat. No. 3,993,679, which is a continuation-in-part of Ser. No. 317,005, Dec. 20,
U.S. C. 560 Int. C. \({ }^{2}\) C07C 125/00; A61K 31/24
U.S. Cl. \(560-44\)
1. A compound of the formula

13 Chims

wherein \(R\) is alkyl of one to three carbon atoms, inclusive; \(Z\) is rifluoromethyl or
wherein D is hydrogen or alkyl of one to three carbon atoms, inclusive; Y is hydrogen, methyl or chloro, with the proviso 10. \(\mathbf{~ W h e n ~} \mathrm{Z}\) is trifluoromethyl, Y is chloro.
10. Compounds of the formula

wherein \(\mathbf{R}\) is selected from the group consisting of, alkyl of \(Z\) is selected from thon atoms
is selected from the group consisting of hydrogen, alkyl of
from one to three carbon atoms, inclusive, alky of from one to three carbon atoms, inclusive, alkoxy of from
one to three carbon atoms, inclusive, fluoro, chloro, and bromo
A compound of the formula

wherein \(R\) is alkyl of one to three carbon atoms, inclusive.
4,095,029

2-HYDROXY-3-ALKYLSULFOXYPROPYL-1 ESTERS OF ARENE POLYCARBOXYLIC ACIDS Eliss K. Fields, River Forest, III, essignor to Standard Oil Company (Indiana), Chicago, III.
led Jan. 17, 1977, Ser. No. 760,013
U.S. Cl. \(560-87{ }_{\text {1. Poly }}(2\)-hydroxy- 3 -alkylsulfoxypropyl-1), esters of arene 1. Poiy (2-bydroxy-3-alk ylisufoxypropyl-1), esters of arene
polycarboxylic acids wherein the said esters are of the formula
\[
\begin{gathered}
\mathrm{R}-\left(\mathrm{COOCH}_{2} \mathrm{CHCH}_{2} \mathrm{SR}^{\prime}\right)_{n} \\
\mathrm{OH}
\end{gathered}
\]
wherein \(n\) is 2 to \(6, R\) is an \(n\)-valent radical derived from wherein \(R\) can be substituted by nitro, halogen and alkoxy of 1 wherein R can be substivted by nitro, halogen and alk coxy on
oo 12 carbon atoms and \(\mathrm{R}^{\prime}\) is selected from the group consisting of alkyl moieties containing from 1 to 22 carbon atoms, and aralkyl moieties, alkylated aryl moieties and cycloalkyl moi-
ries containing 4 to 40 carbon atoms, the ring radicals of said moieties being selected from the group consisting of phenyl, biphenyl and cyclohexyl radicals, where \(R^{\prime}\) can be substituted with nitro, halogen and alkoxy of 1 to 12 carbon atoms.

ISOMERIZATION OF DIACYLOXYOLEFINS Paul R. Stapp, Bartlesrille, Olla,., assignor to Phillips Petro leum Company, Bartlesrille, Okla
\[
\begin{aligned}
& \text { Filed Jan. 21, 1977, Ser. No. } 761,083 \\
& \text { t. C. }{ }^{2} \text { Co7C } 67 / 28,69 / 02,69 / 16,69 / 7
\end{aligned}
\]
U.S. Cl. \(560-100\)
1. A process comprising
producing a mixture by mixing at least one diacyloryolefin
roducing a mixture by mixing at least one diacyloxyolefin
represented by the general fomulas I and II as follows

and

wherein \(R\) is hydrogen or an alkyl radical of from 1-4 U.S. Cl. 526-11.1
carbon atoms, and wherein \(R^{\prime}\) and \(R^{\prime \prime}\) can be the same or 1. A method for preparing a photosensitive polymeric 7 Claims different and can be \(\mathbf{R}\) or an aryl radical of from \(6-10\) rial possessing photoelectric properties comprising reacting in carbon atoms, and wherein at least one of said R's at- a medium of an organic solvent an aromatic secondary amine tached to the carbon atoms numbered 1 and 4 in said or mixture thereof with a heterocyclic secondary amine, witt. formulas I and II is hydrogen;
a reagent selected from the group consisting of an alkali acid.

PHOTOSENSITIVE POLYMMERIC MATERIAL AND ELECTROPHOTOMETRIC MATERIAL PREPARED BY REACTING SECONDARY AROMATIC AMINE WITH
VINYL ALKYLETHER OR VINYL ACETATE IN THE VINYL ALKYLETHER OR VINYL ACETATE IN THE Ekaterine EATALYST
Ekaterina Egorovas Sirotkinal, prospekt Lenina, 87, kr. 6;
Vadim Petroorich Lopatinsky, proppolt Lenine
 Viktor Dmitrierich Fulimonor, pilitsa Usova, \(25 \mathrm{~b}, \mathrm{kV}\), F; Rita
Moiseerna Kogin, ulitsa Vershinina, 37, kv. 205; Vyachesiav Dmitrievich Pirogor, Studgorodok, 2, kr. B; Sofya Ivanoma Kudinova, Komsomolsky prospekt, 39/2, kV. 6; Ljubov Ser(I) geevna Sizova, ulitsa Osipenko, 31, kv. 215; Sretlana Stepa
 Tselchanovskaya, poselok Sputnik 8, kr. 316, all of Tomsk Jonsa-Donatos Bronyaus Siddravichua, Mlitsa R. Charno, 1 , kv. 48, Vilhjus; Larisa Vasilierna Randina, prospekt Lenina
30, Tomsk; Svetlana Leonidovna Bocharova, prospekt Lenina 30, Tomsk; Svetiana Leonidovna Bocharova, prospekt Lenina
30, Tomsk; Galina Petrovna Gulyaera, prospekt Lenina
30, Tomsk; Raisa Ivanovna Bondarenko, prospekt Lenina 30, Tomsk; Galina Ivanovna Rybalko, ulittan Zhirmanu, \(20 \mathrm{kv}\). 82,
Vinjus, and Yanina Antono Adomanite, nlitse Antoke, Vilinjus, and Yanina Antono Adomanite, ulitsa Antokaline, 96
kv. 75, Vilijys, all of U.S. \(R\).
application Jan. 31, 1975, Ser. No. 546,187
Int. Cl. \({ }^{2}\) Co8F \(7 / 12\); C08J 3/00
metal, an alkaline earth metal and an ammonium salt of a carboxylic acid represented by the general formulas
\[
\stackrel{\mathrm{O}}{ }, \mathrm{O}-\mathrm{C}-\mathrm{OH}_{\mathrm{R}^{\prime \prime}-\mathrm{R}^{\mathrm{C}}-\mathrm{OH}}^{\mathrm{O}}
\]
wherein \(R^{\prime}\) and \(R^{\prime \prime}\) are as defined above, and
polar diluent having a dielectric constant of at least 10 when measured at a temperature ranging from \(20^{\circ} \mathrm{C}\). to \(30^{\circ} \mathrm{C}\). and having no -OH groups so that the diacyloxyolefin is isomerized wherein the mixture is under suff-
cient pressure to maintain the mixture predominantly in the liquid phase.
\(\qquad\)
PERFUMED COPOLYMERS OF ETHYLENE AND and Jocol
U.S. C1. 526-1

I Feb. 8, 1977, Ser. No. 766,631
Int. Cl. \({ }^{2}\) Co8K \(5 / 00\)
1. A thermoplastic resin body consisting essentially of 3 Claims thermoplastic copolymer of ethylene and about 6 to \(60 \%\) by weight of a polar vinyl monomer selected from the class consisting of
(a) vinyl acetate;
(b) ethyl acrylate;
(c) methyl acrylate;
(d) butyl acrylate; and
(e) acrylic acid and about 1 to \(30 \%\) by weight of perfume oil
a medium of an organic solvent an aromatic secondary amine a vinyl ether of an aliphatic alcohol in the presence of a strong

\title{
4,095,033
}

PROCESS FOR THE POLYMERIZATION OF Friedrich-Withelm CYCLOOLEFINS Friedrich-Wineim Kuepper, Marl, Germany, assignor to Che-
mische Werke Hees mische Werke Huels Aktiengesellischaft, Marl, Germany
Filed Mar. 15, 1977, Ser. No. 777,798 Fluims priority, Maplication Cermany, Apr. 1, 1976, 2613999 U.S. Cl. 526-90 Int. C. \({ }^{2}\) C08F 4/22 10 Claims 1. In a process for the polymerization of a cycloolefin monogated double bonds in the ring with the or more nol of a catayst consisting of tungsten hexachloride and a cocatalyst,
the improvement which comprises employing cis,trans-1,5cyclodecadiene as the cocatalyst in a molar ratio to tungsten hexachloride of at least \(2: 1\).

\section*{4,095,034}
\(\alpha\)-NAPHANURETURE OF
Dietrich Mangold, Neckargemuend; Karl-Heinz Koenig, Frankenthal, and Christian Reltel, Heldelberg, all of Germany,
assignors to BASF Aktiengesellschath, Ludwigshafen am asslgnors to BASF Aktiengesellischatt, Ludwi
Rhein, Germany Cleims priority, application Germany, May 2, 1975, 2519584 int. Cl. \({ }^{2}\) C07C 125/06 1. A process for the manufacture of \(\alpha\)-naphthyl-N-methylcarbamate by the reaction of methylcarbamyl chloride and
\(\alpha\)-naphthol containing \(\beta\)-naphthol as an impurity, which comprises reacting methylcarbamyl chloride, which is essentially free from phosgene and hydrogen chloride, in the absence of an acid-binding agent, with \(\alpha\)-naphthol containing \(\beta\)-naphthol as an impurity at a temperature in the range of \(60^{\circ}\) to \(130^{\circ} \mathrm{C}\) in, as solvent, cumene, the starting concentration of said naphthol in the cumene being in the range of 20 to \(40 \%\) by weight, based
on the cumene, and cooling the reaction mixture to precipitate the \(\alpha\)-naphthyl-N-methylcarbamate as a pure crystalline solid, the \(\beta\)-naphthyl-N-methylcarbamate formed in the reaction remaining in solution in the cumene when the reaction mixture is cooled.

\section*{ALIGOMERIC POL,}

\section*{ALIGOMERIC POLYACRYLATES}

Vincent Lamberti, Upper Saddle River, and Chester R. Willis Mapleshade, both of N.J., assignors to Lever Brothers Company, New York, N.Y.
Division of Ser. No. 461,060, Apr. 15, 1974, Pat. No. 3,922,230, which is a continustion of Ser. No. 169,101, Aug. 4, 1917, Int. Cl. \({ }^{2}\) COTC 69/60
U.S. CI. \(560-180\)
\(\qquad\) U.S. Cl. \(\mathbf{3}\) Claims
1. An oligomeric polyacrylate having an average molecular
weight of greater than about 500 and less than about 10,000 and weight of greater than about 500 and less than about 10,000 and a formula represented by:
\[
\mathrm{R}_{1}\left(\begin{array}{l}
\mathrm{R}_{3} \\
1 \\
- \\
1 \\
\mathrm{COOM}
\end{array}\right)_{N}
\]
wherein N is a whole number interger, \(\mathbf{R}_{1}\), and \(\mathrm{R}_{2}\) are moieties which do not impair biodegradabiilty of the molecule and ar selected from the group consisting of biodegradable hydroxy
hydrogen and alkyl groups having from one to six carbon toms and M is selected from the group consisting of hydro gen, alkali metals, ammonium and substituted ammonium catigens.
ons

4,095,036
Com W. Yankee, Portage, Mich, assignor to The Upjohn Companay, Kalamazoo, Micb.
Which is a continuution. \(\mathbf{5}\). -part of Ser. 29, 1974, abandoned, which is a continuantion. in npprat of Ser. No. 299,312, Sep. 15,
1972, abandoned. This application Feb. 23, 1976, Ser. No.
\[
\begin{aligned}
& \text { Int. Cl. }{ }^{600,307 \mathrm{C}} 172 / 00
\end{aligned}
\]
U.S. Cl. \(560-121\)
1. An optically active compound of the formula

9 Claims

wherein \(R_{4}, R_{5}\), and \(R_{\text {, are }}\) hydrogen or methyl, being the same or different;
herein \(R_{13}\) is hydrogen, alkyl of one to 10 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, or to 4 carbon atoms, inclusive; including the lower alkanoates thereof, and the pharmacologically acceptable salts thereof wherein \(R_{13}\) is hydrogen.

METHOD FOR THE OXID,
I FOR THE OXIDATION OF A CONJUGATED Paul R. Stapp, Bartlesville, Okila, assignor to Phillips Petro-

U.S. Cl. 560-246
1. A method for producing diacyloxyalkenes comprising: reacting a conjugated diolefin with oxygen and at least one compound selected from the group consisting of a carboxconsisting essentially of a compound of bismuth, an alkali metal compound and a source of nitrate ion wherein the conjugated diolefin is selected from unsubstituted and substituted acyclic and cyclic compounds wherein the
number of carbon atoms in the conjugated diofein
from about 4 to about 16 , and the substituents are selected
from the group consisting of \(\mathrm{F}-\mathrm{Cl}-, \mathrm{Br}-\mathrm{I}-, \mathrm{C}=\mathrm{N}\) from the group consisting of \(\mathrm{F}-, \mathrm{Cl}-, \mathrm{Br}-\mathrm{I}-, \mathrm{C}=\mathrm{N}\) \(\stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{C}-\mathrm{O}-\mathrm{R}^{\prime}\),
and monovalent hydrocarbyl radicals of up to 12 carbon atoms; \(-\mathrm{R}^{\prime}\) is selected from the group consisting of -H , alky and aryl radicals of up to 10 carbon atoms; the carboxylic aci and carboxylic acid anhydrides are selected from the group consisting of mono and dicarboxylic aliphatic and aromatic
acids and acid anhydrides having from about 2 to about 18 acids and acid anhydrides having
carbon atoms per molecule; the bismuth compound is selected from the group consisting of oxides, nitrates, halides and mixtures thereof; the alkali metal compound is selected from the group consisting of halide, carboxylate, oxide, nitrate and mixtures thereof, and the source of nitrate ion is provided by an
inorganic compound in which the cationic portion of the cominorganic compound in which the cationic portion of the com-
pound is essentially inert to the oxidizing conditions employed if said cationic portion is other than bismuth or an alkali metal. 1.

4,095,038
OPTICALLY ACTIVE CYCLOHEXANE DERIVATIVES Walter Boguth, Riehen; Hans Georg Wiibelm Leueuberger, Arlesheim; Hans Johann May Rell, Rodersdorf, all of SwitzerMand, assignors to Hoffmann-La Roche Inc., Nutley, N.J. Division of Ser. No. 601,770, Ang. 4, 1975, Pat. No. 3, \(388,205\).
This application Jul. 20, 1976, Ser. No. 707, 146 This application Jul. 20, 1976, Ser. No. 707,146 1974 Claims priority, appllication Switzerland, Aug. 21, 1974,
1434/74; Nor. 1, 1974, 14674/74; Jul. 15, 1975, 9303/75 13 \({ }^{2}\) Int. Cl. \({ }^{2}\) C07C \(175 / 00\)
U.S. C. \(\mathbf{5 6 0 - 2 5 5}\) of the formula
(
wherein \(\mathrm{R}_{3}\) is phenyl, X is halogen and \(n\) is an integer from 0 to
POWER CABLE WITH IMPROVED FILLING Paul F. Thompson, Millington, NJND Corporation, Greenwich, Conn.
\[
\text { U.S. Cl. } 174-23 \mathrm{C}
\]
\[
\begin{aligned}
& \text { on, Greenwich, Conn. } \\
& \text { Filed Apr. 16, 1976, Ser. No. } 677,531 \\
& \text { Int. Cl. } \mathbf{~ H 0 1 B ~} 7 / 28,7 / 18
\end{aligned}
\]

1. A high voltage, power transmission cable including a conductor surrounded by insulation material, a filler in contac with the conductor on the outside thereof and in any interstice material, the filler being a low molecular weight isobutylen material, the filler being a low molecular weight isobutylen
rubber compounded with sufficient electrically conductive carbon to make the filler semi-conducting and of a putty-lik consistency with good adhesiveness to the conductor and the insulation material at room temperature, the electrically co ductive carbon being greater than \(29 \%\) by weight of the filier,
the filler having retention of its flexibility and adhesiveness in spite of repeated heating and cooling resulting from load c cling of the high voltage power transmission cable, said filler contacting with the conductor and insulating material and preventing migration of moisture engthwise along the con-
ductor and insulating material, the filler consisting essentially of the isobutylene rubber, and the electrically conductive material and possible trace materials.

GAS INSULATED TRANSMISSION LINE HAVING LOW INDUCTANCE INTERCALATED SHEATH Alan H. Cookson, Southboro, Mass., assignor to W
Electric Corp., Pittsburgh, Pa. Filed Nor. 10, 1976, Ser. No. 740,445
U.S. C. \(174-28\)

Int. C1. \({ }^{2}\) H01B 9/02
8 Claims U.S. Cl. 174-28

A gas insulated transmission line comprising
n elongated cylindrical outer sheath having a radial inner
a elongated cyildrias;
radius;
an elongated, cylindrical inner conductor disposed within
said outer sheath, said inner conductor having a radial said outer sheath, said inner conductor having a radial
outer radius;
an insulating gas disposed within said outer sheath, said insulating gas electrically insulating said inner conductor from said outer sheath; and
at least one spacer assembly disposed within said outer sheath, said spacer assembly insulatably supporting saic assembly comprising:
a first member having a radial shape defined along its radia extremities by an inner radius substantially the same a said inner conductor outer radius and by an outer radiu
being substantially the same as said outer sheath inner radius, said first member along its inner radial extremity extending for an arc distance of \(180^{\circ}\), said first member being disposed intermediate said inner conductor and said
outer sheath, said first member inner radial extremity being positioned adjacent said inner conductor, said first member having a pair of cavities therein extending inwardly from said outer radial extremity;
second member having a radial shape defined along its radial extremities by an inner radius substantially the same
as said inner conductor outer radius and by an outer radius as said inner conductor outer radius and by an octer radius ber being disposed intermediate said inner conductor and said outer sheath, said second member inner radial extremity extending for an arc distance of \(180^{\circ}\) and being positioned adjacent said inner conductor, said first and second nember outer radial extres curved plate having inne
defined by an inner radius substantially the same as said second member outer radius and by an outer radius sub-
stantially tantially the same as said outer sheath inner radius, said plate being positioned intermediate said second memer
and said outer sheath, said plate having an inwardly projecting nub at each circumferential end thereof, said plate circumferentially extending beyond said second member outer radial extremity to said first member cavities such es, said plate cecuposed wind said hrst nember cavimember

\begin{tabular}{lll}
Filed Jun. 21, 1977, Ser. No. 808,707 \\
Int. C.' & \\
\(-2801 B\) & \\
\hline
\end{tabular}
MULTIPLE PART INSLATOR FOR FLEXIBLE
GAS-INSULATED TRANSMISSION GAS-INSULATED TRANSMISSION LINE CABLE dale, both of Pa, assignors to Electric Power Research Institute, Palo Alto, Calif
1. An insulator support disk for supporting the central conductor of a gas-insulated transmission line within an outer drounded housing which is coextensive with said central conidentical sid insulator support disk consisting of a plurality of identical pie-shaped segments, each extending over an angle
less than \(180^{\circ}\) around said central conductor, and central avial around said central conductor, and each having a central axial extending rim for gripping the central conductor
of a transmission line, an axially extending outer rim for gripping the interior of the housing of a transmission line and a pentral web extending between said outer rim and said central
cel rim, and means for securing said plurality of segments to one rim, and means for securing said plurality of
another to define a continuous support disk.

\section*{WOVEN SHIELDED CABLE \\ Edgar A. Rose, Greenville, S.C., assignor to Southern Wearing}

Company, Greenville, S.C.
Filed Sep. 7, 1976, Ser. No. 720,964
Int. C1. \({ }^{2}\) H01B \(7 / 08\)
U.S. CI. 174-36

8 Claims

\section*{为}
1. A woven shielded cable comprising
plurality of elongated conductor wires extending longit dinally in said cable each said wire having a coating of
insulation; substantiall lic fiber strands wouter woven cover formed from metaling said wires from external electromagnetic interference
said woven cover including at least one metallic warp binder strand woven between adjacent conductor wires to sepa\(t\) ween adjacent warp binder strands for reducing internal interference between conductor wires; and a metallic fill strand woven about said conductor wires and said warp binder strand;
ctor wires are uniformly shielded from external and internal interference.

4,095,043
ENCLOSURE WITH STRAIN RELIEF
Harold B. Martin, West Caldwell, and Erwin O. Wagner, Kenil worth, both of N.J., assignors to Graber-Roges, Inc., Cranford, N.J.

Filed May 14, 1976, Ser. No. 686,476
U.S. Cl. \(174-65\) R

1. In an enclosure wherein a first surface is capable of bein connected independently to a second surface to form the as sembled enclosure, a strain relief formed by the connection of said surfaces for holding a power cord when extending from the interior of said enclosure which comprises:
and each terminating in a free end, each post of said pa of spaced posts having within its free end a recess for receiving and captivating a power cord therein,
a post extending from saids second surface and terminating in a free end, said second surface post being of a length
sufficient to enter into the space between said pair o sufficent posts when the first and second surfaces are joined, all of said posts cooperating to engage, deform and hold a power cord in a path defined by their free ends when th
post is located in the space between the first surface posts,
eans integrally associated with said first and second surfaces for securely holding the first and second surfaces including a latching member located on either side of the first surface posts and extending perpendicularly thereto, each latching member having a hook thereon for engagement with latch receiving means on the second surface.

\section*{MULTIPLE CABLE ADAPTER AND SPLICE CASE arid August INCLUDING THE SAME An Prancis De Blauwe, Lubbeek, Belgium, ssalgnors to Raychem Corporation, Menlo Park, Calif. \\ Filed Oct. 26, 1976, Ser. No. 735,587
Int. C. \({ }^{2}\) H2GG 15/10. \(15 / 18\) \\ U.S. C. \(174-138\) F \\ (2)}
1. A splice case comprising
a shell defining a cavity therein for enclosing a splice, said shell including a longitudinal split and having an opening at one end thereof along said longitudinal split to receive in-coming cable;
a thermally responsive sealant positioned along said longitudinal split;
a heating element positioned in said shell along said longitudinal split, said thermally responsive sealant being outwardly of said heating element to seal said shell upon heating of said heating element; and
an adapter of thermally responsive sealant sized to fit in said opening, said adapter having a plurality of channels ex-
tending the length of said adapter for receipt extending into said shell and a sheet exhibiting high thermal conductivity extending from said insert into said split in said shell for heat conduction from said heating element to said adapter.
6. An adapter for sealing a plurality of cables in an access ening of a splice case, comprising
of the spt melt sealant sized to fit in the access opening of the splice case, said body having a plurality of channels extending the length thereof for receipt of cables extending to the splice case, and a sheet exhibiting high thermal conductivity extending from said body outwardly to enhance thermal conductivity between the splice case and
said body.

METHOD AND APPARA9TUS FOR SIGNALING IN A COMMUNICATION SYSTEM
Charles P. Johnson, Westport, and Frederick A. Lucas, Brook field, both of Conn,, sessignors to General DataComm Indus tries, Inc., Wilton, Conn.
\[
\begin{aligned}
& \text { Filed Jan. 19, } 1977, \text { Ser. No. } 766 \\
& \text { Int. Cl. }{ }^{2} \text { H04L } 1 / 00
\end{aligned}
\]
U.S. C. 178-2 R Int. C. \({ }^{2}\) HO4L \(11 / 00\)
input
E. output means for displaying data applied thereto cipher computer means for respectively enciphering and deciphering said text data stored in said primary storage torage means when said apparatus is in said enciiphering torage means when G. circuit control means for

1. In a digital communication system using data and control gnals and comprising a signal source, at least one communicaon channel and at least one terminal a signal detection method comprising the steps of:
detecting a first signal ev
source to said terminal
sourte to said
detecting a second signal event transmitted from said signal source to said terminal, said second signal event being detected within a specified time interval commencin
ecting thereafter at le
mitted from said signal source to said terminal, said additional signal event being detected within a time limit related to either said first or said second event, at least one in a control signal; and in a conrol signal, and
and said additional event were deter within the time and said additional event were
interval and time limit specified.

ELECTRONIC ENCIPHERING-
APPARATUS IN THE FOR AND DECIPHERING APPARATUS IN THE FORM OF A POCKET
Peter Fruiger, Wangen, and Bruno Gemperle, Steinhausen, both of Switzeriand, assignors to Anstalt Europaische Handelsgesellschant, Vaduz, Liechtensteí
Claims priority, application Switzeriand, Nov. 11, 1975, 14587/75
\[
\text { (nt. Cl. }{ }^{2} \text { H04K 1/02: H04L } 9 / 0
\]
Int. C
U.S. C1. 178- 22

2 H04K 1/02; H04L
. comprising:
A. input
means for entering key and text data to be pro-
B. mode select means for selectively placing said apparatu in either a text data entry mode, a key data entry mode, ext data display mode, and enciphering mode or a deci-
C. primary storage means for storing text data entered by
said input means when said apparatus is in said text data entry mode;
D. key storage means for storing key data entered by said

1. causing said text data to be applied to said output means as it is entered by said input means when said apparatu is in said text data input mode;
2. causing said stored text data to be applied to said output means when said apparatus is in said text data display mode; and
causing said enciphered and deciphered data to be said enciphering or deciphering modes, respectively.

4,005,04
PHASE REGULATING CIRCUIT
Klaus von Pieverling, Wolfratthnusen; Hermann Sepp, Munich, and Walter Baier, Kiveralsantern, all of Germanny, asadguors to Siemens Aktiengesellischath, Berlin \& Munich, Germany
Filed Nor. 1, 1976, Ser. No, 737,534 Claims priority, application Germany, Nov. 7, 1975, 2549955 U.S. C. 178-69.1

1. A phase follow-up regulating circuit operating accordin to the delay lock loop principle, for phase-coherent synchronization of the pulse sequence of a receiver pseudo-random ing pulse senurolled by a pulse train oscillator with the incomransmitter having a pseudo may be modulated on a carrier, a receiver, first and second identical signal channels two to the with one included in each of said first and second signal chan nels and each controlled by the pulse sequence output of the receiver pseudorandom generator, two filtering network and second receiving the outputs of said two mixers; said firs parallel, a difference forming device receivis connected in ignals of said first and second signal channels from seid two ierfing networks, a loop filter receiving the output of said whirence forming device, a voltage controlled oscillato which is controllable in frequency receiving an input from said
loop filter and supplying an input to said receiver pseudo-random generator, further including a first commutator switch receiving two outputs of said receiver-end pseudo-random generator and supplying inputs to said two mixers and a second
commutator switch receiving the outputs of said two filtering networks and supplying inputs to said difference forming device and a pulse train oscillator for switching said two commutator switches back and forth between their two switching states periodically and in synchronism with a pulse train from said pulse train oscillator.

\section*{4,095,049}

NON-ROTATIONALLY-SYMMETRIC SURROUND-SOUND ENCODING SYSTEM tional Research Derelopment Corporation, London, England Filed Mar. 11, 1977, Ser. No. 776,916 Claims priority, application United Kingdom, Mar. 15, 1976 Int. Cl. \({ }^{2}\) H04R 5/00
U.S. Cl. 179-1 GQ
\({ }^{\text {Int. }}\)

\author{
100
}

4,095,048
METHOD OF SYNCHRONIZING A PULSE CODE MODULATION (PCM) JUNCTION AND AN Claude Athenes, and Jean Pierre Lander, both of Paris, France, assignors to Thomson-CSF, Paris, France
Filed Jun. 15, 1976, Ser. No. 696,197
Filed Jun. 15, 1976, Ser. No. 696,197
Cleims priority, application France, Jun. 17, 1975, 7518960 U.S. Cl. 178-69.1

1. In a PCM switching network wherein time intervals comprise \(n\) bits, a junction synchronization system in a local
switching center equipped with a local clock connected with a switching center equipped with a local clock connected with a
distant switching center equipped with a distant clock, comprising:
means for comparing said local and said distant clock sig.
nals;
means for detecting the risk of error which occurs when a n-bir register loaded at the frequency of the
means for successively recording at the frequency of said distant clock the pulse trains relating to the successive channels of one and the same frame alternately in a register \(A\) and in a register \(B\)
means
said local clock and determining the at the frequency of
means for carrying out said correction by repeating the
reading of one of the two registers A and B at the frequency of said local clock;
e intervals in a frame memory; means for recording the time intervals in a rrame memorn
means for detecting the loss of a frame locking code; and means for detecting the loss of a rrame lopd in said registers
means for shifting the pulse trains recorded in A and \(\mathbf{B}\) in successive jumps of one bit until said frame locking code is detected.
1. A system for transmitting or recording an aximuthal direc tional sound comprising encoding means producing a plurality of transmission channel signals comprising complex linear
combinations of omnidirectional signal components, signa components having gains equal to the cosine of the encoded sound azimuthal angle and signal components having gains equal to the sine of the encoded sound azimuthal angle, the encoding means comprising a phase-amplitude matrix arranged to produce first, second and third transmission channel signals,
the first and second transmission channel signals having gains for sounds associated with an azimuth angle \(\theta\) which are respective independent linear combinations of \(\Sigma_{\text {goin }}\) and \(\Delta_{\text {goin }}\)
given by: given by:

where \(j(=-1)\) represents a \(90+\) phase shift and where \(a, b, c\), \(c, e\) and \(f\) are real gains such that, for any chosen angle \(\theta^{\prime}\), the \(c, e\) and \(f\) are real gains such that:
\[
h=\nu^{-1}\left\{\frac{1+\mu^{2} \sin ^{2} \theta^{\prime}}{1-(u / v)^{2} \cos ^{2} \theta^{\prime}}\right\}^{\prime}
\]
\[
g=\frac{h^{2}}{1+\nu h}\left\{\frac{u\left(\cos ^{2} \theta^{\prime}+\nu^{2} \sin ^{2} \theta^{\prime}\right.}{1+\mu^{2} \sin ^{2} \theta^{\prime}}\right\}
\]

\section*{where:}
\(u=c f+e d / b c-a d v=-b e+a f / b c-a d\)
are such that \(1-0(u / v) \cos ^{2} \theta^{\prime}\) is positive and \({ }^{v}\)) has neither of the values \((0,1)\) and \((0,-10\) the third trans mission channel signal having a gain \(\mathrm{T}_{\text {gain }}\) given by:
\[
T_{g \mathrm{gin}}=q(j g+j h \cos \theta+i \sin \theta)
\]
where \(q\) is a non-zero complex gain, \(g\) and \(h\) are real gains and

4,095,050
Ron MONITOR AND CONTROL SYSTEM Ronadd Beachem, Mound, and Dennis Covington, Minneapolis,
both of Minn. Minn.

Filed Apr. 19, 1976, Ser. No. 678,237
Int. Cl. \({ }^{2}\) H04M \(11 / 00\)
U.S. C. 179-2 A 1.C. H04M 11/00
1. A remote monitoring device connectable to a telephone line to be used with a system having a plurality of syste components which can be called by a telephone caller on any the tele the telephone caller over the telephone line, comprising:
sensing means connected to the telephone line for sensing a said clock signals to said gating means to alternately enable the ringing signal transmitted over the telephone line;
line seize means for connecting the device to the telephone and thereby steer the interleaved digroup bits of said
composite signal to separate digroup receive units, means for line after a ringing signal has been sensed by the sensing comparing the relative timing of the bits coupled to each of the
conser means;
receiving means for receiving the frequency signals trun mitted by the telephone caller oer the telephone line; coding the \(f\) connected to the receiving means for de coding the
phone line;
plurality of sems , component, the operating status of which is th a system udible sound producing means for producing tonal pattern to indicate which system component is being monitore and the operating status of the system component, com prising
of audible sing caducing device for producing a plurality of audible single frequency tones to be transmitted to

a tone varying device connected to the sensors for causing a variation in the tones produced by the tone producing device depending on the operating status of the system
component being monitored by the selected sensor programmable logic means for selectively monitoring the operating status of selected system components according to predetermined frequency signals transmitted over the telephone line by the telephone caller, comprising; gating means connected to and controlled by the decoding
means and connected to the sensors and the sound producing means so that different audible single frequency tones are produced by the tone producing de vice for each sensor and the tonal pattern is controlled by the tone varying device depending on the operating
status of the system component being monitored by the selected sensor; and
ransmitting means for transmitting the audible tones prowhereby the operating status of parameter being monitored is transmitted to the listener.

DEMULTTPLEXER CIRCUIT
Charles R. Crue, West Newbury, Mass., assignor to Bell Telephone Laboratories, Incorporated, Murray Hill, N.J.
Filed Dec. 15, 1976, Ser. No. 750,903

Filed Dee. 15, 1976, Ser. No.
Int. Cl. \({ }^{2}\) H04J 3/06
5 Claims
n-channel
U.S. C. 179- 15 BS

Int. Cl. \({ }^{2}\) H04J 3/00
igroup signals, each of which includes framing bits, are synchronously multiplexed into a composite signal by bit interleaving the digroup signals, a demultiplexer comprising a pair of gating means to which the composite signal is coupled, means for recovering the timing of said composite signal and
for generating therefrom a pair of phase inverted clock signals each at the digroup bit rate, means for respectively coupling
comparing the relative timing of the bits coupled to each of the the digroup bit streams are being sent to the wrong receive

units, means responsive to said predetermined signal to advance the phase of one clock signal and retard the phase of the other by a preselected amount to thereby effectively phase reverse said clock signals and reverse the steering of the digroup bit streams, and means for avoiding loss of frame in is reversed.

\section*{4,095,052}

DIGITAL SPEECH INTERPOLATION TRUNK PRIORITY Yau-Chau Ching, Morg ROTATOR
Middletorn, both of Nanvile, and David Gavin Messerschmitt, Middletown, both of N.J., assignors to Bell Telephone Labo-
ratories, Incorporated, Murrey incorporateg, Murray Hen, N.J.
Filed Aug. 2, 1977, Ser. No. 821,24
U.S. CI. 179-15 AS

1. Apparatus for providing a priority rotation to digitized message samples;
said apparatus in
said samples frouing an input terminal adapted to receive said samples from a plurality of trunks;
activity status means for signalling which
ctivity status means for signalling which ones of said trunks are active and which ones are inactive;
means for buffering said received samples;
means for assigning active samples from said buffer to frame;
an output terminal adapted to transmit said frame; verload mitigating means operable on said assigned samples
during overload; and CHARACTERIZED IN THAT said apparatus further comprises;
means responsive to active trunks for adaptively adjusting a sample assignment starting point,
id starting point being adjusted on a frame-by-frame basi according to which trunks are active during said frame obtained during overload.

QUASI-PULSE STUFETNG5 Donald Lasi-PULSE Duttweiler, Coits Neck mann, Jeckeon, both, Colts Neck, and Allan Michael Hofmann, Jackson, both of N.J., assignoris to Bell Telephone Faboratoriea, Incorporated, Murray Hill, N.J.
Filed Sep. 1, 1977, Ser. No. 829,664 U.S. CI. 179-15 AF Int. Cl. \({ }^{2}\) H04J \(3 / 06\)
 1. Synchronization apparatus including apparatus for ex-
tending a digital signal from an input terminal through an
elastic store to an output terminal and including pulse stuffer elastic store to an output terminal and including pulse stuffer apparatus coupled to said extending apparatus for providing a stuff bit signal responsive to the detection of a request to insert
a pulse in said digital signal, and CHARACTERIZED IN a pulse in said digital signal, and CHARACTERIZED IN
THAT said synchronization apparatus further comprises quasi-pulse stufting means for mitigating signal distortion, said quasi-pulse stuffing means including means for detecting a predetermined number of said stuff bit signals, means respon-
sive to the detection of said predetermined number for providing a stuff block signal, means responsive to said stuff block signal for stuffing a block in said digital signal and means adapted for extending said stuff block and said stuff bit signals adapled for extending
to a desynchronizer.
\[
4,095,054
\]

ELECTRONIC TELEPHONE, 4,0954 THE STORED PROGRAM TYPE COMPRISING TWO aCTIVE STAGES AND ONE PASSIVE STAGE Pierre Anizan, Jean Paul Ducournan, both of Paris; Paul Gilberton, Saint-Ouen-l'Aumone, and Yres Mevel, Colombes, all of son, Saint-Ouen-l'Aumone, France
Continuation-in-part of Ser. No. 440,272, Feb. 6, 1974, abandoned. This application Jnn. 27, 1976, Ser. No. 652,760 Claims priority, application France, Feb. 8, 1973, 73.04548 U.S. C. 179-18 ES

14 Clàms

trol of peripheral circuits in the second active stage and to receive information from them and an instruction library and one data memory divided in distinct zones containing only temporarily the information required for the connec
tions in the course of establishment and connected to said program memory, and by a plurality of liaison circuits connected to said data memory and comprising registers, in order that the control unit forms a self-contained equipment adapted to route all the traffic of the telephone memory,
(b) said second active stage comprises independent individ ual peripheral equipments each with at least a program including scanning, decision-taking, control and marking means to cooperate with respect to said passive stage
each peripheral equipment serving as interface between said first active stage and independent elements of the said passive stage and each being formed at least by liaison circuits to realize the connection between the said periph eral equipments and the said liaison circuits in the said
common control equipment and comprising a register and a priority logic to control the comprisers between the peripheral equipment to which it belongs and each of said two other stages, by a monitoring device to survey the said elements of the passive stage, by storage means to
receive the information necessary to survey the said elements, and by an internal logic unit which delivers a comparison signal to the priority logic of said liaison circuits in said peripheral equipment depending on the information from said storage means and said monitoring intervention circuits to control the working of said elements of the said passive stage, in order to provide to each peripheral equipment an autonomy in operation in respect of its own speciality since it calls upon said common
control equipment only to obtain information it cannot control equipment only to obtain information it canno tion useful to the other peripheral equipment relative to the connection network,
(c) said first active stage is linked to said passive stage through said second active stage which is directly con (d) said passive stage comp
cluding independent elements anversion network in nected to one of said peripheral equipments in the con active stage, these elements being line equipments, one connection network auxiliary circuits, local connection circuits, and connection circuits to connect said switching system to a trunk network, said line equipments, auxiliary circuits, local connection circuits and connection circuits
to connect to the trunk network being connectable to each to connect to the trunk network being connectable to each
other through said connection network in order to effect the routing of the telephone traffic by means of the programs stored in the program memory.

\section*{4,095,055}

MULTI-STAGE SWITCHING NETWORK IN A TELECOMMUNICATION SWITCHING SYSTEM Kazuhiko Gotoh, Fuchu; Hiroshi Kavashima, Kodaira, and Tsuyoshi Katayama, Hachioji, all of Japan, assignors to NipJapan Filed Nor. 11, 1976, Ser. No. 740,822 Filed Nov. 11, 1976, Ser. No. 740,822
Claims priority, application Japan, Nor. 17, 1975, 50-137952 U.S. CI. 179-18 GF
U.S. Cl. \(179-18\) GF
1. A multi-stage switching network in a telecommunication switching system having a path selection system which is independent of the switching network, comprising a degenera tive type switching network including
comprised of a plurality of virtual means for inserting said link frame into any specified inter
mediate stage of said multi-stage switching network ac cording to the switching system size required by the appli cation range of telephone traffic,

said virtual switches being normally closed and being ar-
ranged to form fixed crosspoints, whereby the stage size U.S. \({ }^{179-175.1}\) Ant. C. \({ }^{2}\) H04R 29/00 ranged to form fixed crosspoints, whereby the stage size U.S. of real switches in said multi-stage switching network can
be incremented according to the be incremented according to the application range.

TOLL RESTRIITTOR 4
Joel J. Ewen, Lithia, Va., assignor to Tele-Path Industries, Inc., Roanoke, Va.
Continuation-in-part of Ser. No. 506,602, Sep. 16, 1974, abandoned. This application Feb. 28, 1977, Ser. No. 774,089 U.S. C. \(179-18 \mathrm{DA}{ }^{\text {Int. C. }{ }^{2}{ }^{2} \mathbf{H 0 4 M} \text { I/66 }}\)

1. A toll restrictor access circuit for use with at least one toll restrictor which may be shared by a group of telephone lines
comprising: comprising:
the initiation of a telephone call from a restricted telethe initiation of a telephone call from a restricted tele-
phone instrument on one of said telephone lines for connecting said toll restrictor to the telephone line, said toll restrictor thereafter monitoring said telephone line to
detect a dial tone,
polarity-reversal means connected to the telephone line of the restricted telephone for normally disabling the telephone dial but responsive to said toll restrictor after the
detection of a dial tone for reversing the polarity of the detection of a dial tone for reversing the polarity of the
telephone line and enabling the telephone dial, and restrict means controlled by said toll restrictor for disco necting the restricted telephone from the telephone line in the event that a prohibited number is dialed and detected, said restrict means also causing said polarity reversal
eans to resume its normal condition to prevent further peration of the telephone dial and releasing said toll restrictor for use by another telephone line.

FREQUENCY PESP 4,095,057
 Ronald Frederick Power, Rayleigh; Alan Anthony Barker,
Gravesend; Michael Charles Martin, Kingston-upon-Thmea, and Brian Clifford Grover, Woking, all of England, essignores to National Research Development Corporation, London, England

Filed Mrr. 9, 1977, Ser. No. 775,941
Claims priority, application United Kingdom, Mar. 19, 1976,

11. Frequency response testing apparatus comprising: waveform generator for providing an electrical signal having a linearly increasing frequency, representative of an input for application to a device to be tested; means responsive to a signal indicative of the output signal
of said device for generating a signal indicative of the amplitude of said device output signal;
matrix of electrically-operable lighten
interconnected in columns and rows; and
means responsive to a signal indicative of said increasing frequency signal and said signal indicative of said device output signal, for selectively activating respective ele-
ments in said matrix disposed in columns in accordance with said frequency varying signal and rows in accor dance with said tested device output signal amplitude, to provide thereby a display of the frequency response of
said tested device. said tested device. Trin Bernard O'D SWITCHING SYSTEM TEST SET munication Mife Company, Grove, Calif., assignor to ComOn Mig. Company, Long Beach, Calif.
Filed Jan. 7, 1977, Ser. No. 757,625 led Jan. 7, 1977, Ser. No. \(7 / 57,62\)
Int. Cl. \({ }^{2} \mathbf{H 4 M} 3 / 22\)
U.S. C. 179-175.2 D 1. A variable number
pulse initiating means;
multiple state circuit having first and second states means for delivering a pulse for each occurrence of said firs state;
stuing means for counting the occurrence of said second
means for indicating a desired number of pulses, including one or more than one;
means for enabling the first state of said multiple state circuit
either responsive to said pulse initiating means or for each occurrence of said second state; and

means for enabling said second state of said multiple state circuit upon the concurrence of such indication of a number of pulses greater tha one and said first state.

\section*{4,095,059}

INTERLOCKED PUSH-LOCK PUSH-BUTTON SWITCH ASSEMBLY HAVING CONDUCTIVE MUTING SPRING Matsuo Nishloka, and Shunzo Oka, both of Hirakata, Japan, assignors to Matsushita Electric Industrial Co.,
Flled Sep. 16, 1975, Ser. No. 613,898 Claims priority, spplication Japan, Sep. 20,
 U.S. Cl. 200-5 B

9. An interlocked pushbutton switch assembly, comprising a terminal plate having a plurality of pairs of stationary contacts mounted thereon;
a sliding locking member within said housing, said member being mounted for sliding movement parallel to said ter minal plate and having a plurality of locking mean
thereon; plurality of operating members win a direction normal
mounted for vertical movement said terminal plate, each of said operating members havin locking means adjacent a corresponding locking means of said sliding locking member, each of said operating mem
bers having at least one movable-contact-member retaining means formed therein adjacent said terminal plate; an inverted \(U\)-shaped movable contact member having two movable contacts adjacent corresponding ones of a pair said stationary contacts, said contact member being re aid housing having at least two adjacent slo
a direction paralliel to said terminal plate;
an L-shaped bias spring having first and second leg portions,
said first leg portion extending into said housing through said first leg portion extending into said housing through
one of said slots and engaging said sliding locking member to urge said locking member in a direction parallel to said terminal plate, said second leg having an inverted \(V\). shaped portion extending into the other of said slots to retain said spring in position;
a muting switch spring comprising an electrically conductive and resilient material mounted on said sliding locking member for movement therewith, said housing having an electrically conductive part, one end of said muting spring being disposed adjacent said part for electrical contact therewith when said sliding locking member is displaced
as a result of engagement of said locking means thereo with the locking means of one of said operating members and
means
means for providing an electrical connection to a portion of said muting spring remote from said end thereof.

4,095,060
SLIDE SWITCH ASSEMBLY HAVING TERMINALS FOR MOUNTING SWITCH HOUSING SIDEWALL PARALLEL TO A PRINTED CIRCUIT BOARD Jaroslav Keprda, Munich, Germany, asslgnor to Slemens Aktiengesellschaft, Berlin \& Munch, Germany Continuation-in-part of Ser. No. 540, 558, Jan. 13, 1975, Pat. No 3,974,346. This appication Aug. 2, 1976, Ser. No. 710,878 The portion of the term of this patent subsequent to Aug. 10,
\[
\begin{aligned}
& \text { 1993, has been disclalmed. } \\
& \text { Int. C.1. }{ }^{2} \mathbf{H 0 1 H} / 5 / 02, ~ 1 / 00,9 / 02
\end{aligned}
\]
U.S. Cl. \(200-16\) D

2 Claims

1. In a switch assembly of the type incorporating a plurality of slider switches arranged each one next to another in a block
shaped, elongated housing having generally spaced, paralle side walls, and end walls, and a floor joining said side walls and end walls, each of said slider switches being independently activatable transversely to the longitudinal extension of said
housing and parallel to said floor of said housing, and each one housing and parallel to said floor of said housing, and each one
having a pair of fixed contacts inset into said floor, each of said contacts being connected in one piece to a terminal connection element which is provided for plugging into holes of a carrier plate, the improvement which comprises having a side wall of such housing extend perpendicularly to the floor thereof, and
providing such side wall with a plurality of outwardly extendproviding such side wall with a plurality of outwardly extend-
ing spacer bodies which extend parallel to said floor and are distributed over side wall edge portions, and further having said terminal connection elements extend from said sidewall in predetermined pattern, said terminal connection elements
extending out of said housing coplanarly from said contacts, and being offset from one connection element to another in staggered manner in the area which is fenced by said spacer
bodies. bodies.

\section*{GROUP OPERATED \({ }^{4,095,061}\) \\ APPARATUS FOR OVERHEADTT DISCONNECT}

Ronald P. Bridges, 9 LINES
Ronald P. Brid
III. 60515

> Filed Apr. 1, 1977, Ser. No. 783,940 Int. Cl. \({ }^{2}\) H01H 31/00
U.S. CI. \(200-48 \mathrm{~KB} \quad\) int. Cl. \({ }^{2} \mathbf{H 0 1 H} 31 / 00\)

1. A group operated electric circuit disconnect apparatus for a plurality of overhead electric power distribution lines carried
on poles, said apparatus comprising, in combination:
a base adapted to be mounted adjacent the top of a pole; a first disconnect switch surmounting the base; second and third disconnect switches mounted at opposite
sides of the base;
an upright shaft means journalled on said base, said upright
shaft means being operatively shaft means being operatively connected to said first
switch so that axial rotation of the shaft closes the first switch, said upright shaft means having a lower end adapted to be operatively connected to means by which it may be manually rotated;
transverse shaft means journalled on said base and opera-
tively connected to said second and third switches so that tively connected to said second and third switches so that
axial rotation of said transverse shaft means opens and closes said second and third switches; means opens and
and a mechanical connection between said upright shaft means and said transverse shaft means so that axial rotaion of the upright shaft means causes axial rotation of the ransverse shaft means.
\[
\begin{aligned}
& \text { STOP-MOTION APPARATUS }
\end{aligned}
\]

Richard J. Savageau, Seneca, S.C., assignor to Platt Saco Lowell
Limited, Helmshore, England imitted, Helmshore, England
\[
\begin{aligned}
& \text { d, Helmshore, England } \\
& \text { Filled Sep. 3, 1976, Ser. No. 720,508 } \\
& \text { It. C1. }{ }^{2} \text { B65H } 25 / 14 ; \text { D01G } 31 / 00 ; \text { D01H } 13 / 1
\end{aligned}
\]
\(\qquad\)
1. Stop-motion apparatus for use with a convergent running array of a pluarlity of adjacent textile sliver strands, said appa-
ratus comprising. ratus comprising:
a plurality of strand engaging members;
strand separating and guiding means mounting said strand
engaging members in adjacent relationship to each other and to respective ones of said strands for pivotal move ment independent of one another between first and secon
positions, each of said strand engaging members bein positions, each of said strand engaging members being
supported in its first position by engagement with an associated one of said strands, and being movable whe unsupported to its second position,
cally actuable stop-motion switch element mounted herein adjacent said second position of an intermediate strand divergent means for diverting each strand in a direction away from that of said convergence of said array; and

magnetic means carried by each of said strand engaging members and movable therewith for actuating said stop cent ones of said strand engaging members to said second position thereof.

DETECTION DEVICE 4,095,063
FORM
FER OR FILM IN WEB Schweicher, Leverkusen; Hans Gref, Cologne, and Woifgan Geraert A, Leverkusen, all of Germany, assignors to Agfa. Flled Mar. 8, 1976, Ser. No. 664,497
Claims priority, application Germany, Mar. 11, 1975, 2510451 U.S. CI. 200-61.13 Int. C1.2 B65H 25/14

1. A device for mechanically detecting local thickenings in a web, comprising a guide roller; a sensor roller arranged with a pair of rotation parallel to the guide roller and mounted on roller; a stop provided on each pivotal lever and engageable with a suppor to determine a minimum gap between the guide olier and the sensor roller through which in use the web is al switch; an electrical circuit inclupporf forming an electrisource of electrical power, the circuit being such that the flow of current is temporarily interrupted when one or both the flow is thed off its respective support when a thickening passes rough the gap, drive means for the guide and sensor rollers hiections constructed and arranged for driving the rollers in ion of travel in portions to each other whereby their direcdirection of the web, and are substantially equal in to the speed, whereby tearing of the web is prevented when a local thickening in the web passes between the rollers and opens the electrical circuit.

PADDLE FOR USE IN A ROTATATING-PADDLE BIN LEVEL INDICATOR
Paul P. Feckenstein, Port Huron, Mich., assignor to Bindicator
Company, Port Huron, Mich.
Filed Sep. 27, 1976, Ser. No. 727,273
Int. Cl. \({ }^{2}\) H01H 35/00
U.S. CI. 200-61.21

1. In a material bin level indicator of the type comprising an 1. In a material bin level indicator of the type comprising an
indicator housing having a mounting nipple extending there-
from adapted to engage a corresponding gland on a bin wall from adapted to engage a corresponding gland on a bin wall for mounting said housing, a motor carried within said housing
and operatively coupled to a driveshaft having an axis of rotaand operatively coupled to a driveshaft having an axis of rota-
tion extending through said nipple, and a paddle operatively tion extending through said nipple, and a paddle operaively
coupled to and extending from said shaft to a free end of said
paddle. the improvement wherein said paddle comprises a paddle; the improvement wherein said paddle comprises a
curved hollow cylindrical tube having a tubular portion adjacurved hollow cylindrical tube having a tubular portion adja-
cent said shaft and a flattened portion comprising opposed tube cent said shaft and a flattened portion comprising opposed ube
walls flattened in a plane coplanar with said axis and flaring walls flittened in a plane coplanar with said axis and flaring
into said tubular portion, and means disposed within said tubular portion for coupling said paddle to said shaf, both said
tubular and said flattened portions seing curved at fixed radius tubular and said flattened portions being curved at fixed radius
from adjacent said coupling means over an arc of substantially ninety degrees, said flattened portion extending over substanninely degres, said fatiened portion extending over substan-
tially fegres of said arc and terminating at said free end,
said paddle being dimensioned such that the same may be tially fify degrees of said arc and lerminaing at sad ree en be
said paddle being dimensioned such that the same may
inserted into inserted into a bin through the
paddle is coupled to said shaf.

SAFETY TRIP MECHANISM FOR MULTI-POSITION Donald J. Akers, Chicago, III, assignor to G \& W Electric recialty Company, Blue Island, Ill.

Filed Mar. 15, 1977, Ser. No. 777,936
U.S. CI. 200-63 R

Int. C1. \({ }^{2}\) H01H \(19 / 32\)
1. In switchgear which includes a casing, switch contact means disposed within said casing and including at least on pair of switch contacts at least one of which is movable relative to the other between a position spaced from said other in open in closed electrical circuit therewith, actuating means for mov ing said movable switch contact between said spaced and contacting positions relative to said other of said contacts, said

actuating means including a movable arming handie, energy torage means operatively associated with said arm handle and said movable switch contact and adapted to create potential means further including release means operative to release said potential energy and facilitate snap-action movement of said movable switch contact between its said spaced and contacting positions; the combination therewith comprising latch plate and movable therewith, said latch plate means having detent means thereon, and latch lever means pivotally supported by said casing and movable between a first position cooperating with said detent means to prevent movement of said latch plate means and associated movable switch conster, facilitate movement of said latch plate means and snap-action movement of said movable switch contact between its said spaced and conlacting positions relative to the other of said switch contacts.

\section*{4,095,066}

HINGED FLYPLATE ACTUATOR
hard Hunter Hurris, Raleigh, N.C., zesigmor to International Filed Aug. 4, 1976, Ser. No. 711,658 Int. Cl. \({ }^{2}\) H01H \(5 / 30\)

8 Claims
U.S. Cl. 200-67 A
1. A push-button operated, pivoting snap-action toggle witch operating apparatus, comprising: a two-ended switch actuating member having a pivot axis near one end thereof; ion member having a pivot axis near one end thereof and a push-button force application means near the other end thereof;
a framework for holding said pivot axes of said members
with said members being spaced apart from one another with said members being spaced apart from one another
and supported by their said pivot axes in said framework and supported by their said pivot axis said members, respectively, adjacent to one another and with said pivot axes parallel to one another;
compression spring means for resiliently resisting forces
applied thereto applied thereto along a line of action, said spring means
being fixed between and retained in compression force application and actuating members, whereby said spring means resiliently urges said members apart by spring means resilientiy urges said members apart by
pivoting them on their said axes in a direction causing separation between said ends of said members which are opposite the ends in which said pivot axes are located; said framework having means for restraining said members beyond an amount necessary to maintain said spring means in compression; and
said compression spring means being arranged so that said line of action of compression is angled with respect to said members to pass first to one side, but to be movable to the
other side of, said pivot axis of said actuating member in response to, pivoting of said force application member about its said pivot axis which is occasioned by force applied to said push-button means to pivot said force
thereby causing said line of compression to move to the other side of said pivot axis of said actuating member and axis, thereby causing said member to pivot toward said force application member in a sudden snap action.

\section*{4,095,067 \\ Anthony Rosario LaScola, Bellingham, Mass., assignor to Ark \\ teh Corporation, Watertown, Mass.
Filed Mar. 16, 1977, Ser. No. 778,101 \\ U.S. CT. \(200-67 \mathrm{AA}^{\text {Int. C. }{ }^{2} \mathrm{HO1H} / 3 / 28}\)}

1. A compact snap-action appliance switch comprising an insulating base, an insulating case adapted for assembly to
said base, two fixed contacts carried in said base said base, two fixed contacts carried in said base,
a paddle actuator movable in said case, and a
contact movable by said actuator,
said insulating base having
a generally vertical wall element extending upwardly
from said base and defining a portion and a further portion ase roller contact track said track portion having
a roller stop wall generally parallel with said wall ele-
element
track flop sall roiler stop wall and said wall ment and having a raised roller guide extending element and having a raised roller guide extending be-
contact spacer portions on either side of said roller quide
each said spacer portion extending lengthwise generally
parallel with said guide between said wall element and parallel with said guide between said wall element and
said roller stop wall, each said spacer portion extending widthwise from said roller guide toward the adjacent said side wall and having a narrower widthwise extension adjacent said wall element than adjacent said roller stop wall, the upper surface of a said spacer portion being
intermediate in height between said track floor and said roller guide upper surface,
said track floor, said roller guide upper surface, and said
contact space contact spacer portion upper surfaces being generally
concave upwardly with respect to said base said further portion having
wire apertures adjacent said wall element, extending entirely through said base, and wire retaining means adjacent thereto and cooperating with said fixed contacts
said insulating case having
wire stop means carried on the inner surfaces of said case
and positioned for cooperation with said base wire and positio
apertures,
apertures,
each said fixed contact having
a vertical base portion, a vertical connector portion integral therewith and extending above said base portion and a generally horizontal extending portion declined
slightly downwardly from said vertical slightly downwardly from said vertical portion, said
fixed contact vertical base portion being fixed in a said base fixed contact receiving slot, said extending portio
overlying said track floor and having its upper surface enerally parallel with the upper surface of said contact spacer portion, said vertical connector portion engagsaid paddle actuator having
a tapered paddle extending exter
manual actuation of said switt
manual actuation of said switch, downwardly extending generally flat projection having on its lower edge a spring positioner
a closure element
closure element generally convex outwardly of said said actuato
said roller contact being electrically conductive and having two roller elements and a guide track follower portion being of smaller cross section than said roller elements. said roller being positioned in said base track for move ment therealong,
said switch further including an insulating guide elemen having an upper neck portion and a lower roller engaging sarface, and a compression spring secured between said lower surface engaging said roller element follower portion for movement of said roiler element responsive to motion of said paddle, from
an open circuit condition in which said roller contact is
urged by said spring against said role urged by said spring against said roller stop wall and said
roller elements are spaced from said fixed cond an initial closeds circuit condition in which each said reds element engages only a said fixed contact extending por-
tion, and tion, and
steady-state
steady-state closed circuit condition in which said rolle contact is urged against said fixed contacts and said roller elements engage said vertical connector portions.

STATIONARY-CONTACT-AND VOLTAGESHIELD ASSEMBLY FOR A GAS-PUFFER-TYPE Jeffry R. Meyer, Penn Hill TIERRUPTER Robert L. Hess, North Versaillest, both of Pa County, and Westl L. Heas, North Versailies, both of Pa , assignora to Filed May 12, 1976, Ser. No. 685,46
U.S. C. \(200-144 \mathrm{AP}\) Int. \({ }^{2} \mathrm{HO1H} 33 / 82.9 / 30\)

1. Gas-type circuit-interrupter equipment including separae contact means to establish an arc, said separable contact reans including a relatively-stationary contact and a cooperpressure, means directing a flow of compressed gas from said
source to the established arc to effect the extinction thereof, a generally-cylindrically-shaped metallic electrostatic shield exposed to the surrounding ambient and encompassing the relatively-stationary contact and ensuring a low-gradient elec-relatively-stationary contact and ensuring a low-gradient elec-
trostatic field at its forward end facing the movable contact and located between the said separated contact in the fully-open-circuit position of the gas-type circuit-interrupter, and said openly-exposed metallic electrostatic shield defining an exhaust-gas collecting chamber in open pace for receiving at its
forward end the hot exhaust arced gases emanating from the arcing region during the arcing period of the said gas-type circuit-interrupter.

MINIATURE PUSHBUTTON SWITCH Kenneth A. Simpson, Lynnfield, Mass., assignor to C \& K Com ponents, Inc., Watertown, Mass.
Int. C. \(2^{2}\) H01H 3/00

STAINLESS-STEEL INTERRUPTER-HEAD CONSTRUCTION FOR CIRCUIT-INTERRUPTERS CONTINUOUSLY CARRYING

\section*{HIGH-VALUE-AMPERAGE CURRENTS}

Russell N. Yeckley, Murrysville, and Zeno Neri, Wllkins Town ship, Allegheny County, both of Pa., sssignors to Westingelectric Corp., Pittsburgh, Pa. Filed Feb. 23, 1976, Ser. No. 660,745
U.S. Cl. 200-148 B

6 Claims

1. A high power, high-voltage circuit-interrupter including in combination, means defining a high-voltage interruptering pressurized metallic head-unit capable of carrying currents in excess of 4,000 amperes, upstanding hollow insulating column
means for supporting said interrupting pressurized metallic means for supporting said interrupting pressurized metallic
head-unit high up in the air an adequate distance and heigh from ground potential, a pair of terminal-bushings having from ground potential, a pair of terminal-bushings having pressurized metallic head-unit, at least a pair of separable contacts disposed interiorly within said pressurized head-uni and separable away from each other to establish an arc during the opening operation, conducting means electrically intercon ing through the pair of terminal-bushings, operating means for effecting separation of the separable contacts within said interrupting head-unit and subjecting the established arc to a blast of compressed gas to thereby effect the extinction thereof, said high-voltage interrupting metallic pressurized head-unit being composed substantially entirely of stainless-steel material, the pressurized metallic interrupting head-unit having an insulating outer surface coating provided theren abound
surface and also another insulating coating around its inside surface and also another insuate transfer from the pressurized
surface to assist in rapid heat metallic head-unit to the outer external ambient atmosphere.
1. A pushbutton switch comprising
housing comprised partially of dielectric material a plurality of electrical terminals mounted in and projecting outwardly from one side of said housing;
first contact member pivotably mounted within said housing, said first contact member having at least two opera-
tive positions and being adapted to selectively intercontive positions and being adapted to selectively intercon-
nect some of said terminals when in at least one of said operative positions;
a first insulative member mounted on and pivotable with said first contact member;
leaf spring mounted within said housing and being shaped and configured to be normally in interference contact with said first insulative member; pivot pin extending downwardly within said housing and
having an end adapted to selectively contact said first insulative member, said first insulative member being configured to receive said end of said pivot pin; and means for longitudinally moving said pivot pin into
of engagement with said first insulative member; whereby upon being moved longitudinally downwardly, said pivot pin engages said first insulative member so as to cause said first insulative member and first contact member to pivot to one operative position, said first insulative
member being retained in said one operative position by interference contact with said leaf spring.

SWITCH MOUNTED IN A LEVER HANDLE
Richard W. Chamberlain, Aurora, III., assignor to Caterpillar Tractor Co., Peoria, III. A10,
Filed Jul. 12, 1976, Ser. No. 704,133

Filed Jul. 12, 1976, Ser. No. 704,133
Int. Cl.
 ing: apper end of said ns for defining a hollow housing at an operator, said housing having an elongated front member extending along said lever and shaped to be gripped by the fingers of a hand, an elongated rear member extending along said lever and shaped to be gripped by the heel of a to said rear member, said rear member having a sloping top surface;
(b) switch means for operating a remote member, including a toggle switch mounted within said housing on said rear member and having a movable arm extending upwardly inside said housing;
(c) thumb controlled
member, for actuating said toggle switch, including means for receiving said arm to move said arm, and first and
second surfaces alternately extending above and flush with said top sloping surface for ease of actuation by the humb of a hand, said thumb controlled means being said first surface or said second surface to change the state of said toggle switch; and

(d) means for stopping rotary movement of said thumb controlled means when said toggle switch is in either state, including a fixed projection extending from said
front member internally of said housing, and a pair of spaced-apart shoulders on said thumb controlled means straddling said projection, either of said shoulders contacting said projection depending on the
rotation of said thumb controlled means.

\section*{INDUSTRIAL SPEED \(\begin{aligned} & \text { 4,095,072 } \\ & \text { CONTROL TRIGGER SWITC }\end{aligned}\)} WITH INTEGRAL REVERSING SWITCH Inrl T. Piber, Oconomow
Inc., Milwaukee, Wis.

Filed Aug. 2, 1976, Ser. No. 710,922
Int. C1. \({ }^{2}\) H01H 13/08; H02P 7/00
15 Claim
1. An industrial trigger switch for mounting in the insulated handle of a portable electric tool comprising
an insulating housing having a forward opening and wire
apertures;
an insulating, spring-biased depressible trigger having a forwardly extending finger engaging portion and a slid able portion extending rearwardly through said opening able portion exten
iteritting means between said trigger and said
limiting reciprocal movement of said trigger; limiting reciprocal movement of said trigger;
switching means in said trigger switch for selectively necting an electric power source to the tool motor; erminals for said power source connections and said motor connections accessible from the outside of said housing to be connected thereto;
a relatively large surface relatively thin heat sink contiguous to inner surfaces of three vertical outside walls of said housing;
n insulating thyristor means mounted on said heat sink edge of said heat sink in said housingl. speed control circuit mounted on said substrate and con nected to said controllable thyristor means and comprising a variable resistor;
means coupling said slidable portion of said trigger to very said variable resistor when said trigger is depressed; said switching means comprising a double-pole on-on switch having bridging contacts including two pairs of stationary conacts married by said trigger for bridging the
stationary contacts of the respective pairs thereof when said trigger is depressed, and eact
being connected to said terminals;

and no metal parts being exposed to the user when said trigger switch is mounted in the insulating handle of a portable electric tool.

\section*{4,095,073}

SWITCH AND TERMINAL ASSEMBLY HAVING STRIP TERMINAL AND MOUNTING MEMBER ADAPTED TO GROUND DYNAMOELECTRIC MACHINE CASING ON GROMILAR CONDUCTIVE SURFACE James P. Frank, Rock Falls, III., asslgnor to Generai Electric Company, Fort Wayne, Ind.
Filed Mar. 30 , 1976 , Ser. No. 671,965 Int. Cl. \({ }^{2}\) H01H 9/12; H01R 3/02; H02K \(11 / 00\); H0SK \(5 / 02\)
U.S. Cl. \(200-293\)

36. A switch and terminal assembly comprising a casing having a pair of separable casing members with an opening herethrough, a switch means accommodating chamber within aid casing and generally isolated from said opening, a grounding device on said casing disposed at least in part exteriorly least one of said cassing members generally about said open ing for retaining said casing members against separation and aid grounding device against displacement from said casing. A8. A switch and terminal assembly comprising: a casing including a pair of separable casing member a chamber within said casing members;
a plurality of switch means in said casing adapted for selective switching engagement;
a grounding device disposed on said casing so as to be elec trically disassociated from said switch means plurality;
means for retaining said casing members against separation casing; and
means associated with said grounding device and said retaining means for acommodating thermal expansion and contraction of said casing members.

SWITCH \(4,095,074\)
Joseph LaRue Lockard, Harrisburg, Pang, assignor to AMP Incorporated, Harrisburg, P2.

Filed Oct. 12, 1976, Ser. No. 731,076 Int. C1. \({ }^{2} \mathrm{H01H}\) 1/22, 19/50, 21/04
U.S. C. \(200-295\)

2 Claims
1. A switch for mounting on a printed circuit board edge

A housing having a first end bifurcated by a first slot with shoulders on opposite sides of said first slot for abuttingly receiving an edge of a printed circuit board,
said first slot tapering from said shoulders toward said first
end to
grippingly receive opposite sides of a printed cirend to grippingly receive opposite sides of a printed cir-
cuit board inserted into said first slot and stopped against said shoulders,
a second slot extending transversely of said first slot and forming together with said first slot a T-shaped opening, each end of said second slot terminating in enlarged circular apertures adjacent corresponding side walls of said
housing, said circular apertures defining resiliently yieldable hinge portions integral with said side walls allowing resilient deflection of said bifurcated housing away from said first slot in response to enlargement of said first slot by the presence therein of a printed circuit board, a rotor mounted for rotation in said housing and carrying a bridg. ing contact, a pair of elongated conducting spring
contacts mounted in said housing lengthwise of said first slot and having first end portions protruding into said slot from opposite sides thereof, said rotor being mounted between spaced apart second end portions of the said spring contacts continuously biasing said second end portions resiliently away from each other and thereby pivot-
ing said first ends of said spring contacts toward each ing said first ends of said spring contacts toward each side walls, a lever on said rotor for manually roang said rotor to a first position bridging said bridging contact electrically across said spring contacts and said rotor being rotatable to a
second position disengaging said bridging contact from at least one of said spring contacts.
1. An electrical switching device including a housing, cooperating movable and stationary contacts within said housing, an elongated arm within said housing; said movable contact other end of said arm mounting the latter for movement between a first and a second position wherein said contacts are opened and closed, respectively; said arm at a position remot positioned for direct viewing from positions in front of said housing, and without opening any portion of said housing when said arm is in one of its said positions whereat said indicating portion projects through a side opening in said housing with said arm in he other of saisid positions said indicating portion being
said housing.

\section*{4,095,0}

PROTECTIVE DEVICE FOR INDUCTION HEATING apparatus
Bernard DiM
Roling M
VISIBLE BLADE SWITCH Ohio, assignor to Gould Inc. Roiling Mealed Apr. 28, 1976, Ser. No. 681,253
Fill Filed Apr. 28, 1976, Ser. No.
Int. C. \({ }^{2}\) H01H \(9 / 16\)

\section*{U.S. CT. 200-308}

8 Caim

Akihiro Tsumori, Shizuoka, and Kenji Shima, Amagnasaki, both of Japan, assignors to Mitsubishi Denki Kabushiki Knisha, Tivisyo, Jappan
Division of Ser. No. \(\mathbf{5 8 2 , 1 5 4 ,}\) May \(\mathbf{3 0 , 1 9 7 5 , ~ P a t . ~ N o . ~ 4 , 0 1 5 , 0 8 4 . ~}\) This application Aus. 30, 1976, Ser. No. 718,838 The portion of the term of this patent subsequent to Mar. 29,

2 Claims
1. A protective device for induction heating apparatus comprising: a specific
cooked,
an excitor for induction heating the specific heating element, means for applying an operating voltage to the excitor, power switch for turning on the excitor means for delaying the application of the operating voltage

In4, has been disclaimed.
Int \({ }^{2} \mathrm{HOSB} 5 / 04\)
U.S. CI. 219-10.49

S. Cl. \(219-10,49\) R \({ }^{\text {nt. Cl. }}{ }^{2}\) HOSB 5/04
to the excitor for a predetermined time after the turning on of the power switch
means for detecting immediately after the turning on of the power switch and thereafter the presence of a heating element other than the specific heating element, the ab sence of the specific heating element or any other heating
element or an undesirably high temperature of the specific heating element,
means for preventing the application of operating voltage to the excitor in response to detection of the presence of heating element other than the specific heating element heating element or an undesirably high temperature of the specific heating element
the excitor comprising a first series circuit of a group of excitation windings and a capaciior, the detecting devic comprising a second series circurcuit being connected in parallel to the first series circuit to pass current having substantially the same phase as that of the current passing through the first series circuit during normal operation and
age to the excitor during the predetermined time for detecting the presence of a heating element other than the specific heating element, the absence of the specific heat ing element or any other heating element or an undesi ably high temperature of the specific heating element.

4,095,077
AUTOMATIC HOT FILLER WIRE WELDING METHOD AND APPARATUS
Urban A. Schneider, and Robert D. Sigman, both of Pensacola, Urban A. Schneider, and Robert D. Sigman, both of Penssacola,
Fla., asslgnors to Westinghouse Electric Corp., Pittsburgh, Filed Jun. 25, 1976, Ser. No. 699,769 U.S. C. 219-61
relative to the welding stations
ing outputs indicative thereof; feeding filler material into a weld zone along the seam adjacent each of the welding stations at a given deposition rate which is automatically, programmably varied proportioncorresponding to the speed of rotation of the tubular member;
automatically, programmably varying the filler material feed speed, in a preestablished manner, at each welding station, as a direct function of the circumferential position of the
weld seam relative to each welding station and the cycle weld seam relative as identified by the corresponding monitored outputs;
preheating of the filler material at each of the welding stations to a temperature approaching its melting temperature prior to deposit within the weld zone
utomatically controlling the power employed to preheat
filler material at its operating level at each of the welding stations as a predesignated function of the filler material feed speed;
simultaneously heating the deposited filler material and the weld zone adjacent each welding station at a rate suffiient to form an integral weldment; and
 eld zone adjacent each weld station to vary incremenlally at predetermined spaced speed of rotation intervals and remain constant between the predetermined speed and rem
levels.

4,095,078
PACKING WIRE CUTTING DEVICE ars Waenerlund, Munkedal, and Torsten Bobïck, Sodertalje, both of Sweden, assignors to Munkedals Aktiebolag, Munkedal, Sweden Filed Jan. 6, 1976, Ser. No. 646,654 US. C1. 219-68 Int. C1. \({ }^{2}\) B23K \(11 / 22\)
4 Claims U.S. CI. 219-68
Claims

1. A method of welding tubular members of generally circular cross section along a circumferential weld seam character produced at a plurality of spaced stationary welding station positioned around the weld seam in radial symmetry of the tubular member wherein the welding process comprises: supporting the tubular members in a vertical orientation; rotating the tubular members continuously in one direction about their axes of revolution
tions of the weld seam and its circumferential position

1. A packing wire cutting device for cutting packing wire wrapped in the form of a parallelogram around a paper pulp device functioning to cut the packing wire on one side of the paper pulp bale, comprising
an electrode comprising two electrode halves separated by a
gap,
means for causing relative movement between the electrode halves and said one side of the paper pulp bale,
the packing wire on said one side of the paper pulp bale
being disposed transverse to the direction of relative movement of the electrode halves and said one side of the paper pulp bale so that the packing wire on said one side of the paper pulp bale will intersect the electrode halve irrespective of the exact position of the electrode halve and said one side of the paper pulp bale,
means for forcing the two electrode halves into said one side of the paper pulp bale to cause the electrode halves to be bridged by the packing wire during relative movemen
between the electrode halves and said one side of the paper pulp bale, and
means for applying electrical power to the two electrode halves to melt and thereby sever the packing wire passing therebetween during relative movement of the electrode halves and said one side of the paper pulp bale.

TOOL HOLDER FOR A SPARK EROSION MACHINE TOOL
Werner Ullmann, Locarno; Paul Fricker, Losone, and Maurice Guenin, La Chaux-de-Fonds, all of Switzeriand, assignors to A.G. firr industrielle Elektronik AGIE Losone b. Locarno, Losone, Switzerland
\begin{tabular}{c}
Filed Dec. 13, 1976, Ser. No. 749,872 \\
Claims priority, appliction \\
\hline
\end{tabular} U.S. C. 219-69 E Int. C. \({ }^{2}\) B23P 1/08 \(\quad 10\) Claims

tip portion of a welding electrode to shield the welding arc from atmospheric gas; supplying arc welding power between said welding elec-
trode and a mother metal to generate an arc therebetween;

measuring the concentration of nitrogen oxide in an arc atmosphere which is created in an outer atmosphere around said arc; and
controlling during welding said amount of said supplied shielding gas in response to the measured concentration of nitrogen oxide

4,095,08
ELECTRIC ARC METAL SPRAYING DEVICES
Stewart John Ashman, Dudley, England, assignor to Metallisa. tion Limited, Dudley, England Filed Apr. 6ng, 1976, Ser. No. 674,134 Claims priority, application United Kingdom, Apr. 9, 1975 1. An assembly for use in a machine tool, for example a spark,
erosion machine tool, the assembly being for holding a device, for example, a tool element for the machine tool, the assembly
comprising: an elongate member (1) comprising portions defining first, second, third and fourth external bearing surfaces of the of the member, the first and second bearing surfaces being mutually opposed and the third and fourth bearing surfaces being mutually opposed, one end of the member being suitable for having said device connected thereto, housing (3) within which part of the member (1) is housed, and
porting the member (1) for movement in the direction of its length with respect to the housing,
the bearing means (2) being in abutting contact with said member at each of first, second, third, fourth and fifth positions in each of two planes (I and II), which planes are
spaced apart in, and are transverse to, the direction of the spaced apart in, and are transverse to, the direction of the
length of the member, the first and second positions being spaced apart on the first bearing surface, the third position being on the second bearing surface and the fourth and fifth positions being on respective ones of the third and fourth bearing surfaces.

\section*{4,095,080}

METHOD FOR MEASURING THE EXTENT OF SHIELDING FUNCTION OF AN ARC ATMOSPHERE NITROGEN OXIDE MEASURING DEVICE MEASURING THE EXTENT OF SHIELDING FUNCTION
Fumio Ueyama, Nara, and Takao Yoshimitsu, Kobe, both of Japan, assignors to Osaka Denki Co., Ltd., Osaka, Japan Int. CT. \({ }^{2}\) B23K \(9 / 16\)
U.S. Cl. 219-74 10 Claims 1. An arc welding method comprising the steps of: supplying a predetermined amount of shielding gas around a

Int. Cl. \({ }^{2}\) B23K 9/04; B05B \(1 / 24\)

15. A head for use in a metal spraying device, said head omprising:
a body member fabricated from electrically insulating mate-
rial; recess means provided in said body member for securely receiving a body portion of the metal spraying device: said body member having a leading face;
air passage means longitudinally extending axially through said body member and emerging at said leading face for conveying air to said leading face, said leading face being at a right angle to said air passage means;
inlet means provided in said body member inlet means provided in said body member for connecting
said air passage means to a surrc said air passage means to a source of air under pressure; member for permitting metallising wire in electrical contact to be fed therethrough in engagement with sidewalls of said aperture means, said sidewalls consisting of sald insulating
said aperture means consisting of two guide passages, said
two guide passages converging continuously tow two guide passages converging continuously towards
each other in a direction towards said leading face and extending from a rear surface of said body member to said
leading face, and said two guide passages emerging at said leading face on opposite sides of said air passage means to provide an arcing zone for two metallising wires as the two wires emerge from said two guide passages respectiveiy.

4,095,083
TRECTRON-BEAM APPARATUS FOR THERMAL TREATMENT BY ELECTRON BOMBARDMENT Zheleznodorozhny, and Georgy Fomich Zaboronok, pereulok Obukha, 4, kv. 56, Moscow, both of U.S.S.R.

Flied Jul. 24, 1974, Ser. No. 491,556 led Jul. 24, 1974, Ser. No. \({ }^{\text {Int. C. }}{ }^{2}\) B23K 1500
In

1. An electron-beam apparatus for thermal treatment by electron bombardment, comprising:
a vacuum chamber accomodating an object being treated electron gun housed in said vacuum chamber and including a cathode which is the source of an electron flow and an accelerating electrode forming, together with said athode, said electron gun, said cathode and said accelerating electrode forming said electron flow into an electron electrically insulated from each other and from said object being treated;
power supply which is a source of d-c voltage, the negative terminal of which is connected to said cathode and the positive terminal is connected to said object being treated and
supplementary source of accelerating voltage, which is a \(d-c\) voltage source, the negative terminal of which is connected to said cathode and the positive terminal is connected to said accelerating electrode, the potential
difference created by said accelerating voltage source difference created by said accelerating voltage source
between said cathode and said accelerating electrode exceeding that created by said power supply by no less exceeding

METHOD AND APPARATUS FOR PERFORATING ELONGATE MEMBERS
ed Apr. 14, 1977, Ser. No.
Filed Apr. 14, 1977, Ser. No. 787,553
Int. Cl. \({ }^{2}\) B23K 9/00; B26D 5/00
U.S. C. \(219-121\) LM

28 Claims
1. An apparatus for the production of electrical contacts on contact carriers, comprising
a cutting device adapted to cut a contact piece from a strip of wire or ribbon-like contact material;
material to said cutting device;
an electrical resistance welding device spaced from said cutting
carrier
second guide means arranged between said cutting and said welding device for guiding contact material from said cutting to said welding device
said first and second guide means connected in alignment, said welding device having a first stationary electrode and second electrode liftably arranged beneath said first elec trode;
holder for holding the contact carrier at the underside of said first electrode;
said second electrode having a groove for receiving a lowe part of the cut contact piece and being liftable from a rest position, in which said groove is connected in alignmen said second guide means, to a welding position, means adapted to grip and move the remaining strip of
contact material; and
ping means and said second electrode in such a manner hat, in sequence, said cutting device cuts a contact piece from the strip of contact material, said gripping means second guide means to push the cut contact piece from said cutting device through and out of said second guide means in said groove of said second electrode, being in its rest position, and subsequently withdraws the remaining strip of contact material from said second guide means by a distance which is smaller by the length of the cut contact piece than the distance by which the cut contact piece is strip of contact material, and upon the beginning of said withdrawing of the remaining strip of contact material said second electrode is lifted from said rest position to said welding position and thereafter descented to said rest position.

1. The method of perforating an elongate member compris ing the steps of:
(a) intermittently and relatively feeding said member end- machines, especially for household coffee machines and the wise through a perforating station in a manner such that like; said device comprising: ser is periodically arrested with a portion of the
member located at said station,
of said maser in timed relation to the intermittent motion of said member though said station to produce a laser
beam pulse of sufficient duration and intensity to penetrate beam puise of sufficient duration and intensity to penerrate each pulse against the portion of the member currently located at said station to form a hole in the member, and (c) said member being tubular, and including the step of maintaining the member in a flattened condition at said
station with a gap between upper and lower flattened sections defined by the member, and with the upper section facing toward the laser beam.

\section*{4,095,085}

HIGH EFFICIENCY ARC WELDING PROCESS AND PPARATUS
 Koga, Kamikura, and Toshisade Kashimure, Tokyo, all of Koga, Kamakura, and Toshiseda Kashimura, , Mokyo,
Japan, assignors to Kobe Steel, Limited, Kobe, Japan
\[
\text { Fignod Sep. 29, 1976, Ser. No. } 727,705
\]

Claims priority, appication Japan, Sep. 29, 1975, 50-118078; Sep. 29, 1975, 50-118076
\({ }^{\text {Int. }} \mathbf{C} \mathbf{C l}^{2}\) B23K \(9 / 08\)
U.S. C. 219-123
C. \({ }^{2}\) B23K 9/08

1. An arc welding process comprising the steps of: preparing a welding groove between plates forming a welding line;
generating a welding arc between a welding electrode and the plates to be welded;
oscillating the welding electrode
oscillating the direction of the welding arc by the magnetic force in synchronism with the oscillating of the welding electrode;
whereby the
each plate to be welded

\section*{4,095,086}

APORIZING AND WARMING DEVICE FOR BEVERAGE-PREPARING MACHINES Helmut Ohnmacht, and Erast Brechner, both of Kandel, Germany, assignors to Firma Fritz Eichenauer, Germany Cleims priority, application Germany, Jul. 11, 1975, 2530967 Int. Cl. \({ }^{2}\) A47J 31/44; H05B 3/00
U.S. Cl. 219-283

1. Vaporizing and warming device for beverage-preparing
hot plate for keeping the thus-prepared beverage warm said hot plate having at least two sides, vaporizer tube carrying water for preparing the beverage,
and said vaporizer tube being thermally connected to one side of said hot plate, heating element yielding the heat required for respective vaporization and warming processes, said heating elemen being thermally conductively connected with the vapor izer tube and being arranged together with the vaporize
tube at one side of the hot plate, said heating element being arranged laterally offset with respect to the vaporizer tube and with its portion closest to the hot plate being spaced from said hot plate at a perpendicular distance which is smaller than the height of the vaporizer tube perpendicusaid arrangement of said tube providing optimum transfer of heat, including pri marily radiant heat, to the hot plate, while minimizing the development of localized hot spots in the hot plate.

MINIATURE SYSTEM FOR CENTRAL HEATING AND WATER HEATING
Gabriel Giraud, 191, rue du Commandant Roland, 13008 Marseilles, France
Filed Dec. 1, 1975, Ser. No. 636,361
Claims priority, application France, Dec. 2, 1974, 7440708 \begin{tabular}{l}
Int. C. \({ }^{2}\) H05B 1/00; F24H 3/06; F24D 3/02; F24H \(1 / 10\) \\
6 Claims \\
\hline
\end{tabular}

1. A compact system for central heating and water heating mprising;
heat-insulated water-heating enclosure shaped as a single metalic block, normally filled with heat-absorbing water and consisting of a plurality of horizontal water-heating tubes and a pair of vertical water-distributing tubes dis posed at ends of the horizontal water-heating tubes and flow relation, so that the shape and the size of the block correspond to the shape and size defined by the horizontal and vertical tubes and so that the water between the vertical tubes fills substantially the entire space defined by the horizontal tubes,
electric immersion heating resistors mounted to extend sub-
stantially entirely tor through adjacent through each horizontal tube and tedgh adjacent parts of each vertical tube and distribtric resistive heating of the water: defined thereby, for elec tric resistive heating of the water;
of one of the vertical tubes for pumping water through the horizontal tubes to be heated therein by the resistors and to be circulated for central heating and water heating, the pump having an inlet means for receiving water to be
heated and outlet means communicating with the upper heated and outlet means communicating with the upper
end of said one vertical tube through which the water to be heated is pumped into the vertical tube for distribution to the horizontal tubes; and
water-mixing device mounted directly on an upper end of the other vertical tube and housed within a vertical exten sion thereof for mixing portions of the water pumped through the several horizontal tubes before its being circu lated for central heating and water heating, said device having an inlet communicating with the upper end of the other vertical tube for receiving the heated water ther of use, and means intermediate the inlet and outlet for causing mixing of the heated water.

ELECTRICAL ENERGY SUPPLIED HEAT-EMITTING ELECTRICAL ENERGY SUPPLI
RADIATOR
Verner Andersson, Stationsgatan 18, 824 O \(\mathbf{0}\) Hudikvall, and
Hans Jonason, Rubinvagen 29, 852 40 Sundsvall, both of Filed Mar. 31, 1976, Ser. No. 672,271 Clalms priority, application Sweden, Apr. 2, 1975, 7503759
Int \(\mathrm{Cl}^{2}\) F24H 9/08: F 24 D 13/02: \(\mathbf{H 0 5 B} 3 / 02\) Int. C1.2 \({ }^{2} 24 \mathrm{H} 9 / 08\); \(24 \mathrm{D} 13 / 02\); H05B 3/02
thermally resp
second switch mounted in the housing movable between on and off positions and mechanically associated with the first switch so that said second switch is movable from its off position to its on position when said first switch is moved from its off position to its on position

manually operable actuating means mounted on the housing and associated with said first switch for moving said first switch from it off position to its on position; and thermally responsive actuating means associated between said first switch and the medium for moving said first medium reaches a given temperature.
1. A heat-emitting radiator supplied with electrical energ
and adapted for mounting on a building interior structure, such
as a wall, comprising:
contact rail adapted for mounting
cluding current conducting means
guide rail also adapted for mounting on said st spaced-apart relationship from said contact rail;
connecting cassette supported by said contact rail and said guide rail and having contact means for feeding current seans for connecting said contact means to a source of electrical power; and,
at least one heating cassette supported by said guide rail and said contact rail and including heat-emitting resistanc means fed by current applied to said contact rail and having means for contacting said current-conducting tance means.

\section*{4,095,089}

SEQUENCING SWITCH ASSEMBLY Albert F. Ditzig, Hoffman Estates, Ill., assignor to Molex Incor porated, Lisle, ll .

Filed Oct. 18, 1976, Ser. No. 733,145
U.S. Cl. 219-441 Int. Cl. \({ }^{2}\) F27D \(11 / 00\) 1. A switch assembly for use in association
element which heats a medium comprising: a housing;
first switch mounted in the housing and movable between on and off positions and electrically connected to the heating element to turn the element on and off, said first
switch including resilient means tending to keep said second switch in a normally off position and a movable lock member associated between said first switch and
,095,090
ELECTRICALLY-HEATED CONTAINER Fianezza, 3445 Donna St., Springfield, III. 62707 Filed Dec. 27, 1976, Ser. No. 754,907 Filed Dec. 27,1976, Ser. No. 7541
Int. C1. \({ }^{2}\) F27D \(11 / 02\)
1. A device for heating liquid material comprising a conainer formed of dielectric material with a base, a sidewall and detachable handle, an electrical heating unit embedded in first heating lead connected to a first electricity conducting anst healing lead connecied to a first electricity conducting connected to a switch mounted on the base, said switch having switch lead connected to a second electricity conducting ang mounted on the sidewall, said handle including a battery with first and second battery leads connected to cooperating lectricity conducting sockets, said tangs cooperating with said neckets and providing means for structural and electrical conresponsive to changes in the position of the coll, said switch container is picked up by the user.

\section*{COCNTROLLING INFORMATION}

RECOGNIZING OPERATION
Ltd., Kariya, Japan
Claims priority, Apr. 11, 1977, Ser. No. 786,625 Claims priority, application Japan, Apr. 21, 1976, 51-45995 U.S. CI. 235-462 Int. Cl. \({ }^{2}\) G06K 7/10

3 Claims

1. A method for controlling information recognizing operaion comprising the steps of:
transferring an object on a predetermined route at a constant speed, said object being recorded with information on the surface thereof
genrough a predeterming signal while said object scanning said information recorded on said object to thereby generate a data enabling signal per each object after the start of said detected signal;
generating a timer signal having a constant time period
preset to be not longer than a paid preset to be not longer than a period in which said object
completes passing through said predetermined position said timer signal being triggered by either one of said detection signal or said data enabling signal whereby said timer signal is generated per each object; and
said timer signal so that said information recorded on said object is recognized with said constant time period.

AQUATIC ANIMAL COUNTING
Gregor N. \({ }^{\text {4, }}\) Neff, 85 Myrtle Ave., Dobbs Ferry, N.Y Filed Sep. 13, 1976, Ser. No. 722,417
Int. Ce. \({ }^{2}\) GO6M 11/00: A01K \(61 / 00\) Fined Sep. 13, 1976, Ser. No. 722,417
Int. C. \({ }^{\text {GOOM }} 11 / 00\) : A01K \(61 / 00\) U.S. C. \(235-92\) PK

1. A device for aquatic animal measurement, said device comprising, in combination, sorting means for sorting said animals as to size, said sorting means including barrier means
for restraining the movement of said animals, said barrier for restraining the movement of said animals, said barrier
means having a plurality of openings of a size predetermined to pass animals smaller than a selected size and restrain other of said animals, detecting means adjacent each of said openings to detect the passage of one of said animals through it, said detecting means including signaling means for each opening for hrough said opening, storage means for storing each such signal, sampling means for sequentially sampling the signals stored in said storage means, and counting means for counting the number of animals detected by said detecting means, said
counting means being adapted to count the signals taken from counting means being adapted to count the
the storage means by said sampling means.

\section*{SYNCHRONOUS STATE COUNTER}

Larry L. Miles, Garland, Tex., assignor to Texas Instruments Incorporated, Dallas, Tex.
Filed Oct. 27, 1976, Ser. No. 735,918
Int. C1.2 H03K \(23 / 24\) U.S. C. 235-92 GT

1 Claim

1. A state time counter for a microprocessor system, said system for counting state times, said counter comprising: (a) a plurality of latches for storing bits providing a bina representation of the state time the microprocessor system is in, each one of said latches including a pair of first inverters and means coupling said pair of first inverters in series;
b) a plurality of second inverters, each of said second in-
verters being coupled at the inputs thereof to an output of one of the inverters in said pair of first inverters, said second inverters outputting a carry control signal; (c) a plurality of transistors, each one of said transistors coupling the output of one of said plurality of second
inverters to the input of the other inverter in one of said pairs of first inverters;
(d) means coupling said clock to the control element of the one of said plurality of transistors coupled to the other inverter in said pair of first inverters forming the latch microprocessor system for changing the state of the latch storing the least significant bit in response to said clock; (e) means coupling said clock and selected ones of said carry control signals to each of said plurality of transistors coupled to the other inverter in said pairs of first inverters least significant bit for changing the state of the latches storing bits more significant than the least significant bit in response to the carry control signal outputted from all second inverters associated with latches storing bits les significant than the latch to be switched being of a prese lected state and further in response to said clock.

\section*{4,095,09}

URCTION DETECTION SYSTEM FOR A PROGRAMMABLE CONTROLIER
Heightruger, Chagrin Falls; William W. Searcy, Richmond Heights, and Ernest F. John, Willoughby, all of Ohio, assignors to Allen-Bradley Company, Milwaukee, Wis.
nuation of Ser. No. 434,333, Jan. 17, 1974, abandoned. This
application Mar. 21, 1977, Ser. No 779, application Mar. 21, 1977, Ser. No. 779,91
Int. C. \({ }^{2}\) G06F \(1 / 00\); G05B \(11 / 00\) U.S. C. 235-304.1

4 Claims 1. In a programmable controller having a memory which stores a control program that is continuously and repeatedly a controlled system in response to the operating devices on
devices on the controlled system, the improvement therein comprising a diagnostic module for periodically checking the said diagnostic module including means for periodically operating said logic unit in a prescribed pattern, said means including a first set of instructions stored in said memory with the control program which directs the logic unit to operate an

output in a prescribed pattern, means for detecting deviations the operation of said logic unit from said prescribed pattern including a second set of instructions stored in said memory which direct the logic unit to examine the logic state of said output, and a diagnostic register for indicating a malfunction first and second set of instructions are interleaved with the execution of the control program instructions.

4,095,095
PPARATUS FOR MANUFACTURING leashi Murake Yochouc ior DEVCES
Hisashi Muraoka, Yokohama, and Teruo Yoneyama, Yokosuka,
both of Japan, assignors to Tokyo Shibaura Electric Co., Ltd. Tokyo, Japan \(\underset{\text { Filed Mar. 30, 1977, Ser. No. 782,757 }}{ }\) Claims priority, appilication Japan, Mar. 31, 1976, 51-34414 Mar. 31, 1976, 51-35661; Mar. 31, 1976, 51-35662 Int. Cl. \({ }^{2}\) G06C 15/00; G06K 7/10, 19/06; B01J \(17 / 00\)

1. An
manufacturing semiconductor devices,
a scanning device for scanning a binary-coded pattern formed on a selected region of a semiconductor wafer, having high and low reflection portions and containing an item of wafer processing in be maned on which
nderer wereby to obtain an item of scanned information;
control apparatus for storing a plurality of items of wafer processing information and reading out, in response to an item of scanned information from said scanning device, an item of wafer processing information which corresponds to the item of scanned information, thereby to produce a control signal corresponding to the item of wafer processing information thus read out; and
the control signal from said control apparatus, the wafer in accordance with the item of wafer processing information which corresponds to the control signal.

\section*{4,095,096}

CODE DISCRIMINATOR
Shuzi Harada, and Tetsuo Yamaguchi, both of Yokohama, Japan, assignors to Matsushita Electric Industrial Co., Ltd. Kadoma, Japan

Filed Aug. 23, 1976, Ser. No. 716,711 Claims priority, appilication Japan, Sep. 2, 1975, 50-106740 U.S. C. 235-463 \({ }^{\text {Int. C. }{ }^{2} \text { G06K 7/14, 19/00 }}\)
1. A code discriminator for discriminating code consisting of modules of bars and spaces and including guard patterns, characters and a center bar pattern, comprising.
code and transforming the code into an elec
means for counting the width of the basic module of the bar and the width of the basic module of the space in the guard pattern and averaging the widths, and for discriminating the first character following the guard pattern by sampling the first character in start-stop synsecond discriminator means for counting the total width of the character before the character to be discriminated, dividing said total width by the number of modules constituiting one character to provide another standard width, and for discriminating the character by sampling in startstop synchronization.

\section*{4,095,097}

\section*{PULSED LIGHT SIGNAL RECEIVER}

Gerome R. Reeve, Longmont, Colo., assignor to Gerald F. Titus, Denver, Colo.

Filed Dec. 22, 1976, Ser. No. 753,414
U.S. CI. \(250-199\) Int. Cl. \({ }^{2}\) H04B 9/00
1. A receiver for pulsed light signals comprising.

6 Cluims a pulsed light detecting means including a phototransistor having base and collector and emitter electrodes,
means for biasing the base of said transistor to a constant voltage,
a load resistance in the collector circuit of said transistor,
a signal output connected to said load resistance,
constant current device in the emitter circuit of said transistor, and
a capacitor for bypassing current within a predetermined range of frequencies around said constant current device

DDITIVE COLOR SYSTEM WITH COMPENSATION O PEPEATABLITY ERRORS O VARIBLE DENSITY ELECTROOPTICAL FILTER UNITS
1. In an additive color system, in combination, light source means providing three component light beams; combining
means operative for receiving the three component light beams means operative for receiving the three component light beams
and combining the same to form a composite light beam; three and combining the same to form a composite light beam; three
variable-density electrooptical filter units, each arranged in the path of a respective one of the three component light beams each filter unit being provided with control electrodes and being operative for attenuating the respective component ligh beam to an extent dependent upon the control voitage applied
across the control electrodes; transmission-value-establishing across the control electrodes; rransmission-value-estabilishing
means operative for setting the filter units to different transmission levels, comprising selecting means operative for selecting he transmission values to be established, control-vol cagegenerating means connected to the selecting means and operative for generating and applying to the control electrodes
of the filter units control voltages dependent upon the selected ransmission values and including compensating means operaive for compensating for repeatability errors in the response of the filter units.

\section*{4,095,100}
1. In the control and measurement of a physical parameter \(P_{x}\) in response to a voltage controlled energy source, an appa-
ratus for ratiometrically measuring \(\mathrm{P}_{x}\) in a particular setting \(\mathrm{S}_{x}\) \(y\) comparison to the value \(\mathrm{P}_{R}\) obtained for such parameter in reference setting \(\mathbf{S}_{R}\), which comprises:
two voltage controlled energy sources \(L_{1}, L_{2} ;\) a sensor \(D_{1}\) exposed to the combined effect of \(L_{1}\) and \(L_{2}\), and
having an electrical output signal proportionally responsive to the combined powers of \(\mathrm{L}_{1}\) and \(\mathrm{L}_{2}\);
a sensor \(D_{2}\) exposed to the effect of \(L_{1}\) through \(S_{x}\) and to the effect of \(\mathrm{L}_{2}\) through \(\mathbf{S}_{R}\), having an electrical output signal \({ }_{\text {through }} \mathbf{S}_{\boldsymbol{X}}\) and of \(L_{\boldsymbol{t}}\) through \(\mathbf{S}_{\boldsymbol{R}}\);
means for impressing a square-wave-shaped voltage supply \(\mathrm{V}_{2}\) to \(\mathrm{L}_{2}\);
means for impressing a continuous voltage supply \(\mathrm{V}_{1}\) to \(\mathrm{L}_{1}\); means for regulating the voltage supply impressed upon one of said energy sources in proportion to the intensity of the effect of the other energy source upon \(\mathrm{D}_{2}\);
means for detecting the output signal amplitude \(U_{T_{P}}\) of \(\mathrm{D}_{1}\)
during the peak period \(\mathrm{T}_{p}\) of \(\mathrm{V}_{2}\) and the output signal during the peak period \(T_{p}\) of \(V_{2}\) and the output signal
amplitude \(U_{T \nu}\) of \(D_{1}\) during the valley period \(T_{V}\) of \(V_{2}\). whereby \(P_{X}\) can be determined from the equation:
\(\mathrm{P}_{X}=\left(\mathbf{P}_{R} \mathrm{U}_{T_{V}} / \mathrm{U}_{\tau_{P}}-\mathrm{U}_{T_{V}}\right)\)

LIGHT RESPONSIVE SWITCH
LIGHT RESPONSIVE SWITCH
Darid Selick, Tenafly, N.J., assignor to Selco Electronics, Inc Palisades Park, N.J. Filed Jul. 30, 1976, Ser. No. 710,35 Int. C..\(^{2}\) H01H, 47/24, \(61 / 013\) U.S. C. \(250-206\)

1. A light responsive switch device comprising an electri resistance heating element, a thermostatic switch exposed to the heat from said heating element and including a single pair of contacts transferrable between open and closed positions in response to the temperature of said switch being at relatively current source through said pair of contacts, means including a
hotoconductor connecting said heating element through said photoconductor to said source of current and regulating means
and responsive to the opening and closing of said pair of ontacts for respectively decreasing and increasing the curren through said heater element.

4,095,101
LIGHT CONDUCTOR HAVING ELECTRICAL CONDUCTORS EXTENDING LONGITUDINALLY OF SURFACE
Jerome H. Lemelson, 85 Rector St., Metuchen, N.J. 08840
Continuation of Ser. No. 8637 768, Oen Continuation of Ser. No. 863,768, Oct. 2, 1969, abandoned, 967, abandoned and a continuation-in-part of Ser. No. 439.529 Mar. 15, 1965, abandoned. This application Dec. 10, 1973, Ser. U.S. CI. 250—227 C. \({ }^{\text {Int }}{ }^{\mathbf{G} 02 \mathrm{~B}}\) 5/14; H02G 3/00

11 Claims

ce of hydrocarbons in subsurface earth formations traversed a borehole, comprising
(a) operiod;
piod, b) operating a plurality of detectors differently spaced from ing predetermined times relative to the operation of said source;
(c) combining at least some of said responses to produce a first pore volume indication which is primarily dependent upon the hydrogen content of the fluid in the pore space of a formation adjacent said detectors;
(d) combining at least some of said responses to produce a characteristic of said formation; and
(e) combining the absorption characteristic function of said formation with a predetermined absorption characteristic second pore volume indication which is uncompensated for differences between the thermal neutron absorption characteristics of the matrix and any hydrocarbons present in the formation such that the presence of hydrocarbons is indicated by differences between sed
first and second pore volume indications.
1. A composite electrical assembly comprising in combina-
tion: an elongated core member which is flexible throughout it length and is made of an electrically insulating material, a plurality of non-contacting strip-like electrical conducting elements extending parallel to each other and longitudi nally along the outer surface of said elongated flexible
core member wherein each of said strip-like conducting core member wherein each of said strip-like conducting
elements is bonded in integral assembly with said flexible core member, outer surface of said flexible core member said electrical wave energy transducing means being electri cally connected and in circuit with respective of said strip-like conducting elements extending longitudinall
along said outer surface of said flexible core member along said outer surface of said flexible core membe
whereby said strip-like conducting elements may serve a conductors of electrical energy with respect to said wav energy transducing means.

HYDROCARBON DETECTION UTILIZING NEUTRON BOREHOLE MEASUREMENTS Technology Corporation, New York, N.Y. Continuation of Ser. No. 728,330, Sep. 30, 1976, abandoned, which is a continuation of Ser. No. 579,536, May 21, 1975, Int. Cl. \({ }^{2}\) G01V \(5 / 00\)

26 Claim

A machine method of automatically indicating the pres

APPARATUS AND METHOD FOR DETERMINATION OF RESIDUAL STRESS IN CRYSTALLINE SUBSTANCES Jerome B. Cohen, Glencoe, III., and Michael R. James, Groningen, Netherlands, assignors to Northwestern University, Evanston, III.
Continuation-In-part of Ser. No. 666,393, Mar. 12, 1976, abandoned. This application Jul. 28, 1977, Ser. No. 819,985
U.S. CI. \(250-277\) CH

7 Claims

1. A quick and precise method for determination of residual stress in crystalline substances by locating a plurality of X-ray diffraction peaks with a single \(\mathbf{X}\)-ray detector and without diffractometer shifting of said X-ray detector, said method omprising the steps of
with respect to a principal surface of a crysal an angle stance;
(b) diffracting said X -rays;
(c) receiving \(X\)-rays emanating from the substance in a single position-sensitive X-ray detector responsive to said \(X\)-rays
to produce a multiplicity of ionizing events clustered about a position corresponding to a diffraction peake, said single position-sensitive X-ray detector including a colecting element providing first and second voltage pulses at respective first and second output ends of said detector in response to ionized particles, said first and second voltage pulses each having a rise time proportional to respec-
ive distances between the position of an ionizing event occurring within said detector and said first and second output ends of the collecting element;
s correlated with
first and second voltage pulses produced in said collector, impervious to water and transparent to said predetermined thereby indicating a position of an ionizing event occur ring within said detector corresponding to a first diffrac (e) varying a

X-ray source and said principal surface of the crystalline substance; and
(f) locating a second diffraction correlated with a second diffraction angle by repeating steps (a) through (d), step
(c) being performed with the same position-sensitiv X -ray detector used for locating said first diffraction peak, a difference between the first and second diffraction angles being indicative of magnitude and direction of resid ual stress in the substances.
\[
\begin{aligned}
& \text { ELECTRON MICROSCOPE }
\end{aligned}
\]
amount effective to be analyzed by irradiation, said second material being present in an amount effective to resist migration of moisture in said mixture

4,095,106
RADIATION ATEENUATION GAUGE WITH MAGNETICALLY COUPLED SOURCE Steven A. Wallace, Knoxville, Tenn., asslgnor to The United States of America as represented by the United States Depart-
ment of Energy, Washington, D.C. ment of Energy,
Filed Mas. 16, 1977, Ser. U.S. CI. \(250-358\) R

9 Claims
Jan Bart L
Eindhoven, both Deitt, and Karel Diederick van der Mast, Corporation, New York, N.Y.

Filed Aug. 24, 1976, Ser. No. 717,193
U.S. Cl. \(250-311\)

1. An electron microscope, comprising an electron gun for generating an illuminating electron beam objective lens means directing said beam to an object plane, projection lens means directing said beam from said object plane to an image plane, and a device for the apparent enlargement of the aperture of
the illuminating electron beam, characterized in that the device for the apparent enlargement of the aperture comprises a beam deffection device which includes a power supply source for tilting the illumination
said object plane.
\(\qquad\)
4,095,105 ST SAMPL
Robert D. Rosenthal, Gaithersburg, Md,, assignor to Neotec Corporation, Silver Spring, Md. Filed Feb. 3, 1977, Ser. No. 765,308

Int. Cl. \({ }^{2}\) G01J \(1 / 0012\) Claim

1. In a standard test sample comprising a closed container including a window transparent to irradiation of a predeter-
mined wavelength, the improvement wherein a mixture of organic material and a second material is in said container positioned against said window, said second material being
1. In an apparatus for imaging distributions of a source of penetrating radiation contained within a body and wherein
said apparatus includes means for collimating emitted radiation and means for detecting the trajectory of emitted, collimated radiation:
the improvement wherein said means for detecting is arcuately shaped and said means for collimating converges to the center of an arc defined by said means for detecting.

\title{
4,095,108
}

SIGNAL PROCESSING EQUIPMENT FOR RADIATION IMAGING APPARATUS
Dan Inbar, Halfa, and Yitzhak Kleln, Kirvat Yam, Haifa, both of Israel, asslgnors to Elscint Ltd., Haifa, Israel
Filed Sep. 14, 1976, Ser. No. 723,620
Claims priority, 10 pplication Israel, Sep. 17, 1975, 48111
U.S. C. \(250-369\)
application Israel, Sep. 17,

1. In signal processing equipment for use with radiation imaging apparatus of the type having a scintillation crysta responsive to radiation stimuli for producing light events a spatial locations corresponding to the locations at which stimuli interact with the crystal, and a pluraility of photodet the
tors arranged in a predetermined array with respect to the crystal for viewing light events therein and producing outpur signals in response thereto, wherein the signal processing equipment includes means responsive to the output signals for generating an energy signal \(E_{n}\) representative of the total energy of the light event producing such signals; and coordinat computation circuitry responsive to the output signals pro-
duced by the occurrence of a light event for computing its spatial coordinates, the improvement in the signal processing equipment comprising,
means for validating the event only if \(E_{n}\) lies within an energy window
light event. \(\qquad\)

\section*{4,095,109} -
RADIATION DETECTOR FOR AN AUTOMATIC X-RAY EXPOSURE TIMER
Horst Aichinger, Fuerth, and Hans Ebersberger, Nuremberg,
both of Germany, assignors to Siemens Aktiengesellschaft, Berlin \& Munich, Germany
Claims priority, application Germany, Mar. 15, 1976, 2610875 Claims priority, application Germany, Mar. \(\mathbf{\text { Int. C. }}\). \({ }^{2} \mathbf{H 0 5 G}\) I/44; H01J 39/28 U.S. CI. \(250-374\)

5 Claims
comprises a vacuum deposited electrically conductive material having a low atomic number.

MEANS 4,095,110 MEANS FOR STEPPING X-RAY RECEPTOR IN \begin{tabular}{l}
SOURCE \\
SORIION CHANGE OF \\
\hline
\end{tabular} Laverne R. Bunch, Baltimore, Md Corporation, Baltimore, Md
Filed Nor. 4, 1976, Ser. No. 739,017 U.S. CI. 250-445 T
1. Apparatus for translating \(X\)-ray receptor means such as a m holder relative to the \(\mathbf{X}\)-ray source in diagnostic \(\mathbf{X}\)-ray ystem a lypical example of which is a linear tomography an elongated ball screw shaft positioned to provide transla. nelongated ball screw shaft positioned to provide transla-
tional movement of said X -ray receptor means in a predetermined direction when rotated; s shaft and attached to means threaded on s said X-ray receptor means;
an electrical stepper motor having a rotary output shaf coupled to said ball screw shaft and being responsive to drive pulses applied thereto to incrementaly
output shaft for each drive pulse applied; and
drive pulse circuit means coupled to said stepper motor and being operable to generate said drive pulses in response to a position change of said X-ray source, said drive pulse circuit means including electrical pulse generator means providing electrical drive pulses of predetermined polarity for operating said stepper motor to rotate said ball
screw shaft in a direction which translates said X-ray receptor means in an opposite direction with respect to the direction of the position change of said X -ray source. ing layer on its exterior side and having an electrode layer on film while in said cassette to a light-density scale; exposing said the side thereof facing the other wall, characterized in that the film to a subject independently ofis exposure to said light-den shielding layer is a graphite layer, and the electrode layer sity scale; developing said exposed film to form a viewable
image of said subject and to reproduce said scale; repeating the
foregoing steps for successive films; and evaluating the repro-

ductions of the light-density scale of the successive films to detect variations therebetween.

APPARATUS FOR PRODUCING ULTRAVIOLET RADIATION Friedrich Woiff, Bertholdstrasse 18, Frankfurt, Germany
Filed Aug. 20, 1976, Ser. No. 716,253 Claims priority, auplication Germany, Aug. 26, 1975, 2537855; Clams priority, application Germany, Aug. 26, 1975, 2537855;
Jan. \(30,1976,2603460 ;\) Jan. 30,
2624297

Int. Cl. \({ }^{2}\) G01J \(1 / 00\)
U.S. CI. 250-494

1. Apparatus for producing ultraviolet radiation, particu1. Apparatus for producing ultraviolet radiation, particu-
larty a quick-tanning sunnamp, comprising at least one source
of substantially uniform ultraviolet radiation including at least five closely adjacent rod-shaped low-pressure mercury lamps; reflector means associated with said source and defining at
least one exit opening for ultraviolet radiation, said reflector least one exit opening for ultraviolet radiation, said reflector
means including a discrete trough-shaped reflector for each of said lamps and each of said reflectors surrounding the respective lamp along an arc of at least \(180^{\circ}\), said source and said reflector means being constructed and assembled to establish a high-density radiation field of predetermined area in the region
of said exit opening and the heat output of said lamps being of said exity opening and the heat output of said lamps being
sufficiently low to insure that the temperature in the region of said field is within a range which is below the range of discomfort to a person exposed to said field; and means for intercepting at least the major percentage of wavelength bands of ultra-
violet radiation below approximately 315 nm ahead of said violet radiation below approximately 315 nm ahead of said
field so that said field consists essentially of the remaining wavelength band of ultraviolet radiation.

ARRANGEMENT FOR SCATIERING ELECTRONS Leonhard Taumann, Lafayette, Calif., assignor to Sremens Ak. tiengesellschaft, Berlin \& Munich, Germany
Filed Mar. 18, 1977, Ser. No. 779,166
1. A calibrating method for an electron pattern generator, said generator having a sample holder, means for displacing
said sample holder in two mutually perpendicular directions, a said sample holder in two mutually perpendicular directions, a and each area line by for swee, and each said sample area by area, and each area line by line, and each line, point by poin
calibrating method comprising the following steps of:
manufacturing a marker upon said sample, at a given manufacturing a marker upon said sample, at a given area
bombarded by said beam at its rest position with a material capable of upon the impact of the electron beam, scattering electrons, and generating in response to this impact an electric signal;
eleccric signal;
transducing said signal into an image upon the screen of a cathode ray oscilloscope, by applying said signal upon the control electrode of said tube;
applying a programmed pattern simultaneously and syn-
chronously to said oscilloscope and to said generator deflection system for displaying on said screen a predetermined figure centered about the image of said marker;
giving a predetermined mechanical displacement to said displacement to said deflection system of said pattern displacemerar; and
centering again said figure about said image of said marker.
\({ }_{\text {Int. C. }}{ }^{2}\) G21F 3/02
U.S. CI. 250-510

1. An arrangement for scattering electrons in an electron 1. Acerator with selectable acceleration energies, comprising:
(a) acceleration means for providing a beam of electrons; (a) acceleration means for providing a beam of electrons;
(b) first and second scattering foils arranged at a mutual
spacing from one another along a direction of the beam for producing scattering properties;
(c) the first scattering foil in the beam direction having a (d) the second scatteris
from its center towards its margin;
(e) means for adapting the scattering properties to the se- transmitter and an optical receiver and an encapsulating mass lected acceleration energy including a set of scattering about such coupling medium, wherein the coupling medium is
foils, each having a scattering property corresponding to a selected acceleration energy, the scattering properties of optically transmissive and the encapsulating mass reflects the the set of foils decreasing with decreasing acceleration radiation emitted from said optical transmitter and is relatively energy, a corresponding one of said set of foils being impermeable by optical radiation exterior of such coupling
placed by said means into the beam path of said first scat. placed by said means into the beam path of said first
tering foil for a second acceleration energy; and
(f) said second scattering foil remaining unchanged in the
beam.

OZONE GENERATION APPARATUS AND METHOD
F. D. Orr, Jr.; L. F. Templeton, and Larry L. Keutzer, all

Austin, Tex., assignors to Accelerators, Inc., Austin, Te
538 Int. Cl. \({ }^{2}\) C01B \(13 / 00\)
U.S. Cl. 250-538

1. Apparatus for generating ozone, comprising
vessel enclosing a volume maintained at an appropriat subatmospheric pressure;
holiow cathode plasma discharge device disposed within the vessel for producing a beam of electrons; positioned to receive the beam of electrons and communi cating with an oxygen-containing atmosphere;
produced by the hollow cathode plasma dischar electrons produced by the hollow cathode plasma discharge device
over substantially the entire surface of the electron-transmissive window to provide an electron beam density below about \(0.1 \mathrm{~mA} / \mathrm{cm}^{2}\); and
means for moving the oxygen-containing atmosphere past
said window and within a suitable distance therefrom at velocities in excess of about 4000 feet per minute.

4,095,116
ELECTRO-OPTICAL COUPLING ELEMENT Gerfried Felkel, Neubiberg Gerbard Maier, Munich; Wolfgen Guenzel, Munich, and Guenther Waitl, Munich, all of Ger-
many, assignors to Siemens Aktiengesellschaft, Berlin Munich, Germany
Filed Jun. 13, 1977, Ser. No. 805,992 Claims priority, application Germany, Jun. 22, 1976, 2627944 U.S. C. \(250-551\)

1. In an electro-optical coupling device having a couplin 1. In an mechanically and optically connecting an optical
mprovement comprising wherein:
said encapsulating mass is a single substantially homogeneous layer containing therein an amount of a substantially uniformly dispersed first material particles which renders said
encapsulating mass into a highly reflective medium for radiation emitted from said optical transmitter and contains an amount of substantially uniformly dispersed second material particles which render said encapsulating mass highly impermeable to optical radiation from outside said coupling device.

CIRCUIT FOR DEFINING THE DYE DILUTION CURVES IN VIVO AND IN VITRO FOR CALCULATING THE Ferenc Nagy, Budapest, Hungary, assignor to Medicor Murek, Budapest, Hungary \({ }_{\text {Filed Jun. 30, 1974, Ser. No. 701,214 }}\) Claims priority, application Hungary, Jun. 30, 1975, ME 1872 U.S. Cl. \(250-564 \quad 8\) Claims

1. An apparatus for determining the concentration of a dye in a biological liquid, such as blood, comprising an optical and an system, a counting system, a feed and control system and an indicating apparatus, said counting system having an
input with three channels in accordance with the number of channels of the optical system, each of said channels of said counting system having a logarithmic circuit or the three nels together having a logarithmic circuit operating in time multiplex operation, and having three amplifiers, and four subtraction circuits connected to said channel amplifiers; three
subtraction and scale setting circuits, each having an input, the subtraction and scale setting circuits, each having an input, the
outputs of said subtraction circuits being connected to the inputs of said three subtraction and scale setting circuits; a
summing circuit, quotient forming circuit means; any two of summing circuit; quotient forming circuit means; any two of
the outputs of the last mentioned subtraction and scale setting circuits being connected to the input of said summing circuit, and the output of said summing circuit being connected to said indicating apparatus and to the input of said quotient forming circuit means; the outputs of said subtraction and scale setting circuits being connected to the quotient forming circuit means; the outputs of the quotient forming circuit means being con-
nected to said indicating apparatus; and a fine adjustment potentiometer connected to further inputs of said quotient forming circuit means.

SOLAR-MHD ENERGY CONVERSION SYSTEM Kenneth R. Rathbun, P.O. Box 12637, Austin, Tex. 7871 Rathbun, P.O. Box 12637, Austin, Te
Filed Nov. 26, 1976, Ser. No. 745,198
Int. Cl. \({ }^{2}\) H02P 9/04; H02K 45/00 U.S. Cl. \(290-2\)

1. An energy conversion sy
an ionizable working fluid;
an ionizable working fluid;
a magnetohydrodynamic generator including for said fluid, said conduit means having input and output ends,
means for establishing a magnetic field in said conduit means, and
means for collecting charged particles from within said
conduit means and for load device;
means for providing a closed flow path for said working fluid from the output of said generator conduit means and to the input thereof, including
means adjacent the input end of said generator conduit
means for exciting said working fluid to an elevated energy level at which said fluid is at least partially ionized into a plasma,
means for inducing flow of said plasma into said MHD conduit means,
heat exchanger m
generator conduit means for reducinput of said MHD of said working fluid by extractings fer temperature means for delivering said working fluid from said heat exchanger to said means for exciting; and
a pluraity of heliostats arranged to receive solar radiation said means for exciting including
first wall means transparent to solar radiation for ting solar radiation to pass therethrough, and
second wall means opaque to solar radiation for absorbing energy from solar radiation incident thereon;
said first and second wall means being interconnected to form a conduit chamber through which said working fluid
can pass, said first and second wall means being substancan pass, said first and second wall means being substan-
tially perpendicular to the direction of radiation reflected from said heliostats with said first wall means between said second wall means and said heliostats;
said second wall means and said heliostats;
whereby said working fluid is excited toward non-equilibrium thermal ionization by energy absorbed from said radiation by said second wall means and is at least partially
photo-ionized by radiation passing through said first wall means and by radiation re-emitted by said second wall means.

4,095,119
SYSTEM FOR RESPONDING TO A PARTIAL LOSS OF LOAD OF A TURBINE POWER PLANT
Bernard Nangle; Patrick L. McGaha, both of West Chester Thomas J. Wallace, Upper Chichester, all of Pa, and Todd B
Anderson, Hammond, Ind., assignors to Westinghouse Electric Corp., Pittsburgh, Pa.

Filed Jun. 23, 1976, Ser. No. 699,295
Int. C1. \({ }^{2}\) F01K \(13 / 02\)
10 Claims
U.S. CI. \(290-40 \mathrm{R}\)
1. A system for momentarily interrupting the total steam 1. A system for momentariy interrupting a power plant
upon the occurrence of a partial loss of electrical load, com prising:
(a) a plurality of electrohydraulically adapted interceptor valves for controlling the admission of motive steam to the lower pressure turbine section, each said valve having a servo system operative to generate an electrical signal representative of its actual valve position,
(b) means to combine the generated actual position signals of each of the valves,

(c) means response to a detection of partial loss of electrical load to operate each of the plurality of interceptor valves from an open to a substantially closed condition, (d) means to control the interceptor valves to operate predetermined speed toward an open position, and (e) means governed by the combined actual valve position signals to change the controlled speed of opening each of the interceptor valves.

OAD CONTROL FOR
LOAD CONTROL FOR WIND-DRIVEN ELECTRIC
Kevin E. Moran, RIverton, and Eugene C. Korzenlewski, Wi lingboro, both of N.J., assignors to Louis Michael Glick,
Cumberland, Md \begin{tabular}{l}
Flled \(\mathbf{O}\) \\
\hline
\end{tabular}

Iled Oct. 22, 1976, Ser. No. 735,003
Int. C1. \({ }^{2}\) H02P 9/04
U.S. Cl. 290-44 14 Claims

1. In a wind-driven electric power plant comprising a wind responsive rotor and a rotating electric generator connected to be driven thereby, said generator having an electrically ener-
gizable field winding, apparatus for controlling the loading of means for sensing the rotational speed of said generator and
\[
\xrightarrow{12}
\] of said molecular gas;
generating second coherent, variable excitation signal \(\omega_{2}\) which is near resonant with at least one infrared transition of said molecular gas;
irradiating said molecular gas with said first and second coherent, variable excitation signals in a waveguide to
increase focal interaction length and enhance phase matching to increase efficiency
whereby \(\omega_{1}-\omega_{2}\) is resonant with a Raman allowed rota tional transition thereby enhancing third order susceptibility and intensity.
providing a signal the amplitude of which varies as a on of said rotational speed; and control means, responsive to said signal, for controlling the current in said field winding in accordance with the rota tional speed of said generator whereby the load imposed by the generator closely follows but does not substantiall exceed the available power from said rotor through wide range of rotational speeds;
means for establishing at least four meed comprises speed ranges together constituting said wide range of rotational speeds, and means for establishing for each o said speed ranges a predetermined amplitude for saii signal, said amplitudes being different for adjacent ranges connected to receive said signal as an input, and having its output connected to deliver said current to said field output connec
winding; and
in which said means for sensing the rotational speed of said generator comprises means for providing a series of pulses her repetition rate of which is proportional ho said redetermined time interval, counting means for repetitively counting the number of said pulses occurring in said predetermined time interval, and means for establishing said predetermined amplitude for said signal in dependence on the count in said counting means.

4,095,122
TUNABLE INFRARED AND FAR-INFRARED SOURCE BY FOUR-PHOTON MIXING
oedoar Charlouis Damen, Colts Neck; Erich Gornik, Red Bank; Van-Tran Nguyen, Holmdel, and Chandra Kumar NaLaboratories, Incorporated, Murray Hill, N.J. Filed Aug. 4, 1977, Ser. No. 821,699
S. Cl. 307 - 88.3 Int. Cl. \({ }^{2}\) H02M \(5 / 04\)

1. An apparatus for generating tunable infrared radiation comprising first, second and third input lasers generating input eams of frequency \(\omega_{1}, \omega_{2}\) and \(\omega_{3}\), respectivel
anonlinear interaction medium comprising a crystal having
means for directing said input beams collinearly into said nonlinear interaction medium, whereby an output frequency \(\omega_{4}\) is generated, where
\(\omega_{4}=\omega_{1}+\omega_{2}-\omega_{3}\),
in which apparatus \(\omega_{1}\) and \(\omega_{2}\) are selected such that \(\omega_{1}\) is close to the frequency of a single-photon exciton state and the sum of \(\omega_{1}\) and \(\omega_{2}\) is very close to the frequency of a two photon excion state so that the output power of frequency \(\omega_{4}\) is reso
RESONANTLY ENHANCED FOUR-WAVE MIXING Richard F. Begley, Los Alamos, and Norman A. Kurnit, Santa Fe, both of N. Mex., sssignors to The United States of Amer-
Ica as represented by the United States Department or
Washington, D.C.

U.S. C. \(307-88.3\)
\[
\text { Cualms } \Lambda
\]

1. A switch controller comprising a first and a second pushbutton each carrying a pair of actuator pins of different engths, first and second normally open switches respectively ocated below each shorter one of the actuator pins, and first and second normally closed switches respectively located below each longer one of the actuator pins, the first normally open switch and the second normally closed switch being connected in series in a first controlled circuit, and the firs being connected in series in a second controlled circuit.

4,095,124
TRANSFORMER/SWITCH DEVICE
John J. O'Farrell, Jr., 2525 N. Alvernon Way, C-6, Tucson,
Ariz. 85712
Filed Aug. 16, 1976, Ser. No. 714,314
Int. Cl. \({ }^{2}\) HO1H \(43 / 00\)
21 Clalms

1. An integrated transformer and switch device for controlling the flow of electrical power from a power source to a load,
said device comprising: a. a transfomprising.
a. a ransformer means including a primary winding means
electrically energizable by the power source for genera ing a magnetic field and a secondary winding means for generating an output signal, said secondary winding means being magnetically responsive to the magnetic field
generated by said primary winding means; generated by said primary winding means;
b. first switch means having a normally clos
normally open state for supplying power to said primary winding means, said first switch means being maintained in the normally open state during energization of said primary winding mean
means for maintaining a flow with said primary winding mary winding means upon switching of said first switc means to the normally open state, said second switch means having a conducting state and a non-conducting
d. a selectively positionable third switch means for electrically connecting the load to the power source, said thir the load to the power source when said first switch means is in the normally closed state and the second state electrically connecting the load to the power source when said first switch means is in the normally open state;
pulses provided by said secondary winding means for changing said second switch means from the conducting
state to the non-conducting state: state to the non-conducting state;
whereby, dependent upon the state of said third switch means,
the load is connected or disconnected from the load is connected or disconnected from the power source
upon actuation of said first switch means and the load is disconnected or connected to the power source upon actuation of
said fourth switch means.

4,095,125
PULSE SIGNAL DETECTOR AND/OR FILTER Edwin Coy Ingle, Julian, N.C., assignor to Bell Telephone Labo Edwin Coy Ingle, Julian, N.C., rssignor to Bell T
ratories, Incorporated, Murray Hill, N.J.

Filed Feb. 28, 1977, Ser. No. 773,006
U.S. CI. \(307-234\)

Int. C1. \({ }^{2}\) H03K \(9 / 08\)
18 Claims 1. A pulse signal detector which comprises: mined output only after being controllably enabled for a first predeter mined interval in response to an applied input signal; first means for yielding a first representation indicative of an operative state of said first timing means;
second timing means for yielding a second predetermined
output only after being controllably enabled for a
predetermined interval in response to said first predeter mined output;
cond means for yielding a second representation indicative of an operative state of said second timing means; and

\section*{(1020}
third means responsive to said first representation, said sec ond representation and an output from said second timing means for yielding an indication when said applied signal has a width greater than said first predetermined interval second predetermined interval.

4,095,126
BI-POLAR AMPLIFIER WITH SHARPLY DEFINED AMPLITUDE LIMITS
Charles Reeves Hoffman, Raleigh, and William Burrell Nunnery, Cary, both of N.C., assignors to International Businese Machines Corporation, Armonk, N.Y. Filed Mar. 16, 1977, Ser. No. 777,990
Int. C. \({ }^{2}\) H03K \(5 / 08\) U.S. Cl. 307-237

1. An amplitude limiting circuit for the output of a primary amplifier comprising an operational amplifier having a pair of referencections and an operational amplifier output terminal, mplifier in vage source connected to one of said operational tional amplifier input connections to a source of said operaamplified, and a resistor connecting said operational annal to be output terminal with said other operational amplifier input onnection, said limiting circuit comprising \(y\) amplifier having at least twing
puts with an input connected to said operational amplifier output terminal to generate on said operational amplifier output terminal to generate on said two primary amplifier outputs an ampilied representation of the signal at said a dead zone amplifier having two inputs
output of said primary amplifier and an output connected to the other said input of said primary amplifier and to said other input of said operational amplifier, said dead zone amplifier acting to generate a voltage signal of opposite polarity to said signal to be amplified when the amplitude fhe redetermined zone

TRANSISTOR BASE DRIVE REGULATOR Arne Nerem, San Diego, Calif., assignor to Rohr Industries, Incorporated, Chula Viste, Calif.

Filed Mar. 29, 1976, Ser. No. 671,094
U.S. Cl. 307-253 Int. C.' \({ }^{2}\) H03K 17/60

1. A base drive regulator for a first transistor having base emitter and collector elements, which comprises,
(b) active single element regulator means for controlling said first transistor; said regulator means connected between said source and said base element of said first transistor,
(c) said regulator means including an additional transisto
(c) said regulator means inclucing an additional transistor
having a base, emitter and collector and responsive to said source and directly connected to said base of first transis or for supplying drive voltage to said base of said firs transistor and,
(d) resistive bi-directional means connected between the emitter and collector of said additional transistor for maintaining a bias voltage on said base of said first transistor of a value above the normal voltage on said base of said firs said source is non-conducting and a drive voltage is present, and
(e) a diode connected between the base of said additional transistor and the collector element of the first transisto
so as to maintain a substantially zero differential voltage so as to maintain a substantially zero differential voltage
between said collector element and said base element of said first transistor.

\section*{4,095,128}

PUSH-PULL SWITCHING CIRCUIT WITH MINORITY CARRIER STORAGE DELAY
Hidetoshi Tanigaki, Nishinomiya, Japan, assignor to Furuno Electric Co., Ltd., Nagesakid, Japan
Claims priority, application Japan, Feb. 3, 1976, 51-10976 US. C1. 307-254. \({ }^{\text {Int. }}{ }^{2}{ }^{2} \mathbf{H} 03 \mathrm{~K}\) 17/60; H03F 3/26 U.S. C. \(307-25\)

4 Claims

1. In a push-pull semiconductor switching circuit including an output transformer, first and second grounded emitter tranan output transiormer, hrrst are connected to opposite ends of the primary winding of the transformer, and a pulse generator for alternately controlling the conduction of the transistors, the nprovements characterized by:
(a) a mip. .
response to the pulse generator, (b) first and second AND gates each having one of its inputs respectively coupled to the Q and \(\overline{\mathrm{Q}}\) outputs of the flip-
flop circuit, and their outputs connected to the bases of the first and second transistors, respectively,
(c) means connecting the collector of the first transistor to the other input of the second AND gate, and
(d) means connecting the collector of the second transistor
(e) each connecting means comprising a first resistor, a second, grounded resistor connected to the first resistor to form a voltage divider therewith, and a voltage limiter connected to the junction of the first and second resistors.

ROTOR ASSEMBLY 4,095,129
ROTOR ASSEMBLY FOR ELECTRO-MECHANICAL TRAND, Seyar OF ELECTRONIC TIMEPIECE
Hirai; Shigeru Aoyzma, Kashima, Tanashi, all of Japan, assignors to Citizen Watch Company Limited, Tokyo, Japan Claims priority, application Japan, Sep. 22, 1975, 50-1114557; Dec. 25, 1975, 50-159494; Jan. 21, 1976, 51-005751
U.S. CI. \(310-49\) R
 timepiece comprising:
a rotor pinion;
a rotor pinion;
metallic protecting member including a boss portion fixedly mounted on said rotor pinion, a radial wall radially
extending from said boss portion, and a cylindrical wall integral with said radial wall; and
a rare earth magnet press fitted to said cylindrical wall and having an inner wall larger in diameter than said bos portion to provide an annular space chereber wen, said an inner diameter less than about 4 mm , the ratio of the outer radius of said rare earth magnet to the inner radius thereof rdnging between 1.2 and 3 and said rare earth magnet having an energy product of at least 16 MGOe.

\section*{095,13}

\section*{SYNCHRONOUS MOTOR}

Kenji Oshima; Tomohise Matsumoto; Hiroshi Yamazaki, and Tamotsu Yoscioka, all of Tokyo, Japan, assignors to Kabu shiki Kaisha Seikosha, Japan
Filed Sep. 16, 1976, Ser. No. 723,950 Claims priority, application Japan, Sep. 23, 1975, 50-115199
Int. C1. \({ }^{2}\) H02K 21/00 . A Cl. 310-162 Claims 1. A synchronous electric motor comprising a stator having Wo spaced stator arms with like magnetic pole portion rizing coil on ends thereof and opposing each other, an ener ween said magnetic pole portions and having a pair of N - and S -poles, each of said magnetic pole portions having two static
magnetic poles at equal distance from said rotor and an indent electrons for secondary emission, a resistance means provided
between said poles spaced at a greater distance than said poles in said wall means and connected in parallel across a portion of

from said rotor, whereby said stator is quadripolar statically
and bipolar dynamically. and bipolar dynamically.

4,095,131
BRUSH HOLDER FOR MOTOR OR GENERATOR Richard J. Febonio, Salem, Mass., assignor to Torque Systems c., Waitham, Mass.
U.S. CI. 310-239

the spiral passage defined by said wall means to provide more uniform current multiplication along said passage length.

\section*{4,095,133} FIELD EMISSION DEVICE
5 Claims Arthur Marie Eugene Hooberechts, Eindhoven, Netheriands, assignor to U.S. Philips Corporation, New York, N.
Filed Mar. \({ }_{7604569}^{\text {Claims }}\) priority, application Netherlands, Apr. 29, 1976, U.S. Cl. 313-336 Int. Cl. \({ }^{2}\) H01J 1/16, \(1 / 05\) 3 Clajms

1. A brush holder for containing a carbon brush having an external terminal which includes a generally criscular portion conforming to and disposable within a recess of the brush holder, and an outwardly extending tab, and comprising:
a unitary hollow body of electrically insulative material and including a head portion at one end thereof having said recess being configured to receive in threaded relation ship a threaded cap therein for retention of a carbon brush in said body;
an opening extending through the body along the longitudinal axis thereof and of configuration to slidably contain a id heod portion having a nerro
ing between the outer surface of said head portinmunicat recess at a portion adjacent to the bottom of said reces and extending transversely to the axis of said body, said slit adapted to receive the electrical terminal tab of a brush, said recess being adapted to receive the generally
circular portion of the electrical terminal for retention by said threaded cap.

ELECTRON MULTIPLIER
Anthony V. Fraioli, Essex Fells, N.J., assignor to Galileo Elec-tro-Optics Corp., Sturbridge, Mass.
Filed Sep. 11, 1964, Ser. Filed Sep. 11, 1964, Ser. No. 39
Int. C. \({ }^{2}\) H01J 43/00 U.S. C1. 313-103 CM 1. An electron multiplier comprising wall means of second- 9 Claims ary electron emissive material defining a spiral passage, means for providing a current flow through said wall means to supply
1. A field emission device comprising a substrate on which at east one conical electrode having a punctiform tip is provided, a layer of a dielectric material covering the substrate about the electrode with the tip free of dielectric material, a conductive
layer over said dielectric layer, said conductive layer extendlayer over said dielectric layer, said conductive layer extend-
ing in the direction of the punctiform tip of the electrode to beyond the dielectric layer, said conductive layer having an aperture above the tip so that the conductive layer forms a cap-shaped accelerating electrode surrounding the conical
electrode.

\section*{electrode.}

4,095,134
TELEVISION DISPLAY TUBE INCIATION OF COLOR PHOSPHOR PATTERN WITH SOLUTION OF PHOSPHOR PATERN WITH SOLUTION OF
ANTISTATIC AGENT IN APOLAR SOLVENT Francis Bernardus Strik, Eindhoven, Netherlands, assignor to U.S. Philips Corporation, New York, N.Y.
Filed Jan. 6, 1976, Ser. No. 646,97
\({ }_{7500288}^{\text {Claims priority, application Netherlands, Jan. 10, 1975, }}\) Int. Cl. \({ }^{2}\) G03G 13/10, 13/01; H01J 31/08, 31/20
U.S. C1. \(313-470\) U.S. C1. \(313-470\)
1. In the method of electrophotographically manufacturing display screen for a color television display tube wherein a combustible conducting coating is first applied to the faceplate of said tube, a combustible photo-conducting coating is applied to said combustible coating, a first pattern of phosphor zones is formed on said combustible photo-conducting coating by first uniformly electrically charging said photo-conducting
coating, forming a latent charge pattern with the charged coating, forming a latent charge pattern with the charged
portions corresponding to the desired phosphor zones of said first pattern by exposing to light the zones on said electrically
charged photoconducting coating between said desired phosphor zones, and then precipitating phosphor particles, having
charges oposite to the charge on said unexposed portions of charges opposite to the charge on said unexposed portions of said electrically charged photo-conducting coating, from a
suspension thereof in an apolar suspending medium, on said suspension thereof in an apolar suspending medium, on sai ducting coating to thereby form the first pattern of phosphor zones, at least one subsequent pattern of phosphor zones is formed on said first pattern of phosphor zones by proceeding in a manner analogous to the formation of said first pattern of phosphor zones and said face-plate is then heated to remove by

combustion said combustible conducting coating and said combustible photo-conducting coating, the improvement
wherein after the formation of each phosphor pattern and wherein after the formation of each phosphor pattern and
before the formation of the subsequent charge pattern the resultant screen is wetted with a solution consisting essentially of an antistatic agent in an apolar solvent said antistatic agent being selected from the group consisting of soaps of bivalen metals, soaps of multivalent movalent metals and mixtures of said soaps, the conductivity of which soaps in said apola
solvent is between \(5 \times 10^{-12}\) and \(10^{-10} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}(500-10,00\) \(\mathrm{p} \mathbf{S} / \mathrm{m}\)) the electrical conductivity of which solvent is less than \(10^{-4} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}(1 \mathrm{p} \mathrm{S} / \mathrm{m})\) and dried.

SPHERICAL \(\quad 4,095,135\) (BESCENT LAMP Haruo Yamazaki, Moriyama, and Hidezoh Akutsu, Hyogo, both of Japan, assignors to Matsushita Electronics Corporation Osaka, Japan \(\quad\) Filed Mar. 16, 1977, Ser. No. 778,146 Claims priority, application Japan, Mar. 19, 1976, 51-30659 U.S. C1. 313-493

1. A fluorescent lamp comprising
an outer bulb having a generally spherical or dome-shaped
configuration
an inner bulb disposed within said outer bulb, said bulbs prising a series of adjacent legg between the inner wall surface of the outer bulb and the outer wall surface of the
inner bulb, the portions of said bulbs adjacent said path inner bulb, the portions of said bulbs adjacent said path
being spaced apart a distance in the range of 0.1 to 0.5 millimeter from each other to permit communication between adjacent legs of said path in a direction substantially perpendicular to said legs, the distance between said adjacent legs measured along said path being \(L\), and the
distance between adjacent legs measured in
substantially perpendicular to said legs being
electrode at each end of said discharge path;
a radiation-mitting discharge gas comprising Neon, Argon or Krypton disposed in the space between said bulbs; and phosphor coating on a wals
adjacent said discharge gas,
adjacent saia discharge gas,
wherein the ratio of \(l\) to L is (i) at least \(6: 600\) when said gas comprises Neon, (ii) at least \(10: 600\) when said gas comprises Argon, (iii) at least \(20: 600\) when said gas comprises
Krypton, and (iv) at least \(\left(6 x_{x}+10 x_{A}+20 x_{k}\right): 600\) when said gas comprises a mixture of Neon, Argon and Krypton, where \(x_{N e} x_{A}\), and \(x_{K}\), are the volumetric mole fractions of Neon, Argon and Krypton respectively.

IMAGE TUBE EMPLOVING A MICROCHANNEL
ELECRON MULTIPLIER Wilfrid F. Niklas, Portola Valley, Callf., assignor to Varian Associates, Inc., Palo A1,
Filed Oct. 28, 1971, Ser. No. 194,765

Int. Cl. \({ }^{2}\) H01J \(31 / 48\)
3 Claims

1. In an image tube, means for producing an electron image in the tube, a multichannel electron multiplier means having an lectron image input face and an output face, means for accelace of said multichannel electron multiplier means for multiplying the electron current of said received image, an output
means spaced from said output face of said electron multiplier means for receiving the multiplied output electron image of said electron multiplier means, metallic electrode means lier means for applying an operating potential to said output plier means for applying an operating potential to said output
face of said electron multiplier means, said electrode means extending into the output ends of the channels and over the inside walls of said channels in said multichannel electron multiplier means, and a layer of semiconductive material overlaying said metallic electrode means, said semiconductive layer portion of said channels, the remaining portion of said channels being free of said semiconductive material, for improving the information transfer of the electron image as directed from the output means.

DIGITAL CONVERGENCE SYSTEM FOR A MULTT-GUN Robert Clement Oswald, Rand Cor Filed Mar. 18, 1977, Ser. No. 778,900

Int. Cl. \({ }^{2}\) H01J 29/51
A convergence correction system, comprising: 16 Claim a CRT having a plurality of electron beam generating guns, a phosphor face comprised of a plurality of phosphor dots, four quadrants and a plurality of segments defined within each of said quadrants;
horizontal and vertical coordinates of each of said seg ments; and,

convergence correcting means coupled to each of said elec. tron beams, produced by said guns, and responsive to said signals for independently converging the associated elec 4,095,138
ELECTRON GUN HAVING AN ARC-INHIBITING
Cames W. Schwartz, Deerfield, III., assignor to Zenith Radio Corporation, Glenvien, IIl.

Filed Nov. 29, 1976, Ser. No. 745,889
Int. C1. \({ }^{2}\) H01J 29/46
U.S. CI. 315-16 Int. C.' \({ }^{2}\) H01J 29/46

1 Claim

1. For use in a television cathode ray tube having associated therewith a power supply for developing discrete supply voltges, an electron gun for receiving supply voltages from the
ower supply to produce a focused beam of electrons, comprising:
electron source means comprising cathode means and grid means; and
focus lens me
cous lens means for receiving electrons from said electron source means and a predetermined pattern of supply voltages from the power supply to form an electron spot at a distance from said electron source, comprising:
initial and final tubular end electrodes for receiving rela-
tively high supply voltages: tively high supply voltages;
initial and final electrodes for rocted between said supply voltage; and,
intermediate voltage electrode means between said low voltage electrode and at least one of said end electrodes for receiving a relatively intermediate supply voltage,
said lens establishing an extended, axially continuously active focusing field which is substantially shielded ctive focusing field which is substantially shielded
from external field disturbances and establishing an
axial potential distribution which decreases steady in value from said initial end electrode to said low voltage electrode and increases steadily in value from said low herein said grid means receives an applided potential of such value that there exists a potetial difference in the range of tens of kilovolts across the gap between said grid means, said paid initial end electrode of said focus lens luce a tendency towards destructive sarcing between said grid means and said initial end electrode, said gun being characterized by having at least one arc-inhibiting elecend electrode, and havingaid grid means and said initial mediate to said potentials applied to said grid means and to said initial end electrode to provide an arc-inhibiting voltage gradient between said grid means and said initial end electrode.

\section*{4,095,139}

LIGHT CONTROL SYSTEM
Alan P. Symonds, 14 Bobsled Dr., Needham Heights, Mass. Alan P. Symonds, 14 Bobsled Dr., Needham Heights, Mass.
02194, and William K. Durfee, 3 Dana St., Apt. 8A, Cam-
bridge, Mass 02139 bridge, Mass. 02139

Filed May 18, 1977, Ser. No. 798,259
U.S. Cl. 315-153 \({ }^{\text {Int. }}\)

15 Claims
1. A system for controlling the light intensity level of a ligh group including one or more lights, said system comprising, in combination:
control means for generating a parallel binary-coded signal epresentative of a pating a paraliel binary-coded signa plied to said light group. signal generating means for
termined serially-coded address ng a unique and predesaid light group eded address signal corresponding to signal representative for generating a serially-coded data signal representative of said signal level in response to said
parallel binary-coded signal eceiver means for ded signing;
group only in response to said address signal and said dat signal; and
common bus for transmitting said address and data signal from said signal generating means to said recata signa

\section*{4,095,140}

TRIGGER CIRCUIT FOR FLASH LAMP DIRECTLY COUPLED TO AC SOURCE

Filed Mar. 7, 1977, Ser. No. 775,122
U.S. C. 315-199
1. In an electrical circuit for operating an arc discharge Claim lamp which is directly coupled through series circuit mean
a circuit arrangement for riggering said lamp comprising:
gh voltage pulse generating means connected to said alterto said flash lamp for applying pored thereby and coupled ignite the lamp; timing circuit connected to said alternating current source be energized thereby and coupled to said pulse generat-

ing means for controlling the time of pulsed ignition of said lamp with respect to the phase of the alternating current waveform of said source;
eans for initiating operation of said circuit arrangement for triggering said lamp: and
circuit means responsive to said initiating means for starting said timing circuit at a predetermined point on said alter nating current waveform.

\section*{ELECTRONIC FLASH DEVICE}
ynchronizing switch from appearing at said PNP transis-

4,095,142
HIGH FREQUENCY DISCHARGE LAMP FOR A SPECTRAL-LINE SOURCE
eiichi Murayama, Kokubunji; Manabu Yamamoto, Odamara; Masara Itto, Kodadira, Makoto Yasude, Kokubunjli, all of Ja-
par; Makoto Watanabe, Hinsdale, Ill., and Kunifusa Kayama, Tokyo, Japan, essignors to Hitachi, Lud, Japan Claims priority, application Japan, Feb. 2, 1976, \(51-9378\) U.S. CI. 315-248
anzo Nalamura, Urawe, Japen, essignor to Canon Kabushivi
Zenzo Naisha, Tokyo, Japan 13,1976 , Ser. No. 658,123 \(\qquad\) Claims priority, appilication Japan, Feb. 21, 1975, 50/21573

An electric flash device for a camera comprising
1. An electric flash device for a camera comprising:
(a) flash means for producing a light energy and having trigger and cathode electrodes;
(b) a capacitor coupled to said flash means for storing an
electrical energy to be converted into the light energy in said flash means;
(c) a voltage divider circuit connected in parallel with said capacitor and having an output terminal; to said trigger) rigger pulse producing means coupled to said rede for supplying a trigger pulse to the electrode for supplying a trigger pulse to the rrigger elec trode of said flash
(e) a PNP transistor coupled to the voltage divider circuit for impressing a voltage derived from the voltage divider circuit on the control electrode of said thyristor; the transistor having an emitter electrode connected orlean or electrode connected to the control electrode of said thyristor and a base electrode;
(f) a camera flash synchronizing switch connected to said base electrode of said PNP transistor for actuating the
PNP transistor; and PNP transistor; and (g) a one-way conductive element connected in series with
1. A high frequency discharge lamp for a spectral-line source comprising a discharge envelope which is made of an a transmissivity for spectral lines, a filling substance which is contributive to radiation of the several spectral lines and which is contained in said discharge envelope, an electrode which is provided in said discharge envelope, a casing having the interior evacuated to a vacuum and at east a part or when envelope
transmissivity for the spectral lines, said discharge being disposed in said casing, a metallic container which surrounds said casing and said discharge envelope and which has at a part thereof an opening for taking out the spectral lines, and voltage supply means for supplying a high frequency voltage between said electrode and said metallic container.

4,095,143
ELECTRON BEAM CROSSOVER CORRECTION CIRCUITRY Incorpor. Pridmore, Elbe, N.Y., assignor to GTE SyIvania Filed Jul. 21, 1976, Ser. No. 707,190 led Jul. 21, 1976, Ser. No. 707 J.S. C. 315-370

1. In a color cathode ray tube deflection system havin horizontal and vertical axis and an in-line color cathode ray wound deflectianar electron beams and an associated toroid
deflection windings oppositely disposed about said vertical axis and coupled to a horizontal deflection signal source and nected winding portions oppositely disposed about said conzontal axis, an electron beam crossover compensating circuit comprising an adjustable ganged and differentially connected inductance impedance means shunting all of at least one of said
first and second winding portions of one of said first and secfirst and second winding portions of one of said first and sec-
ond horizontal deflection windings to effect an imbalance of current in said first and second winding portions of at least one of said first and second horizontal deflection windings.

ASK-LESS SINGLE 4,095,144
MASK-LESS SINGLE ELECTRON GUN, COLOR CRT Charles Mendelsohn, Monsey, N.Y., assignor to United Technoiogies Corporation, Hartford, Conn.

Filed Dec. 17, 1976, Ser. No. \(\mathbf{7 5 1 , 5 6 0}\)
Int. C1.2 H01J \(29 / 80\)
U.S. Cl. 315-375 Int. Cl.2 H01J 29/80 19 Claims
surface area boundary, said video screen formation further including a high work function dielectric material disposed interposingly with said plurality of picture elements on said transparent major surface for providing in re-
sponse to bombarding electrons from the incident hollow electron beam, an electrostatic field which is negative with respect to the anode voltage signal and which has a gradient in a direction opposed to the trajectory of the incident electron beam, said negative electrostatic field providing in combination with said beam deflection means, registration of the incident electron beam on each of said picture element successively, for a determined time period, and stepping of the incident electron beam from
the center of one picture element to the center of a next adjacent picture element in each row at the end of the determined time period.

1. A color cathode ray tube (CRT) for providing a color cal deflection signals, anode voltage signals, electron beam focusing signals, and electron beam modulation signals, presented from a system having s source of video signals, a source of horizontal and vertical deflection signals, a source of anode voltage signals, a source of electron beam focusing signals, at
a source of electron beam modulation signals, comprising: a vacuum envelope having a hollow funnel portion with large diameter flared end enclosed in a vacuum sealing relationship by a faceplate portion and a small diameter tapered end disposed in a vacuum sealing relationship
with a hollow neck portion extending rearward from said funnel portion along a central longitudinal axis thereof, said faceplate portion having a transparent major surface; electron gun means, disposed inside said neck portion along
said longitudinal axis and connected for response to the said longitudinal axis and connected for response to the
source of video signals, the source of anode voltage signals, and the source of beam modulation signals, for providing a hallow electron beam having a determined instantaneous inner and outer diameter in dependence on the
magnitude of the beam modulation signals and having a magnitude of the beam modulation signals and having a
beam axis coincident with said longitudinal axis, said beam axis coincident with said longitudinal axis, said
electron gun means providing said hollow electron beam at an emitted current density in dependence on the magni-
tude of the video signal; tude of the video signal;
electron beam deflection
electron beam deflection means, disposed on the outside
surface perimeter of said vacuum envelope at the junction of said neck and funnel portions and connected for response to the source of horizontal and vertical deflection
signals, for providing deflection of the electron beam signals, for providing deflection of the electron beam
across said transparent major surface in each of two oracross said transparent major surface in each of two or-
thogonal directions in response to the deflection signals; and
a video screen formation, disposed inside said vacuum glass envelope on said transparent major surface, said video screen formation including a plurality of noncontiguous
picture elements disposed substantially in a matrix config. picture elements disposed substantialy in a matrix conifge-
uration of rows and columns, each of said picture elements having a determined surface area boundary and each including a plurality of different color phosphors disposed
display of variable Length vectors A. P. Terranova, North Andover, and F. J. Murphy, Billerica,
both of Mass., assignors to The United States of America as both of Mass., assignors to The United States of America as
represented by the Secretary of the Army, Washington, D.C. represented by the Secretary of the Army, Washin
Filed Dec. 13, 1976, Ser. No. 750,107 Filed Dec. 13, 1976, Ser. No.
Int. C.' \({ }^{2}\) H01J 29/52
U.S. Cl. 315-383

6 Claims

1. A variable length vector display circuit comprising: a cathode ray tube having \(\mathbf{X}\) deflection means and \(\mathbf{Y}\) deflection econs; first and second comparators each having first and utput; first and second to receive input voltage signals and an ach having an input, operational amplifier sweep generators of said first sweep generator being coupled to the the input sid first comparator and the input of said second sweep genertor being coupled to the output of said second comparator, eflection of said first sweep generator being coupled to the \(X\) eflection means of said cathode ray tube and the output of said second sweep generator being coupled to the \(\mathbf{Y}\) deflection means of said cathode ray tube; an arithmetic unit having first and second inputs and an output, said first input being connput being connected to the output of said second comparator; variable gate generator having an input coupled to the output of said arithmetic unit and an output coupled to the respective control inputs of said sweep generators for gating said sweep
generators to controllably vary generators to controllably vary the sweep output voltage of
said generators coupled to said deflection means.

4,095,146
REEL-TO-REEL DRIVE WTIH SPEED CONTROL Donald R. Spaman, and David C. Schilke, both of Middletown,
Conn., assignors to Raymond Engineering Inc., Middletown, Conn., assignors to Raymond Engineering Inc., Middletown,

> Filed May 10, 1976, Ser. No. 685,077 Int. C1.2 H02P \(5 / 46\)
U.S. CI. 318-7

1. A method for minimizing the linear speed variations of a strip being drawn off a supply reel and delivered to a take-up reel comprising the steps of:
sensing the speed of the supply reel;
sensing the speed of the take-up reel;
determining the product of the speeds of the supply and take-up reels; and
varying the speed of the take-up reel to maintain the product of the speeds of the supply and take-up reels constan approximately constant.

WHEEL SLIP CORRECTION METHOD, SYSTEM AND John M. Mounts, 1503 Windsor Dr., Arlington Heights, III.
G0004 60004 Filed Feb. 26, 1976, Ser. No. 661,509

1. An improved system for correcting wheel slip between any one of a plurality of locomotive wheels and a track occur ring in response to the application of power to said wheels for rotating said wheels along a track to move the locomotive
relative said track, the improvement comprising:
means common to said wheels for deriving a first signal proportional to locomotive speed; means controlled by said first signal for deriving a respective correction signal for each wheel proportional to the power dissipated by the respective whe slip condition of the respective wheel;
means for utilizing each correction signal for controlling the slip condition of the respective wheel to eliminate the slip;
emory means operated by said correction signal for retain ing said first signal until said slip condition is eliminated Louis
333 \(\underset{ }{\text { Louis W. W. }}\) DIRECT CURRENT MOTORS

Filed Jai. 22, 1976, Ser. No. 707,578 U.S. C. 318-138 17 Claims

1. A direct current motor comprising a stator consisting of a plosaity of coils connected in series with one another in a closed loop configuration, means connecting the junction between adjacent pairs of said coils to diametrically opposed
ones of said junctions in said closed loop coil configuration, a plurality of pairs of oppositely poled silicon controlled rectifiers connected respectively to the junctions of different adjacent pairs of said coils for selectively conducting current into and out of said stator coil junctions, a direct current source fo energizing each of said pairs of silicon controlled rectifiers, a
rotor mounted for rotation adjacent said stator, means including a distributor driven by said rotor for energizing the gate electrodes of different ones of said silicon controlled rectifiers in sequence thereby to produce a plurality of stator poles which are angularly displaced from the rotor poles and which
stator poles shift in position about said closed loop coil configuration with rotation of said rotor, centrifugal switch means coupled to said rotor, and control means responsive to th operating state of said centrifugal switch means for controlling
the possible conduction of said silicon controlled rectifiers to the possible conduction of said silicon controlled rectifiers to
effect a starting mode of operation when said rotor is rotating below a predetermined speed and to effect a running mode of operation different from said starting mode when said rotor is rotating above said predetermined speed, said centrifuga switch means and said control means being operative to prerectifiers in said starting mode of operation and being operative to permit continuous conduction of different successive ones of said pairs of rectifiers in said running mode of operation.

\section*{4,095,149}

OPTIMIZED ELECTRIC MOTOR HAVING
CONTROLLED MAGNETIC FLUX DENSITY
Wanisss, 9871 Overhill Dr., Santa Ans, Calif. 92705 aninss, 9871 Overhill Dr., Santa Ans,
Filed Apr. 7, 1976, Ser. No. 674,406
U.S. C. 318-220 A 21 Claims 1. An electric motor comprising: stator core including a plurality of poles and magnetic material joining said poles
a rotor;
main stator winding means wound on said core and encompassing the magnetic material to generated magnetic flux which links said rotor;
an input adapted to be connected to a source of AC voltage; capacitor means;
capacitor means in a series circuit across said input; and
means for introducing a control magnetic flux into said
joining magnetic material to vary the amount of magnetic CIRCUIT ARRANGEMENT FOR AN A-C SERIES MOTOR Paul Mourick, Eriangen, Germany, assignor to Siemens Aktien gesellschatt, Berlin and Munich, Germany
Filed Sep. 15, 1976, Ser. No. 723,54
Claims priority, application Germany, Sep. 15, 1975, 2541113 U.S. C. 318-266 Int. Cl. \({ }^{2} \mathrm{H} 02 \mathrm{P}\) 3/12, Sep.
material effectively encompassed by said main stator winding without substantially linking said rotor with said control flux.

4,095,150
TWO-PHASE ASYNCHRONOUS MOTOR
Karlheinz Senckel, Goethering 54, 8015 Markt Schwaben, Ger-
many Filed Jul. 12, 1976, Ser. No. 704,466
U.S. C. 318-227

10 Claims

1. A two-phase asynchronous motor comprising:
a stator having stator windings, said stator including a first stator portion and a second like stator portion spacedly disposed parallel to said first stator portion, said stator
portions including ferromagnetic cores which together portions including ferromagnetic cores which together
with said stator windings define field magnets, said cores having widened pole shoes, and said stator windings being arranged in said stator portions on said ferromagnetic cores, the stator windings of one phase being accommodated in said first stator portion only and the stator windings of a second phase being accommodated in said second
stator portion only, said stator windings being displaced with respect to each other in a direction of movement according to the phase angle; and,
a member arranged between said stator portions and mounted for movement with respect thereto, said member including a short-circuit electrically conductive element of planar configuration adapted for induction therein of an electrical current by said field magnets ally further including ferromagnetic bridges magnetically separated from from one side of said element to the other and including broadened end plates thereon,
wherein said pole shoes and said end plates will complete a magnetic circuit between two adjacent stator poles of one stator portion directly via a pole shoe of said other stator portion.
1. In a circuit arrangement for an a-c series motor having an
rmature and a field winding with a switching device for changing from motor to braking operation comprising:
a. a first switch contact between the armature winding and
the field winding; the field winding;
of the first switch contact and the armature winding:
a . a third switch contact across the series circuit consisting of the first switch contact and the field winding; . a capacitor and a charging diode in series associated with e. the a-c series circuit consisting of the capacitor and the char ing diode shunting the armature winding; and
f. the third switch contact disposed between the center of said series circuit consisting of the capacitor and the ing, whereby in motor operation a series circuit consistin of the capacitor, the charging diode and the field winding is connected between the terminals of the a-c series motor and, during braking operation, the field winding is shunted by the capacitor.

REGENERATIVE BRAKE CONTROL SYSTEM FOR DC KE CONTR
MOTOR
Hiroshi Narita, Katsuta, Japan, asslgnor to Hitachi, Ltd., Japan Filed Jun. 10, 1976, Ser. No. 694,726 Claims priority, application Japar, Ju. \(\mathbf{6 4 4 , 7 2 6}\) 1675, \(50-71883\) U.S. C. \(318-376\) Int.

1. A
a series circuit including a DC motor circuit and a resistor,
series circuit including a DC motor circuit and a resistor, means responsive to a shorting signal for shorting said
resistor, a chopper connected in parallel with said series circuit, a filtering circuit including a filtering capacitor connected through a diode to said parallel circuit of said chopper and said series circuit, and a power supply connected to said filtering circuit, current control means for controlling the duty cycle of said chopper in accordance
with the deviation between a current command and the value of current flowing in said motor circuit, and a phase shifter for controlling the on-off operation of said chopper in accordance with the output of said current control means, and duty cycle control means responsive to said shorting signal for reducing the duty cycle of said chopper
before said resistor is shorted. before said resistor is shorted.

TRANSIT VEHICLE ELECTRIC
TRANSIT VEHICLE ELECTRICAL BRAKE CONTROL
Thomas C. Matty, North Huntingdon, and Jemes H. Franz, Jr., Murrysille, both of Pa., assignors to Westinghouse Electric Corp., Pittsburgh, Pa.
Filed Jul. 29, 1976, Ser. No. 709,684
U.S. Cl. \(318-376\)

11 Claims
 mode and in an electrical braking mode; power control means responsive to a command signal for regulating current therethrough;
switch means operable during said motoring to serially connect said power control means and an arma serially connect said power control means and an arma
ture of said traction motor between said first and second source terminals whereby electrical energy may be provided to said traction motor, said switch means being operable during said electrical braking mode to seriall

whereby electrical energy may be transferred from saic traction motor armature to said source terminals throug
said power control means when the terminal voltage magnitude of said traction motor exceeds the voltage magnitude at said source terminals, and said switch means being operable when said terminal voltage magnitude of said traction motor is less than said voltage magnitude a said source terminals during said electrical braking mode
to connect said power control means in parallel circuit arrangement with said traction motor between said source terminals.

\section*{4,095,155}
1. In control apparatus for a chopper responsive to a brake effort request signal for determining an ON operation and an DIRECTION REVERSING DIRECT CURRENT MOTORS
AND THEIR CONTROL OFF operation and being operative with a transit vehicle electric motor having a known brake effort characteristic for determining the brake effort provided by said electric motor he combination of
ald Robert Brooks, Hamilton Square, and Jack Edward Nojslawowicz, Bayonne, both of N.J., assignors to RCA Corporation, New York, N.Y.
Filed Nov. 10, 1975, Ser. No. 630,650 means responsive to the actual current of the motor, means for establishing an upper motor current limit in rela-
tion to said brake effort characteristic and establishing lower motor current limit in relation to the provision of
said motor current, and said motor current, and
means operative with said actual motor current for making a
first comparison of the actual motor current with said upper limit to determine the ON operation of the choppe until the actual motor current is greater than said upper limit and making a second comparison of the actual motor current with said lower limit to permit the OFF operation
of the chopper in response to the brake effort request signal.

Int. Cl. \({ }^{2}\) H02P 3/00

REGENERATIVE BRAKING SYSTEM FOR A CHOPPER CONTROLLED ELECTRIC TRACTION MOTOR Dennis F. Williamson, Erie, Pa., assignor to General Electric Company, Erie, Pa.
led Oct. 18, 1976, Ser. No. 744,591
U.S. Cl. 318-376 29 Claims
1. A d-c electric traction motor control system comprising a. first and second source terminals adapted for connection to a d-c power source;

1. A rotation reversing direct current motor apparatus, 1. A rotat
a stator for providing a fixed magnetic field;
an armature mounted for rotation in said magnetic field, said armature having a plurality of both electrically independent windings and commutator segments radially distribted about the rotational axis hereof, said commutator
each of said windings being successively connected bements;
first and second pairs of opposingly disposed brushes fixedly mounted relative to said stator for electrically and mechanically contacting said commutator segments, said first pair of brushes being disposed for passing current of a
given polarity successively through said windings in a given direction to produce an armature field that interacts with said fixed magnetic field to cause rotation in one direction and said second pair of brushes being disposed for passing current of the same said given polarity succes
sively through said windings in the same said given direc tion to produce an armature field that interacts with said fixed magnetic field to cause rotation in an opposite direction, said first pair of brushes being separated from the second by at least one commutator segment; and
means for selectively applying a voltage across either said first pair of brushes to obtain clockwise motor rotation or
said second pair of brushes to obtain counter-clockwise motor rotation.

DEVICE FOR AUTOMATIC DIMENSION CONTROL OF EXTRUDED BLANKS
Vledimir Alereerich Borisor, BLen Ravil Abdrakhmanorich Akhmedzhanor, ulitsa Tsiolkorskogo, 4e, kr. 14, and Jury Vsevolodovich Chistyakov, prospekt Mira, 2b, Kk. 47, all of Omsk, U.S.S.R.
S. 318 Int. Cl. \({ }^{2}\) GOSB 19/24

1. A device for automatic dimension control of extruded blanks, comprising:
a means for measuring the blank width;
a means for presetting the blank din
a first, a second and a third adders;
said means for measuring the blank width h
connected to an input of said third adder
said third adder having a second input connected to said means for presetting the blank dimensions; an amplifier-
converter having an input connected to the output of said third adder;
an extruder screw drive motor; socket when seperated a sensor for measuring the extruder screw rpm, kinemati-
cally associated with said extruder screw drive motor; a cally associated with said extruder screw drive motor; a motor for driving an extrudate drawing-of device; means.
a sensor for measuring the extrudate draw-off speed, kinematically associated with said drawing-off device drive motor;
a means for presetting the extrudate draw-off speed; axis inputs of said first adder, connected, respectively, to said extruder screw ppm
a first and a second amplifiers;
sad first adder having an output connected, via said first amplifier, to said extruder screw drive motor; said second adder having a first input connected to said draw-off speed senso said second adder having an output connected, via said
second amplifier, to said drawing-off device drive motor;
a compensator unit
fourth adder having a first input connected to the output of said compensator unit;
said compensator unit having
extruder screw rpm sensor
nonlinearity unit hensor, output of said fourth adder and a input connected to the output of said fourth adder and a second input connected
to said extruder screw rpm sensor and receiving a bias voltage;
said amplifier-converter having an output connected to a second input of said fourth adder;
a switch;
a switch;
said nonl
said nonlinearity unit and draw-off speed sensor having outputs conn
said switch. din G. Klauser, HoMECHANISM CONTROL SYSTEM Corporation, Hopkinton, Mass., Filed Sep. 7, 1976, Ser. No. 721,318
Int. Cl. \({ }^{2}\) H02P 5/00
.S. Cl. 318-603 14 Claims

1. A control network for use in a system for controlling the movement of a device, said control system including means fo desired movement of the device, a source of a sensed signal representing the actual movement of said device, said com
mand and sensed signals being pulse trains in which each pulse mand and sensed signals being pulse trains in which each pulse
represents an incremental displacement of said device, represents an incremental displacement of said device, so that
the speed of movement is encoded in the repetition rate of the pulses, said network comprising; timing pulse generator means includng a single clock pulse source operative to produce timing signals having particular repetition rates defined by said clock pulse source, respectively, for controlling operations to
be performed by said network, first counter means coupled to se performed by sommand signal notworke and said sounter meansed signal soupled to producing a first positional error signal functionally related to the difference between the desired and actual positions of said device, reference generator means coupled to said timing generator means and said first counter means for generating a
reference pulse signal in response to both said timing signals and said first positional error signal, said reference pulse signal having a repetition rate functionally related only to the magnilude of said first positional error signal, and output means output signal corresponding to said reference pulse signal to said device moving means.

POSITION 4,095,158
POSITION-CONTROLLING SYSTEM
Shibaura Electric, Kokubunil, Japan, assignor to Tokyo Filed Sep. 20, 1976, Ser. No. 724,863 Claims priority, application Japan, Sep. 19, 1975, 50-112722 U.S. Cl. 318-603 Int. C. \({ }^{2}\) G05B \(19 / 28\)
1. A position-controlling system for calculating, upon re
ceipt of a position-controlling instruction changing with time, ceipt of a position-controlling instruction changing with time,
each instructed position incremental moving value of a movable machine section per prescribed period of time, thereby to control the position of the movable machine section through a servo system, which comprises a reference counter for periodically providing a referential pattern numeral upon receipt of a
clock pulse issued from a clock pulse oscillator; a phase type clock pulse issued from a clock pulse oscillator; a phase type
position detector for shaping an exciting waveform from a count made by the reference counter, thereby to detect the momentarily changing position of the movable machine section; means for producing a sampling control signal and a
detection control signal from an output from the reference counter; a buffer register for storing the content of the reference counter according to a control signal supplied from the control signal-generating means and a phase data read out from the phase type position detector or preferably at a timing
immediately preceding the sampling signal; and a controller for calculating each instructed position incremental moving

value of the movable machine section per prescribed period of time upon receipt of a data on the detected position of the
movable machine section read out from the buffer register, movable machine section read out from the buffer register,
sampling signal and position control signal, thereby giving an accumulative position errors occurring per prescribed period of time; the controller comprising a calculating unit for calculating a numeral denoting each instructed incremental moving from a position-controlling instruction; means for accumulatively adding a numeral denoting each instructed incremental moving of the movable machine section for each ssid prescribed period of time; means for carrying out the accumulahe movable machine section read out from the buffer register for each said prescribed period of time; and a position error register for generating an output denoting an actual position outputs from the addition and subtraction means.

4,095,159
ELECTRONIC APPARATUS FOR AUTOMATIC CLOSED
LOOP POSITIONING OF MOBILE MEMBERS ASSOCIATED WITH AN ELECTROMAGNETIC
Paolo Tirelli, Taino (Varese), Italy, assignor to Exo Elettronica
Industriale S.r.1., Milan, Italy, Filed Dec. 9, 1975, Ser. No. 639,126

U.S. Cl. 318-605

Int. C1. \({ }^{2}\) G05B \(19 / 30\)
U.S. Cl. 318-605
1. In a system responsive to the relative position of first and econd relatively movable members of a measuring device, one of said members having a pair of windings disposed in quadralure and the other of said members likewise having a pair of windings disposed in quadrature, said members being relatively movable between a first portion in which the pairs of
windings are aligned and other positions in which the pairs of windings are rotatably displaced from said first position, the combination of:
circuit means connected to one pair of said windings for
applying respective voltages \(\mathrm{VR}_{1}\) and \(\mathrm{VR}_{2}\) thereto whereby voltages \(\mathrm{VR}_{3}\) and \(\mathrm{VR}_{4}\) appear at the respective windings of said other pair; and
pair for ng means connected to one winding of said other pair for demodulating one of said voltages \(\mathrm{VR}_{3}\) and \(\mathrm{VR}_{1}\) to \(-\alpha\) where \(\alpha\) is the relative angular position of said other pair of windings with respect to said one pair of winding and \(\phi_{0}\) is an imaginary angle established by \(\mathrm{VR}_{1}\) and \(\mathrm{VR}_{2}\) said circuit means comprising a first counter having an \(n\) bi output, clock means connected to said first counter fo causing said first counter to count its full capacity \(2^{n}\) fo said voltages \(\mathrm{VR}_{1}\) and \(\mathrm{VR}_{2}\), a second counter having an \(n\) bit output, means for setting said second counter to contain a count corresponding to said angle \(\phi_{o}\), summing

means connected to the least significant \(n-2\) bits of said first and second counters for producing the respective outputs \(\Sigma_{n-2}\) and \(\sum_{n-2}\) which respectively are the instanta represented by said \(n-1\) bits of said first counter and the count represented by said \(n-2\) bits of said second counter and voltage generating means having the following input (1) the two most significant bits of said first counter,
(3) said instantaneous sum, and
(4) said instantaneous difference for producing said vol ages \(\mathrm{VR}_{1}\) and \(\mathrm{VR}_{2}\) respectively in the form of bipolar pulse pairs of period T and having the pulses thereof o time duration corresponding to \(2 \phi\) and centered on \(T / 4\) and \(3 T / 4\) and bipolar pulse pairs of period \(T\) and having the pulses thereof of time duration corres
\(2\left(90^{\circ}-\phi_{0}\right)\) and centered on \(T / 4\) and \(3 T / 4\).

\section*{4,095,160}

\section*{CONTROL ARRANGEMENT FOR CAUSING TRAC} SUPPORTED IMPLEMENT TO REMAIN IN PARALLELISM WITH ITSELF Franz Sedlmayer, and Peter Muiller, both of Willhelmshaven, Germany, assignors to Fried Krupp Gesellschaft mit be chrankter Haftung, Essen, Germany
Filed Jun. 4, 1976, Ser. No. 693,202 Claims priority, application Germany, Jun. 25, 1975, 2528293
Int. C1. \({ }^{2}\) G05B \(11 / 01\) U.S. C. \(318-675\) Claims 1. A control device for causing an implement such as a cran having laterally spaced wheeled carriages rolingly supportith itself while moving along the tracks; said device comprising in combination; pick-up means on at least one carriage spaced longitudinally along the carriage and also spaced laterally from the respective track and each operable to develop a signal in
conformity with lateral movement of the pertaining region of the carriage on the respective track as brought about by movement of said implement out of a position of parallelism with itself, a comparator connected to receive said pick-up signal and operable to develop a control signal in conformity with the
difference therebetween, and control means connected to
receive said control signal and operable in conformity with said control signal to apply corrective vertical axis influences
tively varied to provide a motor with any one of eigh different step angles.

4,095,162
CAPACITY CHANGER
Joseph Herman Arnold Peter Hiddink, 147 Burcher Road, Ajax,
Ontario, Canada (L1S 2R6) Filed Nov. 3, 1975, Ser. No. 627,899
Int. Cl.
U.S. Cl. \({ }^{320}-1\)

on said implement tending to restore the implement to said condition of parallelism with itself.

VARIABLE STEPPING-ANGLE 4,095,161
MOTOR
ch, and Clans Schimer of Germany, , eselignors to Gerhard Berger GmbH \& Co. Fabrik Elektrischer Meugerite, Lahr, Germany
Flied Jun. 15, 1976, Ser, No. 696,310
Claims priority, appilcation Germany, Jun. 13, 1975, 2526564
U.S. CI. \(318-69\)

6 Claims
1. A capacity changer device comprising first capacitor 1. A capacity changer device comprising first capacitor
means, second capacitor means, first power supply means and second power supply means, first means including normally open switch means for selectively connecting said first power supply means to said first capacitor means, and second means
for selectively connecting said second power supply means to or selectively connecting said second power supply means to said second capacitor means, said first capacitor means including at least one evacuated air-free glass tube having an ioniz
able gas disposed therewithin, a pair of spaced electrodes able gas disposed therewithin, a pair of spaced electrodes
disposed within said glass tube and having a corresponding electrode terminal extending outwardly through said glass, of said tube to the outside thereof, and said first connection means being operable to connect said first power supply means to said electrode terminals through said switch means.

TRANSIENT VOLTAGE SUPPRESSION CIRCUIT
Herbert R. Montague, Binghamton, N.Y., assignor to Control Herbert R. Montague, Binghamton, N.Y., assigno
Concepts Corporation, Binghamton, N.Y
Filed Jun. 1, 1976, Ser. No. 692,013 Filed Jun. 1, 1976, Ser. No.
Int. Cl. 8 Claims U.S. CI. \(323-8\)
1. In a five-phase stepping motor including
a permanent magnet rotor having on its periphery a plurality of circumferentially spaced, radially outwardly directed rotor teeth,
a stator surrounding said rotor and having a plurality of circularly arranged, radially inwardly directed stator
poles disposed in \(u\) pole groups of five poles each, each of poles disposed in \(u\) pole groups of five poles each, each of
said stator poles having \(n+1\) pole teeth on its end face directed toward said rotor with \(n\) being a whole number \(\geqq 0\), and
a corresponding plurality of stator windings wound about
said stator poles, respectively, said stator windings form said stator poles, respectively, said stator windings form-
ing a plurality of connecting points adapted to be selecing a pluraintel connected by respective control means to a power ively connected by respective control means to a power
source for selective energization of said stator windings; the improvement which comprises the provision, in combination with a single stator, of a set of eight rotors having respective different numbers of rotor teeth \(Z_{R}\) but with each such number defined by the relation \(Z_{R}=5 u(n+1)\)
+ gu, where \(g\) is a whole number from 1 to 4 , so that with \(+8 u\), where \(g\) is a whole number from 1 t 4 , so that with
one and the same stator and associated control of the stator windings the number of rotor teeth can be selec-

1. In a circuit having a source of varying electrical potential and a load connected across said source, a filter circuit for damping oscillations caused by transient noise pulses consisting an inductor connected to one side of said source in series with said load;
capacitor connected between the load side of said inductor and the other side of said source in parallel with said load; and
breakd predetermeans in series with said capacitor and having a predetermined breakdown potential.

VOLTAGE SUPPLY REGULATED IN PROPORTION TO SUM OF POSITIVE-AND Voltages Adel Abdel Aziz Ahmed, Annandale, N.J., assignor to RCA Corporation, New York, N.Y.
\[
\begin{aligned}
& \text { on, New York, N.Y. } \\
& \text { Filed Oct. 5, 1967, Ser. No. } 729,796 \\
& \text { Int. Cl. }{ }^{2} \text { CosF } 1 / 56,1 / 60
\end{aligned}
\]
said switching means, a voltage controlled oscillator coupled be responsive to ans a voltage magnitude at osciil outpor coupled counting means responsive to an output of said voltage conrolled oscillator, means for determining a difference in successive counts as accumulated by said counting means for record ing a first count during one period of operation of said switch ing device and means coupled to said voltage controlled oscil-

\section*{U.S. Cl. 323-8}

37 Claims

1. A regulated potential supply comprising: first and second terminals;
current conductive means between said first and said second
terminals; first and secon

type, each having instor means of the same conductivity control terminal, the output current of each of said first and said second transistor means being controlled responsive to the potential appearing between its control terminal and said first terminal;
means responsive to potential appearing between said first and second terminals to continuously supply a fraction
thereof between said first terminal and the control terminal of said first transistor means, which fraction is between zero and unity;
means for generating a negative-temperaturecoefficient potential
means res
means responsive to said negative-temperaturecoefficient
potential to continuouly potential to continuously supply a fraction thereof be-
tween said first terminal and the control terminal of said second transitor means, which fraction is between zero and unity;
means responsive to the difference between fixed proportions of the output currents of said first and said second rransistor means for supplying an error signal, said fixed proportions chosen to cause said error signal to be sub-
stantially zero-valued when a positive-temperature-coeffistantially zero-valued when a positive-temperature-coefti-
cient potential appears between the respective control cient potential appears between the respective control
terminals of said second and said first transistor means that terminals with said fraction of negative temperature coefficient potential results in a substantially zero-temperaturecoefficient potential; and
means responsive to said error signal to supply a current
directly related in amplitude to said error signal to said second terminal, therebby completing a degenerative feedback loop for regulating the potential between said first and said second terminals to a substantiaily-temperatureindependent voltage proportional to
zero-temperature-coefficient potential.

\section*{4,095,165}

SWITCHING REGULATOR CONTROL UTILIZING dgital comparison techniques to pulse WIDTH MODULATE CONDUCTION THROUGH A
Vitor Bert Boros, New York, N \(\mathbf{Y}\), assigno
intor Laboratories, Incorporated, Murray Hill, N.J.
Filed Oct. 18, 1976, Ser. No. 733,058
Int. Cl. \({ }^{2}\) G05F 1/56
8 Claims
U.S. Cl. \(323-17\)
1. A switching type voltage regulator comprising input
means, output means, switching means coupling said input and
lator for counting down from said first count to derive a secfirst up-down counter coupling said reference count register to said comparator, said second count being coupled to said firs up-down counter, said comparator means coupled to respond to an equality of a count in said counting means with a refer ence count modified by said first up-down counter and o
tive to terminate conduction in said switching means. to terminate conduction in said switching means.

DC VARIABLE VOLTAGE DEVICE Nobuho Shibath, Katano; Tutomu Seri, Kyoto; Norio Umezawa, Hirakata, and Takechi Morofuli, Kadoma, all of Japan, as signors to Matsushita Electric Industrial Co., Ltd,, Oseaka, Japan

Filed Dec. 15, 1976, Ser. No. 750,975 Claims priority, application Japan, Feb. 19, 1976, 51-17630;
\(\qquad\)
US. C1. 323-17
Int. Cl. \({ }^{\mathbf{G}}{ }^{\text {G05F }} 1 / 58\)
18 Claims

1. A DC variable voltage device comprising a first switch annected to one terminal of a DC power supply, a transformer having a first coil connected in series with said first switch,
said transformer having a second coil connected in series aiding with said first coil, said coils being mounted on a diode interconnected between said second coil and another terminal of said DC power supply for preventing short circuiting of said DC power supply when said core is saturated when said first switch is closed,
means for interconnecting a load between the junction be tween said first and second coils and said other terminal of said DC power supply, and
a circuit coupled to said transformer and to a terminal of said power supply for restoring to an initial state the flux variation in said core produced when said first switch is closed
whereby said load may be controlled by the alternate opening and closing of said first switch.

CONCEALED STRUCTURE LOCATING AND SURVEYING EXCITER
Harold James Weber, 20 Whitney Dr., Sherborn, Mass. 01770
This application Jun. 9, 1996, Ser. No. 694,386
Int. Cp. 2 G01V 3/10: G01D \(21 / 04 ;\) GO1V \(3 / 108\)

1. An inductive exciter means which has the capacity to stimulate sympathetic electromagnetic vibrations of a constant frequency in a concealed structure for the purpose of locating
and surveying the said concealed structure including in combination:
(a) stabilized oscillator means operative to produce a source of first alternating current frequency
 oscillator means wherein said reforming means is operative to produce a source of squared waveform second alternating current frequency signal the periodicity of which is derived from the said first alternating current
frequency, wherein said reforming means includes an frequency, wherein said reforming means includes
output means therefrom for providing said signal,
(c) current amplifier means, including an input means for accepting voltage pulses, said current amplifier means being operative to increase the elctrical amplitude of the
said voltage pulses at the output of the said amplifier, said voitage pulses at the output of the said amplifier,
(d) resonant winding means of goodly size and high operat ing "Q" loosely inductively coupled to the said current amplifier means output and operative so as to cause an electromagnetic field of large proportions and area, such fiencealed structure through suitable orientation of the said resonant winding so as to inductively excite the said structure to again reradiate electromagnetic field line along the length and breadth of the said structure at a replica rate of the originating inductive signal frequency,
(e) a source of direct current power connected so as to be operative to provide the electrical operating potentials a required for the proper functioning of the said stabilized oscillator means, said alterative reforming means, and said current amplifier means, and pulse shaper means, consist ing of at least one input and at least one output, wherein
said pulse shaper is comprised of at least one resistor and at least one capacitor arranged in the general form of a differentiator with the input thereto operatively coupled to the said source of squared waveform second alternating frequency signal provided by the said reforming mean
output, and with the output thereto coupled to the said current amplifier means input, the time constant of said differentiator resistor and capacitor being somewha shorter than the half-cycle period of the output signal means produces output voltage pulses, in response to said inputed squared waveform second alternating frequency signal which are improved in waveform efficaciousness by reducing the width, or "on time", of the exciting drive pulse delivered through the said current amplifier mean
to the said resonant winding means until the amplitude of the induction field emanating from said winding means
reaches a maximum, whereupon the said pulse width is, small degree, re-increased until the said issuing field jus sarts to decline in amplitude by not more than a few percent, such condition being found to be that which is ent amplifier to overcome the losses sustained in the nergy storage ability of the high "Q" resonant winding yet prevent the said current amplifier from shunting, o he stored energy contained in the said resonant winding

\section*{4,095,168}

RF PICK-UP COIL CIRCUIT FOR A WIDE TUNING RANGE NUCLEAR MAGNETIC RESONANCE PROBE ates, Inc. Parka, Palo Alto, C

Filed Feb. 22, 1977, Ser. No. 770,477
U.S. Cl. \(324-0.5 \mathrm{AH}\)
the current flow in said first and second conductors and at he opposite end of said first conductor, which faces current flow on said first conducto
```

4,095,16
METHOD FOR LOCATING DISCONTINUITIES IN THE ELECTRICAL CONDUCTIVITY OF THE SUB-SOLL USING A PLURALITY OF MAGNETIC DETECTORS IN A PREDETERMINED SPATIAL ARRANGEMENT Electro-Magnetic Prepecting Inc., Santa Rossa, Colif
Filed Mar. 9, 1976, Ser. No. 665,212 Clams priority, appuication France, Apr. 9, 1975, 7510761 U.S. Cl. 324-8 Int. Cl. ${ }^{2}$ G01V 3/08, $3 / 00 \quad 15$ Claims


A method for obtaining an indication of the electro-mag
netic characteristics of the sub-soil underlying a ground surface comprising the steps of
a. placing on the ground in a substantially horizontal plane at east four directional magnetic field detectors in two sets wherein each set comprises a spaced pair of detectors set oriented at right angles to the detectors of the each
set; $;$ s. simultaneously monitoring the output signal from each of ignals being made up of a plurality of spectral compo-

1. In a resonance pick-up circuit of a nuclear magnetic reso nance spectrometer:
magnetic pick-up coil means disposed in radio frequency magnetic field exchanging relation to a nuclear magneti resonance sample region for sensing nuclear magnetic resonance of a sample in the sample region, uning capacitor means series connected for RF current flow with said pick-up coil means for series resonating th clear magnetic resonant frequency of the resonance sample material;
transmission line
ransmission line transformer means series connected for the series resonant radio frequency current flow with said
pick-up coil means and said tuning capacitor means at said series resonance frequency for transforming the relativel low series resonance impedance of said series resonated pick-up coil means to a substantially higher impedance of the input to a radio frequency amplifier said transformer means including first and second elongated tion, said transmission line comprising the distributed inductance and capacitance of said first and second coex tensive conductors, said first conductor being series con series resonant radio frequency current therethrough of one phase and for inducing a radio frequency current flow of opposite phase in said second conductor; and
means for coupling the induced current in said second conduc:or onto the end of said first conductor, which faces
toward said pick toward said pick-up coil means, in phase with the curren
flow in said first conductor so that at the end of said first conductor facing said pick-up means there is the sum of
nents;
c. electronically processing said output signals by character-
izing each of said spectral components as being of the izing each of setid spectral components as being of the
form $H=H_{o} e t / \tau$ where $t$ is time and $\tau$ is a time-constant to derive for each of said spectral components in each of
said output signals a magnetic field amplitude value $\mathrm{H}^{2}$ said output signals a magnetic field amplitude value $\mathrm{H}_{a}$
d.
combining amplitude values corresponding to the same spectral component from each of said output signals to obtain a non-variable physical parameter associated with said spectral component which is related to the electrical
onductivity of the sub-soil beneath the detectors and is ondependent of any phase shift existing between the output signals from the pair of detectors in each of said sets.

4,095,170
METERLESS IGNITION ADVANCE MEASURING DEVICE FOR INTERNAL COMBUSTION ENGINES Herbert R. Schmitt, Lake Forest, IIl., assignor to Snap-on Tools Corporation, Kenosha, Wis.

Filed Dec. 6, 1976, Ser. No. 747,642
Int. C.2.
U.S. CI. 324-16 T

HO2P $17 / 00$

1. In an advance measuring device having a strobe 15 Claims being adapted to determine the spark advance of an internal combustion engine having at least one spark plug and means for producing a sequence of spark voltages for the spark plug, the combination comprising: sawtooth signal generating means for generating a sawtooth signal each cycle of which has first and second portions, and threshold delector means inctaupleneous said generating means and responsive to the instantaneous
amplitude of said sawtooth signal exceeding a predetermined fixed threshold for producing a switching voltage, said gener-
dering responsive to the switching voltage to initiate the rist portion of each sawtooth signal cycle, said generating噱 responsive to a spark voltage to initiate the second portion of
each sawtooth signal cycle, the strobe lamp being responsive


O the switching voltage and energized upon the production dureof, said generating means including means for varying the elect the amount of delay between the occurrence of a spark voltage and the energization of the strobe lamp.

ALKALI METAL $4,005,171$ IOATION DETECTOR ames E. Bauerle, Plum Borough; William H. Reed, MonroeVille, and Edgar Berkey, Murrysville, all of Pa., assignors to Westinghouse Electric Corp., Pittsburgh, Pa.
Filed Apr. 7,1976, Ser. No. 674,513 33 Int. Cl. ${ }^{2}$ GO1N 27/00
U.S. C. $324-33$


1. In an alkali metal ionization detector having a heated liament electrode for thermally ionizing alkali metal atoms or ikali metal-containing particles in a monitored gas environment to form positive ions and a source of electrical potential and establish collector electrode to attract the positive ions oncentration of the alkali metal atoms or alkali metalive of the ing particles, the combination of
an electrode arr
electrode and a plurality of heated a single collector adapted to be selectively activated in combination with the collector electrode to develop in combination with only one of said heated filament electrodes being activated in combination with the collector electrode at any given time, said plurality of filament electrodes being disposed with respect to said collector electrode such that the ion current flow in response to the monitored gas environ-
ment is substantially identical regardless of which of the filament electrodes is selectively activated for operational combination with said collector electrode.

## ${ }_{2 S 1)}$ William S

VEHICLE ANTENNA TESTER

Filed Feb. 9, 1977, Ser. No. 767,202

1. A 2 Cluims both the concle antenna tester for checking the continuity of lead wire thereof and for checking the insulation of an antenna
and for checking the vehicle comprising
(a) three clamps, the first of said three clamps for coupling to said conductor, the second of said three clamps for coupling to said shielding conductor, the third of said thre
clamps for connection to the chassis of said vehicle.
(b) a pair of lamps, one terminal of one of said lamps coupled to said first clamp, one terminal of the other of said lamps coupled to said second clamp.
(c) a transformer, the primary winding of said transformer in a series electrical circuit with a manually operated operatthe transformer having three secondary windings, each of said three windings terminating in a pair of terminals, one terminal of the first of said three secondary windings electrically coupled to the ther terminal of said one of

ondary windings electrically coupled to the other termina of said other of said lamps, one terminal of the third of said three secondary windings coupled electrically to the othe
terminal of said first winding,
(d) said third clamp electrically
of said third winding,
c) alow emitting disch having a pair of terminals, one of said discharge device terminals electrically coupled to the other terminal of said third winding, the other terminal of said discharge device electrically coupled to said second clamp, and
(f) at least one electrical receptacle, the receptacle having a pair of contacts for electrical connection with said lea
wire, one of said contacts electrically coupled to said on wire, one of said contacts electrically coupled to said one
terminal of said third winding, the other of said contacts electrically coupled to the other terminal of said second winding.

4,095,173
METHOD AND SYSTEM FOR CORONA SOURCE LOCATION BY ACOUSTIC SIGNAL DETECTION Bernard Darrel, Schenectady, N.Y., assignor to General Electric Company, Schenectady, N.Y. Filed Dec. ${ }^{\text {Int. }}$, 1976, Ser. No. 754, ${ }^{2}$ G01R $31 / 08,31 / 06$ U.S. Cl. 324-52 12 Claim

7. A corona fault locating system for determining the location of one or more corona sources within the housing of
encased electrical apparatus having a high potential conductor, said system comprising
to the inner
coaxial cable;
coaxial cable; $\quad$ the steps of establishing a circuit path through a working (c) an input measuring circuit (24) connected to srid input electrode and an inert electrode in the corrosive fluid, causing (d) an oscillator (10) connected to said oscillator cable (22); a pulsed current not exceeding 100 micro-amps and of predeand, $\quad$ path, and measuring the response of said circuit path to the said (e) scanning means ( 34,36 ) electrically coupled to said paurrent flow to determine the solution resistivity and the douswitching circuits for scanning the switching circuits and causing all the sections of said coaxial cable to be scanned
in sequence, to thereby connect the sensing coaxial cable through said input cable to said input measuring circuit thereby successively measuring the distributed capacity of the sections of said coaxial cable by means of a signal
given from said oscillator cable.

4,095,175
ARC DISCHARGE LAMP BALLAST TESTER Fredrick W. Paget, Rockport, Mass., assignor to GTE Sylvania Incorporated, Danvers, Mass.
Filed Mar. 24, 1977, Ser. No. 780,737

Filed Mar. 24, 1977, Ser. No. 780,737
Int. Cl. ${ }^{2}$ G01R $27 / 00$
U.S. Cl. 324-57 R be-layer capacitance at the interface between said working electrode and the corrosive fluid.

## 4,005,177 TRANSDUCER

Geoffrey John Harris, Burton, England, assignor to Square D Company, Park Ridge, Ill.
Continuation of Ser. No. 613,827, Sep. 16, 1975, abandoned, which is a continuation of Ser. No. 471,411, May 20, 1974, abandoned. This application Dec. 3, 1976, Ser. No. 747,468 Claims priority, application Int. Cl. ${ }^{2}$ G01P 3/46; H02K $17 / 42$ U.S. C. $324-164$

3 Claims

1. A system for detecting leakage in an elongated pipeline (a) a sensing elongated coaxial cable (20) with inner and outer conductors divided into a plurality of sections of ubstantially equal electrical characteristics and arranged in substantial geometric parallel with the pipeline wherein and outer conductors upon penetration by an oily sub stance, said variation serving to sense leakage of oily substance from the pipeline;
(b) an input cable (18) and an oscillator cable (22) arranged substantially along said coaxial cable, switching circuits
(38) connected to each of said actions circuits connecting said input and oscillator cables (18, 22)

2. An arc discharge lamp ballast tester comprising first circuit means for detecting steady DC current in the output of the cuit means ford cetecting seaany for determining if the peak voltage output of the ballast is greater than about 400 volts, third
circuit means for detecting third harmonics in the output voltcircuit means for detecting third harmonics in the output volt-
age of the ballast, and means to connect the tester to an arc age of the ballast, and
discharge lamp ballast.

## 4,095,176

METHOD AND APPARATUS FOR EVALUATING CORROSION PROTECTION Jean Pierre Maes, Oostakker, and Alan Molyneux, Mariakerke, both of Belgium, assignors to s.a Texaco Belgium n.v., Brussels, Belgium U.S. Cl. $324-65$ CR

11 Claims


1. An electromagnetic sensing assembly for detecting the rotation of a metal shaft having a uniform arcuate surface of any one of a plurality of different diameters and rotatable about an $E$ shaped ferrous stator defining a pair of spaced outer poles and an intermediate pole with each outer pole having an outer free end in closely spaced relationship to the outer free end of the intermediate pole, each pole having an end surface with the end surface of each outer pole distance substantially less than said different diameters, means for adjustably spacing the end surfaces of said poles adjacent said uniform arcuate surface with the angular spacing between the end surface of said intermediate pole and each end surface of said outer poles subtending an arc
of said uniform arcuate surface substantially less than $90^{\circ}$ and spaced a substantially uniform small distance from said surface,
generating coil on each of said outer legs, means for connecting each generating coil in series with each other to generate a respective magnetic field in series aiding relationship with each field extending through a respec tive portion of said shaft between the free end of eac
outer pole and the free end of said intermediate pole outer pole and the free end of said intermediate pole,
and a detecting coil on said intermediate pole for detecting
an alternating current voltage proportional to the velocity of rotation of said shaft in response to rotation of said shaf and the presence of each said respective magnetic field.
$\xrightarrow[\text { TACHOMETER CIRCUIT }]{\text { 4,095,178 }}$
Fenwick R. McLeod, Jr., Prospect Heights, Il., assignor to Sur Electric Corporation, Chicago, Ill.

Filed Oct. 21, 1976, Ser. No. 734,646

$$
\text { Int. Cl. }{ }^{\text {G }} \text { O1R } 13 / 42
$$

1. A method of evaluating corrosion protection afforded to U.S. C. $324-169$
metallic surface by a surface layer thereon, wherein said 1. A tachometer for displaying the speed of an engine includ
ing an ignition circuit for producing ignition pulses containing oscillations comprising in combination:
pulse-forming means for removing at least some of the oscillations from the ignition pulses to form corresponding
timing pulses; timing pulses;
meter means for
sponse to the timing pulses
a first capacitor connected in series with the meter means, said capacitor having a first plate and a second plate for accumulating charge;

rectifier means for enabling the transmission of a current pulse through the first capacitor and meter means in re-
sponse to each timing pulse, whereby the first capacitor is sponse to each timing pulse, whereby the first capacitor is charged to a predetermined voltage during each timing
pulse; and pulse; and
discharge means for momentarily interconnecting the first
and second plates of the first capacitor in response to the termination of each timing pulse, whereby the voltage on the first capacitor is dissipated without transmitting a current pulse through the meter, so that the meter indi-
cates the speed of the engine in response to the timing pulses.

4,095,179
LOCATING SYSTEM TO DETERMINE THE POSITION OF MOVABLE BODIES WITH RESPECT TO A REFERENCE
Woliggng Bremer, Oberweier, Frieder Heintz, BlankenlochBuchig, Urich Flaig, Markgroningen; Uwe Kiencke, Lud wigsors to Robert Bosch GmbH, Stuttgart, Germany
Fled Aug. 13, 1975, Ser. No. 604,228
Claims priority, application Germany, Aug. 29, 1974, 2441437; Claims priority, application Germany, Aus
Sep, 1974, 2446193
U.S. C. $324-207$

14 Claims


1. Locating system to determine the position of a movable body ( 20,65 ) comprising
body ( 20,65 ) comprising
at least four marker elements ( 21,$22 ; 66,67 ; 68,69$ ) coupled to move with the body, a stationary transducer means (23) responsive to the marker elements and providing output signals staggered in time as the marker elements pass by the transducer means, the marker elements, in combinasource;
wherein two marker elements ( 21,$22 ; 66,67 ; 68,69$ ) each have different characteristics from the other two and the four elements are sequentially arranged on the body in
pairs, with the elements of each pair being spaced by a pairs, with the elements of each pair being spaced by a
predetermined distance to deinne a predetermined distance
range on the body, and with the elements
having respectively different characteristics
he transducer means (23), upon scanning individual marke elements of the pairs ( 21 and 22;66 and 67; 68 and 69 ) providing wave signals of respectively different initial means (70)
elements on the buish between specific pairs of marker elements on the body, said distinguishing means comprismarker elemal marker element (70) located between th marker elements of at least one of the pairs $(68,69)$ and having the characteristic of one of the markers thereof;
and logic means $(70,92,75 ; 87,105,76)$ conneted to and logic means (70, 92, 75; 87, 105, 76) connected to the
transducer means and having two output terminals ( $\mathbf{1 1 0 , 1 1 1 \text { ), said logic means (a) providing a first output }}$ pulse (12.6) at a first output terminal representative of the time between the null passage of sequential wave signals of opposite initial polarity and (b) a second output pulse
(12.4) at the second output terminal (110) indicative of the (12.4) at the second output terminal (110) indicative of the
occurrence of two sequential wave signals of like initial polarity,
whereby presence of an output pulse at said second outpu terminal (110) will be indicative of said additional marke element (70) between a pair of marker elements of unlik characteristic.

4,095,180
METHOD AND APPARATUS FOR TESTING
METHOD AND APPARATUS FOR TESTING Gordon Ralph Brown, Livonia, Mich., assignor to K. J. Law Engineers, Inc., Detroit, Mich.

Filed Dec. 29, 1975, Ser. No. 644,809
U.S. CI. 324-233

32 Claims

24. Apparatus for measuring conductivity of a test materia comprising means providing a periodic signal, means responeddy currents in said test material, sensing means responsive to said eddy currents to develop a test signal as a function of said eddy currents, means for measuring the phase relationship between said periodic signal and said test signal, means fo varying the frequency of said periodic signal until said phas
relationship reaches a preselected specific level, means respon relationship reaches a preselected specinic level, means respon
sive to the period of said periodic signal to determine conductivity of the material as a direct linear function of said period when said phase relationship reaches said preselected level.

## 4,095,181

ROTATING POT SHAPED EDDY CURRENT PROBE IN WHICH ONLY A SMALL FRACTION OF THE LIP FORMING THE OUTER CORE PORTION IS RETAINED Seattle, both of Wash., assignors to The Boeing Company Seattle, Wash.

Filed Dec. 17, 1976, Ser. No. 751,512
Int. Cl. ${ }^{2}$ G01R $33 / 12$
U.S. Cl. 324-238
a hole formed therein and having a fastener disposed therein for defects, said probe including the combination of:
a first ferromagnetic pot core member in which only a small fraction of the lip forming the outer core portion is retained and 20 having a center cylindrical portion 21 ; small fraction of the lip forming the outer core portion is retained and 34 having a center cylindrical portion 21;
first winding 22 circumferentially wound about said center cylindrical portion 21 of said first ferromagnetic pot core member 20;
a second winding (32) circumferentially wound about said center cylindrical portion 21 of said second ferromagnetic cylindrically shaped optically clear probe housing 16 for maintaining said center cylindrical portions 21 in coaxial $\underset{\text { maintaining }}{\text { alignent; }}$

said cylindrically shaped optically clear probe housing 16 having a portion of the top section angularly cut forming a flat viewing surface 84 and remaining top section cut off at a cooperating angle to that of the viewing surface
forming a reflecting surface 85 , and said cylindrically shaped optically clear probe housing having an inner centrally located cylindrically shaped portion 86 extending through said center cylindrical portions 21 of said first and second pot core members 20,34 , said inner centrally located cylindrically shaped portion 86 having cross hairs
93 embedded in and crossing at the center bottom surface thereof so that said reflective surface provides reflection of cross hairs 83 to the eye of the operator viewing the centering of probe 10 over said fastener 86 through viewing surface 84 ; and means permitting rotation of said outer lip portions th
said fastener.

4,095,182
DISPLAY DEVICE FOR TRANSCEIVER AND LIKE
Corporation, Kanagawa, Japan
Corporation, Kanagawa, Japan
Filed Sep. 17, 1976, Ser. No. 724,173
,
Int. C. ${ }^{2}$ H04B $/ / 40$

1. A display device for a transeeiver and the like comprising:
6 Claims a phase-locked loop,
a pulse generating section, connected to said phase-locked loop.
a time-counting section for ume-counting connected to said pulse-generating section,
change-over circuit connected to the phase-locked loop control section and to the time-counting section for selec. tively transmitting channel selecting signals received rom
said phase-locked loop control section and time counting signals received from said time-counting section,

an electronic display section connected to said change-over circuit and responsive to the channel selecting and the tively carrying out cons transmitted herefrom display; and change-over switch for controlling the switching operation of said change-over circuit.
$4,095,183$
Takao Kakigi, Inagi, Japan, assignor to Cybernet Electronic Corporation, Kanagawa, Japan
Filed Jan. 25, 1977, Ser. No. 762,28 U.S. Cl. 325-17 Int. Cl. ${ }^{2}$ H04B $1 / 54$

2. In a transmitter-receiver having a receiving circuit for converting a received carrier frequency into an intermediate which is the controlled output frequency of a voltage-controlled oscillator of a phase locked loop, and a transmitting circuit connected to said receiving circuit through a transmis sion-and-reception change-over switch; the improvement
which comprises a tuning circuit having first and second variawhich comprises a tuning circuit having first and second varia inductor of said voltage-controlled oscillator, said first element receiving a DC voltage corresponding to said intermediat frequency and simultaneously receiving a DC voltage neces sary for frequency modulation using transmitting audio signals while interlocking with the switching action of a press-to-talk
switch for reception and transmission, said second variablecapacity element receiving voltages ranging within the conrollable limits of said voltage-controlled oscillator from said phase locked loop so that the follow-up control of said phase locked ioop may be-achieved, and DC power supply means fo second variable-resistance means, means for connecting said
first variable-resistance means across the terminals of an exter- mitted energy through said divided delay portions in sequence nal DC power supply, means for connecting said second variapower supply, and a switching means for selectively anal DC divided vupply, and a switching means produced by selectid first and second applying resistance means to said first variable capacity element accordquency phase synchronizal press-to-talk switch, whereby frequency
loop.

## 4,095,184 <br> 4,095,184

RADIO TRANSCEIVER POWER BOOSTER Peter A. Hochstein, 1402015 Mille Rd., Sterling Heights, Mich.
48077, and Kelvin Shib, 1481 Skylark 48077, and Kelvin Shih, 1481 Skylark Dr., Troy, Ohio 45373 U.S. Cl. 325-22 Int. Cl. ${ }^{2}$ H04B $1 / 44$

10 Claims


1. A transceiver assembly having a transmit mode and a receive mode for transmitting and receiving radio communication and comprising; a primary power supply, a secondary
power supply which is rechargeable, recharging means for power supply which is rechargeable, recharging means for
recharging said secondary power supply from the primary recharging said secondary power supply from the primary
power supply, and switching means for placing said secondary power supply in series with the primary power supply during he transmit mode of the transceiver and taking said secondary power supply out of direct electrical contact with the primary means for recharging said secondary power supply during the receive mode.

4,095,185
ELECTRICAL ENERGY TRANSMISSION NETWORK Paul N. Winters, P.O. Box 327, Trumann, Ark. 72472 Filed Apr. 14, 1977, Ser. No.
Int. C1. ${ }^{2}$ H03K $5 / 159$
U.S. Cl. 328-55

19 Claims


1. A method of maintaining a substantially constant phase relationship between transmitted energy at input and output
terminals of an energy transmission network having energy terminals of an energy ransmission network having energy
storing delay elements producing a change in phase of the transmitted energy with respect to an input frequency thereof, including the steps of: dividing the energy storing delay elements into separate delay portions respectively producing
mitted energy through said divided delay portions in sequence to phase shift the transmitted energy; doubling the input freand subtracting the input frequency of the transmitted energ passed through only one of the divided delay portions from the doubled frequency at said reference phase angle to reverse the phase shift of the transmitted energy passed through said one by the other of the divided portions of the delay element produces a net change in phase substantially equal to zero.

2. A variable phase digital phase shifter for shifting the phase of an input signal comprising
storage means for storing a signal indicative of the amoun by which the phase of the input signal is to be shifted;
a source of clock pulses; source of clock pulses;
counting means connected to said first input signal terminal, to said storage means and to said clock pulse source and responsive to receipt of an input signal at said first input
signal terminal for counting a number of pulses, from said signal terminal for counting a number of pulses, from said
clock pulse source, determined by the signal stored in said storage means;
output means coupled to said counting means for generating an output signal when said counting means has counted
said number of pulses; and said number of pulses; and
adjusting means for adjusting
djusting means for adjusting the signal stored in said storoutput signal and the input signal.

4,095,187
DEMODULATION SYSTEM FOR A MULTI-LEVEL MULTI-PHASE SUPERPOSTITON-MODULATED suharu Yoshida, CARRIER WAVE
asuharu Yoshida, Tokyo, Japan, assignor to Nippon Electric Cl, Lu., Filed Mar. 21, 1977, Ser. No. 779,853 Claims priority, application Japan, Mar. 22, 1976, 51-31022 U.S. Cl. 329-50 1. A demodulation system for demodulating into first
second demodulated signals a multi-level, multi-phase, super- contact of which variable resistor is connected to the second position-modulated carrier wave formed by combining first output terminal of the amplifier.
and second phase-modulated carrier waves synchronized with
each other, comprising
an oscillator of a frequency controllable in response to a
modulated carrircuit for detecting said superpositionmorviated carrier wave with the output of said oscillator serving as a phase reference,
means for processing at least the output of said phase-detec.
tor circuit to produce said control signal,

a first demodulator circuit for discriminating the output of
said phase-detector circuit to reproduce said first demodu-
lated signal, and lated signal, and
squaring the output of said phase-detector circuit, dis criminator-shaper means for discriminating the output of said squaring means with respect to a given level, and the output of said first demodulator circuit and the output of said discriminator-shaper means, whereby said second demodulated signal is reproduced.

CASCADED AMPLIFIER WITH FREQUENCY
SENSITIVE COUPLING
Robert Ronald Laupman, Wijchen, Netherlands,
Noranex Automation N.V., Wijchen, Netherland
Filed Aug, 31, 1977, Ser. No. 829,468
Claims priority, application Netherlands, Sep. 1, 1976,
U.S. Cl. 330-84 Int. C. ${ }^{2}$ H03F 1/36, 3/68


1. An amplifier having a plurality of cascaded stages each comprising an amplifying element, the output of each amplifying element being connected hrough a capacior being of increasing capacitance from the input stage of the final stage, characterized in that each amplifying element comprises an operational amplifier, the output of which is connected to said and the respective capacitor, the junction point of said two esistors being connected to the negative input of the operaional amplifier, and the junction point of the capacitor and one of the series-connected resistors being conectifer, the output of each tive input of a next operational amplifier, henected to the first operational amplifier being additionally connected to the first
output terminal through a variable resistor, the movable

ELECTRONIC POWER $4,095,189$ PR FOR DELIVERING A CONSTANT POWER INTO A LOAD IMPEDANCE Aaul Nguyen-Tan Tai, 56, rue des Pyrenees, 75020 Paris, France Claims priority, application France, Feb. 9, 1976, 7603500 U.S. CI. $330-265$ Int. Cl. ${ }^{2}$ H03F $3 / 183$

6 Claims


1. An electronic power amplifier for delivering into a load mpedance a constant power which does not depend on variaons in the value of said impedance, the level of said power mplifier comprises at least two transistors $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ of comlementary type, the base of the first transistor $\mathrm{T}_{1}$ being connected to a line for the supply of current delivered by a control current source, the emitter of said transistor $T$, being connected on the one hand to one end of the load impedance and on the other hand connected directly to the base of the second
ransistor $\mathrm{T}_{2}$, the collector of said transistor $\mathrm{T}_{1}$ being connected to a voltage supply of suitable polarity, the emitter of said ransistor $T_{2}$ being connected to the current supply line and the collector of said transistor $T_{2}$ being connected to another end of the load impedance.

4,095,190
TUNING SYSTE
azuyoshi Imazeki, and Koichi Kazami, both of Tokyo, Japan, Filed Jul. 20, 1977, Ser. No. 817,366
U.S. Cl. 331-2 1. A system for generating a pluraity of preselected frequencies in a radio frequency device, comprising: means for generting a first refersing a second reference signal having a prede ermined frequency; means, including first and second controlable variable-frequency oscillators, first and second mixers, and a programmable frequency divider, for generating first and econd output signals, with said first mixer being coupled to
aid first reference signal generating means and to said first said first reference sisce-frequency oscillator to generate said first output sig nal having a frequency corresponding to the difference be quency of said first variable-frequency oscillator, and with said second mixer being coupled to said second reference signal generating means and to said second variable-frequency oscilarres to generate said second output signal having a frequency corresponding to the difference between the frequency of said second reference signal and the frequency of said second varia first reference signal generating means and selectively coupled o said first and second mixers by said switch means and said programmable frequency divider and selectively responsive to said first reference signal with said first output signal and seal output terminal through a variable resistor, the
first reference signal with said second output signal and devel- frequency oscillator equals an integral multiple of the freoping a corresponding control signal which varies systematically in accordance with the frequency difference therebe-
tween, with said control signal being applied to both wontrollable variable-frequency oscillators to vary the oscilla tion frequencies thereof until the frequency of the selected

output signal is substantially equal to the predetermined frequency of said first reference signal, whereby the output signal
of the corresponding controllable oscillator has a frequency of the corresponding controllable oscillator has a frequency
which corresponds to one of the plurality of predetermined receiver frequencies as selected by both the programmable frequency divider and the mixer output signal selected by the
switch. switch.
quency of said reference signal oscillator; means for detecting said DC voltage from the low pass filter, circuit means for
generating a control signal when said DC voltage generating a control signal when said DC voltage exceeds a predetermined value, with said control signal having a polarity
different from the polarity of said DC voltage from said low pass filter and with the amplitude of said control signal being larger than that of said DC voltage, means for combining said DC voltage and said control signal to provide a combined output signal, and means for controlling the frequency and
phase of said variable frequency oscillator in response to said combined output signal of said combining means in such a way that the frequency of said variable frequency oscillator is varied outside of the lock range of the phase locked loop and toward the capture range of the phase locked loop until the
next succeeding phase locking state is obtained: said next succeeding phase locking state is obtained: said circuit
means for generating the control signal including an input means for generating the control signal including an input
terminal connected to said low pass filter; first and second Schmitt trigger circuits each connected to said input terminal and supplied with said DC voltage therefrom so as to produce respective pulse control signals when the DC voltage exceeds
said predetermined value in opposite first and second differentiating circuits connected to said first and second Schmitt trigger circuits and producing respective output signals; first and second inverting amplifiers for receiving the output signals from said first and second differentiating
circuits and producing respective phase inverted circuits and producing respective phase inverted output sig.
nals; third and fourth differentiating circuits connected to said first and second inverting amplifiers, respectively, and producing spike--like pulse signals at the front and back edges of the respective phase inverted output signals; and a transistor
switching circuit supplied with said spike-like pulse signals switching circuit supplied with said spike-like pulse signals
from said third and fourth differentiating circuits so as to generate said control signal. -
$4,095,192$
RANDOM STATE GE

Edward E. Atkinson, Arlington, Va., and William E. Queen, Silver Spring, Md., assignors to The United States of America as represented by the Secretary of the Army, Washington, D.C. Filed Mar. 25, 1968, Ser. No. 715,933

Int. Cl. ${ }^{2}$ H03B $29 / 00$ U.S. CI. 331-78

Michio Sbibuya, Yokohama, Japan, assignor Lor tion, Tokyo, Japan
Claims priority Feb. 9, 1977, Ser. No. 767,024 U.S. Cl. 331-4 Int. Cl. ${ }^{2}$ H03B $3 / 04$

1. In a phase locked loop circuit having a variable frequency oscillator, a reference signal oscillator, a phase comparator supplied with output signals of said variable frequency oscillator and said reference signal oscillator, respectively, and detecting a phase difference therebetween to provide a corresponding output signal and a low pass filter supplied with said output signal of the phase comparato ta ing DC voltage for controlling the variable frequency oscillator so as to phase-lock the phase of said variable frequency oscillator into the phase of said reference signal oscillator, the frequency of said variable frequency oscillator being varied
manually in such a way that the frequency of said variable

2. A random state generator comprising
means for generating means for generatitn a randomly varying voltage, said volt-
age having positive- and negative age having positive- and negative-going variations;
gating means for controlling the flow therethrough of positive- and negative-going variations, including a trans-positive- and negative-going variations, including a trans-
former having a primary winding with two ends, a secondary winding with two ends, and a secondary center tap connection, said primary winding ends being con-
nected to said randomly varying voltage means and said nected to said randomly varying voltage means and said
center tap connection being connected to said actuatin means;
a capacitor
a capacitor for tuning said transformer to a desired bandpass frequency and filtering a power spectrum generated by the randomly varying voltage means connecting said two
said secondary winding ends, for minimizing distartion said randomly varying voltage signal and yielding a ramdom gaussian distribution output across said secondary winding of the transformer; and
being connected to one of said two secondary winding
ends, each cathode being connected to said state generatends, each cathode being connected to said state generat ing means;
actuating means for opening and closing said gating means $\stackrel{\text { and }}{\text { means }}$
means connected to the output of said gating means, having two stable states, and controlled by said positive- and states.

4,095,193
BROADBAND GAS LASER
George L. Clark, Manhattan Beach, Calif., assignor to TRW Filed Jan. 22, 197 $-94.5 \mathrm{G} \mathrm{Int}$. Cl. ${ }^{2} \mathrm{H} 01 \mathrm{~S} 3 / 00 \quad 4$ Claims


1. A broadband gas laser of the type having supersonic flow
2. A broadband gas laser of the type ha
of the lasing gases, said laser comprising:
(a) a supply of lasing gases;
(b) means for creating a population inversion in the lasing
(c) a plur (c) a plurality of nozzles through which the lasing gases issue, each of said nozzles having a face, said faces being
aligned substantially along a straight line, and each of said aligned substantially along a straidght ine, and each of said
nozzles having a central axis defining substantially the direction of flow of the gases; and
(d) means providing an optical cavity and for causing
lasing beam to propagate adjacent to the faces of sai lasing beam to propagate adjacent to the faces of saia
nozzes, said nozzles being so disposed and arranged tha the direction of flow of the gases forms a predelecrmined acute angle substantially less than $90^{\circ}$ with the laser beam,
whereby the doppler distribution of the laser frequency is whifted by an amount depending on said predetermined angle.

MONOLITHIC INTEGRATED CIRCUIT FOR AN RC OSCILLATOR
Wolfgang Hoehn, Kirchzarten, and Woliggng Seuer, Freiburg, Wolfgang Hoehn, Kirchzarten, and Wolfgang Sauer, Freiburg,
both of Germany, assignors to ITT Industries, Incorporated, New York, N.Y. Claims priority, application Germany, Feb. 27, 1976, 2608026



1. A monolithic integrated circuit for an RC oscillator
whose capacitor is charged and discharged between two voltage values corresponding to the maximum and minimum oscillator voltage when one terminal of said capacitor is coupled to ground and the other terminal of such capacitor is coupled to a terminal of said integrated circuit and, via a current source, to the live terminal of a source of supply voltage comprising: switching stage having a threshold corresponding to the an input connected to the other terminal of the capacitor and an output that provides a signal when an input signal at least equals the threshold;
a switching transistor having base, emitter and collector terminals for discharging said capacitor when the voltage across said capacitor reaches the threshold voltage of said transistor serving as the threshold corresponding to the minimum oscillator voltage;
control means connected to the output of said switching stage and responsive to the signal therefrom for providing a signal to the base of said switching transistor for turning said switching transistor on; and
transistor for providing an inhibit signal to said control means, said control means being responsive to the inhibit signal for removing the signal from the base of the switching transistor, thereby allowing said capacitor to be ing transi

LOW POWER DISSIPATION CRYSTAL OSCILLATOR rakahito Saito, Tokyo, Japan, assignor to Kabushiki Kaisha Meidensha, Tokyo, Japan

Int ${ }^{2}{ }^{2}$ H03B $5 / 36$
U.S. Cl. 331-116 R


1. A low power dissipation crystal oscillator comprising an inverter circuit including a $P$-channel insulated gate fieldeffect transistor and a N -channel insulated gate field-effect ransistor connected in series,
a single power supply connected to said inverter circuit,
an excitation circuit connected between an output and an input of said inverter circuit, said excitation circuit comprising a crystal resonator and a pair of capacitive loads connected between ground and an input and an output of said crystal resonator, respectively,
means for applying different DC bias potentials to the gates of said field-effect transistors, respectively,
connecting the power supply to the gate of said N-channel
col means insulated gate fieldeffect transistor, and a second resistor of high resistance value connecting the gate of said $\mathbf{P}$. channel insulated field-effect transistor to ground.

2. A phase modulator responsive to an input signal and to a carriers signal comprising:
first means for developing a signal proportional to the inverse hyperbolic tangent of said input signal;
second means, responsive to said first means and to said
carrier signal for generating a signal which is carrier signal for generating a signal which is proportional
to a sum of two signals that are exponentially related to the output signal of said first means and which is amplitude modulated with said carrier signal; and
third means for hard limiting the output signal of said second means

4,095,197
PROPAGATION TIME EQUALIZER FOR CIRCULAR WAVE GUIDES
Gerard Le Coz, St Cheron, and Jean-Noel Marchalot, St Michel sur Orge, both of France, assignors to Compagnie Industri
des Telecommunications Cit-Alcatel S.A., Paris, France
Filed Feb. 3, 1977, Ser. No. 765,331
Claims priority, application France, Feb. 3, 1976, 7602921
Int. Cl. ${ }^{2}$ H01P $1 / 20$; H03H $1 / 14$ U.S. Cl. $333-28$ R


1. A delay equalizer for a circular wave guide comprising: a circular input wave guide;
a circular output wave guide having the same diameter as the input wave guide and being connected to the input wave guides meeting at an angle;
a first progressive reflector constituted by a circular wave guide whose input diameter is equal to that of the input wave guide and the output wave guide and whose crosssection decreases from its input so that the waves which enter the first progressive reflector will be reflected after having ravecy, said first progressive reflector being placed
in the line of the input wave guide beyond said commo end and being connected thereto by its input; second progressive reflector identical to the first reflecto said common end and being connected thereto by it input; and
a plane semi-reflecting plate of the "quarter wave" type occupying the interior cross-section of said wave guides at
their common end and being disposed so that the axis of their common end and being disposed so that the axis of
the input wave guide will be symmetrical to the axis of the the input wave guide will be symmetrical to the axis of tha
output wave guide in relation to this plate, the material and the thickness of this plate being chosen so that it passes half the energy of the waves which it receives with a phase shift of a quarter of a wavelength and reflects the other half of this energy.

4,095,198
IMPEDANCE-MATCHING NETWORK
homas J. Kirby, Hillsboro, N.H., assignor to GTE Sylvanta Incorporated, Stamford, Conn. Filed Jan. 31, 1977, Ser. No. 763,820 U.S. Cl. 333-32 13 Claims


1. An impedance-matching network for impedance-match ing a source and a load, comprising
a first pair of busses;
a first plurality of reactive elements; a second plurality of reactive elements; first control means operative selectively to connect one o more of the first plurality of reactive elements across the
first pair of busses thereby to achieve an effective first first pair of busses thereby to achieve an effective firs reactance across the irst pair of busses, and operative
selectively to connect one or more of the second plurality selectively to connect one or more of the second plurality
of reactive elements across the second pair of busses thereby to achieve an effective second reactance across the second pair of busses; and
second control means operative to interconnect the source and load with the first and second pairs of busses having the effective reactances thereacross in any one of a plurality of different possible circuit configurations.

ELECTRICAL 4,095,199
ELECTRICAL LC RESONANT CIRCUIT
Reinhard Behn; Harald Loebl, both of Munich, and Karl-Heinz Preissinger, Taufkirchen, all of Germany, assignors to Siemens Aktiengesellschaft, Berlin \& Munich, Germany
Claims priority, application Germany, Oct. 27, 1975, 2548059 Int. Cl. ${ }^{2} \mathbf{H} 03 \mathrm{H} 7 / 10 ; \mathbf{H 0 1 G} 5 / 36,4 / 34$
S. Cl. $333-70$. U.S. C. $333-70 \mathrm{R}$

1. An arrangement of coils and capacitors for narrow toler ance resonant circuits in channel filters in the carrier frequency
technology within the frequency range of between approximately 10 and 100 kHz , comprising:
(a) a mounting plate carrying and connecting the coils and capacitors;
(b) at least one fixed-tuned coil whose inductance is set in a
fixed non-adjustable manner, said coil having a magnetic fixed non-adjustable manner, said coil having a magnetic
core and at least one wire winding.
(c) at least one self-healing laser trimmable capacitor comprising a flat stack of at least two metal layers which are separated by a dielectric layer and which are covered by a laser light permeable non-destructing cover film, at least
two connecting wires contacting with the metal layers, two connecting wires contacting with the metal layers,
the self-healing capacitor being oriented towards an edge of the base plate with respect to the fixed-tuned coil so

that at least a first of the metal layers can be burned off through the cover film by means of an incident laser beam said ined-tuned coil being positioned inwardly of the
self-healing capacitor from the edge of the mounting plate seaid laser-trimmable capacitor cover film being substan tially undamaged when the capacitor is trimmed by a lase beam; and
(d) a narrow-tolerance channel-filter resonant circuit being
formed which includes said fixed-tuned coil and self-heating capacitor and has a resonant frequency within the frequency range of approximately 10 to 100 kHz , any additional coils forming the resonant circuit being fixed tuned and non-adjustable.

## 4,095,200

CONTACTOR HAVING REDUCED CONTACT BOUNCE
CONTACTOR HAVING REDUCED CON Paul M. Gallatin, Brookfield,
Corporation, Millwaukee, Wis.
Filed Dec. 22, 1976, Ser. No. 753,310 U.S. Cl. 335-193 Int. Cl. ${ }^{2}$ H01H 3/60 8 Claims

DEVICE FOR THE MAGNETIC CORRECTION OF THE TRAJECTORIES OF A BEAM OF ACCELERATED PARTICLES EMERGING FROM A CYCLOTRON
Eactises Kervizic, and Bernard Hurt, both of Paris, France, assignors to C.G.R. MeV, Paris, France Filed Aug 5, 1976, Ser. No. 711,801 Claims priority, application France, Aug. 8, 1975, 7524803
Int. Cl. ${ }^{2}$ H01F $7 / 00$ U.S. Cl. 335-210


1. A DC contactor having reduced contact bounce and orter arc time comprising, in combination,
a magnetic yoke,
a magnetic core affixed to said yoke,
an energizing coil surrounding said core,
a magnetic armature pivotally mounted on said yoke and
forming a closed magnetic circuit together with said yoke and said core,
a contact carrier bar,
a stationary contact, cooperating with said stationary contact,
return spring means for resiliently urging said armature to open position,
said contact carrier bar being carried on said armature so that they move together during armature closing until said movable and stationary contacts engage and being pivot-
able relative to said armature during further travel of said armature,
pre-loaded contact pressure spring means for urging said contact carrier bar toward said armature, and
stop means in interfering relation with said contact carrier bar for limiting opening movement of said armature, said contactor having a generally hyperbolic magnetic pull characteristic plotting magnetic pull on said armature versus magnet gap belween said aim ormand and for a given excitation of said coin, hen said stationary and movable contacts engage being less than the magnet gap movable contacts engage being less herblic characteristic,
therebetween at the knee of said hyperble said contact pressure spring being pre-loaded to a force greater than said magnetic. pill on sad ald knee of said characteristic.

2. A magnetic correcting device for correcting the trajectories of a beam of accelerated charged particles emerging from an accelerator of cyclotron type, said cyclotron being associated with an electromagnet having two parallel circular pole pieces berween which said partices are peen provided a periphective electrode for extracting said particles from said cycloron, said device, which is designed for modifying the mean path of said particle beam emerging from said cyclotron and for focusing said emergent beam, being located at the periphery of said polepieces in the neighborhood of said extractive electrode, said device comprising at least a block of magnetic material having nated composite magnetic material formed by a stack of plates made of materials having different permeabilities, said plate being arranged in planes which make predetermined angles in relation to the plane of the mean paths of said beam.

COIL FOR PRODUCTNG 4
COIL FOR PRODUCING A HOMOGENEOUS Nils Allan Davielseon, Sollentuna, Sweden, and Karl-Peter Christian Lindblom, Nagu, Finland, assignors to Applied Research Leboratories S.A., Ecublens, Switzerland
Filed Nov. 14, 1975, Ser. No. 631876
Fired Not. 14, 1975, Ser. No. 631,876
Claims priority, application Finland, Dec. 20, 1974, 3738/74 U.S. Cl. 335-213 Int. Cl. ${ }^{2}$ H01F $5 / 00$
U.S. C1. 335-213

4 Claims
that a first conductor portion of said first conductor section extends from its respective end or said loop to said adjusting means and a second conductor portion of said
first conductor section extends from said adjusting means to said fixed point, and said adjusting means including means for deflecting said first conductor section so as to offset said second conductor portion from said first con-
ductor portion. ductor portion.
an electrical winding disposed within said enclosure and each other to define gaps therebetween, each of said radial adapted for connection to an electrical potential; portions having connected thereto a terminal element project-
a dielectric fluid disposed within said enclosure; and ing axially outwardly from each radial portion, the winding of a dielectric fluid disposed within said encosure; and
solid insulating means for electrically insulating at least a
ing axially outwardly from each radial portion, the winding of
the primar coil unit being mounted on said tubular portion and portion of said electrical winding; -

consisting essentially of a fibrous web formed of wholly aromatic polyamide fibers, a second layer of a polyethyl-
ene terephthalate film having a thickness greater than 0.005 inches disposed in registry with said first layer and a third layer of a paper consisting essentially of a fibrous
web formed of wholly aromatic polyamide fibers disposed

13 Claims the primar coll unit being mounted on said tubular porion and
concentrically supporting the secondary coil unit thereon, each of said lead wires except for a high-voltage lead wire for he secondary coil unit being connected to each of the terminal lements on said radial portions thits being mounted on said core structure substantially in concentric relationship to said land portions of said core sections with said land portions received in said tubular portion of said bobbin, and a unitary void-free insulating envelope of a impregnating the interstices between the turns and layers rial impregnating the interstices betwelen he turns and the coil
of the windings of said coil units, totally encapsulating the coll units and filling all the spaces between said core structure and said coil units with leading end portions of said lead wires projecting outwardly from said envelope.

## THERMAL FUSE

Warren H. Hay, Hamilton; Stephen F. Kimball, Georgetown, and Roy C. Martin, Salem, all of Mass,, assignors to GTE Sylvanis Incorporated, Danvers, Mases.
Flled Sep. 18, 1975, Ser. No. 614,564
U.S. CI: 337-20

## TRANSFORMER HAVING FORCED OIL COOLING

 SYSTEMTeruo Miyamoto; Toshijl Ishil; Yoshikazu Mlura, and Tobei Nitta, all of Amagasaki, Japan, assignors to Mitsubishl Denki Kabushiki Kaisha, Tokyo, Japan
Filed Jan. 15, 1976, Ser. No. 649,271 Clạims priority, application Japar, Jan. 27, 1975, 50-11708 U.S. Cl. 336-57 11 Claims


1. In a transformer having a forced oil cooling system, in combination, an insulating oil forcibly movable in the trans-
former, and an insulating sheet in contact with the insulations oil and partially covered with an inorganic material, the inorganic material producing a static charge of opposite polarity to the charge produced by the base material of the insulating sheet when relative motion between the insulating sheet an the insulating oil takes place due to forced flow of the insulat ing oil.

TRANSFORMER WITH $\quad 4$ TRANSFORMER WITH IMPROVED INSULATOR Stephen M. Schroeder, and George P. Michel, both of South Boston, Va., assignors to Westinghouse Electric Corp., Pitts
Filed Jul. 28, 1977, Ser. No. 819,804
Int. Cl.
U.S. Cl. 336-92
U.S. Cl. 336-92 an enclosure;

in registry with said second layer.

ENCAPSULATED TRANSFO
ENCAPSULATED TRANSFORMER ASSEMBLY Hideo Hishlikd, Yokohama, Japan, assignor to Victor Company of Japan, Limited, Japan Filed Feb. 9, 1976, Ser. No. 656,702
 App. 4, 19018978 [U]
U.S. C. $336{ }^{\text {lnt. Cl. }}{ }^{2}$ H01F 27/02, 27/30


1. A transformer assembly comprising a ferromagnetic core
ancture structure comprising two generally E-shaped core sections
each consisting of a pair of spaced parallel arm portions, an each consisting of a pair of spaced parallea arm portions, an
intermediate portion integrally joining said arm portions together and a cylindrical land portion projecting from said gether and a cyline substantion platy in paralleel with said arm portions and located intermediate between said arm portions,
said core sections being held together with the end faces of the said core sections being held logether with the end faces of the arm portions of one of the core sections respectiver core section,
with the end faces of the arm portions of the ore
the respective land portions of the two core sections having the respective land portions of the two core sections having
end faces which are spaced apart from each other to define a end faces which are spaced apart from each other to define a
gap therebetween, primary and secondary coil units each gap therebetween, primary and secondary coil units each
including at least one winding arranged in layers and having at least two lead wires, the primary coil unit comprising a bobbin including a tubular portion having open axial ends and a plural ity of radial portions projecting radially outwardly from one of
said open axial ends and circumferentially spaced apart from

2. A thermally responsive electric switch comprising an elongated cylindrical body having an integral intermediate section at one end thereof, said section having a small diameter axial hole therethrough; a cylindrical meltable pellet coaxially disposed within said elongated cylindrical body and bearing
against said integral intermediate section, said pellet having a against said integral intermediate section, said peliet having a coaxially disposed within, and closing off the other end of, said elongated cylindrical body and bearing against said pellet, said plug having a small diameter axial hole therethrough; a lead-in wire extending through the hole in said integral intermediat section and slightly into the hole in said pellet; another ead-in slightly into the hole in said pellet; and a pool of mercury filling the hole in said pellet and in contact with both lead-in wires so as to establish electrical continuity therebetween.

4,095,208
OPERABLE ELECTRICAL SWITCH
Industries Limited, Birmingham, Enghnd
Filed Oct. 20, 1976, Ser. No. 733,97
Claims priority, application United Kingtom, Nor. 8, 1975,
U.S. C. $337-125$

1. Coil for producing in a substantially cylindrical space
homogeneous magnetic field in a direction parallel to the axi of said cylindrical space, comprising at least one substantially cylindrical winding concentric with said cylindrical space having a substantially constant winding density over its longitudinal extension, said coil further comprising at least one pait
of mutually identical windings disposed symmetrically with of mutualy idenlical windings disposed symmetrically with said cylindrical winding through the centre thereof, extending in planes substantially perpendicular to the longitudinal axis of
said cylindrical winding inwardly therefom to said cylindrical winding inwardly therefrom to a minimum
radius being larger than the radius of said cylindrical space, radius being laryer than the radius of said cylindrical space,
and having a substantially constant winding density over their radial extension.

4,095,203
ARRANGEMENT FOR OBTAINING AN ELECTRICAL SIGNAL PROPORTIONAL TO A DISTANCE Woifgnng Lesche, Berlin, Germany, assignor to Siemens Aktien

Filed May 4, 1977, Ser. No. 793,502
Int. C1. ${ }^{2}$ H01F 2 2/04
U.S. C. $336-20$

10 Claims


1. An arrangement for deriving an electrical signal corre sponding to a distance comprising:
conductor loop adapted to be arranged in a magnetic a-e
field with its plane transverse to said field, said loop hav field with its plane transverse to said field, said loop hav
ing first and second ends and first and second conductor sections extending from said first and second ends to a firs
fixed member: fixed member;
and a maid distance, said adjusting means being arranged so
comprising an electrically insulating base having a pair of opposed surfaces; first, second and third electrical terminals mounted on said base in spaced relation and extending from one of said opposed surfaces thereof, said first, second and
third electrical terminals being for respective connection to an electrical power supply, an electrical apparatus to be operated intermittently by said switch assembly, and at least one indicator lamp; an electrically conducting fixing element securing each of said first, second and third electrical terminals to said base, each said fixing element being electrically connected with its respective electrical terminal and extending throu
said base to the other of said opposed surfaces thereof; said base to the other of said opposed surfaces thereo, said first support terminating at one end adjacent the fixing element for said second electrical terminal and at its other end adjacent the fixing element for said third electrical terminal; an electrical winding on said first support, said first support providing a core therefor, said electrical
winding being disposed with its axis substantially parallel to said base; an armature mounted on said first support at the said one end thereof and extending substantially parallel to said electrical winding axis;
a first fixed electrical contact mounted on the said other surface of said base adjacent the said other end of the first
support, said first fixed electrical contact being electri-

ELECTRICAL RESISTOR AND METHOD OF MAKING H. Eugene Wiswell, Eluham Edwardsburg, Mich., assignors to CTS Cony R. Hardwick, Ind.
U.S. CI. 338-174

9 Claims


1. A variable resistance control comprising an apertured base having a surface, an arcuate resistance path provided on
the surface of the base, a collector carried by the base in spaced relationship to the resistance path, a knob rotatably supported relative to the base, a first skirt extending from the knob and slideably engaging the base and spacing the knob from the
base, a contactor constrained to rotate with the knob, the contactor wipably engaging and electrically connecting the collector and the resistance path intermediate the ends thereof, and a second skirt integral with one of the knob and the base
and disposed outwardly from the first skirt and extending and disposed outwardly from the first skirt and extending
towards the periphery of the other of the knob and the base, the peripheral portions of the knob and the base and the outer surface of the first skirt defining an annular channel, the second skirt radially enclosing the annular channel.

HELICAL COIL SPRING WIPER POTENTIOMETER CONTACT DEVICE American Philips Corporation, New Yolif,, assignor to North Continuation-in corporat of Ser, New York, N.Y. Condoned, which in a cort of Ser. No. 642,328, Dec. 19, 1975, Mar. 18, 1974, Pat No. 3,964,011. This of Ser. No. 452,130, 1976, Ser. No. 723,931

Int. Cl. ${ }^{2}$ H01C $10 / 40$
ally connected to the fixing element for the third electri- U.S. Cl. 338-180
cally connected to the fixing element for the third electrical terminal and being engageable by said armature, said armature normally being biassed away from said first fixed ectrical contact when said electrical winding is energised in use;
a second support mounted on the said other surface of said base and including a portion upstanding from said base and a mounting flange integral therewith, said mounting llange extending in a direction transversely of said electrifixing element for the second electrical terminal and at its other end adjacent the fixing element for the first electrical terminal, said second support being secured to said base by means of said mounting flange; a snap-action circuit breaker mounted on said upstanding portion of said second support;
a second fixed electrical contact carried by the said other surface of said base and engageable with said circuit
breaker; and a heat-expansible element normally biassing said circuit breaker into a first position and being arranged, when heated by an electric current passing therethrough in use, to release said circuit breaker to move into a second position, said circuit breaker engaging said secnd fixed electric second positions.


1. A potentiometer contact device comprising a contact body of electrically insulative material containing a cavity in one side thereof; a helical coil spring wiper bound in said cavity by adhesive means for restraining rotation of said wiper relative to said contact body so that at least an arcuate portion of said coil wiper extends beyond said one side of said contact body
and
engagement means on said contact body for enabling said contact body to be moved along a resistance element with said arcuate portion of said coil wiper making uniform electrical contact therewith for providing minimal contac
resistance variation during such movement

CODED ELECTRONIC SECURITY SYSTEM
Frank J. Shaughnessy, Hartford, Conn., assignor to The Stanley Works, New Britain, Conn.
Filed Jul. 31, 1975, Ser. No. 600,935 U.S. Cl. 340-224 Int. C1.2 G08B $1 / 08$
receiver responsive
the transmitter, and
the transmitter, and
an indicator responsive an indicator responsive to the states received by the receiver


whereby the state of the indicator indicates the condition of whereby tircuit to be tested.

4,095,213
MECHANICALLY ACTUABLE CONTROL RELAY Rodney Hayden, S
Cleveland,

1. An electronic security system for detecting, identifying and reporting the occurrence of alarm activating events emote locations, comprising.
a plurality of transmitters, each located at one of said remote
locations and each for locations and each for transmitting a signal comprising a
plurality of transmissions at a selected transmission repetition frequency and with a selected transmission duration less than the interval between said transmissions, said frequency and duration being common to all transmitters
in the system, each of said transmissions comprising a series of pulses of RF energy at a selected identical pulse repetition frequency, said pulse repetition frequency being unique to each transmitter in the system;
a plurality of transmitter activating means, one for each of said transmitters, each for activating its corresponding a transmitter for a selected uime period;
a receiver, responsive to said transmitted signal, including separate means for comparing said transmission repetition frequency and transmission duration to selected values, thereby to verify the authenticity of said signal as one originating in one of said transmitters, counting means for
measuring said pulse repetition frequency, thereby to determine which of said transmitters originated said signal, and means for providing an output signal representative of the occurrence of an alarm activating event at one of said transmitters if said signal is verified as authentic and determined to have a pulse repetition frequency cor-
responding to one of said transmitters; responding to one of said transmitters; signal, for indicating the occurence of an alarm activatin event.

## 4,095,212

Billy Paul
STATE TESTER Filed Jun. 27, 1977, Ser. No. 810,498
U.S. C. $340-224$

7 Claims

1. A remote live circuit tester for determining the condition of a circuit to be tested comprising, in combination:
a transmitter with an input and an
receipt of an electrical signal at the input, the output having two states, one state corresponding to power on in
the circuit and one state corresponding to power off in the circuit,
means for electrically connecting the circuit to be tested to the input of the transmitter,

Fleveland, Oniled Jan. 7, 1977, Ser. No. 757,523
Int. C1. ${ }^{2}$ (08B 21/00; H01H $1 / 12,51 / 06$
U.S. C. $340-252$ R


1. A control relay comprising an insulate base, an electrically onconductive coil form part joined to said base and having an bout the external surface of said coil form part, a fixed core part disposed about said coil form part, said fixed core part part disposed about said coil form part, said fixed core part
having an opening therethrough in registration with said bore and being magnetizable responsive to electrical energization of said coil, a removable core part in the form of a plunger slidably seated in said opening in said fixed core part and said bore said coil form part, said plunger having a radial shoulder posed relationship to said fixed core part, the end of said plunger remote from its end proximate said shoulder being normally disposed in said bore in said coil form part proximate but gapped from the end of said bore proximate said base, a
spring metal armature having two ends, one of which is fixed spring metal armature having two ends, one of which is fixed
to said coil form part proximate said base and the other end of to said coil form part proximate said base and the other end of
which is fixed to said shoulder, a movable relay contact carried by said armature, a fixed contact fastened to said base and rising therefrom to a position where it is engageable by said novable contact responsive to downward movement of said plunger it said eol
between the said end of said plunger remote from said shoulder and the end of said bore proximate said base, at least a pair of current carrying terminals fixed to said base, one of said termi-
and the other of said terminals being electrically connected to determined address and for actuating normally quiescent elecsaid fixed contact and the other end of said relay coil, a relay trical apparatus of said pager in response thereto, said normally housing joined to said base, and a mechanical actuator quiescent electrical apparatus being battery powered and in-
mounted on said housing and operably connected to said plunger at said shoulder, said actuator being operable to de- lisis the decod message the improvement wherein press said plunger into said coil form part and thereby move said armature to a position where said movable and fixed contacts are engaged and said relay coil is energized.
$4,095,214$
ELECTRONIC MONITORING SYSTEM AND ELECTROSPONDER DEVICE Arthur J. Minasy, Woodbury, N.Y., assignor to Knogo Corporation, Hicksville, N.Y.

Filed Jun. 17, 1976, Ser. No. 697,128
U.S. CT. $340-258 \mathrm{C}$


1. An electronic monitoring system for detecting the passage
of objects past a given monitoring station, said system comprising an essentially flat loop antenna means which lies in a single plane, said antenna means being disposed at the surface of the floor adjacent a passageway through said given monitoring
station so that said plane of said antenna is substantially parallel to the plane of the floor, electromagnetic monitoring means connected to said antenna means, said monitoring means being
operable to energize said antenna means in a predetermined operable to energize said antenna means in a a predetermined
frequency range and to detect predetermined electromagnetic frequency range and to detect predetermined electromagnetic
responses produced upon said antenna means when a resonant circuit is present in the vicinity of said antenna means, and a responder device comprising an elongated bar of ferromag netic material, an insulated electrically conductive wire coiled
about said bar, a capacitor connected to the ends of said wire about said bar, a capacitor connected to the ends of said wire
to form a resonant circuit and means mounting said bar, wire and capacitor on the leg of an object whose movement is to be monitored, said mounting means comprising a casing which holds said bar, said coil and said capacitor and a fastening
element for holdimg said casing to the leg of said object, said element for hoidmg said casing to the leg of said object, said such that the longitudinal axis of said bar is maintained substan-
tially perpenicular to said plane of said loop antenna means, tially perpendicular to said plane of said loop antenna means,
whereby said predetermined electromagnetic responses cause whereby said predetermined electromagnetic responses cause said monitoring means.

# $\stackrel{4,095,215}{ }$ 

Thomas J. Mortimer, Amberst, N.H., assignor to Sanders As sociaties, Inc.. South Nashus, N.H.
Division of Ser. No. 580,092 , May 22, 1975, Pat. No. 4,028,661. This application Mar. 10, 1977, Ser. No. 776,405
U.S. Cl. 340-311 14 Claims 1. In a low-power drain paging unit for receiving predeter mined sequencia tone-coded add for tone FSK message signals and for printing out the message operated means for receiving said signals, for decoding a pre-

said FSK message decoding means including means for proonly one of the tones of said FSK signal, whereby said one tone FSK decoding means contributes to reduce batter drain and extend the life of the pager.

METHOD AND APRARATUS FOR DISPLAYING Denis Frank Spicer, Bedford, England, assignor to Texas Instruments Incorporated, Dalles, Tex. Claims priority, application United Kingdom, Aug. 7, 1975, 3014/75
U.S. Cl. $340-324$ AD It. C. ${ }^{2}$ G06K $15 / 20$


1. Apparatus for generating video signals suitable to produce energetic beam over the panel in an interlaced raster having first and second field scans, the apparatus including: (a) digital storage means having a plurality of storage locations respectively allocated to different alphanumeric characters to be displayed, there being at each storage data representing the particular character allocated to the location in a rectangular dot matrix form, each group of storage elements storing the dot pattern for a particular row of the matrix;
(b) first address means for selecting a storage location of the digital storage means in accordance with a character to be displayed;
in a particular means for selecting at a series of instants location selected by the first address means and producing
corresponding first output data signals from the groups of applied to an integrator to reconstruct the desired analog storage elements, and also for selecting between the in- waveso
stants of the series the groups of storage elements in the steps of: stants of the series the groups of storage elements in the steps of:
same order to produce second output data signals from the allocating the total duration of a voltage output from said groups of storage elements and such that a group selected switched voltage supply into n discontinuous periods of between instants is associated with a group selected at the next preceding or the next succeeding instant depending on whether the data from the group seiected is
in the said first or the said second field scan;
(d) first and second registers connected to receive the first and second output data signals respectively and store the corresponding data;
(e) means for sequentially selecting the data in both registers synchronously
(f) logic means responsive to a pair of adjacent data elements in each of the first and second registers to detect a diagonal portion of said character to produce a control
response to said delection,
g) means for modifying the data selected sequentially from the first register by the addition to it of ( 1 a leading edge
dot elongation signal in response to a control signal produced by the logic means in response to a positive slope diagonal during a said first scan and in response to a negative slope diagonal during a said second scan and (2) a trailing edge dot elongation signal in response to a control signal produced by the logic means in response to a posi-
tive slope diagonal during a said second scan and in retive slope diagonal during a said second scan and in response to a negative slope diagonal during a as.
said modified data forming the video signal.

$$
4,095,217
$$

COMBINED LIQUID CRYSTAL DISPLAY AND PHOTOVOLTAIC CONVERTER
Hirotsugu Tani; Kyoji Taguchi, and Shigeru Arita, all of 251 E. Victoria Ave., Carson, Calif. 9074

Filed Mar. 7, 1977, Ser. No. 775,261
U.S. C. $340-324 \mathbf{R}$ time, each
tion; and
controlling the duration of each of said allocated discontinuous periods of time independently and in correspondence with the digital value of said received inputs, said period
being increased in duration over said minimum period by

a number of said minimum sized increments the total number of said increments of increase being equal to the in said multi bit digital input, said total incremental in crease in duration being divided equally among said $n$ discontinuous periods;
and also increasing certain of said $n$ discontinuous periods of time by one said minimum increment each, the number of said periods so increased being in correspondence with the
binary value of the individual low order bits of said multi bit digital input.


1. A combination liquid crystal display and electrical gener 1. A combing:
a includiding: crystal chamber having a first and a second tr ent wall and containing liquid crystal material;
first transparent electrodes of a predetermined shape carried
by said first transparent wall;
econd transparent electrodes of a predetermined shap said first transparent electrodes; and,
combination light reflector and photovoltaic conversion means positioned along said second transparent wall in ne with wall, said liquid crystal material and said second transparent wall.

HYBRID PULSE W, WidTH-PULSE RATE digital-To-ANALOG CONVERTER METHOD AND apparatus
William George Crouse, Raleigh, N.C., assignor to Internationa Business Machines Corporation, Armonk, N.Y.

Filed Aug. 30, 1976, Ser. No.
Int. ${ }^{2}{ }^{2} \mathbf{~ H 0 3 K} 13 / 02$
U.S. C. $340-347 \mathrm{DA}$ $\qquad$ 9 Claims 1. In a digital-to-analog converter in which multi bit digital representations of instantaneously measured analog de desired to
voltages are received as inputs and from which it produce analog voltage outputs by controlling the total energy valu for comparing during each interval $T_{2}$ the absolut rom a switched supply means, which waveform spectrum is interval $T_{1}$ with the absolute value of said ramp signals; means
for generating clock pulses; and means for, in the course of
each one of said second time intervalk, each one of said second time intervals, counting said pulses for a duration determined by the instant when the absolute value
of said $n$ ramp signals is equal to the absolute value of the integrated signal, wherein, $T_{1}$ and $T_{2}$ being multiples of a common duration T , said integrating means comprise: at least one integrating charge transfer device having $(p+q)$ successive stages having identical weighting coefficients, with $p=\mathrm{T}_{1} / \mathrm{T}$
and $q=\mathrm{T} / \mathrm{T}$, an injection circuit coupled to the first of these stages, and an output circuit for delivering, with a possible constant voltage added thereto, a signal resulting from the integration of the signal applied to said injection circuit; means for alternately applying to said injection circuit said analog signal and a fixed voltage so that the charges injected in the first of said stages are a function of said analog signal during
said intervals $T$, and have a fixed value during said intervals $T_{\text {, }}$ whereby said output circuit delivers, with said possible constant voltage added thereto, said integrated signal during each interval $T_{2}$.

ALARM DETECTION AND IDENTIFICATION SYSTEM Joe A. Sadler, 327 Main St., Humble, Tex. 77338 Filed Aug. 18, 1976, Ser. No. 715,316
U.S. CI. $340-409$

9 Claims


1. An alarm detection and identification system comprising, in combination:
a detection and identification station including a source of electrical power and means for responding to a plurality of different analog current address signals to provide a istinctive indication of each of said signals to distinguis plurality of remote alarm stations each means for generating an alarm signal in response to an larm condition and a means powered by the source of electrical power for converting the alarm signal into an nalog current address signal for identifying the particular relatively little power during non-alarm periods; and
a means for electrically connecting each of the remote stations in parallel to the detection and identification station to supply electrical power to each of said remote stations, tion and identification stations.

## 4,095,221

ELECTRICAL STORM FORECAST SYSTEM
Chester D. Slocum, Jr., 1811 SW. 98th Ave., Miami, Fla. 33165 Filed Mar. 29, 1976, Ser. No. 671,028
U.S. C. 340-421 Int. Cl. ${ }^{2}$ G08B 21/00

1. A storm forecast system including a sensor unit 6 Claims ing electrostatic field information, an amplitude and phase detector coupled to said sensor unit, and information processing means coupled to said amplitude phase detector, said system comprising:
(a) sensor board means ( 20 having two alternately conduc (b) a rotor (22) with b) radially disposed around a center; rotation in a plane adjacent to said sensor board means; (c) first and second resistors ( $\mathbf{R} 3, \mathbf{R 4}$ ) in series with a center point, said resistors each having an outer end coupled to one of said sections;
d) first and second field effect transistors ( Q 1, Q2) coupled to said first and second resistors, said field effect transis tors each having an output side;

(e) a transformer (T1) with a center tapped primary and a secondary winding, said primary winding having tw ends, one end each being connected to an output side; sensing board means ( 26 b);
(g) a phase detector including first and second diodes (D1 (g) a ph
D2 2 ;
(h) amplifier means coupling the output of said sensor unit to (h) amplifier means coupling the output of said sensor unit to (i) recorder terminals and
recorder terminals for coupling a recorder to said phase
detector.
$4,095,222$
POST-DETECTION STC IN AN MEDIUM PRF PULSE DOPPLER RADAR
David H. Mooney, Jr., Arnold, Md., asslgnor to Westinghouse Electic Corp., Pittsburgh, Pa.
Continuation-in-part of Ser. No. 665,138, Mar. 8, 1976, Int. Cl. ${ }^{2}$ Go1S $7 / 28,9 / 02,9 / 42$

2. A pulse doppler radar receiver for detecting the range of a target from received signals which include target returns, main beam clutter returns, area sidelobe clutter returns and discrete sidelobe clutter returns, said receiver comprising:
means for filtering the main beam clutter returns from said received signals; means for providing an adaptive threshold signal which
varies in response to the amplitude of the area sidelobe varies in response to the amplitude of the area sidelobe
clutter returns said providing means being responsive to clutter returns said providing means being responsive to
said filtering means to remove said area sidelobe clutter said filtering means to remove sald
returns from said received signals;
means for unfolding the output of said providing means over a predetermined range, said unfolding means being re-
sponsive to the output of said providing means to provide an unambiguous range signal;
means for thresholding the unambiguous range signal in
response to the output of said unfolding means, the threshresponse to the output of said unfolding means, the thresh-
old being such that the discrete sidelobe clutter returns are rejected over a selected range of said unambiguous range signal;
means for detecting discrete sidelobe clutter returns in the unambiguous range signal of said unfolding means said
detecting means being responsive to said unfolding means and to said thresholding means to provide a blanking signal;
means for blanking the discrete sidelobe clutter returns detected by said detecting means from the output of said providing means, said blanking means being responsive to received signals; and means for determining the range of the target in response
said target returns provided by said blanking means.

FOUR-DIMENSIONAL $\begin{aligned} & \text { 4,095,223 } \\ & \text { SOMETRIC RADAR TARGET }\end{aligned}$ IMAGE DISPLAY
Dean D. Howard, Oxon Hill, Md., assignor to The United States of America as rep

Filed Apr. 8, 1977, Ser. No. 785,976
U.S. Cl. 343-7.9

2 Claims


1. In a target-indicating system including a high-range-reso1. In a target-indicating system produces a range trigger signal and elevation angle error data, azimuth angle error data and range video data from the echo signals received from a target, and further includes a display system having an $x$-y dispay with vertical, horid range video data being provided to said display trace, said range veren to said display system which comprises:
sweep generator means receiving said range trigger signal for generating a sweep voltage in response to said range trigger signal;
levation summing amplifier means for receiving and summing said elevation angle error data and sene output of said age generated by said sweep generain, hever sump suid vertical input of said display system for driving said display trace vertically and modulating said elevation angle error data on said display trace; and
azimuth summing amplifier means for receiving and sum-
ming said azimuth error data and said sweep voltage generated by said sweep generator, the output of said azimuth summing amplifier being fed to said horizontal azimuth summing ampilifer being fred to said display trace
input of said dor dring said
horizotally and modulating said azimuth angle error data on said display trace; and
said outputs of said azimuth and elevation summing amplifi ers causing said display trace to be driven diagonally and generating an isometric presentation of said target data.
dIGITAL PHASE CORRECTION FOR COHERENT-ON.RECEIVE PULSED RADAR SYSTEM Eric A. Dounce, Audubon, Pa, and Guy V. Morris, Scottsdale, Ariz., assignors to Motorola, Inc., Schaumburg, III. Continuation of Ser. No. 741,253, Nov. 12, 1996, abandoned, which is a continuation of Ser. No. 594,134, Jul. 7, 1975, bandoned. This application May 27, 1977, Ser. No. 801,12 U.S. Cl. 343-17.1 R

2. In a pulsed radar system having transmitted signals, received signals and a reference signal, there being relative phase relationships therebetween, the phase relationships changing from each transmitted pulse to the next, the combination comfrom each
prising:
free
free running oscillator means for generating the reference signal;
means for providing each relative phase relationship between the transmitted signal and the reference signal in the form of a complex digital reference number;
means for storing said complex digital reference number;
means for sequentially sampling the subsequent received signals;
means for
received signals to a series of complex digital numbers; and
means fo
means for digitally correcting the phases of said series of complex digital numbers representing said sequentially sampled subsequent received signals,
complex digital reference number.

4,095,225
RANGE SIDE LOBE SUPPRESSION METHOD FOR A PHASE MODULATED RADAR PULSE rik Östen Erikmats, Vastra Frolunda, Siveden, assignor to Telefonaktiebolaget L M Ericsson, Stockholm, S
Filed Nov. 22, 1976, Ser. No. 743,777 Flised Nov. 22,
Claims priority, application Sweden, Nor. 24, 1975, 7513178 Claims priority, appication
Int. Cl. ${ }^{2}$ G01S $7 / 28$
U.S. Cl. 343-17.2 PC

1. In a radar equipment, a method for elimin 2 Claim ange side lobes in a received radar pulse when conpanted the pulse, said pulse when transmitted being coded according
to a certain code pattern and when received being converted to a sequence of digital values, said method comprising the steps
of:
filtering the sequence of digital values in a first digital filter
whose digital transfer function has a Whose digital transfer function has a number of poles with positions in the complex 2 -plane all corresponding to the
peros of the 2 -transform defining the cerpositions of the zeros of the 2 -transform defining the cer-
tain code pattern situated within the unity circle $|z|=1$ whereby a first digital sequence is obtained;

reversing said first digital sequence to obtain a second digital sequence in which the digital values appear in reverse sequence; and
filtering said second digital sequence in a second digital filter whose digital transfer function has a number of poles with positions in the complex $z$-plane corresponding to the unity circle $|z|=1$ of the $z$-transform of said code pattern

SYSTEM FOR COMMMUNICATION
Dale L. Kratzer, Medford Lakes, N.J., assignor to Harris Cor poration, Cleveland, Ohio
Division of Ser. No. 389,796,
Which is a continuation-in-part of Ser, 1973, Pat. No. 4,004,237, Pat. No. 3,755,816. . No. $3,755,816$. This application Feb. 23, 1976, Ser. No $\mathbf{6 6 0 , 6 5 6}$
C. ${ }^{2} \mathbf{G} 01 \mathrm{~S}$
1/30
U.S. CI. 343-105 R

14 Claims

2. A system for synchronized data communication by mean of transmitted signals having synchronization and data por
tions, said system comprising the steps of: tions, said system comprising the steps of:
synchronizing signals with the received synchronizatio portion;
controlling the phase of said synchronizing signals for adjustment in a direction to place said synchronizing signal in a certain phase relation with said received synchroniza tion portion;
signals with said adjusted synchronizing signals.

ASYMMETRICALLY $\begin{aligned} & \text { 4,095,227 MAGNETIC MICROSTRIP }\end{aligned}$ DIPOLE ANTENNA
States of America as represented by the Secretary of the Navy, Washington, D.C.
Filed Nov. 10, 1976, Ser. No. 740,695
The portion of the term of this patent subsequent to Jul. 27, the term of this patent subseque
1993, has been dieclaimed Int. C1. ${ }^{2}$ H01Q 1/38
U.S. C. $343-700 \mathrm{MS}$

1. An asymmetrically fed magnetic microstrip dipole antenna having low physical profile and conformal arraying
capability, comprising: apability, comprising
a. a thin ground pla
b. a thin rectangular radiating element spaced from said ground plane;
said radiating element being electrically separated from said ground plane by a dielectric substrate; d. said radiating element being shorted to the ground plane e. said radiating element having a feedpoint located between the shorted end and opposite end of the element along the centerline of the length thereof;
said radiating element being fed from a coaxial-to-micros-
trip adapter, the center pin of said adapter extending trip adapter, the center pin of said adapter extending
through said ground plane and dielectric substrate to said radiating element;
g. the length of said radiating element determining the resonant frequency of said antenna;
practical input impedance being variable to match most practical impedances as said feedpoint is moved moved along said centerline between the antenna radiating ele-
ment center point and the end of the radiatign element in ment center point and the end of the radiating element in pattern;
the antenna bandwidth being variable with the width of the radiating element and the spacing between said radiating element and said ground plane, said spacing between the radiating element and the ground plane having somewhat grest effect on the baidth than the element
J. optimum match for the resonant mode of oscillation being obtained by varying the location of said feed point along
the element edge.
$4,095,228$
WINDSHIELD ANTENNA DEERROSTER COMBINATION WITH RADIO INTERFERENCE REDUCTION Hans Heinrich Meinke, Gauting, Heinz Lindenmeier, Planeges
Friedrich Landstorfer, Munich; Gerhard Flachenecker, Ottobrunn, and Jochen Hopf, Garching, all of Germany, assignors to Hans Kolbe \& Co., Bad Salzdetfurth, Germany
Claims priority, application Germany, Nov. 20, 1975, 2552049 U.S. C1. 343-704 Int. C1. ${ }^{2}$ H01Q 1/02, 1/32

5 Claims
5 Claims

1. In an automotive vehicle having a window and havng a vehicle body, in combination, a window heater comprising an arrangement of heating conductor sections provided on the
of the heating conductor sections, the heating conductor sec- line exhibiting an inductive reactance in the FM frequency tions being comprised of at least two heating conductor sec- band offsetting the capacitive reactance of the antenna element tions together forming a biliar conductor section group, the so providing impedance in the FM band at emen substantially
two heating conductor sections of each bifilar conductor sec- first transmission line and the antenna element two heating conductor sections of each bifilar conductor sec- first transmission equal to the impedance of the input terminals of the radio equal to the impedance of the input terminals of the open stub may be adjusted to provide impedance match in the FM frequencies without substantially affecting operatiol in barrying transmission line may be adjusted to provide proper impedance match for the CB frequency range.

HIGH ACCURACY BROADBBAND ANTENNA SYSTEM William E. Salmond, Fullerton, and Ronald L. Auletti, Alta
Loma, both of Calif, assignors to General Dynamics CorporaLoma, both of Califf, assignors to General Dynamion
tion, Pomona, Calif. Filed Jun. 6, 1977, Ser. No. 803,710
Int. C. ${ }^{2}$ H01Q $19 / 12,1 / 36$ U.S. C. 343—729

16 Claims
tion group being arranged approximately parallel and closely spaced to each other, the heating conductor sections being
interconnected that the heating current flowing through one of the sections of each group also flows through the other section of the group but in the opposite direction.

TRIBAND VEHICLE ANTENNA
James O. Elliott, Xenia, Ohio, assignor to General Motors Corporation, Detrolt, Mich.

Filed Feb. 22, 1977, Ser. No. 770,814
U.S. CI. 343-715

3 Claims


1. An antenna system comprising
parabolic reflector dish having a dielectric substrate and a conductive material coating on the substrate,
antenna feed means positioned at the focus of said paraboloid and directed at the reflector dish for providing a narrow beam radiation pattern, and
means for coupling energy to and/or from the antenna feed means for
means,
wherein the improvement comprises strate defining aterial coating on tue refectival arms fo
2. A sysen ciable for CB tranceciver operation and AM/FM radio receiver operation in a vehicle having a subtantially horizontal conducting panel defining a ground plane, stantially horizontal conducting panel defining a ground plane,
including: means defining a substantially vertical well extendincluding: means defling the panel; an antenna element coaxial with said well and movable between a retracted position tele scoped into the well and in operating position extending up-
wardly from the well, the antenna element in operating posiwardly from the well, the antenna element in operaing posi-
tion having a lower conductor length above the panel, a loading coil extending above the first conductor length, and an upper conductor length extending above the loading coil, the
whole having a length of the order of 3 feet; a splitter unit whole having a length of the order of 3 feet; a splitter unit
adapted to receive input connection from a transmission line adapted to receive input connection from a transmission line
and defining output connections adapted to be connected to and defio frequency input of an AM/FM radio or the like an the radio frequency input/output terminals of a CB transceiver
unit, respectively; means defining a signal-carrying transmisunit, respectively; means defining a signal-carrying transmis-
sion line of substantially half wave electrical length in the FM sion line of substantially haff wave electrical eng of the splitter band and connected fom element, said transmission line having a relatively large characteristic impedance in relation to th attached input impedance of the splitter and therefore low capacity per unit length; means deining an open
sion line attached to said last transmission line adjacent the sion line attached to said last ransmiss open stub transmission
connection of the antenna element, said
strave defining a wide beam radiation pattern,
means defining a beaty for backing the conductive spiral arms, and
means for coupling energy to and/or from the conductive spiral arms on the reflector dish substrate,
whereby the parabolic reflector dish is operable as a primary antenna providing a wide beam radiation pattern.
bASE STATION ANTENNA
arry D. Carter, Anderson, S.C sesignor to True Temper Cor poration, Cleveland, Ohio

Filed Dec. 10, 1976, Ser. No. 749,714 Int. Cl. ${ }^{2}$ H01Q $1 / 48,9 / 34$

1. A base station antenna comprising
2. A base station antenna comprising:
bracket including a first section for attachment to an external support; and a second section transverse to said first section, said second section having top and bottom sides, a flattened central portion having a central opening for receiving the base portion of an upwardly extending first antenna whip, and a peripheral portion around the central portion and having a plurality of oher openings spaced
portions of a plurality of downwardly extending secon antenna whips, said peripheral portion being inclined to
render second antenna whips received in said other open ings inclined downwardly and outwardly from a firs antenna whip received in said central opening;
a first antenna whip having a base portion including means
for mounting said first antenna whip in said central open-

ing, said first antenna whip extending from the top side of said second section in an upward direction; and
plurality of second antenna whips, each, having plurality of second antenna whips, each having a base
portion including mounting means for mounting said portion inclucing mounting means for mounting said
second antenna whips in said other openings, said second antenna whips extending downwardly and outwardly
from the bottom side of said second section.

4,095,232
APPARATUS FOR PRODUCING MULTIPLE UNIFORM FLUID FILAMENTS AND DROPS Charles L. Cha, Xenia, Ohio, assignor to The Mead Corporation, Dayton, Ohio
Filed Jul. 18, 1977, Ser. No. 816,607 U.S. C. 346-75


1. Apparatus for producing a plurality of streams of fluid droplets, comprising:
reservoir means for containing a fluid under pressure; orifice plate means forming a bottom portion of said reser-
voir means and having a plurality therein through having a plurality of orifices defined reservoir means;
elongated pressure plate means for elongated pressure plate means forming a top por
reservoir means opposite said bottom portion;
plurality of pressure plate stimulator means contacting a surface of said pressure plate means opposite another a record receiving member through the use of preferably col-
urface thereof which is in contact with said fluid in said reservoir, for bending said pressure plate means transverse the longitudinal dimension of said pressure plate means so to cause a uniform pressure disturbance in said fluid issuing from said plurality of orifices,
support means for supporting said plurality of stimulator means independently of and above said pressure plate means; and
taneously repetitively activating said stimulator means to cause a series of said disturbances.

## 4,095,233

METHOD FOR FORMING A CHARGE PATTERN William L. Goffe, Webster, N.Y., assignor to Xerox Corpora tion, Stamford, Conn.

Flled Jun. 30, 1976, Ser. No. 701,323
Int. Cl. ${ }^{2}$ GO1D $15 / 18$. C03G $15 / 100$
U.S. Cl. $346-75$


1. A method for forming a charge pattern on an insulating 1. A meme, comprising:
(a) producing substantially colorless charged droplets and uncharged droplets by means of an ink jet apparatus; (b) depositing both said charged and uncharged droplets on in a patterned configuration; and in a patterned configuration; and
(c) allowing the droplets remains on said insulating surface in said patterned config. uration.

RECORDING APPARATUS FOR PROVIDING LUSTROUS PRINTING
Sanai Mito, Takarazukka; Shinjil Kinpara; Yuji Sumitomo, both of Nara, and Toshio Kobayashi, Osakk, all of Japan, assignors to Sharp Kabushiki Kaisha, Osakan, Japan Filed Jul. 5, 1977, Ser. No. 813,329
Claims priority, application Japan, Jul. 8, 1976, 51 -81692 Int. Cl. ${ }^{2}$ G01D $15 / 18$; B41M S/00
U. C. $346-75$

a heat ray source for heating the record receiving member carrying the printed symbdls thereon
means for depressing said troller to the record receivin member carrying the heated, printed symbols thereon.
$\xrightarrow{4,095,235}$
RECORDING APPARATUS
William T. Quarton, and Peter R. Lowe, both of Englewood,
Colo., assignors to Honeywell Inc., Minneapolis, Minn. Filed Feb. 22, 1977, Ser. No. 771,022
Int. Cl. ${ }^{2}$ G01D $9 / 42$
U.S. C. 346 - 110 R


1. In a graphic recording system wherein a scanning beam, operated at a constant scanning repetition frequency, is selectively unblanked in response to input signals to produce a trace representative of the input signal on a moving record member,
means for providing a substantially constant trace intensity on said record member notwithstanding a selectively variable speed of movement of said record member, said means comprising:
a speed correlated selecting means,
a frequency division means responsive to said speed corre
means for producing a signal having a frequency equal to
said scanning repetition frequency and being connected to an input of said frequency division means,
said frequency division means being operative to provide an scanning repetition frequency which is a division of said speed of movement of said record member, and
enabling means responsive to said output signal to enable the unblanking of said scanning beam at a repetition frequency equal to said frequency of said output signal correlated With the selected speed of movement of said record mem-
ber.

## 4,095,236

ELECTRONIC STENCIL ENGRAVING MACHINE STYLUS AND SUPPORT
Julio G. Tauszig, Buenos Aires, Argentina, assignor to A. B. Dick Company, Chicago, III.
Continuation of Ser. No. 611,821, Sep. 9, 1975, abandoned. T Continuation of Ser. No. 61,
application Mar. 11, 1977, Ser. No. 776,594
Claims priority, application Argentina, Feb. 27, 1975, 257801
Int. Cl. ${ }^{2}$ G01D 15/00
U.S. Cl. $346-139$ C

A replaceable stylus support unit for use in 3 Claims engraving machine of the type wherein a stencil or the like is removably affixed to a rotatable drum and swept past an adjacent stylus, the machine being provided with a base member
for receiving the stylus unit, a magnet mounted adjacent to the
base member and means for selectively bending the unit onto he drum, the stylus support unit comprising having an edge, which rear portion is made of a mornetio material, and which front portion has a stylus mounted thereon;
a second blade attached at one of its ends only to said first
blade and positioned in an overlying and blade and positioned in an overlying and normally conof said second blade being freely movable forward and

away from said first blade for dampening vibrations of said stylus by the friction created due to the movement of said stylus by the friction created due to
said second blade against said first blade; whereby, said stylus support unit has its rear portion received by the base means and releasably captivated there by the magnet in a position overlaying the drum and may be bent into the drum by the means for selectively bending the unit, and whereby the stylus support unit may be
selectively and easily removed and released from the stencil engraving machine by moving it away from the magnet.

4,095,237
INK JET PRINTING HEAD
Jan Roger Amberntsson; Roger Ingemar Andersson, both of Angered, and Stig Bertil Sultan, Floda, all of Sweden, assignCons to Aktiebolaget Electrolux, Sweden
inuation of Ser. No. 536,553, Dec. 26, 1974, abandoned. Int. CI. ${ }^{2}$ GO1D $15 / 16$


1. An ink jet printer having a movable printing head provided with a plurality of pumping chambers, said printing head being movable adjacent to a recording medium, an outlee
channel for each of said pumping chambers terminating adja cent to said recording medium comprising a liquid reservoi moving and co-acting with said printing head, at least one onduit communicating with said reservoir with the respective pumping chambers, a housing mounting said movable printing head and associated liquid reservoir for simultaneous movelow path of the liquid from said reservoir to said pumping chambers, said element being constituted of porous material, the pores of which form capillaries for said liquid and prevent
the passage of air into said conduit.

IEZOELECTRIC $4,095,238$ HEADS USED IN INXE ELEMENT FOR THE PRINTER Erich Kattner, Munich; MNITS Joachim Heinzl, Munich, all of Germany, assignors to Siemens Axtiengesellschaft, Berlin \& Munich, Germany

Claims priority, application Germany, Sep. 29, 1975, 2543420 | Int. Cl. ${ }^{2}$ G01D $15 / 16 ;$ B41J $3 / 04$ |
| :--- |
| 140 |



1. A piezoelectric drive element for a printer head cast of a dielectric material for use in an ink mosaic printer device, the tending through the printer head and comprising.
a ceramic body having radially internal and external cylin-
dric faces, the internal face being spaced from the ink in the ink passage;
a pair of electrodes, one on each of the internal and external cylindric faces of the ceramic body; and
a metal spiral bearing elastically upon the internal one of the clectrodes, the spiral having axially-spaced turns and the cast dielectric material of the printer head filling spaces
formed axially between said turns and radially between the ink passage and the internal electrode,
whereby said printing ink is ejected droplet fashion upon piezoelectric contraction of the ceramic body.

DIGITAL COMBINATON $\mathbf{4}, \mathbf{0 3 9}$
REMOTELY PRESETTING COMBINATION THEREIN REMOTELY PRESETTING COMBINATION THEREIN Martin E. Gerry, 13452 Winthrope St, Santa Ana, Calif. 92705
Continuation of Ser. No. 578,991 , May 19, 1975, abandoned. This application Jan. 31, 1977, Ser. No. 764,514 U.S. C. $340-147$ MD ${ }^{\text {Int. Cl. }{ }^{2} \text { H04Q } 3 / 02,3 / 00}$


1. Digital combination locking means having an alarm ci cuit, comprising the combination:
a plurality of push buttons,
ombination selection means electrically connected to the push buttons, each one of the combination selection means positions; , an inclusive OR gate, each of said push buttons being con-
nected to the input of said inclusive OR gate and to said combination selection means;
a plurality of semiconductor, switches serially intercon-
nected directly to each other, electrically connected to neach of the push buttons, said switches seing sequentially activated during operative mode of said locking means when said push buttons are momentarily depressed in a preselected order determined by particular settings of the combination selection means;
lock means in series circuit w
lock means in series circuit
activation of said switches; a plurality of logic means, connected to the inclusive OR
gate and the combination selection means for gate and the combination selection means, for obtaining
from each of said plurality of logic means a binary logic from each of said plurality of logic means a binary logic
ZERO output when inputs thereto are of the same logic state and for obtaining a binary logic ONE output therefrom when inputs thereto are of different logic states; and additional logic means connected to the plurality of logic means for activating said alarm circuit.

## $4,095,240$

EXHAUST SYSTEM FOR PYROGRAPHIC PRINTER Takayuki Tsutsui, Ebina, Japan, assignor to Xerox Corporation, Takayuk Tsutsui, Ebina, Japan, asignor to Xerox Conn.
Filled Sep. 13, 1976, Ser. No. 722,945 Filed Sep. 13, 1976, Ser. No.
Int. C.'
B41M 5/00
U.S. Cl. 346-163


1. In combination with a pyrographic printer having a stylus mounted for movement along a predetermined path to print an image on a recording medium, an exhaust system for collecting mage is being printed; said exhaust system comprising means for defining an elongated inlet opening substantiall adjacent to and coextensive with the entire path of movement for said stylus;
means for establishing a non-uniform vacuum substantially entirely along said inlet opening, including means for alignment with said stylus as said stylus moves along said path.

PHOTO-SENS, 4
Seiichi Matsumoto, Yokohama, Japan, assignor to Canon Kab shiki Kaisha, Tokyo, Japan
Continuation of Ser. No. 459,216, Apr. 8, 1974, abandoned. This application Dec. 3, 1975, Ser. No. 637,460 Claims priority, application Japan, Apr. 11, 1973, 48-40999 U.S. C. 354-31. C. ${ }^{2}$ G03B 7/08; G01J $1 / 42$ 1. A circuit for detecting an amount of incident light Claims prising;
an operational amplifier having a feedback path connected
an operational amplifier having a feedback path connected
between its output and input terminals for amplifying an electrical input signal and producing an electrical output in response thereto;
photo-electromotive means connected between the input terminals of said operational ampifier for supplying said
operational amplifier with the electrical input signal corresponding to the amount of incident light thereon;

photo-conductive means provided in the feedback path of said operation amplifirer for reducing the load resistance of said photo-electromotive means corresponding to the increase of the amount of incident light thereon, said
photoconductive means being provided for expanding the measuring range of said circuit; and
an electrical output terminal connected to said amplifier
means.
MATCHING DEVICE FOR FLASH LIGHT PHOTOGRAPHIC DEVICE
Tokuichi Tsunekawn; Masanori Uchidol, both of Yokohama; Zenzo Nakamura, Urawa; Tetsuya Taguchi, Kawasaki; Hiroshi Aizama, Machida, and Takashi Uchiyama, Yokohama, all of Japan, assignors to Canon Kabushikid Kaisha, Tokyo, Japan Claims priority, application Japan, Dec. 12, 1975, 50-148967; Claims priority, applica
Dec. 12, 1975, $50-148968$
U.S. CI. 354-33

Int. C. ${ }^{2}$ G03B $15 / 05$


1. A matching apparatus mountable berween a camera and llash light device for the flash light device with at least a fil firmt signal including a diaphragm value signal and a charg completion signal and the camera with at least a second terminal mounted on the camera for receiving the diaphragm value signal and a third terminal signed onpring. ing the charge completion signal comprising;
ratus to be connected to the first terminal for receiving the first signal from said first terminal,
(b) a control means for receiving the first signal through said first matching terminal so as to electrically separate the diaphragm value signal from the charge completion signa contained in the first signal, and
(c) a second and a third matching terminal connected to an output terminal of said control means for receiving the
two signals separated by means of said control means, whereby said second matching terminal being connected to the second terminal for transferring the diaphragm value signal to the second terminal of said camera while said third matching terminal being connected to the third terminal for transferring the charge completion signal to the third terminal of said camera

WARNING $4,095,243$ Saburo Numata, and Shin-lchiro Fuiino, both of Omiya, Japan, assignors to Fuil Photo Optical Co., Ltd., Omiya, Japan Claims prilied Mar. 15, 1976, Ser. No. 667,071 Int. $\mathrm{Cl} .^{2}$ G03B $7 / 00,17 / 20$ U.S. C. $354-60 \mathrm{~L}$


1. Warning device for a camera having an operation circuit for determining the proper exposure condition of exposure information such as the shutter time according to the informa ions of the brightness of the object, exposure information such ivity a manually operable circuit for manually setting the condition of the shutter time and an optical indicating circuit operated by the manually operable circuit for digitally indicating the condition of the shutter time set by said manually perable circuit, the improvement comprising: a coincidence detecting circuit with inputs connected to the output of the operation circuit and the manually operable circuit, respecoutput connected to a first input of said gate circuit, and an oscillator with output connected to a second input of said gate circuit, the ou;put of said gate circuit being connected to said optical indicating circuit, thereby causing blinking of the optical indication of said optical indicating circuit when the outpu of said manually operable circuit differs from that of said ing circuit being in a lighted state when the output of said manually operable circuit corresponding to the set shutter time coincides with the output of said operation circuit. and circuit means including at east a cold cathode thyrarron said conedrole element, said operating
having a control electrode directly connected to one of intermediate element said gear train.

## HANDY CAMERA WITH A GRIP

Tsuneo Yokoyama; Toshiyukik Yajima; Kazumichi Tsuchiya, and Hisao Takemae, all of Omiya, Japan, assignors to Fuji Photo Optical Co., Ltd,, Omiya, Japan
Filed Oct. 26, 1976, Ser. No. 735,446 Claims priority, application Japan, Oct. 27, 1975, 50-129123 s. 1 Int. Cl. ${ }^{2}$ G03B 29/00

11 Claims


1. A handy type camera with a grip including a focal length varying means, a diaphragm aperture varying means, and focus adjusting means, wherein at least one of said means is
electrically controlled by use of a servomotor which is conrolled by a potentiometer and at least one of the other two means is manually controlled by means of a manual control member provided on the camera, wherein the improvemen omprises a grip extending olliquely downward and forward
rom the camera, a manually operable horizontally movable control member provided immediately above the portion of he grip which is held by a hand so as to be operated by the humb of the hand, a movable member provided within the moving the potentiometer within the grip by movement moving the potentiometer within the grip by movement thumb, of the hand which holds the grip and at least one of the
other two means is controlled with the other hand.

## $4,095,245$

ADAPTER FOR ELECTRONIC FLASH APPARATUS Aaru Kuraishi, Tokyo, Japan, assignor to Toshiba Photo Prod ucts Co., Ltd., Tokyo, Japan Filed Aug. . 1 , 1976, Ser. No. 12.539
Claims priority, application Japan, Aug. 15, 1975, $50-999376$ US. Cl. $354-141$ Hat. Cl. ${ }^{2}$ G03B


In combination: an adapter and an electronic flash unit having a trigger circuit, said adapter comprising
a pair of first external connection terminals detachably connected to high tension pulse take out terminals of a camera
incorporating a high tension pulse generating means for generating the high tension pulse in response to the action of a shutter of said camera;
a pair of second external connection terminals detachably connected to a pair of external connection terminals of said trigger circuit,
said first external connection terminals and a pair of main electrodes,
said cold cathode thyratron being connected across said pacitor;
a second capacitor connected in parallel with the series circuit of said cathode thyratron and said first capacitor, the junction between said first and second capacitors being connected to the terminal;
semiconductor switching element connected between said second external connection terminals; and
delay circuit connected across said first capacitor and adapted to apply to the gate electrode of said semiconduc. tor switching element a control signal for causing said after said cold cathode thyratron is rendered conductive,
said circuit means being so arranged as to render said cold cathode thyratron conductive when said first external connection terminals receive said high tension pulse through said high tension pulse take out terminals of said camera and to short circuit said second external connection terminals in response to said conduction of said co sid electronic flash nected across a power supply and an energy storage pacitor charged by said power supply, and adapted to flash through discharge of said energy storage capacitor and said trigger circuit being connected to receive said lamp to be started when said pair of external connection terminals of said trigger circuit are short circuited.

## 4,095,24

Ferdinand Kelliner, Buxach 14, 8940 Memminen Germany Filed Mar application Germany, Mar. 27, 1976, 2613161 Int. Cl. ${ }^{2}$ G03B 17/04


1. In equipment for setting the bellows between a camera and a relatively movable objective in front of said camera, this equipment being of the kind comprising a front standard for
connection to the objective, a rear standard for connection to the camera, a guide frame on which said front and rear stan dards are mounted for relative adjustment to vary the spacing between them, and an assembly including a gear train associated with said standards and sald guide frame for coupling diaphragm control elements associated respectively with the objective and with the camera, the improvement which con sists in the provision of a member for coordinated operation of

INTERCHANGEABLE OB,JECTIVE FOR CAMERAS Heinz Rehn, Braunschweig, Germany, assignor to Rollei-Werke Franke \& Heidecke, Braunschweig, Germany
Claims priority, application Germany, Dec. 17, 1975, 2556771 U.S. CI. 354-286


1. Interchangeable objective for a came
phragm control, said objective comprising:
(a) an objective tube; a lens mounting being disposed in and axially movable in said objective tube;
(b) a lens or lens system and a diaphragm mounted in said lens mounting;
(c) a bayonet ring for connecting said objective tube to the
camera, said objective tube being axially movably disposed in the bayonet ring for purposes of inserting the tube into the camera and pulling the tube out of the cam$\stackrel{\text { era; }}{\text { (d) relea }}$
(d) releasable means for engaging said objective tube with the bayonet ring in a position ready for exposure after the
tube has been pulled out of the camera and for disengaging the tube from the ring for pushing the tube into the ring and the camera;
(e) a diaphragm adjustment ring being rotatably mounted on said bayonet ring;
f) a diaphragm control ring for transmitting the adjustmen ring being rotatably disposed on said lens mount contro (g) a coupling element being movably disposed on said diaphragm adjustment ring and capable of being engaged with and disengaged from the diaphragm control ring, an inserted position.

## 4,095,248

REDUNDANCY REDUCTION SYSTEM FOR FACSIMILE TRANSCEIVERS
Carl R. Kolker, San Gabriel; John Scott Campbell, Pasadena, both of Calif., Robert L. La Fond, New York, N.Y., and JaMi
Smith, Monrovia, Calif, assignors to Faron Communications Smith, Monrovia, Calif,, assignors to Faxon Communications Corporation, Pasadena, Calif., by said Kolker, Campbell and prisin

Filed Jun. 16, 1976, Ser. No. 696,744
U.S. C. 358-288

$$
\text { Int. Cl. } .^{H} \mathbf{H} 04 \mathrm{~N} 3 / 34
$$

50 Claims 1. In a document scanning system employing a predetermined fast search velocity fer searching eading the document, the method of performing a single wide area fast search pass for detecting presence of data anywhere in a wide band document area composed of a predetermined plurality of vertically successive narrow horizontal bands of predetermined width of the document, said method comprising the steps of:
of successive horizontal bands of the document, a narrow
spot of radiation having a spot width approximating the width of a single narrow horizontal band of the documen (b) Horizontally sweeping said spot of radiation across saic document in a single fast search pass at a predetermined fast search velocity;
) During said single fast search pass, rapidly deflecting the spor of radiation up and down vertically across the prede-
termined plurality of successive narrow horizontal bands

to sweep the spot in a vertically reciprocating path acros the predetermined plurality of successive horizontal band
wereby the spot of radiation during the single wide fas search pass, narrowly illuminates any data in any of the predetermined plurality of successive horizontal bands of the document so as to detect the presence of such data in the wide band area.

4,095,249
ILM CARTRIDGE EJECTING DEVICE FOR A CAMERA iro Miura, Toyokswa, Japan, assignor to Minolta Camer Filed May 27, 1977, Ser. No. 801,339 Claims
69511[U]
U.S. Cl. 354 Int. Cl. ${ }^{2}$ G03B 17/02, 23/02


1. A film cartridge ejecting device for use in a camera com rising:
means forming a cartridge chamber for receiving a film cartridge therein including side walls and a floor; a movable lid member connected to one of said side walls for providing access to said cartridge chamber;
ejecting means which is movable to a first position wherein said ejecting means projects into said cartridge means is retracted out of said cartridge chamber; drive means for moving said ejecting means from said second position to said first position; and
operating means movable in opposite directions with respect to the respective opening and closing of said lid and operate said drive means when said lid member is
partly opened, but which is positioned out of contact with said drive means when said lid member is fully opened, when said lid member is closed.

STEERABLE 4,095,250
STEERABLE CAMERA CARRIAGE Filed Apr. 19, 1976, Se, Anaheim, Calif. 92806 U.S. C. 354-293 Int. Cl. ${ }^{2}$ G03B 17/00


1. A steerable camera carriage comprising:
a base member having bearing openings at the corners hereof and a bearing opening intermediate the corners
an upright shaft journaled in each of said corner bearing openings for rotation about a vertical axis;
each of said shafts having a support wh
each of said shafts having a support wheel rotatably disposed thereon below said base member;
support means for individual camera equipment mounted on the upper end of each of said shafts so as to rotate there-
tith about the vertical axis thereof: with about the vertical axis thereof
a steering post journaled in said intermediate
ing for rotation about a vertical axis;
said steering post having a control sprocket di
said steering post having a control sprocket disposed thereon
an endless chain for interlocking the control sprocket and each of the wheel sprockets;
chain to rotate each of said shafts about its vertical axis and thereby control the angular disout its vertical axis port means for the individual camera port means for the individual camera equipment mounted
on each of said shafts while said carriage is maintained in a given position
$\qquad$ 4,095,251
FIELD EFFECT TRANSISTORS AND FABRICATION OF INTEGRATED CIRCUITS CONTAINING THE TRANSISTORS
Robert H. Dennard, Croton-on-Hudson, and Dominic P. Spampinato, Ozone Park, both of N.Y., sssignors to International Finess Machines Corporation, Armonk, N.Y.
Fil, 1976, Ser. No. 715,948

Int. C. ${ }^{2}$ H01L 29/78
U.S. Cl. $357-23$

1. A field effect transistor (FET) which comprises:
(A) semiconductive substrate of a first conductive type (B) FET channel region containing active impurities of said first conductive type;
(C) FET gate insulator over the channel region;
(D) doped polycrystalline silicon gate over said channel aries of said polycrystalline silicon gate determine the
boundaries of said channel region in both the width and length directions;
(E) doped source region of second and opposite conductive type; said source region being self-aligned with respect to one end of the FET gate in the length direction; (F) doped drain region of a second and opposite conductive type; said drain region being self-aligned with respect to (G) field oxide to isolate said FET from other like FETs and G) field oxide to isolate said FET from other like FETs and
from other structures and circuits on the same semiconductive substrate;
(H) said field oxide being nonrecessed with respect to the source and drain regions;
(I) said field oxide isolation being self-aligned with respect to

the sides of the FET gate in the width direction, and said gate neither overlapping nor underlapping said field oxide isolation;
(J) insulation layer at least over the FET source, and FET drain, but not over the FET gate; (Lion line; crystalline silicon gate and said interconetwe the poly(M) contact holes gate and said interconnection line; (M) contact holes to provide vias for achieving electrical
connection to FET source and drain regions: (N) metallic-type high electrical conductivity tion lines making electrical connection to said FET source and drain regions through said vias; and O) electrical connections to said semiconductive substrate
4,095,252

Sam S. Ochi, San Jose, Calif., assignor to National Semiconductor Corporation, Santa Clara, Calif.

Filed Dec. 27, 1776, Ser.
Int. ${ }^{2} 54,290$
Int. ${ }^{2}$ H01L 27/02, 29/80, 29/72. 20 U.s. CI. ${ }^{\text {Int. C1. }}{ }^{\text {2 }}{ }^{2}$


1. A monolithic integrated circuit comprising
a semiconductor substrate of a first conductivity type; an epitaxial layer deposited on said substrate and having a
second conductivity type; recond of diffused semicond
said epitaxial layer and having said first conductivity type said pitaxial layer and having said first conductivity
seng a section of said epitaxial layer; an emitter region of said first conductivity type contained within and extending from the surface thereof and part
way through said isolated section a contact region of said second conductivity type making
ohmic contact with said isolated portion of said epitaxial layer; and
a channel region of said first conductivity type extending between said emitter region and said isolation region over a portion of said epitaxial layer and extending into saic epitaxial layer a layer.
$4,095,253$
SINGLE IN-LINE HIGH POWER RESIN-PACKAGED SEMICONDUCTOR DEVICE HAVING AN IMPROVED HEAT DISSIPATOR
Masayoshi Yoshimura, Tokyo; Keizo Otsuki, Higashiyamato Senji Shoji, Tokorozana; Tomio Yamada; I Ichio Shimizu, bot of Kodaira, and Yuji Arai, Kokubunji, all of Japan, asslgnor
to Hitachi, Lide., Japan ${ }^{\text {Filed Nov. 23, 1976, Ser. No. } 744,397}$
Claims priority, application Japan, Nov. 29, 1975, 50-142794 U.S. Cl. ${ }^{357}{ }^{\text {Int. }} \mathbf{8 1}$ C. ${ }^{2}$ H01L 23/38, 23/42, 23/44 17 Claims

2. A resin-packaged semiconductor device having a resin molded package defined by a plurality of principal surfaces interconnected by a plurality of side surfaces, a plurality of
external leads projecting in parallel to each other from one side exurface of said resin-molded package, comprising:
a heat sink fin mounting plate projecting from a side surface of the resin-molded package opposite to said one side surface from which said external leads project; and a heat sink fin having one end portion overlapping said hea
sink fin mounting plate and the remaining portion extend ing from said fin mounting plate into overlapping contact with substantially the entire area of at least one of said plurality of principal surfaces of said resin-molded package, said one end portion of the heat sink fin being con-
nected in close contact with said heat sink fin mounting nected
plate.

4,095,254
TRANSCODER FOR COLOR TELEVISION SIGNALS
Rene Romeas, Paris, France, assignor to Thomson-Brandt, Paris, France
Filed Oct. 13, 1976, Ser. No. 731,938
Claims priority, application France, Oct. 17, 1975, 7531902 Caims priority, application France, Occt
U.S. C. ${ }^{358-11}$
10 In

1. A colour television transcoder for transcoding an Claims ignal comprising a first sequence of a first and a second inpur minance signals having respectively a first and a second fixed minance signals having respectively a first and a second fixed
amplitude, a common duration and alternating at a line frequency, into an output signal comprising a sub-carrier moduquency, inte by simultaneously said two chrominance signals, said transcoder comprising:
equalising means receiving said input signal for bringing the amplitude/frequency curves of said chrominance signals
to one and the same contour, delivering a first and a second equalized chrominance signals;
means for generating a second sequence of a fist and second sub-carriers alternating at said line frequency and synchronously with said first sequence; said first and second sub-carriers having respectively a third and a
fourth fixed amplitude and a fixed common frequency, and the second sub-carrier being in quadrature with the first sub-carrier;
means for setting the ratio of said first fixed amplitude to said third fixed amplitude at a first value, and for setting the ratio of said second fixed amplitude to said fourth fixed amplitude at a second value;
a single balanced modulator receiving said first and second sequence for modulating respectively said first and second
sub-carriers with said first and second equalized chrominance signals, delivering a modulated signal;

means for delaying said modulated signal by said duration, delivering a delayed signal;
adding means for adding said modulated signal and said delayed signal, delivering said output signal; and control means for extracting from said first sequence a chrominance synchronisation signal and for combining said chrominance synchronisation signal with an external line
synchronisation signal and an external fied synchronisation signal for emitting a switch signal for controlling the alternance of said first and second sub-carriers and the setting of said first and second value of said ratios.

CONTROLLED OSC, 4 ,095,235 IMMUNITY TO PARASITIC CAPACTTANCE Sillem Hendrik Groeneweg, Ottenbach; Alois Vaclar Tuma, Bridgewater, N.J., assignors to RCA Corporation, New York, N.Y.

Filed Apr. 7, 1977, Ser. No. 785,591
Int. C. ${ }^{2}$ H04N 9/44: H03B 3/04, $5 / 00$
U.S. C. $358-17$ Int. ${ }^{2}$ H04N 9/44; H03B 3/04, 5/00 11 Claims


1. A controlled oscillator comprising:
an amplifier including an active device having an output erminal, said output terminal having a parasitic capaciilter network arranged in a for providing regenerative feedback of sufficient magni-
tude to produce an oscillatory signal at said output termi-
nal of said active device; a source of control signals providing control signals at an output terminal, said output terminal having a parasitic capacitance associated therewith; and
a common load network for said ossillatory and control
signals coupled to said filter network, said common load signals coupled to said filter network, said common load
network comprising amplifying means having a low input network comprising amplifying means having a low input
impedance relative to an impedance presented by said parasitic capacitances to said oscillatory and control sig nals.

## 4,095,256

DIFFERENTIAL GANN ERROR CORRECTION IN COLOR TELEVISION SYSTEMS
Armandrodomestici Italiana S.p.A., Rivalta (Turin), Italy
Filed Jun. 23, 1976, Ser. No. 699,298,
Claims priority, application Italy, Jul. 1, 19975, 68681 A/75
U.S. C. 358-35

5 Claim


1. A color television system, comprising a transmitter means for transmitting an amplitude-modulated carrier, and including meank for inserving intor herchansmizing burst signal with con stank amplitude having the frequency of a subcarrier, means for inserting periodically into the said transmitted signal, at leas once in every field scan, a second signal having a different
mean amplitude and a different phase from the burst signal and mean amplitude and a different phase from the burst signal and comparing the amplitude of the second signal with that of the burst signal to correct differential gain distortion.

ORBITER FOR PYROEIECTR 4
ORBIER FOR PYROELECTRIC FOCUSING DEVICES Frank G. Back, Glen Cove, N.Y., assignor to Zoomar, Inc., Glen Cove, N.Y.

$$
\begin{aligned}
& \text { Filed Sep. 20, 1976, Ser. No. } 724,705 \\
& \text { Int. C1. }{ }^{2} \text { H04M 3/06 }
\end{aligned}
$$

U.S. C. ${ }^{358-113}$


3 Claims

1. In a system for decoding radio-frequency broadcasted crambled television transmissions containing a modulationuppressed train of horizontal synchronizing signals within a nd including equalizing pulses vetical aynctermined line rate nd including equalizing pulses, vetical synchronizing signals ignals in the horizontal synchronizing signal train within an encoded video carrier signal, a modulation frequency signal corresponding to that used for the suppression modulation but advanced in time, and a pilot signal of frequency substantially the same as that or a multiple of the horizontal synchronizing
signal line rate; apparatus having, in combination, means for receiving as radio-frequency signals said transmissions; radiofrequency gating means connected with the receiving means to receive said transmissions; video detector means connected to said radio-frequency gating means to demodulate said video carrier containing modulation-suppressed horizontal and vertical synchronizing signals; horizontal synchronizing signal and
horizontal trailing edge synchronzing signal separator means connected with said video detector means; aural demodulation means connected to said receiving means for demodulating said pilot signal independently of and isolated from said video frequency signal; means connected with the pilot signal demodulating means for controlling the said horizontal trailing edge synchronizing signal separator means in response to said demodulated pilot signal and in response to the keying of a pulse of width less than said window substantially centered at
the trailing edge of the suppressed horizontal synchronizing signal; picture decoder means comprising means responsive to the outputs of the horizontal synchronizing signal separator means and the horizontal trailing edge synchronizing signal separator means for generating a delay for the said horizontal synchronizing signal window of a horizontal line and thereby
providing a horizontal window decoding pulse; and means for providing a horizontal window decoding pulse; and means for
applying said horizontal window decoding pulse to frequency gating means to restore the suppressed synchroniz-
pon the image plane; a pyroelectric target positioned in the late, transparent to infrared radiation, mounted in front of the mage plane, said plate having parallel inclined entry and exits aces; a rotatable mounting means for said plated disposed ormal to the optical axis of the focusing device; means to peed control for the said rotating the optical axis; an adjustable riven by the rotating means and operatively connected to the mounting means for turning said mounting means.

APPARATUS FOR DECOD
APPARATUS FOR DECODING SCRAMBLED
TELEVISION AND SIMILAR TRANSMISSION Martin Sperber, Cranford, N.J., assignor to Blonder-Tongue Laboratories, Inc., Old Bridge, N.J.J.

Filed Oct. 15, 1976, Ser. No. 732,607
U.S. Cl. 358-120

12 Claims


VIDEO SIGNAL CO $4,095,259$ OUANTIZATION NOISE REDUCTION Kiyoshi Sawagata, Yokohama, Japan, assignor to Sony Corporation, Tokyo, Jepan
Claime Filed Jun. 21, 1976, Ser. No. 698,003
Claims priority, application Japan, Jun. 24, 1975, 50-77973 U.S. Cl. 358-141 ${ }^{\text {Int. Cl. }}{ }^{2}$ H04N 7/04, $\mathrm{S} / 78$

6 Claims


1. A video signal converting system comprising:
circuit means for receiving an analog video signal that includes a DC level and having respective information
level shifting means connected to said circuit means to shis the DC level of said video signal to different random values at equally spaced intervals, said level shifting means comprising random noise generating means for generating a noise signal having a level which changes
randomly from one information interval to the next and which remains constant throughout each respective information interval, and means for changing the DC level of said video signal in successive information intervals with said noise signal such that said video signal DC level is
constant throughout a respective information interval and then changes. in the next successive interval;
digitizing means connected to said level shifting means to
receive therefrom the analog video signal with the shifted receive
DC level
signal utilization means for receiving and utilizing the digi-
tized leve-shifted tized level-shifted video signal from said digitizing means; for receiving mend convected to said signal utilization means an analog level-shifted video signal; and lamping means connected to said, and restore said analog video signal to its original DC level.

COLOR PICTURE TUBE DEVICE
Hirofumi Suzuki, Mobara, Japan, assignor to Hitachi, Ltd,
Filed Apr. 15, 1977, Ser. No. 787,749 Claims priority, application Japan, Apr. 19, 1976, 51-43541: Apr. 19, 1976, 51-48099[U] Int. Cl. $^{2}$ H04N 5/657
U.S. Cl. 358-248

1. In an electromagnetic deflection in-line electron 6 Claims colour picture tube device including a colour picture tube with colour picture tube device including a colour picture tube with mounted near the joint between said neck portion and said funnel portion and provided with a deffection yoke assembly having an inner diameter sufficiently larger than the joint neck
portion and funnel portion such that said deflection yoke asportion and funnel portion such that said deflection yoke asis,
sembly can move in a direction perpendicula to the tube axis, the improvement wherein said deflection yoke device comprises supporting means for supporting said deflection yoke
assembly having a first portion movable along said neck por tion and a second portion disposed substantialy perpendicular
means for securing said deflection yoke assembly to said second portion of said supporting means, and at least two wedge means inserted and fixed in a gap between said funnel portio and said deflection yoke assembly.

UDIO TAPE PECOR 4,095,26
Jend
SYSTEM
No. 3C, New York, N.Y Filed Jan. 7, 1976, Ser. No. 647,079
U.S. C. ${ }^{360-13}$

6 Claim


1. A public address apparatus comprising dual track magnetically sensitive tape transport means, first and second recording heads being also capable of reproducing and electromag. on a unitary magnetically sensitive tape strip and not to each other, a signal input terminal electrically coupled to the input erminals of a first audio voltage amplifier having an audio peaker at the output terminals thereof, second and third audio voltage amplifiers, said second and said third audio voltage amplifiers having input terminals, said second and said third input terminal, the output terminals of said second audio volt age amplifier connected to a first switch means, the outpu erminals of said third audio voltage amplifier connected to a econd switch means, said first switch means adapted to alteratively selectively connect said first recording head to the aid signal input termind second audio voltage amplifier and o alternatively selectively connect said second recording head o the output terminals of said third audio voltage amplifier and aid signal input terminal, means to connect an audio frequency voltage signal to said signal input terminal.

MEMURY CONTROL STRUCTURE FOR A PIPELINED MINI-PROCESSOR SYSTEM
ness Machines Corsportion, Tex., assignor to International Busl-
ness Machines Corporation, Armonk, N.Y.
Int. Cl. ${ }^{2}$ GO6F $13 / 00$; G11C $7 / 00$
U.S. CI. $364-200$ $\qquad$


1. In a word processing system including a pipelined proces or having an input bus, a system clock, and an output bus, and including a plurality of random access memory blocks and a plurality of read only storage memory blocks, said random blocks having different operating characteristics, a memory control system interconnected to said processor and said memory blocks for controlling access to the memory blocks by th processor, wherein the memory control system comprises:
means for receiving clock signals from said processor;
means responsive to said clock signals for generating me
ory cycle timing signals having a plurality of frequencie
required to operate said memory blocks
means for receiving an address and an instruction from said processor;
ecoding means responsive to said address and instruction for generating and applying power selection signals and
one of said memory cycle timing signals only to the memone of said memory cycle timing signals only to the memaddress received from said processor; and
sampling means for latching the output of the selected mem ory block onto the input bus to the processor concurren with the receipt of the next address and instruction from the processor.
2. A capacitor bank for use in high voltage electric plants, mprising capacitor units:
rack of insulating material for supporting and electrically insulating said capacitor units from one another;
a tank enclosing said rack and said capacitor units and in cluding an insulating fluid for regulating the temperature in said tank;
said rack including guide conduits for circulating at least part of said fluid to each of said capacitor units to maintain the temperature thereof at a predetermined valu
said capacitor units are mounted within said rack to provide
channels between the capacitor units and between the capacitor units and the tank for circulation of said fluid therein, and said capacitor units are mounted in two spaced columns, the capacitors in each column being mounted with their respective terminal bushings extend ing into the space formed between said two columns; an upper and a lower half and in turn for separating each of said upper and lower halfs into two columns with a shaft extending therebetween from said lower half to said upper half; and
said tank including conduits for introducing said fluid into said shaft and each of said columns.

$$
4,095,266
$$

DATA-PROCESSING ${ }^{4,095,266}$ PERIPHERAL UNITS REPETITIVELY SCANNED BY A COMMON CONTROL UNTT
Giovanni Carubla, Mariano Comense; Roberto Papa, and Cesare
Pratelli, both of Milan, all of Italy, assignors to Societa Pratelli, both of Milan, all of Italy, assignors to sol
Italiana Telecomunicazioni Siemens S.p.A., Milan, Italy Italiana Telecomunicazioni Siemens S.p.A., Mil
Filed Nov. 1, 1976, Ser. No. 737,269
Claims priority, application Italy, Oct. 30, 1975,28867 A/75
U.S. C. $364-200$

U.S. Cl. 364-200 $\quad 8$ Claims 1. In a data-processing system wherein a central unt
sively communicates with a multiplicity of associated periph eral units in respective phases of a recurrent scanning cycle individually assigned to said peripheral units, said central unit including a processor and a programmer delivering to sai pry peripheral unit during respective subphases of a phase any peripheral unit during
assigned thereto,
the improvement wherein said programmer comprises: storage means containing instructions to be read out to said processor;
address-counting means connected to said storage means for during consecutive subphases of each phase of a scanning
cycle, certain of said instructions carrying a characteristic portion commanding a phase change:
hase-counting means connected to said storage means for stepping in response to said ch
instruction read out therefrom;
memory means controlled by said phase-counting means for

introducing an initial count into said address-counting means at the beginning of each new phase to identify the location of the first of a series of instructions to be fed to said processor during said new phase; and address-counting means during successive subphases of each phase.

$$
4,095,267
$$

CLOCK PULSE CONTROL SYSTEM FOR MICROCOMPUTER SYSTEMS
akao Morimoto, Shizuoke, Japan, assignor to Tokyo Electric
Co., Ltd., Tokyo, Japan
Filed Nor. 24, 1976, Ser. No. 744,519 Claims priority, application Japan, Nor. 29, 1975, 50-142567 U.S. CI. 364-200 Int. C1. ${ }^{2}$ G06F $1 / 04$


1. A clock
mprising:
a central processing unt
a plurality of first input/(1); said central processing unit (11); ; at least one second inpun/output
central processing unit (11);
a selector channel ( 17 ) connected between said central processing unit (11) and said first and second input/output units and adapted to selectively issue a select signal ( $\mathbf{S 1}$ ) put units according to a programmed control instruction from said central processing unit; and
clock pulse generator (18) connected to said selector chan
nel 17, to said central processing unit (11) and to said fiss nel 17, to said central processing unit (11) and to said first and second input/output units for supplying clock pulses
to said central processing unit and to said first and second input/output units, and adapted to generate a first clock pulse ( $\phi s$ ) having a frequency $(f s$ ) to operate said central
unitary dielectric housing means having a base and a sidewall emanating therefrom, said housing means integrally acteristics, and serving as a dielectric for said capacitor;
an electrically conductive rotor member placed within said housing, said rotor member having a central hub and a least one thin blade plate member emanating perpendi che
larly from the base of said hub to communicate with the
processing unit and said first input/output units ( $\mathbf{1 3 , 1 4}$ ) and a second clock pulse ( $\phi 1$ ) having an optimum frequency ( $n \cdot f 5$ ) to operate said at least one second input/output unit (12) when no select signal ( $\mathbf{S 1}$ ) is applied to the generator (18) from the selector channel (17) and having the operating frequency $(f)$ of said central processing unit when a select signal (S1) is applied to the generator (18) from the selector channel (17),
operated by said second clock pulse ( $\phi 1$ ) having (he (12) is ating frequency $(s)$ of said central processing unit only when information is transferred between the central processing unit and said at least one second input/output unit (12), and is operated by said second close pulse ( $\phi 1$ )
having the optimum frequency $(n \cdot f s$ ) when no information having the optimum frequency ( $n \cdot f s$ ) when no information at least one second input/output unit.
dATA PROCESSING SYSTEM HAVING A HIGH S BUFFER MEMORY
Shun Kawabe, Hino, and Kouichiro Omoda, Kokubunji, both of Japan, assignors to Hitachi, Ltd., Japan
Filed Oct. 1, 1976, Ser. No. 728,625 Claims priority, application Japan, Oct. 1, 1975, 50-117732 U.S. Cl. 364-200 Int. C. ${ }^{2}$ G06F 13/00

2. In a data processing system having:
a main memory for storing data which includes instruction and operands;
a buffer memory, coupled to said main memory, for storing by way of data transfer from said main memory, part of the data stored in said main memory
an instruction control unit, coupled to said buffer memory, for decoding instruction words read out of said buff memory and for obtaining operand addresses; and and said buffer memory, for processing instruction words decoded by said instruction control unit in response to operands read out from said buffer memory in accordance the improvement comprising.
first means, including said instruction control unit, for detecting that an instruction word read out from said buffe memory corresponds to a prescribed type of instruction in utilizes a sequence of operands which are stored in successive regions of said main memory; and
second means, coupled to said main memory, said buffer memory, said instruction control unit, and said first means, for successively causing each operand in said sequence o
operands to be transferred from said main memory to said buffer memory in accordance with an operand address from said instruction control unit, in response to said firs means detecting said prescribed type of instruction.
3. A system for stopping and restarting the operation of a data processor, which has a central processing unit which is operative under the existence of a timing signal, a console from which start and stop signals are supplied to the central processing unit, and a main memory, the contents of which can be directly accessed by the central processing unit and the console, the system comprising
means for suspending an executed program and assigning the
contents of a group of registers within said central processing unit to predetermined fixed areas of said main memory in response to a stop signal from said console,
means for stopping the timing signal of said central process-
ing unit after said assignment of the contents, and
means for restarting the timing signal of said central process-
ing unit and restoring the contents of said fixed areas to said console.

METHOD OF IMPLEMENTING MANUAL OPERATIONS Arnold Blum, Gechingen; Horst von der Heyden, Boeblingen
Fritz Iro, Boeblingen; Guenter Knauft, Boeblingen; Stephan Fritz Irro, Boeblingen; Guenter Knauft, Boeblingen; Stephan
Richter, Boeblingen, and Hermann Schulze-Schoelling, Gaer tringen, all of Germany, assignors to International Business Machines Corporation, Armonk, N.Y.
Claims priority, application Germany, May $19,1076,2622140$ U.S. CI. 364-200 Int. Cl. ${ }^{2}$ G06F $9 / 18$

4 Cloims 1. A method of implementing manual operations in a proces sor in which several programs are executed under time slice control, wherein one of the programs is a designated control
program to control manual operations as a function of controlprogram to control manual operations as a function or control operations, comprising entering a program pointer for a selected program for which a manual operation is to be implemented into a stop pointer register;
generating an output signal indicating a stop condition has comparing the
logic with the program pointer entered in the stop pointer register, said comparison occurring before the next in register, said comparison occurring before the next
struction of said selected program is again executed; transferring in the case of a match the program pointer of the control program to force the execution of an instruction of

AUTOMATIC TURBIDIMETRIC TITRATION . Jay Janzen, Bartlesville, Okla., assignor to Phillips Petroleum Company, Bartlesville, Okla.
Filed Jan. 11, 1977, Ser. No. 758,52
Int. Cl. ${ }^{2} \mathbf{~ G O G G} 7 / 58$; G01N 31/16
S. C. $364-49$

12 Claim

the control program for the manual operations, whereby without stopping the execution of the unaffected pro grams, each time an instruction cycle occurs for the seimed program for which a manual operation is to implemented, these steps are rep

AIRCRAFT PITCH ATTITUDE SIGNAL GENERATOR Aans Rudolf Muller, Kirkland, Wash, assignor to Sundstran Hans Rudolf Muller, Kirkland, Wash,
Data Control, Inc., Redmond, Wash

Filed Apr. 20, 1977, Ser. No. 789,153
Int. C. ${ }^{2}$ GO6G 7/78
U.S. C1. 364-434

35 Claims


1. A computed pitch circuit for aircraft, responsive to longitudinal acceleration signal source representing aircran ongitudinal acceleration, and a gyroscope based signal sour epresenting aircraft pitch, comprising:
means for combining the acceleration signal with the gyrosignal;
means responsive to the acceleration signal and said computed acceleration signal for generating an inertial pitch signal; and
means responsive to said inertial pitch signal and the gyro scope pitch signal for generating a computed pitch signal.
2. Automatic turbidimetric titration apparatus comprisin means adapted to contain a liquid medium to be titrated; titrant supply means adapted to introduce a turbidimetric
titrant into said medium at a gradual rate; optoelectronic means adapted to produce an analog measurement signal representative of the turbidity of the medium being titrated,
differentiating means adapted to produce, responsive to said analog measurement signal, a differentiated signal reprement signal; ment signal
means adapted to compare said differentiated signal with a reference signal and to produce a control signal when said differentiated signal has a predetermined relationship with said reference signal, said predetermined relationship being representative of the occurrence of the titratio end-point; and
titration end-point signal representalive of the amount of said titrant added to the medium being titrated in order to achieve said predetermined relationship between said -eference signal and said differentiated signal.

LECTRONIC SLIDE RULE
ELECTRONIC SLIDE RULER CALCULATOR James Gonzalez, Monroe, N.Y., assignor to The Raymond Lee Fion Inc.. New York, N.Y., a part intere
Fig7, Ser. No. 771,892
Filed Feb. 25, 1977, Ser. No. $771,{ }^{2}$ Int. Cl. ${ }^{2}$ G06F $7 / 38,3 / 00$
U.S. CI. 364-705

4 Claims


1. An electronic slide ruler calculator for indicating a mea sured distance to a precise fraction of a predetermined scale an elor calculator comprising
ing spaced opposite paralle
the second surface, said measuring edge having a plurality of spaced distance indications marked thereat;
a distance marker slidably mounted for free movement along the length of the ruler member on the first surface thereof and having a hair sight extending transversely to the ruler member across the first surface and at the measuring edge
for visually indicating a distance on the ruler device, said for visually indicating a distance on the ruler device, said
distance marker having electrically conductive contacts thereon along the hair sight;
a plurality of spaced electrical contacts on the first surface of the ruler member in a predetermined pattern whereby a plurality of fractional divisions of each distance indication marked at the measuring edge are provided, the distance
marker being spring mounted on the ruler member in a manner whereby the contacts of the marker and those of the ruler member directly thereunder make electrical contact when said marker is manually depressed; and
calculator circuit means electrically connected to the contacts on the ruler member for indicating the exact position of the distance marker when said marker is manu-
ally moved into position and manually depressed so that ally moved into position and manually depressed so that contacts of said ruler member directly thereunder.

4,095,274
APPARATUS FOR DETERMINING FOOD CONTENT Carl Gordon, 1203 S. Spaulding Ave., Los Angeles, Calif. 90019 Filed Apr. 27, 1977, Ser. No. $791,321.2$
Int. Cl. ${ }^{2}$ G06F $15 / 42$ U.S. CI. 364-715

4 Claims


1. A device comprising:
2. A device comprising:
a hollow housing having a top wall, side walls and a bottom wall, the top wall having a first substantially horizontal portion and a second portion integral with the first portion which extends angularly upwardly therefrom;
said housing top wall including walls defining an opening which is in both said first and second portions;
an axle having its ends rotatably mounted in the housing side walls;
plurality of information bearing elements carried by said axle and so arranged as to extend within the housing opening and adapted for viewing from the housing exterior;
pushbutton $\quad$ 1. A digital signal processing arrangement comprisaim a pushbutton digital calculator having the pushbuttons least one wave digital filter including at least one N -port adap-
mounted on the housing top wall portion; and
tor with ports $\mathrm{P}(i)$, , $i=1,2, \ldots \mathrm{~N}$, each port including an mounted on the housing top wall portion; and
tor with ports $\mathrm{P}(i),(i=1,2, \ldots \mathrm{~N}$, each port including an
a display means for the digital calculator mounted on the
input and an output, at least one of the ports $\mathrm{P}(i)$ being of the housing top wall second portion above the opening therein.

PULSE WIDTH MODULATED SINE COSINE GENERATOR
Francis A. Fluet, Longwood, Fla, assignor to Westinghouse Electric Corp,., Pittsburgh, Pa.
Filed Feb. 14, 1977, Ser. No. 768,130

Filed Feb. 14, 1977, Ser. No. 768,13
Int. Cl. ${ }^{2}$ G06F $15 / 34$


1. A digital waveform generator for deriving sine and cosine waves by pulse width modulation comprising:
counting means having a plurality of states, comprising a plurality of lesser significant bits and a most significant output bit;
read only
read only memory (ROM) means having a plurality of ad-
dress inputs for receiving said lesser significant bits and dress inputs for receiving said lesser signinicant bits and latter bits defining a sine half cycle (SINHC) and a cosine half cycle (COSHC), the remaining ROM output bits defining a modulo,
connected to receive means having a plurality of inputs connected to receive said modulo output from said ROM means, and to deliver an end of state (EOST) signal to said counting means;
means for clocking said variable modulo counting means, whereby when the variable modulo counter has counted to its capacity the EOST signal is sent to said counting means, and
said variable modulo counter is enabled the counting said variable modulo counter is enabled, the counting means then advancing to its next state to provide the nex
ROM address and the next programmed ROM modul output, the ROM modulus output from the previous state of said counting means now becoming the next modulo for said variable modulo counter; and logic means for receiving said most significant output bit and said SINHC and COSHC bit signals, for performing alge-
braic logic operations to provide pulse width modulater sine and cosine waveforms respectively, the modulate width of said waves being a function of the duration of the states of said counting means respectively.

DIGITAL SIGNAL PROCESSING ARRANGEMENT including a wave digital filter Gerard Verkroost, Mierlo, and Hans-Jurgen Butterweck, Gel drop, both of Netheriands, assignors to U.S. Philips Corpora tion, New York, N.Y.
Filed Dec. 16, 1976, Ser. No. 751,548 14908

Iority, application Netherlands, Dec. 22, 1975, U.S. C1. $364-724$ input and an output, at least one of the ports $\mathrm{P}(i)$ being of the
purely capacitive type;
tion signal waves $a(\mathbf{1}, k), a(\mathbf{2}, k)$, input of each of $r$ ports $(r<N)$; means connected to said filter for supplying auxiliary digital signal waves $a(i, k)$, where $i=r+\mathbf{1}, \ldots \mathbf{N}$, through the
input of each of the remaining ports; and

quantizing means connected to the output of each of said ports P()$,(j=1,2, \ldots \mathrm{~N}$, for producing a digital output signal wave $b(j, k)$ quantized at a predetermined word-
length, said quantizing means producing at each of said length, said quantizing means producing at each of said
purely capacitive ports $\mathbf{P}(i)$ a digital output signal wave purely capacitive pors $\mathrm{P}(i)$ a digital ouput signal
$b(j, k)$ such that each $b(j, k)$ satisfies the relationship
$\left|b(i, k)-\sum_{i=1}^{r} d(i) a(i k)\right| \leqq\left|b_{0}(i, k)-i_{i=1}^{r} d(i j) a(i, k)\right|$
in which $(n, j)$, with $n=0,1,2, \ldots r$, represents a constant
characteristic of the $\tilde{j}^{h}$ purely capacitive port, and $b_{0}(j, k)$ represents a non-quantized version of the digital output signal wave sents a
$b(j, k)$.
immediately preceding each command to be transmitted for entering a command mode;
encoding a following command in conventional alphabetic characters of which at least the first character represents the command;
providing an instruction delimiter including a conventional line end signal (LE) for each concatenated instructio following a command;
encoding a following instruction in conventional alphabetic characters of which at least the first character represents
the instruction; and
providing a conventional page end (PE) character following commands and instructions as set forth above for terminating the com dind encoded text characters received and utilize as device control characters all conventional encoded control char acters received.

A method of transmitting conventional coded text and

1. A method of transmitting conventional coded text and mand and instruction signals in a transparent and unstructured format comprising the steps of:
providing a com (LE) and a cer including a convention

METHOD FOR COMMUNICATING TEXT COMMANDS AND INSTRUCTIONS USING CONVENTIONAL CODED TEXT CHARACTERS AND A STRUCTURE FOR DECODING AND PRESENTING COMMAND AND
Robert Glenn Bluethman, and William Weller Boyd, both of Austin, Tex., asslgnors to International Business Machine Corporation, Armonk, N.Y.



## INSTRUCTION ALTERING SYSTEM

## Khara, Kodaira, Japan, assignor to Hitachi, Ltd.,

Japan
Filed Oct. 6, 1976, Ser. No. 729,983 Claims priority, application Japan, Oct. 8, 1975, 50-120702 S. C. 364-900 Int. C.2 ${ }^{2}$ G06F 9/06


1. An instruction altering system to be used with program and microprogram control systems having instruction storage means and address register means connected with said instruc tion storage means comprising:
first register mean for storing an operation code for an instruction stored in said storage means which is to be in tered;
econd register means for storing a second operation code for an instruction stored in said storage means;
input means for providing an operation code of an instruc tion which is to be executed;
comparator means connected with said first register means and said input means for comparing said first operation about to be executed and for generating a coincich is signal when said codes coincide; and
ultiplexer means connected with
means, said input means, said comparator means and said address register means for transferring said second operation code to said address register instead of the operation code of said instruction which is about to be executed when said coincidence signal is received from said com parator means.

4,095,279
ORTHOGONAL POTENTIAL WELL MATRIX AND AMPLITUDE MODULATED BIAS FIELD FOR BUBBLE
Stanley James Lins, Bloomington, Minn., assignor to Sperry Rand Corporation, New York, N.Y

Filed Apr. 8, 1977, Ser. No. 785,807
U.S. C1. 365-29

4 Claims


1. A bubble domain propagation apparatus, comprising: first layer of a magnetizable material in which are formed
a plurality of parallel, spaced-apart first periodic potential a pluralit
wells;
a second layer of a magnetizable material in which are formed a plurality of parallel, spaced-apart second peri-
odic potential wells which are orthogonally oriented with odic potential wells which are orthogonally oriented with
respect to said plurality of parallel, spaced-apart first respect to said plurality of parallet, spaced-apart irst plurality of first periodic potential well, second periodic potential well intersections;
bubble generator means coupled to said second periodic
potential wells for selectively coupling bubble domains potential wells for selectively coupling bubble domains
into selected ones of said intersections along a first one of said first periodic potential wells;
in-plane field generator means for coupling an in-plane field $\mathrm{H}_{\mathrm{P}}$ in the plane of said second layer; and,
lated bias field $H_{B}$ normal to the planes of said
lite second layers, said bias field $H_{B}$ having said first and odulated frequency $F$ for propagating the amplitude mains along the associated second periodic potential well from upstream to next adjacent downstream intersection at said frequency $F$ at successive cycles of said amplitude modulated bias field $\mathbf{H}_{B}$.

ELECTRICAL INFORMATION STORAGE SYSTEM USING A LAYER OF PARTICULATE PHOTOSENSITIV
Koji Okumura, Penfield, N.Y., assignor to Xerox Corporation, Koji Okumura, Pe
Stamford, Conn.
Stamford, Conn.
Division of Ser. No. 539,913, Jan. 9, 1975, Pat. No. 4,059,443. This application Jul. 2, 1976, Ser. No. 702,154 Int. Cl. ${ }^{2}$ G11C $11 / 42$
U.S. C. ${ }^{365-112}$

1. A method of
retrieving electrical information electrical information storage member, comprising:
providing an electrical information storage member comprising a layer of substantially electrically insulating material containing a layer of particulate electrically photosen-
sitive material a semiconductor layer contacting one sitive material, a semiconductor layer contacting one material, a substantially transparent electrode layer of electrically conductive material contacting the opposite surface of said layer of substantially electrically insulating
material and a plurality of electrode pairs contacting said semiconductor layer, said storage member having electri cal information stored as charges established in selected selectively pulsing a current to each of said electrode pairs,

MEMORY INCLUDING VARACTOR CIRCUIT TO BOOST ADDRESS SIGNALS
Harry G. Oehler, Glen Burnie, Md., assignor to Westinghouse Electric Corp,, Pittsburgh, Pa. Filed Nov. 23, 1976, Ser. No. 744,379
Int. C1. ${ }^{2}$ G11C $1 / / 40$
U.S. C. 365-204

and detecting the relative magnitudes of currents channeling through the semiconductor layer between each of said
electrode pairs, the relative magnitudes of said currents corresponding to the presence of charges in selected ones of the photosensitive particles.
$4,095,281$
RANDOM ACCESS-ERASABLE READ ONLY MEMORY CELL

Filed Mar. 4, 1976, Ser. No. 663,752
Int. Cl. ${ }^{2}$ G11C $11 / 40,17 / 00$
U.S. Cl. 365-156


1. In a memory of the kind selectively operable in RAM and ROM modes, said memory comprising first and second inverters, each inverter having an output node cross-coupled to an output node the other for forming a static RAM cell, the ively cone of each inverter of said RAM cell being selec ransistors to respective digit lines, the control electrodes of said access transistors being connected to a common control ine and each inverter including at least a first field effect ransistor having an unbalanced impedance means associated herewith for providing ROM data retention, the improvement characterized RAM and EAROM operation of said memory haracterized in that:
said unbalanced impedance means comprises a first variable threshold transistor connected as a load in the drain circuit having a control electrode connected to the output of said second inverter; and a second variable threshold transisto connected as a load in the drain circuit of said first field effect transistor in said second inverter and having a con trol electrode connected to the output of the first inverter.

3 Claims


1. An MNOS memory array comprising:
a. an array of MNOS memory transistors, said array being arranged in columns and rows;
b. first addressing means responsive to a first digital signal to second addressing means resp
c. signal to generate a row select signal; an
d. varactor means responsive to said row select signal and a write mode signal to boost said row select signal when said memory is in the write mode.

FIRST IN-FIRST OUT MEMORY ARRAY CONTAINING SPECIAL BITS FOR REPLACEMENT ADDRESSING Wedward Campbell, and Gerhard Robert Thompson, both of Mappingers Corporation, Armonk, N.Y.



1. A first in - first out memory comprising: at least three storage members,
each said member including a plurality of bit storage means one of said means storing a special bit,
Gray code encoding circuit means,
input of said encoding circuit means,
member selection means coupled between said encodin member selection means coupled between said encodin
circuit means and said members for selecting one of said
members in accordance with the output of said circuit means, and
eans for changing the state solely of the special bit storage means incluc
tion means.

DIRECT HEATING ASPHALT-AGGREGATE RECYCLE DIRECT HEATING ASPHALTAGGREGAD
Robert L. Mendenhall, 1770 Industrial Rd., Las Vegas, Nev.
89102 89102
Continuation-in-part of Ser. No. 603,357, Aug. 11, 1975, Pat No. 3,999,743, and a continuation-in-part of Ser. No. 729,705, Oct. 5, 1976. This application Dec. 27, 1976, Ser. No. 754,315 U.S. C. 366—7 Int. Cl. ${ }^{\text {B28C }} 5 / 20$


1. An apparatus for heating and mixing asphalt-aggregate mposition comprising
an elongated rotatable cylindrical drum having means for supplying hot gases of combustion therein at a first end and means for recovering composition at a second opposite end,
drum in a hot zone adjacent said first end
drum in a hot zone adjacent said first end, said drum in a cooler zone spaced from said first end, and plurality of lifters secured along the drum interior adjacent the first end and spaced apart from the interior surface.

4,095,285
DEVICE FOR THE PREPARATION OF COATED RODUCTS FOR CONSTRUCTION AND
MAINTENANCE OF HIGHWAYS Pierre Malbrunot, Ssint-Cloud, France, assignor to CreusotLoire, Paris, France Filed Oct. 1, 1976, Ser. No. 728,793
Claims priority, application France, Oct. 8, 1975, 7530788 U.S. Cl. 366-23 Int. C. ${ }^{2}$ B28C 5/08 $\quad 16$ Claims


1. A device for the preparation of coated products from aggregate, powdery matter and binder, comprising a platform, a cylindrical dryer and mixer drum having an inlet end and an outlet end, means mounting said drum for rotation about its longitudinal axis on said platform, means for driving said drum
in rotation, means for continuously feeding aggregate and in rotation, means for continuously feeding aggregate and powdery matter to said inlet end of said drum, a burner pro-
jecting into said inlet end of said drum, a fixed chamber for discharge of coated product and for exhaust of the gases in circulation in the drum, said fixed chamber being in communicirculation in the drum, said fixed chamber being in communi-
cation with said outlet end of said drum, means for supplying
binder to said drum, said drum being arranged so that said inlet
end is at a level higher than the level of said outlet end to promote the circulation of the products in said drum, said
drum comprising in succession in the direction of flow of the products therethrough from said inlet end;
a first zone for introduction of aggregate
ter supplied by said feeding means, and powdery matprojecting inwardly of the drum arrand including blades he inner surface of the wall of said drum
and zone for preheating ond said drum, a second zone for preheating and predrying of the aggregate
and homogenization of the mixture of aggregate and powdery matter, and including means for lifting the aggregat and powdery matter provided on the inner surface of said drum, the transverse section of said lifting means taken in plane perpendicular to he axis of said drum being vari able along said second zone such that the capability of advance of the products, said capability of retention being ow at the inlet to said second zone, such that relatively little material will be lifted and dropped at said inlet to said second zone and thus will not interfere with the flam from the burner
hird zone for drying, mixing and heating the products, said
binder supplying, means discharging at the third zone, the inner surface of the wall of said drum being provided in said third zone with further lifting means, the ransverse section of which is identical with the transverse section of said lifting means at the outlet of said second zone, said further lifting means having a high capability o
retention such that the products form a substantially con tinuous curtain across the whole transverse section of said drum at the inlet of the third zone to isolate the third zone and the binder supplying means from the second zone.

## 4,095,286

AGITATOR FOR PAINT SPRAY CANS
Jerry Ellis, 6520 Shad $\begin{aligned} & \text { Solarm, Dearborn Helghts, Mich. } 48127 \\ & \text { Filed Jan. } 5,1976, \text { Ser. No. } 646,537\end{aligned}$
U.S. Cl. $366-293$


1. An agitator for a paint spray assembly, comprising
(a) a housing adapted to be disposed within a cup, the hous ing having an internal cavity, (b) a shaft removably mounted to the housing and extending
through the housing, the shaft having an enlarged splined through the housing, he tha cavity,
section disposed within the caver
(c) a vaned paddle wheel mounted on the shaft exteriorly of the housing,
(d) a first lateral bore formed in the housing and extending radially outwardly from the cavity and defining means for delivering pressurized fluid to the cavity to rotate the shaft by the impingement of fluid on the spline, and
(e) a second lateral bore formed in the housing and extending laterally outwardly from the cavity, the bore being axially for exhausting the fluid from the cavity.

4,095,287
EMPTYING APPARATUS FOR PASTY MATERIALS Kans-Josef Felser, and Kurt Paul Kley, both of Cologne, Ger
many, assignors to Bonaval-Werke GmbH, Bonn, Germany many, assignors to Bonaval-Werke GmbH, Bonn,
Filed Mar. 3, 1976, Ser. No. 663,425 Filed Mar. 3, 1967, Ser. No. 6 66,425
Int. C. ${ }^{\text {B01F } 15 / 02, ~} 7 / 20,9 / 10$


1. An emptying apparatus for pasty materials comprising a ylindrical container which is rotatable about its axis by means tainer, a strip-shaped baffle extending along the wall of the ylindrical container approximately parallel to the containe axis, said baffle having one vertical ledge mounted to rotate in fixed vertical positions about its vertical axis and the other free
edge being free and movable to different vertical positions, so that the angle which the said bafle makes with the container wall can be adjusted, a spiral pump, means attaching said spiral pump to the free edge of the baffle and an outlet pipe attache o the pump outlet.
$\qquad$
4,095,288
Vestie H. Gariable AGITATOR MIXER
Calif. 91107 Continuation of Ser. No. 575,141, May 7, 1975, abandoned, Ser. No. 340,670, Mar. 13, 1973, abandoned, and Ser. No. 364,881, May 29, 1973, Pat. No. 3,962,892. This application Mar. 3, 1977 Ser. No. 774,193
Int. C1. ${ }^{2}$ B01F 13/00
U.S. Cl. 366-219

2. In an oscillatory type mixer employing a container for ble lower wall and bottom portion, said lower wall portio
extending upwardly from said flexible bottom portion defining for said first chamber and a motor-driven oscillatory wobble an inner first chamber of variable shape inside said container, drive for said disc, said surface having a continuous tilt relative said rigid upper wall portion forming a second chamber of to said plane and a continuously varying wobble motion during fixed shape and size in axial alignment with the first chamber operation, an agitator assembly having a relatively fixed end and having a capacity comparable to the capacity of said first with an attachment to said rigid disc at a location substantially chamber, said chambers having a common vertical axis, and an coincident with said surface, said agitator assembly having a
annular connection between said upper and lower wall por- length exceeding the depth of the first chamber and extending tions lying in a plane transverse to the common axis of said from the disc inwardly through the first chamber and into the portions, said chambers being adapted to receive a mixing second chamber through said plane and that portion of the charge, filling said first chamber and extending into the second mixing charge contained in said second chamber, said agitator
chamber to provide an exposed level of said charge above the chamber to provide an exposed level of said charge above the assembly having a continuous tilt relative to said plane and a
top of said first chamber and within said second chamber, a path of travel passing cyclically continuously into and out of top of said first chamber and within said second chamber, a path of travel passing cyclically continuously into and out of
rigid disc at the center of said flexible lower wall and bottom those portions of the chambers which receive the mixing portion having an inwardly facing surface comprising a bottom charge.

## DESIGNS

JUNE 13, 1978



Stapleton Long, Morristown, Tenn., assignor to The Berkline Sidney J. Shames, 57 Holly Plop Brer and Harold Shames, 5 Agnes Cir., Ardsley, N.Y. 1050 Filed Aug. 19, 1976, Ser. No. 715,729 Term of patent 14 years
Int. C. $\mathbf{D 6}-99$
U.S. CI. D6-86


Cr

HANGER FOR 248,135
HANGER FOR COLLAPSIBLE TUBES Gamble Company, Cincinneytit Oha, aseignor to The Filed Dec. 6, 1976, Ser. No. 748,023 Term of patent 14 years
Int. Cl. D23-02
U.S. CI. $\mathbf{D 6 - 8 7}$


248,133 SINE STOPPER
Sidney J. Shamea, 57 Hilly PI, Briarcliff Manor, N.Y. 10510, and Harold Shamea, 5 Agnes Cir., Ardsley, N.Y. 1050
Flied Aug. 19, 1976, Ser. No. 715,714 Term of patent 14 years
U.S. C. D6-86


DRESSER OR SIMILAR ARTICLE Haroid V. Aulbert, High Point, N.C., seignor to Vaughan Furniture Compeny, Incorporated

Nor. 2, 1676, Ser. No. 738,125 Term of patent 31 years
Int. Cl. D6-04
U.S. C1. D6-154


TABLE OR SIMILAR ARTICLE
Warren D. Petersen, St. Charles, Ill, assignor to Burd, Inc.,
Howell Division
Filed
Filed Nov. 8, 1976, Ser. No. 739,996 Term of patent 14 years
Int. C1. D6-03
U.S. CI. D6-146

248,140
ACCESSORY HOLDER FOR FOOD PROCESSORS Barbara Comfort, Landgrove, and Frederik Geocre Rechard von Roth, Peru, both of VL, asignors
South Londonderry, Vt
FIled JJu. 4, 1976, Ser. No. 692,925 Filed Jun, 4, 1976 , Ser. No.
Term of patent 14 years
U.S. CI. D6-181


248,138
LOCKER
Wells F. Stackhouse, Ashville, and Dougins A. Barth, Sinclairrille, both of N.Y., sasignors to American Locker Security Systems, Inc., Jamestown, N.Y.

Filed Oct. 19, 1976, Ser. No. 735,610 Terro of patent 14 years
Int. Cl. D6-04
U.S. C. D6-170


TABLE OR SM139
248,139
AR ARTICLE
Warren D. Petersen, St. Charles, Ill., assignor to Burd, Inc., Howell Division

Filed Nor. 8, 1976, Ser. No. 739,997 Term of patent 14 years
Int. C1. $\mathbf{D 6 - 0 3}$
U.S. CI. D6-177


248,141
PILLOW
Audre C. Forsiand, 923 23rd Ave. West, Virginia, Minn. 55792 Filed Jon. 13, 1976, Ser. No. 648,750 Term of patent 14 years
Int. Cl. D6—09
U.S. C. D6-201


BROWNING GRIDDLE OR THE LIKE FOR MICROWAVE OVENS
Richard W. Greger, Corning, N.Y., assignor to Corning Glass
Works Filed Feb. 20, 1976, Ser. No. 659,661 Term of patent 14 years
Int. C1. $77-02$
U.S. C. D7-87 Int. C. D7-02 Moore, Jr., Charleston, W. V (oore Coire, Jr., Charieston, W. Va., assignor to The Filed Mar. 7, 1977, Ser. No. 775,412 Mar. 7,1977 , Ser. No.
Term of patent 14 years
not
U.S. C. D8-344


${ }^{248,143}$
SERVING SPOON
Thomas G. Cannon, Ft. Collins, Colo., and Spencer L. Mackay, Giendale, Calif., assignors to Teledyne Industries, Ft. Collins, Filed Dec. 13, 1976, Ser. No. 757,792 Term of patent 14 years
Int. Cl. D7-03
U.S. CI. D7-140


MULTI-PURPOSE JIG FOR USE WITH TABLE SAWS Lloyd D. Kreitz, P.O. Box 60, Pequot Lakes, Minn. 56472 Filed Dec. 27, 1976, Ser. No. 753,986 Term of patent 14 yea
Int. CI. D8-0S
U.S. CI. D8-14


BOOK SUPPORT BRACKET Gerard Drag, Morton Grove, Ill., assignor to General Binding Corporation
Filed Aug. 9, 1976, Ser. No. 712,733 Term of patent 14 years
Int. Cl. D8-08
U.S. CI. D8-363


RIBBON CARTRIDGE CADDY
Joseph A. Rauch, Tivon, Israel, and Arthur P. Wales, Riverside,
Joseph A. Reuch, Tivon, Israel, and Arthur P. Wales, River
Conn., assignors to SCM Corporation, New York, N.Y. Filed Oct. 18, 1976, Ser. No. 733,615

Term of patent 14 years
Int. Cl. D9—03
U.S. CI. D9-. 89
CI. C. D9-03


DEVELOPER POWDER CONTAINER
Davis W. Chamberlin, Saint Paul, Minn., asslgnor to Minnesot
Mining and Manufacturing Company, Saint Paul, Minn.
Filed Nor. 24, 1976, Ser. No. 744,689
Term of patent 14 years
U.S. C. D9-224
int. CI. D9-04; D16—04


248,149
MOTOR TIMER
Teizo Fujita, and Toshiro Ohashi, both of Osaka, Japan, assign-
ors to Izumi Denki Company Limited, Osaka, Japa
Filed Aug. 2, 1976, Ser. No. 711,084
Claims priority, application Japan, Apr. 5, 1976,
51-12571; Claims priority, appication Japan, Apr. 5, 1976, 51-12571; 51-12574

## Term of patent 14 years

U.S.Cl. D10-116

COMBINED MOISTURE COMBINED MOISTURE PLANTS Samuel J. Koch, 51 El Pueblo, Scotts Valiey, Calif. 95066 Filed Oct 28,1975 , Ser No. 625,944 Term of patent 14 years
U.S. C1. D10-56
U.S. CI. D10-4


248,152
SIREN
Hank Hastings, Rocky Mount, N.C., assignor to Carolina Enter- Everardo P. Sierra, 1809 W. Buckeye Rd., Space \#20, Phoenix, prises, Inc., Tarboro, N.C.
Flied Aug. 19, 1976, Ser. No. 716,001 Term of patent 14 years
Int. C1. D10-06
U.S. Cl. D10- 120


PLANT POT
Saburo Yoshida, Hayward, Calif.; Harold R. Appelblom, deceased, late of South San Francisco, Calif., by Mae H. Inc., Hayward, Calif.
U.S. CI. D11-152

Ariz. 85007 Filed Nor. 1, 1976, Ser. No. 737,663 Term of patent 14 yearr
Int. C. D11-05
U.S. CI. D11-167

 PLANT POT trix, assignors to Sunnyside Nurseries,

$$
\begin{aligned}
& \text { day Calif. } \\
& \text { ed May, } 2577 \text {, Ser. No. } 800,471
\end{aligned}
$$ Tirm of patent 14 years

Int

$\qquad$

248,155
ELECTRIC CAR
Cheston Lee Eshelman, 621 NE. 30 th Ter., Miami, Fla. 33137 Filed Oct. 6, 1976, Ser. No. 729,886 Term of patent 14 years
Int. C. D12-08
U.S. C1. D12-92


COMBINED SOLID FUEL
Charles J. Dalzell, 940 N. 6 th Are., Y Yit AND IGNITER Filed Nov. 11, 1976, Ser. No. 741,140 Term of patent 14 year
U.S. CI. D23-166


| FIRE LIGHTER |
| :---: |

Generiere S. Cavanaugh, 359 Parkriew Are., Golden, Colo. 80401, assignor to Generiere S. Cavanangh Term of patent 14 years U.S. C. D23-166 Int. C1. D23—05


248,163
SKIN CARE EQUIPMENT AND STAND APPARATUS
Wallace A. Roberts, 88 N. Main St., Bellingham, Mass. 02019
Filed Jan. 5, 1977, Ser. No. 757,072
Term of patent 14 years
Int. Cl. D21-01
U.S. C. D24-1.1


INFRAMAMMARY DISSECTOR INSTRUMENT Charies A. Wilson, 1704 Rigging Rd., Tallahsaesee, Fla. 32303 Flled Jun. 7, 1976, Ser. No. 693,80 Term of patent 14 years
U.S. C1. D24-28
 Ryoji Kanai, Seki, Japan, assignor to Feather Kogyo Kabushild Gordon Keily, Elm Grove, Wis, assign Kaisha, Mino, Japan
Filed Aug. 27, 1975, Ser. Claims priority, application Japan, Jun. 13, 1975, 50-23977 Term of patent 14 years Int. Cl. D24-02; D28-0
U.S. CI. D24-54
U.S. CI. D24-29
anman Term of patent 14 year Mace Hudson Bell, 14 Pine Point Rd., Rowayton, Conn. 06853 and David Lee Haas, 80 County St., Norwalk, Conn. 06852 Filed Apr. 14, 1977, Ser. No. 787,355
U.S. CI. D24-21


248,170
MANUAL CONTROL
Allan M. Steigerwald, Rte. 3, Bex FOR ANESTHETIC GASES
98362
$\xrightarrow{\text { TOY FIGURE }}$

$$
\begin{gathered}
\text { Allan M. } \\
98362
\end{gathered}
$$

98362 Filed Dec. 1, 1976, Ser. No. 746,621
Term of patent 14 years
Int. C. D29-02, 99
U.S. CI. D29-7


248,171
CREMATION URN
Sanford A. Sugarman, Shaker Heights, Ohio, assignor to Supe
rior Funeral Supply Corporation
Filed Auge. 18, 1975, Ser. No. 605,531 Ter Aug. 18, 195, Ser. No. 6 patent 14 years
Int. C. ${ }^{\text {D } 31-\infty}$
U.S. C. D31-5

248,172
Erik Peter Tapdrup, Virum FiGURE
Erik Peter Tapdrup, VIrum, Denmark, assignor to Interlego
A.G., Barr, Switzerland
Filed Aug. 2, 1976, Ser. No. 710,849 erm of patent 14 years
Int. C1. ${ }^{2}$ D21-01
U.S. CI. D34-2 R


Erik Peter Tapdrup, Vir Filed Aus. 2, 1976, Ser. No. 710,663 Term of patent 14 years
U.S. C1. D34-4 R

Erik Peter Tay $\begin{gathered}\text { 248,174 } \\ \text { TIGURE }\end{gathered}$ Erik Peter Tapdrup, Virum, Denmark, aselgnor to Interlego
A.G., Baar, Switterlind


Erik Peter Tapdrup, TOY FIGURE
Erik Peter Tapdrup, Virum, Denmark, aesignor to Interlego
A.G., Baar, Switzeriand Filed Aug. 2, 1976, Ser. No. 710,662
Term of patent 14 yera Term of patent 14 yeara
Int. C1. ${ }^{2}$ D21-01
U.S. CI. D34-4 R


248,176
TOY FIGURE $\begin{gathered}248,179 \\ \text { GOLF CLU }\end{gathered}$
Erik Peter Tapdrup, Virum, Denmark, aesignor to Interlego Edward J. Riley, Pebble Beach, Calif., assignor to The PinA.G., Bearr, Swituerinand Denmark, amignor to interieso seeker Corporation, Pacific Grove, Calif, Term of patent 14 years
U.S. CI. D34-R seeker Corporation, Pacinc Grove, No.
Filed Jul. 12, 1976, Ser. No. 704,488 Term of patent 14 year
U.S. C. D34-5 GC

Int. Ca. D21-02
 Filed Aug. 2, 1976, Ser. No. 710,661


248,177
OY FIGUR

| TOY FGURE |
| :---: |
| $\begin{array}{c}\text { Erik Peter Tapdrup, } \\ \text { A.G., Barr, Switeriand }\end{array}$ |

A.G., Barr, Svitzerikend Fled Ang 2, 1976, Ser. No. 710,848

Flied Ang. 2, 1976, Ser. No. 710,
Term of patent 14 years erm of patent 14 y.
Int. $\mathbf{C l}$ D21-01
U.S. C. D34 - R


248,175


248,182 CANDLE HOLDER John Anthony Mason Garcia, 1818 Hancock St., Los Angeles, Filed Nov. 15, 1976, Ser. No. 741,974 Term of patent 14 years
Int. Cl. $\mathbf{D} 26-01.05$

248, 185
DETACHABLE MULTI-PURPOSE LIGHT PLATFORM Stanley J. Keyawa, 6500 Rexford Way, Carmichael, Calif. 95608 Filed Feb. 16, 1977, Ser. No. 768,974 Term of patent 14 years
Int. Cl $\mathbf{D 2 6 - 9 9}$
U.S. CI. D48-4 A


248,183
CANDLE HOLDER
John Anthony Mason Garcia, 1818 Hancock St., Los Angeles, Calif. 90031

Filed Nov. 15, 1976, Ser. No. 741,975 Termm of patent 14 years
Int. C. D26-01, 05
U.S. C. D48-2


248,184
LAMP FOR ILLUMINATING
LIKE LOCKS AND THE
Thomas Peter Roberts, 11 Lyons St., Glenroy, Victoria, 3046, Australin

Flued May 27, 1976, Ser. No. 690,739 Clarims
68196/75 priority, application Australia, Nor. 27, 1975, 68196/75

## Term of patent 14 years Int. $\mathbf{C 1}$. $\mathbf{D 2 6 - 0 5}$


COVER FOR $\begin{aligned} 248,186\end{aligned}$

Minas P. Hazerjiaver For Yard Light Minas P. Hazerjian, 72 Stivaletta Dr., Dedham, Mass. 02026,
and Kevork P. Hazerjian, 19 Wooderd Pd, Mass. 02132 . Hazerjian, 19 Woodard Rd., West Roxbury,

Filed Dec. 20, 1976, Ser. No. 753,535
Term of patent 14 years Term of patent 14 years
Int. Cl. D26-03
U.S. C. D48-38

U.S. C1. D48-2

U.S. C. D48-4 B

BAGPIPE PRACTICE CHANTER
BAGPIPE PRACTICE CHANTER
George J. Roe, 2650 Lansing Ave. NE, Salem, Oreg. 97303
Filed Ap. Filed Apr. 26, 1976, Ser. No. 679,887 Term of patent 14 year
U.S. Cl. D56-1 C


248,188
LUGGAGE CASE
Thomas D. Tweedie, Mongrovia, Calif., assignor to Samsonite Corporation, Denver, Colo.
Filed Dec. 16, 1975, Ser. No. 641,300 Term of patent 14 years erm of patent 14 years
Int. CI. D3-01 U.S. C. D87-5 G


248,189
UTILITY BA
Judith J. Loomis, 232 Lafayette St., Memphis, Tenn. 38111 Juatu J. Loomis, Oct. 12, 1973, Ser. No. 405,762
Filed The portion of the term of this patent subsequent to Feb. 13, 1987, has been disclaimed
Term of patent 14 years Term of patent
Int. Cl. D3-01
U.S. C. D87-3 C


KEY RETAINER
Alfred E. Motzer, Meriden, Conn., assignor to The W. E. Bassett Company, Derby, Conn.
Filed Aug. 12, 1976, Ser. No. 713,895 Term of patent 14 years
U.S. C1. D87-8


## LIST OF PATENTEES

## то шном

PATENTS WERE ISSUED ON THE 13Th DAY OF JUNE, 1978 NoTE-Arranged in accordance with the first significant character or word of the name
(in accordance with city and telephone directory practice).


Takeda, Shiniji; Mistsui, Noriyoshi; and Kato, Nobuharu, 4,094,725 Yoshimura, Noboru, 4,094,489, Cl. 248-429.000.


Aizawa, Hitomi. t1. KKabushikiki Kaishh Suwa Seeiksha. Electronic time-



Borsov, Vladi
manovich, ald
3n

Ambernssoco, Jon Reoger; Andersson, Roger Ingemar; and Sultan,
Stig Berit, $, 095,237$, Cl. $346-140.00$.

Ullmannste Werrer; Fricker, Paul; and Guenin, Maurice, 4,095,079,
Cl. 19.969 .00 .
kutsu, Hidezoh: See-
Yamazaki, Harruo; and Akutsu, Hidezoh, 4,095,135, Cl. 313-493.000 Alan I. W. Frank Corporation: See-
Frank, Alan I. W., $4,04,952$, Cl. $264,328.000$
Aldridge, Clyde L. See Se
Bearden, Rob, J.; and Aldridge, Clyde L., $4,094,765, \mathrm{Cl}$.
208-8.000. 208.8.000.
Alexander. Marti
Foundation,
rin; and Odeyemi, Oluwasuyi, to Cornell Rescarch Alexander, Martin; and Odeyemi, Oluwasuyi, to Cornell Rescarch
Foundation, Inc. Method for prepiring p pesicicidally resistant rhizo
bium and agronomic composition thereof. 4,094,097, Cl. $47-57.600$.
 Lester, David; and Alexander, Robert R., 4,094,685, Cl. 260-2.50B
Alfor, Frank A. Se
Newton, David $\mathbf{W}$.; and Alford, Frank A., 4,094,320, cl 128.33.1.20.
Alorge Meals Corporation, Limited: See-
CCok

Cook, Llols, A. A. Revnoliss, Kim A.; and Mark, Werner J., Alfrey. Touther, JI; ard and Schronk, Walter J., to Dow Chemical Com.

 Alleau, Thierry. and Moracchioli, Robert, to Commissariat a 1 'Energie
Atomique. Circuit for the supply of condensable fluid to a solar Atomique. Circuit for the supply
engine. 40, 04.147 , ll 60.61 .0100 .
engine. 4,04,147, Cl. $6-641.000$.






Sandersont Gerald D., 4,094,401, C1. 198.-827.000
Allor Foundation See-
Gibert. Josen $\mathrm{G} .4,094,967, \mathrm{Cl} .424-28.000$.
Alt, Gerhard H. and and ranz, John E. E. to Monsento Company. Plan
Altair, Inc.: See-

 ratus for simultaneoussly pivoting, tilting and rotating a lining brick.
$4,094,418$, Cl. 2141.08 C lienpohl, Paul J. See-

Altenpohl, William F.; and Altenpohl, Paul J., 4,094,413, Cl
209-121.000. Alterpoh, , William F ; and Altenpohl. Paul J. Poultry weighing and
packing methoo. 4,094.413, C1. 209-121.000.


S.094,815. Cl. 252.415.000.
Scang. Theodiore P., and Callender, Robert E., 4,094,460, Cl
229.43.000.

PI 2
Smith, David A.; and Davidson, John J., 4.094,760. Cl. 204- Artt, Donald P. Elevator audible signaling device. 4,094,266, Cl.
i181.00R.

Smith, David A:;
181.00R.
Aman $\&$ Sohne: See-
St

242.125.200.
Amax Inc... See
Symens, Raymo

Amax Inc.: See-
Symens. Raymond D. Quene. Pau, Paul B. Chou, Eddie C. J.; and
Clark. Franklin F., 4.094, TS4, Cl. 2041088.000 .

American Brands. Inc.
Frazier
Eee-
Franier Thomas. Inc. Cecee- Ashworth, John Thomas: Chumney, Rich
ard Douglas. Jr.; and Meyre, Rene Wilhelm, 4,094,323, Cl. 131-
r.00R.
American Cyanamid Company: See-
Bernady Karel




American Optical Corporation: See-
McEachern, Rebert A.; and Cavigelli. George A., $4,094,310, \mathrm{Cl}$.
128-2.06G. 182.2 .06 .
American Sterilizer

American Sterilizer Company: See-
Moore, Vincent: and Levesque. Paul N., 4,094,019, Cl. 4-312.000.


Dola, Frank Peter; and Rossler, Frederick Willian,
II.
Lockard. Josesenh LaRue, 4,095,074, Cl. 200-295.00

Anamorphic LLd. See
Ehrenhaft, Franz F, , $4.095 .0099, \mathrm{Cl} .250-2055.000$



Zoic acids. $4,044,900$. Cl. $260-520.00 \mathrm{E}$.
Anderson. Todd B
See-






 field, Sr., to Du Pont de Nemours. E. I...and Company. UPholstered
furniture having improved flame resistance. 4,095,009, Cl.
428.310, 428.30 .000 .
Anstall Europaische Handelsgesellschaft: See-
Frutiger. Peter: and Gemperle. Bruno, 4,095 ,




Applied Research Lat. 4.094,905, C1. 260.561.00









Artti, Donald P. Elevator audible signaing
11664.000 .
Ashai Kasei Kogyo Kabushiki Kaisha: See



Ash, Frank Robert: See
Ash, Whewell Frank; and Ash, Frank Robert, 4.094.356. Cl.
165.39.000. Ash, Whewell I rank; and Ashh. Frank RRobert. Geothermal heat recov-
ery system. $4,094,366$, Cl. 165 . -39.000 .


 Ahenes, Claude and Lander, Jean Pierere to Thomson.CSF. Method
of synchronizing a pulse code modulation (PCM) junction and an
arrangein
 America, Army. Random state generator. 4,009, 192. Cl. 331.78.000. De Vries. DDonald L.: and DeJovine, James M., 4, 4094,799, Cl. Atomic Energy of Canada Limited: See-
Schulson. Erland Manwerlili and Cameron, Donald James.


 Cli. 424.92 .000 .
Augst.
Daubensbuschiger:

 David $\bar{F}$., to Ford Moror Company Vaprized liquid fuel delivery
and metring syster. $, 4094,275, \mathrm{Cl}$. 123 3. 34.100 A . and metering system. 4,094, 27, C1. $123-34.00 \mathrm{~A}$.
Salmonald L. Silliam E.; and Auletti, Ronad
343-729.000 1 iam E.; and Auletti, Ronald L., 4.095,230. Cl.

ustin Hoy and Company, Ltd. See-.
Harper I John $A . ;$
403-14.000. and Williams, Terence V., 4.094.611, CI.


See-
Haris. Rano J., Jr.; and A verette, Julius P., Jr.,
B F Kogyo Kaisha. Led. (Bi Efy Kogyo Kabushiki Kaisha): See-
Hirano


Bergeron. Ned $A$.. $4,0-94,340$, Cl. $137-625.660$.

 devicess 4,095,257, Cl. 358-113.000.
Baier, Walter: See-
von Pieverling, Klaus; Sepp, Hermann; and Baier, Walter,
$4,095,047$, C1. 178 -69. ion. Bailey, Charles ...to UOP Inc. Combination mumer and catalytic
converter having low backpressure. 4,094,645, Cl. $23-288.0 \mathrm{FC}$. converter having low backpressure,
Bakardijev, Stefan Todorov: See-
Malino ski. Yordan Malinovksi, Yordan Pertory, Bakardjiev, Stefan Todorov, and
Martinov, Georgi Mirchev, 4,094,269, Cl. $118-49.100$.




Ballentine, Earle W. Cerami---glass burner, 4,094,297, Cl. 126-39.00J.
Baltimore Spice Company, The: See-

 method, 4,0.04,45S, Clination ship
Bandoh. Tadaki: See-

Kobayashi, Yoshiki; Bandoh, Tadaaki; Maejima, Hideo; and Ya-
suda, Hajime, $4,095,268$, Cl. $364-200000$.
 Barasch, Kennetel S. Signalling device to be used with a sport imple-
ment for detecting and indicating the proper or improper use thereof. 4.094,504, Cl. 273 3.-2n.0.0 A. A.
Barker. Alan Anthony:

Barker, Alan Anthony: See-
Power. Ronald Frederic; Barker, Alan Anthony; Martin, Michael
Charles; and Charles; and Grover, Brian Cliford, 4,095,057, Cl. 179 -175.10A
Barnett, George Henry, to 1 Cl Australia Limited. Stabilized nitrato alkano explosive composition 4.094,714, Cl. $149-88.000$
Barr, Irwin R., to AAI Corporation. Method of assembly


 Alky lation of aronmatics using amphora shaped catalysts. 4,094,922, Beinglass. , 4 .
Cl. $260-671.000$



Balk, Edward Nicholas; and Argade, Shyam Dattatreya,
4.094,669, 1.75 . 108.000 .





Batchelor, Johr Frederick, See-
Hodson. Harold
C. 424 .-4..000. Bates, Lestie Reymmond and Jenkins, John Michael, to United Kingdom
of Great Britain and Northern Ireland, The Secretary of State for of Great Britain and Northern Ireland, The Secretary of State for
Defence in Her rritanict Majesy's Government of the. Production
of 5 -nitronterrazole salts. $4,094,879$, Cl. $260-2999.000$.



compounds by cationice polymerization on
bonded chains.4.044,830, Cl. 260.40 .
Bauer, Adolf: See-
Bauer, Adolf: See
Weber Kall
Frinz; Bauer, Adolf; Danneberg, Peter; and Kuhn,
Bauer, Donald $J$, Fisele, Judith A.s. and Eichboum, Barlane R., to
United States of America, Interior. Acid process for recovery of
alumina frotes of America, Interior. Acia proct $4,094,955$. Cl. 423-123.000.
Bauer. Fritz: See-

 house Electri
324.33.000
Baugeselschaft










and control system. $4,095,050$, Cl. 179-2.00A.
Beagley, George. Portable adjustable outdoor cooking accessory







Beeby. Philip J., to Syntex (U.S.A.). Inc. . 3 Propenyl derivatives of
cephalosporin, componitins and their use. 4.044.978, C1. $424-246.000$
 America,
Begley. Richo.
$F$ Begley, Richard F.; and Kurnit, Norman A..to United States of Amer
ica, Energy. Resonantly enhanced four-wave mixing. $4,095,121, \mathrm{Cl}$.
int-88.300.
 333.-7.00R
3ehrenz, Woifgang; Schapel, Dietmar; and Dahm, Manfred, to Baye

 Cl. 210.40 .000 ,
Beinglas.
Schatilere



Boros, Victor Bert, 4,095,165, Cl. $323-17.000$.
Ching, YYuu.Chau: and Messerschmitt, David Gavin, 4,095,052, C1 177.15.0AS.
Cook. John
350.-9.210. Crue.-. Charles R., $4,095,051$, Cl. $179-15.0 \mathrm{BS}$
Damen



 Space Administrantited Praceses for rerrcaza, National Aeronautics and
polyimides. $4,044,862$, Cl. 260.65 .000 .
 elhanol from cel
Cll.
Clles. Way. Woons.










Bepko, Stephen J. See-
Baldim, Ciary
D.;
Dand




Bernady, Karel Francis; Poletto, John Frank; and Weiss, Martin Jo-
seph, to American Cyanamid Company. 1 -Alkoximino-2-(w-substitut-

Berndt, Robert Cearles, and Eady George B., to Dar. Dar, Inc. Core
stripping process for depleted rolls of newsprint paper. 4,094,472, Cl.
242-44.00R. 242.-4.00R.
Berrus,
frent
for , to Phillips Perroleum Company Cataly

 Vapor deposition or photoconductive selenium onnto a metallici. sub-
strat enavi.
gh-1.500.





Bhalucharyya, Arup; and Silverman, Ronald, to International Business
Machins Corporation. Fied effect transistor lost film fabrication
process. $4,04,057$, Cl.

 ing the sodium sulfate content of halite. 4,094,956, C1. 423-179.000.
Bielomatik Leuze \& C . SeeKunzman, Otto. 4,094,500, Cl. 270.79.000.
Bigss. Herbert W. Elecrically powered vehicle. 4,094,377, Cl. 180 6SSoco.

Bindicator Company S: See-
Fleckenstein, Paul P., $4,095,064, \mathrm{Cl}, 200-61,210$
 Birch, Alexander A. Screnn door assembly. 4.094,099, Cl. 49-163.000.
Birminham, Doug as William, to TRW Inc. Aperture plug. 4,094,43. Birmingham, Dougla
Cismuth 1 . 15.5000





 1 Improved acr
26 anc.
londer. Ton.

compounds and theiress cordense production of phenol silicoformate products. $4,094,825$, C1. 260 .
2.20).









Board of Trusteces. Michighan State University. The: See-
Marquez Bernard James, 4,094,972, Cl. 424-105.000.



Sov, Vyachestiav Dmitrievich; Kudinova, Sorya Ivanovnaa
Sizova, Lubor Sergeva; Rezniova, Sveltana Stepanouna
Ivanov, Georgy Nikolaevich; Tsekhanovskaya, Nina Alexan



Bochumer Eisenhutte Heintzmann GmbH \& Co.: See-
Blumentan, Cunter; Bohnes, Kariheinz; and Marr, Peter,
Bumenthal, Gunter; Boinnes, Karlheinz; and Marr, Peter.
$4,094,154$, Gl.


$92-S 1.000$.
Porkin-Elmer \& Co Gmber D., Jr., 4, 4, 044,230 ,



ing intraocular
424.26...00.
Body Guard Inc.:
Body Guard Inc. See-
Steinberger, David 1., 4,094,379, Cl. 181-284.000.
eringer Ingelheim GmbH See-
Renth Emst-0.to Mentrup. Anton; Schromm, Kurt; and Frolke,
Wibelm
Wilhelm, $4,094,980$, Cl. . $4244-250.000$.
Weber, Karl-Heinz; Bauer, Adolf; Danneberg, Peter; and Kuhn,
Weber, Karl,-Heinz; Buaer, Adolf; Donneberg, Peter; and Kuhn,
Franz Josef, 4,094,984, Cl. $424-269.000$. Boeing company, The: See-
Haris, Waller Jefferson; and New.
Harris, Walter Jefferson; and Neufeld, Ronald Murray, 4,095,181,
Cl. 324.238 .000 .





Boguth, Waller; Levenberger, Hans Georg Wilhelm; Mayer, Hans
 Sohnes. 55.000 .
Barlineinz:
Blumenthal
Blumenthal, Gunter; Bohnes, Karlheinz; and Marr, Peter,
4,094,153, cl. $61-45.000 \mathrm{D}$. Bumenthal, Gunter. Bohnes, Karlheinz; and Marr, Peter,
4.094, 154, Cl. $61-45.00 \mathrm{D}$.





 trievich, Radilov, Stanislay Vyacheslayovich;, and Bogdanov
Alexand Bondarenko, Raisa Ivanovna: See- Sirok



 novnai and Adomanite, Yanina Antono. 4,0095,032, Cl
526.11 .100
Caesar. Fur guide for a
 Bonsack, James Paul; and Walker, George R. to SCM Corporatio
Oxidation of ferric chloride from selective chlorination of titaniferou
malerial


Masners. Standey $\mathbf{H}$ : and Borbonus, Gerhard, 4,094,941, Cl.



 Borisov, Vladimir Alexeevich; Akhmedzhanov, Ravil Abdrakh-
manovich, and Chistyakov, Jury Vsevolodovich. Device for auto


 Borsum, Dietrich See-
Richter Ehard and Bo
 Bose, thilip R., to chevron Research Company. Process for removing
unfilterable solids from an oil. 4.094,770. Cl. $\mathbf{2 0 8}$.251.00R.
Bosman Industries, Inc.:. SeeBosman Industries, Inc.: See-
Boswell, Burl; and Manhein, Heyman J., 4,094,295, Cl. 126-25.00R.
Boston Digital COrporation: See-









Cl. 260.19.0UA.
Bowman, Raymond D. Se-
Camp. Vernon D.; and Bowman, Raymond D., 4, 4, 094,398 , C
ard. . 10.0 ernon D.; and Bowman, Raymond D., 4,044,398, C
and




Bracken, Robert L., to Sundstrand Corporation. Variable output cen- Brun, Didier: See-
trifugal pump. $4.094,613$, Cl. $415-17.000$.

 lan, to Glaxo Laboratories Limitec. 3 -Carbamoyloxymethy or N -
methyl-carbamoyloxymehyl 7 - $($-2-abboxymelto





 conveying fine material. 4,094,400, Cl. 198-607.000. Bugaut, Adrree. and Fourcadier, Chantal S., to L'Oreal. Meleamino-
Braunn Gert: See-
phenol sulfonamides as couplers in hair dye compositions. $4,094,635$, Braun, Ger: See- Brann Erst: and Braun, Gert, 4,094,400, Cl. 198.607 .000
Braun, Rolf, 10 Roland O Issemaschinenfabrik Faber \& Schlecher AC.

Brechner. Ernst: See
Onmacht
219.283000 Helmut; and Brechner, Ernst, 4,095,086, Cl .
 determine the position of movable bodies with respect to a reference.
$4,095,179$, C1. $324-207.000$.

 Brenen. Max, 10 . Brenner. Max. Protein-saving foodstuff and fodder
additive. $4,095,000$, Cl. 426656.000 .






thier-Miag GmbH: Se-
Mellor, Jaachim, 4,094,552, Cl. 302 -29.000.
unch, Laverne R., to cGR Mecical Corporation. Means for stepping
-ray receptor in direction opposite to position change of source.



Hurcham, Gerald C. Detachable wall mounting system. $4,094,114, \mathrm{Cl}$.
52 -489.000.
Burger, Thomas J., to Minnesota Mining and Manufacturing Company.
Reusbel solar control film and method of making. $4,095,013$, Cl.
428.522.000


T.; and Burk, George A., 4,094,880, Cl. 260 Burke, George K. LeFevre. Robert J.; and Thomas, Robert E., to
Burron Medical Products, Inc. Electronic control means for a plural-






Brix, Hermann Josef; and Wienand, Hans-Jurgen, to Girling Limited. Burroulins Woselch Martin, 4.094,727, C1. 156-505.000.





with mono-sulphonyloxycarbamate compounds. 4,094.863,
77.51 .508 .










Cairnes, Denis Alan; and Malthy, Derrick John, to Cairnes Maltby
Associates Limited Shelving and display systems and the like. Associates Limited. Shelvin
4.094.417, Cl. 211.183 .0000
Cinines Mality A sociates
Cairnes Mailby Associaites Limited: See-
Cairnes. Denis Alan; and Maltby, Derrick John, 4.094,417, Cl.

Mueller. William A., 4,094,775, Cl. 210-22.000.
Callender, Robert . Se.
Scang, Theodore
229.43.000.


 priced configiurations. 4.094,398, Cl. $1944-10.000$.
Campbell, John Edward; and Thompson, Gerhard Robert, to Inter
 containing spe
coss-230.
Campell
John
Campbell, John Scolt: See-
Kolker Call R.i. Campell, John Scott; La Fond, Robert L; and
Smith, JaMi, Campeell So So Coumpany: See-
Hildebol. William M.; and Hundt, Murray T., 4,005,001, Cl.
426-656.000.


 Cannarozzo,
40. 10.000 .
Canon Kabush
Canon Kabushiki Kaisha: See-
Malsumoto, Seichi. 4.0.55.241. Cl. $354-31.000$.

Sato, Yasuhisai, Tsuji, Sadahiko; and Tanaka, Katsumi, 4,094,586,
ci. 350.184.000.






 Carmi, Arieh; Chang, Zung S.j and Rayeski, Thomas J., to Corning
Glas Works. Glass pressing plunger cooling. $4,094,657$, CI.
65-833.000

 Carrock, Frederick Elias; Perron, Peter James; and Zukowski. Edward
 Carol., Mathew Ralph. Skate board braking and steering system.
$4,094,524$, Cl. $280-1.200$.

 with a set of peripheral units repetitively scanned by a common
control unit. $4,055,266$, Cl. $364-200000$ control
carrus. Pete
3472.000 .
Casey, Donald James: See-
Hufman, Kenneth Reberti, Casey, Donald James; and Thomas,
Walter Moreland, 4,094, 847 , Cl, $260-29.40$ R.



avalier Corporation: See-- Borman, Raymond D., 4,094,398, Cl.
Camp
194-10.000.
Cavigelliliciourge A. See-
McEachern, Robert $\mathbf{A}$.;
C28-2
edro, Vite ill: Kinos,

Celanese Corporation: See-
Demaratino Ronald $\mathrm{N} ;$ and Conciatori, Anthony B., 4,094,795, Cl.
$252-8.5 \mathrm{R}$.
252-8.5SR.
Cellinat Alifons. J . Cleaning apparatus for selected small areas of a
swimming pool. 4,044,031, Cl. 15-1.700.














 Cl. 65.83 .000 .
Chas. 0.
Larson Co .

Larsonson Charles S. . 4 .,094,415, CI. 211.57 .100 .
Charles Stark Draper Laboratory, Inc., The: See-
Watson, Paul Cif and Drake, Samuel H., 4,094,192, Cl. 73 -133.00R.
Charlesworth, John Philip: See-













Ching, Yau-Chau; and Messerschmitt, David Gavin, to Beil Telephone
Laboratories, Incorporated. Digita speech interpolation trunk prior-
ity rate



 chi; Machara, Mitsuhiro; Saito, Katsuhide; and Ozaki, Takayuki,
$4,094,991$, C1. 424 - 309.000 .

 | 74.5 .00 R |
| :--- |
| Chou |



Locking nut assembly with deformable locking sleeve. 4,094,58, C.
308. C .0 OR .


Chvala, william James: See-
Clarke, Richard Alen;
minco Lit. See-
Charlton. Thomas L.; and Redden, Robert F., 4,094, 153, Cl. $204-$
105.00,


60.64. Re00. . Rymond; and Jacquelin. Roland, $4,094,369$, cl.
B77.
B.

172 -147.000.
Bocher
204-298.0end; Luzet, Daniel; and Sella, Claude, $4,094,764, \mathrm{Cl}$.
Boucher, Bermard; Luzet, Daniel; and Sella, Claude, 4,094,764, Cl.
20429.8.000
monealth of Australia, c/o The Department of Health, The:


Compagnie Industrielle des Telecommunications Cit-Alcatel S.A.
See- Coz, Gerard; and Marchalot, Jean-Noel, 4,095, 197, Cl. 333.
Le
28.00R.
28.00R.
Conciaiori, Anthon B. See-
DeMartino. Ronald

Conciatori, Anthony B. See-
DeMartino Ronald N.; and Conciatori, Anthony B., 4,094,795, Cl.
252.8.5RR.

Ciba.Geigy Corporation: See-
Hecce Hugo, $4,0904,402$, Cl. 198.847 .000 .
Conrad, Ulrich, io Daimler-Benz Aktiengeselschaft. Lubricating oil
Conrad, Ulrich, to Daimler-Benz Aktiengesellschaf. Lubricating oil
filter with an upright filter pot. $4,094,791$, Cl. $210-316.000$.
Karrer, Friedrich: and Faroooq, Saleem, 4,004,993, Cl. 424-337.000.
Karrer, Friedrich, and Faroog, Saleem, 4,094,993, Cl. 424-337.000.
Miller, Ralph, 4,094,958, Cl. 423-238.000.


260.23.00R. D. . $4.04,855, \mathrm{Cl}$. $260-45.8 \mathrm{NT}$.
Citizen Waack John Company Limited: See-


Nomura, Yasushi; and Morokawa. Shigeru, 4,094,135, Cl. 58 .
2.mor.
Nomura. Yasushi; and Nishikubo, Yasuhiko, 4,094,139, cl. 58 .
So.00. RUnuio; Nakayama, Yasuaki; Hirai, Yoshiro, Aoyama,
Tanai,
Shigeru; and Kashima, Yoshinobu, 4,095,129, cl. $310-49.00 \mathrm{R}$.




280.47.350
Clarke, William J. to American Cyanamid Company. Composition of
materer useful for earthen formation treatment. 4,094, 150 , C1. 61 .

H.: and Vanseelant. Marc G., $4,094,132$, Wi. S6-14.400.
Clayton, Renard William: See-
Hayden, Percy; and Clayton, Richard William, 4,094.889, Cl. Hayden, Percy; and Clayton, Richard Wiliam, 4,004,.89, C1.
26-348.340.
Clelland. David Watson, to United Kingom Atomic Energy Author-


 Coast, © Clark, Inc.: See-
Einhorn, Ruediger, 4094,490 , Cl. 248-489.000.
Cocuzuza, Gioacchino; and Musso, Giuseppe, to Societa' Italiana Resine
S.I.R.S...A. Porcess for producin hydrogen and sulfur from hydro-
 Cohen, Jerome B. and James. Michael I.., to Northwestern University.
Apparaus and methor for delermination of residual stress in crystal-
tine substances. $4,095,103$, C1. $250-271.0 \mathrm{CH}$.
 ration. Antioxidant for foods. 4,094,999, Cl. 426-547.000.
Coiner Willian A. Disposable container for heatable food products. 4.094,434, .l. $222-90.600$.







Colole, Judson C.; and Morain, Eldon W., 4,094,536, Cl. 285-21.000.

 cook, Arhur W. Skipping exercise device. 4,044,502. Cl. 272.74 .000 .













Willisms. Gre gory $\mathrm{J}, 4.4094,703, \mathrm{Cl} .136-89.0 \mathrm{TF}$.

Alexander, Martin; and Odeyemi, O.
47.7.60.0.


C. $55-83.000$.
Cores. Inc. See-
Schlegel, Norman H.;


Courland Boot Jack Co.. Latd. See-
Parlante. Frank; and Parlante, Henry, 4,094,450, Cl. 224-2.00B.
Beachem, Ronald; and Covinglon, Dennis, $4,095,050$, Cl. 179 -
2.00A.





 Crow Arthur F. J. Method and apparatus for conv








Czerwin, Edward Peicer, to Du Poon de Nemours. E. 1 .and Company,













Dar-Mar. Frin. Joss
S4.00R.





Sminh Dopavid A; and Davidson, John J., 4,094,76, Cl. 204 Davis. 18.00 CiO E. E . 10 Unarco Industries, Inc. Roller skate toe stop con.





Decocone. Frans J.G. C. Muijs, Cornelis G. M. Van Eeche Roeser H

 Detapp Di-2.0.wo Fiske, io Formica Corporation. Low pressure mela-
 Method Chares FF, to United Slates Trading Internaional, Inc.



Dena.









 Brand, Bernd, Nauroth, Peteri, Pelers, Alberi; and Reinhard.
 De Vires. Dionald L.a and Dejovine. James $M$. To Alantic Richrield










ieterich, Dieter: See-
Wencel. Woilgang and Dieterich, Dieter, 4,094,842, cl. 260





 insel Dition Aber F. to Molex Incorporated. Sequencing swich assembly.


 Dobson Park




ece-holding fixure for honing machine. 4,094, 103, Cl. 5

 Cysenter Educational Systems: Inc: See-








 Trepaier, Dona


Eckellis.i.ithand: Se

Ed. Rond Uphuse. Gunerer, 4,044, 812, Cl. $2525-321.000$.






$112-228.000$
Ehara. Mitsuo. See-
Takation Tadao

Drohonirecky. Walter. Tell it to the judge game. 4.004,510, Cl















Knofel, Harsutt; and Ellendt, Gunther, 4,094,907, Cl. $260-1$




and method $4,094,163$, cl. 61 (111.000.








Eastman Kod cak Company: See-



971 O.G. 32
 Schmitt, Werner; Purrmann, Robert: and Jochum, Peter, 4,005,018,
Clis. 11.1000
Espenschied, Helmut, to Robert Bosch GmbH. Hydraulic system for an

Esselitepac Aktiebolag: See-,
Ganholt, Bo Olov, 4,094, 121, Cl.
S3-22.00R
Evans, Grover C. Apparataus for washing and sanitizing containers.
4,094, 4,094, 329, Cl. 1344.56 .00 R .
Evans. John $W$. Engine preoiler and lubricant reservoir. 4,094,293, Cl.

Svers, William J.; Heinsohn, Howard H., Jr,; Shuster, Edward, J; and
Schmilt, Frederick Louis, to International Favors $\&$ Fragrances Inc.
 Exine. Roger Edesel, 10 Borg. Warner Corporation. Safety sliter for





 Vermon, Lonnie W. 4, 4, $04,640, \mathrm{Cl}$. 48 -197.00R.
Langer, Arthur W., JT., $4,094,818, \mathrm{Cl}$. $252-429.00 \mathrm{C}$.

MCVICker, Gary B.; and Garten, Robert L., 4,094,821, Cl. 252 -
466.0 PT .





Bruno, Roberto; and Faccenda, Valerio, 4,094,6
Facon: See-
Moulinoux, Andre, $4,094,198$, Cl. $73-460,000$



Fancher, Llewellyn w., to Stauffer Chemical Compay
phosphetes and phosphonates 4,044,974, C1. 424-200.000
Farinon Electric: See-

Farley, Ryy: See-
Flain, Robert James; and Farley, Roy, 4,044.5s1, Cl. 302-26.000




 Federation of Fly Fishermen: See-
Whitlock, David W. $4.094,270$, Cl. $119-3.000$

gesellischaff. Process for the printing with developing dyes. 4,044,637,
Cegley, 8 Charles R.; Morrow, Richard H.; and Naylor, Arthur G., to Feglev, Charles R.; Morrow, Richard H.; and Naylor, Arthur G., to
Western Electric Co., Inc. Methods of and apparatus for conveying.








Ferrell. Herbert
177.210 .00 .
Eerrell
177-210.00R.
Ferrell. Westey; and Shichman, Daniel, to Uniroyal, Inc. Breaker
reinforcing tape for belted pneumatic lires, and tires made therefrom.





 Filimonov, Vikior Dmitrievich: See





Finkensiep. FFiredhelm; Meye, Reinhold Walter; and Thor, Gunter, to
Henkel Kommanditgesellschafit aur Aktien. Striped soap its
tion




Firestone iri \& R Rubber Company. The: See-
Valaits, Joseph Kestutis; and Harwood, Harold James, 4,094,860,
ci. $260-47.00$,
Fischer. Artur. Method of securing an object to a low-strength support
structure. $4,094.054$, Cl. $29-460.000$.


Fischer \& Porter Company: See-
Herzl1, Peter J., 4.094, 94, Cl. 73 -194.0.0


Fitzgerald, Patrick Henry, to Du Poni de Nemours, E. I., and Com-
pany. Process for convering premilled quinacridone to pigmentary
form.


Flaig. $\begin{aligned} & 343.7 \text { ITch } \\ & \text { Bremer See }\end{aligned}$
Bremer, Woilfang, Heintz, Frieder; Flaig, Ulrich; Kiencke, Uwe;
and Glauert, Wolfram, 4,095,179, Cl. $324-207.000$.

menn
3.2.2.000.
Flanigan, Richard J.; and
lanigan, Richard J.; and Hooton, Robert Duane, to Houdaille Indus-
Inies, Inc. Hydailic system for tensioning band saw blades.
$4,094,218$, cl. $83 .-62.100$. $\xrightarrow{4,094,218, \text { Cli. } 83.62 .100}$ Flavel Proprieary Limited:










 Peters.0n, Don G.; and Harper, Judson M., 4,094,633, Cl.
433.118.000.
Ford Aerospace \& Communications Corporation: See-, Ford Aerospace \& Communications Corporation: See-
Ramnarace, Jawaharlal, 4,044,71), Cl 149-4.000


206. 34.4000
Ford Motor Company: See-



Formica Corporation: See-




Forte, Anthony D. See-
Fleether, Roy W.
lit
4.094, 259, Cl. il $12-120.000$.

Naughton.
65.81 .000
Fourcadier, Chantal $S$ : See-
Bugaut, Andree;

Frasa. Lewis. M.; and Bleha, William P. Jr., to Hughes Aircraft Com-
pany. Process for low temperature stoichiometric recrysallization of

Fraiofi, Anthony $\mathbf{V}$, to Galileo Electro-Optics Corp. Electron multi-
plier. $4,095,132$, ci. $313-103.0 \mathrm{CM}$.

 assembly having strip terminal and mounting member adapied to
ground dynamelectic, machine casing on similar conductive sur-
face. $4,095,073$. Cl. 200-293.000. rank Plasser Bohnoaummaschinen-Industriegesellschaft m.b.H.: See-
 $\underset{\substack{\text { F9a.0EC. } \\ \text { 128.-24. } \\ \text { S.000. }}}{\text { Howard. Urine specimen collector. 4,094.020, } \mathrm{Cl} \text {. }}$ $128-294.000$.
Franz Berenberg See-
Broder, Gerhard, 4,094,048, Cl. 29.6.000

Ujino, Shin-ich
Numata
o....
yuisawa Pharmaceutical Co., Ltd. See-
Tanaka, Kunihiko: Kurita, Masary; and Nishiwaki,






Fukumoto, Ryoichi; and Igarashi, Toshiro, to Aisin Seiki Kabushiki
Kaisha, Free movement preventing device for window glasses of
automotieses 4,094, ,.ment Cl. 49-348.000.
Boyhmon.t.: Doee- S.; and Warshawsky, Jay, 4,094,626, CI.
432-58.000.
Fuller, Everett J., to Exxon Research \& Engineering Co So Separation or
bilumen from tar sands using sulfur and water. $4,094,688$, Cl. 208 .
Mud, Harry, 10 Modular Products. Vehicle placarding apparatus.
$4,094,083$, Cl. $40-336.000$.
Furrer. Edwin, to Rieier Machine Works Limited. Method and appara-
Usu for controlling an open-end spinning machine. $4,044,133, \mathrm{Cl}$.
S75

Franz, James H. Jr.: See-




 tus of changing characters on a font and preparing a font duplicate.
$4,094,680$, Cl. 96.1 .000
 Smoking article and method. 4,094,323, Cl. 131-8.00R
reedman, Harold Ha: See-
Kroposki,
OLrraine M. Yoshimine, Masao; and Freedman, Harold
 Frey, Gerald J. Flexibe mag
4.0.4.599, Cl
Fricker
35.
Fricker, Paul: See- Ser
Ullmann, Werner; Fricker, Paul; and Guenin, Maurice. 4,095.079, Ulimann, Werner; Fricker, Paul; and Guenin, Maurice.
Il. 21. - 69.0 OE
Fried. K rupp Geselschaft mit beschrankter Haftung: See-








thanephosphonates. $4,094,928, \mathrm{Cl} .260-944.000$
GAF Corporation Se-
Biranowski.. Serome B.; and Lorenz, Donald H., 4,094,869, Cl






portable pedestals. 4, 4,94,484, Cl. $248 \cdot 162.000$.
Gallagher. Robert C. to
to

 reduced. contact bounce and shorter arc ume. 4,095,200,
353 .-19.000.
Ganholt, Bo Olov, 10 Esseltepac Attiebolag, Method and apparatus for
 Garlinghouse, Leslie $\mathbf{H}$.
Garrison,
Charles G .:
 Garten, Robert L.:. See-
Mc Vicker. Gary Bi: and Garten, Robert L., 4.094,821, Cl. 252. McVicker. Gar
46.0 P .
ast, Lyle E. See-
Searhar-Owen Indua ; and Gast, Lyle E., 4,094,838, Cl. 260-22.07N King, David W., 4.094,359, Cl. 166-65.00R.

PI 12

 Gema AG Apparate 46.0 . 14.0 HE .

Fruti General Cable Corporation: See
Thompson. Paul F. $4,095,039, ~ C 1 . ~ 174-23.00 C . ~$

2.00R.'
Genemics Corporation: See- Dederick A., 4,095,045, Cl. 178 .
Salmond. William E.; and Auletti, Ronald L., 4,095,230. Cl. Salmond. Will
343.7.799.000.
General Electric Company: See-
Bellamy. Winthrop D.. 4,094,742, Cl. $195-33.000$

 3ill. 17.0LM.
Will
.




Geng, Walter: See-., Erich; Muller, Wolfgang; Schupper, Hans; and
Todtenhaupt
Geng. Waller, 4094,638 C. Genna, Sebastian; and Pang, Sing-Chin. Transaxial radionuclide emis.
sion camera
sion camera apparatus and method. 4,099,107, Cl. 250-363.00S.
George, David Weinschenk, to Wean United. Inc. Apparatus for
streching and stripping belting in a multiplaten press. 4,094,619, Cl.
strecthing and stripping belting in a multiplaten press. $4,094,619, \mathrm{Cl}$.
425.135.000.
George. K .... to Procter \& Schwartz, Inc. Oscillating feed assembly









Gess, Lasry, C. Packeaging machine. 4,094,125, Cl. 53-29.000.





tion. Developer composition comprising aminolyzed coated carrier.
4.044.830. Cl. $252-62.10 P$.




 Gilber, Joseph G..to A.tlor Foundationt Iodine-polyvinylyyrrolidone
solid product and method of preparation. 4,094,967, C1. 424-28.000.
Gilberton, Paul: See-


 4,094, $763, \mathrm{Cl}$. 204-192.00P.
Gille Arlan: See-
Lilles Atlan: See - Sacques, 4,094,314, Cl. 128-142:200.
Le Cornec, Jon
 John Delano, 4,094,778, Cl. 2i0 238.00A. Joseph; and Sherman,
Giordano. Costanzo. Filter for paint or other liquids. 4,094,787, Cl .
210.103.000. Giordano. Costanzo. Filter for paint or other liquids. 4,094,787, Cl .
Liraud. Gaobriel. Miniature system for central heating and water heat-

Giring Limited: See
Brix, Hermann Josef; and Wienand, Hans-Jurgen, 4,094,389, Cl.
188.73 .










Goddard, Terrence P.:Thatcher, Donald $N$, and Garrison, Charles $G$.,
to Teledyne MCOOmick Selph, an operating division of Teledyne
Industries Inc Consel


 pattern. 4.0.55,2,23, Cl. 346 C-75.000.
Goldberg, Arhur: See
 Wright. George C.; and Goldenberg, Marvin M., 4,005,023, Cl.
542422.000
 $=2=2=5$
 Goodman, Lewrence Alan, to RCA Corporation. Liquid crystal matrix
display device
vith transistors. 4,094.582, Cl. $350-333.000$.





 Murk, A/S: See- Torben; and Ehrenskjold, Nils Olur, 4,094,614, Cl.
M16-140.000. Gorin, Everetit to Continental Oil Company. Coal liquefaction product
deashing procs. $4,04,766$, Cl. 208-10.000.
Gornik, Erich. See-
 rog. Sander,: Seendra Kumar Naranbhai, 4,095,122. Cl. 307.88 .300
Toh, Eitis, Torley, Jozseff, Szeberenyi, Szabolcs; Palosi. Eva;

Cossink, Robert Georgs. See
van Ass, Henricus Matheus



 Gotoh, Kazuhiko, Kawashima, Hiroshi; and Katayama, Tsuyochi, to
Nippon Teleraph and Telephone Public Corportion. Multis.sage
switching network in a telecommunication switching system.

Gould Inc.: See-
DiMarco, Bernard, 4,095.075, Cl. 200-308.000.

JuNE 13, 1978
Gourley. Charres R. Loading block for muzzle-loading gun. 4,094,098,


Granite Staie Machine Co. Inc. See-






Greff Hans: See


Lugoge Gordon lan: See- Cok, Martin Christopher; and Gregory, Gor-
Gregradshaw, Janice







Grimey. Arhur
Shoij. Kouichi; and Grimley. Arthur W. T., 4,094,549, Cl.
29.-17.00.
Gilem Hendrik; Tuma, Alois Vaclav; and Harrood, 299-17.000.
Grenewe. Wilem Hendrik: Tuma, Alois Vaclave and Harwood,
Leopold Albert, to RCA
RCA increased
358
Gronen. 1000
in










Guenin, Marice: : See-
Uilmann, Werner; Fricker, Paul; and Guenin, Maurice, 4,095,079,
Cl. 2li.-69.00E.
Guenzel. Wolfgang: See-
Felkel. Gerfirid. Maier, Gerhard; Guenzel, Wolfgang; and Waitl.
Guenther, $4,095,116$. Cl. 250 . 5111.000 .



Guillot, Edmund: See-,
Benoil, Roland A. and Guillot. Edmund. 4,094,024, Cl.
S.66.000.









iswell, H. Eugene; and Hardwick, Danny R., 4.095.209, Cl. Harron Russel
Johnson. William A.

 403.-14.000.
Harper, Judson

Harper. Juson M. See-
Peterson M. Se. Ge. and Harper, Judson M., 4.094,633, Cl.
432.-118.000. Harrell. Roberr C. Mobile insect collecting and destroying apparatur.
4.094.088, Cl $43-144.000$ 4.044 .088, Cl. 43-144.000.
Harris Corporation Seo






 4,094, $106, \mathrm{Cl}$. $\mathrm{Sl}-214.000$.
Harris. Wailer Jeferson; and Neufeld, Ronald Murray Harris. Walter Jelterson; and Neufeld, Ronald Murray, to Boeing
Company. The. Rootang pot shaped eddy current probe in which
only a small fraction of the lip forming the ruter core in



 polyolefins. improved polyolefin compositions, and modifier compo
sitions.,.094,927. CC.
Hatridegen.



 Harti. , Johanneses: See-




 Harwood, Leepold Albert: See-
Groeneweg., Willem Hendrik. Tuma, Alois V
Leopold Albert, 4.095 .255 , Cl. $358-17.000$
Hasegawa, Kalsuji, mending surface irregula
Hall.125.000)
Haseler. Helmut; and von der Haseler. Helmul: and von der Kall, Gunter, to Agfa-Gevaert Aktien.
geselischaft. Dosing device for pulverulent material. $4,094,448$, Cl
222 .-34.000.




Hattori, Tadashi, and Nakase. Takamichi, 10 Nippon Soken, Inc. Air-
ffel ratio ajjusting system. 4,044.273, Cl. 123-32.0EE.
Haugen, John H. See-






Hayshi, Kazuya: See-
Yasui, Seimei: Hino, Minoru: and Hayashi, Kazuya, $4,094,836, \mathrm{Cl}$ 2ati, 2 zeimect.
2ashi, Masao: See-




 producing thereof. $4,094,437$, Cl. 2200.374 .000 .
Hayden Percry and Cliayton Richard Will
aliam, Industries Limited. Restoring selectivity of al alkali meeal promicel
silver catalysts and production of olefine oxides. $4,094,889$, Cl.
260.348 .340 .



 Hazar. Mithell M. Method for producing artificial denture. 4,094,067,
Heard.-2.000. Heard. Robert Arthur Henderson. Securing device. 4,094,487, Cl.
248-231.000. Heke. Hugo, to Conrad Scholtz AG. Inlay fabric. $4,094,402, \mathrm{Cl}$.
198.847.000. Hehl. Kalran. Die closing unit with oversize injection molding die.
$4.094,621$, Cl. $425-190.000$.
 Heling, Gerald Michael. to International Business Machines Corpora-
tion. Sraiaht-line opical scanner using rotating holograms.
4,0 ons 4,04,576, Cl. 350.3 .7 PDical scanner using roating holograms.
Heilmann. Roland, to Feso-Maschinenfabrik Gotlieb Stoll, Firma
Bayonet connecting system







lin Delano, $4.094,550$. Cl. 301 I-37.00R.
Hentict and Hemby, Frank-










Feess. Erich; Gronen, Willy: and Hertel. Hasso, 4.094,637, Cl .
8.7.i.



Dautenbuschel, Werner; Thomas. Alfred; Hess, Dieter; and Augst,
Hans-Rudiger. 4,094,620, C1. 425 -100.

$260-514.00 \mathrm{D}$. See-
Hess. Robert L . Se-
Meyer, Jefry R .
Meyer, Jefry Re- and Hess, Robert L. $\mathrm{L}, 4,095,068, \mathrm{Cl}$. 200-144.0AP
Hestion Corporation See-

White, Bruce Lynn; Kiner. Mark Winfield; and Wiens, Arlen
Jacob, .0994288, C. 214.505 . 000 .

 Hex
foam composition and process with $a$-hydroxyamine derivatives.
$4.094,812$. C1. 252.321 .000 . Heyn, William O;: and Peiesker, Glenn w., to Chicago Rawhide Manu-
facturing Company
Sharit seal with helical pumping element.



Hiddink.00R. Joseph Herman Arnold Peter. Capacily changer. 4,095,162,
Cl. 320 . 1.000 . Hielema, Ralph: $S$
Hielema, Ralph: See-
Henderson Sewart: and Hielema, Ralph. 4, 4,094,715, Cl. $156-78.000$.
Hiestand, Karl Hiestand, Karl, to SMW.-Spanneinrichungen Schneider \& Weisshaupl.
Firma. Chuck having radially reciprocaling jaws. $4,044,522$, Cl.
279.0. $279-4.000$.
$H$ Higuchi,
 Hild. Melvin O. Apparatus for fine grading compacted earth. 4,094,362,
Ci. 172 -120.000.


 Hillekamp. Klaus; and Kindle,
schaf. Mellod of and anp
4.094,772. C1. 209. 12.000 .
4.004,772. Cl. 209. 12.000 .
Hillmañ. Reinhar: See
Koder. Walter: and Hillmann, Reinhart, 4,094,394, Cl. 192.98.000. Hilti Aktien gesellschaft: See-
Lang, Guszav; and Kuhlmann, Wolf, 4,094,222, Cl. 85-63.000.
Lang, Gusztav; and Kuhlmann, Wolf, 4,094,222, Cl. $85-63.000$.
Hino. Minorz: See
Yasui, Seimei; Hino, Minoru; and Hayash, Kazuya, $4,094.836, \mathrm{Cl}$.

 Hirano. Itsurc, to BF Kogyo Kaisha, Litd. (Bi Efy Kogyo Kabushiki
Kaisha) Apparaus and method for filtering dehydrating and dyying

Hishiki, Hideo, it Viclor Company of Japan, Limited. Encapsulated
transformer assembly. $4,095,2066$. Cl. $336-96.000$.

Hitachi. Lid. See
Fuji.
Cl.
Yoshio
She-
Shim
Cl. 356 -20i.







Suzuki, Hirofumi, ,.095,260, Cl. $358-248.000$.
Suruki, Kazuo: and Kalaoka
 Hlavka, Lloyd F ., to V arian A Asociates. Inc. RF Rick-up coil circuit for
a wide tuning range nuclear magnetic resonance probe. $4,095,168$, Cl.

toothed bearing surfaces. $4.094,352$, C1. 151-37.000.
Hochberger. Gerald J.: See-
Jones. Will
ind

Hodges, Dewey W. Micro display wilh magnifier. 4,094,598, Cl.
$353-76.000$
Hodson, Harold Francis, and Batchelor, John Frederick, 10 Burrough
Welcome Co. Treamen for allergy and method of composition
thereor. 4,094,968, Cl. . $424-46.000$.
Hoeberechis, Arthur Marie Eugene,


R.7.
Kali.ond. Themistoklis, 4,095,002, Cl. 427-27.000.




Cli. $331-108.00 \mathrm{D}$.
Hoeliccerer Chate
Stewarte

H. 4.094.808, Cl. 252 2.186.000.

Fabian, Wolitiangeseischaft: Pee- Plumer. Werrer; Sevenich, Theodor; and
Zehner, Heriber, 4,094,219, C1. 83-345.000.
Hoffman, Charles Reeves; and Nunnery, William Burrell, to Interna-


Boguth, Walter, Leuenberger, Hans Georg Wilhelm; Mayer, Hans
Johann, Widmer, Erich; and Zell, Reinhard, 4,095,038, Cl.
$560-255.000$.


Thomas. Gareth John: 4,094.664, Cl. $71-115.500$.
Hofman. Allan Michael:
Dutitweiler
Duti weiler; Donald Lars; and Hofmann, Allan Michael, 4,095,053.
Hold, Peter, 1 Io USM Corporation. Injection molding machine controls.
$4,094,940, \mathrm{Cl} .26440 .600$.
$4,049,940, \mathrm{Cl}$. 264.40 .60
Kolden Derek $\mathrm{J}: \mathrm{See}$
Kell

 Control, Inc. Accelerometer. $4,094,199, \mathrm{Cl}$. 73 -517.00B.
olgerand Data
 162.76 .000 .
Holliday, Robert George, to Xerox Corporation. Reproduction of
paged paged material from microform cards. $4,094,601$. Cl. .3sp-26.0.000.
Hollidy., Rooert George, to Xerox Corporation. Microform card
alignmen alignment device $4.0044,62$, , Cl. $355-40.000$.
Holmes, Gordon $W$. and Nelham. Roy $W$. Inc. Gordon W. and Nelham. Roy W. . io R. Nelham \& Associates
I9.-450.400. . Ice-cream sandwich forming apparatus. 4,094,236, C1. 99-450.400.
Franz, Manfred, Schertel, Gunter; and Kosters, Egon, to VoKO
O. Work table having lines embodied therein. 2
 omko. Joseph C , 1 to Unied States op America, Army. Thread protec-
tor and seal. $4,094,224, \mathrm{Cl} .86-31.000$. Hor and seal. $4,004,224$, Cl. $86-31.000$.
Honda
Giken Kogyo Kabushiki Kaisha
Nakamura, Akihisa; Umemoto. Takash; and Arai, Sakuji,
4.04,
Nakant




Quartion. William T.; and Lowe. Peler R... $4,095,235, \mathrm{Cl} .346-$ Shroff. Bansi .; and Shu. Slephen K., 4.094.478, Cl. 242-192.000. Hooton, Robert Duane: See-
Flanigan, Richard J .; and Hooton, Robert Duane, $4,094,218, \mathrm{Cl}$.
83-62.100. Hoover Company. The: See-
Minton, Keiht G., 4,094,535, Cl. 285-7.000.
Meinke, Hans Heinrich; Lindenmeier. Heinz; Landstorfer. Frie-
drich; Frachenecker, Gerhard; and Hopf, Jochen. 4,095,28, Cl.
343-700 Hoppmann Corporation: See-
Hoppmann.
209. 206.000 . H.; and Edmunds, George W.. 4.094,412. Cl. Hoppmann, Kurt H .; and Edmunds, George W., to Hoppmann Corpo-
ration. Roolling method of sorting particulate articles. $4,094,412, \mathrm{Cl}$. ration. Rolling meth
209. 106.000 .
Yamanotos: Shee-
Yamamoto, Shinichi; Sumitomo. Yasusuke: Horiiike, Yasuhiro; and
Shibagaki, Mashiro, $4,094,722$, Cl. 156.345 .000 .


Hosaka, Hidee. See-
Nishikawa. Missu; Hosaka, Hideo; and Maemori. Jun, 4,094,342,
C Cl. 1040.93 .200 ,
oudaille Industries. Inc.: See-
Flanizan. Richard J.; and Hooton, Robert Duane, 4,094,218, Cl.
83-62.100.
House Food Industrial Company Limited: See-
Sakakibara, Sakuichi; Sugisawa. Ko; Kimura, Takash; and Yasuda,
Atsushi, $4,004,996$, Cl. 426-115.000.






 Hsieh. Henry, L., to Phillips Petroleum Company. Vinyl monomer
polymerization or copolymerization catalyzed by organoaluminum
 Hubbard, R Roger Thomas John: Goosey, Richard Ernest; and Neal,
Donald Francis, to Imperial Meal Industries (KYNOCH) Limited


Huber. Richard: Mee
Schmid.
242-125.
Ma0 . Christof; and Huber, Richard, 4,094,476, Cl.





 Hughes, Frank Marion. to International Business Machines Corpora-
tion. Typew riter selection drive follower block and shuttle assembly.



 Humphreys. Peter Franklin; and willis. Edwin, to Lever Brothers
Compan. Preparation of detergent bars containing zinc oxide.
4,094,807, cl. $252-131.000$.

Hundt: Murray T. See-
Hildeobl. William M.; and Hundt, Murray T., $4,095,001, \mathrm{Cl}$.
426-656.000.




 Hyland. James E : See




Loper, Eduardo Valder, 4,094,716, Cl. $156-87.000$.
chinose Shiol Lifting devices for flat screen printer. 4,094,242, Cl
101-123.000.
 ICI Australia Limited: See-
Barnett, George Henry, 4.094,714, Cl. 149-88.000.


 424.78.000.

Iguchi, Seiya: See
Iwain Yauto
and I Iguchi,
Iked . Tomoaki: $S$





 Hayden. Percy;
$260-348.340$. Jones, Michael Edward Benet, $4,094,867$, Cl. $260-79.3 \mathrm{M}$.
Lake, Ivan James Samuel; and Sampson, Roy John, 4.094,

Shearing. Herbert Jackson, 4,094,829, CI. $260-2.5 \mathrm{AK}$.










Brational Business Machines Corporation: See-
Bhatacharya, Arup; and Silverman, Ronald, 4,094,057, Cl.
29.7.1.000.
29.571.000.
Bluethman, Robert Glenn; and Boyd, William Weller, 4,095,277,

Blum, Arroldi, ven der Heyden, Horst; Irro, Fritz; Knauf,
Guenter, Richer, Stephany, and schulze-Schoelling, Hermann,
$4.095,270$, C1. $364-200.000$,




Heiling, Gerald Michalel 4, 4,044,576. Cl. . $350-3.710$.
Hoffman, Charles Reeves;
Hughes. Frank Marion, 4.094,397, Cle , 4001-161.400.
Kellog. Robert Meltry; and Mulzel, Alfred Paul, $4,094,461, \mathrm{Cl}$
233-40.000.










Iroo. Fritz: See- Serol; von der Heyden, Horst: Irro, Fritz; Knauft,
Bum, Arrold
Guenter Richter, Stephan; and Schulze-Schoelling, Hermann

Isaksson, Avvid. Device in collapsible anchors. 4,094,265, Cl.
y








 dized graphite material and expanded graphite material. 4,094,951, Cl.
264.35.0.00.
Italsider S . A : SeeItalsider S.p.A. See-
Bruno, Roberto; and Faccenda, Valerio, $4,094.670, \mathrm{Cl}, 75 \mathrm{~S}$. 124.000 .


 $\underset{\substack{\text { Makoros. Watanal. } \\ \text { Cl. } 315 \text {-248.000. }}}{\text {. }}$





gov, Vyacheslav Dmitrievich; Kudinova, Sorfya Mvanovna;
Sizova, Ljubov Sergeva; Reznikva, Sveltana Stepanouna;
Ivanov, Georgy Nikolaevich: Tsekhanovkya, Nina Alexan-
 ${ }^{\text {novnai }}$ and
 Iguchi, Seiya, on Mitsui Toatsu Chemicals Inc. Process for the iquid
phase oxidation of organic substance-containing emluents. $4,094,780$
 schaf. 230.0 CP .
Izon Corpor








Jahns. 1 Hans O . See- Sene D. and Jahns, Hans O., 4.094, 149, C1. 61-1.00R.
Thompon, See
Jalfre, Maurice: See Derere: Jalfre, Maurice; and Giudicelli, Don Pierre
Kaplan,
Rene Leane Luien
Rene Lucien, $4,044,992$, Cl. 424.324 .000 .
James, Michal R.: See-
Cohen, Jerome B.; and James, Michael R., $4,005,103, \mathrm{Cl} .250$ Cohen. Jero
27.0CH.
Jane, S.A. See-
Jane, S.A.A. See-
Cabagnero, Ramon Jane, 4,094,531, Cl. 280-649.000.
oa, Cur G. Sani
128.284 .000
ochum, Peter:
chum, Peter: See-
Schenith;
Cl. $526-211.000$
oh. A. Benckiser: See -
Krueger, Friedrich; and Michel, Walter, 4,094,782, C1. 210-58.000.
ohanson, John E., to Johanson Manufacturing Corporation. Adjust-
able





John Lennart, to Pharmacia Fine Chemicals AB. Vinylic group
containg dextran derivitave el in particle form for separation
purposes. $4,094,83$, Cl


John Wyeth \& Brother Limited: Se-
Newberyy Rober Anthony, 4,095,025, Cl. $548-378.000$.





 Ineating gatstic ulcers using 5,6-dihydro-1,4-4ithininoxides. 4,994,988,
Cl. 424 ,

 ohnson, William C., to Bethlehem Steel Corporation. Corrosion inhib
iting primer paint for hand cleaned ferrous meals. $4,094,837$, Cl .
200.-22.0A.

vent. 4,044,303, Cl.
Jonanon, Hans Se- Ser:-1.00R.
Andersson, Verner; and Jonason, Hans, $4,095,088$, C1. 219-345.000



 Res. Raymond Vincent teacononese- Se-
 System fros single draff weighing of cars coupled in
C.1. $177-1.100$.
 Inc. Cadmium sulfide film. 4,0095,006, C1. 427.427.000.
Jurin. Roober. . See
Zerfahs


T. J. Law Engineers, Inc. See Se9.
Brown, Gordon Ralph, 4,095, $180, \mathrm{Cl}$. 324.233 .000 .



Japan Steel Works. Ldd., The:
Goto. Hee Hiroshi, $4,040,050.1$




Jellinek, Karl; and Oellig., Rudi, to Rutgerswerke Aktiengeselischat
Compound and its use in synthencic resin mixiures having high react
ity under the action of ionizing rays. $4,494,925$, Cl. $260-836.000$.
























Kanemaricu Toyonosuke: Seeanemanu, Tosonosuke. Teranishi, Haruc




Kaino. Kimij.



Kareor, frienencinervaives.
















Kath-27.0.00. Erich: Guntersdorfer, Max and Heinll Joachim, to Siemens
Aktiengeselischaft. Piezoelectric drive element for the printer heads






Leisner. Ernst: Ulbricht, Wolfgang: and Kaufmann, Helmut,
$4,044339, \mathrm{Cl} .137-604.000$.




Kawamurai Koichi; and Kawamura. Yoshiko. Three dimensional dis-
play device using water fountain 4.094.464. Cl. 239-17.000.
Kawamura, Yoshiko: See-
Kawamura, Yoshiko: See-
Kawamura
and
Kawamura, Koich
233.-1700.
Kawasai. Mikio:







 350.3 .670.
Kelliner.
$354-187.000$.
Ferdinand. Bellows setting equipment. $4,095.246$. Cl








Kemper, Ronald J. Sulfur gas. removing and solid particl filler for well
water. $4,044,789$, $\mathrm{Cl} .210 \cdot 188.000$. Wemper Yves Jean, io vadeece Corporation. Piston stroke varying
mechanism for expansible chamber energy conversion machines.



 $\begin{aligned} & \text { 40.00R. } \\ & \text { Keogh. Raymond J. See- } \\ & \text { Burr, Robert }\end{aligned}$.



Kervizic, Jaçauess and Hurl Bernard, to C.G.R. MeV. Device for the
magnetic correction of the trajectories of a beam of accelerated
 Kessler, Manfred. to Max Planck Gesellschaft. Method and an arrange-
ment for coninuuusly meacuring the partial presure of a gas in a
sample 404, .





 and Glavert, Wolfram, 4,095,179, Cl. 324207.000 .
Kihara, Toshimasa,
, Io


Kilik, Ondrej: See Sei and Nobuhara, Akio, 4,094,997, Cl. 426-533.000

 Kime. Donald L.: and Slog iogdill, Ronald G., to Chemineer, Inc. Fully

Kimuraa, Takashi. Seve-
Sakakibara, Sakuichi; Sugisawa, Ko; Kimura, Takashi; and Yasuda,
Atsushi, 4.094,996, Cl . $426-115.000$.
Kindler, Hubert: See-
Kindleri Huber: See-
Hillekemp. Klaus: and Kinder. Hubert, 4,094,772, Cl. 209-12.000.
Kiner. Mark Winfied. See-

White, Brouce LLynn. Kiner. Mark. Winfield; and Wiens, Arlen
Jacob, $4,094,428$, Cl. 214 - 050.000 .
 A. Apparatu

King, Samuel A. Fluid motor. 4,094,227, Cl. 91-180.000.
Kinosz. Donald L. See






 Naughton,
C5.8.0.00,
ch, Daniel D.
Kirsch, Daniel D. Combination pipe and game device. 4,094,508, Cl .
273-1 18.00 R . Kishida. Katsuhiro; and Oyamada, Akira, to Nissan Mooror Company,
LLd. Method of producing low wear coating reinforced with brazing
 Kiso. Shigemistu: See-
Yasutake. Akira;
and Kitano, Noritioshi: See-
Morisis, Yasuhiro; Kataoka, Mitsuru; Kitano, Noritoshi; and Morisawa, Yasuhiro, Kataoka, Mitsuru; Kitano, Noritoshi; and
Masturawa,



 Kleinschmidt, Johann OOto, and Niem, Woligang, , 10 Union Special
G..m.b. Method and apparatus for automatic sewing. $4,044,260$, Cl G.m.b. H. Method
112.121.150.
ley. Kurr Paul:

Kley. Kurt Paul: See-
Felser Hans. Iosef. and Kley, Kurt Paul, 4,095,287, Cl. 366-194.000.

lenborn, Helg. $4.4094,9944$ Cl. 424.341 .000 .
Klockner-Humboldt-Deutz Akkien sesellschaft: See-


 4,095,270. Cl. 3644200.000 .
Dieter Juergen, 10 Chemische Werke neppers. Wilhelmm and Mueller, Dieter Juergen, to Chemische Werke
Huels Akiengesellschati. Process for the preparation of sodium
 Kofel, Harmut and Ellendt, Gunther, , ot Bayer Ak
Process for the preparation of polyamines. 4,09
S70.00D.






Noguchi, Kosaku; Yoshimura, Kiyoharu; Tanaka, Honami; and
Hayahi, Masao, 4,044,776, Cl. $210-27.000$.





operation of a data processor. $4,095,268$, Cl. 3 . 344200.000 .
Tomita, Makoo. See- Pokota, Hisaaki, Koga, Syozi; and Kashimura,
Toshisdak, $4,095,0855$, cl. $219-123.000$.


Hyams, ITvinge; Koch, Harold S.; and Aafjes. Herman, 4,094,212,
Cl. 81-3.800.

Gmb. Clutch hrow-out device. 4.094,394, Cl. $192-98.000$.
Koening, Kart-heinz: See
Mangold
Dierich









Sumimotu, Mee Misuhiro; and Kohama. Haruo, 4,094,042. Cl. 23
S3.
254.00R.
$\stackrel{\text { Kike, Koso: See- }}{254.00 \mathrm{R}}$
Kakui. K Luepizk; Shigeta, Toshihiko; and Koike, Koso, 4,094,618,
Cl. 418 . 178.000 .

Fuiyama, Hikaru; Kasam
Kolker, Carl 1. . Campbell, Jonh Scolt; La Fond, Robert L; and Smith,
JaMi, to Faxo
Communications Corporation, by said Kolker, Camp

ceivers. 4,095,248. Relundancy 388 red










 saki. Mikioi, and Kaneko. Yutaka, 4,094,682, C1. $96-1$
Koparfors AB Sed
Holgersson, Sigbjorn P. H. E., 4,094,735, Cl. $162-76.000$


Kores Holding Zug AG: See
Koreska. Peter. $4,043,343$. Cl. $141-86.000$
Koreska. Peeter to Kores


 Kossoff, George, to Commonweath of Australia, c/o The Department
of Healht. The. Apparatus for ultrasonic examination. 4,04, 128 , 1 . $128-2.000$.
Ontis.
 Cl. 108.50 .000 .
Seyo



Kransfelder, Gerhard: See-
Schonenber Eer,
Helmutit

4.095,226. Cl. 343-105.00R.

Krauss-Mafrei Aktiengesellschafl: See-
Hilleramp, Klaus; and Kinder. Hubert, 4,094,772, C1. 209-12.000.


Kries. Adrian H, to Widder Corporation. Tool mounting apparatus.
4.O94.612. Clith-92.00.
Krieger. Heinrich. Arrangement for cooling fulids. 4,094,655, Cl.
Krieger. Heinrich. Airrangement for cooling fluids. 4,004,655, Cl.
6.240.000.
Kronseder. Hermann; Dullinger, Karl: and Matzinger, Kurt, 10


Kroposki. Lorraine M. Yoshimine. Masao; and Freedman, Harold H.
to Dow Chemical Company, The. Process H or preparing phosphoro


Kruger, Rolf, to O and K Orenstein \& Koppel Aktiengesellschaft:
Handling plant for dumping and discharging bulk materials.
4.094,419, Cl. 214 10.000.

4.O94,763. Cl. $204-192.00 \mathrm{P}$.
Kubler. John M. Se.
Holdren, Frederick V.; Hugli. Hans W:. Kubler, John M.: Larson.

Kubota, Munetaka: See
Fujita, Hiroshi.
Kubota, Munetaka, Makita,
Kudinova, Sorya Ivanoval: See
Sirotkina, Ekaterina Egorovna; Lopatinsky, Vadim Perrovich
 ov, Vyacheslav Dmitrievich; Kudinova, Sofya Ivanovna
Sizova. LLubov Sergeevna; Reznikova, Svetlana Stepanovna
 rovnna; Sidaravichus, Jonas-Donatos Bronyaus; Randina, Larisa
Yasilievna; Bocharova, Svellana Leonidovna; Gulyaeva, Galina

novnai; and Adomanite. Yanina Antono, 4,095,032, Cl
$526-11.100$.
Kenneth E., to Johnson Products Div. of S Sealed Power Corpo
Kueny, Kenneth E., to Johnson Products Div. of Sealed Power Corpo-
ration. Ductil iron roller tappet body and method for making same.
4,094.279. Cl. 123.90 .510 .
 schaft. Process Sor
Su2-9.000.
Kuhlmann, Wolf: See
Kuhlmann, Wolf: See-
Lang., Gustaye and Kuhlmann, Woif, 4.094,222. C1. 85-63.000
Kuhn, Franz Josef: See-



 electronic flash apparatus. 4,095.245, Cl. 354 -141.000.
Krita, Masaru: See-




 Kusda, Shohei, and Kaneko, Tomoyoshi, to Kabushiki Kaisha
Komatsul
22.344.000. 72.343.4000
Kussherst and Zahs, Gernol, to Vacmetal Gesell schaff fur Vaku-









La Fond Robert L: See-



Lajack, William C.: and Lajack, Joseph J., 4,094,349, Cl. 145 .
3.1. Wo.
 Cale Ivan Jomes. Samuel; and Sampson, Roy John, to Imperial Chemi-
cal Industries Limited. Hydrocarbon conversion processes and cata-






Athenes, Claude; and Landez. Jean Pierre, 4,095.048, Cl
d. 1 .
Landssorfer, Friedrich: See-
Meinke. Hans Heirrich; Lindenmeier, Heinz; Landstorfer. Frie
drich; Flachenecker, Gerhard; and Hopf, Jochen, 4,095,228, C1
$343-704$. .oco.
Sis. Gustave, and Kuhlmann. Wolf, to Hilti Aktiengesellschaft. Ad



 Langer, Manfred:
Kee
Knorre, Helmut; Langer, Manfred; and Leidl, Peter, 4,094,693. Cl
106-111.000.






Lascola, Anthony Rosario, to Ark-Les Switch Corporation. Appliance
swich. 4095.067 . Cl. 200.67 .0 AA . swich. $4,095,067$, Cl. $200-67.0 \mathrm{AA}$.
Laupman, Robert Ronald, to Novanex Automation N.V. Cascaded
amplifier . with
Laun-84.000.
Lautroun Jee- Sean

Lauze, Robert Lavern, deceased; and by Bhates; and Lautrou, Jean,


Lawton, William R. Heat-sensitive recording composition. 4,094,687,
Layne, Warren W; and Saklad, Eugene L., to New England Nuclear
Corporation. Diagnostic agents containing albumin and method for Corporation. Diagnostic agents contain
making same. 4,049,965, Cl. 424-1.500.


Le Coz, Gerard; and Marchalot, Jean-Noel, to Compagnie Industrielle
des Telecommunications Ci-Alcael 1 S.A. Propagation time equalizer

 Lee, 4.aurence Saul; 2and Roorack, Joseph Philip, to General Electric
Company Electrical crossover and test connectors. 4,094,568, Cl.
Company. Ele
339.-17.0.
Lerave Robert



Leineit Interantio.
Leifheit International Gunter Leifheit $G$ GmbH: See-
Liebscher, Johannes. Schulein, Rolf $\mathrm{G}:$ and Fobbe, Waldenar,
i.pen Leigh, Charles. Ear plug. 4.094,315, Cl. 128-152.000.




Lexnard, Willie B. Fuidic repeater. 4,094,229, Cl. $91-506.000$.
Le Pierres. Gilidas: See
Pelat.,
l.00B. 1.00B. Bart; and van der Mast, Karel Diederick, to U.S. Pilips
LePoile, Jan
Corporation. Electron microscope. $4,095,1044$ Cl 250.311 .000 .
 obbaining an
$336-20.000$.
Lesk, Adolif, and Hageleit, Wolfgang, to Ingenieur-Boero. Particle
feeding and treating system. $4,094,078$, Cl. 34181.000.



Moinard, Michel: Leturcc, Michel; and Delcroix, Catherine,
4.054,161, , 61.61 .59 .000 .

195.63 .000.
Leuenberger.








 Lew, Hyok Sang. Steam-heater-pump. 4,094,616, Cl. 417-121.000.
Liber. Eric. See-
Cestaige


971 O.c. 33

Lucas, Frederick A. See-
Johrson, Charles $P_{i}$ and Lucas. Frederick A., 4,095,045, CI. 178.
2.00R. Lucas Industries Limited: See- Harrold. Maurice, 4,095,208, Cl. 337 - 125.000 .
Ludoph, Hemmo Hermannes Johannes: See- Solsh. Hemmo Hermannes
van Deursen, Pecrus Henricisi and Ludoph, Ludwig Taprogge Reinigungsanlagen fur Rohren-Warmeaustauscher See- ${ }_{\text {Patzig, }}$ Dieter, 4.044,793, Cl. 210-323.00R.


 204298.000. yall, Robert W. Wround level meter riser. 4, $, 094,537$, Cl. 285-47.000.
M. \& D. (1.A.). Corp.: See-

 Mackey, Jack D., ti, Northrop. Corporation. Calthodic deposition of

 Madsen, Henning Brinch, to Svenska Geotherm Aktiebolag. Heal pum
assembly. $4,044,167$, Cl. $62-238.000$.
 Dereck, to United Kingdom Atomic Energy Authority. Superconduc.
ting members and methods of manufacture thereof. 4,094,060, Cl.
29-599.000. Macdsa. Yasuyuki, Mitsui, Nobuo; Kameyama, Tadao; and Komuro,
Kassu, 10 Hitichi, L.d.t. Levelling apparatus for AC elevator.
4,094,385, Cl. 187-29.00R. 4.094,385, Cl. $187-29.00$
Maeima, Hideo: See-

Kobayashi, Yoeshiki; Bandoh, Tadaaki; Maejima, Hideo; and Y
suda, Hajime, 4,095,268, Ci. 364 . 200.000 .

Nishikawa. Missuo; Hosaka, Hideo; and Maemori, Jun, $4,004,342$,
Cl. 140.93.200. Maes, .,ean Pierre; and Molyneux, Alan, to s.a Texaco Belgium niv,
Metho and apparatus for evaluating corrosion protection. $4,095,176$,
Cl Cl. 324.65 .0 ORR.
Mahr, Rene. to . A. des Anciens Etablissements Paul Wurth Mahr, Rene N. to to A. des Anciens Etablissements Paul Wurth
Fummece harge profice measuring process and apparatus. 4,004,494.

Maier, Gerhard: See-
Felece, Gerfid; Maier, Gerhard; Guenzel, Wolfgang; and Waitl
Guenther, $, 0,095,116$, Cl. $250-551.000$. Guenther, 4,0
Mane, Reichard
Sunder
S. See-
Maine. Richard L. Seel
Sundstrom, D. Dinald $\mathbf{W}$.; and Maine, Richard L., $4,095,008$, Cl
M Makea, M, Mrrkus io Rauma-Repola Oy. Arrangement for adjusting the
compresion force of drive rolls. 4,094,452, Cl. $226-34.000$.
 Malbruno, Pierrre, to Creusol-LDire. Device for the preparation or
coated prod
 Maiden, Peter James, to English Clays Lovering Pochin \& Company
Limited Preparation of cellulosic materials. 4,094,736, Ci.
162-175.000.



 211.183 .000 .
Mandigo., rank $N$. See-
Spery, Phili

 4,095.534, C. 360.134 .000
Manhein, Heyman J. See-




Mannesmann Aktiengeseclischan: See-
Chrewe. Hans; and Frenken, Klaus, 4,094,707, Cl. 148-12.00R.
Marchalot. .cean-Noel. See-
Marchalot.t. Jan-Noel: See- Marchalot, Jean-Noel, 4,095,197, Cl. $333-$
Le Coz Gerard; and Mand
28.00R.

Marchessault, Fernand. Curling broom. 4,094,035, CI. $15-160.000$.
Marcil. Paull M. Heel compensation system. 4,094,263, Cl. 114.91 .000 .
 Greischel, Christoph; Harand, Elmar; M
Eberald 4.047,737, Cl. 176655.000 .
 Cook, Lloyd A.; Reynolds, Kim A.; and Mark, Werner J.

 Marquez, Bernard James. 10 Board of Trustess. Michigan State Univer
sity. The Prostaglandin usin in prolonging and intensifying fertility in sity, The. Prostaglandin use in prolon
poultry $40.049,972.21 .424-105.000$.
Marr, Peter: See-
Blumenthal.
$4,094,153$, Gunter;
Bohnes, Kl. $61-45.00 \mathrm{D}$. Blumenthal, Gunter. Boohnes, Karlheinz; and Marr, Peter,
4,04, 144, Il 61.45 .00 D .
 nonwoven
428-113.000
Marin, Harold



Power, Ronald Frederick; Barker, Alan Anthony; Martin, Michael
Charles; and Grover, Brian Cliford, 4,095,057, Cl. 179-1755.10A


Malinovski, Yordan Pertoov; Bakardiev, Stefan Todorov; and
Martinov, Geocgi Mirchev, 4,094,26e, cl. $118-49.100$.


| Morrison, Howard J.; and Hicks, Alan A. |
| :---: |
| 85.000 . |
| . $, 094,506, ~ C l . ~$ |






United States of Amee-ica, National Aeronautics and Space Admin.
istration, Howarth, John T.; Sheth, Suresh; Sidman, Kenneth
 $\begin{aligned} & \text { Master Pneumatic-Detroit, Inc.: See- } \\ & \text { Thrasher, George E., } \\ & \text { Er., }, 094,383, \\ & \text { Cl }\end{aligned} 184-55.00 \mathrm{~A}$ Thrasher, George E., Jr., 4,094,383, Cl. 184-55.00A.
Masturawa, Toshiaki: See
Morisin
 Masuda, Senichi. Particle charging device and an electric cust collect
ing apparatus making use of said device. 4,094,653, Cl
s. ing apparatus making see of said device. $4,004,653, \mathrm{Cl} .55-138.000$.
Masumawa, Toyooaki: See-
Fuider





 Matsuo, jyunji: See- Ser
Fujiwhara, Misuto; Matsuo, Syunji; Masukawa, Toyoaki; saki, Mikio; and Kancko, Yutaka, 4,094,682, Cl. $96-55.000$. Matsushika, Tadao: See
Takno. Hiroshi; Yosho, Masatsugu, Naka, Hiroshi; ItIo, Yo-
shiobu; and Massushika, Tadao 4.094,676, Cl. $96-90.008$.




Matsushita Electronics Corporation: See-
Yamazaki, Haruo; and Akutsu, Hidezoh, 4,095,135, Cl. 313-493.000
Matsuma, Tasunehari: See Akutsu, Hidezoh, 4,095,135, Cl. $313-493.000$
Hatanaka, Shiro; TTmesui, Tsuyoshi; and Matsura

Nishikawa, Hideichi; and Sakamoto, Masaharu, 4.094,064, Cl
$30-92.000$. Mathews, Larry. Stanford; Kaufer, Herbert; and Sonstegard, David
Ansel. Nene joint prosthesis with patellar-femoral contact. $4,094,017$,
C1. 3 -1. 1.11 .

June 13, 1978

 Maisti)






Maxos.











 ${ }_{\text {Mayer, }}^{9.00 \mathrm{C}} \mathrm{I}$.
Mayer, Jvan: See-
Siski, Micheel; and Mayer, Ivan, 4,094,924, Cl. 260-683.510.
Mayhew, Harry E.. Jr.: See-.

Schlegel, Will
60.322 .00 .
Mayo. Haydn Frank: See-
Wikins. John Thomas; and Mayo, Haydn Frank, 4,094,034, C
is-4.00R.
McBrise-9.00. Edward J ., Jr. Tension device for horizontal yarn. 4,094,47,








McGinniss, Vincent Daniel. to SCM Corporation. Aqueous coating
composition and process rom amercaptan containing polymer and a
bis-malecimide. $4.094,843$. Cl .260 .-29.20N

Stange. Ronald R. McGuire, Samuel B.; and Woodring, Thomas
W., 4, Mi, 744, il 204-25.000.
McKenzie, John Mathew: See-


McMahon, Donaldo H.; and Nelson, Arthur R., to Sperry Rand Corpo-
ration. Multimode optical waveguide device with non-normal but.



 | Enginerering Co. Cataly |
| :--- |
| $4,04,821, \mathrm{Cl}, 252.460 \mathrm{PT}$ |



Mead, Louis W. Wee-
Deutsch, Marshall E.; and Mead, Louis W., 4,094,647, CI. 22



## Meinan Machinery Works. Inc. See- Hasegawa, Katsui, 4, $\mathbf{0}$. 3441 , Cl. $141-125.000$.





 Ching, Yau-Ch




Mereof. $4,094,183, \mathrm{Cl} .72-356.000$.
Mevel Yves.
Anizan, Pee- Pierte


























Wolf., Douglas F.- Minick, Harold N.; and Reinhart, Jay J.,
Minigrip, Inc.: Scle- 312.223 .000 .
Minigrip, Inc. See- Ser, 4.094, 29.
Bec. $156-515.000$.


Minolta Camera Kabushiki Kaisha: See-
Minton, Keith G., to Hover Company, The. Conductive hose and
ends. $4,044,535$, Cl. $285-7.000$.

 Pierre, 4, 4,04, 830 , Cl. 260-4.00R.
Misissippi Chemical Corporation: See-
 Mito, Sanai; Kinpara, Shinji; Sumitomo, Yuji; and Kobayashi, Toshio,
to Sharp Kabushiki K Kisha. Recording apparatus for providing lus.










Missui, Noriyoshi: See-
Takecal. Shini; Mitsui, Noriyoshi; and Kato, Nobuharu, 4,094,725,
C1. $156-497.00$. Cl. 15 S-499.700.
Mitsui Toatsu Chemicals Inc.: See-
Iwai Yasuo O






Modular Products: See-
Fund, Harry, $4.044,083$, Cl. $40-536.000$.


Moinard, Michel; Leturcq, Michel; and Delcroix, Catherine, to Societe
Nationale Elf Aquitiaie. Submerged apparatus and method for sub-
metsine
Moles









 cals. Inc. Allox xy titanate salts useful as coupling agents. $4,094,853$,
Cl. 20.400 R ,
Money, David H. . Jr., to Westinghouse Electric Corp. Post-detection
 Moore, Desmond F.: See-
Byrne. Peeer C Cril; and Moore, Desmond F., 4,094,55s, Cl.
303. 1000000 . Moore. Vincent; and Levesque, Paul N. to Altair, Inc.; and American
Sterizer Company. Retractable toilet bowl assembly. $4,044,019$, Cl.
4-3i2on




 Cercetari in Constructiti si Economia Constructiilor. Mortar for
anticondensate, antiontisure, heat-insulating, and biocidal plaster.
$4,094,991$, Cl. 106 . 9 . Morgan Alberr W. Moorman, David S.; and Vanderlinde. William, to
Monsanto Company. Flame relardant composition 4,094 Monsanto Company. Flame relardant composition. 4,094,850, Cl.
260.31.8PQ,
 Morimoto. Toshiki, to Mirsuu Mining and Smelting Co.. Lit.
Morking metho of castings. 4,094,055. Cl. 29.527.600.
Morino, Ronald: See-
Borring Rober Page; Morino, Ronald; and Keogh, Raymond J.,
B.094.572, Cl. 339.97 .00 P , 4,094,572, Cl.
Morsa.9.97.00P.
Lutawa, Yasuhiro; Kataoka, Missuru; Kitano, Noritoshi; and Mas-




 conversion s.sster for relecronic timepiece. 4,094, $137, \mathrm{C} 1.58-23.00 \mathrm{~A}$.
Morokawa, Shiseru: See
Nomer Nomura,
Morris, Guy,
V
Moris, Guy V. See-
Dounce, EEricA. and Moris, Guy V., 4.095.224. Cl. 343-17.10R.
Morris, James C.: See-



Fegiey, Charices R. M. Morrow, Richard H.: and Naylor, Arthur G.,
$4,094,410$, Cl. $200-73.000$.




Wright, George C.icts, Inc.: See
$542-42.000$
Goldenberg, Marvin M., $4,095,023, \mathrm{Cl}$. Moschner, John L., to NCR Corporation. Meihod and means for
providing and testing secure identification data. 4,094,462. Cl.
235-49.000.
providing
$235 \cdot 4.49 .000$.

 Wilson, Richard
otoy,
Junichi: See-

 Mountz, John M. Whel slip correction method, system and apparatus.
$4,095.147, \mathrm{Cl} .318-52.000$. Mourick, Paul, to Siemens Aktiengesellschaft. Circuil arrangement for
an a-series motror $4,095,151$, Cl1 $318-266.000$.
Moyer. David F. See an a-c series motor. 4,095, $151, \mathrm{Cl} .318-266.000$.
Moyer, David F, Se Se-
Auiler James E

 Knepper Wilhelm; and Mueller. Dieter Juergen, 4.094,898, Cl.
2ep. 13.0 iobe. Mueller, Henry $\mathrm{F} . \mathrm{W}$. Moisturized air-filter for internal combustion
engines. $4.044,90, \mathrm{Cl}$. $261-18.00 \mathrm{~A}$.

Stollenwerk. Joseph August; and Muhs, Reinhard, 4,094,474, Cl.
242.5.20.
2ijs. Cornelis G . M.: See-


 Pyrazoline co
s44-37.000.
and


Muller, Hans Rudolf, to Sundstrand Data Control. Inc. Aircraft pitch Nakano, Yoshiaki: See-
attitude signal generator. 40095,271, , Cl. $364-434.000$.

 Sedimayer, Franz; and Muller, Peter, $4,095,160, \mathrm{Cl} .318-675.000$. Nakayama, Yasuaki: See-
Muller, Woligang: See-

Genaup, Walter t.40,04,638, Cl. 21-61.000:
Mulzet. Allired Paul: See-
Kellog. Robert Melroy; and Mulzet, Alfred Paul, 4,094,461, Cl.
233-40.000.



10 a part
4.0.0.
Nany
Dicken

 Machara, Mitsuhiro,: Saito, Katsuhide: and Ozaki, Takayukik, 10 Nip-
pon Shinyaku Co., Lid. Substituted N-(carboxymethyl) - -aminopro-



Murayama, Seiichi; Yamamole Nanabu: Ito. Masaru: Yasuda, Makithanson. Eric. Adhesive bandage with reusable applique. 4,094,316,



$100-5.000$.
Murtha, Timothy $\mathbf{P}$, and Zuech. Ernest A.. to Phillips Petroleum
Company. Hydroalkylation process using multi-metallic zeolite cala-



spatial arrangement. 4,095,169, C1. $324-8.000$.
Musso. Couseppee. Sec-
Couzza, Gioacchino; and Musso, Giuseppe, 4,044,962. Cl. 423.
Muszumank., Trude: See-
Besenmater,
S50.184.000
Falter; and Muszumanski, Trude, 4.094.587, Cl.
$350-184.000$. Shallow, dome-sshaped pacer with bottom storage





 Nagy, Ference. to Medico Muvek. . Circruit for deffining the dye dilution | curves in vivo and in vitro for calculating the cardiac blood flowrate |
| :--- |
| value per minute in |
| 99.450 .400 . |















 Nakano. Teruyuki, and OTaka, Syoichi, to Honda Giken Kogyo Kabu-
shiki Kaisha. İnition timing control apparatus for engine during


 Cl. 324.238 .000 .
Neum, Eaton Corporation. Bidirectional clearance
ens.inhar


cooling apparatus. $4,094,358$, Cl. 165.154 .000.
New England Nullear Corporation Sel
Layne. Warren W.;
 Dierry, pryazol-4acrylic acid and derivatives. 4,095,025, Cl
S48-378.000. Newkirkk. David Dudley; Login. Robert Bernard; and Thir, Basil, to
BASF Wandote Corporation. Oxidation stable fiber lubricant.



 surgi.cal safely circuit and method of using same. $4,004,320, \mathrm{Cl}$
(128.303.
Vg. Wahting H .; and Zaycer, Andrew, to United States of America Ng. Whaling H.; and Zaycer. Andrew, to United Slate of America
ATmy S eff centering flange gasket assembly. 4,094,520, Cl
277-166.000.




Nickersson, Rich
i14-304.000.
114.304 .000 .
Niem. Wolfgang:

 microchannel electron multiplier. 4,095,136, Cl. 315-11.000.
Nilsson. OIle: See- Lill Lennart; Wall, Ame Evert; and Nilsson, Olle,
Siwerson.
4.095.015, Cl. 429-15.000.
Ninomiya, Masakazue See-
Harada, Susumu; and Ninomiya, Masakazu, 4.094.274, Cl. 123 .
Harada, Susumu; and Ninomiza
3i.2eL
Nipoon Carbon Co









 32.0LL
Nasamo, Yoshiaki, 4,095.091, Cl. 235 4.462.000.
Yamamoto, Akinori; and Kato, Masumi, 4,094,204, C1. 74230.17 E




Nishikubo, Yasuhiko: See- Nishikubo. Yasuhiko, 4,094,139, Cl. 58 -
Nomura. Yasushi; and
50.00 . Nishioka. Maisuo; and Oka, Shunzo, to Maltushita Electric Industrial
Co., Lid. Interlocked push-lock pushhbutto switch assembly having Conductive muting spuing. 4,095.059, C1. 200-5.008.
Nishiwaki, Osamu: See-
 Nissan Motor Company, Lit. See-
Kishida, Katsphiro; and Oyamada, Akira, 4,095,005, Cl. 427 .
376.00B. Kuroda, Hiroshi, Nakaima, Yasuo, Hayashi, Yoshimasa; and
Nagume, Shinichi, $4,004,286$, Cl. $123-199.00 \mathrm{~A}$.

 Non, Phillip Sydn
Company Limited.
Nobuhara Akio
Nobuhara, Akio: See-
Aisha, Tetsuo and Nobuhara, Akio, 4,094,997, Cl. 426-533.000.



 Nomura, Yasushi, and Morokawa, Shigeru, to Citizen Watch Company
Limited.
$58-23.00$. . $88-23.00 \mathrm{R}$.
Nomara, Yashi; and Nishikubo, Yasuhiko, to Citizen Watch Com
pany Limited. Display control circuit for electronic timepiect.


Mhrop Corporation: See
Mackey, Jack D. $4.94,750, \mathrm{Cl} .20456 .00 \mathrm{R}$.
Trhwestern University See
Conen. Jerome B.; and James, Michael R., 4,095,103, Cl. $250-$
277.0 CH .


Laupman, Robert Ronald, 4, 4095, 188, Cl. 330-84.000


 means, $4,044,433$, Cl. 220.90.400.
unnery, William Burrell See
Hoftman. Charles Reves;
Hoffman, Charles Reeves;
4.095, i26,
R1. 307.237 .000 .






Cohen, Murray S.i See- and OConnell, Donald E., 4.094,999, Cl.
42-54...00.

Switching system tess sel. 4,095,058, CI. 179-175.20D.
Odeyemi. OUwasuyi See-
Alexander. Martin; and Odeyemi. Oluwasuyi. 4,094,097, Cl.
47.57.600.




Ohata, Katsuya: See Ohata, Katsyya: Enomoto. Hiroshi; Chokai, Shoi
Murai. Hirmui
chi; Machara, Mistuhiro


 Fujiit Yoshio Shim
Cl.
Yoshoriin
Yosho.




 yama, Koichi, to Nippondenso Kabushiki
for a vehicle 4.044.56, Cl. $303-100.000$.
for a vehicle. 4.094,5S6, Cl. 303-109.000.
Okanoto, Pado. See
Komamura, Takeo; Okamoto, Tadao; and Ishihama, Als Komamua, Tae
$4,094,313$, Cl. 128 - 120.000 . Okamoto. Tadao; and Ishihama, Atsumi.


Okuda, Hiroji: and Narikiyo, Hiroyoshi, to Koyo Seiko Company
Limited Drive mechanism for verical rolling mills. $4,094,174$, C.
anceate
29.6MQ Okuda, Hiroji, to Koyo Seiko Company Limited. Driving device for Ozaki, Takayuki. See
Okuda, Hiroii, to Koyo Seiko Company Limited. Driving device for Murai, Hiromu; Ohata, Katsuya; Enomoto, Hiroshi; Chokai, Shoi-
high speed rolling mills and the like. 4,094,179, cl. 72.238 .000 .
chi; Machara, Misuhiro, Saito, Katsuhide; and Ozaki, Takayuki Okumura, Koji, to Xerox Corporation. Electrical information storage
system using alayer of particulate photosensitive material $4,095,280$,


























Osterried, GGordon A. Ariqueltei igniting device with foraminous metal
cone. 4094,649, Ci. $44-35.000$. Oswald, Allexis A. See-
Zap, Roberti. and Oswald, Alexis A., 4,094, 257 , Cl. 2041 . 159.180 ,
Oswald, Robert Clement, to Sperry Rand Corporation. Digitial conver-
gence sysem fer anult - mperry $\mathrm{CRT} .4,095,137, \mathrm{Cl}, 315$. 13.00 C .







| Naughton, T |
| :--- |
| 65. 1.000 |

O. Thomas J .; and Zimmerman,




Oyamada, Akira, See-
Kishida, Katsuhiro; and Oyamada, Akira, 4,095,005, Cl. 427. Perron, Pecerend Jameses. See
Carrock, Frederick Elias; Perron, Peter James;




 137.100.000.
Petzold. Menf
Heyden,
ordo. Manfred: See
Heyden, Rudi; Asbeck, Adolf; Eckelt, Michael; Petzold, Manfred;
Pefferle, William C., to Engelhard Minerals \& Chemicals Corp. Tur-

Prenninger, Hans, io BBC Brown, Boveri i Company Lemited. Ther-
mal power station combined with a plant for seawater desalination.
mal Power sation combind
$4,044,747$, Cl. 202.173 .000 .
Hess. Hans-Jurgen E. ., $4,044,899$, Cl. $260-514.00 \mathrm{D}$.






66.8.OR.
Murtha, Timothy P.; and Zuech. Ernest A., 4,094,920, Cl. 260 .


Vanderveen, John W. W, 4,094,960, Cl. 423-456.000.




Pichon. Georges. Connection for evacuation pipes. 4,094.538, Cl.
2855-150.000
Piotrowski. Charles. to Shefter Collet Company. Collet chuck.

Lopatinsky. Vadim Petrovich;
Kogn,
Kita Moisee na; Piroo-





Plastiroute S.A. Seee
Dubis. . .ober, $4,094,686$, Cl. 106-13.000.








4,094,493, CI. 122441444000.
Poletio, Joh Frank: See-
Poletio, John Frank: See-
Beenady, Karel Francis: Poletto. John Frank; and Weiss, Martin
Joseph, $4,094,896$, Cl. $260-456.00$ A.


Polymer Corporation, The Sese- Ser
Gage, Paul E., $4,04,253, \mathrm{Cl}$. $105-225.000$.



hivano, Alexandr Mikhailovich: See-
Kolpako, Seratim Vasilievich; Gurkov, Zinovy LVovich; Bon-
darenko, Oleg Leonidovichich Valtsov, Vladimir Viktorovich;






Radva Plastics Corporation: See
Dickens. Luther
s2-80.000. S2-8.0.000.
Ragan. Randil. . to North American Philips Corporation. Helical coil
sping
wiper Ragan, RandallC., to North American Philips Corporation. Helical coil
sprin
338-180.000.

resistivity, single crystal silicon. 4,094,730, Cl. $156 .-606.000$.
Railweigh, In. See
Jones., William F.; and Hochberger, Gerald J., 4.094,367, Cl.

Ramnarace, Jawaharlal, to Ford Aerospace \& C Communications Corpo
ration. Tracer and composition. $4,094,111$, Cl. $149-4.000$.






Rao, Rao K.: See-
Reinberg. Alan R.; and Rao, Rao K.. 4,094,732, Cl. $156-643.000$.
Rape, Robert A. Swimming pool cover. $4.094,021$.




Rathbun, K ennetl
Cl. 290 -2.000.
Rauma-Repola Oy: See
Makele
Marku
4.094,452, Cl. $226-34.000$.
Rauschenfeles, Eberhard, to Dyckerhof Zementwerke Aktiengesell.
schaft. Process for stabilizing cement stone formed with aluminous

Ray Gerrad E. E. Dental floss manipulating instrument. $4,094,328, \mathrm{Cl}$.
132-91.000.
Raychem Corporation: See-
Horsma. David Ausust; and De Blauwe. Francis, $4,095,044, \mathrm{Cl}$.
174-138.00F.




McMilan, Ronald J.. 4,094,639, Cl. 21-74.00R.
RCA Corporation: Seed
Ahmed, Adel Abdel Aziz, 4,095,164, C1. 323-8.000.






Ready Melat Manuaracturing Company: See-
Radek, John R., $4,044,42, \mathrm{Cl}$ 2 $221-59.000$.
Radek., John R...4.094,442, Cl. 221-59.000.
Redden, R.oent . See
Charliton, Thomas L.; and Redden, Robert F., 4,094,753, Cl. 204



eeve, Gerome R. $\mathbf{R}$. to Titus, Gerald F. Pulsed light signal receiver.







 Reinhardi, Johann: See-
Habdi, Ali, Samel; Reinhardt, Johann; and Knapp, Jutta,
4,0494,953, ㄷ. 423-2.2000.

 4.O95,034, CII 1.560 .134 .0000 . Karl-Heinz; and Reitel, Christian,
Rennes, H,
 Prod 12 ction of of gluten and starch from wheat, rye, or barley. $4,004,700$
Centh


Restaino. Allri.ed J. See
Markiewitz Kenneth $\mathbf{H}$; and Restaino, Alfred J., 4,095,019, Cl.







Belt-driven record player. $4,094,511$, , 1 i. 274 . 29.00 A
Richter Ged

Richter. Gerhard: See-
Stein. Llauss Aigl, Miroslav; and Richer, Gerhard, 4,094,033, Cl.
is.41.00R.





chan Jo of battery of coke ovens. 4, ب94,420, Cl. 214, 35.00R.


Rene R.: See-
Castienne. Francois; Boulet, Marcel; Riel, Rene R.; and Liber, Eric,
$4.094,235$, Cl. 99.450 .100 .



Roback, Joseph Philif: See- Se
Lee, Laurrence Saul; and Roback, Joseph Philip, 4,094,568, CI.
Robert Bosch GmbH: See



 91.00C.
Scheyhin, Hans. Fleischer, Helmut; and Abend, Karl-Ludwig,
$4,094,378$, Cl. $180-105.00 \mathrm{E}$.









Rogers Corporation: See




Rohr Industries, Incorporated, See-
Nerem,
Anre $4,055,127, \mathrm{Cl}$. 307.253 .000 .

Roig, Josech. Antoine, to Agence Nationale de Valorisation de la Re-
cherche. Cossre device for locking a movale element with respec









 Rostler. Fritit S ., to cabot Corporation. Asphalt cement and concrete
compositions
106 and
filler compositions therefor. $4,094,697$, Cl. Rotoflex
Sngra
Siten

Stollenwerke, Joseph August; and Muhs, Reinhard, 4,094,474, C
242-56.200.






Rotmus Walter J., to Kelsey-Hayes Company. Method of forming and
subsequenty heat reating anticles of near net shaped from powder
metal. $4,094,709$, Cl 148 -126.000.




Rubenstroth-Baver, Gerhard; and Scherer. Reiner, to Max-Planck-
Gesellshaft zur Forderung der Wissenschatten e.v. Method for
simultaneous quancitative analysis of several constituents in a sample
Ruhrchemie Aktiengesellschaf: Se
Rotit, Walter: Tumes Has
Rotite Walter, Tummes. Hans;
Rornils, Boy; and Weber, Jurgen.
t.094,914, Ci. $568-862.000$. Ruiter, Johannes Perrus, to titich ing Energieonderzoek Centrum Ne -
derland. Vesed for weighin materials. $4,043,370$, Cl. $177-168.000$.
Rutgerswerke Aktien

 Ryballo, 1 alilina Ivanovna: See-



 Petrovna; Bondarenko, Raisa IVanovna; Rybalko, Galina Ival
novnal
226ai
and
and
Stern
Alehr Ancien
Mahr, Rene

 Saar, Werner: See-
Rigegler, Abert; Sast, Werner: and Wiese, Volkhard, 4,094,839, Cl.
$260-33.00$. 260.2.300R.
Sadhukhan, Pasupati: See-
United States of America,

Unhind Sasutes of America, National Aeronautics and Space Admin.
istrations
204-164.000.
Sadier,
3040 Joe .000. Alarm delection and identification system. 4,095,220, Cl .
St. Clait, Homer F. Lightring protection circuit. 4,095,262, Cl .
361. 1.1000 .
3itlol. 1.000 .
Suhide:
Murai
 Saito M, Masas, Sel, Cel 424309.000 .
Miruno. Kine




Nishikawa, Hidechi; and Sakamoto, Masaharu, 4,094,064, Cl .
30.92.000.


Cl. $343 .-72.000$.
Salion. William G ., to Upjohn Company. The. $9 \beta, 10 \mathrm{a}$-Cholesta-5.7.
dienc- 3 .



20.-688.00A.
Samsonite Corportion: See-
GregB, James S.; and Reynolds, william J., 4,094,392. C1. 190

Gregg. James S.;
Sand Reynolds, William J., 4,000.
andah, Carl Ragnar: See-
Cook Jon
J50.-.96.210. Stone; and Sandahl, Carl Ragnar, 4,094,580, Cl.



caternary rillers. 4,094,401, Cl. 198-827.000.
 $\begin{gathered}\text { Towers, Jack } \\ \text { S., } \\ \text { Sandoz Let.: Sec- }\end{gathered}$, 094,491, Cl. 249-83.000.
Hasspacher.
424-274.00. Klaus; and Strasser, Michael, 4,094,987, Cl.
 Sandvik Aktiebolage See
Lindstom, Hans Per OOf; and Johansson, Ernst Lennart,
4,094,364, Cl. $173-80.000$.

June 13, 1978

## LIST OF PATENTEES





schmerziler. Lawrence
4.094, 169, Cl. 62498.000 . Sartori, Guido; and Savage, David w., to Exxon Research \& Engineer.
ing Co. Proces for removing acid gases
amino acidss $4,044,957$, Cl. 423 -223.000.
 KG. Hinge. $4,094,040$, Cl. 166 .191. 1.000 , 10 Hetal-Werke Franz Hettich







Sauer, Wolfgang: Seen
Hooehn, Woiggang; and Sauer, Wolfgang, 4,095,194, Cl.
108.00D.



Sawagata, Kiiyoshi, to Sony Corporation. Video signal converting
syssem
ssem
having quantization noise reduction. $4,095,259$, Cl.


pany of
Schaber, $\mathbf{2}$. Chi



shmill. Herber. R., to S. Sap-on Tools Corporation. Meterless ignition
advancereasuring device for internal combustion engines. 4,095, 170 ,
Chimit-Wailentoorn, Helga: See-
Schonenberger. Helt.









Schaber, Christian: See-
Schafheric, Claunter; and Schaber, Christian, 4,094,040, Cl. 16-191.000.






4,094.834, Cl. $260-19.0 \mathrm{U}$
Schenk, Friedrich: See
Schaum, Helmet

Scherer, Reiner: See-
Rubenstrot-B-Buer, Gerhard; and Scherer, Reiner, 4,094,759, Cl .
204-180.00G.

Cl. 10.10 .50 .000 .
Scheu-Dental Sinh. Rudolf Scheu Herstellung \& Vertricb Von Dental-
bedarf: See-
bederf: See-
Schinhammer, Karl, 4,094,068, Cl. 32-14.00A.
Cholefield, John. Method
4.094,745, Cl. 195.103.50M.

born, Helga, to Klinge Pharma GmbH. Novel di- 3 '-hydroxyphenyl).
alkane compunds proces of preparation and their use in medicine.




Schrader, Alfons; Schreciner, Waldemar; and Gessner, Anton, to Butt-
ner-Schild--Haas AG. Dryer arrangement. $4,094,077$, Cl. 34155.1000 .
Schrader, Alfins, Schrreiner, Waldemar; and Gessner, Anton,
$4.044,074$, C1. 3433.000 .
Schriader, Alfons; Sccrreiner, Waldemar; and Gessner, Anton,
Schrenk, Walleter J.: See - S.
Altrey, Turner, Jr.; and Schrenk, Waller J., 4,094,947, Cl.


12.00R.
Schroder, Rolf: See
Maurer, Fritz: Riebel


 Schexnayder, , awrence F., to Caterpillar Tractor Co. Fluid system
having
91-41. Ooad




318-7.000.
Schinhammer. Karl, to Scheu-Dental Inh. Rudolf Scheu Herstellung \&
Vertireb
Von
4.044.068, Cl.

Schlafer G.m.m.... \& \& Co.: See-
Schlatierer AG: See
Zollinger, Hans Rudolf, $4,095,082$, Cl. $219,78.150$.
Schlegel. Norman ... and
Inc. Decanter handie structure. 4,094,449, Cl.
I. 222-475.000.

ric Corp. Transorn
336.92 .200
Romm, Kurt: See-


Schulein, Rolf G.: See- Sos.
Liesbcher, Johannes. Schulein, Rolf G.; and Fobbe, Waldemar,
$4,094,032$



Schumacher, Heinz. Method of and device for distilling off secondary
subbstances rom Siily iquuids. $4,094,448, \mathrm{Cl} .203-88.000$.
substances from oily liquids. $4,094,748, \mathrm{Cl} .203-88.000$.
Toctr. Hans: See-



































 C. 105.105 .000












 Sheth, Surrest: See







 Shioner compressor. $4,004,617$, Cl. 417-295.000.

 Shin, Kelivin: See-



 $26+234.000$
mut. 1 chio. Sec
sec



 Shishidot, Tadao. Se







Shuster. Ed Bandid K ; and Shu, Stephen K.. 4.094,478, Cl. 242-192.000.









 Sdman Kenneth R. Se
 Siemens Akiensuceselischant: See





 Katner, Erich: Guntersorfer, Max; and Heinzl. Joachim,



 Sizwall: Pierre: See-
 Silverman, Renaild: Seel
Bhatatacharya, Arup; and Silverman, Ronald, 4.094,057, Cl.
29.97..000. Sims. Larry Lee. Concealed safety latch assembly. 4,094,541, Cl. 292-231.000.
Simms. Robert A.i and Feaster, Gene R., to Westinghouse Electric
Corp. Methor of fabricating an electron tube. 4,094,563, Cl.
316. Simoni., Donald J. Beehive. $4,094,026, \mathrm{Cl}$. $6-1.000$.
Simpson, Kenneth A. io $\mathrm{C} \& \mathrm{~K}$ Components, Inc.






 novna; Rybalko, Galine Ivanouna; and Adomanite, Yanina Antono.
Photosessitive polymeric matreial and electropotomentic material


Sirrenterg, Wihelm: See
Maurcr, Fritz, Rebel, Hans-Jochem; Schroder, Rolf; Sirrenberg,
Wilhelmi, Hammann, Ingeborg; Homeyer, Bernhard; and Thomas. Herbert, 4,094,975, Cl. 424.216.000.
 Co. Process for the alkylation of light paraftins with lower olefins.
4,094,924, Cl. $260-683.510$. 4,094,94, Cl. 260.683 .510 .
Siwerson, Alle Lennari; Will, Arnerr; and Nilsson, Olle, to AB $S$.
T. Powercell. Galvanic processes and anodes for carrying the pro.




Peirovna; Bondarenko, Raisal lvanovna; Rybalko, Galina Iva-
novana
nond
$26-11,100$.
novna; and
S26-1.100
F Kugellagerfabriken GmbH: See-

Slusarski. Ronald S .1. 10 Textron Inc. Flanged bearing cartridge.
4.094, 59 , 1.308 . 194.000 .



 Smith, Eugene
decheme Methon. and apparatus for oxygenating aerobically
decomposable liquors. 4,044,774, C1. 210-12.000.



 Smith, JaMi: See--
Kolker Carl Re, Campbell, John Scott; La Fond, Robert L; and
Smith, JaMi, $4,095,248, \mathrm{Cl} .358-288.000$.


mith Cline Corporation: See-
Anderson, Elvin Lowell; and Connelly, Gerald Aloysius,







Routhern Weaving EOmpany See-174.36000
Spaine, David L. Pallet pulling device. 4,004,544, Cl. 29482.00R.


$$
\begin{aligned}
& 357-23.000 \\
& \text { sidnow }
\end{aligned}
$$

Sperry, Philip R.i. and Mandigo. Frank N., to Swiss Aluminium Lid.
Aluminum






Cocurza,
s73.00R.
s73.00,
cocta
C Italiana
Carubia, Giovenani: Papa, Roberto; and Pratelli, Cesare, 4,095,266,
ociete Anonyme belge d'exploitation de la navigation aerienne
(SABENA): See-




Societe ed'A.Assitiance Technique pour Produirs Nestle S.A: See-
Leuba, Jean-Louis, 4,094,743, Cl. 195.63.000




S.F.E.N.A. See- Chard Andre 4, 4,094,200, Cl. 74 -. .00R.


ociete Na.8.ionale Elf Aquitaine: See
Moinand, Michel
4,094,
Meturcq. Michel; and
Moinard, Michel, Leturcq, Michel; and Delcroix, Catherine,
4,094, $161.11 .61-95.000$.


derberg, John Lennart: See
Johanson, Hall Lindstrom, Dag Torsten; and Soder-
bers


Sokolov, Boris Grigorievich; and Zaboronok, Georgy Fomich. Elec-
tronbeeam apparaus for hhermal treament by electron bombardment.
$4,095,083$, Cl



ny Corporation: See- $4,095,259, \mathrm{Cl} .358-141.000$.
Sawagaa, Kiyonhi,
Shibya, Michio, $4,095,191$, Cl. $331-4000$.
apparatus for displaying alphanumeric data. 4,095,216, Cl. 340- Street, Vern A. See-
324.





Spranger, Douglas M.; Brookes, Malcolm J.; and Mulhauser, Paul J., to
Seik. Time Corporation. Sample display tray. $4,044,409$, Cl.
$206-566.000$.
Square $D$ Com
Square DCompany: See-
Harris, Georfey Joonh, 4,095,177, Cl. 324-164.000.
 Alencien.
$\begin{gathered}1.0 \mathrm{~B} \\ \text { Stamicarbon, } \\ \text { B }\end{gathered}$

 Partenheimer. Walter, 4,094,816, C1. $252-415.000$.



Tools for Bending, Inc. Surface tre,
material $4.04,749.21 .204 .25 .000$.
Stanhay (Ashford) Limited: See-
Wivilis. Rober An Anhony, 4,044,444, Cl. 221-266.000.
Willis, Robert Anthony, 4,094,444, Cl. 221-266.000.
Stanley Works. The: Shee Shaughnessy, Frank J., 4,095,211, Cl. 340-224.000.







4.094,379, Cl. 181.288 .000.
Sterling Drug inc. See

Stern. Davaid Li.i.and Samchuck, Daniel 1 B., to Baltimore Spice Com-
pany, The. Rapid method of assaying collagen in meat and meat

Stevenson, Curis A. Coupling device
Stewarl, Charles Winfield, Sr: See-

Winfild, Sr. $4,005,009, \mathrm{Cl}, 428-310.000$. 1


Ruiter, Johannes Petrus. 4.044,370, Cl. 17
Stiron Chemical Industr Co. Lto. See-


Stogdill, Ronald G.: See-
Kime Donald Li, and Stogdill, Ronald G., 4,094,513, CI.
277-41.000.
Stollenw-re,k, Joseph Augusts, and Muhs, Reinhard, to Rotoflex Engrav-
ing Limited. Sliting apparatus. 4,094,474, Cl
I42-56.200.


Strand, Michael: See-
Strasser, Michena
Hester. $4,05,12$,
Hasspacher. Klaus; and Strasser. Michael, 4,094,987, Cl.
424-274.000.

Gupas Tapan K . and Straub, William D., 4,094,061, Cl. 29.612 .000 .
Straus, Alan E., to




 St, Odo ., Scerct, William W.; and John, Ernest F., to Allen-
Sradiey Company. Malfunction detcection system for a programmable



Sugerman, Gerald: See-
Monte, Salvatore J.; and Sugerman, Gerald, 4,094,853, Cl. 260 .
40.00R. Sugier, Andre; and la Villa, Florentino, to Institut Francais du Petrole.
Process for removing mercury from a gas or a
Procesp for removing mercury from a gas or a liquid by absorpion on
sugispowa, Kulfide containing solid mass. 4,044,777, Cl. 210 -32.000.



 Sultan, stige Berril: See
Anbermison, Jan Rose
Ambermstron, Jen Roger; Andersson, Roger Ingemar; and Sutan,
Stig Berii, $4,095,237$, C1.3 $346-140.00$. Sumimoto. Mirsuhiro, ando Kohame, Haruo, 10 Dai Nippon Insatsu
Kabushik Kaisha. Indicator for ethylene oxide gas. 4,094,642, Cl. Kabushiki Kaisha. Indicator for ethylene oxic
Sumittomo Chemical Company, Limited



 Sumitomo. Yasusuke: See-
Yamamoto. Shinichi;
Su







 Muller, Hans Rudolf, $4,095,271$, Cl. 364344.000 .
Sundstrom, Donald W ; and Maine. Richard L.












Franklin F., to Amax Inc. Leaching of Ni-Cu-Fe-S matte. 4,094,754,
Cl. 204108.000 .

Synergetics, Inc.: See-:
Zerfahs, Arthur Sif
and Jurin, Robert J., 4,094,104, Cl. $51-76.00$ R. Syntex (U.S.A.) Inc.: See-
Beeby Philip. .. $4.044,978, ~ C l . ~ 424-246.000 . ~$

 Sporny, Laszlo. Gorog,
4.044,088. C1. $260-570.00$.

 Tachikawa, Koy iji;
Metals. Method
Cl. 29.999.000.
 Taguchi, Tetsuya: See-

 Takada, Juichiro, to Takata Kojyo Co., Ltd. Seat belt buckle. 4,094,046,
C. 2 . 2 . 20.0 AK.
Takada . Juichiro, to Takata Koiyo Co . Ltd. Automatic locking safety Takada, Juichiro. to Takata Kojyo Co. Ltd. Automatic locking safety






 and Matsu
Non -silver
90.00R. Non-sill
90.00R.
Takat
Takad






 Tamaru, Sinji: See -
Tatemolo, Masayoshi; and Tamaru, Sinji, 4,094,826, Cl. 260-2.20R
Hatanaka, Shiri; Tamesui, Tsuyoshi; and Matsura, Tsuneharu,
$4,04,105$, Cl. $51-101.00 \mathrm{R}$.

 preaping cyylic ethers. 4,094, 887 . Cl. $260-346.1110$.
Tanada, Tersunori, to Kabushiki Kaish Misho. Microm-



4,095.129, Cl. 110-49.00
Tanaka, Honami: See- Yoshimura, Kiyohary; Tanaka, Honami; and
Noguhi, Koshi, Masa, 4,094,776, Cl. $210-27.000$.
Hayashi,
Tanaka, Katsumi: See-
Sato, Yasuhis. Tsuii, Sadahiko; and Tanaka, Katsumi, 4,094,586,
Ci, 350.184 .000 . Cl
Tanaka, Kunihiko. Kurita, Masaru: and Nishiwaki, Osamu, to Fuyisawa
Pharmaceutical


Tanigaki, Hidetoshi, to Furuno Electric Co., Ltd. Push-pull switching
Then

anihatat.Akio, Aee-
Nakagawa,
1s6-514.000.



 Tatemoto, Masayoshi, and Tamaru, Sinji, to Daikin Kogyo Coo., Ltd.
FFuvorinated graft cation exchange copolymers. $4,094,826$, Cl. 260 .
2.20R. 2.20R.







Hudson, Raymond A.i. $4,094,311$, Cl. 1288.66000 .
eledyne McCormick Selph, an operating division of Teledyne Indus-
tries. Inc.: See-
Goddadd Terrence P. P. Thatcher, Donald N.; and Garrison, Charles
G... $4,044,712$, Cl. 149-10.000.




Cl. 2 S.a.S38.000.
Ishikawa, Toshikatstsu; Kanemaru, Toyonosuke; Teranishi, Haruo
and Onishi, Kazumass, 4,094,951, C. 1.264 .325 .000 .
and
and




Nace Inc.. Sed-
Tate, Jack F.; and Maddox, Jim, Jr., 4,094,798, Cl. $252-8.55 \mathrm{D}$






 baumaschinen-Industriegeselischaft m.b.H. Apparatus for laying
track. $4,094,249, \mathrm{Cl} .1046 .000$.

 schaf m. m.b.H. Mobil
Thiefle, Aug. Aust: See-
Rehbein Friedhelm, 4.094,141, Cl. 59.93 .000 .

 Thiot, Richard E.:, and
4hiog,414, C. 1 , $11-1.300$.
Thir, Basil: See-
Newkir. David Dudley; Login, Robert Bermard; and Thir, Basil,
4094,

Domas, Alrred: Seee.
Dubernbushel, Therrens. Thomas, Alrred; Hess, Dieter; and Augst.
Hans-Rudiger, $4,094,620, \mathrm{Cl} .425 .140 .000$.
 Thomase David. composition and process for producing same. 4,09, 810 ,
connentrale
Thomas, Gareth John, to Hoffmann-La Roche Inc. Plant growth regu-
hamas. Gareth John, to Hoffmann-La Roche Inc. Plant growth regu-
lating agents. $4,044,664, \mathrm{Cl}$. 71 -11 5.000 .










search Compa
Cl. $61-1.00 \mathrm{R}$.
Chompson, Gerhard Roberr: See-
Campell. John Edward and Thompson, Gerhard Robert,
4.095 283 . Cl


Thomson- Brand: See-
Romeas Rence, $4,095,254$, Cl. $358-11.000$.
Thomson.CSF: See
Athenes.
$178-69.100 .0$ de;








contrast media containing: he same. 4,04,
Tion Equipment Company Se- Seler, Marlin A., $4,094,498$, Cl. 270.52.500.

for automatic closed loop positioning of mobile members asporiated
with an electromagnetic transducer with two pairs of windings.
with an electromagnetic
4.095, 159, Cl. 18.605 .000 .
Titus, Gerald F.: See -
Reve, Gerome R., 4,095,097, Cl. 250-199.000

carbon delection utilizing neutron borehole measurements. 4,095,102,
Col. $250-265.000$,
Toal., Desmond J ; McKenzie, John Mathew; and Hemby, Franklin


Walter, to Ekato-Werk. Apparatus for the con
ization of packing. $4,094,338$, Cl. $21-61.000$.
Tokico Lid. See-
Tokico Lad. See-
Hyashida, Yoshihiro, 4, 4,044,437, Cl. 220.-374.000





Yamamoto, Shinichi; Su milomo, Yasususe;: Horiike, Yasuhiro; and
Shibagakik, Masahiro, 4,094,722, Cl. 166-345.000.










Ishid, Yasuhiro, 4.095, 174, Cl. 32452.000 .
owerss. Jack. E., to Sandoz, Inc. Core form for lining containers
4,0944991, Cl. 249983.000 .










Teibeer, Helmut: See-
Paythemmer,
$359-68.000$.

cinizi
Wa Limited: See-
Waterman. Peeter G.; and Emmons, Donald Earl, 4,094,039, Cl
$15-250.320$.

Nixon, Phillass
os.
Liberaa, Heinz; Spes, Hellmuth; and Trommet, Alfred, 4,094,902,
Cl. 260-5s1.00P.







 Sekhanovskaya, Nina Alexandrovna: See-
Sirokkina, Ekaterina Egorovna;
inotkina, Ekaterina Egorovna; Loe- Lotinsky, Vadim Petrovich,
FFilmonov, Viktor Dmitievich; Kogan, Rita Moiseevna; Piro
ove Vyacheslav Dmitrievich; Kill







Sato, Yasuhisa; Tssuil, Sadahiko; and Tanaka, Katsumi, 4,094,586,
Tsujino, Nobuyukio. Ogawa, Akira; Shishido, Tadao; and Adachi, Keii-
chi, to Fuiji Photo Film Co., Ltd. Direct positive silver halide photo-
graphic materials. $4,094,683$, Cl . 966.95 .000.
 Cl. $219-10.49 \mathrm{R}$. Tsunekawa, Tokuichi, Uchido, Masanori; Nakamura, Zenzo; Taguchi
Tetsuya; Aizawa, Hiroshi; and Uchiyama. Takashi, to Coanon Kabu Tetsuya; Aizawa, Hiroshi; and Uchiyama, Takashi, to Canon Kabu
shiki Kaisha. Matching device for flash light phoographic device. 4.095,242, Cl. 3 S44.33.000.
 Masahiro; and Narisawa, shizuo, 4,094,844, Cl. 2 200.29.6MQ.
Tsutsui, Takayuki, to O Xerox Corporation Exhaust system for pyro



 Tuckey, Charles. H., and Tuckey, Roy J., to Tuckey Corporation
Horizontal updrat carburetor. 4,094,934, Cl. 261-64.00R. Tuckey Corporation: See -
Tuckey, Charles H.; and Tuckey, Roy J., 4,094,934, Cl. 261-64.00R
 Tuckey. Charles H.; and Tuckey, Roy J., 4,094,934, Cl. 261-64.
Tullius. Karl: See
Welke., Helmul; and Tullius, Karl, 4,094,534, Cl. 280.760.000.




curing apparatus $4,494,630$, Cl. $432-134.000$.
Uchido, Masanoli, See.
Tsunekawa, Tokuchi; Uchidoi, Masanori; Nakamura, Zenzo;

 Tagauch, Tousuay: Aizawa, Hiroshi; and Uakiyama. Takashi,
$4,095.242$. Cl. 35433.000 ,
 $260-239.0 \mathrm{BD}$.
Ueyama, Fumio, and Yoshimitsu, Takao, to Osaka Denki Co., LId.
Method for measuring the extent of shielding function of an arc Method for measuring the extent of shielding function of an arc
atmosphere and an arc welding machine incluing a nirimgen measpring device measuring the extent of shielding function.
$4,095,080$, ce. 19.74 .000 4.,095,080 Cli $219-74.000$.
Uubricht, Wolfgang: See



spark erosion machine tool. 4,099,079, Cl. 219-69.00E.
Umemolo, Takashi. See-
Nakamura





Weatherly, Merle Howard,
4,095, 003 , Cl. 427.34 .000 .
Union Oiis Company of California: See-
Mickelson. Grant A., 4,094,820, Cl. 252-465.000.
Union Special Corporation: See-
Flecher, Roy
.
Volkmann Robert $W_{\text {; }}$; and Forte, Anthony $D$.,

Kleinschmidt, Johann Outo; and Niem, Wolfgang. 4,094,260, Cl.
ind 121.150 .
Uniroyal Inc.: See
Ferrell. Wesley;
Ferrell, Wesley; and Shichman. Daniel, 4,094,354, Cl. 152-361.00R.
United Kingdom Alomic Energy Authority See-


United King gomor Graat Britin and Northern Ireland, The Secretary
of State for Defence in Her Britannic Majesty's Government of the:
See-
Bates, Leslie Raymond; and Jenkins, John Michael, 4, 4,044,879, Cl.
$260-299.000$.
United SLates Borax \& Chemical Corporation: See-
Shen. Eevini Kei-Weil and Belles, Wayne Stuart, 4,094,662, Cl.
$71-92.000$.

Shen, Kelvin Kei-Wei, 4,094,663, C1. 71-92.000.
Long, William J.,. 4,094,694; Cl. 106-111.000.
Cin sians A America
Schneider. Wilma J.; and Gast, Lyle E., $4,094.838$, Cl. 260 .
22.0TN.
Air Force: See
Rahilly, W. Patrick, 4,094,730, CI. 156-606.000.
Army: See-
Alkinson, Edward E.; and Queen. William E., 4,095,192, Cl.


N , Wahling H .; and Zaycer, Andrew, 4,094,520, Cl
2h7 1.166 .000 .
Schidlin, Albertus E., $4,094,247$, Cl. 102 -228.000.


| Traver, Bruce W., 4,094,246, Cl. $102 \cdot 66.000$. |
| :---: |
| $\begin{array}{c}\text { Energy: See } \\ \text { Beeman }\end{array}$ |

Beeman, Raymond; and Brajkovich, Steven J., 4,094,492, Cl.
2Sl
Reli. Begley. Richerd Fir
307-88.300.
2nd Kurnit, Norman A., $4,095,121$, Cl .


Wallace, Steven A., 4;095,106, Cl. $250-358.00 \mathrm{R}$.
Interior: See-
Bauer, Donald J . Eisele, Judith A; and Eichbaum, Barlane R. 4.4.094,95s. CI. $423 \cdot 123.000$.
Levere, Richard
W.;
Vocauro, Joseph M.; and Finney, James
 National Aeronautics and Space Administration; administrator
with respect to an invention of: with respect to an invention of:
Howarth, John T. Sheth, Suresh; Sidman, Kenneth R.; and
Massucco, Arthur A. Process for spinning flame retardant


National Aeronautics and Space Administration: See-




Mulder, Rudilif and Wellinga, Kobus $4,095,026, \mathrm{Cl} .548-379.000$.


Georr, 4,094,689, Cl. 106-50.000.

73.118 .000 .
Mendels.shn, Charles, $4,095,144, \mathrm{Cl} .315-375.000$.












Sools for Bending, Inc.: See-
Stange. Ronald Re, MoGire, Samuel B.; and Woodring, Thomas
W. $4,094,749$, Cl. 20425.000 .

June 13, 1978

Salmond, William G. $4,094,890, \mathrm{Cl}, 260,397.200$.
Yankee, Ernest W., $4,095,036, \mathrm{Cl} .560-121.000$.
 Urschel, Fred



 USM Copporation. See
Hold, Peter, $4,094,940$, Cl. $264-40.600$.
 Vadetec Corporation See -
Kemper,
Yves Jean, $4094,202, ~ C 1$.
.


 polyhhdroxy componand. .he. Condensation producls of aromatic
4.094,860, Cl. 260-77.00R. Valancius, James P., to Addressograph-Multigraph Corporation.
Method of ifixig a toner powder image on a sheet of material.
4.094.674, C1. $96-1.0 \mathrm{SD}$. Method of fixing a toner powder image on a sheet of material.
4.094,474, C.l. 9.1 .0 S.
Valleylab. Inc.: SeeValleylyb, Inc. See- . Sevid
Newtion
128.303 .140 . Valtsov Vladimir. Vikkorovich, See-
Kolpakov, Serafim Vasilievich; $G$

 Arevich, Radiov, Slanisiav yacheslavovich;
Alexand Andrevevich 4.04,938, Cl. $264-30.000$.

 106-50.000
4andergriff, Arvel L . Roller gin with groved square rotobar.
4,094,043, Cl 19.53 .000 . derlinde, William. See-

van der Mast, Karel Diederick: See
LePpooles. Jan Barti and van der Mast, Karel Diederick, 4,095,104,
C. 250.31 .000 .














Carlson, Arthur Wh, $4,094,913$, Cl. 5688.778 .000 .
ereinigte Oticrecichische Eisen- und Stahlwerke-Alpine Monta
Aktiengesellschaft: SeeAktiengesellschaft: See-
Allendorfer, Alois; and Stahrlinger, Anton, 4.094,418, Cl. 214
1.0BC. Alitnoorer, Alois; and Stahrringer, Anton, 4,094,418. Cl. 214
Verkrobi. Gerard; and Butterweck, Hans-Jurgen, to U.S. Philips
Corpooration. Digitital signal processing arrangement including a wave Cerkroost, Gerard, and Butterweck, Hans-Jurgen, to U.S. Philips
Corporation. Digitalsignal proessing arrangement including a wave
digital filter. 4,095s,276, cl. $364-724.0000$

 vesel. Andrew M. M, 10 Ceessna Aircraft Company, The. Variable phase
shifter. $4,095,186$, Cl. $328-133.0000$.




VOKO Fran Vogt \& Co.: See-
Holper Manfred Scherel., Gunter; and Kosters, Egon, 4,094,256,
C. 108.50 .
Volkmann, Robert W: See
FFelcher, Row W.: Volkmann, Robert W.; and Forte, Anthony D.
4.094,259, Cl. 1120.110 .000 .


 dyecing cellulose fibers with water-1n
on the fiber 4.044.636, ,ll. $8-46.000$.
on der Heyden, Host: See-

Sum, Arnold; von der Heyden, Horst; Irro, Fritz; Knaunt,
Guenter, RRChter Stephan; and Schulze-Schoelling, Hermann,
4,095,270, Cl. $364-200.000$.

von der Kall, Gunter: See-
Haseler. Helmut; and von der Kall, Gunter, 4.094,448, Cl.
22.-342.000.
von Koniz, Anita: See-






Uircano, Vincent N.; and Friedman, Maurice W., to Friedman, Mau-
W. .re W. Automatic baging machine. 4,094, 128, Cli. $53-52.000$.
R. Grace \& Co. See-
Hardegen, Frank Joseph; and Swann, Wayne Elliott, 4,094,744, Cl.
1955.63.000.

Lowther Frank Eugene, 4,094,652. Cl. S5-33.000.
S. Shirmer Heny Ge. $4,095,012$, Cl. 428-474.000.
W. Vinten Limited. See- Sichard David, 4,094,484, CI. 248-162.000
Wacker-Chemie GmbH: See-




 Wagner, William T., To Dasco Corporation. Loom picker construction.
4.094, 311, Cl. $139 .-159.000$. Waitl, Guenther: See-
 Waldhofer Reinhard, to Krupp-Koppers GmbH . Comminutor for use
in a gasifing intalation $40,044,47$, Cl
Walker. David Baird Langley: See-





aliker. Wesley M. Walker
4.094,93s, Cl. 261 -80.000.





attenuation gauge with $m$
2anach8.00R
Wallace, Thomas J.: See-
Wallace, Thomas J.: See
Nangle, Bermard, McGaha, Patrick L.; Wallace, Thomas J.; and
Anderson. Tod




 Wang. Roberer; and Brun, Didier, to Heurtey Emutherm. Method and
device for evaporation and thermal oxidation of liquid emuents.



 Warne Thomas M.,. to Standard Oil Company (Indiana). Anti-wear
lubricating oil compositions $4,044,800$, Cl. 252-32.70E.
 $W_{\text {arren-Teed }}^{221.18 .000 .}$
Warren- Teed Laboratories. Inc. See-
Johnson, Richard C.. $4,044,988$, Cl. $424-277.000$.
 Washizawa, Yasuo; and Ikeda, Tomoaki, to Fuji Photo Film Co. Lt





 Waterman, Peter G.; and Emmons, Donald Earl, to Tridon Limited.
Windshied wiper bayonet clip with double latch. 4,044,039, $\mathbf{C l}$.
W.-25.320. $15-250.320$.
Waters Associa
Waiers Associates, Inc.: See-
Friswell, David R.; and Finn, Lawrence J., 4,094,195, Cl. 73 . Friswell David R. $4,494,196$, Cl. 73 -422.0GC.
Friswell, David R., $4,094,641$, Cl. 23-230.00R.

 Wean United, Inc.: See-
George. David Weinchenk, 4,094,619, Cl. 425.135 .000 .
Weatherly, Merle Howard. and Tucker, Robert Clark. Jr. Weatherger , Merle Howard; and Tucker, , obert Clark, J.r., to Union
Carbide Corporation. Duplex coating for thermal and corrosion










N-4 - Cyanomethylinheny)
Weiravach, Donald
W., to Texas Instruments Incorporated. Chemical

Wellekens, John F . Tam
Cl. 0 Pat2...00.
Wellinga, Kobus: See-
Mulder, Rudolfe- and Wellinga, Kobus, $4,095,026, \mathrm{Cl}, 548-379.000$.
Welcs.
sembly, Hans-Heinrich, to Lohr $\&$ Bromkam GmbH. Bearing asSembly, for a wheel hut. $4,004,376$, Cl. $180-43.00$ R.
welsh, James J.: See-



 Dispersing solid polyurethane prepolymers inio water. $4.094,842, \mathrm{Cl}$.
$260-29.2 \mathrm{~N}$.
 Wessel, Wooff to Robert Bosch GmbH. Mixture control monitor appa-
ratus. $4,94,186, \mathrm{Cl} .73-1.00 \mathrm{G}$.
 for improved
fe3,-14.000.
westberg. Torst
Westberg, Torsten Boris Joel. Method in destrucling chills and a device
for carying the the method. $4,094,181$ Cl 72.3251 .00 .
siberg, Torsten Boris Joel. Method in desstructing chinls
fer carying out the method. 4094, 181, Cl. 72.325 .000 .
estern Elecric Co., nc.: See-

Fuchs, Francis Josech, JT., 4,094, 178, Cl. 72-41.000.

Baldwin, Gary D.; and Bepko, Stephen J., 4.094,581, Cl.
3S0.150.000.
Bauerle, James E.: Reed, William H. and Berkey, Edsor, 4,095,171
Bauerle. James. E.; Reed, William H.; and Berkey, Edgar, 4,095,171,
Cli. 3243.000 .








Schroeder. Stephen M.; and Michel. George P., $4,095,205, \mathrm{Cl}$.
Simme.2.000.
Simm.









Langer, Arrhur W., Jr.; and Whitey, Thomas A., 4,044,87, Cl
2.e.20.OPD.
Whyte. Francis. Walking boot for surgical le
12.888.500.
Widdor Coration: Se-
Krieg, Adrian H., $4,094,612, \mathrm{Cl} .408-92.000$.
Kries, Adrian H., ,4,094,612, Cl. 408-92.000.
Widell. Bjom: See
Collin, Per Harald; and Widell, Bjorn, 4,094,665, CI. 75-11.000.


Arien Jacob: See-
hite, Brace Lynn; Kiner, Mark Winfield; and Wiens, Arlen
Jacob, $4,094,427$, Cl. 214.505.000.


loactivated bleach-Compositions. 4,094,806, Cl. 252-102.000.
Wiese. Volilhard. See-
Riegler, Albert; Saar, Werner; and Wiese, Volkhard, 4,094,839, Cl.

Wilhelmsen, Irven R. Truck body door assembly. 4,094,562, C1.
3il2-20.00.
Wikerson, Darrell F. Aerial extension ladder. 4,094,381, Cl. 182-67.000.
 Company
49.00R.
C9.90R. Rorer, Inc.: See-
William H .
Diamond. Julius, $4,094,995$,
Diam H. Rorer. Inc. See-
Diliamond. Julius, 4. 494,995 , Cl. 424.353 .000 .


Williamson, Denis F., to General Electric Company. Regenerativ
braking system for a chopper controlled electric traction
braking system for a che cho.
4.055. 154. Cl. 318.376 .000 .
Willis, Chester R.: See-
Lamberti, Vincent; and willis, Chester R., 4,095,035, C
$560-180.000$
Willis. Edwin: See
Sed 180.000
Willis. Edwin: See-
Humpheys.
Heter Franklin:: and Willis, Edwin. $4,094,807$, Cl .
252-131.000.
252-131.O00.eron, to Stanhay (Ashford) Limited. Seed metering
Willis. Rober Anthony
device having high friction material on roating wheel
Willis. Robert An
device having h
$2212-266.000$.
2evice having high friction
wilson Industries, Inc:
See-




 Wiswell, H. Eu
EElectical re.
S38-174.000.
338-174.000.

Wojslawowicz, Jack Edward: See-
Brooks, Ronald Rober:
Brock, Ronali, Roberi: See- and
4.095, 155, ll. 318.541 .000 .
Wolf, Franz- Josef. Method and molding core for making a flexible
hollow molded body which is open on a number of sides. $4,04,688$,
hollow molded
Clill 100 . 38.200
Wolf. Robert H.



 4.0055.113. Cl. 250-494.000.

Woodring, Thomas W. Se-
Stange. Romald R.: McGire. Samuel B.; and Woodring. Thomas
W., 4,004,749, Ci. 20425.2500 .

Nixon, Phillip Sydney; and Woods. Harold, 4,094,659, Cl
s5.-104.000.
Woods, Robert D. See-
Wooslayer. Homer J; Jenkins, Cecil; and Woods, Robert D.
4,094,051, Cl. 29-1 59.00 .


 Woringer, Theo, to BBC Brown. Boveri \& Company Limited. Fuel
injection nozzie assembly. $4,094,469$, Cl. 239-405.000.
 Wright, George C. and Goldenberg, Marvin M. to Morton-Norwich
Products.
O-Methoxy-N-vanillylidene-4-chromanamine.
 Wright. Hubert A...Jr., to Bolt Beranek and Newman Inc. Method and
apparatus for measurement of acoustic impedance transitions in media apparatus for measurement of acoustic impedan
suxh an human bodies. $4,04,304$, Cl. $128-2.00 \mathrm{~V}$.
Wright. John B.: See-
Wright, Jhn B. See
Hall. Charles M. .and Wright, John B., 4,095.028, Cl. 560-44.000.
Wright, Robert G.. See-
Oney. Wallace E.;
ond
9.310 .000 Wright, William E.; and Bock, Huber D.D., Jr., to Walter Kidde \& Com-
pany. Inc. Selfaligning and end fixity conector for connecting a
hydraulic cylinder iston rod to hydraulic cylinder piston rod to its respective section in a multi-sec-
tion telescopic boom assembly. $4,094,23$, 1 , 92 - 51.000 .


Camphaysen, Don L.,., 4,094,606, Cl. 355-3.000R.
Gisson, Hary W.; and Gunther, Wolfgang H. H., 4,094.803, Cl
252-62.10P.
Goffe. William L., 4,095,233, Cl. 346-75.000




Young. Roebert A., $4,094,608, \mathrm{Cl} .356-97.000$
Yagi. Toru: See-

got ,effry R., 10 Leseser Construction Company. Permissible mine car
adapter assembly Lester Const.361, Cl. 169 -48.000.
Yajima, Toshiyuki: See-
 hamada. Hideaki; Takahashi, Satomi; and Yoneda, Koji, to Kanegafu-N-carbamoyl-2-phenyl or substituted phenyl)glycines. 4, 4,04, pili, C1.
 Yamada. Tomio. S. 123-179.00G.


 Driving apparatus, and method. $4,094,204, \mathrm{Cl}$. 74.230 .17 E .
Murayama, Seiichi; Yamamoto, Manabu; Ito. Masaru; Yasuda,
Makoto: Watanabe, Makoto; and Kayama, Kunifusa, 4, 4, 5 , 142 ,
Cl 315 -248.000.



 Yamazaik. Haruo; and Akutsu, Hidezoh, to Matsushita Electronics
Corporation. Spherical-bulb nuorescent lamp. 4, 4,095,135, Cl.
313-43.000. Corporation.
$\begin{aligned} & 313-43.000 \\ & \text { Yamazaki. }\end{aligned} . \begin{aligned} & \text { Hiro }\end{aligned}$.

Oshi. Hiroshi: See- Kenji; Matsumoto. Tomohisa; Yamazaki, Hiroshi; and
Yoshioka, Tamotsu, 4.095.1 130 , Cl. 100 .162.000.
 Yannopoulos. John C.: and Borham, Borham M., to Newmont Explora-
tion Li.ionited. Treatment of copper refinery slimes. 4,044,668, Cl.
T5.99.000.
Yara-Engineering Corporation: See-
Thompon, Thomas D. $4,044,698$,

- 7 Cl. 106-288.00B.

Sakkekibara, Sakeaichi; Sugisawa, Ko, Kimura, Takashi; and Yasuda.
Atsushi, 4,094,996, Cl. $426-115.000$.
Yasuda, Hajime: See- Kle
Kobayashi, Yoshiki; Bandoh, Tadaaki; Maejima, Hideo; and Ya-
suya, hajime. 4,0 , 5,268 , Ci.
364-200.000. stua, Hajime, $4,095,268, \mathrm{Cl}$. $364-200.000$.
Murayama, Seiichi; Yamamoto, Manabu; Mo. Masaru; Yasuda,
Makoto; Watanabe, Makoto; and Kayama, Kunifusa, 4,095,142.
C1. 315 .248.000. Yasui, Seimei, Hino. Minoru; and Hayashi, Kazuya, to Sumitomo
Chemical Company, Limited. Aqueous alkyd resins. 4,094,836, Cl.
$260-22.0 \mathrm{CB}$. Yasuake, Akira; Yasuake. Akira: and Kiso. Shigemitsu, to Omron Tateisis Electronics
C. Method of manufacture of liquid crystal displays. $4,994,588$, CI.
29-592.00R. Yeakey, Ennest L.: See-
Brennan, Michael E.;
 Yeckien, Russel $\mathrm{N} ;$; and Neri, Zeno, to Westinghouse Electric Corp conitesu-stitell interrupter-head construction for circuiti-interrupters
200-148.008. okota, Hisaaki: See-

Tomita, Makoto; Yokota, Hisaaki; Koga, Syozi; and Kashimura,
Toshisada, 4,095,085. Cl. 219-123.000.
 Co. Lid. Method for rreparing shaped articles of a fuorinated elasto-
mer. 4,O94,949, Cl. $264,234.0000$


 Yoneyama, Teruo: See-
Muraoka. Hisashi; and Yoneyama. Teruo, 4,095,095, Cl.
 Yoshida, Yasuharur, to Nippon Electric Co., Ld.d. Demodulation system
for a multi-level multi-phase superposition-modulated carrier wave. for a multi-level multi-i-has.
4,095, 587 , Cl. 329.50 .000
Yoshikawa. Yoshitaka: See-

Nagasawa, Masahiro, Ishida, Tomio; and Yoshikawa, Yoshitaka, Zelawki, Zennter. Heribert, 4,094,219, C1. 83-345.000.




 Shimizu, Ichio; and Arai, Yuu, it Hitachi, Lid. Single in-line high
power resin-packaged semiconductor device having an improved

 Yoshino. Masastsugu: See-

 Young, Daviou N T Tamots, 4.095,130, Ch. 10 Y-162.000


Young, Lewis B: See-
Kading. W. Wrren W.; and Young, Lewis B., 4,094.921, Cl. 260 -
671.00c.
Young, Robert A., to Xonics. Inc. Spectrometer of the electro-opto-
acoustic
type with
capacitor-type
$356-97.000$. SW. Solar heat collector. 4,094,300, Cl. 126-271.000.
Yaung, Sam. W. Solar heat collector. 4,094,300, C1. 126-27.000.
Zaboronok, Georgy Fomich. See-
Sokolov. Boris Grigorievich; and Zaboronok, Georgy Fomich,
Sokolov, Boris Grigorievich; and Zaboronok, Georgy Fomich, Murthe, Timothy P.; and Zuech, Ernest A., 4,094,920, Cl. 260.
4.095.083, Cl.






Zampino, Dolores V. See-
Zampino Arthur T.; and Zampino, Dolores V., 4.094,547, Cl. Zweig, Gailbert: See-
Habib, David P .;


## LIST OF REISSUE PATENTEES

## TO WHOM

PATENTS WERE ISSUED ON THE 13TH DAY OF JUNE, 1978 Note-A Arranged in accordance with the first significant character or word of the name
(in accordance with city and telephone directory practice).

AMP Incorporated See
Reynotas. Charlee
C.


Lombardino. Joseph G., to Pfizer Inc. Glycineamides. Re. 29,668, Cl .
$260-306.80 \mathrm{R}$. Lom-306.80R. Joseph $G$., to Pfizer. Inc. Production of 4 -hydroxy-1,2-
Lembaridio,

 Reynoms, Charies Edward, and Swarta, John Cli.linoon, io AMP Incor-
porated. Electrical contact terminal having improved wire-receciving porated. Electrical contact terminal having improved wire-rectiving
slo. Re. 29.666 C. . $3399-15.000$.



 United Technologioses Corporation: See-
Harner, Kermit 1., Re. 29,667, Cl. 415-28.000.

## LIST OF PLANT PATENTEES

Kinney, Charles Lyle. Pear tree. 4,263, 6-13-78, Cl. 36.000.
Mikkelsen, James C., to Mikkelsens Inc. Impatiens plant. 4,262, 6-13-78, Cl. 68.000 .

Mikkelsens Inc.: See-
Schwartz, Ernest, 4,264, Cl. 9.000
Schwartz, Ernest, 4,265, C1. 8.800.
Schwartz, Ernest, to Saville F. Harmon. Rose plant. 4,264, 6-13-78, Cl. Schwartz, Ernest, to Saville, F. Harmon. Rose plant. 4.265, 6-13-78, CI.
8.000.

## LIST OF DESIGN PATENTEES


merican Locker Security Systems, Inc.: See-
Stackhouse, Wells F.; and Barth, Douglas A., 248,138, CI. D6170.000 .

Ppelblom. Harold R., deceased. See-
Yoshida, Saburo. Appelblom. Harold R., deceased; and Appel-
blom, Mae H., administratrix, 248,
Slom, Mae H. , administratixix,
Apelblom, Mae H .., administratrix:
Yoshida. Saburo; Appelblom, Harold R.. deceased; and Appel-
blom, Mae H., administratrix, 248, 153 , Cl. D11-152.000.
Aulbert, Harold V., to Vaughan, Furriture Cold Cony, Incorporated
Dresser or similar article $248,136,6-13-78$, CI. Do-154.000
Dresser on facturing Company: See
Kelly, Gordon, 248,168, Ci. D24-54.000.
 atra, Vijay. Outer sole for footwear. 248,127, 6-13-78, C1. D2-320.000
 248.164, 6-13-78, CI. D24-21.000.

Long, Stapleton, 248,132, Cl. D6 61.000 .
Burd. Inc., Howell Division: See-
Petersen, Warren D,



Fujita, Teizo; and Ohashi. Toshiro, to Izumi Denki Company Limited.
Moior timer. 248, $149,6,13-78$, Cl. D10-40.000.
 Electrode frame for use in an electrolytyic filter. press cell apparatus or
the like. $248,157,6-13-78$, Cl D $13-40$. Garcia, John, Anthony Mason. Candle holder. 248,182, 6-13-78, C
D48-2.200.
Garcia. John Anthony Mason. Candle holder. 248,183, 6-13-78, C D48-2.000.
Garcial
D 48 . John
and Garciag , John
Den-2.000.
General lindin General Binding Corporation: See-

## General Signal Corporation: See-- Duris. Rudolph M., 248,151, Cl. D10-116.000.

 Haas. David Lee: See-
Bell, Mace Hudson; and Haas, David Lee, 248, 164, , Cl. D24.21.000. Bating, Hace He to Carolina Enterprises, Inc. Siren. 248, 152, , $6-13-78, \mathrm{Cl}$

D10.120.000. | Hazerjian, Kevor |
| :---: |
| Hazerian, |

Hazerijian, Minas P.; and Hazerjian, Kevork P., 248,186, CI. D48.
H8.000.
Hazerijian, Minas P.; and Hazerjian, Kevork P. Cover for yard light.
248,186, 6.13 .77 .
S.l. D48-38.000.


| Tapdrup, Erik Peter, 248,172, CI. D34-2.00R <br> Tapdrup, Erik Peter, 248,173, Cl. D34-4.00R. Tapdrup, Erik Peter, 248,174, Cl. D34-4.00R. |  |
| :---: | :---: |
|  |  |
|  |  |

"


Riley, Edward J., 248,17 , CI. D. D34-5.0GC.
octer \& Gamble Company. The: See-




 Robers. . Thomas Peier. Lamp for illuminating door locks and the like.
$248,184,6.13-7$.
 6-13-78. Cl. D24.1.100.
Roe. George J. Bagpipe practice chanter. 248,187, 6-13-78, Cl. DS6Sachie Andov: See-
Majeima, Husazo, 248,159, CI. DI5-100.000.

Rache. Josesh A.; and Wales, Arthur P., 248,147, Cl. D9-189.000.
Shames. Harold See


Cl. D6.-86.000.
Shames. Sidney J.; and Shames, Harold. Tub stopper. 248, 134, 6-13-78,
Chell Dil Co. Company.



Steigerwald. Allan M. Manual control valve for anesthetic gases.
segermon, $6-1378$. M . D29.7.000.

mation unn.2 248,171, 6-1.-78, Cl. D31-5.000.
nnyside Nurseris. Inc. See-
Yoshida, Saburo.


Tapdrup. D 34.20 R .
Tapdrup. Eriik Peter, to Interlego A.G. Toy figure. 248,173, 6-13-78, Cl.
D $34-4.00 \mathrm{R}$.
Tapdrup, Erik Peter, to Interlego A.G. Toy figure. 248,174, 6-13-78, Cl.
Tapdrup, Erik Peter, to Interlego A.G. Toy figure. 248,175, 6-13-78, Cl.
D.344.00:
Dapdru..00R ERik Peter, to Interlego A.G. Toy figure. 248,176, 6-13-78, Cl.
D344.0.0R.
D34.00R
Tapdrup. Erik Peter, to Interlego A.G. Toy figure. 248,177, 6-13-78, Cl.
D34-.00R
Tapdrup, Enik Peter, to Interlego A.G. Toy figure. 248,178, 6-13-78, CI.
Tapdrup. Erik Peter, to interleg A.G. Toy figure. 248,178, 6-13-78, Cl
D $34.4,0$ R.
Celedyne Industries: See-
Canno. Themas $\mathrm{G} ;$ and Mackay, Spencer L., 248,143, Cl. D7-
14000.
Tixier, Michel, to Regie Nationale des Usines Renault. Car front bum-
per. 248,156, $6-13-78$, Cl. Dl. D12-169.000.










## CLASSIFICATION OF PATENTS

ISSUED JUNE 13, 1978

| 5 |  | CLAsS 30 |  | $\begin{gathered} 21 \mathrm{Fw} \\ \substack{22 \\ 23} \\ \underbrace{2} \end{gathered}$ |  | ${ }^{92}$ | $4,094,662$4,09946634 |  | $\begin{aligned} & 4,04,699 \\ & 4,0,0480 \\ & 4,09680 \end{aligned}$ | $\begin{aligned} & \substack{52 \mathrm{MF} \\ 52 \\ 59 \mathrm{EF} \\ \hline \mathrm{C}} \end{aligned}$ | 4,094,27 $4,0,044,27$4 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1618 | 4,094014 | ${ }_{4} 3$ R | 4,094, |  |  |  |  |  |  |  |  |
| 415 | 4,094,015 | ${ }_{92}^{47}$ | 4,094, |  |  |  | 72 |  |  |  | 4.099 .280 |
| CLASS 3 |  | 210 | 4 |  | 4,094,124 |  |  |  |  |  | 4,094,279 |
| 1.1 | 4,044,016 | 346.58 | 4,094,006 | 35 | 4,094,126 | 238 | 4,094, | 108 | 4,094,684 | ${ }_{17}^{98}$ | ${ }^{4,094,281} 4$ |
|  |  | CLASS 32 |  | ¢ $\begin{aligned} & \text { 51 } \\ & 52\end{aligned}$ | +i, 4 |  |  | ${ }^{\text {CLASS }}{ }^{88}$ |  | 119 A | 4,094.283 |
| CLASS 4 |  | 2 | 4,094,067 |  |  |  |  |  |  |  |  |  |  |
| ${ }^{7} 7$ | ${ }_{4}^{4}, 0040018$ | ${ }_{22}^{14} \mathrm{~A}$ | 4,094,069 | 124 D | 4,094,130 | - 3 364 | ${ }_{4}^{4,094,1882}$ |  |  |  | ${ }^{4}, 094,286$ |
|  |  |  |  |  |  | 392 | $4,044,184$ |  |  |  | 4,094,287 |
| 213 | 4,094:023 |  |  | 24 | 4,944,131 | ${ }_{477}^{44}$ | Re. $2,9.664$ | 310 | $4.094,234$ | 127 | 4,094,288 |
| 312 | 4,094,019 | ${ }^{1746} 1$ | $\begin{aligned} & 4,094,070 \\ & 4,094,071 \end{aligned}$ | CLASS Ss |  |  |  | 450.1 | 4,090,235 | 141 | 4,094,289 |
| CLASS 5 |  |  |  |  |  |  |  |  | 4,094,290 |  |  |
| ${ }_{365}^{66}$ | 4, ${ }_{4}^{4,094,024}$ | 34 |  | $\begin{aligned} & 138 \\ & 298 \\ & 298 \end{aligned}$ |  |  |  |  |  | ${ }_{196 \mathrm{~S}}^{179}$ | $\begin{aligned} & 4,044,29 \\ & 4,094,293 \end{aligned}$ |
| CLASS 6 |  |  |  | $\text { CLASS } 100$ |  |  |  |  |  |  |  |  |
| 1 | 4,094,026 | , | 40 |  | 14.4 | 4,094,13 | 115 | $4,044,190$ | ${ }_{97}$ | ${ }_{4}^{4,094,240}$ |  | 4,094,294 |
| CLASS8 |  | ¢ | +4,094,0767 |  |  |  | 4,094,192 | CLASS 101 |  | CLASS 126 |  |
|  |  |  | $\begin{array}{ll}  & \begin{array}{ll} 481,944,078 \\ 181 \\ \text { CLASS } 35 \end{array} \end{array}$ |  | ${ }_{56}^{34} \mathrm{R}$ |  | 4,094 |  | ${ }^{66}$ | 4,244 | 25 R | 4,094,295 |
| 11 46 | 4,094,6, |  |  |  |  |  |  |  |  | ${ }^{39} 1$ |  |
| ${ }_{11}^{46}$ | ${ }_{4}^{4,094,637}$ | ${ }_{77}^{8 \mathrm{~A}} \begin{array}{r}4.0 \\ \text { class } 36\end{array}$ |  | ${ }_{23 \mathrm{R}}^{23 \mathrm{~A}}$ |  | 4, 58 | 423 A450517 B | 4,094,1969 | ${ }^{349}$ CLASS ${ }^{402094,243}$ |  |  |  |
| CLASS 9 |  |  |  | 4,094,19897 |  |  |  |  |  |  |  |  |  |  |
| ${ }_{321}{ }^{\text {P }}$ | 4,094,027 | ${ }_{116}^{12.6}$ |  |  |  |  |  | 4,094,199 | ${ }^{35}$ | 4,094,245 |  | 4,094,300 |
| CLASS 12 |  |  |  | $\begin{aligned} & 390 \\ & 152 \mathrm{R} \\ & 192 \end{aligned}$ | CLASS 74 |  | 边120 <br> 228 | $\begin{aligned} & 4,094,246 \\ & 4,04,248 \\ & 4.044 .248 \end{aligned}$ | 400 $\quad 4,004,3,301$ | 4,094,302 |  |  |
|  | 40 |  |  |  |  |  |  |  | CLASS 104 |  |  |  |
|  | 4,094,030 | ${ }_{152.1}$ | 4,0 |  | 59 |  |  | 24 |  |  | 4.094 |
|  |  |  | + $4,094,083$ | 60 |  |  |  | ${ }_{12}{ }^{6}$ | 4,094 | CLASS 128 |  |
|  | 4,0 | ${ }^{613}$ CLASS 42 |  |  |  |  |  |  | 1 R | 303 |  |  |
|  | 4,044,012 |  |  | 332 | 4,094, |  |  | 4,094,206 | 130 | 4,094 | ${ }_{2}^{2 \mathrm{~V}}$ | 4,094,304 |
| 49 R | 4,094,034 | ${ }_{90}{ }^{\text {R }}$ | 4,094,098 | 445 | 4,094,14 | 520 | 4,044,208 |  | 105 |  | 4,094,306 |
| 160 | 4,0404035 |  | 43 | ${ }_{641}^{44}$ | 4,094,144 | 543 | 4.094 | ${ }_{282}^{225}$ | 4,094,253 | R |  |
| ${ }_{2}^{245}$ | 4,044,036 | 42.24 | 4,094,087 |  | 4,094,147 | ${ }_{868}$ | ${ }_{4}^{4}, 0,04,2,211$ | $13 \quad 4$ |  | ${ }_{2.06 \mathrm{G}}^{2.06 \mathrm{E}}$ | 4,094,310 |
| 250.32 | 4,094,038 |  | 4,094,088 | 652 | 4,094,148 | $11 \quad$ CLASS 75 |  |  |  |  | ${ }^{4}, 0,094,3,311$ |
|  | 4,094,039 |  |  |  |  |  |  |  | - 4 | ${ }^{66}{ }_{83}^{66}$ |  |
|  | 16 | ${ }^{35}$ CLASS 46 |  | ${ }_{36}^{1 / 2}$ | 4,094, | ${ }_{58}^{58}$ | - 4 | ${ }_{73.4}$ |  | 13.5142.21.2 | ${ }_{4}^{4}$, |
| 191 | 4.09 |  |  | ${ }_{36} 36 \mathrm{C}$ | 4,094,150 | 92 | ${ }^{4} 4,0944,6687$ |  | 4,094,6090 |  | 4,090, 413 |
|  | 17 | 1 | 4.09 |  | - | 108 | 4,094,669 | ${ }^{9}$ | 4.094 | ${ }_{156}^{152}$ | 4,094,316 |
| ${ }_{46}^{4.2}$ | 4,094,041 | ${ }_{53}$ |  | 45 | 4,094,154 | 1245 | 4.094, | 111 | 4,0094, | 194 | 4,094,317 |
| CLASS 19 |  |  |  | 4,094,155 |  | 4 |  | 4.094 | 214 E | 4.044,318 |  |
|  |  | ${ }^{160}$ | 4.094 |  | ${ }_{63}^{53.5}$ | 4,094,156 | 246 | 4,094 |  |  | ${ }_{294}^{284}$ | 4.094,319 |
| 53 | 4.09 | ${ }^{232}$ CLass 47040 |  | 6369 | CLASS 81 |  | 277 278 |  |  |  |  |
| CLASS 21 |  |  |  | 4,0,04,1,159 | ${ }_{9.5}^{3.8} \mathrm{R}$ |  |  |  | 4,094,698 | 419 N | 4,094,322 |
| ${ }_{74}^{61}$ | 4,094,638 |  |  |  |  |  | 4,094,1601 | 4.094 .213 | 288 Q | 4,094,699 | 49 P CLASS ${ }^{4} 131$ |  |
| CLASS 23 |  | $\begin{array}{ll} 41.13 \\ 57.6 & 4,094,096 \\ 4,094,097 \end{array}$ <br> CLASS 48 |  | (111 |  |  |  | CLASS 108 |  |  |  |  |
|  |  | 4,094,163 | ${ }_{156}^{127}$ |  | 4,094,216 | ${ }_{20}^{25}$ | 4.094,255 | 8 R | 4,094,323 |  |  |  |
| ${ }_{230}^{230 \mathrm{PC}}$ | 4,094,640 |  |  | 197 R | 4,094,650 |  |  |  | 83 | - 115 | 4, | ${ }_{21} \mathrm{R}$ | 4,099,325 |
|  | 4.044646 | CLASS 49 ${ }^{\text {4,90651 }}$ |  | ${ }^{40}$ | 4,094,053 | ${ }^{6}$ | ${ }^{4.004,217} 4$ | CLASS 112 |  |  | 4,04, 323 |
| ${ }_{254}^{253}$ |  |  |  |  | 4,094,15 |  |  |  |  | CLASS 132 |  |
| 2598 | $4,044,648$ | ${ }_{348}^{163}$ | 4,094,099 | (1) |  |  |  |  | 4,094,259 | 91 | 4,094 |
|  | 4,004,643 | CLAsS 51 |  | $\begin{array}{\|l\|l} 238 \\ 347 \end{array}$ |  | 762 4,094,221 |  | ${ }_{228}^{121.15}$ | 4,094,261 | SS 134 |  |
| ${ }^{288 \mathrm{FC}}$ CLASS 24 |  |  |  |  |  | 4,0 |  | CLASS 114 |  | ${ }^{2}$ | 4,094,701 |
|  |  | 33 R | 4,094,102 |  |  |  |  |  | 4,094 | ${ }_{56 \mathrm{R}}$ | 4,4,044,329 |
|  |  |  |  | 83 |  | 31 |  |  |  |  |  |
|  |  | $\begin{aligned} & 101 \\ & \hline 1014 \\ & 2145 \end{aligned}$ |  |  | 4,094,657 |  |  | ${ }_{307}^{30}$ | 4, $4,094,26$ | CLASS 135 |  |
| ${ }_{241}^{230} \mathrm{AK}$ | 4,094,047 |  | 4,094,106 |  |  |  |  |  | 116 |  | 4,094,331 |
| CLASS 29 |  | CLASS 52 |  | ${ }_{325}^{104}$ | 4,094,059 | CLASS 91 |  |  |  | CLASS 136 |  |
| ${ }^{6}$ | ${ }_{4}^{4.094,048}$ |  | 4,094, |  |  |  | 4,094,22 |  |  |  | 4,004,703 |
| 129.5 | 4,094,050 | ${ }_{80}^{2}$ | ${ }_{4}^{4,0,044,110}$ | 176 | 4,094 | ${ }_{411}^{180}$ B | ${ }_{4}^{4} 4.0944,2228$ | 49.1 |  | CLASS 137 |  |
| 159 | 4,094,051 | 167 | $4,049,111$ |  | 68 | ${ }^{506}$ CLASS 92048 |  | Cusss ${ }_{19}$ |  |  | 4,094,332 |
| 420 | 4,094,053 | ${ }_{2}^{211}$ | $4,904,1$ |  | 4,094,172 |  |  | CLASS 119 |  |  | 4,094,333 |
| $4{ }^{460}$ | 4,009,054 | ${ }^{489}$ | ${ }_{4}^{4,094,} \mathbf{4}, 1,1145$ |  | ${ }_{4}^{4}, 094,173$ | ${ }_{128}{ }^{128}$ | 4,094,230 | ${ }_{5}^{3}$ | 4,094,270 | 317 <br> 403 <br> 03 | ${ }_{4}^{4.0994,335}$ |
| 527.6 | 4,094,055 | ${ }_{74}^{698}$ | ${ }_{4}^{4,094,1,16}$ | $\begin{aligned} & 364 \mathrm{~A} \\ & 3949 \\ & 424 \end{aligned}$ |  | cass |  | class 123 |  |  | 4.094,327 |
|  | 4,044,057 |  | 4,094,117 |  |  |  |  | $30 \mathrm{D} \quad 4,094,$ |  |  | ${ }^{4} \mathbf{4}, 094,337$ |
| ${ }_{599}$ | 4 |  |  | 42 | $\begin{array}{r} 4,094,1 \\ \text { is } 71 \end{array}$ | $\begin{gathered} 1 \text { SD } \\ 3.5 \\ 36 \\ 361 \end{gathered}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\begin{aligned} & 4,90,474 \\ & 4,094 \\ & 4,094 \end{aligned}$ | $\begin{aligned} & 678 \\ & 604 \\ & 625.60 \end{aligned}$ | $\begin{aligned} & 4,094,338 \\ & 4,094,39 \\ & 4,094,340 \end{aligned}$ |  |
| 612 | 4,049,061 | 4,0 |  |  | 4,094,661 |  |  |  |  |  | 34 A |
|  |  |  |  |  |  |  |  |  |  |  | Pl 45 |  |


|  |
| :---: |
|  <br>  <br>  |
|  |
|  <br>  <br>  |
|  |
|  <br>  |

CLASSIFICATION OF PATENTS

$$
\text { PI } 48
$$

CLASSIFICATION OF DESIGNS

| D2 | 292 | 248,126 |  | 154 | 248.136 |  | 224 | 248.148 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 320 400 | 248,127 <br> 288128 |  | 170 | ${ }^{2488.138}$ | D10 | 40 | 2488.149 | ${ }^{\text {D13 }} 16$ | 38 | 248,160 |  |  | 248,171 | 8- | 2 | 248,181 248,182 |
|  | 400 |  |  | 177 |  |  | 56 116 | ${ }_{2}^{2488.151}$ |  | 166 |  |  | ${ }_{4}^{2} \mathrm{R}$ |  |  |  | 248,183 <br> 288,185 |
| Do | 56 63 | 2484,129 <br> 248,131 | D7- | 201 |  | DII- | 1120 |  | D24- |  |  |  | 4 |  |  | ${ }_{4}^{4} \mathrm{~A}$ | 248,185 <br> 288,184 |
|  | 71 | $2{ }^{248.132}$ | D- | 140 | 2248,143 | DI | 167 | ${ }_{248,154}^{248,15}$ |  | 28 | 248,165 |  |  | 248,176 |  | 38 | 248,186 |
|  | 86 | 248,133 | D8- | 14 | 248,144 | D12- | 92 | 228, 2155 |  | 29 | 248,166 |  |  | 248,177 | D87 | 1 C | ${ }_{288,187}^{2489}$ |
|  |  | 248,134 <br> 248,135 |  | 348 | 2248,145 |  | -169 | 248,156 <br> 248 <br> 158 <br> 158 |  |  | 248,167 <br> 288168 |  |  | 248,178 | D87- | ${ }_{5}^{3} \mathrm{C}$ | 248,189 |
|  | 87 146 | 248,137 | D9- | 363 189 | 248,147 | $\xrightarrow{\text { D13- }}$ | 940 | 248,158 | D28 | 54 | [248,169 |  |  | 2488,179 2480 |  | ${ }_{8}$ | 248,188 <br> 248190 |

## CLASSIFICATION OF PLANTS

| CLASSIFICATION OF PLANTS |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P.- | 4.265 | 9 | 4.264 | 36 | 4.263 | 68 | 4.262 |  |

GEOGRAPHICAL INDEX OF RESIDENCE OF INVENTORS
(U.S. States, Territories and Armed Forces, the Commonwealth of Puerto Rico, and the Canal Zone)

| Alabama | 1 | Kentucky | 21 | Oregon | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alaska | 2 | Louisiana | 22 | Pennsylvania | 42 |
| American Samoa | 3 | Maine | 23 | Puerto Rico | 43 |
| Arizona | 4 | Maryland | 24 | Rhode Island | 44 |
| Arkansas | 5 | Massachusetts | 25 | South Carolina | 45 |
| California | 6 | Michigan | 26 | South Dakota | 46 |
| Canal Zone | 7 | Minnesota | 27 | Tennessee | 47 |
| Colorado | 8 | Mississippi | 28 | Texas | 48 |
| Connecticut | 9 | Missouri |  | Utah | 49 |
| Delaware | 10 | Montana |  | Vermont |  |
| District of Columbia | 11 | Nebraska |  | Virginia | 51 |
| Florida | 12 | Nevada ........... | $\begin{aligned} & 32 \\ & 33 \end{aligned}$ | Virgin Islands |  |
| Georgia | 13 14 | New Hampshire <br> New Jersey $\qquad$ | $\begin{aligned} & 33 \\ & 34 \end{aligned}$ | Washington .... |  |
| Guam .... | 14 15 | New Jersey $\qquad$ New Mexico $\qquad$ | 34 35 | West Virginia |  |
| Hawaii Idaho . | 15 16 | New Mexico <br> New York | 36 | Wisconsin ...... |  |
| Illinois | 17 | North Carolina | 37 | Wyoming |  |
| Indiana | 18 | North Dakota | 38 | U.S. Air Force .. |  |
| Iowa | 19 | Ohio | 39 | U.S. Army |  |
| nsas | 20 | Oklahoma ......................... | 40 | U.S. Navy ......................... |  |


DESIGN PATENTS

| ${ }_{6}$ |  | 8 9 12 | 248,185 248,188 248,143 248,162 248,151 248,164 248,190 248,155 | 12 |  | 27 34 36 |  | 37 <br> 39 <br> 31 <br> 42 <br> 47 |  | 48 80 53 54 54 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

PLANT PATENTS

| 24: 4.264 | 4.265 | $39:$ | 4.262 | $41:$ | 4.263 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CHANGE OF ADDRESS FORM


Superintendent of Documents
Covernment Printing Office SSOM
Washington, D.C. 20402

SUBSCRIPTION ORDER FORM

## sunscription order form

ENTER MY SUBSCRIPTION TO:
© $\$ \quad$ Domestic; @ $\$ \quad$ Foreign.

Remittence Enclosed Make.
chocks pay bobe to Suberin.
checks pay sble to super
tendent of Documents)
Charge to my Deposit
MAIL ORDER FORM TO:
MALL ORDER FORM TO:
Superintendent of Documen
Superintendent of occumentis
Goverment Printing omicee
Weshington. D.c. 20402

OFFICIAL GAZETTE of the

## UNITED STATES PATENT and TRADEMARK OFFICE

## CONTENTS

Patent and Trademark Notices
Patent Cooperation Treaty Information
Notice of Recordation of Trade Name
971 OG 20
971 OG 20
Patent Suits . - . . . .
Reissue Applications Filed
971 OG 20
971 OG 21
Patent Notices
Certificates of Correction for the Week of June 20, 1978
Patents Available for Licensing or Sale
Patents Available for Licensing or Sale ....... 971 OG 23
Condition of Patent Applications
Reissue Patents Granted $(29,671)$

Patents Granted
General and Mechanical $(4,095,289)$
. . . . . . . . . . . . . . . . . 1085
Electrical $(4,096,344)$. . . . . . . . . . . 1199
Design Patents Granted $(248,191)$. . . . . . . . . . . . . . . . 1283
Index of Patentees . . . . . . . . . . . . . . . . . . . . . . PI
Indices of Reissues, Plants and Designs . . . . . . . . . . . . . . PI 43
Classification of
Patents (Including Reissues) . . . . . . . . . . . . . . . . . PI 45
Designs and Plants . . . . . . . . . . . . . . . . . . . . . PI 48
Geographical Index of Residence of Inventors
Patents (Including Reissues)
Disn
Change of Address Form and Subscription Order Form . . . . . . . Back Page

The following are mailed under direction of the Superintendent of Documents, Government Printing Ofice, Washington, D.C., 20402, to whom all subscriptions should be made pazable and all communications addressed:

THE OFPICIAL GAZETTE (PATENTS SECTION), issued weekly, subscription $\$ 300.00$ per

THE OPFICIAL
per annum, fortign mailing $\$ 22.10$ additional; aingle copies $\$ 1.70$ each.
GENERAL INFORMATION concerning TRADEMARKS, price 81.50 each
PRINTED COPIES of Patents are furnished by the Patent and Trademark ofice a 50 cents each: PLANT PATENTS in color, s1.00 each; copies of TRADEMARES AND DESIGN PATENTS at 20 cents each. Address orders to the Commisaioner of Patents and Trademarks. Patents at 20 cents

[^7]
## PATENT AND TRADEMARK OFFICE NOTICES

Patent Cooperation Treaty Information For information concerning the PCT including the amounts
of the fees thereunder and the States that may be destgnated of the fees thereunder and the States that mas be destgnated
in International applicatlons consult the Notice entitled
"PPatent Cooperation Treaty (PCT) Implementation: Infor "Patent Cooperation Treaty (PCT) Implementation: Infor
mation for Prospective Applicants" appearing in the OFFICIAL mation for Prospective Applicants" appearing in the OfFI
GAzETTE of May 16, 1978 . May $2,1978$. Acting Commissianer of Patents

Notice of Recordation of Trade Name
AURORA (T.D. 8EEL PRODUCTS
 Office of the Comaissioner of Cessons On March 10, 1978, there was published in the Federal
Register ( 43 F.R. 9911), a notice of application for the recordation under section 42 of the Act of July $\overline{5}$, 1948, as
amended ( 15 U.S.C. 1124), of the trade name AUROR amended (15 C.S.C. 1124), of the trade name AURORA
STEL PRODCTS used by Aurora Steel Products, division of Hupp, Inc. and a wholly owned subsidiary of White Con-
solidated Industries, Inc. The notice advised that prior to Anal action on the application, filed pursuant to section
133.12, Customs Regulations (19 CFR 133.12), consideration would be given to relevant data, views, or arguments sub
mitted in opposition to the recordation and recelved not late than 30 days from the date of publication of the notice. No responses were recelved in opposition to the application.
The name "AURORA STEEL PRODCCTS" is hereby Corde name act the trade name of Aurora Steel Products, division
of Hupp, Inc., a corporation organized under the laws of the of Hupp, Inc., a corporation organized under the laws of the
State of Delaware, located at 580 . . Lake Street. Aurora,
lilinols 60507 , when applied to desks, chairs, bookcases, llitnols 60507, when applied to desks, chairs, bookcases
tables. shelving, and storage equipment, namely, lockers
tubry library sheling, storage cabinets and shelf storase cabtnets
and shelf fling systems. manufactured in the No foreign person, partnership, substdiary, erated company
or patent company is authorized to use the trade name.

Apr. 26, 1978
LEONARD Lehman,
Asetant Commizsioner,
Regulations and Rulings,
Patent Suits
Patent Suits
Notices under 35 U.S.C. 290 ; Patent Act of 1952
2,985,040, J. Eisenber, GEAR PUMPS, fled June 6, 1973 , Picut Mfg. Co., Inc. Order of dismissal of action without
costs.
3.00s,599, F. J. Kestel, SEED-DROP MECHANISM FOR PLANTER. Aled Dec. 12, 1977, D.C., N.D. III. (Chicago)
Doc. 77 c 4586 , Frederick J. Kestel V Deere \& Company. Motion to dismliss for improper venue, Jan. 1, 1978 . 3.074,301, L. M. Carpenter, WIRE STRIPPER, Aled July
12. 1977, D.C.N.J. (Newark), Doc. $77-1401$, Carpenter 12, 1477, D.C.N.J. (Newark), Doc. 77-1401,
facturino Co., Inc. v. William Leonhardt.
 G Toys Inc.
s,167,491, Harrison and Herrmann, POLYFLUORINATED
ETHYEEE POLMMERMETAL ARTICLE AND METHOD, Aled Jan. 23, 1976, D.C.,. S.D....... Doc., 76 -C-394 VLE
Polynon Corporation v. Plated TFE CComparente. 3.1189,142, Knaggs and Nussbaum, METHOD FOR
SULFONATION AND SULFATION OF ORGANTC COM-
 $77 c 473$
pany.
2,288, 241, W. E Becker, CORNEAL CONTACT LENS
FABRICATED FROM TRANSPARENT SILICONE RUBBER,
3.247,693, p. K. Davis, pipe making machine and 1ETHOD, fled Feb. 21, 1978, D.C., N.D. Callt. (San Fran-
sco), Doc. C78-383 SAW, Pacinc Roller Die Co., Inc. v Boyken, Mohher and Wood.
For building, fled Feb. 10, 1978, DC. . Kours), Doc. $78-182 \mathrm{C}$ (B), Donovan P. Streed v. WhiteRodgers Co.
3,427,720, Berman and Pastan, hand drilling apparaTUS, Aled June 16, 1977, D.C. Mass. (Biston), Doc.
77-1749-F. Herbert Derman v. Excellon Industries, doing bust-
ness as Excellon Automation.
3.610,799, G. A. Watson, MULTIPLEXING SYSTEM FOR SELECTION OF NOTES AND VOICES IN AN ELEC-
TRONIC MUSICAL INSTRUMENT, Aled Feb. 14, 1978, D.C.,
 N.D. III. (Chicago), Doc.
Conn Organ Corporation.

3,635,297, R. F., Salava, POSTAGE Calculator, Aled
Mar. 13, 1978, D.C., N.D. HIl. (Chicago), Doc. $78 c 940$, Roger Mar. 13, 1978, D.C., N.D. III.
F. Salara v. FME Corparation.
3,650,149, P. A. Howes, ENGINE IGNITION AND POWER Doc. 78-1, Clayton Manufacturing Co., Inc. . v. Applied Pouerer, 3,665,583, J. F. Helderman, SUSPENSION CLIP STRUC-
TURE AND APPARATUS AND METHOD FOR SECURING
SAME TO A WORK SURFACE $\mathbf{s , 8 0 5 , 4 7 2 , \text { same, Aled Sept. }}$ AME TO A WORK SURFACE; 3,805,472, same, fled Sept.
19, 1975, D.C., E.D. Pa. (Phlladelpha), Doc. 75-2652, Ladd Tool Company, Inc. v. Hiltil Fastering Systems and Abers. thaw Construction Ca., Inc. All clains by plaintiri, defendants and Hilti encompassed by Civil A.
are dismissed with prejudice, Dec. 19, 1977. 3.690,838, Buissiere, Colobert, Montagnon, DEVICE FOR
USE IN THE STUDY OF CHEMICAL AND BIOLOGCAL
REACTIONS AND METHOD OF MAKING SAME, Aled REACTIONS AND METHOD OF MAKING SAME, Aled
May 27, 1977, D.C., S.D.N.Y., Doc. 77-C-2636, Amentican May 27, 1977, D.C., S.D.N.Y., Doc. 77-C-
Home Products Corp. v. Inolex Corporation.
3,733,309, Wyeth, Newman, Gay, biazially oriented ARTICLE INCLUDING A METHOD AND APPARATUS FOR FORMING IT, fled Jan. 10, 1978, D.C., E.D. Pa. (Phila-
delphia), Doc. 78-99, E. II du Pont de Nemours and Comdelphia), Doc. 78 8-9, E. I. du Pont De Nemours and Com-
pany v. Pepsi-Cola Metropolitan Botlling Company, Inc. 3,746,25s, B. Surlor, variable feed vaporizing dif-
 Beach), Doc. 78-19-C-CF, Surco Products, Inc. v. Marco
Chemical Ditisian, Inc.
3.799,919, P. P. Thomas, extensible table, fled Feb. 3. 1978. D.C., N.C. (Greensboro), Doc. C-78-460G, Winzeler
Stamping Co. v. Allmark, Inc. and Custom Procesing and 1 Ianufacturing Ca., Inc
3,789,210, Weber, Shroyer, Baker, RECESSER LIGHTED Bend), Doc. S77-0034, Progressive Dynamics, Inc. v. ILC Products Company, Inc. Patent-in-suit is inralld under 35 USC 1103 . Accordingly judgment entered for the defendant nd agalnst the plaintif.
s,783,750, W. J. Bowerman, ATHLETIC Shoe FOR ARTI-
FICILL TURF, Aled Mar. 6, 1978, D.C, ED FICIAL TURF, Aled Mar. 6, 1978, D.C., E.D. Pa. (Phlladel-
phia), Doc. $78-734$, Brooks Shoe Manufacturing Co., Inc. phia), Doc
$B R S$, Inc.
3.,762,648, Delnes, Trenary, Smith, Hlckman, SPRAY
OOZZLE; 3 ,801,019, J. M. Trenary,
 ndustries, Inc., doing business as Teledune Water Pik Dillard Department stores, Inc. Plaintif's patent is valld eturn to the has infringed on sald patent. Defendant is to now on hand to inform plaintili it they intend to resume sale sald nozzles.

[^8]3,814,139, Loyd and Mills, INSULATING CONNECTOR;
3,9088267, same, METHOD OF APPLYING AN INSULATING 3,908,298, same, METHOD OF APPLYING AN INSULATING
CONECTOR, Aled Sept. 1, 1977, D.C., W.D. N.C. States.
ville). Doc. ST-C-7T-34, Stone Indugtrial Di4usion of . rille), Doc. ST-C-7i-34, Stone Industrial Division of J. L.
Clark Mfg. Co. v. Niemand Industrial, Inc. Dismissal br stlpulation fled Jan. 19, 1978 .
$\mathbf{3 , 8 1 4 , 5 8 2 ,}$ H. J. Diamond, vacuum forming appara-
 TV-1648-G, Plasti-Vac, Inc. v. AAA Plastics Equipment Com
pany. pany.
s,818,837, Jacoby and Lindquvist, VEHICLE AND TRACK
SYTEM, Aled Feb. 3, 1976, D.C., N.D. IIIL (Rockfor), Doc.
76c20004, SI Handling System, Inc. v. Rockford Automation, Inc. Pursuant to stlpulation this case is dismissed with
prefudice Feb is. prejualce, Feb. 10, 1978. 3,835,292, Walter, Kronheim, Lerine, STEAM CURLING
IRON, Aled June 20, 1977, D.C. Del. (Wilimgingon). Doc. 77 , IRON, fled June 20, 1977, D.C. Del. (WHimington), Doc. 77
230, Clairal
3. Conair. Consent ${ }_{3}{ }^{3}$,889,767, M. L. Lasker, LIGHTING FITYURES, Aled Dee 22, 1976. D.C.N.J. (Newark), Doc. 76-2437, Martin Electric
Manufacturing Company v. Wylain, Inc. Order of dismssal Manufacturnng Company
of actlon, Feb. 16, 1978 .
3.889,791, M. Kerr, PHotographic positioning and ALIGNNG GRID, Aled Feb. 14, 1978, D.C.N.J. (Newark),
Do. C-78-274, Dlidemagic System, Inc. v. Oxbery, Division Doc. C-78-274, Slidemaitic Sy
of Richmark Camera Service.
s,905,349, Nielsen and Church, SPBERICAL MEMBERS,
fled May 13, 1977, D.C. . J.J. (Newark, Doc Aled May, 13, 1977, D.C.N.J. . Newark), Doc. T7-09838, Prince
Manufacturing Inc. v. Lob-ster Inc. Action dismissed. s,906,688, S. Gross, MAGNETIC TOY HAVING SCULPTUR-
ABLE PARTICLES, Aled Feb. 24, 1978, D.C., C.D. Calf. ABLE PARTICLES, Aled Feb. 24, 197, D. D.C., C.D. Callf
(Los Angeles), Doc. CV78-748-RMT(px), Sam Gross y (Los Angeles), Doc. CV78-748-RMT(px),
Loncraine Broxton and Partners, Limited.
3,908.287. (See 3,814,139.)
3,988,98s, T. Iwamoto, Holding ToY, Aled Dec. 22, 1976,
 27, 1978.
s,985,947, w. T. Barrett, Magnetic refuse sepa RATOR, , Iled Dee. 30. 1977 , D. D... W.D. Wabu. (Tacom
Doc. C77-296T, Wehr Corp. Ertez Manufacturing Co.
3.943,571, M. C. Boatman, PROTECTIVE HELMET, fled
Oct. 25.1977 D.
E.D LA. Doc. $77-3195$, Marvin C. Boat. Oct. 25, 1977, D.C., E.D. La. Den
man v. Safety Sea Systems, Inc.
3,948,294, Magarlan and Thompson, IMPACT-PROTECTIVE COATING FOR PLASTIC PIPE, Aled Feb. 21, 19788, D.C.N.J.
(Newark), Doc. 78-329, The Thompoon Tool Co., Inc. Colonial Tool Company, Inc.
3,948,441, Perking, Nurmberg, Goodhouse, TIME VARIABLE
THERMOSTAT, Hied Feb. 15 , 1978 , D.C THERMOSTAT, Aled Feb. 15,1938, D.C. E.D. Mich. (De-
trolt), Doc. $78-70344$, Robertshav Controls Company v. troit), Doc.
Honeyzell, Inc.
3,958.090, R. L. Garcla, Miniature SWITCH ASSEMBLY,
filed May 19, 1976, D.C.N.J. (Newark), Doc. 76-936, Grayfled Mas. 19, 1976. D.C.N.J. (Newark), Doc. 76-936, Gray-
hill, Inc. . AMF, hill, Inc. v. AMF, Inc. Judsment d
favor of defendants, Feb. 16, 1978 .
3,988,294, D. E. Thompson, ROTARY SCRA PPER, fled Jan. 11, 1978, D.C. Conn. (Bridgeport), Doc. B-78-14, Thompson
Tool Company, Inc. v. John Sturges House, Inc. 3.958.378, G. Omeechevarria, BURIAL CRYPT, nled Feb. 23. 1978. D.C. Puerto Rico, (San Juan), Doc. C-78.262,
Gerardo Omeecheiarria v. Luis A. Torres and Municipio de Gerardo
San Juan.
9,983,885, J. M. Hennion, DEVICE FOR EFFECTING THE GUIDING AND OSCILLATION MOVEMENTS OF A WELD. ING HEAD EQUIPPED WITH AN ELECTRODE-CARRIER
NOZZLE, Hled June 15, 1976, D.C., N.D. Mll. (Chlcago), Doc. T6c2205, National Presto/ Industries, Inc. . Scovalle Manu-
Jacturing Company anh Hyland Electrical Supply Co. Enter order, cause is settled by agreement of the parties. the eom-
plaint heretn 1 s dismissed without prefudice, Mar. 1, 1977. s.964,.533, Chrigten, Jr. and Latel, PAPER LOG ROLLER,
nled Mar. 2, 1978, D.C., E.D. Wis. (Mllwaukee), Doc. 78-128,

s,998,s83, Romanaugkas and Weyant, Gradient separaTION APARATUS, 4,015, Tis, v. C. Robde, METHOD OF
GRADIENT SEPARATION, Aled Mar. 1, 1978, D.C., E.D. Pa.
 Company v. Beckman Instruments, Inc. 4,006,770, T. A. Ferguson, Window shade assembly,
fled Jan. 31, 1978, D.C., N.D. Ill. (Chicago), Doc. 78c329, Yed Jan. 31, 1978, D.C., N.D. Ill. (Chicago), Doc. 780329 ,
tewell Companies, Inc. v. Clopay Corporation. 4,012,494, C. LLIng, DIRECT RADIOIMMUNOASSAY FOR
ANTIGENS AND THEIR ANTIBODIESM, HIed Mar. 3 , 1978 ,
D.C., N.D. Iill. (Chicago), Doc. $78 c$ ci99, Abbott Laboratories D.C., N.D. IIl. (Chteago), Doc
v. Travenol Laboratortes, Inc.
$4,015,775$. (See $3,998,383$.) TUS, fled Feb. 27, 1978, D.C.N.J. (Newark), Doc. $78-388$, Roman Research, Inc. v. Inverness Corp.
4,021,055, M. C. Okland, vehicle running board, 4,021,055, M. C. Oklend, VEHICLE RUNNING BOARD,
fled Oct. 31, 1977, D.C. Iowa (Des Moines), Doc. C-2-77-476, Tafco Equipment Co. v. Putco, Inc. Judgment entered Dec. 20 , 1977 , actlon dismissed on plaintiri's roluntary dis-
missal pursuant to Rule 41 .

## REISSUE APPLICATIONS FILED

Notice under 37 CFR 1.11 (b). The reissue applications
listed below are open to inspection by the general public listed below are open to inspection by the general public
in the indicated Examining Groups and copies may be
obtained by paying the fee therefor ( 37 CFR

3,952,687, Re. S.N. 899,878, Filed Apr. 24, 1978, Cl. 115/ 41. R, MARINE DRIVE, Alan Brownlie, et al., Owner of Record: American Challenger Corporation, Fulton,
torney or Agent: Richard E. Kurtz, Ex. Gp.: 315
3,959,957, Re. S.N. 898,745, Filed Apr. 21, 1978, Cl. $56 /$
208, CROP HARVESTING MACHINE HEADER SUS208, CROP HARVESTING MACHME HEADER SUSPENSION SYSTEM, Lawrence M. Halls, Owner of
Record: Sperry Rand Corporation, New Holland, Pa, Attorney or Agent: Frank A. Seemar, Ex. Gp.: 333
4,015,691, Re. S.N. 897,300, Filed Apr. 17, 1978, Cl. 188/ 59, DISC BRAKE FOR RAILWAY VEHICLES, Hans Pollinger, et al., Owner of Record: Inventor
Agent: Edmund M. Jaskiewicz, Ex. Gp.: 315

4,017,659, Re. S.N. 898,260, Filed Apr. 20, 1978, Cl. 428/ 97, TEAM LATIICE FIBERS, George C. Brumlik, Owner of Record: Ingrip Fasteners Inc., Montclair, N.J., At-
torney or Agent: Arnold Sprung, et al., Ex. Gp: 164

4,005,229, Re S.N 896,123, Filed Apr 14, 1978 Cl. $96 / 8$ UV, NOVEL (UV ABSORBING COMPOUNDS AND) PHOTOGRAPHIC ELEMENTS CONTAINING UV ABSORBING COMPOUNDS, Wayne W. Weber, II, et al.,
Owner of Record: Eastman Kodak Company, Rochester, Owner of Record: Eastman Kodak Company, Roch
N. Y., Attorney or Agent: Joshua G. Levitt, et al., Ex. Gp.: 166

4,047,355, Re. S.N. 897,660, Filed Apr. 17, 1978, Cl. $52 /$ 738, SHAFTWALL, William L. Knorr, Owner of Record: Studco, Inc., Salem, Oreg., A
Klarquist, et al., Ex. Gp.: 354

4,048,932, Re. S.N. 895,845, Filed Apr. 13, 1978, Cl. 112/ 158 E, BIGHT STOP MECHANISM FOR SEWING MACHINES, Charles R. Odermann, et al., Owner of Record:
The Singer Company, New York, N. $\mathbf{Y}$., Attorney or Agent: The Singer Company, New York, N. Y., Attorney or Agent: obert E. Smith, Ex. Gp.: 353

4,056,820, Re. S.N. 897,925 , Filed Apr. 18, 1978, Cl. 340

June 20, 1978
3,814,139, Loyd and Mills, INSULATING CONNECTOR
3.908,267, same, METHOD OF APPLYIG
 ville), Doc. ST-C-7T-34, Stone Industrial Division of J. L.
Clark MIfg. Co. v. Niemand Industrial, Inc. Dlsmlssal by stipuletlon fled Jan. 19, 1978. 3,814,562, H. J. Diamond, VACCUM FORMING APPARA
 78-1848.
pany.
pany.
3,818.887, Jacoby and Lindqurist, VEHICLE AND TRACK
SYSTEM, Aled Feb. 3 , 1976, D. 9,818,887, Jacoby and Lindqurist, VEAICLE AND TRACK
SYTEM, fled Feb. ., 1976, D.C., N.D. Il. Rockford, Do.
T6c20004, ST IIanding System, Inc. v. Rockford Automation, Inc. Pursuant to stipulation thls case is dismissed with
prejudice, Feb. 15. 1978. s.83s,292, Walter, Kronbeim, Levine, STEAM CURLING
IRON, Aled June 20, 1977, D.C. Del. (Wilmington), Doc. $77-$ IRON, Aled June 20,1977 , D.C. Del. (Wilmington), Doc. ${ }^{77-}$
230, Clairol v. Conair. Consent fudgment. Feb. 21, 1978 . 3,886,767, M. L. Lasker, LIGHTING FIXTURES, Aled Dee 22, 1976, D.C.N.J. (Newark), Doc. 76-2437, Marvin Electric
Manufacturing Company v. Wylain, Inc. Order of dismlssal Manufacturing Company
of action, Feb. 16, 1978 .
3.899,791, M. Kerr, Photographic positioning and
 Doc. C-78-274, Slidemagic Syztem, Inc. v. Oxberry, Division
of Richmark Camera Service. 3,905,349, Nelsen and Church, SPHERICAL MEMBERS,
filed May 13, 1977, D.C.N.J. (Newark), Doc. T7-0938, Prince Manufacturing Inc. v . Lob-ster Inc. Actlon dlsmissed. 3,906,688, S. Gross, MAGNETIC TOY HAVING SCULPTUR-
ABLE PARTICLES, fled Feb. 24, 1978, D.C., C.D. Callf. ABLE PARTICLES, fled Feb. 24, 1978, D.C., C.D. Calf.
(Los Angeles), Doc. CVi8 $-748-\mathrm{RMT}$ (px), Sam Gros8 (Los Angeles), Doc. Crich-748-RMT(p)
Loncraine Broxton and Partners, Limited.
3,908,267. (See 3,814,139.)
3,928,933, T. Imamoto, Holding ToY, fled Dec. 22, 1976,
D.C., M.D. Pa. (Scranton), Doc. C-76-1542, ITI Hawaii, Inc D.C., M.D. Pa. (Scranton), Doc. C-76-1542, ITI Havaii, Inc.
v. Avlon, Inc. Consent judgment against defendants, Feb. 27,1978 .
8,995,947, W. T. Barrett, MAGNETIC REFUSE SEPA
RATOR, fled Dec. 30 197T, D.C W. RATOR, Fled Dec. $30,197 T$, D.C. W.D. Wash. (Tacon
Doc. C77-296T, Wehr Corp. V . Eriez Manufacturing Co. 3,943,571, M. C. Boatman, Protective Helmer, fled
oct. 55,1977 , D.C., E.D. La. Doc. $77-3195$, Marvin C. BoatOct. 25, 1977, D.C., E.D. La. D
man v. Safety Sea Systems, Inc.
3,948,294, Magarian and Thompson, IMPACT-PROTECTIVE
COATING FOR PLASTIC PIPE, fled Feb
 pany, Inc.
8,948,441, Perkins, Nurmberg, Goodhouse, TiME variable THERMIOSTAT, Aled Feb. 15,1978 , D.C., E.D. Mich. (De-
troit), Doc. $78-70344$, Robertshaw Controls Company v Honeywell, Inc.
3.958.099, R. L. Garcia, Miniature switch assembly,
filed May 19,1976 , D.C.N.J. (Newark), Doc. $76-936$ Grayfiled May, 19, 197G. D.C.N.J. (Newarr), Doc. 76-936, Gray
hill, Inc. y. AMF, Inc. Judzment declaring patent Invalld in in hill, Inc. .. AMF, Inc. Judzment
favor of defendants, Feb. 16, 1978 .
3,988,294, D. E. Thompson, ROTARY SCRAPPER, fled Jan.
11,1978 D.C. Conn. (Bridgeport). Doc. B-78-14, Thompson 3,998,294, D. E. Thompson, ROTARY SCRAPPER, Aled Jan.
11, 1978, D.C. Conn. (BrIdgeport), Doc. B-78-14, Thompson
Tool Company, Inc. w. John Sturges House, Inc.
3,958,978, G. Omeechevarria, BURIAL CRYPT, Aled Feb.
23, 1978, D.C. Puerto Rico, (San Juan), Doc 23, 1988, D.C. Puerto Ricoo (San Juan), Doc. C-78-262,
Gerardo Oneecheurria v Luis A. Torres and Municipio de San Juan.
8.988,899, J. M. Hennion, DEVICE FOR EFFECTING THE
GUDING AND OSCILLATIO MOVEMENTS OF A GUIDING AND OSCILLATION MOVEMENTS OF A WELD-
ING HEAD EQUIPPED WITH AN ELECTRODE-CARRIER NoZZLE. fled June 15, 1976, D.C., N.D. Ill. (Chleago), Doc 76c2205, National Presto/Industries, Inc. v. Scoville Manu-
facturing Company ant Hyland Electrical Supply Co. Enter facturing Company and Hyland Electrical Supply Co. Enter
order. cause is settled by agreement of the partles. the com-
plaint hereln is dismissed without prejudice, Mar. 1, 1977. 3,964,973, Christen, Jr. and Latal, PAPER LOG ROLLER,
fled Mar, Aled Mar. 2, 1978. D.C.. E.D. Wis. (MIlw wauke), Doc. $77-128$,
Christen. Inc. v. A mon Corporation. Ohron, Ine.
3,988,505, R. A. Power EMERGENCY BURN TREATMENT Doc. CV78-765-WPG, Ronald Power v. Oliver E. Burns.

3,998,388, Romanauskas and Weesant, GRADIENT SEPARA-
TIOX ADPARATUS, $4,015,775$, V . C. Robde, METHOD OF GRADIENT SEPARATION, fled Mar. 1, 1978, D.C., E.D. Pa (Philladelpbla), Doc. $88-879$, E. I. du Pont de Nemours and
Company v. Beckman Intruments, Inc. 4,006,770, T. A. Ferguson, WINDOW SHADE ASSEMBLY, 4,006,770, T. A. Ferguson, WINDOW SHADE ASSEMBLY,
flied Jan. 31, 1978, D.C., : i.D. In. (Chicabo), Doc. $78 c 329$, Newell Companies, Inc., .., Clopay COrporation. 4,012,494, C. LIng, DIRECT RADIOIMMUNOASSAY FOR
ANTIGENS AND THEIR ANTIBODIES, fled Mar. 3,1978 , D.C., N.D. Ill. (Chicago), Doc. 780799 , Abbott Laboratories Travenol Labaratories, Inc.
4,000,848, T. J. Dlclcco, EAR LOBE PIERCING APPARA. TUS, fled Feb. 27, 1978, D.C.N.J. (Newark), Doc. 78-388, 4,021,055, M. C. Okland, vehicle RUNNing board, fled Oct. 31, 1977 D. D. Iowa (Des Moines), Doc. C-2-77-
47e, Tafco Equipment Co. v. Putco, Inc. Judgment entered 476, Tajco Equipment Co. V. Putco, Inc. Judgment entered Dec. 20, 1977, action dismissed on plaintif's voluntary dis-
mlssal pursuant to Rule 41 .

## REISSUE APPLICATIONS FILED

Notice under 37 CFR 1.11(b). The reissue applications listed below are open to inspection by the general public in the indicated Examining Groups and copies may be
obtained by paying the fee therefor ( 37 CFR 1.21 (b))
3,952,687, Re. S.N. 899,878, Filed Apr. 24, 1978, Cl. 115/ 41 R, MARINE DRIVE, Alan Brownlie, et al., Owner of Record: American Challenger Corporation, Fulton, N. Y., Attorney or Agent: Richard E. Kurtz, Ex. Gp.: 315
3,959,957, Re. S.N. 898,745, Filed Apr. 21, 1978, Cl. $56 /$ 208, CROP HARVESTING MACHINE HEADER SUS-
PENSION SYSTEM, Lawrence M. Halls, Owner of Record: Sperny Rand Corporation, New Holland, Pa, Attorney or Agent: Frank A. Seemar, Ex. Gp.: 333
4,015,691, Re. S.N. 897,300, Filed Apr. 17, 1978, Cl. 188/ 59, DISC BRAKE FOR RAILWAY VEHICLES, Hans Pollinger, et al., Owner of Record: Inventor, Attorney or
Agent: Edmund M. Jaskiewicz, Ex. Gp: 315 $4,017,69$
4,017,659, Re. S.N. 898,260, Filed Apr. 20, 1978, Cl. 428/ Owner of Record: Ince FIBERS, George C. Brumlik, Owner of Record: Ingrip Fasteners Inc., Montclair, $N$
tomey or Agent: Amold Sprung, et al., Ex. Gp.: 164

4,045,229, Ke. S.N. 896,123, Filed Apr. 14, 1978, Cl. 96/84 PH, NOVEL (UV ABSORBING COMPOUNDS AND PHOTOGRAPHIC ELEMENTS CONTAINING UV AB.
SORBING COMPOUNDS, Wayne $W$. Weber, II, et al., Owner of Record: Eastman Kodak Company, Rochester, N. Y., Attorney or Agent: Joshua G. Levitt, et al., Ex. Gp.: 166
4,047,355, Re. S.N. 897,660 , Filed Apr. 17, 1978, Cl. $52 /$ 738, SHAFTWALL, William L. Knorr, Owner of Record: Klarquist, et al., Ex. Gp.: 354

4,048,932, Re. S.N. 895,845 , Filed Apr. 13, 1978, Cl. 112 158 E, BIGHT STOP MECHANISM FOR SEWING MA CHINES, Charles R. Odermann, et al., Owner of Record The Singer Company, New York, N.Y.. Attorney or Agent Robert E. Smith, Ex. Gp.: 353

4,056,820, Re. S.N. 897,925, Filed Apr. 18, 1978, Cl. 340/ 347, REVERSIBLE ANALOG TO DIGITAL CONney or Agent: William E. Schuyler, et al., Ex. Gp.: 234

4062,711, Re. S.N. 891,582, Filed Mar. 30, 1978, Cl. $156 / \quad 4,073,011$, Re. S.N. 899,241, Filed Apr. 24, 1978, Cl. $364 /$ 244, METHOD FOR FORMING FIBERGLASS RESIN 900 , ELECTROCARDIOGRAPHIC COMPUTER, Isaan LAMINATE WITH PERMANENT INDICIA PAT- Raymond Cherry, et al., Owner of Record: Del Mar Avion ney or Agent: Robert Berliner, Ex. Gp.: 161 al., Ex. Gp.: 237

Certificates of Correction for the Week of June 20, 1978

| Re. 29,202 . | 4,053,313 | 4,069,036 | 4,073,868 |
| :---: | :---: | :---: | :---: |
| Re.29,444 | 4,053,799 | 4,069,174 | 4,073,956 |
| D. 238,084 | 4,054,122 | 4,069,257 | 4,073,996 |
| 3,690,846 | 4,054,450 | 4,069,367 | 4,074,234 |
| 3,727,838 | 4,054,794 | 4,069,517 | 4,074,314 |
| 3,839,426 | 4,054,893 | 4,069,521 | 4,074,546 |
| 3,919,235 | 4,055,010 | 4,069,598 | 4,074,60S |
| 3,934,124 | 4,055, 294 | 4,069,613 | 4,074,821 |
| 3,944,984 | 4,055,338 | 4,069,908 | 4,074,869 |
| 3,974,144 | 4,055,506 | 4,070,158 | 4,074,996 |
| 3,985,758 | 4,056,537 | 4,070,232 | 4,075,082 |
| 3,993,845 | 4,057,632 | 4,070,245 | $4,075,121$ |
| 3,997,351 | 4,057,743 | 4.070,303 | 4,075, 126 |
| 3,998,146 | 4,058,563 | 4,070,396 | 4,075,144 |
| 4,009,044 | 4.058,633 | 4,070,464 | 4,075,196 |
| 4.018,060 | 4,058,775 | 4,070,663 | 4,075,307 |
| 4,018,913 | 4,0.5s, 830 | 4.070,680 | 4,075,320 |
| 4,022.223 | 4,058,964 | 4,070,770 | 4,075,369 |
| 4,023,552 | 4.059,463 | 4,070,994 | 4,075,437 |
| 4,023,933 | 4,060,356 | 4,071,091 | 4,075,484 |
| 4.024,442 | 4,060,824 | 4,071.221 | 4,075,518 |
| 4,025,760 | 4,060,998 | 4,071,233 | 4,075.538 |
| 4,029.010 | 4,061.707 | 4,071,350 | 4,075,625 |
| 4,029,672 | 4,061,781 | 4,071,352 | 4,075,719 |
| 4,030.92, | 4,062,640 | 4,071.390 | 4,075,754 |
| 4,031,240 | 4,062,999 | 4,071,461 | 4,075,544 |
| 4,035, 004 | 4,063.817 | 4.071,527 | 4,075,973 |
| 4,035.220 | 4,063,522 | 4,071,545 | 4,076,086 |
| 4,036.942 | 4,064,076 | 4,071,672 | 4,076,094 |
| 4,038,086 | 4,064,163 | 4,071,674 | 4.076,254 |
| 4.038.102 | 4.064,267 | 4,072,132 | 4,076,294 |
| 4,040,574 | 4,064,272 | 4,072,238 | 4,076,299 |
| 4,042,606 | 4,065, 629 | 4,072,258 | 4,076,327 |
| 4,042.910 | 4.065,633 | 4,072,319 | 4,076,356 |
| 4,044.131 | 4,065,953 | 4,072,332 | 4,076.451 |
| 4,045,350 | 4,066,184 | 4,072.527 | 4,076,48, |
| 4.045,840 | 4,068,622 | 4,072.535 | 4,076.823 |
| 4.047,832 | 4,086,821 | 4,072,597 | 4,076.s28 |
| 4,047,8.56 | 4,067,789 | +,072,709 | 4,076,844 |
| 4.047,980 | 4.067,834 | 4,072.902 | 4,078,924 |
| 4,048.886 | 4,067,877 | 4,072.955 | 4,076,990 |
| 4.049,417 | 4,088,379 | +,073,121 | 4,077,063 |
| 4,049,426 | 4.068,490 | 4,073,330 | 4.077, S95 |
| 4,050,005 | 4,068,513 | 4,073,450 | 4,077,896 |
| 4,0.50.406 | 4,068,517 | 4,073,567 | 4,077,900 |
| 4,050,981 | 4,068,670 | 4,073,630 | 4.077,916 |
| 4,051,223 | 4,068,685 | 4,073,666 | 4,077,976 |
| 4,052,418 | 4,068,543 | 4,073,671 | 4,077,992 |
| 4,052,440 | 4,068,864 | 4,073,856 | 4,07s,107 |
| 4,052,733 | 4.069,012 | 4.073,857 |  |

Patents Available for Licensing or Sale



The following three patents are offered by Carol L. HunderFith movable
3,282,230. PORTABLE SURFACE.
3.318,631. AUTOMOTIVE SIGNAL DEVICE.

The General Electric Company Is prepared to grant non-
exclustre nicanses under the following 1 patent upon reason-

 $4,010,378$. INTEGRATED ELECTRIC GENERATING AND
SPACE CONDITIONING SYSTEM.

## REISSUES

JUNE 20, 1978

Maller enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; mayer printed in italics

PATENT EXAMINING CORPS
RENE D. TEGTMEYER, Assistant Commissioner WILLIAM FELDMAN, Deputy Assistant Commissioner

CONDITION OF PATENT APPLICATIONS AS OF MAY 20, 1978
chemical examining groups







electrical examining groups





works; Optics; Radiant Energy; Measuring.
DESIINSS, GROUP 290-C. D. QUA RFORTH
Industrial Arts; Household, Personal and Fine Arts. mechanical examining groups










Re. 29,671
DEMAND COMPENSATED HYDRAULIC SYSTEM WITH FLOW SENSITIVE DEVICE
Harlan Welbert Van Gerpen, Ced
Deere \& Company, Moline, CII.
Original No. 4,004,418, dated Jan. 25, 1977, Ser. No. 644,884,
Original No. 4,004,418, dated Jan. 25, 1977, Ser. No. 644,884,
Dec. 29, 1975. Application for reissue Jun. 24, 1977, Ser. No. 809,562
U.S. Cl. $60-445$


1. An improved hydraulic system of the type having a variable displacement pump with output control means biased to increase pump output fluid flow and responsive to an input of
pressurized fluid to decrease pump output fuid flow, a fluid pressurized fluid to decrease pump output fid how, a
motor, an output line connected between the pump and the motor, a motor control valve interposed in the output line and
maving servo feedback from the motor for selectively opening having servo feedback from the motor for selectively opening and closing the output line, a control line connected between the pump and the output control means, demand valve means
interposed in the control line for selectively opening and clos interposed in the control line fort selectively tine tollow and block the input of pressurize fluid to the output control means in response to pressurize uid in a pilot line connected the the output line between] pilot line [further connected to the output line between] aperatively associated with the motor control valve and pressur
ized by the pressurized fluid to the motor when the motor contro alve is moved from a neutral position, wherein the improvement comprises: means operatively associated with the output line,
the pilot line, and a fluid reservoir responsive to [descreashe pilot line, and a fluid reservoir responsive to [descreas-
hg ] decreasing flow through the output line to connect th ing decreasing flow through the outpur line to connect the pilot line to the reservoir and responsive the output line to block the pilot line from the reser-

DEMAND COMPENSATED HYDRAULIC SYSTEM WITH
DEMAND COMPENSATED HMRAULICR
Deere \& Company, Moline, III.
Deere \& Company, Moine, M.
Original No. $3,990,237$, dated Nov. 9,1976 , Ser. No. 644,882 ,
Dec. 29, 1975. Application for reissue Jun. 24, 1977, Ser. No.
809.563
809,563
${ }_{-445}^{\text {Int. }}$
Cl. ${ }^{2}$ F16H 39/46; F15B 11/16
U.S. Cl. 60-445

1. An improved hydraulic system of the type having a a vari-
able displacement pump with an output control means biased able displacement pump with an output control means biased

6 Claims
oo increase pump output and responsive to an input of pressurized fluid to decrease pump output, a fluid motor, a pressurized output line connected between the pump and the motor, a
moter control valve interposed in the output line for selecively opening and closing the output line, a control line connected between the pump and the output control means, demand valve means interposed in the control line for selectively opening and closing the control line to allow and block the
input of pressurized fluid to the output control mens in re-

sponse to pressurized fluid in a pilot line connected to the demand valve means, said pilot line [further connected to the output line between] operatively associated with the motor control valve and pressurized by the pressurized fluid to the
ontron motor when the motor control valve is moved from a neutral position, wherein the improvement comprises: pressure ampli-
fier means connected to the output line and interposed between the pilot line and the demand valve means and responsive to pressurized fluid in the pilot line to connect the output line to the demand valve means.

## EMAND COMPENSATED 29,673

C PILOT LINE DITHER
Tarlan Welbert Van Gerpen, Cedar Falls, Iowa, assignor to Deere \& Company, Moline, Ill. 10 , 1976, Ser. No. 644,883 Dec. 29, 1975. Application for reissue Jun. 24, 1977, Ser. No.
809,564 809,564
US, Cl. $60-445$ Int. Cl. ${ }^{2}$ F16H 39/46 1. An improved hydraulic system of the type having a vari-
able displacement pump with output control means biased to increase pump output and responsive to an input of pressurized fluid to decrease pump output, a fluid motor, an output line onnected between the pump and the motor, a motor control valve interposed in the output line and having servo feedback
rom the motor for selectively opening and closing the outpu rom the motor for selectively opening and closing the outpu control means, demand valve means interposed in the control line for selectively opening and closing the control line to allow and block the input of pressurized fluid to the output
control means in response to pressurized fluid in a pilot line
connected to the demand valve means, said pilot line 【further connected to the output line betwen] operatively associated
with the motor control valve and pressurized by the pressurized with the motor control valve and pressurized by the pressurized
fusid to the motor when the motor control valve is moved from a

filter lengths such that none of the grooves in said filter lengths fully extend between opposite ends thereof.

## Re. 29,675

O-(HALOPHENYLCARBAMYL)-N.(HALOPHENYL) GLYCOLAMIDES
Don R. Baker, Orinde, Calif., assignor to Stauffer Chemical Company, Westport, Conn.
Original No. 3,859,332, dated Jan. 7, 1975, Ser. No. 348,448, Apr. 5, 1973. Application for reissue Jul. 18, 1977, Ser. No. 816,226

$$
\text { Int. C1. }{ }^{2} \text { C07C 125/06 }
$$

U.S. C. 560-31 7 Claims

1. [The] $A$ compound having the formula

eutral position, wherein the improvement comprises: means wherein $\mathbf{X}$ is chlorine or bromine; $\mathbf{X}^{\prime}$ is hydrogen, chlorine or neurral position, wherein the improvement comprises: means. wherein $X$ is chlorine or bromine, $X^{\prime}$ is hydrogen, chlorne or
operatively associated with the pilot line responsive to pressur- bromine; $X^{2}$ is chlorine or bromine; and $X^{3}$ is hydrogen, chlooperatively associated with the pilot line responsive to pressur- bromine; $\boldsymbol{X}^{2}$ is ch
ized fluid therein to cause fluctuations in the pressure of the rine or bromine. pressurized fluid. $\qquad$ Francis Auguste Maurice Labbe, Neuilly-gur-Seine, France, and Kyuich Hareyama, and Shauignors to Nippon Electric Company, Limited, Tokyo, Japan Michael Bruce Mitchell, London, England, asslgnors to Mo- Original No. 3,906,430, dated Sep. 16, 1975, Ser. No. 501,791 , lins Limited, London, England 20 , 1973 , Ser No. 162,513 , Original No. 3,773,883, dated Nov. 20, 1973, Ser. No. 162,513, Jal. 14, 1971. Application for reissue Nov. 20, 1975, Ser. No. $\underset{\substack{\text { Claims } \\ \mathbf{3 4 7 5 4 / 7 0}}}{\mathbf{6 3 3}, 872}$ priority, application United Kingdom, Jul. 17, 1970, U.S. CI. $338-320$ Aug. 29, 1974. Application for reissue Oct. 4, 1976, Ser. No. 729,287
Claims pri
ity, application Japan, Sep. 3, 1973, 48-99100
Int. CI. ${ }^{2}$ H01C $1 / 01,1 / 16$

2. A method for making cigarette filters comprising
(a) forming filter material into a continuous rod,
(b) feeding said continuous rod of filter material along a
predetermined path,
(c) shaping the continuous rod by at least one moving die 1. An integrated circuit device comprising a plurality of which provides said rod with a plurality of circumferen- substantially rectangular resistance elements each having first lially-spaced longitudinally-extending rows of grooves and second electrodes, said resistance elements being substan-
separated by a plurality of longitudinally extending ribs tially equal both in width and in length to each other, said adapted for flow of cigarette smoke therethrough in a resistance elements being arranged in an n-row by $n$-column direction transverse to the axis of the rod, each row com- resistance elements being arranged in an $n$-row by $n$ ncolumn
mhere $n$ stands for an integer larger than 1 ), said first prising a plurality of individual elongated grooves ar- matrix (whecend electrodes of each of said resistance elements being
ranged successively in spaced end-to-end relationship in ongitudinal direction with filter $\mathbf{m o - e n d}$ relationship in a respectively provided at the same positions in each of said space between the ends of adjacenterial occupying the resistance elements, the upper sides of all of said resistance and each groove of each row overlapping longitudinally elements belonging to the same row of said matrix being colinwith at least two successive grooves of each adjacent row ear with a straight line, the lower sides of all of said resistance of grooves each rib extending continuously between elements of the same row being colinear with a straight line,
adjacent rows of grooves, and adjacent rows of grooves, and
(d) cutting the formed continuous rod at the space between same column being colinear with a straight line, and the left (d) cutting the formed continuous rod at the space between same column baing colinear with a straight line, and the left
the ends of successive grooves in at least one row into sides of all of said resistance elements of the same column being
colinear with a straight line, n numbers of first terminals respectively electrically connected with the first electrodes of the resistance elements of the first row, $n$ numbers of secon terminals respectively electrically connected with the second means [for] respectively connecting the second electrodes of each of said resistance elements belonging to each row to the first electrodes of each of said resistance elements belonging to an adjacent row but belonging to a different column, thereby to different columns between each of said first terminals and each of said second terminals.

$$
\text { Re. } 29,677
$$

SINGLE-WALL ROMAIN ARRANGEMENT Peter Istvan Bonyhard, Edison, and Paul Charles Michaelis, Watchung, both of N.J., assignors to Bel
toriess, Incorporated, Murray Hill, N.J.
Original No. 3,713,116, dated Jan. 23, 1973, Ser. No. 196,902, Original No. 3,113,116, dated Jan. 23, 1973, Ser. No. 196,902,
Nov. 9, 1971. Application for reissue Dec. 20, 1974, Ser. No. 534,849

Int. C1. ${ }^{2}$ G11C $19 / 08$
U.S. C. $365-15$ 2. 19120
U.S. CI. ${ }^{365-15}$ Chims
13. 1 rapid access cylindrical magnetic domain memory comprising
a plurality of main storage loops and an auxiliory loop, each loop being formed of a plurality of bars of highly permeable marenial in chase p platelet,
domain sustaining plate
a magnetic domain sustaining structure including means for producing a bias magnetic field applied transverse to a sur-
face of the platelet for stable cylindrical domains and means

Poducing a motating magnetic field within the plane of the thin platelet to drive the cylindrical domains from bar to bar, anid ouxiliary loop having at least partially separate infeed and outfeed transfer tracks with one of said infeed ond one of said outfeed transfer tracks being coupled to each of the main storage cylindrical domain circulating loops,

said auxiliary loop having a number of bit positions selected to accommodate a predetermined whole multiple of the number of bits transferred from each main storage loop, and further having a number of bit positions selected to provide domain position synchronizo a main storage loop, and
auxiliary loop.

## PLANT PATENTS

GRANTED JUNE 20, 1978
Illustrations for plant patents are usually in color and therefore it is not practicable to reproduce the drawing

## AFRICAN ${ }^{4,266}$

Reinhold Holtkamp, Weetherstrasse 112, 4294 Isselburg, Ger- Reinhold Holtkamp, Wertherstrasse 112, 4294 Isselburg, Germany

Filed Nov. 30, 1976, Ser. No. 746,216 Int. Cl. ${ }^{2}$ A01H $5 / 00$

ATRCAN $\begin{aligned} & 4,268\end{aligned}$
einhold
Filed Mar. 3, 1977, Ser. No. 774,227
U.S. CI. PIt. -69

1 C
1 Claim U.S. Cl. Plt.-69 by the cultivar name Colorado and African inater plant known 1. A new and distinct cultivar of African violet plant known by the cultivar name Colorado and characterized as to novelty by the cultivar name Virginia and particularly characterized as

by the combined characteristics of purplish-red flower color, to uniqueness by the combined characteristics of large pink by the combined characteristics of purplish-red flower color, no frilled petal edges, vigorous and compact growth, upright and $n$ non-dropping flowers with frilled edges; strong upright flower | strong flower stems, profuse blooming and long blooming $\begin{array}{l}\text { stems with short peduncles; up to ten flowers on each stem; } \\ \text { vigorous and uniform growth; saleability with the first flash of }\end{array}$ |
| :--- | period. flowers, and its full flowerhead on second flowering.

## CHRYSANTHEMUM

Nicolaas Middelburg, 's Gravenzande, Netherlands, assignor to Middelburg B.V.,'s Gravenzande, Netherlands

Filed Jun. 3, 1977, Ser. No. 792,
U.S. CI. Plt.-74

Jun. 3, 1977, Ser. No.
Int. Cl. ${ }^{2} \mathbf{A 0 1 H} 5 / 00$

1. A new and distinct cultivar of chrysanthemum substantially as described and pictured herein, characterized by its satiny golden blooms, vigorous growth, 12 week response and permanence.

## AFRICAN VIOLET PLANT

Reinhold Hoitkamp, Wertherstrasse 112, 4294 Isselburg, Ger
many Filed Mar. 3, 1977, Ser. No. 774,226
U.S. CI. PIt.-69

Int. C1. ${ }^{2}$ A01H S/00

1. A new and distinct cultivar of African violet known by
2. A new and distinct culivar of African violet known by the cultivar name Georgia and particularly characterized as to
uniqueness by the combined characteristics of vigorous growth, upright and strong flower stems each carrying 6-10 medium pink size flowers which are non-dropping; strong upright peduncle; long blooming period; dark green shiny characteristic of being an attractive, saleable plant with the first flash of flowers.


## PATENTS

GRANTED JUNE 20, 1978

## GENERAL AND MECHANICAL

## PATENTS

GRANTED JUN. 20, 1978
ERRATA

| For | See |
| :---: | :---: |
| Class | patent NO. |
| 074-084 S. | 4,095,460 |
| 272-071. | 4,095,657 |
| 400-150 | 4,095,686 |
| 220-090.2 | 4,095,710 |
| 220-094 R | 4,095,711 |
| 220-254.... | 4,095,712 |
| 220-270. | 4,095,713 |
| 214-151. | 4,095,752 |
| 356-102 | 4,095,775 |
| 366-163 | 4,095,776 |
| 272-140 | 4,095,789 |
| 305-035 R | 4,095,849 |
| 350-096.14 | .. 4,095,869 |
| 353-122 | 4,095,882 |
| 425-564. | .. 4,095,931 |
| 425-575 | 4,095,932 |
| 544-237. | 4,096,143 |
| 544-284 | 4,096,144 |
| 568-866. | .. 4,096,192 |
| 568-881. | 4,096,193 |
| 568-899. | .. 4,096,194 |
| 426-250. | .. 4,096,258 |
| 424-308.. | ... 4,096,337 |
| 235-144 HC | .. 4,096,377 |
| 235-466 | . $4,096,378$ |
| 362-235 | 4,096,379 |

(c) said inner glove shell having relatively limited and inade-channels being increased over the thickness of the material said quate gripping characteristics for typical sport glove use, glove in areas adjacent to said channels, whereby the glove (d) an outer glove shell surrounding and interfiting with said inner glove shell,
(e) said outer glove shell being of a material and construction to provide gripping characteristics suitable for use in sporting activities,
(f) the elastic properties of the outer glove shell being of secondary significance in relation to the gripping charac-
teristics thereof and in relation to the contractile elastic teristics therect and in relation the inner gheve shell,

(g) means loosely secured said inner and outer glove shells together at limited areas enabling donning and doffing of the assembled glove shells as a single glove while simultaneously accommodating substantial elastic expansion and contraction of the inner glove shell relative to the outer shell,
respectivering means including means for securing the and finger stalls and in the cuff area,
(i) whereby the inner glove shell and outer glove shell each
provide characteristics significant for use in sporting activities in a unitary structure.

## 4,095,293

MOLDED GLOVE AND FORM THEREFOR HAVING TEXTURED WRIST PORTION FOR THE ELIMINATION OF CUFF ROLLDOWN
Paul W. Heavner, Kettering, and William E. Le May, Waynes. -ille, both of Ohio, asaignors to Baxter Travenol Laboratories, Conthmation of Ser. No. 723,347, Sep. 15, 1976. This application

U.S. C. 2-168

1. In a molded glove defining a hand and wrist portion, said wrist portion defining, in as-molded configuration, longitudinal channels positioned about its circumference and extending from a position adjecent to the end of said glove remote from the hand portion to the wrist portion thereof; a plurality of first circumferential channels, defined on said wrist portion at an end remote from smid hand portion, said circumferential channets croosing said loogitudinal channels, the thickness of the

exhibits improved resistance to rolling-down of the cuff while being worn.

4,095,294
SOFT PUNCH
Harold E. Winterbottom, 1702 Laming Rd., Gien Burnie, Md. Filed Mar. 21, 1977, Ser. No. 755,005 Int. Cl. ${ }^{2}$ A41D 13/10; A63B 71/10 U.S. C. $2-424$


1. A punch softening system for boxing comprising proportionally and structurally matched set consisting of: a pair of inflatable boxing gloves and inflatable headgea
having rib structure including a series of interconnected arcuate members defining vents therein, each inflatable boxing glove when inflated being larger than said vents and all said inflatable boxing gloves and inflatable headgear being of elastic material such as rubber causing elastic widening of all said inflatable boxing gloves and ribs on
impact therebetween for preventing passage of a portion of an inflatable boxing glove through a vent during boxing, each inflatable boxing glove having a full double wath throughout including an inflatable cuff, each inflatable cuff having an inflation valve therein and each inflatable boxing glove having an internal thumb pocket therein; the
inflatable headgear having means for tightening including inflatable headgear having means for tightening including chin strap.

ADJUSTABLE, FLUID-FILLED BREAST IMPLANT Douglas Lake, 21 Elsway Rd., Short Hills, N.J. 07078

Flled Mar. 28, 1977, Ser. No. 781,73 U.S. Cl. 3-36

1.

1. A mammary prosthetic implant comprising in combina
tion: a liquid inflatable valveless bag of liquid impervious flexible material,
filler tube of flexible liquid impervious material integral with an opening in the periphery of said bag and extending eans for suturing said neans for suturing said filler tube to tissue comprising a 100
formed integrally with said tube near its external end.

ADJUSTABLE BED
Arthur Charles Ferro, St. Louis, Mo., assignor to Contour Chair Lounge Company, Inc., St. Louis, Mo.
Filed Apr. 27, , 1976, Ser. No. 680,758 Filed Apr. 27, 1976, Ser. No. 680,
Int. C.1. ${ }^{2}$ A61G $7 / 06$ U.S. CI. 5-69 15 Claims


An adjustable bed comprising a support and an articulated base; the base including a first section having a back edge and a foot edge, said first section being secured to the support so as to be immovable hereon; a second ack secits angle relatively to the first section, a third section having a foot end and back to the first section, a third section having a pootend the foot edge, said third section back edge being pivoted to
edge of the first section so as to vary its angle relatively to the first section; and actuating means connected to the second and third sections to pivot the second section and third section up relatively to the first section simultaneously by a movement
thereof comprising a first lever attached to the second section, thereof comprising a first lever attached to the second section, a second lever atachers lever to move the second lever including
movement of the first a linkage cable connected to the first lever and extending in a first direction from the first lever toward the foot end past the second lever to sliding engagement with the support and thence extending in a second direction substantially opposite to
the said first direction to the second lever and connected to the the said first
second lever.

4,095,297
COIL SPRING ASSEMBLY
Herbert J. COIL Solland Mich, assignor to Holland Wire Products, Inc., Holland, Mich. No. 796,001 Int. C. ${ }^{2}$ A47C 23/04 3 Claims


1. A coil spring assembly comprising:
a pair of peripheral supports lying in a pair of parallel planes, a plurality of individual wire coil springs between said planes arranged in parallel rows across said assembly, the
springs in alternate rows having right-hand and left-hand springs in alternate rows hachng coils spring being knotted on the respective adjacent turns of the spring; the last turn on each end of each coil spring having a pair of opposite parallel linear portions oriented normal to the row containing that coil spring; said linear portions of successive adjacent coil springs in each row being in abutment; a said rows to interconnect the files, each cross helical enveloping the series of abutting linear portions in successive rows to interconnect adjacent coils in each row and to interconnect adjacent rows together.

\section*{| 4,095,298 |
| :---: |}

William L. Pringle, Grosse Pointe Shores, Mich, assignor to United States Steel Corporation, Pittsburgh, Pa Continuation-in-part of Ser. No. $\mathbf{6 1 0 , 6 9 9 , \text { Sep. 5, 1975, Pat No }}$ 4,020,512. This application Feb. 7, 1977, Ser. No. 765,990 S. C1. 5-263 Int. C1. ${ }^{2}$ A47C $23 / 04$ 21 Claims


1. A bed assembly comprising; metal frame means of generally rectangular configuration including a pair of opposed side rails and a pair of opposed end rails, at least one of said rails cross section and second metal members defining a hollow second members being U-shaped in cross section with said second $U$-shaped member having shorter legs than said first $U$-shaped member, said legs of said first and second $U$-shaped members being in engagement with one another and secured together with the base portions of said U-shaped members being spaced apart to define said hollow cross section thereof.

LABEL AND METHOD FOR DETERMINING MATTRESS Robert J. Schweiso, 1028 ROTATION EdIN C., Sunnyvale, Calif. 94087 iled Jun. 24, 1976, Ser. No. 699,39
U.S. CI. $5-317$ R

1. A label or a pair of labels for a matress which, when located on a predetermined part of the mattress, comprises
lirst instruction which is readable when the mattress is in a firs position for directing the reader thereof to move the mattress from the first position to a second position and which is readable when the mattress in in a third position for directing the
reader thereof to move the mattress from the third position to fourth position; and a second instruction which is readable when the mattress is in the second position for directing the reader thereof to move the mattress from the second position othe third position and which is readable when the mattres is in the fourth position for directing the reader thereof to move the mallress from the fourn posit in a the first position quence by one or more persons without any one of the persons having to have knowledge of or recall the nature of the immediate past movement of the mattress.

CONSTRUCTION OF $\begin{array}{r}\text { 4,095,300 }\end{array}$
BEDCOVER CORNER FOR A BEDCOVER
Sol Ruben, Brooklyn, N.Y., assignor to Richard G. Rattner
Woodmere, N.Y., a part interest
Filed Jan. 31, 1977, Ser. No. 764,140
U.S. C1. 5-334 R


1. A construction of a fitted corner for a bedcover having wo mutually perpendicular edges comprising a first stitched connection joining said fabric together along two lines, one extending from and substantially normal to each of said two edges, to a point adjacent to the junction of said lines to define an area of said bedcover bounded by said edges and said two lines, and second and third stitched connections extending one
from each said edge to a point adjacent the junction of said fines, said second and said third stitched connection respec tively joining said area of said bedcover to the remainder of said bedcover symmetrically one on each side of said first stitched connection.
$4,095,301$ PORPOISE EEACUATION BOAT
Rafael Guillen, 2258 Flintridge Dr., San Dlego, Calif. 92139
Filed Dec. 23, 1976, Ser. No. 753,739 U.S. CI. $9-6$ R

2. A porpoise evacuation skiff deployable from a larger ishing vessel to permit direct removal of porpoises from (a) a boat body having a central bay for temporarily confining porpoises;
(b) a ramp descending at least to the waterline of said boat body to permit the hauling of porpoises up said ramp and ascending to the top of said bay to permit easy depositing of the porpoises in said bay without opening said bay to (c) an operator stabilizing station adjacent said secure an operator for hauling porpoises up said ramp, said station having a support upon which said operator an stand and means securing said operator from falling from the skiff.

$$
\begin{gathered}
4,095,302 \\
\hline
\end{gathered}
$$

Marold Albert Bandyfacture of shoes Clark Ltd., Somerset, England Filed Sep. 17, 1976, Ser. No. 724,745
Claims priority, application United Kingdom, Sep. 18, 1975, Int. Cl. ${ }^{2}$ A43D 21/12
U.S. C. 12-8.1


1. Apparatus for lasting the waist region of a shoe comprisng a post supporting a last, two lasting assemblies mounted for movement widthwise of the last and adapted for engaging
respective sides of the waist region of an upper when arranged on the last, each assembly including a single resilient band extending under tension heightwise of the last and supported
only at its upper and lower edges, means for moving each tached to said cover body, and connecting means for remov assembly towards the last so as to cause the band progressively ably connecting said cover body to said base, said connecting to conform such upper to the last both in the direction of the means including hooks extending upwardly from said base
top line and feather line of the shoe to be lasted and lengthwise adjacent to its front edgee corresponding projections of the last, means for preventing further movement of each adjacent to its front edge, corresponding projections on the assembly towards the last, and means for moving an edge of wise of the last so that the part of the band adjacent the feather wise of the last so that the part of the band adjacent the feather
line is rolled over onto the last bottom whereby to turn over the lasting margin of such upper and press it onto an insole supported on the last.

DRY CLEANING CARPETING
John L. Armstrong, 4482 Holly Dr., Palm Beach Gardens, Fla 33410, and Edward G. Tarkinson, 125 SE. 31st Ave., Boynton Beach, Fla. 33435

$$
\begin{aligned}
& \text { Filed Jan. 27, 1977, Ser. No. } 963,004 \\
& \text { Itt. C. }{ }^{2} \text { A477. } 1 / 1 / 62
\end{aligned}
$$

U.S. CI. 15-1.5 R ${ }^{\text {Int. C. }{ }^{2} \text { A47L } 11 / 162}$

24 Claims


1. Apparatus for dry cleaning a carpet which comprises a machine having a grounded frame, motor means on said fram comprising a vertical output shatt, pad driving means con-
nected to the lower end of said shaft, a cleaning pad connected to said driving means at its underside and movable in rubbing relation over the carpet to be cleaned and of a material selected to generate a static electrical charge as a result of frictional ing a plurality of condensers electrically connected to said driving means and pad, and static charge bleed-off mean connected between said accumulator means and said frame.
$\xrightarrow{\text { 4,095,304 }}$
Mamoru Shinozaki, No. 1-35, Sakuradai, Nerima-ku, Tokyo; Yuichi Takahama, No. 332-90, Ohaza sunashinden, Kawagoe shl, Saitama-ken; Hachiro Tubaki, No. 813-1440, Ohaza Auima, Kawagoe-shi, Saitama-ken; Kazuo Nagasawa, c/o Ytorasuso No. 16-33, 2-chome, Nukui, Nerima-ku, Tokyo, and Nerima-ku, Tokyo, all of Japan
Fiiled Feb. 7, 1977, Ser. No. 766,566
Claims priority, application Japan, Feb. 10, 1976,
Claims priority, application Japan, Feb. 10, 1976, $51-$
14957(U); Feb. 14, 1976, $51-16191[\mathrm{U}]$; Feb. 27, 1976, 22763[U];

$$
\text { Int. Cl. }{ }^{2} \text { A47L } 11 / 33
$$

U.S. C. 15-48 7 Claims 1. A hand sweeper comprising a base in the form of a dust ox having front and rear walls and side walls, a rotary brush
rotatably supported on the side walls and extending trans versely of the dust box, driving wheels for transmitting their rotation to said rotary brush to sweep dust into said dust box

hook-like slot formed in said rear wall of said base, and a spring urged latch slidably mounted in said cover body so as to be capable of moving between a position in which it is engaged by position in which said latch is sisengaged from said hook-like slot to allow removal of said cover from said base.

## 4,095,305

CLEANING APPARATUS FOR TUBES AND TUBE BUNDLES Robert J. Goodwin, Hendersonville, N.C., asssignor to C. H Heist Corporation, Clearwater, Fla.
Continuation-in-part of Ser. No. 627,556, Oct. 31, 1975, Continuation-in-part of Ser. No. 627,556, Oct. 31, 1975,
abandoned. This application Jul. 12, 1976, Ser. No. 704,47 U.S. Cl. 15-104.1 R ${ }^{\text {Int. Cl. }{ }^{2} \text { F28G } 3 / 10}$

1. A lance reciprocating and rotating construction compris ing frame means, means for securing said frame means relativ o a tube to be cleaned, lance advancing and rotating means
including motor means for advancing and rotating a lance firs including motor means for advancing and rotating a lance, firs means, carriage means for attachment to the end of said lance remote from said tube, swivel means on said carriage means for permitting rotation of said lance, carriage-supporting means or supporting said carriage means for movement toward and way from said tube, and second mounting means for mounting said carriage-supporting means, said motor mear
located between said carriage means and said tube.


REACTION LADLE CLEANING MACHINE Ned Gilbert Norton, Myrtle Creek, Oreg., assignor to The Hanna Mining Company, Cleveland, Ohio Fild 27, 1977, Ser. No. 810,01 U.S. C. 15-104.07 Int. C. ${ }^{2}$ B08B $/ / 00$


1. A machine for breaking away slag accumulation from the interior or a reaction ladle comprising a columnar structure having an upper portion extending beyond the upper end of the
ladle; and slag breaker means including a carriage vertically adjustable along said upper portion, a downwardly extending boom having its upper end swingably adjustably connected to said carriage, and a slag breaking tool assembly swingably adjustably connected to the lower end of said boom and having power actuated tool for engagement with slag on the interio of the ladle.

SCRAPER FOR A VESSEL INTERIOR SURFACE Dale A. Brubaker, Delphi, Ind., assignor to Lox Equipmen mpany, Livermore, Calif

Filed Jun. 28,1976 , Ser. No. 700,730 Int. Cl. ${ }^{2}$ B08B 9/08: F28Q 3/10

## U.S. Cl. 15-246.5

1. Scraper for the interior surface of a vessel comprising: a. an inner shaft positioned within the vessel,
a plurality of arms radially disposed with respect to said
inner shaft said plurality of arms having at least a first pair of substantially parallel arms and a second pair of substantially parallel arms, one of said arms of said first pair of arms oppositely radially disposed along said inner shaft with respect to one arm of said second pair of arms and
another of said arms of said first pair of arms appositly another of said arms of said first pair of arms oppositely arm of said second pair of arms,
a plurality of peripheral shafts spanning the end portion of at least said first and second pairs of substantially parallel arms,
d. scraping means for scraping the interior surface of the vessel mounted on said plurality of peripheral shafts, said scraping means comprising a plurality of scraping units arm and a second pivotal arm pivotal about a fulcrum and having a blade contacting the inner surface of the vessel, said blade mounted on said first pivotal arm of said lever, said second pivotal arm of said lever connected to spring
eans for urging contact between said blade and the inner surface of the vessel through a predetermined range of

distances betwern form of said lever and the inn surface of the vessel.

## LOW PROFILE WINDSHIELD $\begin{array}{r}\text { 4,095,308 }\end{array}$ <br> ELD WIPER ASSEMBLY and Edmard Kimber, Cayuga, all of Canada, assignors to Tridon Limited, Burlington, Canada <br> Filed Dec. 16, 1976, Ser. No. 751,178 <br> U.S. Cl. 15-250.42 Int. Cl. ${ }^{2}$ B60S $1 / 04 \quad 21$ Claims <br> 

1. A windshield wiper superstructure comprising a primary superstructure element adapted to be connected to a windshield wiper arm; a plurality of claw carrying superstructure elements pivotally mounted on said primary superstructure element and spring means operatively associated with said
primary superstructure element and with said claw carrying elements for independently biasing said claw carrying elements about their pivotal connection to the primary superstructure element to urge the claws thereon towards the windshield on which the superstructure is used; said primary superstructure element including a pair of opposed ends and said plurality of claw carrying superstructure elements including two pairs of superstructure elcment with each lever in each pair being pivotally mounted on the adjacent end of the superstructure element at one of its ends fOr substantially independent pivotal movement of each lever element when the superstructure is in

## ,095,309

APPARATUS FOR CLEANING A CARPET
John J. Sundhelm, Englewood, Colo., assignor to John J. Sund
Family Estate, Englewood, Colo.
U.S. CI. 15-320


1. A carpet cleaning apparatus constructed for movement
across a carpet in a predetermined direction, said apparatus comprising:
(a) means for engaging the fibers of the pile of a carpet and directing a cleaning fluid to a portion of the carpet, said means being connectible in use with a source of cleaning liquid, said mean
mined direction.
(b) a suction manifold, said suction manifold being connectible when in use with a source of suction,
(c) a laterally extending nozzle disposed in fluid communica-
tion with tion with said suction manifold for applying suction to saic carpet, said nozzle being spaced from said means for en gaging the fibers of the carpet in a dire
(d) a body member,
(e) a head member carrying at least one suction manifold an said laterally extending nozzle, said head member being
mounted for movement toward and away from said body member,
supporting said head member from said body member, and
(g) means mounted on said body member for reciprocating relative to said body member.

$$
4,095,310
$$

CUIDE AND PIVOT PIN CARTRIDGE ASSEMBLIES FOR UIDE AND PIVOT PINCARTRDGRS
Bernard C. Governale, Duluth, Ga., assignor to Peachtree Doors, Inc., Atlanta, $G$

Filed Jul. 21, 1977, Ser. No. 817,84
S. $16-87 \mathrm{P}$ Int. Cl. ${ }^{2}$ EOSD $13 / 02$


In a folding door structure including a pair of door sec tions hingedily connected bottom guide tracks for horizontal
movement between folded and unfolded positions, each folding door section having upper and lower braces and each brace including a pair of vertically spaced horizontal walis, he inm ized guide pin cartridge assembly for installation on the job site where the folding door structure is being installed on said upper and lower braces of one door section and on the upper brace of the other door section of said pair, and a coacting prefabricated and preassembled unitized and adjustable pivo of said other door section, all of said guide and pivot pin car. tridge assemblies including rectangular cross section pin housings having enlarged heads at one end and cooperating yielding locking tangs projecting from one side thereof near said head, whereby said housings may enter rectangular openings in said vertically spaced horizontal walls of said upper and faces of corresponding walls and said locking tangs lockingly engaged with the opposite faces of said walls of the braces, upper and lower guide track follower elements on the pins of sid guide pin cartridge assemblies, and a pivot extension on the pin of said adjustable pivot pin carridge assembly, and said
rectangular cross section pin housings serving to enclose major portions of the lengths of the guide and pivot pins of said cartridge assemblies along at least two opposite sides thereof.

## 4,095,311

Hans Janosch, Chateauguy, Calif., assignor to Phil Menard Limitee, Montreal, Canada Filed Oct. 4, 1976, Ser. No. 728,908 Filed Oct. 4, 1976, Ser. No.
Int. C1.
U.S. Cl. 16-163


1. A hinge arrangement comprising, in combination: a base member having a first end;
a swivelling member having a first end;
the first end of the base member being disposed contiguous to the first end of the swivelling member; and
first and second elongated connecting members pivotally
connecting said base member with said swivelling member at the first ends thereof;
said first connecting member being pivotally connected, at one end thereof, to one side of the one end of said base member and, at the other end thereof, to the correspond ing side of the one end of said swivelling member; at one end thereof, to the other side of the one end of said base member and, at the other end thereof, to the other side of the one end of said swivelling member; and further comprising an extension member extending out wardly and in the direction of said base member from one side of the one end of said swivelling member;
at the other ends thereof, to the base and tip respectively of said extension member.

APPARATUS FOR MAKING A NONWOVEN FABRIC David J. Haley, Durham, N.C., assignor to Monsanto Company St. Louis, Mo
Division of Ser. No. 636,267, Nor. 28, 1975. This application Nov. 10, 1976, Ser. No. 740,575
Int. Cl.2 D01G 25/00; D04H 3/05
U.S. CI. 19-308

5 Claims


1. An apparatus for forming a nonwoven fabric having niform stretch in two directions, comprising
a. a pair of moving collecting surfaces positioned to form a nip;
b. a firs
a first air nozzle positioned to direct a first group of filaments in a longitudinal direction into said nip so that said
filaments fold into and are captured and held by said nip with spans of said filaments lying in the plane of said nip thereby causing said filaments to lie in positions predominately transverse to said fabric;
c. an element having an impact surface positioned adjacent
to one of the collecting surfaces at said nip;
d. a second air nozzle positioned to direct a second group of filaments in a longitudinal direction onto said impact
surface: and e. said impact
said second group of filaments can be pulled off said im
surn said second group of filaments can be pulled off said im-
pact surface by said one collecting surface thereby causing said second group of filaments to extend longitudinally along said fabric.

## 4,095,313

GAS OPERATED AUTOMATIC CANOPY RELEASE GAS OPERATED AUTOMATIC CANOPY RELEASE Rober E. Pilay, Corona, and Kenneth K. Craig, Riverside
County, both of Calif,, assignors to H. Koch \& Sons, Anaheim, Calif.

Filed Dec. 17, 1976, Ser. No. 751,884
U.S. CI. 24-230 A

2 Claims


1. In a releasable strap connector having a female member having a pair of spaced pockets therein and a male member having a pair of prongs filting into said pockets, each prong having a recess therein, a rockable roll bar journalled in saic said prongs so that said recesses face said roll bar at the intersection thereof, a portion of said roll bar at the intersection being cutaway so as to leave said pockets and said recesses
insertion and withdrawal of said prongs from said pockets and in another position to project into said recesses thereby to ing said roll bar from interlocking position to unobstructing gsition at will,
the improvement of pressure medium operated means for
turning said roll bar from interlocking position to unobstructing position, comprising a pair of tracks adjacent the respective pockets in the female member,
${ }^{\text {a }}$ pair of abutments on said roll bar,
a cylinder aligned with each track, and a piston in each
releasable restraining means in the path of each piston,
one of said abutments on each roll bar projecting into each thack,
cent ab in each cylinder being engagable with the adjacent turning in the interlocking position of said roll bar and means to convey a pressure medium sing position, both cylinders for forcing said pistons to release said both cylinders for forcing said pistons to release said
restraining means and roll said roll bar from interlocking restraining means and roll

$$
4,095,314
$$

SHOCKLOAD RESISTANT CANOPY RELEASE
John A. Gaylord, San Diego, Calif,, assignor to H. Koch \& Sons, Anaheim, Calif.
Filed Mar. 10, 1977, Ser. No. 776,300
U.S. C. $24-230$ A Int. Cl. ${ }^{2}$ A44B $1 / / 25$


1. In a webbing connector,
a male connector member,
a female connector member having a pocket therein, a part of said male connector member being insertable into said pocket and having a keeper recess therein, a lock in said female connector projectable into said recess for locking said connector members together, said lock into and out of said recess at will,
and locking means to and locking means to lock said manipulating member in the locking position of said lock,
hold said manipulating member on said means to translate the rotating motion of said manipulating member into moving said lock into and out of said keeper recess at will,
said locking means including a guide element on said female body adjacent said manipulating member,
a guide on said manipulating member coacting with said guide element,
said guide element having a midte portion concentric with the center of rotation of said substantially member, and having an end portion at each end of said middle portion extending at an angle to the middle portion to block said guide from movement about said center, and manipulatable means to shift said guide out of the re-
to free said manipulating member for rotating manipula-
tion. tion.

## 4,095,315 <br> LOOP RETAINER

Welbourne D. McGahee, Melbourne, Fla., assignor to Loop-A Line, Inc., Melbourne, Fla.

## Filed Jan. 21, 1977, Ser. No. 760,920 <br> Int. Cl. ${ }^{2}$ A44B $13 / 00$; A43C $11 / 08$

U.S. CI. 24-231


1. A connector to be incorporated into a body, comprising: a first bore penetrating the surface of said body; a second bore penetrating said body; and an elongated retainer abricated from a material having spring properties, said retainer including a secured end held rigidly within said
body by the side walls of said second bore and a free end body by the side walls of said second bore and a free end said elongated retainer descends into and crosses a majority of the diameter of said first bore.


A carabiner comprising
(a) an elongated body member of tubular metallic material, (1) said body member being approximately C-shaped, mately straight portion, and two longitudinally termina portions respectively extending from said bight portions toward one another and defining a gap therebetween,
(2) the wall thickness of said metallic material in said
terminal portions being greater than in said bight and
straight portions; straight portions;
(b) an elongated closure member having first and second pivotally secured to one of said terminal portions for
arcuate movement of the other end portion toward and away from the other terminal portion; and c) cooperating abutment means on said other end portion and said other terminal portion engageable for limiting said arcuate movement in a position of said closure mem ber in which said closure member closes said gap,
(1) the wall thickness of said metallic material in sid (1) the wall thickness of said metalic material in said one thickness in said other terminal portion.

4,095,317
PROCESS FOR PRODUCING TEXTURED YARN Brewster B. Eskridge; Roger H. Fink; William D. Porter, all of Asheville, and Elbert K. Warren, Candler, all of N.C., assignors to Akzona Incorporated, Asheville, N.C.
Division of Ser. No. 517,802, Oct. 24, 1974, Pat. No. 3,983,610. This application Apr. 28, 1976, Ser. No. 681,252 Cl. 28-221 Int. Cl. ${ }^{2}$ D02G 1/12, 1/16 13 Claims


1. A process for texturizing yarn which comprises
passing a synthetic polymeric multifilament yarn together with a stream of heated gas into a diverging conical diffuser zone to cause the gas stream to rapidly expand and to the center of the expanding gas stream;
creating an eddy-effect at the end of the diffuser zone to cause yarn filaments splayed outwardly in said diffuser zone to contact a smooth imperforate continuous wall portion of such length as to insure the formation of a
compacted yarn mass therein and said smooth wall portion defining an upstream end of a bulking chamber; forming the yarn filaments into a compacted yarn mass within said smooth wall portion at said upstream end of
the bulking chamber: the bulking chamber;
pushing the compacted yarn mass into and through an air
permeable wall portion of the bulking chamber while the permeable wall portion of the buiking chamber while the
gas initially passes through the compacted yarn mass at gas initially passes through the compacted yarn mass at
said upstream end of the chamber; and subsequently discharges laterally from the yarn mass within the air permeable wall portion of the bulking chamber; and
withdrawing a yarn bundle from the compacted yarn mass.
2. In a continuous process for the texturizing of yarn in a
as jet bulking process wherein the yarn is aspirated along with
heated gas into a yarn bulking chamber, the improvement mprising:
a diverging cogical a diverging conical diffuser zone to cause the gas stream
to expand rapidly and to cause the filaments of the yarn to splay open;

## $4,095,312$

apparatus for making a nonwoven fabric Darld J. Haley, D
St. Louis, Mo.
Sh. Lovis, Mo. Division of Ser. No. 636,267, Nov. 28, 1975. This application Nor. 10, 1976, Ser. No. 240.575
Int.
308
U.S. Cl. 19-308

5 Claims


1. An apparatus for forming a nonwoven fabric having uniform stretch in two directions, comprising:
a. a pair of moving collecting surfaces positioned to form a ${ }^{1}{ }^{\text {a. ap }}$ nip;
b. a first air nozzle positioned to direct a first group of filla-
ments in a longitudinal direction into aid ments in a longitudinal direction into said nip so that said
filaments fold into and are captured and held by said nip with spans of said filaments lying in the plane of said nip, thereby causing said filaments to lie in positions predominately transverse to said fabric;
c. an element having an impact surface positioned adjacent to one of the collecting surfaces at a location spaced from
d. a second
d. a second air nozzle positioned to direct a second group of
filaments in fllaments in
surface; and
e said impacts surface bind direction onto said impach e. said impact surface being positioned in such a manner that
said second group of filaments can be pulled off said impact surface by said one collecting surface thereby causing said second group of filaments to extend longitudinally along said fabric

## 4,095,313

GAS OPERATED AUTOMATIC CANOPY RELEASE Robert E. Piljay, Corona, and Kenneth K. Craig, Riverside
County, both of Calif,, assignors to H. Koch \& Sons, Anaheim, Calif. Filed Dec. 17, 1976, Ser. No. 751,884 U.S. Cl. $24-230 \mathrm{~A} \quad$ Int. Cl. ${ }^{2}$ A44B $11 / 25$


1. In a releasable strap connector having a female member 1. In a releasable strap connector having a female member
having a pair of spaced pockets therein and a male member having a pair of prongs fitting into said pockets, each prong having a recess therein, a rockable roll bar journalled in said female member intersecting said pockets, means to position said prongs so that said recesses face said roll bar at the interbeing cutaway so as to leave said pockets and said recesses unobstructed in one position of said roll bar thereby to permit
insertion and withdrawal of said prongs from said pockets an in another position to project into ssaid recesses thereby to ing said roll bar from interlocking position to unobstructing position at will,
he improvement of pressure medium operated means for
turning said roll bar from inerlocking turning said roll bar from interlocking position to unob
structing position comprising pair of tracks adjacent the resp member,
a pair of abutments on said roll bar
a cylinder aligned with each track, and a piston in each cylinder,
releasable restraining means in the path of each piston, one of said abutments on each roll bar projecting into each track, he piston in each cylinder bisk cent abutment in the interlocking position of said roll bas for turning said roll bar into unobstructing position, and means to convey a pressure medium simultaneously int both cylinders for forcing said pistons to release said
restraining means and roll said roll bar from interlockin restraining means and roll said roll bar from interlocking to unobstructing position.

## 4,095,314 <br> SHOCKLOAD RESISTANT CANOPY RELEASE

John A. Gaylord, San Diego, Calif., assignor to H. Koch \& Sons, Anaheim, Calif.
Flled Mar. 10, 1977, Ser. No. 776,300 U.S. Cl. 24-230 A


1. In a webbing connector
a male connector member,
a female connector member having a pocket therein a part of said male connector member being insertable into said pocket and having a keeper recess therein, a lock in said female connector projectabse into said recess for locking said connector members together,
a manipulating member on said female member for moving
locking position of said lock manipulating member in the
means to rotatably hold said manipulating member on said female member,
means to translate the rotating motion of said manipulating member into moving said lock into and out of said keeper recess at will,
said locking means including a guide element on said female said locking means including a guide element
body adjacent said manipulating member,
a guide on said manipulating member coacting with said said guide element having a middle portion substantially concentric with the center of rotation of said manipulating member, and having an end portion at each end of said
middle portion extending at an angle to the middle middle portion extending at an angle to the middle portion and manipulatable means to shift said guide out of the respective end portions and to said middle portion thereby

## 4,095,315

LOOP RETAINER
Welbourne D. McGahee, Melbourne, Fla., assignor to Loop-A Welbourne D. McGahee, Melbo
Line, Inc., Melbourne, Fla.

Filed Jan. 21, 1977, Ser. No. 960,920
U.S. C. $24-231$

41 Claims


1. A connector to be incorporated into a body, comprising: a first bore penetrating the surface of said body; a second bore penetrating said body; and an elongated retainer fabricated from a material having spring properties, said retainer including a secured end held rigidly within said body by the side walls of said second bore and a free end
positioned adjacent to the wall of said first bore so that said elongated retainer descends into and crosses a majority of the diameter of said first bore.

## 4,095,316 CARABINER

Günther Gabriel, Gauting near Munich, Germany, assignor to Salewa Sportperatefabrik mit beschrankter Haftung, Munich, Germany
Continuation of Ser. No. $\mathbf{7 6 2 , 7 6 0 , \text { Jan. 26, 1977. This application }}$ Claims priorityg. 29, 1977, Ser. No. 828,860 U.S. C1. 24-234 Int. Cl. ${ }^{2}$ A44B $13 / 02$

8 Claims


1. A carabiner comprising
(a) an elongated body member of tubular metallic material, (1) said body member being approximately C-shaped, having two bight portions connected by an approximately straight portion, and two longitudinally terminal
portions respectively extending from said bight portions portions respectively extending from sad bigh portioen, (2) the wall thickness of said metallic material in said terminal portions being greater than in said bight and straight portions;
(b) an elongated closure member having first and second longitudinal end portions, one of said end portions being
arcue movement of the other end portion way from the other terminal portion; and cooperating abutment means on said other end portion and said other terminal in a position engeable for limiting ber in which said closure member closes said sure mem 1) the wall thickness of said metallic material in said one terminal portion being greater than the
thickness in said other terminal portion.

PROCESS FOR PROD $4,05,317$
PRO B. Eskridge: Roger H. Fink TEXTURED YARN Asheville, and Elbert K. Warren, Candler, all of N.C., assignors to Akzona Incorporated, Asheville, N.C
Division of Ser. No. 517,802, Oct. 24, 1974, Pat. No. 3,983,610
This application Apr. 28, 1976, Ser. No. 681,252
U.S. Cl. 28-221

13 Claims


1. A process for texturizing yarn which comprises: passing a synthetic polymeric multifilament yarn together with a stream of heated gas into a diverging conical diffuser zone to cause the gas stream to rapidly expand and to cause the filaments of the yarn to splay the center of the expanding gas stream
reating an eddy-effect at the end of the diffuser zone to
cause yarn filaments splayed outwardly in said diffuser one to contact a smothed ouwardy in said diffuser portion of such length as to insure the formation of a compacted yarn mass therein and said smooth wall porcompacted yarn mass therein and said smooth wall forming the yarn filaments into a compacted yarn mass within said smooth wall portion at said upstream end of the bulking chamber;
pushing the compacted yarn mass into and through an air permeable wall portion of the bulking chamber while the
gas initially passes through the compacted yarn mass at gas initially passes hrough he compacted yarn mass at
said upstream end of the chamber; and subsequently discharges laterally from the yarn mass within the air permeable wall portion of the bulking chamber; and
withdrawing a yarn bundle from the compacted yarn mass.
2. In a continuous process for the texturizing of yarn in a 13. In a continuous process for the texturizing of yarn in a heated gas into a yarn bulking chamber, the improvement comprising:
passing the yarn together with the stream of heated gas into a diverging conical diffuser zone to cause the gas stream
to expand rapidly and to cause the filaments of the yam to splay open;
creating an eddy-effect at the end of the diffuser zone to cause yarn filaments splayed open to contact a first tubular smooth imperforate wall zone of the bulking chamber of such a length to insure the formation of a compacted yar plug therein;
forming a compacted yarn plug from an initial length of yarn zone, the upstream face of the plug being concave toward the downstream end of the plug;
impinging successive yarn filaments in a controlled random oscillatory manner on the formed plug surface while
passing the heated gas axially through at least the initially passing the heated gas axially through at least the initially
formed portion of the plug within said smooth wall zone, pushing the yarn plug into and through a second perforate wall portion of the bulking chamber; and
withdrawing a yarn bundle from the yarn plug.

## 4,095,318

CONTROLLED TOW STRETCHER James Gardner Abbott; Jerry Wayne Berley; Allen Edens Ward, Jr., and Brandi, Sr. Adolph John, all of Columbia, S.C, as Jign, and Brandi, Sr. Adolph John, all of Columbia, S.C., as
signors to Allied Chemical Corporation, Morris Township,

Filed Jul. 15, 1975, Ser. No. 596,042
U.S. Cl. $28-241$


1. An apparatus for stretching a tow of filaments comprising aid tow traveling serially through, in combination, nip roll stand, said stand having rolls, drag rolls, and driven rolls, with means to driv
means to sense variation in a set ratio of speed between said nip rolls and said driven rolls, and
a speed control device, communicating with said means to sense, said device continuously controlling at least one roll in said nip roll stand proportional to said sensed variation in the ratio of speed
said tow being stretched by the tension on said tow caused by the driven rolls dragging said tow across said drag rolls.
2. An apparatus for stretching a tow of filaments comprising
said tow traveling serially through, in combination,
a nip roll stand, said stand having rolls, drag rol
least three sets of driven rolls, with electric motor means to drive said driven rolls,
means to mount said rolls,
means to selectively lock said drag rolls to prevent rotation means to selectively lock said drag rolls to prevent rotation
and at least one of said drag rolls being locked to prevent rotation, , riation in a set ratio of speed between said ns to se
means to sense variation in
nip rolls and driven rolls,
an eddy current brake, communicating with said means to sense, said brake continuously controlling at least one roll in said nip roll stand, proportional to said sensed variation in the ratio of speed, and
said means to sense variation in said set ratio of speed being sensed on a roll on said nip roll stand and on the last of said three sets of driven rolls, and said eddy current brake being applied to two rolls on said nip roll stand, said tow
being stretched by the tension on said tow caused by the driven rolls dragging said tow across said drag rolls.

4,095,319
YARN FRACTURING AND ENTANGLING JET Jackson Lee Nelson, Johnson City, Tenn., assignor to Eastman Kodak Company, Rochester Y

Filed Jan. 26, 1977, Ser. No. 762,614
4 Claims


1. In a gaseous fluid jet for fracturing yarn, the jet including an elongated housing having a central bore therethrough defining a plenum chamber;
venturi supported in the central bore and in the exit end of the housing, the venturi defining a passageway therethrough and the inner end of the venturi defining a central entry opening followed by a converging wall portion
terminating in a constant diametered throat having a length approximately that of its diameter, the throat in turn being followed by a diverging wall portion leading to a central exit opening extending through the exit end of the venturi;
an orifice plate
an orifice plate supported in the central bore of the housing
and abutting against the inner end of the venturi, the and abutting against the inner end of the venturi, the
orifice plate defining a central entry opening therethrough concentric with the central opening of the venturi, the wall of the entry opening having an inwardly tapering
bevel terminating in an exit opening of constant diameter; a yarn guiding needle positioned in the central bore of the housing and having an inner end portion adjustably housing and having an inner end portion adjustably
spaced closely adjacent the entry opening of the orifice plate, the needle defining an axial yarn guiding passage-
way extending therethrough and terminating in an exit way extending therethrough and terminating in an exit
opening for directing yarn through the needle and toward opening for
the entry opening of the orifice plate, the outer wall of the inner end portion of the needle adjacent its exit opening being inwardly tapered toward the orifice plate entry opening; and
means for direc
means for directing a flow of pressurized gaseous fluid into
the central bore of and along the in the housing and the plenum chamber and along the inner end portion of the needle whereby the
gaseous fluid passes through the entry gaseous fluid passes through the entry opening of the
orifice plate and the entry opening of the venturi and orifice plate and the entry opening of the venturi and
outwardly through the exit opening of the venturi to partially fracture the yarn and entangle the filaments of the yarn as the yarn passes through the venturi from the axial yarn guiding passageway of the needle and the openings of the orifice plate; the improvement comprising:
providing the inward taper of the outer wall of the inner portion of the needle with a half angle relative to the axis of the yarn guiding passageway of about $15^{\circ}$;
providing the wall of the orifice plate entry opening with an
inwardly tapering bevel inwardly tapering bevel of about $30^{\circ}$ relative to the axis of the central entry opening; and
providing the diverging wall portion of the exit opening of
the venturi with an angle of about $2.5^{\circ}$ relative to the axis of the exit opening whereby the gaseous fluid jet is capable of using pressures of about 500 p.s.i.g. of gaseous fluid at a rate of about 6.5 SCFM to treat yarn.

YARN TEXTURING AIR JET
Richard J. Polney, New Castle, Del., assignor to Enterprise Machine and Development Corporation, New Cast
Filed Mar. 9,1977 , Ser. No. 775,692 Filed Mar.
Int. Cl.
U.S. Cl. 28-273

7 Claims


1. In a multifilament yarn texturing air jet of the type comprising an elongate housing including a central bore therethe exit end of said housing and including an inwardly tapered conical inner end wall defining the exit end of a turbulence chamber, a yarn guiding needle concentrically supported in said central bore and including an inner end defining the entrance end of said turbulence chamber, said yarn guiding neete least partially into and centered within said inner end wall of said venturi to define a restricted airflow passageway com pletely surrounding said inner end of said needle, the included angle of said inwardly tapered conical inner end wall of said venturi means being greater than the included angle of sai wardly tapered inner end portion of said needre, a yan exit opening in said inner end of said needle, and means for directing pressurized air into said central bore and rearwardly of the inner end of said needle so that the air passes completely around and in a uniform manner along said needle and enter ageway completely surrounding the inner end of said needle to impart crimps, curls and loops to the filaments of the yarn as the yarn passes through said turbulence chamber, the combina tion therewith of means for enhancing the crimps, curls and
 portion on one side only of the inner end of said needle for increasing the volume of air in an arcuate segment on one sid only of said restricted airflow passageway so that the air enter said turbulence chamber compleeely andition with the greater said needle but in an unbalanced condition with the greate volume of air entering said restricted airflow passageway, said
arcuate segment of said cut-away portion comprising a beveled face extending across a minor portion of said inner end of said needle, and wherein the remaining portion of said inner end of said needre extends a right angles to the yarn passageway extending through said needle.

## 4,095,321

APPARATUS FOR MANUFACTURING A HELICALLY Robert E. HiNNED HEAT EXCHANGER Robert E. Hicks, Crestwoor,
Company, Louisville, $\mathbf{K y}$.
Division of Ser No. 737,833, Nov, 1, 1976, Pot No, $4,051,586$ which is a continuation-in-part of Ser. No. 579,889 , May 22 1975, abandoned, which is a continuation-in-part of Ser. No. 529,445, Dec. 4, 1974, Pat. No. 3,909,898. This application Ma 11, 1977, Ser. No. 795,972
Int. Cl. ${ }^{2}$ B23P $15 / 26 ;$ B21D 39/03 ${ }_{-33} \mathrm{Int}$
U.S. Cl. 29-33 G
S. Cl. 29-33 G $\quad 1$ Claim
heat exchanger tube including a helically wound spine fin material supported on a base tube member whichises: of speed; means helically winding said spine fin material in intimat contact with adjacent wraps and the outer wall of said advancing tube to form said spine fin heat exchanger, means for moving spine fin from adjacent wraps of said sping preselected portion of said spine fin material at spaced

intervals along the advancing spine fin heat exchanger so advancing spine fative to said base tube member; and
means severing said advancing heat exchanger in said preselected portion to form predetermined lengths of said heat exchanger with said preselected portion forming end portions effectively held against movement relative to said base tube member so that the other portion of said helically wound spine fin material intermediate said prese-
lected portion is maintained in its initial helically wound position.

## 4,095,322

METHOD OF FABRICATING A COMPOSITE
METHOD OF FABRICATING A COMPOSITE
AERODYNAMIC ROTOR BLADE ASPEMBLY Bromall, Pa., assignors to The Bocing Company, Seattle,

Filed Aug. 30, 1976, Ser. No. 718,796 Int. Cl.2 B23P $15 / 00,9 / 00 ;$ B32B $1 / 10,3 / 12$
$29-156.8$ P Claims and an outer surface with a spar heel engaging porion; an a comprises a lightweight core having front, rear, top and botomprises a lighweight core hat bottom surfaces being conoured to a desired portion of an airfoil shape, and a skin memfin ber secured to each one of the top and bottom surfaces; and a


1. A method of fabricating a composite areodynamic rotor 1. A method of fabrice a single method die mold, the assem-
blade assembly utiizing
bly including: a cap member having an outer surface which y including: a cap member having an outer surface which defines a leading edge of the blace and anganger portion and an nose block engaging portion, a spar enga, a nose block having a spar engaging surface; a spar heel; a spar having a root end

tip cover having a surface which engages the cap member and the skin members, the method comprising the steps of:
a. forming the aft fairing structure in a bonding assembly jig
by:
(i) attaching with an adhesive, a skin member to each of the top and bottom surfaces of the core;
(ii) attaching with an adhesive, the spar heel to the fro
surface of the core and to each skin member; and
(iii) securing the attached surfaces to each other by the
application of heat and pressure to the bonding assem-
bly jig; bly jig;
b. placing the spar, the cap member, the nose block, the aft fairing structure and the tip cover into the single matched
die mold with: die mold with:
portion block engaging portion, the spar engaging portion and the aft fairing skin member engaging por. skin members, respectively, for and the aft faring skin members, respectively
the spar engaging surface of the nose block engaging (iii) the spar;
(ii) the spar heel engaging portion of the outer surface of
the spar engaging the spar heel;
(iv) the tip cover surface engaging the cap member and the skin members; and with
(v) the engaged surfaces in (i) - (iv) being attached with an adhesive; and
c. securing the attached surfaces to each other in the single
matched die mold through the application of matched die mold through the application of heat and pressure to thereby form the composite aerodynamic rotor blade assembly.

4,095,323
Giovanni Silvestri, 4 Meadowbrook Dr., Barrington, R.L. 02806
Filed May 18, 1977, Ser. No. 798,061
Int. C1.2 2 R23P $15 / 14,19 / 00$ U.S. Cl. 29-159.2 ${ }^{\text {Int. Cl.2 }}{ }^{\text {B23P } 15 / 14,19 / 00}$


3 Claims

1. A method of gear tooth alignment of a planet gear cluster of more than one stage in a multi-cluster gear train assembly, including a plurality of planet gear clusters and a ring gear, comprising the steps of:
the planet gear cluster with a transition fit in a common area;
welding the common area
assembling the planet gear cluster in a multi-cluster gear train assembly
locking the output shaft of the multi-cluster gear train assembly; and
iorsionally
train assend the input shaft of the multi-cluster gear train assembly beyond the yield point of the welded area to cause a permanent repositioning of all gears.

HANDHELD VALVE REPLACEMENT TOOL William Lawson, 1341 SW. 21st Ter., Fort Lauderdale, Fla. 33311 Continuation-in-part of Ser. No. 584,365, Jun. 6, 1975,
abandoned. This application May
 U.S. CI. 29-249


1. An impact tool for the removal and replacement of valve stem keepers for a valve spring retainer on a valve stem as
tilized in a conventional internal combustion engine compris : $\quad$ a conventional internal combustion engine comprisa relatively rigid, elongated body, said body having a striker surface and having in one end a first chamber and a second chamber, said first chamber having a conically aperle
internal wall and said second chamber having a smaller relative diameter than said first chamber disposed within the end of said first chamber; and
resilient, valve stem keeper restraining sleeve removeably
connectable within said second connectable within said second chamber, said resilien ing an annular recess disposed at the distal end sized to
receive said valve stem keepers. receive said valve stem keepers.

METHOD FOR ${ }^{4,095,325}$
METHOD FOR TIGHTENING BOLTS
Hiroshi Hashimoto, and Kinya Mori, both of Aichi, Japan assignors to Sanyo Machine Works, Lt.., Japa
Filed Dec. 22, 1975, Ser. No. 642,706
Claims priority, application Japan, Dec. 24, 1974, 50-3163
 1975, 50-123451; Oct. 14, 1975, 50-124025; Oct. 14, 1975, 50.124026

Int. Cl. ${ }^{2}$ B23Q $17 / 00$


1. A method for tightening a bolt to a member to be clamped comprising applying rotatable bolt head engaging means to the head of the bolt, rotating the bolt head engaging means at a reach a particu a period of time sufficient for the bolt head to reach a particular point in relation to the bearing surface of the
member to be clamped that is not beyond the snug point of the bolt head to the bearing surface, reducing the speed of rotation of the bolt head engaging means when said particular point has been reached to a low speed, continuing the rate of rotation of particular point until said bolt is tightened beyond the yield point thereon and thereafter rotating said bolt head engaging means in a reverse direction at said low rate of speed through a fixed angle to obtain the proper tightening force.

## METHOD AND APPARATUS FOR INSERTING <br> MEOST-STRESSING TENDONS IN CONCRETE <br> STRUCTURES

John Terence Crawford Harvey, Beaconsfield, England, as signor to Societe Technique trainte, Boulogne, France
Filed
May 4,
, 19 Claims priority, application United Kingdom, May 6, 1975, 19027/75

1 Claims


1. In the post-stressing of concrete structures, a method of inserting a post-stressing tendon into a duct in the structure which comprises providing at least wo elongate parking duct least one tendon strand into one of the elongate parking ducts to house the strand along at least a substantial portion of its length, inserting at least one further strand into anOther of the parking ducts to house the strand along at least a substantial ortion of its length, and drawing all of said strands as a group in the structure.
2. Apparatus for inserting a post stressing tendon into a duct in a concrete structure comprising a sheaf of open ended, elongate parking tubes, each tube having a length sufficient to
receive at least a substantial portion of one tendon strand means for feeding successive lengths of strand from a supply means for feeding successive leng said parking tubes, means for severing succescoil to each of said parking of strand from the supply coil, and means for
sive lengths of
drawing all of said strandsas a group simultaneously from said parking tubes and into a common duct in a concrete structure to form a tendon therein

4,095,327
METHOD OF SECURING A NUT TO A SUPPORT PLATE Erich Hartmann, Hillsdale, N.J., assignor to Stauff Corporation, Waldick, N.J.

Filed Jul. 30, 1976, Ser. No. 710,224
Int. Cl. ${ }^{2}$ B21D 39/00; B23P $11 / 00$
U.S. Cl. 29-509

1. Method of securing a metal nut to a metal support plate. the nut having (i) an upper portion provided with an external surface tapering generally inwardly from the top one
generally inwardly from the top of the nut to generally the generally inwardly from the top of the nut to generaly wh
middle of the nut, and (ii) a lower portion provided with an external surface of generally right cylindrical configuration extending from generally the middle of the nut to the bottom of the nut, comprising the steps o
fined by a wall having (i) an upper portion of generally tapered configuration complementary to the generally eapered external surface of the nut and aperiapoximately four fifth of the depth of the aperture, and (ii) a lower portion of generally right cylindrical configuration complementary to the generally right cylindrical external surface of the nut and extending from the tapered portion of the wall to the bottom of the aperture;
insering the nut downwardly into the aperture with the
generally tapered external surface of the nut in loose engagement with the generally tapered portion of the wall defining the aperture and with the lower portion of the nut

of generally right cylindrical configuration extending of generally right cylindrical configuration extending and
forcing the nut downwardly a predetermined distance into the aperture to force the generally tapered external surface of the nut, and thereby the upper portion of the nut, pered upper portion of the wall and concurrently swaging predetermined peripheral portions of the support plate surrounding the top of the aperture into engagement with and over predetermined peripheral portions of the top of he nut to lock the nut downwardly in the aperture and to aperture thereby securing the nut to the support plate.

METHOD OF CLAMPING SHEATHED ROD, STRAND, OR ROPE
ncaster, England, as signor to Bridon Limited, England This application Feb. 25, 1977, 1975, Pat. No. 4,065,225. Claims priority, application United Sid. No. 772,016 , application United Kingdom, Dec. 3, 1974, IS. Cl. 29-515. Cl. ${ }^{2}$ B21D 39/00; B23P $11 / 00$


1. A method of applying to a plastics-sheathed line a clamp $t$ least iwo hard tubular element divided longitudinally into parts of the tubular element together, and a ductile metallic havgate clamp body longer than the tubular element and ment, the method chal channel which receives the tubular element, the method comprising the sequential steps of:
(i) removing the sheathing over a length greater than that of the tubular element but less than that of the clamp body,
(ii) positioning the parts of the tubular member about the (ii) positioning the parts of the
unsheathed length of the line,
(iii) applying the retaining means to the tubular element,
(iv) inserting the tubular element into the longitudinal chan nel of the clamp body, the unsheathed length lying wholly
within the channel, and (v) connecting the ductil
connecting the ductile clamp body so as to close the
mouth of the channel, to form the interior of the body to the external shape of the tubular element and the parts of the line lying on either side of the tubular element, and to force the tubular element into
the unsheathed length of line.

4,095,329
MANUFACTURE OF SEMICONDUCTOR RIBBON AND Kramadhati Venkata Ravi, Sudbury, Mass., assignor to Mobil Tyco Sonlar Energy Corporation, Waltham, Mass. Filed Dec. 5, 1975, Ser. No. 638,18
Int. Cl. ${ }^{2}$ B01J $17 / 00$ U.S. Cl. 29-572


1. A method of producing ribbon-like substantially mono crystalline bodies for use in fabricating solar cells comprising he steps of:
(a) providing a tubular substantially monocrystalline body of a semiconductor material
(b) forming a photovoltaic junction in the tubular body; and (c) dividi ribbon-like bodies
one ep
wafer; wafer between said elements beyond extending into said said semiconductor elements beyond the active regions of said semiconductor elements, said grooves being formed
in regions of said wafer which are offset from said pedes
tals; bonding a layer of material having a higher plasticity than said semiconductor material over said pedestals and said surfaces;
removing
ermoving semiconductor material from the side of said said grooves and said surface to expose said material in from each other.
bonding a substrate to said elements; and
removing said layer of material having a higher plasticity
than said semiconductor material.

## FABRICATION OF AN $4,095,331$

FAbrication of an epitaxial layer diode in Richard Frederick Rutz, Cold Spring NAPMIRE United States of America as represented by the Secretary of the Air Force, Wastington, D.C

Filed Nov, 4, 1976, Ser. No. 738,916
Int. Cl. ${ }^{2}$ B01J 17/00; H01L 21/203, 21/20



## COMPOSITE $\quad 4,095,330$

CIRCUIT AND METHOD OF MANUFACTURE Chung K Kim AND METHOD OF MANUFACTURE pany, Lexington, Mass, panision of Ser. No. 718,48,
a continuation of Ser. No. 465,213, Apr. 29, 1974, abandoned. This application Jun. 27, 1977, Ser. No. 810,143 U.S. C. 29-580 Int. Cl. ${ }^{2}$ B015 $1 / 1 / 00$

6 Claims


1. The method of fabricating a composite of semiconducto lements on a supporting substrate comprising:
forming a wafer of semiconductor material;
at least partially forming semiconductor elements upon one surface of said wafer as at least one epitaxial layer of
semiconductor material; forming pedestals by etching partially through said at least

2. A method of making a light emitting diode array comprising the steps of:
sputtering aluminum nitride onto a sapphire substrate,
placing said sapphire substrate in contact with a source
material of aluminum nitride in a gaseous environment of heating said sapphire substra
$d$ said source material to a depositing said source material onto said sapphire substrate to a predetermined thickness to form a layered surface, alloying said layered surface in a predetermined configuration.

## 4,095,332

METHOD OF MAKING HIGH EFFICIENCY INDUCTION MOTOR WITH MULTI-CAGE CIRCUIT ROTOR Clovis E. Linkous, Fort Wayne, Ind., assignor to General Elec
tric Company, Fort Wayne, Ind, tric Company, Fort Wayne, Ind.

This application Oct. 4. 1976, Ser, Pat. No. 3,987,324.
This. U.S. Cl. 29-598

Int. Cl. ${ }^{2}$ H02K $15 / 12$

1. A. method 5 Claims 1. A method of making an induction motor having a mag
netic stator core assembly with winding tirns. predetermined number $\mathbf{N}$ of instantaneous fundamental mag
netic poles during operation and a rotor constructed so that a respective opposite rotary sense so that a non-interrupted selected space harmonic of a given number does not couple
therewith during operation, the method comprising stacking ogether in predetermined aligned relation of plurality of lami nations each having conductor accommodating opening are aligned and thereby establishing predetermined slot pat are aligned and thereby establishing predetermined siot pat-
terns and defining axially extending cage slot sets with adjacent ones of the axially extending slots of each such set spaced apart a fraction of a fundamental pole pitch with the fraction being equal to two divided by the given number of the space
harmonic to be decoupled; casting conductors in the axially

extending cage slots and establishing a plurality of cage sets of conductors with adjacent conductors of each such cage set paced apart a raual to two divided by the given number of the space harmonic to be decoupled and thus forming a cast rotor assembly of laminations and the plurality of cage sets of conductors, and processing at least part of the cast assembly to ensure sums to substantially prevent subsequent rotor coupling with the selected space harmonic; and thereafter assembling the cast rotor assembly with the magnetic stator core assembly having windings thereon for estabishing
number N of fundamental magnetic poles.
ansition from the inner coil to the outer coil occurs at the slot ransition
base.

4,095,334
PROCESS OF ASSEMBLING COMPONENTS OF Masataka Uchida, Tokyo, Japan, assignor to Kabushiki Kaisha Daini Seikosh Jopan Claims priority, anplication Japer. No. 263,597 U.S. CI. 29-627 ${ }^{\text {Int. }}{ }^{2}{ }^{2}$ G04C $3 / 00$; H05K $5 / 00$ 4 Claims

$$
\begin{aligned}
& \text { METHOD OF INTRODUCING THE COILS OF A } \\
& \text { 4,095,33 } \\
& \text { SUPERCONDUCTIVE EXCTTER WINDING INTO THE } \\
& \text { SLOTS OF A TURBOGENERATOR ROTOR }
\end{aligned}
$$ Heinrich Kuiter, Wattenscheid, and Erich Weghaupt, Milibeim,

both of Germany, assignors to Kraftwerk Union Aktiengesellchaft, Mülheim (Ruhr), Germany
Claims priority, application Germany, Feb. 12, 1976, 2605640 U.S. Cl. 29-598 Int. C. ${ }^{2}$ H02K 15/09 4 Claims


1. Method of introducing the coils of a superconductive exciter winding into slots formed in a winding support member
of a turbogenerator rotor, the slots having a radially extending cross section with the base thereof disposed at the radially inward end thereof, which comprises winding first an inner
coil and then an outer coil of a pair of concentric coils forming respective parts of a double coil into two of the slots spaced from one another in accordance with the respective width of the coil, the inner and the outer coils in the respective slots
being continuously wound beginning at the slot base and in

2. In a process of making an electronic watch, the combinapro steps comprising:
providing a substrate of insulating material with at least one through hole,
providing a conductive circuit on at least one face of said substrate to form a circuit board,
mounting an int
circuit board,
circuit board,
withily connecting the integrated circuit of said chip with the circuit of said circuit board,
covering said chip and its connection to said circuit board
separately forming two plates of synthetic resin material, sandwiching said circuit board between said plates and connecting said plates and circun board through said through hole to form a unitary assembly.

## 4,095,335 <br> AUTOMATIC TUBE PULLER

 Yves Albert Robert Lassarat, Sainte Adresse, Yees Albert Robert Lassarat, Sainte Adresse, Fratedto Trouvay \& Cauvin, Le Havre, France
Filed Jan. 12, 1927, Ser. . No. 758,804 Filed Jan. 12, 1977, Ser. No. 7
U.S. C. 29-726


1. Apparatus comprising a cylinder, a pair of pistons ing an axial passageway extending through said cylinder and said pistons for the accommodation of an elongate member to which an axial force is to be applied, jaw means carried by said cylinder adapted to close and grip said member and open and elease said member, means to move said pistons apart, means
the other to close said jaw means into gripping engagement a blade folded thereon for movement from a folded position to with said member, a fixed reaction member, and means respon- an extended position, said blade having a cutting and a non-cut
sive to the movement of the other of said pistons away from ting edge, said knife actuator comprising said one piston to thrust against said reaction member and
thereby apply an axial force to said elongate member through the medium of said jaw means.

COMB MEA 4,095,336
COMB MEANS FOR CONNECTING STATION Mining and Manufacturing Company, St. Psour to Minnesota Filed Sep. 6, 1977, Ser. No. 830,852
U.S. Cl. 29-749


1. In an apparatus fo
wire pairs comprising:
a base having a longitudinal axis,
connector receiving station on said base having a supply side and a product side and comprising a receptacle for a connector,
station with respect to said base and
arm means rotatable
horizontal position to a position immediately above said connector receiving station, said arm means comprising anvil means positioned to contact a connector in said receptacle of said connector receiving station when said connector is covered and said connector receiving station is elevated, the improvement consisting of comb means
mounted on the supply side of said connector receiving station on the supply staion pair of resilient, spring attaching plates attached along a common line which is positioned substantially co-exten
sively with and for attachment to the non-cutting edge o the blade, actuating means on said attaching plates com prising a first member extending upwardly on one side of said knife blade and said first member then bending out wardly substantially perpendicular to th knife blade pro viding a flat finger plate for operating said blade by push-
ing said plate with the thumb while holding said knife in the same hand as the thumb, said attaching plates being mounted by being manually urged apart against spring action in order to position same over said knife blade whereupon after release said plates spring tightly into
place thereby holding said plates firmpiy in place thereby holding said plates firmly in place on said
blade, and said plates being manually slidable on said blade to adjust same. $\qquad$
4,095,338
LAWN TRIMMER EQUIPPED WITH FLEXIBLE LINE CUTTING EDGES Hobara Naohiko; Hori Katsumi, and Sugimoto Sadanobu, all of
Okayama, Japan, assignors to Kasz Machinery Co., Ldd., Okayama, Japan Fun. 27, 1977, Ser. No. 810,185 Claims priority, application Japan, Jun. 26, 1976, $51-84347[\mathrm{U}]$


2. A lawn trimmer provided with flexible line cutting edges
a dish-shaped bobbin housing having an open top end; a rotary shaft provided in said housing;
a bobbin rotatably provided on said sha
tom flange and having top flange closing having a botend of said housing; a flexible line wound on said bobbin;
at least one finger grip provided in said top flange such that said bobbin may be rotated manually independently of said housing;
of said housing; and extension hole provided in a bottom a guide plate coupled to said housing.

Rose Turner, 470 W. 24 EGG St., London Ter. Apts., New York
N.Y. $10011{ }^{\text {Filed Feb. 17, }} 1977$, Ser. No. 769,665 Int. Cl. ${ }^{2}$ B26B $3 / 00$
U.S. C. $30-279 \mathrm{R}$

1. An improved egg slicer comprising a 7 Claims upper member pivotally connected to the lower member, a upper member pivotally connected to the lower member and a
cutter means slideably removably mounted in the lower member, said cutter means including a plurality of elongated blades disposed in spaced apart parallel relationship pivotably secured
to at least a pair of elongated bars disposed in spaced apart relationship, one of said pair of said bars being linearly shiftable

elative to the other said pair of bars when said cutting means is disposed mounted in said lower member

APPARATUS FOR TRIMMING OVERLAPPING EDGES Ronald Kingsley, Fyler Rd., Chittenango, N.Y. 13037

$$
\begin{aligned}
& \text { Filed Jan. 7, } 1971 \text {, Ser. No. } 757,770 \\
& \text { Int. Cl. }{ }^{2} \text { B26B } 27 / 00 \text { B25F } 1 / 04
\end{aligned}
$$

Int. Cl. ${ }^{2}$ B26B 27/00; B25F $1 / 04$
U.S. C. $30-287$

3 Claims


A wall paper trimmer comprising
(a) a rectangular base having flat top and bottom and parallel sides,
(b) a spirit level mounted on said base,
(c) a track secured to one of the long sides of said base, said
track being of trough shaped configuration of rectangula
cross section having a bottom and upwardly extending
sides,
(d) a slide member in sliding engagement with said track,
(e) a knife holder pivotally mounted on said slide member by
a centrally located pivot shaft,
a centrally located pivot shaft, lined pair of oppositely positioned linerally aligned cutting blades mounted on said knife holder.

## $\stackrel{4,095,341}{ }$ CARPET TRIMMER

Millard Crain, Pleasanton, Calif., assignor to Crain Cutter Com Millard Crain, Pleasanton, Calif, assignor to Crain Cutter Com pany, Inc., Santa Clara, Calif.

$$
\begin{aligned}
& \text { santa Cira, cant. } \\
& \text { Filed Oct. 25, 1977, Ser. No. 844,64 } \\
& \text { Int. C.2. }{ }^{2} \text { B26B } 29 / 00
\end{aligned}
$$

U.S. Cl. 30-287 $\mathrm{Int}$. Cl. ${ }^{2}$ B26B $29 / 0$

9 Claims

1. A carpet trimmer comprising:
(a) a base plate, said base plate being relatively flat and a) a base plate, said base plate being relatively flat and
comprising a wall means for travelling over a carpet to be trimmed said wall means being formed with a working edge and at least one slot directed at right angles to said working edge;
(b) a handle mounted on said base plate for moving said base plate along a path extending in the direction of said work
ing edge;
(c) a relatively flat member underlying said base plate and movable relative to said base plate;
(d) at least one upstanding post fixed to said member and projecting through said slot formed in said base plate; (e) a blade holder comprising a base and a wall guide depending from said base, said base or ser with an ope
g to receive said upstanding post, said depending wall guide of said blade holder being spaced from said working
dge of said base plate to define a carpet entry space for ceiving ang plate to define a carpet en the moveent of said member relative to said base plate moves said upstanding post therewith within said slot for said upelative to said base plate for adjusting the space between

said working edge of said base plate and said wall guide of said blade holder to accommodate the width of a carpet (f) at least one blade mounted on said base of said blat holder and projecting into said carpet entry space for trimming a carpet; and
(g) means on said posts to releasably lock said blade holder and said member in an adjusted position relative to said base plate.

RADIO NAVIGATION AID
Donald E. Oertli, Rte. 2, Box 2146, Hamilton, Mont. 59840
Filed Jan. 10, 1977, Ser. No. 757,976
U.S. C. 33-1 SD

Claims


1. In a radio navigation aid
first and secondary primary elongate arms movably connected to one another about a first axis for independent pivotal motion of the respective arms, each primary elonfrom said first axis;
a first compass rose rotatably mounted to said first and second primary elongate arms about said first axis;
second compass rose rotatably mounted to said first pri-
mary elongate arm about a second axis that is parallel to
and spaced from said first axis and which is located along the longitudinal axis of said first primary elongate arm; a third compass rose rotatably mounted to said second pri-
mary elongate arm about a third axis that is parallel to and spaced from said first axis and which is located along the longitudinal axis of the second primary elongate arm;
means for permitting relative longitudinal movement be tween the first compass rose and the second compass rose long the longitudina axis of the first primary elongate
means fo
tween the filting relative longitudinal movement beween the first compass rose and the third compass rose arm;
arm;
first secondary elongate arm pivotally mounted about said
first axis for motion independent of said first compass rose and said primary elongate arms;
a second secondary elongate arm pivotally mounted about said second axis for motion independent of said second
compass rose and said first primary elongate arm compass rose and said first primary elongate arm;
and a third secondary elongate arm pivotally mounted
said third axis for motion independent of said third compass rose and said second primary elongate arm;
each secondary arm having a pointer thereon overlapping the compass rose centered on the axis about which it is mounted and capable of visually indicating a heading on the compass rose;
said secondary elongate arms each extending to a common side of the first and second primary elongate arms, and said first compass rose being intermediate the second and third compass roses;
and means for selectively fixing the positions of said first, second and third compass roses and said first and second
primary elongate arms relative to one another while permitting pivotal movement of the secondary elongate arms about the respective axes about which they are mounted.

BUILDING 4,095,343
BUILDING LAYOUT TEMPLATES J. C. McPhail, 8530 W. Pinetta Dr., Richmond, Va. 23235 Filed Apr. 20, 1977, Ser. No. 789,31
Int. Cl. ${ }^{2}$ E04G 21/18
U.S. CI. 33-1 LE

10 Claims


1. A building layout template for securing corner locations and laying wall and footing lines, the template comprising: first strip means defining a straight edge of sufficient length
to enable visual alignment of a first line parallel to said first strip means with reasonable accuracy
ceond strip means defining a straight edze of suffer length to enable visual alignment of a second line parallel to said second strip means with reasonable accuracy; said first strip means being affixed to said second strip means at a predetermined angle of intersection so as to define a
corner location: corner location;
third strip means attached to said first strip means at a point
spaced from said corner location by a distance at least as great as the distance desired between said footing lines and
having a plurality of end footing line locating means which lie in a line perpendicular to said first strip means; said third strips means including an end wall line locating
means situated at the intersection of said first and third strip means;
fourth strip means attached to said second strip means at a point spaced from said corner location by a distance at least as great as the desired distance between said footing lines and having a plurality of end footing line locating means;
said fourth strip means including an end wall line locating means situated at the intersection of said second and fourth strip means and,
said first, second, third and fourth strip means being in the same plane.

SCRIBE TOOL AND MOUNT THEREFOR
SCRIBE TOOL AND MOUNT THEREFOR
W. Loomis, 2125 Palmer Dr., St. Helena, Calif. 94574 Loomis, Aug. 24, 1976, Ser. No. ${ }^{\text {F17 }}$ (17,410
Int. Cl. ${ }^{2}$ B43L $13 / 00$
U.S. Cl. 33-18 R


1. A mount for a scribing tool of the type having a shank provided at one end with a cylindrical cross bar and at the prising: an arm adapted to be movable in a predetermined cribing direction relative to an article to be scribed; and a tool older on the arm for movement therewith relative to said article, said tool holder having means for positioning the shank
of the tool and inclined surface means for engaging the cross of the tool and inclined surface means for engaging the cross
bar of the tool and orienting the same and thereby the scribe edge of the diamond head relative to said scribe direction.

STRAIGHT EDGE ASSEMBLY Harris L. Smith, 6109 Stratford Ct., Huntsivile, Ala, 35806 Filed Dec. 27, 1977, Ser. No. 864,454 Int. C1. ${ }^{2}$ B43L $13 / 02$ 3 Claims


1. A straight edge assembly for an artist's stretched canvas,
members supporting the back side of a sheet of canvas wherein each frame member has a discrete front-to-back thickness, and said assembly comprising: an elongated flat surfaced rod having a straight edge and
longitudinally extending openings in end regions of the longitudinally extending opening
rod normal to said straight edge;
first and second L-shaped blocks, each having perpendicular meeting inside surfaces which engage inside and back sides of a portion of said rectangularly cross sectioned frame, and having an end region which
beyond the side of said frame; and
first and second clamping blocks having a pair of plana opposite surfaces separated by a thickness dimensio which is greater than said discrete front-to-back thickness of said frame member, and each including:
a slot in one of said surfaces of said clamping block and a connector held by an interior region of said clampin along said slot,
position locking means for coupling said connector hrough said elongated opening in said rod and lockin said clamping block to said rod, and
means for adjustably clamping a said end region of said
L-shaped block to said clamping blocks with said tion of frame member clamped between an L -shaped block and a said clamping block,
whereby said rod is locked at a spaced distance in front of said stretched canvas and at selected positions which are adjustably movable by said position locking means.

PIPEFITTING SQUARE
Huey Cox, 3145 William Tell St., Slidell, La. 70458
U.S. C. ${ }^{33-113}$
same square heel from where the distance DP is measured, said square further comprising
plurality of markings disposed on each of the other edges of the square, each of said markings having numeral indicia associated size, ventional pipe size,
said tongue back inside edge and said body back inside edge
having markings disposed thereon spaced from said inside heel a distance equal to the actual outside radius for the indicated conventional particular pipe numeral,
said tongue face outside edge having a line with the indicia markings being provided spaced along said tongue face outside edge a distance equal to the actual outside radius for the indicated conventional particular pipe numeral from said "Outside Center" line,
said tongue back outside edge and said body back outside edge each having markings disposed therealong spaced a
distance 1.5 PS from said outside heel wherein PS is the pipe size numeral indicia corresponding to each marking, said tongue face outside edge having a reference line with indicia "O disposed posed the
indicia,
said body face inside edge having markings spaced a distance from a reference therealong according to the formula IRP $\times \sin \beta$, wherein IRP is the actual inside radius for a pipe size numeral corresponding to the marking, and
wherein $\beta$ is the angle formed by division of a circumference into a number of divisions $q$, so that $\beta=360^{\circ} / q$, and said body face outside edge having at least one reference line thereon with indicia "Outside Center", and having markings spaced a distance from said reference line therealong the actual outside radius for a pipe size numeral corresponding to the marking.

## SIGHTING IN APPARATUS FOR RIFLE MOUNTED

 TELESCOPE GUNSIGHTSWalter J. Steffan, 17838 SE. Lincoln St., Portland, Oreg. 97233 Continuation-in-part of Ser. No. 613,891, Sep. 16, 1975,
 U.S. Cl. 33-234


1. Sighting in apparatus for rifle mounted telescope gunights comprising
(a) a sighting gauge having top and front edges,
(b) rod-like support means having one end portion secured to said sighting gauge and arranged at its other end to be sale (c) said gauge being counterweighted at its lower portion to form a pendulus support for the gauge on the suppor means and hold it vertical when the
supported in the muzzle end of a rife
(d) a sighting target mounted on the front edge of said gauge having intersecting vertical and horizontal reference lines to be used in sighting in the telescope gunsight,
(e) lens means arranged to focus the gunsight to the sighting target when the latter is supported on the muzzle end of the barrel,
(f) a holder having a bore extending from front to rear thereof,
(g) an insert at the front of said holder supporting said len means in said holder
(h) a plurality of chuck-type jaws on said holder having radial moverment for engaging a gunsight and holding said
hold to sight in a rifle by means of said sighting gauge,
(i) and a manually operated rotatable drive member having a spiral groove in which said teeth are engaged and ar-
ranged when rotated to move said jaws radially in symranged when rotated to move said jaws radially in sym-
metrical movement for mounting said holder precisely on a gunsight from one time to the next.

## 4,095,348 digital Compass

Melvin G. Kramer, Riverton, Wyo., assignor to The Brunton Company, Riverton, Wyo.
S. Cl. 33-363 K Int. Cl. ${ }^{2}$ G01C $17 / 26$
16 Claims


1. In a digital compass, encoding means for converting compass readings into a numerical display corresponding to
a rotatable disc including means orienting a radius of said
dist
disc in alignment with the earth's magnetic field, said disc
having a reference position index and a digit code strip having a reference position index and a digit code strip
divided into equally spaced increments representing degrees of angular displacement away from said reference position index,
a sensing unit operative to generate a combination of signals and including a reference position sensor operative to generate a signal in response to alignment of said reference
position sensor with resper
index so as to define a reserect to said reference position of signals representing the direction and anid combination of signals representing the direction and number of incre--
ments of movement of said code strip away from said reference position,
decoding means including counting means operative in response to the combination of signals generated by said sensor unit to count up or down accordance with the
digit code strip, and
reference position control means responsive to receipt of a
reference position control means responsive to receipt of a
reference position signal to clear said counting means.
4,095,349
HEAT EXCHANGER FOR CLOTHES DRYER
Charles L. Parker, 5499 Elmerest Ln., Cincinnati, Ohio 45242 Filed Oct. 8, 1977, Ser. No. 730,843
U.S. Cl. $34-86 \quad 20$ Claims 1. A heat exchanger which utilizes lint and moisture laden hot exhaust gaseous media from a clothes dryer to preheat a the heating unit of a dryer, the heat exchanger comprising: a housing having a first set of inlet and outlet ports for hot
exhaust gaseous media and a second set of inlet and outlet exhaust gaseous media and a second set of inlet and outlet ports for the ambient air, wherein the ports of the first set
are disposed at substantial right angles with respect to the ports of the second set;
a plurality of flat, rectangular plates within the housing
disposed in facially opposed spaced relationship, eac plate having spacer means on a pair of opposite side edge thereof, said spacer means covering essentially the entire having an abutting means thereon engaging the surface of an adjacent plate for essentially the entire extent of that adjacent plate to define a plurality of first flow channel between said spacer means, spacer means on said adjacen plate abutting a further adjacent plate to form a plurality of second flow channels, said adjacent plates being orispacer means are at essentially right angles with said

adjacent plate spacer means and said second flow channel are oriented at essentially right angles with regard to said first flow channels, said first flow channels being in fluid said second flow channels being in fluid communication with the said second set of inlet and outlet ports,
hot exhaust gaseous media passing through the first passage ways being completely isolated from air passing through the second passageways;
late mounting means on said housing for releasably receiv ing each of said platess and
individual plates into and from saidserting and removing

4,095,350
ducting construction for engineering DESIGN MODELS
Herbert A. Wanderman, Pasadena, Calif., assignor to Engineer ing Model Associates, Inc., Monterey Park, Calif. Int. Cl. ${ }^{2}$ G09B $25 / 04$ U.S. CI. 35-16 Int. Cl. ${ }^{\text {G }}$ G09B 25/04 9 Claims


1. A method of fabricating a detailed, three dimensional engineering design model of a large and complex installation such as a chemical processing plant or a power generating station, including arranging a plurality of rectangular tables positioning three-dimensional plastic represention tor the model; ing, beams, piping valves, plastic representations of duct equipment on said base in a manner consistent with the posi ions of corresponding components of the installation; connect ing said plastic representations to each other by solvent welding; and cutting said model vertically into rectangular section
suitable for shipping, each section being supported by a differ ent table, wherein the improvement comprises:
providing an assortment of ducting fabrication segments,
each of said segments being a flat, solid member of rectan gular outline having longitudinal, step-shaped, nesting ns extending along its two longest paralle edges, said assortment in
ors and dimensions; and
connecting segments selected from said assortment by so vent welding in groups of four so that said nesting config
urations interlock to form representations of said ducting all members of each of said groups being the same color
tively connected to said base member for movement toward and away from said member along a predetermined path of travel, force-imparting means operatively associated with said members for continuously urging said moveable member away
from said base member during its movement along said path of travel, means operatively associated with said members and defining opposite ends of said path of travel of said moveable member toward and away from base member, releasable locking means for engaging said moveable member at a position along said path of travel which is closely adjacent the end of said path of travel toward said base member to prevent its

NAVIGATIONAL SIMULATOR AND TEACHING device
Adrian S. Eisele, R.R. I, Germantown, III. 62245 Filed Oct. 26, 1976, Ser. No. 735,629
U.S. CI. 35-10.2

10 Claims


1. A navigation simulator and training aid for visually illustrating a navigational instrument reading as an angular relation
between a vessel and a navigational aid utilized suitable for self-instruction by a student, comprising in combination
a horizontal map incluting simulated navigational aids
a rigid vertical navigational peg having an upper and lowe lower an extensible member having means to attach to said map means at the upper end of said peg for securing one end of said extensible member
a simulated
member means for indicating the angle between the directional axis whereby upon moving the vessel with relation to the navigational aid the radial relationship and vector to the naviga
other.

4,095,352
CHIROPRACCIC TRAINING DEVICE
Michael U. Kale, Rte. 6, Spartanbure, S.C. 29303 Kale, Rte. 6, Spartanburg, S.C. 29303 Filed Aug. 27, 1976, Ser. No. 718,1
U.S. Cl.

1. An improved device for teaching proper application of force to the human body in chiropractic manipulation of the

movement away from said base member, and a fracturable or deformable object supportably received on said moveable member for engagement by the hand for application of force thereto to move said moveable member, said object having a force of fracture or deformation under low velocity which is force of fracture or deformation under high velocity which is greater than the force of said force-imparting means, whereby application of force to said object under high velocity is transmitted therethrough to said moveable member to move said member toward sais base metmber and into engagement
said locking means deformation or fracture of said object.

4,095,353
MASSAGE SAND
Peter Andrew Foldes, Conyngham, Pa., assignor to Oggs ManuPacturing Corp., Hazleton, Pa.
Filed May 5, 1977, Filed May 5, 1977, Ser. No. 794,220 U.S. CI. $36-11.5$


A sandal for human wear comprising
a. a sole portion of flexible material;
a. a sole portion of flexible material;
b. an inner sole portion integral with the sole portion, wherein the inner sole is formed of a plurality of flexible points cone-shaped having a uniform height in the range 0.20 inches, a base diameter in the range of 0.09 inches, and a pointed apex, said points extending upwardly from square inch; and
c. a top retaining strap portion integral with the sole portion; wherein the foot of a user when inserted into the sandal beeath the strap portion and into contact with the points of the
$\qquad$ BOOT WITH PIV, 0950 ,356
David T. Robran, and Charles S. French, both of David I. Robran, and Charles S. French, both of
assignors to Scott USA, Inc., Sun Valley, Id. Filed Oct. 15, 1976, Ser. No. 732,906 Int. Cl. ${ }^{2}$ A43B 5/04, 21/00, U.S. Cl. ${ }^{36-121}$

## Ketchum, Id.

 23 ClainCONNECTOR FOR A REMOVABLE SKI BOOT
FASTENING LOOP
Gluseppe Annovi, Montebelluna, Italy, assignor to Calzaturif
icio Giuseppe Garbuio S.A.S., Montebelluna, Italy
Claims priority, application Italy, Dec. 29, 1975, 62072/75[U] U.S. Cl. $36-50$ Int. Cl. ${ }^{2}$ A43B 11/00; A44B 21/00 4 Claims


1. In a ski boot, a vamp section, a connector for a boot fastening loop molded integrally with the vamp section and rising from the exterior face of the vamp section, said connector provided in its outer face with an arcuate groove extending from side-to-side of the connector, and said groove having a
restricted entrance slot through which a boot fastening loop may be engaged in the arcuate groove by being snapped through the restricted entrance slot, the entrance slot opening
through the outer face of said connector. through the outer face of said connector.

SKI BOOT WITH AERATED PADDING OF DIFFERING DEGREES OF SOFTNESS
Giuseppe Annovi, Montebelluna, Italy, assignor to Calzaturificio Giuseppe Gilerbuio S.A.S.,. Montebellinas, Ittaly
Filed Dec. 22, 1976, Ser. No. 753,374
Fired Dec. 22, 1976, Ser. No. 153,374
Claims priority, application Italy, Dec. 29, 1975, 62068/75[U] U.S.C. $36-118 \mathrm{Int} .\mathrm{Cl} .^{2}$ A43B 5/04, 19/00


1. A ventilating ski boot with padding having differing degrees of softness at different areas of the foot of the wearer of the boot comprising an outer substantially rigid boot upper,
and a soft inshoe housed within the upper and adapted to receive a wearer's foot, a plurality of spaced projections on at least one surface of the soft inshoe between which air may circulate, said projections adapted to have their tips contact an opposing surface within the ski boot, said projections varying
in their distribution over the surface of the inshoe to thereby in their distribution over the surface of the inshoe to thereby
provide differing degrees of softness of the inshoe at certain areas thereof, said projections being most densely distributed adjacent to the malleoli, and said projections having a grad
ally less dense distribution toward the toe of the boot.

TREE DIGGER


1. A boot comprising:
a lower vamp shell having a foot receiving opening defined by an outer wall which includes a lower pocket,
an upper shell having an outer wall which includes an upper
pocket facing the lower pocket and forming therewith an pocket facing the lower pocket and forming therewith an
interior cavity enclosed at least by overlapping outer walls of the upper and lower pockets,
pivot means for pivotally interconnecting the upper shell to
the lower shell to allow forward and rearward the lower shell to allow forward and rearward motion of the shells and resulting sliding movement between the
overlapped outer walls of the upper and lower pockets overlap
and
a resilient body mounted within the interior cavity and compressed during sliding motion between the overlapped pockets to control the flex characteristics between the upper and lower shells.

4,095,357
Wendell E. Daniel, Topeka, Kans., assignor to International Harvester Company, Chicago, III. Continuation of Ser. No. 652,006, Jan. 26, 1976, abandoned, Continuation of Ser. No. 652,006 , Jan. 26, 1976, abandoned,
which is a continuation of Ser. No. 313,215, Dec. 8,1975 ,
abandoned, abandoned, which is a continuation of Ser. No. 94,890 , Dee. 3 ,
1970, abandoned. This appllication Apr. 28, 1977, Ser. No.

1 Claim


1. A plant digging machine having forward and rearward ends comprising:
a frame including
tending supports; a pair of laterally sp
pair orts; supports;
a pair of engines, each engine affixed to said frame and positioned above one of said pair of track assemblies;
an independent, variable speed drive train extending be tween each engine and its underlying track assembly; each drive train including:
hydrostatic transmission having a variable volume pump driven by the engine and a hydraulic motor driven by the pump;
drive sproa
a driven sprocket drivingly the motor; assemblies; and
a driven chain extending between and drivingly connecting said drive and driven sprockets;
said supports, said engines, said drivent trains and said track assemblies defining an open space therebetween to permit the plants to be straddled thereby as the machine is driven forward
tion of the frame
pair of lif rame; means and extending downward on each side bell crank
space;
space; blane connected to the lift arms and positioned between said track assemblies and centrally of their length;
brace means extending between said blade and frame; hertically adjusting said blade; and
an operator's station including a seat located on said frame above said elevated portion and toward the rear of the machine to permit ready observation of said blade
plants to be dug thereby within said open space. plants to be dug thereby within said open space.

APPARATUS FOR HIGH-SPEED TRENCH DIGGING APPARATUS FOR HIGH-SPEED TRE
outside said shroud, said shroud side walls each terminating above the conveyor providing an opening above the
belt to pass soil thereon out of the shroud, said end wall having an auxiliary soil deflecting plate connecting the end wall to the upper portion of the conveyor to deflect falling soil onto the conveyor,
a pair of ground engaging upright plates, one carried by the shroud side plates on either side of the boom and trench
and extending from the conveyor rearwardly beside the and extending from the conveyor rearwardly beside the
drive chain cutters, each plate having an inner surface positioned beside the chain cutter boom for deflection of trencher dug soil back into the trench as the trencher advances,
rubberized fabric flexible flap having an upper end secured to the upper portion of the lateral conveyor and a trailing
body extending downwardly for dragging upon the ground with a rear edge closely adjacent said chain cutters, said flap having lateral edges movably engaging said upright plates to enclose the space immediately above and in advance of the chain cutters up to said lateral conveyor,
whereby the trench is provided with a temporary extension above ground level by building up earth upon said flap between said upright plates permitting removed earth to be elevated to the conveyor for lateral movement away from the trench.

## TAPE HOLDING MECHANISM FOR DISPLAY DEVICE Charles Edward Trame, Mequon, Wis., assignor to Everbrite Electric Signs, Inc., South Milwaukee, Wis. <br>  <br> 4 Claims

Thomas G. Courson, Mansfield; William L. Schlueter, Rantoul, and Thomas T. Kelly, Champaign, all of III., assignors to Central Illinois Tile Co., Champaign, ill.

Filed Feb. 4, 1977, Ser. No. 765,808
Int. Cl. ${ }^{2}$ E02F $5 / 06$
U.S. Cl. 37-90 2 Claims


1. In a high-speed digging chain trencher, apparatus fo renching beside paved highway slab while leaving a clean
trench for reception of drainage tubing overlaid with comrench for reception of drainage tubing over
pacted sand fill free of loose soil, comprising:
a boom on the trencher having means carrying a drive chain with cutters for high speed cutting and opening of an
earthen trench, said chain cutters piercing the soil and propelling loosened soil upwardly,
prepe metal shrouds having side walls and an end wall join ing the side walls enclosing said boom and chain portion above ground level when said boom and chain is in its dug trench, said side and end walls providing an enlarged
enclosed space upwardly and forwardly of the cutting portion of the chain to catch propelled earth from the cutting chain,
a lateral conveyor mounted in said shrouds at the lower end of said end wall above ground level and forward of the chain cutters relative to advancing direction and having a
driven bett extending laterally to the side of said boom

2. In a display device
tape bearing indicia and having front and rear sides, said tape having the property of tending $t o$ form coils at opposite ends when unrestrained, said tape having aperture means near its opposite ends, member having a rigid front wall providing a surface of intermediate its ends and to present the front of said tape or observation of said indicia and for enabling said tape to be pressed against said rigid surface and slid to translate said hape.
site ends of said rigid front surface length, said pin means site ensting generally rearwardly away from said rigid front surface and having tips, a portion of said tape beond each end of the lenghth or said rigid surface being disposed for sliding over said tips such that the end por-
tions of said tape may form coils, respectively, in the space between said first and second pin means, each of said first and second pin means comprising a pair of pins which are spaced apart from each other in the crosswise direction of said tape and said respective aperrure means are a pair of apertures which are spaced apart correspondingly with aid pair of pins,
解slation of said tape in one direction until one of its end portions is substantially uncoiled resulting in said aperture
means near said one end slipping onto said pin means to
prohibit positively further translation of the tape in said plurality of frame members connected together at corner one direction and translation of said tape oppositely of points, said frame having front, back and outer peripheral
said one direction resulting in said aperture means sliping said one direction resulting in said aperture means slipping surfaces, one of said frame members defining a separablipheral
off of said pin means to enable said one end portion to
recoil.
$\stackrel{4,095,360}{ }$
James M. Dinan, Irvington; Conrad Hade, Rye, both of N.Y., and Frank De Nigris, Parsippany, N.J., assignors to Dinaco,
Inc., New York, N.Y.
Inc., New York, N. $\begin{aligned} & \text { Filed Apr. }\end{aligned}$
Int. C ${ }^{2}$ CO9F $7 / 2260,895$
U.S. C. $40-603$

portion and the other of said frame members defining a holding frame portion, said holding frame portion having a slideway
for slidably receiving the edge portions of a flat member having a slideway entrance normally closed by said frame portion; said separable frame portion being separably connected to said holding frame portion by separable joints at least
$\stackrel{1}{=}$
one of which includes a releasable locking member releasably ocking said separable frame portion to said holding fram portion and being movable between locking and released posiions, said releasable locking member being located completely beneath said surfaces and normally being biased to said locking position in a direction generally inwardly of said frame relative in said outer peripheral surface; and, a limited access opening able locking member with a special tool to move same to said released position.
3. A display device comprising a rectangular transparent plastic envelope extending generally vertically between an
upper horizontal tublar arm and a lower horizontal tubular upper horizontal tublar arm and a lower horizontal tubular
arm, said envelope being formed by two overlying sheets of arm, said envelope being formed by two overlying sheets of
transparent flexible plastic, said sheets being sealed together transparent flexible plastic, said sheets being sealed together
along their top, bottom and one side margins, reversible closure means for the other side margin, said sheets also defining horizontal enclosed sleeves at the top and at the bottom of said envelope, in which said upper and said lower tubular arms
respectively are positioned, a necked out portion in the central portion of said upper sleeve to accommodate a flexing couportion of said upper sleeve to accommodate a flexing cou-
pling, said flexing coupling having a lower portion slidingly engaging said upper horizontal tubular arm in the longitudinal
central portion thereof, and an upper portion of said flexing central portion thereof, and an upper portion of said flexing
coupling slidingly engaging a horizontal tubular mounting frame, said upper and lower portions of said flexing coupling being connected by a central portion thereof which is flexible, means for securing said flexing coupling on said upper horizon-
tal tubular arm and said horizontal tubular mounting frame against movement thereon, and a pair of laterally spaced apart tension means extending between said lower horizontal tubular arm and a lower horizontal tubular mounting frame to nor--
mally hold said envelope in a vertical plane parallel to said mally hold said envelope in a vertical plane parallel to said
upper horizontal tubular arm, but permitting said lower horiupper horizontal tubular arm, but permitting said lower hori-
zontal tubular arm to turn $90^{\circ}$ with respect to said upper horizontal tubular arm.

DISPAY FRAME
Robert Louis Ledenican, 710 Hemlock Dr., Euclid, Ohio 44132 Filed Mar. 24, 1977, Ser. No. 780,794
U.S. Cl. $40-152$

Int. Cl. ${ }^{2}$ G09F $1 / 12$

POST CARD DISPLAYER FAST
board Glenn J. Potter, 1332 S. Hope St., Los Angeles, Calif. 90015 Flled Sep. 8, 1975, Ser. No. 611,359
Int. C1.2 B42F 13/00; A44B 21/00
U.S. Cl. $40-617$


1. In a card and bulletin displaying device comprising a small spring-loaded, finger and thumb operated clip having opposing
levers for nondestructively, non-intrusively, and releasably levers for nondestructively, non-intrusively, and releasably
holding a card by the middle of its upper margin, a suspending. length of chain fastened closely above by a fixation means to a supporting structure having a broad perpendicular surface and fastened below by a coupling means to one of the finger levers of said clip, said coupling means spacing the terminus of said
chain off said finger lever to a position midway betwen said chain off said finger lever to a position midway between said
inger levers, so that said card, suspended, is held closely 18 Claims against said perpendicular surface with either front or back
2. A display holder for cards, pictures, posters and the like displayed, and so it can be easily variously held in the hand and 1. A display holder for cards, pictures, posters and triane by a turned over for viewing and reading.

4,095,363
FALLING BREECH BLOCK ACTION FOR A SINGLE
falling breech block action
James Loren Riedl, 15124 Weststate, Westminster, Calif. 9268
Filed Jul. 26, 1976, Ser. No. 701,543
U.S. Cl. 42-23 Int. Cl.2 F41C $11 / 04$


1. An improvement in a falling block single shot action for a firearm comprising a receiver, a rack toothed breech block i the receiver vertically movable by a pinion toothed finge-
lever pivotable on a pin, the breech block containing firing pi lever pivotable on a pin, the breech block containing firing pin
and self-cocking hammer parts removable from the receiver an assembly; the finger lever being held closed by a ball plunger positioned to provide maximum closed holding power;
a trigger housing assembly comprising a trigger, safety, and sear contained in a trigger housing; the safety and trigger being fully adjustable; and the complete trigger housing asssembly
being removaly mounted in the reciver by a screw threaded being removably mounted in the receiver by a screw threaded into a threaded hole; the threaded hole being longitudinally
split with half of the hole in the receiver and half of the hole in the trigger housing.

## 4,095,364

FISHING ROD HOLDER FOR A FISHING TACKLE BOX
Verle Orval Prine, 33 Nightingale, Billings, Mont. 59101
Filed Jan. 28, 1977, Ser. No. 763,36
-21.2 Int. Cl. ${ }^{2}$ A01K $97 / 10$


1. A fishing rod holder comprising
(a) a base attached to a side of a fishing tackle box; and (b) an elongated tubular member, the one end of which is hingedly attached to the base, the middle portion of which and the remaining end of which is detachably a attached to and the remaining end of which is detachably attached to
the base.

## 4,095,365

Otis Eugene Ray, 6850-66th St., North, Pinellas Park, Fla.
33565
Filed Jan. 19, 1977, Ser. No. 760,710
U.S. Cl. 43-55
U.S. Cl. A container for live bait formed as a unit by blow mold

1. ing, said container having a conically tapered body which

Claims
$\qquad$
wide flat end wall and a towing eye atits end remote from said nd wall, a side wall closure for said container in the form of a substantially flat panel which is integrally hinged to the conongitudinal axis of the container and with the free end of the panel away from the integral hinge and disposed nearest said end wall, a pair of spaced projections on the container side wall on opposite sides of said closure panel, said container side manel and between the closure panel and said projactions, and

elastic band looped over said projections and anchored hereby and extending through said pair of apertures and de wall interior side of the closure panel chordwise of said re panel beung taut to resist inward swinging of the clopermit such inward swinging when bait is introduced into the ontainer and then returning when bait is ineloduced into the closed position, said closure panel when closed lying within an opening of said side wall which is inset from the peripheral surface of
side wall.

4,095,366
BLOCK PUZZLE TOY
John Kenneth Buck, and Linda Lee Buck, both of Rte. 3, Box 75, John Kenneth Buck, and
Baraboo, Wis. 53913 Filed Oct. 8, 1976, Ser. No. 730,794
Int. Cl. ${ }^{2}$ A63H 33/08; A63J 21/00
U.S. Cl. $46-1$ R


1. A block puzzle toy which comprises a first set of a plurality of half blocks and a second set of a plurality of half blocks,
the first set of half blocks consisting of at least three pairs of he first set of half blocks consisting of at least three pairs of two central pairs of half blocks and end half blocks, a snap fit securing the half blocks of the first set to the half blocks of the second set to provide each assembled block with a hollow cavity on the inside, hinge means joining the blocks together so
that the blocks may be articulated to accomplish various puzzle tricks consisting of single bands of material extending genrally centrally between and over and under the surface of the bocks with the ends of the bands disposed inside the hollow cavity of a respective block and a pair of horizontally spaced
ing between the blocks and the ends of the latter bands dising between the blocks and he ends of the latter bands displementiary pegs and serrated sockets disposed within the
cavities of assembled half blocks and the ends of each respeccavities of assembled half blocks and the ends of each respective band having a hole therein to fit over a peg in a respective
cavity and be held between the peg and serrated socket when the peg is forced home in the socket as the half blocks are snap fitted together to thereby conceal within the cavities in the blocks the holding means for the bands.

4,095,367
ARTICULATED ROBOT ASSEMBLY
Iwakichi Ogama, Kashiwa, Japan, assignor to Takara Co., Ltd.,
Iwakichi Ogawa, Kashiwa, Japan, assignor to
Tokyo, Japan
Filed Jun. 9, 1976, Ser. No. 694,161 U.S. CI. 46-105


1. A detachable robot toy assembly comprising
a hollow trunk member;
motor means mounted in the trunk member;
a plurality of output power coupling means operatively about the trunk member;
a detachable lower torso member capable of being removably attached to one of the power coupling means and
including a transmission means for receiving power from including a transmission means for receiving power from
the power coupling means and translating it into a locomotive power output; and
at least one support appendage removably attached to the lower torso member in one aligned position to provide a stationary support of the robot toy assembly regardless of
the activation of the lower torso transmission means, the support appendage further having means which, when
connected in another haigned position with the lower connected in another aligned position with the lower torso member power output, will provide locomotion to
the toy assembly whereby the hollow trunk member can the toy assembly wherely the hollow runk member can
be removed from the lower torso member and operated independently to provide power to accessory items ap-
pended to its output power coupling means and further pended to its output power coupling means and further
can be combined with the lower torso member and supcan be combined with the lower torso member and sup-
port appendage in a stationary mode of operation or with port appendage in a stationary mode of operation or winh
the lower torso member and said appendage means in a locomotion mode of operation.
2. In an articulated doll figure such as a robot toy having a simulated he
comprising:
comprising:
a simulated body trunk member having the configuration of a chest and back and appropriately capable of supporting the head, arm and leg appendages;
motor means for providing power operatively connected to 21 Claims
the body trunk member including an output power cou pling means on the back of the body trunk member; pivotal mo
ber, and
an endless
endless th pivotal mounting means and the output ane end to the pivotal mounting means and the output power coupling
means to drive the track of the drive assembly, the endless track drive assembly being rotatable about the pivotal mounting means to assume various drive configurations relative to the body trunk member.

TOY PRIME MOVER AND ACCESSORIES THEREFOR Shigeru Saito, No. 6-4, 2 -chome, Kuramae, Taito-ku, Tokyo
Japan Continuation-in-part of Ser. No. 608,539, Aug. 28, 1975, Pat. U.S. Cl. $46-104{ }^{\text {Int. Cl. }}{ }^{2}$ A63H $11 / 00,33 / 26 \quad 15$ Claims


1. A toy prime mover comprising a hollow housing having opposite sides, a front, a back, and a bottom; means including a spring windup mechanism mounted in said housing having otary output members at said sides, said front, and said bottom and a rotatable input member for storing up energy applied to
said input member and releasing such energy to said output members; a pair of ground-engaging drive wheels at said botom connected to the respective output member; means se cured to said mover, accessible from the exterior of said housing, whereby accessories can be attached to the mover and a shoulder mount at the upper region of each of said sides surrounding the respective output member and a chest moun at the upper region of said front at the respective output member.

INSTALLATION FOR CCLTTIVATING PLANT CULTURES
Berne), and Bernardo Raimann, Hegthundigen (Canton of Trimbach (Canton of Soleure), both of Switzerland Filed Mar. 21, 1977, Ser. No. 779,628 Claims priority, application Switzerland, Mar. 24, 1976 U.S. C1. 47-26 Int. Cl. ${ }^{2}$ A01G 13/00

1. An instal 9 Claims ing: $\quad$ An for cultivating plants and the like compris a cover device for protecting the ground at which the plants are grown from damaging radiation of the sun; said cover device comprising a number of pivotable, sub stantially cylindrical parabolic reflectors each having a focal line;
respective conduit provided along the focal line of each parabolic reflector for conveying a heat carrier;
 an adjustment mechanis
their lengthwise axis
their lengthwise axis;
circulation system for circulating the heat carrier;
a circulation system for circulating the heat carrier;
said circulation system encompassing a feed pump and said
conduits;
a control devich
control device for actuating said adjustment mechanism;
said control device being constucted such that when the sun is shining the reflectors are automatically positionall

OPERATING M,095,371
OPERATING MECHANISM FOR BOX CAR SLIDING Willis H . Knippel DOORS rated, Chicago, III.
Filed $A$ DORS Ill. Aug. 17, 1977, Ser. No. 825,346
U.S. Cl. 49-352

10 Clixims
adjusted in accordance with the position of the sun and simultaneously throw shade upon the ground and the sol energy taken-up by the reflectors is removed;
heat storage for the storage of the removed heat; aid control device having means controlling said; circula tion system in the absence of the sun's radiation such tha shat heat is radiated from the heat storage to the ground.

## 4,095,370

BAND.TYPE WINDOW REGULATOR FOR VEHICLES Anthony A. Muehling, 14583 Maddelein, Detroit, Mich. 48205 U.S. C1. 49-35 Int. CT. ${ }^{2}$ EOSF $11 / 48$

15 Claims


1. A vehicle window regulator for moving a vehicle windo between open and closed positions, the regulator comprising: upper and lower idler rollers mounted for rotation about respective axes that extend horizontally parallel to the window and to each other; a rotatable drive roller mounted verticaly
intermediate the upper and lower idler rollers about an axis perpendicular to a plane through the idler roller axes so as to be adaptable to be driven by a hand crank from within the vehicle on which the regulator is used; a band trained over the
idler rollers and having a cross section with a greater lateral extent than its thickness; said band including inboard and outboard reaches extending between the idler rollers and forming
a closed drive loop; said inboard reach of the band including a a closed drive loop; said inboard reach of the band including a
half twist such that the total lateral extent of the band engages half twist such that the total lateral extent of the band engages
the idler and drive rollers without stressing the band; and the idier and drive ronnecting the outboard reach of the band to the means for connectitg thed by the regulator such that manually

2. For a railway car having a side door opening and a sliding oor laterally movable from said opening to one side thereof, mechanisms, the improvement of a cable drive mechanism for opening and closing said door comprising;
a first drive pulley rotatably connected to said door,
a second guide pulley rotatably connected to said door adjacent to said first pulley,
a third ider pulley arrangement connected to said door for rotation above said first and second pulleys,
ley arrangement including a pair of circumfercable including means on one end for fixedly connecting a cabe including to said car on one side of said doo
said cable extending around one of said first grooves to said first and second pulleys and around the other of said first said cable including a second end extending from said third pulley arrangement and including second means fixedly connecting the same to said car on the other side of said conne
door.

4,095,372
PROTECTOR BAR
Ronald C. Rittner, 941 Hemlock St., Rochester, Mich. 48063 Filed Jan. 3, 1977, Ser. No. 756,127
U.S. CT. 49-460

8 Claims


1. A protector bar for a door of a building hinged along one vertical edge having a handle or other piece of hardware rotruding from the planar surface of the door comprising: point intermediate said hinged edge and said handle or
other piece of hardware and extending therefrom at an acute angle relative to said planar surface, and
a second part fastened to said planar surface of said door adjacent said handle or other piece of hardware and extending to said first part substantially normal to said planar surface a distance at least as great as the distance said door, so that objects striking said bar or said planar surface hinged edge are deflected away from said handle or other piece of hardware.

## MACHINE FOR PRODUCING SPHERICAL OBJECTS Eivind Christian Thobroe, Stroud, England, assignor to National

 Research Development Corporation, London, England Filed Jan. 29, 1.276, Ser. No.Int. Cl. ${ }^{2}$ B24B $11 / 06$ 24 Claims


1. A vertical plate machine for machining spherical objects between opposed generally vertical faces of at least one pair of opposed relatively rotatable working plates, having
a. at least one non-rotary plate carrier adapted to carry a first working plate,
b. a rotary plate carrier rotatable about an axis of rotation and having an end face adapted to carry a second working plate opposed to said first working plate, and having a
radially outward periphery, located radially outwardly from said axis of rotation,
c. means for driving said rotary plate carrier in rotation, said means including a rotatable driven member in engagement with said periphery of said rotary plate carrier to transmit
drive to the rotary plate carrier,
d. bearing means for providing
rotary plate carrier, and cooperating with said periphery of said rotary plate carrier to support said rotary plate carrier for rotation about said axis of rotation,
e. means for preventing access of ground-off particles to said bearing means and said rotatable driven member, said
means including a stationary housing substantially enclosing said bearing means and said rotatable drive member and substantially sealed to said periphery, and
f. pressure-applying means for causing said plates to apply pressure to objects being machined between the plates.

METHOD AND APPARATUS FOR IMPROVED TIRE UNIFORMITY GRINDING AND MEASURING John W. Ugo, Warren, Mich., assignor to Uniroyal, Inc., New Filed Jun. 29, 1977, Ser. No. 811,120 U.S. Cl. 51-165 R Int. Cl. ${ }^{2}$ B24B 49/16

8 Claims


1. A method of optimizing the uniformity of a tire compris ing the steps of:
(a) revolving said tire in contact with a load wheel in a firs direction;
(b) determining the radial composite force value and the lateral force value between said tire and said load wheel; value and said lateral composite force value: (d) determining a lateral thrust force reaction between said tire and said load wheel;
(e) grinding said tire until said radia
lies within predetermined limits;
(f) updating the values of said radia
monic, lateral composite, lateral hamposite, radial har and lateral (g) classifying said tire in accordance with said post-grinding values of the radial composite, radial har post-grinding values of the radial composite, radial ha
monic, lateral composite and lateral harmonic forces; (h) storing the value of the updated lateral thrust force valu i) revolving said tire in a second direction in contact with said load wheel;
(j) determining the radial composite, radial harmonic, lateral composite, lateral harmonic and lateral thrust force values as said tire rotates in said second direction;
(k) combining said lateral thrust force value determined and stored as said tire revolved in said first direction after
grinding with said lateral thrust force value determined as grinding with saic lateral thrust force value determined as
said tire revolved in said second direction to calculate the conicity of said tire; and
(1) classifying said tire in accordance with said conicity value and said radial composite, radial harmonic, lateral composite and lateral harmonic force values determined as said tire revolved in said second direction.

## SUPPORT ASSEMBLY 4

SUPPORT ASSEMBLY FOR A PORTABLE Elmer C. Klebe, Easley, and Edward N. Greene Pickens, both S.C., assignors to The Singer Company, New York, N.Y.

Filed Mar. 16, 1977, Ser. No. 777,998
U.S. Cl. $51-170 \mathrm{MT}$ I. C1. ${ }^{2}$ B24B Claims 1. A resilient support system for a portable sander having an (a) a platen havingaed in a housid back comprising: (a) a platen having a rigid back plate,
(b) a plurality of bosses having raised top surfaces, hollow interiors and open bottoms formed on the back plate, (c) an aperture formed on each of the
nication with the hollow interiors
d) a solid pad formed of
bottom of the back plate and enclosing the open bottoms of each of the bosses,
(e) a plurality of resilient posts having hollow interiors, extending between open tops and enclosed bottoms with central apertures therein to sit upon the top surface of the boss,

(f) a plurality of screws, one inserted into each of the posts to pass through the aperture and be threadedly received into
the aligned aperture of the boss whereby the screw exthe aligned aperture of the boss whereby the screw ex
tends into the hollow interior without contacting the pad ) the posts colnected to the housing at the upper (g) the posts connected to the housing at the
thereof to resiliently support the platen, and (h) the platen connected to be driven by the electric motor.

$$
4,095,376
$$

CLAMPING DEVICE FOR USE IN SHARPENING SHEARS AND THE LIKE
John H. Lotane, Morse Dr., Shelburne, Vt. 05432
Filed Oct. 29, 1976, Ser. No. 737,010
U.S. Cl. $51-218$ R

5 Claims


1. An improved freely movable and manipulable clampin device for use in sharpening shear blades and the like with a grinding wheel, which device comprises:
(b) a support member pivotally carried by the base member for free and unbiased pivotal movement with respec thereto, wherein the pivot point of the support member is
disposed rearwardly of the center of gravity thereof to disposed rearwardly of the center of gravity thereof
thereby provide a forward portion that is counterbalanced in a downward direction;
(c) a clamping means carried by the forward portion of th support member, which clamping means includes:
(i) a flange having a longitudinal wall section,
(ii) a detachable plate having a substantially trapezoidal
configuration, wherein the shorter parallel side of conigguration, wherein the shorter parallel side of the
plate is disposed adjacent and parallel to the longitudi nal wall of the flange and the longer parallel side overlaps the blade when the latter is in a clamped positon
and (iii) a c
(ii) a camming means for applying pressure to the upper portion of the detachable plate to clamp the blade to the
forward portion of the support member, which cam ming means includes.
2. a camming member having at least two opposed cam surfaces, and
means for rotating the camming
tively engaging either cam surfac unbiased pivotal movement of the support member with angle between the blade edge and the grinding wheel, and (e) resilient means carried by the support member and detachable plate for frictionally securing the clamped blade against movement with respect to the clamping device
during sharpening during sharpening.

METHOD TO COMPENSATE INFEED FOR THE ERROR METHOD TO COM O CAUSED BY THE OUTER DIAMETER ERROR OFA Terumitsu Sugita, Narashino, Japan, assignor to Seiko Seiki Kabushiki Kaisha, Japan

Filed Jan. 31, 1977, Ser. No. 764,075
U.S. Cl. 51-290

4 Claims


1. A method of operating a centerless internal grinder during internal grinding of annular workpieces to compensate for variations in workpiece outer diameter from workpiece to cally opposed position detectors each with a respective feeler, a grinding wheel, an infeed table, and a workhead mounted on said infeed table for supporing an annular workpiece on the outer peripheral surface thereof during internal grinding; the method comprising
oositioning said detectors with said feelers extending into
said annular workpiece said annular workpiece contacting an inner surface
thereof during internal grinding of the annular workpiece for developing respective signals each representative of a distance between a referaxis and a point of contact berespective one of said feelers; developing a signal reprerespective one of said feelers; developing a signal repre-
sentative of center position error of the annular workpiece being internally ground caused by variation in workpiece
outer diameter from workpice to workiece which outer diameter from workpiece to workpiece which
causes center position error of the workpiece center relacauses center position error of the workpiece center rela-
tive to the reference axis from workpiece to workpiece; and controlling the internal grinding of the annular workpiece with the signal representative of center position error to compensate for the center position error.

## 4,095,378

DEVICE CAPABLE OF SUCTION-ADHERING TO A WALL SURFACE AND MOVING THEREALONG ukashi Urakami, Tategaoka-danchi 3-8-410, No. 1097, Tatemachi, Hachioji-shi, Tokyo, Japan
Filed Dec. 14, 1976, Ser. No. 750,416 Claims priority, application Japan, Dec. 18, 1975, 50/152362; an. 19, 1976, 51/5497[U]; Feb. 26, 1976, 51/23577[U]; Jan. 22, Int. C1. ${ }^{2}$ B2
S. C1. 51-425 3/06, 9/00; B63B 59/00; F04H 3/20

1. A device cal 37 Claims 1. A device capable of adhering by suction to a wall surface urface, which device comprises: a pressure receiver housing made of a rigid or semi-rigid material having one side open oward the wall surface and the remainder closed; a plurality of wheels or endless tracks secured to the housing for contact with the wall surface; a partition connected to the pressure
direction away from the central axis of the housing which is mic table comprising a pedestal, a pedestal means reciprocable perpendicular to the wall, said partition having a free end relative to said pedestal between a raised position and a low
adapted to make contact with the wall surface, at least said free ered position a turntable rotatably supported on said pedestal adap ed to make contact with the wall surface, at least said free ered position, a turntable rotatably supported on said pedestal
end of said partition being made of a relatively flexible mate- means and a plurality of partitions on said turntable forming rial, the partition contacting the wall surface for forming a means and a plurality of partitions on said curntable forming a substantially fluid-tight low pressure seal together with the plurality of compartments for the accommodation of a plural
wall surface: and a means connected to said device for dis- $i$ ity of ophthalmic instruments therein; said housing comprising wall surface; and a means connected to said device for dishousing; at least the free end of said partition being displacehousing; at least the free end of said parfition being displace-

pressure receiver housing by a relatively small force; whereby the free end of the partition is caused to contact the wall sur face in substantialily fluid-tignt engagement by the pressure of
the fluid which acts on the surface of the partition facing away from the wall due to the difference in fuid pressure between the inside and outside of the low pressure space, and the fluid
pressure acting on the outside of the pressure receiver housing pressure acting on the outside of the pressure receiver housing
due to the difference in fluid pressure between the inside and outside of the low pressure space is transmitted to the wheels
our or endless tracks for urging them against the wall surface.

4,095,379
MULTI-EXAMINING SPACE ARRANGEMENT FOR A ROTATABLE OPHTHALMIC TABLE OR THE LIKE Joel Weintraub, 40 Arrandale Rd., Rockville Centre, N.Y. 11570 Int. Cl. ${ }^{2}$ E04H 3/08: E04B $7 / 16$; A61C $19 / 0$ U.S. CI. 52-29


1. In combination: at least one wall having an opening, at least two rooms separated by said wall, a rotatable ophthalmic rounding and protecting said ophthalmic table; said ophthal-
a first portion and a second portion, each of said portions comprising a plurality of links connectible together, two of said pluraity of links of each of said first and second portions
being pivotally connected to each other and one of said two bing pivotally connected to each other and one of said two
links having one end pivotally connected to another of said plurality of links such that said two links serve as a door for allowing access to the ophthalmic instruments mounted on said lurntable support within said housing, first means on each o said plurality of links for abutting against sides of said wall
adjacent said opening, and second means for holding said first means on said wall, so that said housing accommodates said rotatable ophthalmic table and allows ready access thereto from said rooms.

BUILDING AND ELEVATOR MODULE FOR USE Therenas J. Dillon, Akron, Ohio, assignor to Forest City Dillon, Thomas J. Dillon, Akron, Ohio, assignor to Forest City Dillon,
Inc., Cleveland, Ohio
Division of Ser. No. 302,678, Nov, 1, 1972, Pat No, 3,818,660, Division of Ser. No. 302,678, Nov. 1, 1972, Pat. No. 3,818,660 and a continuation of Ser. No. 482,320, Jun. 24, 1974,
abandoned This application Jan abandoned. This application Jan. 22, 1976, Ser. No. 651,460 The portion of the term of this patent subsequent to Jun. 25,
1991, has been disclaimed. Int. Cl. ${ }^{\text {E E }}$ O4H $1 / 12$
U.S. C1. 52-79.13


1. In combination with a multi-story building which includes vertical load-bearing walls having vertical voids extending from top to bottom thereof and full and partial thickness floor slabs adapted to rest on and span the distance between said walls and site-poured concrete simultaneously received on said partial thickness floor slabs and within said voids of said wall anged vertically with respect to each other, each comprising (A) opposed front and rear walls
(B) opposed end walls integrally joined to and interconnect ing said front and rear walls, thereby forming an elevator receiving compartment;
(C) said front wall having at least one door opening therein edges being supported in slightly spaced relationship with said top edges of the next preceding module;
(E) each of said walls having at least one through vertical void therein extending from the top edge to the botto edge thereof for reception of said site-poured conc
(F) said end walls having transversely extending locating notches in the bottom edges thereof for engagement with and support on the full thickness floor slabs;
(G) said full thickness floor slabs being received on the top edge of the end walls of the next preceeding module; top edges of the side walls of the next preceeding module (I) said site-poured concrete covering said partial thicknes floor slabs and filling the space between vertically adja cent modules and said voids; and
(J) said end walls having three dimensional leveling pocke disposed on their lower edges and embedded bracket jjacent their upper edges with said embedded bracket and said levelling pockets of vertically adjacent module cooperating for leveling and attachment purposes.

## POLE BASE M0, 4


Filed Aug. 4, 1976, Ser. No. 711,559
Int. Cl. ${ }^{2}$ E02D 27/00; E04B $1 / 00$
U.S. C. ${ }^{52-295}$

15 Claims


1. A pole-base mount for affixation to a substantially hori-
zontal planar base having a plurality of fastening means extending upward therefrom, comprising:
a pole assembly having a lower terminal portion having
generally vertical sides in a plurality of apertures are formed, and
(b) a plurality of clamps associated respectively with said plurality of apertures, each clamp having means to enable it to be releasably engaged by one of said upwardy pro-
jecting fastening members, each clamp also having a first end portion dimensioned to pass through its associated aperture, said end portion including means for preventing substantial normal lateral movement of said terminal portion when said end portion is passed through its associated aperture.

## 4,095,382

AIRCRAFT HANGAR CONSTRUCTION
Otis A. Clark, Rte. 2, Box 193-E, Tecumseh, Okla. 74873 lark, Rte. 2, Box 193.E, Tecumseh, Okia.
Filed Apr. 21, 1977, Ser. No. 789,512
U.S. C1. 52-234

> Apr. 21, 1977, Ser. No Int. Cl. ${ }^{2}$ E04H $1 / 0$

20 Claims

1. An aircraft hangar comprising:
at least four substantially horizon;
primary roof frame members; substantially horizontal, longitudinally extending primary roof frame members located in horizontally spaced, sub-
stantially parallel relation and each connected to an end of stantially parallel relation and each eonnected to an end of
at least two of said transversely extending primary roof frame members and providing the sole support of said
transversely extending primary roof frame members at said ends;
vertical supporting member supporing pecer rof of each of said transversely extending primary roof frame members; ing each of said longitudinally extending primary roof frame members at locations spaced from opposite ends hereof and at locations spacad from idends of said transversely extending primary roof frame members;

secondary roof frame members extending longitudinally of the hangar and supported upon said transversely extending primary roof frame members;
roof panelling means over and supported on said secondary
roof frame members; and
partition assembly including a plurality of vertical partition least two complementary, internesting T-shaped hangar spaces opening at opposite sides of the hangar.

ROOF-SHEET 4,095,383 HEETING ELEMENT WITH INTEGRAL LATH
STRUCTURE STRUCTURE orst Strobl, Grunwald, Germany, assignor to Neumann \& Co AG, Buchs Svitzeriand Filed Jul. 23, 1976, Ser. No. 708,019
Claims priority, appication, 232853 U.S. Cl. 52-309.7 Int. C1. ${ }^{2}$ E04C $1 / 12$


1. An elongate roof-sheeting element with an integral lath tructure for supporting roof tiles on an inclined roof structure comprising:
board-like member having an upper surface to be positioned adjacent the lower surface of roof tiles to be supported thereby and having a lower surface io be supported by an inclined roof structure
lath-like member integral with said board-like member and extending along the entire length of one only of the longi-
tudinal sides of said board member, said lath-like membe having a first portion extending upwardly from the upper surface of said board-like member along is entire length and having a second portion projecting outwardly from
said first portion beyond said one longitudinal side only of said first portion beyond said one longitudinal side only of
said board-like member along its entire length, said lathlike member being constructed and arranged such that when two of said elongate roof-sheeting elements are located with said one longitudinal side of a first roof-sheet ing element adjacent the longitudinal side of a second roo sheeting element remote from said one longitudinal side of
said second roof sheeting element, said second portion of said second roof sheeeing element, said second portion
said lath-like member extends over the upper surface of said second roof sheeting element adjacent said remote side thereof thereby covering a joint formed between the
adjacent longitudinal sides of said first and second roof planar surface of a building comprising a plurality of elon-
sheeting elements: sheeting elements;
said board-like member and said lath-like member being said begral and having a light core composite structure com
prising an expanded plastic core and a layer of a covering material bonded to paid expanded plastic core; and
an elongate reinforcing an elongate reinforcing element embedded in said expande
plastic core and disposed lengthwise in said lath- like me plastic core and disposed lengthwise in said lath-like mem-
ber along the entire length thereof, said reinforcing ele ment being angled and perforated and having a longitudi
nal marginal portion entending int nal marginal portion extending into the expanded plastic core of
thereof.
$\qquad$
UILDING BLOCK $4,095,384$ aniel A. Zarriello, 422 WALL FABRICATING DEVICE

Filed Sep. 17, 1976, Ser. No. 724,382

## U.S. Cl. 52-408



1. A method of fabricating a building block wall comprising in combination: lineally serially aligning end to end a series of building blocks; placing between serially consecutive block
ends and between consecutive tiers, an elongated sheet structure means of a first predetermined thickness having each of opposite lateral side faces extending longitudinally along the sheet structure means in substantially parallel alignment with one another and each of the parallel lateral side faces defining
aperture structure forming a series of laterally-facing apertures, the sheet structure means being of a second predetermined width such that the predetermined width is less than a building block with which the sheet structure means is to be
employed, and the sheet structure means including on each of upper and lower faces thereof a binder composition coated ulong upper and lower faces of the sheet structure means.
alos.

DEVICE FOR SECURING PANELS IN A SUSPENDED CEILING OR WALL CONSTRUCTION
Johannes Antonius Hendrikus Brugman, Rotterdam, Netherlands, assignor to Hunter Douglas International N.V., Wil-
lemstad, Netherlands Antilles lemstad, Netheriands Antilles
Filed Jul. 25, 1977,
Claims priority, application Germany, Aug. 3, 1976, 2634774
U.S. C1. 52-489 Int. C1.2 E04B 5/52

16 Claims


1. A suspension system for mounting panels to a generally
gated, generally parallel panel supports; each of said panel supports being supported by said surface; and elongated panel; said panel having along each longitudinal side thereof an in-
turned flange facing the in-turned flange of the opposite side the material of said panel being sufficiently resilient to permit said flanges to be sprung apart; said panel being arranged with its length substantially transverse to the length of the panel supports; said panel supports having hooks; the flanges of said panel being engaged over said hooks; a locking member having a body portion with two ends; said locking member being
positioned adjacent a longitudinal side of a panel with one bearing against a panel support; said one end having a laterally extending arm; said locking member being rotatable to move said arm between unlocked and locked positions; said arm, when in locked position, extending over and bearing firmly against an in-turned flange of a panel to press said flange se-
curely against its associated hook. curely against its associated hook.
aims

## PRISMATIC INTERLOCKING

PRISMATIC INTERLOCKING STRUCTURAL MODULE Joseph Daniel Johnson, 1101 E. Capitol St., Washington, D.C. Filed Aug. 19, 1977, Ser. No. 826,112
Int. Cl.2
E04C $1 / 08$
U.S. Cl. 52-575


1. A structural module comprising at least three triangular prismatic elements, each of said elements comprising at least a base and a pair of side walls, said bases of said triangular elements being in rectilinear alignment and forming a common uadrangular wall of the module with the common edge of the
side walls of the elements alternating on opposite sides of the common quadrangular wall.
$4,4,095,387$
UNPLANKING DEVICE FOR UPRIGHTS OR TOWERS OF SUPPORTING SCAFFOLDINGS
Henri Loewe, Paris, France, assignor to Societe Francaise des Echafaudages Self-Lock, Anlnay-sous-Bois, France
Filed Sep. 10, 1976, Ser. No. 722
Claims priority, application France, Sep. 11, 1975, 75 27923; Apr. 13, 1976, 76 10865
Int. Cl. ${ }^{2}$ E04H $12 / 18$
U.S. C1. 52-645

Int. Cl. ${ }^{2}$ E04H $12 / 18$

1. A device for unplanking a scaffolding comprising

5 Claims a first upright element having a base;
a second upright element having a longitudinal axis and being provided with at least one hole extending perpendicularly to said longitudinal axis, said first upright element being adapted to receive and guide said second upright element;
two symmetrical cams placed one on each side of the second upright element, each of said cams having one aperture to
register with said hole of the second upright element said base of the first upright element bearing on said cams; a pin passing through both said apertures and said hole, said
cams being rotatable around said pin cams being rotatable around said pin;
locking element adapted to engage said lever and maintain said cams in a position in which said first upright element rotation against which said locking element has an in-

creased action, said two cams being connected by a stirrup shaped part provided with arms and forming said lever, ing thereupon.
$4,095,388$
STRENGTHENING INTER-TILE ADHESION
Homer Breault, Pine Glen, Pa., assignor to PermaGrain Prod ucts, Inc., Media, Pa. Filed Jun. 13, 1977, Ser. No. 805,777 Int. Cl. ${ }^{2}$ E04B $5 / 00$


1. A method of applying floor tiles to a subflooring for an area which includes the steps of:
preparing a set of smaller rectangular floor tiles having a predetermined length and a predetermined width, each
tile having straight line boundary portions which in the unadhered conditions permit two adjacent tiles to be slideably adjustable with respect to each other;
preparing a set of larger rectangular floor tiles having a
predetermined length substantially twice the length said smaller tile and having a predetermined width sub stantially twice the width of said smaller tile, each tile having overhanging-underfitting relationship of straight permits two adjacent tiles to be slideably adjustable with respect to each other;
applying floor tiles to a central portion of a subflooring, said
tiles being adhered to each other only at the overhanging tiles being adhered to each other only at the overhangingunderitting zones, while retaining vent paths for the
diffusion of moisture to permit the moisture content of the subflooring and the moisture content of the atmosphere to equilibriate readily in such central area because of not using conventional achesive relationship of the floor tiles and subflooring throughout such central area, a gas permeation zone being maintained between the vertical walls
of adjacent tiles, there being no adhesion between said vertical walls;
staggering the distribution of a substantially equal number of
said smaller tiles and said larger tiles in said central area whereby any path of adhesion across the central portion in either of two rectangular directions has numerous offsets and staggers involving no continuous line longer than tile on each of its four sides having the adhesive overhang-ing-underfitting bonding with a portion of at least one other larger tile and with at least a portion of a smaller tile, said staggering of the adhesion to the subflooring imparttiles and related long term malfunction stimulated by fluctuations of humidity and temperature than attained for the similar adhesion of the overlapping-underlying boundary portions of rectangular tiles of substantially uniform
size when laid without adhesion to the subflooring.

## JOINED CONCPETE 4,095,389 <br> JOINED CONCRETE BODIES AND METHOD OF

Christopher David Outram, London, and Hugh Jeremy Willis Edwards, Menston, both
Filed Apr. 18, 1977, Ser. No. 788,203
Claims priority, application United Kingdom, Apr. 20, 1976, 15826/76

Int. Cl. ${ }^{2}$ E04C 1/10, 1/30
U.S. C1. 52-583


1. A method of joining together two bodies of concrete, each body having therein a concrete-reinforcing bar, which method comprises compressing on to an end of the first of the bars a gripping portion of a metal sleeve so as to cause the gripping portion tightly to grip the bar, said metal sleeve also having an metal sleeve grips the bar extends beyond the portion of the metal sleeve grips the bar, extends beyond the end of the bar, said unpressed portion also having an internal diameter larger
than the maximum cross-sectional dimension of the second of the bars, and securing an end of the second of the bars within the unpressed portion of the sleeve by means of a self-setting 10. Two bodies of concrete, each body having therein con10. Two bodies of concrete, each body having therein con-
rete-reinforcing bar, joined together by means of a metal seeve having a gripping portion and an unpressed portion, the gripping portion being compressed on to the end of one of the
bars so as to grip the bar tightly, the unpressed portion extending beyond the end of the bar and having an internal diameter larger than the maximum cross-sectional dimension of the other of the bars, the end of the other bar being secured within the unpressed portion of the sleeve by means of a set self-set- David S. Knudsen, St. Louis CoNTAINERS ment Company, Inc., Pacific, Mo.
Filed Apr. 1, 1976, Ser. No. 672,719
Int. 1 . ${ }^{2}$ B65B $51 / 16,51 / 18,51 / 22,51 / 32$

2. A machine for attaching a seal member to a rim surrounding the open top of a container, the seal member being formed
at least in part from metal and being adapted to bond to the rim at least in part from metal and being adapted to bond to the rim said machine comprising: conveyor means for supporting the containers and moving them along a conveying path with the
seal members being on the container seal members being on the container rims, but initially not
bonded to those rims; an induction coil located adjacent to the path and creating a magnetic field in a heating zone through which the seal members and container rims pass as they move along the path, the magnetic field being of sufficient intensity
to heat the metal of the seal members above the prescribed temperature; and a succession of closely spaced rollers arranged in a single row extended through the heating zone with
their axes extending transversely of the path, the diameter of their axes extending transversely of the path, the diameter of
each roller beeing substantially less than the length of the seal each roller being substantially less than the length of the seal
member measured in the direction of advance for the seal member aloang the conveying path, each roller being formed
mrom a nonmetallic material and being positioned such that it from a nonmetallic material and being positioned such that it
exerts a downwardly directed force on the seal member of a exerts a downwardly directed force on the seal member of a
container passing through the heating zone, the spacing becontainer passing through the heating zone, the spacing be-
tween the rollers being such that a pluaraily of rollers will concurrently and continuously exert forces on a single seal member as that seal member passes through the heating zone,
whereby as the seal member moves through the heating zone whereby as the seal member moves through the heating zone
and is heated by the induction coil, the succession of rollers causes a ripple-1ike force he a member is disposed to effect a good bond between the seal member and the rim.

## APPARATUS FOR 4 ,095,391

Benjamin E. Antuis For bunching broccoll
Castroville, Calif. astroville, Calif.

Filed May 23, 1977, Ser. No. 799,507
Int. Cl. ${ }^{2}$ B65B 27/10, $67 / 00$; B26D $7 / 28$
U.S. Cl. 53-123

18 Claims

1. Apparatus for bunching, trimming and banding vegetables having a head and a stalk, comprising,
first means forming a first loop ex
first means forming a first loop extending between a first
position and a second position: position and a second position;
vegetable carrying means affixed to said first means at equal intervals so as to be carried around said first loop thereby, said carrying means including a vegetable head-holding
portion and vegetable stalk-holding portion, said stalk. portion and vegetable stalk-holding portion, said stalk-
holding portion including a pair of upstanding arms form ing a stalk receiving slot and adapted to carry bandin means stretched thereacross;
second means forming a second loop extending between said
second position and a third position intermediate said second position and a and position intermediate said firs
said second means having a plurality of clamping elements affixed thereto at intervals corresponding to the spacing between adjacent one of said carrying means, said second that some of said clamping elements mate with said vegetable carrying means at a point proximate said third position and remain in such mating relationship until the mated carrying means reaches said second position; first drive means for driving said first and second means in
synchronism; and synchronism; and

rimming means disposed at a fourth position proximate said third position and between said third position and said second position so as to trim the ends of stalks carried by said carrying means and extending beyond said stalk-hold ing portion, said fourth position being separated from said
second position by a distance long enough to second position by a distance long enough to enable the
banding means to be removed from said upstanding members and placed about the trimmed ends of the stalks.

## 4,095,392

DEVICE FOR STACKING AND RETAINING IN A STACK FLAT GOODS, PARTICULARLY PLASTIC BAGS Edouard Louis van, de Gent, Meise, Belgium, assignor to Prin-
tex, Brussels, Belgium tex, Brussels, Belgium
Filed Jun. 29, 1977, Ser. No. 811,320
Claims priority, application Belgium, Jun. 29, 1976, 843546 U.S. Cl. 53-159 Int. Cl. ${ }^{2}$ B65B 35/50 $\quad 10$ Claims 10 Claims
means allowing to release the bags from the transfer means in erating with said guide for folding down the ends of the strip such a way that the fork legs enter the bag perforations, and on the other face of the object, the upper position of said piston means for moving the fork brought to the stacking location and being substantially at the level of said folding down means and
on which will be stacked the bags to form a stack, along a the lower position thereof on which will be stacked the bags to form a stack, along a the lower position thereof being below the open end at a level
direction in parallel relationship with the legs thereof to let said fork lie in two positions, the one position in which the fork is stationary to allow stacking the bags during said stacking operation and the second position in which the fork is free and
can leave by gravity the device with the bags stacked thereon. can leave by gravity the device with the bags stacked thereon.

## 4,095,393

BAG FORMING AND FILLING MACHINE
Craig R. Nelson, 711 Stumplke Rd., Green Village, N.J. 07935 ; Roy A. Nelson, deceased, late of Green Village, N.J., by Roy A. Nelson, deceased, Rate of Green Vilage, N.J.,
Elizabeth D. Nelson, administratrix, 711 Stunpike Rd., Green
Village, N.J. 07935 Village, N.J. 07935

Flled Feb. 18, 1977, Ser. No. 770,194
Int. C1. ${ }^{2}$ B65B S/02. $9 / 10.43130$
U.S. Cl. $53-183^{\text {Int. C. }}$

6 Claims ghd rem in a stack flat goods, with retaining members in parallel relationship cooperating with two opposite edges on the bags, allowing to bring said ags from the manufacturing machine to the stacking location and means for releasing said bags from the transfer means in said location to form a bag stack, which device comprises fixed means to feed forks one by one to the stacking location along between the parallel members and adjacent that edge provided with said perforations of those bags retained by said members, said forks of $U$-shape being free relative to one another, with legs directed at right angle to the transfer means movement



1. A bag forming and filling apparatus comprising a frame, a roll of heat sealable plastic cubing supported in said frame, means on said frame for moving said tubing in one direction
with respect to said frame, means engageable with said tubing for simultaneously cutting said tubing into bag lengths and heat sealing one end of said bag length, means on said frame for opening one end of said bag length, a stationary mandrel on said frame, and means for moving said opened end of said bag length substantially horizontally in said direction onto said said mandrel into said bag length, means on said frame engageable with said filled bag length to move said bag length in the opposite direction off of said mandrel and out of said frame.

## 4,095,394

APPARATUS FOR AUUTOMATICALLY APPLYING FLEXIBLE STRIPS Jacques Edmond Maurice Evrard, 64 rue des Rondeaux, Paris,

France
Filed Oct. 29, 1976, Ser. No. 737,009
U.S. Cl. 53-198 R

> Oct. 29, 1976, Ser. No. 7 Int. Cl. ${ }^{2}$ B65B $13 / 02$
automatically placing strips around 3 Clai 1. Apparatus for
comprising a vertical object guide having an open end the comprising a vertical object guide having an open end, the
cross section of said guide being substantially equal to the section of the object, means for feeding a flexible strip across the open end of said guide in synchronism with the arrival of an object, a piston to push the object upwardly into said open sides of said object by the walls of said guide, and means coop-

lower at least than the height of an object, said piston having an upper surface of a shape complimentary to that of said other face of the object and having grooves centering the strip in the course of its introduction into the guide.

4,095,395
SELF-GUIDING STRETCH-WRAP MACHINE oseph Goldstein, 9838 Chicopee Ave., Northridge, Calif. 91325 Continuation-in-part of Ser. No. 752,444, Dec. 20, 1976. This spplication May 19, 1977, Ser. No. 798,450 U.S. Cl. 53-198 R Int. Cl.2 B65B 13/10 $\quad 12$ Claims


1. A stretch-wrap machine comprising.
vehicle including, as components of the vehicle, means for supporting the vehicle for free movement along a floor, means for driving the vehicle along the floor around means for continually biasing the vehicle to move in a direction toward said material without external guidance, and feeler means projecting in said direction for engaging a surface associated with said material in response to said biasing and thereby limiting the movement of the vehicle oward said material; and
stretch-wrap unit mounted on the vehicle for movement ping stretch-wrap film around the material to be wrapped as the vehicle travels on the floor around said material.

4,095,396
DEVICE FOR GUIDING AND HOLDING CIGARETTE
BATCHES IN AN APPARATUS FOR TRANSERRING BATCHES IN AN APPARATUS FOR TRANSFERRING MACHINE
Enzo Seragnoli, Bologna, Italy, assignor to G. D. Societa per Enzo Seragnoli, Bologna
Azioni, Bologna, Italy

Filed Mar. 22, 1977, Ser. No. 780,102
Int. Cl.2 B65B
U.S. Cl. 53-234
of said heater element, said adhesive being heat destructable substantially adjacent said heater element to enable said heater element to expand and move underneath said
material and be held by said material substantially comaterial and be held by said material substantially co-

planer with said plate means, and said covering material extending down and secured to said sides of said opening opening

FRUIT PICKER
Richard J. Faulconer, PRU. Box P164, Barstow, Calif. 92311
Filed Mar. 3, 1977, Ser. No. 756,178
Int. Cl. ${ }^{2}$ A01D $46 / 24$
16 Claims


1. A fruit picker comprising
an elongated tubular member defining a bore therethrough and having an inlet and an outlet at opposite ends thereof a first handle and a secnd handle spaced from
affixed to the exterior of said tubular member
afflixed to the exterior of said tubular member
inlet, comprising a first knife fixedly mounted on said
ind nilet, comprising a first knife fixedly mounted on said
tubular member, and a second knife pivotally connected to said tubular member and said first knife, and movable between a first position angularly spaced from said first knife, and a second position juxtaposed therewith;
means, for moving said second knife between said first and said second position, said means comprising a first lever
mounted on said first handle and spaced therefrom a distance such that said handle and said lever may be gripped in one hand and the lever squeezed toward said handle, force transmitting means connecting said first lever and said second knife, and spring means disposed between said first knife and said second knife,
ally mit picker further comprising a cover member pivot. and movable between a first position closing said outlet, and a second position opening said outlet for the discharge of fruit therethrough, means for moving said cover be tween said first and said second position, said means comprising a second lever mounted on said second handle and lever may be gripped in one hand and the lever squeezed toward said handle, force transmitting means connecting said second lever and said cover, and spring means operaiively engaging said force transmitting means intermediate said second lever and said cover.

SPINNING MACHINE
Arthur Robert Glen Pownall, Masterton, New Zealand, assignor Devlor Fince, Masiertion, New Zealand, assignor lington, New Zealand

Filed Jun. 6, 1977, Ser. No. 803,944
Int. Cl. ${ }^{2}$ D01H $1 / 00,1 / 28,7 / 50$
U.S. Cl. $57-37$ $\qquad$ 1. A spinning machine including a reel adapted to receive yarn after spinning, a hollow cylinder surrounding and approximately co-axial with said reel, a base including rotatable
means on which said cylinder rests, a first guide fixed axially to and projecting from the end of said cylinder and adapted to guide the yarn after spinning, a second guide held without rotation by said base in line with said first guide and adapted to guide the yarn, sliver or partly spun sliver towards the first give to the second guide, means for rotating the real relative to
the cylinder and including a carding comb held by said base with one end of said comb adjacent to the second guide

whereby the fibres to be spun are carded while being fed to the second guide.

METHOD AND APPARATUS FOR STOPPING A FLYER ATUS FO Mitsuo Mori, Toyota; Katsumi Nakane, Okazaki, and Hideo Hirano, Aichi, all of Japan, assignors to Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Japan
Filed Jun. 2, 1976, Ser. No. 692,227 Filed Jun. 2, 1976, Ser. No. 692,2
Int. C.' ${ }^{2}$ D01H $13 / 16$ U.S. Cl. 57-81
2. An apparatus for stopping the movement of a flyer frame provided with a plurality of twisting and winding flyer mechany roving time a roving breakage occurs in an outer layer of yer frame being during the spinning operation thereof, said comprising
detector including a photoelectric detecting device for anism
anisms; hoating flies in a space between said flyer mechcontrol circuit connected to said detecting device for sponding to the frequency of detection of floating corresaid device: switching means connected to said control circuit for disabling said driving means when the magnitude of said monitoring signal exceeds a predetermined threshold value;
said photoelectric detecting device comprising a light emitter disposed at a position adjacent to and outside one end receiver comprising a photoelectric light receiving element disposed adjacent to, outside, and at the other end of said arrangement of said flyer mechanisms so that a light beam projected from said light emitter toward said light receiver is passed through a space between said flyer flyer frame, said light receiver being capable of generating an output signal when said light beam is interrupted; said control circuit comprising a capacitor and a discharging and charging circuit which discharges or charges said said output signal is present, and a switching circuit for
actuating said switching means to disable said driving step, and wherein the core yarn is provided with a thermoplas means when the voltage across said capacitor exceeds a tic binder upstream of the junction point, the heat treatment in predetermined value, said predetermined values being
such that said driving means is not disabled by periodi interruption of said light beam by the normal period floating flies present in the absence of any roving breakage.

ROTARY RING FOR
ROTARY RING FOR SPINNING
Hiroshi Yamaguchi, 12-go, 3 -ban, 4 -chome, Minamisakurazuka Toyonamaghichi, 12-go, 3-ban,
Filed Oct. 27, 1976, Ser. No. 736,225
Claims priority, application Japen, Oct. 28, 1975, 50-130030 U.S. C. 57-124 Int. Cl.2 ${ }^{2}$ D01H 7/56 2 Claims


1. A rotary spinning ring construction comprising a rotary ring body having an upper tapered portion and a lower tapered ring body having an upper tapered portion and a lower tapered
portion, each of said upper and lower tapered portions tapering portion, each of said upper and lower tapered portions tapering body to respective upper and lower end portions of said ring body, inclined grooves positioned in said upper and lower tapered portions of said ring body, a holder for receiving saic ring body in rotatable relationship therein, said holder having an annular triangular groove in the central portion of the inne
surface thereof, a triangular annular sliding flange mounted around the central portion of said ring body and positioned in said triangular groove on the inner surface of said holder to thereby rotatably support said ring body in said holder with a small amount of play therebetween, and an elastic dust cover fitted around each of the upper and lower end portions respec ings of the upper and lower areas of play between the ring body and the holder, each of said dust covers having a large number of inclined grooves on the inner surface thereof.

METHOD OF MAKING $4,095,403$ METHOD OF MAKING FANCY YARN AND FANCY Claudius Beraud, Tassin; Robert Guigal, Lyons; Robert Lehmann, L'Arbresle, and André Lyonnet, Lyons, all of France, assignors to Institut Textile de France, Boulogne sur Seine and Agence Nationale de Valorisation de la Recherche (ANVAR), Neuilly sur Seine, both of France
Claims priority, application France
U.S. Cl. $57-144$
U.S. C. 51-144 1. A method of making a fancy yarn in which at least two yarns, of which one forms a core and one an effect yarn, are fed to a junction point and the fed together through a heat-rreat-
ment zone and assembled into the fancy yarn in a false twisting

the zone being such as to develop the hot-melt adhesive properties of the thermoplastic binder.

## 4,095,404

METHOD OF MANUFACTURING A HIGH-STRENGTH METHOD OF MANUFACTURING A HIGH-STRENGTH,
POLYURETHANE-IMPREGNATED POLYAMIDE OLYURETHANE-IMPREGNATED POLYAMIDE
Eduard P. Babayan,
Hitco, Irvine, Calif
Hitco, Irvine, Calif.
Division of SSr. No.
Division of Ser. No. 621,005, Oct. 9,1975, Pat. No. 4,034,138,
which is a division of Ser. which is a division of Ser. No. 429,220, Dec. 28, 1973,



1. A method of manufacturing a high-strength, lightweight ible comprising the steps of:
impregnating high madula
impregnating hish modulv, amide yarns with a solution of thermoplastic atic poly amide yarms with a solution of thermoplastic resin to a hydrolytically stable, solvent soluble polyurethane comprising the stoichiometric reaction product of
a liquid polytetramethylene glycol having a molecular weight from 500 to 3,000 ;

$$
\mathrm{O}=\mathrm{C}=\mathrm{N}-\mathrm{R}^{\prime}-\left(\begin{array}{c}
\mathrm{s} \\
\\
\left(\mathrm{CH}_{2}\right)_{n}
\end{array}\right)-\mathrm{N}=\mathrm{C}=\mathrm{O}
$$

where $\mathbf{R}^{1}$ is alkylene of $1-10$ carbon atoms and $n$ is a integer from 4 to 10 ;
cycloaliphatic diamine coupling-curing agent;
ryying said impregnated yarns to form a resin coatin
wisting a plurality of individual dried yarns into a contin ous helix assembly;
heating the twisted yarn assembly to a temperature above
the softening point of the resin to fuse the coatings of converter for converting the time signal into a seconds indicaadjacent yarns; and
cooling the heated assembly to form a set twisted helix of tion; and a driving circuit connected to receive the oscillatory said yarns.

## 4,095,405

ELECTRONIC WATCH
Kojiro Tanaka, Tokyo, Japan, assignor to Kabushiki Kaisha Daini Seikosha, Japan

Filed Sep. 23, 1976, Ser. No. 725,713
Claims priority, application Japan, Sep. 23, 1975, $\mathbf{5 0 - 1 1 5 2 0 9}$ U.S. C. $58-4 \mathrm{~A}$


1. An electronic timepiece comprising a case, an electronic analog time display unit for displaying hours and minutes, said
analog time display unit comprising a base plate and a circular series of display segments arranged radially on a peripheral portion of said base plate, a digital date display unit in a center portion of said base plate for displaying the date, a minute
counter providing output signals to said analog display unit to activate said display segments sequentially to indicate minutes, said minute counter comprising an up-down counter, an hour counter providing output signals to said analog display unit to activate selected ones of said display segments sequentially to
indicate hours, said hour counter comprising an up-down indicate hours, said hour counter comprising an up-down display unit to indicate date, said day counter comprising an up-down counter, a crown on said case havine two operationa positions and rotatable in opposite direct. modification positions means controlled by said crown, said swi:-h means tively to said minute counter and to said day counter and means for selectively switching said counters to an up-count ing mode and to a down counting mode so that said high feed rate pulses amend said time display and said date display selec tively in a forward direction or in a backward direction

4,095,406 WATCH

WATCH Tadahiro Kikuchi, Tokyo; Yukio Ikehata, Matsudo; Masatak Ikenishi, Soka, and Shozo Kushida, Narashlno, all of Japan, assignors to Kabushiki Kaisha Daini Seikoshh, Japan
Filed Aug. 29, 1975, Ser. No. 009 065 Clalms priority, application Japan, Sep. 6, 1974, 49.102613 Int. Cl. ${ }^{2}$ G04B 27/00; G04C 3/00
U.S. C. 58-23 R

1. In an electronic timepiece of the type comprising 5 Claims oscillator circuit for developing an oscillatory output signal which defines a time base; a divider circuit connected to re er circuit for developing in response thereto an oscillatory tor circuit for developing in response hereto an the rate o tor circuit for developing in response thereto an oscillatory delay circuit for delaying a divided output of said dividing
time signal having a frequency derminative of the rate of circuit, means transmitting the output of a stage of said divid-
advance of seconds which are indicated by the timepiece; a ing circuit to said delay circuit as a control signal, a level-
converter with the oscillatory time signal; the improverent
which comprises: a system for adjusting the seconds indication which comprises: a system for adjusting the seconds indication
of the timepiece; said system comprising said divider circuit of the timepiece; said system comprising said divider circuin
wherein said divider circuit includes means for developing a plurality of time signals including a first oscillatory time signal second rate of advance of the seconds indicated by the timepiece, a second oscillatory time signal having a frequency higher than the frequency of the first oscillatory time signal for determining a rate of advance of the seconds indicated by the

oscillatory time signal having a frequency lower than the frequency of the first oscillatory time signal for determining a rate of advance of the seconds indicated by the timepiece which is lower than the standard rate; and further comprising a time signal selection switch, connected between said divider circuit and said driving circuit, normally set to apply the first
oscillatory time signal to said driving circuit for operating the oscillatory time signal to said driving circuit for operating the
timepiece in a mode with seconds indication advancing at the timepiece in a mode with seconds indication advancing at the
standard rate and operable for selectably applying the second or third time signals to said driving circuit for operating the
timepiece in a mode with the seonds indication advancing timepiece in a mode with the seconds indication advancing at a rate respectively higher than or less than the standard rate to
correct the seconds indication of the timepiece when it is respectively slow or fast without stopping operation of the timepiece.

OSCILLATING AND $\begin{gathered}4,095,407 \\ \text { DIVIDING CIRCUIT HAVING }\end{gathered}$
LEVEL SHIFTER FOR ELECTRONIC TIMEPIECE
Kazuhiro Asano, Chiba, and Kojiro Tanaka, Yachiyo, both of Japan, assignors to Kabushiki Kaisha Daini Seikosha, Japan Claims priority, application Japan, Jul. 9, 1975,
 U.S. C. $58-23 \mathrm{R}$

7 Claims


1. An oscillating and dividing circuit having a voltage levelshifter for an electronic timepiece comprising in combination:
an oscillating circuit for generating an oscillating signal, a an oscillating circuit for generating an oscillating signal, a
multistaged dividing circuit for dividing said oscillating signal to standard time signal, means comprising a first inverter connecting the output of said mascillating circuit with a first input of the first stage of said dividing circuit, means comprising a with a second input of said first stage of the dividing circuit, ing circuit to said delay circuit as a control signal, a level-
shifter circuit including gate means and means connecting the
outputs of said dividing circuit and said delay circuit to said gate means of said level-shifter circuit.

## 4,095,408 WATCH DEVICE

Toshio Kashio, Tokyo, Japan, assignor to Casio Computer Co.,
Toshio Kashio, Tokyo
Ltd., Tokyo, Japan
Continuation of Ser. No. 487,461, Jul. 11, 1974, abandoned. This application Feb. 24, 1977, Ser. No. 7117,742 Claims priority, application Japan, Jul. 24, 1973, 48-83300 U.S. Cl. $58-23 \mathrm{~F}$


1. A wrist watch device comprising a source of power;
an electronic time counting means including an oscillator, said time counting means generating time counting sig-
liquid
crystal display means having a display surface, said display means being coupled to said time counting means in receiving time counting signals from said time counting means;
switch means coupled to said source of power and including only inclination responsive means for generating an
electrical signal only when said wrist watch device is brought to a given position at which the angle between its display surface and a horizontal plane is within a predetermined range;
circuit means coupled to said switch means and to said source of power to produce first and second control sigswitch means;
counter means coupled to said time counting means, to said circuit means and to said source of power for commencing to count clock pulses supplied from said time counting means when reset by said first control signal and for producing a third control signal when a
ber of said clock pulses is counted;
a holding circuit coupled to said co
circuit means and to said source of power to be set by said second control signal for producing a hold signal and adapted to be reset by said third control signal for stopping said hold signal; and
display control means coupled to said holding circuit and to said source of power and being responsive to said hold
signal to apply a display driving signal to said laid tal display means for causing said liquid crystal display means to be driven for the duration of said hold signal which corresponds to the time duration of a given number of said time counting signals supplied from said time counting means whereby said liquid crystal display means of the wrist watch and is extinguished during non-use thereof regardless of the inclination of the wrist watch during said non-use.

## $\xrightarrow[\text { CHIMING MECHANISM }]{4,095,409}$

Barry L. Palum, Rochester, N.Y., assignor to Marine Midland Bank of Rochester, Rochester, N.Y. Continuation of Ser. No. 369,672, Jun. 13, 1973, abandoned. This application Aug. 1, 1974, Ser. No. 493,582 U.S. Cl. 58-13

1. A chiming mechanism adapted for use in a clock of the randfather type and the like having clock works and the multiplicity of tube chimes in side-by-side relationship adjacent o the clock works such that said chimes and clock works can be contained within the confines of said clock, said mechanism mprising:
(a) a rotatable member pro
for striking said chimes, said rotatable member and coupled therellel to the axis of ing relationship therewith such that said chirect driv. ing relationship therewith such that said chime music
barrel is sequentially rotationally movable under control of said clock works, said chime music barrel having an axial length much smaller than the lateral distance across said multiplicity of chimes, and
) apparatus for translating the rotational movements of said chime music barrel into percussion against the chimes, said apparatus comprising:
(ii) a plurality of pulleys defining separate paths for said cord between said chime music barrel and said chimes,
said paiths each having a plurality of linear portions and said paits each having a plurality of linear portions and
each being defined by a plurality of said pulleys, said paths each also extending in a plurality of directions between said chime barrel and said chimes,
(iii) means connected to said cords at one end thereof and operated by said chime music barrel for actuating said cords in response to the rotational movements of said
chime music barrel, said actuating means and said pulleys defining one of said plurality of linear portions, (iv) means connected to said cords at the opposite ends thereof for striking said chimes, said striking means and said pulleys defining another one of said plurality of perpendicular to the axis of said chimes such that the driving power is delivered directly to said chimes by said striking means; and
(d) said chimes being disposed with their longitudinal axe in a plane perpendicular to the axis of said chime music
barrel and wherein in each of said paths a first of barrel and wherein in each of said paths, a first of said
plurality of pulleys has its axis parallel to said chime barrel axis and the second of said plurality of pulleys has its axis in a plane parallel to the plane in which said chimes are disposed, said one path portion being disposed between said actuating means and said first of said
plurality of pulleys, said another one of said plurality of path portions being disposed between said second of
said plurality of pulleys and said striking means, and a first and second pulleys.

ELECTRONIC WRISTWATCH HAVING AN ALARM DEVICE Japan, assignor to Kabushiki Kaisha Kenichi Kondo, Mokya,
Daini Seikosha, Japan
21, 1976, Ser. No 707,118 Claims priority, application Japan, Jul. 22, 1975, 50 Int. Cl. ${ }^{2}$ G04B 23/12; G04C 21/34
U.S. C1. 58-57.5

6 Claims

## 4,095,410

## ALARM ELECTRONIC TIMEPIECE

Noboru Kaneko, Tokyo, Japan, assignor to Kabushiki Kaisha
Daini Seikosha, Japan Flaims pried Oct. 13, 1976, Ser. No. 732,030 Int. Cl. ${ }^{2}$ Ga4C $21 / 00$
U.S. C. $58-38$ R

1. A wristwatch comprising an elongated watch case having a central portion with a central cavity therein and two integral side wing portions extending laterally from opposite sides of
said central portion and having at their laterally outermost extremities means for connection of said side wing portions with watch band means for holding said wristwatch on the arm of a wearer, a side cavity in one of said integral side wing portions of said case, a waid moverent in said central cavity an audio alarm device in said side cavity and leads electrically connecting said audio alarm device with said watch move-
ment, said central cavity and side cavity being isolated from one another by an intervening integral portion of said watch case.

## 22

FLEXIBLE CABIE FOR DIGITAL WATCH FLEXIBLE CABLE FOR DIGITAL WATCH Aircraft Company, Culver City, Calif.
Filed Jun. 16, 1975, Ser. No. 587,487

| Int. Cl. ${ }^{2}$ G04C 3/00; G04B 29/00, 37/00; H05K $1 / 100$ |
| :--- |

ion: An alarm electronic timepiece, comprising in combina
means for generating a high frequency time standard signal; divider means receptive of the time standard signal for divid signal having a frequency defining a rate of advance of time;
counting means receptive of and responsive to the divider means output signal for developing a progressively in creasing count representative of time;
single alarm counter means for storing thereing a count clearing the count stored therein: repeat alarm counter means for storing therein a count representative of a time
coincidence detecting means for comparing the respective counts stored in said single and said repeat alarm counter and for developing an output signal when the compared counts coincide;
an alarm enabled by the coincidence detecting means outpu signal for indicating when the time represented by the count developed by said counting means coincides with a
time representated by a count stored in a respective one of said alarm counter means; and
gate means for alternately applying the respective counts stored in said alarm counter means to said coincidence oped by said stored in said alarm counter means for applying the coincidence detecting means output signal as a reset signal to reset said single alarm counter means when the coun count stored in said single alarm counter means.


1. A digital watch comprising an oscillator for producing a electro, electronic components for controlling a plurality elecro-optical display devices which display the time, a plurality of batteries for for activating said display devices, a and said display devices, wherein the improvement comprises flexible cable consisting of:
a flexible base;
at least one battery contact affixed to said flexible base; at least one pushbutton contact;
interconnection circuitry for electrically connecting the batteries through said battery contacts to the electronic
components and display devices and for electrically connecting the push buttons through said pushbutton contacts to the electronic components and display devices.

4,095,413
ELECTRONIC TIMEPIECE
Joachim Reich, Am Holzweg 21, D 8036 Herrsching (Ammersee), Germany iled Apr. 19, 1976, Ser. No. 678,18 Claims priority, application Germany, Nov. 17, 1975, 2551541 U.S. Cl. $58-50$ R ${ }^{\text {Int. C. }{ }^{2} \text { G04C } 3 / 00,17 / 00,19 / 00} \quad 12$ Claims


1. An electronic timepiece comprising a display, and having an oscillator with output signals employed as a time base, a frequency divider coupled to said ossillator to divide the fre-
quency of the oscillator output signals to the desired clock quency of the osciliator output signals to the desired clock said frequency divider for counting the clock pulses, and de-
coding circuits coupled to said counting means for applying coding circeits coupled to said countitg means for applying
clock pulses to said display such that time marks corresponding to the clock pulse frequency are displayed, said display is disposed sets of electrodes coupled to said decoding circuits, is disposed sets of electrodes coupled to said decoding circuits,
said electrodes connected together in a matrix-like arrangement including lines and columns, in which one set of electrodes for said time marks are applied to the lines of said ma-trix-like arrangement and the other set of electrodes for said time marks are applied to the columns of the matrix-like ar-
rangement and the product of the number of lines and the number of columns is equal to the number of said time marks
employed and on driving the lines and the columns of this employed and on driving the lines and the columns of this matrix-like arrangement only one respective time mark re-
sponds, wherein the lines of the matrix-like arrangement are constructed as concentric rings and the columns of the matrixlike arrangement are constructed as ring sections concentric to said rings and said time marks are selectively coupled between provide a time display.

## 4,095,414 <br> ELECTRONIC TIMEPIECE

Joachim Reich, am Holzweg 21, D 8036 Herrsching (Ammersee), Germany
Filed Apr. 19, 1976, Ser. No. 678,190 Claims priority, application Germany, Nov. 17, 1975, 2551542 U.S. Cl. $58-50$ R

25, 2551542 14 Claims 1. An electronic timepiece with a display device, employing frequency of the oscillator to the desired clock frequency counting means for counting the clock pulses and decoding cointing means for counting the clock pulses and decoding
circuits, which apply the clock pulses to the display device such that time marks are switched on for displaying the time, the improvement comprising:
said counting means including a forward-backward counter
having an input coupled to said fruqu having an input coupled to said frequency divider and an complete operational input of a simple counter, which on a complete operational cycle runs through the number of time marks completely; and wherein a first decoding
circuit is coupled to the simple counter and to first eleccircuit is coupled to the simple counter and to first elec-
trodes of one respective group of time marks of the display;
counter and to other electrodes of other time marks of the display, and means coupling remaining time marks of the marks following the time marks connected with the last

兆

output of said second decoding circuit are respectively coupled with the outputs of said first decoding circuit in a reversed sequence such
time marks is completed.

EXPANDABLE ${ }^{4,095,415}$
Richard R. Bower, 3708 Crownridge Dr., Sherman Oaks, Calif. 91403

Filed Dec. 15, 1976, Ser. No. 750,604
S. Cl. 59-35 R Int. Cl. ${ }^{2}$ F16G $13 / 24$

9 Claims



1. The method of constructing an expandable belt or the like comprising the steps of: weaving a tubular-shaped mesh secof the tubular mesh section, securing the ends of spring to respective ends of the tubular mesh section with the mesh longitudinally fully compressed, bringing the opposite ends of the mesh section together in abutting relationship, clamping
the abutting ends together and in side-by-side relationshing he center of the section of tubular mesh to provide a pair closed loops in the form of a figure-8.

4,095,416
SHACKLING DEVIC Gerard Issard, diers, France, assignor to
Filed Jun. 22, 1976, Ser. No. 698,776 Claims priority, application France, Jul. 8, 1975, 7522024 U.S. Cl. 59-86
${ }^{\text {Int. Cl. }}{ }^{2}$ F16G $15 / 04$


1. A shackling device according to claim $\mathbf{1}$, wherein said pi is provided between its smooth portion of given diameter and
its threaded portion with a further smooth portion whose diameter is larger than said given diameter and corresponds to
hat of said threaded portion of said pin, and a bore is provided of said aperatures in a single-thickness aft wall portion serving beside said second aperture and in axial alignment therewith, to produce a low pressure area in the vicinity thereof which he diameter of said bore corresponding to said diameter of introduces a jet-like stream of cooling ambient air into said said further smooth portion.

## 4,095,417

APPARATUS FOR AND METHOD OF SUPPRESSING
INFRARED RADIATION EMITTED FROM GAS
Clifford R. Banthin, Easton, Conn., assignor to Avco Corpora tion, Wilmington, Mass.

Filed Aug. 23, 1976, Ser. No. 716,396
U.S. C1. 60-39.5


25 Claims Martin Mansson, and Ragnar Torstenfelt, both of Finspong, Sweden, assignors to Stal-Laval Turbin AB, Finspong, Sweden Claims priority, application Sweden, Oct. 28, 1975, 7512016



1. An apparatus for suppressing infrared radiation emitted from hot metal parts at the aft end of a gas turbine engine and from the exhaust gas plume thereof during engine operation comprising a multiple purpose ejector vane assembly for intro ucing cooling ambient air into the hot engine exhaust gases and hiding said hor metal parts and means ataching said a du ructure for receiving and confining said engine exhaust gases, structure forality of radial ejector vanes supported by said duct structure for hiding said hot metal parts and introducing cooling ambient air into hot engine exhaust gases during engin peration by ejector action while simultaneously imparting a spiral swirl to both said cooling ambient air and said exhaus gases, said swirl promoting mixing of ambient air within said uct structure and causing additional entrainment of ambient ir downstream of said duct structure, said duct structure
omprising an inner tubular support having a central longitudinal axis and an outer tubular support disposed concentrically about said inner support and having an axis common with said
central axis, said inner tubular support having means sealing central axis, said inner tubular support having means sealing
the center thereof from engine exhaust gases and cooling ambihe center thereof from engine exhaust gases sand cooling ambisaid tubular supports and comprising cooperating curved wa means which provide said hiding of hot metal parts and impar aid spiral swirl, each of said plurality of radial vanes having wardly of said outer tubular support and communicating diectly with ambient air, said plurality of inlet means introducing said cooling ambient air into said radial vanes by said jector action, said curved wall means of each vane having low which cooperate to define a passage disposed transverse said axis for receiving said cooling ambient air therethrough rom an associated cooling ambient air inlet means, each of said aft wall portions having a plurality of apertures therein with each aft wall portion and its aperatures upon being subjected
engine exhaust gases being the sole means providing with engine exhaust gases being the sole means providing with
drawal of cooling ambient air from within its passage by said ejector action for mixing thereof with said exhaust gases, each
2. Apparatus for the injection of fuel into a gas turbine mbustion chamber comprising:
an injector defining separate first and second parallel fuel flow paths from separate fuel inlet connections toward a means for simultaneously supplying the fuel from a fuel source to both said inlet connections during normal operation of said turbine, and for connecting one said inlet connection to a source of compressed air whie concur. ection is connected to a fuel sump, during shut-down for purposes of cleaning said injector.

THERMAL POWER PLANT
$4,095,419$ ans Pfenninger, Baden, Switzerland, assignor to BBC Brown Boveri \& Company Limited, Baden, Switzeriand Claims priority, Mapplication Sevitzerland, Apr. 8, 1975, 4426/75
S. Cl. $60-39.12$ Int. C. ${ }^{2}$ F02B 43/08


1. In a thermal power plant comprising at least one thermal
prime mover, a supercharged gas generator for generating hot pressurized producer gas from a sulphur-containing coal, said pressurized producer gas from a sulphur-containing coal, said
producer gas after separation of fly ash and sulphur being utilized as the fuel for the power plant and which further
includes coupled air compressor and gas turbine units, said includes coupled air compressor and gas turbine units, said compressor unit serving to compress air and deliver it to said gas generator, and said gas croine unit eneng diven by the hot gas generator, the improvement which comprises means provided directly in the flow path of the hot pressurized producer gas at the outlet of said gas generator for injecting a reagent into the hot gas which chemically binds the sulphur, a first
separator of the centrifugal type located in the path of the hot separator of the centrifugal type located in the path of the hot
pressurized producer gas following said reagent injection means and ahead of said gas turbine for separating out fly ash and sulphur bound reagent and a second centrifugal separator structurally integrated with said gas turbine and which is comprised of a spiral entry section at the intake side of said turbine ahead of and a multiplicity of slots in the turbine casing after
the first row of blading on the turbine rotor which provides a further centrifuging affect upon and removal of any remaining fly ash and sulphur bound reagent in the gas.

AUGMENTOR OUTER SEGMENT LOCKOUT AND FAN AUGMENTOR OUTER SEGMENT
Robert B. Abernethy; Edmond Preti, and John P. Rembold, all
of North Palm Beach, of North Palm Beach, Fla., assignors to The United States of Washington, D.C.
led Apr. 26, 1977, Ser. No. 791,077
Int. Cl. ${ }^{2}$ F02K 3/10
U.S. CI. 60-204

4. A method for controlling instability at high altitude, low Mach number conditions in thrust augmented twin spool tur bofan engine having compressor driven by a first turbine connected to one spool and a fan, adjacent an engine inlet, driven
by a second turbine connected to a second spool, a plurality o burners for supplying energy to drive the first and second turbines, a variable area nozzle for expanding the gases passing through the turbines and thrust augmentor; a unified control system, including an engine electronic control and a unified
hydromechanical control for controlling the engine during its hydromechanical control for controling the engine during its
various operating modes with the unified control including means for controlling fuel flow to said burners, means for sequencing the fuel flow to separate segments in the augmentor and means for controlling the area of the variable nozzle, comprising: the steps of blocking fuel flow to the outermost augmentor during a portion of the aircraft operating envelope
when the engine inlet total temperature is less than $25^{\circ} \mathrm{F}$ and when the engine burner pressure is less than 120 psia; increas ing the fan pressure ratio by increasing the fuel flow to the engine burners a predetermined amount and decreasing the variable nozzle area a predetermined percent during the time that the fuel flow to the outermost augmentor segment is blocked.

SUBSEA $\quad$ 4,095,421 illiam H. Silcox, San Francis POWER SUPPLY Researc Cox, San Francisco, Calif., assignor to Chevron Company, San Francisco, Calif.
Filed Jan. 26, 1976, Ser. No. 652,44 iled Jan. 26, 1976, Ser. No. 652,44
Int. Cl. ${ }^{\text {E21B }}$ 29/00; F01K $27 / 00$
U.S. Cl. 60-398 23 Claims


1. A system for operating equipment submerged in a body of water, said submerged equipment having intake and discharge
aides and said equipment being actuatable by a pressure differsides and said equipment being actuatable by a pressure differ-
ence between said intake side and said discharge side, compris-
ing:
subm
ent
submerged means for containing an internal pressure less than the ambient fluid pressure exerted on said submerged equipment;
conduit means connecting said discharge side of said submerged equipment with said submerged means for flowing fluid from said submerged equipment to said submerged means;
normally closed valve means closing said intake side and said
discharge side of said submerged equipment, said valve discharge side of said submerged equipment, said valve
means upon being opened placing said intake side directly in communication with the ambient fluid pressure exerted on said submerged equipment by exposing said intake side o the wamultaneously placing said discharge side in cen munication with said submerged means through said conduit means so that the resulting pressure difference between said intake side and said discharge side actuates said submerged equipment.

4,095,422
VERTICAL-AXIS COMPOSITE SWINGING-BLADE oshio Kurakake, WATER WHEEL Ohbu, Japan
Filed Apr. 12, 1977, Ser. No. 786,961 Claims priority, application Japan, May 28, 1976, 51-62023 U.S. Cl. 60-398 $\quad$ Claims 1. An apparatus to convert a kinetic energy of a substantially horizontal stream into a torque, comprising:
(a) two parallel horizontal retaining plates, said plates being other by means of a plurality of spacer bolts, thereby forming a frame;
(b) a vertical output shaft at the center of said frame, (c) at least a pair of vertical-axis swinging-blade water
the output shaft, each of said water wheels further com prising a vertical water wheel shaft mounted between said retaining plates, shroud discs attached to said water wheel shaft coaxially therewith at a predetermined vertical dis tance from one another and capable of rotating in a body
with said water wheel shaft, a plurality of vertical swing ing blades pivotably attached to and between said shroud discs at points equiangularly spaced along the circumfer ence of circles of the shroud discs with the axis of said

water wheel shaft as the center, and vertical stop pins arranged on each shroud disc at positions away from said pivotal points over a distance a little shorter than the width of the blade along the radii extending between saic respective pivotal points and the axis of the water whee
shaft; and (d) means for converting the rotations of the respective water wheel shafts into a rotation in one direction and transmitting the resultant torque to said outpu tion
shaft.
$4,095,423$
APPARATUS FOR HARNESSING TIDAL POWER lexander Moiseevich Gorlov, 234 Main St., Medford, Mass. 02155

Filed May 5, 1977, Ser. No. 794,23


1. An apparatus for extracting usable power from a tidal water flow, comprising:
means for creating a low water pressure differential between water;
first and second chambers each having a first port in the
first and second chambers each having a first port in the
upper portion thereof and a second port in the second
portion thereof;
a cylinder having a piston and piston rod disposed therein, the piston rod extending through a wall of the cylinder in a fluid-sealed aperture;
the cylinder having a first port at a first end thereof and a the first port of the first chamber being connected to the first
port of the cylinder and the first port of the second chamber bing connected to the second port of the cylinder; thereof to a second port thereof and a third port thereof to a fourth port thereof and, in the second state, connecting o the port to the fourd port thereof: one of either the first or third ports of the valve being connected to the second port of the first chamber and the other of such ports of the valve being connected to the
second port of the second chamber; the valve being in the first state while ter
toward the second end of the cylinder: piston is moving means for switching the valve to the second state thereof when the piston nears the second end of the cylinder he valve being in the second state while the piston is moving toward the first end of the cylinder,
piston nears the first end of the cylinder state when the

## 4,095,424

VARIABLE HYDRAULIC PUMP NONLINEAR CONTROL WITH CAM-ACTUATED,
ADJUSTABLY-SEQUENCED SECONDARY CONTROL bor Laky, Dallas, Te
tion, Dalles, Tex Filed Mar. 28, 1977, Ser. No. 781,623 Int. Cl. ${ }^{2}$ F15B $15 / 18$

10 Claims


1. A control system comprising means for generating a primarly control output defined by first and second primary control functions each contiguous with a primary control neutral position; means for generating a secondary control output bearing a selectable, sequential relationship with said first and second operational-definitive outputs; means for selectively, differentially adjusting said secondary control first and second operational and definitive outputs over the range of said primary control outputs; and means for selectively, asymmetrically respect to said primary control neutral position outputs

## 4,095,425

CONTROL SYSTEM FOR ROTARY AIR MODULATOR Graydon L. Brown, and Larry L. Newlin, both of Ponct Okla.,
Okla.

Filed Mar. 3, 1977, Ser. No. 773,926
Filed Mar. 3, 1977, Ser. No.
Iot. Cl. ${ }^{2}$ F15B $11 / 20$
U.S. C. 60-484 23 Claims

1. Circuit apparatus for controlling angular velocity and
position of a motor driven rotary element which includes a rvo amplifier controlling said motor, comprising: eans generating a reference frequency signal, and produc-
ing a first output which is an equivalent voltage thereof and a second output which is an integral sub-multiple frequency signal thereof;
means responsive to said motor driven rotary element for relative to said peripheral portion and said pockets of said producing a first feedback signal at said reference fre- rotor; a liquid outlet disposed in horizontally offset positio quency and a second feedback signal at said integral sub-
multiple frequency multiple frequency;
means converting said first feedback signal to an equivalent second voltage;
 relative to said axis and communicating with the periphery and pockets of said rotor at a lower portion thereof; said liquid outlet being disposed adjacent said gas inlet in said housing liquid return conduit means communicating with said liquid
outlet and the interior of said housing above said rotor; gai outtet and the interior of said housing above said rotor; gas
receiving condenser means disposed to receive gas above saic liquid level established by said liquid level control means; and bafle and conduit means disposed in intercommunicating relation with said condenser and said housing above said rotor for conducting gas upwardly into said condenser and fo uid level which may result from gas emanating upwardly through said liquid at said liquid level.
phase detector means receiving input of said second output voltage; and
summing means receiving said first output, said second voltage and said phase difference voltage to produce an alge-
braically summed voltage which is applied to energize braically summed voltage which is applied
said servo amplifier in control of said motor

## 4,095,426

TURBINE AND METHOD OF USING SAME
illiam A. Rhodes, 4421 N. 13th Pl., Phoenix, Ariz. 85016 Filed Aug. 27, 1976, Ser. No. 718,393
Int. C.2. $\mathbf{F}$ F3G 7/00 U.S. C1. 60-496


## U. 1.1

 Manara. Stropkay, Chesterland, Ohio, assignor to Design a Manuacturing Corporation, Willoughby, Onio
Filed Aug. 2, 1976, Ser. No. 710,598 Int. Cl. ${ }^{2}$ F16J 1/10; F01B 9,00
U.S. Cl. $60-530$


1. An actuator system for rotating a controlled load about a pivot axis comprising:
linear actuator means for producing a force in a linear direction through a predetermined distance by generally linear
movement of a piston rod in response to an actuation
2. A fluid operated turbine having: a housing; liquid in said housing; a rotor rotatably mounted on a horizontal axis and emersed in said liquid in said housing; said rotor provided with a peripheral portion having gas receiving pockets therein;
liquid level control means in said housing above said rotor tending to maintain a liquid level above said rotor and adapted to drain overflow liquid from a position above said liquid level whereby said rotor is normally emersed in liquid in said housing; gas inlet means disposed in said housing for introducing a
gas phase of said liquid into said housing at the lower periphery gas phase of said liquid into said housing at he lower periphery
of said rotor and at a location horizontally offset from said generally horizontal axis whereby gas is bouyantly introduced into said pockets; said housing provided with arcuate seal and gas passage structure disposed in close tolerance clearance
relative to said peripheral portion and pockets of said rotor in an area above said inlet means; said arcuate seal structure having a gas outlet at an upper portion of said rotor above said inlet means; said housing having a liquid downflow conducting
arcuate seal structure disposed in close tolerance clearance
signal;
a control arm, said control arm having a longitudinal axis and being connected to the controlled load, the longitudinal axis of said control arm forming said pivot axis, and a thrust lever connected to said control arm to provide a
lever arm by which said control arm may be rotated; and actuator linkage means for coupling said piston rod to said thrust lever, said linkage means comprising means for transforming the linearly directed force of said piston rod into rotary motion about the pivot axis of said control arm by an elastic flexure of said linkage means, and including an integral tubular body formed of flexible coils aligned
longitudinally with said piston rod and having sufficient rigidity to apply to said thrust lever a pushing force produced by said piston rod upon actuation thereof, said tubular body also being longitudinally flexible to produce a bending of elastic flexure out of said alignment when said piston rod is actuated to continue applying such
pushing force to said thrust lever rotating the same about pushing force to said thrust lever rotating the same about
said pivot axis.

SOLAR ELECTRIC $4,095,428$
THERECTRIC POWER PLANT AND AN IMPROVED THERMAL COLLECTOR OF SOLAR ENERGY
Electric Corren, Pittsburgh, Pa., assignor to Westinghouse Electric Corp., Pittsburgh, Pa.

Filed Feb. 25, 1975 , Ser. No. $\mathbf{5 5 2 , 8 3 4}$
Int. Cl. ${ }^{2}$ Fo3G 7/O2; F24J 3/02
U.S. CI. $60-641$

27 Claims


1. A thermal collector of solar energy that is adapted to delivery collected energy to a heat using apparatus, compris-
ing, first means for transmitting solar radiation,
second means for supporting a finely divided semiconducto material in relation to said first means to expose the semiconductor material to the transmitted radiation, whereby
the semiconductor material absorbs at least a portion of the energy of the transmitted radiation and is heated by the absorbed energy, and
third means for transferring heat from the semiconductor material to the heat using apparatus.

4,095,429
Robert E.
08690

## SOLAR GRAVITY ENGINE

Filed May 5, 1977, Ser. No. 794,292
U.s. Cl. $60-675 \quad$ Int. Cl. ${ }^{2}$ F03G 7/02 $\quad 21$ Claims


1. A solar gravity engine comprising
(a) a substantially vertical conduit means including an evaporating area in a lower region thereof;
(b) a plurality of liquid return conduit means each being attached at different vertical locations to said vertical conduit for selecive condensation and io with, cach sele therein in the region adjacent said vertical conduit means;
(c) a plurality of first valve means each one positioned in the fluid flow path between said vertical conduit means and one of said return conduit means to selectively control ted return conduit means;
(d) an accumulating chamber means being in fluid flow communication with the output of said return conduit means to receive and accumulate condensed fluid therefrom;
e) a return chamber means connected for fluid flow communication between said accumulating chamber means and said evaporating area to allow liquid to return from said
accumulating chamber means to said vertical conduit means;
(f) power generating means positioned adjacent the fluid flow path from said accumulating chamber means to said liquid chovemerneneans and adapted to be activated by (g) a by-pass line connected between said accumulating chamber means and said return chamber to allow a controlled amount of condensed liquid to flow from said means without passing adjacent said power generating means;
(h) a second valve means positioned within said by-pass line to modulate flow therethrough;
said first valmeans to modulate fluid flow through each of (j) second control means to modulate flow through said
second valve means.

## 409530 <br> LOAD SUPPORTING BEARING PLATE

 John I. Hannan, Shadyside, Ohio, assignor to Phillips Stamping Cohn I. Hannan, Shadyside,Colla
Inc., Bellaire, Ohio Continuation of Ser. No. 685,695, May 12, 1976, Pat. No. Continuation of Ser. No. 685,695, May 12, 1996, Pat. No.
4,037,418. his application Jun. 20, 1977, Ser. No. 888,185
The portion of the term of this patent subsequent to Jul. 26, 1994, has been disclaimed
Int. C1. ${ }^{2}$ E21D $21 / 00$
U.S. Cl. $61-45$ B 12 Claims

1. A low profile bearing plate of the type adapted to provide support for a generally planar surface, said plate comprising:
a generally flat body having a length greater than the width with a longitudinal axis extending between the body ends and a transverse axis extending between the body sides with said axes intersecting at substantially the midpoint of said body, one face of said flat body defining a generally planainst a generally planar surface; an elongated major embossed area extending outwardly from the other face of said body; said major embossed area having a length as measured along said major embossed area greater than the width as measured along said transverse axis; the height of fines a relatively low profile; a recessed area extending inwardly from the outer surface of said major embossed area back toward said plate bearing surface and being coaxially disposed relative to the intersection of said body
axes, said recessed area having a bottom wall disposed generally parallel to and spaced from said plate bearing surface; and, an opening in said bottom wall coaxially disposed with the intersection of said body axes adapted to receive headed fastener means for affixing said support
plate to a generally planar surface; the depth of said recessed area being such that when said fastener means is
received in said opening, at least a portion of the head of the roof bar, said projection to be adjustably located in an said fastener means is concealed within said recessed area. articulated manner in any one of said plurality of apertures,

## 4,095,431

LOAD SUPPORTING BEARING PLATE
John I. Hannan, Shadyside,
Co., Inc., Bellaire, Ohio
Continuation of Ser. No. 808,185, Jun continuation of Ser. No. 685,695, May 12, 1976, Pat. No. continuation of Ser. No. 685,695, May 12, 1976, Pat. No.
4,037,418. This application Nov. 10, 1977, Ser. No. 850,480 The portion of the term of this patent subsequent to Jul. 26 1994, has been disclaimed.
Int. Cl. ${ }^{2}$ E21D $21 / 00$
U.S. Cl. $61-45$ B

12 Claims


1. A low profile bearing plate of the type adapted to provide support for a generally planar surface, said plate comprising: a generally flat body having a length greater than the width
with a longitudinal axis extending between the body ends and a transverse axis extending between the body sides with said axes intersecting at substantially the midpoint of said body, one face of said flat body defining a generally planar plate bearing surface adapted to be closely received against a generally planar surface; an elongated major said body; said major embossed area having a length as measured along said major embossed area greater than the width as measured transversely thereof; the height of said major embossed area being such that said plate defines a relatively low profile; a recessed area extending inwardly
from the outer surface of said major embossed area back from the outer surface of said major embossed area back
toward said plate bearing surface and being coaxially disposed relative to the intersection of said body axes, said recessed area having a bottom wall disposed generally parallel to and spaced from said plate bearing surface; and, an opening in said bottom wall coaxially disposed with the intersection of said body axes adapted to receive headed ally planar surface; the depth of said recessed area being such that when said fastener means is received in said opening, at least a portion of the head of said fastener means is concealed within said recessed area.

MINE ROOF SUPPORTS
Arthur Scarfe, Wakefield, England, assignor to Fletcher Sut-
cliffe Wild Limited, Wakefield, England Filed May 21, 1976, Ser. No. 688,940
${ }_{22144 / 75}^{\text {Claims }}$
ority, application United Kingdom, May 22, 1975,
U.S. CI. 61-45 D

Int. C. ${ }^{2}$ E21D $15 / 44$
U.S. C. $61-45 \mathrm{D}$

1. A mine roof support comprising a hydraulically extensims chock leg, an elongated roof bar supported by the upper end of said leg, means for attaching said upper end to said bar including a projection on said upper end of said leg, and abutment ing a projection on said upper end of said leg, and abutment
means defining a plurality of apertures along the underside of
said abutment means being positioned to define said apertures and retain said projection.

4,095,433
TUNNEL SUPPORT STRUCTURE USING BUILT.UP PIPE SUPPORT SET, AND UNIT PIPE SUPPORT MEMBER THEREFOR
Minoru Yamamoto, Machida; Juntaro Honda, Kobe; Katsumi Nagasaki, Sakai, and Yoshito Seto, Yamato-Koriyama, all of
Japan, assignors to Kubota, Ltd., Osaka, Japan, a part interest

Filed Oct. 7, 1976, Ser. No. 730,343 Claims priority, application Japan, Oct. 9, 1975, 50-122212 U.S. Cl. 61-45 C Int. C.2. E21D 7/00


1. A unit pipe support member for use in a structure for spporting the earth wall of a tunnel or the like by built-up pipe pport sets each including a plurality of unit pipe support maid unit pipe support member is a casting of ductile cast iron
saine or cast steel having substantially the same shape and same
length as the other of said plurality of unit pipe at least one of the inner and outer surfaces of said unit pipe support member has reinforcing rib means cast integral therewith, said reinforcing rib means comprising continuous annular ribs spaced apart from each other longitudinally of said unit pipe support member;
and connector flanges integrally formed on and connector flanges integrally formed on and reinfor
the opposite ends of said unit pipe support member.

4,095,434
MINE EQUIPMENT
Rodney James Anthony Hunter, Etwall, and Derek Plummer, Burton upon Trent, both of England, assignors to Coal Industry (Patents) Limited, London, England
Claims priority, application United Kingdom, Nov. 19, 1974, ${ }_{50041 / 74}^{\text {Claims }}$
U.S. Cl. $61-63$

1. Apparatus fo
lnt. Cl. ${ }^{2}$ E21D 13/04
26 Claims along a portion of an underground roadway adjacent to a mining machine, comprising an elongated movable frame, a
mining machine and hydraulic ram means connected between bracing said linking member to said next constructional unit is mining machine and the legs whereby the elongated frame through the one of said anchorage members arranged for
is pivotal connections by the hydraulic rams selective engagement therewith, actuating said traction means with respect to the mining machine such that in use the frame and the second one of said propulsion means positioned be-

extends along the portion of the roadway adjacent to the min ing machine, a carriage adapted to carry the support section and advanceable along the elonge the advanced carriage toward urging the support section
a roof supporting position.

4,095,435
METHOD OF ADVANCING A PLURALITY OF LONGITUDINALLY ARRANGED MOVABLE SUCCESSIVELY IN A SELF-RUNNING MANNER AND APPARATUS FOR PERFORMING SAME
Koichi Uemura, 1-13-11, Sakura-machi, Koganei-shi, Tokyo, Koichi Uemura, 1-13-11, Sakura-machi, Koganei-shi, Tokyo
Japan Filed Apr. 2, 1976, Ser. No. 673,052 Claims priority, application Japan, Apr. 8, 1975, 50-41793;
Apr. 8, 1975, $50-41794 ;$ Oct. 4, 1975, $50-119375 ;$ Aus, 6, 1975, Apr. 8, 1975, $50-41794 ;$ Oct. 4, 1975, $50-119375 ;$ Aug. 6, 1975,
50-95014; Oct. $9,1975,50-121237$, Apr. 12, 1975, $50-43893 ;$ Oct 6, 1975, 50-123783; A0-121237; Apr. 12, 1975, 50-43893; Oct. 50-81942; Aug. 14, 1975, 50-98053; Aug. 14, 1975, 50.98054, Aug. 25, 1975, $50-102094$; Sep. 6, 1975, 50 -107575; Sep. 13, 1975, 50 -10483

Int. Cl. ${ }^{2}$ E01G 3/00
U.S. CI. $61-84$


1. A method of advancing a plurality of longitudinally aligned movable constructional units successively in a self-run-
ning manner, wherein said constructional units constituting an underground structure of a form adapted for a special purpose such as tunnel excavation, heavy load transportation, underwaer tunnel construction or muddy water dredging excavation
are arranged along a common longitudinal line adjacent to each other and are provided with a self-run forward advancement impelling mechanism, said mechanism comprising proullion means each positioned between adjacent said construc tional units, a linking member extending over the entire length front of the forwardmost constructional unit for forward advancement thereof and connected to said linking member, and anchorage members arranged for selective contact with the respective intermediate and tailing ones of said constructional
units and mounted on and selectively engageable with said linking member, said method comprising actuating the first one of said propulsion means positioned between the forwardmost and next ones of said constructional units while releasing said raction means and all the said anchorage members from engagement with said ilking member to advance said forward-
most constructional unit relative to said next constructional unit and to the ground, releasing said first propulsion means, and the second one of said propulsion means positioned be-
tween the second and third ones of said constructional units counting from the front to advance said next constructional unit relative to the ground, advancing the other ones of said intermediate constructional units individually subsequently in a
manner similar to that described above relative to the ground bracing said linking member to said tailing constructional unit through the one of said anchorage members arranged for selective contact therewith, actuating said traction means to advance said tailing constructional unit relative to the ground through said linking member, and repeating the procedure
consisting of the above-described steps a necessary number of times.

4,095,436
METHOD OF, AND APPARATUS FOR, CONTROLLING THE ADVANCE OF A TUNNEL DRIVE SHIELD Herbert Heitkamp, Werne, and Rolf Stoltz, Bottrop, both of Germany, assignors to Gewerkschaft Eisenhutte Westralia, Lunen, Germaled M Claims priority, application Germany, Mar. 23, 1976, 2612169 S. Cl. 61-85 Int. Cl. ${ }^{2}$ E01G 3/00

1. A method of controlling the advance of a tunnel drive shield of the type having a plurality of elongate implements each of which is supported and guided on a frame, the elongate
implements being movable relative to the frame by means of implements being movable relative to the frame by means of
hydraulic rams, the method comprising the step of advancing the frame by applying hydraulic fluid to hydraulic ram means acting between the frame and a fixed tunnel lining positioned behind the drive shield, and by simultaneously applying hy-
draulic fluid to at least one of said hydraulic rams whereby the draulic fluid to at least one of said hydraulic rams whereby the
direction of advance of the frame is controllable by varying the ratio of the pressures of the hydraulic fluid applied to said hydraulic ram means and to said at least one hydraulic ram, wherein a first control unit is operated to vary the pressure of hydraulic fluid applied to said hydraulic ram means, and sure of hydraulic fluid applied to each of said at least one hydraulic ram.

4,095,437
hn W. Cox ible Pipe installation systems Drilling Company, Oklahoma City, Okla

Filed Oct. 18, 1976, Ser. No. 733,377
Int. Cl. ${ }^{2}$ F16L $1 / 00$; E02D $29 / 10$

1. An apparatus for use in forming a pipe, comprising a support structure;
means connectable to the support structure, having portions engageable with the pipe and providing a pipe passageway, the pipe being passable through the pipe passageway
and said means engaging and forming portions of the pipe. and said mean first formi
ture having portions engageable with the pipe and providing a pipe passageway, the pipe being passable hrough the pipe passageway of the first forming assem-

ing the portions of the pipe passing through the pipe passageway of the first forming assembly in a predetermined radius; and
refrigerant circulation through said liquid conduit mean during defrost;

whereby both the refrigerating and the hot gas defrosting functions are achieved with only two conduits joining the highside.

MOVABLE $4,095,43$ RECEPTACLE
riser connectable to the support structure, having a first end, a second end and a pipe passageway, the second end
of the riser being disposed near the pipe passageway of the of the riser being disposed near the pipe passageway of the
means engaging and forming portions of the pipe, the pipe being passable through the pipe passageway in the rise and through the pipe passageway of the means engaging and forming portions of the pipe.

## REFRIGERATION SYSTEM WITH HOT GAS DEFROST Daniel E. Kramer, 2009 Woodland Dr., Yardley, Pa. 19067 Filed Mar. 4, 1977, Ser. No. 774,480

U.S. C1. 62-278

Int. C1. ${ }^{2}$ F25B 47/00
${ }^{6} 6$ Claims and defrosting periods, said system comprising:
a. compressor;
b. a discharge conduit connecting the compressor to the
c. condenser, the compressor and condenser constituting refrigeration highside
evaporator, including
suction conduit means for convey expansion from the evaporator to the compressor; evaporator, for restrictedly feeding liquid refrigerant to the evaporator during refrigerating periods
the evaporator during fer connecting the condenser to the expansion device,
wherein the improvement comprises.

1. hot gas conduit means connecting a point in said liquid conduit means substantially adjacent the inlet of the expansion device to the evaporator for defrosting the evapo the liquid conduit means; and
2. means in the suction conduit means for limiting the rate of
hn Linstromberg, Evansville, Ind., as pool Corporation, Benton Harbor, Mich.,
Filed Dec. 10, 1976, Ser. No.
p49,536

3. In a refrigeration apparatus having a cabinet defining a refrigeration space provided with an opening, and a receptacle
for storing ice within said space, improved means for providfor storing ice within said space, improved means for provid ing access to said ice comprising:
wing means for removably carrying said receptacle for swinging movement about a horizontal pivot axis between a rearward upper ice storage position within said space and a forward lower ice access position adjacent said opening;
closure movable between a first position wherein said closure closes said opening with said receptacle being
retained in said rearward wherein said opening is exposed, said recentacle being repositioned fowardly from said storage position to said access position as an incident of movement of said closure from said first to said second position to permit access to in mans receptacle; and
movement of said he closure is said receptacle at said access position when urge ice in said urge ice in said receptacle forwardly therein.

4,095,440 AIR BLOWER MOUNTING ASSEMBLY William J. Brown, Naperville, and William F. Legler, Sugar ria, III.
Continuation of Ser. No. 622,912, Oct. 16, 1975, abandoned. This application Mar. 7,1977 , Ser. No. 775,333 U.S. C1. $62-450$ Int. C1.2 F25D 19/00

3 Claims
(c) said body fabric being integral with said sleeve and body shoulder region fabric and having knitted wales which are

continuous with knitted wales in said front and rear body shoulder regions.

$$
4,095,442
$$

WASHING MACHINE FOR A TEXTILE WEB Hans Brugman, Ambt-Delden, Netheriands, assignor to Brugman Machinefabriek BV, Netheriands $\quad$ Flled Jul. 8, 1976, Ser. No 703.377 Filed Jul. 8, 1976, Ser. No. 703,377 $\underset{7508277}{\text { Clain }}$
US. CI. 68-18 C Int. C. ${ }^{2}$ D06B 1/06

1. A machinery enclosure and mounting arrangement comprising:
ing: ment;
said compartment including means for mounting machinery within said compartment;
an access opening formed in said housing for providing access to machinery in said compartment;
pitally secured to said housing for
closing said access opening;
said access door means being readily detachable from said
housing for removal thereof from said housing;
fan means mounted on said access door means for pivoting with said door means for providing access to said fan means and to sad compars providing removal of the fan means;
the access door means
edge to said housing.
$\xrightarrow{\text { KNITTING METHOD }}$
Frank Robinson, and Nigel Stephen What mough, both of Breatson, England, assignors to Courtaulds Limited, London, En-
giand Filed Jul. 21, 1977, Ser. No. 817,70
Claims priority, application United Kingdom, Aug. 10, 1976, 33208/76

Int. Cl. ${ }^{2}$ A41B 9/06
U.S. Cl. $66-176$ 1. In a method of knitting a blank for a sleeved garment wherein the sleeves of the blank are formed integrally with the body of the blank in the knitting process, the improvemen comprising performing the following steps in either order: (a) knitting fabric to constitute the sleeves and the front and rear body shoulder regions of the garment by forming each sleeve and across one of said body shoulder regions, (b) knitting body fabric for the blank by forming simultaneously front and rear body portions of the blank by knitting courses which extend across said body portions in the finished garment,

971 O. . 36


1. A washing machine for a textile web, or the like, compris-

## a treatment space

a plurality of guide rollers in said space and said rollers all being oriented horizontally and all being parallel; said rollers being arranged in at least one group of two generally vertical rows of said rollers, with neighboring said the textile web, or the like, is passed along a zig-zag path of generally horizontally traveling loops of textile web, with the weo first wrapping around a said roller in one
said row and then traveling generally horizontally to a said row and then traveling generally horizontally to a said roller in the other said row; and said rollers being so positioned along their respective said rows for enabling such travel of the web by means of said rollers in one said ow being vertically staggered from the horizontally adjacent said rollers in the other said row;
the receptacle being away from the web such that the web does not contact the contents of the receptacle; each said receptacle having a width greater than the length of the said roller above that said receptacle; each said receptacle extending toward the other said row of rollers and of row overlap the said receptacles of the other said rolle row, thereby blocking liquid drip down a row of said rollers and down said receptacles;
a controllable liquid outlet from each said receptacle; cleaning liquid supply means above said group of rollers for
supplying liguid at each vertical level of each said vertical
row of rollers.
APPARATUS FOR WASHING RUGS AND THE LIKE Aifford L. Hasselschwert, Rock Hill, S.C., assignor to Schmid Industries, Inc., Charlotte, N.C

Filed Nov. 17, 1976, Ser. No. 742,672 Int. C1. ${ }^{2}$ D06B 3/18, $3 / 20$
U.S. Cl. $68-22$ R

9 Claim


1. Apparatus for washing rugs and the like including
a. means for supporting a rug with the nap thereof facing
upwardly
inclined path;
c. compression means disposed transversely of said inclined path and arranged for compressing the nap of said rug as
it passes therebeneath; and d. means for directing a jet of
said rug nap as it is conveyed past said transversely dis posed compression means to cause said water and deter gent to collect as a pool at the dam created by said compression means, said jet of water and detergent being
directed toward said rug at a point immediately ascentional of said compression means and at said water and detergent collected at said dam to agitate said collected detergent collected at said dam to agitate said colle.
water and detergent and cause cleaning of said rug.

4,095,444
APPARATUS FOR THE APPLIIATION OF LIQUIDS TO
MOVING MATERIALS
Willien Mertin Pee
 tion, Spartanburg, S.C.

Filed Jon. 15, 1977, Ser. No. 806,783
Int. Cl. ${ }^{2}$ D06B $1 / 02$
U.S. CI. 68-205 R

5 Claims


1. In an apparatus for applying liquids to moving material ncluding means for conveying the material in a predetermined path of rravel, iquid applicasor means the material for continu-
ously discharging a corresponding row of generally parallel streams of liquid downwardly toward the path of travel of the material, air discharge means positioned on one side of said
row of outlets so that discharge axes of said air discharge row of outlets so that discharge axes of said air discharge
means intersect the discharge axes of the outlets for selectively deflecting the streams of liquid from said outlets away from the path of travel of the material, and a liquid collection chamber positioned on the other side of the discharge axes of the row of outlets from said deflecting means, said liquid collection cham-
ber having an opening extending along the row of outlets for ber having an opening extending along the row of outlets for
receiving the deflected liquid streams to prevent their contact with the moving material, an air foil means defining one surface of said collection chamber, said air foil means having a
curbed surface extending from approximately tangent to curbed surface extending from approximately tangent to the
discharge axes of said gaseous fluid discharge orifices adjacent said opening and diverging progressively inwardly of said chamber from said opening and away from said axes of the gaseous fluid discharge orifices, a first liquid collector plate suportably positioned in said opening with an outer edge of the plate extending along the opening and positioned closely adja-
cent the liquid discharge axes of said outlets to intercept and direct deflected liquid into the collection chamber, and a second liquid collector plate positioned in spaced relation below said first collector plate and having an outer edge extending generally parallel to said first collector plate edge but posi-
tioned further from said discharge axes than said first collector plate edge for receiving liquid falling from the first plate and directing the liquid into the collection chamber, the improvement comprising air deflector means operably associated with said air foil means at a position above said first liquid collector
plate and closely adjacent the liquid discharge axes of the plate and closely adjacent the liquid discharge axes of the
outlets, said air deflector means extending downwardly toward said first collector plate into a portin of an expanded air zone created by the expansion of the air emitted from said air discharge means so that said air deflector means extending into
said expanded air zone forms an acute angle with an said expanded air plane passing through the end portion of said first collector plate closely adjacent said liquid discharge axes of said outlets. said imaginary plane being substantially parallel to said liquid discharge axes of said outlets.

| 4,095,445 |  |
| :---: | :---: |
| OFF-CENTER LOCKING HANDLE |  |
| Llewellyn O. Storlie, Spring Grove, Minn., and Jame |  |
| Decorah, |  |
| Filed Jan. 24, 1977, Ser. No. 761,866 |  |
|  |  |
| S. Cl. 70-215 | 5 Clain | U.S. C. 70-215

said housing member, said estucheon having a second projection disposed at a second radial position from the
central axis of the handle spaced apart from the first radial position of said lock cylinder axis, said second projection having an engagement surface disposed in a plane normal to the door and parallel to a plane containing the central its central axis so that said first projection directly engage said engagement surface in said first locked position and is disengaged from said engagement surface in said second unlocked position;
(d) means for retaining said lock cylinder within said housing member so that said lock cylinder cannot be externally removed from said lock cylinder chamber.

## 4,095,446 <br> CROSS ROLLING MILI

Jury Grigorievich Zabava, ulitsa Romen Rollans, 17, kv. 61 ; Jury Grigorievich Zabava, ulitsa Romen Roilana, 17, kv. 61;
Rem Naumovich Kogan, ulitsa Njutona, 27, kv. 21, both of
Kharkor; Ivan Mikhailorich Barabash, 2 Begovoi proezd, 8, Kharkov; Ivan Mikhailorich Barabash, 2 Begovoi proezd, 8,
kv, 32; Tadeush Valentinovich Svidnitsky, Volzhsky bulvar, kv. 32; Tadeush Valentinorich Svidnitsky, Volzhsky buivar, 34, kr. 92, both of Moscow; Dzhan Alierich Lurie, pereulok I. Dubovskogo, 2, KV. 3, Kharkor; Elvira Alexeevas Brasirich Lomazov, ulitsa Vorobieva, 9, kv. 3, Kharkov; Ilya Grigorievich Rodnyansky, ulitsa Bibliotechnaya, 16, kv. 33, Khimki Moskovskoi oblasti; Viktor Fedorovich Skorikov, ulitus Pushkinn, 10-a, kV. 5, Yarosiarl, and Viktor Georgierich Surk
ulitsa Tobolskaya, 50 , $\mathbf{k r}, \mathbf{3 1}$, Kharkov, all of U.S.S.R.

Filed Feb. 16, 1977, Ser. No. 769,292
U.S. C1. 72-88

16 Claims


1. A mill for cross rolling of workpieces in the form of solids of revolution, the workpieces moving in a direction perpendic ular to an axis of rolling during the cross rolling comprising: housing formed of two rigidly interconnected upper and lowe members; two rotatable drums adjustably installed between the upper and lower members of said housing so that the axes of the drums are substantially vertical and perpendicular to the axis of rolling; guides positioned on the gener atrices of the side the periphery of said drums; first slides seated in said guides of one of said drums; first tool means having differently profiled wedge-shapes and carried by said first slides; second slides seated in the guides of the other of said drums; second tool means having wedge-shapes mating with said shapes of said first tool means and carried by said second slides, the rotation said first and second tool means to bring same into proximity with the axis of rolling for cross rolling workpieces.

4,095,447
METHOD AND ROLLING MILL FOR CONTINUOUS TUBE ROLLING
lexandr Andreevich Sherchenko, ploschad Oktyabrskaya, 5 kv. 13; Gennady Iranorich Gulyaev, ulitsa Serastopolskaya, 9; Petr Alexeerich Loskutor, prospekt K. Maran, 82, kv. 71 Vitaly Nikolaevich Cherny, ulitsa Keruna, 47, kr. 4; Valentin Nikolaerich Danchenko, prospekt K. Marxa, 55, kv. 30, all of Dnepropetrovsk; Valery Georgievich Balakin, ulitsa Malakhitovaya, 14, kv. 18, Moscow; Evgeny Stepanovich Bon Bednyakov, prospekt Lenina, 28, kv. 109, both of Elektrost Moskorskoi oblasti; Vladimir Mikhailovich Bokov, ulits Sovetskaya, 41, kv. 46, Noginsk Moskovskol oblasti, and Fedor Terentierich Vinogrador, alitss Pushkina
Elektrostal Moskovskol oblesti, all of U.S.S.R.

1. A locking handle for a door, said handle secured to a shaft 1. A locking handie for a door, said handle secured to a shaf
disposed along the central axis of the handle and connected to a door latch, the handle rotatable about the central axis between door latched and door unlatched positions, comprising: (a) a housing member having a lock cylinder chamber;
(b) a lock cylinder received within said lock cylinder cha ber and disposed along an axis spaced apart from and parallel to the central axis at a first radial position from said central axis, said lock cylinder having an integral first projection and rotatable between a first locked position (c) an estucheon secured to the do

Filed Oct. 18, 1976, Ser. No. 733,370 Int. Cl. ${ }^{2}$ B218 $17 / 04$

9 Claim

## 

1. A method of continuous tube rolling comprising the steps grooves on a mandrel reducing the diameter blank in groups o grooves on a mandrel; reducing the diameter of said blank afte the wall thickness of the blank with said reduction of the diameter of the blank; installing said mandrel substantially in all groups of grooves, the diameter of said mandrel at the being smaller than the mandrel diameter at the preceding roups of grooves for deforme tion of the blank according to the wall thickness thereof.
```
4,095,448
```

ROLL HOUSING OF DIVIDED CONSTRUCTION WITH REMOVABLE HOUSING CAP
Theodor Gipperich, Dusseldorf, Germany, assignor to Schloe n-Slemag Ak 9 , 1977, Dusseldorf, Germany Flited Feb. 9,1 , 197 , Ser. No. Fe7,036
Claims priority, application Germany, Feb. 20, 1976, 2606842 U.S. C. 72-238 Int. C. ${ }^{2}$ 821B 31/08

Filed


1. A ro
a base,
a separate top cross mer a plurality of tie bars pivotally mounted in the base and
extending through vertical open-sided sits in the in the top cross-member, an hydraulic stressing nut at the top of each tie bar which nuts can be pressurized to pull
the base and top cross-member together to tension the tie bars and stress the housing, an hydraulic jack at the lowe end of each tie bar which jacks can be pressurized to cross-member when they are not tensioned,
an hydraulic circuit for selectively pressurizing said nuts and said jacks and switching means in said circuit for switching said circuit between a first state wherein the mill is operational and wherein the stressing nuts are constantly pressurized to maintain the tie bars in a stressed condition surized to swing the tie bars out of or into engagemen with the top cross-member

## 4,095,449

Frank George Roach, Rochester, and Paul Fred Woerner Grank George Rooch, Rochester, and Paul Fred Woerner, ration, Detroit, Mich. inuation of Ser. No. 585,297, Jun. 9, 1975, abandoned. This
application Dec. $\mathbf{y}$ (1976, 1976. Ser. No. 755,672 C. 72-273

1. Extrusion tooling comprising 7 Claim 1. Eody with a metallurgically bonded film coating of itride of material selallurgically bonded from coating of a lum, columbium, hafnium and silicon applied to the forming surface of the tool body, said film coating having a thickness in the order of $0.00015-0.0003$ inches.
rolling under of refurbishing a gas turbine blade comprising rolling under pressure a portion of the blade extending from
the tip, the direction or rolling being towards the tip, to effect extension of the tip, and machining the extended tip to a predeextension of the tip, and machining the
termined overall length of the blade.

CAN BODY STRIPPER
Fred Cruz, Westminster, Colo., ssaignor to West Mark Denver, Inc., Denver, Colo.

Ced Dec. 7, 1976, Ser. No. 748,164
U.S. C. 72-344

AXLE MAKING METHOD AND APPARATUS
Harry Opland, Mandieon Heightrys Ralph S. Sharpe, Livonia, and Joseph H. Zawnch, Detroin, legler, Inc.., Detroilt, Mich.

Mar. ${ }^{\text {Int. C }}$.
US. C. 72-318
19 Claims


1. A method for making an axle from a tubular axle blank of a unitary construction having an end including upper and ower walls and also having an intermediate porton walls connecting the side walls, the method comprising: forming the upper and lower walls of the axle end to provide upper and lower projec tions spaced vertically from each other; and deforming the side walls inwardly toward each other at a location spaced from the beight and width than the intermediate axle portion immediately adjacent the axle end.

2. An improved stripper of the kind used in can body formers or like machines wherein a punch carries a cylindrical can body through a ring of stripper segments resiliently held in plade and deffectable under forward motion of the punch,
plesilient means urging the segments to return to undeflected resilient means urging the segments to return to undeflected
position, and wherein the punch moves rearwardy through
the stripper segments with the segments contacting the surface the stripper segments with the segments contacting the surface the can body in place as the punch retracts from the can body, the improvement comprising:
(a) a stripper segment support ring forming an inner opening of larger diameter than a punch adapted to pass there-
through, the ring having a through, the ring having a radially outward facing sur-
face, a radially inward facing surface, a forward wall joining the inward facing surface to the outward facing surface, and a rear wall joining the inward facing surface to the outward facing surface at the axially opposite end of the ring from said forward wall;
a pluraitit of stripper segments supported on said outward facing surface in spaced, mutually nonabutting rela-
(c) a plurality of bosses integral with said ring and spaced at circumferentially aligned predetermined locations about circumferentially aligned predetermined locations abou
the circumference of the ring, the bosses extending radithe circumference of the ring, the bosses extending radi. ring, each boss separating two of said segments, the bosses
maintaining the segments in circumferentially fixed locamaintaining the segments in circumferentially fixed loca-
tions about the ring;
tions about the ring;
(d) said support ring having a void area located at and below the level of said outward facing surface circumferentially between said bosses for allowing reduction of the outer diameter of said ring at said outward facing surface without requiring reduction of the diameter of material circumferen at the junction of the rear wall and the outward facing wall;
(e) each of said stripper segments having a stripping edge
and having an inwardly facing side contacting said outand having an in wardly facing side contacting said outwardly facing side of the ring and pivotally supporting the
segment against the ring, each segment having a portion of its inward facing side extending over said recess and being pivotable therein, the bosses extending radially outwardly from the recess and separating the portions of the segments extending over the recess, said stripping edge de-
pending radially inwardly over said forward wall from the inwardly facing side of the segment, the stripping edges of each of the segments defining a stripper opening of smaller diameter than the inner diameter of the ring for stripping a can body from a punch moving rearwardly through th
stripper opening.

# differential thermal analysis cell 

Lecon Woo, Newark, Del., assignor to E. I. Du Pont de Nemour
and Company, Wilmington, Del.
Filed Feb. 25, 1977, Ser. No. 772,134
U.S. CI. 73-15 B

1 Claim


1. A cell for use in the differential thermal analysis of sample materials comprising:
a thermally conductive disc at least a portion of which is ductive disc having two face area regions each adapted to receive one of said sample materials and a reference material, said conductive disc having an outer portion fabricated of a ceramic and an inner portion fabricated of said first metal;
a pair of second discs each disc having a face, being fabriouple with said first metal, and affixed to at least a por anple with said first metal, and affixed to at least a porconductive disc in one of said face area regions of said conductive disc in face-to-face relationship to form resample and reference materials; first lead of said second m
discs;
a second lead of said second metal affixed to the other of said second discs; and

Thermal insulation demonstration device Tom Fisher, 1695 E. Maple, Troy, Mich. 48084
ied May 31, 1977, Ser. No. 801,61
int. C. ${ }^{2}$ G01N 25/18; G09B 23/16
U.S. Cl. $73-15$ A

10 Crim


1. A thermal insulation demonstration device comprising a ceeivo insulation cells each constructed and arranged to communicating with thermal insulation therein, a plenum arranged to direct heated air under pressure into each of said sulation cells, a separate after chamber for each of said insula on cells, each after chamber having an inlet communicating tation associated insulation cell downstream of the commun ructed and insulation chamber with said plenum and consulation chamber, a thermometer received in each after hamber, and each after chamber having a transparent portion constructed and arranged so that its associated thermometer都 eceived in the insulation cells types of thermal insulation are plenum through said insulation cells and into sasses afrom said bers the relative effectiveness of the different types of thermal insulation is demonstrated by the temperatures in the after chambers measured by the thermometers.

PNEUMATIC DETECTOR FOR CHROMATOGRAPHIC ANALYZER
Edwin L. Karas, Sharon, Mase.; Raymond Annino, Coldon, N.Y., and Richard W. Kalinoaki, East Providence, RI signors to The Foxboro Company, Foxboro, Mame. Division of Ser. No. 549,929, Feb. 14, 1975, Pat. No. 4,033,171 This application Jun. 13, 1977, Ser. No. 805,922 U.S. Cl. 73-23.1 Int. Cl. ${ }^{2}$ G01N 31/08

4 Claims


1. In gas chromatographic apparatus of the type including separation column through which a carrier gas conducts passes through the column, the apparatus including componen
concentration detector means in a conduit connected to the restrictors in said first and second conduits respectively, said column output for producing an output signal responsive to a first and second conduits terminating at their ends remote from stic is in turn proportional to the concentration of such components
that im comprising:
comprising:
an orifice for producing a first pressure signal respo
an orifice for producing a first pressure signal resp
characteristics of the gas flowing therethrough;
a capillary connected in series with said orifce for
a capillary connected in series with said orifice for producing a second pressure signal responsive to characteristics means for combining said first and second pressure signals in opposed sense to develop the component concentration measurement signal;
said combining means including:
said combining means in
(A) a movable member;
(B) first pressure-respo
(B) first pressure-reesponsive means coupled to said first
(A) pressure signal and arranged to apply a corresponding
force in one direction to said movable member; force in one direction to said movable member
(C) second pressure-responsive means coupled to said sec-
ond pressure signal to apply a corresponding force in an ond pressure signal to apply a correspondin;
opposite direction to said movabie member;
(D) pneematicic sensing means for producing a pneumatic
pressure signal responsive to movement of said movable pressure signal responsive to movement of said movable
member and comprising nozzle and flapper elements one of which is secured to said member for movement therewith relative to the other element such that said sensing means produces at said nozzle a pneumatic back-pressure signal de
ments;
(E) rebalance means including third pressure-responsive means and means to direct to said third pressure-responsive means a pneumatic feedback signal corresponding to
said nozzle back-pressure signal, said third pressure said nozzie back-pressure signal, said hird pressure-
responsive means being operable thereby to develop a force in a direction tending to move one of said elements in a direction relative to the other element so as to oppose the change in spacing between said two elements resulting
from movement of said member due to changes in either from movement of said member due to changes in either
of said first or second pressure signals, said rebalance of said first or second pressure signals, said rebalance
means maintaining a close spacing between said nozzle and flapper elements within the operating range thereof
and said pneumatic feedback signal having a magniude and said pneumatic feedback signal having a magnitude
corresponding to the combination of said first and second corresponding to the combination of said first and second
pressure signals from said orifice and capillary so as to serve as a concentration measurement signal for said detector means; and
means for predeterminedly setting the relative rates-of change of said first and second pressure signals with re spect capillary to produce at least substantial cancellation of the effects of such changes in flow rate on said concentration measurement signal in response to changes in said gas sample characteristic.
,095,456
APPARATUS FOR
Geoffrey Edgington, Godalming, England, assignor to Lucas
Industries Limited, Birmingham, England
Fliled May 27, 1976, Ser. No. 690,389
Claims priority, application United Kingdom, Jun. 4, 1075,
S. C. 73-37.

Int. Cl. ${ }^{2}$ G01B 13/04
2 Claims
U.S. CI. $73-37.6$

1. Apparatus for indicating rate of ice accretion comprising 1est surface upon which ice forms in use, first and second gas conduits each communicating at one end with the e ote tith a gas supply, and the regulator having a control port whereby the regulator is supplied with a reference pressure, the regula tor operating to maintain its outlet pressure at a predetermined
amount in excess of the reference pressure, first and second
orifice being adjacent, and presented to, the test surface, mean sensing difference in the pressure in the first and second con
duits intermediate their orifice and their restrictor respectively duits intermediate their orifice and their restrictor respectively
and supplying a signal dependent upon such pressure differ ance to an indicator to operate the indicator, a control conduir
ent connecting the control port of the regulator to the second conduit at a point intermediate the second orifice and th second restrictor whereby the reference pressure for the regu
lator is the pressure existing in the second conduit intermediate the second restrictor and the second orifice and, means for

moving the test surface relative to the first orifice at a predete mined speed, the arrangement being such that when no ice is and there is no pressure difference between the first and second conduits but when ice forms on the test surface the ice obstructs the first orifice to an extent dependent upon the thick ness of the ice layer on the test surface thus resulting in an
increase in pressure in the first conduit downstream of the firs restrictor related to the thickness of the ice layer on the test surface, the difference in pressure between the first and second conduits being sensed by the sensor, and since the pressure difference is directly related to the thickness of the ice layer o he moving test surface the indicator thus indicating the rate of

4,095,45
APPARATUS FOR DETECTING CHANGES IN ON SING-AROUND METHOD
Kazuo Koda, and Masato Tsuchiya, both of Yokohama, Japan assignors to Nippon Kokan Kabushiki Kaisha, Tokyo, Japan Claims priority, application Japan, Jul. 16, 1976, 51-83943

U.S. CI. 73-53
transmitting probe emitting an ultrasonic pulse through liquid flowing in said pipe to said receiving probe, and said
receiving probe converting said ultrasonic pulse from said transmitting probe into a voltage signal and transmittin said voltage signal;
amplifier for arp receiving probe; sponse to said signal from said receiving probe as ampl fied by said amplifier, said masking circuit masking, dur ing a preset masking time, noise signals other than norm ones from among signals from said receiving probe; one-shot pulse generator circuit for transmitting a pulse in
response to said making signal from said masking circuit masking time setup circuit for setting up said masking tim said masking time setup circuit beginning actuation imme diately upon resetting of a timer thereof in response to sai pulse from said one-shot pulse generator circuit, and reting a masking release signal to said masking circuit at the moment when said masking time has elapsed, and said masking time being set up at a desired value by said timer within a range of periods slightly smaller than the sing pipe giving the highest sound velocity and sufficient to permit masking of said noise signals
receiving monitor-time setup circuit for setting up a receiving monitor time during which interruptions of pulse transmitted from said one-shot pulse generator circuit are ginning actuation immediately upon resetting of a time thereof in response to said pulse from said one-shot pulse generator circuit, and transmitting a signal when said timer has not been reset again by the next pulse from sai monitor time, and said receiving monitor time being setu by said timer at a desired value slightly larger than the sing-around period corresponding to a liquid flowing in said pipe giving the lowest sound velocity;
pseudo-pulse generator circuit for transmitting a pseudo pulse to said masking circuit in response to said sign do-pulse, like said signal from said receiving probe, caus ing said masking circuit to transmit a masking signal in response to said pseudo-pulse
a voltage/power converter circuit for converting said pulse shot pulse generator circuit into a power signal and transmitting said power signal to said transmi ting probe, said transmitting probe transmitting the nex ultrasonic puise in response to said power signal, and thus the sing-around actuation being continued; and
n output section for taking out a pulse from said one-shot
pulse generator circuit as an output, said output section comprising a frequency/voltage converter circuit and recorder.

## 4,095,458 HYGROSTAT

Ernst Wild, Uerikon, Switzerland, assignor to Elektrowatt AG
Zurich, Switzerland Filed Mer. 14, 1977, Ser. No. 777,409
Claims priority, application Switzerland, Mar. 25, 1976, 3723/76
Int. C. ${ }^{2}$ G01N 19/10; H01H 35/42; A01G 25/02 U.S. CI. 73-73

1. A hygrostat comprising
hygroscopic body;
said hygroscopic body being formed of wood
pervious housing formed of hydrophobic material;
aid hygroscopic body being arranged in said housing;
aid hygroscopic body comprising a wooden rod having eans coupled with one end of said wooden rod
a support element coupled with the housing for supporting the other end of said wooden rod
stop means for limiting the stroke of said one end of said wooden rod;
a compensation spring operatively conected with sai housing by means of said support element for coupling th said suend of said wooden rod with said housing; and - position of said compensation spring.

## APPARATUS FOR DETERMINING MOISTURE

nthony L. Feld Pontent
Filed Sep. 7, 1976, Ser. No. 721,314
U.S. C1. 73-76


1. Apparatus for subjecting a mass of moist fibrous material a predetermined pressure comprising
means forming a circular opening through the base, said opening having a center, a hollow cylinder, having longitudinal axis, the diameter of the opening in the cylin-
der being substantially equal to the diameter of the circular opening through the base,
a bottom plate
means forming a plurality of openings through said plate, means for removably mounting said bottom plate on said base so that at least some of the openings through said bottom plate communicate with the opening in said base, plate so that the center of the opening in the base substan tially lies on the axis of the cylinder,
a piston adapted to move within said cylinder, and a piston adapted to move within said cylinder, and
means for applying a predetermined force to said piston.

## 4,095,460

DEVICE FOR CONVERTING ROTARY MOTION INTO
Calvin I. Cuff, 135 Ocenn Are., Brooklyn, N.Y. 11225

| Filed Jul. 20, 1976, Ser. No. |
| :--- |
| Int. C. ${ }^{2}$ F16H $27 / 04$ |

U.S. CI. 74-84 S

3 Claims

the confronting circular faces of a pair of rotatable members,
rotatively drivng one of the members,
laterally displacing the axis of rotation of one of the members with respect to the other a first predetermined distance to impart a strain to the material,
of the stress in one of the rotating members in of lateral displacement and in the orthogonal direction, laterally displacing the axes a second predetermined dis-
tance. tance,
producin
producing a second pair of signals having values representative of the stress in the rotating member in the lateral and
orthogonal directions. producing a signal
elastic modulus, which signal is a function of the difference of the values of the signals of the first and second pairrepresentative of stress in the direction of lateral displacement and a signal having a value representative of the
difference between the first and second predetermined difierence betw
distances, and
producing a signal having a value representative of the viscous modulus, which signal is a function of the difference of the values of the signals of the first and second pair
representative of the stress in the direction orthogonal to representative of the stress in the direction orthogonal to
the direction of lateral displacement and a signal having a value representative of the difference between the first and second predetermined distances.

DEVICE FOR DETECTING THE AIR-FUEL RATIO OF AN INTERNAL COMBUSTION ENGINE Kenji Goto, Susono, Japan, asdignor to Toyota Jidosha Kogyo Keaul Goto, Susono, Japan, esmiguor to
Kabushikd Kaisha, Toyota, Japan
Filat
Filed Sep. 23, 1976, Ser. No. 725,840
Claims priority, application Jappan, May 25, 1976, 51-59578
U.S. Cl. 73-116


1. A device for detecting the air-fuel ratio of the mixture supplied to an internal combustion engine of the type including 4 Claims an exhaust gas recirculation system for recirculating a part of a bridge electric circuit consisting of four hot-wire electric resistance elements, each having an equal resistance value under the same ambient condition, the first and second elements being connected at the first terminal, the second and third elements being connected at the second terminal, the third and fourth elements being connected at the
third terminal and the fourth and said first elements being connected at the fourth terminal, said first and third elements are located in an exhaust gas recirculation passage of said exhaust gas recirculation system and said second and fourth elements are located in an air passage, the temperature of the air in said air passage being maintained
the same as that of the exhaust gas flowing through said exhaust gas recirculation passage,
2. A method for automatically determining the elastic and viscous moduli of a material with an eccentric rotating disc rheological test apparatus comprising the steps of
terminals, for supplying an electric current to said bridge electric circuit, and;
detecting means connected to the other pair of terminals
for detecting the changes of the electric current flowing between said other pair of terminals.

MOMETER CELL
Jooel WBhrl, Pfedelbach, Germany, assignor to Eric Thomas Scriven, Wheathampotend, England, a part interest
Filed Nor. 17, 1975, Ser. No. 632,892

Filed Nor. 17,1975, Ser. No.
Int. Cl. ${ }^{2}$ G01L $5 / 00$
U.S. C. 73-141 R $\quad 2$ Claims


1. A dynamometer cell comprising a gyroscope having a gyroscope rotor and inner and outer gyroscope gimbals sup-
porting the rotor, a motor for rotating the gyroscope rotor at constant speed, lever means, reacting between the inner and outer gyroscope gimbals, to which a force to be measured is applied to induce a primary precessional motion of the gyroscope, a linkage between the lever means and the point of application of the force, and means arranged between the lever precessional motion from the lever means to the linkage, which linkage comprises at least two parts with at least one bearing member between facing surfaces of the parts, said bearing member being able to move relative to both parts to permit relative movement between the parts in a plane no limal
direction in which the force is transmitted to the linkage between the respective facing surfaces irrespective of the position of said lever means.

## 4,095,464

METHOD AND APPARATUS FOR TIRE TREAD ANALYSIS
Frans Nico Breedilk, Hunsdorf, Luxembourg, assignor to The Goodyear Tire \& Rubber Company, Akron, Ohi Filed Jun. 21, 1976, Ser. No. 697,816
Int. C. ${ }^{2}$ B60C $11 / 00$; G01M $17 / 102$
U.S. C1. 73-146

1. A methid of analyzing surface contact areas created by tire tread patterns comprising the steps of:
A. providing a high contrast image as defined by the tire tread contact area selectively established on a transparent plate having a preselected colored fluid thereon to optimize the contrast between the tread in conte
plate and tread not in contact with the plate;
B. illuminating the image;
C. photographing the tread contact image on a highspeed, high contrast black and white photosensitive medium having a spectral sensitivity for the colored fluid on the plate to provide a photographic image of the tread contact area;
D. illuminating the photographic image
E. optoelectronically converting the illuminated photographic image to an electrical signal indicative of the tread contact area;
F. providing an electrical reference signal that is established as a control contact area; and
G. comparing the signal indicative of the tread contact area to the reference control signal to obtain a visual readou indicative of a percentage of the control reference. 17. Apparaus a $o$ analy yer corf their surface conact are
tire tread contact area comprising a transparent plate having a colored fluid thereon to provide a contrast be
tween tread areas in conta
in contact with the plate;
shutter TV positioned to accept the tread contact image through the plate and convert the iluminated image
electrical signal indicative of the tread contact area; means to generate a reference electrical signal indicative of a control tread contact area; and
eans to compare the signal indicative of the tread contact area to the reference signal to provide a readout indicative of the difference between the two.

4,095,465
TESTING ADHESION OF CORD OR WIRE IN RUBBER Ronald L. Rongone, Cuyahoga Falle; David W. Nichoivon, Kent, and Roger E. Payne, Akron, all of Ohlo, asignors to The Goodyear Tirre \& Rubber Company, Alron, Ohio Filed Mar. 25, 1977, Ser. No. 781,2
U.S. C. 73-159 10 Claims


1. Method for testing interface adhesion of wire and rubber (a) cutting steps of:
(a) cutting a plurality of segments each of predetermined length of such wire;
(b) preparing said rubber in sheet form of predetermined ancured state and cutting from such sheet a pluraity of coupons of predetermined length and width (c) preforming said coupons each in preforming means to form a plurality of pairs of uncured preformed coupons; (d) placing said wire segments in surface contact one pair that each segment of said one pair thereof be located in a single straight line, such that a portion of each segment be seated on said first coupon and the remaining portion thereof be extended outward lengthwise of said coupon pair be spaced apart a predetermined minimum distance along such line;
(e) disposing the other coupon of each pair thereof and respectively associated first coupon in face-to-face contact with the respective pairs of wire segments each having a portion embedded therein so associated each pair of cou-
pons to form an integral test specimen. pons to form an integral test specimen;
f) molding and curing the specimens in mold means com prising associated parts of said preforming means
g) releasing said specimens from said mold means
(h) gripping only the wire segments of a selected specimen and pulling said wire segments oppositely along said sin gle line at a predetermined rate while measuring the force exerted to separate one of said wire segments from such (i) specimen; force
easured being useful to determine the interface adhesion of said wire and said rubber.

4,095,467
DISPOSABLE TAPE CORD THERMOMETER thn F. MeGlynn, White Plains, N.Y., assignor to IPCO HospiCorporation, White Plains, N.Y.
Filed Jul. 9, 1975, Ser. No. 594,218
U.S. Cl. 73-362 AR ${ }^{\text {Int. Cl. }{ }^{2} \text { G01K 7/00 }} \quad 24$ Claims


QUICK INSERT FLUME FOR USE
Jemes G. Schotiter, ond Wendall C. Gates both or Sut C Calif., assignors to Menning Environmental Corporation Santa Cruz, Calif.

Filed Oct. 1, 1976, Ser. No. 728,850
U.S. CI. 73-215


1. An electronic sensing assembly comprising: a probe unit disposable and severabable electrically conductive one end of a posge fore and severable electrically conductive tape; a carng: means for housing said cartridge; means for ing: means for housing said cartridge; means for electrically powered electronic circuitry and indicating means; means for severing said tape at said cartridge and means permitting withdrawal of additional lengths of tape, whereby a fresh length of tape can be withdrawn for each use with a connectible probe after severing the former length which was subject to a prior use.

TWO CORE MAGNETIC TEMPERATURE SENSOR Edward Frank Sidor, Lombard, III., assignor to Illinois Tool Works Inc., Chicago, III. Continuation-in-part of Ser. No. 625,784, Oct. 24, 1975,
abandoned, which is a continuation of Ser No abandoned, which is a continuation of Ser. No. 533,364, Dec. 16,
1974, abandoned. This application Jan. 31, 1977, Ser. No. 763,955
The portion of the term of this patent subsequent to Apr. 20, Int. C. ${ }^{2}$ G01K 7/38
U.S. Cl. 73-362 R

1. An arrangement for metering fluid flow comprising an apparatus providing a flow channle for installation in a sewer
well having an inlet pipe and an exit pipe located near the bottom of the sewer well, a level measuring device for detecting the level of a fluid flowing between the inlet and exit pipes, said device being mechanically unconnected with said appara us, said apparatus including a cylindrical exit section for place ment in the exit pipe, an inlet section attached to said cylindr cal exit section, a metering flume mounted in said inlet sectio bottom surface in said inlet surface, an inflatable collar sur rounding said cylindrical exit section, so that when said exit section is placed in the exit pipe and said inflatable collar is inflated, a seal is provided between the exit pipe and said cylindrical exit section, whereby all fluid flowing through said tion, said apparatus further including means attached to said inlet section for providing a reference level, said reference level being located a predetermined height above said bottom surface and cooperating with said level measuring device whereby an indet level for the flow channel may be determined while fluid is passing therethrough

2. A temperature sensor comprising first and second separate inductively wound elongated, hollow, tube-shaped magnetic cores, each having an independent, self-contained magnetic
flux path provided by a closed loop configuration of magnetically permeable material so that no substantial amount of mag. netic flux is externally coupled from either of said cores, said perature having different inherent magnetic permeability vs. temperature characteristics which are controlled so that the induc-
nce vs. temperature characteristics of the two cores intersect being substantially transverse to the remainder of said washer ance vs. temperature characteristics of the the therature which is to be sensed, within a predeter- like member, said washer-like member containing abrasive mined temperature range, and so that neither of said cores ndergoes either a first or a second order transition over saic oupled to said sensor and sensing means coupled to soid sen sor which indicates that at least one of said magnetic cores is or which indicates that at least one of said magnetic cores is
affected by a temperature of a predetermined magnitude when the output signals derived from said magnetic cores are approximately equal.

4,095,469
Yemperature measuring apparatus
Takeo Yamada, Yokohama; Katsujiro Watanabe, Tokyo; Seigo assignors to Nippon Kokan Kabushaiki Kaisha, Tokyo, Japan Filed Mar. 11, 1977, Ser. No. 776,901 Claims priority, application Japan, Mar. 17, 1976, 51-28140
U.S. CI. $73-362$ R


```
means therein to provide a scraping action of said inner periphcral portion thereof against said piston member to clean the same as said piston member is moved relative thereto.
*)
```



1. A temperature measuring apparatus for measuring tem perature of a metallic body utilizing eddy current effect, comprising:
its one input terminal connected to a detecting coil aving its one input terminal connected to a detecting coil and
including a dummy coil to which positive feedback con nection is made;
an oscillator connected to the other input terminal of said operational amplifier to supply thereto a signal having constant amplitude and a predetermined oscillation fre quency, the other input terminal of said operational ampl-
fier being connected to provide a negative feedback circuit having an adjustable negative feedback factor;
a phase shifter connected to an output terminal of said oscillator for adjusting the phase angle of the signal from sai signal; and
a detection circuit connected to said operational amplifier and said phase shifter for synchronously detecting the output of said operational amplifier with the reference signal applied from said phase shifter to produce a signa indicative of a measured temperature

THERMAL ELEMENT AND PARTS THEREFOR AND trols. Companyl Richmon, V2.
Filed Jun. 22, 1977, Ser. No. 808,874 U.S. C. 73-368 Jun. 22, 1977, Ser. No.
Int. C1.2 G01K
U.S. Cl. 73-368 20 Clims 1. In a thermal element having a cylinder member carrying a piston member that projects out of an opening of an end of said cyinder member to be extended and retracted relative comprising a washer-like resilient seal member carried by said and of said cylinder member and having an opening therethrough and press-fittingly receiving said piston member therethrough in such a manner that an inner peripheral portion of said washer-like member is turned into substantially parallel

LIQUID SAMPLE DILUTION SYSTEM Richard A. Mowery, Jr., Bartlesville, Okla, assignor to Phillips Petroleum Company, Bartlesville, Oklia. US. C. 73-42 GC Int. Cl. ${ }^{2}$ G01N $1 / 20$


1. An apparatus for intermittently providing diluted samples from a sample source, said apparatus comprising,
(1) a mixing chamber wherein a stream of liquid diluent and a stream of sample liquid can combine to produce an effluent stream having a substantially constant concentration of said sample liquid,
(2) an outlet from said mixing chamber,
(3) a first conduit means providing a path for flow of sample (3) a first conduit means providing a paih for now of sample
liquid from a sample source into said mixing chamber, (4) a three-way valve in said first conduit between said sample source and said mixing chamber,
(5) a second conduit means providing a path for flow from ae second outlet of said three-way valve to flow from discharge point,
(6) a third conduit means providing a path for flow of sample (6) a chirg conduit means providing a path for flow of sample
liquid around said three-way valve from a point in the first conduit means upstream of said three-way valve to a point in the second conduit means,
(7) a first restrictor in said third conduit means,
(8) a second restrictor in said first conduit means betwe
said three-way valve and said mixing chamber, and
(9) a fourth conduit means providing a path for flow of
liquid diluent from a liquid diluent source into said mixing chamber, and
(10) a flow rate control means for controlling the rate of fow of liquid diluent into the mixing chamber

## 4,095,473

Robert L. Batchelor, Orange, and Thomes J. Lynch, Houston, both of Tex., axignors to Gulf Oil Corporation, Pittsburgh,

## Fled May 16, 1977, Ser. No. 797,648 Int. C1. ${ }^{2}$ G01N $9 / 02$

U.S. C. $73-10$ Claims

1. Apparatus to measure the density of a particulate porous
U.S. C. $73-133$
2. Apparatus to measure the density of a particulate porous polymer sample consisting essentially of;
a a sample cell of fixed volume includin
ting and discharging gas therefrom,
b. 8 and charging gas therefrom, b. a sampie contain
c. a gass reservoir of fixed volume having a valve to admit gas thereto,
d. a valved line providing gas comm
sample cell and the gas reservoir,
e. first instrument means associated with the sample cell to
measure the weight of the sample container and generate a signal responsive thereto,
to measure the gas pressure thered with the gas reservoir to measure the gas pressure therein and generate a signal
responsive thereto, and responsive thereto, and
g. computing means, including elements, to;
(1) receive signals from the first instrument means and calculate the weight of a sample in the sample container,
(2) receive signals from the second instrument means and
calculate gas pressures therefrom,

(3) calculate the free gas volume in the gas reservoir and the sample cell from the gas pressure of the gas reservoir, when islated from the sample clll, and the gas tion with the sample cell,
(4) calculate the volume of a sample in the sample container from the free gas volume determined in $g(3)$ and the known volumes of the gas reservoir and the sample (5) call,
(5) calculate the density of the sample from the sample weight determined in
mined in $g(4)$, and
(6) generate a signal indicain

MONITORING SYSTEMS AND INSTRUMENTS
Peter Hancock, and Terence Edward Clifton, both of Bedford, England, aedignors to Imperial Chemical Industries Limited, London, England

Filed Jul. 19, 1976, Ser. No. 706,553
U.S. CI. ${ }^{73-579}$


1. Monitoring apparatus utilizable with a wall delimiting at least in part an environment to be monitored, and comprising means for continuously monitoring a continuously changing prising: ing means comprises means for detecting the amount of corrosion or surface deposition on the vibratory element,
vibration
ment,
ment, coupling means affixed to said element for operatively cou means and for transmitting vibrations from said vibration means and for transmitting vibrations from seid
originating means to said vibratory element,
means for resiliently supporting said coupling means relative to said wall so that said vibratory element is disposed within said environment, and
the resonant frequency of said vibratory element being dif ferent from the resonant frequency of said coupling means or said supporting means.

$$
4,095,475
$$

APPARATUS AND METHOD WHEREBY WAVE ENERGY IS CORRELATED WITH GEOMETRY OF A MANUFACTURED PART OR THE LIKE OR TO Bruce Shawn Buckley, Cambridge, Mase., seaignor to Massa. chusetts Institute of Technology, Cambridge, Mass.

Filed Apr. 22, 1976, Ser. No. 67,
U.S. C. $73-628$
aid reservoir so as to define two chambers therein, communicating by an aperture in the piston disposed at a height substan aly equal to the zero level of the manometric liquid, and


1. A method of inspecting geometrical characteristics of a sample object of arbitrary shape, that comprises:
directing wave energy of a single frequency upon the obje which reflects the same;
detecting the reflected wave energy at a multiplicity of
locations to obtain an array of measurements; comparing a characteristic of the reflected wave energy detected at each location of said multiplicity of locations with the same characteristic of the original wave energy
directed upon the sample object to note any difference $\theta_{A}$ therebetween, and
comparing the difference $\theta_{A}$ for each said location with the difference $\theta_{B}$ of the same characteristic of a standard object located substantialy at the same position as the tween, and combining the differential $\theta_{\Delta}$ thus obtained for each said location with an array of sensitivities to produce an array of deviations, each deviation of the array of deviations being produced by a plurality of differentials
$\theta_{\Delta}$, the deviations thus obtained being used to determine if the sample object is within tolerance with regard to geometry.

## 4,095,476

SINGLE SCALE U.TYPE MANOMETER
Gabriel Benon, Paris, France, assignor to Societe Industrielle
d'Etudes et de Realizations
Scientifiques S.I.E.R.S., Paris,
France Flied Feb. 23, 1977, Ser. No. 771,390
U.S. C1. 73-747 Int. C1. ${ }^{2}$ G01L $7 / 18$
$\qquad$ 1. A U-type manometer, particularly for use in measuring
the height of liquids of different densities held in containers, such as ballast-tanks or storage tanks, comprising a calibrated measuring tube, a graduated scale, a reservoir or manometric liquid communicating with said measuring tube, a connection be measured and said reservoir, a piston sealingly mounted in

means for moving the piston horizontally within the reservoir for correcting the density of the liquid to be measured by varying the effective area of the manometric liquid.

TWO AXIS RATE GYRO
Harold D. Morris, Orinda, Calif,, and Pomeal F. Aemar, Bellerue, Wash,, asignors to Systron-Donner Corporation, Con-

Continuation of Ser. No. 659,266, Feb. 19, 1976, sbandoned. This appllication Jun. 6,1977 , Ser. No. 803,797 U.S. C. 74-5.6 D Int. C1. ${ }^{2}$ G01C 19/28

19 Claim


1. A multi-axis angular velocity sensor for sensing angular velocity about two intersecting axes, comprising a framework, a motor mounted on said framework, an output shaft on said motor for providing rotational motion, a rotor having a spin axis aligned with and coupled to said motor output shaft, said rotor having a continuous periphery and opposite rotor faces, means integral with said rotor deflecting in a bending mode for diametral axis, so that when angular velocity inputs are applied about the two intersecting axes said continuous rotor periphery moves in restrained rotation about first and second diametral axes which are each substantially orthogonal to one of the two intersecting axes, said means for permitting restrained rotation having an angular spring rate for urging said continuous rotor
periphery toward a neutral spin plane in the presence of torques about said first and second axes, and a plurality of pickoff means spaced from said rotor faces for producing an output signal related to the spacing therefrom.

4,095,478
SPROCKET-WHEEL, ESPECIALLY FOR MINING MACHINES Wincentego Pstrowskiego, Gliwice and Rybnika Slaska im Maszyn "Ryfama", Rybnik, both of, Poland Filed May 27, 1976, Ser. No. 690,775
Claims priority, application Poland, Jun. 4, 1975, 180960 Claims priority, application Poland, Jun.
Int. Cl. ${ }^{2}$ F16H $55 / 30$
U.S. CI. 74-229


1. A combination chain and sprocket wheel, particularly for 1. A combination chain and sprocket wheel, particularly for
driving mining machines, said chain engaging said sprocket
wheel having a first set of links lying in a plane perpendicular whete having a first set ol tinks lying in a plane perpendicular
to the axis of said sprocket wheel and a second set of links lying in planes parallel to the axis of said sprocket wheel, said links
of said first and second sets alternately interlocking forming of said first and second sets alternately interlocking forming
said chain, said sprocket wheel having teeth around the periphsaid chain, said sprocket wheel having teeth around the periph-
ery thereof, each tooth having nonparallel flat seats on both ery thereof, each tooth having nonparallel hat seats on both
sides thereof along the periphery of the sprocket wheel, thus sides thereof along the periphery of the sprocket wheel, thus
providing twice as many seats as teeth, whereby each seat has on one side along the periphery of the sprocket wheel a tooth
and on the other side of each seat an adjacent seat, projections of each pair of adjacent seats intersecting in a line parallel to said axis, each tooth having two prongs, alternate links of said
first set lying between said prongs, the remainder of said first first set lying between said prongs, the remainder of said first
set of links lying along the projected lines of intersection of set of links lying along the projected lines of intersection of
adjacent seats, each link of said second set lying on a seat, wherein the wear of said teeth is relatively small compared to the wear of teeth on said wheel when the number of teeth are
not smaller than the number of seats. not smaller than the number of seats.

## 4,095,479

EXPANSIBLE PULLEY WITH TORQUE AND CENTRIFUGAL RESPONSE John P. Lundberg, Pequot Lakes, Minn., assignor to Scorpion, Inc., Crosby, Minn.
Filed Jul. 19, 1976, Ser. No. 706,763 U.S. C. 74-230.17 E

9 Claims


1. A pulley assembly for a V belt comprising first and second pulley sections, each of said sections comprising one side of the
nected to a shaft, said second section being mounted for move ment annularly and axially relative to said first section in direction toward and away from the first section to define a variable
width $V$ belt groove between the sections, at least one of said sections including a hub, rib means on the hub extending in generally radial direction to define a drive surface extending outwardly from the axis of the shaft and having a length extending in direction along the longitudinal axis of said shaft and part annularly around the hub, and a follower member driv-
ably mounted on the other of the sections from the section having said hub, said follower member comprising a removable saddle straddling the rib and effecting a driving engagement therewith when the second section tends to be rotated relative to the first section, and means tending to urge said
pulley sections toward each other when they are under rotapulley sections toward each other when they are under rota-
tion.

METHOD FOR MAKING POW
NG POWER TRANSMISSION
Nile L. Schwabauer, Northglennn Colo., assignor to The Gates Company, Denver, Colo.
Filed Sep. 29, 1975, Ser. No. 617,338
U.S. CI. 74-231 P

17 Claims


1. A method for making power transmission belting from an uncured elastomeric belt body having at least one stable length tensile member embedded in the body, comprising the steps of
concentrically assembling the belt body adjacent an inwardly disposed metal mandrel, said metal having a coefwardly disposed metal mandrel, said metal having a coef-
ficient of thermal expansion of at least about $10 \times 10^{-6}$ per ${ }^{\circ} \mathrm{F}$;
heating heating said mandrel and causing it to expand against the belt body and to maintain the stable length tensile member under tension;
subjecting said be subjecting said
said mandrel;
sapinandre; $\quad$ pressure in a direction toward supplying heat units to the belt body beginning preferen-
tially at that portion of the belt body adjacen tially at that portion of the belt body adjacent the metal
mandrel and then outwardly toward the remaining por mandrel and then outwardy toward the remaining po
tions of the belt body away from the metal mandrel, to establish a heating gradient across the belt body to ensure maintenance of the tensile member under tension; and while maintaining the tensile member in tension, curing said belt body.

JOINT MECHANISM OF MANIPULATOR
Masuo Kasai; Kanji Kato, both of Kokubunjil; Yasuhide Matsumura, Hachioji; Kiyoo Takeyasu, Tokorozawa, and Raij Shimomura, Kokubunji, all of Japan, assignors to Hitachi, Ltd., Japan
Filed Dec. 1, 1976, Ser. No. 746,628 Claims priority, application Japan, Dec. 19, 1975, 50-150576 U.S. CI. 74-469 Int. C1. ${ }^{2}$ B25J $3 / 02$ 19, 1975, 50-150576 1. A joint mechanism of a manipulator comprising 1. A joint mechanism of a manipulator comprising
a first yoint having a rotating shaft in alignment with the
Z -axis of an X-Y.Z Cartesian coordinate system,
second joint connected to the rotating shaft of said first setting of said mirror head about said first axis, second mirrorjoint and having a
a third joint connected to the rotating shaft of said second
joint and having a rotating shaft extending along a vector

passing
assing through the origin of the Cartesian coordinate and an arm assembly connected to the rotating shaft of said third joint comprising linkage means which is driven so moved on the line of said vector.

$$
\begin{aligned}
& \text { RACK AND PINION STEERING APPARATUS }
\end{aligned}
$$ setting of said motion from rotation of said control member and to adjust the angular setting of said mirror head about said second axis, and a limited lost motion device between said control member and eter Kirschner, Wolfsburg, Germany,

Filed Nov. 22, 1976, Ser. No. 743,915

Claims priority, application Germany, Feb. 18, 1976, 2606365 | Int. C1. ${ }^{2}$ B62D 3/12, $1 / 20$ |
| :--- |

3 Claims
ne of said first and second mirror-tilting means constructed and arranged that a degrec of adjustment of said mirror head about one of said axes can be effected solely by a limited degre of rotation of said control member without upsetting the angu-
lar setting of said head with respect to the other of said axes.
U.S. C. $74-498$


## 6365



1. Steering appartus for a motor vehicle comprising a housing a rack, displaceable along a longitudinal axis and engaged with a rotatable pinion in said housing, compression spring
means in said housing urging said rack into engagement with means in said housing urging said rack into engagement with
said pinion and having an adjusted compression distance, and a self-adjusting mechanism arranged between said compression means and said housing, compression means and said housing.

EXTERIOR REAR YIEW MIPROR FOR VEHICIES Archibald Sargeant, Felpham, England, assignor to Wingard Limited, Sussex, England
Claims priority, application United Kingdom, Jan. 19, 1975, 2242/75
S. Int. Cl. ${ }^{2}$ F16C 1/10; A47G 1/24; G02B $5 / 08,5 / 10$ U.S. C. 71 Claims

1. A rear view mirror for a motor vehicle comprising a mirror head mounted for angular movement about a first axis and about a second axis at night angles to said first axis, a single
rotatable control member for adjusting the angular positions of rotatable control member for adjusting the angular positions of
said mirror solely by rotation of said control member and without axial movement thereof, first mirror-tilting means comprising an eccentic elemencor cortion to adjust the angular

BALANCING SYSTEM FOR ROTARY ELEMENT John A. Gautraud, Lexington, Mass., assignor to Northrop

Forporation, Norwood, Mass.
Filed Jan. 31, 1977
 U.S. C. ${ }^{\text {Int. }} \mathbf{7 4}-573$ R ${ }^{2}$ G01


1. In an instrument having an element disposed for rotation about an axis, a system for changing the center of gravity of said element comprising a plurality of thermally responsive materials normally disposed in a solid state in a given fixed relationship to said element and influencing the center of gravity thereof, each of said materials having a different melting emperature, means for repetitively raising the temperature of said thermally responsive materials to render them molten and
movable relative to said element, and means for selectively resolidifying said materials in an altered fixed relationship to said element whereby said center of gravity is changed.

LASTIC SHAFT COUP $4,095,485$
ELASTIC SHAFT COUPLING WITH ATTENUATION OF Heinz Max Hiersig, Duseeldorf, Germany, ansignor mann Aktiengesellechnft, Duseldorf, Germany
Filed Jfin. 7,1976 , Ser. No. 647,146 Claims priority, application Germany, Jan, 9, 1975, 2500901 U.S. CI. 74-574


1. In a highly elastic coupling having a first, inner annular coupling portion and a second, outer annular coupling portion means for rotation about a common axis, the improvement comprising: a plurality of radially extending arms connected to said first coupling portion;
a plurality of holders connected to said second coupling portion, extending axially therefrom and being symmetriplurality of shock absorbers regular!
axis and connected respectively to said arms and said
holders so that said holders so that each holder and each arm is connected to
two of said shock absorbers, so that the shock absorbers two of said shock absorbers, so that the shock absorbers rotational oscillations of the parts relative to each other.

## EVICE FOR CONTPO:095,486

AN AUTOMATIC TR ANCK.UP CLUTCH IN Kiyoohi Ohnuma, Toyota, Japan, masignor to Toyota Jidosha Kogyo Kabushild Kalsha, Toyoten, Japan

## Claims priority, application Japun, Mar. 2 , 197

U.S. C. $74-645$ Int Cl. ${ }^{2}$ F16H 47/00; F16D 37/00
645

1. A device for controlling a lock-up clutch in an automatic transmission including a torque converter equipped with a
lock-up clutch, comprising:
first and second oil pressure passage means which supp
first and second oil pressures to first and second oil pressure servo means, respectively;
a relay valve which is controlled by said second pressure and delivers said first pressure as an output pressure when said
second pressure is below a first predetermined value delivers said second pressure as an output pressure when said second pressure is above said first predetermined value; and

a lock-up shift valve which is shifted by a balance of said output pressure of said relay valve and line pressure and changes over the supply of oil pressure to engage said
lock-up clutch when the difference between the outpu pressure and the line pressure is smaller than a second predetermined value and to disengage said lock-up clutch when said difference of pressure is larger than said second predetermined value

POWER TRANSMISSION DRIVELINE UNIT Bert W. Cartwright, Mt. Clemens; Dugald Cameron, Grosse
Pointe Woods; James A. Haguman, Miadicon Heightr; Robert Pointe Woors; J Jmess A. Hageman, Madison Heightr; Robert
A. Hoetger, St. Clair Shores; Uno Kunaik, Royal Onk, and William Nortman, Grosere Pointe, all of Mich, assignors to Chrysler Corporation, Highland Park, Mich. Filed Aug. 11, 1976, Ser. No. 713,460
 U.S. Cl. $74-695$


1. In an engine driven vehicle having an engine extending pair of wheels at the same end of said ehe one end thereof, a drive transmission means connecting saide, engine to automatic wheels, said automatic drive transmission means including
housing attached to said vehicle, said housing having a torque ring having at least an elastically deformable portion mounted converter section, a speed change section adjacent said torque in said housing, and means for adjusting the pressure applying converter section, a differential having portions located in generally vertically planar alignment with said torque con verter section, and a transier section having portions in gener ally vertically planar alignment with said speed change section said engine having a crankshaft, a torque converter in said axis as said crankshaft and adapted to be driven by said engine crankshaft, said torque converter having a torque converter output shaf extending into said speed change section, an annular spider connected to said shaft, first and second sets of clutch discs drivingly connected to said shaft, a speed change section output shaft mounted in said speed change section, a slected on said speed change section output shaft, first drum means connected to said sleeve, a third set of clutch discs connected o said drum means and adapted to frictionally engage said firs set of clutch discs, a first planet pinion carrier connected to said speed change output shaft and having first pinions engaging said first sun gear, a first annulus gear engaging said first pinions, a fourth set of clutch discs connected to said iirst of clutch discs, a second planetary pinion carrier having second pinions engaging said second sun gear, second drum means connected to said second pinion carrier, a second annulus gear connected to said speed change section output shaft and engaged with said second pinions, first and second brakes for drum means, an output gear connected to said speed change section ohutput shaft, said speed change section output shaf and said output gear rotating on said axis, a transfer shaf rotatably mounted in said transfer section on an axis paraliel to said axis, a first transfer gear engaged with said output gear an attached to said transfer shaft, a governor valve body attached o said transfer shaft, a second transfer gear on the other end of differential including a carrier, said carrier having an annular gear thereon driven by said second transfer gear and rotatable on an axis parallel with the axis of said transfer shaft, said differential including pinions rotatable with said carrier and side gears driven by said pinions, said side gears being conbeing transmitted to said axle means when said second and fourth sets of clutch discs are engaged and said second brake is applied, a second speed drive being transmitted to said axle means when said second and fourth sets of clutch discs are engaged and said first brake is applied, and a third speed drive being transmitted to said isle teans wirst seluth discs ourth sets of clut are engaged.

## 4,095,488

PLANETARY GEAR SYSTEM
Sven Walter Nilseon, Partile, Sweden, asagnor to SKF Nova AB, Gothenburg, Sweden
Filed Apr. 7, 1976, Ser. No. 674,642 Claims priorty, application Sweden, Jun. 4, 1975, 7506355
U.S. C. 74-801
in. C. ${ }^{\text {F }}$ (16N $1 / 28 \quad 8$ Claims

1. A planetary gear system comprising a housing, an input shaft at one end of said housing and an output shaff at the other end thereof, transmission means drivingly connecting said shafts including, a planet support having a ceast said journals mounting a planet friction wheel adapted to contact a friction

relation between said planet friction wheel and said elastically deformable portion of said friction ring.

INDEX APPARATUS FOR MACHINE TOOL oshifumi Hasegara, Kariya, Japan, assignor to Toyoda-Kok Kabmehild-Kaisha, Japan Flied Apr. 15, 1977, Ser. No. 788,085
U.S. C. 74-820 int. C1.2 B23B 29/32 4 Claim


An index apparatus for a machine tool comprising:
a base;
support shaft slidably and rotatably supported said base;
tool support carrying a plurality of tools and fixedly supported on the upper end of said support shaf;;
a first gear coupling fixedly mounted on said base;
a second gear coupling provided at the underside of said tool support and engaged with said first gear coupling when said tool support is located at a lower position thereof; a first gear member rotatably but non-slidably mounted on said support shaft and provided with a threaded portio threadedly engaged with said base
means for indexing said tool support positioned at an upper
an operating shaft slidably received in said base;
a sleeve member slidably received in said base and provided with a notch and connected to said operating shaft to a first rack formed on said sleeve member and engaged with said first gear member;
eans for moving said operating shaft a distance larger than said predetermined distance to move said support shaft and said tool support vertically, through said first rack means;
a lock shaft mounted in said base to be slidable in a direction
perpendicular to the movement of said sleeve member and to be engaged with the notch of said sleeve member, to tool support is moved to the upper position thereof, so a to disengage said second gear coupling from said first gear coupling; and
resilient means for urging said lock shaft toward said sleeve member.

METHOD OF MAKING CHISEL-TYPE CUTTER LINK Renwick S. Atkinson, Portiand, Oreg,, assignor to Carlton Com pany, Mil waukie, Oreg.

Filed Aug. 19, 1976, Ser. No. 716,016
U.S. C. $76-112$

5 Claims


1. A method of forming from a blank a chisel-type saw-chain cutter link comprising
producing a first be
producing a first bend in the blank, with such having inside and outside corners and being located at a first position in
the blank which is to one side of another position in the blank wherein a final bend is desired,
producing a subsequent bend in the blank, with such hai inside and outside corners that are shifted from the corners of the first-mentioned bend, and with the secondmentioned bend being located toward said other position
from said first position, and from said first position, and
during producing of said second-mentioned bend, flowing during producing of said second-mentioned bend, flowing
material in the blank from the region of the first-men material in the blank from the region of the first-men-
tioned bend toward the region of the second-mentioned
bend.

METHOD FOR MAKING POWER BORING BITS William J. Hildebrandt, West Simsbury, Conn,, assignor to The Stanley Works, New Brituin, Comn. 1976 , Pat No $4,050,841$ This application Apr. 25, 1977, Ser. No. 790,433
U.S. Cl. $76-108$ R Int. Cl. ${ }^{2}$ B21K $5 / 02$

13 Claims

$$
\underbrace{-0}_{-}
$$

1. In a method for making power boring bits, the steps comprising:
a. forming an elongated shaft member to provide a shank portion and a pointed tip portion at one end thereof, said
tip portion being formed with cutting surfaces extending along a segment of the axial length of said tip portion from
he point thereof and circumscribing a circle of rotation of naximum radius at a location along the length of said tip portion spaced from said point thereof, said tip portion planar shoulder portion spaced from said point with the radial distance to said axial shoulder portion being less than said maximum radius, said shoulder portion having a length dimension extending axially of said shaft member and a width dimension extending perpendicularly to said length dimension;
rming a disc with a coaxial aperture and a channel perture, the portion of said disc along one edge of said channel being formed to extend at an angle from the plane of the body portion of the disc to provide a cutting lip ortion with a root end adjacent said body portion of said being substantially planar: seating said disc on said with said tip portion extending through said aperture of said disc and with said free end of said cutting lip portion projecting in the direction of said point and with the inner end of said cutting lip portion being disposed closely
adjacent said axial shoulder portion intermediate the width dimension thereof and inwardly of said circle of rotation of maximum radius; and
d. bonding said seated disc to said shaft member as seated.

TONG LOCKING MECHANISM
Charles W. Haynes, Spring, Tex., assignor to Joy Manufactur ing Company, Pittsburgh, Pa.
Filed Apr. 28, 1977, Ser. No. 791,752 Int. C1. ${ }^{2}$ B25B 17/00

8 Claims
U.S. C1. 81-57.15
engaged with the hinge means to rotate relative to the ear teeth spaced circumferentially around a portion of the gear teeth
socket:
means releasably securing the gear teeth portion of the socket in said opening, the releasable securing means including a movable locking sleeve having a locked position disposed around the fixed portion and the movable portion of the body to hold the body in the closed position, the locking sleeve being movable to a released position allowing the movable portion of the body to rotat relative to the fixed position;
a ratchet pawl extending into engagement with the gear
teeth portion of the socket to allow relative rotion be teeth portion of the socket to allow relative rotation be-
tween the socket and the body in one direction of rotation and to prevent said rotation in an opposite direction; and means for rotating the ratchet pawl to reverse the directio of relative rotation between the socket and the body.

1. A rotary power tong for the make-up and break-out of drilling rods and pipes comprising: a bifurcated frame having
first and second portions defining a central opening and an first and second portaionsenay in communication with said cen tral opening; rotatable gripping means mounted in said central
opening for holding and rotating rod or pipe about the axis of
said central opening; pivoting means attached to said firs frame portion; a door attached to said pivoting means; at least one door contact means attached to said door for transmitting force to said door; at least one frame contact means attached to said second frame portion for transmitting forces to said sec
ond frame portion; at least one hook-like door member opera bly connected to said door to engage said frame contact means; and at least one hook-like frame member rotatably connected to second frame portion so as to engage and disengage said door contact means.

## 4,095,49

John GEAR-OPERATED RATCHET WRENCH John H. Castoe, 10234 McVine St., Sunland, Caiif. 91040 Filed Apr. 13, 1977, Ser. No. 787,082 U.S. C. $81-63.2$

Int. Cl. ${ }^{2}$ B25B $13 / 46 \quad 27$ Claims
METHOD AND DEVICE FOR CUTTING A BUNDLE OF IRRADIATED NUCLEAR FUEL TUBES Gilbert Chaze, Bourg-la-Reine; Guy Cherel, Le Vesinet; Ren Guillotenu, Verrieres-le-Buisson, and Daniel Tucoulat, L Frette sur Seine, all of France, assignors to Commissariat velles, Courberoie, both of France $\begin{gathered}\text { Filed Sep. 2, 1976, Ser. No. 720,060 }\end{gathered}$ Filed Sep. 2, 1976, Ser. No. 720,060
Claims priority, application France, 2 Sp. 11, 1975, 7527896 U.S. C. 83-15


1. A method of cutting a bundle of nuclear fuel tubes comprising the steps of gripping by means of a manipulator a bunspigot and a top spigot, said bundle being disposed in a storage pond, completely introduced said bundle and said manipulato into a store, contacting and positioning said bundle with and relative to a movable reference plate disposed adjacent to a end of said store adapted to come into contact with a cutter said cutter, retracting said reference plate into a non-contact ing position with said bundle, moving said store until said end is adjacent and in contact with said cutter moving said bundle base spigot from said bundle, cutting said bundle less said top
spigot into predetermined portions, said manipulating mean Within said store continuously gripping said bundle during said the cap and turns the cap.
2. A gear-operated ratchet wrench comprising a body having an opening in it, the opening having an axis; an elongated hande sec
body about said axis;
a socket for being secured to an object to be rotated by the
wrench;
hinge means for rotating the body between a closed position and an open position to expand the effective size of the and an open position to expand the effective size of the
opening in the body to allow the socket means be in opening in the body to allow the socket means to be in-
serted in the opening, the body having a fixed portion噱 portion of the cap while the band grips the periphery of

a stiff but flexible band formed in a loop to embriace the periphery of such a radiator cap, the band having opposite ends adjacent each other,
a rigid swingable link interposed between the ends of the band and having pivotal connections to both ends of the band, the link being swingable relative to the ends of the radiator cap, and rigid handle on the link and swingable therewith in oppo-
site directions between a rest position wherein the band is distended to loosely embrace the radiator cap and a gripping position wherein the loop is constricted onto the cap, the handle having a pressure-applying portion located

measuring said material to said pre-set length; and means at said work station including cutting means for cutting material to said pre-set length, the improvement comprising, traying
means adjacent said work station for supporting said pre-set length of said material before, during and after cutting and operable to subsequently deliver said material, after cutting, to a remote location, said traying means being attached to said apparatus and comprising a one piece tray for supporting said
material; pivoting means connected to said tray for pivoting said tray whereby cut material is delivered from said tray to said remote location, said tray being self-storing in said pivoted position when not in use; and delay means operatively connected to said pivoting means for delaying operation thereof until said material is cut and entirely supported by said tray.

## 4,095,498

Frank McKay Biggar, III, Angola, N.Y., assignor to Frank M Biggar, Jr., Hamburg, N.Y.

Fied Jun. 14, 1976, Ser. No. 695,838
U.S. CI. 83-346

13 Claims

1. A strip handling apparatus for use with a scroll shea assembly having a double set of cutting edges for producin a scrill shear piler having a stacking box therein, and an infeed device, including in combination:
first chute means mounted to the out-feed side of the scroll shear assembly to direct the over-the-die cut strips of
material onto the scroll shear piler for stacking in the stacking box,
second chute means mounted to the scroll shear assembly becween the double set of cutting edges to direct the through-the-die cut strips of material
third chute means mounted to the infeed side of the scroll shear assembly to direct the butt-die cut strips of material onto and
control means associated with at least two of the said first chute means, said second chute means and said third chute means to thereby predeterminely control the operation of the scroll shear assembly to permit stacking of the die cur strips of material in the stacker box

## 4,095,497

ARTICLE HANDIING APPARATUS Billy R. Radford, Princeton, and Thomas Linwood McLemb, Four Oaks, both of N.C., assignors to GTE Sylva
rated, Stamford, Conn. Filed Apr. 6, 1977, Ser. No. 785,22
U.S. C. $83-157$ Int. Cl. ${ }^{2}$ B65H 29/24


1 Claim

1. In a rotary diecutting device for diecutting traveling web having a frame, a rotating diecutting cylinder mounted in cylinder mounted in bearings in the frame and means to receive a web between the cylinders, the improvement comprising adjustable means in the frame to apply force to urge the diecuting cylinder into contact with the anvil cylinder, the diecutting cylinder having a die accepting location thereon and means thereon spaced from the die accepting location cooper-
ating with the means to apply force to the diecutting cylinder; independently selective means to receive individual anvil cylinders and individual diecutting cylinders of a plurality of diameters; means to selectively receive diecutting cylinders of a plurality of preselected lengths; and including means to
adjust the relative distance between individual bearings in the frame.

## 4,095,499

ELECTRICAL HOUSEHOLD APPLIANCE EQUIPPED WITH A REMOVABLE ACCESSORY SUCH AS A VEGETABLE CUTTER
Edouard Pierre Julien Ades, Paris, France, assignor to Moulinex, Soclete Anonyme, Bagnolet, France Filed Feb. 1, 1977, Ser. No, 764,688
Claims priority, application France, Feb. 12, 1976, 7603848 Int. Cl. ${ }^{2}$ B26D 4/28
notor which is housed in the base and is controlled by at least one switch which is operable by a key siuated in the top part of the base and is actuated by a push button mounted on the which the key is brought into its working position, and an inoperative position, in which the key is in its position of rest,

said accessory being fixed to the base by at least one fastene comprising a hook articulated on the cover and the hook portion of which is releasably engageable with the base, wherein the push-button is mounted on the hook and is slidable in a guice on sald hook
said inoperative position.

AUTOMATIC RHYTHM PERFORMING APPARATUS HAVING A VOLTAGE CONTROLLED VARIABLE FREQUENCY OSCILLATOR

## Gichiro Aoki, 624, Hamamatra, Japan, assignor to Nippon

Gakki Seizo Kabushild Kaisha, Japan
Filed Nov. 24, 1976, Ser. No. 744,770
Cleims priority, application Japen, Nov. 29, 1975, 50-142547 U.S. Cl. 84-1.03 Int. Cl. ${ }^{2}$ G10H $1 / 00$

7 Claims

## 4,095,500 <br> ANGLE CUTTING GUIDE

 Willimm W. Rouse, 22 Bedinger Ave., Walton, Ky, 41094 Flled Jan. 28, 1977, Ser. No. 763U.S. C1. 83-762


1. An angle cutting guide, for use in giving a saw a rigid an perfect guide for any degree cut, whether said cut be horizonal or perpendicular, comprising: an elongated base; four euting guides between them, and having the appearance of an elongated single solid mass block except for the slits or cutting guides formed by the positions of the blocks said solid mass blocks having a cross section in which the width is substan tially equal to the height thereof to provide sufficient guiding surfaces; said blocks are permanently attached to said base nal back side of said solid mass blocks running parallel to the longitudinal edge of said base; the other longitudinal edge of the base being clear a saw guide slot perpendicular to the longitudinal axis of said block and base extending downwards through and from said solid mass block, and partially through said base for $90^{\circ}$ cuts; the pluraity of diagonally extending sow mass block and partially through said base for angular cuts.

1 Claim

In and An electrically operable household appliance comprising to a pre-set length, said apparatus comprising: a supply of a said able accessory, including a working bowl and a cover remov to a pre-set length, said apparatus comprising: a supply of a said able accessory, including a working bowl and a cover remov-
material; means for linearly removing said material from said ably covering the bowl, said bowl containing working elematerial; means for linearly removing savark station; means for ments adapted to be coupled to the output shaft of an electric

1. An automatic rhythm performing apparatus having a presettable rhythm tempo, comprising:
a plurality of tempo determining val
a plurality of tempo determining voltage signal sources;
voltage-controlled variable frequency ing an input and an output and responsive to a tempo determining voltage signal at the input to generate at the output a clock signal having a frequency which is a function of the voltage value of the tempo determining voltage signal at the input;
selecting means coupled to said tempo determining voltage signal sources for selectively coupling one of the plurality of tempo determining voltage signal sources to the input of said voltage-controlied oncillator means to thereby preset the rhythm tempo; and
rhythm signal generating, circuit means coupled to said voltage-controlied variable frequency oscillator means都 signal having a
the clock signal.

SOUND CONTROL SYSTEM IN AN ELECTRONIC MUSICAL INSTRUMENT William T. Moore, Mansfield, Tex, and Trdayald Adechi, HaTex. Filed May 21, 1976, Ser. No. 688,824 U.S. C. 84-1.13


1. In an electronic musical instrument having a pluraity o
movable keys for controlling the sound produced by a speaker,
sound control system for each key, comprising
signal generating means for generating a distinctive fre quency signal,
gate means having an input coupled to said signal generating means and an output coupled to said speaker,
first and second movable contacts,
first and second stationary contacts to be engaged by said first movable contacts
a third stationary contact to be engaged by said second a third stationary
movable contact,
said first movable contact being supported to engage said
first stationary contact and to be out of engagement with first stationary contact and to be out of engagement with said second stationary contact when said key is in its
normal position,
said second movable contact being supported to be out of
said second movable contact being supported to be out of
engagement with said third stationary contact when said key is in its normal position,
means adapted to be engaged by said key for moving said first and second movable contacts to engage said second depressed,
deprid firssed, movable contact being disengaged from said first stationary contact when said key is depressed,
said second and third stationary contacts being located such
that said second movable contact engages said third stater that said second movabie contact engages said third sta
tionary contact before said first movable contact engages said second stationary contact when said key is depressed first capacitor means electricaly
second movable contacts,
second movable contacts,
a source of voltage connected to said first stationary contact
a source of voitage connected to said first stationary contact
for charging said first capacitor means through said first movable contact when it engages said first stationary contact,
means for
means for connecting said third stationary contact to ground
to allow said first capacitor means to begin to discharge to alow said first capacitor means to begin to discharge stationary contact,
circuit means connecting said second stationary contact with soid input of said gate means,
ground means connected to said circuit means and to ground said ground means whacitor means to discharge through gages said second stationary contact, and second capacitor means connected to said circuit means between the connection of said ground means with said ing a quantity of charge from said first capacitor means dependent upon the time between en cagement of said second movable contact means with said third stationary
contact means and said first movable contact means with said second stationary contact means when said key is depressed,
said quantity
said quantity of charge received by said second capacitor means being applied to said gate means for passing the
output from said signal generating means to said speaker and for controlling the sound level of said speaker.
$\stackrel{4,095,503}{ }$
Carl Heagenson, 13212 Magnolis, No. 134, Garden Grove, Calif.
Filed Dec. 20, 1976, Ser. No. 752,142
U.S. CI. 84-173

Int. Cl. ${ }^{2}$ G10D $1 / 02$

1. A stringed musical instrument, comprising:
a body member having a closed end and an oppositely directed open end; a bridge supported by said closed end; a neck piece having connected thereto bearing means
adapted to rest on said body member adjacent said closed end and stabilizer means releasably connected to said body member adjacent said open end;
a tailpiece having connected thereto second bearing means adapted to rest on said body member adjacent said closed
end and second stabilizer means releasably connected to
said body member adjacent said open end; at least one tuning means mounted on said neck piece; and
at least one string being fastened to said tailpiece, extending over said bridge and neck piece, and being fastened to said tuning means, the tension in said string maintaining both
of said bearing means in contact with said body member $\longrightarrow$
ROTARY VALVE FOR BRASS WIND INSTRUMENTS Peter Hirsbrumner, Dorfgnse, Sumiswald, Svitzerland Filed Mar. 28, 1977, Ser. No. 781,974

2. In a rotary valve for a brass wind instrument of the type wherein a housing, having a cylindrical wall with four duct connecting pieces fixed thereto about the circumference
thereof, accommodates a rotating member including a middle portion and two journals by means of which said member is rotatingly but undisplaceably mounted in said housing, one of said journals projecting from said housing for enabling operation of said rotating member, and said middie portion having a substantially cylindrical exterior surface forming a fluid-tight joint together with said wall of said housing and having two said valve for causing said connecting pieces to communicate in pairs in both of two positions of rotation of said rotating member separated by $90^{\circ}$, the improvement comprising a said rotating member including:
a continuous metal shaft having end portions forming said journals,
said middle portion having a core element made of a plastic mounted upon said shaft, a metal jacket being snugly fitted upon said core element and forming said exterior surface, one or more radial or diametral bores piercing said middle portion, and
ne or more pins engaged in respective said bores for securing said jacket to said core element.
[4,095,505
Fred A. Hoey, San Antonio, Tex., and Robert A. Allmansberger, Bridgerater, N.J., assignors to National Musical String Company, New Brunswick, N.J.

Filed Feb. 4, 1977, Ser. No. 765,852
U.S. CI. 84-416
the barrel and being attached to a control mechanism consisting of a ratchet wheel counter actuated by levers and paws, the cylindrical actuating sleeve, a barrel mounted in the cylindrical receiver, a cylindrical breech block mounted concentrically within the cylindrical receiver and movable coaxially along the axis of the bore of the barrel, the breech block being
 1. A drum snare comprising at least one cord consisting of a
single piece of plastic material, said cord along its length having a plurality of enlarged diameter portions and a plurality of reduced diameter portions, said enlarged diameter portions gaid enlarged diameter portions from one another along the ength of said cord.
5. A drum snare comprising a set of cords arranged in spaced parallel relationship to one another in a common plane, each of aid cords of said set consisting of a single piece of plastic material and each of said cords along its length having a plural-
ity of enlarged diameter portions and a plurality of reduced diameter portions, saider enlarged diameter portions alternating with said reduced diameter portions so as to space said en arged diameter portions from one another along the length of said cord.

4,095,506
POSITION INDICATOR FOR GUITARS Walter E. Smith, P.O. Box A, Payette, Id. 83661
Filed Jan. 10, 1977, Ser. No. 758,194 Filed Jan. 10, 1977, Ser. No. ${ }^{\text {Int. Cl. }}{ }^{2}$ G09B $15 / 06$
U.S. Cl. 84-485 R 9 Claims
8. Means utilizing a slide bar for aiding in the location of
8. Means utilizing a slide bar for aiding in the location of
preselected positions on a stringed musical instrument, comprising:
supporting means disposed longitudinally with respect to the strings;
a set of projections carried by the supporting means nor mally extending above the strings and engageable by the slide bar to locate preselected positions on the strings;
said projections being deflectable to movement of the slide bar to permit such movement past a projection while

4,095,507
COMBAT FIREARM
Ross A. Close, 3831 Glenbrook Rd., Fairfax, Va. 22031 Filed Mar. 7, 1977, Ser. No. 775,39 Mir. 1 Cl. ${ }^{2}$ F41D $11 / 10$ U.S. CI. 89-129 B 1. A firearm having a cylindrical actuating sleeve concentric 1 Claim the actuating sleeve, having a cylindrical frame concentric to
connected to the receiver by two or more locking lugs and connected to the actuating sleeve by a pin, the breech blocking having a cam pin connecting the bolt and actuating sleeve and acting at a retainer for the firing pin, the breech block having
a lever type bolt catch mounted on the breech block for preventing the breech block from rotating during feeding of a loaded shell from the magazine to the barrel.

$$
\begin{aligned}
& \text { CAPACITIVE DISCHARGE FIRING MECHANISM } \\
& \begin{array}{l}
\text { Jeffrey A. Lienan, Huntsrille, Ala, assignor to The United } \\
\text { States of America as represented by the Secretary of the }
\end{array} \\
& \text { Army, Washington, D.C. } \\
& \begin{array}{c}
\text { Filed Apr. 4, } 1977, \text { Ser. No. 784,106 } \\
\text { Int. C. }{ }^{2} \text { F41F } 3 / 04
\end{array} \\
& \text { U.S. C1. 89-1.814 }
\end{aligned}
$$



1. A discharge firing mechanism for a lightweight portable rocket launcher in which the discharge firing mechanism includes a power supply system on a printed circuit, said power supply system including battery means, capacitors, and approsaid capacitors to leads of said printed circuit; and a firing
button with a plurality of switch contacts mounted in fixed
button with a plurality of switch contacts mounted in fixed
relation thereon and with each of said plurality of said switch contacts in contact with certain of said leads of said printed circuit to supply power to a first output lead of said leads and 10 a second output lead of said leads of the printed circuit for
connecting said power supply system for arming and firing rocket motor when said switch contacts have been actuated in unison to predetermined positions relative to said leads.

4,095,509
VACUUM DEGREE AUGMENTATION DEVICE
Kiyoohi Tateoka, Faujsava, and Tomizo Azuma, Yamato, both of Japen, asaignors to Tokico Ltd., Kawraskid, Japan
Filed Nov. 15, 1976, Ser. No. 741,676 Claims priority, application Japar, Nov. 20, 1975, 50-157714 .S. Cl. 91-369 B int. Cl. ${ }^{2}$ F15B 9/10

2 Clàms


1. A vacuum degree augmentation device of the type usable with push rod actuated vehicle brakes and having
a hollow body,
a plunger assembly shiftably mounted in said body and actulable by said push rod for movement of said plunger assembly from a standoy to an operated position thereof in
response to actuation of said push rad response to actuation of said push rod,
an output rod shiftably mounted in said body to be moved
with augmented force in response to movement of said with augmented force in response to mo
plunger assembly to its operated position,
a shiftable diaphragm-piston mechanism mounted in said body between a pair of fluid chambers within the latter, means for subjecting one of said chambers to a fluid pressure different from atmospheric pressure,
valve means operably associated with said plunger assembly for placing said chambers in communication with each
other to maintain both of said chambers at substantially other to maintain both of said chambers at substantially
the same fluid pressure when said plunger assembly in in the same fluid pressure when said plunger assembly is in fluid communication with each other and placing the other of said chambers in communication with the atmo sphere for shifting said diaphragm-piston mechanism in
response to the fluid pressure differential presented be response to the fluid pressure differential presented be-
tween said chambers when said plunger assembly is moved to its operated position,
a generally cup-shaped fulcrum plate mounted on said out put rod for transmitting a force to the latter for moving the same and having an arcuate portion generally concen
tric with the axis of said output rod and bonded with a narrow edge facing in a direction generally toward said plunger assembly and said diaphragm-piston mechanism, and
a reaction lever extending generally radially with respect to the axis of said output rod, having a pair of oppositely
facing side surfaces, and disposed with a radially inner facing side surfaces, and disposed with a radially inne
portion of one of said surfaces engageable by said plunge assembly, a radially outer portion of said one surface member members.
engageable with said diaphragm-piston mechanism and a radially intermediate portion of the other of said surfaces engageable with said edge portion of said fulcrum plate, the improvement of which is characterized by and comprises: said intermediate portion of said other surface of said reaction lever is provided with a convexly curved sur-
face contour having is longest dimension extending substantially radially for engaging said edge portion of said fulcrum plate in substantially one-point contact selationship,
rent
whereby the effects of normal working stresses and wear upon the interengaging portions of said reaction lever and contacting interengagement substantially fixed to prevent substantial changes in the augmentation ratio of the device as would otherwise result from said effects moving the location of the fulcrum for the reaction lever provided by its interengagement with said fulcrum plate.

Carl Verner Ohrberg, Poppelvej 1, Havnbjerg, Nordborg, Den-
mark ( 6430 Filed Nor. 3, 1975, Ser. No. 628,045
Claims priority, application Germany, Nor. 2, 1974, 2452092 U.S. C. 91-487 Int. Cl. ${ }^{2}$ F01B 13/06
2. A radial piston pump assembly comprising a housing, a 1. A radial piston pump assembly comprising a housing, a insert plate fixedly mounted in said housing in spaced relation to said valve plate, bearing means in said plates, a shaft journaled in said bearing means, a piston carrier member attached to said shaft between said plates, a track carrier surrounding said piston carrier member and having a cam track surface member surrounding said shaft and being disposed between said piston carrier member and said insert plate, an annularly shaped corrugated spring between said piston carrier member and said slide plate member resiliently biasing said members in opposite directions away from each other, a fluid passage extending through said members, a cylindrically shaped recess plug on the other of said members extending partially into said recess, a sealing ring surrounding said plug so that pressurized
$\stackrel{4,095,511}{\text { SET-UP CONTROL }}$
Allan Brent Woolston, Wyanerood, Pa, assignor to Molins Continuation of Ser. No. 696,670, Jun. 16, 1996, abandoned. This application Jun. 21, 1977, Ser. No. 809,147 U.S. C1. 93-58.2 $\mathrm{R}^{\text {Int. C1. }{ }^{2} \text { B31B } 1 / 20 \quad 8 \text { Claims }}$
cut transversely at successive intervals to form blanks of predetermined length and width, each of which blanks subsequently is wound upon itself from one side edge thereof toward its
other side edge to form a tube, the improvement comprising varying the width of successive blanks inversely with changes in the thickness of said sheet material.

3. Apparatus for processing a moving box blank including a rotatable shaft having a plurality of rotary elements mounted thereon at least one of which is mounted for lateral movemen
along the longitudinal axis of the shaft in response to rotation of a lead screw operatively associated with the element by a lead screw motor, comprising:
means for generating a digital set point signal indicative of a desired lateral position of a rotary element along a rotatable shaft;
element on the shaft and for generating a digital signal
eltans for that and indicative thereof;
means for comparing said actual position signal to said set point signal and generating an error sign
means for causing a lead screw motor to rotate a lead screw and move the movable rotary element along the longitud nal axis of the shaft in a first direction directly to said nesired lateral position; and
means for sequentially causing the lead screw motor to rotate the lead screw and move the movable rotary element along the longitudinal axis of the shaft in a second direction to and beyond said desired lateral position and to
rotate the lead screw and move the movable rotary elerotate the lead screw and move the movable rotary eledirection directly to said desired lateral position.

WINDING OF UNIFORM DIAMETER TUBES
Martin H. Stark, Saginaw, Mich, assignor to Arrow Paper Products Company, Seginaw, Mich.
Filed Apr. 8, 1976, Ser. No. 674,950
U.S. CI. 93-81 R

12 Claims


## PISTON WITH GUDGEON PIN <br> AKING SAME MLTHOD OF

 Albert Block, Glucksburg, Germiny, essignor to Danfoes A/S Nordborg, DenmarkFlied Nov. 4, 1976, Ser. No. 738,712
Cleims priority, application Germany Nov. 5, 1975, 2549550 Int. C1. ${ }^{2}$ F16J $1 / 18$
one piston assembly for compressors or the like comprising one piece, molded imperforate piston body having a head
portion and a skirt portion, said skirt portion having internal longitudinally extending and mutually facing recesses on opposite sides thereof, said recesses having parallel side walls and curved summits at the head end of said body, said recesses being open at the end opposite said head portion, a pin disng said pin to said summits and said side walls, said pin being ournaled in a connecting rod connected thereto.


13. The combination with a smokestack of means at the to of the stack defining a truncated conical member adapted to be expanded and contracted to vary the size of the discharge pening, said means comprising a plurality of relatively long 1. In a method of winding substantially uniform diameter narrow blades disposed in a circle about the axis of the stac
tubes from a web of varying thickness sheet material which is for pivotal movement about their lower ends radially inwardly
and outwardly relative to the axis of the stack and wherein the blades are arranged in inner and outer circles in overlapping relation such that movement of the blades of the outer circle
inwardly effect a corresponding inward movement of the inner blades and movement of the inner blades outwardly effect a corresponding movement of the outer blades outwardly, and means for effecting expansion and contraction of said blades to obtain control of the gas exit velocity, thereby effecting maximum plume rise from the top of the chimney.
14. The combination with a smoke stack of means at the top of the stack defining a truncated conical chamber adapted to be expanded and contracted to vary the size of the discharge opening, said means comprising a plurality of relatively long,
narrow blades disposed in a circle about the axis of the stack for pivotal movement about their lower ends radially inwardly and outwardly relative to the axis of the stack, said blades being arranged in inner and outer circles in overlapping relation such that movement of the blades of the outer circle inwardly effect a corresponding inward movement of the inner blades and movement of the inner blades outwardly effect a spring means biasing the outer blades inwardly and means for ffecting outward movement of the inner blades comprising cables connected at one end to the inner blades and to a winch at their outer ends and means for effecting rotation of the winch.

## OVERLOAD INDICATOR

Ralph J. MacKay, Novi, Mich., assignor to Gladd Industries,
nc., Detroit, Mich.
Filed Oct. 1, 1976, Ser. No. 728,811
U.S. CI. 99-337 3 Claim


1. A meat processing system for processing meat product for the like, the system comprising
a housing including a chamber in which the products are
a conveyor including a reciprocating beam for conveying the products through the chamber and a drive cylinder for reciprocating the beam;
an overload indicator including a frangible member connecting the beam and drive cylinder of the conveyor so as to
fracture upon being subjected to an overload condition therebetween; said frangible member having an internal gas chamber that is communicated with the environment upon fracture due to an overload condition; conduit means including a restricted orinice for supplying pressur ized gas to the gas chamber from a gas compressor; and means for sensing a decrease in gas pressure within the as to thereby detect the occurrence of an overload condition; and
means for terminating operation of the drive cylinder when the overload condition is sensed by the indicator.

GRILING APP John Harry Orsing, Avangsgatan 2, S-253 71 Helsingborg. Filed Jul. 28, 1976, Ser. No. 709,479 U.S. C1. 99-390


1. A grilling apparatus using particulate fuel comprising a forming the baspe of said housing. ae broiled; a drip pan forming the base of said housing; a plurality of individual
elongated channel fuel-receiving means for receiving particuelongated channel fuel-receiving means for receiving particu-
late fuel; a plurality of spaced supporting means on said housing, arranged to support the fuel receiving means at different levels beneath and on each side of the foodstuff; the fuelreceiving means resting and supported on said supporting means; said fuel-receiving means spanning the space between the supporting means; and being disposed at a plurality of
locations selected from beneath and on one side; or beneath and on both sides of the foodstuff. -
ing a collecting zone around the wall of extract pressed (f) an outlet connected to said envelope and communicatin with said collecting zone for leading extract from the collecting zone;
(g) a rotatable shaft mounted in at least one of said end walls
and extending centrally through the chamber;
and extending centrally through the chamber;
(h) a plurality of pivots on the sha
tially parallel to the shaft; and
(i) a plurality of mobile beaters individually mounted on said shaft about said pivots, said beaters extending radially from the shaft when the shaft rotates and having sumficient
length to locate the ends of the beaters adjacent said length to locate the ends of the beaters adjacent said shaft.

## 4,095,518

SECTIONING DEVICE FOR ROUNDED FOOD ARTICLE Frank W. Jones, Marrhalliton, Del., assignor to Fasline Foo Equipment $\mathrm{Co}_{0}$,

Filed Sep. 28,1976, Ser. No. 727,45
Int. C. ${ }^{2}$ A47J $17 / 00$
U.S. C1. 99-538
haped spaces with their feet in smooth contact with the article they are pushing through the conical cup of blades.

METHOD FOR $\quad 4,095,519$
METHOD FOR THE HANDLING OF SOLID WASTE Hyman Budoff, 374 N. Pershing Ave., Akron, Ohio 44313
Division of Ser. No. 614,357 , Sep. 18, 1975, Pat. No. 4,044,664. This application Jun. 15, 1977, Ser. No. 806,902 Claims priority, application Canade, Dec. 29, 1976, 268834 U.S. C1. 100-35 13/00

## Claim



1. A device for sectioning a rounded food article comprising base, a conical cup of internally sharp radial blades mounte in the base and having an apex disposed towards the base with ubstantially wedge-shaped spaces between the blades,
plunger, slide guide means connecting the plunger for recipro cating movement towards the base and return, the plunger including a annular array of fingers depending from it which freely engage within the wedge-shaped spaces between the
radial blades when the plunger is moved towards the blades, radial blades when the plunger is moved towards the blades, the fingers each comprising a linear element having two ends,
one end of each of the fingers being attached to the plunger and the other end being free, stop means on the base and plunger for terminating their engagement with each other, the ingers being long enough to substantially pass through the blades when the movement of the plunger into engagemen centrally mounted at the central junction of the blades to form their apex disposed within the cup, the point of the spike exending upwardly adjacent the entrance to the cup for holding the article aligned for engagement by the plunger and for initiating the radial splitting of the article which is continued
and completed by the blades, the stem of the spike freely terminating a short distance below the cup of blades, the fingers each comprising an elongated resilient rod having an inwardly bent foot, the inwardly bent feet terminating in a
circular array leaving a circular space between their ends for circular array leaving a circular space between their ends for
receiving the spike, the inwardly bent feet also being upwardly inclined from their junctions with the rods to inwardly disposed ends whereby the rods are guided through the wedge-
2. A method of handling waste in a system having multiple and operatively interconnected stations, each said station having a closed hopper unit, a removable storage unit and a compactor unit having a reciprocally driven compactor means, comprising the steps of.
sensing the presence of a vehicle adjacent one of said hopper units at said operatively interconnected stations and opento the presence of an adjacent vehicle;
depositing such waste in said open hopper unit
sensing the absence of a vehicle adjacent said open hoppe unit and closing said hopper unit in response to the absence of an adjacent vehicle
actuating said compactor means to transfer such waste from said hopp
age unit;
age unit; detecting the density of such compacted waste in said stor age unit;
comparing said detected density of compacted waste in said storage unit to predetermined value;
deactivating a station having said compacted waste with a deactivating a station having said compacted waste wind activating an interconnected station having an empty stor age unit; and,
removing said storage unit from said deactivated station for emptying.

## 4,095,520

HORIZONTAL BALER
Filed Sep. 20, 1976, Ser. No. 724,275
U.S. C. $100-43^{\text {Int }}$

10 Clsims


1. In a baling apparatus having a chamber and a discharge end of the chamber: a pressure member; means moveably securing said pressure member adjacent one side of the disaid peessurd of the chamber; pressure actuated means to urge of a bale adjacent said discharge end of the chamber; a sleeve
2. An extractor, comprising
(a) a foraminous wall defining a chamber of circular cross(b) end walls individually attached to said foraminous wall which close the ends of the chamber;
(c) an inlet connected to one of said end walls and communicating with said chamber for feeding a product to be
treated into the chamber: (d) an outlet communicating
other one of said end walls for leading residue from the chamber;
means pivotally securing the sleeve for rotation about an axis lying adjacent the pressure member; a crank arm rigidly selying adjacent the pressure member; a crank arm rigidy se-
cured to the sleeve; means securing the pressure actuated means to the crank arm; a lever arm; means securing the lever arm to the sleeve; roller means rotatably secured to the end of said lever arm and adapted to rollingly engage said pressure member, said roller means being arranged to urge the pressure member into a source of pressurized fluid; and valve means between ber; a source of pressurized fluid; and valve means between
said source of pressurized fluid and said pressure actuated means.

TRASH COMPACTION APPARATUS TRASH COMPACTINN APPARATUS
Arthur Hauptman, 629 E. 82 nd
St.,. Brooklyn, N.Y. 11236 Filed Mar. 15, 1976 , Ser. No.
Int. C. U.S. CI. 100-219


1. A trash compaction apparatus comprising a container for the storage of trash therein,
said container having an open mouth,
a housing,
an opening in said housing
said opening permitting the passage of said container therethrough,
a ram head,
said ram head being disposed within said housing,
said open mouth being in substantial vertical alignment with
said said ram head,
a foot operated treadle,
said ram head being capable of displacement along a vertical said line,
said ram head being disposed in an uppermost position,
ram head displacement means for applying an urging force for displacing said ram head from said uppermost position downwardly through said mouth and into said containe
in compressive touching engagement with said trash in a trash contacting position,
said urging force being derived from the application downward manual fores ap treadle,
latching means for retaining said ram at selective locations
intermediate said uppermost position and said trash contacting position,
ram head upward biasing means for urging said ram head into said uppermost position,
unlatching means for releasing said latching means, guidance means for guiding said ram head along said vertica
line.
said guidance means including a track and a guide rod,
said track being fixedly secured to the interior of said housing, said guide rod being disposed within said housing and fixedly secured to said ram head, said guide rod being disposed in sliding engagement with said ram head displacement means comprising a plurality of
sala rack-like teeth,
said plurality of
said plurality of rack-like teeth being disposed in spaced apart relationship along a vertical surface of said guide
rod rod,
a pawl, asid pawl being disposed in selective touching engagement
with at least one of said plurality of racklike teeth with at least one of said plurality of racklike teeth,
pawl biasing means for biasing said pawl in said selective pawl biasing means touching engagement an arm pivotably secure
an arm pivotably secured to said foot operated treadle, mechanical advantage means for applying a greater downward force upon said at least one of said plurality of rack
like teeth by said pawl than said downward manual forces applied to said foot operated treadle.

## 4,095,522

SOUND ABATEMENT DEVICE FOR MECHANICAL PRESSES
Walter J. Drungil, Chicago, III., assignor to Verson Allsteel
mpany, Chicago, III.
Iut. 1 I. ${ }^{2}$ B30B $1 / 26$
Ins.
U.S. Cl. 100-214


1. In a mechanical press having a bed for supporting a workpiece, a reciprocatable slide for performing work on the work-
piece, an enclosed crown containing mechanical gear means piece, an enclosed crown containing mechanical secting the
and drive means associated therewith for reciprocating slide with relation to the workpiece supported on the bed of
the press, and a movable link member which extends through an opening in the base of the crown, said link member being joined at one end to the drive means in the crown and at its other end to the slide through a connection housing secured on the slide in spaced relation to the opening in the base of the crown, the improvement comprising: a sound abatement device positioned at the openimg in the noise mechanically generated in the enclosed crown which normally would pass from the interior of the crown through the opening in the base through which one end of the movable link member extends and which is movable in response to the movement of the slide, said body portion having side walls which are sealed with respect to the connection housing and which extend into the
crown through the opening in the base thereof and which crown through the opening in the base thereof and which
bridge the space between said opening in the crown and the bridge the space between said opening in the crown and the
connection housing secured on the slide thereby providing a sound barrier between the opening in the base of the crown and the connection housing, and flexible, sound-sealing guide
means for the body portion, said guide means being maintained
in constant slidable engagement with the side walls of the body portion as the body
ment of the slide.

NK SUPPIY MECHANISM
INK SUPPLY MECHANISM FOR DICHROMIC PORTABLE LABELING MACHINE Yo Sato, Tokyo, Japan, assignor to Kabushild Kaisha Sato Kenkyusho, Tokyo, Japan
Filed Feb. 28,1977 , Ser. No. 772,469 Claims priority, application Japan, Mar. 6, 1976, 51-23724 U.S. CI. 101-103

4,095,523
BRAKE ASSEMBLY FOR MECHANICAL PRESSES Walter J. Drungll, Chicago, Il., assignor to Verson Allsteel Walter J. Drungll, Chicago, Preas Compied Jul. 1, U.S. Cl. $100-282$ Int. C. ${ }^{2}$ B30B $1 / 06$


1. In a mechanical press of the type having a bed for support ing a workpiece, a reciprocating slide for performing work on the workpiece, a crown for supporting mechanical drive means and gear means including a drive shaft, movable link means onnected between the drive means and the reciprocating slid for reciprocating the latter as the drive shaf is rotated, a clutch same when engaged whereby the slide is moved reciprocatably by the link means with relation to the workpiece supported on the bed of the press, and a brake mechanism associated with the drive shaft for braking the same when applied, said brak mechanism being released when the clutch mechanism is en gaged and said clutch mechanism being disengaged when the rake mechanism comprises a brake assembly including a male nember associated with the drive shaft of the drive means of the press and being rotatable with the drive shaff, said male nember being non-circular and having curved lobes formed on the outer surface thereof, a female member movably mounted on the male member, said female member having a centrally the lobes of the non-circular male member and being rotatable by the drive shaft, and brake means for the female member when applied, for stopping the female member and bringing the curved lobes of the non-circular male member into solid engagement with the female member whereby the rotational movement of the male member and the drive shaft is stopped
when the clutch mechanism is disengaged, said curved lobes of the non-circular male member and the centrally located opening through the female member which is shaped to receive and angage the lobes of the non-circular male member cooperating to minimize vibration of the female member and consequen ooise generated therefrom, when the brake mechanism is released and re cluitted to the drive shaft as work is performed on the work piece by the mechanical press.

ing:
A portable label printing and applying machine, comprisa machine fro
said frame
said frame; a printing head including at least a first and a second printing thereon and having type characters on said printing surface; said printing head being attached to and being movable with sa'd actuating lever; means normally biasing said printing head to a standby position; said actuating lever being movable to move said printing head from said ing surfaces are inked by inking rollers pressing against ing surfaces are inked by inking rolers pressing against
said printing surfaces with a predetermined pressure and being further movable by said actuating lever to a printing position at which said printing surfaces contact a label to imprint it
an ink supply mechanism comprising:
holding means pivotally attached to said actuating lever for moving said holding means with respect to said frame as said actuating lever moves; at least a first and a second inking roller rotatably carried on said holding means so as to be rotatable with respect to said holding means and said surface and said second inking roller being rotatable over said second printing surface;
a first guide in said frame for guiding motion of said first inking roller; a second guide in said frame for guiding first and second guide engaging roller
and second rollers, respectively, and connected for movement therewith; said first and said second guide engaging means slidably engaging and being slidable along said first and said second guides, respectively;
said guides and said printing surfaces being so positioned and
shaped that said inking rollers are spaced for ing surfaces when said printing head is in said standby position, such that said each of first and second printing surfaces are engaged by the respective one of first and second inking rollers when said actuating lever has been
manually actuated partially through its stroke and such that said inking rollers are moved out of the pathway of said printing head when said actuating lever is moved through its full stroke and said printing surfaces are moved to imprint a label and further wherein said guides away from said printing surfaces after said second inking roller contacts said second printing surface, thereby to
prevent said seco
printing surface. $\qquad$

## 4,095,525

PROTECTIVE COATING MATERIAL FOR LITHOGRAPHIC PRINTING PLATE Norishige Tsukada, Nishinomiya; Kazuo Hagihara, Tokyo; Kozo Tsuil, Takatsuki; Masanori Fujimoto, Fbarakk, and Tsuneyuki ical Company, Limited, Osaka and Hayashibara Blochemical Laboratories, Inc., both of Japan
Filed Oct. 20, 1996, Ser. No. 734,356
Claims priority, application Japen, Oct. 31, 1975, 50-131692
U.S. C. 101-465

Int. Cl. ${ }^{2} \mathbf{B} 41 \mathrm{~N} 3 / 08$
4 Claims

1. In a process for lithographic printing which comprises forming ink-receptive image areas and ink-repellent non-image areas on a metallic lithographic plate, coating the non-image areas of said plate with a film-forming material to enhance the
hydrophilic character of the ink-repellent non-image areas of said plate and protect said plate from chemical or mechanical damage, applying a hydrophobic ink to said plate and then printing upon a substance with said plate; the improvement comprising coating said non-image areas with an aqueous solution of $p$ ald 10 p 100 an der
Cremp

4095526
MECHANICAL HYDRAULIC COUNTING AND MEMORY DEVICE Virgil H. Johnson, and David I. Parker, both of Champaign, Ill., assignors to The Magnavox Company, Fort Wayne,
Filed Aug. 26, 1965, Ser. No. 483,390 U.S. C. 102-8 Aus. 26, 1965, Ser. No. 483,390
Int. C1.2 F42B 23/O人. $33 / 26$

housing
an input member and an output member in said housing; a liquid confined in a space in said housing;
first flexible seal connected to said input member and to said housing and defining a first movable wall of said a second flexible seal connected to said output member and to said housing and defining a second movable wall of said space confining said liquid;
partition in said space between said walls and dividing
space into a first chamber and a second chamber:
liquid flow from said first chamber to sid second chamber;
tering means permitting only a limited rate flow of liquid from said second chamber to said first chamber; an input actuator having an initial rest position in said housing;
a clutch coupling said actuator to said input member when said actuator is moved toward said input member, thereby said partition and reduce the volume of said first chamber said clutch being automatically releasable upon movemen of said actuator away from said input member; and means maintaining a released condition of said clutc when said input actuator is in said initial rest position.

## 4,095,527

SPECTALIZED DETONATOR FIRING CIRCUIT Morrison Bert Moore, III, Silver Spring, Md., assignor to The
United States of America as represented by the Secretary of the Navy, Washington, D.C.

Filed Sep. 15, 1964, Ser. No. 396,782
Int. C.2 F42C
U.S. Cl. 102-19.2

3 Claims


1. A condition responsive electronic firing circuit responsive to a predetermined change in supply voltage comprising
a second switch means including a controlled rectifier normally biased for non-conduction, wherein the gate elec trode is responsively connected to said first switch means whereby a change in the conductive state of said firs switch effects a corresponding change in the conductive of said second switch;
of the controlled rectifier of the controlled rectifier and a source of power whereb a detonating current passes therethrough when the recti-
bypass capacitor connected
rectifier output connected between the gate and the other rection of the put electrode for preventing inadvertent actuation of the rectifier by spurious signals;
zener diode interconnecting
a zener diode interconnecting said first switch means and source of power;
storage means connected across the output electrodes of
said controlled rectifier said controlled rectifier to provide a discharge pulse to said detonator upon the initiation of conduction in said
controlled rectifier controlled rectifier.

VEHICLE WITH COMBINED FUUEL TANK/WARHEAD Donald McChesney Post, San Diego, Calif, assignor to Tele dyne Ryan Aeron
San Diego, Calif.

Filed Jan. 28, 1977, Ser. No. $\mathbf{7 6 3 , 3 1 8}$
Int. C.
U.S. Cl. 102-49.8


1. In a vehicle having combustible fuel powered 2 Claim arally closed valve operable when opened to facilitate means, the improvement comprising:
a fuel tank for containing the combustible fuel used for propulsion;
and having a nozzle diremizer mounted in said fuel tank a source of pressurized oxidizer connected to and driving said atomizer;

detonating means mounted in said fuel tank for detonating the atomized fuel and oxidizer mixture, whereby the fuel tank is an explosive warhead;
and timing means for actuating said detonating means at a predetermined time after operation of said atomizer


4 Claims


1. A multi-turn setting ring assembly comprising:
a body having a cylindrical outer surface portion;
a setting ring having a cylindrical inner surface portion journaled for rotation on said cylindrical outer surface portion of said body;
a ball;
位-turn helical raceway, having a longitudinal cross section adapted to receive less than the total cross-section of said ball, formed into one of said surface portions, and having respective obturations of its cross-section at the clockwise and counter-clockwise ends thereof;
a longitudinally extending raceway, having a transverse cross-section adapled to recive less than the total cross said ball co
raceways; and
having a mode of rotate on said body in the clockwise direction until said ball abuts said clockwise obturation, and is free to rotate ball abuts said counter-clockwise obturation.

RESILIENT RAILWAY DRIVE CONNECTION oachim Korber, Weinheim; Wilhelm Koch, Heidelberg; Heinz Gïthlein, Augsburg; Richard Wagner, Ingolstadt, Edmund Frantz, Munich, and Paul Kalinowski, Bad Tolz, all of Ger-
many, assignors to BBC Brown Boveri \& Company Limited, Filed Aug. 7, 1975, Ser. No. 602,906 Claims priority, application Germany, Ang. 8, 1974, 2438088
Int. Cl. ${ }^{2}$ B60B $17 / 00$ 19/10 37/00. B61C $9 / 44$ U.S. Cl. $105-131$


1. In an elastic drive coupling provided between a hollow drive shaft and a drive wheel of a railway track operated
vehicle wherein said hollow drive shaft surrounds the axle of vehicle wherein said hoe later includes a hub and a wheel disc
the drive wheel and the later extending generally radially therefrom said wheel disc terminating in a flanged rim for a rolling engagement with the track, the improvement which comprises an annular coupling plate connected to said hub and extending generally radially outinner side of said wheel disc to form a gap therebetween, an outer ring fixed to a radially outer peripheral portion of said coupling plate, an inner ring spaced radially inwardly from said outer ring, a rubber-containing elastic member secured to and belwew sit 10 , ilindy transin said hollow shaft to resiliently transmit traction forces

## 4,095,531

RAILCAR RUNNING GEAR
Richard J. Bennett, Bartlesville, Oklan, assignor to Phillips Petroleum Company, Bartlessilile, ONJIa,
U.S. Cl. 105-182 R Int. C1.2 B61F 5/00 5 Claims


1. A wheel unit for railcars comprising
a. a base element,
b. a first axle rotatably arranged in said base element,
c. a second axle arranged rotatably and essentially parallel to said first axle in said base element,
d. four wheels with
e. a first set of two wheels, each being coaxially attached to
said first axle, each of these wheels having a tapered rol surface with only one taper; said taper is slightly converg ing away from the other wheel of said first set, and to said second axle, each of these wheels having a tapered to said second axle, each of these wheels having a tapered
roll surface with only one taper; said taper is slightly roll surface with only one taper; said taper is slightly
converging toward the other wheel of said second set o convergi,
wheels,
whereby the wheel unit is stabilized against oscillations caused by the tapered wheels.

## $4,095,532$

WORKPLACE EQUIPMENT
Peter Redemann, Berlin, Germany, assignor to Schering Aktiengeecellschaft, Berlin and Bergkamen, Germany secelischant, eriun and Bergkamen, Germany
Filed Mar. 15, 1976, Ser. No. 667,117 U.S. CI. 108-59 Int. C1. ${ }^{2}$ A47B $37 / 00$


1. A worktable consisting essentially of two identical end sections, each of said end sections composed of two vertical legs of equal heights and a first
tubular crossmember, attached to the tops of each of said legs and being perpendicular to each of said legs, said end sections beeing separated from each other along a line perpendicular to each of said first crossmembe
said crossmembers are parallel to each other;
leg height adjustment means at the bottom of each of said
legs;
a pair of equal length tubular crossmembers, each connecting the top of one leg of one of said end sections to the top bers being disposed parallel to each other and perpendicular to said first tubular crossmembers;
a pair of third tubular crossmembers, each located under and parallel to one of said second crossmembers, one of said legs to which its overlying second crossmember is at tached; and the other of said third crossmembers connect ing the middle regions of the legs to which its overlying second crossmember is attached; each of said third cross
members being of a length equal to that of said second members being of a length equal to that of said second
tubular crossmembers and greater than the length of said first crossmembers;
a pair of first tubular rods each disposed parallel to and under one of said first crossmembers, each of said firs
tubular rods being attached at the same height to the lower region of one of said legs which are connected a their middle regions by one of said third crossmembers, each of said first tubuiar rods being of a length shorter than said first crossmembers, and each of said first tubula rods extending beyond the midpoint between the legs in
each of said end sections; a pair of second tubular rods disposed paralle1 to and under each of said first crossmembers, each of said second tubu-
lar rods being attached at the same height to the upper
region of one of said legs which are connected at their lower regions by one of said third crossmembers, each of said second tubular rods terminating before the midpoint between the legs in each of said end sections;
pair of third tubular rods, each connecting the non-leg
engaging end of one of said second tubular rods to the top engaging end of one of said second tubular rods to the top
of said first tubular rod in the end section of said second tubular rod, the connection at the top of said first tubular rod being at a point between said midpoint and the leg to
which said first tubular rod is connected; which said first tubular rod is connected;
${ }^{\text {a }}$ a pair of fourth tubular rods, each connecting the non-leg engaging end of one of said first cubular rods to the inner
side of a leg in the same end section as said first tubular rod, said leg being the one to which said first tubular rod is not attached, the connection at said leg being at a point
below that at which said second tubular rod is attached below that at which said second tubular rod is attached
and in the middle region of said leg said third and fourt tubular rods in each end section being disposed parallel to each other;
plurality of rungs in each end section disposed parallel to said first crossmembers and one above the other, each of
said rungs being connected at one end to the third tubular rod in the end section and at its other end to the fourth tubular rod in the end section, said rungs being vertically spaced from each other to provide slots in each end section for insertion of one end of a footrest surface;
a rectangular footrest surface whose longer ends are substansections and whose shorter ends are substantially equal in width to the distance between the third and fourth tubular crossmembers in each end section, each of said shorter ends of said footrest surface lying on one of said rungs in one of said end
a work surface of length substantially equal to the distance between said end sections and of width substantially equal to the distance between the legs in each end section, said work surface loosely disposed on top of said end sections our stop-blocks attached to the undersid
surface, said stop-blocks being positioned on said work surface so that when said work surface is disposed on top of said end sections and second crossmembers, each of said four stop-blocks engages one of the four corners
defined by the connections of said first crossmembers to said second crossmembers, thereby fixing the position of said work surface; and
marked area on the top of said work surface, the center of said marked area being located centrally between said end
sections, the marked area being composed of a quadriateral figure, each of the four lines of said marked area being parallel to one of the edges of said work surface, one of said lines which is parallel to the longer edges of said work surface being located about 100 mm from one longer edge, the other of said lines which is parallel to the longer edges
of said work surface being located in the middle region of said work surface, and each of the remaining two lines joining one pair of edges of said two lines which are parallel to the longer edges of the work surface.

4,095,533
TRAYS COMBINABLE INTO AN ASSEMBLY
Claude Levellle, No. I Tennis Court, Apt. 6G, Brooklyn, N.Y. 11226

Filed Apr. 15, 1977, Ser. No. 787,964
Int. C. ${ }^{\text {A4 A }}$ A $13 / 08$ A47F 3/14
U.S. Cl. 108-90

1. Two separable and portable trays usable individually and jointly comprising, a first tray having a flat receptacle having a plurality of holes therein for receiving articles in said holes having legs hinged on the flat recepterecefrom, said first tray having legs hinged on the flat receptacle and positionable in a
fold
an extended depending position for converting said first tray to a stand, hinge means for hinging the legs individually on said first flat receptacle, and a second flat tray usable independently of said first tray and jointly therewith, said second flat tra having a flat receptacle free of holes and having raised edges

and locating projections on an underside thereof received in corresponding ones of said holes of said first tray for locating and releasably ert said first tray into a flat tray free of holes for transporting articles thereon.

4,095,53
DAMPER WTTH CURVED EXTENSION PLATES FOR WIDE RANGE FLOW CONTROL
Stephen John Goldich, Parsippany, N.J., assignor to Foster
Wheeler Energy Corporation, Livingston, N.J.
Filed Feb. 16, 1977, Ser. No. 769,377
U.S. C. 110-263

6 Claim


1. In combination with a heat exchanger having a fluidized bed of particulate material as a source of heat, including a particulate fuel material, a flow control damper to control the flow of air to the fluidized bed, said damper comprising: a blade element pivotally disposed for movement between a closed and open positions, the
an extension plate disposed relative to said curved path to define a flow opening between the free end of said blade element and the surface of said extension plate, said plate having a substantially straight portion and an arcuate portion connected tangentially at one end to said straight portion, said arcuate portion having a substantially con-
stant radius of curvature; and a sealing element disposed on the free end of said blade element to provide a fluid seal with said blade element in the closed position,
said extension plate cooperating with said blade element during said movement of the latter to define a substantially linear relationship between the open positions of said

ROTARY HARROWS Ary van der Lely, Manaland, and Cornelis Johannes Gerardus
Bom, Rozenburg, both of Netherlands, assignors to C . van der Lely N.V., Mansland, Netherlands Division of Ser. No. 590,520, Jun. 26, 1975, Pat. No. 4,018,170. This application Feb. 14, 1977, Ser. No. 768,433 Claims priority, application Netheriands, Jun. 28, 1974,
U.S. CI. $111-6$

Int. C1. ${ }^{2}$ A01C 23/02


1. A soil cultivating implement or rotary harrow comprising frame and a plurality of rotatable soil working members arranged in a transverse row, said members being supported and positioned on a portion of said frame to work overlapping strips of soil during operation, driving means engaging said soi
working members and rotating same about corresponding upwardly extending shafts that define the axes of rotation of the soil working members, each soil working member comprising a substantially horizontal support and at least one downwardly extending tine depending from said support adjacent a areral end thereof, said support mounting injector means tha ine, said injector means comprising an elongated ejector tha extends downwardly substantially parallel to said tine and saic ejector being detachably connected to said support with fasening means located below the support, said ejector member having an internal condair that communicates with a bore in the length of said shaft
dISCHARGE AND CUTTING APPARATUS FOR DISCHARGE AND CUTING MACHINE adislav Hujik, Batawa, and Miroular Baran, Trenton, both of Canada, assignors to Batr Shoe Company, Inc., Belcamp, Md. Filed Oct. 13, 1976, Ser. No. 731
Int. C. ${ }^{2}$ D05B $21 / 00$
U.S. Cl. 112-121.26 ${ }^{\text {int. C. }{ }^{2} \text { D05B 21/00 } \quad 8 \text { Claims }}$

2. A discharge and cutting apparatus for attachment to sewing machine having a base plate for sewing a tape onto in the frame means for receiving the footwear components and
tape, said work surface being contiguous with the base plate of longitudinally extending folded condition and then from its he sewing machine; first feed means in said frame means for intermediate folded condition to a predetermined prefolded and
and tape from the sewing machine under constant tension
material conveyance means therethrough continuously with ension higher than that to which the tape and components are material conveyance means therethrough continuously withsubjected in the sewing machine; cutting means in said frame out interruption, the first material folding means being operameans for cutting said tape at the leading and trailing edges of ble for foiding the entire said longitudinally extending portion receiving said components and tape following the cutting substantially simultaneously and automatically in coordination means in the path of travel of the components and tape, and with the conveyance of the material blank continuously withdischarging said components and tape from the apparatus; and out interruption along the material path through the folding drive means in said frame means driven by said sewing ma- station by the material conveyance means, the first material
chine for operating said first and second feed means in syn- folding means comprising a retractable material support re-

4,095,537
AUTOMATIC HEMMING APPARATUS Seymour Silverman, and Kwan Hong Ng, both of New York,
N.Y., assignors to Siverman Machines Company, New York, N.Y., assignors to Silverman Machines Company, New York,

> Filed May 2, 1977, Ser. No. 792,712 Int. C. ${ }^{2}$ D05B 33/02, $35 / 02$
U.S. Cl. 112-121.29

25 Claims


1. Apparatus for folding the overlapping portion of a first
piece of material over the edge of a second piece of material, piece of material over the edge of a second poece of material, means for positioning the pieces of material on said first surface in a face-to-face relationship with the second piece adjacent said first surface, the edge of the second piece aligned with the end of said first surface and a portion of the first piece overlap-
ping the edge of said second piece, said second surface having ping the edge of said second piece, said second surface having opening and effective to create a flow of air into said opening, said air flow causing said overlapping portion of the first piece to move towards said opening, be folded around said end of said firs
piece.

tractable from a first normal position for supporting a predetermined part of each material blank as it is being conveyoed along the generally longitudinally horizontally extending ma-
terial path on the table to a retracted position freeing said erial path on the table to a retracted position freeing said
material part to fold downwardly to provide said intermediate folded condition of the material blank, and retracting means for automatically retracting the retractable material support in coordination with the conveyance of each material blank continuously without interruption along the elongated material path by the material conveyance means and so that said mate-
rial support is retracted when said material part overlies the retractable support.

4,095,539
NEEDLE THREAD WORK LIMB RETAINERS Company, New York, N.Y.
Aug. 23, 1976, Ser. No. 717,053
Int. Cl. ${ }^{2}$ D05B $57 / 14$
U.S. C. 112-184

7 Claims

$$
\text { MATERIAL } \stackrel{4,095,538}{\text { FOLDNC }}
$$

$$
\xrightarrow{\text { MATERIAL, FOLDING DEVICE }}
$$

John L. Rockerath, and Harold J. Schreck, both of Utica, N.Y., Jonsignors to Jetsen, Inc., Barneveld, N.Y.
Filed Jan. 22, 1976, Ser. No. 651,449
U.S. C. 112-147 Int. Cl. ${ }^{2}$ D05B 35/04

1. In a sewing machine system having material conveyance 1. In a sewing machine system having material conveyance
means for individually conveying continuously without interruption material blanks longitudinally forwardly in succession
along an elongated material path through successive material along an elongated material path through successive material
folding and sewing stations, and material folding and sewing apparatus at the material folding and sewing stations for respectively prefolding each material blank and sewing the prefolded material blank as it is conveyed longitudinally forwardly through said stations continuously without interrup-
tion, the improvement wherein the material folding apparatus tion, the improvement wherein the material folding apparatus
comprises first and second successive material folding means at the folding station for sequentially folding a longitudinally the folding station for sequentially folding a longitudinally
extending portion of each material blank to a first intermediate

2. In a sewing machine having a reciprocating thread carry ing needle, a work supporting plate carried by said sewing
machine for supporting work during penetration thereo by machine for supporting work during penetration thereof by said needle, a loop taker supported under said work supporting for seizing a loop of thread extending from said needle to said work and for carrying the loop of thread around said bobbin for concatenating the needle thread with the bobbin thread to
form a lockstitch, and means carried apart from said loop taker comprising: a lubricate reservoir supported on the frame for and said bobbin for positively separating the work limb of the receiving vibratory forces therefrom, said reservoir including a loop of ne-dle thread seized by said loop taker from the needle bottom surface and an upstanding wall, means for maintaining around said bobbin. $\qquad$ an an elongated cord-like wick having the free end surface at one
end disposed in abutting relation with said wall above said

SEWING MACHINE STITCH REGULATING MECHANISMS
Kenneth Francis Kaltenbach, Leonia, and Alfred John Zenger, Kenneth Francis Kaltenbach, Leonia, and Alfred John Zenger,
Montrille, both of N.J., asslgnors to The Singer Company, New York, N.Y. New York, N.Y.
Filed Feb. 28, 1977, Ser. No. 773,106
Int. Cl. ${ }^{2}$ D05B $27 / 00$
U.S. C. 112-210


1. A work feed mechanism for a sewing machine having a drive shaft rotatably mounted in the bed of the machine, a feed dog adapted to engage and feed the work, means including a
rock shaft for oscillating said feed dog along the line of work rock shaft for oscillating said feed dog along the line of work
feed, means connecting the drive shaft to the feed dog for feed, means connecting the drive to the line of work feed, an eccentric on said drive shaft, a stitch length controlling device
including a carrier frame, means for pivotably mounting said including a carrier frame, means for pivotably monnting said
frame in the bed, said frame carrying linkage connecting said frame in the bed, said frame carrying linkage connecting said eccentric and said rock shan ron ond for varying the oscillation
upon rotation of said drive shan and fover of the rock shaft upon pivotable movement of said carrier
frame, forward stitch adjusting means including an abutment frame, forward stitch adjusting means inclucing an abutment
cam member secured to said carrier frame and an abutment stop member threadedly received in the bed of the sewing stop member threaded to abut said cam member to pivotably move said carrier frame upon axial movement of said stop
member, a gear train including a first gear, means for securing member, a gear train including a first gear, means for securing
said stop member for rotation with and axially movable relative to said first gear, a second gear in driving engagement with said first gear, and an operator influenced member secured to said second gear and rotatably mounted on the bed, whereby rotation of e stop member to turn said carrier frame and thereby change the stitch length.

## 4,095,541

SEWING MACHINE LUBRICATION
Earl Francis Dunn, Edison, and Adolph Armer Gebhardt, Chat-
ham, both of N.J., assignors to The Singer Company, New
Filed Apr. 14, 1977, Ser. No. 787,734
Int. C.2. ${ }^{2}$ D 0 BB $71 / 00$
U.S. CI. 112-256

$$
\ldots,+\infty
$$

$\qquad$ 6 Clisims 1. In a sewing machine having a frame including a bed, a
standard upstanding from the bed, a bracket arm terminating in a head overlying said bed, said, frame supporting operating mechanisms including a reciprocal needle bar and a taked
mechanism in the head, an arm shaft rotatably journalled in said bracket arm for driving said needle bar and said take up mechanism, and means for rotating said shaft, said frame supporting said operating mecral
normal operating vibratory forces thereto, the improvement

level of lubricant and the remainder of the wick extending through said reservoir without contacting the lubricate therein to lubrication distribution points in said operating mechainsm, Whereby only the vibratory forces of the frame causes lubriwick to distribute lubricate to the operating mechanism.
$\qquad$ E HYGIENIC PADS 11375 Z. Hirschman, 110-11 Queens Blvd., Forest Hills, N.Y Filed Oct. 15, 1976, Ser. No. 732,941
U.S. C1. 112-262


1. A method of making feminine hygienic pads from a mate rial of predetermined width with opposed longitudinal edges and opposed faces by folding said material into longitudinal folding one longitudinal edge over one face of the material to provide a fold formed anterior leading edge with a first panel, inwardly folding the other longitudinal edge over said one face to provide a folded second edge with a second panel, inwardly folding the folded second edge with its panel over said one face across a major portion of the width of the material and over the leading edge, and stitching the inwardly folded second edge to the underlying mterial inward of the anterior leading edge to define a narrow anterior portion and a relatively wider posterior portion relative to the stitching.

DUAL EXTRUSION WELT
Dun, Swampecott, Mases, assignor to Maynar Plastics, Inc., Salem, Mass.
iled Feb. 28, 1977, Ser. No. 772,635
U.S. C. 112-417

5 Claims


1. A decorative plastic welt comprising an elongated, deco rative, arcuate bead portion formed of a first plastic material an integral elongated plastic flange extending from said bead
to an outer flange edge and defining a first flange portion to an outer flange edge and derining a first flange portio
adjacent said bead and a second flange portion extending from said first portion to said flange edge,
said bead and flange being coextruded and said bead portion being opaque,
tic strip which permisg an elongated see-through plas portions on either side thereof

## 4,095,544

PRODUCTION OF CORROSION RESISTAN SEAM-FREE CAN BODIES FROM TINPLATE Gordon L. Peters, Weirton, W. Va, and John R. Smith, Rich-
mond, Ohio, assignors to National Steel Corporation, Pitts-
burgh, Pa. Filed Oct. 26, 1976, Ser. No. 735,895
U.S. CI. 113-120 A


1. A method of producing a corrosion resistant seam-free can body comprising
providing as a sian a thickness between about 0.025 inch and 0.005 inch having a coating of at least $\ddagger \mathrm{lb}$. per BB of tin on each side and a layer of iron-tin alloy between the tin coating and the steel, the ATC value of at least one side of the tinplated steel being below 0.500 microamperes per $\mathrm{cm}^{2}$. subjecting the planar shect of steel to a cold forming action, including a drawing step, to form a seamless cup having
sidewalls, the steel of the sidewalls being subjected plastic flow in the cold forming action, the said one side o the starting stock being on the inside of the cup, the ATC value of the inside of the sidewalls
0.500 microamperes per $\mathrm{cm}^{2}$, and
subjecting the seamless cup with the in coating exposed to an elevated temperature above about $400^{\circ}{ }^{\circ}$. at the lowe end of a temperature range but not greater than the melt
ing point of tin at the upper end of the temperature range ing point of tin at the upper end of the temperature range
for a period of time sufficient to lower the ATC value to a value below 0.100 microamperes per $\mathrm{cm}^{2}$, the period of
ime varying between not less than about 10 minutes at the me varying between end of the temperature range and slightly less than the time necessary to create an objectionable form of tin-iron alloy at the upper end of the temperature range, the temperature at the upper end of the temperature range iod of time and the upper end of the temperature range being not less than about 10 seconds.

SELF-PROPELLED DREDGING APPARATUS Robert H. Vaoghn; C. Eugene Maitlen; Glen H. Davis, and Randall E. Maitlen, all of Oklahoma City, Okla, assignors to VMI, Inc., Oklahoma Clty, Okla.

Filed Mar. 2, 1977, Ser. No. 773,501
U.S. CI. 114-26

30 Claims

1. In an apparatus for dredging the bed of a body of water of the type which includes a buoyant hull structure having a power output sho and an aft end portion; an engine having mediate the forward and aft end portions thereof; a pump having an inlet port and an outlet port and mounted on said hull structure intermediate the forward and aft end portions thereof; means drivingly interconnecting said pump and the
power output shaft of said engine for transmitting power to said pump from said engine to pump liquid through said pump from the inlet port to the outlet port thereof; and a rigid boom structure having a forward end portion and a rear end portion, said boom structure being pivotally secured at the rear end horizontal transverse axis of rotation with the forward end portion of said boom structure extending from the rear end portion thereof toward the forward end portion of said hull structure, the improvement comprising:
head assembly incling.
portion and a rear end portion with ha arward end the rear end portion thereof for rigidly mecconnected to and portion thereaf to the forwigily securing the rear end portion thereof to
rigid boom structure;
shaft means having first and second end portions and horizontally transversely journaled across the forward end portion of said dredging head frame structure, for rotating thereon
a cylinder disposed about and fixedly secured to said shaft means in coaxial alignment therewith;
a plate fixedly secured to the forward end portion of said
dredging head frame structure parallel to the axis rotation of said shaft means and spaced a radial distance therefrom;
plurality of radially outwardly extending cutter blades fixedly secured to the outer surface of said cylinder in d relation therealong:
means drivingly engaging said shaft means for rotating
said shaft means about its axis of rotation;
a cutter bar fixedly secured to said plate along a line
substantially parallel to the axis of rotation of said shaft therefrom to provide an output signal related to instantaneous means and extending from said plate toward the outer velocity of the rotating object, and a second integrator consurface of said cylinder, said cutter bar including a
plurality of notches formed therein and spaced thereplouraity, each notch being constructed and arranged to receive a cutter blade therethrough as said shaft mean
is rotated about its axis of rotation;
an opening formed in said plate and extending therealong
for at least a portion of the entire length of said cylinder; and
conduit means for interconnecting said opening and the inlet port of said pump.

4,095,546
SHIPBOARD LNG TANKS
John R. Kane, 314 67th St., Newport News, Ve 23607

U.S. CI. 114-74 R

10 Claims

 velocity of the rotating object, and a second integrator con-
nected to said first integrator to receive the output signal
$\qquad$
therefrom and to be operable to integrate the output signal from said first integrator to provide an output signal related to the angle of swing of the rotating object.

1. A self supporting tank
aboard ships comprising: eight sides curved in vertical planes and linear in all horizon-
tal planes, four non-adjacent sides of which are dimensiontal planes, four non-adjacent sides of which are dimension-
ally equal to each other and larger in horizontal dimenally equal to each other and larger in horizontal dimen-
sions than the other four sides, which are dimensionally soqual to each other, each of said eight sides being attached to adjacent sides by conventional methods and all meeting at an apex at their highest points, forming a container wi octagonal cross-sections in all horizontal plans, and horizontal octagonal flat plate attached to the eight sides thereby truncating the volume, forna
tank and completing the enclosure.

4CCELERATION MEASURING DEVICE Charles Kenneth Beaington, Edinbarah, Scotland, assignor to Brown Brothers \& Company, Ltd., Edinburgh, Sco Filed Apr. 27, 1976, Ser. No. 680,929
Claims priority, application United Kingdom, May 1, 1975, 18186/75
U.S. C. ${ }_{114-122}^{\stackrel{\text { Int. }}{122}}$
Cl. ${ }^{2}$ B63B 39/00; G01P 15/08
U.S. C. 114-122 $\qquad$ 1. An angular accelerometer for detecting the angular accel-
eration of an object about a rotational axis thereof comprising cration of an object about a rotational axis thereof comprising
first and second tit sensors of the torque-balance type oriented in the same direction to be sensitive to accelerations occurring in the direction in which the object rotates, said first and sec ond tilt sensors being spaced rrom each other in a direction
transverse to the direction of rotation of the body and at differ ent distances from the axis of rotation of the object, each of said tilt sensors being capable of providing an output signal containing a component representative of the anguar accelerition of the body, a difer to receive as inputs thereto the outputs of said tilt sensors and to derive a difference output signal therefrom, a first integrator connected to said difurenial
 U.S. CI. $114-230$

6 Clams


1. A docking and mooring device for use with a throwlin having an enlarged end portion, said device comprising: a semi-rigid catching means adapted to be affixed to a support, said catching means including an elongate horizon-
tally disposed coil member having a first end and second tally disposed coil member having a first end and second end, said elongate member haver, said elongate member being devoid of interior structure to permit the throwline to engage the coil member by falling freely between adjacent convolutions, said convolutions providing a continuous convoluted surface that once engaged by the throwline the enlarged end portion will continuously engage said surface as long as tension is changes are made to the throwline relative to said surface

HIGH PERFORMAN, 4 Arthur L. Williams 11301 YoE WATER VEHICLE 91326

Filed Mar. 14, 1977, Ser. No.
Int. C1.2 ${ }^{2}$ B63B $1 / 20$ U.S. CI. 114-283 Int. C.2 ${ }^{2}$ B63B 1/20

17 Claims


1. A high performance marine vehicle comprising
the combination of:
a length of said vehicledy extending substantially the full
said marine vehicle having a distributed mass so that the center of gravity is well forward of said vehicle's aerodynamic center of lift;
a frontal float carried on said body at the bow of said marine body and a pair of sid
said marine vehicle;
a wing-like structure cantilevered outwardly from an upper stern portion of said body in spatial relationship to the surface of said water and said side floats downwardly depending from the terminating ends of said wing-like structure
hydroski
hy loats and being carried on the underside of each of said surface of theing angularly disposed with respect to the surface of the water so that as vehicle speed increases, said
marine vehicle will gradually climb
marine vehicle will gradually climb upwardly;
aft rearwardly tapering planing surfaces on each of said supporting said marine vehicle at maximum speed and said rearwardly tapered planing surfaces being well aft of the stern of said body;
propulsion means operably carried in said body for power ing said marine vehicle at high speed;
dynamic and hydrodynamic directional control means
operably carried on said body and floats respectively; and
wherein said aerodynamic directional control means in-
cludes a vertical stabilizer upwardly projecting from the stern of said body and having a movable rudder thereon and further including said wing-like structures serving as horizontal stabilizers having movable control surfaces
thereon.

> SELF-BURYING ANCHO State for Industry in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland, London, England
ed Apr. 12, 1977, Ser. No. 786,935 Chims priority, application United Kingdom, Apr. 21, 1976, 16208/76
U.S. C. 114-295

$$
\begin{aligned}
& \text { Int. C1. }{ }^{2} \text { B63B 21/26 } \\
& \text { in } \text { ing anchoring device for pro }^{2}
\end{aligned}
$$

8 Claims

1. A self burying anchoring device for providing an anchorbody dependent from the anchor plate and tapering to an apex thereof, a liquid supply means, at least one liquid discharge outlet to the exterior of the anchor body for said liquid supply means and situated at said apex, a gas supply means, and at least
one gas discharge outiet to the exterior of the anchor body for
said gas supply means and situated near to but above said liquid discharge outlet:
whereby in use thereof, a forced liquid flow through the liquid discharge outlet from the liquid supply means, and

a flow of compressed gas through the gas discharge outlet from the gas supply means, causes bed material to travel pwardly along the exterior of the anchoring device to bury same.

4,095,551
WARNING INGTARANGEMENT FOR A DISTANCE Surgen Paul, and Walter Kostelezky, both of SEuttgart, Ger many, assignors to Daimler-Benz Aktiengesellschafth, Ger-
many

Filed Mar. 4, 1977, Ser. No. 774,543
Claims priority, application Germany, Mar. 5, 1976, 2609046
U.S. Cl. 116-35 R


1. An indicating arrangement with an indicating means for a distance warning system in motor vehicles that includes measuring and evaluating means for determining the distance of the vehicle to an obstacle disposed in front thereof and for determining the approach velocity to this obstacle, and means for deriving from the determined values a desired value for the brake deceleration necessary for the avoidance of a collision tained during the braking operation, and means for utilizing the desired and actual value for the indication in the indicating arrangement, characterized in that said lastmentioned means includes further means operable to indicate on said indicating arrangement only one of the two values consisting of differ-
ence and ratio of desired value and actual value.
dUMMY BEARING FOR BEARING WEAR DETECTION Hewift Hsu Fu Lo, 6100 Massachusetts Ave., Washington, D.C 20016

Filed May 25, 1977, Ser. No. 800,494
U.S. CI. $116-114 \mathrm{Q}$


1. A dummy bearing for indicating the state of wear of a
bearing journalling a shaft in a support comprising
a housing affixed to the bearing support;
a readily observable annular member positionally secured to said annular member being fixed relative to said shaft and proximate said bearing;
abrading means on said shaft proximate said annular mem ber,
ber,
whereby upon excessive bearing wear, said shaft resultingly rotates in an irregular or eccentric pattern causing said
abrading means to wear said annular member so that an indication of the wear of said bearing is provided by visual inspection and measurement of the amount of abrasion of the surface of said annular member.

4,095,553
SPEEDOMETER WITH AN EXCEEDING SPEED
WARNING DEVICE WARNING DEVICE
Kntsutoshi Ono, No. 3-6-1, Gyotoku-ekimae, Ichikawz City, and Yesumase Takagi, No. 766-9, Nishi-Motojuku, Higashi-Mat suyama Ctry, both of Japan
Filed Oct. 22, 1976, Ser. No. 734,751 Filed Oet. 22, 1976, Ser. No. 734, 181
Claims priority, appilcation Japan, Oct. 27, 1975, 50-128347 U.S. Cl. 116-116 Int. Cl. ${ }^{2}$ G01P 1/10


1. A speedometer for measuring rotational speed and for providing a visible warning by pointer vibration when exces sive speed is reached comprising:
a housing;
解 which is to be measured, extending through the bottom face of said housing and having permanent magnet fixed for rotation therewith located within the housing;
a spindle located essentially spacedly coaxially to said shaft extending through the top face of the housing, said spindle being rotatable against metal speed cap fixedly within the housing and adjacent to said magnet and mag-
netically connected therewith to produce said spindle rotation; mer parallelly mounted adjacent to said metal cap provided with a plurality of projections and rotatably driven by said shaft;
means on said speed cap consecutively contactable with said
projections for causing said metal cap to vibrate at a given projections for causing said metal cap to vibrate at a given
degree of angular rotation mounted on said cap; and a speed pointer attached to said spindle at the portion extending above the upper face of the housing said vibraions correlated to the location of the speed pointer in mined point.

4,095,554
SELF-WIPING, SELF CONTROLLED FLUID DISPENSER APPARATUS
Lenard E. Moen, 7914 Michigan, Whittier, Calif. 90602 Continuation of Ser. No. 584, 907 , Jun. 9,1975 , abandoned, hich is a continuation-in-part of Ser. No. 366,629 , Jun. 4, 1973,
abandoned. This application Oct. 26, 1976, Ser. No. 735,274 S. Cl. Int. Cl. ${ }^{2}$ B05C 5/02, $11 / 10$


1. Apparatus for applying a fluid to successive box blanks or the like comprising
framework having longitudinally spaced apart sets of means engagable with opposite sides of a box blank for reeding successive box blanks in a predemined directio of travel in a predetermine plane;
mounting a rigid nozzle barrel that is no intercept said plane, said nozzle barrel being deflectable by the leading edge of a box blank to thereafter bear against one side of the box blank, said nozzle barrel being located longitudinally intermediate an adjacent pair of sets
of said longitudinally spaced apart sets of feeding means
a support shoe mounted to bear against the opposite side of the box blank at a position longitudinally aligned a predetermined gap distance upstream from said nozzle basrel and against which the box blank reacts, during passage tion against one side of the box blank,
a normally closed valve means in said dispenser that is adapted to open upon deflection of said nozzle barrel to pass a fluid through an outlet orifice nozzle thereof to be deposited on one side of the box blank; yields to permit deflection of said nozzle barrel and opening of said valve means upon engagement of said nozzle barrel by a leading edge of a box blank reacting agains
said support shoe, said biasing means effecting return of said support shoe, said biasing means effecting return o
said nozzle barrel to a normal position and of said valve means to normally closed position concurrently with a trailing edge of the box blank leaving said support shoe, whereupon a trailing end portion of the box blank is de flected by said rigid nozzle barrel, whereby said closed of the box blank for a distance substantially equal to said predetermined distance; and
said dispenser and said support shoe being mounted on a
common bracket having means to adjust said predetermined gap distance between said nozzle barrel and said support shoe, whereby to vary the wiping distance of engagement of said nozzle barrel and the deflected trailing
end portion of the box blank.

4,095,555
PAINTING DEVICE FOR FLAGPOLES
PAINTING DEVICE FOR FLAGPOLE
Filed Aug. 25, 1976, Ser. No. 717,549 U.S. C. 118-208 Int. C.2 ${ }^{2}$ BOSC $1 / 02$


1. An apparatus for painting a pole, comprising:
a) a sponge adapted to be circumferentially disposed about
a flagpole to be painted for painting said pole;
(b) means for containing paint, said means circumferentially and abuttingly disposed about said sponge, said means comprising at least two segmental sections, said sections including a multiplicity of holes in abuttment to said sponge through which paint may osmotically flow to said sponge;
(c) spring tension means adapted for maintaining an appro priate pressure on said sponge against said pole, said ten pressure against the pole regardless of changes in diameter which occur at different heights of the pole;
(d) means for supporting and guiding said paint-containing means, said supporting and guiding means circumferen tially and abuttingly disposed about said pole below sai means for containing paint, said supporting and guiding
means comprising at least two segmental sections, said sections defining at least one space therebetween, at least one space of said supporting and guiding means being in substantial alignment with at least one space of said paint
containing means; e) second spring tens ) second spring tension means adapted for maintaining an against said pole, said second tension means being further adapted to maintain a constant pressure against the pole
regardless of changes in diameter which occur at different heights of the pole and regardless of the texture or config. uration of the surface of the pole; and
(f) lanyard means connected to one section of said support ing and guiding means, said lanyard means passing through one space of said supporting and guiding means
and one space of said paint containing means, said lanyard and one space of said paint containing means, said lanyard
means enabling the selectable elevation and de-levation of the present apparatus regardless of the configuration or texture of the pole.

APPARATUS FOR PAINTING CODING MARKINGS ON ARTICLES Wayne G. Dawson, 757 3rd St., McFarland, Calif. 93250 ; Robert
A. Kozlowski, Garden Grove, and Paul W. Belber, McFar Aland, both of Calif., assignors to Wayne G. Dawson, McFarland, Calif.

Filed May 12, 1977, Ser. No. 796,19 U.S. Cl. 118-230 ${ }^{\text {Int. Cl.2 }}$ BOSC 1/02, 13/02 $\quad 11$ Claims

1. Apparatus for painting coding markings on a series of elongated articles, comprising.
a transporting wheel structure mounted to turn about a predetermined axis and containing circularly spaced notches opening radially outwardly away from said axis and adapted to receive said articles in driving relation to advance them circularly as the structure turns;
means for eeding said artic-er succesively
at a predetermined pick-up location to be advanced circularly thereby to a painting location;
non-rotating retaining means relative to which said wheel structure turns and extending acruately ybout said axis and
said wheel structure radially outerdy said wheel structure radially outwardly of and radially
opposite said notches in a relation retaining said articles in said notches as the wheel structure turns relative to said retaining means:
said retaining means having two portions spaced axially apart at said painting location to engage one of said articles near opposite ends thereof while leaving an interme two portions of the retaining means; and
painting means located adjacent said transporting wheel structure at said painting location and operable to pain markings on said exposed intermediate portion of the article between said spaced portions of the retaining means.

APPARATUS FOR MAKING ELECTRICAL COILS USING PATTERNED DRY RESIN COATED SHEET INSULATION
Edward J. Croop; Howard E. Saunders, both of Pittsburgh, and Dean C. Westervelt, Acme, all of Pa, assignors to Westing Division of Ser. No. 527,458, Nor. 26, 1974, Pat. No. 3,974,302. This application May 4, 1976, Ser. No. 683,118 U.S. C. $118-301{ }^{\text {Int. C. }}{ }^{2}$ B05B 5/02, 15/04; B05D $1 / 0614$ Claim U.S. CI. 118-301

1. An apparatus for making a flexible, patterned, porous, (A) at least substrate comprising:
mask, containing patterned orated hollow cylindrical mass, containing patterned openings, each perforated opening having an area of up to about 1.75 sq. in., where
the distance from any part in the perforated area to the
nearest perforated area edge does not exceed 2 inches, the mask having electrostatic coating means therein, capable
of dispersing dry, heat reactive adhesive resin powder of dispersing dry, heat reactive
through the patterned openings;
(B) means to pass a flexible substrate next to and in contact
relationship with the mask, the substrate being capable of having the resin powder applied thereto through the

patterned openings in the mask, wherein the coating means is effective to provide between about 10 percent to 90 percent area coating coverage of the substrate with the
resin powder, said substrate contacting between about resin powder, said substrate contacting between about
$1 / 10$ to $9 / 10$ of the outside circumference of the mask and; (C) means to heat the substrate after it has passed next to the mask.
2. An apparatus for applying a liquid preparation to a freshly spun synthetic sliver which passes perpendicularly and in close relationship to a horizontal concave slot disposed in a verti-
cally oriented dispensing surface from which is forced said liquid preparation, the apparatus comprising a liquid storage chamber which is connected to the said slot by an upwardly inclining passageway, the liquid being supplied to the storage chamber by a continuously operated, precisely controlled gear pump, said slot having a height of $0.1-0.3 \mathrm{~mm}$., a depth of
$10-40 \mathrm{~mm}$, and a radius of curvature of $20-200 \mathrm{~mm}$., said slot being formed by two parallel prism-shaped solid materials
made from the group consisting of sintered ceramic, nitride carbide, oxide, or abrasion-resistant steel, said storage chamber being fitted with a frit of perfluorinated polyalkylene through aid liquid inside seid storage pressure to produce foaming oamed liquid issuing from said slot for application to seid liver and a curved guide element disposed in parallel with the upper element forming the slot and operatively associated therewith to form a guide for said perpendicularly passing
sliver. sliver.

## 4,095,559

VENTILATED LITTER BOX Loren B. Griffth, 250 Washington Ave., Phoenixvlle, Pa. 19460 Filed Oct. 27, 1976, Ser. No. 736,038 U.S. C. 119-1 6 Claims

## 4,095,558 <br> COATING APPARATUS

Konrad Ellegast, Leichlingen; Fritz Feld, Leverkusen; Karlheinz Feltgen, Straberg, Horst Greiner, Cologne; Armin KXhler, Dormagen; Wolfgang Kuhn, Leverkusen; Richard Menold, Weisbeck, Odenthal-Voiswinkel, all of Germeny, ausignors to Bayer Aktiengeecllechast, Leverkwuen-Bayyerverk, Germany Continuation of Ser. No. 605,146, Aug. 15, 1975, abandoned
which is a division of Ser. No. 526,411, Nov, 22, 1974 abich is a division of Ser. No. 526,411, Nor. 22, 1974, Claims priority, application Germany, Nov. 28, 1973, 235927 U.S. CI. 118-420

2 Claims



1. Ventilated litter box for pet animals, comprising in combi ation a traylike open-top portable container having an upcover therefor adapted to fit onto part of the top edge and to extend part of the way over the container, a skirt extending rom the cover downward a distance approaching the depth of the container and extending laterally to the container wall to orm an enclosure therewith, the skirt having ventiating openfor connection to means for exhausting air from the enclosure and thereby drawing air through the litter box and the litter therein

## BALED TIRE PROCESS

Abert F. Laurie, 7239 N. Chase, Portimed, Oreg. 97217, and C. W. Busch, 11775 SW. Warmer Tigard, Ores 97223 Division of Ser. No. 574,595, May 5, 1975. This application Mar 3, 1976, Mer. No. 633,366
Int. Cl. ${ }^{2}$ A01K $61 / 00$ : E02B 3/O4 U.S. CI. 119-3
extending inwardly from the outer circumference of said loop mounted interiorly of said cylindrical jacket along a bale and ending short of the inner circumference of said l bottom portion thereof; a flexible disposable receptacle co posed of a clear plastic pyramid releasably connected to said
jacket loop of the substantially cylindrical jacket, said flexible disposable receptacle having a plurality of walls, each of said walls having a free edge, said flexible disposable receptacle terminating at an apex opposite said free edges, said free edges being adapted for substantially complete contact with said torso of said animal along a perimeter surrounding a pair of
termini of an alimentary canal and a urinary system of the ermini of an alimentary canal and a urinary system of the
animal respectively, said contact between said free edges of said flexible disposable receptacle and said torso of said animal preventing release of an animal waste from said flexible dispos-
2 Claims

able receptacle, said apex being adapted to be moved away from said free edges when animal waste is present in said waste; and a receptacle cover releasably connected to said cylindrical jacket at an upper rear portion of said cylindrical jacket, said receptacle cover also being connected to said bottom portion of said cylindrical jacket, said receptacle cover being releasably connected to said flexible disposable receptacle opposite said jacket loop to hold said edges of said flexible
disposable receptacle in tension against said animal said receptacle cover being positioned exterior to and contiguous with a portion of the flexible disposable receptacle, said receptacle cover substantially covering said flexible disposable receptacle.
2. In an exercising apparatus for animals having a moveab exercising surface on the floor of said stall, the front of said suriace being fixedly inclid
sapparatus comprising:
body having upwardly extending side walls, said side defining a stall of trapezoidal cross-section, each of sai side walls further being angularly oriented to have the width between the upper portions of said stall greater than the width between the lower porrions of said stall, said dal cross-sectional width of said animal,
means operably connected to said exercising surface for imparting movement thereto after said animal is loaded
into said stall said imparting means being into said stall, said imparting means being further capable cising surface,
a gate pivotally connected to the front end of one of said side walls, said gate conforming to said side wall trapezoidal cross-section being operably latched to said front end of
the remaining side wall, said gate being capable of allowing air to circulate from outside of said treadmill into the area between said side walls,
means mounted above said side walls for selectively positioning the head of said animal when said animal is exercising, said positioning means being capable of orienting the
head of said animal for a predetermined lead, or material therefrom, and
means cooperative with said removing means for storing said material.

4,095,562
ANIMAL REFUSE CONTAINER
ANIMAL REFUSE CONTAINER
 95 Int. Cl. ${ }^{2}$ A01K 23/00
U.S. CI. 119-95 U.S. CI. 119-95

1. An animal refuse container comprising: a substantially cyindrical jacket adapted to be positioned about a torso of an

4,095,563
LOW PRESSURE STEAM GENERATO
ohn F. Finger, Beresford, S. Dak., assignor to Sioux Stean Filed Dec. 3, 1926, Ser. No. 747,35

U.S. C. 122-235 R


1. In combination:
a coil of tubing closed at both ends and helical about an axis a first header outside of and adjacent to said coil and extend ing paarallel to said axis;
first taps connecting said first header to successive turns of said coil;
pair of further headers outside of and adjacent to said coil and extending parallel to said axis at locations angularly
helix p
header; header;
and second passing through the location of said first intake port connected to said main combustion chamber, a trap
chamber provided with first and second apertures throug to alternate ones of said pair of headers at sites spaced which said chamber is communicated with said main combus oppositely about said axis by predetermined obtuse angles tion chamber, and a spark plug having a set of electrodes from the radius of the helix passing through the location of of said first header,
so that each turm of said coil has a connection to said first header, and a connection to only one of said pair of headers, spaced by less than $180^{\circ}$ around said axis.

4,095,564
METHOD AND APPARATUS FOR IGNITING AIR-FUEL Peter A. Hochstein, 14020 Fifteen Mile Rd., Sterling Helghts, Mich. 48077

Filed Nor. 5, 1975, Ser. No. 628,950
U.S. C. 123-211 Nor. 5, 1975, Ser. No.
Int. C1. ${ }^{2}$ F28B $53 / 12$

20 Claims


1. An ignition assembly in combination with a rotary piston engine having a triangular piston which has three corners and
which rotates within a housing whose internal cross section is which rotates within a housing whose internal cross section is
epitrochoid in shape, a combustion chamber being formed by epitrochoid in shape, a combustion chamber being formed by
first and second corners of the triangular piston and a predetermined portion of the housing, both first and second corners being adjacent the predetermined portion of the housing, said
ignition assembly comprising: generating means attached to ignition assembly comprising: generating means attached to
the housing for generating a magnetic flux, and ignition means the housing for generating a magnetic flux, and ignition means
attached to the triangular piston and responsive to said generattached to the triangular piston and responsive to said gener-
ating means when magnetically coupled thereto through said magnetic flux during a predetermined portion of the rotary
movement between the triangular piston and the housing while movement between the triangular piston and the housing while
the combustion chamber is formed for providing a spark the combustion chamber is formed for providing a spark

U.S. Cl. 123-/32 SP
U.S. C. 123-/32 SP 16 Claims
sating a torch ignition type internal
a. supplying an air-fuel mixture into said main combustio chamber through said intake port during a suction stroke of said engine,
b. introducing a portion of said air-fuel mixture through said first aperture into said trap chamber during said suctio stroke of said engine air-fuel mixture for residual gases produced in said trap

chamber during the preceding combustion stroke of said engine to discharge said residual gases through said second aperture to thereby scavenge said trap chamber;
d. preventing a forced scavenging flow of said portion of said air-fuel mixture within the area of said trap chamber remote from saide of said engine;
. igniting said air-fuel mixture in s
duce a combustion flame therein;
spurting said combustion flame in the from seid ber through said first and second apertures; and
g. burning, by said torch jets, said air-fuel mixture supplied to said main combustion chamber to produce power therein.

## 4,095,56 <br> VACUUM TIMING SYSTEM

Clarence D. Fox, Decatur, III,, assignor to Borg-Warner Corpo ration, Chicago, ill.
U.S. C. $123-1.49 \mathrm{Int}$. C.2 3 Claims 1. A vacuum operated timing system for use with an electrivariable vacuum source internal combustion eng an electrical switch connected in said accessory circuit vacuum motor meensected in said accessory circuil, said switch closed below a first tolected level of subating spheric depression in said motor means;
spheric depression in said motor means; means;
means, hercin
communicable able vacuube with ambient atmosphere, with said vari said regulator including with said vacuum motor means, motor means to a second selected level of subatmospheric depression lower than said first selected level of depression while said engine is operative regardless of variation in the level of said vacuum source, said vacuum regulator further including means arranged for permitting air bleed-
ing of said vacuum motor means through said flow restric tor when said engine is rendered inoperative;
via a one-way connection to move said throttle member in the direction of opening,
and valve means carried by the force applying drive wall means arranged to be engaged and actuated by the wall means of said first pneumatic element upon movement of said wall means of said first pneumatic element increase of said degree of underpressure, said valve means upon actuation thereof modifying the underpressure applied to said force applying wall means whereby the latter is moved in the direction corresponding to a decrease in the minimum degree of opening of said

ALTITUDE COMPENSATING APPARATUS FOR USE
4,095,568 WITH AN INTERNAL COMBUSTION ENGINE Akira Furukawa, Kariya, Japan, assignor to Nippondenso Co., Ltd., Kariya, Japan
Claims priority, application Japan, Jun. 24, 1975, 50-87356;
Jul. 24, 1975, $50-102579$ U.S. CI. $123-117{ }^{\text {Int. }}$

whereby said switch is retained in closed condition for a selected time interval after said engine is rendered inoperative.

4,095,567
CARBURATION DEVICES WITH IDLE ADJUSTMENT sceques $\mathrm{I}_{1}$ Chenet, Serree, France, assignor to Societe Industrielle de Brevets et d'Etudes S.I.B.E., France
Clinims priorty, application France, Jun. 26, 1975, 7520163 S. C. 123-103 R Int. C.2 ${ }^{\text {F FO2D 9/08 }}$ 9 Claims


1. A carburation device for internal combustion engine, omprising:
an operator operable main throtlle member in said intake
pipe,
stop means for preventing said throttie member from closing
stop means for preventing said throttie member from closing beyond a predetermined minimum opening position by
which an air flow cross-section is defined by the throttle which an air flow cross-sec
member in the intake pipe,
an idling circuit constructed to receive fuel and air and
an idling circuit constructed to receive fuel and air and
terminating into a part of said intake pipe downstream of said throttle member,
and idling regulator means which includes:
a first pneumatic element having movable wall means, means for connecting said element to said part of the intake pipe so that the position of the movable wall said part of the intake pipe,
a second pneumatic element having force applying wall means drivably connected to said main throttle member
U.S. C. 123-103 R

2. An altitude compensating apparatus for use with an inter nal combustion engine comprising
a housing having a first and a second air passage formed cover secured to said housing for forming with said housing an atmosphere chamber to be supplied with the atmosphere;
a block secured to said housing;
a deflectable diaphragm interposed between said housing
and said block for forming a pressure chamber with said and said block for forming a pressure chamber with said
housing and a sub-atmosphere chamber with said housing and a sub-atmosphere chamber with said block;
said pressure chamber and said sub-atmosphere chamber communicating with said atmosphere chamber through tively;
a pressure inlet and a pressure outlet both formed on said housing and communicating with said pressure chamber; said pressure inlet and outlet being adapted for connection to an intake manifold and a vacuum advancer of a distributor at least one air outlet formed
ing with said sub-atmosphere caid block and communicalsaid air outlet being disposed for connection to an air bleed of a carburetor of the engine;
said diaphragm having a valve portion normally closing said said valve portion being disposed to open said air outlet with
the deflection of said diaphragm when the negative pressure is transmitted in said pressure chamber and acts o said diaphragm;
forming therein a chamber to be confined with the air or gas at a predetermined pressure;
said bellows being of the type that expands as the atmospheric pressure decreases; and
valve connected to said bellows for normally opening said first air passage;
ed to close said first air passage by the expansion of said bellows.

## 4,095,569

INTERNAL COMBUSTION ENGINE WITH AN EXHAUST GAS RECIRCULATING DEVICE Nobuaki Wakita, ad Kiyoohi Y Yulk, both of Susono, Japan, amigerss to Toyota Jidosha Kogyo Kabushiki Kaisha, Toyota, Japan Flued Nov. 29, 1976, Ser. No. 745,550 Cleims priority, application Japan, Oct. 15, 1976, 51-122954 U.S. Cl. 123-119 A ${ }^{\text {Int. Cl. }{ }^{2} \text { F02M 25/00 }}$


1. An internal combustion engine having an intake system, 1. An internal combustion exgins having recirculating device having an exhaust gas control valve for changing the amount of the exhaust gas recirculated from the exhaust system into the intake system in accordance with the operating condition of the engine, said engine comprising:
a combustion chamber,
ned over one end of said chamber and intake port;
an intake valve mounted in said cylinder head for reciprocal movement therein and having a valve head, said valve head having a front surface facing said combustion chamobstructing means movable in said intake port for obstructing a part of a mixture stream flowing through the valve opening of said intake valve to create the swirl motion of the mixture containing the recirculated exhaust gas therein in said combustion chamber when the amount of the recirculated exhaust gas is larger than a predetermined level, and;
actuating means responsive to changes in the amount of the recirculated exhaust gas and operatively connected to said obstructing means for actuating said obstructing means to surface of the valve head of the intake valve and an inoperative position where said obstructing means does no
obstruct the mixture stream flowing in said intake port.

4,095,57
METHOD CONTROL SYSTEM AND imothy K. Sheffer, Rochester, and Donald D. Stoltman, Hen rietta, both of N.Y., assignors to General Motors Corporation, Detroit, Mich

Filed Aug. 24, 1976, Ser. No. 717,283
S. C1. $123 .{ }^{\text {Cl. }}$ F02B 3/00; F02M 7/00; F02B 33/00 U.S. Cl. 123-119 EC


1. A s
prising
prising
an act
actuator including a fuid angine control element com pressure for moving said element toward a retracted mopon a decrease in said regulated pressure and towarc a projected position upon an increase in said regulated pressure,
said actuator
said actuator also including a pressure regulator having a
port adapted to sense low pressure, a bleed adapted to port adapted to sense low pressure, a bleed adapted to
sense higher pressure, an outlet connected to said motor and combining said pressures to form said regulated pres sure, a floating valve member regulating said port and said
bleed, said valve member having one end exposed to said bleed, said valve member having one end exposed to sain
higher pressure and an opposite end exposed to a biasing pressure which varies between said low pressure and said regulated pressure and being biased by the difference between said higher pressure and said biasing pressure to
close said port and open said bleed, and a coil surrounding close said port and open said bleed, and a coil surrounding
said valve member for magnetically biasing said valve said valve member for magnetically biasing said
member to open said port and close said bleed, and an electronic control including means for increasing current through said coil to cause said valve member to open said port and close said bleed and thus reduce said
regulated pressure when said element must be moved toward said retracted position, for decreasing curren through said coil to cause said valve member to clese said port and open said bleed and thus increase said regulated pressure when said element must be moved toward said projected position, and for maintaining sufficient curre
through said coil to balance the magnetic bias on said valve member with the pressure bias on said valve member and cause said valve member to close both said port and said bleed when said element must remain stationary

FILTERTG 4,095,571
FILTERING AND MIXING APPARATUS
Willard Eugene Fleetwood, Seymour, and Ronald Dean Boyd, North Vernon, both of Ind, sesignors to Cummins Engine
Company, Inc., Columbus, Ind. Filed Aug. 16, 1976, Ser. No. 714,945
Int. C1. ${ }^{2}$ F02M 59/00; F02B 3/00
U.S. C. 123-136 1 . 8 Claim 1. Apparatus for addition of liquid lubricating oil to liquid
fuel oil used by an internal combustion engine, said apparatu comprising:
first conduit means having one end extendable to a supply of first conduit mean
lubricating oil;
first pump means for pumping lubricating oil through con
duit means,
filter means interposed in said first conduit means for filtering contaminates from said lubricating oil, second pump means for pumping fuel oil;
means defining a mixing chamber having inlets connected to receive the output of said first and second pump means fo
mixing said lubricating oil with said fuel oill said mixing mixing said lubricating oil with said fuel oil, said mixing inlets for producing a substantial pressure differentia

which increases as a direct function of
rpm and increasing rpm and increasing operator demand; pressure modulaing means connected bet' veen said fuel
delivery means and said engine having a cuity responsive to a pressure signal for varying the pressure level of fuel to a pressure signal for varying the pressure level of tuel
from said fuel delivery means as a direct function of the level of said pressure signal;
onduit means connecting said pressure varying means to conduit means connecting said pressure varying
the pressure existing in said intake manifold; and the pressure existing in said intake manifold; and
means for forming an orifice in series flow relation to said means for forming an orifice in series flow relation to said
conduit means and means forming a housing between said orifice and said cavity, said housing means and said cavity forming a chamber for producing a delay of transien increases in pressure signals from said manifold to said
pressure varying means, thereby delaying the increase in pressure varying means,
fuel rate to said engine.
between the output of said pumps and said mixing means to increase the velocity of said liquids, said orifices oriented to discharge said liquids into said chamber in a direction promoting substantial mixing with one another;
and of said orifices for discharging the output thereof to a tank of fuel oil for use by said engine.

UEL SYSTEM FOR COMPRESSION IGNITION ENGINE Robert L. Schoitt, Columbus, Ind., assignor to Cummins Engine Company, Inc., Columbus, Ind.

Ined Aug. 18, 1976, Ser. No. 715,6
Int. C. F02M S $/ 10$
U.S. CI. 123-140 MP

5 Claims


1. Apparatus comprising:
an air breathing internal combustion engine having an intak manifold and a compressor for delivering air to said intake manifold at a pressure level generally increas;
direct function of increasing engine power level; direct function of increasing engingine at a pressure level and said control lever means being adjustable at said pivot
means for delivering fuel to said engin tion pipe, a fuel injection pump being connected to the suction
pipe and having an adjusting means for adjusting the feedquantity of the fuel, a pneumatic measuring means including a diaphragm means and a longitudinally displaceable diaphragmboit operatively connected with said diaphragm means, means
including a control lever means for adjusting the adjusting means of the fuel pump by said diaphragm-bolt, said diamhragm means being acted upon on one side substantially by the outside air pressure and partially delimiting on the other side a vacuum chamber formed in said measuring means, idling
spring means in said vacuum chamber urging the diaphragm spring means in said vacuum chamber urging the diaphragm
means and therewith the diaphragm - bolt outwardly in the direction toward an increase of the feed quantity, and vacuum chamber being in communication by way of a vacuum line means with a part of the suction pipe, an outward member for
the internal combustion engine, the pivot point of the control lever means being additionally adjustable within the pivot plane of the control lever means at least indirectly by said output control member, characterized in that the suction pipe includes a non-throttlable Venturi section, the control lever
means is supported at a pivot point with its end opposite said means is supported at a pivot point with its end opposite said
adjusting means on an actuating member operatively conadjusting means on an actuating member operatively con-
nected with said output control member, said diaphragm-bolt nected with said output control member, said diaphragm-boit
engaging said control lever means in its central area to retract engaging said control lever means in its central ares to retract
said diaphragm-bolt inwardly with an increasing vacuum in said vacuum chamber and therewith displace said adjusting
means to smaller injection quantities by pivoting the control
point with an increasing output adjustment of said output said heat exchanger and radiator in such way that when control member substantially in the same direction as the dia- predetermined temperature of the liquid is reached the suppl phragm-bolt mover
vacuum chamber

## 4,095,574

MECHANICAL GOVERNOR FOR INTERNAL COMBUSTION ENGINE
Masao Yoshino, and Koichi Mori, both of Higashimatsuyama, Japan, assignors to Diesel Kiki Co., Ltd., Tokyo, Japan Claims priority, application Japan, Dec. 15, 1975, $50-$ 168144[U] Int. C1. ${ }^{2}$ FO2D $1 / 04$
U.S. CI. 123-140 R

$$
\square
$$

$$
8
$$


pipe is cut off from the heat exchanger and connected solely to said radiator.

## 4,095,576

DWELL TIME CONTROL SYSTEM Tadeshi Hattori; Minoru Nishida, and Yoshiki Ueno, all of Okazaki, Japen, eaters to Nippon Soken, Inc., Nishio Japan

| Filed Sep. 28, 1976, Ser. No. 727,534 |
| :---: |
| Claims priority, application | U.S. C1. 123-148 E Int. Cl. ${ }^{2}$ F02P 9/00

4,095,573
ARRANGEMENT FOR CONTROLLING THE INJECTION QUANTITY OF AN INJECTION INTERNAL
COMBUSTION ENGINE
Karl Kollmann, Leonberg, Germany, assignor to Daimler-Benz Aktiengesellschaft, Germany
Filed Sep. 13, 1976, Ser. No. 723,033
Claims priorty, application Germany, Sep. 13, 1975, 2540986 Claims priorty, application Germany, Sep. 13, 1975, 2540986
Int. Cl. ${ }^{\text {F FO2D } 1 / 04}$
U.S. C. $123-140 \mathrm{MP}$
19 Claims


1. In a mechanical governor for an internal combustion
2. An arrangement for the control of the injection quantity of an injection internal combustion engine, comprising a suc-
engine including centrifugal expansion means driven by the engine, a shifter axially movable by the expansion means in a
first direction, a pivoted, spring biased tension lever for urging the shifter in a second, opposite direction, speed control mean for adjusting the spring tension, a fuel supply control rod, and mechanical linkage means coupling the control rod to the mechanism characterized by:
(a) a pivoted torque lever
(b) an adjustable torque spring,
(c) stop means on the tension lever engageable with the torque lever, and
(d) an extension arm rigidly secured to the speed control
means for camming the torque lever means for camming the torque lever against the torque
spring and out of engagement with the stop means at spring and out of engagement with the stop means at
partial speed settings, whereby the torque control mechanism is disengaged from the governor and disabled at partial speed settings, but is released from the extension arm and acts against the tension lever biasing at full speed settings when the engine speed drops below a predetermined level.

4,095,575
Nitermann Wulf
NSU Auto Uur, Bad Wimplen, Germany, assignor to Audi Filed Jun. 30, 1976, Ser. No. 701, 179
Claims priority, application Germany, Jul. 2, 1975, 2529376 U.S. Cl. $123-142.5$ R


1. A dwell time control system for use in combination with an internal combustion engine which is provided with an ignition coil having primary and secondary windings, ignition
timing control means for producing an ignition timing signal at a time instant corresponding to at least one of operating paramters of said engine, and spark means connected to said ignition coil for sparking in response to an induced voltage of said condary winding, said control system comprising: crankshaft angular position detecting means disposed to
detect first and second predeternined angular positions of a crankshaft of said engine for producing first and second crankshaft angular position signals, said first crankshaf angular position being located in an advanced position in relation to said second crankshaft angular position in the rge and discharge curr
said crankshaft angular position detecting means and said ignition timing control means and including capacito means for controlling dwell time, said charge and dis charge current control circuit being responsive to sai
second crankshaft angular position signal to start chargin of said dwell time controlling capacitor means, said control circuit being responsive to said ignition timing signal produced from said ignition timing control means in response to said first and second crankshaft angular positio signals to terminate the charging of said capacitor means, said control circuit being responsive to the next first ang
lar position signal produced after the generation of said ignition timing signal to start discharging of said capacito means; and
n ignition coil energization control circuit coneat said ignition timing control means said charge and dis said ignition timing control means, said charge and dis-
charge current control circuit and said ignition coil and responsive to said ignition timing signal to interrupt the flow of current in the primary winding of said ignition coi and to cause said spark means to spark, said ignition coil
energization control circuit starting the flow of current in seat, an appendage projecting into the interior of the condui the primary winding of said ignition coil when the voltage and disposed in the radial plane with respect to the longitudinal across said discharging capacitor means decreases to a and of the valve, said radial plane being inclined at an angle o
predetermined value.

4,095,577
CAPACTIOR DISCHARGE IGNTIION METHOD AND Herold E. Anderson, 46267 Curck Calif. 93646

Filed Mar. 2, 1976, Ser. No. 663,201
U.S. C. 123-148 CC Mar. 2, 1976, Ser. No.
Int. C1. ${ }^{2}$ F02P $1 / 00$
C
axis of the valve, said radial plane being inclined at an angle of
between $0^{\circ}$ and $45^{\circ}$ to the transverse axis of the valve parallel to the axis of the engine shaft and the appendage, in plan view having a rectangular cross sectional shape, being delimited aterally by a first surface substantially parallel to said longitudinal axis of the valve and delimited at its end facing the valve eeat by a second surface substantially orthogonal to the first, he said second surface being machinable for the selective
removal of material to control the degree of turbulence caused by the appendage in the air flowing through the conduit in use


ENGINE BALANC 4,095,579 Seizo Iwase Kyoto, and Kar Driving mechanism Seizo Imasa, Kyoto, and Kazzo Onoue, Kameoka, both of Japan,
assignors to Mitsubishi Jidosha Kogyo Kabushiki Kaiche,

Tokyo, Japan
Filed Dec. 29, 1975, Ser. No. 645,102 Claims priority, application Japan, Dec. 26, 1974, 49-3582 U.S. Cl. 123-192 B ${ }^{\text {B }}{ }^{2}$ F02B 75/06; F16H $7 / 00$ U.S. Cl. 123-192 B
8. In an ignition system for an internal combusion engin including a high voltage transformer coupled to a gap ioniza tion discharge device and connected to a magneto coil which an electrical signal is induced by engine responsiv herewith, and including contact breaker points for internit ently grounding the electrical signal from the magneto coil, a method of converting the system to a capacitor discharg gnition system:
(a) circumventing the operation of the contact breaker (b) discois
(b) disconnecting the high voltage transformer from the (c) connecting a capacitor discharge circuit including capacitor which is charged by by an electrical potential o a first polarity induced in the magneto coil, and an elec
tronic switch, responsive to a drop from a peak in the trenctrical potential of opposite polarity from said firs
elemen polarity induced in said magneto coil, in circuit between the high voltage transformer and the magneto coil.


INDUCTION CONDUITS OFINTERNAL COMBUSTION iaseppe Allara, Nichelino (Turin), and Giorgio Marchetti,
Redina Mareberita-Collego (Tinin), both of to Fiat Societa per Axioni, Turin, Italy
Filed Ang, 31, 1976, Ser. No. 719,291
Chimms priorty, application Itser, Dec 24, 1915, (Int. C. ${ }^{2}$ Fo1L 3/00

2 Cleims


1. In a cylinder head for an internal combustion engine including a valve seat, a valve guide and a valve cooperating with the valve guide and valve seat, an induction conduii terminating in the valve seat and including, in the wall of the thereberwe front wall of said engine defining a dead space induction conduit intermediate the valve guide and the valve being located in said dead space mechanism of said engine

PULSE-ACTUATED FUELINJECTION SPARK PLUG Inn Murray, and Clement A. Tatro, both of Livermore, Calii aignors to The United Staites of America as represented by he United States Department of Energy, Washington, D.C Filed Oct. 22, 1976, Ser. No. 734,918
U.S. CI. 123-32 SJ


1. A spark plug responsive to an ignition pulse for injecting fuel into the combustion chamber of a reciprocating interna combustion engine and for igniting the injected fuel, including fuel storage means;
means for receiving fuel for passage to said storage means eeans for receiving an ignition pulse; and
pulse receiving means for in porage means into the corbuecting fuel from said fuel the injected fuel combustion chamber and for ignit irst and second electrodes;
piezoelectric materizl electrically piectrodes and defining with said first electrode said said electrodes and defining with said first electrode said stormeans for normally blocking the flow of fuel from said storage means,
said piezoelectric material being responsive to a pulse ap plied across said electrodes to deform and thereby cause pressure buildup in said storage means and to cause said
blocking means to open for injection of the fuel in said storage means into the combustion chamber, and
said first electrode being centrally located within said stor
age means and having an upper end as an element of said fuel receiving means and a lower end as an element of said
blocking means. blocking means.

## \section*{4,095,581} <br> FIREPLACE CONSTRUCTION

Thomas F. Billmeyer, and Francis L. Fachling, both of Wiscon Thomas F. Bids Wis, essignors to Preway Inc. Wisconsin Repid sin Rapida, Wis,, assignors to Preway Inc., Wisconsin Raplds,

## Iled Aug. 14, 1975, Ser. No. 604,613 Int. Cl. ${ }^{2}$ F24B 7/00

U.S. C. ${ }^{126-121}$
a fireplace construction adapted to be housed in structure, the combination of:
a sheet metal firebox having an open side, two opposite side walls adjacent said open side and a combustion gas outle adapted to be in fluid communication with a flue, each side wall having an opening formed therein
a door for substantially sealing said open side; firebox in close proximity hereto;
relatively low inlet in said housing through which air in structure housing said fireplace nay enter said howsing relatively high outlet in said housing through which air in said housing may exit the housing to re-enter the structur housing the fireplace;
outlet defining a first air flow path for circulating air
opening with each in fluid communication through an second wid the interior of said firebox for establishing isolated from said first air flow paths extending through and ing from a point adapted to be located exteriorly of the structure housing the fireplace to its respective opening each side wall of said firebox to provide a source of combustion air from a location exterior of the structure hous ing the fireplace;

pair of spaced apart vertical sheet metal baffles located within said firebox one spaced from each side wall, eac opening being in communication respectively with th space defined beeween each baffle and side wall, each bame including a cutout adjacent said open side near the
lower extremity thereof and an upper end spaced from the op of said firebox to permit combustion air to pass there over; and
bafle structure disposed across the lower forward end of said firebox between said baffles, said baffle structur having oppositely disposed open ends and defining pas
sageways for directing air upwardly across the door and downwardly across the bottom of said firebox, the cutouts of said baffles being generally aligned with said open end of said baffle structure so that combustion air is delivered into said open ends.

4,095,58
FIREPLACE ENCLOSURE
Harrisan F Edwarde Norwich, N $\mathbf{Y}_{\text {sesiger tor }}$ to Bennett-Ire land, Inc., Norwich, N.Y.

In Ser. No. 648,387, Jan. 12, 1976, Pat. No. 4,027,650. This application Nov. 19, 1976, Ser. No. 743,230
Int. C1.2 F24C $15 /{ }^{2}$
U.S. CI. 126-140

4 Cleim


1. A fireplace enclosure, comprising in combinatio (a) a frame having substantially vertical side members and substantially horizontal top and bottom members extend b) two curtain rods connected to the side members, with adjoining ends in overlapping relation, supported by the frame at the rear upper portion thereof
(c) two collapsible wire mesh screens respectively carried by
and slidable along said curtain rods between open posiand slidable along said curain rolas between open
tions providing access to the fireplace and closed positions
where adjoining portions overlap, where adjoining portions overlap,
(d) a pulley device carried by the frame at one side thereof,
(e) a pull-chain connected with the overlapping ends respec(e) a pull-chain connected with the overlapping ends respec-
tively of the wire mesh screens and having a portion going tively of the wire mesh screens and having a portion going
around said pulley device, the ends of the chain being arcessible at one side of the frame to enable it to be pulled
and
for the purpose of for the purpose of opening and closing the mesh screens, and (I) chain guide means located at the overlapping portions of
the rods, providing passes, whereby the latter is continuously supported at the center of the frame.
(g) said curtain rods being constituted as a single continuou piece of material having
loop of the guide means.
(h) oppositely moving portions of said pull-chain engaging and being supported by oppositely located portions of said
loop as the chain is operated.

4,095,583
SELF-CONTAINED WARMING PAD Russell $H$. Petersen, Sturtevant; Edmund A. Weaver, Racine,
both of Wis, ors to Chem-E-Watt Corporation, Racine, Wis.

Filed Nov. 19, 1976, Ser. No. 743,437 U.S. CI. 126-263


1. A self-contained warming pad comprising: a heating element;
a dose of activating liquid adjacent to said element and separate therefrom;
a frangible container containing said liquid; and
a substantially liquid-impervious covering layer means to enclose said element and said container, said layer means defining at least one tortuous air passage therethrough,
whereby said layer means serves both to promote suswhereby said layer means serves both to promote sus-
tained production of heat and to prevent liquid from exiting the pad.

## 4,095,584

SOLAR HEATING SYSTEM
Othmar W. Pies, 7041 Vine St., Cincinnati, Ohio 45216 Filed Jul. 14, 1976, Ser. No. 705,079 U.S. CI. 126-270 Int. C1. ${ }^{2}$ F24J $3 /{ }^{2}$

SOLAR ENERGY COLLECTOR WITH ON SITE
STORAGE nie pour I'Etude et la Realisation de Combustibles Atomiques, Paris, France Filed
Claims priority, application Fer. No. 750,373 4540429 U.S. CI. 126-271 Int. Cl. ${ }^{\text {F F24J 3/02 }} 9$ Claims

1. In a solar energy collector with on site storage constituted of a glass partition and a storage unit separated by a free space enclosing at least one solar heat absorbing element; the storage unit comprising first and second insulating panels which are essentially parallel and, between these panels, a structure
formed of two corrugated walls having a part of their surfaces
etween each block and an associated one of the transverse channels, means for directing air into one of the transverse eader channels to be directed along the air heating channels heated wher of the transverse header channels so that the air chamber formed in a pit in the ground, the heat storage cham-

ber including an air impervious membrane lining a bottom and side walls of the pit, rocks mounted inside and filling the pit, a concrete slab overlying the rocks and upper edge portions of the membrane, and means for directing heated air from the other transverse channel through the chamber to heat the rocks.

Filed Sep. 1, 1976, Ser. No. 719,528 Claims priority, application France, Nov. 21, 1975, 7536414 U.S. Cl. 126-273 R ${ }^{\text {Int. Cl. }{ }^{2} \text { F21B } 1 / 02}$


1. In an oven comprising a horizontally elongated hollow refractory lined body including a base, a roof, a first end and a second end, with said first end having an air inlet aperture and with said roof being formed with a fume vent, wherein said
fume vent is disposed adjacent said first end of said body in such manner that when a solid fuel is disposed on the base of said body adjacent the second end thereof, the inlet air flows along the base of said body while the flames and hot gases flow
along the roof to uniformly heat same wherein a portion of the along the root to uniformy heat same, wherein a portion of the
base is selectively removable to define a first aperture in the base, and wherein the oven further comprises support means for supporting the refractory lined body, an ash pan disposed under a portion of said support means, a second aperture desaid first aperture to allow cinders and embers from said fuel to said tirss aperture to allow cinders and embers from said fuel to passage formed in said second end of said body, an inlet opening defined in said support means adjacent said second end of said body in alignment with said counter-draft passage, said ash pan having first and second substantially vertical end walls
with said second end wall being situated in the vicinity of said second end of said body and with said first end wall being formed with an air inlet aperture, and said ash pan being slidable longitudinally of said body between a first position in which said inlet opening of said counter-draft passage is free of
said ash pan and said counter-draft passage communicates with the outer atmosphere and a second position in which said ash pan is located below said inlet opening and said counter-draft passage communicates with the inside of said ash pan to promote combustion of the embers therewithin.

## 4,095,587

HEALTHY MAGNETIC ORNAMENT in contact with each other and joined at this part of their surfaces, the assembly of panels and structure defining at least three separate volumes; a first volume between the first panel and the opposite corrugated wall, a second volume between the two corrugated walls, and a third volume between the second panel and the second corrugated wall, at least one of
these volumes being in fluid communication with the free these volumes being in fluid communication with the free
space between the partition and the storage unit and constituting with it a primary circuit, and at least one other of these volumes being in fluid communication with a user and constituting with it a secondary unit.
magnet completely enclosed within the hollow interior of said capsule, said permanent magnet having a peripheral surface and two end faces wherein at least one pair of diametrically opposed poles are formed on said peripheral surface, said and passing hrough said end faces,

parallel to the first axis of said capsule, and a second axis passing through said pair of diametrically opposed poles, wherein said first axis of said magnet is perpendicular to said second axis and lies in the plane of said ornament which said ornament
is lying in a flat plane is lying in a flat plane. Adams, 5 Brin, 8 MacIntosh La., Monsey, N.Y. 10252; Guy Goldman, 5 Mrwood Ave., Monroe, N.Y, 10950, and Shirley Filed Jul. 19, 1976, Ser. No. 706,905

Int. C. ${ }^{2}$ A61B $17 / 00$

2. A method of cleansing a vascular system of a person said method including the following steps:
placing the table in an environment where the effects of the earth's magnetic field are minimized;
rienting a plurality of separate coils to have two connected in series on diametrically opposite sides of and about the ad a coil on the left and a coil on the right as ane pair thereby encircling an axis passing through the person in the environment aforesaid; and
conducting current of a variable frequency and amplitude through one pair and thence the another pair in one direction and thereafter conducting current in another direcan electromagnetic field about one pair and then the another pair of coils, at least, so as to oscillate and rotate red corpusices in the vascular system to contact and thereby scrub the walls of the system with debris loosened being carried away by flow of the system.

COMBINATION URINE METER AND DRAINAGE RECEPTACLE
James G. Manschot, Mukwonago; Byron L. Mather, and Lerry A. Salvadori, both of Millwaukee, all of Wis,, assignors to Filed May 20, 1975, Ser. No. 573,853 U.S. CI. 128-2 F Int. C1. ${ }^{2}$ A61B $19 / 0$ 14 Claims


1. A combination urine meter and drainage receptacle com prising:
liquid
a liquid meter of semi-rigid material having at least one
volume calibrated chamber and an inlet opening through volume calibrated chamber and an inlet opening through
which liquid may be introduced into the interior thereof, said meter having an upper portion in which said inlet opening is located and a lower portion in which said liquid can accumulate;
a liquid drainage, receptacle in the form of a bag made of flexible material, said bag having an upper portion positioned adjacent said meter upper portion; and
liquid communication means for said meter and drainage upper portion of said meter to the upper portion of said drainage receptacle, said liquid communication means adapted to permit relative movement of said meter with
respect to said drainage receptacle to thereby facilitate respect to said drainage receptacle to thereby facilitate
drainage of liquid from the interior of the meter through said liquid conduit and into said drainage receptacle by simply tilting said meter with respect to said drainage receptacle, said liquid communication means including semi-rigid tubular assembly fastened at one end to said meter and fastened at its other end to said liquid drainage a tubular fitting having a flange sealed to one wall of said liquid drainage receptacle, said tubular fitting having a pair of concentrically spaced circular walls providing groove therebetween, said tubular assembly further in cluding a collar formed integrally with one wall of said tubular fitting to thereby provide a fluid tight liquid conduit between said meter and said receptacle.

## 4,095,59

EXTERNAL CARDIAC RESUSCTTATION AID
Roy Majior Harrigan, Bromley Mountain Rd., Manchester, Vt. 05254
Continuantion-in-part of Ser. No. 609,109, Aug. 29, 1975, which is a continuation-in-pert of Ser. No. 541,762, Jan. 17, 1975 ,

U.S. C. 128-24 R Int. C. ${ }^{2}$ A61H $1 / 00$ 1. Apparatus for use in administering cardiopulmonary resuscitation to a human patient or for use as a training aid in th means for receiving manually applied forces; means in operative relationship with said receiving means for sensing said forces;
means in operative relationship with said sensing means for indicating said forces; and

a rigid member in operative relationship with said force receiving means for enabling substantially even distribu tion of said forces over a predetermined area

## 4,095,591 <br> COMPRESSION SCREW SYSTEM

 Charies M. Graham, Jry, and Thomas L. Craig, both of Mem phis, Tenn., assignors to Richards Manufacturing Co., Inc. Memphis, Tenn.led Jan. 27, 1977, Ser. No. 763,031
U.S. C. 128 -92 BB

## 10 Claims


4. A system for applying compression to a fractured bone, aid system comprising.
(a) a lag screw for being anchored to the bone on one side of he fracture, said lag screw including a first end for being selectively anchored to the bone and including a second end;
(b) compression plate means for being selectively attached to said second end of said lag screw and to the bone on the other side of the fracture to allow compression to be applied between said lag screw and said compression plate means to aid in the healing of the fracture in the bone, said ing an aperture therethrough for passing over said second end of said lag screw, said compression plate means in cluding means for nonrotatably attaching said barrel member to said lag screw, said compression plate means including a body member for being fixedly attached to the bone; and
(c) barrel guide means for guiding said barrel member of said compression plate means onto said second end of said lag screw, said barrel guide means including an extension
member for attachment to said second end of said screw, said extension member being of sufficient length so as to extend outward of the bone when attached to said lag screw and when said lag screw is anchored to the bone, said extension member having the same outer circumfer barrel portion of said compression plate means will pass thereover and will be aligned with said second end of said lag screw when passed over said extension member.


1. A breathing assembly of the type used for underwate 1. A breathing assembly of the cype used for underwater breathing gas, fresh gas supply means for feeding fresh breath ing gas into said breathing chamber means to replace breathing gas that has been consumed and exhausted to the ambien medium, breaching passage means for conveying breathing ga ing consumed gas to said breathing chamber means, and a normally-opened exhaust valve means in communication with said breathing chamber means for exhausting breathing gas
from said breathing chamber means to the ambient medium in rom said brea, a seathing cycle and including control mean operable upon said exhaust valve means for allowing said exhaust valve means to open only in response to the occurrence of a plurality of breathing cycles while allowing sai valve means to open during each breathing cycle only upo the inoperation of said control means.

COOLING SYSTEM FOR REMOVING METABOLIC HEAT FROM AN HERMETICALLY SEALED SPACESUIT Bruce W. Webbon, San Jouec; Habert C. Vykukal, Los Altos, and Bill A. Willinms, Morgan Hill, all of Calif, samignors to The United States of America as represented by the Administrator the National Aeronnutics and Space Administration, Weab of the Nationa
ington, D.C.

Filed Dec. 23, 1976, Ser. No. 753,978
U.S. C. 128-142.7

Int. Cl. ${ }^{2}$ A62B $7 / 14$

1. In combination with a hermetically sealed spacesuit in cluding a bulbous helmet affixed to a thorax section of a rigid ing metabolic heat and gaseous wastes generated by a wearer comprising:
an elastomeric body suit. sections, arm sections and a head section adapted to be sections, arm sections and a head section adapted to be
donned by a wearer and received within said spacesuit; a quick disconnect unit having a first section mounted on said spacesuit interior in reach of said wearer and a second section mounted on said body suit and adapted to be
mated in a releasably coupled relationship with said first mated in a releasably coupled relationship with said firs ond inputs and an output mating with first and second outputs and an input, respectively, on said second section; circuit means for channeling a flow of water through the thorax section and the head section of said body suit, said
circuit means coupled between said first outlet and said circuit means coupled betw een said disconnect unit;
indet of said second section of sald
said spacesuit having a water inlet orifice, a water outle orifice, a gas inlet orifice, and a gas outlet orifice grouped
in said thorax section, said orifices being adapted to link to a life support system external to said spacesuit;
means for ducting gas from said gas inlet orifice to the inte rior of said helmet and to said second inlet of said first section of said disconnect unit;
first input of said first section of said disconect to to said for ducting water from said output of said first section to said water outlet orifice;

gas distribution network comprising a manifold mounted on said body suit and a flexible conduit connecting said said disconnect unit; and exible tube means secured gas from said manifold to all arm and leg extremities of the wearer.

4,095,594
ris Ergeritil P FACTURING LAMINATED SHELLS oris Ergenierich Paton; Simon Lrovich Mandelberer; Semen
Mikhailovich Biletak; Vyacheala Ansataderich Atmanchuk, all of Kier; Zekhar Oaiporich Knyazhinask, Dneprope. trovak; Yakor Effmorich Onada, Moscon, and Julina Varlile rich Kotenzhi, Khartsyzak Donetrakol oblasti, all of U.S.S.R. assignors to Institut Electrownarki Imeni E.O. Patona Akade mii Nauk Ukrainakor SSR, Kier, U.S.S.R.
S. C. $228-143$


1. A method of manufacturing laminated shells for high pressure vessels and pipes, including.
forming a shell from a sheet by wrapping it into a laminated coil having a plurality of layers; forming welds joining an coil;
forming a weld joining an outer end of said sheet to an
adjacent outer layer of said coil; and,
joining together at least three outer layers of said coil by
penetrating said layers along a line equidistant from the edge of the outer end of the sheet.

## 4,095,595

NON WOVEN ROLLED BANDAGE
Ralph B. Stanford, 130 Ridgewood Rd., Radnor, Pa. 19087
Filed Jan 12 12 1977, Ser. No. $758,829$.
Filed Jan. 12, 1977, Ser. No. 758,829
U.S. C. 128-156


1. A rolled bandage comprising
foraminous non woven elongated strip material rolled in open width;
exposed slit edges carried on said strip material;
said strip material being formed of spaced continuous ex-
truded filaments of hydrophilic polymer each portions extending alternately in the lengthwise and crossportions extendin
wise directions;
fused bonded intersections of adjacent lengthwise and crosswise portions of respective filaments; and
loops in said filaments between said fused bonded intersec-
tions in both lengthwise and crosswise portions;
while affording controlled stretchability in the lengthwise and crosswise directions of said strip.

## 4,095,596

Michael A. Grayson, Wayne, Pa, assignor to SmithKline Corpo-
ration, Philhadelphia, Pa.,
Filed Nor. 26, 1976, Ser. No. 745,082
U.S. C. 128-198

Int. C. ${ }^{2}{ }^{2}$ A61M $15 / 08{ }^{2}$

1. A nasal inhaler comprising:
an elongated hollow body having an open end, a closed end and means to support an ampul,
an elongated frangible fluid containing ampul supported in
said body by said supporting means with its axis substantially on the axis of the body,
an elongated one piece nozzle moveably mounted in the open end of the body for movement further into the body along the longitudinal axis of the body, means forming an air passage between the nozzle and the body for admitting air into the interior of the body, and
means within said body including a member moveable trans versely to the axis of the ampul and responsive to the

movement of the nozzle further into the body for fracturing the side of the ampul and releasing the fluid.

4,095,597 CROSS-SECTIONAL FLUCTUATIONS OF CONDUITS STREAMED THROUGH BY FLUIDS AND FOR SUPPLYING INDICATIONS OF VOLUMETRIC FLOW
AND/OR CONDUTT ELASTICITY BASED THEREON AND/OR CONDUIT ELASTICITY BASED THEREON gesellischaft, Berlin \& Munich, Germany geselischar, Filed Feb. 25, 1976, Ser. No. 661,247 Claims priority, application Germany, Mar. 5, 1975, 2509568 U.S. Cl. 128-205 Z Int. C. ${ }^{2}$ A61B 5/02


1. In a measuring arrangement comprising apparatus for measuring cross-sectional fluctuations of conduits streamed
hrough by fluids, in particular blood vessels, pursuant to the Hltrasound-Doppler method, including an ultrasound trans-mitter-receiver system; a doppler apparatus for determining the intensity of the doppler signals; and a dividing element for the obtained doppler signal intensities, the improvement comprising: said transmitter-receiver system having a single ultra-
sound transmitter-receiver for projecting ultrasound into the fluid and for receiving the ultrasound reflected by the fluid means being operatively connected to said doppler apparatus fluctuations the intensity of the doppler signals with amplituce intensity without material fluctuations, said dividing ofement being connected to said means for forming a quotient of said
intensities, as a measure of the fluctuation of conduit cross-sec-
tional plane

4,095,598
August E. Tschanz, Lansdale, and Robert W. Geiger, Geigercown, both of Pa., assignors to Teleflex Incorporated, Limer-
cck, Pa. Filed Nov. 18, 1976, Ser. No. 743,038
the size of said aperture in said support by removal of at least one of said annular zones, the gum-based member being opera-
tively connected to the support by pushing the portion of the member surrounding the hole having said lines of reduced strength through said aperture and around the edge of said aperture in the support when positioning the device on the user, thereby forming a wrap-around pad tightly embracing
and sealing said edge of the aperture and the location from which the excretion is discharged when in position on the user.
U.S. C. 128-214.4


1. A catheter assembly comprising: a plastic tube, a plastic
hub, said tube having an irregular end shaped as a bulb which hub, said tube having an irregular end shaped as a bulb which
does not conform to the shape of the remainder of the tube and with the outer perinpery of said bulb disposed at different
distances radially from the axis of said tube, said hub being distances radially from the axis of said tube, said hub being
disposed about and contiguous with both the interior and exterior of said irregular end.

## 4,095,600

NORMALLY-SOLID, BIOABSORBABLE HYDROLYZABLE, POLYMERIC REACTION PRODUCT Donald James Casey, Ridgefield, and Martin Epstein, Norwalk, both of Conn., assignors to American Cyanamid Company, Division of Ser. No. 691,749, Jun. 1, 1976, Pat. No. 4,048,256. This application May 5, 1997, Ser. No. 793,98 Int. C1. ${ }^{2}$ A61L 17/00; C08G 63/12, 63/52 U.S. CI. $128-335.5$

1. A sterile surgical element produced froms 2 Claims 1. A sterile surgical element produced from the polymeric
reaction product of (A) a polyglycolic acid composition and reaction product of (A) a polyglycolic acid composition and
(B) a polyester of diglycolic acid and an unhindered glycol; wherein the amount of (B) used is between about $2 \%$ and $50 \%$, by weight, based on the total weight of (A) and (B); wherein (A), before reaction with (B), has a molecular weight of at least 30,000 and (B), before reaction with (A), has a molecular possessing self-supporting film-forming properties. posessing self-supporting film-forming properties.

## ELECTROTHERAPEU

ELECTROTHERAPEUTIC APPARATUS land, and Wur Auranc, deceased, late of Rheineck, Switzerneck, Switzerland

Filed Jun. 3, 1976, Ser. No. 692,459
Claims priority, application Switzeriand, Jun. 9, 1975, 7381/75 Int. Cl. ${ }^{2}$ A61N $1 / 04$
d,095,599
DEVICE FOR COLLECTING BODY EXCRETIONS AND
METHOD OF USING SAME U.S. C. 128-405


1. A device for draining and collecting body excretions comprising a gum-based flat, plate-like member adapted to
come into contact with the user's skin round the location from which excretion is to be discharged having a hole enabling the free flow of excretion therethrough and lines of reduced strength extending radially outwardly from said hole, a sup-
port on which a bag for collecting excretion is adapted to be secured, the support being of supple material and having an aperture larger than the hole in the gum-based member and annular zones concentric with said aperture and secured to said annular zones concentric with said aperture and secured to said
support by manually tearable attachment points for enlarging
2. An electrotherapeutic apparatus for external applications omprising circuit means for generating direct-current voltage pulses hving an amplitude between 4 and 22 volts and a frefor producing a square wave voltage course of said pulses having a pulse duration substantially equal to the time span between two successive pulses, means for applying said pulses to a living body, said pulse applying means comprising an electrode in the form of a roller, said roller having a surface
formed of substantially pyramid-shaped electrically conducormed of substantially pyramid-shaped electrically conduc-
tive parts including tips, the pyramid-shaped parts at the region of said tips having substantially square flattened portions, said flatened portions having an edge length of approximately 0.5 mm , said pyramid-shaped parts being arranged in adjacent ows, the pyramid-shaped parts of said adjacent rows being
ofset with respect to each other, the spacing between the geometric tips of the pyramid-shaped parts neighboring one another and located in successive rows being 6.955 mm and means connected between said circuit means and said electrode for supplying said voltage pulses to the tips of said pyramid-

MULTI-PORTAL RADIOFREQUENCY GENERATOR Harry H. Leveen, 800 Poly Pl., Brooklyn, N.Y. 11209 Continuation-in-part of Ser. No. 686,300, May 14, 1976. This application Sep. 27., 1966, Ser. No. 726,843
Int. CC. U.S. C. 128-413


1. In an apparatus for the application of radio frequency electromagnetic energy to a biological substrate including generator means for generation of radio frequency electromaggenerator means for generation of radio frequency electromag-
netic power and applicator means connected to the radio frequency power output of said generator means for applying said power output of said generator means to a said biological substrate, the improvement in which said applicator means comprises a plurality of applicator pairs for setting up a radio
frequency electromagnetic field therebetween when connected to said radio frequency generator means, switching means for coupling the power output of said radio frequency generator means selectively across each said pair, one pair at a time, and control means for actuating said generator means
including means for actuating said switching means to couple including means for actuating said switching means
said power output thereof to each of said applicator pairs in predetermined sequence

## 4,095,603

CARDIAC PACER EMPLOYING DISCRETE
CARDIAC PACER EMPLOYING DI
FREQUENCY CHANGES
Gomer L. Davies, Fort Lauderdale, Fia, assignor to Cordis Corporation, Minmi, Fla

Filed Dec. 17, 1976, Ser. No. 751,259
U.S. CT. 128-419 PT
,259


1. A fully implantable cardiac pacer comprising
2. A fully implantable cardiac pacer comprising lation pulses at at least two controlled and well-defined frequencies, said generator including at least one compo-
nent having an operating condition which can change, nent having an operating condition which can change, monitor circuitry responsive to the condition of at least one
said component of said pacer to provide an output signal said component of said pacer to provide an output signal
indicative of said condition, said output signal characterindicative of said conration, of defined states, and
said generator having
clock means for generating primary clock pulses at a frequency higher than the frequency of said stimulation pulses, and
frequency changing means responsive to said monitor outpu signal and said primary clock pulses for generating said
stimulation pulses at one of said well-defined frequencies depending upon the state of said output signal.

CIGARETTE-MAKING MACHINES Francis A. M. Labbe, Neuilly-sur-Seine, France, assignor to Molins Limited, London, England
Continuation of Ser. No. 415,470, Nov. 11, 1973, abandoned. This application Apr. 6, 1976, Ser. No. 674,197 $\underset{52718 / 72}{\text { Claims priority, application United Kingdom, Nov. 15, 1972, }}$ U.S. CI. 131-21 A

Int. Cl. ${ }^{2}$ A24C $5 / 39$
35 Claims

25. A hopper for a cigarette making machine comprising reed means for delivering a metered flow of tobacco; a first exnveyor having an upwardly moving surface portion, a wall portion of said first conveyor to form a space between the confronting surface of said wall and the upwardly moving surface portion of said first conveyor, means for driving said first conveyor, the feed means being arranged to shower tobacco into the space, and the first conveyor being adapted to carry the tobacco from the space substantially immediately upon arrival in the space; a downwardly extending channel defined by spaced walls; means for projecting the tobacco on the first conveyor into the upper end of the channel, whereby
the tobacco piles up in the channel to form a continuous carpet; and second conveyor means for feeding the carpet of tobacco from the lower end of the channel.

## 4,095,605

RECOVERY SYSTEM FOR USE WITH A BATCH PROCESS FOR INCREASING THE FILLING CAPACITY OF TOBACCO
Lucas Jones Conrad, Winston-Salem, N.C. aseignor to Reynolds Leasing Corporation, Jackiconville, Fla.

$$
\begin{aligned}
& \text { Corporation, Jacksonvure, Fil. } \\
& \text { Filed Sep. 2, 1976, Ser. No. 720,0 } \\
& \text { Int. Cl. }{ }^{2} 24 \mathrm{~B} 3 / 18
\end{aligned}
$$

U.S. C. 131-134 1. An apparatus which can be used to store, supply and in a vaporous state comprising. (a) a closed tank having a su
pound in its liquid state in the bottom of said tank and a chilling liquid supply less dense than the condensable compound floating on said compound.
(b) means for separating the upper portion of the tank int condensor and compressor section; (c) means for maintaining the chilling liquid at a selected temperature;
(d) vapor introduction means for introducing said compound in its vapor state received from the processing system into the chilling liquid supply in the condensor section of the tank whereby the vapor passes through the chilling liquid
and is condensed into its liquid state, the liquid compound settling to the compound supply at the bottom of the tank for delivering said compound in its liquid state to said processing system;

(f) means for regulating and maintaining pressure in the means for regulating and maintaining pressure in the
compressor section of said tank to force the liquid compound from said tank as required; and
(g) control means associated with said processing system to regulate the supply of said compound to said processing

$$
4 \operatorname{nos} \mathrm{nk}
$$

4,095,606
Rrying FLEXIBLE GOODS SUCH AS
TOBACCO
Warren E. Frandsen, Arlington Heights, Ill., assignor to $T$ \& $F$ Industries, Inc., Rolling Meadows, Ill.
S. C. $131-140$ R Int. C1. ${ }^{2}$ A $24 \mathrm{~B} 3 / 18$

3 Claims


1. A method of handling flexible materials comprising: plac-
ing said flexible materials in contact with a carrier film composed of an ultra high molecular weight polyethylene having a molecular weight in excess of $3,000,000$, storing said materials on said carrier film for a period of time; carrying said flexible materials on said carrier fum past an adhesive spray; and releascarrier film.

COIN HANDLING APPARATUS
Gerald E. Newton, and Emilio A. Caccenmo, both of Philedelphia, Pan, zasignors to Mars, incorporated, McLean, Va.
Filed May 25, 1976, Ser. No. 689,747 Claims priority, application United Kingdom, Jun. 2, 1975, 23834/75

Int. C. ${ }^{2}$ G07D 3/04
U.S. C1. 133-1 A

1. Apparatus for handling coins of one denomination having 1. Apparatus for handling coins of one denomination having characteristic thickness and diameter comprising an open-topped coin tube having a substantially vertical
central axis and having a predetermined capacity for central axis and having a prect
retaining facially stacked coins
chute means having a downwardly inclined coin slide surface for directing coins to the open top of the coin ture and across the top of the tube when it is filled to capacity wherein the improvement comprises means extending inwardly of the inner surface of the coin tube at its top on
the upstream and on the downstream sides of the coin tube with respect to the coin slide surface incline, for retaining
an oriented coin in a jam prevention orientation by up-

stream skewing in which the upper surface of the coin forms an extension of the coin slide surface of the chute when the coin tube is filled to the capacity of the coin tube.

PLASTIC COIN HOLDER
Gordon W. Holmes, Missisanuga, Cannda, assignor to Profer sional Packnging Limited, Mississauga, Cannda
Filed Oct. 19, 1976, Ser. No. 733.916
Claims priority, application United Kingdom, Oct. 22, 1975, 3455/75
Int. CC. ${ }^{2}$ GOTD 9/00; A4SC $11 / 28$
U.S. C. 131-140 R


1. An integrally-formed holder for disc-like objects conructed of fiexible polymeric material and comprising: an elongate body having a C -shaped cross-section and a radius of curvature substantially equal to the radius of said disc-like objects, and
continuous end wall integral with said body at each end thereof, said end walls defining a C-shaped opening in the radius of curvature of saller radius of curvature tral portion and two end portions along the curvilinear length thereof,
said C-shaped end openings encompassing the axis of said body within their periphery,
said end walls being construed normally to marnin said radius of curvature of said body substantially equal to the radius of said disc-like objects and to impart a spring grip strength to said body sufficient to hold and entrap said disc-like objects in said holder, whereby disc-like object are held in snug fit within said body and are prevented from accidental dislodgement from said holder, said end portions of said end walls permitting limited resil ient flexure of said holder about the axis of said body to wall openings and curvature of said body and said end between the curvilinear extrememities of said body beyond the diameter of swid disc-like object to permit insertio and removal of the disc-like objects through said curvili
ear exiremities while said central portion flexes very little during said flexure,
said end walls exerting a resilient force on said body during said flexure and said increase of radii of curvature urgin
said body to assume said radius of curvature substantially equal to the radius of said disc-like objects, whereby release of the force inducing said limited flexure, said end wall resiliency is relaxed by urging said body to said radius of curvature thereof and said radius of curvature of said body is resiliently restored to that substantially equal to the radius of said disc-like objects to achieve said snug
fit with said disc-like objects within said body.

ROLL-OVER VALVE FOR MOTOR VEHICLES rank J. Martin, Ann Arbor, Mich., assignor to Chrysler Corporation, Highland Park, Mich.
Flied Sep. 27, 1976, Ser. No. 727,080
U.S. CI. 137-43

11 Claims


1. A valve device comprising a valve body adapted for mounting in a substantially upright position in a motor vehicle, the valve body defining a valve chamber and including. an upper outlet communicating with the valve chamber; an inlet communicating with the valve chamber
raised seat disposed in the valve chamber below the outlet
and including an upper concave conical surface portion and at least one slot extending across a portion of the raised seat and downwardly into it;
a freely movable ball resting on the conical surface, the bal being normally positioned at the center of the conica surface when the valve is upright and rolling up the conical surface when the valve is inclined, and
cage for the ball, the cage being arranged for vertical
reciprocable movement in the chamber by the ball as rolls on the conical seat, the cage including a cage to member disposed below the upper outlet and above the bail and adapted to close the outlet upon being moved toward the outlet, at least one bottom cage cross membe disposed below the ball and in the seat slot for vertical down the conical surface, and side members extending between the top and bottom cage members for maintaining them in a fixed space relationship at least on the order of the diameter of the bail whereby the ball fiss between the top and bottom cage members and urges the cag upwaraly by conlaccing he lop member upon inclinatio of the valve and downwardly by contacting the bottom to provide both positive closing and positive opening of the valve outlet by the ball

4,095,610 Charles H. Priesmeyer, Park Ridge, III., assignor to Powers Regulator Company, Skokie, ill. Filed Mar. 25, 1977, Ser. No. 781,290
Int. C. ${ }^{2}$ F16K 19/00
U.S. CI. 137-100

MODULATING FLOW CONTROL VALVE ASSEMBLY MODULATING FLOW CON Metz, Halicong, Pa, assignor to Yarway Corporation, Helnz K. Hetz. H
Blue Bell, Pa.

> I, Pa. Filed Jan. 17, 1977, Ser. No. 959,764 Int. C. ${ }^{2}$ G05D $1 / / 00$
U.S. Cl. 137-115


1. A modulating flow control valve assembly including main check valve means movable between a fully closed and a fully open position in response to the flow requirement of a demand system and including an intermediate position wherein the mum flow from a pressure source, and bypass valve means movable between a fully closed and a fully open position, and control means responsive to the position of said main check valve means for controlling the position of said bypass valve means such that said bypass valve means is in its fully open
position and such that said bypass valve means is in its fully closed position when said main check valve means is in its intermediate position, said control means including a control chamber communicating with the inlet side of said main check valve means and piston means associated with said bypas hamber with one surface thereof being exposed to fluid therein and with the opposite surface thereof being exposed to luid on the inlet side of said bypass valve means, said contro means further including pilot valve means for controlling fluid pressure in said control chamber, operating means operatively alve means for moving said pilot valve means to a position wherein fluid is vented from said control chamber thereby educing fluid pressure acting on said one surface of said piston means as said main check valve means is closing and for allow ing said pilot valve means to move to a position wherein huid low from said control chamber is throttled thereby increasin said main check valve means is opening. a diverter bore having in its cylindrical wall a first and diverter fitting closely inside the bore, one end of the otherwise cylindrical diverter having a flat side wall, saic diverter having a hole through the other end, the hole extending in the direction perpendicular to the axis of the diverter;
which the hole through the diverter into a first position in tion between the inlet opening and the firstes communicaand for sliding the diverter into a second position in which the communication between the inlet opening and the second outlet opening is established through the volume walls, and for rotating said diverter so as to partially or completely close the inlet opening in either of the two positions.
2. A valve for mixing, in a selected ratio, hot and cold water and for selectively directing mixed water to either a bathtub faucet or to a shower head, comprising
a control chambe
communicating with the side of the control chamber and passages having smaller cross-sections than those of the inlet chambers;
a flexible plate subdividing said control chamber into two compartments and having projections extending there from in a generally normal direction through the inlet
passages, said projections having portions with enlarged cross-sections near their ends inside the inlet chambers; a mixing chamber having two bores, each communicating with the different compartment of the control chamber and having an outlet exi
temperature control means inside said mixing chamber, fo restricting the communicating through each of the bores ing with the outlet exit;

## GATE VALVE 4,09,

Philip P. Hardcastle, Houston, Tex., assignor to Equipme Renewal Company, Houston, Tex.
Filed Feb. 14, 197, Ser. No. 768,277
U.S. C1. 137-246.22 int. C. ${ }^{2}$ F16K 19/0

1. A gate valve comprising:
2. A gate valve comprising:
a. a body having a flow passage therethrough;
b. spaced annular seating members in said body
c. seal means between said seating members and said body;
d. a gate member positioned between said seating members and having a surface to close off the flow passage throug
said body and an opening for alignment with the flow passage through said body, said gate member comprising
3. a pair of rectangular plate members
4. means connecting said plate members together but accommodating limited relative movement therebetween; and
5. spring means tending to urge said plate members apart,
. said annular seating members each including
6. an annular surface for abutting said gate;
7. annular teflon seal means in each surface for sealing with said gate;
8. an annular groove on each of said annular surfaces;
9. sealant passage means communicating with each of said annular grooves; and
. projecting spaced vertical guide surfaces for abutting a stem rotatably supported by said body and having a

hreaded portion engaged with said gate
of said stem raises and lowers said gate; . said body having a sealant flow passage communicating with sealant passage means in said seating members; and . said means connecting said plate members together comprising:
peans extending through each plate member; passage means; connector means in said recess means and extending between said plate members; . said pin means being smaller in serize and
means whereby means whereby
to each other.

## 4,095,613

PNEUMATIC SIDE ROLL MOVER
Loren R. Townsend; Morris E. Epp, 1217 Maple, both of Sidney, Nebr. 69162, and Walter J. Schmidt, 1809 7th Ave., Scottsb-
luff, Nebr. 69631 Filed

Int. C1. ${ }^{2}$, ${ }^{2}$

| U.S. C. $137-344$ |
| :--- |
| 1. In combination |

a side roll wheel line irrigation system comprising an elongated irrigation pipe having opposite ends and being supported by a plurality of spaced apart wheels, said pipe serving as an axle for said wheels,
at least one pneumatic side roll mover apparatus associated with said pipe for moving said pipe in a sideways direction over the area to be irrigated,
said side roll mover apparatus comprising a wheeled frame means operatively secured to said pipe, an air operated
hydraulic pump means on said frame means connected to
a hydraulic motor drive means operatively connecting
said hydralic motor to said pipe whereby actuation of
said hydraulic motor will cause said wheeled frame means
and said pipe to be propelled in said sideways direction, and pipe to be propelled in said sideways direction,
 and pneumatic supply means for supplying air und
sure to said air operated hydraulic pump means.

4,095,614
LIQUID LEVEL CONTROL SYSTEM
Frank E. Marmon, Mariette, Ga, assignor to The United States of America as represented by the Secretary of the Air Force, Washington, D.C.

Filed Nor. 5, 1976, Ser. No. 734,063
U.S. CI. $137-14{ }^{\text {In }}$

7 Claims

7. Apparatus for controlling inlet flow and liquid level within a tank, comprising:
a valve member for opening and closing the inle
two separate cavities forming first and second pressurization
chambers;
a means responsive to fluid pressure in each of the two pressurization chambers for closing said valve;
a conduit connecting the pressurized liquid at the inlet to anduit connecting the pressurized liquid
each of the two pressurization chambers; a first and second pressure bleed passage communicating
with the first pressurization chamber, either being capable with the first pressurization chamber, either being c a
of bleeding fluid pressure from said first chamber; a third and fourth pressure bleed passage communicating with the second pressurization chamber, either being capable of bleeding fluid pressure from said second cham ber;
for sealing said first and third pressur bleed passages;
a second closure means for sealing said second and fourth presure bleed passages;
a first and second liquid level responsive means for actuating said first and second closure means, respectively; second closure means, respectively, configured such and second closure means, respectively, configured such that
closure means seals the first and third bleed passages irrespective of the state of said first liquid level responsive means, and when said second solenoid means is deenerourth said second closure means seals the second and econd liquid level responsive means, while energizing second liquid level responsive means, while energizing tive closure means.

## 4,095,615

CHECK VALVE AND SIPHON TUBE ASSEMBLY EMPLOYING SAME
Larry R. Ramsauer, San Jose, Calif,, assignor to Ramco Manu facturing, Inc., San Jose, Calif. Filed May 21, 1976, Ser. No. 688,837
Int. C1.' F16K 15/03; F04F 10/00 U.S. C. $137-527.8$


1. A check valve comprising
a generally tubular retaining member having a first end, a end and a key extending from said collar to a location beyond said first end;
a generally tubular body having an axis therethrough and including an inner surface having a second inner diameter that is slightly larger than said first inner diameter, said oody further having a second end and a slot extending when said collar abuts said second end; and
flapper valve formed from a portion of a tube having a third inner diameter that is substantially equal to said first inner diameter and having an outer diameter that is substantially equal to said second inner diameter, said valve having an outer surface that is symmetrical in plan view and is tapered between a first end and a second end, said
valve further being generally triangular in side view so as to form a periphery between and including said first end and said second end, said outer surface extending a dimension such that when said valve is disposed in said body said outer surface forms a predetermined angle in side view relative to said axis and said periphery contacts said mer surface, said valve further including a slot-engaging such that said valve is movable between an open and a closed position, whereby when said valve is in said open position said outer surface is adjacent said inner surface and said third inner diameter lies on an imaginary cylindrical surface substantially corresponding to said first inner diameter such that fluid entering said retaining member
and flowing in a direction through said body is capable of substantially unrestricted flow, and whereby when said valve is in said closed position said outer surface in side view lies at said predetermined angle relative to said axis and said periphery contacts and forms a seal with said inner surface such that when fluid flow is in an opposite direction it moves said valve to said closed position which

## HYDRAULIC CONTROLLER

Karl Krieger, Wuppertal, Germany, asaignor to Hermann Hem scheidt Maschinenfabrik, Wuppertal-Elberfeld, Germany Filed Nov. 22, 1976, Ser. No. 744, 101 Claima priority, application Germany, Nov. 25, 1975, 255273 U.S. C. 137-596
selectively communicating through the valve spool walls with the inlet ports, outlet ports and work ports and with a pair of spaced grooves surrounding the valve spool, flexible annular band check means surrounding each groove, a pressure sensing port communicating selectively with each groove in the spool, a pressure compensating valve having an axial bore, an inlet port connected to the inlet port of said control valve, an outlet
port connected to the outlet port of said control valve, a pres. port connected to the outier port of said the pressure sensing port of the directional control valve, a valve member movable
in said axial bore, means biasing said valve member to a position normally blocking said outlet from said inlet port, said valve member having opposite surfaces thereon exposed respectively to fluid pressure from said inlet port and to fluid pressure at said pressure sensing port acting with said biasing means, said valve member being movable in response to fluid pressure differential between its inlet port and pressure sensing port through the pressure sensing port of the directional control valve to connect said inlet and outlet ports for bypassing said directional control valve to one of said work ports.

## 4,095,618

RODENT DETERRENT IRRIGATION TUBE Lloyd Spencer, 220 Patrician Way, Pandena, Calit, 91105 of Serication Oct. 4, 1976, Ser. No. 729,839

## Int. C1. ${ }^{\text {F F16L }} 11 / 12$



1. A rodent deterrent irrigation tube, comprising:
a. an essentially flat tube member arranged, when subjected to increasing water pressure to assume an increasingly indrical configuration;
and webs extending laterally beyond diametrically opposite margins of the tube member and forming rodent barriers of sufficient width to prevent biting contact across the web into the tube member, the tube member and webs presenting essentially flat surfaces further deterring biting contact with the tube member; and remote margins of the webs.

YARN INSERTING AND PACKING MACHINE Albert W. Kallmeyer, St. Louis County, Mo., assignor to McDonnell Doughes Corporation, St. Louis, Mo.
Filed Apr. 11, 1977, Ser. No. 786,455 Filed Apr. 11, 1977, Ser. No.
Int. Cl.
U.S. CI. 139-22


18 Claims
(d) a passageway located between said outer wall and said inner wall and connected to said outlet opening; and storage chamber to said passageway.

4,095,621
WOOF BREAKAGE DETECTION SYSTEM FOR A SHUTILELESS WEAVING MACHINE Arao Kakinaka, Nishinomiya, Japan, assignor to Kasuga Denki Co., Ltd., Osaka, Japan Filed Feb. 10, 1977, Ser. No. 767,615 Clalms priority, application Jappan, Feb. 17, 1976, 51-16085

1. A machine for inserting cross yarns through an array of U.S. C. 139-370.2
2. A machine for inserting crinal yarns, said machine comprising: a transfer arm longer than the width of the array and having a supply of weaving yarn on it with the yarn being suitable for use as the cross yarns; first and second support means capable of engaging and releasing the transfer arm, each of the support means further being capable of rotating the transfer arm such that the the first means to the second means and vice-versa, with the rotation being about an axis located to the side of the array, the first means being capable of supporting the arm at an end position beyond one side of the array and the second means
being capable of supporting the arm at another end position being capable of supporting the arm at another end position
beyond the other side of the array; a yarn laying arm pivotally beyond the other side of the array; a yarn laying arm pivotally
connected to the transfer arm and having a free end through which the weaving yarn passes; and actuating means for causing the yarm laying arm to rotate relative to the transfer arm as the transfer arm is transferred between the first and second support means, with the rotation being such that the free end of the yarn laying arm moves from the end position at which the transfer arm is initially located to the end position to which the
transfer arm is transferred after passing through the array of longitudinal yarns, whereby the weaving yarn is laid through the array to form a cross yarn therein.

4,095,620
PROJECTILE FOR WEFT INSERTION Victor F. Separich, West Boylston, and Petras Cyyas,
Worcester, both of Mase, asiguors to Crompton \& Knowles Corporation, New York, N.Y.

Filed Sep. 28, 1977 , Ser. No. 837,346
Int. C. ${ }^{2}$ D03J 5/06
U.S. C. 139-196.2 17 Cliams 1. A projectile for use in a loom in which filing:
inserted from an outside supply source comprising: (a) an elongated body having an inlet opening at one end and an outlet opening at the opposite end thereof;
(b) an outer wall defining the outer configuration of said body;
(c) an inner wall defining a filling storage chamber within said body, said storage chamber being connected to said inlet opening;


1. A system for detecting the breaking of woof as it is fed to a shutterless weaving machine during each weaving cycle of said machine, comprising:
means for monitoring the movement of said woof as it is fed into said weaving machine and producing a signal indica-
means for pulling said woof in said weaving machine during each said weaving cycle;
means for producing a timing signal at a predetermined phase point of each said weaving cycle;
means connected to said monitoring means and said timing signal producing means for determining, after a predeter-
mined amount of time following the beginning of said timing signal, any non-movement of said woof during said timing signal and producing a break signal indicative thereof;
said determining means including a means for receiving said timing signal and producing a disabling signal for said
predetermined amount of time after the beginning of said timing signal and an enabling signal after said predetermined amount of time;
means connected to said disabling/enabling signal producing means and to said timing signal producing means for
gating the remainder of said timing signal following said gating the remainder of said timing signal following said means connected to receive said monitoring means movement signal for gating said remainder timing signal to produce an unbroken woof signal; and
means connected to receive said unbroken woof signal and said remainder timing signal for defining a break determin-
ing time period following the beginning of said remainder timing signal and producing said break signal when said
unbroken woof signal does not occur during said break determining time period.

WOVEN SEAM IN FAB 4,095,622
SAME METHOD OF MAKING
SAR AND
Donald George MacBean, Pierrefonds, Canada, assignor to JWI Ltd., Montreal, Canada
Filed Nov. 23, 1976, Ser. No. 744,323
Claims priority, application United Kingdom, Nov. 27, 1975, 48826/75

Int. Cl. ${ }^{2}$ D03D 25/00; D21F $1 / 12,7 / 10$
U.S. Cl. ${ }^{139-383}{ }^{\mathrm{Int}}$


13 Claims
ane of the other two devices having a second guide face which cooperates with said first guide face to define a
channel confining the end portion of the end convolution during conversion into said loop.
severing tool; means for operating said tool so as to clip the end convolution of the binder occupying said predetermined position, said tool having means for bending the free end portion of he clipped end convolution over the neighboring convolution of the binder occupying said position; a hold-down device; means for moving said hold-down device between the end
convolution and the neighboring convolution of the binder convolution and the neighboring convolution of the binder actuating said loop forming device so as to convert the bent actuating said loop forming device so as to convert the bent said position into a loop which surrounds the neighboring convolution, said hold-down device having a first guide face

1. A woven fabric as used for supporing a paper web on a
Filled Nov. 26, 1975, Ser. No. Nats, Wash. 98022 paper making machine, said fabric having interwoven weft and
warp strands with the strands in the machine direction being flexible strands incapable of retaining a stable crimp, the improvement comprising a pluraity of spaced apart replacement replacement for a plurality of said machine direction flexible strands, said monofilament strands extending in the machine direction and in a seam area for interconnecting opposed ends of said fabric to form an endless belt having a seam which is
substantially flat, said replacement monofilament strands havsubstantially flat, said replacement monifilament strands hav-
ing been substituted for flexible machine direction strands in said seam area and interwoven with added cross machine strands which are removed cross machine strands from said woven fabric seam area or strands taken from identical fabric,
said replacement monofilament strands having crimps of the same configuration as crimps in the machine direction strands of the fabric.

4,095,623
APPARATUS FOR SEVERING AND DEFORMING THE ENDS OF HELICAL BINDERS FOR PADS OR THE LIKE jorn-Uwe Lemburg, and Dieter Stolley, both of Hamburg, Ger-
Germany Filed Aug. 2, 1977, Ser. No. 821,177 Claims priority, application Germany, Jan. 29, 1977, 2703718 U.S. Cl. 140-92.7


1. Apparatus for severing and deforming at least one end convolution of theical binert whics is ine lided through the openings of a stack of loose leaves or the like, comprising a convolution of and a binder in a predetermined position;
2. A pressure tank for receiving and storing gas under pressure from a gas generating source comprising a main pressure tank having an interior and side walls, a substantially flat base on said tank, a chamber for holding gas operatively attached to said base of said tank, said chamber having a curved forward
wall extending into the interior of said tank, a check valve fixedly positioned in the forward wall of said chamber for allowing gases within said chamber to flow into the interior of said tank and for preventing gases in said tank from flowing operative communication with the interior of said chamber, a replaceable charging cartrige positioned in said receptacle, said cartridge containing combustionable material suitable for producing gases, the forward end of said cartridge in operative
communication with the interior of said chamber and the rearward end of said cartridge having a primer disposed therein exposed outside said receptacle, a closure cap removable to replace said charging cartridge and normally enclosing the rearward end of said cartridge positioned in said receptacle, a firing pin positioned in the center of said closure cap adjacent the rearward end of said cartridge, and a pivotally mounted striker operatively atached to the base of said tank positioned within said closure cap being urged forward to contact the primer with sufficient force to cause the primer to ignite and produce flames and hot gases causing the combustionable material in said carrridge to ignite thereby producing combustion gases which fill said chamber and pass through said check valve into said main pressure tank raising the pressure therein to a higher level whereby successive cartridges
may be ignited to raise the pressure in the main pressure tank to a desired level.

U.S. C. 141-18

| DUST CONTROL SYSTEM FOR GRAIN LOADING | $\begin{array}{l}\text { into the inlet of a container such as a fuel tank, the novel vapor } \\ \text { recovery system comprising }\end{array}$ |
| :--- | :--- | Donald E. Marpe, Bloomington, Minn., assignor to Peavey Company, Mineeapolis, Minn.

Continuation-in-part of Ser. No. 595,783, Jul. 14, 1975, bandoned. This
U.S. Cl. 141-93

5 Claims


1. Apparatus for removal of air-borne dust emitted discharge delivery of particulate solids from an elevated supply source and through conduit means, said apparatus comprising: (a) descending chute means comprising an enclosed column extending between a collecting port at the upper receiving and and a gravity fed delivery sol tod to be coupled to an elevated supply source
(b) said delivery spout comprising a generally enclosed shroud with an open bottom wall defining a discharge opening and including an arcuately disposed lead-in flow diverter plate extending generally in continuation with an exterior wall portion of said enclosed column, and extend-
ing arcuately inwardly of said enclosed column and terminating along a substantially horizontally disposed forward surface with the said forward surface extending across the width of said chute means and defining one edge of said discharge opening:
(c) a generally vertically disposed abutment plate means isposed generally forwardly of said flow diverter plate plate forward surface and defining the opposed edge wall plate forward suriace and defining the opposed edge wall
of said discharge opening, said abutment plate means being positioned along and intersecting the normal flow path of particulate solids passing from said lead-in flow
diverter plate and with said abutment plate means being diverter plate and with said abutment piate means being
mounted in a plane generally normal to the flow path of said particulate solids upon passing said diverter plate; and (d) dust collecting duct means separated from said descending chute means and having one end coupled to said spou posed end of said duct collecting dust means being coupled to a solid-air separator means.

VAPOR RECOVERY IN A LIQUID DISPENSING UNTT James W. Healy, 54 Plymouth Rd., Wakenield, Mass. 01880 Continuation-in-part of Ser. No. 553,529, Feb. 27, 1975, Pat. N 4,057,086, and Ser. No. 656,124, Feb. 9, 1976, Pat. No. 4,056,131. This application Jun. 21, 1971, Ser. No. 808,617

9 Claims
dispens-

1. A vapor recovery system for use with systems for dispensing volatile liquids, such as liquid fuels, from a reservoi wherem the liquid is pumped under pressure hrough a hose
recovery system comprising
liquid jet gas pump having its liquid inlet in communication with the pressurized liquid so as to receive a portion hereof, and
be placed in one end in said nozzle and adapted to

tainer when said nozzle is inserted into said inlet and the other end in communication with the vapor inlet of said jet pump,
the outlet of said jet pump discharging into said reservoir, whereby vapor displaced from said container as it is filled
will be drawn of through said conduit by suction created by the passage of said liquid through said jet pump.

4,095,627
CORONA INHIBITION IN DYNAMOELECTRIC ITION IN DYN
Palmer Lonseth; Hubert Gerald Panter, and Donald G. Moorby, all of Peterborough, Canada, asignars to Canadian General
Electric Company, Toronto, Caneds Electric Company, Toronto, Cangaz
Filed Feb. 10, 1976, Ser. No. 656,791 Claims priority, application Canade, Mar. 7, 1975, 221543 U.S. CI. 141-250


1. Apparatus for injecting an uncured, semiconducting, electromagnetic component of a dynamoelectric machine; said component including a core member having a plurality of stacks of magnetic laminations spaced apart axially to define interstack spaces; axially directed slots in said core member; spacers disposed radially in said interstack spaces and extending between said slots to define ducts for coolant flow; and coil portion; material release means secured to said body portion
and adapted for receiving said material under pressure from a and a plate depending from said hook, and latch means inter ource; an injector tool having a tubular stem projecting from mediate of said plate extending outward from said plate and said body portion and terminating in a flat nozzle assembly adapted to extend through said slot and engage said pump dapted to be inserted into the narrow space between a coil side and slot wall of a core stack by way of the slot opening. said injector tool containing material flow passages in commu nication with the output of said release means, through which charged from orifice means in the tip of said nozzle assembl and a pair of blocking devices adapted for insertion into the ducts adjoining said core stack for blocking off said space these ducts.

 WITH ANTIFOAMING FEATURE AND SIMPLIFIED Herman Laub, III, 244 N. San Marino, San Gabriel, Calif 91775

Filed Sep. 16, 1976, Ser. No. 723,774
U.S. C1. 141-367


1. A system for filling containers with flowable substance rom a source thereof, comprising:
a dispensing nozzle, connected to receive such substance from the source along a flow path, for discharging such
substance into each such container substance into each such containe
metering means, connected to the supply and upstream of
the nozzle, adapted to premeasure, at a flow rate deter mined in part by an orifice along the flow path within the metering means, the volume of such substance discharged
along the flow path from the source into each such con-
tainer; flow-rate means and activated in response to discharge of a specified fraction of the said volume of substance into each con tainer as established by the internal operation of the meter
ing means, for restricting said orifice and thereby restrict ing means, for restricting said orifice
ing the flow rate of such substance.

31 Claims
lever to lock said lever without need for further manual hold ing, said hook adapted to freely attach to said end of said gasoline pump handle.

WOOD LATHE CUTTING TOOL Oer E. Kirk, 727 NW. 16th St., Corvallis, Oreg. 97330, and Owen E. Raab, 11825 Glendele Way South, Seattle, Wash. Filed Mar. 22, 1977, Ser. No. 780,082 U.S. Cl. 142-56 Int. Cl. ${ }^{2}$ B27C 7/06 $\quad 10$ Claims

## 4,095,629

SELF-SERVICE GASOLINE PUMP HANDLE CLIP
Robert F. Jordan, R.F.D. \#4, Merrow Rd., Auburn, Me. 04210 Filed Mar. 10, 1975, Ser. No. 556,935 Int. Cl. ${ }^{2}$ B65B 3/O4; G05G $5 / 06$
U.S. C. 141-392

1. In combination with 7 Claims Eugene James Kielb, Spokane, Wash

7 Claims Eagene James Kielb, Spokane, Wash., assignor to Clark Equippump handle including an end portion, a lever guard, a pump
Int. Cl. ${ }^{2}$ A01G 23/08
guard, said slot adjacent the free end of said pump lever, a
5 Claim 971 O.G. 38
comprising a tree shear mechanism and a grapple mechanism, a mechanism for accumulating cut trees, the accumulator ing cut trees, the accumulator mechanism comprising a base portion mountable on the tree harvesting apparatus, a power arm for gripping the accumulated trees, the power arm comprising a curved member having an inner end pivotably mounted on the base portion of the accumulator mechanism, the curved member having a curved inner surface to receive
the cut trees and a curved outer surface concentric with the pivot axis of the accumulator mechanism to facilitate disengagement of the curved member from between a newly cut tree held by the grapple mechanism and the accumulated trees cooperatively engaged by the grapple mechanism and the

accumulator mechanism, the pivot axis of the power arm being generally aligned with the longitudinal axis of the tree to be cut, power means pivotally connected between the base portion of the accumulator mechanism and the inner end of the curved member of the power arm, the pivotal connection for
the power means of the curved member being laterally disthe power means of the curved member being laterally dis
posed from the pivot axis of the power arm at the inner end o the curved member, the power means cooperating with the curved member for opening and closing the power arm to gather cut trees in cooperation with the grapple mechanism, and an abutment means provided at the forward end of the base
portion of the accumulator mechanism coopertively engaging the curved outer end of the power arm to retain the cut trees in a space provided therebetween.

4,095,632
$\begin{gathered}\text { 4,095,632 } \\ \text { CTRAING GUIDE FOR ROUTER AND }\end{gathered}$
CIRCULAR SAW
 John M. Raulinaitis, 65 Union St., Cambridge, Mass. 0214 Filed Aug. 1, 1977, Ser. No. 820,476
U.S. Cl. 144-136 C 2 Claims


1. Guide apparatus for a tool having a cutting blade, including routers, circular saws, sabre saws and the like, comprising in combination:
is movable including
a substantially straight hardwood bar
a substantially straight L-shaped metal angle iron track having a horizontal flange firmly attached along the entire length of said hardwood bar and having a vertical flange wood bar such that said L-shaped metal angle iron forms an open channel parallel to the longitudinal edge of said hardwood bar to receive a cam follower bearing;
clamping means on each end of said straight edge assembly for securing said straight edge assembly to a workpiece; a main bearing block;
two cam follower bearings positioned within machined recess in the vertical face of said bearing block, each of said cam follower bearings having an axis of rotation perpendicular to the bearing block assembly and having
rolling surfaces extending equidistant forward of the vertiroling surfaces extending equid
cal face of said bearing block;
an outrigger bearing support arm mounted transversely to the top surface of said bearing block, extending forward of the vertical face of said bearing block, and having adjust-
third cam follower beari
ward from the forward overhanging end of said outrigger ward from the forward overhanging end of said outrigger
bearing support arm, having an axis of rotation parallel to bearing support arm, having an axis of rotation parater
the axes of rotation of said first two cam follower
bearings, being positioned forward of and between said first two cam follower bearings;
said channel in said straight edge assembly, its rolling surface being positioned to grip the interior side of the vertical flange of said L -shaped metal angle iron;
said first two cam follower bearings having their rolling
surfaces being positioned to grip the exterior surface of surfaces being positioned to
said L-shaped metal angle iron;
an adapter plate means fastened securely to said bearing block and extending outward therefrom for mounting a
tool to said bearing block assembly tool to said bearing block assembly;
thereto being able to move length adapter plate secured edge assembly by means of said cam follower bearings such that a tool affixed to said adapter plate will make a
straight cut straight cut.

WOODCARVER AND ENGRAVER MACHINE Jerome W. Kimball, 14 W. 43rd St., Savannah, Ga. 31401, and erome W. Kimball, 14 W. 43 rd St., Savannah, Ga. 31401 , and
Kenny H. Kimball, 2401 Dolphin Dr., Savannah, Ge. 31406 Filed Jan. 10, 1977, Ser. No. 758,049
Int. Cl.
B27Q $35 / 04$; B27C $5 / 10$


1. An engraving machine comprising: frame means for supporting the machine, said frame means having front, rear and side portions;
work holding means attached to said ing at least one piece of work to said frame means for holdmeans attached to said frame means for moved;
means attached to said frame means for mounting at least
one template having a pattern theren; cutting means for cutting said workpiece;
tracing means for tracing the pattern on a template mounted in said mounting means including a stylus vertically mov-
able with respect to said cutting means and frame mand able with respect to said cutting means and frame means between a normal and tracing position, and a spring
urging said stylus toward said normal position and toward said workpiece, said stylus being positioned closer to said template than the distance between said cutting means and said workpiece when said stylus is in said normal position
so that said stylus contacts said template before said cut-
ting means contacts said workpiece and then moves vertically with respect to said cutting means while in contact
with said template and against the urging of said spring. carriage means movably mounted to said frame means so a to be movable in any direction within a given horizontal plane for supporting both said tracing means and said
cutting means in a fixed relationship with respect to each cutting means in a fixed relationship with respect to each ifferen $v$ id sedy is in said wacing position and different vertically separated horizontal planes.

COPING SAW WITH IMPROVED BLADE RETENTION Walter MEANS Walter J. Hutchins, West Hartford, Works, New Britain, Conn.
Filed Oct. 12, , 1976, Ser., No. 731,733 U.S. C. 145-33 D Int. C1.2 B27B 21/00 U.S. C. 145-33 D Int. CI. ${ }^{2}$ B27B 21/00 7 Claims

,095,634
PLANT FOR FINGER-JOINTING WOOD-BOARDS PLANT FOR FINGER-SOIN Olov Ohlsson, OBterskär, both of Sweden, assignors to Svenska A.B. Elphiac, Solna, Sweden Filed Mar. 30, 1977, Ser. No. 782,835
Int. Cl. ${ }^{2}$ B27F 5/00 U.S. Cl. 144-317

Int. C1. ${ }^{2}$ B27F $5 / 00$
13 Claims

1. A plant for jointing wood-boards, comprising dielectric heating means, guiding and transporting means for the boards to convey the ends of the boards into and out of the dielectric heating means, means for cutting fingers into the heated ends of the boards, located at the output of the dielectric heating means, means for applying glue to the heated, fingered ends of the boards, located at the output of the cutting means, assembling and pressing means, located at the output of the glueing
means, for assembling the glued, heated, fingered ends of the boards in an end-to-end relationship and pressing them one against the other, whilst curing the glue is provided by the hea accumulated in the heated fingered ends.
2. A method of jointing wood-boards, comprising the steps
of:
a. heating the ends of said boards;
b. cutting fingers into said heated ends of said boards; c. applying glue to said heated, fingered ends of ssaid boards d. assembling said glued, heated, fingered ends of said boards in an end-to-end relationship,
e. pressing said glued, heated, fingered boards one agains the other; and
curing said glue by means of the heat accumulated in the heated, fingered ends.
3. A saw comprising:
4. a generally U-shaped frame having a pair of spaced legs; 2. a handle secured adjacent the free end of one leg of said
frame: 3. a paire;
5. a pair of elongated anchor bolts supported adjacent the
free ends of said frame and having blade mounting free ends of said frame and having blade mounting
portions extending inwardly of said legs and towards each other, each of said blade mounting portions having a slot extending axially from the inner end thereof and a generally $L$-shaped notch intersecting said axial slot with a sloping leg portion sloping from the periphery
thereof towards the opposite leg of said frame and an axial leg portion extending from the inner end of the sloping leg portion towards the adjacent leg; and
B. a saw blade having end portions disposed within said axial slots of said anchor bolts and having transversely extending pins on said end portions seated within said notches at leg portions of said L -shaped notches being substantially greater in width and length than the diameter of said pins, deflection of said legs of said frame resulting in camming of said pins into said axial leg portions of said notches.

## BOWLING BAL, 495,636

Kenard Emerson Urion, Dover, and John Harrison Tyre, Smyrna, both of Del., assignors to Leeds Travelwear, a divi. sion of Rapld-American Corporation, Clayton, Del. Filed Feb. 18, 1977, Ser. No. 769,877 U.S. C. $150-52 \mathrm{~A}$

$$
\begin{aligned}
& \text { Feb. 18, 1977, Ser. No. } 7 \\
& \text { Int. C. }{ }^{2} \text { A45C } 11 / 00
\end{aligned}
$$

6. A frame for a bowling ball bag comprising a lower frame section having a pair of parallel longitudinal members carrying at least one circular horizontal member between them, said ing ball horizontal member having a diameter less than a bowlball; said and being adapted to receive and position a bowling downwardly by a distance greater than the depth to which a bowling ball may extend downwardly into said circular horizontal member;
said frame having a central vertical loop extending above said longitudinal members, said central vertical loop having a section overlying the center of said circular horizonwhich may be carried thereby;
a bag being provided; said frame being mounted in said bag;
said bag having a handle at the top;

said handle being secured through the top of said bag to said section of said central vertical loop overlying said circula horizontal member

4,095,637
SOLID POLYURETHANE TIRE/WHEEL ASSEMBLY Ram Murthy Krishnan, Stow, Ohio, assignor to The Goodyear Ram Murthy Kristinan, Atow, Ohio, assio
Tire \& Rubber Company, Akron, Ohio Continuation-in-part of Ser. No. 585,141, Jun. 9, 1975,
 Int. Cl. ${ }^{2}$ B60C $1 / 00$; C08G 18/32; C08K S/12; B29D 3/02
6 Claim


1. A solid industrial polyurethane tire where said polyure
hane is prepared by reacting (A) a curative of 1,3 -propane dio thane is prepared by reacting (A) a curative of 1,3 -propane diol with a prepolymer of diphenylmethane-4,4'-diisocyanate and a
polymeric polyol or (B) a curative complex of 4,4 -methylene polymeric polyol or (B) a curative complex of 4,4 -methylene
dianiline and a salt selected from sodium chloride, sodium bromide, sodium iodide, sodium nitrite, lithium chloride, lith ium bromide, lithium iodide, lithium nitrite and sodium cyanide, where said salt is first dispersed in a plasticizer selected from at least one of dioctyl phthalate, tetraethylene glyco
di(2-ethylhexoate) and dibutoxyethoxyethyl formal, with prepolymer of a diisocyanate selected from (1) diphenylme-thane-4, $4^{4}$-diisocyanate and (2) toluene diisocyanate with a
polymeric polyether polyol; where said polymeric polyol has a polymeric polyether polyol; where said polymeric polyol has a
molecular weight in the range of about 800 to about 2500 molecular weight in the range of about 800 to about 2500
comprised of polypropylene ether glycol in the amount of (i) comprised of polypropylene ether glycol in the amount of (i)
about 90 to about 100 weight percent when combination (A) is about 90 to about 100 weight percent when combination (A) is
used, (ii) about 30 to about 80 weight percent when combina tion ( $\mathrm{B}-1$ ) is used or (iii) about 50 to about 100 weight percent when combination (B-2) is used, where the corresponding
remainder of said polymeric polyol is selected from at least one of (a) a polyether ester selected from at least one of diethylene glycol, dipropylene glycol and dibutylene glycol ester of a dicarboxylic acid selected from at least one of adipic acid, isophthalic acid, phthalic acid and terephthalic acid and (b) at
least one polyester polyol derived from a saturated hydrocarleast one polyester polyol derived from a saturated hydrocar-
bon diol having 2 to 6 carbon atoms and a dicarboxylic acid selected from at least one of adipic, succinic, azelaic, phthalic and terephthalic acids, where the ratio of isocyanato groups to hydroxyl groups of said polymeric polyols is in the range of
about $1.7 / 1$ to about $2.3 / 1$ and where the ratio of sum of hy-
droxyl groups of said 1,3 -propane diol, if used, and amine
groups of said 4,4 -methylene dianiline complex, if used, to the groups of said $4,4^{\prime}$-methylene dianiline complex, if used, to the exceups is in the range of about $0.8 / 1$ to about $1.1 / 1$, said tire characterized by (A) a polyurethane having a compression set of about 15 to about 45 percent determined by ASTM D-395 Method B and a Goodrich flex life of about 15 minutes or more (ASTM D-623 test modified by having a 437 psi load at $38^{\circ} \mathrm{C}$. starting temperature and a 0.15 inch stroke, or ( $\mathbf{B}$ ) capable of
supporting an incrementally increased load up to at least about 7700 pounds for at least about 65 hours at a speed of about 3 miles per hour when said wheel assembly has a ground contacting tire portion with an outside diameter of about 15 inches, a width of about 5 inches and an inside diameter of
about 11 inches adhered to a steel centered core.

## 4,095,638

MANUFACTURING OF INNER TUBES FOR TIRES Donald R. Thompson; Paul R. Matrey, both of Akron, and Willinm J. Hampshire, Peninsula, all of Ohio, assignors to The Goodyear Tire \& Rabber Company, Akron, Ohio
Division of Ser. No. 561,817 , Mar. 25, 1975, abandoned. Th Division of Ser. No. 561,817, Mar. 25, 1975, abandoned. This application Mar. 22, 1976, Ser. No. 669,372
Int. Cl. ${ }^{2}$ B29H $15 / 00$
U.S. C. 152-349

10 Claims


1. The method of making an inner tube for a vehicle tire comprising rotating a rigid former about an axis, spraying a self-curing elastomeric composition in liquid suspension on the
surface of the former while the latter rotates to form on the surface a continuous, homogenous, single layer sleeve, drying the sleeve to a non-tacky elastic state while the sleeve, remains on the former, transposing one circular edge of the sleeve
axially over the intermediate portion of the sleeve to position axially over the intermediate portion of the sleeve to a position
on the sleeve near its other edge, then joining the two edges of the sleeve to form a closed toroid, and then removing the cured toroidal tube from the former.

INSULATING SCREEN
Declan Francis Ryan, 15 Mardyke St, Athlone, County West
Declan Francis Ryan, 15 Mardyke St., Athlone, C
meath, Ireland Claims priority, application Ireland, Jul. 18, 1975, 1612/7 In. Cl. ${ }^{2}$ E06B 3/94; A47H $5 / 00$ U.S. Cl. $160-84$ R


1. A thermally insulating screen which can be deployed and prising at least one integral layer of similar tubular alane, com-
bers of flexible plastics film sheets in parallel formation, with out a rigid framework and defings seren sidewalls, and a extensible tie member fixed to said at least one layer to lim adapted to fold flat into a plane perpendicular to the layer o etraction of the screen, each chamber moreover having east one open end and being provided at said open end with a east one guard flap constituting an extension of one of said film sheet sidewalls and being folded substantially perpenticular to off said at least one open end to permit the passage of air in quantity through said open end during expansion and contraction of the chamber only during erection and retraction of the
screen, but which renders the interior or each chamber in the screen, but which renders the interior or each chamber in the
deployed screen substantially unventilated, upon erection to ubstantially restrict convection air flow through said at leas one open end of said chamber.

4,095,640
BOAT WINDOW
Frank S. Beckerer, Jr., 40 Dock Rd., Milford, Conn. 06460 Filed Feb. 2, 1977, Ser. No. 765,101

Int. Cl. ${ }^{2}$ E06B 3/32
16 Claims


A self-draining, leak-resistant boat window, comprising in ombination:
(a) a frame body comprising a continuous mounting flang for engagement with an inner surface surrounding an opening in the wall of a boat,
and defining the window opening and with said flange and defining the window opening and having a lower
portion with an upwardly facing drain surface constitut ing a sill, said spigot being adapted to extend through said wall opening of the boat,
(c) a transparent window pane for closing off the window
(d) means hingedly connecting said window pane to said mounting flange,
(e) cooperable latch means on said flange and pane, for securing the latter in a closed position,
(f) means defining a peripheral groove in said mounting
(g) a gasket carried by the mounting flange and engageable with peripheral portions of the window pane when the latter is in the closed position,
h) said gasket having a yieldable portion adapted to flatten in cross-section when the pane engages it,
said gasket further including protruding means receivable in the peripheral groove in said mounting flange, said frame body having a removable window screen frame portions of which are interposed the yieldable portion of said gasket,
(j) the yieldable portion of said gasket overlying at least parts of said screen frame and holding the latter in position, (k) upper surfaces of the yieldable portion of the gasket and
of the screen frame being disposed at a level above the surface of said sill, whereby water splashed thereon and against the window pane can drain by gravity from the
vicinity of the yieldable portion of the gasket and from the vicinity of the window pane outwardly and in directions away from said pane.

## 4,095,641

## ATTACHMENT FOR AN OVERHEAD DOOR

 Bruce Edgar Olson, 2341-208th St., Langley, British Columbia, , 15, 1975, Tu application Continuation of Ser, No. 640,918, Dec. 15, 1975. This application Jan. 10, 1977, Ser. No. 757,83U.S. CI. 160-209


1. In combination with an overhead door of the type having limited head room, the door comprised of hingedly connected sections and movable between a closed vertical position and an tinuous tracks, one track each the head jacent a door side and each track including an inner roller supporting edge and an outer edge, the improvement comprising an attachment including,

Irst member adapted for rigid attachment to a top corne section of the door and extending inwardly past the inner edge of a track so as to have a part thereo
times inwardly past said track inner edge
times inwardly past said track inner edge,
a second member in parallel relationship with said first member,
pivot means connecting said second member to said first member part disposed inwardly of the track inner edge, members,
a shaft and roller assembly carried by said second member with said roller entrained at all times on a single track, an abutment flange on said second member at all times in utward proximity of the track outer edge,
 said abutment flange during door travel, such coaction imparting rotational movement to said second member about the axis of said shaft and roller assembly to thereby advance said pivot means and said first member in a direc tion to expedite closure of the top door section, posed for contact by said abutment flange during doo closing travel, another of said limbs of said stop disposed for contact by said abutment flange during initial doo opening travel to retard upward travel of the second member and compel ad movement of the first and second member about said pivo means, and
top section of the door during initial upward door open ing movement moving jointly about the axis of said pivo ander axis simulaneously moves away from the asembly to thereby retract the top door section towar assembly to thereby retract the top door section toward
the rail to provide clearance from overhead obstructions.
said chamber in the range of 10 to 15 psi, feeding means disposed within said chamber including a first hopper positioned to receive the introduced fine agents, a first vibratory sloped try disposed beneath said hopper and
selectively energizable for controlling the rate of flow of selectively energizable for controling rate, and a third exit
the charge of the agents at a measured rater the charge of the agentseive the measured charge of particles and associated third valve means for selectively controlling the flow of the mixture of the measured charge of
agents and the carrier gas to said tube inlet.
$4,095,644$
COOLING SYSTEM FOR GEAR REDUCERS Robert O. Huff, Columbus, Ind., assignor to Reliance Electric Robert O. Huff, Columbus,
Company, Columbus, Ind.

| Company, Columbus, Ind. |
| :--- |
| Filed Nov. 10, 1976, Ser. No. 740,353 |


| Int. Cl.2 ${ }^{2}$ F28F $27 / 00$ |
| :--- |

10 Claims 1. A door comprising a plurality of elongated flexible strips for hanging in a wall opening, a vertical edge of each orh strip
strips overlapping an adjacent strip, the upper end of each stip being folded on itself to form a loop sized to receive a support bar, a portion of the upper end of the strip being attached to the body of the strip at a location spaced from the end ortical edge
and a portion of the epper end of said strip on one ver being unattached to the body of the strip at said location to permit said unattached loop portion to overlap the edge of the adjacent strip.

| 4,095,643 |
| :--- |
| AGENT FEEDER FOR PIPE CASTING APPARATUS | AGENT FEE Joel P. Sutherland, and William E. Snow, all of

Carl Pr. Farlow; Jola., assignors to American Cast Iron Pipe Birmingh,
Company, Birmingham, Ala.
Filed Nov. 29,
, 1974, Ser. No.
528,442
U.S. C. 164-301

Int. C1.' B22D $13 / 10,13 / 02$
9 Claims


1. Apparatus for casting pipe comprising:
(a) a rotatable mold;
(b) a trough for delivery of molten metal from a source (b) a reof to the interior of said mold;
(c) means for imparting a relative motion between said rotatable mold and said trough, whereby the molten metal is
discharged from a discharge end of said trough as said trough moves with respect to said mold;
(d) a tube supported in a fixed relationship with respect to said trough for delivery of a mixture of solid, fine agents to
said discharge end of said trough, whereby the fine agents said discharge end of said trough, whereby the fine agents
are delivered to the interior of said mold; said tube having are delivered to
an inlet and an outlet;
(e) a feeder assembly for providing a measured charge of the solid, fine agents to said tube inlet and including a pres-
sure-tight chamber, a first agent-introducing conduit and sure-tight chamber, a first agent-introducing conduit and
associated first valve means for selectively regulating the associated first valve means for selectively regulating the
introduction of the fine agents into said chamber, a second gas-introducing conduit and associated second valve means for selectively introducing pressurized carrier gas
within said chamber, and maintaining the pressure within

2. A cooling system for gear reducers having a housing with a lubricant therein, comprising a pump, a motor for driving said pump, a hot lubricant line for connecting said pump to the reducer housing, a heat exchanger, a pump outlet line connecting said pump to said heat exchanger, a return line cont line connecting said heat exchanger to a source of coolant, a discharge line for said coolant from said heat exchanger, a control valve in said supply line, means for sensing the temperature in said hot lubricant line anterior to said pump and regula ing and aperation of the control valve in supporting said pump, heat exchanger and connecting lines as a unitary assembly.

4,095,645
LINEAR UNIFORM HEAT WRAP CONTROL William A. Massey, Mount Holly, N.J., assignor to Molins Machine Company, Inc., Cherry Hill, N.J.

Filed Jan. 12, 1977, Ser. No. 758,6
Int. C. ${ }^{\text {F }}$ F28D il/02
U.S. CI. 165-13

10 Claims


1. A heat wrap control, comprising: signal indicative of the amount of heat to be transferred to a moving web,
speed sensing means for providing a reference speed signal speed sensing means ficative of the speed of the web, and
ind
control means operatively associated with said set point means and said speed sensing means to effect uniform heat transfer to the web.
2. A method of controlling the amount of heat transferred to a moving web, comprising.
selectively providing a set point heat signal indicative of the amount of heat to be transferred to a moving web, providing a reference speed signal indicative of the speed
the web, and the web, and
controliling wrap of the web about a heated drum to effec uniform heat transfer to the web as a fu
point heat and reference speed signals.

HEAT EXCHANGE HEAT EXCHANGE STRUCTURE
Dennis C. Granetzke, Racine, Wis., assignor to Modine Manufacturing Company, Racine, Wis.
Filed Jan. 10, 1977, Ser. No. 758,129
U.S. Cl. 165-7

Int. Cl. ${ }^{2}$ F28F $7 / 00$


1. A heat exchanger structure, comprising: a rectangula heat exchanger having opposite sides including a top and bottom; a supporting frame enclosing said heat exchange having open sides including an open top side and bottom lateral sides; hinge means at one end of said frame sides for opening outwardly of the heat exchanger top side; gasket means sealing the edges of the heat exchanger to adja-
cent edges of said frame; and releasable clamp means drawing cent edges of said frame; and releasable clamp means drawing one of said frame sides toward the heat exchanger for releas-
ably clamping all said frame sides to said frame at said gaskets.

## 4,095,647

HEATING DEVICE
George Albert Apolonia Asselman, and Josef Wilhelmus Johan nes Maria Van der Leegte, both of Eindoven, Netherlands Divsignon of to U.E. No. Philips Corporation, Briarcliff Manor, N. Jul. 11, 1973, Pat. No. 3955,618 This application Nov. 13, 1975, Ser. No. 631,506 Claims priority, application Netherlands, Jul. 9, 1972 7209936 Int. Cl. ${ }^{2}$ F28D $15 / 00$
U.S. Cl. 165-105

Int. Cl. ${ }^{2}$ F28D $15 / 00$
3 Claims


1. Heating apparatus for use with a heat source, which comprises an enclosed common heat reservoir, at least a portion of
at least one wall of said common heat reservoir being associated with said heat source, a plurality of separate isothermal heating units traversing trough said common heat reservoir
outer tubular members, each end of each heating unit extending outwardly of said common heat reservoir, each said inner of spaced tubular members together defining an annular heat reservoir in communication with said common heat reservoir, each end of each said annular heat reservoir being closed, a first capillary material on the inner surface of the walls of said common heat reservoir, a second capillary material on the inner surface of the walls of each said annular heat reservin,
and a third capillary material extending between said second capillary material and said first capillary material, and a vaporizable and condensible heat-transporting medium in said common heat reservoir and said annular heat reservoirs, said medium, when heat is supplied to the common heat reservoir by
said heat source, vaporizing and flowing into the annular heat said heat source, vaporizing and flowing into the annular heat
reservoirs wherein it condenses and provides heat for transmittal through the respective inner tubular members into the respective heating chambers, the resulting medium condensate flowing back into said common heat reservoir at least partly by means of said third capillary material.
$\stackrel{4,095,648}{\text { TUBE BUNDLE }}$
 Corporation, Houston, Tex. Filed Jul. 1, 1976, Ser. No. 701,624
Int. Cl. ${ }^{2}$ F28F
Cl. 1651361 U.S. CI. 165-162

17 Claims


1. A tube bundle, comprising a plurality of parallel rows of finned tubes, the axes of adjacent tubes in adjacent rows being arranged in triangular patterns, headers fixedly connected to the opposite ends of the tube, a portion of the fins of each tube being radially inwardly crushed to provide an annular recess
between adjacent uncrushed fins having a base formed by bent-over outer end portions of the fins, said recesses being generally laterally aligned with one another, and a rigid strip extending between adjacent rows of tubes intermediate the nds thereof, each strip having arcuate surfaces on one side hereof which fit closely about portions of the bases of the
ubes of one adjacent row and arcuate surfaces on the othe side thereof which fit closely about portions of the bases of the ubes of the other adjacent row.

REENTRY SYSTEM FOR SUBSEA WELL APPARATUS eorges M. Chateau, Pau, France, and Chester B. Falkner, Jr. Huntington Beach, Calif, assignors to Societe Nationale El Aquitaine (Production), Courbevoie, France
Filed Jan. 13, 1977, Ser. No. 759,032

Filed Jan. 13, 1977, Ser. No. 759,103 Int. Cl. ${ }^{2}$ E21B $7 / 12$
U.S. CT. $166-0.5$
lut. C. ${ }^{2}$ E21B $7 / 12$ 1. In a reentry system for a subsea station having a well apparatus provided with protected receptacles for receiving of: an elongated guide post means on said apparatus; one of said protected receptacles supporting and housing said guide post means in retracted position; eans for moving said guide post means into an extended exposed position;
engagement means cooperable with said guide post means
for positioning an adaptor frame structure on said appara-

said engagement means including self-adjusting means for guiding cooperation of said frame structure with said guiding cooperatiin
guide post means.

4,095,651
PROCESS FOR SELECTIVELY $\mathbf{4}$ PLUGGING AREAS IN HE VICINITY OF OIL OR GAS PRODUCING WELLS IN Guy Chauveteau, Rueil Malmaison, and Jean-Cla ation Guy Chauvereat, Ruein Malm aison, and Jean-Claude Moulu, Le
Vesinet, both of France, assignors to Institut Francais du Petrole, Rueil Malmaison, France
Fliled Sep. 24, 1976, Ser. No. 726,225
Claims priority, application France, Sep. 25, 1975, 7529833
Int. Cl. ${ }^{2}$ E21B $33 / 138$
752983

1. A process for 160 d 1. A process for reducing or suppressing water penetration from an underground formation into at least one portion of a well for oil and/or hydrocarbon gas production traversing said a injecting a stable limpid the following steps:
soluble non-crosslinked polymer $P$ at a concentration $C$ from a well into the portion of the formation from where water penerration into the well must be reduced or suppressed, said stable limpid, saline polymeric solution hav ing an inversely proportional viscosity-salt concentration
behavior, the viscosity $\eta$, of said solution being such that $\eta_{2}<\eta_{1}$, where $\eta_{1}$, is the viscosity of a solution of the watersoluble polymer $\mathbf{P}$ at concentration $\mathbf{C}$ in water of the formation, the lower viscosity $\eta_{2}$ being obtained in said stable, limpid, saline, polymeric solution by the presence of a sufficient quantity of alkali metal salt, alkaline earth metal salt, or mixtures thereof;
permits the fluids of the formation to contact that wart of the formation which contains the adsorbed polymer whereby the oil and/or gas selectively passes through said part of the formation to flow into the well, while the water production is reduced.

## 4,095,650

METHOD FOR INCREASING THE CALORIFIC VALUE OF GAS PRODUCED BY THE IN SITU COMBUSTION OF Lowell Z. Shuck, Morgantown, W. States of America as represented by the United States Depart States of America as represented by
ment of Energy, Washington, D.C. Filed Aug. 10, 1997, Ser. No. 823,480 U.S. Cl. 166-256

Int. C1. ${ }^{2}$ E21B 43/24
4 Claims


1. A method for the production of combustible gas by the in situ gasification of coal in subterranean coal bed, comprisin he steps of penetrating the coal bed with at least one borehole, initiating combustion of the coal disposed contiguous to the
borehole, and selectively varying the absolute pressure with borehole, and selectively varying the absolute pressure with
the resulting combustion zone at a level which will provide the resulting combustion zone al a leakege of natural water in the coal bed into the combustion zone for providing a CO and $\mathrm{H}_{2}$ producing reaction between the water and hot carbon in the combustion zone to increase the Btu
25 to $100 \mathrm{Btu} / \mathrm{SCF}$

IMPLEMENT COUPLING MEMBER Cornelis van der Lely, 7, Bruschenrain, Zug, Switzerland Division of Ser. No. 421,111, Dec. 3, 1973, Pat. No. 4,046,201. Claims priority, application Netherlands, Apr. 12, 1972, 7216407 Int. Cl. ${ }^{2}$ A01B $59 / 06$
U.S. Cl. 172-47
ating implement comprising a frame and a 1. A soil cultivating implement comprising a frame and a
plurality of soil working members rotatably mounted on upwardly extending axes, said members being supported along he length of an elongated frame portion that extends transverse to the direction of travel, a coupling member interconnected to said frame portion and positioned at the front thereof
for coupling the implement to a three-point hitch a said coupling the implement to a three-point hitch of a tractor, said coupling member comprising an upper coupling point and comprising a pair of upright apertured plates that are separated from one another and a respective vertical plate on said frame portion extending between said pair of plates, said vertical
plate having a hole in alignment with any of the apertures in
said pair of plates, bolt means being passed through each pair
of plates and respective vertical plate, and the relative position

ngated frame beams assembled end to end at junctures tha define a substantially W-shape, when viewed in plan, the asextend generally horizontal and transverse to the direction of travel and each beam extending at an oblique angle to the
direction of travel, said beam mounting two spaced apart deep direction of travel, said beam mounting two spaced apart deep
tillage members that depend therefrom and said tillage members being fixed to said beam intermediate the ends thereof, a multiple point coupling hitch having laterally extending arms with coupling points and said hitch being fastened to substan tially the mid-point of the assembly by plate means and suppor wardly and forwardly from connections on said interior beam to further connections on said arms, said further connections being spaced from said coupling points, said hitch being lo cated adjacent a vertical plane that extends transverse to the direction of machine travel and said plane containing the foremost tips of alternate junctions of the beams,
beams being positioned laterally of said hitch.

$$
\begin{gathered}
\text { 4,095,654 } \\
\text { IMPACT DEVICE WITH MUUTIPLE CONNECTING } \\
\text { RODS AND GEARING } \\
\text { Frederick, W. Ross, 755 Klamath Dr., Del Mar, Calif. } 92014 \\
\text { Filed Nov. 15, 1976, Ser. No. } 742,109
\end{gathered}
$$ Filed Nov. 15, 1976, Ser. No. 742,109

U.S. Cl. 173-118

15 Claims

of of the frame portion to said coupling member being changeable in both vertical and horizontal directions.

4,095,653

## SOIL CULTIVATING IMPLEMENTS

 sold Lely, 7 Brischenrain, Zug, SwitzerlFlled Jul. 29, 1976, Ser. No. 709,927 Flled Jul. 29, 1976, Ser. No. 709,927
Claims priority, application Netherlands, Jul. 29, 1975,
U.S. CI. 172-177

Int. Cl. ${ }^{2}$ A01B 49/02
7 Claims


1. A soil cultivating implement connectable to a multiple point lifting hitch of a tractor, comprising a frame having
2. An impact device having a frame with exciter-reciproca tive means mounted thereon for driving a reciprocating elepath relative to the frame, output tool means, ram means free or reciprocation substantially along the selected straight path for impacting against the output tool means, and coupler means operatively interconnecting the reciprocating element to the reciprocating element, said exciter-reciprocative means comprising
nted on crankshaft bearings se cured on said frame,
rotary motor mounted on said frame and having a roto shaft with rotor axis,
earing means operatively interconnecting said rotor shaft
with said crankshaft speed different from tor rotation thereof at a rotational rotary two connecting rods operatively connected to said crankshaft in a spaced relation for actuation thereby in substantially the same rotational phase ar substanales to reciprocate and rotary element along said selected path upon rotation of said crankshaft, and
said rotaty motor mounted on said frame substantially be tween said crankshaft and said reciprocating element and substantially between at least two of said at least two said rotor motor, said crankshaft and said at least two connecting rods providing means for substantially longer connecting rods to substantially reduce extraneous vibra
tions and extraneous forces occurring therefrom during drill string drive means including means operable for applyying
operation. operation.

| 4,095,655 <br> EARTH PENETRATION <br> William L. Still, P.O. Box 878, Purcellville, Va. 22132 <br> Filed Oct. 14, 1975, Ser. No. 621,787 <br> Int. Cl. ${ }^{2}$ E21B 11/02, $1 / 06$ |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
| U.S. Cl. 175-19 ${ }^{\text {a }}$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

1. An assembly for providing lateral thrusts in an area havin confined radial dimension, said assembly comprising
(a) a generally tubular mandrel of a fixed lateral length (b) a pair of generally toroidal lateral force cells mounted o and surrounding said mandrel and each being expandable
and retractable in said lateral direction, the combined and retractabee in said leeteral direcion, the combined being a fixed amount less than the length of said mandre each of said lateral force cells having means associated therewith for restricting the radial expansion thereof so
that each of said toroidal lateral force cells has a substan tially constant radial dimension,
(c) a pair of generally toroidal radial force cells mounted on and surrounding said mandrel each having a substantially fixed lateral dimension but being expandable in the radia direction,
nately disposed lateral toroidal force
(e) means for selectively expanding or contracting said forc cells for movement of said assembly in the lateral direc tion.
$\overline{4,095,656}$
Gordon B. French, Bakersfield, Calif., assignor to Occidenta Oil Shale, Inc., Grand Junction, Colo. Filed Mar. 3, 1976, Ser. No. 663,54 U.S. Cl. 175-53

2. In a method of raise bore drilling in which a drill string extends in a pilot hole between a rotary action raise bore dril. ling bit at the lower end of the pilot hole and a drill string drive
means above and adjacent the upper end of the pilot hole, the
motion of the drill string therepast, the improvement compris ing using a drill string which is non-round over at least substan bit for concurrently transmitting torque and axial tension from the drive means to the bit for operating the bit.

## SWIMMING APPARATUS <br> SWIMMING APPARATUS

Filed Oct. 10, 1975, Ser. No. $\mathbf{6 2 1 , 5 8}$
U.S. Cl. 272-71


1. A swimming apparatus for holding and supporting wimmer in a pool of water while at the same time allowing the osition to another, and to roll and twist during swimming, the pparatus comprising
support means adapted to be attached to a stationary mounting means adjacent to said pool and having a cantilever ing at the outer end thereof at a position adjacent the swimmer;
a belt support member having a first end portion secured to said cantilever member intermediate the end thereof, and a second free end portion projecting outwardly from said cantilever member; means mounted on said second end
portion of said belt support member and having the periphery thereof exposed, said periphery defining a belt engaging surface facing away from said outer end of said cantilever member;
an endless, rope-like belt means having a portion thereof looped over said support member and engaged with said from said support member which is of sufficient length to be wrapped at least once around the swimmer's waist when the latter is in swimming position in said pool, said belt means being operative to travel back and forth around the support member and about the swimmer as the latter position to another;
guide means on said cantilever member outboard of said support member and located between said support member and the portion of said belt means wrapped around the swimmer for slidably receiving portions of said endless
belt means between said support member and the swim. mer and operative to gather and confine the same to prevent said belt means from slipping along the body of the swimmer while permitting said confined portions to slide back and forth therein as the belt means moves on the
support member and around the swimmer in support member and around the swimmer in response to
the swimmer's movements; and eans for adjusting the position of along said cantilever member to provide compensation for variable conditions such as water level and swimmer size.

## 4,095,658

FLUID MEASUREMENT DEVIC Ray Kendall, and Burt Henry McGhee, both of Fort Worth, Tex., assignors to Iso AB, Inc., Dallas, Tex. Fiiled Nov. 22, 1976, Ser. No. 744,121
Int. Cl. ${ }^{2}$ G01G $13 / 02.1 / 18,1 / 36 ;$ A61M $5 / 00$ U.S. Cl. 177-118


1. A fluid collection and dispensing device for use in connection with a fluid container and flexible tubing leading thereto comprising:
(a) a hollow balance bar having a first closed end and second closed end;
(b) a balance bar mounting member through which said balance bar extends, pivotally attached to a first rotatably adjustable clamping means,
adjustable clamping means;
(c) a second fixed clamping means comprising a means for
rotatable attachment of said first adjustable clamping means; (d) sp
wights disposed whin said hollow balance
(e) an adjustable counter weight, operatively engaged with said first end of said balance bar;
(f) opposing flexible tube constricting means on said balanc bar mounting member
clamping means; and $a$ hanging fluid container affixed to said second end of the balance bar.

4,095,659
DEFLECTION-RESTRAINED LOAD CELL FOR DEFLECTION-RESTRAINED LOAD CELL FOR Carl Blench, Stanwood, and Carl R. Harris, Kirkland, both of Wash., assignors to Eldec Corporation, Lynnwood, Wash. Filed Jun. 10, 1976, Ser. No. 694,652 U.S. Cl. 177-136

8 Claims


1. In a load cell assembly providing part of an on-board load weighing system for a vehicle having a frame member and load support member to which the load which is to be measured is applied, the load cell assembly being adapted to be
located between the load support member and the frame memlocated between the load support member and the frame mem
ber and including elongated beam means having a central portion and first and second ends, means for securing the first and second ends of the beam means to the frame member of the vehicle and for elevating the central portion of the beam means
.
above the frame member, elongated load concentrating means to be secured to the load support member and integral with the central portion of the beam means and having first and second the beam means, a pair of slots extending inwardly from said ends for directing the applied load to the central portion of the beam means, an improvement comprising: restraining means to be secured to the frame member for
limiting deflection of the first and second ends of the load concentrating means in a direction toward the load support means.

4,095,660
ROLLER
Kurt Eilert Johansson, Timmermer
Kurt Eilert Johansson, Timmermansgatan 12, S-98
Sweden Filed Sep. 15, 1976, Ser. No. 72,323
Claims priority, application Sweden, Sep. 18, 1975, 7510442 Claims priority, application Sweden, Sep. Int. C1. $^{2}$ G01G $19 / 188,3 / 14$
U.S. C. $177-136$

10 Claims


1. Apparatus for indicating a charge or load on an axle (4), first means ( $6 a, 6 d$ ) for supporting said axle (4) at two positions which are spaced apart in the longitudinal direction of said axle (4), said first means including self-aligning means for floatingly journalling
a substantially inelastic roller (3) on said axle (4), on the peripheral surface of which roller said charge or load is arranged to act;
cond means ( $6 b, 6 c$ ) for rotatably supporting said roller ( $\mathbf{3}$ ) on said axle (4) and for permitting said roller (3) to float relative to said axle (4) at two spaced positions respec relative to said adje (4) at wo spaced positiong positions
tively disposed adjacent said spaced supporting of said axle (4) and substantially equally spaced relative to the centre of said axle (4);
at least one transmitter (5) mounted on said axle (4) and ocated in the area between said spaced roller supporting positions for generating a signal in response to, and as a
 ird means ( $14,15,16$ coupled to said roller (3) ; and ter (5) for indicating the weight of said load or charge as ter ( $\mathbf{5}$ ) for indicating the weight of said load or charge a
a function of said signal.

## 4,095,661

WALKING WORK VEHICLE
ames R. Sturges, Washington, Ill., assignor to Caterpillar Trac tor Co., Peoria, III.
Filed May 9, 1977, Ser. No. 795,034
Int. C1. ${ }^{\text {B62D }} 77 / 02$
.S. Cl. $180-8$ E
9 Claim prtions, a frame, a power source, and a work element, the improvement comprising: a plurality of separate, movable feet positioned along eac side portion of the vehicle; and
source for controllably moving each foot in a preselected manner sufficient to move the vehicle along the ground at a substantially constant velocity and maintain the frame of the vehicle substantially parallel to the ground,
id connecting means of each foot comprising:
a first pair of spaced apart connecting elements each havin first and second end portions and being pivotally con nected at the first end portion to the frame;
second pair of spaced apart connecting elements each having a first and second end portions and a middle por tion and being pivotally connected to the second end portion of a respective first connecting element

connecting member pivotally connected at each end por tion to a respective first end portion of a second connect
ing element at locations sufficient for maintaining the ing element at locations sufficient for maintaining the second pair of connecting elements substantially parallel one to the other during the operation thereof; second means for pivotally connecting each foot to the
second end portion of each second connecting element spaced locations sufficient for maintaining a ground contacting surface of the foot substantially parallel with the frame during the operation thereof; and
third means for connecting one of the connecting elements to the power source.

4,095,662
GARDEN TRACTOR
AJrin S. Beachy, Salisbury, Pa. 15558
Filed Nor. 30, 1976, Ser. No. 746,019 Int. Cl. ${ }^{2}$ B62D $55 / 00$


1. A garden tractor comprising:
a pair of generally rectangular plates,
a cylindrical member extending transversely between the central portion of said plates with its axis disposed hori zontally and having its ends rigidly secured thereto so
U.S. CI. 180—9.22
each other in generally vertical planes and with the longitudinal extent thereof generally horizontal,
an endless track assembly carried by and between said plates for driving movement in an endless path encircling said cylindrical member,
generally horizontally extending frame disposed above said plates and said endless track assembly including a
sleeve fixedly carried in depending relation to the central portion of said horizontally extending frame on each side thereof and rotatably mounted around an associated end of said cylindrical member, and a handle structure extending upwardly and rearwardly from said horizontally ex
tending frame by which an operator is enabled to pivo tending frame by which an operator is enabled to pivot
said horizontally extending frame about the axis of said cylindrical member by virtue of the mounting of said sleeves around said cylindrical member,
a first shaft mounted on said horizontally extending frame or rotational movement about an axis parallel to the axis
an internal combustion engine carried by said horizontally extending frame and releasably drivingly connected with said first driven shaft,
a second shaft mounted within said cylindrical member with its ends extending transversely outwardly of said plates
for rotation about an axis concentric with the axis of said cylindrical member,
first endless drive means extending between said first shaft and an end of said second shaft, and
second endless drive means extending between an end of
said second shaft and said endless track assen
4,095,663
CYCLES
Edward Norman Gaffney, Sutton Coldfield, England, assignor to Lucas Industries Limited, Birmingham, England
Filed Now. 11, 1976, Ser. No. 741,061
Int. Cl. ${ }^{2}$ B60L $1 / / 12$
U.S. Cl. 180—33 C

3 Claims


1. An electrically assisted pedal cycle including means whereby the rider of the cycle can propel the cycle, an electric
motor and an associated electric storage battery carried by the frame of the cycle for assisting the rider in propelling the cycle. and a generator operable by rotation of a ground engaging wheel of the cycle, said generator being defined by a plurality of magnets disposed around the rim of said ground engaging
wheel of the cycle, and a stator assembly carried by the frame wheel of the cycle, and a stator assembly carried by the frame
of the cycle and positioned adjacent said wheel rim said stator assembly including a winding connectible to said battery by means of a manually operable, normally open switch, and a rectifier, the arrangement being such that closure of said switch while said wheel rotates relative to said stator assembly completes an electrical circuit between the stator winding and
the battery, whereby electricity generated by passage of said magnets adjacent the stator assembly is supplied to said battery magnets adjacent he stator assembly is supplied to said battery
by way of said rectifier to charge said battery, and said wheel
is braked by the associated regenerative braking effect the

contacts of said normally open switch being closed by initial movement of the brake control mechanism prior to the application of significant braking force by way of the friction brake control mechanism can effect electromagnetic regenerative braking of the cycle without significant braking force from the friction brake.

ELECTRIC MOTOR DRIVEN AUTOMOTIVE VEHICLE HAVING A MAGNETIC PARTICLE CLUTCH George A. Bray, Rte. 1, Box 1227, Shingle Springs, Calif. 95628 U.S. CI. 180-65 R

4 Claims


1. An electric motor power means suitable for boats, car and other vehicles, comprising:
(a) a constant speed electric motor of predetermined voltag eand current,
(b) an alternator of the same predetermined voltage electri-
cally connected to said constant speed motor
(c) a plurality of rectified alternators of a separately predetermined voltage,
(d) a DC motor coupled to the alternator (b) and to the DC rectified alternators to drive said alternator and said DC rectified alternators
(c) a DC battery means connected to said DC motor wherein voltage of the DC motor and the predermined voltage of the DC rectified alternators
(f) means to electrically connect the outputs of the DC alternators to the DC battery means to supply electrical energy back to recharge
drive shaft of said vehicle
a magnetic particle clutch coupled between said constant a magnedic motor and said drive shaft, and
means for varying the coupling strength of the magnetic particle clutch;
whereby variations in the coupling strength will produce variations in the speed of rotation of the drive shaft.

## 4,095,665 ELECTRIC CAR

Donald A. Armfield, Scranton, Pa., assignor to The Raymond Lee Organization, Inc., New York, N.Y. Filed May 5 , 1977, Ser. No. 793,883
Int C.2 B60L 7/12; B60K 1/07
U.S. Cl. 180-65 D. 3 Claims

1. An electro-mechanical drive and brake system for a vehi-
cle comprising,
an electric motor, the shaft of which is linked by a first gear box,
gear box,
an electric generator, the shaft of which is linked by a second
lectric actuated clutch when engaged to a second shaft of said gear box,
said gear box,
rechargeable battery which is electrically linked by a control unit to said motor, said control unit also being independently linked to each clutch and to a relay,

contacts of which join the generator to said battery when contacts of which join the generator to said battery when
the relay is set to a first mode and disconnect the generator from said battery when the relay is set to a second mode,
said gear box linking both said first shaft and said second shaft to the drive shaft of the vehicle.

## APPARATUS FOR PREVENTING COLLISION OF PREVENTIN VEHICLES

Kousaku Baba, Yokosuka, and Karuhiro Ban, Amagasaki, both of Japan, assignors to Mitsubishi Denki Kabushiki Kaisha, Tokyo and Nissan Motor Company, Limited, both of, Japan Claims priority, appliction Japen, Apr. 2, 1976, 51-36741 Int. C1. ${ }^{2}$ B60K $27 / 00,33 / 00$


1. An apparatus for preventing collision of a vehicle com prising:
device for measuring a distance $R$ from a driving vehicle to an obstacle and a relative velocity V of said driving vehi cle to said obstacle;
a circuit for generating a damping signal when the relation of said distance $R$, said relative velocity V and a prese deceleration $\alpha$ becoor for recting the actual deceleratio $a^{\prime}$ of said driving vehicle, said deceleration detector including oscillator circuit means for generating an unmod ulated carrier wave, strain gauge bridge means connected to said oscillator circuit means for modulating said carrie demodulating circuit means connected to said strain gaug bridge means for demodulating said modulated carries wave and generating a signal proportional to said actual deceleration $a^{\prime}$; and a correction circuit for comparing the actual deceleration $\alpha^{\prime}$ detected by said deceleration detec
tor with the present deceleration $\alpha$ and correcting the damping signal depending upon the comparative data.

# PORTABLE UNDERW5,667 <br> TRERWATER 

Joseph Mahig, 701 SW. 91st SD., and Carl Thomas Allen, 4175
NW. 12th Ave., both of Gainesville, Fa, 32601
Ave., both of Gainessille, Fla. 32601
Filed Jan. 19, 1977, Ser. No. 760,808
Int. Cl. ${ }^{2}$ B63B 45/08; G01L 19/12
cover members to said one of said brackets to enable the pivot ally attached cover member to move to an upstanding dispo-
sition in an open position; and stop means for limiting the sition in an open position; and stop means for limiting the
movement of the pivotally mounted cover member between its open position and its closed position, said stop means having a first surface for engaging and holding down the upper surface of said one of said cover members at one side of the pivotal connection to support said one of said cover members in its horizontal closed position with the major portion thereof ex ered manner and having a second surface for engaging th upper surface of the opposite side of said pivotal connection when said one of said cover members is moved to its open position to position it thereat.

## 4,095,669

SOUND BARRIER

1. A portable selectively operated underwater signalling ransducer for transmitting an audible signal from one location extending therethrough, a housing connected to an axial bore extending therethrough, a housing connected to said body and slidably mounted in the bore of said body, said slide valve having an axial bore, a connecting rod slidably mounted in the ore of said slide valve, piston means mounted on each end of said connecting rod, means for connecting said body to a source of air under pressure, said slide valve inc under airfiow within said body for moving said connecting rod alternately in opposite directions so that said connecting rod strikes said diaphragm to generate acoustic waves, said slide valve having
portions extending outwardly of said body in a position to be portions extending outwardly of said body in a position to be
engaged by said pistons so that movement of said pistons causes said slide valve to move and direct the air under pressure in a different direction, and a selectively operable manually actuated control valve for controlling the flow of air under
pressure through said body to cause said connecting rod to pressure through said body to cause said connecting rod to
reciprocate. reciprocate.

## SOUND SUPPRESSING MACHINE COVER

Edward A. Derka, Des Plaines, MII., assignor to A.B.C.C.O. Industries, Incorporated, Wood Dale, III.
Filed Jul. 6, 1976, Ser. No. 700,361
U.S. Cl. 181-202

9 Claims


1. A cover for suppressing sound from a machine, compris ing: a pair of oppositely-disposed spaced-apart brackets
adapted to be mounted on opposite sides of the machine; a pair adapted to be mounted on opposite sides of the machine; a pair
of cover members having sound suppressing material thereon and connected to and supported by said brackets extending in a cantilevered manner therefrom and in a closed position at least partially over the machine, attaching means supported by
one of said brackets for mounting pivotally at least one of said

$$
\begin{aligned}
& \text { iled Feb. 10, 1977, Ser. No. 767,666 } \\
& \text { Int. Cl.2 E04B } 1 / 99
\end{aligned}
$$

1. A sound barrier including an imperforate backing panel substantially free of openings therethrough, a plurality of elongated, generally parallel imperforate angle members of subpanel in position spaced slightly outwardly of one side thereof and with the apex pertions of outwardly of one side thereo acing outwardly of said one side, said angle members being iented in substantially parallel equally closely spaced apart elation.

## 4,095,670

FOLDABLE PLATFORM FOR RAISE DRILLING Angus C. H. Martin, Mississauga, Canada, assignor to Raise Contracting, Limited, Mississauga, Canada
Claims priority, application Canada, Jun. 9, 1976, 25447 U.S. CI. 182-128 Int. Cl. ${ }^{\text {E }} 04 \mathrm{G}$ 3/10, $3 / 14$


1. A rectractable platform structure comprising: a centra framework portion, four main floor panels extending out
sure responsive self-locking assembly, a similar leg extension ikewise extending from the other leg of said U-shape housing in slidable relationship and in pressure transfer relationship with the proximate pressure responsive self-locking assembly, esponsive transfer means installed between said pressure elationship therewith
wardly from the framework portion in directions defining a cross, and including a first main floor panel, a second main
floor panel disposed at $180^{\circ}$ from the first, and third and fourth main floor panels each disposed at $99^{\circ}$ from the first, each main
floor panel being pivotally mounted on said framework portion floor panel being pivotally mounted on said framework portion
for movement between a first position in which it extends substantially horizontally away from the framework portion and a second position in which it extends substantially vertically upward in close juxtaposition with said framework por-
tion, and a plurality of secondary floor panels disposed in tion, and a plurality of secondary floor panels disposed in th
quadrants between the main floor panels, each secondary floo panel being pivotally mounted to another panel along juxta posed aligned edges, and each secondary floor panel being capable of pivotal movement between a first position in which it extends in a horizontal plane and a second position in which
it is folded through at least $90^{\circ}$, all panels being substantially coplanar when they are horizontally disposed, each main pane being defined in part by an inner rectilinear edge along which it is pivotally mounted to said framework portion, and tw paralel spaced-apart rectilinear side edges perpendicular to tially inner edge, said first main fecondary floor panel pivotally mounted to each of its two side edges, said second main floor panel having a substantially trapezoidal secondary floor panel pivotally mounted to each of its two side edges, each trapezoidal second
ary floor panel having a triangular secondary floor panel pivot ary floor panel having a triangular secondary floor panel pivot-
ally mounted to the edge remote from its edge of attachment to the main floor panel, each of said third and fourth main floor panels having a substantially triangular secondary floor pane pivotally mounted to each of its two side edges, whereby two of the quadrants between main panels are filled by two triangu
lar secondary panels each, and the other two of such quadrants lar secondary panels each, and the other two of such quadrant
are filled by two triangular and one trapezoidal secondary panel each.

## 4,095,671

ADJUSTABLE SELF-LOCKING LEVEL SUPPORT David E. Forristall, Suisun, and Allen C. Wright, Moraga, bo of Calif., assignors to Utility Products, Inc., Oakland, Calif. Int. Cl. ${ }^{2}$ E06C $7 / 44$

4 Claims


1. A self-locking level support applicable to ladders or the like of different widths comprising a two part U-shape housing with one part slidably overlapping the other to form an adjustable bridge between the two legs of said housing, a pressure responsive self-locking assembly in each leg of said housing, of pressure on said assembly, for establishing and maintaining an unlocked condition thereof, a leg extension extending from a leg of said U-shape housing in slidable relationship therewith

4,095,672
apparatus for removal of lubricating COMPOSITION AND METHODS FOR USING SAME field Company, Phildelphie, Pl., assignor to Atlantic Richfield Company, Philadelphia, Pa.
ed Apr. 7, 1976, Ser. No. 674,358

## U.S. CI. 184-1.5



1. An apparatus for removing lubricating composition from the crankcase oil pan of an internal combustion engine through the lubricating composition dipstick well of said engine which comprises:
a hollow
hollow probe, having first and second ends, through which said lubricating composition passes from said oil pan, said
first end of said probe being capable of reaching the proximity of the bottom inside surface of said oil pan through said dipstick well;
a conduit, having first and second ends, through which said lubricating composition passes from said probe means said first end of said cond so as to provide fuid com second tion between said probe means and said conduit;
a vacuum chamber being attached to and providing fluid communication with said second end of said conduit, said vacuum chamber being under sufficient vacuum so as to cause lubricating composition to pass from said conduit into said vacuum chamber and to be collected therein; chamber capable of providing said vacuum chamber with the desired level of vacuum; and
an adjustable signalling means for providing a distinctly audible pitch acting in response to the amount of vapor howing to said vacuum chamber to signal when removal of said lubricating oil composition from said crankcase oi pan is complete.

4,095,673
OIL CHANGER
Shigeo Takeuchi, Nagoya, Japan, assignor to Beauty Hanbal Kabushiki Kishas, Nagoya, Japan Claims priority, application Japan, Jun. 19, 1975, 50-84492[U] U.S. Cl. 184-1.5 Int. Cl. ${ }^{2}$ Foim $11 / 04$

1. An oil changer comprising a first transparent tank for inspecting the contamination degree of used oil drawn therein, a first reservoir for waste oill, a first pneumatically driven pump having an outlet port connected with said first tank and an inlet
port connected with a three-way valve leading to said first reservoir and an external oil sump, said three-way valve being adapted to selectively place said first tank into communication with said first reservoir or with said external oil sump, a second transparent tank for storing and metering fresh oil, a second reservoir for fresh oil, and a second pneumatically driven pump having an outlet port connected with said second tank and an inlet port connected with a two-way valve leading to valve being adapted to selectively place said second tank into communication with said second reservoir or with said external oil sump.

$$
4,095,674
$$

LOW PRESSURE AUTOMATIC LUBRICATION SYSTEM Tadao Kido; Yoshihiko Satou, both of Katsuta, and Kou Tayama,
Niiza, all of Japan, assignors to Hitachi, Ltd.; Hitachi ElevaNiiza, all of Japan, assignors to Hitachi, Ltd.; Hitachi Eleva-
tor and Service Co, Ltd. and Nanshin Kikoh Company, Limtored, all of, Japan
Filed Apr. 27, 1976, Ser. No. 680,857 Claims priority, application Japan, Apr. 30, 1975, 50-51409 U.S. C. $184=6.1$


1. A low pressure automatic lubrication system of the type which feeds oil to at least one operating body at a low pressure for lubrication, comprising:
a pump;
nozzle having at its one end a circular end face and including
an orifice, one end of said orifice being open to said circu-
lar end face, oil pumped by said pump means being fed through said orifice to said operating body; and ontrol means positioned between said pump and said nozzle said nozzle means; said orifice having a diameter $d_{\text {a }}$ and a length $l_{1}$, and said circular end face of said nozzle means having an outer diameter of $d_{2}$, wherein $d_{1}=0.3 \mathrm{~mm}$ to $0.8 \mathrm{~mm}, d_{2} \leqq 2 d_{1}$, and $l_{1} \leqq 6 d_{1}$, and said nozzle means has a passage having a diameter D which satisfies the relation passage having a diameter D which satisfies the relation-
ship of $\mathrm{D}>2 d_{1}$
$4,095,675$
MULTI-SPEED PLANETARY DRIVE AXLE ASSEMBLY Dale Kenneth Bell, Ortonville, Micb., assignor to Rockwell International Corporation, Pittsburgh, Pa.
Filed Jul. 28, 1976, Ser. No. 709,4 Int. Cl. ${ }^{2}$ F16H $/ / 44$
being common to said outlet passages and means providing sleeve on the front side thereof for coupling to the object to be lubricant at said lubricant inlet passages whereby said lubricant hoisted or lifted; a pair of vertical elements, one secured to the will flow into said differential case and said differential cage inner portion of the guide sleeves on each guide member; and and radially outward from said groove on the interior surface a bridging element connecting the upper end portions of said of said one differential cage side member through said passages
along said pinion shafts and through said grooves extending
said vertical elements and said bridging element lying generaxially across the outer peripheral edge of said end plate to said said vertical elements and said bridging element lying gener-
discharge groove and said lubricant outlet passages. axially across the outer peripheral edge of said end plat
discharge groove and said lubricant outlet passages.

4,095,676 ber being positioned corresponding guide spposite and at the same level as the said bridging element being connected with the upper end of said bridging element being connected with the upper end of STORED ENERGY OPERATOR FOR BREAKERS Francis M. Howe, Carmel, and Simon Yin, Fremont, both of
Calif., assignors to Howe-Yin Research Co., Inc.. Fremont,

1. In a multi-speed drive axle assembly of the type comprising an axle housing for holding a pool of lubricant, a differena pair of oppositely disposed substantially parallel end walls, boss extending axially outward from each of said end walls and ceing rotatably mounted in bearings seated in said differential
carrier, a differential cage including a pair of side members rotatably supporting a differential mechanism within said differential case and adjacent one end wall of said differential case, a planetary reduction within said differential case and adjacent the other said end wall of said differential case, said planetary reduction including a plurality of pinion gears with
each pinion gear mounted for rotation about a shaft, each said shaft being seated at one end in an aperture provided to one of said differential cage side members and the other end of each shaft being seated in an aperture provided to an end plate plate being closely adjacent and substantially parallel to said other end wall of said differential case and having an outer peripheral edge in close proximity to an interior surface of said differential case, a plurality of grooves extending axially across the outer peripheral edge of said end plate, a plurality of lubri cant inlet passages through said one end wall of said differendifferential cage side member and common to said apertures mounting said pinion gear shafts, a lubricant passage extending axially along each of said pinion shafts interiorly of its respective pinion gear, a plurality of lubricant outlet passages hrough said other end wall of said differential case, said outle passages being spaced radially outward from said pinion shafts,
a lubricant discharge groove on the interior surface of said other end wall of said differential case, said discharge groove

Filed Nov. 23, 1976, Ser. No. 744,243 Int. Cl. ${ }^{2}$ H01H 3/30; F03G $1 / 08$


1. A stored energy operator for breakers which includes a spring adapted to be compressed for storing energy for operat-
ing an associated breaker when the spring is released, a spring ing an associated breaker when the spring is released, a spring lever mounted on said spring shaft to rotate said shaft and spring arm to compress said spring, a drive lever including a carried on said drive shaft, and means for coupling said gear to said drive shaft during spring compression and decoupling said gear from said die breaker.

## 4,095,677 HOISTING APPARATUS

Hans A. V. Johannson, Trehïradsvägen, Eslöv, Sweden ( 5241 Filed Mar. 9, 1976, Ser. No. 665,296
U.S. CI. 187-17

| 4,095,678 <br> CONTROL APPARATUS FOR AN ELEVATOR SYSTE Yastami Kito, Tokyo, Japan, assignor to Nippon Otis Eleva Company and Kabushiki Kaisha Meidensha, both of Tok Japan <br> Filed Mar. 30, 1976, Ser. No. 671,814 |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

U.S. Cl. 187-29


1. A control apparatus for an elevator system in which a rotation speed of a drive motor for driving said elevator system is controlled by supplying a deviation signal obtained by comtion motor with a driving pattern setting signal; said control apparatus comprising a position check device provided in a hoist way of a cage of said elevator and for checking a position of said cage in motion, a retardation time interval setting circuit for setting a retardation time interval for retarding the begins to an operation depending on a signal from said retardation time interval setting circuit and for setting a retarding pattern of said elevator, and a speed pattern correcting circuit storing a deviation signal obtained by comparing a signal corcesponding to an output signal of said speed pattern setting speed setting circuit and applying said deviation signal to said speed pattern setting circuit for correcting said speed pattern.

STOP MEANS FOR SEI $\quad 4$, PROPEL 1. A hoisting apparatus for hoisting or lifting an object disposed beside the apparatus, and including: a frame; two substantially vertical guide members fixedly mounted on the frame in spaced, parallel relationship; a vertically extendable power actuator device mounted on said frame between said guide members, and including a vertically movable shaft; at least two member, said guide sleeves being positively guided for movement along their respective guide members and being spaced ment along their respective guide members and being spaced
vertically apart; a coupling member carried by each guide

Robert W. Walker, 4381 County Rd. U, Wiggins, Colo. 80654
U.S. CI. 188-32 Nov. 23, 1976, Ser. No. 744,349
Int. Cl. ${ }^{2}$ B60T 3/00
188-32 S. C. 188- $\mathbf{6 2}$

1. Ctaims means for interrupting the motion of self-propelled
rinkler means having power driven ground wheels, wherein he stop means is po power driven ground wheels, wherein means, and when in uste and is separate from the sprinkler he sprinkler means, in is positioned on the ground in front of means, whereby when the sprinkler means mates with the stop
means, motion of the sprinkler means ceases even though the
ground wheels continue to rotate; said stop means comprising
extend along the path of at least one power driven ground wheel of a sprinkler;
a second frame rigidly fixed to and upstanding from a for-
ward end of said first frame;
at least a first pair of spaced freely rotatable rollers on said

first frame, extending transversely thereof adjacent said second frame and arranged to support the power driven ground wheel thereon; and
at least one freely rotatable roller on said second frame, generally parallel to the rollers of said pair, and spaced upwardly from said pair of rollers in position to engage the front of the power driven ground wheel resting on
said pair of rollers and thereby block forward tractive said pair of rollers and thereby block forward tractiv
movement of said wheel. movement of said wheel.

4,095,680
4,095,680
COMBINED DYNAMIC AND MECHANICAL BRAKING
SYSTEM FOR AUTOMOTIVE VEHICLES Klaus Vogelsang, Crailsheim, Germany, assignor to Voith Turb GmbH \& Co. KG, Crailsheim, Germany
Filed Mar. 17, 1977, Ser.
Claims priority, application Germany, Mar. 31, 1976, 2613660
U.S. Cl. 188-156

Int. Cl. ${ }^{2}$ F16D $6 S / 36$


1. A braking system for vehicles, comprising a dynamic brake, particularly a hydrodynamic brake arranged to furnish a range of braking forces including a predetermined minimum
braking force; at least one mechanical brake; means for actuat braking force; at least one mechanical brake; means for actuat
ing said brakes, including as input element movable from starting position to and between a plurality of additional positions each corresponding to a different braking force, one of said positions being that in which said dynamic brake furnishes a minimum braking force; and means for retarding the actuaion of said mechanical brake in dependency on the magnitude of braking force furnished by said dynamic brake so that the
braking force furnished by said mechanical brake decreases in response to increasing braking force furnished by said dynamic brake and vice versa and said mechanical brake is applied only when the braking force furnished by said dynamic brake is insufficient, said actuating means further including control means for causing said mechanical brake to furnish, when actuated alone while said input element assumes said one posi-
tion, a braking force which at least approximates said predetermined minimum braking force furnished by said dynamic brake.

SAFETY BRAKING DEVICE FOR A UNIT MOVING LONG A SURFACE, IN PARTICULAR FOR A LIFT CAR Pierre Marcel David, Le Pre Fleuri - rue Sylvain Vigneras, 92380 Garches, France
Filed Feb
Filed Feb. 18, 1977, Ser. No. 770,142 Claims priority, application France, Feb. 23, 1976, 7604886
Int. Cl. ${ }^{2}$ B60T 8/02 U.S. CI. 188-187 Int. Cl. ${ }^{2}$ B60T 8/02


1. A safety braking device for stopping a unit movable along a surface, in particular a lift car, when the speed of the unit becomes superior to a predetermined speed, comprising a case for fixing to the moving unit, a shaft rotatively mounted in the case and having one end outside the case, a drive wheel carried
by said one end for slip-free engagement with said surface to by said one end for slip-free engagement with said surface to be rotated by said surface upon said movement of said unit and
thereby rotate the shaft, a disc assembly comprising fixed annular discs having an inner periphery and connected to be held against rotation relative to the case and movable discs connected to rotate with the shaft, the fixed discs being interposed between the movable discs and the fixed discs and movable discs being coaxial to and movable axially of the shaft, a
support member connected to rotate with the shaft by real support member connected to rotate with the shaft by releas-
able connecting means, a centrifugal element carried by the support member, an abutment which is fixed relative to the case, a gear wheel connected to rotate with the support member and coaxial with the shaft, axial thrust means for urging the discs together and comprising a thrust assembly comprising a screw which has a head located at one end of the disc assembly
and extends freely through aligned openings of the movable discs and is disposed radially inwardly of said inner periphery and outwardly of the shaft and a gear pinion screwthreadedly engaged on the screw beyond an opposite end of the discs and meshed with the gear wheel, the centrifugal element being movable between a position of rest in which position it is incapable of encountering the abutment and an outer position force and is capable of encountering the abutment and stopping rotation of the support member beyond a reference speed of rotation of the support member corresponding to said predelermined speed, said releasable connecting means being released and thereby allowing the stoppage of the support memeer while allowing rotation of the shaft when the centrifugal of the shaft causes the pinion to roll around the gear wheel and move along said screw towards the screw head.

SHOCK ABSORBER WITH IMPROVED POSITION SENSITIVE ASSEMBLY Michael H. Ostrowski, Glen Ellyn, IIl., assignor to Maremon Corporation, Chicago, Ill.
Filed May 5, 1977, Ser. No. 794,02
U.S. Cl. 188-289

Int. Cl. ${ }^{2}$ F16F 9/342
15 Claims


1. A direct acting hydraulic shock absorber adapted to be connected between the sprung and unsprung masses of a vehicle comprising:
said inner tubular member defining a cylindrical chamber, a piston slidably mounted within said cylindrical chamber a piston rod extending from one side of said piston outclosure means on said one end of said inner tubular member closing the adjacent end of said outer tubular member and slidably sealingly engaging said piston rod,
connecting means on the end of said piston rod for connect-
ing said shock absorber to one of said masses,
an end closure on the opposite end of said outer tubular member,
connecting means on said end closure for connecting said
shock absorber to the shock absorber to the other of said masses,
hydraulic fluid filling rebound and compression spaces
within said cylindrical chamber on the piston rod side of within said cylindrical chamber on the piston rod side of and partially filling an annular reservoir space between said inner and outer tubular members,
said piston having a central passage therethrough and an
annular valve seat intermediate the opposite ends surrounding said central passage,
surrounding said central passage,
rebound valve in said piston disposed in
a rebound valve in said piston disposed in cooperating rela-
tion with said valve seat,
tion with said valve seat,
spring means on said piston acting on said rebound valve to
maintain the same seated on said valve seat with a prede maintain the same seated on said valve seat with a prede termined spring force,
said piston having compression passage means extending therethrough radially outwardly of said central passage,
spring pressed piston valve means controlling said compres spring pressed piston valve means controlling said compres
sion passage means, compression valve means
and said reservoir space, replenishing valve means be said rebound valve having a central opening therein, a fluid metering element extending longitudinally through said central opening and cooperating therewith indepen.
dently of the seated or unseated condition of said rebound dently of the seated or unseated condition of said rebound
valve to provide for the passage through said central valve to provide for the passage through said central
opening of a maximum volume of hydraulic fluid between said rebound and compression spaces when said piston
in a predetermined position within said inner tubular member and for such passage therethrough of a gradually diminishing volume when said piston moves in said inner ubular member in either direction from said predetermined position beyond a predetermined extent whereby
the shock absorber's characteristics produced under the control of said rebound valve and said piston valve means are supplemented and altered regardless of the seated condition of said rebound valve or said piston valve mean and in accordance with the position and displacement o said piston in said inner tubular member,
ing (1) one end of said fluid metering element within the end of said inner tubular member adjacent said end closure and (2) said compression and replenishing valve means in yorranic nuid saw conrol res baid reser oir space
comprising
wall member mounted adjacent said end closure having first surface means facing said end closure disposed in fluid communicating relaion with said reser voir space, second surface means facing in a direction central recess formed in said second surface means, and a pair of openings spaced from said recess extending from said second surface means to said first surface means, means mounting said replenishing valve means in operative relation within one of said pair of openings,
means mounting said compression valve means in operativ relation within the other of said pair of openings, seated within said recess,
a second annular wall member having means in the central portion thereof for (1) enabling said fluid metering element to extend therethrough and (2) grippingly engaging said ball to maintain he saring said second annial means for peripherally securing said second annular wall
member to said first annular wall member and to the adjacent end of said inner tubular member,
said second annular wall member having opening means between the periphery and the central portion thereo
extending axially therethrough for communicating the hydraulic fluid within said compression space with the second surface means of said first annular wall member.

## 4,095,683

DIAPHRAGM SPRING CLUTCH
Hiroshi Ban, Toyota, Japan, assignor to Aisin Seiki Kabushik Kaisha, Kariya, Japan

Filed Apr. 29, 1976, Ser. No. 681,669 Claims priority, application Japan, May 14, 1975,
O/64559[U] U.S. Cl. 192-70.18 Int. C1.2 F16D $13 / 44$


1. In a diaphragm spring operated clutch of the type having clutch disc disposed intermediate a flywheel and movable
a diaphragm spring and said movable pressure plate, the improvement comprising said pressure plate having a main annular part and an auxiliary annular part disposed parallel to each other and said clutch disc, a plurality of radially extending
plate springs disposed intermediate and connected to said main part and said auxiliry part, said plate springs having a wavy cross-section in the circumferential direction with at least a central portion thereof engaging said auxiliary part and a lat-
eral portion of each side thereof in engagement with said main part to separate said auxiliary part from said main part when the clutch is disengaged, means connecting said central portion of said plate springs to said auxiliary part, each of said plate springs having a radially outwardly projecting ear portion, a
plurality of strap means connecting said main part of said pluraiity of strap means connecting said main part of said
pressure plate to said cover, a plurality of retracting springs disposed in operative engagement with said diaphragm spring and common attaching means for securing said strap means, said retracting springs and the ear portion of each of said plate springs to said main part of said pressure plate, said diaphragm
spring being disposed in engagement with said auxiliary part for applying a clutch engaging force to said main part through said auxiliary part and said plate springs.

## 4,095,684 <br> FLUID OPERATED CLUTCH

Harold E. Rowen, Peoria, III., assignor to Caterpillar Tractor Co., Peoria, Ill. Oct. 13, 1976, Ser. No. 731,881 U.S. C. 192-103 FA

9. A fluid operated clutch comprising:
a rotary input member
a rotary output shaft axially aligned with said rotary input member;
being carried by and routch discs, alternate ones of which others of said discs being carried by and rotatable, with said output shaft, substantially all of said discs being axi-
ally shiftable: ally shiftable;
an actuator carried by said input member in axial alignment said pack to engage said discs; means defining an annular, expandable chamber carried by said input member, said chamber including an axially
shiftable wall shiftable wall;
means for supplying a liquid to the interior of the chamber; and
ing a force to said actuator, said responsive means including a force amplifier operatively interposed between said
wall and said actuator so that a greater force is applied to said actuator than is applied to said wall.

## 4,095,685

## ADJUSTABLE CLUTCH ASSEMBLY

 Oshond F. McDonald, Winneconne, and Merlyn L. Curtis, Oshkosh, both of Wis., assignors to J. I. Case Company, Filed Feb. 14, 1977, Ser. No. 768,116 S. Cl. 192_111 B ${ }^{\text {Int. Cl. }{ }^{2} \text { F16D } 13 / 75}$

1. A clutch assembly having opposed clutch elements relatively rotatably about a common axis, one of said clutch ele ments supported on a shaft for axial movement on a bearing means urging said ment with the opposed clutch element into frictional engage spring means, upon actuation of said clutch, the improvemen omprising:
said shan having an axially threaded end, an adjustment nu threadably received on said shaft having a polygonal exterior portion, a cup-shaped slide member having polygonal opening receiving said nut polygonal exterio member having an end portion operably engaging said one clutch element and said nut having a stop means limiting axial movement of said slide toward said clutch elemen and a spring means normally biasing said slide mean clutch elements may be adjusted by threading said adjustment nut on said shaft.

PRINTER HAVING SWINGABLE PRINTING RINGS Katsuhiko Okabe, Tokorozawa, Japan, assignor to Copal Com pany Limited, Tokyo, Japan
Filed Jul. 1, 1977, Ser. No. 812375
Claims priority, application Japan, Jul. 7, 1976, 51-80611; Jul 29, 1976, 51-90674; Aug. 21, 1976, 51-100035; Aug. 21, 197 1-224236; Aug. 26, 1976, 51-114362[U]; Sep. 21, 1976, 51 C. Cl 400 Int. C. ${ }^{2}$ B41 $1 / 22$

18 Claims

1. Printer having a plurality of rotatable printing rings each bearing on the periphery thereof a plurality of printing charac ters and a platen, each of said printing rings being individually moved selectively by means of a driving shaft driven by character from said plurality of characters during the rotation of each printing ring upon issuance of a printing signal from a control circuit of said printer so to permit a line of printing of desired characters to be given on a paper located around said platen between said platen and said printing rings by the aburment of the respective printing rings against said platen during a predetermined number of revolution of said driving shaft,
integral with each printing ring, a plurality of swingable print- its initial starting position, signal emitting means rotated in ing ring supporting levers each having a shaft secured to the synchronism with said driving shaft, signal receiving means
free end of said lever, said shaft rotatably supporting the re- cooperating with said signal emitting means so as to issue an spective printing ring, each of said printing ring supporting evers being biased by a spring so as to be swung in the direc tion to move said printing ring supported thereon away from said platen, a plurainy of driving gears secured to said driving
shaft and each meshing with said gear of the respective printing ring so as to rotate the latter about the axis of said shaft fo selection of a desired character by said printing signal, each printing ring supporting lever being swingably supported o orbital path around said driving shaft and abut against said platen, a plurality of driving levers swingably supported on said driving shaft and each biased by a spring in the direction in which said printing rings are moved toward said platen, ing ring supporting lever so as to urge said printing ring hereon toward said platen against the action of said spring o said printing ring supporting lever, a plurality of select lever posh releasably arresting the respective driving lever at a platen by the engagement of the respective printing ring sup porting lever with said driving lever, a plurality of electromag netic members selectively actuated for a short time by said control circuit upon issuance of the printing signal and each coupled with the respective select lever so that, when the

respective electromagnetic member is actuated in synchronism with the selection of said desired character during the rotation of said printing ring, said select lever coupled therewith is moved to release said driving lever arrested thereby so as to
permit the same to be swung by said spring thereof for urging permit the same to be swung by said spring thereof for urging
said printing ring supporting lever to said printing ring supporting lever to move said printing ring
thereon toward said platen, stopper means for limiting the thereon toward said platen, stopper means for to a positio whereby said printing ring supporting lever is swung further together with said printing ring thereon by virtue of the inertia thereof against the action of said spring thereof after said driving lever is stopped by said stopper means thereby permit-
ting said printing ring to abut against said platen for the printing operation while the respective printing ring supporting lever is swung back by said spring thereof after the abutment o said printing ring thereof against said platen so as to be held by stopper means thereby clearing said printing ring from said paper, reset means engageable with the respective driving lever and actuated in synchronism with the rotation of said driving shaft so as to allow each driving lever to be swung for
actuating the respective printing ring supporting lever after actuating the respective printing ring supporting lever after beginning of the rotation of said driving shaft while said reset means urges each driving lever upon completion of said predetermined number of revolution of said driving shaft so that the respective driving lever is arrested by said select lever thereof electromagnetic member thereof to return each printing ring a
cooperating with said signal emitting means so as to issue an is effected by the rotation of said driving shaft, said electrical signal being applied to said control circuit for controlling the starting and stopping of the operation of said printer, a detecting disc rotated in synchronism with said driving shaft and
provided with a plurality of slits around the rotational axis thereof corresponding in number to that of the characters on the respective printing ring, and a detecting device cooperating with said slits in said detecting disc for issuing character synchronizing timing signals in timed relationship to the anguit rotates, said timing signals being applied to said control circuit for permitting a desired character of said plurality of characters on each printing ring to be selected for the printing operation during the rotation of the respective printing ring.

ESCAPEMENT MECT4,095,687
Herap and Manufacturing Rutherford, N.J., , asslgnor to Standard Tool Filed Oct Lyndhurst, N.J.
U.S. C. 198-345

Int. C1. ${ }^{2}$ B65G $21 / 20$
11 Claims

1. In a pallet control and advancing mechanism, a supporting structure, spaced chains having supporting wear plates driven on said structure, pallets resting on said wear plates and ad-
vanced by said chains by the friction engagement between the wear plates and pallets, an escapement mechanism at a work station having a shaft mounted for rotation located between the chains where it extends parallel therewith, a stop block on each pallet disposed on opposite sides of the pallet center line on alternate pallets of a series, lugs on said shaft, one of said other lug being spaced from the first lug for engaging a stop lock on a following pallet for stopping the pallet at a followstop block at said stations and for engaging the stop block on the following pallet to permit the chains to advance the pallets from and to said work station.

## BOTTLE ORIENT,68

Cristina S. Ionescu, Bronx, N $\mathbf{Y}$, asslgnor to New England Machinery, Inc., Beardsley, Conn.
Continuation-in-part of Ser. No. 665,726, Mar. 11, 1976, sbandoned. This application Jun. 29, 1976, Mar. 11, 1976,

## Int. C. ${ }^{2}$ B65G 47/24

U.S. CI. 198-399

1. Bottle orienting apparatus co 24 Claims 1. Boiving and advancing boutles of shoung guide means for truction in random neck-leading and neck-trailing dispositions, discriminating means for distinguishing bottles of neckleading disposition from bottles of neck-trailing disposition and atering at a bottle-inverting location the disposition of each of ns, and guide means being upstream nef n-trailing dispositiwith said discriminating means, and accelera communicating erative with said discriminating means for accelerating away from said discriminating means bottles which have arrived at
the discriminating means in neck-trailing disposition and bot- moved from its normal, flattened position to its open, tubular tles which have been altered by the discriminating means from position by exerting a force on the front cover to shift the front a neck-leading to a neck-trailing disposition, said accelerating cover towards the staple.
means and said discriminating means together forming a pinch-

## 4,095,690


ing means downstream of said bottle-inverting location for squeezing said bottles laterally of the direction of obttle-accel.-
eration to exercise positive frictional control over said botles seration to exercise positive frictional control over said bottles
when initiating the acceleration of the latter.

## 4,095,689

SAFETY PACKAGE FOR MATCHES
Richard J. Mulic, 237 Cecil St. SE., Minneapolis, Minn. 5541 Continuation-in-part of Ser. No. 825,672, Aug. 18, 1977, abandoned. This application Dec. 14, 1977, Ser. No. 860,584 U.S. Cl. 206-106 (I. ${ }^{2}$ A24F 27/12, 27/00, $27 / 18$


PYRAMID RECORD COVER AND RACK Cliff Baldwin, c/o George Spector, 3015 Woolworth Building
233 Broadway, New York, N.Y. 10007 233 Broadway, New York, N.Y. 10007
led Mar. 9, 1976, Ser. No. 665,239
Int. Cl. ${ }^{2}$ B65D $85 / 30$
U.S. Cl. 206-312


1. A record package comprising a base with means to re eive a record therein in flat position in combination with a pluraity of triangular sides and means for removably securing
the sides to said base and to each other whereby the sides may be folded to a flat closed position adjacent to the base forming a flat cover therefor and whereby the sides may be opened and erected to form a pyramid superstructure above said base, wherein the first said means comprises a slot about the periphcry of the base having spaced openings at opposite sides of saic
base to receive a record. PACKAGE FOR RELEASABLE Package for releasable containment of Clemens A RAZOR BLADES AND THE LIKE Razor Company, Staunton, Va. Filed Jun. 10, 1976, Ser. No. 694,783
U.S. CI. 206-354 Int. C1.2 B65D 85/54

An improved safety cover for cardboard matches com prising:
a) front cover portion terminating a first lower edge, (a) a front cover portion terminating a first lower edge,
(b) a back cover portion terminating at a second lower edg (c) means for hingeably attaching said front cover with said back cover,
d) a first upturned lip portion extending from said second lower edge,
portion including extending from said first upturned lip first and second defriking strip covering means defining each other, and movable between a first position where said surfaces are in a flattened, overlying relationship, and a second position wherein said surfaces are opened away
from each other to define a generally tubular membe having an open match receiving end, said striking strip
covering means normally being in said first position, and covering means normally being in said first position, an
including a second upturned lip portion which cooperate with said second deformable surface to define a seating groove for said lower edge of the front cover,
(f) a match-striking strip affixed to one of said deformable
(g) a staple extending through said first upturned lip portio
(g) a staple extending and said back cover.
whereby when the lower edge of the front cover is engaged in
he seating groove, the striking strip covering means can b
card opposed surfaces, whereby said expanse remains secured to said overlay at said second card location in retaining relatio
to said article after separation of said card portion from said card.

MOISTURE STABILIZED PACKAGE
Marcus H. Shelton, Baytown, Tex., assignor to Exxon Research * Engineering Co., Linden, N.J.

Filed Jul. 12, 1974, Ser. No. 487,895
U.S. Cl. 206-386

4 Claims


1. An improved, strength-retaining moisture-stabilized en tirely enclosed package comprising in combination (a) a multicell container, having four side walls, a closed bottom and an open top forming an interior and exterior, prepared from a corrugated standard paperboard having peaks and flutes, with a polymeric film encompassing said four side wall exterior surfaces and the exterior of said bottom portion of said conopen top of said container, which cover is prepared from standard paperboard, having high porosity whereby said cove permits water vapor to be displaced upwardly from the interior of said container to pass through said cover and said film prevents air currents from passing through the interior of said container thereby resulting in a moisture-constant state within the interior of said package.

## 4,095,693

Earl J. Killy, Monroe, La., assignor to Olinkraft, Inc., West Monroe, La.
Filed May 5, 1977, Ser. No. 794,300

1. A carton of the type comprising:
(a) an interior portion for packaging multiple ar
(b) an exterior fin at leasl one end thereof; (b) an exterior
(c) the carton being formed from a single layer material and
2. A container for containing photographs and associated strips of negatives, said container comprising a plastics material housing having means defining a first substantially rectangular compartment for containing photographs and means defining a second comparmment for accomodating strips of negatives into the container having two oppositely disposed flat sides, a pivotal lid constituting substantially all of one said flat side and being openable to expose at least said first compartment, the second compartment communicating with an elongate cavity being provided adjacent the side of the housing beneath the
first compartment and on the side thereof remote from the lid, the second compartment having an internal cross section such that a strip of negatives in looped configuration may be inserted into the compartment with the ends of the strips enter-
ing the cavity, the second compartment being defined ing the cavity, the second compartment being defined on at
least one side thereof by a lid which is pivotally supported so least one side thereof by a lid which is pivotally supported so
as to be movable to an open position in which the second compartment is exposed, the lid comprising means defining a further compartment therein, the further compartment being defined on one side by a wall which is integral with the lid and
having a plurality of hingedly connected panels and a plurality of closing flaps;
d) at least one of the panels of the single layer material having a series of scorelines formed on the exterior face; () said scorelines causing a protuberance into the interior of the carton to lightly abut and to initially prevent a major portion of the chimes of the multiple articles
packaged therein from coming in contact with the packaged therein from coming in contact with the
underside of said one of the panels whenever a plurality of chimed articles are initially positioned within the
carton; (2) said scorelines further serving to finally protect the exterior face of the carton from becoming disfigured by
the chimes of the multiple articles making circular indentations on the interior face of the carton;
(a) said protection being obtained by the protuberance
of the scorelines permitting only a predetermined
portion of the scoreline protuberance to be indented portion of the scoreline protuberance to be indented
by the chimes of the multiple articles whenever a plurality of cartons are stacked on top thereof; and (3) said protection resulting in a major reduction in indentations of the chimes coming through to the exterior lace of the carton to form ring-like protrusions upon
multiple stacking of the cartons and thereby allowing the exterior portion of the carton to be relatively distortion free and more appealing to the customer.

CONTAINER FOR PHOTOGRAPHS
Jochen F. Jost, Essen, Germany, assignor to Filmosto-Projeltion Johannes Jost GmbH \& Co.., Essen, Germany Claims priority, application Germany, Aug. 2, 1975, 2534678; Int. Cl. ${ }^{2}$ B65D 85/48 U.S. C. 206-455
sa-

on the other side by a plate shaped insert which is movably
mounted on the lid and together with said wall defines a space for accommodating a photograph, at least part of the lid being formed from a material selected from the group comprising transparent materials and translucent materials so that a photograph located within said further compartment may be visible
hrough the portion of the lid formed from the selected material. tion,
tion, response to the received radiation determining if the detected article manifests said known characteristic by a
predetermined amount in response to the receiv detected article is vegetable matter or nonvegetable matter,

performing a first operation on a detected article if it manifests the known characteristic by the desired amount and is vegetable matter, and
performing a different operation on a detected article if it does not manifest the known characteristic by the desired amount or is nonvegetable matter.

## 4,095,697

STAND FOR HOLDING PIPETTE CANS Heinrich Manthaei, Gottingen, Germany, assignor to Max-
Planck-Gesellschaft zur Forderung der Wissenschaften e.V., Planck-Gesellschaft zur Forderung der Wissensc
Gottingen, Germany Claims priority, application Germany, Aug. Claims priority, application Germany, Aug. 26, 1975, 7527001[U] Int. Cl. ${ }^{2}$ A47G 29/00
U.S. Cl. 211-71

1. An elongated assembly having a series of connected stuffed sealed envelopes comprising
superposed continuous plies havin
superposed continuous plies having outer side edges constiequipped with longitudinally aligned, spaced apart line holes, said plies defining between said control margins fronts and backs of sealed envelopes,
a rectangular insert ply within each sealed envelope
said sealed envelopes being defined by transverse lines of
weakening in the front and back plies for separating the sealed envelopes from the assembly,
lines of adhesive securing said front and back plies together along said transverse lines and along a longitudinally extending line inward of one of said control margins, the periphery of said insert ply being spaced inwardly from aligned lines of perfora insert plies extending parallel to but spaced within 1 inch ( 25.4 mm .) ) inwardly of the other of said control margins and defining an attaching portion in said insert ply, said attaching portion adjacen said line holes therein, and adhesive means adjacent said other of said control margins and spaced inwardly thereof joining said front and back plies together and said attaching portion to at least one of
said front and back plies. said front and back plies.

## 4,095,696

PRODUCE GRADER
John R. Sherwood, Arlington, Va., assignor to AMF Incorpo John R. Shervood, Arlington, Va., assignor to AM
rated, White Plains, N.Y.
Filed Feb. 4, 1977, Ser. No. 765,716

$$
\begin{aligned}
& \text { Filed Feb. 4, } 1997 \text {, Ser . No. } 76 \\
& \text { Int. C1. }{ }^{2} \text { B07C } 5 / 342
\end{aligned}
$$

5 CTaims
U.S. C. 209-75

1. A method for sorting articles of produce accorine 5 known characteristic manifested in radiation received therefrom and for sorting produce articles from nonvegetable articles, comprising passing desired articles of produce along with mingled unde-
sired nonvegetable articles through an inspection position, detecting the presence of an article of the inspection posi-
tion,
while mutually spacing the cans from each other by the width of said spacers;
wherein the bottom PICK AND PLACE MACHINE
wherein the botom cross element (7) comprises an essen- James P. O'Neil, Swansea, Mass., assignor to Automation Dethe upright elements (1, 1', 3) and having a size which Filed Feb. 10, 1977, Ser. No. 767,624 inhibits tipping of the stand when loaded with pipette cans located in the compartments and projecting frontally therefrom;
wherein said intermediate transversely extending spacers are located on the upright in position such that the bottom of to retain pipette cans inserted into said compartments by gravity;
and projecting means (9) extending transversely of the com partments and forming stop elements adapted for engagement with said pipette cans to located said pipette cans in the respective compartments.

## MODULAR STORAGE C. E. Wright, 70 Denrose Dr., Tonawanda, N.Y. 14150 Filed Aug. 2, 1976, Ser. No. 710,734 Int. Cl. ${ }^{2}$ A47F $5 / 00$

U.S. C. 211-126

4 Claims


1. Modular storage system comprising a front panel having apertures therethrough, a rear panel identical to said front panel and having apertures axially aligned with the apertures
of the front panel, said front panel and the rear panel comprising a plurality of pre-cut parts assembled in predetermined relation, end, top, and base panels having a combined length equal to the perimeter of the front panel, means for attaching said end panel to the front panel and to the rear panel to separate the front panel and the rear panel, at least one storage container having an axial length greater than the distance
separating the front and the rear panel and secured into an aperture of the front panel and into an aligned aperture of the rear panel, wherein said pre-cut parts of the front and rear panels include corner pieces having means for abutting the adjacent end, top, or base panels and a curved surface which engages a storage container, base pieces having means to abut another base piece or a corner piece and one top or base panel
and includes two curved surfaces which engage storage container, and side pieces having means to abut another side piece or a corner piece and one end panel and includes three curved surfaces for engaging storage containers, and spacer pieces having means for abutting another spacer piece, a base piece or a side piece and three curved surfaces for engaging storage the abutting surfaces of said corner pieces, said side pieces, said base pieces, and said spacer pieces.
U.S. Cl. 214-1

2. A pick and place machine operable to pick up a part at a loading station and thereafter to place and release the part in a delivery station spaced at least horizontally from said loading station comprising, a housing, a first member supported by said housing for free horizontal reciprocal movement with respect thereto between said stations, a second member supported by
said first member for free vertical reciprocal movement with said first member for free vertical reciprocal movement with
respect thereto, said second member having at least portions thereof in horizontal abutment with said first member, guide means including a track having horizontal and vertical components and a follower disposed thereon, said follower connected to said second member, means for reciprocating said follower said second member with respect to first member and horizon tal movement thereof simultaneously horizontally moves both said members, said second member including part holding means thereon, and actuation means for operating said part holding means to respectively grasp and release said part in said loading and delivery stations in response to the movement of said second member.

TURN-OVER DEVICE 4,095
TURN-OVER DEVICE FOR SLAB MATERIALS Dumitru Chiuaru, and Nicolae Alexandru, both of Bucharest,
Romania, assignors to Institutul Pentru Proiectari de Sectii si Uzine de Laminare - Iprolam, Bucharest, Romania Continuation-in-part of Ser. No. 755,209, Dec. 29, 1976, abandoned. This application Mar. 11, 1977, Ser. No. 777,151
Claims priority, application Romania, Dec. 30, 1975, 84386

```
U.S. Cl. 214-1 QA
```



1. A lever-operated turn-over device for slabs displaced by a conveyor along a path comprising.
first pair of movable elongated arms mounted parallel to one another and arranged beneath the path of said conveyor in a horizontal position;
a second pair of swingable elongated arms lying in planes parallel to said first pair of arms
first end thereofi
a track engaging each of said wheels and forming a guide spaced apertures; and said means for retaining including a
therefor;
a drive means articulated to said first end of each of said firs pair of arms for moving said arms along said tracks into said conveyor path and engagement with said slab to lift
said slab from said conveyor; another articulation between said
end of each of said first pair of arms for swinging said first arms about said wheels into a vertical position and be d; and
second pair ofion between said drive means and said vertical position adjacent said first pair of arms for into a ing said slab therefrom and returning said slab to said ing said slab therefrom and returning said slab to said
conveyor in a turned-over position. 4,095,701
HILLSIDE BALE WAGON
Jean-Piérre Guenon, Plombieres-lez-Dijon, France, assignor to Sperry Rand Corporation, New Holland, Pa.
Filed Mar. 29, 1977, Ser. No. 782,595
$\underset{\text { 13223/76 }}{\text { Claims }}$ p
Int. C1. ${ }^{2}$ A01D $87 / 12$
U.S. Cl. 214-6 B

2. An automatic bale wagon for hauling bales lying in a field amprising:
tion across the field;
a bale pick-up means mounted on the chassis for picking up bales from the ground during movement of the bale wagon across the field;
a load table for receiving
the bale pick-up means and being pivotable between bale-receiving position and a bale-unloading position; further bale receiving means for receiving bales from the oad table on movement from the bale-receiving positio ng position; and
operative position when the load table is moving from it bale-receiving position to its bale-unloading position for retaining a bale deposited on the load table in a predetermined position during said movement of the load table.

## MAGAZINE FOR REC, $\quad$,095,70 <br> Georges Meylan, Preverenges, Switzeriand, assignor to J. Bobs

 \& Fils, S.A., SwitzerlandFiled Oct. 9, 1975, Ser. No. 621,007
14821/74 ${ }^{\text {Claims }}$ priority, application Switzerland, Nov. 6, 1974
Int. C. ${ }^{2}$ B65G 57/03

1. In a device for receiving die cut blanks and forming a tack or pile of the blanks within a magazine having at least a parallel vertical wall surfaces of a chamber of the magazine said device including means for retaining blanks being formed into a pile in the magazine as a previously formed pile of blank is being removed therefrom, the improvement comprising a
purality of spaced separate fingers supported for movement only in a straight line path extending perpendicular to the plane of said one wall surface between a first position extending hrough said spaced apertures into the chamber and a second osition withdrawn from said chamber; and means for shifting

including an axle supported for rotation with its axis extending parallel to the vertical plane of said wall surface, said axle having means for engaging each of said fingers and moving each finger in a straight line path as the axle is rotated, said
means for engaging each of said fingers including a plurality of means for engaging each of said fingers including a plurality of
spaced pins mounted on the axle, and said means for shifting spaced pins mounted on the axle, and said means for shifting
including an actuator device, a pull rod connected to the actuator device and extending to a lever attached to said axle.
DRIVE SYSTEM FOR
d. Weaver, Re FOR SILO UNLOADER
Continuation of Ser. No. 641,155, Dec. 15, 1975, abandoned
This application Aug. 22, 1977, Ser. No. 826,348
U.S. Cl. 214-17 DA ${ }^{\text {Int. Cl. }{ }^{2} \text { B65G 65/46 } \quad 17 \text { Claims }}$
2. In a drive system of the type in which a driven member has at least a pair of dissimilar drives, and wherein a first one of the drives is of the motor type for imparting a rotational drive component to the driven member, the improvement comprising movable mounting means for the motor type drive for movement of the motor from a normal operating position in
response to resistance encountered by the driven member being driven by the motor type drive, and with means connecting the second of the drives to said motor for automatically de-activating the operation of said second of the drives in response to movement of the motor and automatically remotor type drive returns to the normal the drives when said

4,095,70 Roger D. Ratliff, Irving, Tex., assignor to PepsiCo Inc., Purontinuation
4,005788 - Th-part of Ser. No. 618,400, Oct. 1, 1975, Pat. No. $4,05,788$. This application Sep. 16, 1976, Ser. No. 723,801 The portion of the term of this patent subsequent to Feb. 1, 1994, has been disclaimed.
Int. $\mathrm{Cl} .^{2} \mathrm{~B} 60 \mathrm{P} \quad / / 48$
U.S. Cl. 214—77 P

9 Claims


1. In a ramp loading apparatus including a hydraulically controlled ramp loader for raising or lowering cargo to or from a truck floor bed, the improvement comprising: a reces ormed in the upper surface of said ramp loader; cargo restrain oader; means for imparting vertical movement to said gat within said recess for selectively elevating said gate above and owering below said surface; an electromagnetically actuatable counterbalance being disposed below said ramp loader; means or pivotaly interconnecting said gate and salance in one direc tion imparts a generally opposite spatial displacement to said gate; electromagnetical means for applying an electromagneti field to said counterbalance upon said gate being lowered
within said recess in said loader; and means for actuating said electromagnetic means so as to generate said electromagnetic field; said means for imparting said vertical movement to said gate being inoperative upon said electromagnetic means apply ing said electromagnetic field to said counterbalance for main iming means for limiting the period of restraint of said gate in said recess by said counterbalance.

4,095,705 AGRICULTURAL AIRPLANE LOADING DEVICE Clifton E. Hood, P.O. Box 412, Blytheville, Ark. 72315
Filed Feb. 2, 1977, Ser. No. 764,956 Filed Feb. 2, 1977, Ser. No. 764,956
U.S. C. $214-83.18$
U.S. Cl.

1. An agricultural airplane loading device, comprising, in combination:
(a) a rectangular, wheeled frame having four corners disposed in a common plane of the frame;
(b) a hopper mounted on the frame and provided with a
lower portion forming a discharge opening arranged adja
lower portion forming a discharge opening arranged adja-
cent a corner of the frame and adjacent the plane of the frame;
(c) conveyor means arranged below the hopper for receiving material from the discharge opening of the hopper and
elevating the material above the hopper to a reservoir of an airplane being loaded, the conveyor means including a longitudinally extending housing having an inier disposed beneath the discharge opening of the hopper and an outle disposed above airplane being loaded, the housing extend
ing upwardly at an angle of substantially $45^{\circ}$ from the rame and transverse to the frame substantially at an angle plane; and gate means arranged between the conveytrolling flow of material from the hopper to the conveyor means, the gate means including a sliding gate element, and a control mechanism connected to the gate element for actuating
same, the mechanism including a pair of handles arranged for permitting the rate of flow of material through the gate means to be controlled from different positions relative to he frame of the loading device, the conveyor means further incluaing an auger disposed on the housing, and

affixed to the auger for rotating same, a mass arranged eccentrically on the pulley for vibrating the hopper when
the conveyor means is in operation and preventing bridging and tunnelling of material in the hopper; the hopper being provided with a screen arranged for forming a sieve which reduces the size of lumped and coagulated materia discharged on the screen, and a rim disposed around the periphery of the screen for forming side walls extending coagulated material on the screen in order to provide the screen with sufficient time in order to reduce the size of the lumped and coagulated material, the frame being constructed of a width narrower than a vehicle towing the evice for permitting tail lights of the towing vehicle to be visible beyond the frame from the rear of the vehicle.

## 4,095,706

VERTICALLY SWINGIGG BIG BALE HANDLING AND GRASPING APPARATUS
aroid B. Schwien, and Paul A. Schwien, both of Bazine, Kans., assignors to Nichols, Farrow, Schwien and Schwien, Wichita,
$\qquad$ Filed Apr. 11, 1977, Ser. No. 786,224
U.S. C. 214-147 G 1. A farm implement being a big bale handling apparatus perable to load, convey, and unload large bale members, (a) a basic
(a) a basic support assembly adapted to be connected to a conventional bumper hitch for conveyance purposes; (b) a bale co
assembly; (c) a drive means connected to said bale connector means to power same;
(d) said bale connector means including a main suppor frame assembly connected to said basic support assembly ably connected to said main support frame assembly;
(e) each of said first and
(f) said bale connector assemblies movable inwardly to grasp
the large bale member and pivotal about a horizontal axis vertically to raise and lower the large bale member;
(g) said bale connector means having a connector assembly
pivotably connecting said main support frame assembly to pivotably connecting sa
(h) said connector assembly having said horizontal axis
defining the pivotal movement of said defining the
assemblies;
(i) said first and second actuator arm assemblies each includ
when the vessel is positioned beneath said plate, means for vertically moving said hooks for lifting said engaged vessel so that its open top is held against said plate, powered arm means
mounted on said frame on the opposite side of said plate from mounted on said frame on the opposite side of said plate from
said hooks, means for rotating said frame $180^{\circ}$ about said axis so as to turn said engaged vessel upside down and position said arm means close to said support surface and beneath said drum, and means for moving said arm means independently of said hooks for lifting said drum so that its upper open end is pressed
against said plate, whereupon further actuation of said means against said plate, whereupon further actuation of said means
for rotating said frame to return the frame $180^{\circ}$ to its original position turns said drum upside down to dump its contents into the vessel through said center opening.


4,095,708
REVERSING DEVICE FOR HOISTING AND TIPPING FREIGHT CONTAINERS Helmut Gerhard, Weitefeld, Sieg, Germany, assi
wälder Eisenwerk Gerhard GmbH, Germany Filed Oct. 22, 1975, Ser. No. 624,927 Claims priority, application Germany, Oct. 23, 1974, 2450420 U.S. Cl. 214-313 Int. C1.2 ${ }^{2}$ B65G $65 / 04$
ing a support member
arms secured thereto;
arms secured thereto;
j) said first support arms said bale connector assemblies connected thereto; (k) said second support arms connected to said drive means grasp, convey, and unload the large bale member;
(l) said first and second support arms are extended perpendicular to said support member and to each other; and ( m ) said second support arms having inner adjacent ends
positioned midway between said support members to positioned midway between said support members to
achieve a substantial torque action between said first and second support arms.

BULK MATERIAL TRANSFER MECHANISM Robert M. Kowtho, Mercerville, N.J., assignor to Gould Inc.,
Rolling Meadows, iil. Rolling Meadows, Iil.
20, 1976, Ser. No. 734,003

$$
\begin{aligned}
& \text { lied Oct. 20, 1976, Ser. No. 734,0 } \\
& \text { Int. Cl. }{ }^{2} \text { B65G } 21 / 02,65 / 00
\end{aligned}
$$

U.S. Cl. 214-301


1. A material transfer mechanism for dumping the contents 1. A material transfer mechanism for dumping the contents
of an opened shipping drum into an open-topped mixing vessel
with lugs thereon comprising, in combination, a frame, means wo an opened sereon comprising, in combination, a frame, means
wounting said frame on a support surface for $180^{\circ}$ rotation mounting said frame on a support surface for $180^{\circ}$ rotation
about a fixed horizontal axis spaced above said surface at a about a fixed horizontal axis spaced above said surnace and
height greater than that of said drum and said vessel, said frame height greacer annular plate with a center opening slightly less
including an than the open diameter of said drum, a pair of powered hooks
mounted on said frame for engaging said lugs on said vessel

4 Claims fitti

1. A lifting and tilting device for freight containers having for engagement by lifting means, said device comprisa. a U-shaped supporting frame having two longitudinal support legs joined at one end by a transverse beam; b. two corner pillars mounted at the connecting points of said legs and said transverse beam
c. a pair of lifting arms pivotally connected to said corner
d. a pair of tilting members pivotally connected to said arms and being provided with engaging means for engaging the fittings of a freight container when said freight container is located between said support legs;
e. power lifting means for lifting said arms; and
f. tilling means for tilting said tilting members, said tilting means being pivotally connected to said lifting arms; said engaging means being movable with respects to said supporting frame in a direction substantially parallel to the pivot dis of the tilting members to accommodate engagement of said engaging means in said fittings, and
plurality of tilting member parts, a first of said titting member parts being pivotally supported at one of said lifting arms, at least one other of said tilting member parts carrying said engaging means and being movable with respect to said first tilting member part.

## 4,095,709

Dennis E. Eller, 331 N ThPARE TIRE CARRIER
Filed Oct. 27, 1976 U.S. C. 214 Int. Cl. ${ }^{2}$ B62D 43/04

Int. C. ${ }^{2}$ B62D 43/04
10 Claims
outer lip being engaged over the connection area between the can body and the can bottom closure, said intermediate lip and


In combination with a vehicle having a body and a fram including opposite side longitudinal frame members laterally outwardly beyond whose rear end portions outer opposite side rear body portions of said vehicle project, a spare tire carrier inner base end and an outer free end, means anchoring said base end to one of said frame member rear portions with the free end of said arm projecting outwardly toward but terminating inwardly of the corresponding rear side body portion of the vehicle, the outer free end of said arm including pivot means, a second horizontal arm having base and free end por
tions and including upwardly opening receptacle means on its free end portion for vertically downwardly receiving therewithin the spare wheel and tire of said vehicle, said second arm having its base end portion supported from the outer free end of said first arm for angular displacement relative thereto about an upstanding axis and swinging of said second arm between a foward the other frame member rear portion and said receptacle means generally centered transversely of said frame and a second position with the free end portion of said second arm projecting rearwardly from said vehicle, said vehicle including a rear bumper, the spacing of said axis outwardly from said one frame member and forwardly of said bumper and the effective length of said second arm, between said axis and said receptatirely, rearward of said bumper when said second horizontal arm is in said second position, whereby said wheel may be removed from said receptacle means upon vertical upward movement relative to said receptacle means.

4,095,710
SUCKING TUBE IN COMBINATION WITH A CAN Umberto Tomiati, Via D. Filippini, 19, Verona, Italy
Filed Jul. 13, 1976, Ser, No. 704,875 Filed Jul. 13, 1976, Ser. No. 704,875
Claims priority, application Italy, Jul. 18, 1975, 25581/75 CT 220-90.2 Int. Cl. ${ }^{2}$ B65D 83/00 1. A sucking tube assembly in combination with a can, com prising an enclosure removably connected to the can and containing a sucking tube wound up within said enclosure, characterized in hat said enclosure comprises an annular body
inner lip defining in cooperation an annular chamber with said sucking tube housed therein.

4,095,711
HANDLE ASSEMBLY
James Robert Conley, Wichita, Kans., assignor to The Coleman Company, Inc., Wichita, Kans.

Int. C1.2 ${ }^{2}$ B65D Ser. No. 716,164
U.S. CI. 220-94 R

12 Claims


1. A handle assembly for carrying a container comprising spaced mounting members extending outwardly from said a pin extending parallel relation;
pins being oppositely directed mounting members, said pins being oppoity directed and lying along a common
a handle having a pair of oppositely facing, parallel pinreceiving channels joined at their ends at right angles to a pair of spaced parallel grip members, said pins extending into said channels to join said handle to said bracket;
said container carriable by moving said handle from position to a carrying position using one of two distinct modes of movement.

4,095,712
CONTAINER HAVING SECONDARY HINGED CLOSURE Emilio Perrella, Via S. Carlo 13, Segrate Milan), Italy
Filed Mar. 11, 1977, Ser. No. 776,773 Claims priority, application Italy, Oct. 22, 1976, 28631 A/76 U.S. C. 220-254 Int. C1. ${ }^{2}$ B65D $51 / 18$

1. A container distributor of the type comprising a laims forming the containing body and a part forming the lid, at least this latter being of an at least partially resilient plastics material, a delivery port being provided in the upper base of said part forming the lid and arranged for closing by a flap element,
wherein at least the remaining portion of said upper base, which extends into said flap element and is formed as a single piece with said part forming the lid, is elastically deformable between a rest position and a delivery position in which said said remaining portion being configured as a pyramid with the minor base facing upwards and consti-
tuting the application surface for the pressure opening the
flap element, flap element,
said remaining portion comprising walls of lessening thick-

## said base section.

LOAD TILTING ATTACHMENT FOR AN INDUSTRIAL
Frank C. Schuster, Peoria, Ill., assignor to Little Giant Prod Frank C. Schuster, Peoria,
ucts, Inc., Peoria, III.,
Filed Nov. 8, 1976, Ser. No.
739,830 ${ }_{20}$ Int. Cl. ${ }^{2}$ B66F 9/14
U.S. CI. 214-620


1. In a load tilting attachment for an industrial truck having 1. In a load tilting attachment for an industrial truck having
a vertically movable carriage and load supporting means, said tilting arrangement comprising: a vertically disposed plate
secured to and movable with said carriage, a vertically dissecured to and movable with said carriage, a vertically dis-
posed tilt boy aligned with said plate, means for tilting said posed tilt boy aligned with said plate, means for tilting said
body in a limited arc relative to and parallel with said plate,
said tilting means consisting of a spindle-bearing assembly said inting means consisting of a spindie-bearing assembly
centrally of said plate and said body for pivoting said body in a vertically disposed arc, circumferentially spaced load reacion members between said plate and said body and spaced adially from said spindle-bearing assembly for restraining said load reaction members comprising an arcuate plate se cured to said till body above said spindle-bearing assembly and an associated bearing plate secured to said vertically disposed plate and against which said arcuate plate bears, said arcuate plate and said bearing plate being interlocked in a hook-lik between them under load, means connecting said plate and said body for driving said body about said pivot in said arc, and means connecting said load supporting means to said body.
2. An apparatus comprising a container to hold fluid, a plug assembly extending from a portion of said container, said plug assembly including a plug body having an inner end portion
connected with said container, an outer end portion through connected with said container, an outer end portion through
which fuid fows to socket assembly when said plug assembly is connected with the socket assembly, and an annular
groove disposed between said inner and outer end portions of said plug body, said plug assembly further including an annular seal ring disposed in said groove to sealingly engage a socket assembly when the socket assembly is connected with said plug assembly, said apparatus further including indicating means connected with said plug assembly for providing an indication that a socket assembly has not been connected with said plug plug assembly, said indicating means including a base section circumscribing said plug body at a location disposed between said container and said annular groove in said plug body to block connection of a socket assembly with said plug assembly, locking means connected with said base section for engaging said annular groove to prevent disengagement of said indicating means from plug body without breaking said indicating
means, said locking means including a plurality of spaced apart locking sections which extend outwardly from said base section into said annular groove in said plug body, an end section having surface means for at least partially covering said outer end portion of said plug body, and a plurality of spaced apart side sections disposed between said locking sections, al least

| PUSHER PLATE FOR FORKLIFT VEHICLES |
| :---: |

PUSHER PLATE FOR FORKLIFT VEHICLES
Reynolds, 201 E. Sangamon, Fisher, III.
Filed Apr. 28, 1977, Ser. No. $\mathbf{7 9 1 , 6 9 9}$
U.S. Cl. 214-620


1. A pusher plate for use with a forklift carrier having a load push-pull mechanism with a slip-sheet pallet clamp, to remove sheet supported load from a stack, comprising:
an abutment wall:
an abutment wall;
neans for mounting the abutment wall on the free end of the
tines of the fork with the wall extending the width of the
fork and downwardly from the fork to engage and pre-
fork and downwardly from the fork to engage and pre
vent displacement of the supporting stack below the slip. vent as the slip-sheet and the load thereon are removed
sheet as by the load push-pull mechanism.

COMBINED $9,095,716$
COMBINED SPOON AND VESSEL William T. Meany, 477 Park Pl., Brooklyn, N.Y. 11238
Filed Apr. 28, 1977 , Ser. No. 71,794
Int. Cl. ${ }^{2}$ B65D $23 / 12$ U.S. Cl. 215-100 R

## 

位

1. In combination, a tool and container, said container being exterior surface, a base and an open mouth defined by a rim, said rim defining a recess said interior surface having a predesaid rim defining a recess said interior surface having a prede-
termined contour, said tool having a length not greater than the depth of said container, at least one surface of said tool having a contour corresponding to that of said interior surface
said tool having a hooked portion at one distal end, said hooked portion engaging said recess whereby said tool depends from said rim into said container in longitudinal alignment therewith.

## SAFETY OVERCAP FOR ST <br> SAFETY OVERCAP FOR STANDARD METAL

Roy A. Michaelsen, Chicago, IIl.,
Inc., Royal Palm Beach, Fla.
Filed Dee. 29, 1976, Ser. No. 755,182
U.S. CI. ${ }^{\text {Int. Cl. }}{ }^{2}$ B65D $55 / 02$, 85/56; A61J $1 / 00$ U.S. CI. 215-220


1. A safety closure overcap for standard metal screwcaps having a lower edge curl and finger gripping knurl in the a plastic material molded inverted cup-shaped overcap
ing a top wall and depending sidewalls, said sidewalls having a height in excess of the height of the standard cap
sidewall, sidewall,
n annular inwardly directed flange on the overcap sidewall
sized to snap over the standard cap knu
overcap assembled on the standard cap,
knurl in the interior upper sidewall of the
a knurl in the interior upper sidewall of the overcap mating
the standard cap knurl, and
a post centrally inside the overcap top wall extending
toward and adapted to engage the top wall of the standard cap to hold the overcap knurls out of engagement with the
andard cap knuris unitl finger pressure upon the overcap applied above the sidewalls flexes the overcap top wall
over the post acting as a fulcrum to engage the knurls in driving torque for both on and off movement of the inner screwcap.

ONVERTIBLE ${ }^{4,095,718}$
CONVERTIBLE SAFETY CAP
Cheung Tung Kong, 300 E. Bellevue Dr.,. Passadena, Calif. 91101
Filed Aug. 25,1971 Filed Aug. 25, 1977, Ser. No. 827,717
U.S. CI. 215-223 Int. Cl. ${ }^{2}$ B65D 53/00 6 Claims

1. A cap for a container of the type having locking means for use in a precautionary arrangement to prevent children from
obtaining access into the container, the cap being covertible so as to cooperate with such a container to provide not only such precautionary arrangement but also an alternative easy open arrangement to simplify separation of the cap from the conainer, the cap comprising:
a cover wall;
dith the cover wall and projecting therefrom to define a container-receiving recess;
side wall at a position means, located on the interior of the side wall at a position spaced from the cover wall, for use in the precautionary arrangement to engage with the container locking means to ensure that the cap can be
separated from the container only when the cap is aligned in predetermined angular relationship with the container; adjustable stopping means for use in converting between the precautionary and easy open arrangements;
he stopping means comprising a member that, in the easy open arrangement, occupies a position within the recess to
act as a stop limiting travel of the container into the recess so that in the easy open arrangement the complementary locking means and the container locking means do not engage;
the side wall including a gripping surface adapted to releasably secure the cap to the container in the easy open arrangement; and
said member being movable from said position to enable further travel of the container into the recess so that in the precautionary arrangement the complementary locking means and the container locking means are engageable.

EDGE EXTRUSION AND ASSOCIATED CASING HARDWARE
Walter C Wolf, Rancho Palos Verdes Calif, assignor to Ther nternational Ltd., Hawthorne, Calif.
Filed Sep. 27, 1976, Ser. No. 726,926
Filed Sep. 27, 1976, Ser. No. 726,926
Int. C1. ${ }^{2}$ B65D $7 / 32,7 / 44,43 / 16$
U.S. CI. 220-4 B
U.S. Cl. 220-4 B $\quad 3$ Cla

1. For use in a plastic container, which includes a top shell and a bottom shell, each shell having a peripheral rim and a
sidewall, casing hardware used in combination with a pair of edge extrusions that include:
a. a first member which is adapted to longitudinally extend along the peripheral rim of the top shell so that it closes o itself and which has two parallel vertical portions which are adapted to be coupled to the sidewall of the top shell,
said first member having a male joining edge running parallel to its longitudinal portion and a pair of exterio flanges coupled to one of said two vertical portions and male joining edge;
b. a second member which is also adapted to longitudinally extend along the peripheral rim of the bottom shell so that it closes on itself and which has two parallel vertical portions which are adapted to be coupled to the sidewall of the bottom shell; said second member having a female joining edge running parallel to its longitudinal portion and a pair of exterior flanges coupled to one of said two vertical portions and disposed so that said exterior flanges run parallel to said female joining edge; and

c. a rubber gasket is coupled between said male joining edg and said female joining edge thereby sealing said plastic container, said casing hardware comprising
a. A rectangular base member, which is adapted to loosely ing a set of flanges adapted for insertion into one of said exterior flanges running longitudinally along said base member on one of its sides and a set of semi-circularly cut holes adjacent to its other edges and adapted so that a portion of said base member between ins ofher edge
and said semicircularly cut hole may be forced agains one of said exterior flanges and said flanges may be forced against the other of said exterior flanges thereby effecting the attaching and securing of said base member to said edge extrusion; and $b$. joining means for
joining the top shell to the bottom shell, said joining joining the top shell to the bottom shell, said joinin
means mechanically coupled to said rectangular memmeans
ber.

## 4,095,720

PLASTIC CARRIER FOR FLUID CONTAINERS
Franz Delbrouck, Bergisch-Gladbach, and Wilfried Nickel,
Menden, both of Germany, assignors to Freya-Plastic Franz
Dellbrouck GmbH, Menden Germany
Filed Aug. 30, 1976, Ser. No. 719,058 Filed Aug. 30, 1976, Ser. No. 719,058
priority, application Germany, Sep. 3, 1975, 2539127 Int. Cl. ${ }^{2}$ B65D 21/02, 1/24. 1/38, $25 / 04$ U.S. C. 220-21

> carrier for fluid containers, which carr 1. In a stackable carrier for fluid containers, which carrier is of plastic and includes a bottom having a rectangular form and whose borders coincide with borders of the rectangle defining the bottom, a top frame defined by a closed strip of predeter mined thickness in a horizontal direction, the frame defining the upper end of the carrier, a plurality of columns extending plurality of stacking projections extending downwardly from the bottom, and means for dividing the interior of the carrier into a plurality of compartments each for holding a respective container in an upright position, the external height of the carrier being greater than that of
ms
there is a respective one of said stacking projections associated with each of said compartments; each of said stacking projections includes a part which projects laterally beyond the borders of the rectangle
defining said bottom to present a surface for supporting bottle whose lower portion extends laterally beyond the borders of such rectangle,
each of said stacking projections is dimensioned and positioned for causing the minimum distance between each said projection and a vertical plane passing through the
outer edge of said top frame to be at least equal to the outer etge of said top frame to be at least equal to the
predetermined thickness of said closed strip defining said frame, and for causing the minimum distance between each adjacent pair of stacking projections to be at leas twice said predetermined thickness;

at least first ones of said columns are located between said laterally projecting parts of respective adjacent pairs of said stacking projections and are connected to ribs at the
borders of said open grid so that the locations of the borders of said open grid so that the locations of the
connections of said first ones of said column to said ribs are located on the sides of the rectangle defining said bottom;
second ones of said columns extend from said stacking projections at the corners of said carrier and merge into said jections at t
frame; and
said means for
said means for dividing the interior of the carrier comprise hollow dome-shaped members located to define compart ment boundaries, said members extending upwardly from said bottom, being upwardly tapered, and having a constant wall thickness, along their entire length.

## 4,095,721

BERRY TRAY DENESTING AND BERRY PACKAGING ibert W. Patzaff, Holland, and Paul G. Beardsley, Gobles,
both of Mich., assignors to Blueberry Equipment, Inc., South both of Mich., ${ }^{2}$
Haven, Mich.
Haven, Mich. $\mathbf{l}$ This application Mar. 15, 1977, Ser. No. 777,635 U.S. Cl. 221-210
a magazine secured to said spaced support members for
retaining a vertical stack of fottom corner-slotted contain retaining a vertical stack of bottom corner-slotted containlower portion of the lowermost container in the stack;
separating means supported on said support members for separating means supported on said support members fo
horizontal reciprocating movement for entering the bo horizontal reciprocating movement for entering the bot
tom corner slots of said containers and liftng the stack o containers from the lowermost container and then depressing the lowermost container away from the remain further including rep engagement lugs, pivotally sup further incluiding rim engagement lugs pivotally sup-
ported relative to said magazine and said stack of contain ers, said lugs engageable with the top rim of the bottom container of the stack; and
means biasing said lugs to a stack retention position, said lugs being shiftable against the bias of said biasing means to a
container release position by depressing the lowermost container and raising the stack of containers with saic separating means.

DRIPLESS DISPENSER AND METHOD OF DISPENSING A FLOWABLE MATERIAL
Kenneth L. Miller, 1230 Lawrence Rd., Carmel, Ind. 46032

Filed Mar. 19, 1976, Ser. No. 668,417
Int. C. ${ }^{2}$ B65D $37 / 00$
18 Claims
upper and lower rams in said second position thereof, and to ispense a portion of said material in said tube and to draw any residual of said material left in said tube from the distal end of said nozzle means by positioning said upper ram in said second position thereof, said lower ram in said position thereof, queezing said tube by moving said intermediate ram from saic lirst position thereof toward said second position thereof, and ispensing the desired amount of said material from said tube.

4,095,723
ARTICLE HANDLING SYSTEM WITH
WEIGHT-CONTROLLED DISPENSER
sernard Lerner, Hudson, Ohio, assignor to Automated Packag. ing Systems, Inc., Twinsburg, Ohio
application Sep. 14, 1977, Ser, No, a33,260 Int. C.2 ${ }^{2}$ B67D $5 / 14$


1. An apparatus for forming batches of articles, comprising: a. an upstanding base structure;
a. an upstanding base structure;
b. a vibratory feeder having a bowl-shaped feeder hopper for feeding articles from a hopper base portion upwardly along an inclined ramp toward a discharge station;
article supply means including an article support and drive means for driving the article support to feed articles into he feeder hopper; and,
electrively control means for generating an output signal to slectively start or stop the drive means to maintain a
 hopper, including:
lecrically operated sensor means for sensing the level electrical input signal representative of the sensed level of articles in the feeder hopper;
2. A dropless flowable material dispenser for dispensing measured amounts of a flowable material from a pressurize ube having opposite ends and means for removably couplin aid tube to said reservoir at one end thereof, nozzle means removably coupled to the other end of said pinch off tube, said
nozzle means being in communication with said reservoir nozzle means being in communication with said reservir force a selected amount of said material out of said tube and nozzle means and to draw any residual amount of said materia said nozzle means back away from the distal end thereo rams being selectively movable from a first position in whic said ram is disengaged from said tube to a second position in which said ram engages and compresses said tube, said plural y of rams including an upper ram and an intermediate ram or moving said rams and means for sequencing the movemen of said rams to fill said tube with said material by positioning
said lower ram in said second position thereof, positioning said said lower ram in said second position thereof, positioning sai upper and intermediate rams in said first position thereof, and
allowing said material to flow into said tube from said reser voir, to isolate said material in said tube by positioning saic
i. a manually operated electrical control means for generating an electrical reference signal representative of a desired predetermined level for articles to be main tained in the feeder hopper;
to the control for receiving and comparing the inpu and reference signals and for generating an output signal indicative of when the actual sensed level of articles is above and below the desired predetermined level.

CONTAINER FOR HOLDING AND DISPENSING FLOWABLE PRODUCTS
an Perusco, Riedheim, Germany, assignor to Precision Tools
Filed Nor. 3, 1976, Ser. No. 738,504
Claims priority, application Germany, Jun. 16, 1976, 2626990

1. C. 222-95 Int. Cl. ${ }^{2}$ B65D 35/28
2. Apparatus for holding and dispensing flowable products
a generally cylindrical inner wall, a flexible inner container for receiving a flowable product, said inner container having portion, said upper end portions connected being an intermediate container, said lower end portion having a downwardly extending generally frusto-conical configuration, said intermediate portion being of non-circular cross-section and including at least three blunt angles connected by arcuate wall sections,
each of said arcuate sections having a radius which is larger than the radius of the inner cylindrical wall of said outer container, the exterior surfaces of said blunt angles frictionally engaging the inner wall of said outer container, the inner sur-

face of each of said blunt angles having a radius which is less than the radus of each of the arcuate wall sections, said blunt tions, selectively operated discharge valve means mounted on said outer container and communicating with the contents of
said inner container, and a pressure media located in said said inner container, and a pressure media located in said outer container and exteriorly of said inner container so that when
said discharge valve means is operated said pressure media causes said arcuate wall sections to collapse inwardly and discharge material through said valve means while said blunt angles remain substantial
of said outer container.

opens into er arm of which is
oo internal guide pensing orifice, for the tongue of the pushbution, said wets being symides rically positioned with respect to the axis of the cap rically positioned with respect to the axis of the cap,
convergent in the direction of the dispensing orifice, and each comprising a guide shoulder dividing it into two
the tongue of the pushbutton comprising on its lateral walls and between its ends, a shoulder corresponding to the
guide shoulders of the guide webs, the improvement according to which:
the zone of each guide web which is closest to the dispensing orifice is set back with respect to the other zone, and edges of the lateral walls of the tongue are provided with mem
bers projecting into each space between bers projecting into each space between one of the lateral
walls of the tongue and the corresponding guide webs, said members being adapted to slidingly cooperate with the guide slides during depression of the pushbutton, said pushbutton having an exposed end portion extending to a location closely adjacent to a side of the periphera)
jacket opposite the said at least one dispensing opening and said axial arm of the duct being offset with respect to said end portion;
said shoulders on the lateral wall of the tongue and said guide shoulders on said jacket cooperating with each prevent tilting of the pushbutton toward its exposed end upon application of a force near the exposed end which tends to tilt the pushbutton with respect to the valve.

PORTABLE SUPSPLY TANK
Valentine Hecter, IV, 26 Meadow Viem Rd., Northfield, II. 60093, and Lewis E. Masters, 120 S. Spruce St., Wood Dale III. 60191 Filed Nov. 1, 1976, Ser. No. 737,074 Int. Cl. ${ }^{2}$ B67D S/64 U.S. Cl. 222-175

4,095,725
ONE-PIECE PUSHBUTTON DISPENSING CAP FOR Antonin L. Goncalves, Grosiay, France, assignor to L'Oreal, Paris, France
Filed Dec. 10, 1976, Ser. No. 749,373
Claims priority, application France, Jan. 14, 1976, 7600826


14 Claims


1. A dispensing cap attachable to a pressurized container o the aerosol bomb type equipped with at least one dispensing
valve, said cap comprising
valve, said cap comprising
a peripheral jacket havi
least one dispensing orifice and an upper wall having an opening,
pushbutton at least partially received in said opening, said pushbutton comprising at its upper part a raidally extend-
ing tongue and in its lower part a right-angled duct one axial arm of which fits the outlet of the dispensing valve

2. A molded portable liquid carrying tank comprising hermetically sealed molded body having a neck defining an upper sealing wall and two spaced substantially flat and paral vertical front and back interbraced semi-flexible walls fo marginally spaced and joined by side walls at the bottom end and forming two lower corners,
strut means integrally interbracing and surrounded at both ends by spaced flexible portions of the two spaced flexing walls above the center of gravity of the tank contents to
support the flexible walls movement so that the walls yield as a unit in the same direction without substantially varying the volume capacity of the tank, and
houlder strap means engaging said strut means adjacent one end and the two lower corners for supporting the two walls of the tank as a unit to carry said tank in upright
orientation with a motion that maintains wettable powders in solution in the tank.

APPARATUS FOR DISPENSING A LIQUID FROM A FOR DISPENSING
CONTANER
Dieter Dorsch, Tscherningstr. 22, Heilbronn, Germany (D-7100) Filed Jul. 9, 1976, Ser. No. 704,054 Claims priority, application Germany, Jul. 16, 1975, 2531697 U.S. CI. 222-400.8 Int. C1. ${ }^{2}$ B67D 5/54 13 Claims


An apparatus for pumping a liquid under air pressure from container having a rim and defining an interior chamber Anthony 11777
container having a rim and ang an inerior chambe
hermined liquid level, an air space being defined between the liquid level and the rim, the apparatus being disposed and locked on the container above the air space, which apparatus is
a unit comprising
a. a housing defining an air inlet for delivering air into the air space and including two clamps engageable with the rim
of the container for disposing and locking the housing of the container,
b. means mounted on the housing for imparting superatmos pheric pressure to the air whereby the air is delivered to the space under said pressure,
pressure from escaping from the space
d. a tap standpipe in communication with the bottom of the chamber and defining an air channel arranged for connec tion to the inlet, the air channel being in communication
with the space, whereby the superatmospheric pressure in with the space, whereby the superatmospheric pressure in
the space above the liquid level pumps the liquid into and through the standpipe,
e. a liquid outlet in communication with the tap standpipe 1. one of the clamps defining a bore constituting a liquid conduit having one end in communication with the tap
standpipe and receiving the liquid therefrom and another end in communicating with the liquid outlet for delivering the liquid thereto, and
. a shutoff valve mounted in the liquid conduit for selec tively opening and closing the outlet.

CONTAINER WITH IMPROVED COLLAPSIBLE POURING SPOUT
Walter K. Chlystun, 327 St. James Dr., Spartanburg, S.C. 29301
U.S. Cl. 222-529
9. An improved dispensing 14 Claims (a) a body;
(b) a top wall integral with said body; and
(c) a dispensing spout integral with said top wall and including a tapered, circumferentially pleated portion extending outwardly from said top wall whereby application of axia force along said spout to nest or withdraw said spout
causes eversion of the tapered spout portion, at least one causes eversion of the tapered spout portion, at least one
of said pleats having at least one means around the circumference thereof that extends generally radially with re-
spect thereto, said at least one means being circumferen-
tially compressible during eversion of said spout to cir-

cumferentially reduce said at least one pleat to facilitate nesting and withdrawal of said spout.

FILTER PAPER DISPENSER

```
U.S. C. 225-42

1. A dispenser for filter paper comprising a housing for nclosing a roll of strip material, the housing having two paralrally connecting said walls, and a removable top portion inteend walls having a slot running from said bottom portion to end walls having a slot running from said bottom portion to
said removable top, ring like bracket means attached to said one of said end walls adjacent the slot for encircling a portion of a smoke tester, and a serrated cutting edge on said bracket means, said edge being parallel to said slot and spaced from said housing.

4,095,730
PACKA ARE
WRAPAP DISPENSING BRIDG
PAChard Thomas Clatterbuck, North Canton, Ohio, assignor to
The Goodyear Tire \& Rubber Company, Akron, Ohio
Filed Aug. 22, 1977, Ser. No. 826,501 U.S. C. 225 Int. Cl. \({ }^{2}\) B26F \(3 / 0\)
U.S. CI. 225-48 and having a knife-edge for cutting the stock upon being nel embodye package, a wrapping bridge erectable from a etween the stock and the knifeedge an angular relationship an opening in the panel created by the bridge such that the ock is easily cut and the free end thereof maintained in an accessible position on the package, said bridge comprising' a
substantially rectangular body portion formed from the package panel by a first densely perforated line, which, upon the bridge body being pressed or lifted effects its separation from the panel along the line formed by the perforations, and a second sparsely perforated line in a spaced parallel relationship to the first perforated line such as to form a hinge line upon
lifting of the bridge body from the panel, and a pair of legs each

METHO 4,095,732
METHOD AND APPARATUS FOR ACCURATELY CONTROLLING THE POSITION OF A FILM TRANSPORT DEVICE Caiif., assignor to Xerox Corporation, Stamford, Conn.
Filed Dec. \({ }^{\text {In }}\), 1976 , Ser. No. 755,407
Int. Cl. \({ }^{2}\) B65H \(23 / 18,25 / 24\)
U.S. C1. 226-33 12 Claims

1. For use in a web transport system wherein a web is driven at a desired velocity and in a desired direction in response to an input signal, apparatus for stopping the web at a position the
web occupied when an event occurred comprising: web occupied when an event occurred comprising
drive means responsive to a drive signal for transporting said web;
velocity determining means responsive to the movement of said web for producing a signal representing the web velocity;
means for der
means for detecting the occurrence of said event; istance detecting means responsive to the movement of said
web for producing a signal representing the distance trat web for producing a signal representing the distance trav
elled by said web after the occurrence of said event: means resporsive to said detecting means for enabling said distance detecting means
means responsive to said detecting means for terminating - said input signal,
signal and generating said input signal with said distance signal and generating a composite output signal represent-
ing the total thereof, and second means for comprising said composite signal with second means for comprising ating said drive signal representing the difference gene tween.
Antony Harding, Schieren, Luxembourg, and Michel Lemaire, Arlon, Belgium, assignors to The Goodyear Tira U.S. C. 226-3

Feb. 4, 1977, Ser. No. 765,
Int. Cl. \({ }^{2} \mathbf{~ B 2 9 H} 17 / 10\)
10 Claims

1. A method of guiding a running length strip of elastically yieldable tire building material with respect to a reference plane, comprising pulling the strip forward in a direction parallel to said reference plane, applying to the strip a drag opposing
forward movement greater near the running edge thereuf more distant from said plane than in the strip closer to said plane by and between a stationary plane supporting surface and resiliently fixed brush means engageable in drag-inducing relation with said strip; said drag being less than sufficient to strain said more distant edge beyond its elastically recoverable strain
limit, and sufficient to cause said strip to deflect toward said reference plane.

STOCK FEEDER FOR PUNCH PRESSES
Scribner, 6 Country Club Rd., Darien, Conn. 06820 Filed May 25, 1977, Ser. No. 800,284 Int. C.'2 \({ }^{2}\) B5 \({ }^{2}\) I7/36
U.S. Cl. 226-162 7 Claims

1. In a pneumatic feeder for advancing stock into the work a frame;
a feed slide mounted on sad freme for reciprocating ol ment through feed and non-feed strokes; stock gripping means carried by said feed slide;
a first fluid motor means for actuating said feed slide;
second fluid motor means for actuating said stock gripping means; and
conduit, means defining a pair of separate fluid conducting lines that are respectively connected to said first and second fluid motor means.
slide valve for controlling the operation of said first and
second fluid motor means; said slide valve including second fluid motor means; said slide valve incluaing
means defining a smooth plate surface, said surface having at least three ports formed therein, two of said ports being
disposed respectively at the ends of said pair of fuid disposed respectively at the ends of said pair of fluid
conducting lines and one of said ports effectively defining conducting lines and one of said ports effectively defining an exhaust port; a valve cup member having an end face
defining a smooth valving surface, said end face of said cup member being recessed, said cup member being mov able back and forth between two operative valving posimutual sliding engagement;
conduit means adapted to continuously supply pressure fluid to a chamber formed in said slide valve so as to bias said valve cup member against said plate surface whereby
when said valve cup member is in a first one of its said two operative positions one of said two fluid conducting lines is exposed to the pressure fluid in said valve chamber while the other of said fluid conducting lines is connected through said recessed end face of said valve cup member to said exhaust port, and vice versa when said valve cup tive positions;
control plunger adapted to be operated in response to the operation of said punch press; and
oupling means adapted to effectively couple said contro隹ger and said valve cup member whereby said valv cup member may be shifted between its said two operative positions
plunger.

METAL WALL PROVID, \(4,095,734\)
METAL WALL PROVIDED WITH EITHER EXTERNAL
Per Ingemar Persino Nora, Sweden, assignor to Nitro Nobel
AB, Gyttorp, Sweden
Filed Feb. 27, 1976, Ser. No. 662,152
Claims priority, application Sweden, Mar. 10, 1975, 7502619 C. 228 H. Cl. \({ }^{2}\) B23K 21/00, 31/02

7. In a method of fastening cladding to a metal wall and testing the fastening, which cladding has a first cladding part having a first end and a second cladding part having a second end in close proximity to the first end of said cladding part, each of said frrst and second cladding parts being connected to at least one of the other one of said cladding parts and said the improvement comprising: forming an elongated chamberlike space between said first weld seam and said second weld seam, closing off said elongated chamber-like space at one end and injecting a testing medium into the open end of said cham-
ber-like space for indicating the leakproofness of said first weld seam and said second weld seam, said step of forming an elon gated chamber-like space comprising abutting said first and second ends of said first and second cladding parts, respectively, against one another, and welding a portion of said first away from said second end of said second cladding part to said metal wall therebelow, which thereby forms said first weld seam, and welding a portion of said second cladding part
mote from said first end thereof in a direction away from said first end of said first cladding part to said metal wall therebelow, which thereby forms said second weld seam.
\(\longrightarrow\)
MULTI-PARTITIONED CARTON
Orison W. Stone, New Haven, Vt., assignor to Potlatch Corporation, San Francisco, Calif.

Filed Mar. 29, 1977, Ser. No. 782,449
U.S. Cl. 229-39 \({ }^{\text {Int. C1. }{ }^{2} \text { B65D 5/10, 5/4 }}\)

12 Claims

1. A knock down, easily erected, multi-partitioned carton 1.rmed from a single blank of foldable paperboard or like sheet a material comprising,
a pair of side panels, front side panel and rear side panel; a pair of end panels disposed in joining relationship between said side panels;
at least one pair of
of opposed tongues formed in aes, one tongue of said pair side panels and the ormed in one side panel of said pair of ongues formed in ther tongue of said pair of opposed panels,
each tongue of said pair of opposed tongues having one edge hingedly attached to one of said side panels, said hingedly attached edge of said tongue of said pair of opposed rongues being aligned in parallel relationship to the hingedly attached edge of the other said tongue of said pair of opposed tongues;
in partially overlapping pirectly attached to each othe carton partitioned is formed;
a pair of bottom flaps, one bottom flap of said pair of hingedly attached to one side panel of said pair of side panels and the other botrom fap of said pair hingedly
attached to the other side panel of said pair of side panels, each said bottom flap having a bottom tab hingedly attached to the same along an angled fold line;
each said angled fold line intersecting the adjacent junction of said end panel with said side panel, each said angled old line disposed win line when said end panel and said side panel;
pair of end tabs hingedy attached to the bottom edge of each of said end panels and each end tab disposed in overlapping affixed relationship to the corresponding said
bottom tab, whereby said bottom flaps initially positioned bottom tab, whereby said bottom flaps initially positioned in parallel relationship to said side panels when the carton
is in its knocked down condition are forced into a substantially perpendicular disposition when said carton is squared;
ach said bottom flap having an extended portion and a recessed portion, said extended portion of one said bottom portion of the other said bottom flap when said carton is squared, whereby said bottom flaps automatically lock when said carton is squared so as to maintain the carton in its squared condition,
plurality of windows defid by tongues within each said side panel, whereby articles contained within each partition area of said carton is clearly visible, ne of said pair of end panels hingedly attached on opposite
sides by score lines to each said side panels, the other of
said pair of end panels hingedly attached by a score line to dling opposite lateral edges of said mounting plate when said
said rear side panel;
an end flap hingedly attached by a score line to said front side panel
sid bottom flaps hingedly attached by a score line to each of
said side panel;
said end tabs hingedly attached by a score line to each of said end panels;
whereby said multi-partitioned carton upon squaring from an intially knocked-lown condition automatically forms a bottom, automatically locks to maintain a rigic erected condition pair of opposed tongues to define a plurality of cells or compartments and to structurally maintain the side panels in rigio paperboard or like sheet material with the minimum of board paperbe.
usage

BAG CLOSURE HAVING VALVE SLEEVE Arthur Louis Rothschild, III, and Robert Olin Baxter, both of
Camden, Ark., assignors to International Paper Coner Camden, Ark., assignors to International Paper Company, New York, N.Y.

Oct. 22, 1976, Ser. No. 735,052
Int. C1.2 B65D 31//14
U.S. Cl. 229-62.5

1. A bag having an end closure, through which it is filled, the end closure comprising a valve sleeve and the valve sleev ing stris; the other face of the strip being secured along sub stantially its entire length to the closure; the sleeve, including its flexible tubing and its reinforcing strip, being slit, from to oo bottom, from its inner end to about its middle along an axis sleeve to fill the bag; and the strip being free from securement with the closure in the area of the slit.

\section*{\(4,095,73\)}

TAXIMETER AND MOUNTING ARRANGEMENT duard Schub, and Hans-Peter Scholl, both of Villingen, Ge many, assignors to Kienzle Apparate \(\mathbf{G m b H}\), Villingen Schwenningen, Germany
Claims priority Jul. 2, 1976, Ser. No. 702,275 Claims priority, application Germany, Jul. 8,
Int. Cl. \({ }^{2}\) G07B \(13 / 00,15 / 00\)
U.S. Cl. 235-30 R
1. In a taximeter, a combination comprising a housing having a rear wall and a bottom wall projecting forwardly from said rear wall and having a rear edge portion and two lateral edge portions; a cover plate having a surface adapted to attach to
said rear wall and provided with connector means adapted to aid rear wall and provided with connector means adapted to engage with corresponding means in said housing; a mounting
plate having a front end and a rear end and including mounting means for permanently installing said mounting plate in vehicle; first interengaging portions on said mounting plate and ottom wall, comprising projections extending downwardly
ling opposite lateral edges of said mounting plate when said rom said front edge towards said rear edge thereof so that said housing is thereafter blocked against movement relative to said mounting plate in all directions except counter to said one direction; and second interengaging portions on said mounting

pate and cover plate, including upstanding projections extend ing upwardly from said rear edge of said mounting plate and away from sid said cover plate at a side thereof which faces away from said rear wall, so as to prevent detaching of said cover plate from said rear wall when said housing is supported tions remain engaged with one another.

\section*{4,095,738}

ELECTRONIC CASH REGISTER WITH MEANS FOR CORRECTING ERRONEOUSLY PRINTED DATA Tetsuya Masuo, Shizuoka, Japan, assignor to Tokyo Electric Co., Ltd., Tokyo, Japan \(F\) Filed Nov. 10, 1976, Ser. No. 740,484 Claims priority, application Japan, Nov. 14, 1975, 50-137014

\begin{tabular}{|l|}
\hline \(1 \cdots \cdot 123\) \\
\(2 \cdots 2500\) \\
\(2 \cdots 2500\) VOID \\
\(2 \cdots 2550\) \\
A…2673 TOTAL
\end{tabular}
1. An electronic cash register comprising keyboard including a data input key and a void key central processor unit coupled to said keyboard central processor unit memory means coupled to said
ary means coupled to said central processor unit and including a printing data memory which stores an input data item supplied from said data input key and the total of a plurality of said input data items; and
printing means including a buffer register coupled to said memory means, a printer driver coupled to said buffer register and to said central processor unit, and a printer of input data items and the total thereof successively on a recording paper
aid printer driver including: a feeding means for feeding said recording paper by one row for printing a new data emister from said new data item is supplied to said buffer means for inhibiting said one row feeding of said recording paper when said void key is depressed and for printing correcting symbol directly on a data item printed on said ecording paper before said new data item is supplied to said buffer register.

SSTEM FOR 4,095,739 SYSTEM FOR LIMITING ACCESS TO SECURITY

SYSTEM PROGRAM
Robert J. Fox, Los Angeles, and Donald P. Sturgis, Clairmon, both of Calif,, assignors to A.T.O Inc., Willoughby, Ohio

Filed Aug. 26, 1977, Ser. No. 827,993
U.S. Cl. 235-382

1. Apparatus for limiting programming access in a security ystem which provides selective access at plural remote loca-
ions based on stored data in response to data on an encoded card, comprising:
a first plurality of data encoded cards identifying a firs plurality of personne
second data encoded card identifying a second person; means for selectively providing access to each of said plural remote locations, said means comprising:
data storage means defining which of said first plurality of cards shall permit access to which of said plural remote ocations; and
means for reading data encoded on said first plurality of cards, for comparing said data with said data storage means, and for providing selective access based upo s permitting alteratio means permitting alteration of said data sto
response to said second data encol

\section*{4,095,740}

CONDITION RESPONSIVE THERMOSTAT CONTROL APPARATUS
C With 13116 N, Foxhollow Rd, 118W, Mequo, Wis. 53092
Continuation-in-part of Ser. No. 672,747, Apr. 1, 1976, amandoned. This application Apr. 4, 1977, Ser. No. 784,233 U.S. CI. \(236-47\) Int. Cl. \({ }^{\text {G }}\) G5D 23/275

1. An illumination responsive thermostatic control apparatus for controlling the air eemperature in an enclosed area, sai control apparatus having a temperaureans including main mounted on an incrior ture sensitive switch means connected in and auxiliary a pair of thermostat control leads, said tempera ture control means having a standby sensing state for sensing of
temperature and changing to a demand state in response to demand temperature level, a light sensitive means connected across said thermostat control leads and mounted within the enclosed area and subjected to ambient area illumination, circuit control means having an operating means commech parallel with said light sensive means and inity means, and latching switch means connected to said operating means and having contact means to bypass said auxiliary switch means.

PROPORTIONAL ELECTRICAL CONTROL SYSTEM Richard C. Mott, Harwood Heights, Ill., assignor to Honeywel Inc., Minneapolis, Minn. Filed Jan. 14, 1976, Ser. No. \(\mathbf{6 4 9 , 1 1 7}\)
Int. C1. \({ }^{\text {G GOSD }}\) 23/275 U.S. Cl. 236—78 C

1. A proportional control system comprising:
1. A proportional control system comprising: adapted to change the position of a condition controlling device;
condition responsive means comprising a temperature responsive bi-metal element fixedly secured at one end and movable at another end in response to temperature, and wherein said first contact is engaged by said bi-metal element when said bi-metal element moves in a first direction and said second contact is engaged by said bi-metal element when said bi-metal element moves in a second direction;
nnecting means for connecting first and second contacts nd said bi-metal element to said bi-directional actuating said movable output in a first direction when said bi-metal element engages said first contact and moves said movable output in a second dirction when said bi-metal elemen engages said second contact; and,
edback means comprising a trapped air system having a irst bellows operated by said actuating means, a second connecting said first and second bellows together wherein movement of said movable output by said bi-directional actuating means causes said support to be repositioned in a direction to disengage said bi-metal element from said

BALANCED SINGLE PORT TH
EXPANSION VALVE Ernest \(W\). Schumacher, Desoto, Tex., assignor to Virginia Chemicals Inc., Portsmouth, Va. Filed Aug. 26, 1076, Ser. No. 718,006
Int. C. \({ }^{2}\) G0SD 27/00 U.S. CI. 236-92 B
cally conductive material and being capable of substantial longitudinal extension and contraction.

\section*{APPARATUS AND METHOD FOR SUPPORTING AND} APPARATUS AND METHOD FOR SUPPORTING AND Anthony T. Villelli, 1451 N. Citrus Dr., La Habra, Calif. 9063 Mar. 7, 1977, Ser. No. 774,94
Int. Cl. \({ }^{2}\) A01G 25/00
U.S. CI. 239-1

1. In a thermostatic expansion valve having a cylindrical
feed bore, having a blindered, connected to an inlet means for admitting refrigerant at inlet pressures, the improvement comprising a valve pin having a lesser end portion and a greater
end portion, a reduced stem portion therebetween, a lesser shoulder and a greater shoulder respectively connecting said lesser end portion and said greater end portion to said reduced
stem portion, a pair of end faces, and a coaxial bore connecting stem portion, a pair of end faces, and a coaxial bore connecting
said pair of end faces to each other and to an outlet chamber in said thermostatic expansion valve, said lesser end portion fitting slideably within said cylindrical feed bore and said greater shoulder forming a valve port in combination with said
feed bore, between said inlet pressure in said feed bore and outlet pressure in said outlet chamber.

4,095,743
FLEXIBLE TRACK FOR ELECTRICALLY ENERGIZED MINIATURE VEHICLES John D. Birdsall, 1262 Sunset Plaza Dr., Los Angeles, Calif.
90069 \({ }^{9} \mathbf{C o 0 6 9}\)
Continuation-in-part of Ser. No. 652,071, Jan. 26, 1976, abandoned. This application Nov. 29, 1976, Ser. No. 745,529 U.S. CI. 238-10 F

6 Claims

1. A track for miniature cars, trains, or the like, comprising: an elongated structure formed of a plurality of rigid traverse
members each having a central hole therein and each having a members each having a central hole therein and each having a central arcuate section shaped to nest with the central arcuate
section of an adjacent like traverse member, each of said trasection of an adjacent like traverse member, each of said tra-
verse members having an upstanding pin positioned to be verse members having an upstanding pin positioned to be
received in the central hole of the adjacent like member, said track being capable of being turned laterally to curved configurations within predetermined limits, and at least one elongated electric element extending along the length of the elon-
gated structure, said electric element being formed of electri-
1. A method of stabilizing and supporting a portion of an anderground lawn-sprinkling system, said portion comprising to an underground supply pipe, said method comprising: (a) driving elongated vertical support means into the ground at said riser pipe in an underground lawn-sprinkling system, and
(b) employing said riser to direct the downward course of said support means as it is thus driven, whereby said sup port means is in stabilizing and supporting relationship to said riser after completion of said driving.
12. A device for stabilizing, supporting and protecting sprin pipes, said device comprising: ipes, said device comprising:
mount around a sprinkler system riser, and (b) two fork legs rigidly connected to said body and extending downwardly therefrom,
said legs being parallel to each other and being spaced
from each other a distance sufficient from each other a distance sufficient to permit said legs
to straddle the underground supply pipe joint to which to straddle the underground supply
said riser is connected.
\[
4,095,745
\]

CONTINUOUS TUBE MULTIPLE EMITTER
Mark H. Christy, 1750 S. Zeyn St., Anaheim, Calif. 92802 , and Mark H. Christy, 1750 S. Zeyn St., Anateim, Calif. 92802, and
Lloyd Spencer, 220 Patrician Way, Pasadena, Calif. 91105 Filed Oct. 4, 1976, Ser. No. 729,838
U.S. CI. 239-109 12 Claims 1. A continuous tube multiple emitter, comprising: a. a continuous flow tube having a series of perforations therein;
b. a series of emitters disposed in the flow tube for discharge therefrom through said perforations;
each emitter forming a flush flow passage when exposed
to flow the forming tube pressure below a predetermined value and pressure above flow passage when exposed to flow tube pressure above said predetermined value, each emitter
having externally opposed surfaces of major area; d. each emitter adapted to be positioned in the flow tube to
present a surface of major area essentially perpendicular surface, said overlapping spray patterns extending laterally at to the axis of the flow tube thereby reducing the effective least to the ends of said cross member, whereby liquid from area of the flow tube, whereby, upon initiating an irrigation cycle, progressive sets of said emitters create a prestore drop across each emitter thereby accelerating rise in

flow tube pressure to said predetermined value, thereby reducing the number of emitters undergoing flush flow; the flow
emitter.
U.S. Cl. 239-287 oward each end of said cross passage from said junction and through said spray nozzles at substantially equal pressure to mpinge on the surface, thereby loosening and removing debris therefrom.

HIGH PRESSURE \(4,095,747\)
high pressure coaxial flow nozzles Arthur A. Anderson, St. Paul, Minn., assignor to Specialty Manufacturing Company, St. Paul, Minn
Continuation of Ser. No. 686,713, May 17, 1976, abandoned. This application Feb. 28, 1977, Ser. No. 773,425 U.S. Cl. 239-288.5

6 Chims issuing from said high pressure nozzle comprising:
a first member for connecting to a constant volume supply of high pressure fluid;
said first member having at least two openings therein in cluding a first fluid passage and a central fluid outlet, said first member operable for permitting continuous discharge of a high momentum fluid stream through said central fluid outlet, said first member reducing the diameter of the fluid stream flowing therethrough without bending th fluid stream emanating from said central fluid outlet; said first member having a frusto-conical fluid directing surface for directing a fluid stream thereover and a fluid deflector surface for directing a second stream of fluid alongside and spaced from the fluid stream emanating from said central fluid outlet;
a second member connected to said first member, said second member movable with respect to said first member, said second member having a frusto-conical fluid direc ing surface for directing a fluid stream thereon;
member and said frusto-conical fluid directing surface on said first member coacting to define a second fluid passage for directing fluid onto said fluid deflector surface; said second fluid passage operable for being opened and closed by movement of said second member with respect streams or a single high momentum fluid stream; and diverging section located in said second member, said diverging section spaced from said first member and said fluid deflector surface, said diverging section and said fluid deflector surface located at a diverging angle to one another so that fluid from sald second suid passage which pinge on said diverging section, said diverging section extending substantially beyond said central fluid outlet so that said central fluid nozzle is shielded by said second member.
1. A surface cleaning apparatus for use with a hose connected to a liquid supply, comprising a handle member having a handie passage therethrough and adapted te coss passage there-
hose at one end, a cross member having a cross through in a communication with said handle passage, said cross member extending laterally from and being connected to each end of said cross member, means for sealing each end of each end of said cross member, means
said cross member, means for supporting said cross member in spaced relation with the surface, supporting means comprising said first and second casters, first and second holes through said cross member on opposite sides of said junction, a deformsaid cross member on opposite sides of said sand first and second holes formed to receive said swivel pins, said swivel pins extending through said deformable sleeves, and fastening means one and axial force
engage the ends of said swivel pins and to exert an against said deformable sleeves, whereby said sleeves expand an cross section to sealably engage the boondaries of said first and second holes and said casters are secured therein, and a
plurality of spray nozzes mounted in said cross member for pluraciting a plurality of overlapping spray patterns onto the
directin
the emitters when in drip flow reducing the flow rate in

\section*{4,095,746}

SELF-SUPPORTED WATER SWEEPER Thomas A. Anderberg, and Richard Petrillo, both of 1031 62nd Fl., Oakiand, Calif. 94608
Filed Jan. 31, 1977, Ser. No. 763,975

1. A high pressure nozzle operable for producing spaced fluid streams or a single stream of fluid having sufficient mo mentum so as to clean an article by the force of the fluid stream

APPARATUS FOR MIXING A CEMENT SLURRY WITH A wall respectively for mating with a male thread formed on the APPARATUS FOR MIXING A CEMENT SLURRY WITH A \(\begin{aligned} & \text { respective inner and outer wall of the other of said sleeve and } \\ & \text { GLASS FIBER }\end{aligned}\) Sadao Ohtake, Nishinomiyg; Shiyuji Hayashida, Osaka; between upstream and downstream stop positions, said male
Takamasa Sanada, Settsu, and Shigeki Terai, Kobe, all of thread having at its trailing portion an enlarged member which Takamasa Sanada, Settsu, and Shigeki Terai, Kobe, all of
Japan, assignors to Kanebo, Ltd., Japan Japan, assignors to Kanebo, Lta., Japan
Filed Jul. 1, 1976, Ser. No. 701,652 thread having at its trailing portion an enlarged member which contacts the leading portion of the female thread when said
Claims priority, application Japan, Jul. 4, 1975, 50-81892; C. 1976, 51-28566[U]; Apr. 20, 1976, 51-49688[U]
U.S. CI. 239-419.3
 1. A spray gun for mixing a cement slurry with glass fiber in
order to produce a glass fiber reinforced-cement, said spray
gun comprising. gun comprising.
a body having a glass fiber supply passage formed as an
innermost hollow element, one end of said pascage being innermost hollow element, one end of said passage being
adapted for connection with means for cutting glass fiber and means for supplying cut glass fiber to said passage by compressed air, the other end of said passage forming a discharge opening for said cut glass fibers; said body having an outermost hollow elemen
centrically of said glass fiber supply passage
said body having a cement slurry supply passasaga passege provided in the concentric space formed between the innermost hollow element and the outermost hollow element which
passage is adapted for connection to cement slurry feeding means;
means;
an air introduction passage formed in the outermost hollow
element and communicating with said cement slurry supelement and communicating with said cement slurry sup-
ply passage through a plurality of air introduction holes, ply passage through a plurality of air introduction holes,
said outermost hollow element being adapted for connection to compressed air supply means;
a closing element provided between the periphery of said discharge opening, of the innermost hollow element and and arranged in such a manner that said closing element is perpendicular to the common axial line of said innermos perpendicular to the common axial
at least two injection holes provided in said closing element with respect to the direction in which the cut glass fiber flow in said glass fiber supply passage and communicating with said cement slurry supply passage so as to cause cement slurry discharged therefrom by compressed air to
be directed parallel to and inwardly toward the axial line of said glass fiber supply passage and mixed with cut glass fibers discharged from the discharge opening of the glass fiber supply passage, and wherein said air introduction holes are proximate at least two diametrically opposite cement slurry injection holes.

4,095,749
NOZZLE
Duncan Paul Campbell, 55 Sinclair Ave., Unit 6, Georgetown, Ontario, Canada (L7G 4S4)
ivision of Ser. No. 656,403, Feb. 9, 1976, Pat. No. 4,044,954. This application Apr. 20, 1977, Ser. No. 789,214
U.S. C. 239-458

1. A water conduit comprising:
a hose formed of elastic materials;
plurality of spaced tongue-like flaps formed in the wall of said hose by means of cuts through said hose wall, each said flap being flexibly secured to said hose wall at its said wall by said cuts, said flap being resiliently movble out of position as part of said hose wall to modify the extent of the opening through said wall, said movement depending in part upon the pressure of the water within said hose, said cuts being made at an oblique angle with respect to a plane through the longitudinal axis of said hose so that the inside surface of each said flap is larger one of the mating cut surfaces of ea
being formed with a dent in a direction substantially per pendicular to the cut surfaces to provide continuous access through said hose wall independently of the position
of said flap.

SLICING AND SHREDDING APPARATUS Robert Lee Artin, Menomonee Falls, Wis., assignor to Oster Corporation, Milwaukee, Wis. Filed Mar. 25, 1977, Ser. No. 781,350 U.S. CI. 241-37.5

1. A slicing and shredding appliance comprising a powe unit having a housing within which is mounted an electric motor, an output drive member mounted on said housing for rotation about its axis, coupling means mounted in said housin and operable from outside of said housing to drivingly connect receptacle detachably mounted on said power unit, means for mounting cutting means on said drive member for rotation within said receptacle, a cover for said receptacle providing an enclosure having inlet and outlet openings for introducing food to be processed and for discharging sliced and shredded said cutting means when said receptacle is assembled to said power unit so that said drive member rotates said cutting means, said coupling means being supported by said drive member and being axially displaceable, said cover having means for operating said coupling means by displacing it downwardly to drivingly connect said drive member to said motor, said drive memberled to said receptacle and said receptacle is mounted on said power unit, said coupling means including a coupling shaft which is mounted in said drive member for axial movement between first and second positio. with respect to said drive member and said cutting means.
1. Apparatus for processing materials comprising in combination, a longitudinal hollow tank, restraining means holding the tank near a first end for pivoting movement, movable means engaging the tank near the other end for rotating said her tank end about an arcuate path without rotation of the means for feeding materials into said first end, and means for removing materials from said other end after the materials within said tank describe a substantially spiral path flowing from said first end to the other

WINDING DEVICE \({ }^{4,095,754}\) Edgar Alfredo Campo, Columbus, Ohio, assignor to E. I. D Pont de Nemours and Company, Wilmington, Del Filed Mar. 24, 1977, Ser. No. 780,90
Int. C1. \({ }^{2}\) B65H \(17 / / 8,13 / 02\)
1. A winding device comprising
an arm
an armuck comprising
a mandrel fixed on one end of the arm
a housing rotatably mounted on the mandrel and having at least one groove with a floor cut around the periphery
oring in at least one of the grooves wherein the spring comprises
bottom contacting the floor of the groove
a plurality of cantilevered fingers joined to one edge of the bottom and extending out of the groove
a socket fixedly mounted to the other end of the arm
a base pivotally joined to the arm between the ends of the slider kick (14) mounted on the reel body, a rotor (1) rotatably
a fluid cylinder comprising
a piston rod pivotally mounted on the base

a cylinder casing operatively engaging the piston rod
a ball carried on the casing mated with the socket to universally connect the fluid cylinder to the arm. RIDER ROLL ASSEMBLY IN A WINDER
4,095,755 Keijo Kalevi Snygs, Karbula, and Aarne Johannes Kor
Kotkolainen, both of Finland, assignors to A. Ahlstrom Osakeyhtio, Kotka, both of Finland, assignors to A. Ahlstrom Osakeyhtio,
Finland
Filed Mar. 2, 1977, Ser. No. 773,619 Filed Mar. 2, 197, Ser. No. 773,619
Claims priority, application Finland, Mar. 12, 1976, 760643
Int. C.2. U.S. Cl. 242-66

1. A rider roll assembly in a winder comprising at least one load roll mounted on a movable transversal load beam and vibration absorbing means connecting the load roll to the load
beam, said vibration absorber means including means operable to dissipate energy of vibrations absorbed.

4,095,756
BAIL LATCHING AND RELEASING MECHANISM FOR OPEN-SPOOL SPINNING REEL Yasomemasu Morishita, Kure, Japan, assignor to Ryobi, Ltd.,
Fuchu, Japan
Filed Dec. 21, 1976, Ser. No. 753,162 Claims priority, application Japan, Dec. 27, 1975, 50-177565 U.S. CI. 242-84.2 G
1. An automatic bail latching and releasing 9 Claim 1. An automatic bail latching and releasing mechanism for an
mounted to the reel body, a pair of supporting blocks \(\left(\mathbf{2}, 2^{\prime}\right)\) provided at diametrically opposite positions outside of the rotor, a pair of bail arm levers (3, 12) pivotally secured to the respective supporting blocks, a bail wire (13) having its respective ends mounted on the bail arm levers, spring means (5) bail arm toward a released position, a slider (7) mounted in the supporting block mounting the other bail arm lever for linear movement with respect thereto, an annular opening in one end of the slider having a projection (17) thereon, a spring member

(8) for biasing the slider outwardly from said supporting block, a raised, generally arcuate cam surface (4) on the other bail arm lever disposed within the annular opening in engagement with
the slider projection, the cam surface the slider projection, the cam surface having a gradually inslider projection to latch the bail wire and slider at a cocked position, the cocked slider projecting out from its supporting block and striking the slider kick as the rotor is turned to release the cocked bail wire, whereby the return of the bail
wire to its released position compreses the wire to its released position compresses the spring member to
thereby oppose the return force of the spring means and reduce thereby oppose the return for
the bail wire return impact.

4,095,757
YARN TENSION DEVICE
Hans S. Singer, 191 Inglemood, Greenville, S.C. 29609 Filed Mar. 8, 1976, Ser. No. 664,689
U.S. C. \({ }^{242-151}\) Int. Cl. \({ }^{2}\) B65H 59/20

1. A yarn tension device comprising:
a member having walls defining an elongated yarn channel. a member having walls defining an elongated yarn channel; faces defining indentations in said member each indentation extending across and below said channel forming a continuous arcuate interruption in said yarn channel; an arcuate rotatable element carried in each said arcuate indentation by gravity;
each said arcuate rotatable element having a surface corresponding generally but being slightly smaller than said concave arcuate surface of its corresponding indentation;
and
said arcuate interruptions being of such extent as to cause the yarn moving through said yarn chatable elements within portion of each of sad arcane rinlly to rotate said rotat able elements.
evice for stabilization of captive aircraf Heinz Woitschella; Wolfgang Reuter, both of Friedrichshafen, and Roif Swik, Munich, all of Germany, assignors to Dornie GmbH, Germany
Continuation-in-part of Ser. No. 541,253, Jan. 15, 1975. This application Mey 6, 1976, Ser. No. 683,966 Claims priority, application Germany, Mar. 14, U.S. Cl. 244-17.17

3 Claims

\section*{4,095,758}

\section*{TAPE RECORDER SYSTEM}

Bansi \(K\) Strof, Irvine, Callf, essignor to Honeywell Inc., Minneapolis, Minn.

Filed Nor. 28, 1975, Ser. No. 635,941
Int. C1. \({ }^{2}\) G11B IS \(532.15 / 46,15 / 100,23 / 10\) U.S. C. \(242-192\)

1. A tape transport system comprising a pair of coplanar hubs rotatable about fixed axes and a length of pliable tape hubs rotatable about fixed axes and a length of pliable lape
carried in rolls on said hubs; a transducer cooperative with a span of tape intermediate said rolls; and drive means for drivspan of tape intermediate said tape across said transducer from one said tape roll to the other said tape roll, for maintaining substantially constant tension in said entire length of tape in all modes of operation of
said system and for producing hard-packed, highly reproducsaid system and for producing hard-packed, highlising a first capstan movable into engagement with the periphery of the first of said tape rolls, a second capstan movable into engagement with the periphery of the second of said tape rolls, a first variable speed motor drivingly connected to said first capstan and a second variable speed motor drivingly connected to said second capstan, a first carriage, said first motor being mounted rotor of said first motor, and a second carriage, said second motor being mounted on said second carriage and said second capstan being mounted on a rotor of said second motor, biasing means for biasing said capstans into driving engagement with he peripheries of said tape rolls, said biasing means inclucing spring means through which said carriages are connected to exerted by the capstans on the tape rolls regardless of the relative sizes of the tape rolls, and control circuit means connected to both said motors for controlling the speed of each of said motors, thereby generating a desired speed and tension in said span of tape intermediate said rolls, said capstans being the
sole motive force for driving said tape across said transducer sole motive force for driving said cape accose sall.

In a device for the stabilization of a captive rororcraft with a drive unit, with output regulating means, for lifting rotor blade means having cyclic and collective control of said rotor blade means, and wherein a mooring line engages below the otorcraft center of gravity.
the improvement comprising position regulating means and translation damping means for the purpose of maintaining predetermined reference values relating to all rotorcraft axes and to translation, and adapted
control of said rotor blade means
control of said rotor blade means, cable line traction regulating means adapted to influence said output regulating means and said collective control of sain rotor blade means, said cable line traction regulating
means being adapted to operate in dependence upon cable means traction in immediate proximity to the rotorcraft and in dependence upon rpm of said rotor blade means,
and angular velocity regulating means for influencing a yaw tail assembly control nozzle means for adjusting the posia control thrust.

4,095,760
STRUCTURAL SKIN CONSTRUCTION MATERIALS AND METHOD
, .it Mict Continuation of Ser. No. 621,413, Oct. 10, 1975, abandoned. This application Apr. 4, 1977, Ser. No. 784,075
U.S. C. \(244-123\)

8 Claims
4. In combination with a fluid craft frame, a flexible laminated heat-shrinkable covering material applied thereto, said polymeric film adhesively bonded together, said interior layer
being resistant to impact, tensile, and shear forces, and being biaxially oriented, said exterior layer being resistant to ultraviolet penetration to shield said inner layer and having dissimilar
coefficients of expansion and contraction from that of said coefficients of expansion and contraction from that of said inner layer, with said heat-shrinkable material providing substantially smooth and wrinkle free interior and
faces after being heat-shrunk about said frame.

AERIAL REFUELING SPOILER Ardell J. Anderson, Redmond; Kenneth D. Hurley, Bellevue; Richard H. Leckman, Seattle; Ronald H. Robinson, and Edward \(\mathbf{N}\). Tinoco, both of Bellerve, all of Wash., assignors to The Boeing Company, Seattle, Wash.

Filed Sep. 29, 1976, Ser. No. 727,739
Int. C1.2 B64D 39/00
U.S. Cl. 244-135 A

5 Claims

shaftless piston contained within said cylindrical mean and having a face and a skirt portion
said face being in open communication with one of said ejectors;
nother piston contained within said cylindrical means and having a face and a skirt portion;
said face of said another piston being in ope
with the other of said pair of ejectors
an impermeable barrier in said cylindrical means between said shaftless piston and said another piston;
nkage means external of said cylindrical means operatively
connecting the shaftless piston and said another pistor a source of high-pressure fluid in communication with the interior of the skirt of the shaftless piston;
hydraulic fluid contained within a space between each ejec tor and the face of the shaftless piston and the face of said
another piston;
so that when said high-pressure fluid causes said shaftless piston to move hydraulic is forced into said ejectors by
having said shaftless piston and said having said shaftless piston and said another piston linked
by said linkage means external to said cylindrical by said linkage means external to said cylindrical means.

4,095,763
FAIL SAFE AUGMENTATION SYSTEM
Kenneth E. Builta, Euless, Tex., asslgnor to Textron, Inc., Provi-
\({ }_{\text {Filed }}\) Feb. 25, 1977, Ser. No. 771,898
U.S. CI. 244-194 Int. Cl. \({ }^{2}\) GOSD \(1 / 00\)

11 Claims
1. In combination with an aircraft having an aerial refueling apparatus for receiving fuel while in flight including a refuelapparatus for receiving fuel while in flight including a refuel-
ing receptacle located on the forward surface of its fuselage, the improvement comprising aerodynamic means mounted on said forward surface of the fuselage for improving the pitch stability of the aircraft during aerial refueling wherein said means comprises a spoiler plate having a forward face of
height \(h\) and width \(w\), and a thickness \(t\) substantially less than height \(h\) and width \(w\), and a thickness \(s\) substantially less than
\(h\) or \(w\), said spoiler plate being oriented such that a normal to said forward face is substantially perpendicular to the pitch axis of the aircraft.

\section*{4,095,762}

GN \({ }_{2}\) ACCUMULATOR POWERED SHAFTLESS PISTON FOR DEPENDENT DUAL EJECTOR BOMB RACK Lloyd J. Holt, Ridgecrest, Calif., assignor to The United States of America as represented by the Secretary of the Navy,
Washington, D.C. Filed Jul. 18, 1977, Ser. No. 816,418 U.S. Cl. 244-137 R \({ }^{\text {Int. Cl. }{ }^{2} \text { B64D } 1 / 04}\)

Claims

1. A stores ejecting system adapted to be attached to an aircraft for forcibly ejecting a store attached to the aircraft by releaseable attachment means comprising
a pair of physically separated ejectors
each of said ejectors being hydraulically actuated;
each of said ejectors being hydraulically actuated;
substantially cylindrical means physically and operatively
connecting the pair or ejectors;

1. An aircraft control system, comprising: input means for introducing a manual commnd to position a control surface,
stability control augmentation means comprising:
(a) an actuator connected through linkage to the control surface,
(b) at least two drive circuits for said acutator, each comprising:
(i) a position sensor responsive to said input means and generating a position signal, and
(ii) a drive amplifier responsive to the position signal and providing an output to drive said actuator, (c) means responsive to the outputs of the drive amplifiers
to produce a difference signal, and
d) means responsive to the difference signal to disable said actuato

\section*{4,095,764}

SPOT CONTROL TYPE AUTOMATIC TRAIN STOP SYSTEM UTILIZING GROUND CONTROL UNITS COMMON TO MORE THAN ONE BLOCK SIGNAL Nobuhiss Osada, and Hideo Nakamura, both of Tokyo, Japan assignors to Japanese National Railmays, Tokyo, Japa
Filed Nov, 10, 1976, Ser. No, 740,721 Claims priority, application Japan, Nov. 26, 1975, 50-140847 U.S. C. \(246-182\) Int. C. \({ }^{2}\) B61L \(3 / 10\) U.S. C. 246-182 B 8 Claims 1. A spot control type automatic train stop system for use in
a train control system having block section signals at the junc-
ions between successive block sections of a railway line, said irregular apertured workpiece, said clamp including a head automatic train stop system comprising: a train unit for mount- adapted to cover said aperture and a body complementary to ing on a train and having means, other than a train braking said irregular aperture and having an axially extending through pattern storage means for storing a plurality of train braking bore capable of accepting cables of differing diameters, a secpatterns, responsive to a first spot information signal for gener- ond bore extending through said body parallel to said first bore
ating a basic distance-sped train braking pattern for the train according to which the train can be brought to a stop from and opening through said head, an integral generally \(L\)-shaped maximum train speed, and having means, other than a train braking pattern storage means for storing a plurality of train braking patterns, responsive to each of further successive spo information signals for cancelling the entire basic pattern and
regenerating the balance of said basic pattern subsequent to th tege of cancellation thereof, and means responsive to a cancellation signal for cancelling the basic pattern and any regene ated balance of the basic pattern; control means on said train
coupled to said train unit for comparing the actual speed of the coupled to said train unit for comparing the actuan speed of the
train with the speed from the generating means and braking the train with the speed from spe exceeds the pattern speed; a first
train when the actual sped ene signal transmitting ground unit corresponding to each block
section signal and positioned at a point along said railway line section signal and positioned at a point along said railway line spond at a distance ahead of the block section signal at least equal to the longest braking distance of the train; signal transmitting means coupled between each block section signal and
the corresponding first signal transmitting ground unit for

ransmitting to said first signal transmitting ground unit a first spot information signal when the corresponding block section signal is in the stop aspect and for transmitting to said first
signal transmitting ground unit a cancellation signal when the signal transmitting ground unit a cancellation signal when the aspect; at least two further signal transmitting ground units positioned at intervals between each first signal transmitting pround unit and the corresponding block section signal; further ground unit and trang means coupled between each block section signal and the corresponding further signal transmitting ground units for transmitting to said further signal transmitting ground units further successive spot information signals corre--
sponding to the respective positions of said further signal transmitting ground units when the corresponding block sec. tion signal is in the stop aspect and for transmitting to said
further signal transmitting ground units a cancellation signal further signal transmitting ground units a cancellation signal
when the corresponding block section signal is in the caution or go aspect; and a cancellation signal transmitting ground unit
positioned adjacent each block section signal for transmitting a positioned adjacent each block section signal for transmitting a cancellation signal to said train unit and still further signal
transmitting means coupled between each block section signal transmitting means coupled becween eacresponding cancellat signal ground unit for transmitting to said cancellation signal ground unit a cancellation signal when the corresponding block section signal is in the caution or go aspect.

\section*{4,095,765}
adjustable cable clamp
Michele Aimar, Turin, Italy, assignor to ITW Fastex Italia,
S.p.A., Turin, Italy Filed Mar. 28, 1977, Ser. No. 781,606
Claims priority, application Italy, Apr. 14, 1976, 22289 A/76 Claims priority, application Itay, Apr. 14,
U.S. Cl. 248-56 \(\quad 6\) Claims of differing diameters against axial movement relative to an

enerally defining an extension of one end wall of said through bore, said pawl further including a second limb angularly disposed relative to said first limb and being so disposed that it
intersects the axis of said second bore, screw means acceptable within said second bore to impinge upon the second limb of said pawl to cause said pawl to pivot about said hinge means and to bring the first limb of said pawl into locking engagemen with the cable.

TRAILER HITCH HAVING ELASTOMER-IN-SHEAR CUSHIONING IN THE DIAGONAL STRUT Caul E. Hicks, Jr., Florissant, and James C. Hammonds, St.
Charles, both of Mo,, assignors to ACF Industries, Incorporated, New York, N.Y.

Division of Ser. No. 601,149, Aug. 1, 1975, which is a continuation-in-part of Ser. No. 457,256, Apr. 2, 1974,
abandoned. This application Apr. 8, 1977, Ser. No. 785,989

1. A diagonal strut energy absorbing cushioning assembly or use in a trailer hitch for holding piggyback trailers in place an inclined loars comprising:
member having strut to the deck of attached thereto for attaching said longitudinally exten a railway car; at least one inclined said fixed member; said movable member having means for attaching said strut to a kingpin engagement assembly of a railway trailer hitch for holding in place the kingpin of a highway trailer; a resilient assembly carried by said fixed and said movable members; said resilient assembly comprising at least a pair of spaced outer plates and a
least one center plate therebetween and wherein elasto meric material is attached to said center plate and to said pair of spaced outer plates, whereby when loads are ap plied to said kingpin engagement assembly said elasto meric material will deflect in shear and cushion said rail
way trailer hitch; and wherein upon a draft load applied to said diagonal strut, one of said pair of spaced outer plates ARACKET ASSEMBLY spaced outer plates and center plate remains fixed, relative Clark, Inc., Stamford, Conn.
to said fixed member; and wherein under buff loads ap-
Filed Jan. 26, 1976, Ser. to said fixed member; and wherein under buff loads apouter plates and said center plate moves, and the other said pair of spaced outer plates and center plate remains fixed, relative to said fixed member
\(4,095,767\)
TRAILER HITCH HAVING ELASTOMER-IN-SHEAR CUSHIONING IN THE DIAGONAL STRUT Paul E. Hicks, Jr., Florissant, and James C. Hammonds, St. Chated, New York, N.Y Division of Ser. No. 601,149, Aug. 1, 1975, which is a
continution-in-part of Ser. No. 577 ,256, Apr. 2, 1974, continuation-in-part of Ser. No. 457,256, Apr. 2, 1974, sbandoaed. This application Apr. 8, 1977,
Int. Cl. \({ }^{2}\) B65J \(1 / 22\)

3 Claims

1. A diagonal strut energy absorbing cushioning assembly for use in a trailer hitch for holding piggyback trailers in place
on railway flat cars comprising: on railway flat cars comprising:
member having means attached thereto for affixing the same to the deck of a railway car; an inclined longitudinally extending movable member, spaced from said fixed member; said movable member having means for affixing said strut to a kingpin engagement assembly of a railway
trailer hitch for holding in place the kingpin of a highway trailer; a resilient assembly carried by said fixed and said movable members, said resilient assembly comprising at least one elastomeric member attached to a first surface of said fixed member and attached to a second surface on said movable member, spaced from said first surface; said first and second surfaces being generally parallel; said elastosecond surfaces under cushioning loads; said fixed and movable members each further including spaced side portions which, together with said first and second surfaces, define a housing for said elastomeric material; said side portions including spaced juxtaposed flange portions extending away from said resilient material; one of said other of said flange portions comprising a projection located within said channel; said projection being movable relative to said channel to guide movement of said movable member relative to said fixed member as said resilient material deflects in shear during cushioning of said trailer hitch.

1. A bracket assembly comprisin
a rigid elongated support rod;
a fitting having a socket for receiving one end of said rod hook means depending from said fitting for supporting an article;
a wall bracket having a socket for receiving the other end of said rod;
means for affixing said bracket to a wall
an elongated end support means affixabbe to said fitting at a
position further from said wall bracket than the distance position further from said wall bracket than the distanc
between said hook means and said wall bracket; said support means being adapted to be affixed to said wall and a point above said wall bracket to hold said support rod in a horizontal position, the portion of said wall bracket containing the socket thereof being movable be to said wall.

\section*{\(\stackrel{4,095,769}{ }\) FREIGHT PALLET}

Gerd Fengels, Hagen, Germany, assignor to Bruggemann \& Brand KG, Wetter (Rubr), Germany

Filed Oct. 2, 1975, Ser. No 61901 Claims priority, application Germany, Feb. 22, 1975, 250770 U.S. CI. 248-346

Int. C. \({ }^{2}\) B65D 19/22
1. A pallet for receiving freight such as airfreight for trans port by air or for an air drop release from air planes by means a laterally extending core;
a pair of cover plates disposed, respectively, above and below said core and sandwiching said core therebetween; a shoulder strip extending around the periphery of said core
and extending between said cover plates said should and extending between said cover plates, said shoulder
strip defining at least four edges of said pallet, at least one strip defining at least four edges of said pallet, at least one
said pallet edge being provided with a plurality of openings therethrough;
internal connecting members holding structures mounted within said core between said cover plates and communicating with said pallet edge openings;
plurality of connecting members, each
a plurality of connecting members, each said connecting strip openings and said internal connecting member holding structures; and
means for releasably securing said connecting members to
said pallet with a portion of each conecting member said pallet with a portion of each connecting member so
whereby a pair of such pallets may be substantially rigidly site sides of said central pivot, a flexible hydraulic conduit joined together edgewise by insertion and securing of between the bottom portion of the rams, a fluid in the conduit such connecting members into the openings and internal which passes from one bottom portion to the other bottom connecting member holding structures of respective facgular configuration and said internal holding structures comprise at least one first take-up tube extending between and affixed to the shoulder strips defining two pallet edges

generally normal to said one said pallet edge, and at leas generally normal to said obecond take-up tubes, each attached at one end thereof to said first take-up tube and are attached at the opposite end thereof to the shoulder strip defining said one pallet edge, the axially outermost portions, with respect to sommunicating with openings provided in said pallet edge shoulder strips.

TILTABLE SEAT FOR TRACTOR AND THE LIKE Daniel C. Long. 14314 Hamilton, Rivervien, Mich. 48192 Filed Nor. 1, 1996, Ser. No. 737,61
U.S. C1. 248-371

Int. Cl. \({ }^{2} \mathbf{B 6 0 N} 1 / 02\)

1. A self-leveling, sidewardly tiltable, vehicle seat embody ing a seat cushion, a support element on which said cushion is secured adjacement to the forward and rearward edges of said support element with the apexes extending downwardly, base support element having at the forward and rearward edges thereof laterally extending triangular shaped members with the apexes extending upwardly, said triangular shaped
members at the forward and rearward edges of the base and members at support elements having aligned apertures at the apexes thereof, central pivot means extending through said apertures permitting the cushion to tilt laterally when the vehicle is tilted; from the vertical, a pair of rams connected
portion thereof when the seat cushion is tilted in either direc-
tion, reservoir means communicatiog with said hydraulic contion, reservoir means communicating with said hydraulic conmanual control valve in said flexible conduit which may be closed to prevent tilting of the cushion or opened to a desired degree so that when open, said fluid is caused to move at a
controlled rate from one ram to the other by weight of the seat occupant to maintain the cushion in a substantially horizontal position.

DEVICES FOR MANUFACTURING WALL PARTITIONS Cornelis van der Lely, 7, Briischenrain, Zug, and Hendricus Jacobus Cornelis both of Switzerland coth of Sivizerland
which is a continuation of Ser , Dec. 23, 1974, abandoned, bandoned. This application Jul. 26, 1976, Der. 14, 1972, \(\underset{7117333}{ }\)
priority, application Netherlands, Dec. 17, 1971,
U.S. Cl. 249-18 Int. Cl. \({ }^{2}\) B28B 7/22

21 Claims

1. A device for manufacturing a partition intended as a wall, a floor, a ceiling or roof of a building, said device comprising a jig including a horizontally disposed jig floor having substantially vertical edges about its periphery, upright jig sides each having a substantially vertical portion corresponding to a said
vertical edge of said jig floor and providing with said jiig floor a mold for forming the partition, substantially horizontally disposed pivot means, the axis of said pivot means being located at a substantially lower level than the top of said jig floor, at least one of said jig sides being arranged to be pivotable
about said pivot means whereby said one pivotable jig side with its vertical portion thereof is pivotably displaceable from a position where its vertical portion joins the corresponding vertical edge of said jig floor, a supporting frame provided for supporting said jig floor at least in part, said supporting frame
comprising channel beams which each include upper and comprising channel beams which each include upper and
lower limbs extending outwardly, said pivot means having a pivot shaft mounted on said lower limb of one of said channel beams, a locking member for said one pivotable jig side cooperating with an upper limb of the same one of said channel of said one pivotable jig side is urged against said corresponding vertical edge of said jig floor, said locking member comprising a turnable clamping guide mounted on said one pivotle jig side located to cooperate with a fastening hook, said astening hook being provided on said upper limb of said one channel beam, said clamping guide being formed by a round
disc, the circumference of said disc being interrupted by a straight peripheral portion, the distance between the rotary axis of the locking member and the fastening hook exceeding the distance

CASTING APPARATUS FOR PLASTIC LENSES Hermann P. Weber, 5506 Beckford Ave., Tarcana, Calif. 91356 Filed May 13, 1977, Ser. No. 796,699
Int. C.2. B29C S/00; B29D \(11 / 00\)
U.S. CI. 249-82

1. An
prising:
ube corner-type retroreflective unit, each respective one of said second and said third facet surfaces being equal in
area and shape to all others of said second and said third facet surfaces
(E) all individual ones of each of said first, said second, and said third facet surface types being further characterized
by having one edge thereof coincide with one common side edge of their respective associated said bodies, (F) said bodies being adapted for, and spatially orientable in, a contacting, adjacent longitudinally mating, side-by-side
relationship relative to respective said side wall portions thereof with all individual ones of each of said, first, said second, and said third facet surface types cooperating to define a plurality of such individual cube corner type retroreflective units, all said units comprising said plural-
ity being generally longitudinally arranged in adjacent ity being generally longitudinally arranged in adjacent
relationship to one another along the adjoining said top edge wall portions of said bodies,
(G) each such individual cube corner type retroreflective (G) each such individual cube corner type retroreflective
unit being defined by one of each of said first, said second, unit being defined by one of each of said first, said second,
and said third facet surfaces, respectively, which are arranged circumferentially about an optical axis extending therethrough, all of such facet surfaces of any given such cube corner type retroreflective unit being inclined at a
generally similar angle relative to said optical axis, and all generally similar angle relative to said optical axis, and all
such facet surfaces of any given such cube corner type such facet surfaces of any given
retroreflective unit meeting at an apex point along said optical axis, said first facet surface in any given such cube corner-type retroreflective unit being at least equal in area
to each of the respective areas of said second and said to each of the respective areas of said second and said
third facet surface types thereof, the interrelationship third facet surface types thereof, the inter
between all such facet surfaces of any given such cube corner type retroreflective unit and said optical axis thereof being such that a ray of incident light striking a predetermined surface of a body molded over said adjoin-
ing top edge wall portions, and also striking one of the facet surfaces of any given such cube corner type retrore-
flective unit as such is formed in said molded body within a predeterminable range of incident angles relative to said optical axis thereof as formed in said molded body, is deflected successively against the other two said facet surfaces of such cube corner type retroreflective unit as
such is formed in such molded body and is then substantially retroreflected away from such cube corner type retroreflective unit in said molded body,
(H) each respective such optical axis of all
(H) each respective such optical axis of all such cube corner type retroreflective units comprising said plurality being
disposed substantially parallel to the other optical axes disposed substantially parallel to the other optical axes
(I) each respec
retroreflective unit comprising said plurality being subretroreflective unit comprising said plurality being sub-
stantially coplanar with respect to the other apex points thereof.

4,095,774
CAM REGULATED FLOW CONTROL VALVE Bruce L. Garnett, Rte. 2, DePere, Wis. 54115, and John R. Herman, 3283 Davies, Green Bay, Wis. 54302
Filed Jan. 31, 1977, Ser. No. 763,912
U.S. C. 251-44

9 Claims

1. In a flow control valve:
a housing having a bore, a fluid flow passage, and a drain cavity therein;
a piston slideable in
a piston slideable in said bore and dividing said bore into first
and second chambers;
first and second separation means for separating said first first and seconc separation means for separating said hirst
and second chambers of said bore, respectively, from said drain cavity and from said fluid flow passage, respec\(\stackrel{\text { tively; }}{\text { said housin }}\)
said housing having a fluid inlet port and a controlled flow outlet port which communicate with said fluid flow passage, said housing having a drain outlet port communicat ing with said drain cavity;
a piston rod connected to said piston and extending through said first separation means into said drain cavity;
a poppet connected to said piston and extending through said second separation means into said fluid flow passage
to control fluid flow from said fluid inlet port to said controlled flow outlet port;
a first passage communicating between said inlet port and said first chamber
port and said second chamber
a third passage extending through said piston rod and communicating beween said first chamber and said drain cav ity;
shut-off member movably mounted on said piston rod and movable to control fluid flow through said third passage a movable cam mounted in said drain cavity and operatively connected to said shut-off member for controling the piston rod to control fluid flow from said first chambe into said drain cavity and to thereby control the position of said piston, said piston rod and said poppet and thereb enable said poppet to control fluid flow from said fluid inlet port to said controlled flow outtet port;
nd means for moving said cam to effect movement of said poppet.

PARTICLE EVALUATOR
Geoffrey
93108
Hotham, 1130 Channel Dr., Santa Barbara, Calif.
Filed Dec. 22, 1975, Ser. No. 642,915 U.S. Cl. \({ }^{\text {Int. }}\) - 102

SUCTION CONVEYING AND MIXING APPARATUS udi Baumann, Rosenberg; Otmar Link, Gotzingen, and GerMaschied, Rosenberg, all of Germany, assigny

Filed Sep. 21, 1976, Ser. No. 725,343 Claims priority, application Germany, 0
U.S. C. \(366-163\) Int. Cl. \({ }^{2}\) B01F \(15 / 00\)

14 Claims

1. A suction conveying and mixing installation have a pluraliy of supply containers for different bulk material components, at least one suction conduit connected to the supply containers, said bulk material components which are separated from a conveying stream, said mixing container being connected to said suction conduit and having a bottom aperture for emptying the bulk material, a suction fan downstream of the separaing a mixing air flow in said mixing container for mixing the plurality of bulk material components which are separated out from the conveying stream, said means creating a mixing flow comprising at least one ventiltion valve in the region of the he end of a mixing container loading operation while the suction fan is running.

\section*{COMBUSTION CHAMBER WITH \\ COMBUSTION CAMBER WITH SLAG DAM AND DRAIN TROUGH \\ Donald E. Honake, Bailw, Mo to Monsento, St. Louis, Mo.} iled Nov. 15, 1976, Ser. No. 741,826
U.S. Cl. 266-45 Int. Cl. \({ }^{2}\) C21B 7/12 4 Claims

\section*{s}
 1. In apparatus for evaluating particles having a light trans-
mitter for transmitting radiation as a beam along an optical axis to a sample zone; and
optical means for transmitting radiation from an object plane in said sample zone along said optical axis and for focusing at a picture plane images of particles at said object plane
said optical means rendering said object plane conjugate said oprical means respect to said picture plane, whereby images of particles simultaneously present at said object plane are sharply defined as separate images
sent
the improvement that comprises:
means for directing a stream of said particles into said sample
zone along a path transverse to zone along a paah ransverse to said optical axis whereby
separate particles may be separat
and
wall means having apertures aligned with said optical axis on opposite sides of said sample zone for confining the flow

1. A method for draining hot molten slag from a combustion ramber which comprises providing at least one inclined pool of molten slag of sufficient depth to serve as a heat sink maintaining the molten slag in a flowable condition, drawing molten slag from said pool in at least one laterally thin stream liscosity at a rate such that there is no substantial increase in varging said thin stream(s) of molten slag from pool, and dis ion chamber through a slag tap-hole with essentially no contact of molten slag with any surface of sufficiently lower temperature than that of the molten slag to cause solidification temperature than that of the moiten slag
of said slag on or around said tap-hole.

COMBINATION \(4,095,778\) Harold R. Wing, 1185 E. 225 North, Springrille, Utah 84663 Filed Jul. 22, 1977, Ser. No. 818,178
U.S. CI. 269-71

1. A work table comprising:
a basal framework; and
a tiltable work platform mounted on the basal framework means for tilling the work platform relative to the basal
framework the tiltable work platform comprising fase framework the tiltable work platform comprising a frame
work and a working surface secured to the framework work and a working surface secured to the framework,
the working surface comprising at least two leaves com prising a first and a second leaf with at least the first lea laterally displaceable with respect to the second leaf, the framework comprising two parallel, spaced tracks upon which at least the first leaf is slideably engaged, a singl
centrally disposed screw a crank for turning the screw, centraily disposed screw, a crank for turning the screw,
journal bearing through which the screw passes and which serves as a thrust bearing for the screw, and a bos secured to the first leaf and threadedly engaged to the screw, rotation of the screw moving the boss and the fir
leaf laterally relative to the second leaf, the boss config rated as a swivel, the swivel accommodating unequal lateral movement of the first leaf relative to the second
leaf to thereby accommodate clamping an asymetrica
object between the two leaves upon rotation of the screw.
object between the two leaves upon rotation of the screw.

\section*{4,095,779}

APPARATUS FOR STACKING A CONTINUOUS
PRINTED PAPER BEING FOLDED
Tsutomu Imagi, Kakogawa; Toshiharu Fudatsuji, Zama, and
Yasuhiko Torigoe, Akashi, all of Japan, assignors to Fujitsu
imited, Kamasakk, Japan
Filed Jul. 20, 1976, Ser. No. 707,114
Claims priority, application Japan, Aug. 1, 1975, 50-94605
U.S. Cl. \(270-61\) F Int. Cl.2 \({ }^{2}\) B65H 45/00
1. 6 Claims comprising:
paper guide means for guiding said printed paper and having a terminal end through which said guided paper passes; paper accumulation means for receiving said guided pape passing through said terminal end, and having a center base plate for accumulating said received paper, said
paper accumulation means further including means for lowering said center base plate according to the height of the stacked paper thereon, so as to maintain an approximately constant distance between the terminal end of the paper guide means and the uppermost surface of the
stacked paper on the paper accumulation means, said stacked paper on the paper accumulation means, said
paper accumulation means further including two accumulation plates disposed on opposite sides of said center base plate and having a variable angular orientation with re-
edge portions of the stacked paper thereon, said accumuation means further including means for pivotably swinging said two accumulation plates as said center base plate ccumulation plates to vary the angular orienta ith respect to said center base plate in such a way that the larger the distance between the terminal end of the paper guide means and the paper accumulation means, he grward angular orien wherein said accumulation plates comprise two symmetri-

cal plates, each one end of said plates being pivotably connected to a support table which is vertically movable in accordance with the distance between the terminal end of the paper guide means and the paper accumulation
means, said swinging means comprising a pair of guide rails, each having an upper end and a lower end, said pair of guide rails converging at said lower end thereof, each other end of said plates being slidably in contact with the uide rails so as to cause said accun as said center base plate is lowered.

4,095,780
RETRACTING TUCKER BLADE AND BRUSH FOR CYLINDER FOLDER
Richard Allen Gaspar, Centerville, and Robert Baxter Tarburton, Dayton, both of Ohio, assignors to Harris Corporation, Dayton, Ohio

Filed Oct. 7, 1976, Ser. No. 730,355
Int. Cl. \({ }^{2}\) B65H 45/16

1. In apparatus for zig-zag folding a flexible web, including pair of driven cylinders disposed in parallel adjacent relation acker blade and gripper means on each cylinder and effective fold and tuck the web alternately into the gripper means on alternate cylinders at longitudinally spaced intervals along the
cooperating with the gripper means for releasing and guiding the folded web from the gripper means and the cylinders, the improvement comprising:
(a) a compliant sweeper
(b) means mounting said sweeper at a cylinder surface near a tucker blade and means within that cylinder for cyclically moving the sweeper to an extended position extend-
ing beyond the cylinder surface for contacting the web ing beyond the cylinder surface for contacing the wab ted griper means and for maintaining said sweeper in said position extending beyond the cylinder surface after the gripper means on that cylinder has released the web thereon, for continuing to contact the web to aid the protect it from the tucker blade.
\(4,095,781\)
CURRENCY DISPENSING APPARATUS Jerome L. Kistrerr; Thomas RR. Aultz, both of Cincinnati; John A. Lampl, Hamilton, and William T. Uhlman, Cincinnati, all of Ohio, assignors to The Mosler Safe Company, H
Filed Sep. 17, 1976, Ser. No. 724,112 Hied Sep. 17, 1976, Ser. No. 724
U.S. CI. 271-12
1. A currency dispenser for sequentially feeding single bills of currency from the top of a vertical stack of superimposed horizontally disposed bills, comprising:
a vacuum pickup member overlying said stack, said pickup member having a suction head and being mounted for
rotation about a first generally horizontal axis whereby rotation about a first generally horizontal axis whereby
said suction head moves through a circular path when said pickup member rotates about said first horizontal axis, said path at its lower extremity being proximate a pickup
region defined by the location of the uppermost bill of said region defined by the lock,
underlying vertical stack,
upper and lower cooperating feed belts trained over upper and lower sets of spaced rotatable cylindrical rolls fo transporting a bill therebetween, one of the rolls of said lower set being rotatable about a second generally hor zontal axis
means for moving said belts during an operational cycle to
effect transport of a bill therebetween along a transport path from the nip of a bill entrance end proximate said one roll of said lower set to a bill exit end displaced therefrom meanting said operational cycle,
means for mounting said upper and lower sets of rolls for
rotation about their respective axes with said one roll axially displaced relative to said pickup member and with said second axis of said one roll generally parallel to, but
offset from, said first axis of said pickup member for rendering said circular path of said suction head noncoincident with and below the surface of said one cylindrical roll in said pickup region while rendering said circular
path substantially coincident with said surface of said one
cylindrical roll in the region of said nip, thereby minimizing interference in said pickup region between the upper most bill of said stack and said lower feed belt during vacuum pickup by said suction head the top of said stack while maxizizing transfer of a from trom said suction head to said upper and lower belts in the region of said nip,
said second axis of said one roll lying on an imaginary line which passes through the area defined by said path of said suction head to facilitate pickup of a bill in said pickup than \(360^{\circ}\) of movement of said suction head.

4,095,782
COLLATING APPARATUS
Theo Pierre Chretien Breuers, Venlo, and Andreas Theodorus Heijnen, Tegelen, both of Netherlands, assignors to Oce-van Her Grinten N.V., Venlo, Netherlands
Filed Mar. 17, 1977, Ser. No. 778,378
7602821
ity, application Netherlands, Mar. 18, 1976
U.S. Cl. 271-173

Int. C. \({ }^{2}\) B65H 39/10

3. A collating apparatus for the collation of sheets, comprising a frame, at least one series of adjacent trays located in the
frame, conveying means for conveying the sheets frame, conveying means for conveying the sheets to be collated one by one along a path extending near the trays, guide
elements associated with the trays which can be brought into the path of movement of the sheets to be collated, each guide element being movable between two positions, a first position wherein the guide element extends into the path of movement of the sheets for guiding sheets, and a second position wherein the guide element is situated out of the path of movement of
the sheets, each guide element being activatable from the first to the second position by laying a sheet down into the correponding tray with which the guide element is associated, the first position of each guide element being the only stable position of equilibrium, and each guide element being provided with a locking element which, when the guide element has een brought to the second position, positively locks the guide element in that position.

> 4,095,783
> APPARATUS FOR CREATING AN ILLUSION
> APPARATUS FOR CREATING AN
> Filed Oct. 1, 1976, Ser. No. 728,635
U.S. C. 272-8 R
1. Apparatus for creating an illusion comprising:
a housing;
means forming a chamber in said housing;
a first opening disposed in said housing leading from the
exterior of said housing to said chamber for permitting visual access to said chamber;
door means for selectively opening or closing said first opening;
a second op
a second opening disposed in said housing leading from the exterior of said housing to said chamber, said second
opening being substantially in alignment with the first said opening
ope
door means for selectively opening or closing said second opening;
a third opening disposed in said housing leading from the exterior of the housing to said chamber, the first said
opening being adjacent one end of said housing and the opening being adjacent one end of said housing and the
third opening being adjacent the other end of the housing door means for selectively opening or closing said third opening;
fourth opening disposed in said housing leading from the exterior of the housing to said chamber, said fourth opening being in alignment with said third opening; and, door
means for selectively opening and closing said fourth opening;
a fifth opening disposed in said housing leading from the exterior of said housing to said chamber, said fifth opening being formed between the first said opening and the third opening;
a sixth opening leading from the exterior of said housing to said chamber, said sixth opening being in alignment with
said fifth opening thereby forming a visual passageway sthrough said housing;
through said housing;
means selectively receivable in said chamber for selectively creating the illusion of either a parallelepiped or an empty space comprising:

a first substantially flat member,
a second substantially flat member rigidly connected to said first flat member and disposed substantially normal
to said first flat member to said first flat member;
first flat member and disposed substantially normal to said first flat member and substantially parallel to said second flat member;
eans for pivotally lat member; and
adjacent to said first flat member wher flat member lat member is pivotally movable wereeby said fourth ion whereby said fourth flat member is normal posifirst, second and third flat members, and a second posifirst, second and third flat members, and a second posi-
tion whereby said fourth member is substantially paral lel to said first flat member and substantially normal to said second and third flat members;
neans for frictionally holding said fourth member in said first position thereof;
feass for inconspicuously moving said fourth flat member
from the first to the secter from the first to the second position thereof said moving fourth members wherible line attached to said first and fourth members whereby pushing on said line when said moved to the second position thereof;
a base member and means for pivotally attaching said housing to said base member whereby said housing is movable between a first position wherein said second opening is below said four popeng and a seco positin wher is
means for selectively opening or closing said other end of said housing.

\section*{4,095,784}

TOY AIRCRAFT SYSTEM
Melvin Kennedy, and Dietmar Nagel, both of 1675 York Ave.,
New York, N.Y. 10028 New York, N.Y. 10028
Filed Nov. 5, 1976, Ser. No. 739,072

Filed Nov. 5, 1976, Ser. No. 739,07
U.S. Cl. \(272-31\) A 8 Claims

1. A toy aircraft system comprising: a tower defining a system axis and including a source of electrical power; a flight
boom having a remote end and a near end; pivot means for bounting said flight boom at said near end to said tower for
mor rotation about said system axis for pivotal movement about an elevational axis, said flight boom including an aircraft control arm and an inactive arm; an aircraft mounted on said remot end of said control arm and said inactive arm and adapted for
flight about said system axis, including a propeller for movin said aircraft and an electric motor mounted within said aircraft and connected to drive said propeller; said control arm and said inactive arm together supporting the weight of said air craft and being electrically conductive to supply electricit
from said tower to said aircraft: means for electrically connect ing said control arm and said inactive arm to said source o electrical power; and means for electrically connecting said control arm and said inactive arm to said electric motor.

MANUALLY INDEXED ELECTRONIC MATCHING Gary L Co 16920 WAME Filed Jan. 19, 1977, Ser. No. 760,650 U.S. Cl. 273-1 E Int. Cl. \({ }^{2}\) A63B 71/04

\section*{1. An electronic game comprising:}
canning signal generating means for developing a repetitive series of sequentially occurring pulses; in mans coupled to said scanning signal genera ing means for providing a repetitive scanning display:
player actuated switch means,
sequencing circuit means coupled to said switch means for of said switch means
second display means coupled to said sequencing ci means for displaying said sequencing pulses;
coincidence detecting means coupled to said generating
means and to said sequencing means for means and to said sequencing means for providing an
output signal when a pulse of said repetitive series of pulses coincides with a sequencing pulse from said se quencing means; and
third display means coupled to said coincidence detecting
means for displaying said output signals.

\section*{4,095,786}

POOL TABLE POCCKET INSERT eo D. Foley, R.D. No. 3, Titusville, Pa. 16354
Filed Nov. 2, 1976, Ser. No. 738,024

1. The combination of a pool table and a pool table pocket insert, said pool table comprising a lateral playing surface, said
playing surface bounded by four elongated cushions upstanding from said playing surface, a pair of lst pockets disposed in a pair of opposed cushions, four 2nd pockets disposed in and
between adjacent cushions, said 1 st and 2 nd pockets extending outwardly from said playing surface and downwardly from the uppermost regions of said four cushions and said playing surace, each of said four cushions having a surface thereof dis posed adjacent said playing surface, said surface of said cush-
ons being resilient, said pocket insert comprising a hollow inflatable bladder dimensioned for insertion selectively into one of said first and said second pool table pockets, said bladder providing a ball contacting surface having inherent elasticity substantially the same as said surface of said lateral cushions, said ball contacting surface of said blackers being disposed bladder is selectively inserted in said Ist and 2nd pockets, said ball contacting surface of said bladder causing a contacting ball to react equivalent to sader, said inflating means including valve means fixedly secured to the outermost surface of said bladder said valve being means for communicating air into said bladder and for retaining said air therein, said valve means disposed on uppermost surface thereof disposed adjacent said uppermos regions of said cushions.

\section*{4,095,78}

WORKOUT DEVICE FOR TENNIS HAVING A
WORKORIABLE SPEED CONTROL
Albert Saferstein, 4797 Boston Post Rd., Pelham Manor, N
10803
Filed Mar. 22, 1976, Ser. No. 669,465
U.S. C. 273-29 A \(\quad 8\) Claims 1. An apparatus for practicing tennis by the stroking of tethered ball comprising an anchor base; a tether line conconnected to an end of a generally long elastic cord, and a ball at one end of said inelastic cord; swivel means; said swivel
\(\qquad\)

cting

6 Claims
means being a \(Y\)-shaped yoke connection having a pair of legs attached between said base and an intermediate section of said lastic ord, said sing through said loops; adjusting means connected to the other end of said elastic cord, said adjusting means also being slidable on said elastic cord intermediate the
ends thereof for variably adjusting the length of said elastic

cord from substantially between full length and substantially half-length by doubling up upon itself a length of said elastic cord to form a loop; whereby said means for adjusting said action of said ball from control the return speed or rebound said elastic cord to fastest at substantially half-length of said elastic cord.

\section*{4,095,788}

4,005,788
FLAG POLE HOLDER
118 E. 6 th St., New York, N.Y. 10022

Filed Apr. 14, 1977, Ser. No. 787,573
Int. C1. \({ }^{2}\) A63B \(67 / 00\)
U.S. Cl. 273-34 R

1. A golf ball cup including a flag pole holder comprising: a unitary elongated holder body, open at both ends, which is cylindrical in configuration and adapted for closely fitting
into a designated hole of predetermined depth at a predetermined location on the golf green, the upper rim of said holder body being slightly below or just even with the ground surface of said designated hole and the bottom rim resting on the bottom of said hole;
a generally circular web the periphery of which is integrally generally intermediate the top and bottom rims of said body;
a centrally located pin member having tapering sides projecting above said web at the center thereof and integral with said web, said pin member fitting into the tapered flag pole in an upright position; a plurality of equally separated elongated openings radially disposed in said web about said centrally located pin to the
periphery of the web adapted for easy draining of water,
dirt and mixuures thereof through
ground at the bottom of the cup;
ground at the bottom of the cup;
said centrally located pin being adapted to engage a tapere bottom opening in a golf flag pole to thereby maintain said pole in an upright condition in the center of the cup on the d pin having a height whit means; and
said pin having a height which is below the upper rim of said
cup and below the ground surface whereby there is cup and below the ground surface whereby there is no
obstruction by said pin to a golf ball entering the cup.
strands lying in the medial plane of the elliptical frame, said strands defining a series of generally square openings through the grid, said longitudinally extending strands intersecting said transversely extending strands in the general plane of the grid at quadriaterally disposed regions throughout the grid, a pair formed on said grid at each strand intersection, each juncture 4,095,789
TORSION SPRING TYPE WRIST EXERCISING DEVICE George Mueller, 52 Grandview St., Huntington, N.Y. 11743 Filed Mar. 1, 1, 177, Ser. No. 773,275
U.S. Cl. 272-140 2 Claims

1. A torsional twist wrist exercising device which comprises
(a) a pair of hand grips having roughened exterior surfaces disposed in contiguous end-o-end relation on a common
central longitudinal axis, said grips being operatively interconnected with each other so as to normally maintain their contiguous relation, but permitting rotative move ments thereof relative to each other about their common axis;
(b) a central longitudinally extended shaft affixed at one end to one of the grips, the other end of said shaft being free;
(c) a central longitudinally extended bore of diamete (c) a central longitudinally extended bore of diameter
greater than the diameter of the shaft formed within the greaer thip for coaxially receiving the shaft;
(d) a plurality of torsion springs operatively supported upon
(e) a plurality of projecting members supported upon the shaft each of which is adapted to engage a loop formed at one end of each spring;
(f) a plurality of projecting members supported upon the
wall defining the interior surface of the bore each of wall defining the interior surface of the bore each of
which is adapted for alternatively engaging and disengag ing a loop formed at the other end of each loop;
(g) a cap member threadably engaged to the free end of the shaft for maintaining the grips in contiguous end-to-end ercising use;
(h) a compartment
is attached; and
is attached; and
(i) a closure member for the compartment.

\section*{4,095,790}

TENNIS RACKET WITH TENSIONED ONE-PIECE BALL STRIKING FRICTION IMPARTING GRID ronislam Swiecicki, 3757 N. Oriole Ave., Chicago, III. 60634 Filed Apr. 8, 1977, Ser. No. \({ }^{\text {Int. C1. }}{ }^{2}\) A63B SI/02
U.S. CI. 273-73 D \(\qquad\) ket having a generally elliptical rigid \(\mathbf{5 C l}\) ame from which there projects outwardly a manipulating frame from which there projects outwardly a manipulating
handle, a flexible ball-striking grid centered within and encompassed by said frame, said grid being of one-piece integral molded plastic construction and including a generally elliptical peripheral rim portion the major and minor axes of which are
slightly less in extent than the extent of the major and minor lightly less in extent than the extent of the major and minor
xes of the frame, a criss-cross pattern of strands extending ooextensively across said peripheral rim portion in checkerboard fashion and including a series of longitudinally extending ransversely spaced parallel strands and a series of transversely extending longitudinally spaced parallel strands, all of said

mass defining a pair of oppositely extending protuberances which project out of the general plane of the grid on opposite
sides thereof and serve to enhance the frictional characteristics of the grid during game-playing operations when a tennis ball strikes either side of the grid, and means extending between the rim portion of the grid and the elliptical frame at spaced regions therearound for tensioning the grid across the frame.

CARTRIDGE PROGRAMMABLE VIDEO GAME , APAMABL
Ronald A. Smith, Los Gatos, and Nicholes F. Talesfore, San Jose, both of Calif., assignors to Fairchild Camera and Instru. Jose, boun or Calif., assignors to Fair
ment Corp., Moun

Filed Aug. 23, 1976, Ser. No. 716,909
U.S. Cl. 273-85 G

11 Claims

1. Video game apparatus comprising:
player control means for developing play control signals; artridge means including data storage means containing
auxiliary video signal generating information, said cartridge means including an outer housing having a locking recess therein and a printed circuit board having electronic components mounted thereto, said outer housing nents forming said dita sorase saide and nents forming said data storage means; and
console means including; play parameter signals,
chute means for receiving said cartridge means and having connector means for providing electrical connection to
said data storage means, said chute means including said data storage means, said chute means including a
locking means having a detent for engaging said locking recess of said cartridge means to hold said cartridge means in a received position, and
video signal generating means including microprocesso
means for processing video signal generating inform means for processing video signal generating informa tion including said auxiliary information, sair genera-
ing means being responsive to said play parameter sig nals and said play control signals and operative to generate video signals suitable for input to the antenna terminals of a standard television set to cause the televivideo signals.
\(\qquad\)
GAME STRUCTURE
Hideyuki Kanno, Tokyo, Japan, assignor to Tomy Kogyo Co.,
one marble to be propelled by a finger of a player of the game on the top surface of the mat, said mat comprising a top comparatively thick carpet grass layer and a comparatively thin bottom layer immediately underlying said top layer, the top carpet grass layer having a pluraity of spaced randomly haped and differently sized cut-outs formed therethrough resembling sand and water hazards on a golf course and having cut-outs in spaced relation to the first-named cut-outs and

Inc., Tokyo, Japan Filed Oct. 18, 1976, Ser. No. 733,392
U.S. Cl. 273-85 R

7. A game structure which includes:
a housing having a front surface through which an object can be viewed, said front surface having opposed ends, said front surface, said carriage being located between said ends of said front surfaces and being capable of moving between different positions relative to said front surface, an arm pivotally mounted on said carriage so as to be capa-
ble of being pivoted parallel to said front surface between different positions adjacent to said ends,
visible means for simulating a member which is moved as said game is played supported on said extremity of said
arm remote from said carriage, said visible means being arm remote from said carriage, said visible means being
located so as to be capable of being viewed through said front surface,
two separate means for controlling the movement of said
arm and said carriage relative to said housing so that as arm and said carriage relative to said housing so that as
said game is played the movement of said arm is consaid game is played the movement of said arm is cons.
trolled through the actuation of said separate means.

\section*{4,095,793}

MARBLE GAME RESEMBLING GOLF
Otis Eugene Ray, P.O. Box 40302, St. Petersburg, Fla. 33743 Filed Apr. 4, 1977, Ser. No. 784,338
U.S. Cl. 273-87 R

Int. Cl. \({ }^{2}\) A63F 7/06 \(\qquad\)
2 Claims 1. A marble game simulating golf comprising a flexible mat
resembling the holes of a golf course, the top surface of said bottom layer being colored and such coloring being visible to a player through the first-named cut-outs to resemble the color of sand and water hazards on a golf course, said top and bot-
tom layers being joined along a marginal edge only to maintain said top and bottom layers in registration, and hole marker flags having standards formed from bendable pipe cleaners and including horizontal bases which are removably insertable between said top and bottom layers at the marginal edge of said circular cut-outs resembling holes of a golf course.

BALL DROP AND ELECTRICAL
RECEPTACAE HAVECTRICAL READOUT ROTATING RETURN Joseph Benjamin Garto, 2240 E. 8th St., Brooklyn, N.Y. 11223; Anthony Garto, 2075 Shore Pkwy., Brooklyn, N.Y. 11214, and Alfred Garto, 2075 E. 16th St., Brooklyn, N.Y. 11229 Filed Mar. 1, 1977, Ser. No. 773,196
Int. Cl. \({ }^{2}\) A63F 5/02, \(7 / 02\)
U.S. C. 273-101 Int. C. \({ }^{2}\) A63F 5/02, 7/02 \(\quad 13\) Claims

1. An improved apparatus employing one or more token an opening formed in a token released and fall by bravely comparity from movement of closure means of said compartment from a closed oan open position, said token means proceeding to spaced ocations formed in a rotatable receplacle disposed below said token means supply compartment; said spaced locations bein ion in a lower surface of said rotatable receptacle normally pen switch means disposed at each of said spaced location cle to be the position of said tokens in said rotatable receptacle to be shown on a display means electrically connected to
said switch means and responsive to engagement of said switch process at the time of initiation of the cyclical displaying of means to a closed position during the presence of token means symbols. at said spaced locations; said apparatus being provided by:
supply compartment switch means disposed in working relation to said closure means, for urging said closure means to return to the closed position after release of said token means; moveable support means disposed upon the lower surface of said rotatable receptacle, having said normally open switch
means affixed thereto, for moving said switch means out of means affixed thereto, for moving said switch means out of said token means to proceed beyond said spaced locations under gravity action into channel means formed beneath said rotatable receptacle; conduit means extending from said channel means into said token means supply compartment for forming a continuous line of passage from a point proximate to said
spaced locations to said token means supply compartment; and pressure forming means acting within said line of passage, for revsure foring a pressurized fluid stream therein, whereby said oken means are caused to be drawn into said fluid stream from means supply compartment.

\section*{4,095,795}

AMUSEMENT APPARATUS AND METHOD James C. Saxton, 79 Georgetown Dr., Amberst, N.H. 03031; Bruce H. Osterberg, 12344 Escala Dr., San Diego, Calif 92128 , and Joseph C. Kawan, 2034 Paramount Dr., Hollywood, Calif. 90068
Continuation-in-part of Ser. No. 482,225, Jun. 24, 1974, abandoned. This application Jun. 9, 1975,
Int. Cl. \({ }^{2}\) A63F S/04,
U.S. CI. \(273-143\) R

31 Claims

- -2.

An amusement apparatus comprising: a plurality of like symbol-displaying means for repetitively displaying respective series of symbols sequentially during an operating period of
said apparatus, and computer means effective to select at the commencement of each operating period a single complete set of said symbols comprising one symbol of each of said displaying means and including means causing displaying of said elected set of symbols at the end of said operating period. nation of \(n\) symbols comprising one symbol of each of \(n\) like series of symbols and the symbols of which series are cyclically serially displayed, which comprises randomly generating n series of digital number codes, one for each series of symbols, assigning each series of number codes to a respective series of spective series thereof, storing one each of said codes generated at the time of commencement of cyclical displaying of the series of symbols, and subsequently terminating cyclical displaying of the series of symbols at respective points in the cyclical serial display represented by respective ones of the
previously stored number codes, whereby determination of the set of symbols to be finally displayed is selected by random

\section*{4,095,796 \\ son, 4524 Montview Blvd., Denver, Colo. 80207 \\ Filed Nov. 2, 1976, Ser. No. 738,140 \\ U.S. Cl. 273-145 C \\ }
3. A device for shaking dice comprising: container adapted to receive one or more dice; an interior partition within said chamber parallel to said window dividing the interior of said container into a display chamber adjacent said window and a mixing chamber, a slot in said interior partition extending along
one side wall of said container and establishing communication between said mixing chamber and display chamber; closure means within said container for covering said slot to captively retain one or more dice passed from said mixing chamber to said display ch
adjacent said window; adjacent said windo
said closure means inctur
said container; said panel being flat and substantially covering said slot and said partition in its closed position; and
means connected with said panel and including an actuating
member accessible outside said container for member accessible outside said container for moving the parallel to the plane of said partition to uncover said slo and for concurrently moving the opposite edge of said said slot the plane of said panel slop toward said slot. \(\qquad\)
4,095,797
GOLF CLUB SWING TRAINING DEVICE
Breese, 4413 Melvin Rd., Lakeworth, Fla. 33461
Filed Apr. 26, 1976, Ser. No. 680,132 \(-186 \mathrm{C}^{\text {Int. Cl. }}{ }^{2}\) A63B \(69 / 36 \quad 1\) Clain

1. A training device which defines for golfers an impact zone and the proper orientation of the club head and the club head ace in the impact zone, said device consisting of: (a) a body made from flat rigid materials and being of T -
shape formed by two straight arms extending at right angles from opposite sides of a first end of a straight barshaped leg, the edges of said arms farthest from the second
end of said leg being straight and aligned to define a first visible straight line to be positioned adjacent to a ball and between the golfer and the ball and to be substantially aligned with the desired direction of ball travel to indicate he direction the club head should go in the impact zone,
he outer ends of said arms forming visible ends appropriately spaced to define an impact zone, said leg deffining a
second visible straight line to be positioned between the second visible straight line to be positioned between the golfer and the ball, the second line generally bisecting said
first line and being at right angles to said first line, said first line and being at right angles to said first line, saic
sceond line to extend toward the ball to thereby indicate second line to extend toward the ball to thereby indicate
the direction the club face should parallel in striking the ball,
(b) means for pivotally connecting said arms at their inner ends to said leg so that they can be pivoted to a collapsed position aligned with said leg for carrying and storing, and means to secure said arms in collapsed and spread positions, said first end of said leg forming a straight line at \(90^{\circ}\)
to said second line to assist in aligning said arms to form to said second line to assist in aligning
said first line at \(90^{\circ}\) to said second line,
(c) said leg having double the width of each arm so that said arms can store side-by-side on said leg in their collapsed positions, said inner ends of said arms actually physically abutting when said arms are aligned in their spread posi-
tions to form said first line, the pivotal connection of each arm to said leg being located at the center of a square defined by the width of the arm and an equal distance from the inner end of the arm, each arm at its inner end being relieved on a line extending from a point thereon
defined as a point substantially midway between the cen ters of pivotal connection of said arms to said leg to the adjacent outer edge of said leg when viewed with the arms aligned at 90 to said leg, whereby said arms will no of said arms, and
(d) indicia on the upper face of said leg instructing the golfer in usage including indicating substantially aligning saic first line with the desired direction of ball travel an
indicating moving said club head parallel to said first lin in striking said ball while maintaining said club head face parallel to said second line.

\section*{4,095,79}

GOLF GAME PRACTICE DEVICE
Walter G. Marple, 17 Beech Pl., Woodbury, N.J. 0809
Filed Jul. 22, 1976, Ser. No. 707,629
U.S. Cl. 273-200 \(\mathbf{R}^{\text {Int. Cl. }{ }^{2} \text { A63B 69/36 }}\)

4 Claims

1. A golf game practice device comprising
(a) an anchoring stake having a handle portion, a shank portion and a he;
(b) a swivel member located at said shank portion and adapted to rotate arond the longitudinal axis thereof; c) one end of an elongated elastic member attached to said swivel member,
luach to the other end of said elongated elastic member; and
(e) the other end of said cord removably attached to a staple imbedded in a wound rubber core golf ball adapted to be stake.

CORPORATE LADDER GAME
Claude A. Stringer, 7317 S. Winchester, Chicago, III. 60636 iled Mar. 28, 1977, Ser. No.
Int. C1. \({ }^{2}\) A 63 F \(3 / 00\)
U.S. Cl. 273-241

1. Game apparatus comprising
an upright gameboard having a plurality of slots in a front face thereof simulating rungs on a ladder,
plurality of indicia on the front face of said gameboard associated with each slot therein designating a job category in a
container,
a plurality of chips in said container, preselected ones of said chips corresponding to one of the job categories on said gameboard and containing a number indicum, and chip sheet containing indicia associated with the monetary each of said chips, whereby a player can select one of said chips and multiply the monetary value of the chip indicated on the chip sheet by the number indicum on said chip to obtain a point value, the number indicum on said chip also being used to estabish the number of turns remaining for the peayer
seling said chips, and the selected chip being disposed in the corresponding job category slot in the front face of said gameboard.

MAP BOARD GAME APPARATUS
Yannis Konsolas, 342 E. 49th St., Apt. D, New York, N.Y. 10017 Filed Oct. 13, 1976, Ser. No. 731,903
U.S. Cl. 273-251 8 Claims
1. A game apparatus comprising:
a. a game board having a map including a plurality of se-
lected countries each distinguishable from the others by lected countries each distinguishable from the others by the color thereof and means defining a path on the game
board map including a plurality of first stopping points and one second stopping point in each country corresponding to the capital city of the country; b. a plurality of movable game members for said path; and
c. selecting means for effecting movement of the game members along the path including a base and a pointer rotat radial band thereon divided into a plurality of selectable
segments each having indicia thereon for instructing the well as an intermediate portion between the ends; a vertical
moving of a game member a number of points along the post having an upper end that supors the intermediate moving of a game member a number of points along the post having an upper end that supports the intermediate por-
path and an outer radial band concentric with the inner path and an outer radial band concentric with the inner tion of the arm and a lower end that projects downwardly
band and divided into a plurality of equal size selectable from the arm; a first threaded connection that supports the lower end of the post on the base for vertically adjustable movement; a cleaning member pivotally supported on the

segments each having indicia thereon associated with a of a game member to the second stopping point in the country associated therewith.

CHESSMEN CONTAINED BY CHESS BOARD OR A CUBE CONTAINER
Ross John Kembar, 4678 Eastridge Road, North Vancouver, Filed Jul. 30, 1976, Ser. No. 701,516
U.S. Cl. 273-260 Int. Cl. \({ }^{\text {A }}\) 63F \(3 / 02\)

1. A standard set of chessman comprising 32 pieces; 2 kings, queecns, 4 castles, 4 bishosps, 4 kniphts and 16 pawns;
each of said pieces having a constant cross section through each of said pieces having a constant cross section through
out its length, out its length,
said cross section of said 4 bishops being a polygon having said cross section of said 4 bishops being a polygon havith
three \(90^{\circ}\) interior angles and two \(135^{\circ}\) interior angles with not more than 5 sides,
said cross section of said four knights being a 6 sided L said cross section
shaped polygon,
the shapes of said cross sections of said 2 queens, 4 castles, 4 bishops and 4 knights being indicative of the direction
these pieces move in the conventional game of chess the shape and dimensions of the said 4 castles, 4 bishops, 4 knights and 16 pawns being such that they are adapted to be vertically nested into a rectangular parallelepiped.

\section*{4,095,802}

Richard C. Horian, 1740 Strickland Dr., Bloomfield Hills, Mich. 48013, and James G. Horian, 7340 Indiana, Dearborn, Mich 48126
Continuation-in-part of Ser. No. 737,296, Nov. 1, 1976,
abandoned. This application Jul. 21, 1977, Ser. No. 822,571
U.S. C1. \(274-47\) Int. Cl. \({ }^{2}\) G11B \(3 / 58\)
1. An arm record cleaner comprising: a base; a cleaner arm including a front end having a cleaning head and a rear end as
leaning head and including a brush and a soft pile cleaning edge positioned toward the post from the brush; a counter-
weight; and a second threaded connection that supports the weight; and a second threaded connection that supports the
counterweight on the rear end of the arm for movement toward and away from the cleaning head upon counterweight rotation so as to control the pressure between the head and a record being cleaned.

3 Claims

\section*{KEYWAY OIL SEAL ASSEMBLY} Charles David Meier, Hartsville, and Shelby Lewis Olvey, Columbus, both of Ind., assignors to Cummins Engine Company, Inc., Columbus, Ind.

Filed Aug. 23, 1977, Ser. No. 827,049
Int. C1. \({ }^{2}\) F01P 5/10; F16J 15/40
U.S. C. 277-12

\section*{1. Apparatus comprising}
first member
a second member telescoped over said first member, means for forming a groove extending axially from an end face of one of said members and a relatively rigid key and the like connected to the other of said members and projecting into said groove to prevent, at least in part, relative
cotation of said members. resilient seal having a first
said groove and a second portion forming a shoulder abutting the end face of one of said members adjacent said keyway; and
relatively rigid element connected to one of said members for compressing said resilient seal against the end of said groove, thereby expanding said seal to abut the walls of
said groove and form a barrier against the passage of liquid through said groove.

4,095,804
SEALING MEANS FOR HIGH TEMPERATURE, HIGH PRESSURE, CYLINDRICAL FURNACES Staffan Elmgren, Ljungby, and Lennart Svensson, Hyllinge,
both of Sweden, assignors to ASEA Aktiebolag, Vasteras,

Sweden Filed Aug. 16, 1977, Ser. No. 825,100 Claims priority, application Sweden, Aug. 23, 1976, 7609298

1. Sealing means for use with a cylindrical, elongated, high remperature, high pressure, material treatment furnace com prising vertical, hollow cylindrical means defining a high pressure gaseous medium containment chamber, an end clo-
sure projecting into said hollow cylindrical means and a cooling plate structure including means defining a coolant passage mounted on the end closure for preventing harmful heating of he latter, said sealing means comprising:
an attachment ring disposed in surrounding relationship to said cooling plate structure for retaining the latter against said closure and fastened to the end closure by bolt means, here being an annular gap defined between said plate structure and said ring; and
sealing means positioned to prevent pressure medium from said chamber and coolan
their way into said gap.

> ANNULAR BLOWOUT

Herbert Allen, Houston, Tex., assignor to CenTER
Inc., Houston, Tex.
Filed Oct. 15, 1976, Ser. No. 732,802
Filed Oct. 15, 1976, Ser. No.
Int. Cl. \({ }^{2}\) E21B 33/06
U.S. CI. 277-27

1. An annular blowout preventer, comprising a housing having a vertical bore therethrough and an annular recess
material mounted within the recess for movement between an open-bore position and a constricted position for sealing about apipe or upon itself, a plurality of rigid plates circumferentially spaced about the packer, actuating means vertically reciproca-
ble within the recess outwardly of the plates, and links extending between and engaging the actuating means and plates for swinging in vertical planes toward a more horizontal position,
and thus moving said plates inwardly to force the packer inwardly to a constricted position, upon movement of the actuating means in one direction, and toward a more vertical position to permit the plates to be moved outwardly and said packer to move toward open bore poisiton, upon movement of the actuating means in the opposite reciprocating the actuating means.

4,095,806
SEAL ARRANGEMENT
John D. Dempeey, Lynchburg, Van, assignor to The Babcock \& Wilcox Company, New York, N.Y.
Filed Jul. 5, 1977, Ser. ed Jul. 5, 1977, Ser. No. 81313
Int. C1. \({ }^{\text {F F16J }}\) I5/40
U.S. C. 277-27

1. A fluid seal arrangement for a high pressure vertical pump for use in a nuclear reactor cooling system comprising: a housing containing a fluid pressurizable internal chamber; a shaft passing through the chamber wherein said shaft is laterally deflectable;
seal runner mounted on the shaft for rotation therewith
within the chamber having an annular sealing face disposed transversely to the shaft axis
seal ring attached to the housing sbous ine
floating relationship withing about the shaft in axially ally opposite said seal runner;
said seal ring having a first annular area surface bounded by an inner balancing diameter and an outer diameter disposed transversely to the shaft axis, said first annular area
surface being subject to fluid closing forces acting to urge surface being subject to fluid closing forces acting to urge
the seal ring axially toward the annular sealing face of the cunner when the chamber is pressurized;
said seal ring having a stepped area surface generally opposaid seal ring having a stepped area surface generally oppo-
site the first area surface and disposed transversely to the shaft axis including an annular sealing face and a second annular area surface;
said annular sealing face axially projecting toward the seal runner and being bounded by an inner diameter and an
outer diameter; said second annular surface being internally bounded by the outer diameter of the annular sealing ace and a larger outer diameter; said second annular area surface being subject to fluid opening forces acting to urge
the seal ring axially away from the annular se
the runner when the chamber is pressurized;
said outer diameter of the sealing face being greater than the balancing diameter such that the closing forces acting on
the first annular area surface exceed the the first annular area surface exceed the opening forces acting on the second annular area surface, the excess
closing forces being balanced by an interfacial fluid film that developes between the annular sealing face of the seal ring and the seal runner when the chamber is pressurized; and
said annular sealing face of the seal runner having a width sufficiently wider than the annular sealing face of the seal lateral shaft deflection.

\section*{\(\stackrel{4,095,807}{ }\)}

Siegried Jandt, Leverkusen, and Gerhard Hammerschmidt, Burscheid, Rheinland, both of Germany, assignors to Goetzewerke Friedrich Goetze AG, Burscheid, Germany Continuation of Ser. No. 646,836, Jan. 5, 1976, abandoned. This Claims priority, application Germany, Jan. 3, 1975, 2500098 U.S. Cl. 277-40 Int. C. \({ }^{2}\) F16J \(15 / 36\); C09J 7/02
a sealing washer having an annul
engage said wear surface,
means for urging said sealing surface to maintain a seal therebetween toward said wear pair of parallel substantially planar outwardly facing surfaces formed on said sealing washer;

pair of flexible tabs secured to said seal housing and extend ing in a direction parallel to the central axis of said nose portion for yieldingly engaging said substantially plana
surfaces, said tabs providing spring biased contact agains surfaces, saraid tabs providing spring biased contact
said paralel planar surfaces for restraining relative rotation of said sealing washer while permitting longitudinal movement thereon.

\section*{4,095,809}

SNAP-IN FLANGE SEAL
Franklyn D. Smith, 88 W. Jackson St., Hayward, Calif. 94544
This application Oct. 6, 1976, Ser. No. 330,223
U.S. C1. 277-180

1 Claim
1. In a slide ring seal for arrangement between relatively 1. In a slide ring seal for arrangement between relatively (a) a housing;
(b) a slide ring stationarily supported in said housing and having a first end face;
(c) a counter ring rotatably supported in said housing and having a second end face oriented towards said first end face a
ing;
(d) a spri
(d) a spring supported in said housing and urging said slide ring, with its said first end face, into contact with said second end face of said counter ring; said housing combining said slide ring, said counter ring and said spring into an e) a double-sided adhesive fo oppositely oriented second side; said first side of the foil being attached to said third end face of said counter ring and said second side of the foil being attachable to a machine component for effecting a torque-transmitting and
sealing adherence of said counter ring to the machine component.

4,095,808
ANTI ROTATION SEAL ASSEMBLY Richard E. Glasson, Columbus, Ind., assignor to C

Filed Jan. 6, 1972, Ser. No. 757,256
Int. Cl. \({ }^{\text {F F16J }}\) 15/34
U.S. CI. 277-81 R

An anti rotation seal assembly for use with a rotatable 10 Claims 1. An anti rotation seal assembly for use with a rotatable
shaft having an annular wear surface thereon, said assembly comprising:
a non rotatable seal housing,
a bellows assembly positioned within said housing;

1. A seal for two abutting flat surfaces having means to draw said surfaces together comprising an inner member, an outer member of the same thickness and being in the same plane as and having flat, uninterrupted top and bottom surfaces, both said members being continuous and having no split, said mem bers being separated from each other by a gap, each said member having an edge facing said gap, each said edge having a groove extending away from said gap at the midplane of said edge and said edge having axially disposed thin top and bottom axial surfaces between said groove and the top and bottom
surfaces of said members, each said groove in cross-sectio having a truncated V -shape with the sides of said V disposed a approximately a \(15^{\circ}\) angle to the top and bottom surfaces of said members, and a circular cross-section rubber-like O-ring in said gap and partially in each said groove, the volume of said O-ring relative to said gap, the thickness of said members and
the volume of said grooves being such that, when said O-ring is fully compressed by said flat surfaces being drawn together, said inner and outer members not being deformed and the top and bottom edges of said \(O\)-ring projecting above the top and
filling said grooves and said gap, said O-ring not being perma- said flat inner surface of said anchor ring, whereby when said nently deformed by being thus fully stressed, said rings being anchor ring is placed over the outer periphery of said chuck, proportioned so that the ratio of \(a / b=0.0835 / 0.125\), approxi- the studs engage the pivot hole in the chuck periphery; an
mately, and the ratio of \(c / b=0.010 / 0.125\), approximately, where' " \(a\) " is the depth of said groove inward from said edge, annular drive sleeve made of a material that is resilient, said
drive sleeve having a flat inner surface of a size to contact " \(b\) " is the thickness of either said inner or outer member and drive sleeve having a flat inner surface of a size to contact " \(c\) " is the width of said thin top and bottom surfaces of said member.

4,095,810
GILL-TYPE TIP PROTECTOR FOR SEALING OPEN TUBES AND THE LIKE
Lee K. Kulle, Mundelein, III,, assignor to Baxter Travenol Laboratories, Inc., Deerfield, III.

Filed Jan. 17, 1977, Ser. No. 760,208
Int. Cl.
U.S. Cl. 277-208 Int. Cl. \({ }^{2}\) F16J 15/10

BICYCLE DRINKING APPARATUS

1. A tubular sealing member defining a bore and an open mouth, and further defining a plurality of spaced, annular sealing members in said bore to grip a tube to be sealed, the
improvement improvement comprising:
pluraity of said spaced, annular sealing rings defining, in
crass section, flexible, elongated projections which, in cross section, flexible, elongated projections which, in
turn, define longitudinal axes which incline toward said turn, define longitudinal axes which incline toward said
open mouth in acute angle relationship to the axis of said bore, the longitudinal axes of said projections being at
least 0.01 inch long, the average thickness of each said least 0.01 inch long, the average thickness of each said
projection being less than the length of its longitudinal axis, the inner diameter of said bore between the open mouth and the sealing ring nearest to said open mouth being greater than the inner diameter of said bore between
consecutively inwardly positioned sealing rings and the inner diameter of the bore between consecutive sealing rings decreasing in value in the direction inwardly of said sealing member from said open mouth.

CHUCK JAW OPERATING AND CLOSING DEVICE Max Cohen, 272 Gilsum St., Keene, N.H. 03431

Filed Dec. 13, 1976, Ser. No. 749,605
U.S. Cl. \(279-1 \mathrm{Kn}\)

2 Claims
1. A drinking apparatus for a bicycle, comprising: a generally cylindrical container for a potable liquid; clamp means to attach said container to a frame member
drinking straw of flexible suction tubing
a reel housing and a rotatable reel therein, said straw being elractably stored and wound on said reel
otary spring means in said housing biasing said reel to re-
a mouthpiece on the free end of said straw;
a hinged sanitary cap on said housing covering said mouth piece when said straw is retracted; and
fluid-tight rotary connection between the inner end of said straw and said container.

1. A means for opening and closing the chuck jaws of a chuck assembly to insert or replace drill bits in power drills, outer periphery, pivot holes in the other periphery of the chuck, a chuck outer cylinder, said chuck outer cylinder having an outer periphery, comprising, an anchor ring, said anchor
ring having a flat inner surface, studs extending inwardly from

\section*{4,095,813}

SKI ATTACHMENT FOR HILL CLIMBING Hall, P.O. Box 1127, Hamilton, Mont. 5984 Filed Dec. 16, 1976, Ser. No. 751,325
U.S. C1. 280-604 9 Claims 1. An elongated ski attachment for hill climbing, said attachment including a pair of elongated flexible multiple strand rope sections having front and rear end portions, attaching means securing said front end portions together, said rope sections, rearwardly of said portions, each including means defining a points spaced therealong toward, but spaced from, said rear end portions, said rope sections being alternately and slidingly received through each other with each rope section portion extending through the other rope section being slidingly received through one of said transverse passages defined in the
extending sufficiently from the adjacent passage to enable said
rear end portions to be looped over the rear end of the associ

ated ski and secured to said rope sections adjacent said adja cent passage.

\section*{4,095,814}

Erwin Weigl, Brunn a. Gebirge, and Josef Svoboda, Schwechat, Erwin Weigl, Brumn as. Gebirse, and
both of Austria, assignors to TMC Corporation, Baar, Swi zerland
Filed Sep. 17, 1976, Ser. No. 724,175
Claims priority, application Austria, Sep. 24, 1975, 7327/75 U.S. Cl. 280-618

Int. Cl. \({ }^{2}\) A \(63 \mathrm{C} 9 / 08\)

1. In a heel holding device for a safety ski binding having a heel holder and support means for pivotally securing said hee holder to a sole plate adjacent the rear end thereof, a holdin
member mounted on a ski, said sole plate being held in a boot holding position by a locking member supported for movemen against the force of a spring, said locking member being mounted on the rear end portion of said sole plate and releasably engaging said holding member, said sole plate being secured adjacent its front end against a lifting off from said skid-
and being movable relative to said ski between said boot holding position and a boot releasing position, the improvement comprising a locking element movable into and out of locking engagement with said heel holder to hold, when in said locking engagement, a heel of a ski boot to said sole plate, connecting
means for connecting said locking member to said locking means for connecting said locking member to said locking sponse to a separating force between said ski and said ski boot will effect a movement of said locking element toward said out
of locking engagement position with said heel holder and of locking engagement position with said heel holder and
wherein said support means supports said heel holder for movement about mutually perpendicular axes extending trans movement abour muitually perpendicula
versely to the longitudinal axis of the ski.

\section*{4,095,815} Stanley W. Mitchell, 1180 Center SL. R.R.\#1, Windsor, Ontario, Canada

Filed Jan. 3, 1977, Ser. No. 756,362
U.S. Cl. 280-63 Int. Cl. \({ }^{2}\) B62C \(1 / 08 \quad 5\) Claims

1. A racing sulky comprising a horizontal crossbeam member, a pair of laterally spaced shafts fixed to said crossbeam and
extending forwardly for support by a horse, a seat fixed to said extending forwardly for support by a horse, a seat fixed to said
crossbeam rearwardly thereof, a pair of support leg assemblies pivotally joined to the ends of said crossbeam and carrying wheels at their lower extremities, a pair of struts connecting said lower extremities of said support legs to said shafts at points forward of said wheels, said struts being adjustable
whereby the center of gravity of the sulky with the driver mounted on the seat is adjustable and corner brace assemblies angularly, swingably connected between said crossbeam and said support legs, each said corner brace assembly including an elongated plate member and a rod member, each said plate
member including bent end portions with a hole provided member including bent end portions with a hole provided
through each end portion and the ends of each said rod member being threaded, said threaded portions passing through said holes in the bent end portions of said plate member and through holes provided in brackets fixed to said crossbeam and legs, with the bracket and plate being held
threaded fasteners on said threaded portions.

ngieri, 8 Cedar St., Bunter, N.J. 07450
Filed Dec. 20, 1976, Ser. No.
Int. C1.
U.S. Cl. \(280-87.02 \mathbf{R}\)

12 Claims

1. A toy vehicle construction comprising a body defining a portion of said body; front wheel wheels mounted on a rear portion of said body; front wheel means; steering assembly means for supporting said front wheel means and for pivotable supported on said rear wheels and said front wheel means, said steering assembly means including a steering member for rotating said steering assembly means and front wheel means as a
unit to effect steering, said steering member further including an essentially flat horizontal wall defining a playing surface and a peripheral wall surrounding said playing surface and
defining a shallow rim projecting upwardly from said playing surface, said peripheral wall also projecting downwardly from said playing surface for grasping by the rider, said horizontal
wall substantially bridging said rim. wall substantially bridging said rim.
```

            WHEELIE SKATEBOARD
    Dantel R. Cohen, Port Weshington, N.Y., assignor to Gustave
Miller, Miami, Fla.
Filed Aug.12, 1976, Ser. No. 713,676
U.S. C. 280-87.04 Int. Cl.2 A63C 17/04


1. A wheelie skateboard ( $\mathbf{1 0}$ ) comprising an elongated platform (12) for supporting a person, the platform having a for-
ward end section (14), a longitudinal center line section (16) ward end section (14), a longitudinal center line section (16)
and a rear end section (18) in approximately the same plane with said forward (14) and center line (16) sections, and an inclined kicktail section (24) extending integrally upwardly
and rearwardly from said platform end section (18) and merg. and rearwardy from said platform end section (18) and merg-
ing smoothly therewith, a first pair of wheels (24) and a common axle (26) coupled to and positioned beneath said platform forward end section (14), a second pair of wheels (34) and a common axle ( 36 ) therefor coupled to and positioned beneath
said platform rearward end section (18), and a third pair of wheels (42) and a common axle (44) therefor coupled to and and positioned beneath said kicktail section (22), whereby a person positioned on said platform (12) forward of said kicktail section (22) may ride on said skateboard supported on said first
(24) and second (34) pairs of wheels ( 24 and 34 ), or positioned
a load carried by said bottom flanges and positioned in board the upright webs and below the top flanges of the frame members;
tongue means having spaced apart elongated structural members adapted for connection to a towing vehicle; eans securing the tongue structural members to corre sponding frame members;
pair of longitudinally spaced apart spring mounting brackets and means rigidly securing each bracket to a corre sponding frame member below the bottom surface of th top flange, above the load-carrying bottom flange, an adjacent the ous;
a pair of suspension springs extending alongside each frame member, each suspension spring extending between the brackets on a corresponding frame member
means securing the ends of each suspension spring to the spring's corresponding brackets;
xle means extending transversely below the frame members
and adapted for connection to a pair of wheels for sup porting the trailer frame above the ground, the axle means being secured to the suspension springs, the opposite ends of the axle means extending upwardly adjacent to and outboard of the frame members and having means fo securing whe whels about a he axile means to rota plane of the bottom load-supporting flanges of the frame members.
( 24 ) and second ( 34 ) pairs of whecls ( 24 and 34 ), or positioned
at least partly on said kicktail section (22) may ride said skateboard (10) supported on said second (34) and third (42) pairs of wheels.

## LONGITUDINAL BEARER FO <br> LONGITUDINAL BEARER FOR THE CHASSIS OF Dieter Schaper, Sindelfingen VEHICLES or to Daimle

 Dieter Schaper, Sindelfingen, Germany, Benz Aktiengesellschaft, GermanyFiled Sep. 24, 1976, Ser. No. 726,444
Claims priority, application Germany, Sep. 26, 1975, 2542974 U.S. CI. 280—784

Int. C. ${ }^{2}$ B62D $21 / 00$
Marjorie Ann M. Smith, 509 Juniper Dr., Pasadena, Calif. $91105 \quad$ Filed Sep. 22, 1976, Ser. No. 725,572
Int. C1.2 B60G $11 / 04$ U.S. C. 280—789

12 Clàms


1. A trailer frame structure comprising:
a pair of substantially parallel, elongated frame members, a pair of substantially parallel, elongated frame members,
each frame member being of generally Z -shaped crosssectional configuration and having an upright web and top and bottom flanges extending along opposite edges of the upright web, the upright webs having outside surfaces brace means holding the frame members in spaced apart relationship with said top flanges extending outwardly and having bottom surfaces thereof facing downwardly along outside portions of the frame members, said bottom
flanges extending inwardly and having upper surfaces thereof facing upwardly to provide means for supporting

2. A longitudinal bearer for motor vehicles, comprising two aproximately trough-shaped profile means including bottom wall means and connecting wall means as well as flange means, the two profile means being connected together at said flange means, characterized in that the width dimensions of the bottom wall means are reduced in the longitudinal direction and in
that the connecting wall means between the flange means and that the connecting wall means between the flange means and
the bottom wall means extend evermore inclined to the contours of the longitudinal bearer and thereby become wider in said longitudinal direction.


## SEAT ASSEMBLY FOR A CYCLE

Michael W. Hanagan, Somers, Conn., assignor to Corbin Gentry, Inc., Somersville, Conn.
Filed Oct. 22, 1976, Ser. No. 735,073 U.S. Cl. 280-289 Ant. C.' ${ }^{2}$ B62J $1 / 08,7 / 04$


1. A seat assembly for mounting a cycle frame comprising: A. a structural saddle having a horizontally extending base face of said base defining a seat platform and the leading surface of said back defining a backrest platform and the
trailing surface of said back defining a mounting platform;
B. generally L-shaped stiffener means secured to and struc-
turally reinforcing said base and said back of said saddle, C. hinge means mounted on said saddle on one side of the
longitudinal centerline thereof and retaining means mounted on said saddle on the opposite side of said center line from said hinge means, said hinge means and said retaining means cooperating to enable said saddle to be pivoted for movement between a locked lowered position
and an unlocked raised position on said cycle frame;
and an unlocked raised position on said cycle frame;
D. verically extending safety bar portion and a luggage rack portion extending generally horizontally from the lowe end of said safety bar portion;
E. means rigidly affixing said safety bar portion of said frame member to said mounting platform of said saddle back so
that at least a portion of the length of said safety bar portion extends adjacent to said mounting platform of said saddle back, and said luggage rack portion extends rearwardly of said saddle back at a point spaced above the movement of said seat assembly between its lowered and raised positions;
F. a seating pad cooperatively configured and mounted on said saddle, said seating pad having an upper surface and comprising a base cushion and a back cushion; and G. means aftixing said seating pad to said saddle with said base cushion supported on said seating platform and said back cushion on said backrest platform.

## 4,095,821

SAFETY SKI BINDING, France, assignor to Etablissements Francois Salomon et Fils, Annecy, France Filed Jun. 18, 1976, Ser. No. 697,537 195 Claims priority, application France, Jun. 20, 1975, 7519439
U.S. Cl. 280-628

Int. Cl. ${ }^{2}$ A63C $9 / 08$

1. A safety b:
a comprises: a integral with a base secured to the ski;
a binding rotating upon the pivot and carrying means for retaining the boot;
a system for locking said retaining means, said system bein mounted in the binding and ensuring that the boot is maintaind
posing a vertical retention force and a lateral retentio force, respectively, to the vertical lift and lateral displacement of the boot, said resilient element being preset allow the boot to be released when subjected to predete mined stresses in the plane of the ski;
and a compensating mechanism acting upon said locking
system, in order to cause the lateral retention force applied to the boot to vary inversely to the vertical retention force, said compensating mechanism including:

a first part mounted to pivot about an axis at right angles to the longitudinal axis of the ski and located between the reaction chain consisting of the resilient elemen
and a second part mounted in the binding so as to be mobile in relation to the first part, and cooperating, through a system of ramps, with the boot-retaining means opposin the lifting of said boot.

## 4,095,822 <br> SUSPENSION MEANS <br> Frank Warburton Thornhill, 66 Auburn Road, Kingston, Tasma <br> rank Warburton Thornhill, 66 Auburn Road, Kings nia 7150 , Australia Filed Sep. 24, 1976, Ser. No. 726,313 <br> Fired Sep. 24, 1976, Ser. No. $\mathbf{2 6 6 , 3 1 3}$ Claims priority, application Australia, Sep. 25, 1975, PC3335 <br> U.S. CI. 280—702

 lized, and fluid communicating lines between the upper chamber of said first cylinder and the lower chamber of said second cylinder and between the upper chamber of said second cylinder and the lower chamber of said first cylinder and wherein each of said fluid communicating lines is provided with an metering valves to respective hydraulic accumulators.AUTOMATIC SIDE STAND $4,095,823$ intermediate layer of material positioned immediately above Tsutomu Nishida, Akashi, Japan, assignor to Kawasaki Jukogyo Kabushiki Kaisha, Japan
Filed Apr. 7, 1977, Ser. No. 785,567
Claims priority, application Japan, May 7, 1976, 51-57755
U.S. C. $280-764$

15 Claims

being transparent so that an observer may read the indicia after removal of the mask.
$\xrightarrow{\text { TAPER }, 095,825}$
Major Gene Butler, 14707 Early Hollow, Cypress, Tex. 77429 Continuation-in-part of Ser. No. 580,997, May 27, 1975, U.S. C. 285-55 Int. Cl. ${ }^{2}$ F16L $13 / 10 \quad 10$ Claims

1. A device for turning a pivoted side stand of a motorcycle 1. A device for turning a pivoted side stand of a motorcy means for urging the side stand in a direction towards said retreated position;
a first lever member adapted to be shifted between a release position and a lock position, said first lever member inin said service position when the first lever member is in said lock position;
means for urging the first lever member in a direction towards said lock position;
stopper means connected to the side stand for retaining the first lever member in said release position when the side stand
is positioned in said retreated position; a projection member rigidly provided the motorcycle for rotation therewith; and

2. The method of making a taper pipe joint between a firs metal pipe and a second metal pipe, characterized by:
(a) making a bell at one end of the first pipe, said bell having a cylindrical section and an adjacent conical end section tapering inwardly toward the longitudinal axis of the pipe, the inner diameter of the bell's cylindrical section being slightly smaller than the outer diameter of the second pipe (b) making a pin at one end of the second pipe, said pin having a conical end section tapering inwardly and whose taper angle is larger than the taper angle of the bell's conical section, whereby the angular difference between said conical sections defines a cavity therebetween, and conical wall of the bell and the outer conical wall of the pin, to thereby form a sealed joint between said conical sections, and an annular ring at the mouth of said cavity.

## CONNECTOR FOR RIGID

PON FOR RIGID PLASTICS PIPES
Elio Borradori, Lugano, Switzerland, assignor to Endermill
Filed Nor. 29, 1976, Ser. No. 745,775
Claims priority, application Switzeriand, Dec. 1, 1975, SECURE CONTEST CARD
Gilbert Bachman, Atlanta, Ga., assignor to Dittler Brothers
Inc., Atlanta, Ga. Filed Jul. 1, 1976, Ser. No. 701,959
U.S. Cl. 283-6 Int. Cl. ${ }^{\mathbf{S}} \mathbf{\text { S42D }} 15 / 00$
U.S. Cl. 285-330 Int. Cl. ${ }^{2}$ F16L $21 / 06$

1. A contest card for temporarily and completely 5 Claims the presence, absence, position or nature of indicia printed on said card comprising a smooth surface card stock material having an upper surface and a lower surface, indicia printed on
the upper surface of said card stock material, an opaque sec the upper surface of said card stock material, an opaque sec-
tionally removable mask overlying said indicia, and a patterned
2. A connector for rigid plastic pipe comprising a central 9 Claims cylindrical member with an axial bore in the form of three tepped diameters which increase symmetrically from the centre of the member to its respective ends, and into which are
inserted the rigid pipes to be connected, the two inserted the rigid pipes to be connected, the two opposing ends
of the cylindrical member being provided with an outer thread, wo female elements threaded on said member and each having internally, a cone frustum cavity forming a radial pressure surface, a pair of internally toothed semi-circular locking seg-
ments positioned in each end of said member and engageable direction away from said catch means to effect tight interenby said pressure surface of said female element for, forming a gagement therebetween.
torsionally the pipe inserted therein, interengaging complimen-
tary recess and projection means on the inner ends of said

central member and on the outer wall of each of said locking segments respectively to torsionally constrain both said segments against rotation relative to said members, and cooperating abutment means on each of the segments and the member to prevent axial movement of the segments with respect to the member.

## 4,095,827

Harold L. Stavensu, Owatonna, Minn., assignor to Truth Incor
Haroid L. Surated, Owatonna, Minn.
porated, Owatonna, Minn.
Filed Dec. 23, 1976, Ser. No. 753,703
U.S. Cl. 292-65

6 Claims


1. A window lock having catch means mountable on one window element and a locking member mountable on another window element with said locking member having a locking notch engageable with the catch means, means mounting saic locking member for linear movement between an advanced a retracted position spaced from said catch means, said mounting means also enabling said locking member to pivot away from the direction of said linear movement, an operating mem-
ber interconnected with said locking member for causing said ber interconnected with said locking member for causing said
linear movement of said locking member and mounted for movement between window unlocked and locked positions in one direction along a path extending generally toward said catch means, and means operable as said operating member
approaches said window locked position and said locking approaches said window locked position and said locking
member is in said advanced position to pivot said locking notch of said locking member into interengagement with the catch means and move the locking member a short distance in a
2. A locking assembly comprising
a bolt member;
barrel member, said barrel member including a central portion thereof for slidably mounting and enclosing said
bolt member, said barrel member further including outer edge portions reversed upon themselves to form grooves for receiving means for mounting said barrel member of said locking assembly;
each of said barrel member and said bolt member having at least one aperture therein such that the apertures can be serted therethroug whereby a lock member can be inserted therethrough internally of said barrel member, said outer edge portions of said barrel member being re-
versed upon themselves by approximately $180^{\circ}$ for a subversed upon themselves by approximately $180^{\circ}$ for a sub-
stantial distance such that the outer edges extend above stantial distance such hereb the outer edges extend above to protect said means for mounting and prevent access thereto.
$4,095,829$
WINDOW LOC
MINDOW LOCK Truth Incorporated, Owatonna, Minna

Filed Dec. 29, 1976, Ser. No. 755,187
Int. C1. ${ }^{2}$ EOSC 3/08
U.S. Cl. 292-241 Int. C.' ${ }^{2}$ E0SC 3/08 $\quad 13$ Claims


1. A window lock having a cam member engageable with a keeper, comprising, a base, said cam member being rotatably fixed axis between a retracted position and an extended lock position, a handle member mounted on said base for rotational movement generally about said axis, and motion-transmitting means including a lost motion connection between said handle
member and cam member whereby initial rotation of the hanmember and cam member whereby initial rotation of the han-
dle member toward either of two positions at either side of said axis does not cause any movement of the cam member to result
in a lesser rotation of said cam member between retracted and extended positions.

## 4,095,830

CONTAINER AND COVER TIE DOWN APPARATUS Michael P. Spelliman, 9943 Wentworth Ave., Bloomington Continuation-in
Conthe
4,009,897- Tn-part of Ser. No. 679,665, Apr. 23, 1976, Pat. No.
U.S. CI. 292-288 Int. C.2. ${ }^{2}$ E0SC 19/18


1. A container cover and hold down apparatus formed from resilient tensioning material, comprising:
(a) a first leg having a looped end;
(a) a first leg having a looped end;
(b) second and third legs having looped ends, each looped (b) second and third legs having looped ends, each looped intervals, said second and third leges looped ends adapted for encircling container handles; and
(c) a handle on said first leg between said first leg looped end and said second and third legs.

$$
\begin{aligned}
& \text { VEHICLE BUMPER DEVICE }
\end{aligned}
$$ Taro Hagiwara, and Shojiro Seki, both of Yokohama, Japan, assignors to Nissan Motor Company, Limited, Japan Filed Dec. 2, 1976, Ser. No. 746,791 Cluims priority, application Japan, Dec. 9, 1975, 50-165246 U.S. C. 293-62

2 Claims

## 80

1. In a vehicle having a vehicle body and an impact receiving bar spaced at a distance from a longitudinal end of the vehicle body, the improvement comprising:
a side bumper spaced at a distance from a lateral side of the atide bumper spaced at a distance from a lateral side of the
vehicle body and having one end fixed to one end of the impact receiving bar;
a mpact eiece secured to one of said lateral side of the vehicle
body and an opposite end of said side bumper; and a female piece secured to the other one of said lateral side of said male piece having an enlarged portion adapumped for engaging in said female piece, said male piece being made of a rigid material,
said female piece being made of a springy material and having a slot, said female piece detachably receiving said
enlarged portion of said male piece upon pressing, in assembly, said side member towards said lateral side of the
aligned with said slot, said slot of said female piece extending in a direction to allow said male piece to disengage from said female piece when said side bumper moves along the longitudinal direction of the vehicle body.
2. A cooking utensil device comprising
means for manually turning food items while being cooked including;
combination support and cooking structure for reception of food items therewithin comprising a two-part receptacle unit, a first part having a substantially flat food supporting surface with three side walls around the perimeter
thereof, a second part of similar configuration with a flat thereof, a second part of similar configuration with a flat
supporting surface having three side walls around the perimeter thereof, said second part telescopically engageable with said first part and when engaged the overall unit may receive food through the one end opening thereof; handle structure; rotatable support means connecting said handle structure with said combination support and cook-
ing structure; said handle structure comprising turning ing structure; said handle structure comprising turning
means for turning said rotatable support means and to thereby effect a corresponding turning of said combination support and cooking structure with food therein; said turning means comprising structure adapted to be operated by one's thumb when holding said handle in one's hand.

WIVEL MOUNTED RELEASING HOOK DEVICE orles B. Levis, Milwakie, Oreq essigor to to Cranston Machinery Company, Inc., Oak Grove, Oreg.
Filed Nov. 18, 1976, Ser. No. 742,891
U.S. C. $294-83 \mathrm{R}$

Int. Cl. ${ }^{2}$ B66C $1 / 38$
A swivel-mounted pneumatic-controlled releasing haims evice comprising a body, a swivel having a lifting eye mounted for rotation on one end of said body, an air line conend of said bady fer, a hook pivotally mounted on the other and a release position movement between a carrying position hold said hook in carrying position, a spring hold sing said lotch pin in said engagement with said hook, a piston in said body for retracting said latch pin, and passageways for transmitting air
pressure in said air line connection to said piston to retract said latch pin, said passageways including an air tube on said swivel
ment of the post structure, being increased so as to assure positive pad assembly-load engagement during lifting.

## 4,095,835

FLOW-NOSE DEPLOYABLE STREAMLINING FOR E Ensor 1409 MEHICLES
John E. Ensor 1409 Mt Cormel Rd Partor, Md.
Filed Jul. 14, 1977, Ser. No. 815,597
U.S. Cl. 296-1 S $\quad 25$ Claims

extending axially through said piston, said piston being slidable and rotatable on said air tube.

## 4,095,834

SELF-ATTACHING LIFTING DEVICE
Richard H. Strauss, 4364 Daisy St., Springfield, Oreg. 97477 Filed Dec. 9, 1976, Ser. No. 749,046
Int. Cl. ${ }^{2}$ B66C $/ 1 / 44$
U.S. CI. 294-97

5 Claims

1. In streamlining apparatus forwardly deployable from a vehicle, the improvement comprising: a stem having first and second ends; means for attaching the first end of the stem to a vehicle with the stem forwardly protrusive from the vehicle, a the second end of the stem, at an angle thereto, and means for unfolding the plurality of panels into conical array for streamtion for storage.

$$
4,095,836
$$

INFLATED LOAD BEARING CUSHION FOR CAMPER John E. Pettit, 18219 46th AND THE LIKE Conti. Pettit, 18219 46th PI. S., Seattle, Wash. 98188 a continuation of Ser. No. 273.931, Jul. 21, 1972, abandoned This application Feb. 26, 1976, Ser. No. 661,787 .S. C. $296-23$ MC ${ }^{\text {Int. Cl. }{ }^{2} \text { B60P 3/32 }}$

4 Claims


1. For use with a vehicle having a cab and a removable component such as a camper, the cab and camper having at
least a pair of adjacent, spaced apart surface areas, a load least a pair of adjacent, spaced apart surface areas, a load bearing cushion insertable between said surface areas, said cushion being constructed of airtight flexible material and
having top, bottom and side walls forming an airtight, expansihaving top, bottom and side walls forming an airtight, expansithat, upon insertion between the cab and camper spaced apart surface areas and inflation, said cushion will fit tightly between the surface areas to stabilize the vehicle and removable component, at least one of said top and bottom walls of said cushion area efined by said inner wall surface of the load with the being provided with suction cup means thereon and over a
effective arm length, during subsequent upward move- substantial portion of said one wall to firmly engage with one instrumentality to
绪 for attachment to a lift tine of the instrumentality rms pivotally attached on a fixed axis to the post structur and normally extending outwardly therefrom in a radial manner,
arm attached links,
arm attached links,
load engaging pad assembly carried by each of said arms each pad assembly being of angular configuration and thereby adapted for initial rested engagement with the
upper edge of the load to be lifted, and upper edge of the load to be lifted, and
single axis pivot means interconnecting each pad assembly
its arm to permit free rotational movement between each arm and pad assembly during load attachment whereby the arms, subsequent to pad assembly contact with the
load upper edge. may swing downwardly to enter tha load uper edge, may swing downwardly to enter tha
area defined by said inner wall surface of the load with the
of said surface areas upon inflation of said cushion whereby said cushion is retained between the surface areas regardless of even substantial relative articulating movement between the spaced surface areas are caused by road travel of the vehiclein the form of a generally rectangularly configured torus of four sections, said suction cup means being arranged in clusters and effectively anchoring about half the surface area of said one wall and wherein at least one of said four sections of said cushion defines by said rectangularly configured torus is free
of said suction cup means clusters so as to function as a rain and of said suction cup means clusters so as to function as a rain and
debris barrier upon insertion and inflation of said cushion in the vehicle-removable component combination.

## 4,095,837

AIR PARTITION FOR AUTOMOBILE PASSENGER COMPAPTMENT
Harry E. Hunter, 164 Ball Farm Rd., Oakville, Conn. 06779 Filed Sep. 27, 1976, Ser. No. 727,245
U.S. Cl. 296-24 R

7 Claims

A. A partition for segregating the air space within the passe ger compartment of an automobile or the like relative to the an elongated upper support track located substantially above the tombile, said track being

- seat provided by said automobile whest of a passenger
a plurality of side brackets for removable affixment to the
opposed inner wall portions of said automobile each of opposed inner wall portions of said automobile each of
said plurality of brackets disposed in a plane defined by said upper support track and said backrest; and
a transparent curtain being fixedly secured on the lateral free edges thereof to said side brackets, the uppermost free edge of said curtain being affixed to said elongated upper curtain disposed in a touching relationship with said backrest, said curtain having two flexible halves each independently affixed to said elongated upper support track, a
plurality of spherical elements, said plurality of spherical plurality of spherical elements, said plurality or spherical
elements fixedly secured to said uppermost free edge of said curtain, said elongated upper support track providing at least one longitudinal groove therein, said groove for capturing and slidably engaging each of said plurality of spherical elements therein thereby permitting the opening
and closing of said two flexible halves of said curtain. and closing of said two flexible halves of said curtain
pivotally join the two channel members, with
each side channel member formed of a $U$-shaped section, and oriented sn that the open portion of each channel member apen portion of the other, and
each foldable support assembly is formed of a pair of $U$. shaped channel section support legs pivotally joined to
gether, with each support leg pivotally extending into open portion of a channel member to which it is pivotally

joined and with a first support leg extending into an open portion of a second support leg,
sid support legs or a size sur the into the open portion of the second support les in fits folded condition of the support legs, and each said leg of a size to fit into the open portion of each channel member so that in the retracted folded positon of the device the legs of the foldable support assembly rest inside the open portion of the channel members.

FALLING OBJECT $\stackrel{4,095,839}{\text { PROTECTIVE STRUCTURE }}$ Dean Merrill Lawrence, Aurora, and Gary Lee Popdan, Sandwich,

Filed May 24, 1976, Ser. No. 689,284
U.S. C. 296—28

15 Claims


1. A falling object protective structure for hydraulic excavators or the like having an operator's cab which includes generally vertical support members
port members, comprising: a canopy assembly adapt
operator's cab and eted for disposal over an excavator oar mount's cab and extending forwardly thereof;
rear mounting means for mounting the canopy assembly to an excavator cab at the rear thereof; and
front mounting means for attachment of the canopy assem-
bly to an excavator cab at the front thereof, and wherein said front mounting means includes pivot means for allow. ing pivoting of the canopy assembly with respect to portions of said front mounting means and an excavator cab the canopy whereby the canopy assembly may pivot
under such loading to avoid bending moments at said front including ledges adjacent to the side rear corners of said ope-
mounting means. mounting means.

## 4,095,840

RETRACTABLE COVER FOR A TRUCK BODY Woodard, 6995 NW. 32 Ave., Miami, Fla. 33147
Filed Jan. 17, 1977, Ser No. 759,865 U.S. CI. 296-100 Int. CI. B60j $11 / 00$


1. A retractable, flexible cover for the open top of the loadcarrying body of a truck providing a forwardly projecting
platform from the forward top end thereof comprising: A. a generally U-shaped support frame including,
2. a pair of parallel side legs, pivotally connected at their lower ends to the respective side walls of the load-car rying body, intermediate the forward and rear ends
thereof, and
3. a transverse cross rod fixed between the upper ends of said legs;
B. a cover including.
a main body portion sized to cover the open top with the rear end thereof fixed to said cross rod and the forward end thereof fixed relative to the front end of the forwardly projecting platform, and
4. a pair of side skirt portions, adapted to cover a substan-
tial heighth of the top ede portion of the respertiver tial heighth of the top edge portion of the respective ing at a marginal edge;
C. means to anchor the forward and rear ends of the respec-
tive skirt portions;
D. tension spring means normally urging said $U$-shaped E. reversible drive means fixed;
E. reversible drive means fixed relative to the platform; to permit said cover to be extended to a covering relation
to the open top with said skirt portions in an to the open top with said skirt portions in an overlapping relation to said top edge portions when said reversible
drive means is actuated in a first direction retracted to a gathered, accordion type of condition over and alongside of said platform when said reversible drive means is actuated in a second direction; (and)
G. elastic tensioning means secured along the marg
G. elastic tensioning means secured along the margins of said skirt portions to normally apply tension forces and yield.
. said means to anchor comprising a
bers fixed relative to the platform and pair of vertical memfixed relative to the opposed ends of said transorections rod.

## TRANSPARENT AUTOMOBILE TOP

 James O. Thompson, Florence, and Winston D. Slatton, MuscleShoals, both of Ala., assignors to Thompeon \& Slatton, Inc., Florence, Ala. Filed Dec. 13, 1976, Ser. No. 749,629 U.S. CI. 296-137 B Int. Cl. ${ }^{2}$ B60J $7 / 18$ 1. A single piece removable top for an automotive vehim adapted to cover two openings in the top of the vehicle sepa rated by a longitudinally extending support bar, said vehicle
nins, and said top comprising:
a thickness of $3 / 16$ to $5 / 16$ inch;
said sheet extending concave downward to the sides and front of said sheet; and
attachment members secured to corner regions of said sheet for attaching said top to said vehicle and two rear corner attachment means, each including:

a supporting block attached to the rear underside of each rear corner region of said sheet,
arm rotably attached to said block and oriented to rotate about a fore and aft, with respect to vehicle, axis, second block rotably attached about a fore and aft, with respect to vehicle, axis to each said arm, and including selected distance above said amm and aner a ack at

SEAT FOR GARDENING AND THE LIKE Julius Tretick, Westerlo, N.Y., assignor to Tredhill Manufacturing Co. Inc., N.Y.
Filed Apr. 27, 1977, Ser. No. 791,571 ed Apr. 27, 1977, Ser. No. 791,571
Int. Cl. ${ }^{2}$ A47C $/ 1 / 00$ Int. Cl. ${ }^{2}$ A47C $1 / 0$

12 Claims
U.S. CI. $297-4$


1. A wearable seat device adapted to be attached to the person of a user for use in gardening and the like, said seat
device comprising: device comprising: generally U-shaped frame member including a pair of side portions and
a seat member;
means for adjustably mounting said seat member between the side portions of said frame member extending between the upper ends of the side portions of said frame members intermediate the ends thereof;
a belt support assembly including a bar member extending
between the upper ends of the side portions of aid member and a belt mounting plate mounted on said bar member;
means for securing said belt support assembly to said frame member; and
belt means, attached to said belt mounting plate, for detach ably securing said seat device to the person of a user, said
belt means, in use, surrounding the waist of the user such belt means, in use, surrounding the waist of the user such
that said frame member extends downwardly therefrom behind the user in close proximity to the body of the user.

SUPPORT STRUCTURE $4,095,844$
UPPORT STRUCTURE AND DRIVING MECHANISM FOR TILTING, SLIDING EDGE DISPENSERS
W. Kent, 1239 E . Carlton Ave., Orange Calif 92667 Filed May 10, 1977, Ser. No. 795,651 U.S. C. 298-14

EIGHT $4,095,843$
HEIGH ADJUSTMENT APPARATUS FOR CHILD James C. Hirsch, 2148 Tanglewood, Highland Park, III. 60035 Filed Feb. 2, 1977, Ser. No. 764,839
U.S. C. 297-136

Int. C. ${ }^{2}$ A47B $39 / 00$
11 Claims


1. A height adjustment arrangement for supporting on a floor a baby feeding table including a table top carrying a seat oldable between a closed position and an open position suster of said table top, the improvement comprising
a first pair of parallel legs having spaced ends,
first pivot means for each leg pivotally connecting along a common axis the respective leg adjacent one end of eation leg with intermediate said seat and said perimiter for rotation about a common axis,
another pair of parallel legs having spaced ends,
first and second intermediate pivot means pivotally connecting a respective one leg of said other pair with a respective
leg of said first pair at a position intermediate the ends of each connected leg,
a tubular cross bar extending past opposite edge portions of said seat and between said first and said second intermedi ate pivot means,
first and second securing means held in said cross bar adjacent a respective end of the cross bar for securing the firs
and second intermediate pivot means independently to said cross bar at respective positions spaced apart by a distance greater than the distance between opposite edge portions of said seat,
a U-shaped lever bar pivotally connected with each leg of said other pair along a common axis with each leg of intermediate pivot means and from the ends of said lever
bar,
last pivot means pivotally connecting said lever bar with said table top along a common axis at a position intermed
ate said seat and the perimiter of said table top and spaced from the first pivot means,
and locking means for locking said first pair of legs against pivotal movement relative said other pair of legs in each said other pair of legs.

2. In combination with a tilting, sliding edge dispenser wherein a base member with a flat planer surface has a container with at least one opening normally closed by the planer
surfac: when the container is in a first position relative to the surfac: when the container is in a first position relative to the
base member, and wherein a portion of at least one opening has at least one linear edge, wherein the container is adapted to move across the planer surface in tilting engagement therewith from the first position to a second position while maintaining the linear edge in sliding contact with the planer surface to scrape the contents of the container before the linear edge and comprising:
pivot means fixedly attached to the containers; and
a support structure rigidly attached to the base member and having elongated receptacle means for receiving said pivot means in rotating and sliding engagement therewith tacle means as the container moves from the first position to the second position across the planer surface in tilting engagement therewith

METHOD OF $4,095,845$ riedrich-Wilhelm
Germany (4222)
Filed
Filed Jul. 23, 1976, Ser. No. 708,081 Int. Cl. ${ }^{2}$ E21C $25 / 68,25 / 06$ U.S. C. 299-18 MII. C. ${ }^{2}$ E21C 25/68, 25/06


1. A method of mining coal along a wall which comprises
he steps of:
disposing along said wall a chain of articulated excavating orms,
rotating said worms; and
urging said worms against said wall in succession at inclina tions of $5^{\circ}$ to $50^{\circ}$ thereto whereby the worms inclined to said wall bite into the latter and other worms along said
wall displace material excavated by the inclined worms wall displace material excavated by the inclined worms
therefrom.

## 4,095,846

WHEEL WITH MOLDED TIRE FOR CARTS Filed Aug. 26, 1976, Ser. No. 717,916 U.S. Cl. $301-37$ R

1 Claim


1. A wheel for mounting on a spindle axle and comprising a entral hub, a bearing aperture hrodg he hab, a radial web extending centrally of the hub, an outer rim extending concen-
tric with a bearing aperture from each side of the web, an inner rim spaced from the outer rim and extending concentric with the bearing aperture from each side of the web; a molded tire tread covering the outer rim, a tire inner ring integral with the
tread and filling the space between rims, and ring ties extending through the web at intervals and integral with the inner ing hrough the web ane inervals and integral with the inner
ring on each side of the waid tire tread being of a polyurethane plastic and said rims and hub being of a polypropylene plastic; radial spokes arcuately spaced on each side of the web
from the hub to the inner rim, the spokes on one side of said web being in a different transverse plane from a spoke in the opposite side of the web; a cover disc on each side of the wheel and covering substantially the space between the bearing aperture and the inner rim, and a bearing having inner and outer each being secured to an inner bearing race.
$\stackrel{4,095,847}{ }$
Charles W. Wear, 124 MATIC CONVEYOR Filed Apr. 25, 1977, Ser. Gretna, Nebr. 68028 . 208
Int. C1.2 B65G $53 / 04$ U.S. Cl. 302-24

2. A pneumatic conveyor apparatus, comprising a irst elongated hollow conveyor tube means having one
end in operative communication with a source of material end in operative communication with a source of material to be conveyed and its other end in operative communica-
tion with the area to which the material is to be conveyed, at least one second elongated hollow tube means embracing at least a portion of the length of said first tube means, said second tube means having a larger diameter than said first
tube means to defin means sealing the ends of said second tube means, source of air under pressure in communication with said compartment area,
said first tube means having a plurality of spaced-apart air
directing openings formed therein which are in communication with said compartment area,
each of said air directing openings having an intake end in communication with said compartment area and a discharge end portion in communication with the interior of
said first twbe means said first tube mean
posed relative to the interior of said first tube means whereby air supplied to said compartment area will pass through said air directing openings and will be discharged into said first tube means towards said other end to convey the material towards said other end,
intake end in communication with said air tube having an and a discharge end portion in communication with the interior of said first tube means,
said discharge end portions being disposed substantially parallel to the longitudinal axis of said first tube means.

## 4,095,848

ANTI-SKID BRAKE CONTROL SYSTEM HAVING A HYDRAULIC BRAKE BOOSTER
Hendo, Anjo, Japan, assignor to Aisin Seiki Kabushiki Kaisha, Kariya, Japan
Filed Jun. 10, 1976, Ser. No. 694,632 Claims priority, application Japan, Jun. 11, 1975, 50-71086 U.S. Cl. 303-2 Int. Cl. ${ }^{2}$ B60T $8 / 02$


1. A brake system for vehicles comprising:
brake booster means operatively connected with a brake pedal for generating fluid pressure in response to the actuation of the brake pedal;
said brake booster and supplying tively connected with brake cylinder meand in ppplying fluid pressue to wheel ted by said brake booster ated by said brake booster;
said wheel brake cylinder
said wheel brake cylinder means hydraulically connected with said master cylinder means and applying a braking force to wheels of the vehicle in response to the pressure of said master cylinder means;
brake actuator means connected in the brake fluid circuit between said master and wheel cylinder means for controlling the pressure in said wheel cylinder means;
and a fluid pressure source means for providing an operating fluid pressure to said actuator means;
first fluid circuit including said fluid presure source means, $a$ first inlet port in said control valve means, a first passage a second fluid circuit including a reservoir and a first outlet port in said control valve means; and
third circuit including a second inlet port in said control valve means communicating said brake booster means
with a pressure chamber having a spring therein in said release, and a further pressure responsive member for operatcontrol valve means whereby the level of said operating ing said accelerated release valve, said further pressure responfluid pressure for said actuator means is controlled to be proportional to the level of the pressure generated by said brake booster means by throtlling a second passage between said first inlet and outlet ports in response to the pressure in said $\qquad$
TREAD FOR POWER DRIVEN SKI TYPE DEVICE Royce H. Husted, Wheaton, III., assignor to Saroy Engineering, Wheaton, III.
Continuation-in-part of Ser. No. 599,003, Jul. 25, 1975, Pat. No 4,035,035. This application Apr. 25, 1977, Ser. No. 790,655 1994, has been disclaimed.

Int. C1. ${ }^{2}$ B62D 55/26
10 Claims
U.S. Cl. 305-35 R


1. In a power driven ski type of a device using a tread of the 1. In a pow an endless linked chain adapted to circulate over sprocket and a plurality of spaced propulsion cleats, each of said cleats having a snow engaging side opposite from a procket engaging side, a propulion a cleat
cleat attachment link adapted to form
and having an attachment plate, and
a snow engaging section made of a resilient material a
tached to said attachment plate and having a roof-plat integral with a protruding blade,
wherein said protruding blade is resiliently connected to said hock by said protruding blade between said attachment link to said sprocket and said power driven ski type of a device, when said protruding blade accelerates and decelerates over said sprocket.

4,095,850
BRAKE CONTROL VALVE APPARATUS David John Wickham, London, England, assignor to Westing house Brake and Signal Co. Led., England house Brake and Signal Co. Ltd., E4gland 4,050,745. This application Jun. 28, 1957, Ser. No. 810,723
U.S. Cl. 303-36

2 Claims

1. A fluid operable brake control valve apparatus having
brake cylinder valve for controlling the supply of fluid pres sure into and out of a brake cylinder, said valve being operable by a main pressure responsive member movable in response to
changes of pressure when applied to a brake pipe, a quick changes of pressure when applied to a brake pipe, a quick
service volume exhaust valve, having an outlet path and operable in response to such a change tending to cause a brake application, for connecting a quick service volume to the brake pipe to enhance the change at commencement of an application, accelerated release valve means operable in response to
release a fluid pressure from the quick service volume to conrelease a fluid pressure from the quick service volume to con assist a change of pressure in the brake pipe causing such

sive member having one side thereof connected to the outlet path from said quick service volume exhaust valve.

MODULATOR FOR ANTI $4,095,851$ ANTI-SKID BRAKE CONTROL SYSTEM Masamoto Ando, and Tomio Tachino, both of Toyota, Japan, essignors to Alin Seiki Kabushilidi Kaisha, Kariya, Japan assignors to Aisin Seiki Kabushiki Kaisha, Kariya,
Filed Dec. 3, 1976, Ser. No. 747,212
Claims priority, application Japan, Dec. 4, 1975, 50-145329. Claims priority, applic
U.S. Cl. 303-115 Int. Cl. ${ }^{2}$ B60T 8/02


1. In an anti-skid brake control system for a wheeled vehicle aving a master cylinder with a hydraulic fluid reservoir, at least one wheel brake cylinder and a hydraulic braking circuit nnecting said master cylinder to said at least one wheelbrake cylinder, the system comprising: skid-sensing means for generlocking conditon; a servo-motor including a piston operated in response to the signal from said skid-sensing means; a cylinder casing having a first fluid chamber connected with said master ylinder and a second fluid chamber in communication with said at least one wheel brake cylinder; cut-off valve means disposed within said first fluid chamber of said casing for
interrupting fluid communication between said first and second fluid chambers; and hydraulic capacity control means ncluding a plunger axially movable within said second fluid hamber of said casing and operatively engaged at the forward nd thereof with said cut-off valve means and at the rearward nd thereof with said piston of said servo-motor, said plunger earward stroke of said piston to activate said cut-off valve means and thereafter to increase the capacity of said second fluid chamber to decrease the braking pressure applied to saic least one wheel brake cylinder;
means interposed between said second fluid chamber of said casing and said hydraulic fluid reservoir of said mas ter cylinder for permitting fluid flow from said second
fluid chamber to said reservoir, said pressure-relief valve means being normally closed and being openable for per mitting fluid flow from said second fluid chamber to said reservoir to further decrease the braking pressure applied
to said at least one wheel brake cylinder after the capacity to said at least one wheel brake cylinder after the capacity
of said second fluid chamber is substantially maximized by retraction of said plunger to the rearward stroke end thereof; and flow-regulating means interposed betwee said relief valve means and said reservoir for controlling fluid flow from said second fluid chamber to reservoir.

## 4,095,852

MEASUREMENT SLIDING BEARING
Karl-Heinz Schutz, Schweinfurt, Germany, assignor to SKF Industrial Trading \& Development Company B.V., Nieuwegein, Netherlands
Fimed Oct. 4, 1976, Ser. No. 728,942 $\underset{7532711 \text { [U] }}{\text { Cliority, application Germany, Oct. 15, 1975, }}$
U.S. Cl. 308-3 R Int. Cl. ${ }^{2}$ F16C 23/02


1. In a bearing assembly including first and second bearing 1. In a bearing assembly including first and second bearing
rings with a main load zone, and a plurality of sliding bearing disks between and engaging said rings, the improvement in combination therewith of a force-measuring bearing member
having the same general outside dimensions as said disks and having the same general outside dimensions as said disks and situated between and engaging said rings as a replacement for
one of said disks, said force-measuring member comprising a disk-like bearing element having an end part thereof engaging a first of said bearing rings, and a carrier with force-measuring transducing means mounted thereon, said carrier being a metal ring of $L$-shaped cross-section and coaxial with and secured to
said bearing element with a leg portion of said $L$-shaped ring said bearing element with a leg portion of said $L$-shaped ring
having a support surface with projects from said bearing element and slidingly engages said second ring.

## 4,095,853

DRAWER ROLLER GUIDE WITH PAIR OF ROLLERS
Paul M. MacDonald, Scituate, Mass., assignor to P. X. Industries, Inc., Rockland, Mass.

$$
\begin{aligned}
& \text { Rockland, Mass. } \\
& \text { Filed Dec. 6, 1976, Ser. No. 747,805 } \\
& \text { Int. Cl. }{ }^{2} \text { F16C 29/04 }
\end{aligned}
$$

$$
-3.6
$$

S. CI. 308-3.6

1. A roller guide for use in the corners of a cabin 2 Claims for a drawer, comprising
a bracket formed with a pair of coplanar, integral, flat
right angular legs of substantially equal length, said legs right angular legs of substantially equal length, said legs
being formed with spaced openings to receive fasteners therethrough,
(b) an imperforate, thin lip extending from the inner edge of each leg perpendicularly to one face of said bracket and to
each other and adapted to seat against the corner edges of each other and adapted to seat against the corner edges of
said cabinet opening to position said guide with respect to said drawer, and,
(c) a roller mounted to the opposite face of each of said legs
for rotation about an axis parallel to the length of said legs,
he periphery of each of said rollers extending beyond the plane of its respective lip to engage said drawer, larly from spaid opposite fupports extending perpendicularly from said opposite face of each leg at the mid portion

poisd transversely to the length of each leg, each pair of pupports rotatably supporting one of said rollers, e) each of said rollers including a central hub, a cylindrical outer rotor and
hub and rotor.

## BEARING ASSEMBLY FOR A SLIDING RECTILINEAR MOTION <br> hiroshi Teramachi, 2-34-8, Higashi-tamagawa, Setagaya-ku, $\underset{\text { Filed Oct. 26, 1976, Ser. No. 735,167 }}{ }$ Oct. 26, 1976, Ser. No. 735 Int. C.2 ${ }^{2}$ F16C $17 / 00$ <br> 3 Claims

4,095,855
GAS LUBRICATED SPINDLE BEARING ASSEMBLY Wayne L. Fox, Castro Valley,
tional, Inc., Hayward, Calif.
tional, Inc., Hayward, Calif.
Filed Sep. 20, 1976, Ser. No. 725,029
U.S. CI. 308-9

Int. Cl. ${ }^{2}$ F16C $32 / 06$
3 Claims


1. A gas lubricated spindle bearing comprising
2. A gas lubricated spindle bearing comprising:
a first housing portion having a first end surface with a first housing portion having a rirst end surang a first seat
concave, spherically-shaped region forming means with a first plurality of circumferentially disposed air passage groove means formed thereon, a second end surface, a first bore extending between said first end surface and said second end surface, means forming a mani-
fold for receiving a pressurized gas, and first gas channel fold for receiving a pressurized gas, and first gas channel
means communicating between said first plurality of groove means and said manifold means;
a second housing portion having a third end surface with a concave spherically-shaped region forming a second sea mesed air passage groove means formed thereon, a fourth posed airf passage a second bore extending between said third end surface and and said fourth surface, and second gas channel means communicating between said seco
rality of groove means and said manifold means;
means fastening said first and said second housing portion so that said second surface abuts said fourth surface and said first and second bores are coaxial;
sor means having a convex spherical surface of substantially the same curvature as said first seat means, said rotor means having a third bore formed therethrough and closely disposed to said first seat means so that said third bore is substantially coaxial with said first and said secon bores;
huck means having a convex spherical surface of substantially the same curvature as said second seat means and closely disposed to said second seat means;
spindle means having a first end and a second end and dis posed through said first, second and third bores; twin, parallel fiexure collet assembly including a first annu-
lar disk, a second annular disk facing said first annular disk lar disk, a second annular disk facing saic firrs annular disk having a first and a second end, means attaching said firs disk coaxially around a portion of said cylindrical bushing proximate the first end of said bushing, and means attach ing said second disk coaxially around a portion of said
cylindrical bushing proximate the second end of said cylindrical bushing proximate the second end of said bushing;
second disks to said rotor means; and
ser
second of collet to said rotor means, and pair of colier closing sleeves engaged to opposing ends aid first and second annular disks being pre-loaded in a direction to bias said rotor means and said chuck means towards their respective seat means and where pressurized gas from said manifolds flow through said channels and
out said grooves to separate said chuck means and said

## cating gas.

ADJUSTABLE BOTTOM STEP BEARING ichard E. Markority, Cincinnati, Ohio, assignor to Brighton Corporation, Cincinnati, Ohio
Filed Jan. 24, 1977, Ser. No. 761,719 int. Jan. $24,{ }^{2}$ F16C $23 / 10$
Int U.S. C. 308-29

1. A bearing for the lower of an elogate shaft which is tatably suspended from its upper end, the bearing having a ngitudinal centerline and comprising:
a bearing sleeve concentrically connected to the shaft low end to be rotatable therewith;
a replaceable bushing receiving said bearing sleeve;
an intermediate member having a bushing receiving means defined therein which receives said bushing therein so that defined therein which receives said inner surface of said intermediate member is concentric with said bushing, said intermediate member having an arcuate outer surface;
an inner eccentric ring surrounding said intermediate member and having an arcuate inner surface shaped to corresurface in a manner which permits said intermediate member to move with respect to said inner ring for compensating for tilting of the tation thereof; and
for misalignment of the shaft with respect to the bearing for misalignment of the shait with respect to the bearing means including an outer eccentric ring surrounding said inner eccentric ring.

4,095,857
OIL DEFLECTOR
Cifford Augustus Palmer, Huddersfield, England, assiguor to Holset Engineering Company Limited, Huddersficld, England Hoiset Engineering Company Limited, Huderrsing
Filed Nor. 23, 1976, Ser. No. 744,373
Claims priority, application United Kinglom, Nov. 25, 1975,
Int. Cl. ${ }^{2}$ F16C 1/24; F04B 39/04; F01M 11/04
U.S. C. $308-168$

1. An oil deflector for use with a horizontal shaft rotatably supported by at least one oil lubricated bearing assembly for otation, said deflector comprising:
a stationary member disposed generally in a plane at righ angles to said shaft and having a first side thereof facing said bearing assembly, said member having a central aperture through which said shaft extends with a relatively close clearance and a plurality of apertures through said member at poins
tral aperture,
means for defining an outwardly facing generally annular
channel on the second side of said member and forming perimeter around said central aperture but inward of said ward oil passing through said plurality of apertures,

at least one of said apertures being formed at approximately the lowermost portion of said member for directing oil form said channel to the first side of said member

## 4,095,858

 BOOK CASE APPARATUJohn L.
55408

## 3322 Blaisdell Ave., \#201, Minneapolis, Minn.

Filed Feb. 2, 1977, Ser. No. 764,834
U.S. Cl. 312-198 Int. Cl. ${ }^{2}$ A47B $53 / 00$

6 Claims


1. A book case or the like on a supporting surface comprising 1. A book case or the like on a supporting surface comprising
a plurality of identical, generally P-shaped modules, each
module including an elongated first wall, a second wall, a third mall and a fourth wall, each of the second, third and fourth walls being of a substantially shorter length than the first wall, he first end portions of the second and third walls being joined and second end portions of the fourth wall being joined the second end portions of the second wall and third wall respec lively, the first end portion of the third wall being joined to the first wall about midway the first wall first and second en portions, the first wall second end portion having a terminal
end, the first wall first end portion being joined to the second wall first end portion, and the first and fourth walls being parallel to one another and perpendicular to the second an hird walls, said plurality of modules including a first module and a second module having their first walls parallel to on
another and inclined at substantial angles to both the horizontal and vertical, the fourth wall of the second module abutting against the first wall of the first module, the terminal ends
abutting against the supporting surface and the corner portion abutting against the supporting surface and the corner portion defined by the juncture of the third and fourth walls of each surface.

## 4,095,859

PORTABLE EYE EXAMINATION SYSTEM CART homas A. Decker; Christian L. Kuether; Robert E. William and Dan B. Jones, all of Houston, Tex., assignors to Baylor College of Medicine, Houston, Tex.

Filed Jan. 5, 1977, Ser. No. 757,107
U.S. Cl. 312-209


1. A portable eye examination system cart comprising
a body of generally rectangular outline,
roller means mounted to the bottom of the body for free
rolling movement, rolling movement,
a top portion of the body, the console including means to a top portion of the body, the console including means to
support eye examination instruments and devices,
an openable cover enclosing the front and the top portion of the body
an electric power system carried by the cart effective to and devices whic power to the eye examination instruments he electric power system electrically operated, ounted on the cart indicating whether the electric power system is on and off, an emergency on and off switch, and a plug for ctric outlet,
the means to support the eye examination devices including on and off switches for one or more of the eye examination instruments and devices which are electrically operated arranged to be in an off position when supporting and in
an on position when not supporting them an on position when not supporting them
the body including a closable storage co
means for carrying patient charts, and a tray disposed at the upper portion of the body for contain-
ing supplies. a tray disposed
ing supplies.

## 4,095,860

STORAGE SYSTEM
Ertel R. Henson, Bloomfield Hills, Mich., assignor to Disco Engineering, Inc., Bloomfield Hills, Mich.
Filed Jan. 24, 1977, Ser. No. 761,646

> Filed Jan. 24, 1977, Ser. No. 761,646 Int. Cl. ${ }^{2}$ A47B $87 / 00$
U.S. Cl. 312-242
with a hinged door for a closet-like Clain 1. In combination with a hinged door for a closet-like enclointerior of said enclosure when said door is in a closed position, storage system comprising,
a pair of spaced parallel mounting sections affixed on said
interior surface and extending generally vertically thereinterior surface and extending generally vertically there-
along, along,
wherein
aligned pairs of openings and a storage container adapted to be mounted on said mounting sections at selected vertipairs of openings, and

at least two mounting elements extending between said container and said mounting sections or sect
container to said panel at said selected station.

## 4,095,861

DUST-PROOF CART ration, Detroit, Mich.

Filed Sep. 12, 1977, Ser. No. 832,118
U.S. C. 312-250

2 Claims


A dust-proof cart comprising
housing having solid bottom
having an open front wall, neans inside said housing for removably supporting
dust-proof closure for the open front of said cart,
said closure comprising a plurality of spaced-apart, horizo
tally extending louvers and
tally extending louvers, and
pair of pivotable brackets secured to said side walls adjaa pair of pivotabe front end and adapted to close over and
cent to said open from
hold said louvers in place, one of said brackets having a hold said louvers in place, one of said brackets
series of notches adapted to be engaged by louver when series of notches adapted to oe engage expose the inside of the louver
said cart.

4,095,862 David A. Hatch, S.
Sherborn, Mass. CABLE Sherborn, Mass.
Filed Oct. 19, 1976, Ser. No. 733,949
ed Oct. 19, 1976, Ser. No.
Int. Cl. ${ }^{2}$ H01R 3/06 ${ }^{\text {In }}$
 1. An electrical carsely spaced elongate cable having a plurainy of rantive sheath and comprising. dielectric housing means defining an internal cavity, cable
openings for accommodating entry into said cavity of ends of a pair of parallel longitudinally aligned flat ribbon cables, and conductor openings for accommodating entry
into said caity housing means comprising a first housing part having an open side and defining a first cavity portion of said cavily and a second housing part having an open side and deli ing a second
second housing parts being engaged to close said open sides;
distinct divider part positioned within said cavity so as to electrically isolate said first cavity portion from said secirst grounding means retained within said first cavity por

tion and operative to electrically connect together a plurality of conductive wires in one of the cables;
second grounding means retained within said second cavity plurality of conductive wires in the other cable;
a first plurality of electrically isolated coupling elements retained within said first cavity portion and each operative to electrically connect a different one of said cond cive wres in the one cable to a resp
elements; and
retained ive tod within said second cavity portion and each operaive wires in the other cable to a respective different one of the conductor elements.
-
4ND SYSTEM FOR ELECTRICAL AND/OR PNEUMATIC CONTROL DEVICES AND METHOD
George T. Hardin, Knoxville, Tenn., assignor to Robertshaw Controls Company, Richmond, Va.

Filed Mar. 30, 1977, Ser. No. 783,045
U.S. Cl. $339-15$

30 Claims


1. In a manifold means adapted to detachably carry on one side thereof a plurality of pneumatically and electrically oper ated control units each of which is adapted to be fluidly and
electrically interconnected to pneumatic means and electrical means of said manifold means that respectively have external interconnection means on said one side of said manifold mean so that external pneumatic and electrical lines can be interco nected to the same side of said manifold means that said unis wherein said manifold means comprises a pair of plates secured together in stacked relation with one of said plates defining a east that part of said one side of said manifold means that carries said external interconnection means and is adapted to detachably carry said control units.

## MODULAR MANIFOLDING MEANS AND SYSTEM FOR LECTRICAL AND/OR PNEUMATIC CONTR T. Hardin, Knoxville, Tenn., assignor to Robertshaw Controls Company, Richmond, Va. Filed Mar. 30, 1977, Ser. No. 782,844 Int. C.2 H01R 3/04


. In a manifold means adapted to detachably carry on one side thereof a plurality of pneumatically and electrically operated control units each of which is adapted to be fluidy and
electrically interconnected to preumatic means and electrical means of said manifold means that respectively have external interconnection means on said one side of said manifold means so that external pneumatic and electrical lines can be interconnected to the same side of said manifold means that said units are adapted to be interconnected thereto, the improvemen wherein said manifold means comprises a plurality or like and each having part of said pneumatic means and said electrical means and having one side thereof forming part of said one side of said manifold means, said one side of each manifold module being adapted to carry one of said control units and has said external interconnecical means thereof

## 4,095,865

TELEMETERING DRILL STRING WITH PIPED ELECTRICAL CONDUCTOR Garly B. Denison; Leon L. Dickson, both of Houston, Tex, and Company, Houston, Tex.
iled May 23, 1977, Ser. No. 7y9,485
U.S. C. $339-16$ R Claims 1. An improved pipe section for use in a rotary drill string, through each pipe section, said pipe section comprising:
section of uniform diameter drill pipe, said drill pipe hav ing external upset ends; pin tool joint, said pin tool joint having a smaller interna diameter than said drill pipe, and in addition, being joined to one end of said drill pipe
diameter joint, said box tool joint having a smaller internal diameter than the drill pipe, and in addition, being joined
to the other end of said drill pipe: to the other end of said drill pipe
conduit, said conduit having a helical form with straight
end portions, the outer diameter of said helix being sized end portions, the outer diameter of said helix being sized
to firmly engage the inner wall of the drill pipe when said conduit is placed in the drill pipe; passageway formed in both said box and pin tool joints, the

ends of said conduit being formed to align with said pas sageways;
sealing means, one of said sealing means being disposed in each of said passageways to both form a fluid-tight seal
between said conduit and said passageway, and in addition, mechanically anchor said conduit in said passage ways; and
an insulated electrical contact ring disposed in the sealing shoulders of both said box and pin joints, said passageway trical conductor may be attached to the contact rings in one of said joints, and extend through said passageway and conduit, and be attached to the contact in the other of said joints.

HIGH DENSITY PRINTED $\quad 4,0956$ CONNECTOR ASSEMBLY
Peter S. Merill, San Diego, Calis asignor to NCP Corpora tion, Dayton, Ohio

Filed May 19, 1977, Ser. No. 798,505 Int. Cl. ${ }^{2}$ HOSK $1 / 0$

11 Claims


1. A high density printed circuit board and edge connector 1. A high density
a high density printed circuit board having a printed circuit pattern on said board and a printed circuit pattern within said board;
first row of terminals located on said board adjacent one edge of said printed circuit board;
second row of terminals located on said board coplanar with said first row of terminals and spaced back from said edge further than said first row of terminals;
nnections to said first and second rows of terminals consisting of conductor means extending from said printed circuit pattern within said baird to terminaled circuit pattern on row and extending from said printed circuit pard
said board to terminals in said second row; and
an edge type circuit board connector including a housing for receiving and positioning said board, and first and second
engage said first and second rows of terminals respectively.

COMPONENT $4,095,867$ Howard L. Parks, Woodland Hilis, Calif., assignor to Bunker Ramo Corporation, Oak Brook, Ill. No. 513,649 Filed Oc. 10, 1974, Ser. No. U.S. CI. 339-92 M


1. A circuit module comprising:
a stack of substantially metallic wafers, each having islands of conductive material each encircled by a solid dielectric material with one end of each island connected to a respective island of another wafer by a malleable meta a Z -axis direction through said stack and one surface of each wafer connected to one surface of an adjacent wafe of the stack by a respective malleable metal portion to extend a common connection through said stack and eac end wafer of said stack providing an external surface fo adjacent the respective external surface;
a metal frame member engaging the external surface of each end wafer and including means for clamping said wafer
and each frame member under pressure to place said and each frame member under pressure to place said
wafers and frame members in close heat transmitting wafers and frame members in clabse metal portions with
relationship through the malleable each frame member having a passageway enabling acces to a portion of each external surface and the condictiv islands of each end wafer;
plurality of substantially metallic component wafers each islands with each component wafer conductive island encircled by a solid dielectric and extending toward oppo site surfaces of the respective component wafer;
like plurality of substantially metallic connector wafers, each interposed between a corresponding componen
wafer and an accessible external surface portion of said stack with each connector wafer having conductive slugs, each connector wafer sug encircled by a solid dielectric
and spaced in registry with a respective component wafe and spaced in registry with a respective component ware
conductive island and a respective conductive island ter minating adjacent the external surface of a respective end wafer for extending a respective connection in a $\mathbf{Z}$ axis irection to and from the connected islands of said stac ween one end of each component wafer conductive is land and each slug at one surface of said connector wafer and bet ween the other surface of said connector wafer and the accessible external surface portion of each end wafer; a pluraility of active coircuit comend of selected ones of said component wafer islands;
detachable securing means including a metal pressure cap received in each passageway and an elongate metal member extending into said stack and through a respective respective passageway with each cap in close heat transmitting relationship to one frame member and in overlapping heat transmitting engagement with one surace of a
through the respective component wafer and the respective connector wafer and through the separate malleable means and conductive slugs to said stack for extending respective electrical connections between said terminals and respective islands of said stack and to provide a common connection between said slack and componen wafer while detachably securing her transmitting relationsip to the cap and stack,
ne wafer in said stack having a group of conductive islands adjacent one edge thereof, each island in said group of slands connected to respective other island of said one wafer; and
connector supported by one frame member in heat transmitting relationship and having a terminal connected to connections to and from said stack.

4,095,868
CONTACTING DEVICE FOR CONNECTING THE END OF AN ELECTRIC WIRE
Erik Luithle Erlangen, Germany, assignor to Siemens Aktiengesellschaft, Berlin and Munich, Germany
Filed May 9,1977 , Ser. No. 794,795
Claims priority, application Germany, May 19, 1976, 2622323 U.S. CI. 339-95 D


1. In a contact device for connecting the end of an electrical wire in which an elastically deformable leaf spring mechanially fastens the wire end to a contact element with a contac surface and insures sufficient contact pressure between the end of the wire and the contact element, the leaf spring, having and a second end which is moveably supported at a suppor urface, the distance between the abutment and the suppor urface for said second end being smaller than the length of aid leaf spring, said leaf spring convexally bent and pressed when in a clamped posicion, win the end of the wire again he contact surface of said contact element, the improvemen comprising, said support surface and second end of said spring aid leaf spring second end will press a wire against the contact surface of the contact element and in another stable positio will release said wire; and access openings in said contac device for permitting an outside mechanical influence to be applied to said lear spring to move it between said one directions in one and the other stable positions.

## PPARATUS FOR TUNING NAR

UNNG NARROW BAND WAVE guim Reicheth REFLECTORS
many, assignors to Gerhard Winzer, both of Munich, Ger
Munich, Germany ${ }^{2}$, 1976, Ser. No. 707,64
Claims priority, application Germany, Sep. 29, 1975, 254346 S. Cl. $350-9614$ Int. Cl. ${ }^{2}$ G02B $5 / 14$

5 Clime

1. An apparatus for tuning narrow band wave guide reflec. ors comprisin
b. a wave guide reflector layer arranged on the substrate characterized in that the housing takes the form of the pipe of
having periodic perturbations; and somewhat resilient material which at each end has exten-
having periodic perturbations; and
c. means for adpating the effective index of refraction $n$ c. means for adpating the effective index of refraction $n_{e f f}$ of tions forming two opposite flaps serving as bumpers and as side boundaries for a coil of the supply cable, and that the carrying
he wave guide reflector layer to fulfill the Bragg condition of the reflection comprising providing said wave guide reflector layer with a thickness which changes continuously over the width of the laye

STRAIN RELIEF ADAPTER FOR AN ELECTRICAL CONNECTOR
Istvan Matte, Cicero, III., assignor to Bunker Ramo Corporation, Oak Brook, Ill. which is a continuation of Ser. No. 537,192, Dec. 30, 1974, abandoned. This application Feb. 2, 1977,
U.S. C. 339-103 R

21 Claims


1. A strain relief adapter for insulated conductors which are forced into insulation-piercing contact portions supported spaced apart by an electricising:
adapter said adapter compriser
a plurality of pressure members spaced apart corresponding to the spacing of the insulation-piercing contact portions oo engage and press against first portions of the insulated conductors;
bers for receiving and clamping second portions of the insulated conductors along lines parallel to the first por-
tions of the conductors; and tions of the conductors; and
force diversion means spaced from said pressure members
and from said conductor clamping means for receiving the conductors partially wrapped thereabout and preventing dislocation of the first portions in response to the application of tensile forces to the conductors.

PORTABLE ELECTRIC CURRENT SUPPLY DEVICE FOR BUILDING SITES AND THE LIKE Hans Holte, N. 3810 Gvarv I Telemark, Norway Filed Jan. 11, 1977, Ser. No. 758,445
Claims priority, application Norway, Jan. 14, 1976, 760123
U.S. Cl. $333-119$ I.

1. Portable electric current supply device for building sites 1. Portable electric current supply device for building sites
and the like, consisting of a housing which in its interior holds current distribution equipment, other electrical equipment and/or instruments, all connected to a common supply cable,
and which is provided with means for carrying the device,

means is constituted by one or more openings which are provided in the pipe wall substantially in the area between two oppositely directed flaps and also serve as access openings to
the equipment in the interior of the housing the equipment in the interior of the housing.

## SECURITY SEALING SYYTEM USING PIBER OPTICS

 Lorin R. Stieff, Kensington; Charles L. Pruitt, Hyattsville; Lorin R. Stieff, Kensington; Charles L. Pruitt, Hyatsville;Reinhard R. Ulrich, Rockville, all of Md., and Frank S. Reinhard R. Ulrich, Rockville, all of Md., and Frank S.
Houck, Falls Church, Va., assignors to The United States of America as represented by the Secretary of the Army, Washington, D.C.

Filed Jan. 13, 1977, Ser. No. 759,161
U.S. Cl. $350-96.24$ Int. C1. ${ }^{2}$ G02B $5 / 16 \quad 10$ Claims


1. A security seal for detecting tampering with a secured enclosure, the seal comprising:
individual fibers within the bundle;
collar fastening the free ends of the bundle together so that the individual fibers in one of the bundle ends become arbitrarily intermixed with the individual fibers in the
other bundle end, with all of the fiber ends facing the sam direction; and an opening for
an opening formed in the collar to permit viewing of the
intermixed fibers at their ends.

MINIATURE AND LARGE APERTURE RETROFOCUS WIDE-ANGLE PHOTOGRAPHIC LENS
Sugiyama Takahiro, Tokyo, Japan, assignor to Asahi Kogaku Sugiyama Takahiro, Tokyo, Japan, assignor to As
Kogyo Kabushiki Kaisha, Tokyo, Japan
and Claims priority, application Japan, Apr. 4, 1975, 50-40994 U.S. CI. ${ }^{350-195}$ Int. Cl. ${ }^{2}$ G02B 9/64
20 Claims
least five lens groups positioned in order from the object to the image side of the lens system, the first lens group being a
positive lens consisting of a positive meniscus lens element positive lens consisting of a positive meniscus lens elemen convex to the object, the second lens group being a negative hird lens group being a positive lens and consisting of in the order mentioned a thick positive lens element joined to a nega

ive lens element, the fourth lens group being a positive lens and comprising at least a positive lens being a positive lens and lens element, and tho positive lens elements wherein the firs positive lens element of said fifth group consists of a negativ ens joined to a positive lens, and a diaphragm being interpos between said third lens group and said fourth lens group.

## $\xrightarrow{4,095,874}$

Robert B. Wallace, 2 Taylor St., Littleton, Mass. 01460 Continuation-In-part of Ser. No. 619,625, Oct. 6, 1975, abandoned. This application Aug. 18, 1976, Ser. No. 715,624 U.S. C1. 350-239

16 Claims


1. In a microscope unit comprising a stage capable of being illuminated and defining a specimen position, a viewing aper-
ture arranged to accept and hold a lens, and means enabling ture arranged to accept and hold a lens, and means enabing
adjustment of the distance between said lens and said stage for focusing, the improvement wherein said lens and said stage are
resiliently joined by connecting structure means which include hand pressure regions for stressing said connecting structure means to change the distance between said lens and said stage in a resilient manner, in unstressed position said structure establishing a nonfocused rest relation between said lens and said
stage, the range of movement permitted by stressing said constage, the range of movement permitted bostion in response to
necting structure means to a focusing positer necting structure means oresters refions enabling focusing between said lens and said stage, and release of said pressure enabling return by said connecting structure means of said lens and said stage, and comprising top and bottom members extending as cantilevers from said connecting structure means, one carrying said viewing aperture with said lens and the other
defining said stage, at least one of said parts being resiliently deflectable toward the other about said connecting structure means for focusing.
and wherein said top and bottom members are provided with said hand pressure regions at points spaced from said lens in a manner whereby the motion of said members in
response to hand pressure at said regions translates into
stage.
stage. croscope of clamshell-like configuration, characterized as being a sheet of a relatively rigid material in rectangular form omprising in order
(a) first and second top member sections of equal dimensions having centrally-positioned openings, said first top memsaid second top member section to form a top member with said openings alined to form a lens aperture suitable for positioning and holding a lens therein when said first op member section is adhered to said second top member section;
(b) a first relatively narrow connecting structure me section being foldable relative to said top member;
(c) first and second bottom member sections of equal dimensions having centrally-positioned openings, said second sottom member section being foldable through $180^{\circ}$ to be adhered to said first bottom member section to form a bottom member with said openings alined to form a light-
admitting aperture, said bottom member being foldable admitting aperture, said botiom member
relative to said first connecting structure means section and
(d) a sec
a second relatively narrow connecting structure means section being foldable relative to said second section of said bottom member for adhering to said first connecting structure means section to form said clamshell configuration with said light admitting aperture being alinable with said lens aperture and said top and bottom members being
joined in hinged relationship in a nonfocusing position joined in hinged relationship in a nonfocusing position
alterable to a focusing position by hinged movement between said top and bottom members.

## 4,095,875 <br> METHOD OF FORMING A RETROREFLECTIVE MATERIAL VIA LIGHT INTERFERENCE FRINGE

 PATTERNSPui Kum Lee, White Bear Lake, and Wolfgang H. Streblow, Manufacturing Company, St. Paul, Minn.
Manufacturing Company, St. Paul, Minn.
Division of Ser. No. 548,439 , Feb. 10, 1975, Pat. No. 4,036,552. This application Apr. 28, 1977, Ser. No. 791,958
U.S. Cl. $350-320$

11 Claims
11. A method of making a retroreflective material comprisg the steps of
a. providing a sheet-like photosensitive medium which after selective exposure to light may be developed to provide ing to the light source areas,
b. recording in said medium by directing thereat two interfering light beams an optical element consisting of a light iniven focal length,
. changing the position of the photosensitive medium with respect to the two light beams and repeating the recording step to record a plurality of said optical elements in the medium,
d. developing the medium to provide on a surface thereof a cross-linked by strong dipoles between nitrile groups and relief pattern corresponding to the plurality of optical detectable by X-ray analysis showing the usual polyacrylonie. providing a reflective surface on the opposite side of the trile pattern, the other of said phases being amorphous and

whereby light dire
surface of the medium is transmitted through the medium
reflected from the opposite side and retroreflected back towards the source.

4,095,876
LIQUID CRYSTAL DEVICE AND METHOD FOR PREPARING SAME Harel Stl, Stockton, both of Nill Mington, and William Bernard New York, N.Y.

Dec. 8, 1975, Ser. No. 638,849
U.S. Cl. $350-343$

Int. Cl. ${ }^{2}$ G02F $1 / 13$
15 Claims


1. A liquid crystal device comprising
two closely spaced glass platees having a conductive layer
thereon on facing sides thereof maintained apart with a thereon on facing sides thereof maintained apart with seal to define an enclosure therebetween and containing a
liquid crystal composition filling said enclosure, said seal comprising
comprising
a glass strip having a gap along the periphery of said glass
plates plates,
a barrier $p$
a barrier portion behind said gap,
a multi-component metal coating within said gap but not
a multi-component metal coating within said gap but no
closing it formed by sputtering in sequence a first layer o titanium or chromium and a second layer of platinum or palladium, and
a layer of solder
layer of solder
closing said gap. $\qquad$
4,095,877
SOFT CONTACT LENS FROM A MACROMOLECULAR BLOCK COPOLYMER
Vladimir Stoy; Otto Wichterle, and Artur Stoy, all of Prague, Czechoslorakia, assignors to Ceskoslovenska akademie ved, Prague, Czechoslovakiz

Filed Aug. 18, 1975, Ser. No. 605,510 ${ }_{8072.74}$ priority, application Czechoslovakia, Sep. 26, 1974, Int. Cl. ${ }^{2}$ G02C 7/04: G08C $00 / 00$; B29D $11 / 00$
U.S. 1 . $351-160$ U.S. C. $351-160$ 1. A soft contact lens suitable for substantially permanen
wear and having a concavo-convex cross-sectional shape with wear and having a concavo-convex cross-sectional shape with
its concave surface adapted to fit the human eye, which lens is ormed from a water-swelled hydrogel (a) containing about 5 to about $90 \%$ by weight of water at swelling equilibrium with water at $20^{\circ} \mathrm{C}$. and (b) consisting of a macromolecular block
copolymer comprising (i) multiple segments of acrylonitrile units and (ii) multiple segments of acrylamide units and (iii) 0 to 20 molar $\%$ of other monomeric units, said macromolecular block copolymer being obtained from the partial acid hydrolysis of polyacrylonitrile and comprising in its water-swelled
condition two distinct but inseparable phases, one of said phacondition two distinct but inseparable phases, one of said pha-quasi-crystalline polyacrylonitrile segments non-covalently

SOFT CONTACT LENS WITH FLLATTENED REGION FOR aUTOMATIC ORIENTATION
Peter Fanti, Hemburg, Germany, assiznor to Titms Peter Fanti, Hamburg, Germany, assignor to Titmus Eurocon
Kontaktlinsen GmbH \& Co. KG, Aschaffenburg, Germany Kontaktlinsen GmbH \& Co. KG, Aschaffenburg, Germany
Continuation of Ser. No. 561,508 , Mar. 24, 1975, abandoned. inuation of Ser. No. 561,50, Mar. 24,1975 , abando
This application Nov. 22, 1976, Ser. No. 743,857 Claims priority, application Germany, Mar. 28, 1974, 2415108 US. Cl. 351-161 Int. Cl. ${ }^{2}$ G02B 5/23
U.S. Cl. $350-343$


1. A soft contact lens adapted to the cornea comprising a lens body with a generally spherical concave inner surface and a generally convex outer surface, said lens body having a central horizontal axis, said outer surface having a flattened region along at least one portion of its periphery on said convex outer surface, said flattened region extending substantially
in parallel to said central horizontal axis, the thickness of said lens increasing continually in said flattened region in the direction toward the optical center of said lens and said flattened region, on each circumferential line thereof, having one point of minimum thickness from which said thickness increases in both directions along said circumferential line, whereby said
flattened region cooperates with eyelid movement of a user to automatically orient said lens and to maintain a horizontal orientation of said central horizontal axis.

COLOR COPYING APPARATUS
Hajime Katayama, Tokyo; Akiyoshi Torigai, Machida; Masashi Suda, Irima, and Osamu Hoshino, Kawasaki, all of Japan, assignors to Canon Kabushlki Knisha, Tokyo, Japan
Continuation of Ser. No. 531,385, Dec. 10, 1974, aband Continuation of Ser. No. 531,385, Dec. 10, 1974, abandoned. Claims priority, application Japan, Dec. 13, 1973, 48-140959; Dec. 19, 1973, 48-143214; Dee. 19, 1973. 48-143215; Dec. 20,
1973, 48-143065; Dec. 20, 1973, 48.143969 1973, 48-143065; Dec. 20, 1973,
Int. Cl. ${ }^{2}$ G03G-143069 $15 / 01$
U.S. Cl. 355-4 19 Claims 1. A copying apparatus for forming a single electrostatic latent image selectively having one of a plurality of color components of an original image, or sequentially forming a plurality of electrostatic latent images corresponding respec-
 omprising: a photos
means movably mounting said photosensitive medium exposure means for projecting therethrough an original image upon said photosensitive medium for exposure; filter means including a predetermined number of color
resolving filter units selectively movable into the projection path of said exposure means;
position signal generating means for generating a signal in
response to the movement of any of said filter units into the projection path of said exposure means;
primary position signal generating means for generating a predetermined primary position;
means disposed adjacent said photosensitive medium to form an electrostatic latent image on said photosensitive me an electrostatic arent to the projected image
selector means for selecting between a first mode of operation wherein any one of a plurality of color image components of an original is formed on said photusensitive me
dium, and a second mode wherein said plurality of colo
document scanning means for scanning a document at said platen,
platen,
mage receptor means for receiving an image of said do ment scan by said document scanning means,
maging means for focusing an image of said document onto said receptor means,
means for adjusting said imaging means for selecting bemeans for corent document magnification values; and means for correspondingly changing the scanning rate of alues ament means for each value of said magnification alues and correspondingly changing the distance traved for only some of said magninication values hereby limited to a predetermined distance which equals approximately the size of said platen.

EFFICIENT ILLUMINATION SYSTEM Randall Adrian Maddox, Longmont, Colo,", assignor to Interna-
tional Business Machines Corporation, Armonk, N.Y. tional Business Machlnes Corporation, Armonk, N.Y. This application Dec. 20, 1976, Ser. No. 752,957 application Dec. 20, 1976, Ser. N
Int. Cl. ${ }^{2}$ G03B 27/52
U.S. CI. 355-30

dium; and
dium; and pregrector means and including means for detecting a signa from said position signal generating means and means fo detecting a signal from said primary position signal generating means, said program control means being operable
to detect, when the second mode has been selected by said to detect, when the second mode has been selected sy filter
selector means, whether a predetermined one of said filt units extends across the projection path of said exposure means, and, if it does not so extend, drive said filter mean to position said predetermined filter unit across the projec tion path.

EXTENDED RANGE $\begin{aligned} & 4,005,880 \\ & \text { VARIABLE MAGNIFICATION }\end{aligned}$ REPRODUCTION MACHINE Webster, and David K. Shogren, Ontario; Edward C. Bock, Webster, and
Edwin Zucker, Rochester, all of N.Y., assignors to Xerox Corporation, Stamford, Conn.

Filed Jun. 27, 1975, Ser. No. 590,906 U.S. C. ${ }^{355-8}$

31 Claims


A wasification reproduction machine comprising:

1. An illumination system including an incandescent light surce with a fliament and bulb wall and including means for rum and redirecting a substantial portion of said infrared spectrum to the light source, comprising:
a reflector means for reflecting both the infrared and visible spectrum, said reflecting means shaped into a conic sec-
tion with a focal point, said light source located at the tion with a focal point, said light
focal point of said reflector means
filter means for separating said visible light from said infrared light, said filter means receiving rays from said reflector means; and
infrared reflecting means receiving rays from said filte means for reflecting at least a substantial portion of said hereby said filament and bulb wall are heated by the infra red radiation.

## 4,095,882

PROJECTED IMAGE DISPLAY SYSTEM Karamon, 118 East Ave., Stamford, Conn. 06840 Filed Apr. 1, 1976, Ser. No. 672,831
Int. Cl.2 A63J 3/00; G03B 21/56, 21/00
U.S. Cl. 353-122 display sysim 1. A visual image display system characterized by nove visual effects, cmprising:
a mobile formed of a plurality of adjacent panels together forming a substantially continuous and complete imagesurface when aligned; means for suspending eactive to the other panels withou horizontal rotation relative to the other pane
he mobile having a plurality of panels in the vertical direction, the lower panels in the vertical direction being suspended from the panels thereabov means for impinging air currents upon the panels to cause
them to rotate horizontally in a continuous apparently random manner relative to one another; and means for projecting a visual photographic image upon the
rotating panels of the mobile; rotating panels of the mobile;

whereby the full projected photographic image is separated by the rotating panels into individually moving compo nents each independently changing in linearity and focus, and then periodically is reformed partially or wholly when adjacent panels move into alignment and form a continuous surface.

4,095,883
MAGNETIC MIXING APPARATUS AND PROCESS Delmer G. Parker, Rochester, and Robert D. Bonham, Ontario, Conn.

Filed Feb. 2, 1976, Ser. No. 654,501 U.S. C. 355-3 DD

30 Claims


1. In a mixing apparatus for mixing a magnetizable developer material for use in developing images on an image recording surface, said apparatus including: means for supporting a blan-
ket of developer material for movement in a desired direction; and means for mixing said developer material; the improve. ment wherein, said mixing means comprises:
means for magnetically dividing said blanket of developer material into a plurality of adjacent streams of said developer material and for controling the trajectory of said streams so that the trajectory followed by one stream is
different from the trajectory followed by another of said streams;
said magnetic dividing means including first magnetic field generating means for providing a substantially nonuniform magnetic field transversely of said desired direction; and
second magnetic field generating means for providing a
substantially uniform magnetic field transversely of said substantially uniform magnetic field transversely of said
desired direction, said second magnetic field generating means being positioned to act upon said blanket of developer material prior to said first magnetic field generating
means. means.

EXPOSUR 4,095,884
EXPOSURE CONTROLLING APPARATUS FOR ELECTROPHOTOGRAPHIC COPYING MACHINE Toyoo Okamoto, Yokohama, and Kenjl Kojima, Tokyo, both of
Japan, assignors to Ricoh Company, Ltd., Tokyo, Japan Filed Aug. 25, 1976, Ser. No. 717,890 Claims priority, application Japan, Aug. 29, 1975, $50-105527$ U.S. Cl. 355-3 R



1. An exposure controlling appara
an operating machine comprising. an operating member movable between a first, neutral position and a second position;
means for biasing the operatin position;
means for locking the operation intermediate the first and the second position when then intermediate the first and the second position when the
operating member is moved from the first toward the second position, said locking means comprising:
a first frictional member on the operating member;
a first frictional member on the operatiing member;
a second frictional member which remains stationary on
the copying machine; and
ball means for urging the first frictional member into
abutting relationship with the second frictional abutit
ber;
an exposure control means for adjusting the passage of a quantity of exposure radiation to a selected location in the copying machine;
means extending between and connected with the operating
member and member and the exposure control means and responsive to a movement of the operating member for actuating the control means to adjust the quantity of exposure radiation passed to said location; and
unlocking means for releasing
ulocking means for releasing the locking means.
POLARITY SWITCH CIRCUIT FOR COPYING APPARATUS
awrence M. Freeman, 599 Ansley Ct., NE., Atlanta, Ga. 30324, and Francis T. Arnold, 2379 Tristan Cir., NE., Atlanta, Ga 30345
Continuation of Ser. No. 479,985, Jun. 17, 1974, abandoned, which is a continuation-in-part of Ser. No. 146,114, May 24, 1971, Pat. No. 3,730,622. This application Nov. 8, 1976, Ser. No Int. C. ${ }^{239,946} \mathbf{G 0 3 G} 15 / 00$
U.S. Cl. 355-3 CH

2 Claims

1. In an apparatus for electrostatically copying images from an original document medium onto photoconductive cop paper including a supply of copy paper, image forming mean for reproducing the image from the original document medium copy paper from said supply of copy paper through said image corming means, the improvement comprising:
corona charging means for imposing an electrical charge on
ply of copy paper to said image forming means said corona charging means including a first corona unit facing that surface of said copy paper to be electrostatically charged and a second corona unit facing that surface power supply means having a first output with a first electri polarity opposite to said first polarity; and, a reversing switch operatively and alternatively connecting said first and second outputs to said corona charging means to alternatively impose a charge on said copy paper of said ing a first input electrically connected to said first output of said power supply means; a second input electrically connected to said second output of said power supply means; a first corona output electrically connected to sai nected to said second corona; a housing mounting said inputs and said corona outputs along a circular path so that said inputs are located at diametrically opposite positions on said path and said corona outputs are located at diametrically opposite positions on said path with said corona outputs shifted $90^{\circ}$ with respect to said inputs; axis extending through the center of said circular path and defining a cylindrical periphery thereon concentric with
said circular path, said rotor further defining a pair of said circular path, said rotor further defining a pair of opening onto said cylindrical periphery of said rotor and oriented generally parallel to the rotational axis of said rotor; a first thin elongate contact member; and a secon

thin elongate contact member, each of said contact members including an inwardly extending resilient protrusion centrally located along the length of said contact member and a pair of opposed resilient contact arms extending outwardly from opposite sides of said protrusion, each of
said contact members having a length equal to about $90^{\circ}$ said contact members having a lengh eq eriphery of said rotor, said protrusion on said first
of the pal contact member received in one of said rotor slots to mount said first contact member on said rotor in alignment
with said inputs and said outputs for movement with said with said inputs and said outputs for movement with said rotor, said protrusion on said second contact member
received in the other of said rotor slots to mount said contact member on said rotor diametrically opposite said first contact member and in alignment with said inputs and said outputs for movement with said rotor so that the resiliency of said contact arms of each of said contact members are urged away from said cylindrical periphery outputs so that said first contact member alternatively connects said first input to said first corona output when said rotor is in said first position and to said second corona
output when said rotor is in said second position, and said output when said rotor is in said second position, and said
second contact member alternatively connects said second input to said second corona output when said rotor is in said first position and to said first corona output when said rotor is in said second position and so that said first and
second corona output and said first and second corona second corona output and said first and second corona
units are disconnected from said power supply means for a prescribed minimum period of time while said rotor moved between said first and second positions.

PROCESS AND APPARATUS FOR FIXING IMAGES erdus A. J. Koeleman, Velden, and Franciscus A. A. E. van de Laarschot, Geldrop, both of Netherlands, assignors to Oce-van Filed Mar. 16, 1977, Ser. No. 778,067 Claims priority, application Netherlands, Mar. 18, 1976, Int. Cl. ${ }^{2}$ G03G $15 / 00$
U.S. C. 355-3 FU

1. In a process for fixing onto paper images formed of thermoplastic material, wherein the material of such an image in thermally softened condition is transported through a pressure zone while being pressed between and in contact with the paper and a belt moving together through said zone, and upon leaving said zone the paper and belt are separated from each
other by forced movement of the belt along a path turning other by forced movement of the belt along a path turning
away from the paper, the improvement which comprises maintaining the thickness of said belt, the speed of movement of said belt and the radius of curvature of said path in a relationship represented by the formula ( $\mathrm{D} \times \mathrm{V} / \mathrm{R}$ ) $\geqq 0.05$, in which D is said thickness (in meters), V is said speed (in meters per second) and $\mathbf{R}$ is said radius (in meters).

## 4,095,887

DETECTOR CIRCUIT FOR ELEC
COPIER
ozef Marie van Herten, Venlo, and Bastiaan Bernard Boele Eertink, Grubbenvorst, both of Netherlands, assignors to Filed Aug. 2, 1976, Ser. No. 710,785
Claims priority, application Netherlands, Aug. 8, 1975 ,

> In Int. Cl. ${ }^{2}$ G03G $21 / 00$
U.S. Cl. 355-3 BE

1. In an electr $\qquad$ 9 Cluim photoconductive belt having on one side thereof regularly paced markings the reflectivity of which differs from the ga light source and a photoelement located adjacen includ g a light source and a photoelement located adjacent to saic绪t side for generating a signal pulse each time a marking receive the signal pulses, the improvement which comprises said detector means including means for emitting a detector gnal proportional to the amount of light sensed by said photoelement, a signal modifying circuit separated from said copying control circuit and including means for maintaining an
output signal at a level corresponding to the average value of
said detector signal and a detector light control circuit includ-

ing means responsive to said output signal for controlling the intensity of said light source.

## 4,095,888

COLOR ELECTROPHOTOGRAPHY APPARATUS
Motoaki Kawazu; Masataks Ide, and Atsushi Kawamura, all of
Tokyo, Japan, assignors to Ricoh Company, Ltd., Tokyo,
Japan Filed Jun. 9, 1975, Ser. No. 585,202
Claims priority, application Japan, Jun. 10, 1974, 49-65722;
Jun. 14, 1974, 49-67713 Int. C.1. ${ }^{2}$ G03B 27/74
U.S. Cl. 355-4 hnt. Cl. ${ }^{2}$

1. Color electrophotography apparatus comprising photoconductive member;
between the surface of the photoconductive member and the surface of an original pocumend, the cross sectional area of the light transmitting elements constituting an exposure aperture;
original document. ransmitting elements so oconductive member me the original document and light transmitting elements at the same speed; light transmitting elements at the same speed
three sequential color separation exposures so that three respective color images are formed on the surface of the photoconductive member by the light transmitting ele-
ment; and ment; and
means for covering the ends of predetermined numbers of the light transmitting elements and thereby the exposure
aperture in accordance with the brightness of illumination of the original document by the illumination means during the color separation exposures in such a manner that the three color separation exposures.

EXPOSURE SYSTEM FOR AN
ELECTROPHOTOGRAPHIC PRINTING MACHINE Robert N. Goren, Rochester, N.Y., assignor to Xerox Corpor tion, Stamford, Conn.

Filed Jan. 22, 1976, Ser. No. 651,315
Int. C1.2 G03G $15 / 01$ : G03B 27,
U.S. C. 355-4
Cl. ${ }^{2}$ G03G 15/01; G03B 27/76

1. An electrophotographic printing machine of the type
hin having an electrostatic latent image of an original document
recorded on a photoconductive member, wherein the improverecorded on a
ment includes:
ment includes:
means for illuminating the original document;
a lens for creating a light image of the original document
from the light rays transmitted thereto;
a screen member positioned in the optical light path and
spaced from the photoconductive member for modulating the light rays transmitted therethrough; and opaque member operatively associated with said lens and having a plurality of equally spaced transparent regions therein with the distance between said screen member and
photoconductive member being proportional to the dis-

tance between said opaque member and photoconductive member, said screen member being spaced from the pho toconductive member a distance such that the light rays transmitted through different transparent regions of said
opaque member and passing through ssid screen member opaque mincer in coincidence with one another on the photoconduc tive member.

XEROGRAPHIC COPYING APPARATUS
Jozef Marie van Herten, Venlo, Netherlands, assignor to Océ van der Grinten N.V., Venlo, Netherlands Claims priority, application Netherlands, Jun. 24, 1975, 507493
U.S. Cl. 355-14

Int. Cl. ${ }^{2}$ G03G $15 / 00$


1. In a xerographic copying apparatus comprising a photoconductive imaging medium movable along a processing path having in succession therealong a device for charging said medium, a station for exposure of the charged medium to form
a charge image thereon, and a station for developing the a charge image thereon, and a station for developing the
charge image, and exposing means including at least one ligh source for illuminating an original and thereby imagewis illuminating the charged medium at said exposure station, the improvement which comprises means for detecting the inten sity of the illumination issued by said exposing means and fo emitting a signal when said intensity is below a level sufficien
to form on the charged medium a charge image properly developable at said developing station, and means responsive to said signal for discharging the charged medium at a location in said path between said exposure station and said developing station, thereby preventing development if a proper charg

## 4,095,891

ON-THE-FLY PHOTORESIST EXPOSURE APPARATUS Corporation, Bedford, Mass.

Filed Dec. 27, 1976, Ser. No. 754,332
Int. C1.2 G03B 27/48, $27 / 150$
U.S. Cl. 355-50

2 Claims


1. An on-the-fly exposure system for exposing surfaces oated with photoresist materials comprising
${ }^{\text {a }}$ dye laser source of electromagnetic energy capable o sensitive
senchive, synchronization means operable in combination with said laser source to provide pulses of electromagnetic energy
from the laser source at predetermined times while the from the laser source al predetermined elative to the laser said pulses having a duration of less than about 250 nano seconds,
an optical projection system having
an object plane,
an image plane
a first optical system for projecting a substantially uniform spatial distribution of electromagnetic energy from said laser onto said object plane, said first optical sy
including an integrator means, and second optical system for imaging said object plane onto said image plane,
a movable support surface for supporting said photoresis coated surface in the image plane and for continuously moving the photoresist coated surface in the image plane in respons, and
means to provide a pattern in the object plane limiting the
spatial distribution of energy reaching the image plane.
said second column to said second sidewall such that said covers are capable of being selectively opened and closed, and first means formed on said bottom surface that are capable of being engaged; and
easel support including a planar surface having a central area corresponding to a predetermined location, four elongated elements prorucular pattern, said elements each including an inner locating surface so as to provide opposed first and second side surfaces and opposed upper and lower surfaces, said side surfaces and said upper and lower surfaces having a dimension such that when said easer is posis herst side abuting said lower and said

first surfaces, respectively, the upper cover in the second column is in said predetermined location, and second means forming a portion of said planar surface into an so as to engage and retain said easel in a plurality of fixed locations, each said fixed location corresponding to a ocation wherein a cover is disposed in said predetermined ocation, whereby when the first side edge abuts said first surface and said first and second means are engaged each said predetermined location, and whereby when the second side edge abuts said second surface and said first and second means are engaged each cover in said first column is capable of being located in said predetermined location.

## ADJUSTABLE ENLARGING EASEL <br> Frederic B. Handsman, Bayside, N.Y.., assignor to Ehrenreich Photo-Optical Industries, Inc., Woodbury, N.Y. ptical Industries, Inc., Woodbury, N,Y. Filed Oct. 13, 1976, Ser. No. 731,944 <br> U.S. Cl. 355-74 <br> Claims

PHOTOGRAPHIC DEVELOPING APPARATUS EMPLOYING AN EASEL SELECTIVELY LOCATABLE
Leonard A. Thornton, 902 Lockwood La., Santa Cruz, Calif

## Filed Sep. 17, 1976, Ser. No. 724,414

U.S. C1. 355-74 16 Claims

1. A photographic developing apparatus comprising: a easel having a rectangular shape in plan view with opposed upper and lower edges, opposed firft and second
side edges and opposed top and bottom surfaces, said easel side edges and opposed
including first and second opposed elongated sidewalls adjacent said side edges and protruding from said top
surface so as to form the central portion of said top surface surface so as to form the central portion of said top surface into a rectangular planar paper support surface her supporting a sheet of photographic print paper, a plurality of covers arranged in first and second parallel columns in a covering relationship on said paper support surface, first hinge means for hinging
said covers in said first column to said first sidewall such said covers in said first column to said first sidewall such
that said covers are capable of being selectively opened and closed, second hinge means for hinging said covers in the plerally normal to the flange, wo slots opening through and closed, second hinge means for hinging said covers in the plate and which extend from a mid-portion of the plate
toward opposite edges thereof, a clamping element located on least a portion of which is disposed on said plate underneat the underside of the plate under each retainer and permanently connected loosely to its associated retainer, and a connector element and operable to pull the clamping element into contact with the underside of the plate to clamp the retainer in a fixed position for holding a sheet of photographic paper at a predetermined location on the easel, the connector for each retainer being a screw with a knob head at its upper end and a shoulder on the underside of the knob head in position to contact with
the retainer, said screw extending through the slot and retainer and being connected to the clamping element below the plate for pulling the clamping element toward the underside of the plate to clamp the retainer in any set position on the plate when said knob head is rotated on said screw.

mitted by said member onto a side edge of the original from an edge of said member confronting said side edge.

MICROFORM CARD HOLDER FOR MICROPRINTER Robert George Holliday, Ann Arbor, Mich., assignor to Xerox Corporation, Stamford, Conn.
Filed Jul. 3, 1977, Ser. No. 814,252

## ADAPTIVE GRATING RATE CONTROL <br> Paul Conway Talmadge, Ansonia, Conn., assignor to The Per kin-Elmer Corporation, Norwalk, Conn. Filed May 10, 1976, Ser. No. 684,978

2 Claims U.S. Cl. 356 -89
U.S. Cl. 355-75


1. In a spectrophotometric apparatus including means for scanning a spectrum to produce radiation of monotonicall sample beam and a reference beam, means for detecting and comparing the respective intensities of said sample and refer ence beams to generate an error signal representative of the difference in intensity of said beam, the improvement comprising feedback means for conlrotting the scanning rate of said
scanning means as a function of the integral of said error signal scanning means as a function of the integral of said error signa
when said error signal has a magnitude above a threshold.

## 4,095,897

WAVELENGTH DRIVING DEVICE FOR USE IN MONOCHROMATORS
METHOD AND MEANS FOR PREVENTING EDGE SHADOW EFECTS DURING EPISCOPIC EXPOSUR
Franciscus J. H. M. Seelen, and Andreas P. H. M. Timmermans, both of Venlo, Netherlands, assignors to Oce-van der Grinten N.V., Venlo, Netherlands

## Clims Friority, Aug. 26, 1976, Ser. No. 717,883

7510270 Int. Cl. ${ }^{2}$ G03B 27/32, 27/54, 27/62
Yoshio Tsunazawa, and Masena Nishida, both of Kyoto, Japa assignors to Shimadzu Seisakusho Ltd., Kyoto, Japan Filed Sep. 27, 1976, Ser. No. 726,838 Filed Sep. 27, 1976, Ser. No.
Int. Cl. ${ }^{2}$ G01J $3 / 14$ U.S. CI. 355-77 77 C. ${ }^{2}$ Gosb 27/32, 27/54, 27/62

8 Claims U.S. Cl. 356-100 $\qquad$ 1. A method for preventing edge shadow effects upon epi- $\begin{aligned} & \text { 1. A wavelength driving device for use in monochromators, }\end{aligned}$ scopic exposure of an original lying underneath a platen cover comprising: means for dispersing light into different waveon a transparent exposure plare, whight transmitting member at interposed between said cam means and said dispersing means
and operable in response to said cam means to operate said dispersing means so that only each predetermined one of said cams operates at one time to cause said dispersing means to
provide wavelengths within a predetermined portion of the whole wavelength range covered by said dispersing means; said interposed means comprising lever means connected to

said dispersing means and a first and a second cam follower mounted on said lever means; said first and second cams so
contoured and mechanically connected to each other that for contoured and mechanically connected to each other that for
a predetermined angle within one revolution of said first cam said first cam follower alone is in contact with said first cam while for the remaining rotational angle of said first cam said second cam follower alone is in contact with said second cam.

## 4,095,898

PARTICLE ANALYSIS SYSTEM WITH PHOTOCHROMIC FILTER
Mack J. Fulwyler, Los Alamos, N. Mex., assignor to Coulter Electronics, Inc., Hialeah, Fla.

Filed Jun. 10, 1976, Ser. No. 694,531
Int. Cl.2
-103 U.s. Cl. 356-103

1 Claim


1. A particle analysis system including in combination 1. A part forming a flow stream containing particles to detected,
a source of light for producing a light beam
means for directing said light beam through said flow stream at a first location in a first direction, said light beam pass-
ing through said flow stream producing light reflection and a light pattern, said light pattern, light reflection and light beam passing through said flow stream varying rap idly and for a short time period in res
a particle through said first location, a particle through said first location,
receiving said light beam passed through said flow stream and for receiving said light pattern and light reflections, said background light filter being operative to slowly, increase in opticaht peam and light reflections strike said filter and attenuate said light pattern, light beam and light reflections as they pass through said filter in said first direction, said filter being substantially insensitive to said
light reflections and light beam for passing said variation through said filter in said first direction substantially una tenuated, medium,
pattern an means for receiving said light beam, ligh patern and light reflections passed through said filter in develop sirection, said photodetector means operative to in said light reflections, light pattern and the light beam detector means an
 operative in
said particle.

APPARATUS FOR DOUBLE-BEAMING IN FOURIER SPECTROSCOPY George A. Vanasse, Chelmsford, Mass., assignor to The United States of America as Force, Washington, D.C.
Filed Mar. 1, 1976, Ser. No. 662,995

Filed Mar. 1, 1976, Ser. No.
Int. Cl.
U.S. Cl. 356-106 S


1. An apparatus for performing double-beaming in Fourie spectroscopy comprising a single source of radiant energy for said beam of radiation for splitting said beam emanating from said source into a first and a second input beam, a cell being in optical alignment with said second input beam, said cell havin a gas located therein, said second input beam passing throug said cell, said first input beam having a spectrum correspond emanating from said cell has a spectrum corresponding to the spectrum of said source minus the spectrum of the radiation absorbed by said gas within said cell, a beamsplitter in optica alignment with said first and second input beams, said firs input beam striking said beamsplitter on a preselected locatiomsplitter on said preselected location on a face of said beamsplit ter opposite said one face, a plurality of mirror assemblies in optical alignment with said first and second input beams and said beamsplitter for causing said first and second input beams
to intersect each other at another location on said beamsplitter re intersect each other at another location on said beamsplitte said beamsplitter being spaced apart a distance from said preselected location sufficient to prevent overlapping of said first and second input beams at said preselected location with said output beam, at least one of said plurality of mirror assemblies being made up of a pair of optically aligned and opposed mir-
rors wherein said input beams which are incident on and relected from said mirror assembly are substantially parallel to each other and are substantially "on-axis" and means for delecting said output beam emanating from said beamsplitter, said output beam being in the form of an interferogram having structure
said gas.

OPTICAL TECHNIQUE FOR BACKGROUND SUPPRESSION Randall E. Murphy, 62 Conant St., Acton, Mass. 01720 , George A. Vanasse, 1 Oid Stage Ra., Cheimsford, Mass. 01824 , and ${ }_{01742}^{\text {Alve T. Stair, Jr., } 76 \text { Jennie Dugan Rd., Concord, Mass. }}$ Filed Aug. 12, 1976, Ser. No. 713,749 U.S. Cl. 356-106 S Int. Cl. ${ }^{2}$ G01B 9/02


7 Claims
first dichroic mirror arranged along said axis between said first light source and one of the pairs of guide rollers, a second dichroic mirror arranged along said axis between said second light source and the other of the pairs of guide rollers, each of said dichroic mirrors having the capacity to transmit different colored light, with the light transmitted by one dichroic mirror being reflected by the other dichroic mirror away from said
axis; a screen remote from said axis; and projection means for projecting the light reflected by each of said dichroic mirrors onto said screen to thereby produce different colored images of each of the pairs of guide rollers.

AUTOMOBILE WHEEL ALIG
METHOD METHOD Richard H. Florer, Blue Grass, and Peter A. Puetz, Davenport,
both of Iowa, assignors to Applied Power Inc., Milmaukee,
Wis. Wis. $\quad$ Filed Mar. 1, 1976, Ser. No. 662,966
U.S. C. $356-155$

38 Claims

1. An apparatus for use during target detection comprising a plurality of reflective elements spaced a predetermined distance apart from each other for dividing structured back-
ground radiation containing said target into first beams of light ground radiation containing said target into first beams of ligh
containing said background radiation alone and second beams ontaining said background radiation alone and second beams arget radiation, said space between said reflective elements eing substantially equal to the width of each of said reflective lements and said width being substantially equal to or greate radiation, and means optically aligned with said first and said radiation, and means opticalily aligned with said first and said oth said first and said second beams of light and for producin
n output beam in the form of an interferogram having stucture due only to said target radiation.

## 4,095,901

alignment apparatus for rolling mill
Willem Brouwer, Lexington, and Richard J. Reardon, Boylston, both of Mass., assignors to Morgan Construction Company, Woth of Mass,

Filed Mar. 28, 1977, Ser. No. 781,581



1. Apparatus for observing the relative alignment of two pairs of guide rollers on a rolling mill roller guide, comprising. first and second light sources; means for mounting the rolle guide in a position such that the two peirs of guide rolers are
spaced along an axis extending between said light sources; a

2. An apparatus for measuring angular relationships of vehicle wheels comprising: a head unit; means for positioning the head unit in a predetermined relationship with a first vehicle whel; means for selectively projecting a beam relative to the
head unit to beam receiving means; the selective projecting means being connectable to a power source; beam receiving means; means for positioning the beam receiving means relative to second, third and fourth vehicle wheels; means for measuring the positional orientation of said third and fourth vehicle wheels in relation to a reference axis for determining a vehicle thrust-line reference; and indicating means for registering angular relationships between beams projected to beam
receiving means on said second and third vehicle wheels and the reference axis for indicating the angular disposition of the first and second vehicle wheels with respect to the vehicle thrust-line reference.

## 4,095,903 <br> MEASURING APPARATUS

Kurt Feichtinger, Katzwalchen, Germany, assignor to Dr. Johannes Heidenhain GmbH, Traunreut, Germany Filed Mar. 14, 1977, Ser. No. 777,116 Claims priority, application Germany, Mar. 18, 1976, 2611459 U.S. Cl. 356-169 Int. Cl. ${ }^{\mathbf{C}} \mathbf{\text { G01B }} 11 /$
a measuring scale attached within the hollow body; a reading unit for the measuring scale; and
means for coupling the reading unit to a measured object in a hinge-like manner and for urging the reading unit against said coupling means comp vided with an arcuate surface, a second coupling part
provided with a planar surface to contact the arcuate surface, and a spring member to maintain the first and

second coupling parts in contact and to urge the reading units against the axuiliary guide surfaces.

DEVICE FOR OBJECTIVE CHECKING FOR FOREIGN ODIES IN OPTICALLY TRANSPARENT CYLINDRICAL Hans Joachim Klein, Wuppertal; Fritz Henze, Leverkusen, of Germany; Bernhard Vinzelberg, deceased, late of Leverkusen, Germany (by Selma Margot Vinzelberg, Peter Vinzel berg, heirs), and by Susanne Klein nee Vinzelberg, heir, Rem scheid, Germany, assignors to Bayer Aktiengeselischaft, Leverkusen, Germany
Claims priority, application Germany, Jun. 11, 1975, 2525912
3 Int. Cl. ${ }^{2}$ G01N $21 / 24$
U.S. CI. 356-197

SURFACE-DEFECT DETECTING DEVICE Asahiro Kuni, Tokyo, and Nobuyuki Akiyama, Yokohama, bot of Japan, assignors to Hitachi, Ltd., Japan Claims priority, application Japan, Aug. 20, 1975, 50-100210Oct. 17, 1975, 50-124395
U.S. Cl. 356-200

Int. Cl. ${ }^{2}$ G01N 21/32
26 Claims

## 

1. An apparatus for monitoring for foreign bodies in an optical transparent container containing a liquid, comprising means for producing a beam of light for passing through the container, a device for rotating the container and subseduectors braking the rotating motion, a pluraity of photodetectors
arranged one above another, an amplifier connected to each of arranged one above another, ans for switching on the amplifiers the photodetectors, gadetectors in groups successively from top to bottom and a control unit operatively connected to the gate means to enable same to effect activation of the photodetectors in a sequence which is defined by the disappearance of vortex from the scanning field associated with the respecans photoderector group and a lens pro the liquid column onto the for imaging the central portion of the liquid column onto the photodetector array.
2. A surface-defect detecting device comprising
3. A surface-defect detecting device comprising:
illuminating means for illuminating a zone on the surface of a material to be inspected;
eflecting means including at least a pair of reflecting surfaces for reflecting and focussing light being irregularly fects, said reflecting surfaces having first focal points at aid illuminated zone and second focal points to which said irregularly reflected light is reflected by said reflecting surfaces; and
photoclectric detecting means positioned at said second into electrical signals being representative of defects on the surface of said material to be inspected.

## WRITING INSTRUMENT

Marrin
95841
Filed Aug. 16, 1976, Ser. No. 714,852
Filed Aug. 16, 1976, Ser. No. 714,8
Int. C1. ${ }^{2}$ A46B $11 / 00,17 / 08$
U.S. C. 401-48 ${ }^{\text {Int. Cl. }{ }^{2} \text { A46B } 11 / 00,17 / 08} \quad 2$ Claims
 presents a flat, smooth writing surface, said instrument comprising:
a pear-shaped paper engaging body having a wide rear portion and a narrow forward neck portion;
stylus positioned within said neck portion and angled a stylus positioned within said neck portion and angled
downward at an acute angle from the vertical, said stylus having its point substantially in the plane of the bottom surface of said body,
the pear-shaped body having a lower portion for sliding upon a writing surface and an upper portion for carrying said stylus; biasing said lower and upper portions away from each other;
means comprising a leafed spring between said upper and lower portions;
and further comprising a substantially horizontal pivot be
tween said upper and lower portions and positioned upon with said first means and operative for dislodging said tension-
the rearward end of said body. ing members from said wedge-shaped clearance when desired, by applying an axially acting force from one and the same axial ene dirslodged, and said second means comprising an abutment ring and a pair of axially spaced abutments each provided on one of said outer and inner circumferential faces, respectively, and confining said abutment ring between them and each preventing movemed of movement in the opposite axial directio movement in the opposite axial direction.

$$
\begin{gathered}
\text { CARTRIDGE PIN MOUNTING } \\
\text { John P. Mackoway, East Peoria, Ill., assignor to Caterpillar } \\
\text { Tractor Co., Peoria, III: }
\end{gathered}
$$

Co., Peoria, IIt:
Filed Jul. 11, 1977, Ser. No. 814,374
U.S. Cl. 403-14

9 Claims

1. In a capillary writing pen of the type having an ink reser I. In a capillary writing pen of the type having an ink reser
voir communicable with a writing tip, the improvement com prising:
(A) an expansion chamber interconnecting the reservoir and ambient air as a capiliary channel apart from the writing tip and having an inner and outer wall for the flow of ink;
(i) an inner wall of said chamber having a series of continguous indentations extending transversely such that in cross-section a triangular wave profile is defined with respect to the outer wall of said chamber, and
(ii) said indentations further defining within said capillary
channel successive areas of expansion and constriction channel successive areas of expansion and constriction
such that ambient air is entrapped in the areas of expan sion and menisci of ink are formed in the areas of constriction.

## 4,095,908 COUPLING UNIT

Horst-Dieter Schäfer, Willich; Paul Loosen, Krefeld; Ulrich Kermany, assignors to Ringeder G.m.b.H. Krefeld, all of gen, Germany
Claims priority, application Germany, Mar. 5, 1976, 260904 Int. Cl. ${ }^{2}$ F16D $1 / 06$


1. An arrangement for coupling a shaft with a surrounding hub, comprising an inner annular member surrounding sai haft and having an outer circumferential face including two first sections which taper coaxially in mutually opposite axia
directions of said inner member; an outer annular membe having two axial ends and an inner circumferential face sur rounding said outer circumferential face with clearance and having two second sections each having a taper and each orming with one of said first sections a wedge-shaped annula clearance; tensioning members received in the respective
wedge-shaped clearances; first means for drawing said tensioning members inwardly of the respective wedge-shaped clear ance to thereby force said inner member against the shaft and
said outer member against the hub; and second means coacting

2. A cartridge pin mounting wherein a cartridge pin is sehaving a mounting hole opening outwardly through an outior surface thereof, said mounting comprising: surface means on said pin defining an outwardly longitudinally facing outer end surface and a radially outer peripheral surface complementary mounting hole with said surface means being installed surface flush with said frame outer surface to provide a preselected accurate mounting of said pin in said frame portion hole; and retaining means on said frame portion longitudinally outwardy of said frame sirable longitudinally outward displacement and thereby maintain the flush disposition of said surface means outer end surface and said frame outer surface.

BUILDERS SCAFFOLD
BUILDERS SCAFFOLDING JOINTS Raymond Ernest Steele, Kenilworth, and Andrew Charles Ow. ens, Hereford, both of England, assignors to Kwikform LimFiled May 11, 1977, Ser. No. 795,921
Claims priority, application United Kingdom, May 15, 1976, 20181/76
U.S. Cl. 403-49 Int. Cl. ${ }^{2}$ E04G 7/00 1. A scaffolding structure comprising upright members members which serve cross members and including additional members which serve as braces, including at least one brace
secured to a member, the brace being provided with at least
one transverse pin and the member being provided with an axial displacement of the nut on the screw upon rotation of the aperture for the reception of the pin, the brace having means screw relative to the plunger tube, and means for retaining double wedges between the plunger tube and the nut.

captively associated therewith for releasably restraining the brace from movement in a direction longitudinally of the pin BLOCKING DEvICE FOR A HANDLE-BAR STEM Bernard Lacroix, Montbeliard, France, assignor to Cycles Peug eot, Valentigney, France
Filed Jun. 29, 1976, Ser. No. 700,927 Filed Jun. 29, 1976, Ser. No. 700,927
Claims priority, application France, Jul. 11, 1975, 7521911 U.S. CI. 403-104

4 Claims

1. A beam connection plate for joining structural members comprising a sheet steel plate, an indentation along the center line of the plate, a thin backing plate attached over the steel plate, and a plurality of evenly spaced holes along the sides of the steel plate wherein the connection plate is cut to fit becal arm of the I beam is placed within the indentation, and a welding bead is laid between the vertical arm and the connection plate.

## 4,095,913

TONGUE AND GROOVE JOINT Nils Ingrar Pettersson, Bruksvagen 31, 75241 Uppsala, and Olle Gideon Carisson, Brillingevigen 3, 75445 Uppsala, both of Sweden Filed Oct. 6, 1976, Ser. No. 729,998 Claims priority, application Norway, Jun. 11, 1976, 762032;

1. In a structure comprising in combination: a handle-bar stem having a cylindrical plunger tube for insertion in a cylin--
drical fork tube of a wheeled vehicle, and a device for blocking the plunger tube in the fork tube; the improvement comprising
in combination a tightening screw extending through the plunger tube in cooxial and rotatable relation to the plunger tube, a nut screwthreadedly engaged on and coaxial with the screw, the plunger tube defining at least three first bevelled faces in the vicinity of a lower end of the plunger tube, the nut defining a number of second beveliled faces correspof the nut being upwardly convergent and the first faces of the plunger tube being downwardly convergent relative to the axis of the plunger tube, and expanding means compris the screw corre-
double wedges arranged around the axis of sponding to the number of first-bevelled faces, each double wedge having a planar bevelled third face and a planar bevelled fourth face respectively bearing laterally against a corresponding first face of the tube and a concsporth faces having in of the nut, said first, second, third and fourth faces having in
planes perpendicular to the axis of the plunger tube a rectilin planes perpendicular contour whose radius is centered on the axis of the plunger
ear tube, and the planar faces of said double wedges terminate in spaced lateral edges which are in engagement with those of an
adjacent double wedge along the median plane transverse thru adjacent double wedge along the median plane transverse thru
said double wedges, with the outer peripheries of said double said double wedges, with the outer peripheries of said double
wed ges contiguous with the outer periphery of said plunger tube, the screw having an enlarged end portion which is in axial abutting relation to the stem and is accessible from outside the stem, and the screw being cooperaive wins the fork tube by

2. A first member adapted to form a tongue and groove joint with a second member, said first member being provided, with means defining a groove on one edge thereof said groove groove being providid with a spacer member in the form of protuberance extending into said groove from its base, said protuberance being formed integrally with the material forming the member, said second member being provided on an dge thereof opposed to said edge provided with said groove. with a tongue, said protuberance being adapted to space saic between the innermost part of said protuberance and said edge in which said groove is formed is less than the distance beaxial abutting relation to the stem and is accessible from ousside tween the tip of said tongue and said edge on which said
the stem, and the screw being cooperative with the nut to urge tor
twenge is formed.

FASTENER FOR SECURING A SHAFT TO A PLATE Wilbur J. Thomsen, Round Lake, Minn. 56167 Filed Feb. 28, 1977, Ser. No. 772,352 U.S. C1. 403-389


1. Fastener apparatus comprising cone means having a longitudinal opening, said opening running the full length of said cone means, save opening adapted to recive surface extending longitudinally from the tapered end towards the base thereof, longitudinal slot means in the tapered end of said cone means,
said longitudinal slot means projecting from said screw threads into said opening, nut means having mating threads therein adapted to threadably engage said threads on said cone means. said mating threads extending around a cone shaped opening in said nut means, the surface of said cone shaped opening being
substantially the same dimensions as the outer conical surface of the tapered end of said cone means, the base of said cone means terminating in flange means extending away from said opening, plate means removably attached to said flange hrough locking means, said plate means projecting towards
said screw threads, said locking means compising a set crew, said screw threads, sadid locking means comprising a set screw,
said set screw extending into a head projecting beyond said said set screw extending into a head projecting beyond said
flange, said plate having an opening therein for receiving the head of said set screw, plate securing means extending from said head of said set screw for holding said plate on said apparatus, said plate securing means comprising an opening in said opening in said head for engaging the surface of said plate and for holding said plate against said flange when said plate is positioned on said set screw

$$
4,095,915
$$

CANVAS CORNER MOUNT Carr F. Druell, Kennewick, Wash., assignor to The Raymond Organization, Inc., New York, N.Y., a part interest 102 Int. C.2 ${ }^{2}$ G09F $1 / 10$
U.S. CI. 403-402

2 Claim


A canvas corner mount, comprising
a canvas corner mount, comprising rectangular configuration having first and second spaced parallel edges of predetermined length and third and pararth spaced parallel edges of shorter than the predetermined length perpendicular to and joining the first and spheric press
marel
second edges, said sheet having first and second spaced parallel imaginary lines parallel to the first and second edges, the first imaginary line being the same distance from the first edge as the second imaginary line is from the second edge, a triangular notch cutout in said sheet and
having its vertex on the first imaginary line and its base opposite said vertex opening at said first edge, and a narrow rectangular notch cutout in said sheet and extending from the second imaginary line to the second edge, the rectangular notch having long sides parallel to the third and fourth edges, a short side on the second imaginary line and another short side opening on the second edge, said
cutouts being symmetrical about a center line parallel to the third and fourth edges, said sheet being folded along the first imaginary line to position a first area between the first imaginary line and the first edge perpendicular to the remainder of the sheet and being folded in the opposite direction along the second imaginary line to position a second area between the second imaginary line and the second edge perpendicular to a third area between the
maginary lines and extending parallel to and in the opposite direction from the first area, and said sheet being folded along the center line to close the triangular notch cutout whereby the two parts of the first edge are perpendicular to each other and the rectangular notch becomes a right angle.
$\qquad$

4,095,916
TIMED INTERMITTENT AIR PROPELLED LIQUID SYSTEM FOR MACHINE TOOLS
Industries Inond, Frankenmuth, Mich., assignor to Houdaille Filed May 11 , 1977 .
Filed May 11, 1977, Ser. No. 795,709
Int. C.2
S. Cl. 408-1 R

26 Claims

4. The method of cooling the tool of a machine tool and the workpiece engaged by the tool which comprises forming a olumn of liquid coolant, intermittently air pressure loading and venting to the atmosphere the top of said colunn of liquid eeding coolant from said column to the tool of the machine ol, discharging liquid coolant under pressure at the tip of the ol against the workpiece, and recirculating coolant from the machine tool to

Arden L. Wesner, 1235 VIE HOLSESER St. Joseph, Mich. 4908
Filed Oct. 1, 1976, Ser. No. 728,750 U.S. Cl. 408-239 R


1. In a device for receiving and rotating a threading die, the combination comprising
an elongated rigid body part having an elongated opening extending centrally therethrough, said elongated opening ing at the opposite ends thereof in first and second end opening portions disposed adjacent the opposite ends of said body part;
said first opening portion being disposed adjacent and opening outwardly through one end of said body part, said first opening portion being bounded by a plurality of circumrerentially spaced, inwarny pening shaped for reception of a threading die therein;
said second end opening portion being disposed adjacent and opening outwardly through the other end of said body part, said second opening portion being bounded by a plurality of circumferentially spaced, inwaroly facing flai receiving opening shaped for the reception of a rectangular driving extension;
said body part adjacent said other end thereof being provided with at least one pair of opposed external flats for the reception of a wrench, said flats being substantially radially aligned wit
said body part also having a pair of handle openings formed radially therein on substantially diametrically opposite sides thereof, said handle openings being disposed inter mediate the opposite ends of said body part and projecting radially inwardly from the outer peripheral
thereof; thereof;
pair of elongated rodilike handles having the inner end thereof releasably secured within said pair of handle openings, said handles projecting radially outwardy opposite direc
body part in substantially diametrically tions;
said die-receiving opening, said wrench section and said extension-receiving opening all being symmetrical about opening portion;
opening portion;
whereby a die held within the die-receiving opening of said body part may be rotated simultaneously with said body part as desired by manual application of force to said handles, by manual application of force through a wrench onto the flats of the wrench section, or by manual application of force through an extensig
said extension-receiving opening.
o.G. 41
submerged in the fluid to be pumped and wherein said blades arranged within said housing, a second cylinder arranged are adapted to assume a folded position extending rearwardly within said housing and spaced axially from said first cylinder from said shaft and substantially parallel to the shaft axis, means for directing fluid to and from said first and seco means for pivotally mounting said blades at their inner ends on
said shaft for immersion within the fluid to be pumped, said said shaft for immersion within the fluid to be pumped, said
blades being freely pivotal during the rotation of said shaft into an equilibrium angular position throughout an angular range extending in both directions from a $90^{\circ}$ position and in a com
mon axial plane with respect to the axis of said shaft to thereby balance the centrifugal and hydrodynamic forces exerted on said blades during the pumping of the fluid so that the blades freely assume a position depending on the centrifugal and hydrodynamic forces exerred thereon to pump the fluid in a direction substantially parallel to the shaft axis.

## 4,095,920

Lyle L. Needham, Bellwood, and Bruno J. Marusara, Chicago, both of Ill., assignors to Babson Bros. Co., Oak Brook, Ill. Filed Sep. 8, 1975, Ser. No. 611,177 U.S. Cl. $417-12$ 8 Claims

ylinders first and second to and from said first and second cylinders, first and second piston means respectively axially movable within said first and second cylinders and respectively
defining with said first and second cylinders first and second defining with said first and second cylinders first and second end members into the interior of said housing, a wobble plate

operatively connected to said rotor for rotation therewith, and first and second angularly offset drive means of different axial lengths operatively connected to said wobble plate and respec-
tively to said first and second piston means for respectively imparting reciprocating movement to said first and second piston means within said first and second cylinders, thereby to ompress the fluid in said pump chambers in said first and second cylinders.

$$
4,095,922
$$

ELECTRO-MECHANICAL DEVICE
James B. Farr, Ann Arbor, Mich., assignor to Tecumseh Products Company, Tecumseh, Mich. Filed Oct. 20, 1976, Ser. No. 734,116

Int. C1. ${ }^{2}$ F04B $21 / 00$ 1. In a liquid handling system having a liquid receiving wardly therein, a liquid level sensing circuit comprising:
a transistor amplifier having an emitter-collector output
circuit and a base control leement; capacitor connected in series
source of alternating signal
a source of alternating signal;
a full wave diode bridge rectifier having an input and an output, the input connected to said alternating source and the output providing a DC operating potential for saic transistor output circuit
a common electrical reference for the source of alternating signal and the liquid in the receiver
a circuit connected with said source through said electrode and the liquid in the receiver, and with said transistor base element to cause the transistor amplifier to conduct when liquid contacts said electrode;
sensidivity resistor connected in shunt with the base-emitter
circuit of saic transistor amplifier;
diode connected from said base to the DC output of said rectifier bridge, said sensitivity resistor being connected in parallel with said diode; and
means responsive to conduction of said transistor to indicate the liquid level in the receiver.

MULTI-CYLINDER COMPRES 4,095,921 ARRAYS OF CYLINDERS
Masaharu Hiraga, Isesaki, Japan, and Brian J. Taylor, Dallas, Tex., assignors to Sankyo Electric Co., Ltd., Isesaki, Japan Filed Oct. 14, 1976, Ser. No. 732,349
U.S. Cl. 417-269 15 Claims 1. A compressor comprising a housing having first and second end members, one of said end members defining inlet
and outlet means for a fluid to be compressed, a first cylinder


1. A unified compressor-generator assembly for a vehicle engine comprising:
bile air means for compressing refrigerant in an automobile air conditioning system including a housing having an end face;
a hub member rotatably supported on said shaft and adapted to be driven by said engine to rotate about said shaft; therewith connected to said hub member and rotatable therewith, said flywheel having an annular flange portion at the periphery thereof adjacent said housing end face,
said flange portion having a support surface concentric with said shaf
generator rotor elements supported on said support surface of said flywheel flange portion;
a generator stator assembly supported on said housing end face concentrically within said rotor elements and surrounding said shaft; and
selectively actuable clutch means for drivingly coupling said
hub member to said shaft, said clutch means including a hub member to said shaft, said clutch means including a
portion fixedly secured to said shaft and rotatable therewith, a clutch plate adapted drivingly to engage said hub
member, and a coil concentrically surrounding said hub member, and a coil concentrically surrounding said hub
member and adapted when energized to urge said clutch member and adapted when energized to urge said clu
plate into driving engagement with said hub member.

## PERISTALTIC PUMP WITH

PERISTALTC PUMP WITH ACCOMMODATING
Herbert M. Cullis, Sil ROLLERS nol Laboratories Ince Dprige Ma.,
nol Laboratories, Inc., Deerfield, IIl.
Continuation-in-part of Ser. No. $\mathbf{6 1 6 6 4 2}$, Sep. 25, 1975, Continuation-in-part of Ser. No. $\mathbf{6 1 6 , 0 4 2 ,}$ Sep. 25, 1975,
abandoned. This application Aug. 16, 1976, Ser. No. 714,459 U.S. Cl. $417-475$

29 Claims


1. A peristaltic pump which is capable of pumping two
tubings of different diameter and which has an arcuate race; one or more peristaltic pumping tubings disposed along the
length of the race and having inlet and discharge portions length of the race and having inlet and discharge portions;
a rotary shaft mounted to rotate about an axis coincident
with the axis of said race;
a sweep arm;
means to adjustably mount said sweep arm on said rotary
shaft
shaft;
spincle fixedly mounted on said sweep arm in spaced relationship with said race, the constant distance between said spindle and said race being determined
ment of the mounting of said swe
mearing means routatable on said sweep arm;
sleeve rotating
bearing means;
bearing means; $\quad$ sout said spindle and supported by said
nuar elastomeric means supported by said sleeve; and
rigid surface roller supported by said elastomeric mean
concentrically about said spindye, said elasto mean permitting skewing of the roller axis
tially occlude said peristaltic tubing between the surface tially occlude said peristaltic tubing between the surface
of said roller and the race at a given adjustment of said mounting of said sweep arm;
whereby, when said rotary shaft is rotated, the said rigid
surface roller sweeps along the length of the one or mor surface roller sweeps along the length of the one or more
peristaltic pumping tubings in said race, thereby stripping said peristaltic pumping tubings and pumping fluid con-
tained therein and forcing said fuid from said inlet portion tained therein and forcing said to said discharge portion, and
whereby, when two peristaltic pumping tubings of differen
diameters are utilized, the rigid surface roller can be variably deflected as a result of deflection of the elastomeric support therefor by variable force applied to its rigid urface by two peristaltic pumping tubings, despite the having a frame means; a product forming mold mounted surface by two peristaltic pumping tubings, despite the having a frame means; a product forming mold mounted
said constant distance between said spindle and said race, thereon at a mold station and having a mold cavity for receiv
determined by said adjustment of the mounting of said sweep arm.

HOUSING FOR FUEL PUMP CONTROL ASSEMBLY Hierre Henri Peltret, London, England, assignor to Lucas Indus ierre Henri Peltret, London, England, assignor to Lucas Indus Filed Aug. 31, 1976, Ser. No. 719,33
Claims priority, application United Kingdom, Jul. 2, 1976,
${ }_{2}^{\text {27633/76 }}$ In In
Int. C.2. ${ }^{2}$ F04B 7/04, 39/10: GO5G $11 / 0020$ Clims


1. A fuel pump assembly comprising a first housing for ontaining injection pump means, a second housing secured to he first housing including a housing part secured to a main main part of the second housing in spaced relationship to said housing part, sealing means provided intermediate said end plate and said main part of the housing said end plate constituting a dividing wall defining in said second housing a first and second compartment, a movable control member extending rom said first housing into said first compartment, an actuato located in said second compartment having an output shaf
extending through said end plate, said shaft having an axis o ovement substantially at right angles to but offset from an xis of movement of said control member, link means mounted on said shaft engageable with said control member, and a fluid seal member mounted on said end plate engaging with said shaft to prevent flow of lubricant between said compartments.

CEMENTITIOUS PRODUCT MAKING SYSTEM WITH PRODUCT HICHT CT MAKING SYSTEM WITH arry F. Cruzen, and Robert W. Gresham, both of Alpene Mich., assignors to Besser Company, Alpena, Mich. Continuation-in-part of Ser. No. 732,388, Nov. 14, 1976, Pat. No. 4,036,570, which is a continuation of Ser. No. 684,154, May
, 1976 abandoned, which is a division of Ser. No. 475,757, Jun. , 1976, abandoned, which is a division of Ser. No. 475,757, Jun. , 1974, Pat. No. 3,963,397. This application Jun. 3, 1977, Ser
The portion of the term of this pate
1993, has been disclaimed

## S. C. ${ }^{425}-141$

ing cementitious material; mechanism mounted by the frame flexible conveyor for transporting said dough portions in a first means operably connected to supply material to the mold and direction, said apparatus comprising:
to pack material in the mold when cementitious material is
supplied thereto, to aid in formation of a product in the mold supplied thereto, to aid in formation of a product in the mold cavity; product receiving means carried by the frame system comprising a transfer means and a support pallet surface upon which the product is carried for downstream movement from the molding station; means on the frame system for relatively moving the mold and at least a portion of the product receiving means to release the product from the mold and including a means; means, supporting the gauging carrier means at a gauging station, for vertical movements toward and away from the

product receiving means from a raised non-gauging position to a lowered gauging position; upper and lower sensor device carried thereby, the lower sensor device being mounted vertisurface, the upper sensor device being supported at a laterally inboard location to sense the level of the upper surface of the product; means for moving said carrier means vertically away from lowered gauging position; means for sensing the presence of a product receiving means and a newly molded product at
said gauging station and controlling the carrier means to persaid gauging station and controlling the carrier means to per-
mit circuit mechanism connected to the upper sensor device to respond to variations from a predetermined norm, including means for controlling said mechanism to correct the condition

APPARATUS FOR $\quad 4,095,926$
THEREFOR DOUGH ONTO PANS Wray D. Poul 135 Hattay Dr Ata

| Filed Apr. 28, 1976, Ser. No. 681,028 |
| :--- |
| Fings, Fla. 3270 | filed Apr. 28, 19, ${ }^{2}$ A2 Ser. No. 681,028 U.S. Cl. 425-307

20 Claims

15. Apparatus for delivering a plurality of dough portions to apan therefor, said apparatus adapted for use with a first,
means elevating a portion of said first conveyor with respec to the remainder of said first conveyor, said elevated portion being between the ends of said first conveyor; a second conveyor having a pickup end and a discharge end; second conveyor;
means for supporting said second and third conveyors over said first conveyor with said pickup of said second con
veyor justaposition veyor justaposition elevated portion theref ace said first direction from said elevating means; and means feeding said pans onto said third conveyor whereby said pans receive said portions from said discharge end of
said second conveyor.

4,095,927
APPARATUS FOR BLOWING, COMPRESSING, AND SEVERING TO FORM AN ARTICLE Chul Roberg, Hilchenbaci; Bernhard Lobbert, Bergneustadt Cristof Paschike, Hilchenbach; Hermann Staehle, Stuttgart Otto Pamp, Kelkhelm; Manfred Dicks, Niederhausen, and Otto Plajer, Kelkheim, all of Germany, assignors to Schlo
emann-Siemag Akt., Dusseldorf and Hoechst emann-Siemag Akt., Dusseldorf and Hoechst Aktiengesell schaft, Frank Firort, both of, Germany
Claims priority, application Germany, Sep. 13, 1975, 2540910 Oct. 6, 1975, 2544680
U.S. Cl. 425-525 Int. Cl. ${ }^{2}$ B29D 23/03

2 Claims


1. Apparatus for carrying out blow molding of a plastic (a) means providi
(a) means providing an axially extending parison
a divided blowing mold having at least one cavity, said cavity having a circular opening at one end, having counterbore at its edge, which cavity opening is coaxial to the parison, the mold also having an annular guide groove
coaxial of and spaced outwardly of the cavity (c) means inflating the parison in the mold to conform to the cavity,
(d) a divided annular upsetting ring having a bore with diameter which is slightly less than the counterbore diam eter, and having a recess along its lower inside edge with guide groove, thereby allowing the recessed end of the upsetting ring to be slidable in the guide groove, mean being attached thereto for moving the upsetting ring coaxially of the mold whereby a portion of the blow parison is compression molded into an article, and with an outer diameter substantially equal to that of the bore in the upsetting ring, which punch is inserted in the upsetting ring so as to be attached to the upsetting ring for
sliding in an axial direction relative thereto, said punch sliding in an axial direction relative thereto, said punch
having a frusto-conical recess opening onto its molddirected end, said recess having its large diameter at the
free end, means being attached to the separating punch to move it coaxially of the upsetting ring to sever portions of he compression and blow molded article.

## 4,095,928

METHOD OF REDUCING NITROGEN OXIDE EMISSIONS IN FLUE GAS Dale A. Jones, Whittier, and Mansour N. Mansour, Hacienda, both of Calif., asslgnors to Southern Californla Edison Company, Rosemead, Calif.
U.S. C. 431-8

Feb. 14, 1977, Ser. No. 768,579
Int. C1. ${ }^{2}$ F23C 7/00


1. A method of reducing nitrogen oxide emissions from fue burning, comprising:
burning, comprising:
burning in a first combustion zone nitrogen-rich fuels; burning in a second combustion zone nitrogen-poor fuels; and
burning both said fuels simultaneously and in a manner to cause the combustion gases from the burning of said nitrocause the combustion fass through said second combustion zone.

LOW BTU GAS HORIZONTAL BURNER Michael S. Mc Cartney, Bloomfield, Conn., assignor to CombusMichael S. McCartney, Bloomied, Conn.,
tion Engineering, Inc., Windsor, Conn. J.S. Cl. 431-19

Int. Cl. ${ }^{2}$ F23N $1 / 02$


1. Apparatus for burning a low energy gas comprising a furnace wall having a divergent opening for the exhaust of ga
said opening, a flow passageway in said windbox adapted to supply combustion air to said opening, a partition dividing said passageway into a primary air stream and a secondary air
stream that exhaust into said opening, a burner in said opening for the generation of a flame, a source of supply for a quantity of fuel gas, a primary gas duct extending from the source of supply to said burner to exhaust continuously into said opening, and means forming an outlet port downstream from and concentrically surrounding said divergent opening adapict en exhaust a sithout increasing gas flow through said opening

$$
\begin{gathered}
\text { FUEL BURNING SYSTEM } \\
\text { Duane A. Huston, Cleveland, Tenn., assignor to Olin Corpora }
\end{gathered}
$$ tion, New Haven, Conn.

Filed Nov. 2, 1976, Ser. No. 737,977 Int. Cl. ${ }^{2}$ F23N $1 / 00$

1 Claim

1. A system for burning at least two fuels in a burner wherein the second fuel is available in varying amounts, said system (a) first supply means for supplying a first fuel to the burner; (a) first supply means for supplying a first fuel to the burner; b) second supply means for supplying a second fuel to the burner; (c) transmitter fuel;
(d) demand sensor means for sensing the total fuel required to be sent to the burner;
(e) first controller means for controlling the flow of said first fuel to said burner;
(f) second controller means for controlling the flow of said second fuel to said burner
$(\mathrm{g})$ on-off valve means for shutting off or turning on the supply of said first fuel to said burner;
(h) proportioning means operative in response to the sensing of the available supply of said second fuel and the total fuel required for proportioning the total fuel supplied to much of the second fuel to meet the total fuel requirement;
and the available supply of said second fuel for closing said on-off valve means when the available supply of said and for opening said on-off valve means when the available supply of said second fuel is inadequate to meet the total fuel requirement; and
(j) first and second flame safeguard valve means, positioned toward said first and second supply means from said offon valve means and second controller means, respecsecond fuels responsive to existence of any one of a plurality of potentially unsafe conditions.

4,095,931
INJECTION MOLDING MACHINE AND METHOD David M. Reitan, Union Lake, Mich., assignor to Incoe Corpo David M. Reitan, Unio
ration, Troy, Mich.
Filed Dee. 1, 1975, Ser. No. 636,367
Int. C.2 B29F $1 / 03$
U.S. Cl. 425-564 Int. Cl.' B29F 1/03

12 Claims


1. A shut-off bushing for an injection molding machine comprising an elongated hollow outer body having a central axis, a shank within and fixed to said body, the facing surfaces of the body and shank forming an axially uninterrupted mate-
rial passage, a relatively narrow delivery orifice formed in one rial passage, a relatively narrow delivery orifice formed in one
end of said body by radially inwardly extending portions thereof and leading from said material passage, said one end of the body being immovable with respect to the remainder of the body, a shut-off pin slidably mounted in said shank and movable into closed position with respect to said orifice, said pin able into closed position with respect to said orifice, said pin
being at all times in non-obstructing relation with said material passage, heating means disposed inwardly of said material
passage and in thermally conductive relation with said shank and said pin, and actuating means connected to said pin for moving said pin to its closed position independently of the pressure in said material passage and at said orifice.

APPARATUS FOR MAKING CONTINUOUS CHAIN Frank Tome, 666 W. Sandy Ridge Rd., Doylestown, Pa. 18901 Filed Feb. 17, 1977, Ser. No. 769,411
U.S. Cl. 425-575 Int. C. ${ }^{2}$ B29F $1 / 022$

1. Apparatus for molding a length of plastic chain formed of interengaged chain links comprising
an intermediate fixedly mounted die carrying plate having a longitudinal main slot and side slots therealong, able in said slots,
die carriers at the rear end of said main slot for the reception of said die members advanced to said rear end and for moving said die members to positions adjacent said side
slots. slots,
means
means carried
alons carried by said side slots to the for urging said
alont of said
die carriers at the front the front of said plate, pairs of die members at said front end for positioning said pairs of die members at said front end,
means positioning said die carriers at said
means carried by said plate for urging said die members along said main slot,
additional die members for positioning in meeting relation to at least one of said pairs of dies at a predetermined position along said slot,
said additional die

cooperating with the mold cavities in the dies of one of said pairs to provide die cavities for interengaged links of chain, and
means supplying moldable material into said die cavities.
4,095,933
FUEL HANDLING AND COMBUSTION SYSTEM Coh B. Schumacher, Huron, S. Dak., assignor to International Commercial Enterprises, Inc., Alexandria, Va.

Filed Sep. 2, 1977, Ser. No. 830,02
U.S. Cl. 431-11 $\quad 21$ Claims


1. A fuel handling and combustion system, comprising (a) means for conveying fuel from a source to one end of said system;
b) coil means for preheating and conveying said fuel to the other end of said system;
(c) means to convey said fuel from said coil means at said other end of said system to said compression chamber; e) a spud having a spud orifice downstream of said compres sion chamber for releasing said fuel, prior to any admix
ture with air, at said other end flowing in a direction toward said one end of said system along the central axis of said coil means
(f) a perforated inside fire control cone surrounding said spud and located within the space enclosed by said coil means; and
(g) a perforated outer secondary air cylinder surrounding said fire control cone and located within the space enclosed by said coil means.

## 4,095,934

WASTE GAS RECOVERY
Larry F. Jensen, Harbor CCty; Frank D. Hartzell, Manhattan Beach, and Whoil Oil Corporation, Nos Angeles, all of Calif., assignors to Mobil Oil Corporation, New York,
Filed Mar. 24, 1977, Ser. No. 780,892
U.S. Cl. 431-89

Int. Cl. ${ }^{2}$ F23N $1 / 00$
3 Claims

adapted to receive preheated air from said air inlet means and supported at each end;
suspension means mounted with the furnace for suspending

each of said plenum arches between said ends; and burners spaced within each of said plenum arches extending downwardly into the furnace.

## 4,095,936 POT BURNER

Willem Godijn, Hilversum, Netherlands, assignor to Research Instituut "Sesto" B.V., Hilversum, Netherlands Filed Oct. 9, 1975, Ser. No. $\mathbf{6 2 1}$
Int. Cl.2 F23D 5/04
U.S. CI. 431-337

1. In a complex of process units for conversion of combusti-
ble feed materials to desired products having a common fuel ble feed materials to desired products having a common fuel
gas system for supply of fuel gas to individual process units, a common relief system for collection of combustible gases at pressure relief devices associated with said process units, an tor for discharge into said incinerator, and means to supply said combustible gas so collected to said header; the improvement to permit recovering fuel value of the said collected combustible gases to the maximum extent consistent with safety of the said complex which comprises:
(1) compressor means adapted to compress said collected combustible gases to the pressure of said fuel gas system, (2) means to conduct gases discharged from said compressor means into said fuel gas system,
(3) a gas supply conduit communicating with said header and with intake of said compressor means,
(4) a control valve in said condir representative of the same, said header,
(6) means to generate a signal representative of vacuum in said conduit between said valve and the intake of said compressor means,
(7) means responsive to said signals adapted to close said valve when the lesser of said signals is below a predetermined minimum. $\qquad$

## 4,095,935

FURNACE WITH PLENUM ARCHES
Denis A. Menegaz, Houston, Tex.; Elmars Blumenaus, San Francisco, Calif., and Richard Estile H. Ray, Houston, Tex., assignors to Pullman Incorporated, Chicago, III.
Filed Apr. 23, 1976, Ser. No. 679,525 Filed Apr. 23, 1976, Ser. No. 679,52
U.S. CI. 431-167 12 Claims

1. An air delivery and burner system for a furnace which comprises:
air inlet means for receiving preheated inlet air
a plurality of air ducts extending across the top of said furnace, each air duct forming a plenum arch, each plenum arch extending from said air inlet means and

2. A burner comprising
a housing having an elongated trough shape in its longitudi direction and having walls in a substantially diamond buer mouth located substantially at thsestion, ing,
ing, bottom portion of said trough shaped housing inclining downwards from both ends of said trough shape in the longitudinal direction ply of liquid fue
 part-walls extending upwardly from said housing walls
and forming arches extending toward each other substantially near a vertical plane of symmetry of said diamondshaped configuration of said housing.
said two part-walls having a central flame opening therebea common tangent line to said housing having orifices below said first partition, a second partition above said first partition and having two
part-walls extending upwardly from said housing walls and having a flame opening therebetween
said housing having orifices below said second partition with inflowing air through said orifices,
said housing extensions defining said burner mouth parallel
to said vertical plane of symmetry and having orifices therein,
said burner mouth having a width and said orifices in said extensions being directed to cause the inflowing air
through said orifices in said extensions to flow only substantially as far as said vertical plane of symmetry or slightly beyond.
$\qquad$
4,095,937
INSULATION FOR WATER COOLED PIPES IN A
REHEATING FURNACE
Steven C. Colburn, La Palma, and Marion H. Black, Anaheim, both of Calif., assignors to Hitco, Irvine, Califif,

Filed Nov. 8, 1976, Ser. No. 740,06
Int. Cl. ${ }^{2}$ F27D $9 / 00,3 / 02$
U.S. CI. 432-3 Int. C1. ${ }^{\text {F27D 9/00, 3/02 }}$

9 Claims

7. A method of insulating a water cooled member of a skid rail system in a reheating furnace comprising the steps of: wrapping a permeable resilient mat of fibrous refract o
material around the water cooled member in abutting relationship; wrapping a tape of fibrous
the mat to cover the mat outside of the tape; and
allowing the mortar to harden and for
4,095,938
ARCTIC VEHICLE BATTERY HEATER
Joseph J. Mikaila, 2643 Lake Charneod, Troy, Mich. 48084
Filed Mar. 21, 1977, Ser. No.
Int. Cl. ${ }^{2}$ F24J $3 / 00$ U.S. Cl. 432-225


1. In an arctic vehicle equipped with battery ignition: the improvement comprising means for heating the vehicle battery to improve its electrical output energy capability preparatory to improve its electrical output energy capability preparatory
to start-up of the vehicle, said heating means comprising at least one catalytic heater positionable in close adjacency to an outer side surface of the battery casing for directing heat en-
orgy through said casing into the battery electrolyte ergy through said casing into the battery electrolyte, an upright battery-reception box having sidewalls thereof spaced
from the battery casing surfaces to form passages for heated gases flowing upwardly from the catalytic heater, and means forming gas escape openings therein tending to confine hot gases to the space surrounding the battery

4,095,939
OPTICALLY BRIGHTENED POLYESTERS WITH 2,5-BIS-(P-CARBOALKYLSTYRYL)-OXADIAZOLE James G. Pacifici, and Richard H. S. Wang, both of Kingsport,
Tenn., assignors to Eastman Kodak Company, Rochester Tenn.
N.

Filed May 9, 1977, Ser. No. 794,858
U.S. C. 8-1 $\mathbf{W}$
int. C1. ${ }^{2}$ D06P 1/38; C09K 11/00

1. Polyester material containing from about $0.001 \%$ to about $5.0 \%$ by weight of at least one compound of the formula

CO -CH-
-
wherein $\mathbf{R}$ and $\mathbf{R}^{1}$ are independently selected from alkyl of wherein $R$ and $R^{1}$ are independently selected from alkyl of
$1-12$ carbons, cycloalkyl of $5-10$ carbons, and alkyl of $1-10$ carbons substituted with one or more of -OH, alkoxy of 1-6 carbons, $\mathrm{Cl}, \mathrm{B}$,
$5-10$ carbons.

PROCESS FOR THE PRODUCTION OF CAMOUFLAGE DYEINGS AND PRINTS
Rudolf Weingarten, Schwalbach, Taunus, Germany, assignor to Hoechst Aktiengesellschaft, Frankfurt am Main, Germany Filed Jan. 5, 1973, Ser. No. 324,066,
Claims priority, application Germany, Jan. 5, 1972, 2200323 Claims priority, application Germany, Jan. 5, 1972, 2200323
Int. Cl. ${ }^{2}$ D 06 P P $/ / 00$ U.S. C. 8-15 7 Claims 1. A process for the production of camouflage dyeings and containing synthetic or regenerated fibers to obtain dyed materials having camouflage properties in the visible range and infrared reflection values of from 20 to 50 percent within the infrared range between 700 and 1100 nm , which comprises the steps of:
(a) providing fibers or foils containing
carbon black as a mass coloration; and
(b) cross-dyeing or cover-printing the mass colored fibers or
foils of step (a) with a dyestuff suited for the fibers or foils
in shades that provide camouflage colors in the visible range of the spectrum.

4,095,941
FIBER PREPARATION AGENTS TO PRODUCE A MARKED SEPARATING CAPABILITY
Urich Cuntze, Hofheim, Taunus; Gustav Dollinger, Egelsbach, and Roil Kleber, Neu-lsenburg, all of Germany, assignors
Hoechst Aktiengesellschaft Frankfurt am Minn, Germany Foechst Allied Sep. 30, 1975, Ser. No. 618,05 Claims priority, application Germany, Oct. 4, 1974, 2447410 U.S. Cl. 8-18 A Int. CT. ${ }^{2}$ D06D 3/00, 5/00

12 Claims
U.S. A process for the lubrication of synthetic staple fibers to yield a low fiber cohesion which comprises applying onto the fibers prior to the textile spinning processes a condensation product obtained by condensation of 1.2 to 1.8 mols of a fatty acid having from 14 to 18 carbon atoms and 1 mol of hydroxy.
$4,095,942$
PRINTING OF HYDROPHOBIC TEXTILES WITHOUT AFTERWASH AND PRODUCT THEREOF Kurt A. Dellian, Greensboro, and Fernand Schlaeppi, High Point, both of N.C., assignors to Ciba-Geigy Corporation,
Ardsley, N.Y. Ardsley, N.Y. Filed Mar. 8, 1976, Ser. No. 665,038
USS. C. $8-62$ Int. C1. ${ }^{2}$ D66P 5/00, 7/00

1. In a process for printing synthetic thermoplastic textiles without washing, comprising the steps of printing on the textile an aqueous dispersion of a non-ionic organic colorant, a thickener, and an effective wetting amount of a non-ionic orlanionic
surfactant, subsequently drying the textile, and finally heating the textile to fix the colorant, the improvement which comprises using as the thickener, about 0.05 to about $0.5 \%$ by weight of a compound of the formula

wherein
$R^{1}$ and $R^{2}$ her lower alkyl, ono-lower alkyl ammonium, di-lower alkyl ammonium, mon-lower alkyl ammonium, or tetra-lower alkyl ammonim,
$m$ is 0 or 1,
$n$ is $2-\mathrm{m}$, and
$y$ is 5000 to 50,000 , in the substantial absence of other electrolyses.

PROCESS $F$
LOWER FOR THE PRODUCTION OF SOLUTIONS OF LOWER ALIPHATIC CARBOXYLIC ACID SALTS OF CATIONIC DYESTUFFS
Walter Lang, Pfeffingen, and Cert Hegar, Schonenbuch, both of SN.
Claims priority, application Ser. No. 627,996
Claims priority, application Switzerland, Nov. 6, 1974, Int. C. ${ }^{2}$ C09B 67/00: D06P $1 / 62$

1. A process for 16 Claims 1. A process for producing a solution of a salt of a lower aliphatic carboxylic acid of a cationic dyestuff which consists essentially of converting a cationic dyestuff halide salt into the salt of a lower aliphatic carboxylic acid by reacting the halide
salt with a 100 to $2,000 \%$ excess of the corresponding carboxylic acid in the presence of a 100 to $250 \%$ excess of an epoxide compound having a maximum of 12 carbon atoms.

## 4,095,944

TREATMENT OF TEXTILE MATERIALS
Clifford Duck worth, Shipley, England, assignor to Mather \& Flat Limited, Park Works, England
tinuation of Ser. No. 494,799, Aus. 5, 1974, abandoned. This application Jun. 4, 1976, Ser. No. 693,244 37107/73
U.S. CI. 8-115.7

Int. C. ${ }^{2}$ D06M 9/04, $1 / 10$
U.S. Cl. 8-115.7 $\qquad$

1. A method of mercerizing unregenerated cellulosic textile anting the textile from spun yarns comprising the steps of presenting the textile material for saturation with an alkaline swell-
ing agent at a concentration of $8.75 \%$ or more and at a temper-
ature of $50^{\circ} \mathrm{C}$ or more for an immersion time of 10 seconds or

less, and squeezing excess agent from the textile material, said agent being caustic soda, the material being cotton fabric.

## 4,095,945

PROCESS FOR TREATING TEXTILE ARTICLES assignors to Toyo Boseki Kabushiki Kaisha, Osaka, Japan Filed Jul. 23, 1976, Ser. No. 707,938
(C) U.S. Cl. $8-115.7$

17 Claims U.S. Cl. 8-115.7 $\qquad$ 1. A process for rendering a textile material flame reardan
which comprises applying to the textile material (1) a phos phorus-containing condensation product obtained (A) by heating a tetrakis(hydroxymethyl)phosphonium compound at 151
$-180^{\circ} \mathrm{C}$ at reduced pressure under acidic conditions to con $-180^{\circ} \mathrm{C}$. at reduced pressure under acidic conditions to con
dense said phosphonium compound through dehydration and deformaldehydation reactions, the molar ratio of $\mathrm{P}_{\mathrm{CH}}^{2} \mathrm{CH}_{2}-\mathrm{P}$ linkage/P- $\mathrm{CH}_{2} \mathrm{OCH}_{2}-\mathrm{P}$ linkage in said condensation producl being $0.8-4.0$, or ( B$)$ by heating a tetrakis(hydroxymethyl)-
phosphonium compound at $120^{\circ}-180^{\circ} \mathrm{C}$. in the presence of phosphonium compound at $120^{\circ}-180^{\circ} \mathrm{C}$. in the presence o
$0.001-0.02$ mol of an amino group-containing compound per $0.001-0.02$ mol of an amino group-containing compound per
mol of said phosphonium compound at reduced pressure under mol of said phosphonium compound at reduced pressure unde
acidic conditions to condense said phosphonium compound through dehydration and deformadelhydation reactions, the molar ratio of P - $\mathrm{CH}_{2}$ - P linkage/P- $\mathrm{CH}_{2} \mathrm{OCH}_{2}$ - P linkage in said condensation product being $0.8-4.0$, (2) a nitrogen-phos-
phorus-containing condensation product obtained by condensing a tetrakis(hydroxymethyl)phosphonium compound with an aminoplast precursor, and (3) an aminoplast precondensate, the weight ratio of (1):(2) being from $90: 10$ to $10: 90$ and the weight
ratio of (1) $+(2):(3)$ being from $80: 20$ to 99.1 and fixing (1). ratio of (1) + (2) : (3) being from $80: 20$ to $99: 1$; and fixing (1)
(2) and (3) on the textile material. (2) and (3) on the textile material.

ARTICLE FOR CLEANING AND CONDITIONING
Kenneth L. Jones,
Ohio, assignors to The Procter \& Gamble Company, Cincin nati, Ohio

Filed Mar. 25, 1997, Ser. No. 781,400
Int. C.2 ${ }^{2}$ B08B $3 / 00$
U.S. Cl. $8-137$

1. A laundry article, providing cleaning and fabric cond 1. A laundry article, providing cleaning and fabric condi-
tioning benefits, for use in both the washer and the dryer, consisting essentially of a water-insoluble substrate, carrying:
(a) an efrective amout 5 to $95 \%$ of a water-soluble surface-active agent; and
(b) an effective amount of an intimate mixture, having a maximum solubility in water of 50 ppm at $25^{\circ} \mathrm{C}$, and a
softening point of from $100^{\circ}$ to $200^{\circ} \mathrm{F}$, consisting essen. softening
tially of
(i) from about 10 to $90 \%$ by weight of quaternary ammonium fabric-conditioning compounds having the for mula $\left[R_{1} R_{2} \mathbf{R}_{3} R_{4} N_{1}\right]^{+} \mathbf{Y}^{-}$, wherein one or two of the $\mathbf{R}_{1}$, $\mathbf{R}_{2}, \mathbf{R}_{3}$, or $\mathbf{R}_{4}$ groups is an organic radical containing a
group selected from a $C_{12}$ to $C_{22}$ aliphatic radical, or an group selected from a ${ }_{12}$ to
alkyl phenyl or alkyl benzyl radical having 10 to 16 carbon atoms in the alkyl chain, the remaining group or carbon atoms in the alkyl chain, the remaining group or
groups being selected from $C_{1}$ to $C_{4}$ alkyl, $C_{2}$ to $C_{4}$ hydroxy alkyl, and cyclic structures in which the nitro-
gen atom forms part of the ring, Y constitutes an anionic
radical selected from the group consisting of hydroxide, halide, sulfate, methyl sulfate, and phosphate ions; and
and tor, being a solid organic material having a maximum solubility in water of 50 ppm at $25^{\circ} \mathrm{C}$ and a softening point in the range of $100^{\circ}$ to $200^{\circ} \mathrm{F}$, said material being elected from the group consisting of paraffinic waxes, yclic and acyclic mono- and polyhydric alcohols, ubstituted and unsubstituted aliphatic carboxylic acids, esters of cyclic and acyclic mono- and polyhydric alco-
hols and acids, condensates of $\mathrm{C}_{2}$ to $\mathrm{C}_{4}$ alkylene oxide with any of the foregoing types of materials whether or not said materials themselves meet the above solubility and softening point limits, and mixtures thereof.
2. A method of laundering and conditioning fabrics com rising the steps of
a) agitating said fabrics in an aqueous laundry solution to which has been added a substrate composition carrying an effective amount of a detergent composition, such tha said detergent composition is dissolved in the laundry solution, and a fabric conditioning agent, such that said conditioning agent is not substavialy dissolved in th (b) tumbling said fabris
together with said substrate ceat, in a laundry dryer conditioning agent is transferred to said fabrics while they are being dried.
$\xrightarrow{\text { RECOVERY OF SIZES }}$
Hans Wolf, Ludwigshafen; Heinz Leltner, Mannheim, and Wolfgang Schenk, Schwetzingen, all of Germany, assignors to BASF Aktiengesellschath, Ludwigshafen am Rhein, German
Filed Sep. 13, 1976, Ser. No. 722,519 Claims priority, application Germany, Oct. 1, 1975, 2543815 U.S. Cl. 8-138

$$
\begin{aligned}
& \text { ity, application Germany, oct. 1, } \\
& \text { Int. C. } .^{2} \text { D01C } 3 / 02 ; \text { D } 06 \mathrm{~L} 1 / 06
\end{aligned}
$$

10 Claims 1. A process for the recovery of a size from a fabric of which he warp is sized with a water-soluble polymer of acrylic acid rises treali metal salt or ammonium salt thereof, which com weight of water sased fabric with from 30 to 300 percent by weight of water, based on the dry weight of he fabric, at from abric, and collecting the size
10. A process for the recovery and re-use of a size from a fabric in which the warp is sized with a water soluble polymer of acrylic acid on an alkali metal or ammonium salt thereof 300 percent by weight, based on the dry weight from 30 to 300 percent by weight, based on the dry weight of the fabric, impurities at $5^{\circ}$ to $95^{\circ} \mathrm{C}$ for a period of less than 1 minute to orm a regenerated aqueous size solution, separating the regen rated size solution from the fabric, using the regenerated size solution directly and as such as to make another aqueous sizing solution of said water soluble polymer, and using the latter izing solution to size additional warp yarn

## 4, 4,095,949

DETERMINATION OF URIC ACID Raul Hunziker, Basel, Switzerland, assignor to Hoffmann-La Continuation of Sy, N.J. 13 , Oct. 10, 1974, abandoned. This applicr. No. $51,99,076$. Claims priority, application Switzerland, Oct. 19, 1973, Int. Cl. ${ }^{2}$ G01N 21/26, 31/14, 31/22, 33/16 1. A 28 Claim iological ous flow the sequential steps comprising (a) combining, in continuous flow a
specimen of test fluid with an aqueous solution of an alkali metal or alkaline earth metal salt diluent;
(b) passing the resuling mixture hrough a dialysis zone, solution;
(c) mixing said clear aqueous solution with a buffered uricase solution with a pH of 8.5 to 10 ;
(e) mixing at pH 5.5 to 8.5 the hydrogen peroxide produced

in step (d), by sequential or concurrent flow, with a first reagent comprising a buffered aqueous solution of a chromogen in the leuco form consisting of an unsubstituted or nuclear-substituted benzidine or diphenyline and a second eagent comprising a buffered aqueous solution of peroxidase, thereby forming a colored solution; and
flowing said colored solution to an analyzing zone and photometrically determining quantitatively, during the
flow of said colored solution through said analyzing zone, the uric acid content of the sample.
$\left.\qquad \begin{array}{l}4,095,949 \\ \text { PREPARATION AND MEASUREMENT OF ULTRA }\end{array}\right)$ MICRO AMOUNTS OF NITROGEN
Robert John Flett, 3450 Durocher, Apt. No. 3, Montreal, Que-
bec, Canada
Filed Nov. 30, 1976, Ser. No. 746,225
Claims priority, application Canada, Dec. 8, 1975, 241213
U.S. CI. 23-230 PC Int. Cl. ${ }^{2}$ G01N 31/12

8. A method for the micro analysis of nitrogen-containing matter to determine the nitrogen content which comprises: i. providing an evacuated system including a combustion
tube containing a micro sample of nitrogen-containing matter.
ii. introducing oxygen gas to said combustion tube and comii. introducing oxygen gas
busting said micro sample,
iii. converting gaseous nitrogen oxides formed in said comgases produced in said combustion from the gaseous state
such that said system contains the nitrogen of said micro sample in a gaseous state,
trometrically determining the nitrogen stable isotope $r$ a tio.

METHOD FOR $\quad 4,095,950$
OF A TECHNETIUM-MATOGRAPHIC ANALYSIS OF A TECHNETIUM-CONTAINING MIXTURE Stephen Kahn, Walnut Creek, Calif, ossignor to Bio-Dynamics Filed Jun. 11, 1976, Ser. No. 695,108
U.S. C1. 23-230.3 Int. Cl. ${ }^{2}$ GO1N $31 / 08$
$\qquad$ 20 Claims um-containing mixture of unbound, reduced technetium free pertechnetate, and reduced technetium bound to an elutable carrier, the method being for determining the percentage of he bound, reduced technetium present in the mixture without requiring isolation of the bound, reduced technetium from $t$
ther technetium components, comprising the steps of:
a. placing a first sample of the technetium-containing
a. place on a first chromatographic adsorbent;
b. developing the first adsorbent with an aqueous salt solution to transport the free pertechnetate and the bound,
reduced technetium to a second zone away from the unbound, reduced technetium remaining in a first zone; placing a second sample of the technetium-containing mixture on a second chromatographic adsorbent;
developing the second solvent adsorbent with a suitable liquid organic solvent to transport the free pertechnetate
to a fourth zone away from the bound, reduced technetium and the unbound, reduced technetium remaining in a third zone;
e. determining the radioactivity of the technetium present in at least zones one and four of said first and second adsor bents and
calculating the percentage amount
technetium present in the mixture.
ORGANIC CARBON ANALYZER SYSTEM Louis S. DiCola, Lincoln, R.I.; Donald W. Kemp, Marion, Mass., and H. Duane Evans, Portsmouth, R.I., assignors to Raytheon Company, Lexington, Mass.
Division of Ser. No. 473,116, May 24, 197 This application Jun. 17, 1976, Ser. No. 697,176 The portion of the term of this patent subsequent to Jun. 22, 1993, hass been disclaimed.
Int. Cl. ${ }^{2} \mathbf{G} 01 \mathrm{~N} 31 / 12$ U.S. CI. 23-253 PC ${ }^{\text {Int. Cl. }{ }^{2} \text { G01N 31/12 }} 4$ Claims


1. An organic carbon analyzer system comprising: . An organic carbon analyzer system comprising: means for treating a material having inorganic and organic
carbonaceous substances to provide a first volatile com-
pound of carbon from said inorganic carbonaceous sub stance;
means coupled to said treating means for dispersing said
material in a first gaseous carrier, said first gaseous carrial absorbing said first gaseous carrier, said first gaseous carrie eans coupled to said dispersing means for said material, first gaseous carrier with a second gaseous carrier free of said first volatile compound, said second gaseous carrie reacting with said material to provide a reacted material second volatile compound of carbon from said organic carbonaceous substance;
means coupled to said replacing means for separating said second volatile compound and said second gaseous carrie from said reacted material, said separating means compris ing a passage for conducting said second volatile com-
pound and said second gaseous carrier and said reacted material, said separating means further comprising a chamber positioned adjacent said passage and holding water in proximity to said second volatile compound and said second gaseous carrier and said reacted material for condensing said reacted material; and
means coupled to said passage of said separating means for analyzing said second volatile compound.

4,095,952
APPARATUS FOR MAKING (DL) PANTOLACTONE
Joachim Schmidt; Wolfgang Bamberg; Hartmut Grumert; Er. hard Schorm, and Caristian Weigelt, all of Jena, Germany, asignors to Veb Jenapharm Jena, Jena, Germany
Division of Ser. No. 667,410, Mar. 16, 1976, which is a
continuation of Ser. No. 476,290, Jun. 4, 1974, abandoned, which
is a division of Ser. No. 298,831, Oct. 19, 1972, abandoned. This application Oct. 15, 19c6, Ser. No. 733,019
Int. Cl. ${ }^{2}$ B01J / /00
U.S. C. $23-260$


1. An apparatus for the continuous production of DL- $\alpha$ hdroxy- $\beta, \beta$-dimethyl- $\alpha$-butyrolactone (DL-pantof DL- $\alpha$ the said apparatus comprising
a mixer;
dosage means for passing isobutyraldehyde and formalin into the mixer;
a circulatory reactor;
a circulation pump, a heat exchanger and an outlet, these disposed one after the other in the direction of flow of a reactant;
duct means connecting the mixer with the circulatory reac-
tor and dosage means and an inlet nozzle forming part of said duct at the inlet to said circulatory reactor;
said duct at the inlet to said circulatory reactor; $\begin{aligned} & \text { a counterflow relation, gas discharge means located in the } \\ & \text { an additional inlet and injection nozzle for passing a sodium upper portion of each compartment, and coal discharge means }\end{aligned}$ cyanide solution into the circulatory reactor, the inlet for located in the lower portion of each hopper.
said last duct being provided between said outlet and said inlet duct from the mixing chamber;
and said inlet to said circulatory reactor mixing chambe an aftertreatment chamber having a longitu shape and duct means connecting said outlet of said circulatory reactor and one end of said aftertreatment chamber; a longitudinally extending reactor, a first and a second said latter reactor, duct means including an injection nozzle and dosage means connecting the other end of said aftertreatment chamber with the inlet end of said longitudinal reactor for passing the formed formisobutyraldol cyanohydrine solution into the first chamber of said longitudinal reactor, duct means including dosage means for
passing an acid into the first chamber of said longitudinal reactor, the said first chamber clad with a heat conducting acid resistant material; and
he said second chamber communicating with said first reaction chamber and provided with a heat insulating
material; material;
pressure adjustment valve for controlling the pressure in
said second reaction chamber provided at the outlet end of said longitudinal reactor and separating means and duct for passing the formed product from said pressure valve to
said separating means. said separating means.

4,095,953
MODULAR SYSTEM FOR REDUCING SULFUR DIOXIDE
Carl Gutterman, and Peter Steiner, both of Edison, N.J., assignors to Foster Wheceer Energer, Corporation Lison, N.J., assigng-
Continuation of Ser. No. 648,701 , Jan. 13, 1976, abandoned. N.J. Continuation of Ser. No. 648,701, JJn. 13, 1976, abandoned. This
application Apr. 11, 1977, Ser. No. 786,549
Int. C. ${ }^{2}{ }^{\text {Co1B }} 17 / 04$; B01J $8 / 12$ U.S. CI. $23-277$ R

4 Claims


1. A system for reducing sulfur dioxide comprising a reactor vessel divided into a plurality of modular reactor vessel sections, each section including a lower hopper portion and an
upper portion having at least one wall connecting with a wall upper portion having at least one wall connecting with a wall
of sopper portion, said sections being connected in an abutting relation so that said walls together define an upper boundary wall of the reactor vessel, partition means disposed
within said upper boundary wall for dividing the uper within said upper boundary wall for dividing the upper portion
of said vessel into a plurality of compartments resectively of said vessel into a plurality of compartments respectively in the upper portion of each compartment, a single coal supply means for continuously supplying coal to each compartment through the respective coal inlets so that the coal will pass downwardly by gravity through said compartments and their hopper portion, gas supply means for continuously supplying gas to each hopper portion through the respective gas inlets so that the gas will pass upwardly through said hopper portions

METHOD FOR REMOVAL $\begin{array}{r}\text { 4,095, }\end{array}$ SOLUBLE ASH AND ELEMENTS FROM SOLVENT Fred Henry Kindl, Schenectady, N.Y
Fred Henry Kindl, Schenectady, N.Y., assignor to Encotech,
Inc., Schenectady, N.Y. Inc., Schenectady, N.Y.
sion of Ser. No. 634,283, Nov. 21, 1975, Pat. No. 4,058,976.
This application Jun. 14, 1976, Ser. No. 695405 Int. $\mathrm{Cl} .^{2} \mathrm{C} 10 \mathrm{~L} 9$, Ser.
U.S. C. $44-1$ B 10 Claims 1. A method of treating solvent refined coal to remove
soluble ash and make it suitable for direct firing into a gas turbine comprising:
feeding solvent refined coal and water into a closed pres-sure-tight vessel to form a pumpable slurry, the amount of water being a minim up to about 3 times weight of coal for proper cleaning and up to abo
to provide a pumpable slurry;
heating said slurry in said closed vessel to a temperature of about $500^{\circ}$ to $550^{\circ} \mathrm{F}$ and at corresponding steam-water saturation pressures of from about 675-1035 psig for a period of approximately to 2 hours;
solid contact during said heating; and
separating the water from said coal whereby the sodium and
potassium salts are reduced to less than I part per million.

## $\stackrel{4,095,955}{ }$ FUEL SEPARATION PROCESS

FUEL SEPARATION PROCESS
Edgel P. Stambaugh, Worthington, and Satya P. Chauhan, Co-
Edgel P. Stambaugh, Worthington, and Satya P. Chauhan, Co-
lumbus, both of Ohlo, assignors to Battelle Development Corporation, Columbus, Ohio
Filed May 5, 1976, Ser. No. 683,518

Filed May 5, 1976, Ser. No. 683,518
Int. Cl. ${ }^{\text {C10L }} 9 / 10$; C10B $57 / 00$
FUEL ELEMENT
John Harty Orsing, Avangsgatan 2, Raa, Sweden
Filed Mar. 22, 1977, Ser. No. 780,136 Filed Mar. 22, 1977, Ser. No. 780,136
Int. Cl. ${ }^{\text {C }}$ (10L $11 / 00$; B65D $65 / 00$ U.S. CI. $44-40$
rotating trommel for receiving the remaining waste and rerotating trommel for receiving the remaining waste and re-
moving the bulky material therefrom, the trommel having holes that are at least one foot in dianeer, a second rotating

the first trommel, the second trommel having holes that do no ing waste that does not pass through the holes of the second rommel and conditioning it for use the


1. A fuel element for grilling or imparting a smoked flavor to food, comprising a porous noncombustible glass fiber casing; a combustibe fuel in solid form enclosed within the casing; the he entry of a volume of air necessary to support combustion of he fuel, while retaining therein the fuel and substantially all of the combustion residue therefrom; and a combustible fluid in an amount to ignite the fuel; the casing and the fuel and fluid contents thereof being wholly enclosed in an evacuated wrapper of substantially gas-and liquid-impermeable sheet material, the wrapper retaining therewith the combustible fuel and combustible fluid.

## 4,095,958

APPARATUS AND METHOD FOR PRODUCING COMBUSTIBLE GASES FROM BIOMASS MATERIAL Robert A. Caughey, Antrim, N.H., assignor to Forest Fuels, Inc.,
Keene, N.H.
Filed Jun. 21, 1977, Ser. No. 808,619
Int. C1. ${ }^{2}$ C10J $3 / 00$
U.S. CI. 48-111 17 Cluims
pal waste is deposited, the pit being a dished receiving area U.S. C. 4. 48- 111
having a substantially continuous bottom surface for temporar- 1. A reactor for producing combustible gases suitable for
ily holding the waste, mechanical means for sorting the waste delivery to the firebox of a furnace comprising means defining

17 Claims having a substantialy conchanical means for sorting the waste delivery to the firebox of a furnace comprising means defining
ily holding the waste, mechang
in the pit and removing outsized material therefrom, a first a confining retort, said means containing at the top a charging
7 Claims
U.S. Cl. $44-1$ R

1. A method of treating fine particles of a solid carbonaceous 1. A method of treating fine particles of a solid carbonaceous
fuel of the coal or coke type to reduce its content of undesired constituents at least including sulfur or ash or both, comprisconstitu
ing,
form
leaching solution, containing one or more cations selected
lith a leaching solution, containing one or more cations selected
from Groups IA and IIA, which is effective to dissolve the undesired constitutents,
exposing the mixture to temperatures in the range of about
$150^{\circ}$ to $375^{\circ} \mathrm{C}$ under a pressure of at least the autogenous $150^{\circ}$ to $375^{\circ} \mathrm{C}$ under a pressure of at least the autogenous
steam pressure until the solution has dissolved the undesired constituents of the fuel to such an extent that the undesired constituent content of the fuel particles has been reduced to less than a desired limiting value,
separating the major portion of the solution from the fuel
particles under temperature and pressure conditions and particles under temperature and pressure conditions and
within a time period such that the amount of the undesired winstituents dissolved in the solution is not substantially reduced by precipitation, adsorption on the fuel particles, or chemical recombination therewith.
the A mixture to less than $100^{\circ}$ prior to the separating step, and performing the separating step before a substantial portion of the undes
solution.

WASTE PROCESSING SYSTEM
William H. Holmes, Fayetterille, N.Y., assignor to Holme
Bros., Inc., Syracuse, N.Y.
Filed Jul. 7,1976, Ser. No. 703,270
Int. C1. ${ }^{\text {B }}$ B0B $11 / 00$; C10L $5 / 22$
opening, a grate, means supporting the grate in the retort in a for the introduction of hydrogen in said chamber, a residu downwardly inclined position with its upper end adjacent the discharge outlet means in the bottom of said hydrogenation charging opening at the top, said grate dividing the retort into gasifier chamber for the discharge of unconverted coan con
a plenum chamber at the downwardly facing side and a mixing taining ash from said chamber, a product gas outlet means nea a plenum chamber at the downwardly facing side and a mixing taining ash from said chamber, a product gas the release of g
chamber at the upwardly facing side, means for feeding a the top of said hydrogenation chamber for biomass material through the top opening to the upwardly produced therein, a steam gasifier vessel for gasifying saia facing side of said downwardly inclined grate in the form of a unconverted coal in the presence of steam, an unconverted
substantially uniformly thick bed for burning of the biomass substantially uniformly thick bed for burning of the biomass coal inlet means in said steam gasifier vessel for the introduc-
material resting on the grate in the zone near the lower end of
tion of said unconverted coal in said vessel, a steam inlet means material resting on the grate and destructive distillation of the biomass material resting on the grate and the evolution of a gaseous medium in the zone above the zone of burning, said grate containing a

air is supplied to the bed resting on the upwardly facing side of the grate in a sufficient quantity to sustain combustion and convert the burning mass to CO and ash, a pit at the bottom of the grate for receiving the ach means for supplying an excess of lower end, and a plurality of transversely spaced, longitudinally extending fins at the downwardly facing side of the grate
so that the air flows along the downwardly facing side of the so that the air flows along the downwardly aching side of the
grate at a rate to maintain the grate and ash resting thereon at below the fusing temperature of the ash so that it remains particulate and, hence, loose and free to slide continuously pit.

4,095,959
COAL GASIFICATION APPARATUS
Sonrad Kunstle, Rottenbach; Christian Koch, and Kurt Reiter Onrad Kunstie, Rotrenbach; Christian Koch, and Kurt Reiter
both of Erlangen, all of Germany, assignors to Kraftwerk Union Aktiengesellschaft, Mulheim, Germany in said steam gasifier vessel for the introduction of steam in sai in said steam gasifier vessel for the introduction of steam in said
vessel, an ash discharge outlet means in the bottom sai steam gasifier vessel for the discharge of said ash from said
vessel, the combination therewith of disposing the hydrogenation gasifier chamber and the steam gasifier vessel in a commo tion gasifier chamber and the steam gasiner vessel ina mens of the
vertical tank with said residue discharge outlet means hydrogenation gasifier chamber above said unconverted coal inlet means of the steam gasifier vessel and interposing a parti-
tion with a central opening containing a pressure lock between tion with a central opening containing a pressure lock between
said outlet and said inlet, said pressure lock having a rotating lock receptacle with an opening which is alternatingly connected to the space inside the hydrogenation chamber and th space inside the steam gasifyer vessel to permit unconverte coal to flow into the steam gasifier vessel and prevent gas
generated in the vessel from passing into the hydrogenation generated in the vessel from passing ins in said steam gasifier vessel for the introduction of oxygen to effect partial combustion of said unconverted coal, a gas release outlet means in said steam gasifier vessel for the release of gas from said vessel, and a first heat exchanger through which said gas from said gas
release outlet means passes in heat exchange with steam prior release outlet means passes in heat exchange with steam prior
to entering said steam inlet means and wherein said steam gasifier vessel has said steam inlet in said steam gasifier vessel separate from said oxygen inlet and said steam inlet separates the bottom of the common tank from the above steam gasifier
vessel forming a residue-oxidation chamber wherein the oxygen inlet is located and wherein residual oxidation of residual coal takes place.

## APPARATUS AND METHOD FOR THE GASIFICATIO

 OF SOLID CARBONACEOUS MATERIAL


1. In coal gasification apparatus having a hydrogenation gasifier chamber for gasifying a portion of coal fed therein in the presence of hydrogen, a coal inlet means in said hydrogena-
tion gasifier chamber for the introduction of said coal into the upper portion of said chamber, said chamber containing interhydrogen inlet means in said hydrogenation gasifier chamber
2. A process for promoting gasification reaction between an xygen-rich gas and particulate carbonaceous solids to proconce a combustible effluent gas and a residue which comprises,
continuously feeding particulate carbonaceous fuel solids to a closed bottom jet-fluidized reactor, said reactor having a roof enclosure,
directing an oxygen-rich gaseous jet stream into said reacto by means of a lance passing axially through said roof enclosure to fluidize said carbonaceous solids and to effect gasification reactions,
said oxygen-rich gas and said particulate carbonaceou solids being fed to the reactor effect exothermic reaction and
atures of at least about $1600^{\circ} \mathrm{F}$
discharging said gaseous jet stream into said reactor at nozzle velocity sufficient to form a highly turbulent and rapidly circulating suspension of particulate solids deflec ing substantially radially outwardly on the bottom, up wardly on the outside and then inwardly and downwardly tion zone adjacent to the bottom of said reactor,
maintaining total feed rates of said oxygen-rich gas and carbonaceous solids to provide an average upward veloc ity of effluent gas substantially above the minimum fluic zation velocity for said particulate solids, and
emoving said effluent gas and residue formed by said gasifi-
cation from said reactor.

## 4,095,961

METHOD FOR PRESERVING THE GRINDING CHARACTERISTICS OF A GRINDING TOOL John C. J. Wirth, 98 Ponus Ave., Norwalk, Conn. 06850 Continuation of Ser. No. 548,107, Feb. 12, 1975, abandoned 1971, abandoned, and Ser. No. 501,093, Aug. 27, 1974, abandoned, which is a continuation-in-part of Ser. No. 166,093,
Jul. 26, 1971, Pat. No. 3,833,346. This application Nov. 5, 1976, Jul. 26, 1971, Pat. No. 3,833,346. This application Nov. 5, 1976,

$$
\underset{-281 \mathrm{R}}{\substack{\text { Int. Cl. }}}
$$



1. Method for preserving the cutting or grinding characteris fics of a cutting or grinding tool while mainaining the surfa rated rate of cutting or grind
ing comprising
ing contact and relative motion between said work ing tool;
applying to the interface between the edge of said cutting or grinding tool and said workpiece, an effective amount of at least one compound which windergo melting with generated at said interface during periods of such contact and relative motion, said compound being selected from the group consisting of sodium nitrite, potassium nitrite, sodium nitrate, potassium nitrate, lithium nitrite, lithium nitrate, potassium chromate, potassium dichromate and mixtures thereof;
whereby, said compound, upon exposure to said frictional
heat, undergoes melting and reduces the surface temperaheat, undergoes melting and reduces the surface tempera-
ture generated at said interface by the heat absorption due to heating said compound to the melting point, the latent heat of melting of said compound and the additional heat absorption of the molten compound, while simultaneousty
forming a lubricating liquid film at said interaface.

ELECTROSTATIC SCRUBBER chards, 4887 Mission Blvd., San Diego, Calif. 92109 Filed Mar. 31, 1975, Ser. No. 563,689 U.S. Cl. 55-10


1. A method for producing highly charged droplets without fecting corona discharge which comprises:
(a) conducting a liquid to be formed into said highly charged
droplets to a nozzle having a tip from which said liguid protrudes; and
(b) forming a substantially uniform electric field over the surface of said liquid protruding from said tip, said electric droplet free of said tip without creating corona discharge.

$$
4,095,963
$$

STABILIZATION OF DEODORIZED EDIBLE OILS Corporation, Chicago, III.

Filed Feb. 17, 1977, Ser. No. 769,809
U.S. Cl. 55-54 1. In a process of steam deodorizing edible animal and vegeable fats and oils the improvement which comprises conduct ing the steam deodorization in contact with a peroxide value sabilizing amount of molybdenum metal, molybdenum oxides which the steam deodorization is conducted.
,095,964
SCRUBBER TOWER
Francis Earl Carnicle, 600 Rte. 10, Whippany, N.J. 07981
Carnicle, 600 Rte. 10, Whippany, N.J.
Filed Sep. 28, 1976, Ser. No. 727,495


1. Apparatus for scrubbing pollutants from an extremely ho highly corrosive off-gas from a reactor chamber comprising,
scrubber tower comprising stacked baffles arranged in levels with the baffles in each level extending parallel to each othe and perpendicular to the baffles in the adjacent levels, said bafles being composed of fire retardant treated wood which can withstand a temperature up to at least $230^{\circ} \mathrm{F}$ to provide
surfaces of which off-gas passing through the scrubber impinge for the entrapment of pollutant particles and the removal
thereof from the off-gas stream, a plenum chamber at the bottom of said tower, means connecting said reactor chamber to said plenum chamber and means connected between said reactor chamber and the plenum chamber for cooling said off-gas prior to its entry into said plenum chamber to a temperature below $230^{\circ} \mathrm{F}$, means at the top of said scrubber for
dispersing water downwardly into said scrubber in a mist of dispersing water downwardy into said scrubber in a mist of
fine droplets so that the impingement surfaces of said baffles are kept continuously coated with a continuous downwardly flowing water stream, and means for exhausting scrubbed gas, substantially free of pollutants, from the top of said scrubber into the ambient air.

## 4,095,965

ABSORPTION FILTER
Gerhard Max Neumann, and Detlef Sinhuber, both of Berlin, Germany, assignors to Delbag-Luftrilter GmbH, Germany Claims priority, application Germany, Aug, 27, 1975, 7527377 U.S. CI. 55-270 Int. Cl. ${ }^{2}$ B01D $53 / 30$


1. An absorption filter for the purification of gas and/o airstreams, especially those containing toxic or radioactive contaminants, said absorption filter comprising:
a filter housing having an inlet and an outlet and first and second filter chambers, each charged with a granular absorption substrate, said housing inlet communicating ing with said second filter chamber, each filter chamber having transverse gas-permeable walls, said first and sec ond filter chambers being separately chargeable with said substrate, said filter chambers being disposed in series in the direction of gas flow, an intermediate section joining said first and second filter chambers in an air-tight fashion such that the flow is from said inlet through said first filte
chamber to said second filter chamber via said intermediate section and exhausted through said outlet;
a sensing probe disposed in said intermediate section to monitor the degree of saturation of the substrate in said first filter chamber
a monitoring instrument connected to said probe and responsive to a predetermined degree of saturation of said substrate in said first filter chamber for triggering a warning signal; and
bypass filter section having an inlet connected to said housing inlet and an outlet connected to said intermediate section and filled with an absorption substrate, the length of said bypass filter section corresponding to the absorptive capacity of the filter substrate in said first filter cham
ber. ber.

## AIR CLEANER

alter F. Isley, Grosse Pointe Farms, Mich., assignor to Teledyne Industries, Inc., Los Angeles, Calif.


1. An air-solid separator comprising
housing having an air inlet, an air outlet and an annular chamber in fluid communication with both the inlet and outlet,
an annulus stationarily secured to the housing so that the annulus defines a semitoroidal fluid passageway having a first end open to the air inlet and a second end open to the air outlet wherein said annulus includes a substantially conical portion adapted to deflect the air flow from the air inlet into the semitoroidal passageway,
periphery of said semitoroidal fluid passageway the outer its second end, said opening having one edge which extends radially inwardly into said semitoroidal passageway a predetermined distance,
substantially conical member coaxially positioned with said annulus in said housing, the base of said conical mem-
ber being adjacent to but spaced from said housing said predetermined distance so that the space between the base of the conical member and the housing forms the annular opening while the outer edge of the base forms the inner edge of the annular opening, and
means connected to the outlet of said housing and positioned downstream from said semitoroidal passageway for insemitoroidal passageway and out through said housing outlet whereby the air flow through said semitoroidal passageway exceeds a predetermined velocity so that solid particles suspended in the air from the air inlet centrifugally move to the outer periphery of said semitoroidal fluid passageway and form an annular layer of solid particle laden air having a thickness less than said predeter-
mined distance which flows through said annular opening wherein said air inlet is separated from the air outlet by said conical portion of the annulus so that said air inlet and air outlet are adjacent each other and positioned on the same side of said annulus whereby air flowing from said inlet to said outlet through said semitoroidal passageway must pass around substantially the entire periphery of the annulus before encountering the annular opening

METHOD OF MANU,095,967
METHOD OF MANUFACTURING GLASS FITTINGS WITH SIDE CHANNEL
Felix Arkadievich Matteev, ulitsa Petrozavodskaya, 21, kv. 14 Anatoly Nikolaevich Orlov, ulitsa Vavilora, 89, kv. 24 , Anatoly Alexeerich Rudakov, Altaiskaya ulitsa, 18, kv. 13 and Vadimir Sergeevich Crikmarev, Kashirskoe shosse, 132, korpus 3, kv. 310, all of Moscow, U.S.S.R.

Filed Oct. 21, 1976, Ser. No. 734,43 Int. Cl. ${ }^{2}$ C03B 9/14, 11/00


1. In a method for manufacturing glass fittings comprising supplying a molten material to a mold, said mold having a charging opening and a plurality of side channels correspond
ing to the fitting to be manufactured, said side channels meet ing to the fitting to be manufactured, said side channels meet ing at a center of intersection; pressing said molten material in
said mold with at least one movable plunger at least partially said mold with at least one movable plinger at east parianily
disposed within said mold to form said fitting; and removing said fitting from said mold; the improvement wherein all of said side channels are arranged substantially horizontally, said charging opening is disposed at said center of intersection each side channel is provided with a movable plunger, and sai pressing is performed simultaneously by all of said plungers in all of said side channels.

4,095,968
METHOD OF BENDING GLASS SHEETS WITHOUT heating
Charles R. Bristow, Arcadia, Calif., assignor to Le Van Specialty Co. Inc., City of Industry, Calif.

Filed Oct. 25, 1977, Ser. No. 844,725
U.S. CI. 65-104

U.S. Cl. 65-77 2 Claims

SYSTEM FOR MANUFACTURING CIRCULAR FORMED LAMP TUBES
Yasuo Sano, Kamasaki; Hidehiko Yoshida, Chigasaki, and Electric Co Saka, Ome, all of Japan, assignors to Tokyo Shiba Electric Co., Ltd., Japan

Int. Cl. ${ }^{2}$ C03B $23 / 14$
U.S. Cl. 65-281


1. In a system for manufacturing fluorescent lamp tubes having a circular form from such lamp tubes having a straight
form which includes a conveyor system provided with rail form which includes a conveyor system provided with rail
members interconnecting a heating station for softening said straight form lamp tubes, a bending station for softening said
softened straight form lamp tubes into a circular form and an softened straight form lamp tubes into a circular form and an exhausting station having located therein a plurality of heads
for performing operations of exhausting and introducing gas and tipping off an exhaust tube of said lamp tubes, the improvement comprising:
a carrier device for supporting said lamp tubes at each of said stations wherein said carrier device comprises roller members supporting said carrier device on said rail members,
lamp-tube-holder means having a pair of holders for gripping said lamp tubes, and means for actuating said holders into a gripping position

2,6-DICHLOROTHIOLBENZOATES AND USE THEREOF AS PLANT GROWTH REGULATORS Alan A MecDoneld, Albany Calif, assignor to Stanffer Chemical Company, Westport, Conn.

Fied Jun. 16, 1976, Ser. No. 696,672
U.S. Cl. 71-72

A compound having the general structural formulaims

wherein $R$ is selected from the group consisting of alkyl having $1-6$ carbon atoms, cycloalkyl having 3-6 carbon atoms, cyloalkylmethyl wherein the cycloalkyl group has 3-6 carbon 1. A method of bending a glass sheet having a substantiall igid frame structure mounted thereon, wherein the steps of carbon atoms.
he method comprise
providing a substantially flat sheet of glass of a predeter-
mined thickness; mounting a rigid b of glass; and
applying force to the frame structure to cause said frame structure to bend in a single plane in an arcuate manne whereby a radius curvature is formed in said glass-andframe structure.

## 4,095,971 <br> TOBACCO SUCKER CONTROL

oiand L. Cargill, Kendall Park, N.J., assignor to Rhodia, Inc.. New York, N.Y.
U.S. CI. $71-78$
plants which comprises the steps of topping the plant during the development stage of apical influorescence and applying to axillary budding-inhibiting amount of an agriculturally acceptable composition containing as active budding-inhibiting agent the D isomer of 2 -phenylcarlamoyloxy-N-ethylpropionamide

## 4,095,972

HERBICIDAL COMPOSITION OF PARTICULAR TRIAZINONE AND DIPHENYL ETHER Robert Rudolf Schmidt, Cologne; Ludwig Eue, Leverkusen, and Lothar Rohe, Wupperta, all of Germany, assignors to Bayer
Filed Apr. 25, 1977, Ser. No. 790,352
Claims priority, application Germany, May 8, 1976, 2620371 U.S. CI. 71-93 Int. Cl. ${ }^{2}$ A01N 9/02 10 Claims

1. A herbicidal composition consisting essentially of
the formula

and (2) 2,6-dichloro-4-trifluoromethyl-4'-cyano-diphenyl ether of the formula

HIGH TEMPEPATUPE CHEMICAL REACTION PROCESSES UTILIZING FLUID-WALL REACTORS Edwin Matovich, Brea, Calif., assignor to Thagard Technology Company, Irvine, Calif.
Division of Ser. No. 616,393, Sep. 24, 1975, which is a continuation-in-part of Ser. No. 271,560, Jul. 13, 1972, Pat. No. 3,933,434, Se $06.222,449$, , $20,1075$. and Ser. No. 606,222, Aug. 20, 1975. This application Dec. 10, Int. Cl. ${ }^{2}$ B22F 9/00; C22B $1 / 00$

U.S. Cl. ${ }^{75-0.5}$| Int. |
| :--- |



1. A high temperature chemical reaction process which
comprises:
(a) generating an annular envelope of an inert fluid which is substantially transparent to radiation within a shell of a refractory material which reflects radiation; the volume enclosed by the shell constituting a black body cavity, the envelope having substantial axial length and the interior of the envelope defining a reaction chamber
the weight ratio of the compound (I) to the compound (II) being between about $1: 1.4$ and $1: 5$.

COMPOSITION FOR INCREASING YIELD OF PULSE Seiichi Maeda, Wakayama; Kan Mori, Kawasaki, and Tsuneyuki Ltd., Tokyo, Japan
Flaims prioried Nov. 1, 1976, Ser. No. 737,780 Claims priority, application Japan, Nov. 6, 1975, 50-133290
U.S. C. 71-103 Int. Cl. ${ }^{2}$ A01N $9 / 14$
5 Claims

1. A method of increasing the yield of peanuts which comprises applying thereto an effective amount of the composition which comprises from 0.01 to 10 wt . percent of an admixture of a sulfonate of the formula:

## $\mathrm{R}^{\prime} \mathrm{SO}_{3} \mathrm{M}$

wherein $\mathbf{R}^{\prime}$ is an alkyl or alkenyl group having 8 to 20 carbon atoms and $M$ is selected from the group consisting of potassium, sodium, calcium, monoethanolammonium, and die-
thanolammonium; 0.1 to 0.5 wt. parts of a nonionic surface-active agent per weight part of said sulfonate and an inert diluent. 4. A method of increasing the yield of peanuts which com-
prises applying thereto an effective amount of the composition prises applying thereto an effective amount of the composition
which comprises from 0.01 to 10 wt. percent of a sulfonate of the formula
$\mathrm{R}^{\prime} \mathrm{SO}_{3} \mathrm{M}$
wherein $\mathbf{R}^{1}$ is an alkyl or alkenyl group having 8 to 20 carbon atoms and $\mathbf{M}$ is selected from the group consisting of potassium, sodium, calcium, monoethanolammonium, and die-
gas or other reducing agent into the black body cavity and through the reaction chamber along a predetermined path substantially coincident with the longitudinal axis of the envelope, the reactants being confined with the reaction chamber; and
(c) directing high intensity radiant energy into the reaction
chamber to coincide with at least chamber to coincide with at least a portion of the prede-
termined path of the reactants, sufficient being absorbed within the reaction chamber to raise the temperature of the reactants to a level required to initiate and sustain a reduction of the mineral ore to a lower
valence state. valence state.
. A high temperature chemical reaction process which (a) gener
substantially an annular envelope of an inert fluid which is refractory mansparent to radiation within a shell of a enclosed by the shell which reflects radiation; the volume enclosed by the shell constituting a black body cavity, the envelope having substantial axial length and the interior of (b) passing an inorganic coaction chamber, synthesis gas or other reducing agent hydrogen, carbon, cavity and through the reaction chamber along a predeter mined path substantially coincident with the longitudinal axis of the envelope, the reactants being confined within the reaction chamber; and
(c) directing high intensity radiant energy into the reaction chamber to coincide with at least a portion of the prede termined path of the reactants, sufficient radiant energy temperature of the reactants to a level required to initiate and sustain a reduction of the inorganic compound to a
lower valence state.

CONTINUOUS RECOVERY OF COPPER METAL FROM Alkis S. Rappas, ACIDIC SOLUTIONS Alkis S. Rappas, Arlington, and John N. Gerlach, Burlington,
both of Mass., assignors to Kennecott Copper Corporation, New York, N. $\mathbf{Y}$

Filed Apr. 25, 1977, Ser. No. 790,275
bout 0.05 to $0.5 \%$ aluminum
n effective amount of lanthanum to provide weldability and high temperature oxidation resistance to about $0.08 \%$ and in
a sufficiently concentrated form that the total amount of all other rare earth metals is less than the amount of lanthanum, and the balance nickel, and incidental impurities.
U.S. C. 75-108

30 Claims


MATERIAL FOR MAKING, ELECTRICAL CONTACTS, PROCESS FOR MAKING MATERIALS, AND CONTACTS Jr. Brugner Fox Point, Wis., assignor to Square D Company, Park Ridge, III.
Filed Aug. 13, 1976, Ser. No. 714,068
The portion of the term of this patent subsequen 1994, has been disclasimed.
Int. Cl. ${ }^{2}$ B22F $3 / 00$
U.S. C. 75-234
17. A process for recovering copper from an aqueous phase comprising an acidic copper bearing liquor, said process comprising the steps of:
A. contacting the aqueous phase with an organic phase comprising a substantially water immiscible organic solvent containing:
(1) a solubilized quinolic compound capable of reducing cupric ions to cuprous ions; and
lubilized nitrile capable of stabilizing cuprous ions aqueous solutions;
B. allowing components of the organic phase to react with copper values to produce a stabilized cuprous nitrile complex in the aquous organic pha
C. separating the aqueous and organic phases:
D. removing the nitrile from the complex in the aqueous phase to produce nitrile vapor and to disproportionate the cuprous ions to copper metal and solubilized cupric ions; E. reducing the quinonic compound produced in the organic phase in step B to quinolic compound
phase in step B to quinolic compound;
F. siolubilizing the nitrile vapor produced in step $\mathbf{D}$ in the organic phase; and
G. recycling the organic phase containing the nitrile and quinolic compound to step $\mathbf{A}$.

WELDABLE ALLOY
Robert B. H. Herchenroeder, Kokomo, Ind., assignor to Cabot
Corporation, Kokomo, Ind.
Continuation-in-part of Ser. No. 644,843, Dec. 29, 1975, abandoned, which is a continuation-in-part of Ser. No. 99,738 , Dec. 21, 1970, abandoned. This application Aug. 2, 1976, Ser. $\stackrel{\text { No. }}{\text { 710,577 }}$
U.S. C1. 75-122

$$
\begin{aligned}
& \text { Int. Cl. }{ }^{2} \text { C22C } 19 / 05 \\
& \text { oxidation resistant alloy con }
\end{aligned}
$$

11 Claims
U.S. CI. $15-122$

1. A weldable and
tially by weight of:
about $20-23 \%$ chromium
about $17-20 \%$ iron
up to $1 \%$ tungsten
about $7-10 \%$ molybdenum about $0.05-0.15 \%$ carbon about $0.2-1 \%$ silicon up to $2.5 \%$ cobalt up to about $1 \%$ manganese

2. A contact material in powder form for use in making electrical contacts for power level applications consisting electrical conductivity, an oxide of a second metal selected to mpart desired qualities to the material added in an amount from a minimum effective amount up to a maximum equal to the limit of solubility of the second metal in the first metal, and an additive material in oxide form selected to have a low electronic work function added in an amount of from about rial with said oxides of the first and second metals uniformly distributed throughout the material.
3. A sintered electrical contact for use in electrical contactors for power level applications comprising a first metal selected to have a relatively high electrical conductivity, an ment qualities to the contact added in an amount from a minimum effective amount up to a maximum equal to the limit of solubility of the second metal in the first metal, and an additive material in oxide form selected to have a low electronic work function and added in the approximate range of from 0.01 to 0.078 molecular percent of the total of the first metal, the oxide of the second metal and the additive material with said oxides of the first and

4,095,978 HARD TANTALUM NITRIDE BASE ALLOYS Richard Kieffer, Vice
Grenoble, France
Continuation of Ser. No. 519.923, Nor 1,1974 , abine Carbone, application Nov. 5, 1976, Ser. No. 739,065
U.S. C1. 75-238 Int. C1. ${ }^{2}$ C22C 1/05, 29/00 5 Claims 1. A hard, fritted alloy consisting essentially of from 70 to 97
percent by weight of a hard phase and from 3 to 30 percent by percent by weight of
weight of a binder,
said hard phase
said hard phase comprising cubic tantalum nitride in an amount of at least 73 percent by weight, and the remainder a compound of cubic structure selected from the group consisting of the metallic carbides and nitrides of metals in Groups IV-A and V-A, and
said binder comprising at least 70 percent by weight of at least one of the metals selected from the group consisting
of iron, nickel and cobalt, and from 0 to 30 percent of at least one of the metals selected from the group consisting of chromium, molybdenum and tungsten. 4. A method for manufacturing hard, fritted alloys comprising the steps of:
a. producing a solid solution comprising at least 73 percent
by weight cubic tantalum nitride and the remainder a by weight cubic tantalum nitride and the remainder a
compound of cubic structure selected from the group consisting of the metallic carbides and nitrides of metals in Groups IV-A and V-A,
b. mixing the solid solution with a binding powder comprising at least 70 percent by weight of at least one of the metals selected from the group consisting of iron, nickel and cobalt, and from 0 to 30 percent of at least one of the metals selected from the group consisting of chromium
molybdenum and tungsten,
c. heating the mixture to a ter
C. at a nitrogen pressure of 30 to 200 bars, and
d. rapidly cooling said alloy.

METHOD AND APPARATUS FOR PRODUCING
DUPLEX COPIES
Aphonse Benjamin DiFrancesco, Penfield, and Charies Thoma Aphonse Benjimin DiFrancesco, Penfield, and Charles Thomas
Hage, Rochester, both of N.Y., assignors to Eastman Kodak
Company, Rochester, N.Y. Company, Riled Feb. 14, 1977, Ser. No. 768,665 U.S. CI. 96-1.4

Int. Cl. ${ }^{2}$ G03G $13 / 16$


1. A method of producing first and second images on oppo site sides respectively of a support comprising:
forming first and second transferable unfixed images on an image transfer member; and
transferring said first and second transferable unfixed images from said image transfer member to opposite sides respec-
tively of a support before fixing of either of said unfixed images to said support.

DRUM CLEANING METHOD AND APPARATUS FOR DRUM CLEANING METHOD AND APP Toyokazu Satomi, Tokyo, Japan, assignor to Ricoh Company,
Ltd., Tokyo Japan Ld., Tiled Jun. 4, 1976, Ser. No. 693,242 Claims priority, application Japan, Jun. 11, 1975, 50-70461 U.S. C1. 96-1.4


1. A method of electrostatography comprising the steps of a. radiating a light image onto a photoconductive member to produce an electrostatic image thereon;
b. applying a toner substance to the photoconductive member to develop the electrostatic image into a toner image ber to transfer the toner image to the copy sheet;
d. producing relative sliding movement between the photo conductive member and a brush in such a manner that the brush slidably contacts an exposed back surface of the copy sheet and a portion of the photoconductive member said portion; and
e. separating the copy sheet from the photoconductive mem-
ber.

PHOTOGRAPHIC MATERIAL CONTAINING AN ENERGY-SENSITIVE ORGANIC O-NITROARYLIDENE DYE AND PHYSICAL DEVELOPMENT PROCESS OF FORMING AN IMAGE WITH SAID MATERIAL Charles A. Goffe, deceased, late of Brockport, N.Y. (by Patricis
Anne Goffe, executrix); Philip W. Jenkins, and David M. Sturmer, both of Rochester, N.Y., assignors to Eastman Kodak Company, Rochester, N.Y.

Filed May 24, 1976, Ser. No. 689,326
Int. Cl. ${ }^{2}$ G03C $1 / 00.5124$
U.S. CI. 96-48 PD

1. A non-silver halide, photographic element 15 Claims upport having thereon a layer comprising: comprising a
(a) a silver salt of an organic acid or nitric acid oxidizing (b) a binder, and
(c) an energy sensitive dye represented by the following formula:

(b) $m$ represents 0 or
(c) each L represents a methine group;
(e) $\mathrm{R}_{1}$ represents an alkyl group, an alkenyl group or an aryl group;
(f) $Z_{1}$ represents the nonmetallic atoms necessary to com-
plete a basic, cyanine dye type heterocyclic nucleus forming a 5 - or 6 -membered heterocyclic ring whose skeletal atoms consist of the oxygen, sulfur or nitrogen atom of A, consisting of carbon, oxygen, nitrogen, selenium and sulfur atoms, and
(g) Y represents the atoms necessary to complete a nitro-substituted phenyl or naphthyl group.
2. A process of developing a latent image formed by imagewise exposure to light in an imagewise exposed, non-silver nt comprising a support having
(a) a silver salt of an or
agent,
(b) a binder,' and
(c) an energy sensitive dye represented by the following formula:

wherein
(a) $k$ represents 0 or 1
(b) $m$ represents 0 or 1
(c) each $L$ represents a methine group;
(d) $A$ represents oxygen, sulfur or $N-R$
(e) $\mathrm{R}_{1}$ represents an alkyl group, an alkenyl group or an aryl group;
(f) $\mathrm{Z}_{1}$ represents the nonmetallic atoms necessary to complete a basic, cyanine dye type heterocyclic nucleus forming a 5 - or 6 -membered heterocyclic ring whose skeletal atoms consist of the oxygen, sulfur or nitrogen atom oro, consisting of carbon, oxygen, nitrogen, selenium and sulfur atoms, and
(g) Y represents the atoms necessary to complete a nitro-substituted phenyl or naphthyl group, comprising contacting said element with a physical developer bath to develop said latent image.

## 4,095,982

METHOD OF DEVELOPING A SILVER HALIDE PHOTOGRAPHIC LIGHT-SENSITIVE MATERIAL Masakszu Yoneyama; Iseo Shimamura, both of Minamiashigara; Shinzo Kishimoto, and Kazunori Hasebe, both of Fujimiya, all of Japan, assignors to Fuji Photo Film Co., Ltd., Minami-ashigara, Japan
Filed Oct. 19, 1976, Ser. No. 733,827
Claims priority, application Japan, Oct. 24, 1975, 50-127989

Ia. C1.2 ${ }^{2}$ O3C $5 / 26,5 / 30,1 / 06$
22 Claims
U.S. Cl. 96- 50 PT

1. A method of developing a silver halide photographic light-sensitive material which comprises imagewise exposing said material to light, developing the photographic light-sensitive material with a siver halide developing agent in the pres-
ence of a compound selected from the group consisting of


| -continued |
| :---: |
|  |
|  |
|  |
|  <br> $\mathrm{Cl}^{-}$ |
|  $\mathrm{Cl}^{-}$ |
|  <br> $2 \mathrm{Br}^{-}$ |
|  $2 \mathrm{Br}$ |

said compound being present in a bath prior to development, the developer bath, or a silver halide emulsion layer of the photographic light-sensitive material.

4,095,983
PHOTOGRAPHIC MATERIAL COMPRISING CYCLIC SULFONAMIDE SUBSTITUTED YELLOW COLOR COUPLERS Erich Wolff, Leverkusen, and Dieter Lowski, Bergheim, Erft, both of Germany, assignors to AGFA-Gevaert AC,
Filed Dec. 7, 1976, Ser. No. 748,207
Claims priority, application Germany, Dec. 16, 1975, 2556620 U.S. C1. $96-77$ Int. Cl. ${ }^{2}$ G03C 7/00, $1 / 40$

1. Colour photographic material comprising at least one
said silver halide emulsion layer or a layer adjacent thereto, benzoyl or alkoyl acetanilide yellow-forming coupler, characterised in that the anilide ring has directly substituted on it the nitrogen of a cyclic alkylene sulphonamide group in which the cycle has 5 or 6 members.

## 4,095,984

DEVELOPMENT INHIBITOR RELEASING COUPLER AND PHOTOGRAPHIC ELEMENT CONTAINING SAME ohru Sueyoshi; Nobuo Furtachi; Akio Okumura, and Tadao
Shishido, all of Minami Ashigara, Japan, assignors to Fuji Photo Film Co., Ltd., Minami Ashigara, Japan
Filed Dec. 29, 1976, Ser. No. 755,302
Filed Dec. 29, 1976, Ser. No. 755,302
Claims priority, application Japan, Dec. 29, 1975,
51-159263 U.S. CI. $96-100 \mathrm{Int}$. ${ }^{\text {Int. Cl. }}{ }^{2}$ 1. A silver halide photographic element comprising a silve halide emulsion layer containing a photographic coupler capable of releasing a development inhibitor upon reaction with an oxidation product of a color developing agent and represented by the following general formula (I)

wherein $\mathbf{A}$ represents a coupler residue substituted in the coupling off position with the benzotriazole moiety shown in the xygen atom; $R^{1}$ represents an aliphatic a selenium atom or an which may be the same or different, each represents a hydro en atom, an aliphatic group, an alkoxy group, a hydroxy roup, or an aromatic group or $\mathrm{R}^{2}$ and $\mathrm{R}^{3}$ can combine an naphthalene ring; or represented by the following heneral formula (II)

wherein A represents a coupler residue substituted in the coupling off position with the benzotriazole moiety shown in the formula; $\mathbf{R}^{\top}$ represents an aliphatic group or an aromatic group
and $\mathbf{R}^{5}$ and $\mathbf{R}^{6}$, which may be the same or different, each repreents a hydrogen atom, an aliphatic group or an aromatic group

## THERMAL BARRIER COMPOSITIONS

 William F. Brown, Bonduel, Wis., assignor to Vast Products, Filed Oct. 5, 1976, Ser. No. 730,25 U. Cl. $106-15 \mathrm{FP}$ Int. Cl. ${ }^{2} \mathbf{C 0 9 K} 3 / 28$ U.S. Claims $106-15$ FP1. A composition which is particularly adapted for coatin surfaces to provide them with a thermal barrier coating to protect them from the detrimental effects of fire which is comprised of an aqueous blend consisting essentially of (a) $5-25$ volume percent lithium mica, (b) 1-60 volume percent $25-70$ volume percent nepheline syenite, (e) $\frac{d}{-3}-3$ volume per-
(I)
cent sodium bicarbonate, (f) 10-15 volume percent sodium aluminum sulfate, (g) 1-15 volume percent borax, (h) 10-25 volume percent raw vermiculite, (i), 5-55 volume percent less than about 30 volume percent.
$\stackrel{4,095,986}{ }$ ALKALI-RESISTANT GLASS COMPOSITIONS Osaku Matsuda; Kouzo Inoue, and Shuji Tsunematsu, all Tosu, Japana, assignors to Director-General of the Agency of Tosu, Japan, assignors to Director-General of the Agency of
Industrial Science and Technology, Tokyo, Japan
Filed Aug. 27, 1976, Ser. No. 18, 102 Claims priority, application Japan, Jul. 15, 1976, 49-8481951

2. An alkali-resistant glass composition consisting essentially
 $8-30 \%$ by weight of $\mathrm{CaO}, 3-6 \%$ by weight of an alkali metal
oxide, $3-10 \%$ by weight of $\mathrm{ZrO} 2,2-20 \%$ by weight of ZnO oxide, 3-10\% by weight of $\mathrm{ZrO}_{2}, 2-20 \%$ by weight of ZnO
and optionally $2-7 \%$ by weight of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

METHOD OF AND COMPOSITION FOR CEMENTING
Thad O. Walker, Houston, Tex., assignor to Texaco Inc., New

Thad O. Walker, Houston, Tex., assignor to Texaco Inc., New
York, N.Y.
$\begin{gathered}\text { Filed Dec. 29, 1976, Ser. No. } \\ \text { Int. C1. }\end{gathered}$ C04B $7 / 352$
U.S. C. 106-92

6 Claims
6 Claims

1. A method of cementing a zone in an oil well penetrating a subterranean formation comprising injecting down the well and positioning in the zone to be cemented a hydraulic cement
aqueous slurry composition comprising dry hydraulic cement, aqueous slurry composition comprising dry hydraulic cement,
and from about 0.05 to about 5.0 percent by weight, based on dry hydraulic cement of a cement friction reducing additive consisting of hydrolyzed cereal solids which is comprised of hydrolyzed cereal solids which is comprised of from about $15 \%$ to about $25 \%$ by weight di-saccharides, tri-saccharides,
tetra-saccharides, and penta-saccharides, and from about 75 to tetra-saccharides, and penta-saccharides, and from about 75 to
about $85 \%$ by weight hexa-saccharides and above, and sufficient water to form a pumpable slurry, and allowing the cement thus positioned to set to a monolithic mass.

## 4,095,988

SELF HARDENING SUSPENSION FOR FOUNDATION ENGINEERING PURPOSES
Viliam Jancek, and Jan Gresa, both of Bratislava, Czechoslovakia, assignors to Vyskumny ustav inzenierskych stavieb, Bratislava, Czechoslovakia Continuation-in-part of Ser. No. 596,508, Jul. 16, 1975, abandoned. This application Nov. 2, 1976, Ser. No. 738,106 6298/74
U.S. CI. $106-97$ 7
C. 100-97

10 Claims
engineering consisting essentially of by volume (a) 40 to $80 \%$ water, (b) a powder mass consisting essentially of from 10 to $40 \%$ cement, 2 to $18 \%$ bentonite, 1 to $15 \%$ hydraulic lime, 0 to $15 \%$ ashes and 0 to $40 \%$ ground slag and filling materials, and wherein the ratio by weight between water and powder mass is in the range
of $0.5: 1$ to $6.5: 1$. of $0.5: 1$ to $6.5: 1$.

DRY FLEXIBLE CLUE $4,095,990$
OF MAKING SAME AND METHOD
Coser Konigsberg, Tenafly, N.J., assignor to Hudson Industries
Corporation, West Orange, N.J.
Filed Jul. 26, 1976, Ser. No. 708,486 U. C. C. $106-136$ Int. C. ${ }^{2}$ CO9H $11 / 00$

1. A dry flexible gue 9 Clai 1. A dry flexible glue composition dispersible in water to form a ready-to-use glue comprising from 10 to 90 parts by
weight of an animal glue; the balance being a finely divided highly absorbent, siliceous compound of an alkaline earth by weight thereof of a liquid glue plasticizer absorbed percent by weight thereof of a liquid glue plasticizer absorbed therein
4
Werner DIZed DICALCIUM ALUMINATE HYDRATES Werner Dosch, Alfred-Mumbacherstr. 19, 65 Mainz, and
Claudia Koestel, Claudiusstrasse 15, 4 Dusseldorf, both of
Germany
Continuation-in-part of Ser. No. 594,488, Jul. 9, 1975, abandoned. This application Mar. 16, 1977, Ser. No. 778,295 Claims priority, application Germany, Jul. 11, 1974, 2433363
U.S. Cl. 106-104 8 Claims
2. In the production of a structure including a concrete or
mortar rich in aluminate cement wherein said concrete is mortar rich in aluminate cement wherein said concrete is formed by mixing said cement with water to hydrate and hereafter permitting the mixture to harden, the improvement which comprises adding to the mixture of cement and water an ionic compound containing anions $\mathrm{X}^{n-}$ whereby there are
formed and are present in the end product mixed crystals of the formula

## 

wherein $\mathrm{X}^{n-}$ is an anion of charge $n$ selected from the group consisting of $\mathrm{NO}_{2}^{-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2}, \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-} \mathrm{MnO}_{4} \mathrm{FaCN}_{6}{ }^{4-} \mathrm{CO}_{3}$, $\mathrm{MnO}_{4}-, \mathrm{ClO}_{3}-$ and $\mathrm{CrO}_{4}{ }^{2-}$, and $m$ is $\leqq 1$, whereby the mortar or concrete is stabilized in strength
$\qquad$

4,095,991
ENHANCEMENT OF HETEROPOLYSACCHARIDE
Pierre Falcoz, Champagne au Mt d'Or; Pierre Celle, Caluire, and Jean-Claude Campagne, Mell, all of France, assignors to Rhone-Poulenc Industries, Paris, France Filed Jan. 26, 1976, Ser. No. 652,323
Claims priority, application France, Jan. 31, 1975, 7503640 S. C. 100 Int. Cl. ${ }^{2}$ C08L 5/00: CO8B $9 / 00$
6. A composition of matter adapted as a viscosity increasing additive for aqueous media, said composition comprising [1] a calcium salt of a heteropolysaccharide obtained through fermentation of carbohydrates by means of bacteria of the genus Xanthomonas, and [2] at least one member selected from the group consisting of an organic acid and an anhydride of such value between 5 and 7 , and the calcium salt or salts of said at least one member being soluble in water
11. A solution, in an aqueous medium, of the composition of matter as defined by claim 6

4,095,992 Stephen Eding containing starch esters Glowaky, Matteson, both of in., asslgnors to The Cherres Williams Company, Cleveland, Ohio
Division of Ser. No. 609,32 , Sep. 2 1975, Pat. No. 4,011,392 Division of Ser. No. 609,327, Sep. 2, 1975, Pat. No. 4,011,392
This application Dec. 3 , 1976, Ser. No. 747,275 Cl. 106-213 Int. Cl. ${ }^{2}$ C08L. 3/06 U.S. Cl. 106-213 5 Claims 1. A coating composition comprising an effective amount of U.S. C. 106-308 B $\quad 37$ Claim mixed ester of starch with up to about $50 \%$ by weight of said to $60 \%$ by weight of said starch ester of pigment;
said mixed ester of starch characterized as having an average molecular weight ranging up to about 100,000 and an average degree of substitution ranging from 0.5 to 3.0 wherein at least about 0.1 of the total degree of substid tion consist of ester groups having
groups; said ester of starch derived from
(a) low molecular weight hydrolyzed starch and the derivatives thereof having a plurality of anhydroglucose units and
(b) at least about 0.5 mole of acylating agent for each anhydroglucose unit of the hydrolyzed starch and the derivatives thereof;
said acylating agent consisting of (i) from about 0.1 to 2.9
moles of at least one moles of at least one anhydride of a polycarboxylic acid
and (ii) from 0.1 to 2.9 moles of at least one agent selected from the class consisting of anhydrides of monocarboxylic acids and acyl halides of monocarboxylic acids.

4,095,993
METHOD FOR PREPARING POLYCRYSTALLINE
FIBROUS TIO 2 PIGMENT
John P. Pesty, York, N.Y.
Inc., Filed Mar. 18, 1977, Ser. No. 779,140
U.S. C. $106-300$ Int. C1. ${ }^{2} \cos \mathrm{C} 1 / 36$

11 Claims 1. Process for producing a fibrous, polycrystalline, rutile $\mathrm{TiO}_{2}$ composition wherein the individual fibers have a cross-
section dimension in the range of from 0.04 to 0.3 millimicrons section dimension in the range of from 0.04 to 0.3 millimicrons
and a ratio of length to cross-section in the range of from 1.5 to about 25 comprising the steps of: hydrolyzing a titanium sul-fate-iron-sulfate solution to form a titania hydrate, filtering, bleaching and washing said hydrate to remove the soluble iron
salts therefrom, said bleached hydrate being substantially ironsalts therefrom, said bleached hydrate being substantially iron-
free but containing from $5 \%$ to $15 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ associated with said hydrate, slurrying said hydrate and treating said hydrate with a sufficient amount of an ammoniacal agent selected from the group consisting of ammonia, ammonia hydroxide and mmonium carbonate to neutralize the titania hydrate slurry to a pH of from 5 to 11 , washing said titania hydrate to remove the soluble salts therefrom and retaining no more than about
$2 \% \mathrm{SO}_{3}$ in said hydrate, calculated on a $\mathrm{TiO}_{2}$ basis, adding to the washed substantially sulfate-free $\mathrm{TiO}_{2}$ hydrate a mineralizing complex consisting essentially of a potassium salt in an amount from 0.0 to $2.0 \%$ calculated as $\mathrm{K}_{2} \mathrm{O}$, and calcium salt in an amount from 1.0 to $6.0 \%$ calculated as CaO , a compound of boron in an amount from 0.5 to $2.0 \%$ calculated as $\mathrm{B}_{2} \mathrm{O}_{3}$ and
rutile promoter sol in an amount of about $6.0 \%$, all percentages rutile promoter sol in an amount of about $6.0 \%$, all percentages based on the weight of $\mathrm{O}_{2}$, calcining the treated hydrate at
temperatures in the range of from $812^{\circ} \mathrm{to} 865^{\circ} \mathrm{C}$., washing the
calcine to remove calcium ions, milling the calcine and optionally hydroclassifying and finishing the milled calcine.

SOFT-SETTLING FLUOSILICATE-TREATED SILICA FLUOSILICATE.T
Roger A. Crawford, Wadsworth, and Laurence E. Jones, Barberton, both of Ohio, assignors to PPG Industries, Inc., Pitts. burgh, Pa. Filed Jan. 7, 1977, Ser. No. 757,721

Int. Cl. ${ }^{2}$ Cosc $1 / 30$
37 Claims 1. A method of preparing m
flatting agent which comprises:
independently feeding pellets of amorphous, precipitated silica and divalent metal fluosilicate to a mill and blending the silica and the fluosilicate therein while in a dry, finely divided state;
recovering from the mill dry, treated silica having a fluosilipercent by weight of silica of between about 0.1 and 10 percent by weight of silica and
useful for flatting agent; and
aging said dry, fluosilicate--rreated silica for a time sufficien to render the treated silica more soft settling than uning during such aging at least 1 weight percent adsorbed


POROUS AGGREGATE 4
GATE FOR LIGHT.WEIGHT CONCRETE
Fritz Ullrich, Obersulm-Eschenau, Germany, assignor to Chemotechnik Gesellischaft fur Baustoffchemie mbH \& $\mathrm{Co}_{\mathrm{O}}$
Germany Filed Nov. 25, 1974, Ser. No. 526,933
Claims priority, application Germany, Nov. 27, 1973, 2358913 U.S. Cl 106-308 $Q$ Int. C. ${ }^{2}$ C04B 7/02
U.S. C. 106- $\mathbf{3 0 8} \mathbf{Q}$
 east the individual particles of the aggregate are covered at least partly by a dry additive, which, with a cement slurry, forms a gel-like protective layer scarcely permeable to water, said protective layer facilitating a bond between the aggregate
and the cement, said additive being a water-soluble polyethylene oxide of high molecular weight.

$$
\begin{aligned}
& \text { METHOD OF AND APPARATUS FOR THE REMOVAL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { METHOD OF AND APPARATUS FOR THE REMOVAL } \\
& \text { OF SEA GROWTH FROM SUBMERGED SHIP HULL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SURFACES } \\
& \text { Bradiey E. Meyers, Seattle, Wash., assignor to Roy E. Disney, } \\
& \text { Burhank. Calif }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Burbank, Calif. } \\
& \text { Dive }
\end{aligned}
$$

Division of Ser. No. 430,606, Jan. 4, 1974, Pat. No. 3,961,594 This application Jan. 2, 1976, Ser. No. 646,344
U.S. Cl. 134-1

7 Claims


1. The method of removing sea-growth from the surface of an object comprising the steps of:
(a) forming a network from an explosive cord, said network including a plurality of sequentially detonatable segments
connected together with connecting means, said connecting means comprising nonpropagative connectors and (b) positioning the network substantially parallel and at a predetermined spaced relationship away from the surface of the object, said spaced relaionship being esccive to prevent damage to said surface upon detonation of said cord; and
(c) detonating said segments sequentially, while maintaining the network and the surface submerged in a liquid.

COMBINED SOLAR CE,095,997
位


Filed Oct. 7, 1976, Ser. No. 730,361
U.S. Cl. $136-89 \mathrm{HY}^{\text {Int. }}$

14 Claims


1. A solar collector comprising a frome having a bottom wall and side walls defining a partially enclosed space, a heat producing solar cell located within the frame and having one
side exposed for illumination, said solar cell being mounted to permit flow of air therearound within the space, an air retaining plate mounted beneath the unlit side of said solar cell and
spaced therefrom to provide a slot for movement of air therespaced therefrom to provide a slot for movement of air there-
between, said plate being spaced from the bottom wall of said frame to define therewith a sub-space for the retention of air frame to define therewith a sab-space
therein, and an outlet in said frame in communication with the sub-space for the removal of air retained therein

## THERMOELECTRIC VOLTAGE GENERATOR

 Charles M. Hanson, Springfield, Va., assignor to The United States of America as represented by the Secretary of the States of AmericaArmy, Washington, D.C
D.C.

Filed Sep. 30, 1976, Ser. No. ${ }^{\text {Int. C. }}{ }^{2}$ H011 35/04, $35 / 30$
S. C. 136-208.
lectors, said inner layer of in
insulative and heat conductive; a plurality of inner electrical
inner layer of insualtion; plurality of thermoelectric elements comprised of alternate N - and P -type semiconductors having air spaces therebetween;
plurality
plurality of outer electrical contacts;
said pluyer of insulation contiguous with and surrounding said plurality of outer electrical contacts, said outer laye of insulation being electrically insulative and heat conductive, wherein said plurality of inner electrical contac connected across alternate air specesunctions at the inter face of said plurality of inner electrical contacts and said plurality of N - and P -type semiconductors and wherein said plurality of outer electrical contacts connected across alternate air spaces to said $\mathbf{N}$ - and $\mathbf{P}$-type semiconductors to form cold thermojunctions at the interface of said pluN - and P -type semiconductors are electrically in series; heat sink contiguous with said outer layer of insulation; and electrical connections connected to opposite ends of the serially connected plurality of thermoelectric elements for providing an electrical energy source to an external device by the Seebeck effect across the serially connected plurality of thermoelectric elements.

## 4,095,999

HEAT-TREATING METHOD
Greville B. Brook, Bucks, England; Peter L. Brooks, Palo Alto, ssignors to RayDivision of Ser No. 550,847 , Feb. 18, 197, a continuation-in-part of Ser. No. 417,067, Nondod, which is a condinuation-in-part of Ser. No. 417,067, Nov. 19, 1973, Claims priority applation Oct. 26, 1976, Ser. No. 735,737 52343/72
U.S. Cl. 148-11.5 R Cl. ${ }^{2}$ C22F 1/00, $1 / 08$

7 Claims


1. A vehicle hot exhaust thermoelectric voltage generator 1. A vehicle hot exhaust thermoelectric voltage generato engine for providing electrical energy, said generator comprising in combination:
an exhaust pipe having a plurality of inner fin heat collectors an inner layer of insulation around the exterior of said ex-
haust pipe at least surrounding said plurality of heat col-

2. A method for expanding the hysteresis loop of a metallic composition in its martensitic state, said hysteresis loop being lowly heating said composition to a temperature above the normal $A_{s}$ to impart an elevated temperature $A_{s}$, hereinafter eferred to as $\mathrm{A}_{s c}$ terminating the slow heating and deforming said composition while in the martensitic state to impart heat said compositio
recoverability.

## ANNEALING SEPARATOR

 SHEETS Toshiya Wada, and Toshihiko Takata, both of Kitakyushu, Japan, assignors to Nippon Steel Corporation, Tokyo, Jape Claims priority, application Japan, Apr. 11, 1973, 48-41134 U.S. CI. 148-27 Int. C1. ${ }^{2}$ B23K $35 / 24$2 Claims U.S. A. annealing separator for silicon steel sheets consisting

1. essentially of not less than $9.00 \%$ by $102.0 \%$ by weight of $\mathrm{B}_{2} \mathrm{O}_{3}$ in the form of $\mathrm{MgO} . \mathrm{B}_{2} \mathrm{O}_{3}$ with the to $2.0 \%$ by weighavoidable impurities.

BORON-CONTAINING ELECTRICAL STEEL HAVING A CALCIUM BORATE COATING AND MAGNESIA OVERCOATING, AND PROCESS THEREFOR Ronald H. Arendt, and Matthew J. Curran, both of Schenectad
N.Y., assignors to General Electric Company, Schenectady, N.Y., $2 s$ signors to General Electric Company,
N.Y.

Filed Mar. 7, 1977, Ser. No.
Int. Cl. ${ }^{2}$ H01F $1 / 104$
U.S. CI. 148-113

Int. Cl. ${ }^{2}$ H01F $1 / 04$
9 Claims
arbide stabilizing elements to obtain maximum strain rate sensitivity factor of more than 0.3 on the deformation at th emperature ranging from the eutectoid temperature to abou $50^{\circ} \mathrm{C}$ high above that eutectoid temperature.

ALUMINUM, AMINE NITRATE SENSITIZED GEL EXPLOSIVE COMPOSITIONS Oldrich Machacek, Allentown, Pa., assignor to Atlas Powder Company, Tamaqua, Pa.
Filed Jun. 10, 1977, Ser. No. 805,422

U.S. CI. 149-2 28 Claims 1. In a gel explosive composition comprising inorganic oxi-
dizing agents, water, entrapped air and gelling agents, the improvement comprising including therein:
(a) from about I to about 10 weight percent of at least one amine nitrate sensitizer selected from the group comprising lower alkyl and alkanol amine nitrates; and (b) from about 1 to about 10 weight percent of an aluminum about 3 to about 9 sq. $\mathrm{m} / \mathrm{g}$;
said weight percentages based upon the total weight of the gel explosive composition.

## 4,096,004

REPAIR COMPOSITION FOR STEELMAKING FURNACES AND THE LIKE 1. The method of producing grain-oriented silicon-iron she
which comprises the steps of providing a fine-grained, pri-mary-recrystallized, silicon-iron sheet containing 2.2 to 4.5 percent silicon, beeween about three and so pars per mitrogen
boron, and beween about 15 and 95 parts per million niter in the ratio to boron of one to 15 parts per part of boron, electrolyzing an aqueous solution consisting essentially o
calcium acetate and boric acid with solid $\mathrm{Ca}\left(\mathrm{BO}_{2}\right)_{2}$ with the calcium acetate and boric acid with solid $\mathrm{Ca}\left(\mathrm{BO}_{2}\right)_{2}$ with the
silicon-iron sheet being arranged as the cathode in said solution silicon-iron sheet being arranged at anderature of at least about $65^{\circ}$
and the said solution peing a te temper and the said solutorer
C and thereby covering the sheet with an adherent electrically-
insulating coating of $\mathrm{Ca}\left(\mathrm{BO}_{2}\right)$, then electrolyzing an aqueous insulating coating of $\mathrm{Ca}\left(\mathrm{BO}_{2}\right)$, , then electrolyzing an aqueous
solution consisting essentially of solid magnesia-buffered mag. solution consisting essentially of solid magnesia-aufrered ma the
nesium acetate with the resulting coated sheet arranged and nesium acetate with tese rem acetate solution and thereby cover ing the $\mathrm{Ca}\left(\mathrm{BO}_{2}\right)_{2}$ coating with a substantially thicker $\mathrm{Mg}(\mathrm{OH})_{2}$ coating, and thereafter subjecting the resulting double coated
sheet to a inal heat treatment to develop (110) $[001]$ secondary sheet to a final heat treatment to develop ( 110 ) $[001$
recrystallization texture in the silicon-iron sheet.
recrystalization
4,096,002
HIGH DUPERPLASTICITY AND ITS HEAT TREATMENT
SUPERPLASTICITY AND METHODS
Katsuya Ikswa, and Yuichi Tanaka, both of Muroran, Japan,
ass assignors to Riken Piston Ring Industrial Co. Ltd., Nishishinbashi, Japan

Filed Jun. 4, 1975, Ser. No. 583,681 Filed Jun. 4, 1975, Ser. No. 583,681
Claims priority, application Japan, Sep. 25, 1974, 49-110160
Int. C. ${ }^{2}$ C21D $5 / 00$ ichael D. La Bate, 115 Hazen Ave., Ellwood City, Pa. 16117, and
46383

Filed Jul. 19, 1976, Ser. No. 706,397
Int. C. 2 C04B $35 / 04:$ C06B $45 / 06,33 / 14$


1. An 49-18 $\quad 4$ Cle he like consisting essentially of: from $50 \%$ to $75 \%$ magnesite from $8 \%$ to $18 \%$ iron oxide
from $6 \%$ to $16 \%$ aluminum
from $2 \%$ to $10 \%$ sodium nitra
from $0.5 \%$ to $4 \%$ metal halide
from $4 \%$ to $8 \%$ coal tar pitch
from $4 \%$ to $10 \%$ sodium borate.

## 4,096,005

PYROTECHNIC CLOUD SEEDING COMPOSITION PYRote neering, Inc., Louisville, Colo.

Int. C1. ${ }^{2}$ C06B $45 / 08$
U.S. CI. $148-138$

1. A ductile cast iron; having a structure comprising a grain
g 1. A ductile cast iron; havig a raphites, said matrix being U.S. CI. 149-18 $\quad 7$ Claims refined matrix and the spheroidal graphites, said matrix being 1. A pyrotechnic cloud seeding composition comprising a compsedr
said ferrite room temperature and composed substantially of binder and an "effectiveness" improving compound selected
from the group consisting of hexachlorobenzene, hexabromo benzene, pentachlorobenzene, pentabromobenzene, terrachlo
robenzene, tetrabromobenzene, hexachlorocyclohexane, hexabromocyclohexane, hexachloroethane, hexabromoethane and mixtures thereof, said compound being solid at temperatures normally encountered in the preparation and handling of the pyrotechnic composition prior to ignition thereof

METHOD AND APPARATUS FOR MAKING TWISTED
PAIR MULTI-CONDUCTOR RIBBON CABLE WITH PAIR MULTI-CONDUCTOR RIBBON CABLE WITH INTERMITTENT STRAIGHT SECTIONS Patrick Joseph Paquin, Hamden, Conn., assignor to SpectraStrip Corporation, Garden Grove, Calif.
U.S. CI. 156

15 Claims


1. A method for making multi-conductor cable having a plurality of longitudinally extending insulated conductor pairs with each of said insulated conductor pairs having twisted pair portions alternating in series, with straight portions, which omprises:
in a first cycle, twisting a plurality of individual insulated moving conductors into parallel twisted pair portions having a predetermined length of wist, terminaung the twisting of each of said twisted pair portions but not the forward movement of said conductors forming said twisted pair portions, and shortly after the termination of ing each of said moving, insulated conductors forming said twisted pair portions along straight, precisely laterally spaced, paths for a predetermined distance to thereby form said straight portions of said multi-conductor cable; ccessively repearimg he sain sad mair portions aternaing series, with said straight portions in series, with said straight portions,
simultaneous with said first and successive cycles of operation laminating said twisted pair portions of said insulated moving conductors and said straight portions of said insulated moving conductors, between plastic sheets, while positively maintaining a first precise lateral spacing of said twisted portions during lamination, and positively straight portions alternating with saia twisted portions, during lamination; and cooling the laminated cable so formed.

4,096,007
IMPREGNATING FLUID.PERMEABLE ADHESIVE TAPE OR FOIL FOR FIXING COILED ELECTRICAL CONDUCTORS rhard Braunling; Karl D. Kuhlmann, and Peter Lutz, all of Hamburg, Germany, assignors
schaft, Hambure, Germany Continuation of Ser Nany

This application Jan. 19, 1977, Se. No Claims priority, application Germany, Feb. 27, 1974, 240929 Int. Cl.
U.S. Cl . $156-55$ 1. A method of binding coiled electrical conductors comprising applying to said conductors an adhesive tape consisting essentially of a pliant and liquid-permeable support materia and a self-adhesive composition coated on one side of said support and covering up to $50 \%$ of said side, said composition
being selected from the group consisting of heat-crosslinked natural or synthetic rubber, heat-crosslinked silicon rubber or heat-crosslinked polyacrylate.

## METHOD OF MANU 4,096,008

OF MANUFACTURE AND RETREADING OF Don A. Taylor, Wadsworth, Ohio, assigor to Victor E. Buehrle, Akron, Ohio, a port interest
Akron, Oho, a part interest
Continuation-in-part of Ser. No. 485,905, Jul. 5, 1974, abandoned. This application Feb. 19, 1976, Ser. No. 659,219 U.S. C. 156-96


1. A method of
uring a tire tread to a tire carcass compris (A) at least partially pre-curing a tread strip in a suitable (B) applying a
B) applying a strip of cushion gum material to the periphery of an adjacently disposed tire carcass;
C) transporting said tread strip to said tire carcass;
carplying said tread strip to the periphery of said tir (E) applying bonding heat at the interface of said cushio gum material, said tread strip and said tire carcass at leas gum material, said rread strip and said iure carcass at teas strip and said tire carcass;
(F) said tread strip being heated to a temperature at least as great as the temperature required to vulcanize said cush ion gum material; and
heated conditip being applied to said tire carcass in said heated condition to supply said bonding heat.

- $\begin{array}{r}4,096,009\end{array}$ Shinichi Yoshida, Hamamatsu, Japan, assignor to Honny Chem icals Company, Ltd., Kobe, Japan
Claims priority, Claims priority, application Japan, Aug. 29, 1975, 50-104686
Int. Cl. ${ }^{2}$ C25D $3 / 28$ U.S. C. $156-151$ 30 Claim 1. The process for bonding rubber to a ferrous metal sub-
strate which comprises depositing a layer of copper from
copper salt solution on said ferrous metal substrate by electroless deposition or electrodeposition, wherein when electroles deposition is used the copper salt solution is free of cupric ing essentially of an interpolymer of about 50 to about $99 \%$ by weight of a conjugated diene, about $1-45 \%$ by weight of a heterocyclic base and 0 to about $40 \%$ by weight of at least one additional copolymerizable monomer, thereafter contacting said adhesive with the rubber to be bonded and bonding by heat and pressure, said copper layer being deposited in an amount falling within the range of from about 0.1 to about 9.5
$\mathrm{~g} / \mathrm{m}^{2}$ and sufficient to provide a bond strength between the copper coated substrate and the rubber of $40 \mathrm{Kg} / 2 \mathrm{~cm}$ to 90 $\mathbf{K g} / 2 \mathrm{~cm}$ according to the H -Test as defined in the above specification.

METHOD OF MANUFACTU11
METHOD OF MANUFACTURING EXTERIOR SIDING tanley J. Sanders, Roslyn, and Vincent Fava, Massapequa, both of N.Y., assignors to Aegean Industries, Inc., Roslyn, N.Y. Int. Cl. ${ }^{2}$ B29C 17/02. 17/03 U.S. C. 156-196

15 Claims

4,096,010
METHOD AND APPARATUS FOR MANUFACTURING METHOD OPTICAL FIBER RIBBON
Willinm Lamar Parham. and Morton Jefferson Saunders, both of Atlanta, Ga, assignors to Bell Telephone Laboratories, Incorporated, Murray Hill, N.J.

Filed Feb. 7, 1977, Ser. No. 766,380
Int. Cl. ${ }^{\text {B32B }}$ S/00; G02B 5/14
U.S. CI. 156-179

14 Claims


1. A method for manufacturing an optical fiber ribbon structure comprising a plurality of precisely arranged coplanar and parallel optical fibers secured to a ribbon-like supporting me dium, comprising:
directing with at least a fiber-aligning guide said plurality of optical fibers from supply reels into parallel paths in predetermined plane of travel; medium to produce an optical ribbon structure with extra neous outer segments extending beyond the outermost fibers at either side of said ribbon;
severing said cutter segments from said optical ribbons; and advancing said severed outer segments to simultaneously supporting medium. supporting medium
2. Apparatus for manufacturing an optical fiber ribbon comlike supporting medium, wherein said optical fiber ribbon includes segments of said ribbon-like supporting medium ex tending beyond the outermost fibers, said apparatus comprising:
means including a fiber-aligning guide for directing said fibers into predetermined parallel paths of travel;
means for bringing together
manufacture said ribbon;
means for stripping said outer segments from said ribbons; and
means for advancing said stripped outer segments so as to advance said ribbon, the remaining medium and said fibers in unison.

3. A method of manufacturing a self-supporting exterior facing layer of a thermoplastic polymer for use in an insulating siding unit for home installation, comprising the steps of:
(a) molding a thin, uniformly thick sheet of thermopla polymer into a generally rectangular plank including a pattern of molded depressions and protuberances, and a flat plate extending into a generally U -shaped portion projecting outwardly of one edge of said plank; b) concurrently molding an arcuate depression forming an integral hinge connection intermediate said projecting flat plate and said rectangular plank:
(c) and subsequently bending said projecting flat plate and $U$-shaped portion in a negative arc about said arcuate depression into substantially folded relationship with said plank whereby said projecting flat plate and $\mathbf{U}$-shaped portion overlies the edge of said plank to which it is

METHOD OF FORMING,012
AERODMING A SPAR LAYUP FOR AN AERODYNAMIC ROTOR BLADE Raymond P. Belko, MR. Blackwood, N.J., and Ed. Frank,
Glenolden, Pa., assignors to The Boeing Company, Seattle, Wash.

Filed Aug. 30, 1976, Ser. No. 718,520
U.S. Cl. 156-214 Int. Cl. ${ }^{2}$ B29C $17 / 04$

4 Claims


1. A method of forming a spar layup for an aerodynamic otor blade including the steps of:
a. laying-up a continuous tape strand onto an elongated mandrel to form a generally U-shaped strap of a given thickness, with leg portions having parallel generally vertically disposed faces;
c. contouring the leg portions of the strap to a desired airfoil portion;
d. repeating steps a-c to form a further generally U-shaped d. repeating steps a-c to form a further generally U-shaped
contoured strap; and contoured strap; and e. mounting both straps onto an assembly mandrel to form
complementary portions of the spar layup.

4,096,013
METHOD OF BONDING SHEETS IN AIR BY ALTERNATING CURRENT CORONA DISCHARGE AND H. Heraratus For SAME H. Harald Lutrmann, Cleveland Helghts, Ohio, and Paul D.
Frayer, Hattiesburg, Miss,, assignors to National Can Coren ration, Chicago, Ill. Continuation of Ser. No. 449,242, Mar. 8, 1974, abandoned, which is a continuation-in-part of Ser. No. 259,112, Jun. 2, 1972, Pat. No. 3,823,061, which is a continuation-in-part of Ser. No. 152,436, Jun. 11, 1971, abandoned. This application Jun. 2, 1976,
Ser. No. 692,195 The portion of the term of this patent subsequent to Jul. 9, 1991, Int. C. ${ }^{\text {has }}{ }^{2}$ B29Cen disclaimed. $27 / 04 ;$ B32B 31/12
U.S. CI. 156-272
the steps of floating fine powdery welding material in a cloudlike layer form, passing a sheet of foamed plastic material over blowioud-like layer of the fine powdery welding material, cloud-like floating layer powdery welding material from said said sheet of foamed material in the predetermined spaced areas thereof, applying a surface material layer and backing material layer on the opposite surfaces of said sheet of foamed material to form a sandwich structure, and then carrying out high frequency welding on the sandwich structure at the areas impregnated with said fine powdery welding material.

METHOD OF MAKING $4,096,015$
10 Claims


METHOD OF MAKING LAMINATED PLASTIC CARDS Shigeru Morishita, all of Tokyo, Japan, assignors to Fuii Shigeru Morishita, all of Tokyo, Japan, assig
Photo Film Co., Ltd., Minamiashigara, Japan
Filed Jul Filed Jul. 12, 1976, Ser. No. 704,402
Claims priority, application Japan, Jul. 18, 1975, $50-88082$



1. A method of making a laminated plastic card of a uniform thickness having an identification member interposed between layers thereof comprising the steps of:
interposing at least one thermoplastic sheet between a pair of thermoplastic cover sheets being transparent,
2. A method of laminating two or more sheets together omprising the steps of
(a) introducing a plastic sheet into a visible alternating cursaid plastic sheet is in air so that at least one surface of said plastic sheet is exposed to said corona discharge teristics of said surface,
(b) introducing a second sheet, which is chemically dissimilar to said plastic sheet into said visible alternating current electrical corona discharge in air so that at least one surface of said second sheet is exposed to said discharge tics of said surface,
(c) contacting the treated surfaces of said sheets with each other while said surfaces are still within said visible alternating current corona discharge to bond said sheets to-
gether, and
vible alternatine bonded sheets from the said mentioned visible alternating current corona discharge.

METHOD OF MANUF,014
METHOD OF MANUFACTURING CUSHION
Muneharu Urai; Koji Kogure, and Youichiro Haraguchi, all Tokyo, Japan, assignors to Takeji Saito, Tokyo, Japan Division of Ser. No. 610,175, Sep. 4, 1975, Pat. No. 4,044,715
This application May 31, 1977, Ser. No. 801,731 Claims priority, application Japan, Sep. 17, 1974, 49-105981 Claims priority, application Japan, Sep. 17, 1974 Int. C. ${ }^{2}$ B29C 19/04; B32B 31/00
U.S. C. 156-273 U.S. C. $156-273$
inserting an identification member having smaller surface dimensions than said sheets and smaller thickness than the total thickness of said sheets between said at least one said cover sheets,
sandwiching said sheets and member between a pair of flat electrodes of a high-frequency dielectric heating device, exerting a pressure uniformly on the sheets and member with said electrodes, and
applying a high-frequency wave to
sheets and member from inside,
said thermoplastic sheet interposed between the cover sheets
being made of a material which is more easily softer being made of a material which is more easily softened by high-frequency dielectric heating than the material of
which said cover sheets are made. which said cover sheets are made.

## PROCESS FOR M,096,016

ROCESS FOR MAKING AND USING HIGH GREQUENCY WELDABLE MATERIAL Continuation of Ser. No. 355,955, Apr. 30, 1973, abandoned which is a division of Ser. No. $\mathbf{3 , 9 5 0}$, Jan. 9, 1970, Pat. No. 3,734,813. This application Dec. 5, 1975, Ser. No. 638,415 Claims priority, application Germany, Jan. 25, 1969, 1903667; 1936199
U.S. C. 156-274

Int. C1. ${ }^{2}$ B29C $19 / 04$
16 A process for producing a composite structure, particu-

1. mposite structure which is permeable io etergents elergents and dry cleaning agents, comprising the steps of forming a patterned arrangement comprised of a plurality of paced-apart depressions on an exterior surface of a support member; advancing sequential portions of said surface beneath as it travels beneath said filling station; filling said spaced-apart depressions at said filling station with at least one discrete powder particle of dipolar plastic material by permitting grav-
ity descent of said powder particles from said filling station towards said depressions as the support member passes beneath portions as it travels cooling of each of said sequential surface initiation of plasticization of the powder particles and thereby insuring proper entry of the latter into said depressions; advancing a sequential surface portion upon filling of said depressions thereof towards an applicator station; preheating a flexi-
ble support web so as to cause said powder particles to become tacky over the area of their surfaces facing outwardly and towards said flexible support web; and contacting the respective sequential surface portion at said applicator station with at

least one boundary surface of said flexible support web which is permeable to gas, vapor and liquid, and transferring said tacky particles from said depressions onto said one boundary surface so as to form and bond said patterned arrangement thereon.
2. In a process as defined in claim $\mathbf{1}$; and further comprising
theren the steps of superimposing a layer in pressure-contact with said support web upon said patterned arrangement of particles; and
forming high-frequency weld lines along said layer and said support web which are bonded together by melting the particles which have a high loss factor so that the particles will melt when subjected to high-frequency fields.

4,096,017
METHOD AND ARTICLE FOR FORMING FIELD JOINTS ON PIPE COATED WITH THERMOPLASTIC Richard L. Wyke, Bartlesville, Okle
Richard L. Wyke, Bartlesville, Okla., and G. Joe Hennon, Kan-
sas City, Mo., assignors to H. C. Price Co , Bartlespille, Okle
Filed Feb. 18, 1977, Ser. No. 770,091
U.S. CI. 156-275

19 Claims


1. A method of joining first and second segments of thermoplastic material, said first segment comprising spaced apart sections of a corrosion protective pipe coating and said second segment comprising a sheet of material adapted to be placed said method comprising
providing a resistance wire
lacing first and second lengths of said resistance wire in spaced apart relationship along said sheet in locations
whereby when said sheet is wrapped around a pipe each of said lengths will circumscribe the pipe;
placing a third length of wire on said sheet in transverse
relationship to said first and second lengths wheraby when relationship to said first and second lengths whereby when said sheet is wrapped around the pipe said third length will extend longitudinally of the pipe a distance greater
than the distance between said spaced apart sections; than the distance between said spaced apart sections;
wrapping said sheet around said spaced apart sections of said first segment in overlapping relationship to the latter to bring said segments into contiguous relationship with said resistance wire sandwiched therebetween; and
energizing said wire to thereby produce sufficient heat to
weld said segments together.
4,096,018
LAMINATOR ASSEMBL David R. Hardt, East Greenwich, R.I., assignor to Sheldahl, David R. Harde,
Inc., Northfield, Minn.
Continuation of Ser. No. 644,516, Dec. 29, 1975, abandoned. This application Sep. 12, 1977, Ser. No. 832,402
Int. Cl. ${ }^{2}$ B05C $9 / 14 ;$ B32B $35 / 00$ U.S. CI. ${ }^{156-381}$

3 Claims


1. In a laminator system for the continuous treatment and lamination of a plurality of flexible webs, the system including
a plurality of unwind stands for retaining and accommodating a plurality of unwind stands for retaining and accommomaing
delivery of individual supplies of said webs to said laminator system, each unwind stand being adapted for the continuous delivery of a web into said laminator system, and rewind means for receiving a finished laminate from said laminator system, applicator stations for applying a film of fluid adhesive to
selected portions of said web surfaces, drying chamber means arranged to receive coated webs from said applicator stations for conditioning said adhesive film to form a conditioned web, and laminator stations for bonding the surface of said conditioned webs to a second web surface; said laminator system being characterized in that:
generally inverted " $U$ " configuration and including a pair of generally upright legs coupled together with an enclosed cross-member extending across the top thereof, each of said legs and said cross-member having a front and a back secured thereto to complete the enclosure, said
cross-member being in communication with each of said cross-member being in communication with each of said
legs, at opposed ends thereof, and with mutually adjacent first and second web access openings being formed at the base of each of said legs;
) means for carrying said webs along a predetermined path alternately through adhesive applicator stations and lami-
nator stations for forming composite webs, and including nator stations for forming composite webs, and including
means for carrying adhesive bearing webs from said applicator stations through said drying chamber;
(c) guide rolls for creating a web path including a plurality (c) guide rolls for creating a web path including a plurality
of generally parallel and concentric web spans extending of generally parallel and concentric web spans extending
through said drying chamber and including a first series of through said drying chamber and including a first series of
guide rolls for carrying a web along a first plurality of
spans extending through a first applicator station adjacent spans extending through a first applicator station adjacent
said first access opening of said drying chamber for application of a film of solvent-bearing adhesive to a first surface of said web, thence through said drying chamber to a first laminator station diposed adjacent said second access opening of said drying chamber to form a first compositv web, and with said first series of guide rolls carrying said
first composite web through a second adhesive applicator station adjacent said first laminator station for coating a portion of one surface of the web received from said firs laminator station;
(d) a second series of guide rolls for carrying said coated composite web from said second adhesive applicator
station adjacent said second access drying chamber and along a second plurality of spans spaced from and generally parallel to said first plurality of spans through said drying chamber into a second lamina tor station disposed adjacent said first access opening to orm a second composite web, and with said second series
of guide rolls carrying said second composite web of guide rolls carrying said second composite wei
through a third adhesive applicator station adjacent saic second laminator station for coating a portion of one surface of the web received from said second laminato station;
(e) a third series of guide rolls for carrying said coated secstation adjacent said first access opening through said drying chamber and along a third plurality of spans spaced from and generally parallee to said first plurality of span hrough said drying chamber into a third lamintor statio disposed adjacent said second access opening to form a hird composite web; and
) a fourth series of guide rolls for carrying said third composite web to said rewind station, each guide roll of each series of guide rolls being disposed to contact that surface fhe which isposed to the werface to whic the film of adhesive has been applied.

## 4,096,019

TENSIONING. AND FRICTION WELDING APPARATUS Peter Lehmann, Kirchdorf, Switzerland, assignor to Strapex AG, Wohlen, Switzerland Claims priority, application Switzerland, Mar. 8, 1976, Int. Cl. ${ }^{2}$ B32B 31/00

10 Claims

cooperating to engage therebetween the ends of the band clamped between said jaws; ends of said band; ensin-tamping jaw and said welding-clamping jaw band tension welding aid band means for locking the counter-clamping jaw in a work position; and
means for unlocking said counter-clamping jaw from said work position and for enabling displacing the same in the direction of the tension applied to the band.

## APPARATUS FOR ATTACHING ADHESIVE-COATED BANDS TO PHOTOGRAPHIC FILMS OR THE LIKE

 ithwis Basu, Munich: Guinter Neumann, Grunwald, and Gïn ther Kaiser, Munich, all of Germany, assignors to AGFAGevaert AG, Leverkusen, GermanyFiled Nov. 13, 1973, Ser. No. 415,384
Ic. ${ }^{2}$ B32By, Nov. 17, 1972, 2256364
U.S. Cl. 156-519 19 Claims


1. Apparatus for attaching adhesivecoated bands to selected portions of elongated webs, particularly to weakened portions of photographic films, comprising positioning means arranged to locate successive portions of a web at a transfer station; a rotary suction conveyor having a peripheral surface provided
with spaced-apart axially parallel grooves, said conveyor being disposed at said transfer station and being normally spaced apart from a web portion which is located at said station; a supply of adhesive tape; means for feeding the tape from said supply to said conveyor so that elader attracts the leader of a succession of adhesive-coated bands, including a heated wire and means for moving the wire sideways against the leader of the tape on said conveyor so that the wire melts the leader and thereby effects the separation of a band therefrom, said wire during severing of the leader, and said moving means maintaining said heated wire parallel to the axis of said conveyor prior to, during, and subsequent to said heated wire entering each parallel groove; means for driving said conveyor so as to place successively formed bands into register with successive web the web portion at saids station with the respective and so that the band adheres to the web portion.

## 4,096,021

HAND HELD MASKING MACHINE

1. A tensioning- and friction welding apparatus for a band Danny L. Pool, 2025 E. Jackson, Phoenix, Ariz. 85034, and formed of thermoplastic material and strapped about an article, Robert R. Pool, 607 E. Franklin, Mess, Ariz, 85204 comprising:
a counter-clamping jaw
a counter-clamping jaw;
a displaceable-weld
Int. C ${ }^{2}$ ³32B $31 / 00$
a displaceabie-welding clamping jaw for both tensioning and U.S. Cl. 156-527
welding the band; an inclined drive lever for driving the welding-clamping jaw roll holder rotatably mounted on said frame; an elongated to-and-fro relative to the counter-clamping jaw;
return movement-blocking means for blocking return move- roper roll holder rotatably mounted on said frame; said return movement-blocking means for blocking return move- $\begin{aligned} & \text { paper roll holder having a rotary axis and first and second } \\ & \text { ends; an elongated paper guide bar mounted on said frame in } \\ & \text { ment of the band; }\end{aligned}$ ment of the band;
said counter-clamping jaw and said welding-clamping jaw
ends; an elongated paper guide bar mounted on said frame in
substantially parallel spaced relation to said rotary axis of said
paper roll holder; said tape roll holder having a rotary axis generally parallee to said rotary axis of said paper roll holder; said tape roll holder having an end portion; said first end of said paper roll holder disposed in spaced overlapping relation o said end portion of said tape roll holder; whereby an edge o ape dispensed from said tape roll holder is spaced from and
overlaps an edge of said paper disposed substantially in alignment with said first end portion of said paper roll holder; said frame having first and second offset portions adjacent to which

said end portion of said tape roll holder and said first end of said paper roll holder respectively are disposed; a manually said paper roll holder respectively are disposed; a manually
holdable handle on said frame; said handle spaced from said first offset portion of said frame in a direction toward which aid end portion of said tape roll holder is directed; whereby aid tape roll holder may be operated in close proximity to a building room corner or the like with said handle disposed
ubstantially spaced therefrom; said paper roll holder extend ing from said second offset portion of said frame in said direc tion.

TAPE DISPENSER AND APPLICATOR Harry J. Crawford, 22955 Glenmoor Heights Dr., Farmington, Mich. 48024
Continuation-in-part of Ser. No. 666,869, Mar. 15, 1976, Pat. No. 4,026,757. This application May 6, 1977,
Int. C1.2 B32B 31/20, 35/00 U.S. CI. 156-577 ${ }^{\text {Int. }}$ 5 Claims


1. In a tape dispenser for applying pressure sensitive adhe ive tape on a flat surface, the combination comprising:
(a) a housing having a tape storage chamber, including a tape
paper lined pressure sensitive adhesive tape in said cham ber;
(b) a roll of pressure sensitive adhesive having a paper line
covering the adhesive tape rotatably mounted on said tape roll supporting means;
(c) said housing having an outward extension on one side thereof through which is formed a tape dispensing path, and which extension has on its outer face a tape discharge opening for discharging the tape from the housing and (d) a pressure means operativ
extension in a position over said opening for pressing said tape on a flat surface as it is discharged from the housing extension opening
(e) a $V$-shaped stripper means mounted in said housing for engagement with the paper liner on the tape for stripping
the paper liner from the tape as it is unrolled and discharged from the dispenser housing;
(f) discharge passage means between said housing and said outward extension for discharging from the housing the paper liner stripped from the tape; pad mounted radially to the axis of rotation of a roll o tape on said tape roll supporting means, and having a tapered outer end face which bears against the adjacent face of the tape discharged from the housing through the tape discharge opening for exerting pressure on the tape to said flat surface; and,
(h) a guide roller operatively mounted on said outward extension adjacent said pressure pad for guiding the tape under the pressure pad as the tape emerges from the tape discharge opening in the housing.

## 4,096,023

LENS SEALING CLAMP
Carl F. Bivens, 810 E. 26th St., Des Moines, Iowa 50317 Filed May 6, 1976, Ser. No. 683,764 Int. C. ${ }^{2}$ B25B 5/14; B30B $1 / 20$ U.S. Cl. $156-580$

7 Claims


1. An optical lens clamping apparatus for use with a plurality of lenses and with adhesive material, said apparatus compris
ing: $\begin{aligned} & \text { first means for aligning the peripheral edges of a plurality of }\end{aligned}$ stacked lenses; stacked lenses;
means for comprising a plurality of stacked lenses; and means for supporting said first means for aligning and said ing upper and lower plates and second means for aligning the peripheral edges of a plurality of stacked lenses, said plates being interconnected and spaced apart by said sec ond means for aligning, said means for compressing being within said means for compressing, said first means for aligning being affixed to said lower plate and first operating upon the stack of lenses, said means for compressing secondly operating upon the stack of lenses, whereby a plurality of stacked lenses having adhesive material placed together; and further wherein said plates are parallel, said first means for aligning including a first pressure screw assembly being affixed to said lower plate and extending assembly being amixed to said lower plate and extending
parallel to said plates, the lenses being stacked between
said second means for aligning and said first pressure ment comprising: cutting a seed crystal such that it has six screw assembly, said first pressure screw assembly being growth planes (0112), (1102), (1012), (0112), (1102), and (1012) extendable toward the peripheral edges of the stacked orienting said growth planes (0112) and (0112) of said seed lenses, said second means for aligning receiving the pe- crystal such that they are at an angle of about $7^{\circ}$ to the
ripheral edges of the stacked lenses thereagainst upon extension of said first pressure screw assembly against the lenses.

METHOD FOR CONTROLLING THE SOLIDIFICATION OF A LIQUID-SOLID SYSTEM AND A DEVICE FOR THE APPLICATION OF THE METHO
Plerre Dusserre, and Claude Potard, both of Saint-Egreve
France, assignors to Commissariat
Paris, France
Filed Jun. 2, 1976, Ser. No. 691,989
Claims priority, application France, Jun. 11, 1975, 7518286 May 6, 1976, 7613551

US. CI. 156-601 Int. C1. ${ }^{2}$ B01J 17/08


1. A method for measuring the solidification of a two-phas liquid-solid system wherein solidification is caused by coolin
of and occurs in the liquid phase, said method comprising:
of and occurs in the liquid phase, said method comprising:
measuring variations in the volume of the liquid-solid system resulting from changes in molar volume due to transfer
between liquid and solid phases in the system during solidification;
controlling the rate of solidification by adjusting the temper ature of the liquid-solid system responsive to said varia tions in volume

4,4096025
METHOD OF ORIENTING SEED CRYSTALS IN A MELT AND PRODUCT OBTAINED THEREBY
Jarda L. Caslavsky, Lexington; Frederick Schmid, Marblehead Charles P. Gazzara, Reading, Dennis J. Viechnicki, Wellesley, and James W. McCauley, Wakefield, all of Mass, assign Secretary of the Army, Washington, D.C
Continuation-in-part of Ser. No. 444,442, Feb, 21, 1974 Conned which is a continuation-in-part of Ser. No. 276.213, Jul. 28, 1972, abandoned. This application Jun. 23, 1975, Ser.

$$
\begin{aligned}
& \text { No. 589,317 } \\
& \text { Int. Cl. }{ }^{2} \text { B01J } 17 / 08 ; \text { C01F 7/02 }
\end{aligned}
$$

U.S. Cl. $156-616$ R

4 Claims

1. In a method for the production of a large transparen single crystal of corundum having a hexagonal structure com prising the melting of said material in a crucible baving a prising the melting of said material in a crucible baving a
generally vertical wall and a horizontal bottom, the improve
horizontal bottom of said crucible, and said other growth planes (1102), (1012), (1102), and (1012) of said seed crysvertical wall of said crucible;

melting said
shape; and . ${ }^{\text {g }}$ said seed crystal and said material such that said material nucleates and grows in a substantially hemispher ical fahsion and assumes the crystallographic orientatio cess minimizes the therma strain on the single crystal.

4,096,027
SYSTEM FOR PRESTEAMING WOOD CHIPS AT OR NEAR ATMOSPHERIC PRESSURE WITH MINIMUM DISPLACEMENT OF AIR
Michael I. Sherman, Glens Falls, N.Y., assignor to Kamyr Inc.
Glens Falls, N.Y. hael I. Sherman,

Filed Feb. 19, 1976, Ser. No. 659,402
Int. CC. ${ }^{2}$ D21C $1 / 02,3 / 24,7 / 06,7112$
U.S. Cl. $162-18$

8 Claims

3. A method for presteaming wood chips and the like in a ealed vertical presteaming vessel having a chips inlet in a to ortion thereof, and a chips outlet at a bottom portion there prior to digestion, comprising the steps of vessel,
introducing inlet of said presteaming vessel while providing an isp inlet of said presteaming vessel while providing an isola-
tion seal in the area of introduction to minimize the amount of air that will flow into said presteaming vessel through said chips inlet thereof,
said step of introducing being accomplished by packing and
elevating said wood chips and the like, forming an isolaelevating said wood chips and the like, forming an isola-
tion seal with the wood chips during the packing and tion seal with the wood chips during the packing and
elevating thereof to prevent entry of air into said preelevating thereof
steaming vessel,
maintaining said presteaming vessel substantially at or
slightly bew maintaining said presteaming vessel substantially at or
slightly below atmospheric pressure, by substantially continuously exhausting gases from a top portion of saic
presteaming vessel at a rate dependent upon the pressure existing in said presteaming vessel,
expelling presteamed wood chips and the like from said expeling preaming vessel chips outlet, and
sensing the temperature of gases exhausted from said precontroling the rate of steam introduction based on the temperature of the gases exhausted from said presteaming vessel.
4. A method as recited in claim 3 comprising the further step
of impregnating said wood chips and the like with digesting of impregnating said wood chips and the like with d
liquor in a lower portion of said presteaming vessel.

## EEED FORWARD CONTROL OF DISSOL YED SOLIDS I

FEED FORWARD CONTROL OF DISSOLVED SOLIDS IN
A COUNTERCURRENT SEPARATION AND WASHING
ZONE
Roy R. Rosenberger, Whenton, Ill., assignor to Nalco Chemical Company, Oak Brook, III.

Flued Nov. 26, 1976, Ser. No. 745,357
U.S. C. 162-49 ${ }^{-40} 10$ Claims 1. A continuous process for controlling in a zone of counter-
current particulate solids separation and washing (a) the
mount of dissolved material separated from an input slurry fed into the input slurry end of said zone and (b) the amount of dissolved material carried out from the product stream outpu end of said zone in the liquid phase of a product stream from said input slurry stream end,
said input slurry stream being comprised of a mixture of a starting slurry stream and a terminal recovered recycl said starting slurid
particulate solids and washable removables in a liquid phase, said starting slurry liquid additionally containing dissolved material,
said terminal recovered recycle liquid stream having been and washing in said zourrent particulate solids separatio and washing in said zone, said terminal recovered recycle
liquid containing washable removables and dissolved material therein, said terminal recovered recycle liquid being held in a holding region before being mixed with said starting slurry stream,
said product stream being comprised of particulate solids
and a product slurry liquid and a product slurry liquid, said particulate solids having
been subjected to separation and washing in aid said product slurry liquid containing dissolved material therein,
said zone comprising at least one stage of continuous particulate solids separation with simultaneous washing of such
separated particulate solids by a countercurrently flowing stream of recycle liquid, a drive for operating said zone and a pressure generator for remoral of liquid from said particulate solids being separated in said zone,

said recycle liquid comprising a fresh liquid, said recycle saiquid being fed into said zone at said product stream output end,
said process co
said process comprising the steps of --
(A) measuring the instantaneous cond
(A) measuring the instantaneous conductivity of said input siurry stream and generating a first signal representative
thereof,
(B) measuring (1) the instantaneous flow rate of said inpu slurry stream, or (2) the instantaneous flow rate of said starting slurry stream, and generating a second signal
representative thereof, representative hereo,
(C) measuring the instantaneous conductivity of said termi-
nal recovered liquid recycle stream and generating a third signal representative thereof,
D) measuring the instantaneous flow rate at which said terminal recovered liquid recycle stream is admixed with said starting slurry stream and generating a fourth signal ) combining said first,
fourth signals to produce a fifth signal third, and said fourth signals to produce a fifth signal representative of
the amount of said dissolved material in said starting slurry liquid, and
(F) applying said fifth signal to at least one regulator which controls certain dynamic process variables in said zone,
said regulator and said certain process variables being (1) said regulator and said cerrain process variables being (1)
a first valve regulator operating a first
flow control valve across said recovered recycle liquid stream, or (2) a sec-
ond valve regulator operating a second flow control valve
across said starting slurry stream, or (3) a third valve regulator operating a third flow control valve across said input slurry stream, or (4) a fourth valve regulator operatfresh recycle liquid, or (5) a speed regulator operating said drive for said zones or (6) a pressure regulator operating said pressure generator for removal of liquid from particulate solids so being separated in said zone, while simultaneously maintaining each of those remaining dynam process variables which are not associated with sareby accomplishing the desired controlling.
6. Apparatus for controlling in equipment for countercur
rent particulate solids separation and washing (a) the amount of dissolved material separated from an input slurry fed into the
input surry end of said equipment and (b) the amount of disinput slurry end of said equipment and (b) the amount of disof said equipment in the liquid phase of a product stream from said product stream output end, said equipment including
at least one stage for continuous particulate solids separation and for simultaneous washing, including operational drive means, pressure generation means for removal of liquic rom particulace sold sep product stream output location, starting slurry conduit means,
a terminal recovered recycle liquid conduit means,
an input slurry conduit means functionally connected to said
input slurry location, to said starting slurry conduit means, input slurry location, to said starting slurry conduit means, and to said terminal recovered recycle liquid conduit means,
a product stream conduit means function
said product stream output location,
a fresh liquid conduit means functionally connected to said product stream output location, said apparatus comprising (A) means for measuring the instantaneous conductivity of said input slurry stream and geratin
sentative thereof,
(B) means for measuring (1) the instantaneous flow rate of said input slurry stream, or (2) the instantaneous flow rate of said starting slurry stream,
signal representative thereof,
(C) means for measuring the instantaneous conductivity of said terminal recovered liquid recycle str
(D) means measuring the instantaneous flow rate at whic said terminal recovered liquid recycle stream is admixed with said starting slurry stream and generating a fourth signal representative thereof,
(E) means for combining said first, said second, said third, and said fourth signals to produce a fifth signal representaing slurry liquid, and
(F) means for applying said fifth signal to at least one regula tor means to control selected dynamic apparatus variables in said equipment, said regulator means and said selected apparatus variables being ( 1 ) first valve regulator mean opecoting a recycle liquid stream, or (2) second valve regulator means operating a second flow control valve means across said starting slurry stream, or (3) third valve regula tor means operating a third flow control valve means across said input slurry stream, or (4) fourth valve regulator means operating a fourth flow control valve means across regulator means operating said drive means for said speed regulator (6) pressure regulator means operating said negative pressure generation means for removal of liquid from particulate solids being separated in said equipment, while simultaneously maintaining each of those remaining
dynamic apparatus variables which are not associated dynamic apparatus
with said regulator means within predetermined variability limits, thereby accomplishing the desired controlling.

CELLULOSIC PULP DELIGNIFICATION USING AN CHLORINE MIXTURE Jack F. Milles, Midland, Mich., assignor to The Dow Chemical Company, Midland, Mich.

Filed Apr. 26, 1976, Ser. No. 680,245
U.S. C. 162-89

17 Claims 1. In a liquid phase process for delignification of cellulosic pulp involving halogenation and extraction stages wherein the halogenation is conducted by contacting such pulp with chlo-
rine under acidic conditions and wherein lignin is extracted ine under acich pulp in one or more alkaline extraction stages; the mprovement comprising replacing the chlorine with an acidic bromine-chlorine mixture con:prising between about 10 and bout 70 weight percent bromine.

## CONTROL SYSTEM FOP

SONI SOM FOR A BOILING-WATER NUCLEAR
POWER PLANT Arthur Oberle, Enriteden, Switzeriand, assignor to BBC Brown Boveri \& Company Limited, Baden, Svitzerland Claims priority, application Ser. No. 681,272 Ppin Swizeriand, Aug. 22, 1975, Int. Cl. ${ }^{2}$ G21C 7/32, 19/04


1. In a control system for a nuclear power plant of the type comprising a boiling-water reactor and a steam turbine conected to the outlet from said reactor by way of a steam line ncluding a control valve therein adjacent the urbine inle, the responsive to the pressure at the reactor pressure-vessel, a first controller of the integral-action type controlled by the outpu of said first pressure sensing means, second pressure sensing means responsive to the presure in sa secon controller of the in advance of said control valve, a second controller of the tial-action type controlled by the output of said second pres sure sensing means, and a summing device for adding th outputs from said first and second controllers, the output from aid summing device being applied to said control valve fo continuous regulation thereof.

4,096,03
NUCLEAR REACTOR REFUELING SYSTEM Iman E. Wade, South Huntingdon Township, Huntingdon County,
burgh, $P$

Filed Jul. 22, 1976, Ser. No. 707,594
Int Int. C1. ${ }^{3}$
U.S. C. $176-32$

9 Claims
9 Clains

1. A nuclear fuel transfer system including a reactor vesse 1. A nuclear fuel transfer system including a reactor vessel, fuel assembies positioned in a anst in rray treat fransfer relationship with said fuel assemblies, a first closure head disposed on said reactor vessel in a fluid tight relationship, and a storage vessel
positioned adjacent to said reactor vessel having an inlet and outlet for circulating a coolant therethrough, fuel assemblies ositioned in a second array therein, and a second closure hea prising:
connecting means disposed between said reactor vessel and said storage vessel for allowing the transfer of said fue assemblies between said reactor vessel and said storage vessel while said fuel assemblies remain completely sub-
merged in a containuous body of coolant being a single merged of coolant occupying and capable of flowing among said reactor vessel, said storage vessel, and said connect ing means for cooling said fuel assemblies;

first fuel assembly transfer means disposed on said first clo sure head and extending into said reactor vessel for trans ferring said fuel assemblies between said first array and said storage vessel, said first fuel assembly transier means including a first pivotable apparatus for holding said fue assemblies and for aligning said fuel assemblies in a posi-
second fuel assembly transfer means disposed on said second closure head for transferring said fuel assemblies between said second array and said reactor vessel, said first fuel assembly transfer means cooperating with said second fue assembly transifr means for transerrit.
blies through said connecting means.

## 4,096,032

 LOW FILMODULAR IN-CORE FLOW FILTER FOR A NUCLEAR REACTOR
Joneph B. Mayers, Greensburg, Walter E. Desmarchais, Mon roerille, and John M. Shallenberger, Pittsburgh, all of Pa., nealgnors to Weetinghouse Electric Corp., Pittshargh, Pa. This application Aug. 19, 1976, Ser. No. 715,734
S. C1. 176-38 In Aug. 19, 1976,
Int ${ }^{2}$ G21C $9 / 00$
U.S. C. 176-38 6 Claim 1. A system of removing potentially harmful debris from eactor with fuel assemblies and during preoperational testing comprising:
a pressure vessel having a head secured in fluid tight rela tionship therewith,
a coolant inlet and outlet in said vessel for accommodating flow of coolant therethrough,
spaced upper and lower core plates having coolant flow openings therein attached to support members in the pressure vessel, said upper and lower core plates provid ing an empty space
said fuel assemblies,
an upper structure mounted near the top of said pressure an upper structure mounted near the top of said pressure
vessel and control rod guide tubes and support adapters mounted between the upper structure and said upper core
plate; and
multiple filter assemblies mounted on and covering the openings in said lower core plate, each of said filter assemblies coolant flow opening therein, the arrangement being such
that the filter assembly opening is aligned with the lower core plate openings when each assembly is placed thereon locking means on each of said assemblies which coact with said lower core plate and ovably attaches each filter assembly to said core plate,

whereby said filter assemblies prevent the flow of meta chips and shavings past the filter elements into the reacto coolant system when a flushing liquid is circulated through the reactor during preoperational testing.

4,096,033
CORE FOR A NUCLEAR REACTOR Robert F. Barry, Monroerille, Pa., asoignor to Westinghouse Electric Corp., Pittsburgh, Pa

Jun. 20, 1975, Ser. No. 588,92
Int. Cl. ${ }^{2}$ G21C $3 / 30$
U.S. CI. 176-78
a first direction down the inside of said pressure vessel and then flows in a second direction up through said core, wherein each
of said fuel elements comprises a pluraity of tandem arranged of said fuel elements comprises a plurality of tandem arranged fuel regions one above another with a first region being fueled with fissile plutonium which extends upward from the reactor with enriched fissile uranium which extends downward from the reactor coolant outlet end of said core, and an intermediate region including natural uranium interposing said first and second regions, said fuel element being substantially free from plutonium except for said first region.

HOLDDOWN STRUCTURE FOR A NUCLEAR REACTOR CORE
Andrew James Anthony, Tariffrille, Conn., assignor to Combe Andrew James Anthony, Tarifiville, Co
tion Engineering, Inc., Windsor, Conn.
Filed Dec. 16, 197, Ser. No. 751,784
Int. Cl. ${ }^{2}$ G21C $13 / 09$
1,24
U.S. CI. 176-87

10 Claims


## PARATION OF TRACHOMA

 MEDIUM MP AGENT tord基
Filed Jun. 15, 1977, Ser. No. 806,651
Int. Cl. ${ }^{\text {C12K }} 7 / 00$
U.S. Cl. 195-1.5

1. A method of
2. A method of separating trachoma agent from impurims
8 Clies been grown which comprin which the trachoma agent has sopycnic banding in a NaBr subjecting the trachoma agent to fractions rich in trachoma agent.

## 4,096,036 <br> METHOD FOR THE SEPARATION OF WATER SOLUBLE POLYOLS <br> Victor S. H. Liu; Norman E. Lloyd, and Khaja Khaleeluddin, all of Clinton, Iowa, New York, N.Y. <br> Continuation-in-part of Ser. No. 696,281, Jun. 15, 1976, abandoned. This application Apr. 7, 1977, Ser. No. 785,464 <br> U.S. Cl. 195-31 F <br> 12 Claims



1. A method for the separation of polyol $A$ and an un1. In a nuclear reactor vessel, a structure for applying a charged water soluble substance in aqueous solution by therholddown force to the upper guide structure barrel and the mal parametric pumping by the utilization of ion exchange
core support barrel, including,
an internal ledge formed on the upper end of the vessel, a core support barrel positioned down and within the vess a flange formed on the upper end of the core support barrel and arranged to engage the internal ledge of the vessel to hang the barrel from the ledge
an upper guide structure barrel positioned down and within the core support barrel
a flange formed on the upper end of the upper guide structure barrel and arranged to engage the flange of the core support barrel to hang both barrels from the internal ledge on the upper end of the vessel,
a vertical post member mounted by its lower end to upper surface of the flange of the upper guide structure barrel,
a spring structure arranged about the post member and bearing on the surrace structure barrel, A at a first temperature and at least partially dissociating from polyol A at a second temperature comprising:
(a) passing the solution containing polyol $A$ and an un-
charged water soluble substance into a column of said ion exchange material at the first temperature to form the polyol A ion exchange material complex,
temperature at which the polyol A ion exchange material complex is at least partially dissociated, and
(c) collecting at least two effluent portions, one being enriched in polyol $\mathbf{A}$ and the other being enriched in the uncharged water soluble substance.
closure of the reactor vessel and means for seating the closure on the upper end of the vessel with a predetermined force,

[^9]closure and acred by its upper end to the inside of the U.S. Cl. 195-103.5 R $\quad 19$ Claims post member to engage the spring structure and load the blood serum which consists essentially of the steps of: post member to engage the spring structure and load the blood serum which consists essentially of the steps of. spring structure in transmission of the force seating the $\quad$ with an arginase-activating source of magnesium, manga-
closure to the barrels on the vessel ledge.
nese, co
minutes
(2) adding to said incubated sample an aqueous buffered solution of L-arginine or an acid addition salt thereof and incubating the mixture at $25-4 \mathrm{C}$ for a time sufficien nine to urea and ornithine;
(3) adding a color developer comprising an acidic aqueous solution of ninhydrin to the thus-obtained ornithine-con taining mixture without prior centrifugation and removal of precipitate to form a colored ornithine-ninhydrin com-
plex and incubating the resultant mixture at $85^{\circ}-100^{\circ} \mathrm{C}$ for about 15 minutes; and
(4) after cooling, colorimetrically measuring the amount of said colored complex and calculating the concentration o arginase in the given blood serum sample from said mea
sure.

## 4,096,038

METHOD AND APPARATUS FOR OPERATING A
Ray E. Kranz; William E. Solano, and Beverly E. Johnson, all of
Pittsburgh, Pa, assignors to Salem Furnace C. C., Carnegie, Pa.
Flied Oct 1, 1976, Ser. No 728, 643 Filed Oct. 1, 1976, Ser. No. 728,643
U.S. C. 201-32

8 Claims


1. The method of treating materials having volatiles therein which are evolved therefrom when subjected to a heat treatmert winhin the confines of a calciner having an exhaust stack
or the flow within the calciner and a soaking pit area, the improvement comprising the step of directing some of the combustion gases rom the exhaust stack to combustion gas admission ports
provided in the soaking pit area to provide an increase in pressure in the soaking pit area to prevent outside air from entering into and coming in contact with the materials which have been heat treated within the calciner which have bee deposited into the said soaking pit area.

## $4,096,039$

CONDITION SENSING CONTROL SYSTEM FOR Howard H. Carnine, Costa Mesa, and Carter R. Robinson, Newport Beach, both of Calif, assignors to Carnine Corpora tion, Newport Beach, Calif.

Filed Dec. 18, 1975, Ser. No. 642,039
Int. Cl.2
U.S. C. 202-205 Int. Cl. ${ }^{2}$ B01D $3 / 42$

42 4 Cluims 1. A control system for operating a low pressure evaporative 1. A control system for operating a low pressure evaporacile
desalinator having a mechanism for introducing heat to a boiler
chamber at temperatures below the atmospheric pressure boilchamber at temperatures below the atmospheric pressure boil-
ing point of the raw water, a mechanism for drawing a vacuum ing point of the raw water, a mechanism for drawing a vacuum
within said boiler chamber, and a mechanism for pumping within said boiler chamber, and a mechan
fresh water from said chamber, comprising:
a main control switch having an ON position for activatin and an OFF position for deactivating said desalinator; means for sensing the temperature of the raw water within said boiler chamber;
means for sensing the vacuum within said boiler chamber; means responsively connected to said temperature sensing means and said switch for activating said vacuum drawing
mechanism whenever said switch is in said ON position said temperature sensing means monitors a temperature above a first predetermined level;
means responsively connected to
means responsively connected to said switch and said vac-

uum sensing means for activating said heat introducing mechanism when said switch is in said ON position and aid vacuum sensing means simultaneously monitors a level is below means responsively connected
vacuum sensing means and said temperature sensing means for activating said fresh water pumping mechanism when said switch is in said ON position, when said tem perature is simultaneously above a second predetermined predetermined level.

4,096,040
TRIPPER BEAM
John A. Grosko, West Mifflin, Pa., assignor to United States Steel Corporation, Pittsburgh, Pa.

Filed Mar. 25, 1977, Ser. No. 781,096 U.S. CI. 202-262

2 Claims


1. In a pollution-controlled coke quench system which inludes a slatted top quench car having a plurality of slats with am followers and cranks attached to said slats and a tripper tripper beam for engaging said cam followers to actuate said slats, the improvement comprising:
means for pivoting said tripper be
means for pivoting said tripper beam away from said quench car to disengage said cam followers.

409041
SINGLE-SPOT QUENCH CAR
Donald L. Friend, Allison Park, Pa., assignor to United States Steel Corporation, Pittsburgh, Pa.
Continuation-in-part of Ser. No. 664,774, Mar. 8, 1976, Pat. No. $4,039,394$. This application Mar. 10, 1977, Ser. No. 776,402 The portion of the term of this patent subsequent to Aug. 2, 1994

$$
\begin{aligned}
& \text { Int. C1. }{ }^{2} \mathbf{C 1 0 B} 39 / 08,39 / 14,45 / 00
\end{aligned}
$$

U.S. C. 202-263

8 Claims


1. A coke quench car for receiving incandescent coke from a coke oven and transporting it to a quenching site for quenching, said car being of the type having dimensions which enable it to be filled with incandescent coke while said car remains (a) an open top container for said coke;
(b) a plurality of slats having substantially parallel edges transversing the top of said container, said slats having
sufficient width to permit the opposing edges thereof to sufficient width to permosure which prevents the emission
cooperate to form a closer cooperate to form atmosphere above said car; and
of fumes into the atmer
(c) means for opening at least some of said slats to permit coke to pass into said quench car from above and to close
said slats after coke is received in said car, said means comprising:
comprising:
(1) lever means attached to one end of each slat,
(2) linkage means attached to said lever means and joining preselected groups of said slats, and
(3) means attached to said linkage means for moving said lever means to selectively open said groups of slats.

## ELECTROPLATING METHOD AND APPARATUS

 Robert B. Looney, Aiken, and William E. L. Smith, North Augusta, both of S.C., assignors to The United Siates of America as represented by the United States Department of Energy, Washington, D.C.Filed Apr. 4, 1969, Ser. No. 814,894
Int. Cl. ${ }^{2}$ C25D $3 / 12$
U.S. C. 204-1.5

7 Claims
orkpiece including a tubular anode for encompassing said workpiece and an elongated anode for penetrating said workorkpiece and said anodes, the improvement comprising: (a) a support frame including a base assembly;
(b) a carriage assembly supported on said frame and adapted for linear reciprocal movement relative to said base assembly, said tubular and elongated anodes being supported coaxial alignment by said carrage the axis of said elon gated anode said elongated anode and said base assembly including laterally extending anode surfaces for aligning in spaced facing relationship to the opposite end faces of said tubular workpiece;
(c) first contact means cooperatively supported by said carriage assembly and said base assembly for fixedly sup porting and electrically maintaining said workpiece as cathode;
second contact means cooperatively supported by said carriage assembly and said base assembly in spaced rela-
tionship relative to said first contact means for fixedly supporting and electrically maintaining said workpiece as a cathode;
) means for alternately engaging said first and then said second contact means with said workpiece
) means for moving said carriage assembly away from said ment with said anodes, and for moving said carriage as sembly towards said base assembly to position said elongated anode into said tubular workpiece in spaced rela tionshp to define an inner annular passageway; and (g) means for longitudinally positioning said tubular anode around said workpiece to define an outer annular passage way, said tubular anode sealingly comidica po witer passageways for the circulation of electrolyte
A method of electroplating a workpiece disposed betwe t least two anodes comprising
(a) engaging a first group of point locations on the surface of said workpiece during an initial time interval of no more than about 5 seconds duration with a first set of cathodically biased contacts for fixedly su cally
passing electrolyte between said workpece location while odes for said initial time interval to electroplate a film over exposed surfaces of said workpiece;
(c) engaging a second group of point locations on the surface of said workpiece with a second set of cathodically biased contacts disposed in spaced relity disengaing said first contacts rilows
(d) maintaining said workpiece in a fixed location with engagement of said second group of point locations for a second time interval of substantially longer duration than said first time interval to electroplate exposed surfaces of said workpiece including said first group of point locations;
(e) reengaging said first group of point locations with said first set of contacts followed by immediately disengaging said second set of contacts; and
(f) maintaining said workpiece in a fixed location with engagement of said second group of point locations for a third time interval of substantially longer duration than said first time interval to complete the electroplating of exposed surfaces of said workpiece including said second group of point locations, sald tird time inerval being interval exceeds said first time interval.

METHOD OF SELECTIVELY DE
ON A SURFACE OF A SUBSTRATE META
Michacl Anthony De Angelo, Ewing Townshipate
N.J., assignor to Western Electric Company, Mere. New York,

Filed Jul. 11, 1977, Ser. No. 814,564
U.S. CI. 204-15 Int. Cl. ${ }^{2}$ C25D $5 / 02$

18 Claims
cooling aqueous solution, which is separated from the lead chloride crystals; and finally subjecting the obtained lead chlo-

ride to an electrolysis for the recovery of metallic lead by a method known per se.


ELECTROANAL YTICAL TRANSDUCERS John Martin Hale, Geneva, and Eagen Weber, Hinwil, both of Switzerland, asslgnors to Orbisphere Corporation, WilmingSwitzerland
Filed Mar. 1, 1977, Ser. No. 773,163
C7/76 (1076, application Switzerland, Mar. 12, 1976, 3076/76
U.S. C. 204-195 P P C. ${ }^{2}$ G01N 27/30, 27/46 $\quad 39$ Claims


1. A method of selectively depositing a metal on a surface of substrate which comprises:
(a) treating the surface with a desensitizer comprising hydra zine;
(b) selectively exposing said desensitizer-treated surface to a source of ultraviolet radiation to render a selected area
thereof incapable of desensitizing a sensitizing species; and thereof incapable of desensitizing a sensitizing species; and
(c) treating said radiation-xpoed surface with a sensitizing (c) treating said radiation-exposed surface with a sensitizing
species to sensitize said selected area.

ELECTROCHEMICAL 4,096,044
IECTROCHEMICAL HYDROXYLATION OF CERTAIN AROMATIC COMPOUNDS
Norman Louis Weinberg, East Amherst, N.Y., assignor to
Hooker Chemicals \& Plastics Corp., Niagara Falls, N.Y. Continuation-in-part of Ser. No. 563,532 , Mar. 31, 1975, Pat. No. 4, 024,032 . This application Mar. 7, 1977, Ser. No. 775,021
The portion of the term of this patent sabsequent to May 17 , portion of the term of this patent subsequent to May 17, Int. $\mathrm{Cl}^{12} \mathrm{C}^{2} \mathrm{C}$
$204-59 \mathrm{R}$
U.S. CI. 204-59 R

1. An electrochemical hydroxylation pros 22 Claims electrolyzing an aqueous liquid comprising process comprising (a) at least one soluble cosolvent;
(b) an aromatic substrate comprising an aromatic nucleus ring-substituted with at least one electron-withdrawing moiety and having at least one replaceable nucleus hydrogen; and
(c) an anion of a strong carboxylic acid having a $\mathrm{pK}_{a}\left(\mathrm{H}_{2} \mathrm{O}\right)$
at $25^{\circ} \mathrm{C}$. value of less at $25^{\circ}$ C. value of less than about 3 to effect nuclear hydroxylation of said aromatic
wherein a hydroxy group replaces said hydrogen.

## PROCESS FOR THE RECOVERY OF LEAD FROM LEAD

 SCRAPSHeikki Ahonen, Valkeakoski; Jari Lindroos, Helsinki, and Veli Sarkkinen, Tampere, all of Finland, assignors to Lyijyvalkois tehdes Gronberg Oy - Blyviltfabriken Gronberg AB, Vantas,
Filed Mar. 24, 1977, Ser. No. 780,824
Claims priority, application Finland, Mar. 25, 1976, 760814
U.S. CI. 204-117 Int. C1. ${ }^{2} \mathbf{C} 25 \mathrm{C} 1 / 18,1 / 00$
18 Claims battery scraps, comprising mixing the lead scraps at elevated temperature with an aqueous solution of an alkali metal chloride and hydrochloric acid; separating the aqueous solution containing dissolved lead chloride from insoluble hard lead,

1. A method for preventing contact by an electrolyte of selected portions of an electrode not intenced to be contalch by the electrolyte in an amperometric electroanalytical ranssaid electrode portions with an insulator adapted to seal said selected portions of said electrode against contact with said electrolyte, maintaining the insulator and the electrode in nutually pressing engagement at a pressure of greater than out $0.1 \mathrm{~kg} / \mathrm{mm}^{2}$ at the interface thereol
2. An amperometric electroanalytical transducer compristrode having an electroanalytically effective surface portion for contact with an electrolyte, said surface portion being
limited by said insulator, and means for pressingly engaging said insulator and said electrode at a pressure of greater than about $0.1 \mathrm{~kg} / \mathrm{mm}^{2}$ at the interface of said insulator and elecrode for counteracting electrolyte penetration into said inter-
face.
3. The transduces of claim 25 , wherein said means effect a 26. The transducer of claim 25 , wherein said means effect a
predetermined and substantially constant pressure of contact precteeen said electrode and said insulator in an area near the between said electrode and saia insulator
electrolyte-contacting end of said interface.

OXYGEN SENSOR AND MANUFACTURING METHOD THEREOF
Shinichi Matsumoto, Toyota; Hirohisa Miura, Okazaki; Kiyoshi chida, and Yasuhiro Otsuka, both of Toyota, all of Japan, assignors to Toyota Jidosha Kogyo Kabushiki Kaisha, Japan
Filed Jun. 9, 1977, Ser. No. 805,109
Claims priority, application Japan, Oct. 26, 1976, 51-128627 Int. C. ${ }^{2}$ G01N $27 / 46$

11 Claims

1. Method for the separation or enrichment of uranium with the latter a mixture of isotope compounds containing ${ }^{3} \mathrm{UF}_{6}$ and ${ }^{238} \mathrm{UF}_{6}$ which comprises the following steps. a. irradiating said mixture of ${ }^{233} \mathrm{UF}_{6}$ and ${ }^{238} \mathrm{UF}_{6}$ compounds in gas or vapor form by a first light source to photochemi-
cally convert the isotope compounds to another mixture of isotope compounds containing ${ }^{233} \mathrm{UF}_{5}$ and ${ }^{238} \mathrm{UF}_{5}$ as different isotope compounds,
b. irradiating said photochemically converted mixture of isotope compounds of $\mathrm{UF}_{5}$, which have only a short life in the nascent gas or vapor phase and condenses to solid stable form, before condensation, by a second light source, at a frequency to selectively excite only one said differen mixture of isotope compounds,
c. effecting said excitation in the presence of a reactan which chemically reacts with the excited $\mathrm{UF}_{5}$ compound of the mixture to produce a reaction product, and d. separating the reaction products, enriched with one of the
starting isotopes. starting isotopes.
xide charged on the opposite side of said solid electrolyte sintering;
 gen pole covering at least the total area of said solid elec trolyte sintering which adjoins said reference oxygen pole, said metal electrode serving to insulate said refer ence oxygen pole from said solid electrolyte sintering a holder to support said solid electrolyte;
and a means to take out the outputs of said two metal elec9. A manu
ring method of an oxygen sensor, comprising forming a solid electrolyte sintering of an oxygen ion-conductive inorganic substance;
forming a metal electrode on each side of said solid electrolyte sintering by electric plating or by pasting; mixture of metal and metal oxide on one part of the solid
and electrolyte in such a manner that said oxygen pole may be insulated by said metal electrode from said solid electro lyte sintering; and
assembling said solid el?ctrolyte sintering with a holder and a means to take ott the outputs of both metal electrodes.

METHOD FOR PRODUCNG AN ION-SELECTIVE
Renaat Edmond Van de Leest, and Leopold Heijne, both of Eindhoven, Netherlands, assignors to U.S. Philipe Corporation, New York, N.Y.
Claims Friority, Map 25, 1976, Ser. No. 689,944 US. Cl. $204-195 \mathrm{M}$


1. A method of producing an ion-selective electrode for selectively measuring the concentration of an ion in a solution of a mixture of ions, said method comprising chemically or
electrochemically converting a silver sulfide matrix to the depth of between 0.1 and $100 \mu \mathrm{~m}$, to an ion sensitive compound having an ion in common with said silver sulfide matrix.

## 4,096,050

OXYGEN DETECTOR
Nobuyuki Kobayashi, Toyota, and Mitsno Kawai, Okazakid, both of Japan, assignors to Toyota Jidosha Kogyo Kabushild Kaisha, Toyota, Japan Claims priority, application Japan, Sep. 21, 1976, 51. 126998[U] ${ }^{\text {Clit. }}$ Int. ${ }^{2}{ }^{2}$ G01N 27/46
U.S. C. 204- $195 \mathbf{S}$ S.
a body including an elongated solid electrolyte oxygen a body including an elonga
sensor at one end thereof;
a flange connected to said body substantially at right angles to the central axis of said sensor for mounting said body to a wall portion of an exhaust manifold or pipe of an engine in a manner such that said sensor end of said body is
inserted into said exhaust manifold or pipe through an pening formed in said wall portion of said exhaust mani fold or pipe, said flange having mounting holes arranged axymmetrically wid each other with respect to the centra axis of said body, and,

a cylindrical protective cover having a first closed free end and a second end mounted to said body in a manner of enclosing said sensor therein, said cover having a large number of small openings bored in its cylindrical wall,
said openings being arranged substantially on one diamet said openings being arranged substantil
rical half side of said cylindrical wall
 Schenck, Jri, and Delvin P. Sims, all of Daytor, Ohio ors to The Duriron Company, Inc., Dayton, Ohio Filed Apr. 18, 1914, Ser. No.
Int. C1. ${ }^{2}$ C 23 F 13/00


1. A tubular anode comprising a hollow straight-walled lubular anode body having solid walls of uniform thickness and having an open cylindrical interior, an electrical contact means
located inwardly from the ends and within said interior of said tubular body, plastic seal means located on each side of said contact means, and an electrical conductor including an electrically insulating outer sheath, said conductor being connected to said electrical contact means and passing through one of said plastic seal means in a sealing relationship so tha electrical connection
$\qquad$
4,096,052
ELECTROCHEMICAL HYDROXYLATION OF CERTAIN AROMATIC COMPOUNDS
Norman Louis Weinberg, East Amberst, N.Y., assignor to
Hooker Chemicals \& Plestics Corp., Niagara Falls, N.Y.
Hooker Chemicals \& Plastics Corp., Niagara Falls, N.Y.
Division of Ser. No. 775,021, Mar. 7 1977,
Division of Ser. No. 775,021, Mar. 7, 1977, which is a
$4,024,032$. This application Aug. 31, 1977, Ser. No. 829,389 The portion of the term of this patent subsequent to May 17, 1994, has been disclaimed
Int. Cl. ${ }^{2}$ C25B 3/00, 3/10
U.S. CI. 204-78解 11 Claims 1. An electrochemical hydroxylation process comprising (a) a first phase containing a substantial amount of water;
(b) a second phase distinct from said first phase;
(c) an aromatic compound ring-substituted with at least one electron-withdrawing moiety and having at least one replaceable nulcear hydrogen; and
(d) an anion of a strong carboxylic acid having a $\mathrm{pK}_{a}\left(\mathrm{H}_{2} \mathrm{O}\right)$ to effect nuclear hydroxylation of said
wherein a hydroxyl group replaces said hydrompound, wherein said second phase contains a substantial amount of at least one liquid cosolvent.

4,096,053
SLURRY ELECTROWINNING APPARATUS
Robert C. Emmett, Jr., Salt Lake Cty, Utah; James K. Dicksa, Antioch, Calif.; Bruce C. Wojeik, Salt Lake City, and Frank A. Baczek, Sandy, both of Utah, assignors to Envirotech Corporation, Menlo Park, Calif.
on of Ser. No. 719,867, Sep. 1, 1976, Pat. No. 4,066,520.
This application Jan. 17, 1977 , Ser. No. 759, This application Jan. 17, 1977, Ser. No. 759,960
Int. Cl. ${ }^{2}$ C25C $1 / 12,7 / 00$ U.S. Cl. 204-238

10 Claims


1. A system for preparing copper-bearing solids for electrowinning as a copper-bearing slurry and for electrowinning the slurry comprising
a means for leaching said copper-bearing solids with a moderately strong aqueous acid to solubilize
metal ions into solution in the aqueous acid;
b. a means for then adding an agent to the aqueous acid solution to reduce the copper ion concentration by forming copper-precipitate solids therein;
a means for then separating the copper-precipitate solids and any remaining portions of said copper-bearing solids
from the aqueous acid solution, thereby to form first stream comprising a clear liquid and a second atream comprising a slurry containing said copper-precipitate solids and remaining portion of said copper-bearing solids;
d. a tank mounted in flow communication with said separating means to receive a portion of the second stream including solids, said tank for containing a slurry of a suitinlet means providing the fow solids mounted to admit the copper-bearing solids into said tank and outlet means for discharging copper-bearing solids diminished in copper value;
a plurality of parallel uprightly disposed spaced-apart plates mounted in said tank, said plates having electrically conducting surfaces submerged in said slurry such that surfaces of adjoining plates face one another and are sepa . an electrical potential means for ind current flow across the gaps between said faced surfaces.

RISERLESS FLEXIBLE ELECTRODE ASSEMBLY Steven J. Specht, and Kenneth E. Woodard, Jr., both of Cleveend, Tenn., assignors to Olin Corporation, New Haven, Conn. Filed Oct. 26, 1977, Ser. No. 845,524 Int. Cl. ${ }^{2}$ C25B 9/00, $11 / 03$, 11/10 U.S. Cl. 204-263


1. An expandable electrode assembly, which comprises. a) at least two opposed planar working faces of flexible electrically conductive material, said faces defining a riserless open chamber therebetween;
(b) at least one spring means, interposed between said working faces, for biasing said faces a limited distance away said faces in an inward direction toward each other in esponse to a force applied to said working faces in said inward direction; and
(c) an electrical connector means, affixed to one edge of each of said planar faces, for electrically connecting said faces a a supporive backplate without limiting said inward
movement of the edge of said faces opposite said one edge.

ELECTRON MICROSCOPY COATING APPARATUS AND METHODS
Andree G. Johnson, 1714 Agadir St., Concord, Calif. 94518 Filed Dec. 29, 1976, Ser. No. 755,356 Int. C1. ${ }^{2}$ C23C 15100


1. A coating apparatus for coating a specimen to be viewed by electron microscopy and comprising,
particle forming means for releasing particles to be deposited on the specimen as a coating
specimen support means for supporting the specimen being coated
maid specimen support means including a base, a turntable mounted for rotation in the base, and a specimen holder mounted for rotation in the turntable about an axis displaced from the axis of rotation of the turntable, the same time that the turntable is rotated about its axis so that the specimen is rotated in both an orbit and in a planetary motion in the orbit, and wherein the axis of rotation of the specimen holder is inclined at an angle with respect to the axis of re the specimen and the planetary movement of the specimen present all surfaces of the top and bottom of the specimen to the released coating particles and wherein the particle forming means include a hood and a mixer disc and including electrical means for producing an arc of sputtered atoms between the hood
and mixer disc by charging the hood as a cathode and charging the mixer disc as an anode and including means for adjusting the distance between the hood and the mixer disc.

METHOD OF PRODUCING AN IMPREGNATING PETROLEUM PITCH
Samuel Ise Haywood, Batersfield, Calis, and John Howard Semon, Barnegat, NJ, assignors to Witco Chemical Corporation, New York, N.Y.

Filed Oct. 21, 1976, Ser. No. 734,497
Int. Cl. ${ }^{2}$ C10C 3/04
U.S. Cl. 208-4

Int. Cl. ${ }^{2} \mathrm{ClOC} 3 / 04$
6 Claims

1. A two-step process for preparing an impregnating petroleum pitch having a Quinoline Insolubles of less than about $1 \%$
(ASTM D-2318), a beta resin content of less than about $15 \%$, and Conradson Carbon of about $50 \%$ (ASTM D-189), consisting of:
(a) Pass
(a) Passing an oxygen containing gas at a flow rate of 0.01 to about $0.2 \mathrm{cu}$. f. oxygen $/ \mathrm{min} / \mathrm{bbl}$. through an aromatic at a temperature of about $338^{\circ} \mathrm{C}$ to $360^{\circ} \mathrm{C}$, to a pitch having a softening point of from about $30^{\circ}$ to $100^{\circ} \mathrm{C}$ (ASTM D-3104), and;
(a) Stripping said pitch in an inert atmosphere to increase the (ASTM D-3104).

$$
4,096,057
$$

APPARATUS AND METHOD FOR RECOVERY OF BITUMINOUS PRODUCTS FROM TAR SANDS Budge T. Porritt, Sandy, Utah; Lloyd A. Johanson, Ontario, Oreg, and Kenneth L. Noall, Ogden, Utahh, assignors to New Energy Sources Company, Salt Lake City, Utah Filed May 10, 1976, Ser. No. 685,199
Int. C1. ${ }^{2}$ C10G 1/04; B01D $11 / 02$
U.S. C. 208- 11 LE 8 Claims 1. A method for separating bituminous products from tar sands wherein the tar sands are formed from granules agglomerated by bitumen, the method comprising the steps of: obtaining a vessel;
 drical screen member in the vessel, the screen being suspended a discrete distance from the walls of the vessel; obstructing a substantial portion of the lower end of the attrition zone with an impellor;
imparting an upward velocity to the liquid by rotating the impellor;
impelior;
introducing chunks of tar sand into the attrition zone; introducing chunks of tar sand into the attrition zone;
reducing the chunks of tar sand into granules by abrading
the chunks against adjacent chunks in the liquid through the upward velocity of the liquid;
confining the chunks of tar sand to the attrition zone by the
cylindrical screen member; removing the granules from the attrition zone through the cylindrical screen member surrounding the attrition zone directing the removed granules downwardly through the space between the screen and the vessel walls;
inhibiting the downwardly directed granules from being drawn into the impellor by surrounding the impellor with drical screen member;
removing the agglomerating bituminous products from the removing the agglomerating bituminous products from the
chunks and granules with the liquid during the preceding reducing, confining, removing, and directing steps; and separating the removed bituminous products by directing the liquid and bituminous products from the vessel.

PROPORTIONING FLUIDS
Harry E. Pinkerton, Bridide Path La, Mill Neck, N.Y. 11765 Continuation-in-part of Ser. No. 685,564, May 12, 1976, Pat.
No. 4,037,616, which is a continuation-in-part of Ser. No. 590,897 , Jun. 27, 1975 , abaandoned. This application Jan. 14, The portion of the term of this patent sube

1994, hass been disclinimed. Int. CI. ${ }^{2}$ B01D $13 / 00$
U.S. Cl. 210-22 A

19 Claims


TENSIONING MEANS FOR SIFTER
Bernard Francois Borie, 13 rue des Boulangers, Paris, France Filed Jnn. 16, 1976
Claims priority, application France, Jan. 24, 1975, 7502344
Int. C. ${ }^{2}$ B07B $1 / 49$
U.S. C. 209-403

10 Claims


1. A sifter comprising:
a discrete generally cylindrical shaped upper portion having an edge extending radially inward from the lower end of
and said upper portion;
a discrete generally ring shaped lower portion having a central section and an upper section;
a sifting screen fixedly secured to the central section of said lower portion;
means for fixedly securing said sifting screen to said central section;
means for holding said sifting screen in a tensioned state including the outer circumferential surface of the lower end of said upper portion engaging the inner surface of the upper section of said lower portion and the bottom surface
of said inwardly extending edge bearing against said siftof said inw
said securing means and the part of said lower portion immediately below said sifting screen each having an inner inner surface of the upper section whereby said inwardly extending edge holds said sifting screen in a tensioned state.
2. A method of proportioning and mixing liquids which comprises delivering a predetermined volume of first liquid to a first chamber to fill that chamber, making a connection from said first chamber to a second and larger chamber and passing said volume of first liquid from said first chamber to said second chamber through said connection while preventing the
admission of further first liquid to said first chamber and connecting a supply of liquid to be mixed with said first liquid to said connection between said first and second chambers to cause said liquid to be mixed to be admitted to said connection and to said second chamber in an amount equal to the difference in volumes of said chambers.

4,096,060
METHOD UTILIZING PLUG $\mathbf{4 , 0 9 6 0 0} \mathbf{~ F L O W ~ F O R ~ S E P A R A T I N G ~}$ SOLIDS FROM LIQUID . ., assignors to Fairchild Incorporated, Beckley, W. V2. Filed Sep. 16, 1974, Ser. No. 506,120
Int. Cl. ${ }^{2}$ B01D $31 / 00$
U.S. Cl. 210-23 R

3 Claims
successively removing part of the liquid with solids dis- fluid flow comprising an open vat with side walls and an inlet solved therein through the wall of the conduit along for the suspension; a sequence of several at least partly super-
respective successive portions of the conduit relatively imposed inclined cassettes in the vat, which together with the respective successive portions of the conduit relatively imposed inclined cassettes in the vat, whichneg for the suspen
disposed in the direction of the flow of liquid through said side walls of the vat form several flow channes
conduit,
conduit,
the rate of removal of said liquid being such that the plug is
maintained spaced from said wall with the liguid along the maintained spaced from said wall with the liquid along the wall being relatively free of suspended separation of solic recirculating to said conduit, for further separation of solids
and liquid, liquid with solids suspended therein that has and liquid, liquid with solids suspend.
already passed through said conduit.

RECOVERY AND REUSE OF PAINT SOLIDS FROM
WASTE WATER
Thomas P. Breanan, Chagrin Falls, Ohio, assignor to Drew Chemical Corporation, Boonton, N.J. 157,022

Filed Jan. 5, 1977, Ser. No. 757,022
Iot. Cl. ${ }^{2}$ C02B $1 / 20$
U.S. CI. 210-45 lat. Cl. ${ }^{2}$ C02B 1/20 $\qquad$ 1. In the clarification of a latex base paint waste water, containing dispersed paint solids by flocculating the paint
solids with a cationic flocculant to separate a clarified supernasolids with a cationic flocculant to separate a clanied sud
tant from a paint solid sluge, an improved process for recovering and reusing paint solids, comprising:
ering and reusing anionic dispersant to said paint solid sludge and maintaining said paint solid sludge at an alkaline pH , said
anionic dispersant being added in an amount to neutralize anionic dispersant ceitect of said catio flocculant; and dispersing said paint solid sludge in an effective amount of latex paint base for the production of a latex base paint. ion and extend from a distance over the bottom of the vat to above the surface of the suspension; a frame having an upper and lower surface to more than two-thirds composed of a filter
cloth; means for moving the filter cloth upwards along the cloth; means for moving the filter cloth upwards along the
upper surface of the cassette and downwards along the lower surface of the cassette, at least two suction boxes located under the filter cloth, having separate outlets, which suction boxes are open at the same time to the upper and lower surfaces, respectively, of the cassette for the wilh rawa filter cloth; the main part of the fluid being suctioned off through the filter cloth to the suction box which is open to the upper surface of he flow channel and a small part of the fluid being suctioned off through the suction box which is open to the lower surfac f solid particles from the filter cloth above the surface of the of solid partic
suspension.

## PROCESS FOR SEPARATING FLOC AND APPARATUS Parating floc Katsuhiro Hashimoto, Yamamto, and Takeo Hasegawa, Yoky, both of Japan, Tokyo, Japan <br> Filed Oct. 28, 1976, Ser. No. 736,363 Claims priority, application Japan, Nov. 6, 1975, 50-132439 Int. C. ${ }^{2}$ B01D 21/08

## 4,096,062

METHOD AND DEVICE FOR SEPARATION OF ISPENDED MATERIAL FROM A FLUID FLOW SUSPENDED MATERIAL FROM A FLuID Filand, assignBertel Myrcen, and Ualky Oy - Pargas Kall AB, Finland
ors to Paraisten ors to Paraisten Kaikki Oy - Pargan Kalr AB,
Flied Sep. 30, 1976, Ser. No. 728,318
Claims priority, application Finland, Oct. 6, 1975, 752784 U.S. Cl. 210-77


## 

1. A process for separating floc in a liquid and for accomplishing sedimentation of said floc, comprising the steps of: passing said liquid into a setlling tank having a plurality of partition chambers longitudinally arranged herein win respect to the direct plurality of fins carried on at least one side of separating walls vertically arranged in said tank and extending in a direction parallel to the direction of flow, the edges of said fins defining at least one side of narrow passages for the flow of liquid therethrough, forming eddy currents in said partition chambers, and hitting the floc suspended in said liquid against the surfaces of said fins causing said foc io be caught in
said eddy currents, whereby said floc accumulates in said eddy currents by contact of floc particles with each other to cause currents by contact of fioc particles with
sedimentation and separation thereof.

## 4,096,064 SYSTEM FOR REMOVAL OF TOXIC HEAVY METALS FROM DRINKING WATER FROM DRINKING WATER

## gene R du Freane, Sierra Matre, Calif,

Inc., South Gate, Calif. 1076 Ser 0 673,96e
Filed Apr. 5, 1976, Ser. No.
Int. C.
U.S. CI. 210- ${ }^{120}$ $\qquad$ 7 Claims 1. A system for the removal from drinking water of heavy netal ions by electrochemical replacement, said heavy meta ons being selected from the group consisting of ions of mer mium and silver, comprising at least one treatment column having:
water inlet duct and a water outlet duct,
a first cartridge containing particles of zinc, said cartridge

1. A method for separation of suspended solid particles from a fluid flow, whereby the fluid flow is divided into partial fluid flows in flow channels provided with an upper and a lower movable filter surface prew of the fluid and the lower in the main flow direction of the fluid, comprising maintaining the flow velocity of the fluid in the flow channels so high that the flow is turbulent but simultaneously so low that sedimentatio of the suspended material takes place for the formation of a content of suspended material in each partial fluid flow; filter ing off said clear top layer in an amount more than a half of the fluid fed to each flow channel through the upper filter surface; simultaneously suctioning less than a half of the fluid fed int the flow channe
said sediment.
2. A device for separating suspended solid particles from a
3. A method for removing suspended solids from liquid containing suspended solids and dissolved solids capable of passing liquid with such solids therein through a conduit at a velocity producing conditions of plug flow in the conduit, whereby suspended solids preferentially accumulate the liquid along said wall being relatively free of suspended solids, said wall being permeable to said liquid and at least a substantial portion of solids dissolved therein,

having screened inlet and outlet openings permitting
water flow-through but retaining said zinc particles within waid first cartridge, said zinctaining particles being pactivated prior
sithes within to insertion of said first cartridge into said treatment column by contact with a solution of a salt of a noble metal
selected from the class consisting of copper, nickel and silver,
a second cartridge containing particles of magnesium alloyed with a minor amount of manganese to inhibit water screened inlet and outlet openings permitting water flowthrough but retaining said magnesium/manganese particles within said second cartridge, said magnesium/manganese particles being prepackaged in said second car-

tridge prior to insertion of said second cartridge in said treatment column, said prepackaged second cartridge having an atmosphere consisting of a gas that is non-reac-
tive with said magnesium, said second cartridge further tive with said magnesium, said second cartridge further
comprising end barrier means, covering and hermetically sealing said screened inlet and ouvering to retain said non reactive atmosphere within said cartridge, said barrier means being removed by the initial flow of water through said cartridge after said second cartridge is inserted in said creatment column, and
adaptor means for releasably retaining said first and second cartridges in said column with said respective inlet and
outlet openings positioned to outlet openings positioned to permit flow of water from said first cartridge and then through said second cartridge.

## APPARATUS FOR $4,096,065$ <br> APPARATUS FOR AEROBIC TREATMENT OF

Werner Brach, Dormagen; Hans Guth, Leverkusen, and Helmut
Kuihn, Odenthal-Gloebusch, all of Germany, assignors to Bayer Aktiengesellschaft, Leverkusen, Germany
Filed Nov. 15, 1976, Ser. No. 742,313
Claims priority, application Germany, Dec. 4, 1975, 2554495 U.S. CI. 210—188 Int. Cl. ${ }^{2}$ B01D 19/00

10 Claims


1. In an apparatus for the gasification of a biomass in an aqueous medium in the presence of organic substances degradone clearing chamber for the gasified water-containing bio-
mass provided concentrically around the gasification tank, the gasification tank communicating with each clearing chamber a. the an inlet in the latter, the improvement wherein,
has gasification tank is from about 10 to 32 meters high has a height/diameter ratio between approximately 40 and 0.2 , is provided adjacent its floor with gas inlet points, and is connected via inlet pipes for introducing said gasified
water-containing biomass to at least one gas removal and flocculation cyclone said cyclone including the outle means for removing said gas and a distribution means fo introducing flocculated sludge into said clearing chamber . means for maintaining the same liquid level in all of the clearing chambers comprising an over flow channel a out 0.1 to 2 meters below the liquid level of the gasifica tion tank; and with a collector pipe.

## 4,096,066

TREATING CONTAMINATED LIQUIDS Thomas John Kearney, 34 Droitwich Rd., Worcester, England
Division of Ser. No. 647,735 , Jen. 9 1976, Pat. No. $\mathbf{9 9 4}$, which is a continuation of Ser. No. 295,939, Oct. 10, 1972, abandoned, which is a continuation of Ser. No. 51,954, Jul. 2, 1970, abandoned. This application Sep. 27, 1976, Ser. No. Claims priority, application Unite 33975/69; Apr. 21, 1970, 18928/70 Kingdom, Jul. 5, 1969, Int. Cl. ${ }^{2}$ B01D 21/00


1. An apparatus for dispersing a material in a liquid, compris-
(1) a liquid reservoir for holding a body of liquid having a surface portion containing said material,
(2) a chamber for receiving the surface portion of the body of liquid, said chamber being dispersed centrally in the (3) a weir bo the reservoir to permit gravity flow of the surface portion of the body of liquid over the weir into the chamber,
(4) a venturi pump means having
(a) a first outlet for a motive fluid,
(a) a first outlet for a motive fluid, (b) a suction inlet communicating with the chamber, and (c) an outlet,
(5) means for delivering the motive fluid under pressure to the first inlet of the venturi pump means whereby the
surface portion of the body of liquid is drawn from surface portion of the body of liquid is drawn from the
chamber through the suction inlet into the venturi pump means, and
(6) the outlet of the venturi pump means opening downwardly into the reservoir centrally thereof and thereby into the liquid wherein the material is to be dispersed
below the surface of the liquid.

4,096,067
VOLUME DISPLACEMENT ROD AND HOLDER Charles L. Sargent, Ypsilanti; Allan J. Coviello, Ann Arbor, and ard Corp Russell, Belleville, all of Mich. Corporation, Ann Arbor, Mich.
Flled Jun. 6, 1977, Ser. No. 803,646 Int. Cl. ${ }^{2}$ B01D 13/00; C02B $1 / 82$ U.S. Cl. 210-252

10 Claims


1. Apparatus for treatment of a fluid comprising a permeate collection casing having a permeate outlet port and axially aligned inlet and outlet ends, a membrane tube supported at its ends so as to provide a space between said casing and the midportions of said membrane tube for collection of permeate, conduit means coupled to said casing at each of said inlet and outlet ends in communication wid
brane tube for passage of said fluid, the permeate collection space between said casing and the exterior of said membrane tube being in communication with said permeate outlet port, a volume displacement rod supported in said conduit means and extending lengthwise through said membrane tube in spaced relation thereto so as to provide a con obstructions between said way for passage of said fluid free of obstrucions betwer said volume displacement rod having axial extensions for supporting it in displacement rod having axial extensid conduit means free of other obstructions between said volume displacement rod and said conduit means:

CAST BEAMS FOR FILTERBED WITH CROSS FLOW AT James Donald Walker, Aurora, Ill,, assignor to Peabody Gaiion Corporation Roscoe III. Filed Aug. 19, 1976, Ser. No. 715,998 Cl. 210-293 Int. Cl. ${ }^{2}$ B01D 23/18
U.S. Cl. 210-293

aid, in side-by-side relationship, to form a floor for supporting a bed of particulate filter media, said beam including: floor panel having therelhrough apertures for receiving distribution nozzles and apertures for receiving tie dow rods; and
flanges formed as part of the same casting and extending downwardly from the floor panel to provide an underbeing extending lengthwise of the beam, said flanges beng continuous along the intermediale portidy of near the ends of the beam to provide a crossflow passag from said underchannel to the underchannel of an adjacent similar beam.

## 4,096,069

FILTER FOR POLYMER MELTS AND SOLUTIONS Iadimir Konstantinorich Postavnicher, ulitsa Chernyakhor skogo, 12, kr. 85; Vladimir Ivanovich Klochkov, ulltsa Narod nogo Opolchenia, 5, kv. 57; Semen Ilich Gdalin, Oktyabrskaya ulitse, 19, kv. 79, and Vyacheslav Vasilierich Sharonov,
skaya ulitse, 12/17, kr. 209, all of Moscow, U.S.S.R.


Int. C1. ${ }^{2}$ B01D $25 / 02$
U.S. Cl. 210-342


1. A filter for polymer melts and solutions comprising: a casing having an inlet opening and an outlet opening; a hollow mandrel mounted within said casing; filter elements supported in said casing by said hollow mandrel for flowing a melt or solution therethrough for filtering thereof; two filtering baffles in each of said filter elements; a spacer plate in each of said
filter elements located between said two filtering baflles, each filter elements located between said two filtering bames, rach
said filter elements having a sleeve having through radial passages for providing communication of the inner space of the corresponding filter element with the inner space of said mandrel, said sleeve ieing located on the periphery of said mandrel between said filtering baffes; each of said fils bames on the ing a seal located between said two filtering baffles on the
periphery of said spacer plate; each of said filter elements periphery of said spacer plate, each or saing beaterer said filter elements on the periphery of said hollow mandrel; a spacer device comprising auxiliary spacer plates, each spacer plate being located between said fils erfle; a device for recirculating filtered polymer melts or solutions alternately through said filter elements for washing the filter; clamping flanges mounted on said hollow mandrel for axially fixing said filte elements.

## 4,096,070

BLOOD FILTER
Francis Martin Servas, Belle Mead, N.J., assignor to Johnson \&
Johnson, New Brunswick, N.J. Filed Jan. 3, 1977, Ser. No. 756,220
iled Jan. 3, 1977, Ser. No. 756,
Int. Cl. ${ }^{2}$ B01D 29/00

1. In a blood filter of the type having an 2 Claims 1. In a blood filter of the type having an inlet spike for frm a platic material selected from the group consisting of
polyoelifins and polycarbonates, the improvement comprising
the outer surface of said spike, that is the surface which is to
contact the bag opening during insertion of the filter, having a
Donald O. Mitzman, Bartlesville, Okla,, assignor to Phillips itzman, Bartlesville, Okla., assig Filed Jun. 30, 1975, Ser. No. 591,969
Int. C.
U.S. CI. 252-8.55 D
2. A method of producing microbial viscosifiers which comprises:
(a) contacting a fermenter effluent consisting essentially of gram-negative cells of a type which produce no extracel
lular material as a solid constituent with a base to raise th pH to a value within the range of 9 to 12; and
(b) aging said thus contacted material containing said base a a temperature of about $50^{\circ}-212^{\circ} \mathrm{F}$ for a period of at leas
5 minutes to increase the viscosity 5 minutes to increase the viscosity thereof

OIL RECOVERY BY 4,096,074
CROSECOVERY BY WATERFLOODING EMPLOYING
uniformly roughened finish of from 50 to 200 micro-inches, whereby the spike $\qquad$

4,096,071 G COMPOSITIONS
FABRIC TREATING PHASE PROPERTIES
 Alan P. Murphy, Cincinnati, Ohio, assignor to The Procter \& Division of Ser No 532276 , Dee 12
on of Ser. No. 532,276, Dec. 12, 1974, Pat. No. 4,049
This 4pplication Jul. 12, 1977, Ser. No. 814,962
U.S. CL. 252-8.6 Int. Cl. ${ }^{2}$ D00M $13 / 20$
fabric softener mixture especia
for use in an automatic clothes dryer, comprising:
(a) a fabric softener component comprising a (a) a fabric softener component comprising a member se-
lected from the group consisting of sorbitan esters charac terized by at least one free hydroxyl group and a meltin point of at least about $38^{\circ} \mathrm{C}$, and mixtures thereof, sai softener component being substantially free of un-neutral ized fatty acids; and
consisting of water-soluble ent selected from the group consisting of water-soluble fatty acid soaps, and mixtures
thereof, and water-soluble $\mathrm{C}_{10}-\mathrm{C}_{20}$ neutralized alkyl sul fates, and mixtures thereof, the weight ratio of aikyl sulener component to said phase-modifying component being in the range of from about $100: 1$ to about $1: 1$; said softener mixture being characterized by a melting point the range of from about $38^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$.

## FABRIC CONDITIONING COMPOSITION

 John Frankliin Brock, Springdale, and Kenneth Jobnn Schilling Cincinnati, both of Ohio, assigiors to The Procter \& Gamble Company, Cincinnati, Ohio$$
\begin{aligned}
& \text { Cincinanat, Onio } \\
& \text { Filed Feb. 9, 1976, Ser. No. } 656,218 \\
& \text { Int. C1. }{ }^{2} \text { D0MM } 13 / 46
\end{aligned}
$$

U.S. C. 252-8.8 17 Claim

1. Fabric conditioning particles consisting essentially of 1. from about $20 \%$ to about $55 \%$ of hydrogenated castor oil
having an iodine value of less than about 20 , and having an iodine value of less than about 20 , and salt fabric conditioning compound wherein said particles have a particle size diameter of from bout 5 to about 2000 microns.

CONTROL
Stamoulis Stournas, Flemington, N.J., assignor to Mobil Oil Corporation, New York, N.Y.

Filed Jul. 26, 1976, Ser. No. 708,727
S. C1. 252-8.55 D

1. In a method for the recovery 7 Claims ervoir penetrated by spacery of oil from a subterranean oil ems wherein an aqueous fluid is inctroduced and production sys. ems wherein an aqueous fluid is introduced into said reservoi system, the improvement comprising. employing as at least a portion of
said reservoir an aqueous solut the fluid introduced into ing the water soluble reaction product of an ifier comprisisocyanate having at least two reactive isocyanato group and the addition product of an reactive isocyanato group non-ionic polysaccharide, said addition product having molecular weight of at least about 100,000 said alkylene oxide having the formula

wherein $\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}$ and $\mathbf{R}_{4}$ are the same or different and are selected from the class consisting of hydrogen and lower alkyl groups containing from one to five carbon atoms,
said linear, non-ionic polysaccharide formed of repeating structural units having the formula

said addition product being cross linked by said polyisocya Said addition product being cross linked by said polyisocya
nate such that there is a minimum of an average of one nate such that there is a minimum of an average of one
cross link for every 2,000 of said repeating structural units up to a maximum of an average of one cross link for every 20 of said repeating structural units.

SELF-LUBRICATED SOLID MATERIALS Hajime Nakamura, Fuchu, Japan, assignor to Sankyo Oilless Industries, Inc., Tokyo, Japan

Filed Nov. 18, 1976, Ser. No. 743,00
Int. Cl. ${ }^{2}$ C10M $5 / 00,7 / 00$ U.S. C. 252-12.2

1. A selfl-lubricted solid material comprising:
a metalizic matrix having a lubricated surface; surface of said matrix;
a solid lubricant embedded in each of said circular cavities
such that the free surface of said solid lubricant coincide
with the lubricating surface of said matrix;
said circular cavities being disposed in the relation of
$R<P<R / \cos \theta$, when $0^{\circ}<\theta \leqq 45^{\circ}$, and
$\mathrm{R}<\mathrm{P}<\mathrm{R} / \sin \theta$, when $45^{\circ} \leqq \theta<90^{\circ}$
where $P$ is the distance between the centers of adjacent two ircular cavities, $R$ is the diameter of each of the circular circular cavities, $R$ is the diameter of each of the circular
cavities and $\theta$ is the angle defined between a predetermined direction and the line lying on the centers of the two circular cavities; and
the arrangement being such that the lubricity can be main-
tained for a long time in said predete
well as in a direction normal thereto.

## 4,096,076

FORGING COMPOUND
Willinm D. Spiegelbere, Parma, Ohio, assignor to TRW Inc., Cleveland, Ohio

Flled Jan. 29, 1976, Ser. No. 653,382
U.S. C1. 252-30 10 Claims 1. A forging compound for at least partially coating work pieces of titanium and its alloys prior to hot die forging of the workpiece, said forging compound comprising a mixture oundary layer particles and powder oitireous compo nents, said boundary layer particles remaining soltd at graphite temperatures and being selected from layer particles being less than $40 \%$ and more than $7 \%$ by weight of the total vitreous and boundary layer components of the forging compound, said powder of vitreous components being substantially rree of
materials which have a tendency to corrosivel attack the forging dies and comprising diboron trioxide in an amount between about 60 to $75 \%$ by weight of the vitreous components and silica glass to provide a desired viscosity during
forging, the balance of the vitreous components comprising a metal oxide wetting agent to promote spreading of the vitreous components over the surface of the workpiece during forging, the metal oxide wetting agent being between about one-half of 1 to $5 \%$ by weight of the vitreous components and being an oxide of cobalt.
2. The compound of claim $\mathbf{1}$ wherein the boundary layer
particles are boron nitride particles and the metal oxide is cobalt oxide.

WEAR-INHIBITING COMPOSITION AND PROCESS Wward Antone Swakon, Warrenville, III, Oil Company (Indiann), CCicago, III. Continuation-in-part of Ser. No. 3, 1976, Ser. No. 720,265 Int. CI. ${ }^{2} \mathbf{C 1 0 M} 1 / 54,3 / 48,1 / 24,1 / 32$
U.S. C. 252-33.6

1. A composition comprising a major proportion of a natural or synthetic lubricating oil and a minor proportion of an oiliting additive composition being added in wear-inhibiting amounts and comprising benzotriazole or $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkyl substituted benzotriazole and a material selected from the group
onsisting of at least one half-acid half-ester, half-acid halfamide, and half-acid halfe-thioester of succinic or malecic acid or acid anhydride and an alcohol, amine, and mercaptan, respecacid anhydride and an alcohol, amine, and mercappan, ridece or
tively, a metal salt of at least one said haffester, hall-amide, or tively, a metar salt of ait eases thereof, wherein the alcohol and
half-thioester, and mixtur mercaptan comprise acyclic aliphatic compounds containing from 7 to 50 carbon atoms, wherein the amine comprises a straight-chain primary or secondary amine having from 7 to 50
carbon atoms and is selected from the group consisting of monoamines and polyamines having at least 2 carbon atoms separating each pair of nitrogen atoms, and wherein said metal salt comprises a Group IIA, Group IIB, tin or lead metal salt or mixtures thereof.

## SYNTHETIC 4,096,078

 SYNTHETIC AIRCRAFT TURBINE OILRoberta Yaffe, Glenham, N.Y., assignor to Texaco Inc., New

$$
\begin{aligned}
& \text { iled Jun. 28, 1977, Ser. No. 810,718 } \\
& \text { Int. Cl. }{ }^{2} \text { C10M } / / 48
\end{aligned}
$$

U.S. C. $252-46.9$

$$
\begin{aligned}
& 6.7 \\
& \text { ic lubricating oi }
\end{aligned}
$$

1. A synthetic lubricating oil composition comprising a major portion of an aliphatic ester base oil having lubricatin organic monocarboxylic acid having from about 2 to 18 carbon atoms per molecule containing:
a. from about 0.3 to 5 percent by weight of the lubricating oil composition of an alkyl or alkaryl phenyl naphthylamine in which the alky racal has from 7 to 12 carbon atoms, b. from about 0.3 to 5 percent by weight of a dialkyldiphenylamine in which the alkyl radicals have from 4 to 12 carbon atoms.
c. from about 0.001 to about 1.0 percent by weight of a polyhydroxy-substituted anthraquinone,
from about 0.25 to 10 percent by weight of a trihydrocar byl phosphate ester in which said hydrocarbyl radica contains an aryl ring and contains from about 6 to 18 carbon atoms,
from about 0.005 to 0.02 percent by weight of $4,4^{\prime}$-dithiodimorpholine, and
from about 10 to about 100 ppm , based on the composition, of 3 -amino-triazole.

4,096,079
PROTECTIVE LUBRICATING COMPOSITIONS FOR RECORDING
Robert P. Pardee, Boulder, Colo., assignor to Ball Brother Research Corporation, Boulder, Colo. 722.17

Filed Sep.
-51.5
R
21 Claim

1. A composition for imparting wear resistance and lubricity 1. A cubstrate upon which recorded signals have been store said composition consisting essentially of an essentially homogeneous halogenated organic solution of a major proportion of an inert halogenated solvent, a low-molecular weight tetranlu oroethylene telomer, said telomer being a member select from the group consisting of:

$$
\mathrm{R}\left(\mathrm{CF}_{2}-\mathrm{CF}_{2}\right)_{\mathrm{e}} \mathrm{X}
$$

wherein $R$ is a haloalkyl containing 1 to 4 carbon atoms, $X$ is member selected from the group consisting of chlorine, odine and fluorine and $a$ is an integer from about 6 to about 16,
$\mathrm{R}^{\prime}\left(\mathrm{CF}_{2}-\mathrm{CF}_{2}\right)_{6} \mathrm{Y}$
wherein $R^{\prime}$ is a hydrogen-containing moiety of a telogen, said telogen being a tertiary hydrocarbon, Y is a member selected

GAS SCRUBBING SYSTEM
malilwood Holoman JT.; Robert G. Asperger, both of Midland,
Mich., and Leroy S. Krawcyk, Lake Jackon Mlch., and Leroy S. Krawczyk, Lake Jackson, Tex., assignors Filed Oct. 29, 1976, Ser. No. 736,918 U.S. Cl. 252-189 Int. Cl. ${ }^{2}$ C $09 \mathrm{~K} 3 / 00$

$\qquad$ 15 Claims indicated by the character (IV), where $R$ is an $n$-alkyl group 1. A corrosion inhibited aqueous N -methyldiethanolamine having 5 to 6 carbon atoms.
or dially of (1) an amine compound or mixture of compound
tind having the formula

wherein $n$ is an integer from 1 to $3, m$ is an integer 2 to an integer to yield a molecular weight of about 800 and each $R$ represents a member selected from the group consisting of
$-\mathrm{H},-\mathrm{C}_{n}, \mathrm{H}_{2 n}, \mathrm{OH}, \mathrm{C}_{n}, \mathrm{H}_{2 n}$, or $-\mathrm{C}_{n}, \mathrm{H}_{2 n}, \mathrm{~N}\left(\mathrm{R}_{3}\right) \mathrm{R}_{4} n^{\prime}$ is an integer from 1 to 2 , and wherein $R_{1} R_{3}$ and $R_{2} R_{4}$ are joined ogether and $n^{\prime}$ is 2 ; said compound being present in about 10 to about 2000 parts per million parts treating solution; (2) ppm ; and (3) sulfur or a sulfur atom yielding compound in from 0 to 1000 ppm .

## 4,096,086

NEMATIC LIQUID CRYSTAL COMPOSITION adao Kanbe, Suwa, Japan, assignor to Kabushiki Kaisha Suwa Seikosha, Tokyo, Japan

Filed Dec. 23, 1975, Ser. No. 643,88
Claims priority, application Japan, Dec. 23, 1974, $50-2439$ Dec. 25, 1974, 50-4133; Dec. 26, 1974, 50-711; Jan. 30, 1975,

## U.S. Cl. 252-299

 $-299$1. A nematic liquid crystal composition of net positive dielectric anisotropy having a wide temperature range of opera-
tion and suitable for use in display cells consisting apart from tion and suitable for use in display cells consisting apart from
minor impurities and additions of 68 to 76 weight percent of a least one compound having the general formula

dicated by the character (I), where $\mathbf{R}$ is an n -alkyl group having 3 to 9 carbon atoms; and at least one compound from three types of compounds having respectively, the formulas

indicated by the character, (II),

indicated by the character (III) and

ELECTROCHROMIC AND PHOTOCHROMIC MATERIAL AND A METHOD OF FABRICATION OF SAID MATERIAL and Philippe Gerard, Saint Martin des la Cluze, all of France, assignors to Commissariat a 1 'Energie Atomique and Agence
Nationale de Valorisation de la Recherche (ANVAR), both of Paris, France
Claims pried Mar. 7, 1977, Ser. No. 775,374 Claims priority, application France, Mar. 19, 1976, 7608034 U.S. C1. 252-300 Int. Cl. ${ }^{2}$ G02B $5 / 23$


1. Electrochromic and photochromic material, wherein said material is constituted by a sub-stoichiometric amorphous
oxide doped by hydrogen corresponding to the formula oxide doped by hydrogen corresponding to the formula
$\mathrm{MO}_{x} \mathrm{H}_{y}$ where M is a metal of group VI , with $2.6<x<2.8$ and $0.3<y<0.6$.
$\longrightarrow$

METHOD OF PREPARING CERIUM AND TERBIUM ACTIVATED ALUMINATE PHOSPHORS
Peter Whitten Ranby, and Doreen YYone Hobbs, both of Lon-
don, England, assignors to Thorn Electrical Industries Limdon, England, assignors to Thorn Electrical Industries Lim
ited, London, England Division of Ser. No, 540,8

This application Feb. 7, 1977, Ser. No. 766,342 Claims priority, appication United Kingdom, Jan. 17, 1974, 2279/74
U.S. C. 252-301.4 ${ }_{\text {R }}^{\text {Int }}$ ${ }_{4}^{\text {Int. }}$
lat. C1. ${ }^{2}$ CosK $11 / 4$
10 Claims 1. A method of making a magnesium, zinc and/or lithium aluminate phosphor activated by cerium and terbium and having a hexagonal ( $\beta$-alumina) crystal structure, which comprises preparing a mixture of aluminum ammonium sulfate and the oxides of the magnesium, zinc and/or lithium and of the cerium and the terbium, or compounds which thermally dethe mixture in air to a temperature above $1200^{\circ} \mathrm{C}$, said phosphor having a ratio of $\mathrm{Mg}, \mathrm{Zn}$ and/or $\mathrm{Li}_{2}: \mathrm{Al}$ of from 0.01 to $0.5: 1$, of Ce:Al of from 0.001 to $0.1: 1$ and of $\mathrm{Tb}: \mathrm{Al}$ of from 0.005 to $0.25: 1$

SALT OF SULFON 4,096,089 METHOD OF PREPARATION THEREOF, AND USE THEREOF AS DISPERSING AGENT AND VISCOSITY
William J. Shibe Jr RUCER
William J. Shibe, Jr, and William Wood, both of Moorestown, N.J., assignors to Sybron Corporation, Rochester, N.Y.

U.S. Cl. 252-310
U.S. A. compound having the formula

where $\mathbf{X}$ is $\mathrm{Na}, \mathbf{K}$, or ammonium.

4,096,091
PRECIPITATE IN THE PRESED CAPACTTY TO ENDOTOXIN CONCENTRENCE OF LOW RECONSTITUTING SOLUTIONS TH, AND
obert E. Hopkins II Deerfeld in
nol Laboratories, Inc., Deerfield, III.
Filed Jul. 17, 1974, Ser. No, 489,224

U.S. Cl. 252 - 408 1. In a Limulus lysate solution, for providing improved
capacity for the solution to precipitate in the presence of excapacity for the solution to precipitate in the presence of ex-
tremely low concentrations of endotoxin, the improvement tremely low concentrations of endotoxin, the improvement from the group consisting of imidazole, ionic manganese, Cleland's reagent, glutathione, alkali metal thioglycollates, thio
uracil, and cysteine.

## 4,096,092

4. A method of dispersing a solid in water comprising adding Arthur W. Langer, Jr., Watchung NST SYSTEM
 Filed Feb. 11, 1977, Ser. No. 767,747 Int. C. ${ }^{2}$ B01J $31 / 02.31 / 12$
U.S. Cl. 252-429 C
5. An improved catalyst composition adaptable 16 Clims pha-olefin polymerization which comprises a mixture of (a) at least one Group IVB to VIII transition metal halide (a) at least one Group IVB to VIII transition metal halide; metal dihalide cocatalyst being selected from the group consisting essentially of aluminum, gallium and indium; (c) a compound having the structure of
$\mathrm{R}_{2}^{\prime} \mathrm{YNR}_{2}$
wherein $\mathbf{Y}$ is selected from the group consisting of aluminum, indium and gallium, $R^{\prime}$ is selected from the group ralkyl groups and R is a C to C bulky alkyl or cycloa kyl group, said cocatalyst being in a mole ratio of 0.5 to 1.5 moles of said cocatalyst to said compound.

POLYMERIZATION CATALYST AND METHOD
Yu-Tang H wang, Cinton, Iowa, assignor to Chemplex Company Rolling Meadows, III.

Filed Jun. 24, 1976, Ser. No. 699,536
U.S. CI. 252-430
ht. C1. ${ }^{2}$ B01J $31 / 02,31 / 12$
. 1 . 37 Claims ifficultly reducible, inorganic support of the finely divided, of silica, alumina, thoria, zirconia, titania, magnesia, and mis res and composites thereof a reaction product of (1) a chro mium carboxylate essentially of the formula

$$
{ }_{\|}^{(\mathrm{R}-\mathrm{C}-\mathrm{O}-)_{m} \mathrm{CrX}}
$$

wherein $R$ is selected from hydrogen, alkyl, alkenyl, ary rylakyl, cycloalkyl, and cycloalkenyl radicals and combinaions of these radicals with R containing $0-30$ carbon atom and a corresponding number of valence--satisfying hydrogen atoms, $m$ is a whole number of 1 to $3, n$ is a whole number of
0 to $2, m$ plus $n$ is 2 or 3 and X is a halide, alkyl or alkoxy and (2) an organic nitrogen compound capable' of forming a complex with trivalent chromium and essentially of the formula of he class consisting of

CATALYZED HYDRAZINE COMPOSTTIONS AND METHODS OF THEIR USE
Manfred G. Noack, Northford, Coan., assignor to Olin Corpora tion, New Haren, Conn
Continuation-in-part of Ser. No. 606,550, Aug. 21, 1975, Pat. No. 4,012,195. This application Jan. 27, 1977, Ser. No. 763,193 hass been disclaimed.
U.S. C. 252-389 R

1. A composition comprising:
(a) a hydrazine compound; and
romanometallic comprex to about 0.1 parts by weight of an
said organometallic complex being the reaction product
of: (i) a hydroxide selected from the group consisting of cobaltous hydroxide and manganous hydroxide; and (ii) one or more organic ligands selected from the group
consisting of unsubstituted and substituted ortho-dihydroxy aromatic compounds and unsubstituted and substituted ortho-aminohydroxy aromatic compounds. 14. A method of treating a fuidic corrosive envirein, hhich comprises: treating said environment with a composition comprising:
(a) a hydrazine compound; and
) from about 0.0005 parts to about 0.1 parts by weight of an organometallic complex per part of hydrazine compound
said organometallic complex being the reaction product
(i) a hydroxide selected from the group consisting cobaltous hydroxide and manganous hydroxide; and (ii) one or more organic ligands selected from the group consisting of unsubstituted and substituted ortho-dihydroxy aromatic compounds and unsubstited and
$\mathrm{R}^{\prime}-\mathrm{CH}-\mathrm{CH}-\mathrm{R}$
1
$\mathrm{NH}_{2} \mathrm{NH}_{2}$

wherein each $\mathbf{R}^{\prime}$ is individually selected from hydrogen, alkyl alkenyl, cycloalkyl, cycloalkenyl, aryl, and arylalkyl radicals ing number of valence-satisfying hydrogen atoms $j$ is a whole number of 1 to $5, k$ is a whole number of 1 to 3 , and $Y$ is $>C O$, $>\mathrm{NH}$, or $>\mathrm{CH}_{2}$, and activating the resulting mixture by heating to and at an elevated temperatur

## 4,096,094 <br> SUPPORTED CATALYSTS CONTAINING VANADIUM

 ort Blechschmitt, Schifferstant; Peter Reuter, Bad Deand Friedrich Wirth, Ladwigshafen, all of Germany, asslgnors
to BASF Aktiengesellechaft, Lodwighafen am Rhein, Ger-

## ann

Claims priority, application Germany, Oct. 24, 1975, 254762
, 1.252 .140 1. $23 / 04,23 / 18,23 / 22,21 / 06$

## U.S. C. $252-40$

1. A. 2spported catalyst for the oxidation 3 Clims unsaturated aliphatic hydrocarbons, comprising an inert nonporous carrier to which is applied a layer of a catalytic compo-
sition which contains from 1 to 39.9 percent by weight of vanadium pentoxide and from 60 to 98.9 percent by weight of the supported catalyst of from 0.05 to 4 percent by weight wherein the catalytic composition also contains from 0.1 to 10 percent by weight total of rubidium in the form of rubidium
oxide, rubidium vanadate or rubidium sulfate and antimony in xide, rubidium vanadate or rubidium sulfate and antimony in
he form of antimony trioxide, antimony vanadate, or antimony sulfate in an atomic ratio $\mathrm{Rb}: \mathrm{Sb}$ of from $1: 2.5$ to $1: 30$.

$$
-
$$

1096095
CATALYST OF A COATING ON AN ALLOY SUBSTRATE ames Anthony Cairns, Wantage, England, assignor to United Kingdom Atomic Energy Authority, London, England
Claims priority, application United Kingdom, Apr. 14, 1976,
15406/76
Int. Cl. ${ }^{2}$ B01J 21/04, 23/74, 23/8
U.S. CI. $252-165$

1. A catalyst comprising an Al-containing Fe-base alloy 1. A catalyst comprising an Al-containing Fe-base alloy
refractory oxide in association with an oxide of an element of the first period of transition elements of the Periodic Table from the refractory oxide, and a second coating comprising catalytically active material for treating automotive exhaust gases in association with a refractory oxide wherein said coat-
ing is carried by said protective coating. ing is carried by said protective coating.

METHOD FOR MANUFACTURE OF CATALYST USED FOR REDUCTION OF NITROGEN OXIDES Yasuo Nishikawa; Akira Watanabe; Tetsuya Sugimoto; Yasutoshi Mizuta, all of Okayama, and Yosho Hatayama, Ka-
shihara, all of Japan, assignors to Kyushu Refractories Co., Ltd., Bizen, Jappan
Filed Aug. 9, 1976, Ser. No. 712,698
Claims priority, application Japan, Aug. 21, 1975, 50-101447 U.S. Cl. 252-466 J

1. A method for the production of a catalys 3 Claims reduction of nitrogen oxides, which method st for use in the (a) suspending at least one iron-containing substanise lected from the group consisting of $\mathrm{Fe}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}, \ldots \mathrm{He}$, $\mathrm{Fe}(\mathrm{OH})_{2}, \mathrm{Fe}(\mathrm{OH})_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$ in an aqueous solution $\mathrm{Fe}(\mathrm{OH})_{2}, \mathrm{Fe}(\mathrm{OH})_{3}$ and $\mathrm{Fe}_{3} \mathbf{O}_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$ in an aqueous solution
consisting essentially of water and at least one aluminumcontaining substance selected from the group consisting of alumina sol, alumina gel and water-soluble aluminum salts whereby said aluminum-containing substance deposits on the surface of said iron-containing substance as a precipito the aluminum-containing substance being 55 to 95 weight percent as $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to 5 to 45 weight percent as $\mathrm{Al}_{2} \mathrm{O}_{3} ;$ and
(b) washing and drying the resultant precipitate;
(c) molding the dried precipitate;
(d) baking the molded precipitate at a temperature in the
range of from $300^{\circ}$ to $1000^{\circ} \mathrm{C}$ to obtain a product consisting essentially of iron oxide and alumina.

4,096,097
METHOD OF PRODUCING HIGH QUALITY SPONGE COKE OR NOT TO MAKE SHOT COKE sooung.Yuan Yan, Philadelphia, Pa., assignor to Mobll Oit Corporation, New York, N.Y.

Filed Dec. 27, 1976, Ser. No. 754,288
Int. Cl.2
U.S. CI. 252-510

27 Claims

1. In a delayed coking process for producing petroleum cok wherein a hydrocarbon feedstock is charged to a coking furace, heated to coking temperature, charged to a coking drum coke is formed, and a petroleum coke product is periodically recovered from the coking drums; a method for minimizing hot coke formation which comprises adding from 0.5 to 20 percent by weight of a carbonaceous material which contains
rom 5 to 60 percent by weight of oxygen and which decomoses at the coking temperature to the hydrocarbon feedstock.

SEMICONDUCTOR CERAMIC COMPOSITION Kazumasa Umeya, and Kazunari Yonezaka, both of Tokyo, Japan, assignors to TDK Electronics Con, Ltd, Tokyo, Japan FFiled Nov. 17, 1975, Ser. No. 632,840
Claims priority, application Japar, Aug. 8, 1975 , Claims priority, application Japan, Aug. 8, 1975, 50-96537 U.S. C. 252-520 Int. C. ${ }^{2}$ H01B 1/06 1. A semiconductor ceramic composition emperature characteristics, which comprises: (a) titanates of barium, lead and calcium which have 1-40 mole $\%$ of lead titanate, $1-22$ mole $\%$ of calcium titanate
and $38-98$ mole $\%$ of barium titanate,
tents of barium, lead and calcium titanates are based on 100 mole $\%$ of titanate present in said composition; and nent of a metal derived from the metal oxides selected from the group consisting of $\mathrm{Nb}, \mathrm{Ta}, \mathrm{Bi}, \mathrm{Sb}, \mathrm{W}$, and the rare earth element oxides

POROUS SYNTHETIC RESIN FILM
Kenjl Koyama, and Syotaro Ohno, both of Shin-nanyo, Japan, asslgnors to Toyo Soda Manufacturing Co., Ltd., Japan
Filed May 14, 1976, Ser. No. 686,573 Clałms priority, spplication Japan, May 29, 1975, 50-63518
U.S. CI. 260-2.5 D

5 D .
6 Claims 1. A porous synthetic resin film which comprises fine cylin formed by removing the tine cylindrical component from the ontinuous phase component of a film of a block copolymer of the AB or ABA-type.

## 4,096,100

BLOWING AGENTS-BIS(HYDROCARBYLSULFONYL) CARBOHYDRAZIDES
Byron A. Hunter, Woodbridge, and Irwin A. Prager, Waterbury
Filed May 24, 1976, Ser. No. 689,448
York, N.Y. Waterbury,
May 24, 1976, Ser. No.
Int. C. ${ }^{2}$ C08J 9/08, $9 / 10$
U.S. C. $260-2.5 \mathrm{R}$

9 Claims

1. A composition comprising a gas-expandable polymeric material and a bis(hydrocarbylsulfonyl) carbohydrazide se lected from the group consisting of
$\mathrm{RSO}_{2} \mathrm{NHNH}-\mathrm{C}-\mathrm{NHNHSO}_{2} \mathrm{R}$
and

$$
\left[\begin{array}{c}
\mathrm{Y}-\mathrm{SO}_{2} \mathrm{NHNH}-\mathrm{C}-\mathrm{NHNHSO}_{2} \\
\mathrm{O}_{\mathrm{O}}
\end{array}\right]
$$

wherein $R$ is selected from alkyl having 1 to 12 carbon atoms aryl having 6 to 12 carbon atoms, aralkyl having 7 to 12 carbon atoms, alkaryl having 7 to 12 carbon atoms and cycloalky having 5 to 9 carbon atoms; and wherein $Y$ is a difunctional
radical selected from phenylene, alkarylene having 7 to 10 radical selected from phenylene, alkarylene having 7 to 10
carbon atoms, and a group of the structure $-R^{1}-A-R^{2}-$ carbon atoms, and a group of the structure - K - $\mathrm{A}-\mathrm{R}$ wherein $\mathbf{A}$ is selected from the group consisting of a single
bond connecting $\mathbf{R}^{1}$ and $\mathbf{R}^{2},-\mathrm{O}-,-\mathrm{S}-,-\mathrm{SO}-,-\mathrm{SO}_{2}$, alkylene with 1 to 6 carbon atoms, and alkylidene with 2 to 3 carbon atoms, and wherein $R^{1}$ and $R^{2}$ are the same or differen and are alkylene having 1 to 4 carbon atoms or phenylene, and wherein $n$ is an integer from 2 to about 50 .

PROCESS FOR THE 4,096,101
PROCESS FOR THE PRODUCTION OF CHEMICALLY AFTER-CROSS-LINKED POLYURETHANE RESINS Johannes Blahak, Cologne; Kuno Wagner, Leverkusen; Jan
Mazzinek, Cologne; Hanns Peter Muller, Leverkusen, and Artur Reischl, Dormagen, all of Germany, assignors to Bayer Aktiengesellischaft, Leverkusen, Germany
Filed Jul. 12, 1977, Ser. No. 814,828
Claims priority, application Germany, Jul. 24, 1976, 2633457 Int. C1. ${ }^{2}$ C08J 9/00
U.S. Cl. 260—2.5 BE Int. $\mathbf{C}$
BE
the prod $\qquad$

1. A process for the production of cross-linked elastomeri 1. A process
optionally celluar polyurethane resins comprising reacting:
(a) polyyiscyanates,
(b) higher molecular weight polyhydroxyl and/or poly amino compounds containing filler particles
caain lengthening agents wherein said filler particles are capable of being cross-linked with formaldehyde and wherein the elastomeric polyurethanes containing fillers re cross-linked with formaldehyde or formaldehyde releasing compounds after the chain lengthening reaction has been essentially completed.

MOLDABLE COMPOSITIO
MOLDABLE COMPOSITIONS COMPRISING THERMOSETTING POLYESTER RESIN AND THERMOPLASTIC RESIN Charles E. Bolen, Newark, all of Ohio, assignors to Owens Corning Fiberglas Corporation, Toledo, Ohio
tion of Ser. No. 544,454, Jan. 27, 1975, absandoned. This Int. Cl. ${ }^{2}$ C08G 63 icat 02
U.S. C. 260-22 D

14 Clinims

1. A moldable composition comprising a thermosetting oolyester resin and a thermoplastic resin, said thermoplastic resin comprising the reaction product of a polyol and a dimer long chain acid having at least 36 carbon atoms in said chain and having two alkyl side chains and having at least one ethylenic bond, said trimer acid being an aliphatic, tribasic, long hain acid having at least 54 carbon atoms in said chain and a
$\qquad$

## 4,096,103

PRESSURE-SENSITIVE ADHESIVE COMPOSITION Pallavoor R. Lakshmanan, Houston, Tex.; Harold E. Switt Gibsonis, and Ching Yong Wu, Pittsburgh, both of PL, sasign ors to Gulf Research \& Development Company, Pittsburgh,
Pa

Filed Dec. 29, 1976, Ser. No. 755,160
U.S. CI. $260-27 \mathrm{BB}$ 1. A pressure-sensitive adhesive composition consisting essentially of a tackifier selected from the group consisting of
(i) an isoprene-piperylene copolymer having a Ring and Ball softening point of about $10^{\circ}$ to about $135^{\circ} \mathrm{C}$., a molecular weight of about 400 to about 3000 and a weight ratic
isoprene to piperylene of about $1: 10$ to about $10: 1$;
isoprene to piperylene of about $1: 10$ to about $10: 1$;
a piperylene/2-methyl-2-butene copolymer having a
Ring and Ball softening point of about $10^{\circ}$ to about 135 C., a molecular weight of about 400 to about 3000 and weight ratio of piperylene to 2 -methyl-2-butene of abou 1:10 to about 10:1;
(iii) beta terpene resins having a Ring and Ball softening point of about $10^{\circ}$ to about $135^{\circ} \mathrm{C}$. and a molecular weigh
(iii) rosin or rosin and Ball softenin point of about $10^{\circ}$ to about $190^{\circ} \mathrm{C}$. and a molecular weigh of about 300 to about 3000 .
in combination with an elastomer comprising isoprene and piperylene having a molecular weight of at least about 40,000 cess for preparing an elastomer comprising copolymerized $\mathrm{C}_{5}$-hydrocarbons prepared from a hydrocarbon mixture con aining $\mathrm{C}_{5}$-monoolefinic hydrocarbons, $\mathrm{C}_{5}$-diolefinic hydrocar ons, $\mathrm{C}_{5}$-paraffins, $\mathrm{C}_{6}$-paraffins and benzene, which comprises ufficient to dimerize cyclopentadiene; (B) separating the reulting hydrocarbon mixture from the cyclopentadiene dime and (C) copolymerizing the resulting hydrocarbon mixture in he presence of a catalyst which comprises an iron complex, rialky aluminum and a bidentate ligand capable of both pi and sigma bonding, the weight percents of the three compt.
being $5-35$ elastomer, $5-35$ tackifier, and $30-90$ solvent.

FINISH COMPOSITION FOR FIBROUS MATERIAL Raymond G. Spain, Huntington Beach, and Albert L. Miller Torrance, both of Calif,, assignors to Hitteo, Irvine, Calif Filed Nor. 10, 1976, Ser. No. 740,253 U.S. C. $260-28.5$ B

1. A finish composition for fibrous members comprising a
and U.S. C. $260-28.5$ B
2. A finish composition for fibrous members comprising a
and rubber latex and a wax emulsion, the rubber of the latex being incompatible with the wax of the emulsion, the rubber latex
and the wax emulsion forming an aqueous emulsion having a andids concentration by weight of not substantially less then about $1 \%$ nor more than about $3 \%$ and the weight of the wax emulsion being $10-80 \%$ of the weight of the rubber latex. 14. A method of preparing a woven article from fibers
carbonaceous material comprising the steps of: providing a plurality of fibers of carbonaceous material; coating the fibers with an aqueous emulsion having a solids
concentration by weight of not substantially less than concentration by weight of not substantially less than about $1 \%$ and not more than about $3 \%$, the aqueous emul-
sion being formed by a rubber latex and a wax emulsion, sion being formed by a rubber latex and a wax emulsion,
the rubber of the latex and the wax of the wax emulsion both being dispersed in the aqueous emulsion;
drying the coating to form a dry mixture of rubber and wax on the surface of the fibers;
weaving the fibers to form a woven article; and
treating the woven article to rember and wax from the surface of the fibers.

## AQUEOUS COATING COMPOSITION

Vincent Daniel McGinniss, Valley City, Ohio, assignor to SCM Corporation, New York, N.Y.
The portion of the term of this patent subeequent to Dec. 9, 1992
rm of this patent subseq
has been disclamed.
Int. C1. ${ }^{2}$ C25D 13/10
U.S. CI. 260-29.6 NR 12 Cluims 1. A coating composition in aqueous dispersion for forming a heat-curable film thereof on a substrate comprising: a polymer having at least about $5 \%$ by weight pendant
primary and/or secondary amine groups, said amine groups being protonated with acid to render said polymer water dispersible; and
at least about $5 \%$ by weight of said polymer of an alpha-, beta-ethylenically unsaturated carbonyl cross-linkin agent having at least two alpha-, beta-thylenically unsat urated carbonyl groups,
said film of said coating composition being heat-curable at a
temperature sufficient v volatilize the water and said acid in said film, whereby said protonated amine groups become de
protonated and said cross-linking agent cross-linking said poly protonated and said cross-linking agent cross-linking said poly merization to form a heat-cured film on said substrate.

## 4,096,106

AQUEOUS COATING COMPOSTHIONS CONTAINING N POLPART FROM THE REACTION PRODUC FF POLYBUTADIENE WITH AN UNSATURATED
DICARBOXYLIC ACID OR ANHYDRIDE Ryuil Kita, Kawassaki, Japan, assignor to Chemische Werke Huls Akttiengesellschaft, Marl, Germany
Claims priority, application Japan, Jun. 24, 1975, 50-77688 U.S. CI. $260-29.7$ H lnt. C.2. CosL $9 / 10$

8 Claims 1. In an aqueous coating composition comprising a water ment wherein said resin consists essentially of the addition product obtained by:
(a) reacting (i) an $\alpha, \beta$-ethylenically unsaturated dicarboxylic acid or anhydride with (ii) a butadiene polymer having a
containing $40-75 \%$ cis- 1,4 double bonds, $20-50 \%$ vinyl 1,2 double bonds and not more than $15 \%$ trans-1,4 double bonds in the butadiene units of the polymer chain; and product soluble or dispersible in water. product soluble or dispersible in wate

## 4,096,107 <br> MOLDING COMPOUNDS

 Michael Graeg Roberts, Heath, and Charies Edwin Bolen, Newark, both of Ohio, assignora to Owens-Corning Fibergias Corporation, Tiledo, OhloFiled Nov. 12, 1976, Ser. No. 741,273
Int. C. ${ }^{2}$ C08K $3 / 40.5 / 01$
U.S. Cl. $260-33.6$ UA

1. A molding composition comprising:
(1) an unsaturated, thermosetting prepolymer;
(2) a thermoplastic polymer prepared by interpolymeriza-
tion of tion of
(a) at least one polymerizable ethylenic monomer,
(a) at least one polymerizable ethylenic monomer,
(b) an organic acid or anhydride containing at least one (b) an organic acid or anhydride containing at least one
carboxyl group and one double bond per molecule, (c) an unsaturated elastomer having a weight average molecular weight less than 40,000, and (d) an unsaturated elastomer having a weight average
molecular weight greater tan 43,000 wherein molecular weight greater than 43,000 wherein each
elastomer contains at least $10 \%$ by weight of a conjugated diene;
(3) at least one unsaturated compound which is a solvent for the prepolymer and the thermoplastic polymer and which is capable of cross-linking the prepolymer; and
(4) a non-reactive solvent, with the thermoplastic polymer
and the non-reactive solvent each being present in a com and the non-reactive solvent each being present in a com-
bined amount sufficient to reduce shrinkage on cross-linking of the prepolymer with the unsaturated compound.

THERMOSETTABLE RESINS AND FRICTIONAL MATERIALS MADE THEREFROM Benton Paul Webb, Richwood, and Donald Louis Nelson, Lake Jackson, both of Tex., assignors to The Dow Chemical Com-

> Flued May 17, 1976, Ser. No. 687,132 Int. Cl. ${ }^{2}$ C08K $3 / 34$
U.S. Cl. $260-38$

18 Claims

1. An improved frictional material which comprises a filler material and a cured modified novolac, prepared by reacting 1. a methoxy functional diaryl compound with
2. a phenolic compound and
3. formaldehyde
in the presence of
4. an acid catalys
at a temperature of from about $90^{\circ}$ to about $190^{\circ} \mathrm{C}$ for from several minutes to several hours to form a modified novolac, grinding said novolac and mixing with a source of formaldehyde and said filler material, curing said mixture in a mold and heating under pressure for

## POLYESTER HLMS $4,096,109$

POLYESTER FILMS USEFUL AS MAGNETIC TAPES Masamichi Watanabe, Yokohamar; Takuo Nakahara; Seij Aakamoto, both of Machids; Kunio Bizen, Yokohama; Japan, assignors to Mitsubishi Chemical Induatries Limited Tokyo, Japan Filed Jul. 16, 1976, Ser. No. 705,914 Claims priority, application Japan, Jul. 21, 1975, 50-88991 Int. Cl. ${ }^{2}$ C08K Japan, Jul. 21, $3 / 16,3 / 26,5 / 09$
40 C
$\qquad$ 4 Claim 1. A polyester film useful as a magnetic tape comprising
(a) a polyester mainly consisting of polyethylene terephth ate which includes first inert particles being precipitated
in the polyester-forming reaction system and having an ers of vinyl chloride containing a stabilizing amount of at least verage particle diameter of 1 to 3 microns and which one stabilizer of the formula
shows a solution haze of 25 to $75 \%$ and
(b) 0.005 to $0.15 \%$ by weight of second inert particles which are added to said polyester (a), substantially insoluble in said polyester (a) and inert to the polyester-forming reacsaid polyester (a) and inert to
ion and have an average particle diameter of 1 to 5 mi crons, with the proviso that a portion of said second inert particles which consists of particles having a particle size of 3 to 6 microns is 0.004 to $0.08 \%$ by weight of said polyester

## 4,096,110

FILLED POLYESTERS CONTAINING ORGANIC
TTTANATE ESTERS Salvatore J. Monte, Staten Island, N.Y., and Gerald Sugerman,
Allendale, N.J., assignors to Kenrich Petrochemicals, Inc., Bayonne, N.J.
Continuation-in-part of Ser. No. 577,922, May 15, 1975. This application Sep. 30, 1955, Ser, No. 618,223
Int. C1. ${ }^{\text {Co8KK }} 9$ 9/04
U.S. CI. $260-40 \mathrm{R}$ Int. Cl. ${ }^{2}$ C08K 9/04

12 Claims

1. A filled polyester composition comprising a polyeste resin containing a filler which has been treated with an organic titanate compound having the formula: ( RO$)_{\mathrm{T}}^{\mathrm{Ti}}(\mathrm{A})_{\mathrm{r}}(\mathrm{B})_{\text {, }}$ wherein $\mathbf{R}$ is a monovalent alkyl, alkenyl, alkynyl, or aralky group having from 1 to to carbon ater pyrophosphate, a diester A is a sulfonic, a diester pyr
tiver phosphate, or substituted derivative thereof; B is OAr or OCOR'; $R^{\prime}$ is hydrogen or a monovalent organic group having from 1 to 100 carbon atoms; OAr is aroxy; $\mathrm{x}+$
and z may be 1,2 or 3 ; and y may be 0,1 or 2 .

## $\stackrel{4,096,111}{ }$

Rutger Neeff, and Heinz Dietrich Jordan, both of Leverkusen,
Germany, assignors to Bayer Aktiengesellischaft, Leverkuse Bayerwerk, Germany
Continuation of Ser. No. 526,932, Nov. 25, 1974, abando This application Mar. 30, 1976, Ser. No. 671,985 Claims priority, application Germany, Dec. 6, 1973, 236087
U.S. C. $260-40 \mathrm{P}$ Int. C1. ${ }^{2}$ C08K $5 / 47$
U.S. C. 260-40 P

$$
2
$$

$$
\begin{aligned}
& \text { 1.S. C. } 200 \text { P } \text { P } \text { Process for the buying of synthetic linear polyest } \\
& \text { characterised in that one or more dyestuffs of the formula }
\end{aligned}
$$


wherein
$\mathbf{R}_{1}$ and $\mathbf{R}_{2}$ denote hydrogen or a non-ionic substituent, $m$ denotes an integer from 0 to 2 and
$n$ denotes an integer from 1 to 4 and,
$m$ and $n$ together are not greater than 4,
are employed.

## 4,096,112

2-PHENYL-INDOLE DERIVATIVE STABILIZERS FOR
Charies Pigerol, Saint-Ouen; Marie-Madeleine Chandavoine
Paul de Cointet de Fillain, both of Sisteron, and Souli Nanthavong, Grenoble, all of France, assignors to Labaz, France Continuation of Ser. No. 580,092, May 30, 1975, Pat. No. 2024,155. This application Dec. 29, 1976, Ser. No. 755,335
U.S. Cl. $260-45.8 \mathrm{~N}$ $\mathrm{N}^{\text {Int. Cl. }}{ }^{2}$ C08K $5 / 35$

1. Compositions comprising homopolymers and co-polym-

wherein $R_{1}$ and $R_{2}$, which are the same or different, each represent a branched- or straight-chain alkyloxy group con-
taining from 1 to 12 carbon atoms, a benzyloxy radical, a taining from 1 to 12 carbon atoms, a benzyloxy radical, a hydroxy radical or $R_{1}$ and $R_{2}$ represent together an alkylenedioxy radical containing from 1 to 3 carbon atoms, $\mathrm{R}_{3}$
sents a hydrogen atom, a methyl or methoxy radical.

FLAME RETARDANT POLYOLEFINS Donnie G. Brady, Bartlesville, Okla, assignor to Phillips Petroleum Company, Bartlesrille, Okla
Continuation-in-part of Ser. No. 488,668, Jul. 15, 1974, Int. C. $260-45.8 \mathrm{It} .{ }^{2} \mathbf{C 0 8 K} 5 / 17,5 / 52$
U.S. C. $260-45.8 \mathrm{NT}$

7 Clxims

1. A flame-retardant polyolefin composition comprising normally solid polyolefin, a hydrohalide salt of a mono- or diamine in which the amine group is attached to or incorpophatic, containing 2 to 24 carbon atoms, and a phosphorus-containing flame retardant, produced by combining reactants comprising (a) at least one phosphorus oxide compound of the formula $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)_{0.5-1.0}\left(\mathrm{H}_{2} \mathrm{O}_{0.0-1.5}\right.$, (b) melamine, and (c) at leas one saturated open-chain polyol containing from 5 to 15 carbon atoms and from 4 to 8 hydroxyl groups under suitabie
conditions, said suitable conditions comprising employing conditions, said suitable conditions comprising employing
amounts of said reactants suitable for yielding said phosphoruscontaining flame retardant and heating said combined reactants at a temperature suitable for yielding said phosphoruscontaining flame retardant for a period which will assure that said phosphorus-containing flame retardant will not cause polyolefin composition is subjected to molding conditions.

## 4,096,114

2,2,6,6-TETRAMETHYL PIPERIDYL-4-PHOSPHITES AS STABILIZERS FOR ORGANIC POLYMERIC
Motonobu Minagawa, Kosigaya; Naohiro Kubota; Toshihir Shibate, both of Urawa, and Kazuo Sugibuchi, Adachi, all of Japan, assignors to Argus Chemical Corporation, Brooklyn, N.Y. Filed Aug. 16, 1976, Ser. No. 714,940 Claims priority, application Japan, Aug. 15, 1975, 50-9929 Int. C1. ${ }^{2}$ C07D 211/06; C08K 5/34, 5/35, 5/52 1. $2,2,6,6$-tetramethyl-piperidyl-4-phosphites having the formula:

$$
\underset{\mathrm{O}-\mathrm{R}_{2}}{\mathrm{R}_{1}-\mathrm{O}-\mathrm{P}}\left[\begin{array}{cc}
\mathrm{O}-\mathrm{Z}_{2}-\mathrm{O}-\mathrm{P} \\
(\mathrm{OR})_{m} & \mathrm{O}-\mathrm{R}_{4}
\end{array}\right]_{n}^{\mathrm{OR}}{ }_{3}
$$


$\mathrm{R}_{6}$ is alkyl having from 1 to about 6 carbon atoms, Y is selected from the group consisting of hydrogen and oxygen;
$m$ is a number selected from $0,1,2,3$ and 4;
$n$ is a number selected from zero to 20, when $n$ is zero, at least one of $R_{2}$ and $R_{3}$ being derived from a polyol or a poly-
$Z$ is selected from the group consisting of bivalent, trivalen and tetravalent alkylene having from 2 to about 30 carbon atoms; bivalent, trivalent and tetravalent arylene, bis ary
ene and tris, arylene, having from 6 to about 30 carbo atoms; mono, di or tri N -substituted cyanuric acid; and taken with $O R, R_{1}$ or $R_{2}$ and $R_{3}$ or $R_{4}$ to form the group:

$$
-{ }_{-\mathrm{O}-\mathrm{CH}_{2}}^{-\mathrm{O}-\mathrm{CH}_{2}} \mathrm{Z}_{\mathrm{CH}}^{2}-\mathrm{O}-
$$

in which $Z_{1}$ is selected from the group consisting of
$R_{2}, R_{3}$ and $R_{4}$ are selected from the group consisting of:


C-


and
21. A polyvinyl chloride resin composition having improved resistance to deterioration when heated at $350^{\circ} \mathrm{F}$, comprising a polyvinyl chloride resin formed at least in part of the recur
ring group


> hydrogen, alkyl having from 1 to about 20 carbon atoms; aryl and hydroxylaryl having from 6 to about 20 carbon atoms;
nd hydroxylaryl having from 6 to about 20 carbon atoms; and having a chlorine content in excess of 40 percent, where X alkyl aryl and aryl alkyl having from 7 to about 20 carbon is either hydrogen or chlorine; and an amount to improve toms; hydroxyalkyl and hydroxyalkylene oxyalkylene having resistance to deterioration of the resin of a compound in accorraken together to form

$R$ is selected from the group consisting of hydrogen and


4,096,115
ULTRAVIOLET LIGHT STABILIZED POLYMERS Gether Irick, Jr., and Charles A. Kelly, both of Kingsport, Tenn, assignors to Eastman Kodak Company, Rochester, N.Y.

$$
\begin{aligned}
& \text { application Nov. 29, 1976, Ser. No. } 745,95 \\
& \text { Int. } 11^{2} \text { Co8K } 5 / 46,5 / 47,5 / 34,5 / 35
\end{aligned}
$$

U.S. CI. $260-45.8$ RW 69 Claim 1. An organic synthetic and natural polymer composition
susceptible to ultraviolet light degradation stabilized agins susceptible to ultraviolet light degradation stabilized against
such degradation with a stabilizing amount of at least one aryl ester of a heterocyclic aromatic acid having the formula:
wherein $\mathbf{A}$ is a moiety selec
moieties having the formula:

wherein
Tis a hydrogen, lower alkyl, substituted lower alkyl, cyclo alkyl, substituted cycloalkyl, aryl, substituted aryl, lowe
alkylaryl, aryl-substituted-aryl, chloro, bromo alkoxy substituted amino, cyano;
is a member selected from the group consisting of vinyl, alkyloxy, oxy-lower alkyl and oxy;
wherein
is a member selected from the group of moieties having
the formula:

wherein
X and Y are a carbon atom or a nitrogen atom; Z is an oxygen atom, a sulfur atom, a nitrogen atom, or
nitrogen atom containing a hydrogen atom or a subs nitrogen ar unsubstituted lower alkyl group containing I 12 carbon atoms;
$R_{1}, R_{2}, R_{3}$ and $R_{a}$ are hydrogen, chloro, bromo, lower alkyl, substitued lowstituted aryl, lower alkylaryl, aryl-substitutedaryl, alkoxy, substituted amino, cyano and the substituents $\mathbf{R}_{1}$ and $\mathbf{R}_{2}, \mathbf{R}_{2}$ and $\mathbf{R}_{3}$, and $\mathbf{R}_{3}$ and $\mathbf{R}_{4}$ combined with the carbon atoms to which they are attached are joined alkylene groups completing a carbocyclic ring, which ring can
also be substituted with one or more of the substituents listed above for $R_{1}, R_{2}, R_{3}$ and $R_{4}$;
$I$ is the same as $\mathbf{R}_{1},,_{2}, \mathbf{R}_{2}, \mathbf{R}_{3}$ and $\mathbf{R}_{4}$ and is present on all posi
tions of the benzenid ring, except the carbon atom at tions of the benzenoid ring, except the carbon atom at
tached to the Y substituent and the carbon atom attached tached to the $Y$ substituent and the carbon atom attached
to the carboxyl group connecting the heterocyclic aroto the carboxyl group connecting the heterocyclic aro-
matic A group with the aromatic B group, said carbonyl connecting group is attached to the benzenoid ring in either the meta or para position
connected to the $Y$ substituent; and
$B$ is a group having the formula


[^10]PLASTIC $\stackrel{4,096,117}{\text { COMPOSITIONS }}$
Crnold L. Anderson, Alma, Mich., assignor to Velsicol Chemica Corporation, Chicago, III.

Filed Feb. 8, 1973, Ser. No. 330,804
U.S. Cl. $260-45.95$ G

14 Chaims

1. A plastic composition comprising poly (phenylene oxide) compound having the formula

$$
-0-1025
$$

wherein $Z$ is bromine; $m$ is an integer having a value of $1-5$ and $m^{\prime}$ is an integer having a value of $0-4 ; i$ is an integer having value of $0-2$ and $i$ is an integer having a value of -5 ; alkyent
is straight or branched chain alkylene group having from 1 to
$R_{7}, R_{8}$ and $R_{9}$ are hydrogen, lower alkyl, substituted lower alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, lower alkylaryl, aryl-substituted-aryl, alkoxy, substituted ${ }_{\text {amino, }}$ substituents $R_{s}$ and $R_{6} R_{8}$ and $R_{7} R_{7}$ and $R_{8}$, and $R_{8}$ and $R_{9}$ combined with the carbon atoms to which they are attached are joined alkylene groups completing a carbocyclic ring which can be substituted with any of the substituents listed above for $\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}$ and $\mathbf{R}_{9}$.

SMOKE-RETARDANT 4,06,116
SMOKE-RETARDANT CHLORINATED POLYMER David Francis LOMPOSITIONS tone Tire \& Reson, Uniontown, Ohio, assignor to The Firestone Tire \& Rubber Company, Akron, Ohic
Continuation-in-part of Ser. No. 632,334, Continuation-inn-part of Ser. No. 632,334, Nov. 17, 1975,
abandoned. This application Oct. 1, 1976, Ser. No. 728,815 U.S. C. $260-45.75 \mathrm{M}$ Int. Cl. ${ }^{2}$ C08K 5/0s
U.S. CI. $260-45.75 \mathrm{M}$

1. A polymer composition having a reduced tendency to smoke under combustion conditions, said composition consist-
ing essentially of (a) 100 parts by weight of at least one polying essentially of (a) 100 parts by weight of at least one poly-
mer having a chlorine content of from about 5 to about $70 \%$, based on the weight of said polymer, said polymer being chlorinated polyethylene, chlorinated polypropylene, polyvinylidene chloride, polyvinyl chloride or chlorinated polyviny chloride, and, (b) from 1 to 10 parts of a cobalt salt of a dicarboxylic aliphatic acid or a hydroxcarboxy 2 to 6 carbon atoms
smoke under combustion conditions, said composition consisting essentially of (a) 100 parts by weight of at least one polymer having a chlorine content of from about 5 to about $70 \%$, based on the weight of said polymer, said polymer being chlorinated polyethylene, chlorinated polypropylene, polyvinylidene chloride, polyvinyl chloride or chlorinated polyvinyl
chloride, and, (b) 1 to 10 parts of a manganese salt of a dicarchorylice, aliphatic acid or a hydroxycarboxylic acid containing 2 to 6 carbon atoms.
2 to 6 carbon atoms.
$\qquad$

PROCESS FOR THE PROM 118 O SILICATE COMPOUNDS AND THEIR RESINOUS
David H. Blount, 5450 Lean St, San Diego, Calif. 9210 Filed Oct. 11, 1977, Ser. No. 840,557 Int. Cl. ${ }^{2}$ COBG $77 / 04$ U.S. Cl. $260-46.5 \mathrm{E}$ 1. The process for the production of amino 12 Claims pounds by the following steps:
(a) mixing about 2 parts by weight of fine granular silica
$\left(\mathrm{SiO}_{2}\right.$ ) and from about 1 to 4 parts by to 4 parts by weight of an amino compound, selected from the group consisting of urea,
thiourea, alkyl-substitur melamine, aniline, guard urea, alkyl-substituted thiourea, melamine, aniline, guanidine, saccharin, benzene sulfona-
mide, toluene sulfonamide, ammeline, dicyandiam aliphatic diamines, aromatic diamines and mixides thereof, in water;
(b) adding an alkali catalyst, selected from the group of alkali metal hydroxides consisting of sodium hyd
potassium hydroxide, until the pH is 10 to 12
(c) heating said mixture to $70^{\circ}$ to $110^{\circ} \mathrm{C}$ while agitating at ambient pressure until the water evaporates, then continue heating at a temperature between the melting and boiling temperature or he amino compon an amino silicate comto 30 minu pound.

METHOD OF MAKING A CERAMIC TURBINE WHEEL AND TURBINE WHEEL MADE THEREBY Richard Grunke, Munich, Germany, assignor to MTU Munchen GmbH, Munich, Germany $\quad$ Fich, Ser. No. 647,378 Claims priority, application Germany, Feb. 2, 1975, 2505652 U.S. CI. 264-60 Int. CC. ${ }^{2}$ C04B 35/58


1. A method of manufacturing a ceramic turbine whee omprising the steps of:
(a) making a silicon nitride ring by arranging silicon powder in the form of a ring and reaction sintering the silicon in nitrogen to yield a self-supporting silicon nitride ring;
(b) making a plurality of turbine bladed by arranging silico powder in the form of such blades and reaction sintering the powder in nitrogen to transform the powder into sel-supporing blades (c) nitride ring and a disc within the ring by the silicon silicon nitride powder into the ring to form the disc and to sinter together the outer periphery of the disc and the inner surface of the ring, and supporting the radial oute surface of the ring against expansion during the hot pres ing operation; and

號 of the composite disc and ring.

POLYMERIZATION OF
2,3,4,5-TETRAHYDRO-4OXO-1-BENZOXEPIN-5-ONES Howard P. Klein, Austin, Tex., assignor to Texaco Development Corporation, Ne

$$
\begin{aligned}
& \text { Filed Jul. 23, 1976, Ser. No. } 708,241 \\
& \text { Int. C.' }{ }^{2} \text { C08G } 63 / 08,63 / 10
\end{aligned}
$$

U.S. Cl. 260-47 C 1. A method for making a polymer having the repeating monomer unit

$$
[\stackrel{\mathrm{o}}{\mathrm{O}}
$$

where $\mathbf{R}^{\prime}$ is a radical selected from the group consisting of aryl, where $R$ is a radical selected from the group consisting ompound of the formula

in the presence of a catalyst which will open lactone rings at a temperature sufficient to initiate ring opening.

PROCESS FOR THE PRODUCTION OF POLYESTERS Gerhard Schade 1,4BUTANEDIOL both of Germany, assignors to Dynamit Nobel Aktiengesell echatt, Troisdorf, Germany Continuation of Ser. No. 341,185, Mar. 14, 1973, abandoned. This appilication Jul. 28, 1975, Ser. No. 599,915 Cinims priority, application Germany, Mar. 18, 1972, 2213259 U.S. CI. 260-75 M 1. A process
essentially of:

## 1. A pentially of:

1) reacting in the presence of an ester interchange catalyst an excess of 1,4 putanediol with a lower alkyl ester of a ${ }^{\text {aromatic }} 200^{\circ} \mathrm{C}$;
(2) removing at a temperature not above $200^{\circ} \mathrm{C}$ 1,4 butanediol therefrom so that the reaction mixture 1,4-butanediol therefrom so that the reaction mixture
contains no more than $1 \%$ by weight 1,4 -butanediol by applying a vacuum thereto;
(3) adding to the reaction mixture from step (2) dicarboxylic acid and reacting the resultant mixture at a temperature o
$200^{\circ}-250^{\circ} \mathrm{C}$, the dicarboxylic acid being present in $200^{\circ}-250^{\circ} \mathrm{C}$, the dicarboxylic acid being present in no
more than a stoichiometric amount relative to any dicarboxylic acid-bis-(4-hydroxybutyl ester) and/or oligomers thereof which are formed during step (1) and being such that the mol ratio of 1,4 -butanediol employed in step (1) to
the sum of the mols of the lower alkyl esters of aromatic the sum of the mols of the lower alkyl esters of aromatic
dicarboxylic acid in step (1) and the mols of dicarboxylic acid added in step (3) is between 1.05 and 1.25 ; and
(4) polycondensing in the presence of a polycondensation
catalyst the resultant esterification product by heating the catalyst the resultant esterification product by heating the same at between $250^{\circ}$ and $310^{\circ} \mathrm{C}$ in a vacuum

## 4,096,123

## POIYESTER ADHESIVE

Yoshiharu Niinami, and Kuniomi Etoh, both of Otsu, Japan, sesigharu Niinami, and Koniomi Etoh, both of Otsu, Japan, Boekk Kabushild Knisha, Ozaka, Japan
 Claims priority, application Japan, Dec. 16, 1974, 49-144638 U.S. Cl. 260-75 N nt. Cl. ${ }^{2}$ C08G $63 / 68,63 / 12$

49-144638 1. A polyester adhesive having as the effective component
thereof a copolyester containing a tertiary amino group comprising:
(1) a terephthalic acid residue, the amount of which makes up 80 to $20 \mathrm{~mol} \%$ of the total amount of all the carboxylic acid residues present;
 group consisting of aliphatic dicarboxylic acid residues ephthalic acid residue, the amount of which makes ap ter residues present;
(3) at least one alkylene glycol residue, the amount of which makes up 50 to 99 mol \% of the total amount of all the glycol residues present; and sented by the following generic formula:

wherein $R_{13}, R_{14}$ and $R_{16}$ are each an alkylene group of to 15 carbon atoms, $\mathrm{R}_{17}$ and $\mathrm{R}_{18}$ are either, independently, or, in combination, make up a polymethylene grou or, in combination, make up a polymethyine
which may form a heterogeneous ring in conjunction with
the adjoining nitrogen atom, and $R_{15}$ is an alkyl group of from 1 to 3 carbon atoms or

he amount of which makes up 50 to $1 \mathrm{~mol} \%$ of the total amount of all the glycol residues present, the said copolyester having a reduced viscosity, $\eta_{\text {件 }}$ as measured in
chloroform as the solvent under conditions of $c=0.4 \mathrm{~g} / \mathrm{dl}$ and $30^{\circ} \mathrm{C}$ in the range of from 0.2 to 2.0

## 4,096,124

## ESTERIFICATION PROCES

William C. L. Wu, East Brunswick, and Raymond Eichenhaum, Spotswood, both of N.J., assignors to Mobll Oil Corporation, Spotawood, both
New York, N.Y.
Continaten sel
Continuation of Ser. No. 204,778, Dec. 3, 1971, which is a ontinuation of Ser. No. 856,898, Sep. 4, 1969, abandomed, which a continuation of Ser. No. 560,105 , Jun. 24, 1966, abandomed, sbandoned. This application Jan. 12, 1976, Ser. No. 648,292 U.S. CI. 260-75 M Int. C7. ${ }^{2}$ C07C 69/82

1. A method for the esterification of terephthalid 21 Claim ethylene glycol which comprises
thylene glycol which comprises
mole of terephthalic acid, $1.3-$ weight of said acid of al and 0.01 to $0.6 \%$ based on the boiling point below about $200^{\circ} \mathrm{C}$, at a temperature abou $260^{\circ}-300^{\circ} \mathrm{C}$ and at a pressure above the vapor pressure of the glycol at the reaction temperature for 3 minutes to ne hour present in the terephthalic acid have been esterified, and then
maintaining the reaction mixture from the first stage in a second stage at a temperature about $260^{\circ}-300^{\circ} \mathrm{C}$ while reducing the pressure to substantially atmospheric until a least about $95 \%$ of the acid groups initially present in the terephthalic acid have been esterified.
2. In a method for preparing a filament-forming polyethylene terephthalate resin by forming an esterinied terephthalate cid under reduced pressure at a polycondensation temperaare in the presence of a polycondensation catalyst, the im provement which comprises forming the esterified terephthal ate acid by
heating in
1.7 mole of ethylene glycol and 0.01 to $0.6 \%$ based on the 1.7 mole of ethylene glycol and y .01 to $0.6 \%$ based on the
weight of said acid of an alkyl amine having a normal boiling point below about $200^{\circ} \mathrm{C}$ at a temperature about $260^{\circ}$ to $300^{\circ} \mathrm{C}$ and at a pressure above the vapor pressure of the glycol at the reaction temperature for three minutes oo one hour until about 75 to $85 \%$ of the acid groups initially pred, and
fied
maintaining the reaction mixture from the first stage in second stage at a temperature of about $260^{\circ}$ to $300^{\circ} \mathrm{C}$ while reducing the pressure to substantially atmospheric until at least about $95 \%$ of the acid groups initially presen in the terephthalic acid have been esterified.

POLYCAPROLACTONE DERIVATIVES AND COATING COMPOSITIONS THEREOF Oliver Wendell Smith, South Charleston, and Joseph Victor Koleske, Charieston, both of W. Va., assignors to Union Car. bide Corporation, New York, N.Y.

Filed May 26, 1976, Ser. No. 690,353
U.S. CI. $260-75 \mathrm{R}$

$$
1 .{ }^{2} \operatorname{Cos} \operatorname{G3/12,} 63 / 52,63 / 68
$$ U.S. CT. $260-75 \mathrm{R}$ $\qquad$ 1. A water insoluble adduct comprising the reaction product

of a polycaprolactone polyol and an intramolecular anhydride of a polycarboxylic acid, wherein said polycaprolactone polyol has at least two hydroxyl groups in the molecule, a
hydroxyl number of from 15 to 600 and an average molecular hydroxyl number of from
weight of from 290 to about 6,000 , and wherein said anhydride has at least one intramolecular carboxylic anhydride group.

## 4,096,126

THERMOPLASTIC COPOLYESTER ELASTOMER
Chiaki Tanaka, Chita; Shinobu Nakajima, and Masanobu Morikawa, both of Nagoya, all of Japan, assignors to Toray industries, Inc., Tokyo, Japan
Claims priority, application Japen, Aug. 22, 1975, 50-101159 U.S. Cl. 260-75 R $\qquad$ 1. A thermoplastic copolyester elastomer derived from the reaction of a mixture comprising a dicarboxylic acid compo-
nent, and a diol component, wherein the dicarboxylic acid component is mainly composed of terephthalic and phthalic acids in which the molar ratio of terephthalic acid to phthalic acids is about $80 / 20$ to $35 / 65$, and the diol component is mainly composed of 1,4-butanediol

## 4,096,127

ANIONIC POLYURETHANES
Horst Schurmann; Josef Bung, both of Duren, Germany, and Hendrikus Alouisilus Antonius van Aanten, Zevernaar, Netherlands, assignors to Akzons Incorporated, Asherille, N
Filed Dec. 4, 1975, Ser. No. 637,701 Filed Dec. 4, 1975, Ser. No. 637,701 Claims priority, application Germany, Dec. 7, 1974, 2457972 1993, has been disclaimed.
Int. C. ${ }^{2}$ C08G $18 / 38$
U.S. CI. 260-77.5 AM $\qquad$ 1. In a process for the preparation of an anionic polyurethane by a process which comprises reacting a polyhydroxyl com-
pound, polyisocyanate and chain extender, the improvement pound, polyisocyanate and chain extender, the improvement
which comprises reacting a monomeric, aliphatic dihydroxyl compound having an aliphatic substituent with at least 10 carbon atoms with an organic polyisocyanate to form a preliminary adduct containing NCO end groups, extending the chain
of the resulting preliminary adduct by reaction with a chain of the resulting preliminary adduct by reaction with a chain
extender selected from the group consisting of (1) an aliphatic, monomeric diol containing an acid group which is capable of salt formation and (2) an aliphatic, monomeric diol containing a salt group and, when the chain extender is (1) reacting at least
some of the acid groups with a basic compound to form a salt. some of the acid groups with a basic compound to form a salt.

POLYURETHANE 4,096,128
POLYURETHANE ELASTOMER PRODUCED BY REACTION BETWEEN A TRIAZOLE-STABILIZED
ISOCYANATE PREPOLYMER AND A DIAMINE Kurt C. Frisch, 17986 Parke La., Grosse Ile, Mich. 48138, and Adolfas Damusis, 25830 Forestriew Dr., Southfield, Mich. 48034

Filed Mar. 3, 1977, Ser. No. 774,036
U.S. CI. 260-77.5 SS

C1. ${ }^{2} \operatorname{Cos} \mathrm{G}$ 18/10 7 Claims 1. A method for producing a urethane elastomer from an not malkyl ester of a dicarboxylic acid having at least 4 and isocyanate prepolymer and a diamine reactive therewith to alkanol in the presence of a catalytic amount, up to 150 ppm isocyanate prepolymer and a diamine reactive therewich to alin of a stannous salt of a carboxylic acid and at a temperature
produce the elastomer, said method comprising producing a tind
stabilized prepolymer by mixing therewith while at a tempera- and in proportions sufficient to effect substantially complete

GLUTARATE-CONTAINING POLYESTERPOLYOLS, METHODS OF PREPARATION AND POLYURETHANE William H. COOSITIONS DERIVED THEREFROM (idym H. Inc., Bloomfield Hills, Mlch
ridy

Filed Oct. 6, 1975, Ser. No. 619,834
U.S. CI. $260-77.5 \mathrm{AN} \quad$ Int. ${ }^{\text {Co8G }}$ 63/04, 18/32; C09K 3/00 $\quad 57$ Claims

1. A method for preparing hydroxyl terminated neutral polyesters of glutaric acid by transesterification of a diloweralkyl ester of said acid and a polyol which comprises heating a mixture of said polyol and a di-ester of said acid and a volatile lower monohydric alkanol in the presence of a catalytic
amount, up to about 150 ppm tin, of a stannous salt of a carboxylic acid and at a temperature and in proportions sufficient a) to effect substantially complete transesterification with substantially complete alcoholysis of said di-ester and with distillalion of the thus liberated said lower alkanol and without substantial distillation of polyol and b) to destroy the activity of active hydrogen compound
2. A hydroxyl terminated neutral polyester having a dicarboxylic acid moiety of at least 4 and not more than 20 carbon atoms which comprises the glutaric acid moiety and the acid moiety of another dicarboxylic acid having from 4 to not more than 20 carbon atoms prepared by heating a polyol and dilowalkanols in the presence of a catalytic amount, up to 150 ppm tin, of stannous salt of a carboxylic acid at a temperature and in proportions sufficient to effect substantially complete transesterification with substantially complete alcoholysis of said diloweralkyl esters and with the distillation of the thus liberpolyol, said polyester being characterized by a residuum of tin which, due to the processing, no longer has the activity of a catalyst for promoting the reaction of isocyanate with active hydrogen compounds, and a residuum of carbalkoxy groups. 29. A polyurethane elastomer prepared by the chain extenby reacting said urethane with a curative agent of the group consisting of 1) a hydroxyl terminated polyester urethane having an average molecular weight of less than about 6,$000 ; 2$ ) a solution of a lower molecular weight polyol or an aromatic diamine in a hydroxyl terminated polyester urethane having an
average molecular weight of less than about 6,$000 ; 3$ ) a solution average molecular weight of less than about 6,$000 ; 3$ ) a solution
of lower molecular weight polyol or an aromatic diamine in a hydroxyl terminated polyester, the polyester moieties of the hydroxyl terminated polyester, the isocyanate terminated polyester urethane, and the hydroxyl terminated polyester urethane, which may have the same or different polyester moieties, being the moieties of those of hydroxyl terminated polyesters prepared by a) heating a polyol and a diloweralkyl mixture of said diloweralkyl ester of glutaric acid and another
transesterification with substantially complete alcoholysis of said diloweralkyl ester and with the distillation of the thus liberated said lower alkanol and without substantial distillation of polyol, said polyester being characterized by a residuum of
tin which, due to the processing, no longer has the activity of a catalyst for promoting the reaction of isocyanate with the active hydrogen compounds, and a residuum of carbalkoxy groups, or by b) chain extending the hydroxyl terminated polyester prepared as above, by heating it with a chain-extend ing amount of a chain extender selected from the group con sisting of a dicarboxylic acid of at least 4 carbon atoms and no epsiloncaprolactone at a temperature sufficient to distill off any water formed to cause chain extension; 4) said aromatic diamine per se; and 5) said lower molecular weight polyol per se.

N,N:SUBSTITUTED 2,4,5-TRIKETOIMIDAZOLIDINES, CORRESPONDING RESINOUS POLYMERS AND A PROCESS FOR THEIR PREPARATION
Kurt Kraft, Auringen, and Johannes Reese, Wiesbaden-Biebrich Frankfurt, Germany
Continuation-in-part of Ser. No. 230,989, Mar. 1, 1972, Pat. No 3,928,376, which is a continuation-in-part of Ser. No. 24,794, Apr. 1, 1970, abandoned. This spplication Jul. 3, 1975, Ser. No.
Claims priority, application Germany, Apr. 2, 1974, 1916932; Apr. 24, 1975, 1920345
Int. Cl. ${ }^{2}$ C08G 18/38; C07D 233/02; C08K 5/34
U.S. C. $260-77.5$ CH
U.S. CI. $260-77.5$ CH 16 Claims containing a plurality of structural units of the formula

and having the formula

wherein one of Q and $\mathrm{Q}^{\prime}$ are independently the group -N $-\mathrm{CO}-\mathrm{OR}$ or hydrogen and the other - NH - CO wherein
$\mathrm{R}^{n}$ and $\mathbf{R}^{\nu}$ are aliphatic hydrocarbon groups with up to 18 carbon atoms cycloaliphatic hydrocarbon groups with up to carbon atoms, mononuclear aromatic hydrocarbon group with 6 carbon ams, or suar with hydrocarbon groups having up to 14 carbon atoms, $\mathbf{R}^{\prime \prime}$ is an aromatic naphthylene that are unsubstituted or monosubstituted with nitro, halo, lower alkyl, lower alkoxy or haloalkyl, or an unsubstituted alkylene radical having up to 6 carbo atoms;
${ }^{A} \mathrm{R}^{\prime}$ whe of the radical
$\mathbf{R}^{\prime}$ which is
(II)

and that is unsubstituted or monosubstituted with lower alkyl lower alkoxy, halo, nitro, or haloalkyl wherein X is a bond, II) $\mathrm{R}^{\prime \prime \prime}$
and wherein the radicals being arranged between the imidazolidine rings in the chain always are alternatively $\mathrm{R}^{\prime}$ derived from an oxamidic acid ester and $\mathbf{R}^{\prime \prime \prime}$ derived one chain have per se the same or a different meaning herein the radical $\mathbf{A}$ being bound to the terminal radical Q is always $\mathrm{R}^{\prime}$
is an integer from 3 to 70
and wherein at least one oxamidic acid ester with the grouping $-\mathrm{NH}-\mathrm{CO}-\mathrm{CO}-\mathrm{OR}^{r}$, wherein $\mathbf{R}^{V}$ is as defined, is reacted with an isocyanate or an isocyanate forming compound at catalyst in a ratio of
a. a diisocyanate:a bis-oxamidic ester of about (1 to 2):1 or b. a diisocyanate:a bis-oxamidic ester of about ( 1 to 2 ):1 with a subsequent heating of the pros a range from 20

wherein one of C and $\mathrm{Q}^{\prime}$ are independently the group - N
$\mathrm{H}-\mathrm{CO}-\mathrm{OR}^{\prime V}$ or hydrogen and the other $-\mathrm{NH}-\mathrm{CO}-$ $\mathrm{COOR}^{V}$ or hydrogen, wherein
(lc) $\mathbf{R}^{t V}$ and $\mathbf{R}^{V}$ are aliphatic hydrocarbon groups with up to 18 carbon atoms, cycloaliphatic hydrocarbon groups with up to carbon atoms, mononuclear aromatic hydrocarbon groups with 6 carbon atoms, or such mononuclear aromatic groups of 6 carbon atoms substin an wrethane or an isocyanate group;
$\mathrm{R}^{\prime \prime \prime}$ is an aromatic radical phenyl, naphthyl, phenylene naphthylene that are unsubstituted or monosubstituted with nitro, halo, lower alkyl, lower alkoxy or haloalkyl, of an unsubstituted alkylene radical having up to 6 carbo atoms,
$A$ is one of the radicals
$\mathbf{R}^{\prime}$ which is

## 

and that is unsubstituted or monosubstituted with lower alkyl ower alkoxy, halo, nitro, or haloalkyl wherein X is a bond, $\mathrm{H}_{2}, \mathrm{O}, \mathrm{S}$ or sulphonylene, and
and wherein the radicals being arranged between the imidazolidine rings in the chain always are alternatively $\mathbf{R}^{\prime}$ derived from an oxamidic acid ester and $\mathbf{R}^{\prime \prime \prime}$ derive one chain have per se the same or a different meaning.
wherein the radical A being bound to the terminal radical having been carried out at a temperature and for a time until $Q$ is always $R^{\prime}$,
the disulphide disappears.
$z$ is 2 ,
and wherein at least one of $A$ and $R^{\prime \prime \prime}$ is a m-methylbenzothiazolyl radical which comprises reacting at least one oxamidic ester with the grouping - $\mathrm{NH}-\mathrm{CO}-\mathrm{CO}-\mathrm{OR}^{r}$ with an isocyanate or a corresponding isocyanate-forming compound and wherein the reaction components are at most bi-functional, of a catalyst in a ratio of
a. a duisocyanate: a bis-oxamidic ester of about ( 1 to 2 ): 1 or
b. a diisocyanate: a bis-oxamidic ester of about ( 1 to 2 ):
with a subsequent heating of the product at a temperature
in the range from $200^{\circ}$ to $250^{\circ} \mathrm{C}$.

## 4,096,131

ONE PACK POLYSULPHIDE SEALANTS Norman O. Price, Warley; Harold Coates, Wombourne, and Christopher S. Ely, Wariey, all of England, as Wilson Limited, Worley, England
Filed Mar. 15, 1976 Ser. No. 666,908 Clnims priority, application United Kingdom, Mar. 21, 1975 11862/75; 11863/75; 11864/75
U.S. Cl. 260-79 Int. C1. ${ }^{2}$ C08F 28/00 45 Claims

1. A sealant composition which can be extruded and can be cured with moisture to give an elastomer, said composition comprising a fluid SH containing reaction product of (a) a silanized polysulphide which is the product of reacting under
anhydrous conditions a polysulphide of formula HS $\left[\left(\mathrm{CH}_{2}\left(\mathrm{R}^{\prime}\right)_{b} \mathrm{CH}_{2} \mathrm{~S}_{a}\right)_{c}\left(\mathrm{R}^{\prime \prime} \mathrm{S}_{5}\right)_{d}(\mathrm{SH})_{]} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{R}^{\prime}\right)_{b} \mathrm{CH}_{2} \mathrm{SH}\right.$ where $a$ is 1 $-5, b$ is 0 or $1, c$ is $S-50, d$ is $0-0.5 \mathrm{c}$ and $0.05 \mathrm{c} \geqq f \geqq d, d>$ $f$ which is $d$ times ( $N o$. of free valencies in $R^{\prime \prime}-2$ ), $R^{\prime}$ is $O$, S or a divalent saturated organic radical consisting of carbon and hydrogen atoms and optionainy $\mathrm{O}^{\prime \prime}$ and/or $\mathrm{R}^{\prime \prime}$ is an at least trivalent saturated radical consisting of carbon and hydrogen atoms and optionally $O$ and/or $S$ in $\mathrm{COC}, \mathrm{CS}_{a} \mathrm{C}$ or OH links, with a silane of formula $\mathrm{Q}_{n} \mathrm{SiX}_{4}{ }_{-n}$ where $n$ is 1 or $2, \mathrm{Q}$ is a group capable of reacting under the reaction conditions with the SH groups of the polysulphid
and at least two groups $X$ are hydrolysable groups and the and at least two groups $X$ are hydrolysable groups and the
remaining group $X$ (if any) is alkyl or chloroalkyl, the silane having 1 or 2 groups capable of reaction with SH , and the silane reacting with $3-30 \%$ of the SH groups of the polysul phide, and (b) a di sulphide of formula

$$
\stackrel{E}{R_{5}-D-(C)_{n}-S-S-(C)_{n}-Y-R_{6}} \stackrel{G}{\|}
$$

where both $h$ are 0 or both $h$ are 1 , and each of $D$ and $Y$, which are the same or different, represents an - NR, group, each o E and $G$, which are the same or oifferent, represents an oxygen
or sulphur atom or an $\mathrm{NR}_{8}$ group and each of $\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}$ and $\mathrm{R}_{8}$ which are the same or different, represents a univalent aliphatic, cycloaliphatic or heterocyclic group, an aryl group
of $6-13$ carbon atoms, or an aralkyl group of $7-19$ carbon of $6-13$ carbon atoms, or an aralkyl group of $7-19$ carbon
atoms, a cycloaliphatic aliphatic group or a heterocyclic ali atoms, a cycloaliphatic aliphatic group or a heterocyclic ali-
phatic group, or at least one pair of $R_{s}$ and $R_{7}, R_{6}$ and $R_{8}, R_{s}$ phatic group, or at least one pair of $R_{s}$ and $R_{7}, R_{6}$ and $R_{8}$, $R_{8}$ or $R_{6}$ and $R_{8}$ together represent a divalent aliphatic group of 2 to 8 carbon atoms, an arylene group, a cycloalkylene group, arylalkylene group, cycloalkylalkylene group or divalent aliphatic group of 2 to 8 carbon atoms, which is inter rupted by an oxygen or sulphur atom in an ether or thioether where $\mathrm{R}_{0}$ is hydrogen or an alkyl, aralkyl or aryl group, or where $\mathrm{R}_{\mathrm{g}}$ is hydrogen or an alkyl, araikyl or aryl group, or
when both $h$ are 1 , each of D and Y , which are the same or different, may be an oxygen or sulphur atom, the product of multiplying the molar fraction of disulphide to polysulphide by the molecular weight of the polysulphice is $200-3500$, and the
reaction of said silanized polysulphide and said disulphid

PRODUCTION OF P-PHENYLENE SULFIDE
James T. Edmonds, Jr., Bartlesville, Okia,, assignor to Phillipe James T. Edmonds, Jr., Bartlesville, O

Company, Bartiessilie, Okila.
Flled May 27, 1975, Ser. No. 581,344
Int. C.2 ${ }^{2}$ COBF 28100
U.S. Cl. $260-79.1$

1. In a method for producing polymers by:
a. forming a composition consisting essentially
y of at least one p-dihalobenzene, at least one alkali metal sulfide, at least one alkali metal carboxylate, and at least one organic amide, and
b. maintaining at least a portion of said composition at polymerization conditions to produce a polymer, the improvement of admixing at least one alkali metal hydroxide into
said composition of (a) thereby effectively lowering the melt flow of the polymer produced.

METHOD FOR OUATERNIZING POLYMERS OF WATER-SOLUBLE AMINOVINYL MONOMERS Maurice $L$. Zweigle, Midland, Mich., assignor to The Dow
Chemical Company, Midand, Mich.
Continuntion-in-part of Ser. No. 618,650, Oct. 1, 1975. This application Feb. 28, 1977 , Ser. No. 772,872 . This The portion of the term of this pateont subsequent to May 17, 1994, has beca drectained.
Int. C1. ${ }^{2} \operatorname{CosF} 8 / 44$
U.S. CI. $260-79.3 \mathrm{R}$ $\qquad$
$\qquad$ 1. In a method for the preparation of an inherently water-dis-
persible polyquaternary-ammonium derivative of an amine polymer wherein a quaternizing agent is reacted with a inherently water-dispersible polymer having a polyethylenic backbone and a plurality of pendant tertiary amino groups in an
aqueous medium, the improvement which comprises adjusting aqueous medium, the improvement which comprises adjusting the aqueous medium to a pH of about 7 or less and incorporat-
ing therein a catalytic amount of a water-soluble alcohol and contacting said medium with the quaternizing agent.

4,096,134
ETHYLSULFONATE-ALKYLAMMINE COPOLYMERS AS COLORANT BACKBONES
Kenneth Melvin Otteson, and Daniel Joweph Dawson, both of Menlo Park, Calif., assignors to Dynappol, Palo Alto, Calif. Filed Dec. 8, 1975, Ser. No. 638,731
Int. C1. ${ }^{2}$ C08F 28/00: CO8G 75/00
U.S. C1. $260-79.5$ R 16 Claims

1. A copolymer consisting essentially of a pluraity of ethyl1. A copolymer consisting essentially of a pluraiity of ethyl-
sulfonate and 2 to 6 carbon atom lower alkylamine groups, the sum of the number of ethylsulfonate groups and lower alkyla-
mine groups being from 20 to 8000 and the number of lower alkylamine groups being from 0.4 to 2.5 times the number of ethylsulfonate groups.

4,096,135
VULCANIZED PRODUCT OF TERPOLYMER AND PROCESS FOR PREPARATION THEREOF Japu Ohishi, Tokyo, and Hiroshi Fukushima, Zushi, both of Japan, assignors to Nippon Zeon Co. Ltd., Tokyo, Japan
Filed Jan. 21, 1975, Ser. No. 542,794 Claims priority, application Japan, Jan. 24, 1974, 49-10387 U.S. Cl. 260-79.5 B
${ }^{1 a t}$ C1. ${ }^{2}$ C08F 28/00 4 Claims 1. A vulcanized product of an acrylonitrile/butadiene- $1,3 / 2$ methyl butadiene- 1,3 terpolymer comprising 15 to $45 \%$ by weight of combined acrylonitrie and 85 to $55 \%$ by weight of
of combined butadiene- 1,3 and 35 to $5 \%$ by weight of com bined 2-methyl butadiene-1,3

METHOD OF SELECTIVELY REMOVING
LIPOPROTEIN FROM BLOOD PLASMA OR SERUM USING SULFATED CARBOHYDRATE
John Stephen Ayers, 45 Pahiatua St., and David Roderick Hubands, 73 Church St, both of Palmerston North, New Zeviand
Filed Mar. 1, 1977, Ser. No. 773,270 73 , Ser. No. 773,27 Claims priority, application New Zealand, Mar. 4, 1976,
J.S. CI. $260-112 \mathrm{~B}$

Int. C1. ${ }^{2}$ C07G 7/00

1. A method of selectively removing lin Claims blood plasma or serum which comprises the steps:
blood plasma or serum which comprises the steps:
a. adjusting the divalent cation concentration of a sample of a. adjusting the divalent cation concentration of a sam
blood plasma or serum to between 0.05 and 1.0 M ;
b. associating said sample with a cationic ion exchanger comprising a water insoluble, hydrophilic, water swellable matrix; a plurality of sulphate groups being chemically bonded to said matrix, the ion exchange capacity of said exchanger being provided by said sulphate groops;
said matrix being a member selected from the group consisting of a cross-linked carbohydrate and a cross-linked carbohydrate substituted with hydroxy $\mathrm{C}_{2}-\mathrm{C}_{4}$ alkyl groups; and,
c. recovering lipoproteins bound to said exchanger or recovering the blood serum or plasma residue from which only
lipoproteins have been extracted or recovering both said lipoproteins have beins and said serum or plasma residue. extracted lipoproteins and said serum or plasma residue.

## 4,096,137

GELATIN HARDENING AGENTS
Hidefumi Sera, and Kameji Nagoo, both of Minami Ashigara,
Japan, Japan, assgmors to Fuji Photo Film Co., L
Ashigara, Japan Claims priority application Japan, Jul 4, 1975, 50-82443 Claims priority, application Japan, Jul. 4, 1975
Int. Cl.
Co9H $7 / 00$;
G03C
$1 / 30$
U.S. CI. $260-117$ hardening gelatin or a gelatin derivaivs wherein: A is an aromatic radical of the benzene class which 1. A method of hardening gelatin or a gelatin derivative has been substituted with at least one group selected from
and based on dry weight of the material to be hardened of a harden- nitro, ing agent represented by the following formulae (I) or (II):

$$
A_{1}-B_{r}\left(R_{1}-B_{2} \not A_{2}\right.
$$

$$
\left(A_{1}-B_{1}\right)_{3} \mathbf{R}_{2}
$$

wherein $A_{1}$ and $A_{2}$ each represents a azole group which is linked to $\mathbf{B}_{1}$ or $\mathbf{B}_{2}$ by a nitrogen atom, wherein said azole group is a 5 -membered ring having 2 or 3 nitrogen atoms and a conjugated system, which may include a represents
$\mathrm{R}_{1}$ represents a divalent group selected from the group consisting of branched or cyclic alkylene groups wherein a portion of the carbon atoms thereof can be replaced by oxygen or nitrogen atoms and arylene groups having 6 to 10 carbon atoms,
unsubstituted or substituted by lower alkyl, alkoxy, halogen, carboxyl or sulfoxy groups, $R_{2}$ represents a trivalent group selected from the group consisting of hydrocarbon group
having 3 to 15 carbon atoms wherein a portion of the carbon having 3 to 15 carbon atoms wherein a portion of the carbon
atoms can be replaced by oxygen or nitrogen atoms, and $n$ represents 0 or 1 .

971 O.G. 43

4,096,139
AZOCOUMARINIC-TYPE DYES FOR THE DISPERSE DYEING OF TEXTILE FABRICS
uggero Battisti, Novara, and Camillo Paffoni, Pogno (Novara) both of Italy, assignors to Montedison S.p.A., Milan, Italy Claims priority, application Italy, Jul. 31, 1975, 25962/75 Int. Cl. ${ }^{2}$ C09B 43/00, 43/12; D06P 1/18, 3/85 U.S. CI. $260-152$

1. An azoic dye having the general formula:
 Claims 1. An azoic dye $R_{1}$

15 Claim 1. The method of aggregating aqueous soluble macromole-
cules containing co-valently linked immunologically reactive unctional groups which comprises cross-linking the macromolecules with a cross-linking agent to result in aqueous inso uble particles which particles can be utilized in an immunological agglutination reaction with antibodies specific for the reacive functional groups.

$\qquad$
. nitro,
$\mathrm{R}_{1}$ is sected from the group consisting of NH and $\mathrm{O}^{2} \mathrm{OCH}_{3}$ and Cl ;
$\mathrm{R}_{2}$ is selected from the group consisting of $\mathrm{H}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}$, ${ }^{2}$ and Cl ;
$R_{3}$ is selected from the group consisting of $\mathrm{CH}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{5}$.
$R_{4}$ is the same as $R_{3}$.

4,006,140
5-AMINO OR SUBSTTUTED AMINO-7-PHENYL OR
SUBSTITUTED PHENYL 2,3 -DIHYDRO-1H-1,4-DIAZEPINES E. Hanover, N.J.'

Continuation-in-part of Ser. No. 528,344, Nov. 29, 1974, Mar. 29, 1974, whis a contiernarion-inn-part of Set. No. 456,017, Mar. 29, 1974, Pat. No. 3,929,884. This application Sep. 22, Int. C1. ${ }^{2}$ COTD 243/06; A61K 31/5s
U.S. Cl. $260-239 \mathrm{BC}$

1. A compound of formula

wherein $R_{1}$ is hydrogen, alkyl of 1 to 6 carbon atoms or amino, $R_{2}$ is hydrogen or alkyl of 1 to 6 carbon atoms, with the provisos that (1) at east one or $R_{1}$ ahen $R_{1}$ is amino,
each $X^{\prime}$ is independently alkyl of 1 to 4 carbon atoms, alkoxy
of 1 to 4 carbon atoms or halo, or two $X$ 's on adjacent of 1 to 4 carbon atoms or halo, or two $X$ 's on adjace
carbon atoms together are methylenedioxy, and carbon atoms together are methylenedioxy, and
$n$ is $0,1,2$ or 3 ,
or a pharmaceuticall
or a pharmaceutically acceptable acid addition salt thereof.

$$
\begin{aligned}
& 4,096,141 \\
& \text { MAKING BE }
\end{aligned}
$$ PROCESS FOR MAKING BENZODIAZEPINE PROCESS FOR MARING BENES

Wolfgang Milkowski, Burgdorf; Renke Budden, Peine; Siegried Funke, Hannover, Rolf Hischens, Hannover; Hans-Günther Llepmann, Hannover; Werner Stiihmer, Eldagsen, and Horst
Zeugner, Hannover, all of Germany, assignors to Kall-Chemie
 Division of Ser. No. 355,986, May 1, 1973, Pat. No. 3,9 This application May 12, 1976, Ser. No. 685,537
Claims priority, application Germany, May 3, 1972, 2221558 priorit, Int. Cl. ${ }^{2}$ C07D 243/16
U.S. Cl. 260-239 BD formula

wherein
$\mathbf{R}^{1}$ is
tert.-butyl, methyl, ethyl, isopropyl, butyl, sec.-butyl, tert.-butyl, amyl, hexyl, cyclopentyl, cyclohexyl, cyclo$\mathbf{R}^{2}$ is chpylmethyl, benzyl or 2-chloroethyl,
$\mathrm{R}^{2}$ is chloro or bromo,
substituted by up to 2 substituents selecr, unsubstituted or consisting of nitro, trifluoromethyl, hated from the group consisting of nitro, trifluoromethyl, halogen, alkyl of up to
4 carbon atoms and alkoxy of up to 4 carbon atoms, or a
pharmaceutically acceptable acid addition salt of said pharmaceutically acceptable acid addition salt of said
benzodiazepine derivative of formula $I$, the said process benzodiazepine derivative of formula 1 , the said process A. subjecting

werein $\mathrm{A}, \mathrm{B}$ and $\mathbf{R}^{\prime}$ have meaning as above, or an acid addition
salt of said acyldiamine, at a temperature between $110^{\circ}$ and salt of said acyldiamine, at a temperature between $110^{\circ}$ and Claims
he
he
$130^{\circ} \mathrm{C}$ to the action of a phosphorus oxyhalide as cyclization agent whereby a compound of the formula I is obtained, and B maceutically acceptable acid addition salt thereof.

14,19-DIOXYGENATED STEROID COMPOUNDS AND 14,19-DIOXYGENATED STEROID COMPOUNDS AND THEI 14DEHE PREPARATION THEREOF
Gunther Kruger, St. Laurent, Cannda, assignor to Steele Chemi cals Co. Ltd., Pointe Clijre, Cannda
Continuation-in-part of Ser. No. 215,669, Jan. 5, 1972, Pat. No.
3,849,402, and Ser. No. 497,730, Aug. 15, 1974, zbandoned. This 3,849,402, and Ser. No. 497,730, Aug. 15, 1974, zbandoned. This Claims priority, application Canade, Jan. 4, 1972, 131673 U.S. CI. $260-239.55 \mathrm{R}$

18 Claims 1. A compound of the formula

wherein R is o-pivalate or $>-0$-pivalate, $\mathrm{R}^{\prime}$ is chosen from OH $O$-acyl, and $=O, A-B$ is chosen from $C(\beta-O H)-\mathrm{CH}_{2} ; C=C H$;
and $\mathrm{C}(\beta-\mathrm{OH})-\mathrm{CHBr}$; and Y is chosen from $\mathrm{O}-\mathrm{acyl},=\mathrm{O}, \mathrm{OH}$, Hand O -tetrahydropyranyl ether, wherein acyl is chosen from formyl, acetyl, trimethyl acetyl and triethyl acetyl, and the $\Delta 4$,
$\Delta 5, \Delta 6, \Delta 7, \Delta 8$ (9) dehydro analogues thereof. $\Delta 5, \Delta 6, \Delta 7, \Delta 8(9)$ dehydro analogues thereof.

$$
\begin{gathered}
4,096,143 \\
0
\end{gathered}
$$

PROCESS FOR PRODUCING PHTHALAZINONE AND DERIVATIVES OF THE SAME Hideo Sato; Seijil Horie; Nobuyoshh Sekikawa, and Hisatake
Ono, all of Asaka, Japan, assignors to Fuil Photo Film Co., Ono, all of Asaka, Japan, assignors to Fujl Photo Film Co., Filed Jul. 21, 1976, Ser. No. 707,737 Claims priority, application Japan, Jul. 21, 197, 1975, 50-89009
Int. Cl. ${ }^{2}$ C07D 237/32 U.S. Cl. 544-237 20 Claims 1. A process for prod
the following formula:

wherein

- $\mathrm{R}^{\prime}$ represents a hydrogen atom; alkyl having 1 to 12 carbon atoms; aralkyl having a $\mathrm{C}_{1}$ to $\mathrm{C}_{12}$ carbon alkyl substituted with phenyl; acyloxyl having 1 to 12 carbon atoms which carbon atoms which may be substituted with phenyl; a halogen atom; a nitro group; an amino group; or an amido group, and
$\mathbf{R}^{2}$ represents a hydrogen atom; alkyl having 1 to 12 carbon
atoms; aralkyl having a $\mathbf{C}_{1}$ to $\mathrm{C}_{12}$ carbon alkyl substituted further contain a hetero atom), which comprises contacting a atoms; aralkyl having a $\mathbf{C l}_{1}$ to $\mathrm{C}_{12}$ carbon alkyl substituted further contain a hetero atom), which comprises contacting a
with phenyl; or phenyl which may be substituted with
2-aminophenyl ketone derivative represented by the formula, with phenyl; or phenyl which may be substituted with
alkyl having 1 to 4 carbon atoms, a halogen atom, a nitro alkyl having i to 4 carbon atoms, a halogen atom, a nirro
group, an amino group or alkoxyl having 1 to 4 carbon atoms; by reacting in an organic solvent a benzoic acid derivative represented by the following formula:

wherein $R^{\prime}$ has the same meanings as defined above; $X$ repre sents a halogen atom; and $\mathbf{Y}$ represents hydroxyl; alkoxyl zine represented by the following formula:
$\mathrm{R}^{2} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2}$
(III)
wherein $\mathrm{R}^{2}$ has the same meaning as defined above.
4,096,144

PROCESS FOR PREPARING QUINAZOLINONE DERIVATIVES AND THEIR 2-(N-MONO-SUBSTITUTED AMINO)-PHENYL KETONE INTERMEDIATE
Michiro Yamamoto Toyonake. Ma
Michihiro Yamamoto, Toyonaka; Masao Koshiba; Shigeho
Inaba, both of Takarazuka, and Hisao Yamamoto, Nishino
miya, all of Japan, assignors to Sumitomo Chemical Company, Limited, Osaka, Japan
Continuation of Ser. No. 203,049, Nor. 29, 1971, abandoned.
This application Jul. 1, 1975, Ser. No. 592,241
Claims priority, application Jupan, Dec. 8, 1970, 45-109975
U.S. Cl. 541-284 9 Claims 1. A process for producing quinazoline derivatives repre-
sented by the formula, sented by the formula,

wherein $R_{1}$ and $R_{2}$ are individually a hydrogen atom, a $C_{1}-C^{\prime}$ alkyl group, a $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy group, a nitro group, a trifluoro-
methyl group, a $\mathrm{C}_{4}-\mathrm{C}_{4}$ alkylthio group, a $\mathrm{C}_{1-4}$ alkylsulfonyl methyl group, a $C_{1}-C_{4}$ alkylthio group, a $C_{1-c 4}$ alkylsulfonyl
group or a halogen atom; $R_{3}$ is a phenyl group, a halophenyl group or a halogen atom; $R_{3}$ is a phenyl group, a halophenyl
group, a $C_{1}-C_{4}$ alkylphenyl group, a $C_{1}-C_{4}$ alkoxyhenyl group, a $\mathrm{C}_{4}-\mathrm{C}_{4}$ alkylphenyl group, a
group, a
trifiuoromethylphenyl group, a a $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl group, a a rinuoromeny,
group, a $\mathrm{C}_{5}$ - $\mathrm{C}_{6}$ cycloalkenyl group, a pyridyl group, a furyl group, a thienyl group or a naphthyl group; and $R$ is a $C_{1}-C_{4}$
alkyl group, a $C_{2}-\mathrm{C}_{4}$ alkenyl group, a $C_{1}-\mathrm{C}_{4}$ haloalkyl group, a ${ }^{\text {glkyp }}$ group, a $C_{2}-C_{4}$ alkenyl group, a $C_{1}-C_{4}$ haloalkyl group, a a ${ }_{C_{1}-C_{4} \text { alky }}{ }_{1}, R_{2}, R_{3}$ and $R$ are as defined above; and $R_{6}$ is a benzyl, phenethyl, chlorobenzyl or fluorobenzyl group, a $C_{3^{-}} \quad C_{1}-C_{4}$ alkyl group or a benzyl group, and finally reacting the $\mathrm{C}_{6}$ cycloalkyl group, a $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl group, a $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy $\mathrm{C}_{4}-\mathrm{C}_{4}$ alkyl group, a $\mathrm{C}_{4}-\mathrm{C}_{4}$ hydroxyalkyl group, ${ }_{\text {a }}^{\text {a }} \mathrm{C}_{4}-\mathrm{C}_{4}$ alkanoyloxy $\mathrm{C}_{1}-\mathrm{C}_{4}$ alky group, a trinalomethyl $\mathrm{C}_{1}-\mathrm{C}_{4}$ formula
2. A process for producing 2 -(N-mono-substituted amino)phenyl ketone derivatives represented by the formula

$$
-\mathrm{C}_{n} \mathrm{H}_{2 n}-\mathrm{N}_{\mathrm{R}_{3}}^{\mathrm{R}_{4}} \text { or }-\mathrm{C}_{n} \mathrm{H}_{2 n}-\operatorname{coN}_{\mathrm{R}_{5}}^{\prime \mathrm{R}_{4}}
$$

(wherein $n$ is an integer of 1 to $3 ; R_{4}$ and $R_{5}$ are individually a
$C_{1}-C_{4}$ alkyl group provided that $R_{4}$ and $R_{5}$ may form together wherein $R_{1}, R_{2}, R_{3}$ and $R$ are as defined in claim 1 , which with the adjacent nitrogen atom an unsubstituted or optionally comprises contaction a 2 -aminophenyl ketone derivative repsubstituted 5 -or 6 -membered heterocyclic ring, which may resented by the formula,

wherein $R_{1}, R_{2}$ and $R_{3}$ are as defined in claim $\mathbf{1}$, with an alka Wherein $R_{1}, R_{2}$ and $R_{3}$ are as defined in claim 1 , with an alkali
metal hydride to form a metal salt of 2 -aminophenyl ketone derivative represented by the formula,

wherein $\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}$ and $\mathbf{M}$ are as defined in claim $\mathbf{1}$, and react ing the resultant metal salt of the formula (III) with a com pound of the formula $R X$ where $R$ is as defined above and $X$ halogen.

NAPHTHOLACTAM DERIVATIVES Ernst Schefcrilk, Ludwrigshafen, Germany, assignor to BASF Aktiengesellichant, Lud 14 igithafen am Renein, Germany
Filed Mar. 19, 197, Ser. No. 776,943 Filed Mar. 14, 1977, Ser. No. 776,943
Claims priority, 2 application Germany, Mar. 19, 1976, 2611665 Claims priority, application Germany, Mar. 19, 1976,
Int. Cl. ${ }^{2}$ O 07 P 1/384; C07D 401/04, $471 / 04$ U.S. Cl. $260-281 \mathrm{GN}$ 1. A compound of the formula


3 Claims
or phenyl, $\mathbf{R}^{1}$ is hydrogen, chlorine, bromine, methyl, ethyl, ai) methoxy, ethoxy, nitro and phenylmercapto, or phenylmercapto substituted by chlorine, methyl or methoxy, $R^{2}$ is hydrogen or chlorine, $\mathbf{R}^{3}$ is hydrogen, chlorine, bromine, methyl,
ethyl, methoxy, ethoxy, phenoxy and nitro, alkanoylamino of 1 ethyl, methoxy, ethoxy, phenoxy and nitro, alkanoylamino of 1
to 4 carbon atoms, benzoylamino, alkylsulfonylamino of 1 to 4 carbon atoms, phenylsulfonylamino, tolylsulfonylamino, alkylcarbon atoms, phenyisulfonylamino, tolyisulifnylamino, alky-
mercapto of 1 to 4 carbon atoms, phenylmercapto or phenylmercapto substituted by chlorine, methyl or methoxy, alkylsulfonyl of 1 to 4 carbon atoms, phenylsulfonyl, tolylsulfonyl, sulfamoyl which is unsubstituted or is monosubstituted or
disubstituted by alkyl of 1 to 8 carbon atoms, hydroxyalkyl of 2 or 3 carbon atoms, alkoxyalkyl of a total of 3 to 11 carbon atoms, $\beta$-cyanoethyl, $\beta$-chloroethyl, cyclohexyl, phenylalkyl (where alkyl is of 1 to 4 carbon atoms) or phenyl, sulfopiperidide, sulfopyrrolidide, sulfomorpholide, alkanoyl of 1 to 4 carbon atoms, chloroacetyl, $\beta$-chloropropionyl, benzoyl or benzoyl substituted by chlorine, methyl or methoxy, $R^{4}$ is
hydrogen, chlorine, methoxy, ethoxy, alkylmercapto of 1 to 4 hydrogen, chlorine, menylmercapto or phenylmercapto substituted by chlorine, methyl or methoxy, $\mathbf{R}^{3}$ and $\mathbf{R}^{4}$ together are

$\mathrm{R}^{\mathrm{s}}$ is hydrogen, chlorine, methoxy or ethoxy, B is hydrogen, methyl, methoxy or chlorine, $X$ is cyano, carbamoyl or atoms, chlorine, bromine, $\mathrm{C}_{1}$ to $\mathrm{C}_{4}$ alkoxycarbonyl or CONHR, or $X$ and $Y$ together are

and $Z$ is $N-R$ or $-S-$
and Z is $>\mathrm{N}-\mathrm{R}$.

4,096,146
4[5(R)-ALKYL(OR ALKENYL)-4(S)-QUINUCLIDIN-2(S)
OR 2(R)-YLCARBONYL]-QUINOLINES, ANTIPODES OR OR 2R-YLCARBONYLJ-QUINOLINES, ANTIPODES OR Juerg Albert Wolter PREPARATION Juerg Albert Walter Gutzwiller, Bettingen, Switzerland, and
Milan Redoje Uskokoric, Upper Montclair, N.J., assignors to Moffmann-La Roche Inc, Nutley, N.J. Continuation of Ser. No. 354,839, Apr. 26, 1973, abandoned, which is a division of Ser. No. 212,648, Dec. 27, 1971, Pat. No. Jan. 7, 1971, which is a continuation-in-part of Ser. No. 104,785, Jan. 7, 1971, abandoned, which is a continuation-in-part of Ser. No. 837,304, Jun. 27, 1969, abandononed, which is a continuation-inn-part of Ser. No. 741,913, Jul. 2, 1968, abandoned. This application Ang. 20, 1975, Ser. No. 606,252
Int. Cl. ${ }^{2}$ C07D 453/04 U.S. CI. 260-284

1. Racemic-6'-chloro-dihydrocinchoninone.
$n$ is $2, \mathrm{R}$ is hydrogen, alkyl of 1 to 12 carbon atoms, hydroxyal kyl of 2 or 3 carbon atoms, alkoxyalkyl of 3 to 8 carbon atoms, $\beta$-chloroethyl, $\beta$-cyanoethyl, $C_{1}$ to $C_{4}$ alkoxycarbony wher alkyl is of 1 to 4 carbon atoms, cyclohexyl, benzyl, phenylethyl

SUBSTITUTED AZASTEROID
Charles Andrew Lundberg, Cincinnati, Ohio, assignor to Rich-ardson-Merrell Inc., Wilton, Conn. Continuation-in-part of Ser. No. 350,39, U.S. C. $260-287 \mathrm{Int}$. Cl. ${ }^{2}$ C07D 45S/06
U.S. C. 260-287 AZ

1. A compound selected from the formula

17 Claims

wherein $R$ is selected from hydrogen, hydroxy, halogen, trifluoromethyl, straight or branched lower alkyl of from 1 to 6 carbon atoms, straight or branched lower alkoxy of from 1 to 6 carbon atoms,


$$
\stackrel{\mathrm{O}}{\mathrm{alky}-\mathrm{C}-\mathrm{O}-}
$$

wherein the alkyl moiety has from 1 to 6 carbon atoms and may be straight or branched, alkoxycarbonyloxy, carsubstituted with straight or branched lower alkyl of from 1 to 6 carbon atoms, straight or branched lower alkoxy of from 1 to 6 carbon atoms or halogen; $\mathbf{R}^{1}$ is selected from hydrogen, straight or branched lower alkyl of from 1 to 6 carbon atoms, phenyl and benzyl; $\mathbf{R}^{2}$ is selected from hydrogen, straight or ranched lower alkyl of from 1 to 6 carbon atoms, ethynyl, from 1 to 6 carbon atoms, phenyl, benzyl, 2-phenethyl, mono-, di- or tri- substituted phenyl, mono-, di- or tri- substituted benzyl and mono-, di- or tri- substituted 2 -phenethyl wherein the substituents are on any position of the aromatic ring and are selected from straight or branched lower alkyl of from 1 to 6 carbon atoms, straight or branched lower alkoxy of from 1 to 6 carbon atoms and halogen; $R^{3}$ is selected from hydroxy,

$$
\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{alkyl-C-O},
$$

alkoxycarbonyloxy, carbamoyloxy, benzoyloxy and benzoyloxy mono-, di- or tri- substituted with straight or branched lower alkyl of from 1 to 6 carbon atoms, straight or branched lower alkoxy of from 1 to 6 carbon atoms or halogen; $m$ is an integer of 1 or 2 ; $n$ is an integer of from 1 to 3 ; and pharmaceu-

## OXAZOLIDINEDIO $4,096,148$

 an baloids Jean C. Miller, and Gerald E. Gutowski, both of Indianapolis, Ind., assignors to Eli Lilly and Company, Indianapolis, Ind. Filed Dec. 6, 1976, Ser. No. 747,575
## HYDROLYSIS OF NITRILES

## Julien Feldman and Divid w, Smith both of Cincinnatio Ohio

 nasignors to National Wisilers and Chencal Corti, Ohio New York, N.Y.Filed Nov. 5, 1974, Ser. No, 521,014
Int. C1. ${ }^{2}$ CO7D $213 / 57 ;$ C07C $103 / 127,103 / 133,103 / 22$ U.S. C. $260-295.5 \mathrm{~A}$; 13 Claim 1. In a method for the catalytic hydrolysis of nicotinonitril or a nitrile of the formula RCN wherein R is an alkyl, alkenyl,
cycloalkyl, aryl or alkaryl radical of $1-20$ carbon atoms or said radical substituted by halogen, nitro, hydroxy, benzoyl, acetyl or cyano groups to the corresponding amide, the improvement which comprises employing as the catalyst, an effective catalytic amount of the reaction product of rhodium trichloride and a trialkyltrithiophosphite supported on a solid support
selected frym the group consisting of carbon, alumina diatomaceous earth, silica, silica-magnesia, silica-alumina, zirconia, molecular sieves, organic cation exchange resins, chelating resins and ligand functionalized polymers.
wherein $R$ is $H_{2} \mathrm{C}_{1}-\mathrm{C}_{4}$ a $-$
X is Br or Cl
$\mathrm{R}^{1}$ is OH,

## $\mathrm{R}^{2}$ is $\mathrm{H}, \mathrm{CH}_{3}$ or CHO

one of $\mathrm{R}^{3}$ and $\mathrm{R}^{4}$, when taken singly, is H or OH and the ${ }^{\text {other }} \mathrm{C}_{2} \mathrm{H}_{\text {s }}$;
and $R^{4}$ and $R^{5}$, when taken together, form an epoxide; and pharmaceutically-acceptable salts thereof.

PROCESS FOR MANUFACTURE OF TERTIARY AMINES Jean Berthoux; Yvonick Chevallier, both of Decines, and Jacques-Pierre Martinaud, Lyons, all of France, assignors to Rhone-Progil, Courbevoie, France
Flaims priority Dec. 3, 1973, Ser. No. 420,976
II. Cl. ${ }^{2}$ C07D 211/02
U.S. CI. 260-293.52

1. A process for the manufacture of a substituted amine comprising:
reacting at least one olefin, carbon monoxide, hydrogen and at least one secondary amine, under partial pressures of
hydrogen and carbon monoxide from 10 to 120 bars, at a temperature from $60^{\circ}$ to $250^{\circ} \mathrm{C}$ for a reaction time from 10 minutes to 10 hours,
in the presence of a catalyst constituted by a coordination complex of a metal of Group VIII containing at least one
of the following ligands: aliphatic, aromatic, arylaliphatic phosphites, hexamethylphosphorotriamide, aliphatic and cyclic ethers, primary, secondary and tertiary amines, heterocyclic bases, disulphides, heterocycles containing sulfur or ligands including several donor atoms containing sulfur and oxygen, oxygen and nitrogen, or sulfur and
nitrogen;
nitrogen;
more carbon atom than said olefin.

> 4,096,151

CERTAIN 3-CYANOPYRIDINE INTERMEDIATES
John J. Baldwin, Lansdale, Pa., assignor to Merck \& Co., Inc., Rahway, N.J.
Continuation-inn-part of Ser. No. 533,385, Dec. 16, 1974, Pat. No
$4,000,282$. This $4,000,282$. This application Aug. 11, 1976, Ser. No. 713,558 U.S. C1. 260-294.9 Int. Cl. ${ }^{2}$ C07D 213/57

1. A compound having the formula

wherein $R$ is tert. butyl or isopropyl and $R_{1}$ is an aldehyde residue.

## 4,096,152

Eike Molier, Karl Meng, both of Wuppertal; Egbert Wehinger, Neriges, and Haral Horstmann, Wuppertal, all
Division of Ser. No. 532,311, Dec. 13, 1974, Pat. No. 4,002,641
This application Oct. 6, 1975, Ser. No. 619,891
Claims priority, application Germany, Dec. ${ }^{\text {Int. }} \mathbf{C l}{ }^{2}$ C07D 261/10, $263 / 34$
U.S. CI. $260-307 \mathrm{H}$

1. A compound of the formula:

a pharmaceutically acceptab $\mathbf{R}$ is hydrogen or lower alkyl
$\mathbf{R}^{1}$ is hydrogen or lower alkyl;
$\mathrm{R}^{2}$ is lower alkyl
(a) one or two of the same or different non-sterically hindering substituents trifluoromethyl, alkyl of 1 to 8 carbon atoms, alkenyl of 2 to 8 carbon atoms, and alkoxy of 1 to 6 carbon atoms;
(b) one substituent selected from the group consisting of 7 carbon atoms and nitro;
(c) one substituent selected from the group consisting of cycloalkyl of 5 to 7 carbon atoms, cycloalkenys of 5 to
7 carbon atoms and nitro and one or two nonsterically 7 carbon atoms and nitro and one or two non-sterically
hindering substituents selected from the group consisting of alkyl of 1 to 8 carbon atoms, alkenyl of 2 to 8 carbon atoms, alkoxy of 1 to 6 carbon atoms, halogen and trifluoromethyl; or
$\mathrm{R}^{3}$ is naphthyl; and
$\mathrm{R}^{4}$ i $\mathrm{R}^{3} \mathrm{CO}$, here
$R^{4}$ is $R^{5}$ CO wherein $R^{5}$ is [a 5 - to 7 -membered heterocyclic ring having 1 or 2 heteroatoms selected from the group
consisting of $\mathrm{N}, \mathbf{S}$ and $\mathbf{O}$, oxazolyl or isoxazolyl unsubstion tuted or substituted by alkyl of $I$ to 4 carbon atoms.

ARYLENE-BIS-TETRAZOLE-5-CARBOXAMIDES John H. Sellstedt, Pottstown, and Dieter H. Klaubert, Wes Chester, both of Pa , assignors to American Home Product Corporation, New York, N.Y.

Filed Jan. 21, 1977, Ser. No. 761,501 Int. C1. ${ }^{2}$ C07D $257 / 04$
U.S. Cl. $260-308$ D

1. A compound of the formula:

in which
$R_{1}$ and $\mathbf{R}_{2}$ are , independently, hydrogen, cyano, trifluoro methyl, halo, nitro, lower alkanoyl, lower alkoxy or car bamoyl
or a pharmaceutically acceptable salt thereof
PROCESS FOR 4,096,154
PROCESS FOR THE MANUFACTURE OF COMPOUNDS Hermann Rempfler, Binningen; Hams Boseshard Weber, both of Basel, all of Switzeriand, assignors to Cibs Gelgy Corporation, Ardsley, N.Y.
ivision of Ser No, 74,142 , N.Y. This application Apr. 5, 1976, Ser, No. 673.316 Claims priority, application Switzerland, Jun 30, 1972 Claims priority, application Switzerland, Jun. 30, 1972 9 Claims U.S. Cl. 260-327 R ${ }^{\text {Int. }} \mathbf{C O 7 O}$ 327/00; A01N 9/00
9 Claims I.S. Process for Re 1. Process for the manufacture of sulphonium salts of the
${ }^{6}$ Claims
formula

$$
\left[\overparen{\mathrm{B}} \mathrm{~S}^{\oplus}-\mathrm{CH}_{2}-\mathrm{D}-\mathrm{CH}_{2} \stackrel{\oplus}{\mathrm{~S}^{\frown}} \mathrm{B}^{\mathrm{B}}\right] 2 \frac{\mathrm{M}^{\wedge \theta}}{\mathrm{n}}
$$

wherein the two B's independently of one another represent a polymethylene ring with 4 to 7 methylene groups and can be substituted by alkyl groups with 1 to 4 carbon atoms, $D$ de-
notes $4,4^{\prime}$-diphenylylene, 1,5 or 2,6 -naphthylene, or a $9,10-$
dihydrophenanthrene, or a dibenzofurane radical which is bonded to the $-\mathrm{CH}_{2}-$ groups in the 2,7-position, which comprises reacting a compound of the formula

$$
\mathrm{x}-\mathrm{CH}_{2} 13 \mathrm{D}-\mathrm{CH}_{2}-\mathrm{x}
$$

wherein X denotes halogen or a

## $-0-\frac{\mathrm{O}}{\mathrm{C}}-\mathrm{x}_{1}$

group, wherein $\mathrm{X}_{1}$ represents an aliphatic, cycloaliphatic or aromatic hydrocarbon radical, especially alkyl having 1 to 6 carbon atoms or phenyl, and $D$ has the meaning indicated above, in a strongly acid medolar ratio of at least $1: 2$, with an
$-20^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ and in a mola organic sulphide of the formula
wherein $B$ has the given meaning and $M$ represents the anion of wherein B has the given acid and $n$ denotes the number 1 or 2 .

## 4,096,155

3-DITHIOLANE COMPOUNDS AND METHOD OF PREPARATION THEREOF
William Henry Gastrock, Highstown, and Goro Asato, TitusWille, both of N.J., assignors to American Cyanamid Company, Stamford, Conn.
Dlvision of Ser. No. 720,163, Sep. 2, 1976, Pat. No. 4,075,228. This application May 23, 1977, Ser. No
Int. Cl.
2 Co7D $333 / 24$
U.S. Cl. $260-332.2 \mathrm{~A}$ $\qquad$ 2 Claims 1. A 1,3 -dithiolane compound of the formula:

where $\mathbf{R}_{3}$ and $\mathbf{R}_{4}$ are each hydrogen or methyl.
 $\gamma$ BUTYROLACTONE Dieter Freudenberger, Hofheim, Taunus; Friedrich Wunder Dieter Freudenberger, Hofheim, Taunus; Friedrich Wunder,
Florsheim, Main, and Hans Feraholz, Fischbach, Taunus, all Florsheim, Main, and Hans Fernhoiz, Fischbach, Tauns,
of Germany, assignors to Hoechst Aktiengesellschaft, Frankfurt am Main, Germany
Filed Nor. 23, 1976, Ser. No. 744,320 Filed Nor. 23,
Claims priority, application Germany, Nov. 29, 1975, 2553761 tur Claims priority, Inppt. C1. ${ }^{2}$ COTD 307/32 17 Claims U.S. Cl. $260-343.6$ the manufacture of $\gamma$-butyrolactone by catalytic hydrogenation which comprises reacting maleic acid, maleic acid anhydride, succinic acid, succinic acid anhydride, fumaric acid, or a combination thereof, with hydrogen in the presence of a hydrogenation the group consisting of silver, more materials selounds thereof and a material selected from gold and the compounds thereof and, rodium, palladium, osmium, iridium, platinum, and the compounds thereof. 1. A
ture:

ZAMETHINE METAL COMPLEX COMPOUNDS Kaus Hunger, Kelkheim, Taunus, Germany, assignor to $\mathbf{H}$ echst Aktiengesellschaft, Frankfurt am Main, Germany Continuation-in-part of Ser. No. 607,999, Aug. 26, 1975, abandoned. This application Sep. 23, 1976, Ser. No. 725,837 Claims priority, application Germany, Aug. 28, 1974, 2441092 U.S. C. $260-438.1$ 1. A compound of the formula

wherein $X_{1}, X_{2}$ and $X_{3}$, which are identical or different, are hydrogen, halogen, lower alkyl, lower alkoxy, phenyl, toyll, nitro, lower carboalkoxy, suffonamide, lor dialkyl carbamoyl, lower alkanoyl or a group of the formula

wherein G is $-\mathrm{NHCO}-,-\mathrm{SO}_{2} \mathrm{NH}$ - or - $\mathrm{CONH}-$ and R is hydrogen, chlorine, lower alkyl, lower alkoxy, sulfonamide or
carbamoyl, $\mathbf{Y}$ is hydrogen, chlorine or bromine; Ar is naphcarbamoyl, $Y$ is hydrogen, cited by 1 to 3 equal or different substituents selected from lower alkyl, lower alkoxy, lower alkylsulfonyl, lower carboalkoxy, trifluoromethyl, nitro, cyano, lower alkanoylamino, benzoylamino, carbamoyl, lower mono- or dialkyl carbamoyl, sulfonamide, lower mono- or dialkyl sulfonamide and halogen; and $M$ is zinc, cadmium, cobalt, nickel or copper.

PROCESS FOR PREPARING
-ACYL - PUPFURYLTHIOIDIHYDRO-25-DIALKYL-3[2H]FURANONES
William John Evers, Middletown, and Braja Dulal Mookherjee, Holmdel, both of N.J., assignors to International Flavors \& ragrances Inc., New York, N.Y.

## S. 1260 Int Cl. ${ }^{2}$ C07D 307/64

| 5 Claims |
| :--- |
| 1. Cl. $260-347.2$ |


wherein $\mathbf{R}_{1}, \mathbf{R}_{2}{ }^{\prime}, \mathrm{R}_{3}{ }^{\prime}$, and $\mathrm{R}_{\mathbf{\prime}}{ }^{\prime}$ are the same or different and each represents hydrogen or methyl comprising the step of reacting furfuryl mercaptan having the structure:

with one or more dimers of $\mathrm{C}_{4}-\mathrm{C}_{6}$ alpha, beta diketone each of with one or more dimers of $\mathrm{C}_{4}-\mathrm{C}_{6}$ alpha, beta diketone each of
said dimers being the same or different and having the struc-

in the presence of an acid and an inert solvent at a temperature in the range of from about $40^{\circ} \mathrm{C}$ up to about $170^{\circ} \mathrm{C}$.

## 4,096,159

PROCESS FOR CONTROLLING THE RATE OF LITINUM INDUCED ADDITION REACTION O ORGANOPOLYSILOXANES CONTAINING ALIPHATIC WOISATURATION
Wolifgang Hechti; Ernst Wohlfahrt, both of Burghausen, and
Richard Schmidlkofer, Mehring-Od, all of Germany, assign
ors to Wacker-Chemie GmbH, Munich, Germany
ors to Wacker-Chemie GmbH, Munich, Germany
Filed Sep. 30, 1977, Ser. No. 838,414
Filed Sep.
Claims priority, application Germany, Oct. 15, 1976, 2646726 U.S. C. $260-448.2$ E

1. An improved process for controlling the rate of addition of silicon bonded hydrogen atoms to organopolysiloxanes containing at least 50 silicon atoms per molecule and having aliphatic multiple bonds at room temperature in the presence mixing at least one organosilicon compound having the formula
$\mathrm{CH}_{2}=\mathrm{CHR}_{2} \mathrm{SiO}\left(\mathrm{SiR}_{2} \mathrm{O}\right)_{n} \mathrm{SiR}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
in which $R$ is selected from the class consisting of monovalen in which R is elected from the class consisting of monovalent
hydrocarbon radicals and substituted monovalent hydrocarbon radicals free of aliphatic unsaturation and $n$ is a number of from 0 to 6 with (1) an organopolysiloxane containing silicon bonded hydrogen atoms or ( 2 ) an organopolysiloxane haviang 50 silicon atoms per molecule and containing aliphatic
at at least rotilicon atoms per moecule and contiaining aliphatic (2) in the presence of the platinum catalyst.

## 4,096,160

CONTINUOUS DEVOLATILIZATION OF
SILANOL-TERMINATED SILICONE POLYMER Bruce Allan Ashby, Schenectady, N.Y., assignor to General
Electric Company, Waterford, N.Y.

$$
\begin{aligned}
& \text { Filed Apr. 21, 1976, Ser. No. } 678,7 \\
& \text { Int. } \text { C. } 2^{2} \text { C07F } 7 / 20
\end{aligned}
$$

U.S. CI. $260-448.2 \mathrm{E}$

1. A process for continuously producing a substantially

$$
{ }_{i}^{i_{c o m o m}}
$$

$$
5 \cdot+-1
$$ cyclic polysiloxane-free lineas diorganopolysiloxane fluid which is chain-stopped primarily with hydroxy groups, said

process comprising the steps of: (i) feeding steam and a linear diorganopolysiloxane fluid chain-stopped primarily with hydroxy groups, said fluid
also containing low-boiling cyclic polysiloxest also containing low-boiling cyclic polysiloxanes, into an
evacuated, tortuous, confined passageway to form a turevacuated, tortuous, confined passageway to form a tur-
bulent mixture of said linear diorganopolysiloxane fluid and steam in the passageway;
(ii) passing said mixture of linear diorganopolysiloxane fluid
and steam through the tortuous passageway under partial
vaccum and at a temperature below that at which said vacuum and at a temperature below hat at which said
spheric pressure, to form a vaporized mixture comprising steam and cyclic polysiloxanes freed from said linea diorganopolysiloxane fluid;
(iii) removing said vaporized mixture comprising steam and cyclic polysiloxanes and said linear dorganopolysiloxane
fluid which is substantially free of said cyclic polysiloxanes from the tortuous passageway; and
(iv) separating said vaporized mixture of steam and cyclic polysiloxanes from said substantially cyclic polysiloxane free linear diorganopolysiloxane fluid.

PROCESS FOR THE PREPARATION OF HALOGENOSILANES
Toshio Shinohara; Masatoshi Arai, and Shojl Ichinohe, all of Annaka, Japan, assignors to Shin-Etsa Chemical Co, Ltd,
Tokyo, Japan Filed Nov. 18, 1976, Ser. No. 742,845
Claims priority, application Japen, Nor. 26, 1975, 50/141486 U.S. C. $260-448.2$ Int. Cl. ${ }^{2}$ C07F 7/08, 7/12

16 Clàms
16 Claims
U.S. C. $260-448.2$ P

1. A process for the preparation of an organohalogenosilane product expressed by the general formula

## $\mathrm{R}^{1}{ }_{\mathrm{a}} \mathrm{SiX}_{4}{ }_{6}{ }^{-}$

where $R^{1}$ is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, $a$ is 1,2 or 3 and X is a halo gen atom, by a reaction between an organohalogenosilan reactant expressed by the general formula

## $\mathrm{R}_{\mathrm{b}}{ }_{\mathrm{S}} \mathrm{SX}_{4}$

where $\mathbf{R}^{2}$ is a substituted or unsubstituted monovalent hydro carbon group, $X$ is the same as defined above, and $b$ is 0,1 , o 2 , always being smaller than the value of the above-defined $a$ and an organopolysiloxane reactant represented by the average nit formula

$$
\left.\left(\mathbf{R}_{3}^{1} \mathrm{SiO}_{0.5}\right)_{p}\left(\mathrm{R}_{2}^{1} \mathrm{SiO}_{q}\right)_{q} \mathrm{R}^{1} \mathrm{SiO}_{1 .},\right)_{\mu}\left(\mathrm{SiO}_{2}\right)_{s}
$$

where each $R^{1}$, which may be the same or different, is the same as defined above and $p, q, r$ and $s$ each are numbers satisfying he requirements of $0 \leqq p \leqq 1,0 \leqq q \leqq 1,0 \leqq r \leqq 1,0 \leqq$ ion wherein the reaction is carried out in the presence of monohydrochloride of a hexaalkylphosphotriamide represented by the general formula

where $\mathbf{R}^{3}$ and $\mathbf{R}^{4}$, which may be the same or different, are alky groups having 1 to 6 carbon atoms.

PROCESS FOR THE PRODUCTION OF NEW YSILOXANE-POLYOXYALKYLENE COPOLYMERS WITH REDUCED BURNING PROPERTIES Leverkusen; Manfred Dietrich, Leverkusen, and Dahm, Leverkusen; Minanfred Dietrich, Leverkusen, and Peter
Muller, Leverkusen, all of Germany, asskignors to Bayer Aktiengesellschaft, Leverkusen, Germany
Filed Dec. 6, 1970,
Claims priority, application Germany, Dec 24, 1075, 2558523 S. C. $260 \quad$ Int. C. ${ }^{2}$ C07F 7/08, $7 / 10$ 1. A process for the production of polysiloxane-polyoxy-
alkylene copolymers, comprising (a) reacting organopolysiloxares corresponding to the general formula
wherein
$m$ represents an integer of from 1 to 100 ,
Z , which may be the same or different, represent $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl radical, $\mathrm{C}_{6} \mathrm{C}_{15}$ aryl radicals, siloxyl or siloxanyl radicals, or the group $-\mathrm{R}-\mathrm{Y}-\mathrm{H}$,
R represents a $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkylene radical which may contain represents - NR'-, -
$\stackrel{\circ}{1-0}$
${ }_{\mathrm{R}^{\prime}}^{\mathrm{or}}-\mathrm{Sep}$ - and cycloalkyl radical;
with polyisocyanates in an NCO:YH equivalent ratio of at least 2 , heating the NCO-containing addition products
thus obtained at from $110^{\circ}$ to $160^{\circ} \mathrm{C}$ to cause branching thus obtained at from $110^{\circ}$ to $160^{\circ} \mathrm{C}$ to cause branching, and (c) reacting the resulting branched NCO-containing
addition products of relatively high molecular weight with a monofunctional polyether corresponding to the general formula:
$\mathrm{R}^{\prime \prime}-\left(\mathrm{OC}_{n} \mathrm{H}_{2}\right)_{x}-\mathrm{OH}$
wherein
$n$ represents an integer of from 2 to 4,
$x$ represents an integer of from 1 to 100 and
$\mathrm{R}^{\prime \prime}$ represents a monofunctional $\mathrm{C}_{1}-\mathrm{C}_{20}$ hydrocarbon radical optionally containing oxygen or nitrogen as hetero atoms, in NCO OH -ratio of from 0.8 to 1.2 .

CONVEPSION 0 ,096,163 HYDROCARBON MIXTURES
Clarence D. Chang, Princeton; William H. Lang, Pennington, both of N.J.; Anthony J. Silvestri, Morrisville, P2., and Ro bert L. Smith, Hopewell, N.J., assignors to Mobil Oil Corpo ration, New York, N.Y.

| Cration, New York, N.Y. |
| :--- |
| Cinuation-in part of Ser. No. 566,162, Apr. 8,1975, | abandoned, which is a continuation-in-part of Ser. No. 463,711,

Apr. 24, 1974, abandoned. This application Oct. 8, 1976, Ser. No. |  |
| :--- | :--- |
| 730,871 |

$\qquad$ Comprising

1. In the process of converting synthesis gas, comprising
carbon monoxide and hydrogen, to a hydrocarbon product by carbon monoxide and hydrogen, to a hydrocarbon product by prising as a first component a metal carbon monoxide reduction catalyst and as a second component an acidic crystalline aluminosilicate zeolite having a silica to alumina ratio of a least 12 and a constraint index of about 1 to 12 ; the improve ment which comprises utilizing as said carbon monoxide reducing catalyst component a methanol synthesis catalyst comprising copper or chromium containing catalysts or mixtures herchesis $g$ as to subtantially only $\mathrm{C}_{1}-\mathrm{C}_{6}$ paraffins composed mainly of $\mathrm{C}_{2}-\mathrm{C}_{4}$ paraffins.

PROCESS FOR PRODUCING ETHANOL, ACETIC ACID AND/OR ACETALDEHYDE, FROM SYNTHESIS GAS Paul Cuifford Ellgen, Suint Albans, and Madin Mohan Bhasin, Charleston, both of W. Va., assignors to Union Carbide Corporation, New York, N.Y.

Filed Aug. 30, 1976, Ser. No. 718,556
U.S. Cl. $260-449 \mathbf{R}$

1. In a process for the reaction of a synthesis gas containing 1. In a process for the reaction of a synthesis gas containing
carbon monoxide and hydrogen in the presence of a hydrogecarbon monoxide and hydrogen in the presence of a hydroge-
nation catalyst, the improvement for selectively producing two-carbon atom oxygenated hydrocarbon products which heterogeneous catalyst comprising rhodium in combination with at least one element selected from the group consisting of molybdenum and tungsten at reaction conditions correlated to achieve product efficiencies based on carbon consumption in excess of 10 percent and obtain the formation of ethanol, acetic 50 weight percent of the two or more carbon atom compounds obtained by the reaction, which reaction conditions include a temperature within the range of from about $150^{\circ}-450^{\circ} \mathrm{C}$., a pressure within the range of from about $15-10,000$ psig, and a mole ratio of hydrogen to carbon monoxide within the range of from about $20: 1$ to $1: 200$

## 4,096,165

Bernard A. Meyers, East Brunswick, N.J., assignor to Allied Chemical Corporation, Morris Township, N.J.
Flied Nov. 1, 1976, Ser. No 737,
W.S. CI. $260-43$ Int. C. ${ }^{2}$ C07C $118 / 02$
U.S. Cl. 260-453 PH

5 Claims

1. A method of continuously preparing aromatic isccyanates by reacting phosgene in a reactor with an aromatic primary
amine under conditions in which an intermediate carbamyl chloride is formed, regulating the reactor wall temperature by supplying sufficient heat to the reactor wall to counteract the cooling effect of additional amounts of phosgene reactant on said intermediate and, by said supplied heat, sustaining the myl chloride decomposes to aromatic isocyanate and above the reaction temperature prevailing during the formation of said carbamyl chloride, thereby preventing solidification of carba myl chloride at the reactor wall and producing the desired aromatic isocyanate from the carbamyl chloride.

PROCESS FOR THE PREPARATION OF CARBAMATES OF N-HYDROXYTHIOIMIDATES
Jose Rofeel Alvarez Charleston, W. V..., and Julius Jalo Fuchs, Wilmington, Deln, assignors to E. I. Du Pont de Nemiours and Company, Wilmington, Del.
Continuation-in-part of Ser. No. 546,997, Feb. 4, 1975, abandoned. This application Oct. 4, 1976, Ser. No. 728,948
I.S. C. $260-453$ RW

5 Claim 1. In the process for preparing compounds of the formula

$$
\begin{gathered}
\stackrel{\mathrm{O}}{\mathrm{II}} \\
\mathrm{R}_{1}-\mathrm{C}=\mathrm{NOC}-\mathrm{NH}-\mathrm{CH}_{3} \\
\mathrm{SR}_{2}
\end{gathered}
$$

where
$\mathbf{R}_{1}$ is
is methyl, methoxymethyl, ethyl, or dimethylcarbamoyl $\mathbf{R}_{2}$ is alkyl of 1 through 3 carbon atoms or cyanoethyl; from their corresponding N -hydroxythioimidates and methy
carbamoyl chloride, the improvement which comprise contacting an N -hydroxythioimidate of the formula

$$
\begin{gathered}
\mathbf{R}_{1}-\mathrm{C}=\mathrm{NOH} \\
1 \\
\mathrm{SR}_{2}
\end{gathered}
$$

where
where
$R_{1}$ and $R_{2}$ are as defined above, with methyl carbamoy
chloride in a mixed solvent system containing water and a suitable water-immiscible organic solvent with a volume
ratio of water to organic solvent of not less than 0.1 at a ratio of water
pH above 10 . $\qquad$
4,096,167
FUNGICIDAL AND HERBICIDAL
FUNGICIDAL AND HERBICIDAL
David Cheong King Chan, Petaluma, Calif,, assignor to Cherron Research Company, San Francisco, Calif.
Continuation-in-part of Ser. No. 641,839, Dec. 18, 1975, abandoned, thich is 2 continuation-in-part of Ser. No. 400,287, Sep. 24, 1973, which is a continuation-in-part of Ser. No.
515,781, Oct. 17,1974 , Pat. No. $3,944,607$, which is 2 515,781, Oct. 17, 1974, Pat. No. 3,944,60 J, which is 2
continuation-in-part of Ser. No. 541,814, Jan. 17, 1975,
abandoned. This application Feb. 17, 1977, Ser. No. 769,645
U.S. Cl. 260-455 R

1. A compound of the formuls

wherein $R^{1}$ is alkyl of 1 to 6 carbon atoms, $R^{2}$ is hydrogen or alkyl of 1 to 6 carbon atoms, $R^{3}$ is hydrogen or alkyl of 1 to 6 carbon atoms, $\mathrm{R}^{4}$ is alkyl of 1 to 6 carbon atoms, alkenyl of 3 to 6 carbon atoms or phenylalkyl of 7 to 10 carbon atoms substituted on the phenyl ring with up to 2 fluoro, chloro, bromo or
alkyl of 1 to 2 carbon atoms, and $X$ is fluorine, chlorine, broalkyl of 1 to 2 c
mine or iodine.

## 4,096,168

ates
John E. Hallgren, Scotia, N.Y., assignor to General Electric
Company, Schenectady, N.Y.:
Filed Oct. 12, 1976, Ser. No. 731,493

$$
\begin{aligned}
& \text { Filed Oct. 12, 1976, Ser. No. 731,4 } \\
& \text { Int. C1. }{ }^{2} \text { C07C } 68 / 00
\end{aligned}
$$

U.S. CI. $260-463$ $\qquad$ 23 Claims
wherein an 1. An improved aromatic carbonate process wherein an
aromatic carbonate is formed in the substantial absence of an aromatic carbonate is formed in the substantial absence of an aromatic salicylate which comprises contacting a phenol with
carbon monoxide, a base, and a Group VIIIB element selected from ruthenium, rhodium, palladium, iridium, osmium or platinum having an oxidation state of plus one.

AROMATIC CARBONATES
Alan J. Chalk, Kinnelon, N.J., assignor to General Electric Company, Schenectady, N.Y. Filed Oct. 12, 1976, Ser. No. 731,496
U.S. C1. $260-463$

It. Cl. ${ }^{2}$ C07C 68/00
7 Claims
wherein $\mathbf{R}^{4}, \mathbf{R}^{2}, \mathbf{R}^{3}$, and $\mathbf{R}^{4}$ each represents an alkyl group
containing from 1 to 6 carbon atoms, a cycloalkyl containing from 1 to 6 carbon atoms, a cycloalkyl group containing from 3 to 6 carbon atoms, a phenyl group, an ethyleni-
cally unsaturated group containing from 2 to 4 carbon atems, or a hydrogen atom, and $R^{5}$ represents a phenoxyphenyl group which comprises contacting (a) an aldehyde of formula I
$\mathrm{R}^{3}-\mathrm{C}(0) \mathrm{H}$
wherein $R^{5}$ has the same meaning as in formula $I$,
(b) an alkali metal, alkaline earth metal or tetrahydrocarbylammonium salt of hydrocyanic acid,
(c) a 2 -halocyclobutanone of formula III

$$
\begin{gathered}
\mathrm{R}^{2} \\
\mathrm{R}^{1}-\mathrm{C}-\mathrm{C}=\mathrm{O} \\
\mathrm{R}^{3}-\mathrm{C}-\mathrm{C}-\mathrm{Cal} \\
1 \\
\mathrm{R}^{4} \\
\hline
\end{gathered}
$$

Wherein $R^{1}, R^{2}, R^{3}$ and $\mathbf{R}^{4}$ have the same meaning as in formula I and Hal represents a halogen atom, and (d) one or more aprotic solvents.

PROCESS FOR THE MANUFACTURE O PROCESS FOR THE MANUFACTURE OF
DICYANOBUTENE FROM BUTADENE, HYDROGEN CYANIDE AND OXYGEN
Robert John Benzie, and Dhafir Yusuf Waddan, both of Wilton, Iobert John Benzie, and Dhafir Yusur Waddan, both of Wilton,
England, assignors to Imperial Chemical Industries Limited, London, England
Filed Apr. 20, 1977, Ser. No. 789,186 Claims priority, application United Kingdom, Apr. 29, 1976, S. CI. 260 Int. C1. ${ }^{2}$ C07C 120/02 1. A process for the manufacture of dicyanobutene which comprises reacting butadiene with hydrogen cyanide in the molar ratio of about $1: 10$ to about 10:1 and oxygen or a gas mixture containing oxygen, with the oxygen in molar excess in
relation to whichever of the hydrogen cyanide or butadiene is used in the smaller molar amount, in the presence of a catalyst comprising copper ions, ions of at least one halide selected from the group consisting of chloride and bromide, and iodide ions, and of a solvent for the catalyst which solvent does not interfere with the reaction and is not itself extensively changed
by the reaction, at a temperature of about $10^{\circ}$ to $150^{\circ} \mathrm{C}$., the by the reaction, at a temperature of about $10^{\circ}$ to $150^{\circ}$.., the iodide ion being from about 0.001 to about 0.2 mole per mole of butadiene, and the proportion of iodide ion in the combined
halide and iodide ion being from about 0.1 to about $90 \%$ on a halide and iodide ion being from about 0.1 to about $90 \%$ on a 1. An aromatic carbonate process which comprises contact element selcted from ruthenium, rhodium, palladium, osmium iridium or platinum having an oxidation state greater than zero. molar basis.

## 4,096,170

PREPARATION OF ESTERS
Marinus J. van den Brink, and Roger A. Sheldon, both of Amsterdam, Netherlands, assignors to Sheil Oil Company, Houston, Tex. Filed May 12, 1977, Ser. No. 796,260 Claims priority, application United Kingdom, Jul. 26, 1976, $31041 / 76$ Int. Cl. ${ }^{2}$ C07C 120/00, 121/46, 121/48 13 Claims 1. A process for

p
$4,096,172$
CATALYTIC PROCESS FOR THE PRODUCTION OF
ACRYLONITRILE ACRYLONITRILE Bruno Notari, and Vittorio Fattore, both of San Donato Milanese, Italy, asslgnors to Snam Progetti, S.p.A., Milan, Italy Continuation of Ser. No. 169,801, Aug. 6, 1971, zbandoned. This application Apr. 12, 1976, Ser. No. 676,130
Claims priorty, application Italy, Aug. 7, 1970, 28404 A/70 Claims priority, application Italy, Aug. 7, 1970, $28404 \mathrm{~A} / 70$
Int. Cl. U.S. Cl. 260-465.3

1. A process for the production of acrylonitrile comprising feeding propylene, ammonia and oxygen at ratios between $1 / 0.7 / 1$ and $1 / 1.4 / 3$ and at temperatures between $350^{\circ} \mathrm{C}$, and $550^{\circ} \mathrm{C}$, at pressures between 1 atm. and 5 atms. over a catalyst consisting essentially of, as the sole catalytic agent, one having consisting essentially:
$\mathrm{Wa}_{\mathrm{a}} \mathrm{M}_{\mathrm{b}} \mathrm{Me}_{\mathrm{c}}{ }^{\text {wii }} \mathrm{O}_{d}$
wherein $W$ is tungsten; $M$ is bismuth; Me ${ }^{\text {riii }}$ is iron; and $O$ is oxygen, wherein the tungsten is present in gram atomic amounts greater than the gram atomic amounts of each indi-
vidual remaining metal component or the sum of the remaining vidual remaining metal component or the sum of the remaining
metal components, wherein the metal components of the catamest are in the form of oxygenated compounds, and wherein $a$ is $1 ; b$ in 0.04 to $0.8 ; c$ is 0.08 to 0.8 ; and $d$ is 2.5 to 9.5 , said catalyst having been calcined at a temperature in the range of
from $400^{\circ} \mathrm{C}$. to $800^{\circ} \mathrm{C}$. for from 1 to 60 hours.
chlorina
CHLORINATED $\begin{aligned} & \text { 1-AMINOINDANE N-METHYL } \\ & 4,096,173\end{aligned}$ TRANSFERASE INHIBITORS
Bryan B. Moiloy, Indianapolis, Ind., assignor to Eli Lilly and Bryan B. Moling,
Company, Indianapolis, Ind.
(ompany, Indiannpolis, Ind. Int. C. ${ }^{2} \mathbf{C O T C}$ 87/60
U.S. CI. 260-501.1
d selected from the group consis
2. A compound selected from thoro-1-aminoindane chloro-1-aminoindane,
dichloro-1-aminoindane and 6,7 -dichloro- 1 -aminoindane and pharmaceutically-acceptable acid addition salts thereof

ANIONIC NAPHTHALENE THIOUREIDO-DIPHENYLOXIDES
Ransom Brown Conrow, Pearl River, and Seymour Bernstein New City, both of $\mathbf{N} \mathbf{Y}$, assignors to American Cyanamid Company, Stamford, Conn.

Filed Jul. 1, 1977, Ser. No. 812,194 Hed Jul. 1, 1977, Ser. No. 812,194
U.S. C. $260-506$

1. A compound of the formula:

2 Claims


wherein $\mathbf{R}$ is a pharmaceutically acceptable salt cation.

4,096,175
EXTRACTION METHOD assignors to Texaco Development Corporation, New York, N.Y. Filed Dec. 1, 1976, Ser. No. 746,648 U.S. Cl. $260-512$ P

$$
\text { . } \operatorname{cosc} \text { 143/42 }
$$

S. CI. 260-512 R Int. C1. ${ }^{2}$ COCC $143 / 42$

$$
2 \mathbf{R}^{\text {nint. }}
$$

1. The method of resolving a mixture of a nonionic Claims tant and an anionic surfactant existing in an aqueous medium, said nonionic surfactant having a structural formula as follows:

$$
\underset{\mathrm{Rn}^{2}}{\substack{\mathrm{OCH}_{2} \mathrm{CH} \\ \mathrm{R}_{1} \\ \hline}}
$$

where $R$ is a $C_{1}-C_{22}$ alkyl group, $n$ is an integer of $1-3, R_{1}$ is $H$ or $\mathrm{CH}_{3}$ and $z$ is an integer of $1-40$, said anionic surfactant having a structural formula as follows:
Rn
where $\mathrm{R}, \mathrm{R}_{1}, n$ and $z$ have a significance as above, $\mathrm{R}_{3}$ is ethyl ene or propylene and $\mathbf{A}$ is an alkali metal cation which com prises the step of treating said aqueous mixture with at least an ionic surfactant in said methylal and separating out the methy lal phase containing the nonionic surfactant from the aqueous phase containing the anionic surfactant.

## BENZOYLBENZOIC ACIDS

 Nathan N. Crounse, Cincinnati, and Paul J. Schmidt, Sharon ville, both of Ohio, assignors to Sterling Drug Inc., New York, Filed Dec. 12, 1972, Ser. No. 314,443U.S. Cl. $260-517$ Claims

3. 2-(2,4-Bis(dimethylamino)benzoyl)-5-(dimethylamino) benzoic acid.

4,096,177
PROCESS FOR THE PREPARATION OF P-ISOBUTYL-HYDRATROPIC Leandro Baiocchi, via B. Platina 22, Rome, Italy

Thisis ap Ser. No. 519,769, Oct. 31, 1974, abandoned.
This application Nov. 30, 1976 Ser No.
Claims priority, application Italy, Apr. 11, 1974, 50315 A/74
U.S. CI. 260-515 R Int. C1. ${ }^{2} \mathbf{C 0 7 C} 63 / 04$
U.S. CI. 260-515 R

1. A process for the preparation of p-isobutyl-hydratropic cid () which comprises the steps of heating at a temperature
ranging from $200^{\circ}$ to $240^{\circ} \mathrm{C}$ and $240^{\circ} \mathrm{C}$ and for a period ranging from

where each $\mathbf{R}$ represents a lower alkyl having from 1 to 5 carbon atoms, in the presence of $3-10$ mols of a strong acid in an organic base, where said organic base is selected from the group consisting of triethylamine, pyridine, picolines, quinoline and isoquinoline and then pouring said heated and thus reacted mixture into water and separating said p-isobutylhy-dratropic-containing product which segregates.

13,14-DIHYDRO-16-PHENOXYY PROSTAGLANDIN E ${ }_{1}$ orman A. Nelson, Ge ANALOGS assignor to The Upiohn Company, Kalamazoo, Mich.
Division of Ser. No. 426,058, Dec. 19, 1973, which is a division Division of Ser. No. 226,058, Dec. 19, 1973, which is a division
of Ser. No. 252,030, May 10, 197 . This application Feb. 10, 1977, Ser. No. 767,443
U.S. Cl. 260-520 R

Th. Cl. ${ }^{2}$ O07C 69/76

1. An optically active compound of the formula

10 Claims

or a racemic compound of that formula and the mirror image thereof, wherein $g$ is an integer from 2 to 5 , inclusive; wherein M is


4,096,181 SUBSHIUTED SULFAMIC ACID HALIDES Gerhard Hamprecht, Mannheim, Germany, assigar to BASF Akleageselischath, Ludwigshafen, Germany
Filed. 26, 1976, Ser. No. 735, 89
Claims priority, application Germany, Nov. 28, 1975, 2353460
wherein $R_{1}$ is hydrogen or alkyl of one to 12 carbon atoms inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, aralky of 7 to 12 carbon atoms, inclusive, phenyl, or phenyl substituted with one, 2 , or 3 chloro or alkyl of one to 4 carbon atoms. inclusive; wherein $R_{2}$ and $R_{3}$ are hydrogen, methyl, or ethyl wherein T is alkyl of one to 3 carbon atoms, inclusive, fluoro chloro, trifluoromethyl, or -OR, wherein $\mathrm{R}_{4}$ is alkyl of one $t$ 3 carbon atoms, inclusive, and wherein $s$ is zero, one, 2 , or 3
with the proviso that not more than two with the proviso that not more than two Ts are other than
alkyl; including each of the lower trialkanoates thereof, and each of the pharmacologically acceptable salts thereof when $R_{1}$ is hydrogen.
U.S. C. $260-543$ Int. US. CI. $260-543$ R

$$
\begin{gathered}
4,096,179 \\
\hline
\end{gathered}
$$

13,14-DIHYDRO-16-PHENOXY PROSTAGLANDIN $F_{1 a}$ analogs
Norman A. Nelson, Galesburg, Mich., assignor to The Upjohn Company, Kalamazoo, Mich of Ser. No. 252,030, May 10, 1972 , 1973, which is a division
(10) 1977, Ser. No. 767,444
U.S. CI. $260-520$ R
nt. Cl. ${ }^{2}$ C07C $177 / 100$
U.S. CI. 260-520 R

or a racemic compound of that formula and the mirror image thereof, wherein $g$ is an integer from 2 to 5 , inclusive; wherein $M$ is

1. Sulfamic acid halides of the formula

 M is
where each $\mathbf{X}$ is halogen and $\mathbf{R}$ is a cycloaliphatic radical or is an aliphatic radical which is not substituted by halogen atoms, or which is substituted by one or more halogen atoms at the remote positions relative to the nitrogen atom.

## 4,096,182

PROCESS FOR THE SIMULTANEOUS PREPARATION OF 2,5-DIOXO-1,2-OXA-PHOSPHOLANES AND B-HALOGENPROPIONIC ACID HALIDE
Walter Rupp, Kסnigatein, Taunus, and Manfred Finke, Kelk beim, both of Germany, assignors to Hoechst Aktiengesell
schath, Frankfurt am Main, Germany
Filed Mar. 16, 1977, Ser. No. 778,052
Claims priority, application Germany, Mar. 19, 1976, 2611694 Int. C1.2 COTC 51/58: C07E 9/02
U.S. CI. 260-544 Y 13 Claims 1. A process for the preparation of 2,5 -dioxo-1,2-xa-phos pholanes of the formula ( I )

herein
$\mathbf{R}^{1}$ is an alkyl group with up to 18 carbon atoms which may be substituted by up to three halogen atoms, a cycloalky group with up to 8 carbon atoms, an alkenyl group with up to 8 carbon atoms, an aryl group with up to 14 carbon with up to 4 carbon atoms, lower alkoxy groups with u o 4 carbon atoms, halogen or with amino groups alkylated or dialkylated by lower alkyl radicals with up to carbon atoms or an aralkyl group with up to 15 carbo toms, which may be substituted in analogous manner to the aryl group, ${ }^{\text {and }}$
$\mathbf{R}^{3}$ is an alkyl group with up to 6 carbon atoms, a pheny radical, which may be substituted up to three times by halogen or by lower alkyl groups with up to 4 carbous
atoms, a benzyl radical or hydrogen, with simultaneous preparation of about equimolar quantities of a $\beta$-halopropionic acid halide, which comprises reacting a 2 -halofo mylethyl-phosphinic acid halide of the formula (II)

stands for chlorine or bromine with an approximately equimolar quantity of acrylic acid.

## 

11 Claim
William LTYRYLSULFONYLAMIDINES Ind,, axsignors to Mead Johnson \& Company, of Evansville, Division of Ser. No. 601,563, Aug. 4, 1975, Pat. No. 4.052, 2555, which is a continue. 61,563, Aug, 4, 1975, Pat. No. 4,052,455, bondoned, which is a continuantion-in-part of Ser. No. 368,547, Jun. 11, 1973, abandoned. This application Aus. 19, 1977, Ser.

$$
\begin{gathered}
\text { No. 825,996 } \\
\text { Int. Cl. }{ }^{2} \text { C07C } 143 / 38,143 / 40,123 / 00
\end{gathered}
$$

U.S. Cl. 260-556 AR

39 Claims

1. A compound selected from the group consisting of styrylsulfonylamidines having the formula

wherein
$R_{1}$ is selected from lower alkyl of 1 to 4 carbon atoms inclusive, hydrogen, nitro, amino, halogen, cyclohexyl, carbamoyl, lower alkylsulfonyl from 1 to 4 carbon atoms inclusive, sulfamoyl or lower alkanoylamido of from 2 to 4 carbon atoms inclusive;
$\mathbf{R}_{2}$ is selected from hydrogen or halogen with the proviso that when $\mathbf{R}_{1}$ is halogen $\mathbf{R}_{2}$ can represent up to two addiional halogen; ; $\mathrm{R}_{3}$ is hydrogen, cy
atoms inclusive;
A is selected from lower alkyl of from 1 to 8 carbon atoms (1) inclusive, di(lower)alkylaminophenyl, phenyl, benzyl, -naphthyl, styryl, phenylbutadienyl, cycloakyl of 3 or represented by the symbol

herein
is selected from (lower) alkoxy from 1 to 4 carbon atoms inclusive, halogen, nitro, amino, lower al of from 2 to 4 carbon atoms inclusive, and $n$ represents the integer 1 or 2 .

PROCESS FOR PREPARING ACID AMIDES hinji Nakamura; Shun Inokuma, both of Takktsukiki; Shin Ta of Ibaraki, all of Japan, assignors to Sumitomo Chemical Company, Limited, Osaka, Japan

## Cluims prioit

 Claims priority, application Japan, Jan. 19, 1976, 51-5289, 51.57082U.S. Cl. 260-561 $\mathrm{N}^{\text {Int. Cl. }{ }^{2} \text { C07C 103/08 }}$
(1) U.S. C. $260-561 \mathrm{~N}$ N aring acid amid 16 Clai 1. A process for preparing acid amides by hydration of the corresponding nitrile compounds with water in the presence of a reating a vanadate with a cuprous salt or with at least two members selected from the group consisting of metallic copper, a cuprous salt and a cupric salt.

PREPARATION OF P-AMINOBENZOTRIFLUORIDE Linda P. Sel well, Wilmington, Del., assignor to E. I. Du Pont de

Nemours and Company, Wilmington, Del
Continuation-in-partr of Ser. No. 647,495 , Jan. 8, 1976,
abandoned. This application Feb. 23, 1977, Ser. No. 771,067 U.S. CI. 260-581 Int. C1. ${ }^{2}$ C07C $85 / 04$

23 Claims 1. The process of reacting p-chlorobenzotrifluoride with ammonia in an essentially nonaqueous solvent in the presence of a catalytically effective amount of a catalyst combination comprising one or more compounds selected from the group
consisting of cuprous chloride, cuprous bromide, cupric chloride, cupric bromide, copper sulfate and copper acetate and one or more additional compounds selected from the group consisting of potassium fluoride, potassium chloride, potassium bromide, potassium iodide, calcium fluoride, magnesium fluoride, ammonium fluoride and potassium acetate at a pressure in the range of 30 to 400 atmospheres, at a temperature range of duce p-aminobenzotrifluoride.

4,096,186
PROCESS FOR RACEMIZING OPTICALLY ACTIVE AMINO COMPOUNDS
Yataro Ichikava, Koil Nakegava, and Eishin Yoshisto, all Yataro Uuni, Japan, assignors to Teijin Limited, Japan
Iwakuni, Japan, assignors to Teijin Limited, Japan
Filed Jun. 27, 1975, Ser. No. 590,944
Claims priority, application Japan, Jun. 29, 1974, 49.73843 Int. Cl. ${ }^{2}$ C07C 91/04, 91/14, 91/16
U.S. Cl. $260-584 \mathrm{R}$ 1. A process for racemizing optically active amino com-
pounds, which comprises contacting an optically active compounds, which compris
pound of the formula

$$
\begin{array}{cc}
\mathrm{H} & \mathrm{R}_{2} \\
1 & 1 \\
\mathrm{R}_{1}-\mathrm{C} & \mathrm{C}-\mathrm{R}_{2} \\
1 & 1 \\
\mathrm{NH}_{2} & \mathrm{OH}
\end{array}
$$

wherein $\mathbf{R}_{1}$ is an alkyl containing not more than 10 carbon toms and $\mathrm{R}_{2}$ is hydrogen or an alkyl containing not more than 10 carbon atoms,
with ammonia and hydrogen in the presence of a Co or Coion.
tion.

4,096,187
PROCESS FOR HALOGENATION OF ALDEHYDES A PRODUCTION OF OXIMES THEREFROM John Henry Bonfield, Basking Ridge; Andiappan Kumaresa
Murthy, Lake Hiawatha, and Donald Pickens, Mendham, al Murthy, Laike Hiawatha, and Donand Pickens, Mendham, all of N.J., assigno

> N.J. Aug. 4, 1977, Ser. No. 821,898 Filed Aug Int. C.2. ${ }^{2} 07 \mathrm{C} 47 / 14,131 / 00$ Int. C
-601 H
U.S. C. 260-601 H

1. In a process for the haloge
of an aldehyde of the formula

with a halogenating agent selected from the group consisting of $\mathrm{Cl}_{2} \mathrm{Br}_{2}$ and $\mathrm{I}_{2}$ to form an $\alpha$-haloaldehyde of the formula
where X is $\mathrm{Cl}, \mathrm{Br}$ or I and $\mathrm{R}^{\prime}$ and $\mathrm{R}^{\prime \prime}$ independently are alkyl of 1 to 4 carbons, the improvement which comprises continuously feeding the aldehyde and halogenating agent into a reactor at a molar ratio of halogenating agent to aldehyde of be-
tween about $0.8: 1$ and about $1.1: 1$ and continuously feeding water into the reactor at a rate of between about $1 \%$ and about $20 \%$, by weight of aldehyde fed.

PREPARATI
in B. Wilkes of STRAIGHT CHAIN ALDEHYDES Company S, Richmond, Calif., assignor to Chevron Research Filed Dec. 20 , Calif.
iled Dec. 20, 1976, Ser. No. 752,582
Int. Cl. ${ }^{2}$ C07C 45/08
U.S. C. $260-604 \mathrm{HF}$

7 Claims

1. In the catalytic hydroformylation process of preparing
straight chain aldehydes from straight chain olefins by the reaction of straight chain olefins of about 3 to 20 carbon atoms
with carbon monoxide and hydrogen under hydroformylation with carbon monoxide and hydrogen under hydroformylation of about $75^{\circ}$ to $200^{\circ} \mathrm{C}$ and a pressure of about 500 to 5000 pounds per square inch, the improvement which comprises carrying out the reaction in the presence of a monoamine modifier consisting essentially of methylamine, dimethylamine, allyl amine, or diethylamine, n-butylamine, benzyl amine, amounts from about 0.05 to 1.0 mols of amine per mol of cobalt.

PRODUCTION
Horst Staenden OF TERTIARY PHOSPHINE OXIDES asellischaeke, Bruhl, Germany, assignor to Hoechst Aktiengesellschaft, Frankfurt am Main, Germany
Claims priority, application Germany, Jun. 21, 1975, 2527796
U.S. CI. $260-606.5 \mathbf{P}$ Int. Cl. ${ }^{\mathbf{2}} \mathbf{C 0 7 F} 9 / 53$

5 Claims
U.S. Cl. $260-606.5 \mathrm{P}$

1. A process for making tertiary phosphine oxides of the
.
$\mathbf{R}^{\prime} \mathbf{R}^{2} \mathbf{R}^{\mathbf{3}} \mathbf{P}(\mathbf{O})$
in which $\mathbf{R}^{1}, \mathbf{R}^{2}$ and $\mathbf{R}^{3}$ each stand for identical or different, alkyl, aryl or aralkyl groups, which comprises oxidizing at
temperatures higher than $200^{\circ} \mathrm{C}$ quaternary phosphonium halides of the general formula
$\left[R^{\prime} R^{2} R^{3} R^{4} P\right] X$
in which $\mathbf{R}^{1}$ through $\mathbf{R}^{3}$ have the meanings given above, $\mathbf{R}^{4}$ has he same meaning as $\mathbf{R}^{1}$ through $\mathbf{R}^{3}$, and $\mathbf{X}$ stands for a halogon reaction products thus obtained
products thus obtained.
OXIDATIVE COUULING $\mathbf{4 , 0 6 0}$
OXIDATIVE COUPLING OF ALKYLPHENOLS CATALYZED BY METAL AMMONIA COMPLEXES Thomas F. Rutledge, Wiilmington, Del., assignor to ICI Ameri-
cas Inc., Wilmington, Del. Filed Nov. 26, 197
The portion of the term of this patent subsequent to Jul. 11, Int. C1. 2 1995, has been disclaimed. U.S. Cl. $568-730$
2. A method of preparing a condensation 16 Claims 1. A method of preparing a condensation product of an "akylpheno", an "aleoxyphenol" or a "1-naphthol", by an
oxidative coupling reaction said method comprising contacting an aqueous mixture of the phenol or naphthol with oxygen
or oxygen containing gas in the presence of sufficient amount under conventional conditions to prepare the aldehyde of the
of alkaline material to sustain pH in the range of about $6-9.5$ cyclic acetal
during the oxidative coupling reaction and a catalyst system (c) hydrogenating and hydrolyzing the aldehyde of the comprising an amalt, nickel or manganese; or trivalent chro- cyclic acetal in the presence of a hydrogenation catalyst mium or iron.

## 4,096,191

HYDROFORMYLATION OF OLEFINS USING AZOXY-DENTATED LIGANDS John B. WIlkes, Richmond, Calif,, assignor to Cherron Research
Company, San Francisco, Calif. Company, San Francisco, Calii,
Continuation of Ser. No. Jun. 150. 1971, abandoned, which is a division of Ser. No. 857,547, Sep. 12, 1969, Pat. No. $3,647,845$. This application Jun. 14, 1974, Ser. No. 479,345 Int. C1. ${ }^{2} \mathbf{C 0 7 C} 27 / 22$ and an ion exchange catalyst to prepare 1,4 -butanediol and a mixture of diols;
(d) separating the mixture of diols from 1,4-butanediol; (e) recycling said mixture back to step (a) to react with acrolein in place of the diol of (a) for a number of cycles 2 -methyl-1,3-propanediol; and
(f) separating and recovering the 2 -methyl 1,3 -propanediol.

PRODUCTION OF ALPHA BETA OLEFINICALLY US. Cl. 568-909 4 Claims PRODU UNSATURATED ALCOHOLS U.S. C. $568-909$ Claims 4 Chomas H. Vanderspurt, Gillette, N.J., assignor to Celanese 1. Process for the addition of a - $\mathrm{CH}_{2} \mathrm{OH}$ group to a hy-
droformylatable organic compound containing olefinic unsatu- $\begin{gathered}\text { Corporation, New York, N.Y. } \\ \text { Filed Aug. 2, 1976, Ser. }\end{gathered}$ droformylatable organic compound containing ole with carbon
ration which comprises reacting said compound with monoxide and hydrogen at a temperature in the range from about $100^{\circ} \mathrm{C}$ to $225^{\circ} \mathrm{C}$ in the presence of a hydroformylation
catalyst consisting essentially of a cobalt carbonyl complex catalyst consisting essentially of a cobalt carbonyl complex an ethylenediamine carboxylic acid, salt, or ester containing from 1 to 5 azoxy-dentate functional groups selected from a class consisting of


$-\mathrm{N}=\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, and $-\mathrm{N}=\mathrm{CCH}_{2} \mathrm{OH}$,
wherein M is hydrogen or an alkali metal, alkaline earth meta or ammonium cation and wherein the open valences of the functional groups are satisfied by bonds to hydrogen or hydrocarbon radicass, and werein the ethylenediamine carboxylic mol per mol of cobalt.

## 4,096,192

PROCESS FOR THE PREPARATION OF 2-METHYL-1,3-PROPANEDIOL
Kamlesh Kumar Bhatia, Newark, and Charies Carmen Cumbo Wilmington, both of Del., assignors to E. I. Du Pont de N mours and Company, Wllmington, Del.
The portion of the term of this patent subsequent to Dec. 30 ,
1992, has been disclaimed.
Int. Cl. ${ }^{2}$ C07C $29 / 00$
U.S. C1. 568-866

11 Claim propanediol which comprises
(a) reacting acrolein with a 1,3 -aliphatic diol with 3 to
carbon atoms other than 2 -methyl-1,3-propanediol under
conventional conditions to prepare a cyclic acetal;
(b) hydroformylating the cyclic aceal in the presence of a rhodium complex catalyst comprising rhodium carbony and a phosphite ligand of the formula

wherein $\mathbf{R}_{1}, \mathbf{R}_{2}$ and $\mathbf{R}_{3}$ are the same or different phenyl, substiwherein $R_{1}, R_{2}$ and $R_{3}$ are the same or alkyl groups having 1 to 12 carbon atoms
U.S. Cl. 568-881 10 Claims

1. An improved hydrogenation process for converting a $\alpha, \beta$-olefinically unsaturated carbonylic compound into the corresponding allylic alcohol derivative which comprises with hydrogen in the vapor phase at a temperature between about $0^{\circ}$ and $300^{\circ} \mathrm{C}$ and a pressure between about 15 and 15,000 psi in the presence of a catalyst comprising a silver-cadmium ailoy on a carrier substrate, wherein the atomic ratio of silver to cadmium in the alloy is in the range of between abo 0 tern which is substantially free of detectable unalloyed metal crystallite lines.

## 4,096,194

 David Moy, and Marrin S. Rakow, both of East Brunswick, N.J., assignors to Cities Serrice Company, Tulsa, Okle.
Filed Aus. 2, 1976, Ser. No. 710,982

Filed Aug. 2, 1976, Ser. No. 710,
U.S. Cl. 568-899

Int. C1. ${ }^{2}$ C07C 29/04 $\quad 5$ Claims

1. An improved process for hydrating, with liquid water over a solid catalyst and with a liquid solvent, isobutylene to form tertiary butyl alcohol in the liquid state, wherein the improvement comprises using a solvent selected from the group co
glycol ethers, and glycol diethers, an glycol ethers, and glycol diethers, and maintaining a solvent-to-water weight ratio of from about S:1 to about 20:1, thus maintaining a single liquid phase for the reaction miffure and increasing the conversion per centage of the isobutylene to the corresponding alcohol.

## CYCLIC TWO-STAGE NITRATION PROCESS FOR PREPARING

 4-CHLOROBENZOTRIFLUORIDEboth NJ assignors to GAF David E. Graham, Westrield,
Filed May 13, 1977, Ser. No. 796,519
Int. C. ${ }^{2}$ C07C $79 / 12$
U.S. C. 260-646 14 Claim 1. A cyclic, two-stage nitration process for preparing 4 -,hloro-3,5-dinitrobenzotrinuoride
(a) mononitrating 4-chlorobenzotrifuoride substantially
(a) completely to 4 -chloro-3-nitrobenzotrifluoride with aci mixture of nitric acid, sulfur trioxide and sulfuric acid, used acid layer and 4-chloro-3-nitrobenzotrifuoride or ganic layer,

## (c) separating said dilute used acid layer from said organic

layer,
(d) dinitrating said 4-chloro-3-nitrobenzotrifluoride organic layer with a fresh acid mixture of nitric acid, sulfur triox-
ide, and sulfuric acid to form 4 -chloro-3,5-dinitrobenzotifluoride product, and a partially spent acid mixture con taining a portion of said product dissolved therein, said

PROCESS FOR REGENERATING FLUOROSULFURIC GENERATING FL
van Mayer, Summit, N.J., assignor to Exxon Research \& Engl neering Co., Linden, N.J.

Filed Feb. 28, 1977 , Ser. No. 772,641
Int. C. ${ }^{2}$ C07C $3 / 54$
U.S. CI. $260-683.47$

17 Claims

fresh acid mixture containing sufficient nitric acid to effect said nitration and to provide for said mononitration upon recycling of said partially spent acid mixture back to step (e),
(e) separating said 4-chloro-3,5-dinitrobenzotrifluoride product from said partially spent acid mixture, and,
(f) recycling said partially spent acid mixture back to step (a).

DIAZOTIZATION-FL UORINATION IN A MEDIUM OF
HYDROGEN FLUORIDE CONTAINING TERTIARY AMINE COMPOUNDS
Max M. Boudalian, Pittsford, N.Y., assignor to Olin Corpora tion, New Haven, Conn.
Continuation-in-part of Ser. No. 627,834, Oct. 31, 1975 Condoned. This application Aug. 12, 1976, Ser. No. 713,753
Int. C. ${ }^{2}$ Co7D 213/02. Int. C1. ${ }^{2}$ C07D 213/02; 007 C 25/13; C07D 213/04,
U.S. C. $260-650 \mathrm{~F}$ 1. In a process for preparing a fluorobenzene or a 24 Claims 1. In a process for preparing a fluorobenzene or a fluoropyri dine by (1) diazotizing a corresponding aminobenzene or amidiazotization agent selected from the group consisting of sodium nitrite, potassium nitrite, nitrous anhydride, nitrous acid, a nitrosyl halide, and a complex of a nitrosyl halide with hydrogen fluoride to produce a corresponding diazonium uonide and (2) decompoing said a diazenum fioride, Wherei formula (I) or (II):


wherein $\mathbf{R}^{\prime}$ is a ring substituent selected from the group con sisting of halogen; alkyl; nitro; carboxyl; hydroxy; alkoxy; and nd $n$ is an integer having a value of $1-2$, the improvemen which comprises:
conducting said diazotization and decomposition steps in a solution of hydrogen fluoride containing tertiary amine compounds selected from the group consisting of unsaturated heterocyclic tertiary amines, aromatic tertiary amines, nitriles, tertiary amine oxides and combination thereof.
(II)


1. In an alkylation process which comprises:
(a) contacting an olefin with a paraffin in an alkylation zone under alkylation conditions and with a catalyst comprising fluorosulfuric acid which includes a moderator in an amount of 5 to 100 mole $\%$, based on acid, of (1) water, (2) ${ }_{a} \mathrm{C}_{1}-\mathrm{C}_{7}$ saturated aliphatic monohydroxy alcohol, or (3) mixture of water and said alcohol to form a reaction mix-
ture of an acid catalyst phase containing fluorosulfuric acid, hydrogen fluoride, sulfuric acid and an organic sludge formed during said process and a hydrocarbon phase containing alkylate product;
(b) separating said hydrocarbon phase containing alkylate product from said acid catalyst phase, the improvement according to the following steps:
(c) stripping a portion of the fluorosulfuric acid from the acid catalyst phase separated in step (b) with a paraffin to form a stripped acid phase containing fluorosulfuric acid,
sulfuric acid and said organic sludge and containing paraffin, fluorosulfuric acid and hydrogen fluoride;
(d) contacting said stripped acid phase formed in step (c) with water to form an acid-water mixture, thereby con verting at least a portion of the fluorosurfuric acid con e) stripping at least a portion of the hydrogen fluoride fro said acid-water mixture formed step (d) with a paraffin to form a gaseous phase comprising hydrogen fluoride and paraffin and a liquid
(I) (f) trea
with sulfur trioxide to convert the hydrogen fluoride present therein into fluorosulfuric acid.

INTEGRATED PROCESS FOR REGENERATING FIRAED PROCESS FOR REGENERAT Albert J. Mariconda, Highland Lakes; Kenneth J. Reinman, Budd Lake, and Ivan Mayer, Summit, all of N.J., assignors to Filed Feb. 28, 1977, Ser. No. 772,637 Filed Feb. 28, 1977, Ser. No.
Int. C1.
C07C $3 / 54$ U.S. Cl. $260-683.47$ $\qquad$

1. In an alkylation process which comprises:教 (a) contacting an olefin with a paraffin in an alkylation zone under alkylation conditions and with a catayyst compris
ing fluorosulfuric acid to form a reaction mixture o fluorosulfuric acid catalyst phase containing an organic sludge formed during said process and a hydrocarbon phase containing alkylate product;
product from said fluorosulfuric acid catalyst phase
improvement which comprises regenerating said acid catalyst phase according to the following steps: $\qquad$ macid (c) stripping a portion of the fluorosulfuric acid from the acid catalyst phase separated in step (b) with a parafinn tio
form a stripped acid phase containing fluorosulfuric acid form a stripped acid phase containing fluorosulfuric acid paraffin and fluorosulfuric acid;
paraffin and fluorosulfuric acid;
(d) contacting said stripped acid phase formed in step (c) (d) contacting said stripped acid phase formed in step (c)
with water to form an acid-water mixture, thereby converting at least a portion of the fluorosulfuric acid con tained therein to hydrogen fluoride and sulfuric acid; (c) stripping at least a portion of the hydrogen fluoride from said acid-water mixture formed in step (d) with a paraffin to form a gaseous phase comprising hydrogen fuoncid and organic sludge;
(f) cooling the gaseous phases formed in step (c) and step (e) with liquid paraffin to a temperature between the freezing point and the boiling point of sulfur trioxide to form a firs liquid-vapor mixture which comprises a liquid phase containing fluorosulfuric acid and hydrogen fluonide and vapor phase confin
(g) treating the liquid-vapor mixture formed in step (f) with at least a stoichiometric amount of liquid sulfur trioxide

based on hydrogen fluoride to convert the hydroge fluoride present therein to fluorosulfuric acid, thereby forming a second liquid-vapor mixture which comprises a liquid phase containing regenerated fluorosulfuric acid and a
fin;
(h) passing the liquid-vapor mixture formed in step (g) into first separation zone which is maintained at a temperatur sufficient to form a liquid phase of regenerated fiuo acid and a gaseous phase containing paraffin and les than 1000 ppm fluorosulfuric acid;
(i) compressing the gaseous phase formed in step (h) to a pressure ranging between atmospheric and 170 psia to form a compressed gaseous paraffin;
(j) using a portion of the compressed gaseous paraffin paraffin in step (c)
(k) passing that portion of the compressed gaseous paraffin not used in step $(j)$ into a second separation zone which is maintained at a temperature between $45^{\circ}$ and $100^{\circ} \mathrm{F}$, thereby forming a liquid phase of substantially pure paraffin and a vapor phase of paraffin containing less than 100 ppm of fuoride-containing compounds
using the vapor phase formed in step $(\mathbf{k})$ as the paraffin in parafin in step ( f .

PROCESS FOR REGENERATING FLUOROSULFURIC ACID CATALYST
of Bet Green; William C. Bearmann, and David E. Allan, all of Baton Ronge, Le, Nass
neering Co., Linden, N.J.

Filed Feb. 28, 1977, Ser. No. 772,636
U.S. C. 260-683.47


1. In an alkylation process which comprises:
(a) contacting an olefin with a paraffin in an alkylation zone under alkylation conditions and with a catalyst compris ing fluorosulfuric acid to form a reaction mixture of fluorosufuric acid catalyst phase containing an organic sluase formed during said process
phase containing alkylate product; (b) separating said hydrocarbon phase containing alkylate product from said fluorosulfuric acid catalyst phase, the
improvement which comprises regenerating said acid catalyst phase according to the following steps:
(c) stripping a portion of the fluorosulfuric acid from the acid catalyst phase separated in step (b) with a paraffin to form a stripped acid phase containing fluorosulfuric acid and said organic sludge and a gaseous phase containing paraffin and fluorosulfuric acid
(d) contacting said stripped acid phase formed in step (c)
with water to form an acid-water mixture, thereby conwith water to form an acid-water mixture, thereby con-
verting at least a portion of the fluorosulfuric acid contained therein to hydrogen fluoride and sulfuric acid;
(e) stripping at least a portion of the hydrogen fluoride from said acid-water mixture formed in step (d) with a paraffin to form a gaseous phase comprising hydrogen fluoride and organic sludge, the stripping of step (c) and step (e) being effected at a temperature between from above $120^{\circ}$ to about $250^{\circ} \mathrm{F}$;
) cooling the gaseous phases formed in step (c) and step (e) to a temperature ranging from about the normal boiling point of said paraffin to less than $110^{\circ} \mathrm{F}$ to form a liquidfluorosulfuric acid and hydrogen fluoride and a vapor phase containing paraffin;
$(\mathrm{g})$ treating the liquid-vapor mixture formed in step $(\mathrm{f})$ in a contacting zone with at least a stoichiometric amount of sulfur trioxide based on hydrogen huoride, at a temperature ranging from about he normal boiling point of said fluoride present therein to fluorosulfuric acid, thereby forming a liquid phase of regenerated fluorosulfuric acid and a gas phase containing predominantly paraffin.

N-ALKYL POLYURETHANE/VINYL POLYMER MIXTURES MIXTURES Krimm, Krefeld; Horst-Gunter Kassahn, Krefeld, and Her mann Schnell, Krefeld, all of Germany, assignors to Bayer Aktiengesellschaft, Germany
tinuation of Ser. No. 561,552, Mar. 24, 1975, abandoned.
This application Aug. 25, 1976, Ser. No. 717,553
Inaims priority, application Germany, Mar. 28, 1974, 2415057
Caxims priority, appication Germany, Mar. 28, 1974, 2415057
U.S. CI. $260-859 \mathrm{R}$

1. A moulding composition comprising:
(a) at least one aromatic N -alkyl polyur
ing to the forlowing aikyl polyurethane correspond
ing to the following general formula:


wherein
$\mathbf{R}^{1}$ represents methyl or ethyl;
$R^{2}, R^{3}, R^{4}$ and $R^{5}$, which may be the same or different, each represents an alkyl radical having such a number of car-
bon atoms that the total number of carbon atoms in each of the alkylene bridges formed by $R^{2}, R^{3}$ and an intervening carbon atom, and
atom, is from 3 to 6 .
$\mathbf{X}, \mathbf{Y}, \mathbf{X}^{1}$ and $\mathbf{Y}^{1}$, which may be the same or different, each represents hydrogen, methyl, chlorine or bromine;
$n=0$ or $1 ;$
$m=0$ or 1 ; and
$u$ is such that the average molecular weight of the polyurethane is from 10,000 to 100,000 ;
or corresponding to the following general formula:

wherein
$\mathbf{R}^{1}, R^{2}, \mathbf{R}^{3}, \mathbf{X}, \mathrm{Y}, n$ and $u$ are as defined in connection with general formula ( $a_{1}$ ) above; and
(b) at least one elastomeric polymer based on butadiene and/or a alkyl acrylate which may be graft-polymerised
with at least one radically polymersible monomer; and, optionally,
(c) a homo-or co-polymer of the monomers of componen (c) a ho
(b);
omponen
component (a) constituting from 80 to $20 \%$, by weight, of the component (a) constituting from 80 to $20 \%$, by weight, of the
composition, and the sum of components (b) and (c) constitutes from 20 to $80 \%$, by weight, of the composition, the sum of
components (b) and (c) being made up of from 25 to $100 \%$, by weight, of component (b) and from 75 to $0 \%$ by weight, of component (c).

ADHESIVE COMPOSITION Ikuji Kishi; Tatsuo Nakano, and Hiroshi Okai, all of Machida, Japan, assignors to Denki Kagaku Kogyo Kabustin,
Tokyo, Japan
Filed Jan. 6, 1977, Ser. No. 757,281 Claims pricrity, application Japan, Jun. 29, 1976, 51-76718 U.S. CI. 260-879 Int. C1. ${ }^{2}$ C08F $279 / 02$ 1.S. Cl. $260-879$ 14 Claims oxidizi a reducing system containing a reducing agent and an oxidizing system comprising
a. 5 to 30 wt. parts of
a. 5 to 30 wt . parts of an elastomer of a copolymer of butadiene and acrylonitrile or a copolymer of butadiene and
acrylonitrile and less than 50 mer or a graft copolymer of butadiene and at least one of acrylonitrile, styrene and methacrylic acid ester and
b. 70 to 95 wt. parts of a monomer mixture comprising 30 to 80 wt . \% of 2 -hydroxy ethyl methacrylate or 2 -hydroxy propyl methacrylate and 20 to 70 wt . \% of a $\mathrm{C}_{14}$ alky unsaturated double bond and
c. 0.1 to 10 wt . \% of an organic hydroperoxide to total
monomers having ethylenically unsaturated double monomers having ethylenically unsaturated double bond

IMPACT MODIFIED POLY(ALKYLENE MEREPIED POLY(AL Sutton B. Farnham, Levittown, and Theodore D. Goldman, Cornwell Heights, both of Pa., assignors to Rohm and Has Company, Philadelphia, Pa.

Int. C1. ${ }^{2}$ C08L 67/06. C09. 39410
U.S. CI. $260-873$ U.S. Cl. $260-873$

1. A composition comprising a blend of about 99 to $60 \%$ by
weight of a poly $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.$ alkylene terephthalate) and about 1 to $40 \%$ by weight of a multi-phase composite interpolymer com prising:
(A) about 25 to 95 weight percent of a first elastomeric phase polymerized from a monomer system comprising about 75
to $99.8 \%$ by weight $\mathrm{C}_{1}$ to $\mathrm{C}_{6}$ alkyl acrylate, 0.1 to $5 \%$ by weight crosslinking member, 0.1 to $5 \%$ by weight graft linking monomer, said crosslinking monomer being a polyethylenically unsaturated monomer having a plurality polymerize at substantially the same rate of reaction, and said graftlinking monomer being a polyethylenically un saturated monomer having a plurality of addition poly merizable reactive groups, at least one of which polymerizes at a substanially fren rive of polymerization fro (B) about 75 to 5 weight percent of a final, rigid thermoplas tic phase polymerized in the presence of said elastomeric phase and is free of epoxy groups.

PROCESS TO CONTROL COHESIVE STRENGTH OF BLOCK COPOLYMER COMPOSITION David Filed Jul. 30, 1976, Ser. No. 710,042

U.S. C. $260-876$ B C. ${ }^{2}$ C08L $51 / 00,53 / 00$ | 12 Claim |
| :--- | 1. An adhesive composition which fails cohesively at ambient temperatures comprising as a minimum a block copolymer

component and a tackifying resin component, wherein said block copolymer component is prepared by the process comprising:
(a) reacting an organomonolithium compound with a mo noalkenyl arene in the presence of an inert diluent, said where R where $R$ contains from 2 to 20 carbon atoms per molecul
and is an aliphatic radical, cycloaliphatic radical, aromatic the resulting rubber-modified styrene polymer has an Izod
radical, or combination thereof: (b) reacting the product mixture fro gated diene having 4 to 5 carbon atoms per molecule; and
reacting the

4,096,206
FLAME-RETARDANT TRIAZINES
Nicodemus E. Boyer, Parkersburg, W. Va., assignor to Borg. Warner Corporation, Chicago, III. W. Na,
Filed Feb, 9 , 1976, Ser.
No. 656,469 Filed Feb. 9, 1976, Ser. No. 656,46
Int. Cl.
U.S. C1. $260-880 \mathrm{R}$
U.S. C1. $260-880 \mathrm{R}$

1. A compound having the structural formula:

13 Claims
(c) reacting the product mixture from step (b) with a cou pling agent in such an amount and under such conditions as to vary the coupling efficiency of the process within the
range of about $20 \%$ to about $80 \%$ therein controlling the range of about $20 \%$ to about $80 \%$ therein control
cohesive strength of the adhesive composition.

HALOGENATED THERMOPLASTIC/BLOCK
COPOLYMER BLEND
William P. Gergen, and Sol Davison, both of
assignors to Shell Oil Company, Houston, Tex. Continuation-in-part of Ser. No. 693,463, Jun. 7, 1976, U.S. C. $260-876$ B Bl. Cl. ${ }^{2} \mathbf{C 0 8 L} 51 / 00,53 / 00$ ${ }_{76}^{\mathrm{Int} . \mathrm{B}}$

1. A composition consisting essential 11 Claim
 weight of a block copolymer and about 96 about 96 parts by an engineering thermoplastic resin under essentially isoviscous blending conditions so as to form at least partial continuous interlocking networks wherein:
(a) said block coppolymer comprises at least two monoalke
nyl arene polymer end blocks $A$ and at least one substannyl arene polymer end blocks $A$ and at least one substan-
tially completely hydrogenated conjugated diene mid tially completely hydrogenated conjugated diene mid
block Baid block copolymer having an 8 to 55 percent
by weight monoilenyl by weight monoalkenyl arene polymer block content, each polymer block A haveng an average monecular
weight of between about 5,000 and about 125,000 , and weight of between about 5,000 and about 125,000 , and each polymer block B having an average molecular
weight of between about 10,000 and about 300,000 ; and (b) said engineering thermoplastic resin is a fluorinated thermoplastic polymer, having a generally crystalline struc-
ture and a melting point over about

$$
\text { ture and a melting point over about } 120^{\circ}
$$

## 4,096,205

METHOD TO PRODUCE IMPROVED
Robert A. Reith, Glen Ellyn, III., assignor to Standard Oil Company (Indiana), Chicago, Ill.

Filed Aug. 29, 1975, Ser. No. 609,003
U.S. C. $260-880 \mathrm{R}$

Int. C1. ${ }^{2}$ C08F 279/02

| U.S. Cl. |
| :--- |
| 1. In a process for producing rubber-modified styrene poly- |
| 880 R | mer, wherein (a) a polymerization feedstock is formed comprising an effective amount up to 30 weight percent of a rubber in styrene monomer in the substantial absence of inert solvent, radical conditions and (c) the resulting polymer is devolatilized, the improvement wherein said rubber comprises a sty-rene-butadiene copolymer rubber having a solution viscosity

ranging from 20 to 60 cps and containing from 8 to 12 weigt ranging from 20 to 60 cps and containing from 8 to 12 weight percent bound styrene with at least 2 percent, by weight of the
rubber, of such styrene in block segments and about equal amounts of styrene in block and random segments, whereby
where $A_{r}$ is the same or different polybromoaryl carbocyclic radical.

## ELASTOMER $\quad 4,096,207$

ELASTOMER COMPOSITIONS WITH IMPROVED Robert Saxon, Princetision RESISTANCE ville, both of N.J., assignors to American Cyanamid Company, Stamford, Conn

$$
\begin{aligned}
& \text { d, Conn. Jan. 3, 1977, Ser. No. 756,296 } \\
& \text { Infiled Ja. }
\end{aligned}
$$

U.S. Cl. $260-900$
4. A method for improving the abrasion resistance of vulcan4. A method for improving the abrasion resistance of vulcanizable elastomer as in claim 1, which comprises incorporating into said elastomer from about 1 to 5 parts, per hundred parts subjecting said elastomer and polytetrafluoroethylene to conditions of high shear, such that the resulting elastomer composition contains said polytetrafluoroethylene in fibrous form.

POLYPHOSPHINITES AND A PROCESS FOR THEIR Plter Derenaration
Manfred Finke, Fischbech, Taunus, allo of Germ, Taunas, and to Hoechst Aktiengeeelischatt. Frankfurt am Main, Germeny Filed Dec. 13, 1976, Ser. No. 749,792 Claims priority, application Germany, Dec. 16, 1975, 2556482; c. $9,1976,2643$. Oc. 22, 1976, 2647745
U.S. Cl. $260-931$

1. Compounds of the general formula

4 Claims

## [ymbiticity

which
X is oxygen
$\mathrm{R}^{3}$ is a $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$-alkyl group which may be substituted, prefer ably monosubstituted, by halogen, especially chlorine, cylcoalkyl group having up to 8 carbon atoms, especially carbon atoms, cyclohexyl, an alkenyl group having up to carbon atoms, especially vinyl and allyl, a phenyl or benchlorine and/or bromine, and preferably carrying 1 to 3 stituents,
$\mathrm{R}^{5}$ is hydrogen or a $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$-alkyl group, preferably methyl,
ar a $\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$-alkyl group, preferably methyl
with at least one of the radicals $\mathrm{R}^{4}$ and $\mathrm{R}^{5}$ preferably being hydrogen,
$\mathrm{R}^{6}$ is hydrogen, methyl, chloromethyl,
$\mathrm{R}^{7}$ is hydrog
$m$ stands for numbers in the ryyl, preferably hydrogen,
sands for numbers in the range or
from 2 to 20 , especially 20 to 6 ,
路 from 2 to 6 .
$r$ is 0 or 1 , preferably 0 ,
Z is a $n$-valent radical of the group consisting of: straight chain or branched hydrocarbon radicals having from 1 to 18 , preferably from 1 to 12 , carbon atoms which may be
interrupted by up to $8-0$-atoms, generally up to $a \Omega$ interrupted by up to $8-0$-atoms, generally up to $(q / 2-$ and/or by up to $3-S$-atoms and/or $\mathrm{NR}^{2}$ radicals with $\mathrm{R}^{2}$ being ( $\mathrm{C}_{1}-\mathrm{C}_{4}$ )-alkyl, especially methyl, and/or may be substituted by fluorine, chlorine, bromine atoms, prefera-
bly Cl and Br , while carrying preferably substituents in a bly Cl and Br , while carrying preferably substituents in number of up to haf the H -atoms contained in $Z$, espe-
cially from 1 to 4 ; cyclohexyl radicals which may be substituted by from 1 to 3 , preferably one straight-chain o branched and/or unsaturated alkyl radical having from to 4 carbon atoms, or by a $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ )-alkyl radical carrying preferably up to 4 F , Cl , or Br -atoms; aromatic or arali
phatic radicals which are derived from benzene, alky benzenes having up to 18 carbon atoms, from naphthalene, diphenyl, diphenylmethane, diphenylethane or 2,2 diphenylpropane, and which may be substituted in the nucleus by 1 or 2 methoxy and/or ethoxy groups, and chains by $\mathrm{F}, \mathrm{Cl}$ or Br -atoms, preferably carrying up to 5 substituents, or phosphate-containing radicals of the general formula
$\left(\mathrm{R}^{19}\right)(\mathrm{O})_{n_{1}}-\mathrm{P}=\left(\mathrm{P} \mathrm{R}_{n_{2}}-\mathrm{R}^{11} \quad \mathrm{Z}_{1}\right.$
in which
$n_{1}$ in which $n_{2}$ are independently from each other 0 and 1 and
 erably choloro--)alkyl having 1 to 3 carbon atoms, alkenyl having 2 or 3 carbon atoms or phenyl optionally substituted by 1 or 2 halogen atoms, preferably Cl or Br , $\mathrm{R}^{10}, \mathrm{R}^{11}$ may be defined as $\mathrm{R}^{9}$ - if the pertinent $n_{1}$ and/or $n_{2}$ equals 0 - with the restriction that for $n_{1}=n_{2}=0$ at least or, if the pertinent $n_{1}$ and/or $n_{2}$ equals 1 , is a straight-chain or branched alkylene radical having from 2 to 5 carbon atoms or is the radical
$-{ }_{-\mathrm{CH}_{2}-}^{\mathrm{CH}_{2} \mathrm{Cl},}$
or represent phosphorous-containing radicals of the gen-
eral formula

with $n_{1}, \mathrm{R}^{16}, \mathrm{R}^{11}$ being defined as in $\mathrm{Z}_{1}$ and $\mathrm{R}^{12}$ being a raight-chain or branched ( $\mathrm{C}_{1}-\mathrm{C}_{6}$ )-alkylene, phenylene xylylene radical or a radical

with $\mathrm{Y}=\mathrm{OH}, \mathrm{NH}_{2}$ and $\mathrm{R}^{13}=\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$-alkyl, or phos-phorus-containing radicals of the general formula

in which $R^{4}, R^{5}, R^{6}, R^{7}$ are defined as in formula $I$ above
and $R^{14}$ is defined as $R^{3}$ or represents the group $-\mathrm{O}-\mathrm{CHR}^{6}-\mathrm{CHR}^{7}$
3. Process for the preparation of compounds of formula 1 , mixing a compound of the formula
$\mathrm{Z}(-\mathrm{x}-\mathrm{H})$,
II
${ }^{1}$ ) with the about $n$ times molar amount of a the formula

heating it at a temperature of from $0^{\circ}$ to $180^{\circ} \mathrm{C}$, preferably $80^{\circ}$ to $150^{\circ} \mathrm{C}$, to give a phosphinic acid of the formula

and, when this reaction has been completed, which can be and, when this reaction has been completed, which can be
seen from the disappearing of the phospholen $500 \mathrm{~m} \mu$, (a) mixing the product thus obtained with the about $n$ times molar amount of an alkylene oxide of the formula

$$
\mathrm{R}^{6}-\mathrm{CH}-\mathrm{CH}-\mathrm{R}^{7}
$$

reacting it at a temperature of from $80^{\circ}$ to $180^{\circ} \mathrm{C}$, prefera bly from $100^{\circ}$ to $150^{\circ} \mathrm{C}$, to give a phosphinic acid(hydrox yalkyl)-ester of the formula and, when this reaction has been completed, which can be
seen from the acid number being 0 at the above reaction temperatures, i.e. from $80^{\circ}$ to $180^{\circ} \mathrm{C}$, preferably from $100^{\circ}$ to $150^{\circ} \mathrm{C}$, repeating the operation $a_{1}(m-1+r)$ times and following every operation $a_{1}$, repeating the operation $a_{2}$ ( $m-1$ ) times altogether-, or, preferably,
$\left(\mathrm{b}_{1}\right)$ mixing a compound of the formula 11 with the about
$n(m+r)$ times molar amount of a $n(m+r)$ times molar amount of a phospholane of the
formula $I I I$ at a temperature of from $80^{\circ}$ to ably from $100^{\circ}$ to $150^{\circ} \mathrm{C}$ and, after the to $180^{\circ} \mathrm{C}$, prefercooled off,
(b) mixing the product with the about $n \cdot m$ times molar mount of an alkylene oxide of the formula IV and furthe maintaining the mixture, preferably while stirring, at the eted which can be seen from the disappearing of the pospholane peak and/or when $r$ equals 0 , also of the acid number.

## PHOSPHORYLATED SECONDARY BUTYLATED <br> PHENOL/PHENOL ESTER MIETURES

 Donald Richard Randell, and Wilfred Pickles, both of StoclEngland, aseignors to Ciba-Geligy AG, Basel, Switzerland Continuation of Ser. No. 696,702, Jun. 16, 1976, abandone which is a division of Ser. No. 586,756, Jun. 13, 1975, abandoned, which is a division of Ser. No. 370,455, Jun. 15, No. 74,909, Sep. 23, 1970, abandoned, which is a division of Ser No. 4,509, Sep. 23, 19 10, abandoned, which
No. 645,888 , Jun. 14, 1967, Pat. No. $3,56,923$. This application Ser. No. 802,191
Claims priority, application United Kingdom, Jun. 18, 1966, The port

1988, has been disclaimed.
U.S. C. $260-966$ Int. Cl. ${ }^{2}$ C07F $9 / 12$ Int. C1. ${ }^{2}$ C07F 9/12

PROCESS FOR PREPARING PHOSPHOROTHIOATES PROCES AND PHENYLPHOSPHONOTHIOATES Harold H. Freedman, Newton Center, Mass.; Stanley D. Mc-
Gregor;; Masao Yochimine, both of Midand, Mich, and LorGregor, Masao Yoshimine, both of Midiand, Mich., and Lor raine M. Kroposki, Walnut Creek, Calif,, assignors to Th Division of Ser. No. 585,554, Jun. 10, 1975, Pat. No. 4,007,197 This application Nov. 15, 1976, Ser. No. 742,144
U.S. Cl. $260-973^{\text {Int. Cl. }}{ }^{2} \operatorname{CO7F} 9 / 165,9 / 40 \quad 12$ Clnims 1. In the process of preparing a compound corresponding to the formula

$$
\begin{array}{cc}
\stackrel{S}{\|} \\
\mathrm{R}_{2}-\mathrm{O}-\mathrm{P}-\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{S}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}-\mathrm{P}-\mathrm{O}-\mathrm{R}_{2} \\
\mathrm{R}_{1}-\mathrm{O} & \mathrm{O} \\
\mathrm{O}-\mathrm{R}_{1}
\end{array}
$$

wherein:
$R_{1}$ and $R_{2}$ are each independently lower alkyl; and
$R$ is

1. A device for preparing a carb
means defining engine comprising:
means defining a venturi throat in a fluid conduit;
at least one wall element in the zone of the throat of the venturi being constituted by at least one flexibly deformable chamber member under the action of pressure from a regulating fluid;
said flexibly deformable chamber member being sheathed locally by at least one deformable nozzze member subing local, controlled deformation of the nozzle member to
wherein
$n$ is 0 $n$ is $0,1,2$ or 3 ; and
X is nitro, cyano
X is nitro, cyano, halo, lower alkyl, lower alkoxy, lower alkylhic or lower alkylsulfinyl,
group, lower alkylthio group or lower alkylsulfan one nitro reacting in an inert liquid reaction medium under alkaline conditions (a) a compound corresponding to the formula
$\mathrm{R}-\mathrm{O}^{\ominus} \mathrm{M}^{\oplus}$ or $\mathrm{M}^{\oplus} \mathrm{O}^{\ominus}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{S}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}^{\ominus} \mathrm{M}^{\oplus}$
with (b) a compound corresponding to the formula

$$
\begin{gathered}
\substack{\mathrm{S} \\
\mathrm{R}_{2}-\mathrm{O}-\mathrm{P}-\mathrm{Cl} \\
\mathrm{R} \\
\mathrm{R}_{1}-\mathrm{O} \\
\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{P}}
\end{gathered}
$$

wherein $M$ is an alkali metal and $R, R_{1}$ and $R_{2}$ have the aforesaid meaning;
improvement consisting of conducting the process in the nary ammonium or phosphonium salt having a minimum solubility of at least 1 weight percent in the liguid reaction medium at $25^{\circ} \mathrm{C}$ and (2) an organic, sterically unhindered, nucleophilic tertiary amine, with the proviso that said stituted diazole when (1) is a quaternary ammonium salt.

## 4,096,211

VARIABLE FLOW ELASTIC NOZZLLE
Jean Ramenu, Sannois, France, assignor to Regie Nationale des Usines Renault, Boulogne-Billancourt, France Claims priority, application France, Oct. 1, 1975, 7530041 U.S. CI. 261-23 A Int. Cl. ${ }^{2}$ F02M 9/10

be regulated wherein said venturi throat has an inlet duc for liquid or gaseous fuel, located in the body of a double down-draft carburetor, said carburetor including a first and second barrel member with said deformable nozzle to permit a variation in the annular section between the inlet duct and itself in response to a pressure condition in said first chamber and further comprising a hollow, cyli drical element disposed along the axis of said deformable
nozzle member including radial passages for feeding said nozzle member including radial passages for feeding save
fuel into said venturi throat at a position located above said throat.

$$
\begin{gathered}
\text { 4,096,212 } \\
\text { HOKE VAL }
\end{gathered}
$$

CARBURETOR CHOKE VALVE POSITIONER
Jerry B. Rogerson, Northville, and Robert S. Harrison, Grosse Ile, both of Mich., assignors to Ford Motor Company, Dearborn, Mlch.

Flled Jan. 26, 1977, Ser. No. 762,708 Int. Cl.2 F02M $1 / 10$
U.S. Cl. 261-39 B

8 Claims
FALLSAFE CARBURETOR MIXTURE CONTROL Jack N. Danger, 10628 N. 80 th Dr., Peoria, Ariz. 85345 Filed Aug. 29, 1977, Ser. No. 828,832
U.S. C1. 261-71

8 Claims



1. A fail-safe mixture control mechanism for use on an updraft carburetor of a normally aspirated aircraft engine, said carburetor having a fuel mixture control valve rotatably mov-
able between lean and rich fuel-air mixture positions and in able between lean and rich fuel-air mixture positions and in-
cluding a rotatable shaft in and extending from the fuel bowl of the carburetor with a crank lever on the extending end of said shaft, said fail-safe mixture control mechanism comprising:
(a) a positive locking control cable means having one end attachable to the crank lever of the carburetor's mixture valve in sele for lockingly holding the mixture control lever thereof; and
(b) biasing means having one end attachable to the carburetor and the other end attachable to the mixture control control valve toward the rich fuel-air mixture position thereof.
2. A choke valve positioner for use with a carburetor having connected to an engine intake manifold at the other end an air movable choke valve unbalance mounted to fall by gravity from a closed position across the passage to a wid open position to control air flow through the passage, movable lever means operatively connected to the choke
valve for positioning the same. first thermostatic spring means operably connected to the lever means biasing the lever means and choke valve towards the closed position with a force increasing as function of decreases in the temperature of the spring means from a predetermined level
second spring means biasing the lever means and the choke valve towards an open position in opposition to the first spring means,
adjustable stop
adjustable stop means in the path of movement of the lever means in a choke valve closing direction to stop move
ment of the choke valve by the lever means in the choke closing direction,
lost motion means connecting the choke valve and leve means permitting relative movement therebetween
whereby the choke valve can be moved then whereby the choke valve can be moved to a first position
less open than a second position attained by less open than a second position attained by movement of
the choke valve by the lever means and whereby the the choke valve by the lever means and whereby the
choke valve can fall by gravity from the less open first position to the second position dictated by the position of the lever means, and,
the lever means, and,
actuation means to move the choke valve to the less open
position.
MULTICELLULAR REACTOR WITH LIQUID/GAS PHASE CONTACTS Mazarin (Essonne), and Christian Belin, 15 Chemin des Aulnaies Residence les Aulnaies, Saint Arnoult en Yvelines (Yve-Continuation-in-part of Condinuation-in-part of Ser. No. 590,304, Jun. 25, 1975, Claims priority, application France, Jun, 25, No. No. 773,412 Claims priority, application France, Jun. 25, 1974, 7422117
Int. Cl. ${ }^{2}$ B05B $17 / 00$
IT. Cl. $261-79$ A U.S. Cl. 261-79 A
3. A reactor for

17 Claims panels forming a flow passageway through which the gas and els forming flow in generally opposite directions, said panels forming a plurality of restrictions called a pattern spaced along the passageway to create narrow zones separated by the passageway for directing a portion of the flow of gas against patterns to pell off the film of liquid from the passageway walls, for reversing the direction of flow of gas in a cell and creating turbulence to product droplets and liquid/gas emulsion, and for creating an aerodynamic swirling between the gas and the liquid to cause internal recycling of a predetermeans for stabilizing the reversing of the direction of flow of
gas in a portion of the enlarged zone thereby achieving intimate mixing of the gas and the liquid while permitting the

recycling of a predetermined portion of the liquid in each of the cells.

DEVICE FOR APPLYING GAS TO A LIQUID
Erhard Albrecht, Dusseldorf, Germany, assignor to Messer Griesheim GmbH, Frankfurt am Main, Germany Claims priority, application Germany, Sep. 13, 1975, 254084 U.S. Cl. 261-121 R ${ }^{\text {Int. Cl. }{ }^{2} \text { B01F 3/04 }}$

at least some of the gaseous substances accumulated in said space to supply them to said gas introducing means. said space to supply them to said gas introducing means,
third valve means including an exhaust valve communicating with said space and operable for venting said space;
and switch means to control at least some of said valve means in switch means to control at least some of said valve means in
response to the inflation and deflation respectively, of said
bubble.

## 4,096,216

METHOD OF MAKING MICROFICHE LAMINATE METVING APERTURES WITH DOUBLET LENSES George J. Yevick, Leonia, N.J., assignor to Izon Corporation, Stamford, Conn.
Continuation-in-part of Ser. No. 622,827, Oct. 16, 1975, Pat. No. This application May 12, 1977, Ser. No. 796,22
This application May 12, 1977, Ser. No. 996,22
Int. C1. ${ }^{2}$ B29D 3/00, 9/10, $11 / 100 ;$ B29F 5/00 U.S. Cl. $264-1$


1. In a process for producing a laminate adapted for use as a microfiche in an optical apparatus, the step of pressing a sheet of a transparent material againt an opaque and apertured web 5 Claims under conditions of temperature and pressure such that said transparent substance locally deforms and partially flows into
the apertures of said web to thereafter form permanent convex portions extending into said apertures, the convex portions each defining an optical surface of refraction, said transparent sheet material being at least initially thermoplastic and heat softened, to thereby permit said local deformation, the convex apertures an amount less than half of the aperture height.

## 4,096,217

METHOD OF USING A PARTICULAR TRISTIMULUS COLORIMETER IN MAKING ARTIFICIAL TEETH Kenneth A. Roll, Canton, Ohio, assignor to Sterndent Corporation, Old Greenwich, Conn. $\quad$ 22, 1974, Pat. No. 3,986,777. Division of Ser. No. 499,479, Aug. 22, 1974, Pat. No. 3,986
This application Apr. 21 , 1976, Ser. No. 678,922

This application Apr. 21, 1976, Ser. No. 678,922
Int. C1. ${ }^{2}$ B29C $11 / 00$; B29F $5 / 00$


1. A method of fabricating an artifical tooth, comprising: (1) measuring at the gingival and incisal portions of a refer
ence tooth the respective red, blue and green optical density values thereof, each of said measuring steps in cluding illuminating respective portions of such reference
2. A device for introducing a gas into a liquid, especially U.S. C. 264-20

12 Claims water containing waste product
tank having a relatively large surface for receiving and holding the liquid;
holding the liquid, operable to effect a substantially gastight closure of the tank and operative to define with the liquid level an enclosed space above the level
first valve means including gas introducing means extending to a point below the normal liquid level for introducing comprising a sheet of flexible inflatable material being operable to form a bubble so as to collect gaseous substances which pass upwardly out of the liquid, to adjus the volume of said enclosed space above the level and thereby to adjust to the amount of gaseous substan second valve means includ
tooth, using a light sensitive means producing electrical output signals respectively proportionally representative of the intensities of plural colors of light received thereby
from such an illuminated reference tooth, respectively integrating in one direction first signals represenative of such electrical output signals for each respective color for a timed duration to provide respective integrated signal level outputs and then a reference signal in an opposite
direction, and converting the respective times required to direcion, and converting the respective inmes required level outputs to a predetermined level output into respective red, blue and green optical density values;
(2) selecting a first porcelain material for the gingival porcorresponding to the those measured for the gingival portion of such reference tooth;
(3) determining a second porcelain material for combination with such first porcelain material substantially to match the optical density values corresponding to those measured for the incisal portion of such reference tooth; and (4) combining such first and second porcelain materials to form an artifical tooth having optical density values sub-
stantially matching those of such reference tooth. stantially matching those of such reference tooth.

4,096,218
METHOD OF PRODUCING FOAMED
THERMOPLASTIC RESIN ARTICLES HAVING SMOOTH AND GLOSSY SURFACES FREE FROM SWIRL MARRS AND HAIR CRACKS
Akio Yasuike, Tokyo; Tsutomu Odagiri, Hiratsuka, both of
Japan, and Toshiba Machine Co. Limited, both of Tokyo, Jappan, asslgnors to Asahi-Dow Limited Continuation-in-part of Ser. No. 379,309, Jul. 19, 1973, abandoned. This application Jul. 27, 1976, Ser. No. 709,108 U.S. C1. $264-45.5$


1. A method of producing a foamed thermoplastic resin rticle having a smooth and glossy surface free from swir marks and haircracks thereon, said method comprising the
steps of: 100 parts by weight of said resin, 0.5 to 8 parts by weight of a condensable blowing agent having a boiling point of $-10^{\circ}$ to $70^{\circ} \mathrm{C}$. at atmospheric pressure,
organic chemical blowing agent, and
from 0.5 to 2 parts by weight of an inert nucleating agent; (2) applying into a mold cavity a pressurized gas at a pressure of 2 to $10 \mathrm{~kg} / \mathrm{cm}^{2}$ to prevent foaming of said molten
resin when it is injected; resin when in in injecting under a higher
resin composition intor pressure, in full shot, the molten resin composition into said gas pressurized mold cavity whereby said pressurized gas is discharged
cavity by said injected resin composition;
(4) terminating the application of gas under pressure to said
(4) terminating the application of gas under pressure to said
mold cavity when said injecting is substantially complete mold cavity when said injecting is substantially complete
and the mold is filled with the molten resin composition in an unfoamed state,
(5) permitting the molten resin composition in the mold
hereof in contact with the mold wall while maintaining the resin composition within said solid skin layer in the molten state;
(6) within a period of 10 seconds after injection step (3) above, enlarging the volume of said mold cavity and
foaming and expanding, within a period of 10 seconds thereafter, the molten resin composition contained within the solid skin layer, and thereafter;
cooling and solidifying the thus-formed resin to form the foamed article having a smooth and glossy surface free from swirl marks and haircracks therein.

4,096,219
PROCESS FOR PRODUCTION OF FOAMED SHAPED PROCESS FITH PRORELESS SURFACE MADE BY THE
PIECES WITH Wilhelm Molle MOLDING PROCESS Germany, assignors to Chemische Werke Huls Aktiengesell. schaft, Germany
Claims priority, application, Germany, Jul. $9,1975,2530511$ U.S. CI. $264-46.5$ Int. C. ${ }^{2}$ B29D 27/08; B29F S/O0 $\quad 11$ Claims

1. A process for production of foamed shaped pieces with poreless surface, from particles of an expandable styrene polymer material, wherein the expandable particles are heated at
elevated pressure to temperatures above the softening point of the styrene polymer material, cooled with maintenance of the pressure, and foamed after reduction of the pressure, which comprises the steps of, in a single closing mold that is not
gas-tight and that has a variable capacity, melting particles of expandable styrene polymer material which are not prefoamed, at pressures between 3 to 30 bar and temperatures between $100^{\circ}$ and $170^{\circ} \mathrm{C}$., cooling the melted material to temperatures about 10 to $40^{\circ} \mathrm{C}$. above the softening point of the styrene polymer material, then enlarging the capacity of
the mold, and expanding the polymer material without supplethe mold, and expanding the polymer material without supple-
mentary external delivery of heat, and finally after further cooling of the mold to about ambient temperature, removing the shaped piece from the mold.

PROCESS FOR THE PRODUCTION OF SLABS OR BLOCKS OF PLASTIC FOAM
Laader Berg, Remvik, 6010 Spjelkavik, Norway
Claims priority, application Norway, May 30, 1975, 751918 U.S. C. 264-51

Int. Cl. ${ }^{2}$ B29D $27 / 04$

1. A 3 Claims right-angled a cross-section as possible, by plastic, having as in a channel-shaped moving conveyor having a final channel configuration with a bottom web and vertical side walls having predetermined breadth therebetween, comprising: of the moving con liquid foamable reactants onto a portion of the moving conveyor upstream of said final channel configuration in which said mixture is allowed to flow out beyond said predelermined breadth of said final channel
during the expansion period, guiding the mixture back to
said breadth of said final channel configuration by bring
ing side portions from an ing side portions from an outwardly flattened horizontal

PROCESS OF TREATING PO PROVIDE A PATTERN OF PORTIONS THR YARN TO David Emervon Bosley, Griton, N.C., asoignor to E. I. Du Pont de Nemours and Company, Wilmington, Del.
Flled Apr. 19, 1976, Ser. No. 677,990
U.S. Cl. 264-78 7 Claims
position to the vertical position of said vertical side walls of said final channel configuration, before the mixture has finished expanding


STRIATED SOAP BAR FORMING Charles F. Fischer, Jersey City, and Hargovind H. Joshi, PisCharies F. Fischer, Jervey CIty, and Hargovind H. Joorhi, Pis
cataway, both of N.J., assignors to Colgate-Palmolive Company, New York, N.Y. $\mathbf{5 2 1 , 0 7 0}$, Nov. 5, 1974, abandoned. This Continuation of Ser. No. 521,070, Nov. 5, 1974, abando
application Ang. 4, 1976, Ser. No. 711,452
U.S. Cl. 264-75

6 Claim


1. A method for producing a soap bar having a marbled appearance on a major face and a length and width dimension defining said major face and a thickness dimension less than either of said length and width dimensions, comprising the steps of supplying a base soap component to the vacuum chamber of a soap plodder, adding a secondary component having a
color contrasting with the color of said base component to said vacuum chamber along with said base component, said base soap descending from above onto and being worked by a generally horizontal rotating worm in the plodder and said secondary component being a liquid dye discharged from above to be introduced into the base component being worked by the worm, working said base component and secondary tion of said worm to form a soap mass while mixing said mass so as to provide a marbled pattern across the transverse cross section prior to extrusion, extruding said mass through an extrusion die to form a billet, said extrusion die having an extrusion opening of a size and shape corresponding to the major face of said soap bar thereby imparting sid major face, cutting said extruded billet into blanks at an interval less than the length and width dimensions of said major face whereby to provide opposed sooth major faces having distinct color patterns without shaving the surfaces of said major faces, and pressing the opposed major faces of said blanks, said pressing forces being directed in a generally parallel direction to said extrusion grain.
2. In a process for producing polyester yarn having alternating thick and thin portions along the yarn that differ in dyeability, wherein the yarn is drawn at a lower draw ratio than would be used to produce a fully-drawn yarn, the improvement which comprises treating as-spun spin-oriented polyester yarn by contacting the yarn at intervals along its length with a yarn, the treatment being sufficient to provide in the contacted portions a force-to-draw value of at least 1.12 times the value for untreated portions and a density difference of more than 0.005 , and then drawing the yarn to have 4 to 20 percent greater denier in the contacted portions than in the untreated portions.

## 4,096,223

THERMOPLASTIC CONTAINER FORMING METHOD Themas J. Krall, Toledo, Ohio, assignor to Owens-Illinois, Inc., Toledo, Ohlo
Filed May 2, 1977, Ser. No. 792,828
US. C. 264-89

1. A method for making a plastic container, wherein fluid, plasticized, thermoplastic material is supplied by a plasticizer(a) inje which comprises the steps of:
(a) injection molding a finish portion of a plastic container by injecting thermoplastic material from an orifice into an (b) moving said orifice and said neckring and neckring holder relative to one another while continuing to supply thermoplastic material to thereby form a tubular parison: (c) grasping said tubular parison and said neckring holder; moving said tubular parison and said neckring and neckrmolding station;
(e) closing a blow mold about said tubular parison at said blow molding station;
(f) blowing said parison, while in said blow mold, into a final shape, finished plastic container;
(g) moving a second neckring carried by a second neckring
h) injection molding a finish portion of a second plastic container by injecting thermoplastic material from said
orifice into said second neckring;
(i) moving said orifice and said second neckring and neckr-
ing holder relative to one another while continuig supply thermoplastic material to thereby form a second tubular parison, steps (g), (h), and (i) being carried out substantially simultaneously with steps (e) and ( f );
(j) opening said blow mold;
(k) moving said first mentioned neckring and neckring
holder away from said blow molding station while carrying said finished plastic container in said neckring;
(1) substantially simultaneously, grasping said second tubular parison and said second neckring holder and grasping said
finished plastic container with a removal mechanism as said first mentioned neckring is opened;
(m) substantially simultaneously, moving said second tubular parison and said second neckring holder away from said orifice into registry with said blow molding station and
moving said finished plastic container to a removal station;
(n) closing said blow mold about said second tubular parison; o) blowing said second tubular parison, while in said
) moving said first mentioned neckring and
(p) moving said first mentioned neckring and neckring
holder back into registry with said orifice; and (q) repeating steps (a) through (p) in overlapping cycle.

MOLDED STYRENE POLYMER ARTICLES FROM VACUUM-FORMED OR THERMOFORMED S-B-S BLOCK COPOLYMER SHEETS
Günter Simon; Waiter Widmaier, both of Marl, and Karl-Ulrich
Reichert, Lippramsdorf, all of Germany, assignors to Chemis Reichert, Lipramsdorf, all of Germany, assignors to
che Werke Huis Aktiengesellschaft, Marl, Germany
Filed May 5, 1976, Ser. No. 683,637
Claims priority, application Germany, May 17, 1975, 2522190
Claims priority, application Germany, May 17, 1975, 2522190
portion
ments, said forming also including the formation of a projection on the same one surface at the other end portion of each elongated fastener element adjacent the other filament
and and

folding the train of elongated fastener elements longitudinally to bring ends of the one surface of each fastener element together and to insert each projection into the
corresponding opening to secure the end portions of the fastening elements together and to reinforce the union of the filaments with the fastening elements.

INTEGRATED SPIN-DRAW-TEXTURIZING PROCESS FOR MANUFACTURE OF TEXTURIZED POLYAMIDE FILAMENTS
Wolfgang Martin, Ludwigshafen; Dieter Herion, Frankenthai; all of Germany, assignors to BASF Aktiengeseellschaff, Rheinland, Pfalz, Germany
Continuation-in-part of Ser. No. 320,481, Jan. 2, 1973, abandoned. Thls application May 12, 1977, Ser. No. 796,169 Claims priority, application Germany, Jan. 3, 1972, 2200064
Int. Cl. ${ }^{2}$ D01D $5 / 22.5 / 12$ U.S. CI. 264-168
U.S. C. 264-92 Int. C1. ${ }^{2}$ B29C 23/00
U.S. In the method of manufacturing molded articles compris-

1. ing thermoforming extruded polystyrene sheets, the improvement comprising the use of sheets having a thickness of about
0.2 to 2.0 mm produced by extruding a mixture of about $85-95$ 0.2 to 2.0 mm produced by extruding a mixture of about $85-95$
percent by weight of polystyrene and about $5-15$ percent by percent by weight of polystyrene and about $5-15$ percent by
weight of a diene-styrene block copolymer having the structure S-B-S wherein S represents styrene and $\mathbf{B}$ represents butadiene or isoprene said block copolymer having a molecular weight of about 60,000 to 130,000 ; an RSV value in toluene 85 percent.

METHOD OF MAKING A FASTENER ELEMENT John A. Kowalski, Erie, Pa., assignor to Textron, Inc., Providence, R.I.
Division of Ser. No. 583,700, Jun. 4, 1975. This application Dec.

$$
\begin{aligned}
& \text { Int. C1. } \\
& 4 \\
& \hline 167
\end{aligned}
$$

U.S. C. $264-167$

> 7,1976, Ser. No. 744,343 Int. C.2. B29C $17 / 02 ;$ B29D 3/00,


6 Claims

1. A method of forming a continuous train of fastener ele ments comprising the steps of
orming a train of transverse elongated fastener elements
having end portions of each elongated fastener element
having end portions of each elongated fastener element
molded around respective filaments of a pair of spaced continuous parallel filaments,
said forming including the formation of an opening in one
surface of each elongated fastener element at one end
b. drawing the spun filaments only on forwarding elements for the development of a uniform tensile strength and modulus of elasticity, said spun filaments being collected as a bundle leaving the melt-spinning stage and directly wound on at least two forwarding elements, of which the C and $120^{\circ} \mathrm{C}$ and the final element has a surface tempera ture of between $80^{\circ} \mathrm{C}$ and $350^{\circ} \mathrm{C}$ at a draw ratio such tha the drawn filaments on leaving the drawing stage, have an extensibility of between 10 and $50 \%$; and
air-texturizing said filaments as a collected yarn leaving the drawing stage at a velocity of between 800 and 3,000
$\mathrm{~m} / \mathrm{min}$, the overfeed in the texturizing stage being from 10 $\mathrm{m} / \mathrm{min}$, the overfeed in the texturizing stage being from 1 o between $50^{\circ} \mathrm{C}$ and $180^{\circ} \mathrm{C}$, the spinning, drawing and texturizing yielding a yarn with a total final denier of from 100 to 3,600 dtex and an individual filament denier of from 3 to 30 dtex

## ,096,227

PROCESS FOR PRODUCING FILLED POROUS PTFE
Robert W. Gore, Newark, Del., \&ssignor to W. L. Gore \& Associates, Inc., Newark, Del.
Division of Ser. No. 376,188, Jul. 3, 1973, Pat. No. 3,953,566, Division of Ser. No. 376,188, Jul. 3, 1973, Pat. No. 3,953,566, which is a continuation of Ser. No. 39,753, May 21, 1970, The portion of the term of this patent subsequent to Apr. 27, 1993, has been disclaimed.
U.S. C1. 264-210 R

Int. C. ${ }^{2}$ B29D $7 / 24$
14 Claims

method of forming a reproducible, durable edge where
thinner component adjoins the thicker component,
said method comprising,
compressing said compressible component between mating mold halves which engage the major faces inercor
forming said thinner component in situ by an injection ing process wherein a flowable, hardenable resin is injected into a die cavity formed by said mold halves so that the resin contacts said side surface of said compressible component,
providing an elongated narrow rib on at least one said mold
half, said rib positioned adjacent the edge of said side surface of said compressible component, said rib defining

a side edge of the cavity into which said resin is injected so that the resin flows up to and against said rib,
applying pressure to said mold halves during said molding so beyond its elastic limit to a thickness less than that of the thinner component
said rib forming a dam preventing flow of said resin past it onto the major face of said compressible component thereby demarcating said edge,
and causing said resin to rigidify within said cavity thereby
to form said rigid component in surface of the compressible component, and bounded by a groove formed by said rib.

METHOD OF MAKING 4 A MOLDED ARTICLE WITH A TEXTURED SURFACE Corpation, Stirling, N.J.

Filed Sep. 4, 1975, Ser. No. 610,287
Int. Cl. ${ }^{2}$ B29C 5/00; B29D 23/08

1. A process for the production of a porous article of manu facture of a polymer of tetrafluoroethylene containing a filler, which process comprises:
(a) blending a powder consisting essentially of highly crystalline poly(tetrafluoroethylene) with a filler;
(b) extruding said polymer powder and filler using a conven tional lubricated extrusion techique io form an extrudate (c) removing the lubric
(d) stretching said extrudate containing unsintered poly(tetrafluoroethylene) and filler at a rate exceeding about $10 \%$ per second, said stretching being performed while said
extrudate is held at a temperature of about $35^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}$.

$$
\text { extrudate is held at a temperature of about } 35^{\circ} \mathrm{C} \text { to } 327^{\circ} \mathrm{C}
$$


U.S. Cl. $264-316$

5 Claims


1. In the method for forming castings made from a polymerizable hydrophobic monomeric material wherein a liquid hyinto a cavity, which is defined by a pair of spaced apart smooth surfaces plates that are sealed about the outer perimeter, and polymerized therein under conditions of elevated temperature and thereafter cooled to a solid, self-supporting casting, the
improvement comprising the preliminary step of applying a improvement comprising the preliminary step of applying a
generally flat, undistorted and relatively thin heat stretchable thermoplastic sheet of polyolefinic material having a thickness of about 0.00025 to about 0.02 inch across at least a portion of at least one of the spaced apart smooth surfaces, causing said thermoplastic sheet to stretch when in contact with the liquid
polymerizable monomer material during polymerization of said material and during cooling of said polymerized material, shrinking and distorting the sheet differentially relative to said material in random fashion so as to produce a randomly tex red surface teast the corresponding adjacent portion of the polymerized casting.

4,096,230
METHOD OF FABRICATING A MOISTURE-EXPANDABLE PROSTHESIS Raymond H. Haerr, Cincinnati, Ohio, assignor to Xomed Inc.,
Cincinnati, Ohio Division of Ser. No. 608,148, Aug. 27, 1975, Pat. No. 4,034,759. This application Mar. 3, 1977, Ser. No. 774,128
Int. C. ${ }^{2}$ B29D 27/00 U.S. C1. 264-321 Int. C1.2 ${ }^{\text {B29D }} 27 / 00$

6 Claims

A method of fabricating an elongate, dehydrated, mois ture-expandable prosthesis from a length of expanded, dehydrated, regenerated, celilulose sponge material, which comlose sponge material into a hollow cylinder, the ends of which
are connected together by the open bore extending axially are connected together by the open bore extending axially
through the hollow cylinder; applying radial compressive through the hollow cyinder; applying radial comprempact
forces to the outer surface of the hollow cylinder to compact same and to reduce the diameter thereof without substantially
altering its overall length; and substantially closing said open altering its overall length; and substantially closing said open
bore when said radial compressive forces are applied to said bore when said radial compressive forces are applied to said
cylinder so that upon expansion, said cylinder will reassume a cylinder so that upon
hollow configuration.

4,096,231
SEPARATION OF URANIUM HEXAFLUORIDE FROM PLUTONIUM HEXAFLUORIDE BY MEANS OF SELECTIVE INTERCALATION IN GRAPHITE Lawrence B. Ebert, and John P. DeLuca, both of New Providence, N.J., assignors to Exxon Research and Engineering
Company, Linden, N.J. Filed Nov. 18, 1976, Ser. No. 743,073 ${ }_{19}$ Int. C1. ${ }^{2}$ C01G 42/06, $56 / 00$

5 Claims
Romex sixaverame


1. A method for selectively separating and sequestering plutonium from uranium comprising contacting a uranium hexafluoride and plutonium hexafluoride mixture with graphite at a UF $\mathrm{UF}_{\mathrm{p}}$ partial pressure of 26 torr or less whereby PuF ${ }_{6}$ is
selectively intercalated into the graphite while the graphite is selectively intercaiated into at graphite whe
resistant to $\mathrm{UF}_{6}$ intercalation at such $\mathrm{UF}_{6}$ partial pressure. 4. A method for selectively separating and sequestering plutonium from uranium comprising contacting a mixture of
ite that has been pretreated with a oxidant rendering said graphite more resistant to $\mathrm{UF}_{6}$ intercalation, at a $\mathrm{UF}_{6}$ partial pressure of greater than 26 torr, whereby $\mathrm{PuF}_{6}$ is selectively itercalated into said graphite, said graphite being resistant to $\mathrm{UF}_{6}$ intercalation at such $\mathrm{UF}_{6}$ partial pressure.

4,096,232
EXTRACTION OF ANTMONY FROM ANTIMONY John William Vogt, Chagrin Falls, Ohio, assignor to The Harshaw Chemical Company, Cleveland, Ohio

Filed Mar. 24, 1977, Ser. No. 780,736
U.S. C1. 423-87 Int. Cl. ${ }^{2}$ C01B $29 / 02$ $\qquad$
17. In a method of extracting antimony from antimony sulfide bearing solids by oxidation of an aqueous mixture of the solids and an acid, and recovering trivalent antimony resulting from said oxidation, the improvement comprising conducting the oxidation in the presence of a catalyst comprising a water one or more of these.
30. In a method of extracting antimony from antimony sul fide bearing ores by oxidation of a leaching liquor obtained by leaching the antimony from the solids with an aqueous basic solution and recovering pentavalent antimony resulting from
said oxidation, the improvement comprising conducting the said oxidation, the improvement comprising conducting the
oxidation in the presence of a catalyst comprising a water-soluble copper salt, a quinone, a hydroquinone, or mixtures of one or more of these.

PROCESS FOR THE REMOVAL OF IMPURITIES CONTAINED IN A ZINC AND CADMIUM SULFATE SOLUTION
Fernand Jacques Joseph Bodson, Angleur, Belgium, assignor to Soclete des Mines et Fonderies de Zinc de la Vieille Mon tagne, S.A., Angleur, Belgium
Filed Jun. 7, 1976, Ser. No. 693,620 Filed Jun. 7, 1976, Ser. No. 693,620
Claims priority, application Belgium, Jun. 19, 1975, 830450 Int. C. ${ }^{2}$ 001G 9/06. $11 / 00$
aluminum oxide and the chlorinating agent to form an alkali metal aluminum halide catalyst; and
(b) ${ }^{(4)} \mathrm{SeplCl}_{4}$
step; and the reaction products from said chlorination step; and

(c) recycling back to the chlorination step substantially all of the $\mathrm{SiCl}_{4}$ separated from the reaction products to thereby promote the chlorination of the alumium oxide in
the clay while suppressing net chlorination of the silicon oxide to thereby produce substantially no additional $\mathrm{SiCl}_{4}$.
to thereby produce substantially no addition

$$
4,096,235
$$

PROCESS OF PRODUCING MAGNESIA WITH PROCESS OF PRODUCING MAGNCLE
Harry Edward Croes, Johannesburge, South Africa; Wolfgang Krieger, Oberurrel, Germany; Eberhard Anschutz, Frankfurt am Main, Germany; Lothar Reh, Bergen-Enkheim, Germany, and Martin Hirach, Frankfurt am Main, Germany, assignori
U.S. Cl. 423-101 $\begin{aligned} & 3 \text { Clnims } \\ & \text { 1. A process for the substantial removal of the impurities }\end{aligned}$ manganese, cobalt and nickei from a zinc or cadmium sulfate molution which comprises substantially simultaneously precipitating said impurities by adding to said zinc or cadmium sulfat solution a member selected from the group consisting of a solution of $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, an ammonium or an aike the maximum
thereof, which has been hydrolyzed to provide content of $\mathrm{H}_{2} \mathrm{SO}_{5}$, the ammonium or an alkali metal sal thereof, while maintaining the pH of said zinc or cadmium sulfate solution between 1.5 and 4.5 .

PRODUCTION OF ANHYDROUS ALUMINUM CHLORIDE FROM CLAY USING CATALYST AND RECYCLING OF SILICON CHLORIDE
Edward S. Martin, and David A. Wohleber, both of Lower Bur-
reil, Pa, assignors to Aluminum Company of Am
burgh, Pa.
Filed Mar. 23, 1977, Ser. No. 780,534
Int. C. ${ }^{2}$ C01F 7/56, 7/58
U.S. Cl. 423-135 11 Claims 1. A process for the production of aluminum chloride from
clay containing aluminum oxide and silicon oxide which comclay co
prises:
(a) $c$
chlorinating the clay by contacting it with a mixture consisting essentially or
(2) a reducing agent;
(3) an alkali metal compound capable of reacting with the

Germany
Germany or Ser. No. $\mathbf{5 4 5 , 6 6 0}$, Jan. 30, 1975, abbasdon
Continuation of
application Oct. 13, 1976, Ser. No. 731,890 Claims priority, application Germany, Feb. 21, 1974, 2408308 U.S. C1. 423-166


1. Process for producing magnesia from magnesium-containing carbonate ores which comprises:
ing carbonate ores which comprises:
(a) leaching said ore with sulfuric acid;
(b) neutralizing the solution from (a) with magnesia and
separating undissolved impurities;
(c) crystallizing magnesium sulfate from the solution from (b) under superatmospheric pressure and at temperatures ve $150^{\circ} \mathrm{C}$
(d) separating and cooling the magnesium sulfate crystals so that they contain 1.5-4 mols of water of crystallizatio and thereby have a crystal ineness suitable for decompo (e) dehydrating and/or heating the crystals from (d) in a
suspension-type heat-exchanger with exhaust gases from the fluidized-bed reaction zone of step ( $f$ );
f) feeding the crystals from (e) after separation to a fluidized bed reaction zone where they are decomposed to form magnesia and sulfur dioxide, the heat required for the decomposition reaction being generated by approximately a stoichiometric combun ized bed reaction zone
g) removing magnesia from the fluidized bed reaction zone and feeding same to a multi-stage fluidized-bed cooler operated with air as a fluidized gas; (h) feeding fluidized air from the fluidized bed cooler to the fluidized bed reaction zone of step ( f ;
(i) converting the sulfur dioxide produced in step (f) into (i) converting the sulfur cioxise produced in step (a)
sulfuric acid and recycling same to leaching step (a).

## $4,096,236$ <br> GAS SCRUBBING METHOD

Richard J. Brooks, Seattle, and Burton Brooks, Belierue, both Richard J. Brooks, Seattle, and Burton Brooks, Belierue, botth
of Whsh., assignors to The Chemithon Corporation, Seattle, Of Wash.
Wesh.
Continu
Continuation-inn-part of Ser. No. 393,192, Aug. 30, 1973, bandoned. This application Dec. 2, 1976, Ser. No. 746,681 nt. C. ${ }^{2}$ B01D 53/34
U.S. C1. 423-210


1. A method for removing pollutants from effluent gases by a scrubbing operation, said method comprising the steps of: providing a pair of separate, discrete, descending, horizontally spaced, facing films of scrubbing liquid defining therebetween an unobstructed, vertically extending flow path substaniall
cally and horizontally coextensive with its respective film the disposition of said facing films of scrubbing liquid along the disposition of said facing of said flow path being substantially parallel;
the disposition of said facing films along a vertical cross-sec the disposition of said facing films along a vertical cros being substantially parallel;
flowing said effluent gases downwardly from above said scrubbing liquid and along said flow path between said pair of vertically descending films;
maintaining said effluent gases in intimate concurrent flow with said pair of fims of scrubbing liquid concurrent flow path;
removing said pollutants from said eflluent gases to said discharging scruring said intimate concurrent fow; discharging scrubbed gases and scrub
downstream end of said flow path;
separating said end of said flow path; downstream of said fow gases
downstream of said flow path; operation along said unobstructed flow path defined by said facing films.

## IMMUNOASSAY FOR $\beta$-ENDORPHIN <br> Choh Hao Li, Berkeley, Calif, assignor to Hoffmann-La Roche

 Inc., Nutley, N.J.Filed Mar. 14, 1977, Ser. No. 777,262
Int. Cl. ${ }^{2}$ A61K 43/00; G01N 33/16
U.S. Cl. 42 Int. $_{1}$
8. A radioimmunay for 12 Claims 8. A radioimmunoassay for $\beta$-endorphin or a fragmen
thereof containing the (6-15) residue sequence which assay thereof containing the ( $0-15$ ) residue sequence which assay
comprises incubating a mixture comprising the test sample comprises incubating a mixture comprising the test sample
containing an unknown amount of said $\beta$-nddorphin or a frag
ment thereof containing the ( $6-15$ ) residue sequence, a radiment thereof containing the ( $6-15$ ) residue sequence, a radi-
olabelled $\beta$-endorphin tracer compound and an antibody havolabelled $\beta$-endorphin tracer compound and an antibady having the property of specificaly binding $\beta$-endorphin ing the free and the bound $\beta$-endorphin; counting the radioac tivity from either the free or bound $\beta$-endorphin and determining the concentration of $\beta$-endorphin or fragmen
the test sample by reference to a standard curve.

## 4,096,238

METHOD FOR ADMINISTERING DRUG TO THE GASTROINTESTINAL TRACT
Alejandro Zaffironi; Alan S. Michalels, both of Atherton, and
Felix Theeumes, Los Altoen all of Calif, assignors to Alza
Felix Theenwes, Los Altoe,
Corporation, Palo Alto, Cairi.
Division of Ser. No. 536,006 , Dec. 23, 1974, Pat. No. 4,036,227,
Division of Ser. No. $w$ is is continuation-in-part of Ser. No. 354,344, Apr. 25 ,
1973, abandoned. This application Mar. 9, 1977, Ser. N
Int. C1. ${ }^{775}$ A61K $9 / 22$
U.S. Cl. 424-15 1 Claim U.S. A method for orally administering an active agent at a

1. A controlled rate to the gastrointestinal tract of a warm blooded animal comprising,

Admiting into the gastrointestinal tract a device compris-
${ }^{\text {ing; }}$ (1) a sh
a shaped wall formed of a semipermeable material that is permeable to the passage of gastrointestinal fluid and surrounding and forming;
(2) a compartment containing the active agent that is
soluble in fluid that enters the compartment and which agent exhibits an osmotic pressure gradient across the wall against the gastrointestinal fluid; (3) a layer formed of an erodible enteric mate
exterior surface of the semi-premeable wall;
(4) a passageway in the wall for releasing said agent from
said device, said passageway having a maximum crosssectional area $A$, of

$$
\frac{L}{F} \times \frac{Q_{P}}{t} \times \frac{1}{D S}
$$

wherein $L$ is the length of passageway, $Q_{\rho} / t$ is the mass of agent released per unit time, $D$ is the diffusion coefficient of gent in the released solution, $S$ is the solubiinty of agent in sageway having a minimum area, $A_{s}$ defined by

$$
\left[\frac{4}{1} \times 8 \times \frac{\pi m}{80}\right]^{7}
$$

wherein $L$ is the length of the passageway, $t$ is the volume or gent released per unit time, $\pi$ is $3.14, \eta$ is the viscosity of th solution being released, and $\Delta P$ is the hydrostatic pressure differences between the inside and the outside or hene cores; ment and having a value of cayer in the gastro-intestinal fluid
B. bioeroding the enteric lay in the environment of use at a controlled rate to regulat the amount of fluid available to the wall for imbibition with fluid imbibed through the wall into the compartmen
mined by the permeability of the wall and the osmotic pressure gradient across the wall thereby continuously dispensing said active agent from the device to the gastrointestinal tract through the passageway at a controlled rate over a prolonged period of time.

## 4,096,239

INERT CORE IMPLANT PELLET
INERT CORE IMPLANT PELLET
Martin Katz, Los Altos HIIs, and John S. Kent, Palo Alto, both of Calif,, assignors to Syntex Corporation, Panama of Cailif, assignors to Syntex Corporation, Panama
Continuation-in part of Ser. No. 572,031, Apr. 28, 1975, abandoned. This application Oct. 26, 1976, Ser. No. 735,727
Int. C1. ${ }^{2}$ A61K $9 / 22,31 / 565$ U.S. Cl. 424-21 nt. C1. ${ }^{2}$ A61K 9/22, 31/565 U.S. C. 424 Claims

1. A solid, spherical, subcutaneously implantable pellet for producing a greater than normal weight gain in ruminants, which implantable pellet exhibits a substantially constant rate of release of active agents over a given time period and an brupt termation of drug (a) a biocold pellet comprisin

$$
\text { of about } 2 \text { to about } 10 \mathrm{~mm} \text { and }
$$

(b) at least one biocompatible, biosoluble coating having a substantially uniform thickness of about 0.05 to about 1 . mm intimately adhering to and completely covering saic inert core, the composition of said coating comprising
substantially homogeneous mixture of (i) about 5 to about 9 substantialy homogeneous mixare benzoate, or mixtures thereof as the sole active agent(s), and (ii) about 10 to about $95 \%$ weight of a pharmaceutically suitable carrier said inert, spherical core being at least half the diameter of said spherical, implantable pellet.

## 4,096,240

SKIN LIGHTENING COMPOSITION AND METHOD Girish Prased Mathur, Bombay, India, assignor to Lever Broth ers Company, New York, N.Y.
Filed Apr. 9, 1976, Ser. No. 675,570
Claims priority, application United Kingdom, Apr. 10, 1975, 4825/75

Int. Cl. ${ }^{2}$ A61K $7 / 42$
U.S. Cl. 424-59
U.S. CI. 424-59 $\begin{array}{r}18 \text { Claims }\end{array}$ prisin
(a) from about 0.5 percent to about 5 percent by weight of niacinamide, or a precursor thereof; (b) from about 0.1 to about 10 percent by weight of an (c) a cosmetically acceptable vehicle.

## $4,096,241$

TOOTH PREPARATIONS
Peter Geistlich, Stansstadt, and RoIf Pfirmann, Lucerne, both of Switzerland, assignors to Ed. Geistich Filed Jun. 24, 1976, Ser. No. 699,328 Claims priority, application United Kingdom, Jun. 24, 1975, 26767/75

Int. Cl. ${ }^{2}$ A61K $7 / 22$
U.S. C. 424-54 6 Claims 1. A method of treatment or prophylaxis of parodontosis comprising applying to the teeth and gums of the subject an effective amount of at least one compound of formula

wherein $\mathbf{R}_{1}$ represents a hydrogen atom or a straight or wherein $R_{1}$ represents a hydrogen atom or a straight or
branched alkyl group having from 1 to 6 carbon atoms, and $\mathbf{R}_{2}$ represents a hydrogen atom or a group of formula

wherein $R_{1}$ is as defined above.
4,096,242
STABILIZED PRODUCT OF MANUFACTURE
CONTALING ARANCHED CHAIN DODECYL
DODECYL-HYDROXYPHENYL AND A HEAT OR LIGHT SENSITIVE MATERIAL Albert F. Strobel, Delmar, N.Y., asslgnor to GAF Corporation, New York, N.Y.
Conanuation-in-part of Ser. No. 500,083, Aus. 23, 1974, Pat.
 U.S. C. $424-59$ Claims 1. A composition comprising a light or heat sensitive material and between about 0.01 and about is weight percent on a normally liquid stabilizing composition comprising a liquid hydroxyphenyl benzotriazole, said mixture having a melting point below $0^{\circ} \mathrm{C}$. $\qquad$
COMPOSITION FOR LIGHTENING HAIR CONTAINING AN OXIDIZING AGENT AND CERTAIN QUATERNARY Raymond Feinland, Stamford, Conn.; Stanley Pohl, New Ro
chellen and Micheel Hnatchenko, Bronx, both of N.Y., assign ors to Clairol Incorporated, New York, N.Y.
Fiied Feb. 9, 1976, Ser. No. 656,503
U.S. Cl. 424-62 11 Claims 1. A composition suitable for lightening hair comprising an
queous vehicle containing an effective amount of an oxidizing agent and from about 0.05 to $5 \%$ by weight of a quaternary amine compound of the formula:

in which: $R^{1}$ and $R^{2}$ are long chain aliphatic hydrocarbon radicals having about 10 to 26 carbons:
$\mathbf{R}^{3}$ and $\mathbf{R}^{4}$ are lower alkyl radicals having about 1 to 5 car-
$X$ is an anion said composition containing sufficient alkaliz
ing agent to give said composition a pH in the range of from 8 to 11 .
$4,4,096,244$
MMUNOGLOBULINS FOR ADMINISTRATION TO PIGLETS well, Islington, both of Canada, assignors to Canada Packers Limited, Toronto, Canada
Claims priority, application Canadd, Jun. 20, 1975, 229842 U.S. Cl. 424-85 Inp. Cl. ${ }^{\text {A6 A }}$ AK1K 39/00, $35 / 16$

1. A dried particulate porcine or bovine bleod 8 Cleims serum containing active immunoglobulins and having a sodium chloride content of less than about $3 \%$ by weight, and being acceptable to and palatable to newborn piglets for oral administration thereto as a feed stuff component, so as to confer on the piglets increased protection against infection.
[^11]4,096,245
PROPHYLACTIC PREPARATION FOR TREATING MINK INFECTION CAUSED BY PSEUDOMONAS
Yuzuru Homma, Tokyo; Takeshi Shimizu, Kodaira, and Kazuo Okada, Tokyo, all of Japan, assignors to President of The University of Tok yo, Tokyo, Japan
Flaims Maris. 8, 1976, Ser. No. 664,835 Claims priority, application Japan, Mar. 12, 1975, 50-29105 U.S. C. $424-92$

4 Claims 1. A method of preventing mink infection by Pseudomonas aeruginosa by immunizing said mink with a dose of $50-4,000$ $\mu \mathrm{g} / \mathrm{kg}$ of a prophylactic preparation (on the basis of OEP) in me form of a vaccine whose effective component consists from Pseudomonas aeruginosa.

## INC $\begin{aligned} 4,096,246\end{aligned}$

ZINC BACITRACIN COMPOSITION FOR USE AS A Srigt Oyste SAME
Brigt Oystese, Haslum, Norway, assignor to A/S Apothekernes Laboratorium for Specialpraeparater, Oslo, Norway

Filed Oct. 6, 1976, Ser. No. 730,0
U.S. Cl. 424-177 16 Claims 1. A process for the production of a zinc bacitracin composition with enhanced stability suitable for use in animal feeds which includes precipitating zinc baciracin from a fermenta-
(I) alkali to within the range of 6.0 to 70 , removing water by evaporation from the fermentation broth without filtration to yield a slurry containing between about 25 to 35 weight percent dry matter, adding about 50 to 100 weight percent based on the dry matter of the slurry of a finely divided carrier in which 80 weight percent of the particles making up the carrier have a dimension of below 40 microns, blending the mixture to uniform dispersion at a temperature of between about $300^{\circ}$ to $450^{\circ} \mathrm{C}$. so that the water is rapidly removed to produce finely divided substantially spherical particles containing the zinc bacitracin in intimate contact with the carrier.

GOLD THIO GLUCOPYRANOSID METHOD OF USE N.J.,
rises administering internally to an animal a compound of prises ad
claim 1.
tion, Phil Blackwood

Filed Feb. 16, 1977, Ser. No. 769,146
Int. Cl. ${ }^{2}$ A61K 31/70; C07H $11 / 04$ U.S. Cl. $425-180$

1. A chemical compound of the formula:

$$
\underbrace{\mathrm{CH}_{2} \mathrm{OR}}_{\mathrm{OR}}
$$

which:
$R$ and $R_{1}$ are each respectively lower alkyl of $1-4$ carbons 5. A method of producing anti-arthritic activity which com an effective amount of a compound of claim 1.

## SULFONYL CONTAINING ORGANIC GOLD

SLYLFONYL CONAINING ORGANIC GOLD
van Lantoe, Blackwood, N.J., assignor to SmithKline Corpora tion, Philladelphia, Pa.

Fled Feb. 16, 1977, Ser. No. 769,14
U.S. Cl. $424-180$

C1. ${ }^{2}$ A61K 31/70: C07H $5 / 10$

1. A chemical compound of the formula

in which:
$R_{\text {and }} R_{1}$ are each respectively lower alkyl of $1-4$ carbons. 5. A method of producing anti-arthritic activity which coman effective amount of a compound of claim 1.

## 4,096,249

TRIALKYI PHOSPHINEGOLD(I)-LOWER ALKYL CARBAMOYL GLUCOPYRANOSIDES
Iran Lantos, Blisckwood, N.J., assignor to Smilun
tion, Philadelphia, Pa.
Flied Feb. 16, 1977, Ser. No. 769,147
U.S. C. 424-180 6 Claims

1. A compound of the formula:
in which:
R is $\mathrm{CO}-\mathrm{NH}$-lower alkyl and
' is straight or branched lower alkyl.
$\mathrm{R}^{\prime}$ is straight or branched lower alkyl.
2. A method of producing antiarthritic activity which com
TRI-SUBSTITUTED PHOSPHINEGOLD(I)
TRI-SUBSTITUTED PHOSPHINEGOLD 1.THIO- $\beta$-D-GLUCOPYRANOSIDES
ind Till Davion, Philadelphia, Pa,
Filed Feb. 25, 1977, Ser. No. 772,035
rat Filed Feb. 25, 1977, Ser. No. 772,035
Int. C. ${ }^{2}$ A61K $31 / 70$; C07H $11 / 04,13 / 12$ U.S. Cl. 424-180

$$
\underbrace{\mathrm{CH}_{2}^{\mathrm{O} \mathrm{OR}}}_{\text {ROR }}
$$

## in which:

R is hydrogen, acetyl, lower alkyl-NHCO, lower alkyl-SO ${ }_{2}$ or lower alkyl;
$\mathbf{R}_{1}$ is phenyl optionally substituted by halogen or lower $R_{2}$ and $R_{3}$ are
7. A method of producing antiarthritic activity which comprises administering internally to an animal a compound of claim 1.
7 Clıims
DIETHYL 2-PYRIDINE THIONOPHOSPHONATE AS AN INSECTICIDE ACTIVATOR
Leland S. Pitt, San Jose; George B. Large, Orinda, and Alan to Stauffer Chemical Company, Westport, Conn.
Filed Aug. 30, 1976, Ser. No. 719,033

Int. Cl. ${ }^{2}$ A01N 9/36; CO7D 213, 104
U.S. C. $424-200$

9 Clims

1. A compound having the formula

2. An insecticidal composition comprising N -(mercaptomethyl)phthalimide S -(O,O-dimethyl phosphorodithioate) and an activating amount of

6 Claims


$$
\underbrace{\mathrm{CH}_{2} \mathrm{OR}}_{\text {OR }}
$$

4,096,252
TRIFLUOROMETHYI BENZOIC ACID DERIVATIVES AS THROMBOEMBOLIC AGENTS
Emilia Francia Barra, and Antonio Carmelo Marin Moga, both of Barcelona, Spain, assignors to J. Uriach \& Cia S.A., Barcelona, Spain

Filed Jun. 10, 1976, Ser. No. 694,523
U.S. C1. 424-230 Int. Cl. ${ }^{2}$ A61K 31/60
2 Claims

1. A method for the treatment and prophylaxis of cardiovas 1. A method for the treatment and prophylaxis of cardiovas-
cular conditions due to an abnormal platelet aggregation,
coagulation and fibrinolysis comprising administering to a
patient by oral administration a compound of the formula

wherein $\mathbf{R}$ is hydrogen or lower alkanoyl as active agent, together with a carrier therefor, at a dosage of about 1 to 6 unit doses of about 200 to 300 mg each of said active agent or about form of a syrup.

wherein R is - CHO or $-\mathrm{CH}_{2} \mathrm{OR}_{1}$; each of $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ is hydrogen, alkylcarbonyl wherein the alkyl moiety has from 1 to 20
carbon atoms and is straight or branched, benzoyl, phenylalkcarbon atoms and is straight or branched, benzoyl, phenylalk-
ylcarbonyl wherein the alkyl moiety has from 1 to 6 carbon atoms and is straight or branched or cycloallyylcarbonyl wherein the cycloalkyl moiety has from 5 to 10 carbon atoms; $\mathbf{R}_{3}$ is hydrogen; or $\mathbf{R}_{2}$ and $\mathbf{R}_{3}$ together form a double bond
between the 17- position carbon atom and the oxygen atom.

## 1.OXYGENATED S

## 1.OXYGENATED STEROIDS

Michael P. Wachter, Bloomsbury, N.J., and Joseph A. Settepani, Vienna, Va., assignors to Ortho Pharmaceutical Corporaion, Raritan, N.J. $\begin{aligned} & \text { Filed Jul. 6, 1976, Ser. No. } 703,049\end{aligned}$ Int. Cl. ${ }^{2}$ C07J $17 / 00,1 / 00$
U.S. C. A compound of the formula:
1.

wherein $R_{1}$ is lower alkanoyl wherein the alkyl group has 2-6 carbon atoms; lower alkyl wherein the alkyl group has 1-5 group has 1-3 carbon atoms; $R_{2}$ is lower alkyl wherein the alkyl group has 1-5 carbon atoms and trialkylaminosulfoxy wherein the alkyl group has $1-3$ carbon atoms; $R_{3}$ is oxo, wherein the alkyy group has cyanoethoxy and trifuoroalkanoyloxy wherein the alkanoyloxy group has $2-5$ carbon atoms; and $\mathrm{R}_{\text {, }}$ is halo, hydrogen, lower alkanoyloxy wherein the alkanoyloxy group has one of $R_{1}$ or $R_{2}$ is trialkylaminosulfoxy.

## 4,096,254

 MENOPAUSE AND OSTEOPOROSIS Harvey D. Benson, Cincinnati; Joyce Francis Grunwell, Hamilton; John O'Neal Johnston, Cincinnatt, all of Ohio, and VIndimir Petrow, Chapel Hill, N.C., assignors to Richardson-Merrell inc., Witton, Conn.
Continuation-in-part of Ser. No. 684,949, May 10, 1976, Continuation-in-part of Ser. No. 684,949, May 10, 1976,
abandoned. This application Feb. 22, 1977, Ser. No. 770,400 US. C. 424-242. C1.2 C07J $1 / 00$; A61K 31/56 18 Cle U.S. CI. 424-242

18 Claims
nopause in a 1. A method of treating the syptoms of menopause in a patient a compound of the formula in an amount effective to treat the symptoms of menopause:

971 O.G. 44
7.ACYL-3-(UREIDOALKYL

| 7.ACYL-3-(UREIDOALKYL SUBSTITUTED |
| :--- | TETRAZOLYLTHIOMETHYL CEPHALOSPORINS, THEM, AND METHODS OF TREATING BACTERIAL David A. Berges, Wayne, Pa, usignor to Smith

David A. Bergea, Wayne, Pa, assignor to SmithKline Corpora
Divition of Ser. No. 639,033, Dec. 9, 1975, Pat. No. 4,025,626.
This application Dec. 22, 1976, Ser. No. 753,245
Int. C1. ${ }^{2}$ A61K $31 / 545$; C07D $501 / 50$, $501 / 56,257 / 04$
Int. CC. ${ }^{2}$ A61K $31 / 545 ;$ C07D $501 / 50,501 / 56,257 / 04$
11 Claims
U.S. C. $424-246$ U.S. C. $42-246$

1. A compound of the formula:

in which:
in which:
$\mathbf{R}^{1}$ is an acyl group of the formula:

$$
\mathrm{z}-\mathrm{S}(\mathrm{O})_{m}-\mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{C}}-
$$

where:
$\mathbf{Z}$ is methyl, trifuoromethyl, trifluoroethyl, pyridyl or
cyanomethyl; $m$ cyanomethyl;
$m$ is zero to two; and
$n$ is two to five,
or a non-toxic pharmaceutically acceptable salt thereof. or a non-toxic pharmaceutically acceptabie salt thereof.
6. An antibacterial pharmaceutical composition comprising
a compound as clamed in claim 1 and a pharmaceutically
acceptable carrier therefor. acceptable carrier therefor.
8. A method of treating dministering internally by injection to an infected or suscepti ble warm-blooded animal an antibacterially effective but non-
toxic dose of a compound as claimed in claim

$$
4,096,257
$$

SUBSTITUTED IMIDAZO [1,2-d]-AS-TRIAZINES Judith Menachik, Tappan, N.Y., and Rolf Panl, River Vale, N.J.,
Conn.

Flued May 23, 1977, Ser. No. 799,837 Int. C. ${ }^{2}$ A61K 31/53; C07D 471/04
U.S. C. 424-249

1. 5 -n. Propyl-imidazo $[1,2-$ d $]$-as-triazin-8(7H)-one
2. A therapeutic composition in dosage unit form useful for meliorating asthma in mammals comprising from about one
milligram to about one hundred milligrams per kilogram of milligram to about one hundred milligrams per kilogram of
body weight per daily dosage unit, in association with a pharmaceutical carrier, of 5 -n-propyl-imidazo $(1,2-\mathrm{d})$-as-triazin$8(7 \mathrm{H})$-one.

METHOD FOR PREPARING A STABLE CLEAR LIQUID RELEASE AGENT
Harold Wayne Hanson, Los Angeles, Calif, asaignor to Par-
Way Mffe Co., Los Angelea, Calff. abandoned, and a continuation of Ser. No. 621,309, Oct. 10 , 1975, abandoned. This application Feb. 28, 1977, Ser. No.

Int. C. ${ }^{2}$ A23D $5 / 00$
U.S. C. $426-250$

1. A method for preparing a stable clear liquid release agent
comprising a liquid blend of fatty oils the method comprising the steps of blending about 57 percent by weight of soybean oil, about 38 percent by weight of coconut oil and about 5 .
percent by weight of lecithin at a temperature of at least $65^{\circ} \mathrm{C}$. to form a substantially uniform blend, chilling said blend uniformly to a temperature between about $20^{\circ}$ to $25^{\circ} \mathrm{C}$. to form a chilled blend, and working said chilled blend by agitation to provide a clear liquid release agent.

4,096,259
NON-AMPHETAMINIC PSYCHOSTIMULATING
COMPOSITIONS OF 1,4DISUBSTTUUTED André Buzas, 25 Route de Versalllea, Bievrea, Esconne, and
Jean-Marie Melon, 158 rue de Courcelles, Paris 17eme, both Jadre Bunsarie Melon, 158 rue de Courcelles, Paris 17eme, both
of Frace of France
Filed May 10, 1976, Ser. No. 684,846
Claims priority, 2 aplication Frace, May 13, 1975, 7514804 U.S. Cl. 424-250 Int. Cl. ${ }^{2}$ A61K 31/495 4 Claims 1. A pharmaceutical composition of nonamphetaminic psychostimulating activity comprising as active substance a $1,4-$
disubstituted piperazine of the formula: disubstituted piperazine of the formula:

wherein $R$ and $\mathbf{R}^{\prime}$ are identical or different and are hydrogen or fluorine, $n$ being equal to $2, n^{\prime}$ being equal to 2 or 3 and $A$ being selected from the group consisting of $\mathrm{COOH}, \mathrm{COONa}$, $\mathrm{COOCH}_{3}$ and $\mathrm{COOC}_{2} \mathrm{H}_{5}$, in a pharmaceutically acceptable carrier.

## 4,096,260

$4,096,260$
NOVEL INDOLES
André Allais, Gagny; Jen Meier, La Varenne Saint-Hilaire, and ndre Allais, Gagny; Jenn Meier, LA Varenne Saint-Hilaire, and
Roger Deraedt, Pavillons-couse-Bots, all of France, assignors to Roussel Uela, Paris, Prance
Fliled Jan. 17, 1977, Ser. No. 760,107
Claims priority, application Frace, Jan. 21, 1976, 7601561 US. C. $424-250$ in. ${ }^{\text {An }} 12$ Claime 1. A compound selected from the group consisting of indoles of the formula

wherein $\mathbf{R}$ is in the 2 -, 3 - or 4 -position and is selected from the group consisting of hydrogen, halogen, $-\mathrm{CF}_{3},-\mathrm{SCF}_{3}$, - $\mathrm{OCF}_{3}$ and alkyl and alkoxy of 1 to 8 carbon atoms and their non-toxic, pharmaceutically acceptable acid addition salts.
6. An analgesic composition comprising an analgesicall 6. An analgesic composition comprising an analgesically effective amount of at least
inert pharmaceutical carrier.

Filed Feb. 23, 1977, Ser. No. 711,215 U.S. C. $424-250$

C1. ${ }^{2}$ C07D 403/04; A61K 31/55 1. A compound of the structure
methyl ethyl ketone, glycol ethers and methylene chloride, and methyl ethyl ketone, glycol ethers and methylene chlorider
0 to 10 percent by weight of one or more auxiliaries.
nyl, amino and mono- or di-lowerakylamino, phenyl, halophenyl, or loweralkoxyphenyl.
LLSURIDE IN ALCOHOLISM
halophenyl, or loweralkoxyphenyl.
28. An anthelmintic composition which comprises an inert Turan M. Itil, Taurytow, N.Y., assignor to HZI Research
Center, Tarrytown, N.Y. carrier and a compound having the formula: uran M. Itil, Tarrytown, N.Y., assignor to H
Center, Tarrytown, N.Y.
Filed Apr. 6 , 1976, Ser. No. 674,217 Int. Cl. ${ }^{2}$ A $61 \mathrm{~K} 31 / 48$
${ }^{\text {(I) }}$ U.S. Cl. $424-261$ Claims 1. A method for blocking and for delaying alcohol induced
computer EEG changes which comprises administering orally computer EEG changes which comprises adminite
to a subject prior to the ingestion by that subject of alcohol, an amount of Lisuride effective to block the behavioral and physi-
ological effects of the alcohol and thereafter administering ological effects of the alcohol and thereafter administering
orally to that subject said alcohol. orally to that subject said alcohol. 8. A method for blocking and for delaying alcohol induced
computer EEG changes which comprises administering orally computer EEG changes which comprises administering orally
to a subject alcohol and subsequent to the ingestion by that to a subject alcohol and subsequent to the ingestion by that
subject of alcohol, administering orally an amount of Lisuride effective to block the behavioral and physiological effects of the alcohol.
$\mathbf{X}$ is thio, sulfinyl or sulfonyl;
$\mathrm{R}_{1}$ is halogen, trifluoromethyl, loweralkyl, loweralkoxy loweralkoxycarbonyl, loweralkylthio, loweralkylsulfinyl
loweralkylsulfonyl, loweralkanoyl, hydroxy, sulfonam loweralkylsulfonyl, loweralkanoyl, hydroxy, sulfonam
ido, mono- or di-loweralkylsulfonamido, amino, mono- o di-loweralkylamino, carboxy, carboxamido, mono- and di-loweralkylcarboxamido, loweralkanoyloxy, loweralk oxycarbonylamino, loweralkanoylamino, cyano or nitro; $n$ is 0,1 or 2 , such that when $n$ is 2 , the two $R_{1}$ groups need not be identical;
${ }_{2}$ is loweralkyl or loweralkoxy; and
${ }_{3}$ is hydrogen, loweralkyl, loweralkenyl, or loweralky substituted with loweralkoxy, loweralkoxy carbonyl,
carboxy, loweralkyylhio, loweralkylsulfinyl, loweralkylsulfonyl, amino and mono- or di-loweralkylamino, phenyl, halophenyl, or loweralkoxyphenyl.

BENZOPYRANO $\begin{aligned} & 4,096,4 \text { d } 265 \\ & \text { PYRIDINE-2-CYANO, }\end{aligned}$ CARBOXAMIDOXIMES AND CARBOXIMIDATES Anil Chandra Ghobh, Lexington, and Rad Kumar Razdan, Bel-
mont, both of Mass., assignors to Sharpe Associates, Cam. mont, bou of Mass, assignors to Sharps Associates, CamFiled Nor. 8, 1976, Ser. No. 739,546
Int. Cl. ${ }^{2}$ COTD 491/04; A61K 31/44 U.S. C. 424-256

1. A compound of the formule

18 Claims wherein $\mathrm{R}^{0}$ is

wherein R represents $-\mathbf{C}=\mathbf{N}$,

$R_{1}$ is lower alkyl, $R_{2}$ is hydrogen or lower alkyl and $R_{3}$ is traight or branched alkyl of 1 to 20 carbons, cycloalkyl-lowe alkyl in which the alkyl has 1 to 10 carbons and $R_{4}$ is lower alkyl, and nontoxic acid addition salts thereof.
18. A method of lowering blood pressure in an animal which comprises administering a safe but effective amount of a com ound of claim 1 to the animal.

## 4,096,267

## 1-OXO-2-ARYL OR

THIENYL-2-SUBSTITUTED-5-INDANYLOXY (OR THIO) ALKANOIC ACIDS, AND DERIVATIVES THEREOF Chalfont, both of Pa., sssignors to Merck \& Co., Inc., Rah. way, N.J.
Continuation-in-part of Ser. No. 492,651, Jul. 30, 1974,
bandoned which is a continuation-ingart of Ser. No. 405,736, abandoned, which is a continuation-in-part of Ser. No. 405,736,
Oct. 11, 1973, abandoned. This application Jun. 10, 1975, Ser. Oct. 11, 1973, abandoned. This applica
No. 585,434
The portion of the term of this patent subsequent to Oct. 5, 1993,
Int. Cl. ${ }^{2}$ A61K h1/475, 31/19; C07C $65 / 14,69 / 71$ U.S. Cl. 424-262 1. A compound of the formula:


at pretreatment levels or causes a decrease in uric acid levels which comprises a therapeutically effective amount of a compound of the formula:

wherein $\mathbf{R}^{0}$ is


A is oxygen or sulphur;
R is lower alkyl, lower alkenyl, phenyl lower alkyl, phenyl lower alkenyl, phenyl, cycloalkyl or cycloalkyl lower alkyl;
$\mathbf{R}^{\prime}$ is hydrogen, lower alkyl or phenyl; or
$\mathbf{R}^{\mathbf{R}}$ and $\mathbf{R}$ may be joined together to form a cycloalkylene; Y is alkylene or haloalkylene containing from 1 to about 5 carbon atoms;
$\mathbf{X}^{3}$ is hydrogen, nitro, hydroxy, lower alkyl, lower alkoxy cycloalkyl, halo, amino, cyano, sulfamoyl, methanesulfonyl, chlorosulfonyl or aminomethyl;
$\mathbf{X}^{1}$ is hydrogen, halo or methyl;
$\mathbf{X}^{2}$ is halo, methyl or trihalomethyl; or
$\mathbf{X}^{1}$ and $\mathbf{X}^{2}$ may be joined together to form a hydrocarbylene chain containing from 3 to about 4 carbon atoms;
and the non-toxic, pharmacologically acceptable salt, amide, anhydride and ester derivatives thereof and an effective antihypertensive agent along with a pharmaceutically acceptable carrier.

4,096,270
R is lower alkyl or lower alkyl substituted with one or more lower alkoxy, lower alkylthio, lower alkylsulfinyl, lower alky 1 sulfonyl, phenylthio, phenylsulfinyl, phenylsulfonyl
or $R, C O N\left(R_{s}\right)-$ all of which may be substituted with one or more nitro, azido, chloro, bromo, or fluoro substituents; $\mathbf{R}_{1}$ is hydrogen, chloro, bromo, fluoro or substituted or unsubstituted lower alkyl having from 1 to 4 carbon atoms, lower alkylthio, lower alkoxy, lower carboalkoxyalkylthio or lower alkylthioalkyl wherein the substituents may be one or more chloro, bromo, fluoro or nitro groups;
$\mathrm{R}_{2}$ is lower alkyl, lower alkyl substituted with one or more chloro, bromo, fluoro or nitro groups, lower alkenyl or substituted or unsubstituted phenyl naphthyl or benzyl wherein the substituents may be one or more chloro, bromo, fluoro, nitro, lower alkoxy or lower alkyl groups;
$R_{3}$ is perhalomethanesulfenyl or perhaloethanesulfenyl $R_{3}$ is perhalomethanesulfenyl or perhaloethanesulfenyl
wherein the halogen substituents are chloro, bromo or wherein the
fluoro, and
$R_{4}$ and $R_{5}$ are individually hydrogen or lower alkyl;
with the proviso that when $R$ is alkyl, $R_{1}$ is other than hydrogen, chloro, bromo, fluoro, unsubstituted lower alkyl, or unsubstituted lower alkylthio, and with the further proviso that when $R_{1}$ is hydrogen, $R$ is other than unsubstituted lower alkylthioalkyl.

1-METHYL-1,2,5,6-TETRAHYDROPYRIDINE-3-CARBOXYLIC ACID ESTERS AND A METHOD OF USE FOR COMBATING INSECTS OR ACARIDS
Saburo Tamura; Junichi Saito; Akio Kudamatsu; Yoji Ishino,
and Toshio Goto, all of Tokyo, Japan, assignors to Bayer
Continuation of Ser. No. 628,878, Nov. 5, 1975, abando
application Aug. 9,1976, Ser. No. 712,579
application Aug. 9, 1976, Ser. No. 112,579
Claims priority, application Jupan, Nov. 14, 1974, 49-130513
Claims priority, application Japan, Nov. 14, 1974, 49-130513
Int. Cl. ${ }^{2}$ A01N $9 / 22$; C07D $213 / 55$ (Claim
U.S. CI. 424-266 U.S. C1. 424-266 1 Claim

1. A method of combating insect or acarid pests which comprises applying to the pests or a habitat thereof an insecticidally or acaricidally effective amount of 1 -methyl. $3-2^{\prime}$ le lor acarbonl- 1,25 -tetrahydropyridine or an acid ad dition salt thereof.

N-HALOALKANE-SULFENYMCARBAMOYL OXIME PESTICIDES Themistocles Damasceno Joaquim D'Silva, S. Charleston, W, Va, assignor to Union Carbide Corporation, New York, N.Y
Division of Ser. No. 483,882, Jun. 27, 1974, Pat. No. 4,029,688. This application May 20, 1976, Ser. No. 688,233

Inis. Cl. ${ }^{2}$ CO7C 131/00; A61K 31/09 U.S. C. 424-226

1. A compound of the formula:

16 Claim

wherein $X$ is selected from the group consisting of a chlorine atom and a $\mathrm{CH}_{3} \mathrm{~S}$ group, and each of the groups $\mathrm{R}_{\text {, }}$ is the same
and represents a methyl or ethyl group, or a physiologically acceptable acid addition salt thereof
7. A method for treating a human suffering from hypertension comprising administering orally or parenterally an effecsion comprising admisiering or claimed in claim 1
tive a compound as

4,096,271
SLOW RELEASE INJECTABLE FORMULATIONS OF TETRAMISOLE AND DERIVATIVES IN BENZYL Fleur de lis Masilungan, Trenton, N.J. Fieur de is Masilugas, Trenton, N.J., assignor to American
Cyanamid Company, Stamford, Conn. Filed Aug. 3, 1977, Ser. No. 821,258 U.S. C1. $424-270$
U.S. C. 424-270

1. A liquid anthelmintic composition for injectims 1. A liquid anthelmintic composition for injection compris-
ing an effective amount of a solution of a compound of foring an
mula:

wherein $R$ is hydrogen, amino, i-butyrylamino, trimethylacetylamino or benzoylamino and the racemic mixtures
and which $R^{1}$ is hydrogen and $Y$ is hydrogen, 2-chloro or 3 chloro, or $R^{1}$ is methyl and $Y$ is hydrogen.

4,096,272
PHENOXYOXADIAZOLE CYCLOPROPAN
PHENOXYOXADIAZOLE CYCLOPROPANE
CARBOXYLATES AS INSECTICIDES
Amold D. Gutman, Berkeley, Calif., assignor to Stauffer Chemi-
cal Company, Westport, Conn.
Filed May 13, 1977, Ser. No. 796,775 lied May 13, 1977, Ser. No. 796,775
Int. C1. ${ }^{2}$ CO7D 271/00; A01N 9/22
U.S. C. $424-272$ i. A compound of the formula


PYRROLIDONES AND PROCESS FOR THEIR
15 Claims Dieter-Ber
Dieter-Bernd Reuschling, Butzhoch; Klaus Kuhbein, Kelkheim,
Taunus; Adolf Linkies, Frunkfart an Main; Rudols Kunstmann, Breckenheim, Taunus, and Jowef Musil, Konigatein, Taunus, all of Germany, assignors to Hoechst Aktiengesell schaft, Frankfurt am Main, Germany
Claims priority, application Germany, Dec. 20, 1975, 255774 U.S. Cl. 424-274 Int. C1. ${ }^{2}$ C07D 207/26
in which each $R$ is methyl or each $R$ is chlorine and $Y$ is
hydrogen or 3 -methyl. hydrogen or 3-methyl.
11. A method of controlling insects comprising applying to the habitat thereof an insecticidally effective amount of a compound of the formula

in which each $R$ is methyl or each $R$ is chlorine and $Y$ is hydrogen or 3 -methyl.
$4,096,273$
3-BENZYL-5-(2-4-CHLOROPHENYL)3-METHYL BUTYRYLOXY ALKYL] OXADIAZOLE INSECTICIDE Anold D. Gutman, Berkeley, Calif, asaignor to Stauffer Chemical Company, Westport, Conn.

Filed May 13, 1977, Ser. No. 796,776 Int. C. ${ }^{2}$ AO1N 9/22; C07D 271/06 U.S. C. 424-272 1. A compound of the formula

or a physiologically tolerable metal or amine salt of the free acid form thereof, wherein
$\mathrm{R}^{\prime}$ is $a$-branched alkyl having 3 to 6 carbon atoms or cyclo alkyl having 3 to 7 carbon atoms in the ring.
$\mathrm{R}^{2}$ is hydrogen, lower alkyl, or cycloalkyl or aralkyl having 3 to 8 carbon atoms;
$\mathbf{R}^{3}$ is straight-chain or branched alkyl having 1 to 10 carbon atoms, or such alkyl substituted by 0 -alkyl havng 1 to 5 carbon atoms, by phenyl, by phenoxy, by cycloalkyl, by cycloalkyl in turn substituted by alkyl having 1 to 3 carbon atoms, or phenyl or phenoxy each in turn substituted by halogen, alkyl having 1 to ${ }^{4}$ is alkyl having 1 to 4 carb
A is $-\mathrm{C}=\mathrm{C}-,-\mathrm{CH}=\mathrm{CH}-$ (cis), or $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$, in which compound or salt the chains in the 3-and 4-positions of the pyrrolidone ring are in trans-position with respect to each other.

Robert J. G. Searle, Slttingbourne, and Cive B. C. Boyce, Herne Babert J. G. Searie, Soth of England, eatignors to Shell Oil Company, Howe Bay, boti of Ent
ton, Tex. Division of Ser. No. 665,220, Mar. 9, 1976, Pat. No. 4,045,575. This application May 19, 1977, Ser. No. 798,534 1975 Claims priority, application United Kingdom, Mar. 11, 1975,
f a member selected from the group consisting of compounds
aving Formula 1 having Formula I

Us. Int. C. ${ }^{2}$ C07C 153/067; A01N 9/12

1. A thioamide derivative of the formula

wherein X represents a halogen atom of atomic number 9 to 35;
$n$ represents $0,1,2$ or 3 ; and $Y$ represents an alkyl group of up to 6 carbon atoms.
2. A pesticidal composition comprising a pesticidally effec-
tive amount of a thioamide as claimed in claim 1 and at least
surface-active agent.
3. A method of combatting insect or acarid pests at a locus
which comprises applying to the locus a pesticidally effective
amount of a thioamide as claimed in claim 1 or a composition thereof.

wherein
A is meta or para $\mathrm{CONHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$;
Alk is a straight or branched divalent alkylene radical of from 1 to 3 carbon atoms inclusive; and
4. N -(2-Hydroxyethyl)-4-(2-mercaptoacctamido)benzamide.

ORGANIC DERIVATIVES OF MONTMORILLONITE FOR TREATING LIPID DISTURBANCES
André Queulle, 93, rue Denfert-Rochereall, 93130 Noiry-le-Sec.
France
France Filed Jun. 27, 1977, Ser. No. 810,678
Claims priority, application Frace, Jui. 1, 1976, 7620143
U.S. C. 421-329

1. A method of treating and preventing lipid disturbances
comprising administering to the patient a hypocholesterolemi cally and hypolipemically effective amount of dimethyl-dialk. ylammonium montmorillonite.

ETHYNYLBENZE 4,096,279 THEREOF IN THE TREATMENT OF AND DERIVATIVES INFLAMMATION PAIN FEVER AND Julius Diamond, Lafayette Hill, Pa., amignor to William H. THIOUREA DERIVATIVES FOR TREATING HIOUREA DERIPERTENSION Michael Robert Coben, West Orange; Richard Wightman Kierstead, and Jefferson Wright Tilley, both of North Caldwell, all
of N.J., amelgars to Hoftmann-La Roche Inc., Nutley, N.J. Division of Ser. No. 677,106, Apr. 15, 1976, abandoned. This application Jan. 27, 1977, Ser. No.
Int. Cl. ${ }^{2}$ A61K 31/17

Division of Ser. No. 574,837 , May 14, 1975, continuntion of Se No. 431,254, Jan. 7,1974 , Pat. No. $3,923,910$, division of Ser. No. 268,419, Jul. 3, 1972, Pat. No. 3,852,364. This applicatio Jan. 11, 1977, Ser. No. 758,457
Int. C1.2 A61X 31/135; C07C 87/28, 87/50
$\qquad$
U.S. C. 42- 322

$$
\text { Int. C1. }{ }^{2} \text { A61K } 31 / 17
$$

1. A method of treating inflammation, pain or fever in a

3 Claims
comprises
U.S. C. 424-322 1. A method of reducing blood pressure which comprises
administering to a host requiring such treatment an effective

1. A method of treating inflammation, pain or fever in a
warm blooded animal which comprises administering to the amount of a compound of the formula
(

wherein $R_{1}{ }^{\prime}$ and $R_{2}{ }^{\prime}$, independently, are hydrogen, halogen or where
wherein $R^{\prime}, X$ is sulfur; and $R_{3}$, is amino, or an addition salt
thereof with a pharmaceutically acceptable acid.

## 4,096,277

MUCOLYTIC MERCAPTOACYLAMIDOBENZAMIDES AND PROCESS OF USING SAME
Tellis Alexander Martin, and Willinm Timmey Comer, both of
Evansville, Ind., eseignors to Mead Johnson \& Company,
Evivison of Ser. No. 579,650, May 21, 1975, Pat. No. 4,005,222. This application Oct. 18, 1976, Ser. No. 733,598 Int. C1. ${ }^{2}$ A61K 31/165; C07C 103/20 U.S. CI. 424-324

1. A process for liquefaction of mucus which comprises 1. A prom

Where
R is hydrogen,
alkyl of 1 to 7
alkyl of 1 to 7 carbon atoms,
ycloalkyl of 5 to 7 carbon ,
to 7 carbon atoms alkyl substituted cycloalkyl of 5 to 7 carbon atoms,
ycloalkenyl of 5 to 7 atoms, phenyl or
$\mathrm{Y}^{\text {and }} \mathrm{Y}^{\prime}$ are each selected substituent is $\mathrm{Y}^{\prime \prime}$;
$Y$ and $\mathbf{Y}^{\prime}$ are each selected from the group consisting of hydrogen,
amino, and
mono and diloweralkylamino;
$\mathbf{Y}^{\prime \prime}$ is selected from the group consisting of $\mathbf{Y}$,
lower alkyl of 1 to 7 carbon atoms,
trifuoromethyl and halo,
with the proviso that at least one of $\mathbf{Y}$ and $\mathbf{Y}^{\prime}$ is other than with the pro

ARYLEN $4,096,280$ Guy Dominic Diana, Stephentown, and Philip Michael Carabateas, Schodeck, both of N.Y., essignors to Sterling Drug Inc York, N.Y. lied Jan. 24,1977 , Ser. No. 761,94
Int. Cl. ${ }^{2}$ CO7C 49/84; A01N $9 / 24$
U.S. Cl. 424-331

1. A compound of the formula

herein:
R is alkyl of $1-4$ carbon arom further substituted by one or two methyl, ethyl or hal groups;
and $n$ in 3 to 7 , the sum of $m$ and $n$ ranging from 7 to 14.
$4,096,281$
METHOD AND COMPOSITION FOR PRODUCING
FLAVORED POPCORN
Robert W. Young, 10 Gracie Sq, New York, N.Y. 10028; Samuel B. Prumsin, 2126 Banyan Dre, Loe Angeles, Calif. 90049; John L. Caccavale, 1812 Baxter St., and Victor J. Pierce, 2040 Vestal Ave., both of Los Angelea, Calif. 90026
Filed Jon. 13, 1973, Ser. No. 369,516
U.S. C. $426-89$
2. The method

Int. C1. ${ }^{2}$ A23L //182 1. The meth
essentially of:
(a) comin producing fiavored popcorn consisting popcomn kernels solected from a cooking medium for said popcom kernels selected from the group consisting of oils,
semi-solid fats or solid fats and encapsulated flavoring substance particles and introducing same into a cooking vessel; and,
(b) heating said combined materials to pop said popcorn
kernels.

COLLAGEN COMPOSTHIONS
Thomas Engel Higgins, Brookfield, and Camilla Brems Ross, Hinsdale, both of III, assignors to Union Carbide, New York, Filed Jan. 3, 1977, Ser. No. 756,248 Int. Cl. ${ }^{2}$ A23C $13 / 00$ 11 Claims
U.S. C. 426-140
11. A method of preparing a formable collagen composition suitable for use in preparing a shaped collagen structure includ-
ing the steps o
preparing a viscous aqueous dispersion of non-collage
nous fibers; preparing a comminuted acid-swollen collagen mass; an then
(c) admixing said aqueous fiber-dispersion and a propylene glycol alginate with said acid-swollen collagen mass so that from about $0.2 \%$ to about $5 \%$ by weight of the propy-
lene glycol alginate based on the solids content of saic collagen admixture is incorporated in the collagen composition and then thoroughly mixing until a uniform admix ture is obtained.

METHOD OF COMPACTING FREEZE-DRIED PARTICULATE FOODS oful R. Rahman, Natick, Mass., asalgnor to The United States of America as represented by the Secretary of the Army, Filed Filed Nov. 8, 1976, Ser. No. 740,261
Int. Cl. 123 B 4/06; A23L 1/31 U.S. CI. 426-242
U.S. CI. 426-242 7 Claims 1. A process for making a dehydrated, compacted food mass
selected from the group consisting of vegetables and meats selected from the group consisting of vegetables and meals
characterized by having a density of from about 0.7 to about 1.2 grams per cc and being capable of rehydration to produce distinct particles of rehydrated food which have substantially the same size, shape, and cellular structure characteristics as the particles of food from which said dehydrated, compacted with scale testing, which comprises the steps of:
a. partially freeze-vacuum-dehydrating particles of a food a. partially freeze-vacuum-dehydrating partices of a food
selected from the group consisting of vegetables and meats to a moisture content of from about 10 percent to about 35 percent by weight;
irradiating said partially free
b. irradiating said partially freeze-vacuum-dehydrated particles of food with microwave radiations, the core portions of said particles being frozen at the beginning of said
nicrowave irradiation, said irradiation being carried out at a frequency and intensity of said microwave radiations and for a time sufficient to produce redistribution of said moisture remaining in said particles substantially uniformly throughout said particles so as to plasticize said articles substantially uniformly throughout the same; about 200 psi to about 4000 psi for a period of time sufficient to cause said particles to adhere together forming a compacted food mass while maintaining the moisture content of said particles and said compacted food mass at from about 10 to about 35 percent by weight; and redehydrated, compacted food mass having a moisture content of from about 1 percent to about 5 percent by weight.

SWEETENING COMPOSITIONS CONTAINING ALDOHEXURONIC ACIDS
Malcolm Leonard Erneat Burge, Thatcham, and Zdenek Nechatay, Reading, both of England, assignors to Tate \& Lyle
Filed Jul. 2, 1976, Ser. No. 702,200
Claims priority, application United Kingdom, Jul. 4, 1975, 28233/75; Jul. 4, 1975, 28229/75
U.S. C. 426-548

$$
\begin{aligned}
& \text { I55. } 282297 / 5 \\
& \text { Int. C2. }{ }^{2} \text { A23L } I / 236
\end{aligned}
$$

U.S. C. $426-548$
omposition containing 25 Claims 1. A sweetener composition containing at least one sweet-
ener selected from the group consisting of the protein sweetener selected from the group consisting of the protein sweet-
ener thaumatin, the protein sweetener monellin and saccharin, together with a modifier selected from the group consisting of aldohexuronic acids and salts, amides and lactones thereof in tein sweeteners or the bitter aftertaste of the saccharin.

4,096,286
STABLE PRECURSOR FOR MAKING AN EDIBLE GEL,
AND METHOD OF MAKING AND USING THE SAME Sakulchi Sakalkbara, Kobe; Ko Sugisawa; Yasushi Matsumura both of Nara, and Hidefumi Okgmoto, Sakai, all of Japan, Jassign
Flied Apr. 26, 1977, Ser. No. 991,012
Claims priority, application Japen, Jun. 10, 1976, $51-67137$ 1. A metho
comprises:
U.S. Cl. 426-577 10 Claims
(a) mixing pectin, an edible saccharide, an edible organic
acid, an edible salt of an organic acid, and at least one acid, an edible salt of an organic acid, and at least one member of the group consisting of fruit pulp, fruit juis,
syrup, flavoring agents, coloring agents, and water, (1) the amounts of the mixed pectin, saccharide, acid, salt, and at least one member being such that the resulting mixture contains, per gram of said pectin, 2.5 to 30 g saccharide, 0.15 tor 75 orgic water, and
and $1: 1.5$ and sufficient to make the ph value of said mixture 3.8 to 4.3 ,
(3) 25 to $40 \%$ of the carboxyl groups in said pectin being esterified with methanol;
(b) sterilizing said mixture; and
(c) maintaining the sterilized mixture under sterile conditions.
$4,096,284$
FLAVORING WITH $\alpha$-MERCAPTOACETOPHENONE AND DERIVATIVES
berg, Chicago, Ill., assignor to The Quaker
Oats Company, Chicago, III.
Filed Jun. 13, 1977, Ser. No. 805,896
Filed Jun. 13, 1977, Ser. No. 805,
U.S. CI. 426-535

1. A process for altering the flavor of a foodstuff comprising 1. A poss the foodstuff an amount of at least one flavorant selected from the group consisting of $\alpha$-mercaptoacetophenone and derivatives thereof effective to impart a meat-like flavor and represented by the formula:

 hydroxyl group, an acetyl group, a phenacyl group, or a hydroxyl g.
benzyl group.

PREPARATION OF A POWDERED SKIM MILK
Albert R. Kemp, Ashton, Ill., asslgnor to Crest Foods Co., Inc.,
Albert R. Kemp, Ashton, Ill., assignor to Crest Foods Co., Iac.,
Ashton, III. Ashton, III.
application Jul. 5, 1977, Ser. No. 812,665 Int. C1. ${ }^{2}$ A23C 9/00, $1 / 04$
U.S. C. 426-588

1. The method of producing a fluid milk product modified to improve flavor, texture and eye appeal, which includes:
A. producing a powdered skim milk additive, of an affectiveness for yielding detectable improvement of skim milk as oflavor, texture and eye appeal when added in the proportion of 0.1 to $0.15 \%$, by a continuous process including
the steps of heating skim milk, by non-dilutive heating hrough pasteurization and to a temperature of about $185^{\circ}$ o $190^{\circ} \mathrm{F}$., thereafter further heating the milk by steam injection to a temperature of about $200^{\circ} \mathrm{F}$. to $212^{\circ} \mathrm{F}$., and olding it in this temperature range for a time, in the range of about five to thirty minutes, inversely correlated to
cemperature on the basis of about $212^{\circ} \mathrm{F}$., if the holding time is 5 minutes, to about $200^{\circ} \mathrm{F}$., if the holding time is
thirty minutes; condensing the heated skim milk to a solid content of about $39 \%$ to $45 \%$; heating the condensed milk first by a nondiluting heater to a temperature of about 175 F. and then, while avoiding coagulation, further heating the condensed skim milk by direct steam heating to temperature of at least about $185^{\circ} \mathrm{F}$. and holding at such minutes inversely correlated to temperature; and then spray-drying it to form said powdered skim milk additive suitable for improving the flavor, texture and eye appea of a fluid milk product and
. adding said powdered skim milk additive to a fluid milk product in an amount in the range of 0.2 to $0.3 \%$

## METHOD OF PART,006,28

 Hiroshi Saito, Omiya, Japan, asslgnor to Kyodo Printing Co Ltd., Bunkyo, Japan, Nivision of Ser. No. 524,941 , Nov. 18, 1974, abandoned, which is a continuation-in-part of Ser. No. 279,808, Aug. 11, 1972, abandoned. This application Jul. 29, 1976, Ser. No. 709,729 68560[U]; Aug. 17, 1971, 46-73683[UT]; Jul. 4, 1972, 47-66880; Jul. 4, 1972, 47-66881U.S. C. 427-24

Int. C. ${ }^{2}$ G03G 13/16


1. A method of reproducing in an electrostatic copyin apparatus a portion of an entire master pattern comprised of oner deposited on an electrostatic latent image onto a repro ducing medium comprised of.
insulative sheet material having a copying surface on which the selected portions are to be reproduced
back side of the copying surface of faid sheet material ine back side of the copying surface or said sheer material tern which is not to be reproduced;
at least one second transparent conductive film deposited along at least one edge of the sheet material on the sam side of the material as said first conductive film; and said first and second films to each other; said method comprising: edin
conductive of said sheet material opposite said second conductive film into the electrostatic copier,
against the entire toner-coated electrostatic latent image against the copying surface of said insulated sheet material; and
face of the insulative sheet material, whereby the tone does not transfer to the surface of said sheet material corresponding to the position of the conductive film on the backside thereof.

ELECTROSTATIC DEPOSSTIION OF SWELLABLE, MODIFIED CELLULOSE ETHER ON WATER WET HYDROPHILIC SUBSTRATE
Ehrenfried Nischwitz, Schmitten; Klaus Uhi, Neuenhain, and
Helmut Lask, Wiesbeden, tall of Germany, Helmat Lask, Wiesbeden, all of Germany, assignors to HoFiled Dec. 14, 1976, Ser. No. 750,433 Claims priority, application Germany, Dec. 17, 1975, 2556723 U.S. C. ${ }^{427-32}{ }^{\text {Int. C. }{ }^{2} \text { BOSD } 1 / 06,3 / 00,5 / 04}$


1. A process for the transformation of comminuted cellulose ether, which has been rendered at least largely water-insoluble by modification but has remained highly swellable with water, into an easily usable material, a process in which the modified cellulose ether is attached to at least one surface of a weband the support is dried, the process comprising the modified cellulose ether attached to the support by electrostatic flocking.

MELT COATING COMPOSITI
PROCESS AND COATING
Will Dunwald, Leverkusen; Jurgen Lewalter, Cologne; Willried Zecher, and Wolf-Dieter Lest, both of Leverkusen, all of Germany, assignors to Bayer Aktiengevellischaft, Leverkusen,
Germany Germany Filed Jan. 28, 1975, Ser. No. 544,620 Claims priorty, application Germany, Feb. 1, 1974, 2404740 3 Claims U.S. C. 427-120 C. ${ }^{\text {Int }}{ }^{2}$ B0SD 5/12; B32B 27/06 1. Process of coating a heat resistant substrate comprima applying a solvent-free melt coating composition comprising droxyl polyisocyanates and compounds which contain hy followed by cross-linking reactive with isocyanate groups, wherein by cross-linking of the resulting coating by heating
a. at least 40 equivalent percent of the blocked polyisocya nates consist of alkanol or cycloalkanol blocked polyiso cyanates,
the blocked polyisocyanates and compounds which con-
tain hydro tain hydroxyl groups reactive with isocyanate groups form a composition with a melting point or range below
$200^{\circ} \mathrm{C}$ and the proportion of reactants is so chosen that the equivalent ratio of blocked isocyanate groups to hy the equivalent ratio of blocked isocyanate groups to hy
droxyl groups is between $1: 2$ and $9: 1$,
coating of the substrate is carried out at a temperature
within the range of $20^{\circ}+250^{\circ} \mathrm{C}$ within the range of $20^{\circ}$ to $250^{\circ} \mathrm{C}$ at which temperature th coating composition has a substantially constant viscosity d. the coated substrate is subsequen
ture at which the blocking agent is split off and final cros-linking takes place.

4,096,292
PROCESS FOR PREPARRNG FERRIMAGNETIC aCICULAR FERRIC OXIDE
Giuliano Fagheraudi; Francesco Ferrero; Ginseppe Sironi, and Bruno Virimi, all of Novara, Italy, madgnors to Montedison Continuution-in-part of Ser. No. 648,367, Jan. 12, 1976, abandoned. This application Sep. 14, 1976, Ser. No. 723,303 Claims priority, application Italy, Jan. 14, 1975, 19238 A/75 U.S. C. $427-127$
where $n 1$ and $n 2$ are integers equal to one or more; where $Y$ is a lower alkyl having 1-6 carbons; where $Z$ is $\mathrm{CH}_{2} \mathrm{X}, \mathrm{C}_{2} \mathrm{H}_{4} \mathbf{X}$, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{X}_{2}, \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{X}, \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{X}_{2}, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{X}_{1} \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{X}_{2}$ and where X is CL, Br , I or a mixture, heating the layer to cause cross-linking
between polymer chains with removal of hydrogen halide, between polymer chains with removal of hydrogen halide,
patternwise exposing the layer with high energy radiation, and patmovinse exposing the layer with high energy radiation, and
remoriong portion of the layer with a solvent developer.


1. In a process for preparing $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the form of acicula particles, wherein an aqueous solution of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, kep $25^{\circ}-35^{\circ} \mathrm{C}$ in the presence of air, is treated with alkali until
$45-55 \%$ by weight of the iron is precipitated in the 45-55\% by weight of the iron is precipitated in the form of
aat $65^{\circ}-75^{\circ} \mathrm{C}$ in the presence of air, is treated with alkali in
order to complete the precipitation of iron, thus forming acicular $\alpha$-FeoOH, which is then treated with sodium silicate dized to $\gamma-\mathrm{Fe}_{2} \mathrm{O}^{\circ} 200^{\circ}-350^{\circ} \mathrm{C}$ in a bed reactor and oxi mprovement wherein:
(a) the formation of the acicular $a-\mathrm{FeOOH}$ in aqueous suspension is carried out with a feeding flow-rate of $\mathrm{FeSO}_{4}$
$7 \mathrm{H}, \mathrm{O}$ of $2.48-12.41 \mathrm{Kg}$ per hour per $\mathrm{m}^{3}$ of reactor; $7 \mathrm{H}_{2} \mathrm{O}$ of $2.48-12.41 \mathrm{Kg}$ per hour per $\mathrm{m}^{3}$ of reactor;
(b) the $a-\mathrm{FeOOH}$ particles are coated with $0.2-2 \%$ by
weight of SiO , by bringing the $a$ - FeOOH in aqueous weight of $\mathrm{SiO}_{2}$, by bringing the $a$ - FeOOH in aqueous
suspension obtained as defined in (a) to a temperature ranging from $50^{\circ}$ to $90^{\circ} \mathrm{C}$, adding $\mathrm{Na}_{2} \mathrm{SiO}_{3}$, and adjusting the final pH to $5.5-6.5$; and
(c) the $\alpha-\mathrm{FeOOH}$ coated with $\mathrm{SiO}_{2}$ is dehydrated and simultaneously reduced to $\mathrm{Fe}_{3} \mathrm{O}_{4}$ at a temperature between 480 and $550^{\circ} \mathrm{C}$ with a reducing gaseous mixture.

## $4,096,293$

MOLD AND CORE WASH
Michael J. Skubon, Columburc; John J. Spiwak, Worthington, end Richard F. Hanesworth, Delaware, all of Ohio, assignors to Ashland Oil, Inc., Ashland, Ky.
Filed Sep. 6, 1977, Ser. No. 830,725
U.S. C. 427-134


10 Claims

1. A core and mold wash comprising: (a) an organic liquid solvent in an amount
$5 \%$ to $90 \%$ by weight of composition;
(b) a suspending weight of composition; $0.1 \%$ to $2 \%$ weight of composition
(c) a wetting agent in an amount of between 0.01 and $2 \%$ by weight of composition;
(d) calcium aluminate particles in an amount of between $5 \%$ and $80 \%$ by weight of composition, having an average particle size of 20 to 25 microns and no particles larger than 70 microns;
ace a hard, resin which is the reaction product of fumaric
and acid, gum rosin, and pentaerythritol, said resin is within
the ratio by weight between about .5 and about 5 parts per 100 parts of composition.

4,096,29
PROCESS FOR PREPARING WATERLESS PRINTING COMPRISING COPOLYMER OF SIL AND CRYSTALLIZED THERMOPLASTIC BLOCKS Thomas J. Pacanaky, Penfield, N.Y , assignor to Xerox Corpora tion, Stamford, Conn.

Filed Apr. 4, 1977, Ser. No. 784, 183
U.S. C. 427-197 20 Claims 1. A process of preparing an ink releasing waterless printing master capable of being imaged with an ink accepting particulate imaging material comprising:
(a) providing a self-supporting master substrate;
(b) providing a film forming ink releasing block copolymer comprising elastomeric ink releasing siloxane blocks and
isothermally crystallizable thermoplastic organic blocks; c) coating said substrate with said copolymer;
(d) isothermally crystallizing said organic blocks, whereby the crystallized organic blocks may be softened by heating said copolymer coating and then hardened so as to bond
said particulate imaging material thereto; and said particulate imaging material thereto; and (e) allowe temperature.

METHOD FOR MULTIPLE COATINGS Nvin M. Marke, 153-16 Tenth Are. Whitestone N. Y. 11357 Continuation-in-part of Ser. No. 501,843 , Aus. 29, 1974, abandoned. This application Apr. 5, 1976, Ser. No. 673,960 U.S. C. ${ }^{427-209}$


1. A method for simultaneously coating both surfaces of a plurality of spaced sheet-like members with a bubble-free and bubble-free coating material disolved to form a fluid and mparting a velocity to said fluid, dipping the said sheet-like nembers into the said fluid, said velocity being substantially parallel to said surfaces of said sheet-like members to wash away any bubbles which may be introduced by said dipping, all surfaces are wetted and washed by the said bubble-free lid, withdrawing the said sheet-like members from the said aid spaces between said sheet-like members spinning the said said spaces between said sheet-like members, spinning the said which are maintained in a horizontal plane, until the excess fluid is centrifugally expelled, and thereafter drying the said coating material remaining on the said surfaces of the said sheet-like members, said spacing between the said surfaces of said sheet-like members being relatively small compared to the width of said sheet-like members, whereby the said bubbie-free
coating on said sheet-like members is dried while protected from the deposition of atmospheric dust particles thereon.

PROCESS FOR FORMING SURFACE DIFFUSION ALLOY LAYERS ON REFRACTORY METALLIC ARTICLIES
Philippe M. Galmiche, Clamart, André R. Hivert, Pontoise, and Andr' M. Walder, L'Hay-les-Roses, all of France, asoignorn
to Omce National d'Etudes et de Recherches Aeroepatialea France
Cheims prived Mar. 5, 1976, Ser. No. 664,392 ag. ., 1975, 7524446
U.S. C. 427-247 1. In a thermochemical process for the formation of surface diffusion alloy layers on refractory metallic articles having perforations thercin whose transverse cross-sectional dimen sion is less than 0.4 mm , said process comprising submerging
the treated articles in a reagent containing a mixture of a firs powder of metal or alloy for supplying at least one metal to the reated articles, and a second powder of an inert diluent, said first and second powders having a particle size ranging be
iween 1 and 50 microns, and thereafter subjecting the reagen ween 1 and 50 microns, and thereafter subjecting the reagen atmosphere at a temperature between $750^{\circ}$ and $1200^{\circ} \mathrm{C}$, the
mprovement wherein prior to submerging the metallic article o be treated in the said reagent, the said article is individually covered, on at least the part of the external surface thereo having said perforations therein, with a metallic felt coated with a film of stable refractory oxide, said metallic felt being a millimeter to a few millimeters, and preshaped so that one of the faces thereof adapts itself closely to the external surface of the article to be treated, the other face of the said metallic felt scet being in intimate contact with the reagent when the article and the metallic felt sheet associated therewith is submerged in the said reagent, the said metallic felt sheet coated
with a film of stable refractory oxide being obtained from a sheet of a refractory metallic felt, having a thickness of 0.3 to 1 mm ., containing chromium in proportion by weight between $10 \%$ to $60 \%$ and having been subjected to selective oxidation to produce chromium oxide, said film of stable refractory oxide being produced by action of a reducer of the chromium oxide,
and said selective oxidation being effected so that the fibers and said selective oxidation being effected so that the fibers chromium oxide that represents at least $5 \%$ of the weight of the metallic felt sheet.

## CANDLE, FABRIC TAPER CANDLE, FABRICATION METHOD John B. Menig, 283 Hart La, Ben Lomond, Calif. 95005 Filed Jun. 14, 1976, Ser Nond Calif. 950 U.S. C1. 427-262 ${ }^{\text {Int. Cl.' }}{ }^{2}$ B05D 5/00, $1 / 36$



1. A method of fabricating a wax taper candle of predeter mined length having a centrally disposed wick comprising the steps of suspending the wick at an upper portion to hang below the point of suspension, pouring a liquid wax flow having at
least two streams with opposing flow compents least two streams with opposing flow components, cycling the
suspended wick to pass through the liquid wax flow repeat suspended wick to pass through the liquid wax flow repeat-
edly, so that the liquid wax impinges on the suspended wick at edly, so that the liquid wax impinges on the suspended wick at a predetermined point thereon and flows down the wick to
form a solidified layer thereon as the wick passes from the liquid wax flow, thereby accumulating a layered solidified wax mass on the wick over a plurality of cycles, and heating the
lower end of the wax mass to a liquid phase so that in flows lower end of the wax mass to a liquid phase so that it flows
away below the lower end, whereby a multiple wax layer taper candle having a predetermined length from the point of im pingement of the liquid wax flow on the suspended wick to th pingement or the liquid wax ho

4,096,299
METHOD OF MAKING DECORATIVE CANDLES William E. Stewart, 2375 Wulismson Rd, Saginan, Mich. 48601

Filed Feb. 2, 1976, Ser. No. 654,927
U.S. Cl. 427-264

1 Claim


1. A method of making a multicolored candle comprising (a) forming a candle wax core; (b) applying to the side surface of
said core a removable solid member projecting outwardly from said surface, said member having a melting temperature higher than that of said candle wax, and said member being removable from said surface in subsequent step (e); (c) completely coating said surface and said applied member successively with a plurality of superimposed different colored coat
ings of candle wax, each of said superimposed coatings having a color different from that of the immediately underlying coating; (d) cutting a slit extending through said coatings to said member, said slit having a width permitting formation, in subsequent step (e), of projections upon removal of said mem-
slit, removal of said member deflecting the superimposed coat- atives as a reducing agent for the copper, said copper ion, ings on opposite sides of said slit outwardly of said surface to hydroxide and formaldehyde being the said consumable comform, a each said opposite side, a projection consisting of the ponents of said solution, said apparatus comprising in combinasaid superimposed coatings, whereby the free end of each said tio projection forms a multicolored design; (f) thereafter applying means withdrawing a sample stream of plating solution at a at least one additional coating of candle wax to the thus treated pre-determined constant rate from the plating tank and
passing it through a sequence of analyzing stations to a core to completely coat said coated surface and projections and to fill the space between said projections formerly having pied by said soid member, each said adiditional coating having thereto; and (g) removing a sufficient amount of the said additional coatings overlying said projections to expose the free outlined by the exposed colors of each said additional coating. outlined by the exposed colors of each said

PROCESS OF COATING A SERIES OF METAL PROCESS OF COATNGAERS
Virgil R. Willism, 2055 Webb Gin House Rd., Snellville, Ga. 30278, and Jomes M. Williame, Jr, 2996 Payton Rd. Atlenta, G. 30329

Flued May 24, 1976, Ser. No. 689,587
Int. C. ${ }^{2}$ B4D $1 / 46$; B05D $1 / 02,3 / 12$
U.S. C. 427-292 passing it through
point of discharge;
source of acid of standardized normality and means intro ducing this acid into said sample stream at a predeter mined constant rate ahead or he sequans for measuring the pH of the acidified sample stream, and controller means actuated by said first pH measuring means;
source of aqueous alkali metal hydroxide replenisher solution, and means actuated by said first pH controller means for feeding said hydroxide replenisher solution to the plating tank whenever said selected level;
source of aqueous sulfite solution of standardized molar concentration, and means for mixing said sulfite solution into said acidified sample stream, at a constant prederion mined rate, downstream of said first pH analyzing staura, second pH analyzing station having means for measuring introduction of the sulfite solution, and controller means


A continuous method of treating a series of metal mem bers comprising progressively moving the members along a ectilinear path on a continuous surface conveyor through erries of juxutaposed enclosed work sections substantially with out exposure to the environment outside said work station. and as the members move separatery along the recers are moved progressively heating the meming section toward a shot blas machine, progressively cleaning the members with shot as the members are moved along the path through the cleaning sec tion while the members are hot from the previous step of heating the members, coating the members when the members have moved along the path from the cleaning section into coaving moved out of the coating section into a drying section by first circulating air at a first temperature about the member while the members are still in the rectilinear path and then
moving the members laterally out of the path and circulating gir at a second temperature higher than the first temperature about the members.

APPARATUS AND METHOD FOR AUTOMATICALLY MAINTAINING AN ELECTROLESS COPPER PLATING Leo J. Slominski, Bristol, and Thomens A. Rac, Wolcott, both of Conn., assignors to MacDermid Incorporated, Waterbary,
Conn. Filed Feb. 19, 1976, Ser. No. 659,475
led Feb. 19, 1976, Ser. No. 659,4
Int. Cl. ${ }^{2}$ B05D $1 / 40,3 / 12$
U.S. CI. $427-430 A$

10 Claims
U.S. C. $427-430 \mathrm{~A}$. Apparatus for maintaining the consumable components of

1. 2. Apparatus for mainkining we colectron at pre-determined con-
an an electronss a plating tank containing said plating solution while workpieces are being processed in the tank, said plating solution being an aqueous solution of copper ion, an aqueous per ions in solution, and formaldehyde or formaldehyde deriv-
actuated by said second pH measuring means;
source of aqueous formaldehyde replenisher solution, and

means actuated by said second pH controller for feeding said formaldehyde replenisher solution to the plating tank whenever said second pH meas reading below a selected level;
eans analyzing the copper ion concentration of the acidi-
fied sample stream, and controller means operativel connected to and actuated by said copper analyzing means;
dd a source of aqueous copper ion replenisher solution, and means actuated by said copper analyzing controller means for feeding copper replenisher solution to the plating tank below a selected level.
1. A method for automatically maintaining consumable components of an electroless metal plating solution at prede lermined concentration in a plating tank while workpioces an ee highly alkaline to be effective for plating purposes, the steps which comprise:
withdrawing a sample stream of the plating solution fro the tank at a predetermined constant rate and passing this sample stream through a sequence of analyzing stations to a point of discharge, ple stream at predetermined constant feed rate to reduce onger effective for spmple stream to a level where it is no longer effiective therein;
and then subjecting the acidified stream to analysis of the
consumable components of the plating solution. consumable components of the plating solution.

4,096,302
BACKING FOR TUFTED CARPET OF A THERMOPLASTIC NET AND PLURALITY OF FIBERS Raymond Jon Thibodenu, Wayzata, and Edward V. Burchell, New Brighton, both
tion, St. Paul, Minn.

Filed Sep. 2, 1976, Ser. No. 719,853
U.S. CI. 428-95


1. Carpet backing for tufted carpets comprising a plurality of fibers and a thermoplastic net, said fibers being essentially aligned in the woof direction and being secured to said net by being punched therethrough said fiber having a fiber length of
from about 1 inch to about 6 inches, said fiber being present on from about 1 inch to about 6 inches, said fiber being present on
each side of said net at a rate of from about $3 \mathrm{oz} / \mathrm{yd}^{2}$ to about $10 \mathrm{oz} / \mathrm{yd}^{2}$, said net comprising at least two sets of strands, said strands being extruded and having integral intersections and said net having a strand count of from about $4 \times 4$ to about 12 $\times 12$ per square inch and a weight of from about 2 pounds per feet. feet.

## COMPOSITE CARPET AND FO <br> METHOD LAMINATE AND

 Relph G. Doerfling, Southfield, Mich., assignor to Detrolt Ga Ket and Manuffecturing Company, Detrolt, Mlch.application Jan. 12, 1976, Ser. No. 648,616 U.S. C. $428-9$


1. An integral carpet-foam laminate, comprising: a resilien flexible carpet having a napped side and a relatively smooth backing, a relatively rigid polyurethane foam layer permanentiy anfixed io said carpet backing and a grid-like porous
lexible relatively nonresilient skrim located within said poly urethane foam layer with the polyurethane foam continuous through said skrim and located between and spaced from the
carpet-polyurethane foam interface and the outer skin of said carpet-polyurethane foam interface and the outer skin of said
polyurethane foam layer.

4,096,304 Michael Greengrass, Norwich, Englind, assignor to Flexipane Limited, Norwich, England
U.S. C1. 428-138

$$
\begin{aligned}
& \text { Norwicn, Maguna } \\
& \text { Fifled May 2, , Ser. No. 792,803 } \\
& \text { Int. Cl. }{ }^{2} \text { B32B 15/08, } 15 / 12,15 / 14,17 / 0
\end{aligned}
$$

1. A fire-retard 11 Claims layers, a fire-retardant paper sheet, coated as four superposed a plastic material and on the other surface with a metal foil and having a scrim of glass reinforced fibre between the foil and paper, said sheet additionally comprising a further plastic shee or layer laminated thereto, a mesh being interposed between said paper sheet and said plastic sheet or layer.

RIGID-WHEN-WET PAPERBOARD CONTAINERS AND THEIR MANUFACTURE THEIR MANUFACTURE
Robert M. WIldinson, Florisant, Mo., and James R. Lyon,
Godrey, III., assignors to Alton Box Board Company, Alton, Robert M. Whinson, Fiorisant, Mo., and James R. Lyon,
Godfrey, II., assignors to Alton Box Board Company, Alton,
II. Ill.
Division of Ser. No. 277,646, Ang. 3, 1972, Pat. No. 3,886,019 which is a continustion-in-part of Ser. No. 39,086, May 20, 1970,
abandoned. This application Apr. abandoned. This application Apr. 14, 1975, Ser. No. 567,637
Int. C1. ${ }^{2}$ B32B 3/28 U.S. C. 428-182


1. Rigid-when-wet laminated paperboard consisting of a cast three plies, each having two faces, aromatic-alcohol-con taining adhesive means securing said plies together to provide
two exposed faces and at least four concealed faces, two of saic wo exposed faces and at least forr concealed faces, two of said exposed faces being water absorrbent, and at least two non-con tipuous ones of said concealed faces being impregnated
through roller application with a printed film of a controlled through roller application with a printed film of a controlled amount of a phenolic resin contained within a 35 to 65 percen containing multitudinous bundies of cellulose fibers surround ng a central canal, the amount of resin solution being between 3 to 3.9 pounds per thousand square feet per face of each ply erimetrical increments of sabid bundles while leaving their perimetrical increments of said bundles while leaving their
central canals substantially devoid of resin, wherein the laminated paperboard remains absorbent of moisture but retains tructural integrity due to the presence of the roller applied phenolic resin to particular of its faces.

$$
\begin{aligned}
& \text { 4,096,306 }
\end{aligned}
$$

STRIP MATERIAL USED IN FORMING AIR INFLATED CUSHIONING MATERIAL
Curtis L. Larson, Hudson, Wise, asedgnor to Minnesota Mining and Manufacturing Company, St. Paul, Minn.

Flied Dec. 24, 1975, Ser. No. 644,050
U.S. C1. 428-192

US. C. $428-192$

1. An elongate strip material comprising two thin flexims films, each film comprising a heat sealable thermoplastic mateial forming at least one surface of the film, said films being ositioned with their thermoplastic surfaces adjacent and being ased together in discrete areas to define a plurality of unsealed wo rows of elongate inflatable chambers and a passageway extending the length of the strip betweens and a passageway of chamers with each of said chambers having an inlet opening at one end communicating with the passageway and having a plural-
ity of constricted chamber areas spaced along its length with removal of the base sheet, the mesh develops tension relative to the fused areas of the films defining the periphery of the cham- the screen frame to provide a printing screen.
ber on both sides of each constricted chamber area being gen-

erally aligned and the transverse width of the chamber at each constriction being mu
width of the chamber.

## 4,096,307

ANTI-ABRASIVE FLAME-RESISTANT
NNTI-ABRASIVE FLAME-RESISTANT
NOISESUPPRESSANT LAMINATE Jooeph V. Lagowsidi, Mabbeott, W. Va., asslenor to Fairchild Incorporated, Raleigh, W. Va.,
Filed Jun. 29, 1977, Ser. No. 811,371 S. C. 428-214 Int. C1.2 B32B 15/06 8 Claims
U.S. C. 428-214

## 

1. An anti-abrasive, flame-resistant and noise-suppressan 1. Aninate suitable for use with underground scraper conveyor or the like comprising two outer layers of ferrous material having an inner layer of styrene butadiene rubber materia vulcanized therebetween, said styrene butadiene rubber mate rial having a durometer of the order of 59 and a flame spread index of less than 25 according ness of the order of $\ddagger$ inch.

## 4,096,308

SCREEN PRINTING MESHES
Kenneth James Reed, 33 Carlyle Square, London, S.W.3, England Flled Aug. 20, 1975, Ser. No. 606,051 Claims priority, application United Kingdom, Aug. 23, 1974 37184/74

Int. CL. ${ }^{2}$ B41N $1 / 24$
U.S. C1. 428-247

18 Claims

$$
\xrightarrow{\text { I }}
$$

1. A laminated screen printing assembly for use in making a screen printing frame comprising a flexible base sheet and a woven textile screen mesh in a tensioned state relative to the laminated together by means of adhesive such that the mesh is maintained in the tensioned state on the base sheet and that, on fixing the laminated assembly to a screen printing frame and
2. A flexible laminated screen printing sheet for making a
printing screen, said laminated sheet comprising a flexible base printing screen, said laminated sheet comprising a noven textile mesh tensioned relative to the base sheet in the warp and weft directions of the mesh, the base shect and the mesh being laminated together by means of an adhesive which at least partially encapsulates the warp and
weft elements of the mesh and which has a shear strength weft elements of the mesh and which has a shear spied by the tensioned mesh, the base sheet and adhesive being coextensive with the mesh and the base sheet maintaining the mesh in tension by resisting the compressive force transmitted thereto through the adhesive by the tensioned mesh so that upon fixing a screen printing frame to the mesh side of the laminated sheet the base sheet can be removed from the tensioned mesh to leave the latter in tension relative to the frame.
3. A method of making a flexible laminated screen printing
sheet comprising tensioning in the warp and wef directions a sheet comprising tensioning in the wars and tensioned mesh to a
woven textile mesh and laminating the ter relatively untensioned base sheet by means of an adhesive which has a shear strength sufficient to resist the shearing force applied thereto by the tensioned mesh and which renders the base sheet subsequently removable from the mesh, the base
sheet and adhesive being coextensive with the mesh and the base sheet maintaining the mesh in tension by resisting the compressive force transmitted thereto through the adhesive by the tensioned mesh.

LAMINATED PACKAGING MATERIAL
Nathan Stillman, Walnut Creek, Calif, assignor to Champlon Nathan Stillman, Walinut Creek, Calif, assignor
International Corportion, Stamford, Conn.

Filed Aug. 12, 1976, Ser. No.
Int. C. ${ }^{2}$ B32B 7/04
U.S. C. 428-285

5 Cluims


1. A flexible laminated packaging material comprising: (a) a non-woven sheet of spun-bonded polymeric filament; (a) a non-woven sheet of spun-bonded polymeric fild
(c) an inner surface ply of heat-sealable polyolefin affixed to (c) an metal foil; and
(d) an outer surface ply of smooth, non-porous material adhesively affixed to said non-woven sheet.

## 4,096,310

MRANSFER SHEET
Mervin R. assignors to Armstrong Cort Company, Lancaster, Pa. Filed May 2, 1977, Ser. No. 792,896
Int. C1. ${ }^{2}$ B32B $7 / 00$
U.S. Cl. 428-288

1. A transfer sheet
dye, said sheet being:
(a) of a porous construction such that it will have an air permeability over the surface of the sheet of between 40 to 300 standard cubic feet per minute per square foot at inch water,
with a tear strength of at least 100 grams and a tensile
strength of at least 850 psi at $450^{\circ}$,
 sional change of more than $1 \%$, and
(d) capable of releasing at least $50 \%$ of the sublimable dye
printed thereon during
ELECTRICAL INSULATING PAPER
ATING PAPER
Hideo Fuita Thikating SAME Hideo Fujita, Takarazuka, and Hirotaka Itoh, Nishinomlya, both of Japan, assignors to Dainicbl-Nippon Cables, Ltd.,
Hyogo, Japan Hyogo, Japan
Filed May 4, 1977, Ser. No. 793,909
U.S. Cl. 428-304
${ }_{\text {Int. C. }}{ }^{2}$ B32B $5 / 02$
10 Claims

WIPE DRY IMPROVEMENT OF NON-WOVEN, MPROVEMENT OF NO
Eugene J. Pietreniak, Chester, Pa., assignor to Scott Paper Eugene J. Pietreniak, Chester,
Company, Philadelphia, Pa

Filed Oct. 31, 1975, Ser. No. 627,657
Int. CI.2 ${ }^{2}$ D21H $21 / 44 ;$ B22C $17 / 08 ;$ C11D $1 / 72,17 / 04$
U.S. C. $428-289$


1. A method of improving the wipe dry characteristic of a dry-formed, adhesively bonded, web having a density less than about 0.16 grams/cubic centimeter, comprising; wetting the web with water
about $3 \%$ of a surfactant,
working the wet web to cause relative movement of the
fibers comprising the web with respect to each other, and drying the web.

2. Electrical insulating paper comprising at least one layer (A) which is a mixture of polypropylene fibers and kraf layer and contains 3 to $35 \%$ by weight of the polypropylene fibers
based on the combined amount of polypropylene fibers and based on the combined amount of polypropylene fibers and kraft pulp, and at least one layer (B) of polypropylene fibers laminated to the layer (A) by fiber-to-fiber bonding of the polypropylene fibers, the amount of the layer (B) being 3 to
$80 \%$ by weight based on the combined amount of the layers $80 \%$ by weigh
(A) and (B).

PRESSURE-SENSITIVE TRANSFER SHEET
Manuel Cespon, Vienna, Austrim, assignor to Kores Holding Zug AG, Zug, Switzeriand
Filed Jon. 1, 1976, Ser. No. 691,730
Claims priority, application Austria, Jun. 6, 1975, 4333/75 U.S. CI. 428- $_{\text {Int. Cl. }}{ }^{2}$ B32B 3/26; B41M 5/16

DEPOSITION OF SWELLABLE, MODIFIED DEPOSITION OF SWELLABLE, MODIFIED
CELLULOSE ETHER ON WATER WET HYDROPHILIC
SUBTRATE SUBSTRATE Armo Holst, and Helmut Laskk, both of Wiesbaden, Germany, assignors to Hoechst Aktlengesellschat, Germany Claims priority, application Germany, Aug, 1, 1975, 2534358 U.S. C1. 428-297


1. A process for the transformation of comminuted cellulose ether, which has been rendered at least largely water-insoluble by modification but is still highly swellable with water, into an easily workable material, comprising wetting at least one sur-
face of a hydrophilic support web, applying the comminuted face of a hydrophilic support web, applying the comminute
modified cellulose ether to the wetted web, and drying.

2. A pressure-sensitive transfer sheet which can be handled in clean manner, consisting essentially of: (1) a carrier sheet; (2) a color-changing substrate on one side thereof comprising an acid component and, separated therefrom but in juxtaposition ing overlying said substrate, said wax being selected from the group consisting of carnauba wax, amide wax, polyethylene wax, hard wax, micro-wax, ceresine wax, ozocerite, and mixtures thereof.

## 4,096,315

PROCESS FOR PRODUCING A WELLADHERED DURABLE OPTICAL COATING ON AN OPTICAL
Ronald M. Kubacki, Cupertino, Calif., assignor to The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, Filed Dee. 15, 1976, Ser. No. 750,655
U.S. C. $428-412$

1. A method of coating an optical plastic $\quad 22$ Claims 1. A method of coating an optical plastic substrate with an abrasion resistant coating comprising the sequential steps of:
a. exposing the substrate in an evacuated plasma polymeriza tion reactor chamber to a first plasma that forms hydroxyl groups on said substrate surface,
b. evacuating the reactor chamber,
c. exposing the substrate in the reactor chamber to a second c. exposing the substrate in the reactor chamber to a second
plasma, said second plasma being a polymerizable monomer to produce a coating of the monomer on the substrate, the coating being less than 3000 nm thick and wherein th monomer contains silicon,
d. evacuating the reaction chamber,
e. exposing the substrate to a third plasma for a predetermined time at a predetermined pressure, said third plasm mined time at a predectermined pressure, said of noble gases, oxygen, nitrogen, and air, and

f. removing the substrate from the reactor chamber.
2. An optical plastic substrate having an abrasion resistan
coating comprising:
sisting of polymetstrate selected from the group conpolystyrene, plymethylmethacrylate, a polycarbonate, a copolymer, and a polystyrene-polymethylmethacrylat copolymer,
b. an interlayer hydroxyl gro
face of the substrate, and
face of the substrate, and hydroxyl interlayer, the monomer being selected from the group consisting of vinyltrimethylsilane, vinyltrimethyle thoxysilane, vinyldimethylethoxysilane, hexamethyldisili-
zane and mixtures thereof zane and mixtures thereof

METHOD OF PRODUCING MAGNETIC MATERIAL WITH ALKALINE BOROHYDRIDES
Yasuo Tamal, and Massashi Aonuma, both of Odawara, Japan,
assignors to Fuil Photo Film Co., Ltd., Minami-ashigara,
Japan
Japan
Continu
This application Fo, 498,338, Aug. 19, 1974, abandonei Claims priority, application Jappan, Aug. 18, 1973, 48-92720
U.S. C1. 428-457 Int. C.2 H01F 1/02
U.S. Cl. $428-457$

1. A method of producing a magne (a) preparing a solution of a redicing agent selected from the group consisting of borane, borazane, borohydride, sodium borohydride, potassium borohydride, dimethylamipound selected from the group consisting of sodium hypound selected from thd exide, lithium hydroxide, ammo droxide, potassium hydroxide, ithium hydroxide, ammoide; and
(b) mixing the solution of step (a) with a solution of metal salts capable of forming a ferromagnetic material mainly comprising a ferromagnetic powder selected from the group consisting of $\mathrm{Fe}, \mathrm{Co}, \mathrm{Fe}-\mathrm{Co}, \mathrm{Fe}-\mathrm{Ni}, \mathrm{Fe}-\mathrm{Co}-\mathrm{Ni}$ and Co-Ni, said salt being a chloride, a sulfate, a nitrate, formate, an acetate, a pyrophosphate, or a sulfamate; being 0.002 to 10 mols per liter, the concentration of hydroxide ion in the solution of step (a) being 0.001 N to
0.6 N , the concentration of the metal ions in said metal sal solution being 0.002 to 2 mols per liter and the ratio of borohydride to metal ion being $0.25: 1$ to $4: 1$;
mixing step (b) being carried out at $-10^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ and the particle size of the ferromagnetic powder product being 50 to 1000 A.

COATED ABSORBENT BARRIER PROTECTING SEPARATOR AND BATTERY EMBODYING SAME mes Herbert Annen, McFarland, Wism, madgior to ESB IncorPorated, Philladelphia, Pa.
Continuation-In
Continuation-in-part of Ser. No. 606,517, Aug. 21, 1975, It C.2 H01M 2/16. B32B $5 / 28$. No 767,868 U.S. Cl. 429-145 Cl. ${ }^{2}$ H01M 2/16; B32B 5/28 $\quad 11$ Claim


1. A barrier protecting separator for use in primary galvanic cells having an alkaline electrolyte which comprises: a porous substrate and embedded in at least a portion of the pores
thereof the reaction product of unneutralized carboxy polymethylene and a salt whose anion is chosen from the group that consists of oxide, hydroxide and silicate and whose cation is and calcium.

4,096,318 RECHARGEABLE ACCUMULATOR HAVING A W ELECTROLYTE
 Wunsch, Speyer; Klaws Boehlike, and Woltram Treptow, both
of Ludwigshafea, all of Germany, assignors to BASF Altien geeellschaft, Lud wigehafer, Gevrmany Continuation of Ser. No. 623,816, Oct. 20, 1975, abandon
TTis application Apr. 14, 1977, Ser. No. 787,522 This application Apr. 14, 1977, Ser. No. 787,522
Claims priority, application Germany, Oct. 26, 1974, 2451017 Claims priority, application Germany, O
Int. Cl.

1. An accumular which can be alternately 8 Claim 1. An accumulator which can be alternately charged and
discharged having two electrodes of the first kind mounted o base material, wherein in said first kind electrodes all the active material passes into solution on discharge which comprises: (a) on the positive side, an electrode of the first kind manganese dioxide as active material, said base material having a coarsely porous structure with an average pore diameter of from 0.1 to 2 mm and a pore volume of from 20 to $70 \%$ and selected from the group consisting of titanium costed with titanium nitride, titanium coated
with titanium carbide, and graphite; with titanium carbide, and graphite;
(b) on the negative side, an electrode of the first kind the group consisting of zinc, cadmium, iron, mected from the group consisting or zinc, cadmium, iron, manganese
and le active material, and said base material consisting of powdered graphite embedded in a plastic binder which is resistant to the electrolyte whereby said base material is non-porous; and
) an acid electrolyte, said acid being selected from the group consisting of sulfuric acid, tetrafluoroboric acid,
hexafluorosilicic acid, perchloric acid, and amidosulfonic acid, wherein said acids form soluble salts with the metal of the active materials and have oxidation resistant anions
with the proviso that when lead is used as an active mate
rial on the negative side, sulfuric acid cannot be used.

4,096,319
POLYMERS CONTAINING ANTI-OXIDANT
FUNCTIONALITY
Gordon L. Willette, Doyleatown, and Richard H. Hanauer Furione, both of Pa., eadgiors to Rohm and Hane Company,
 viston of Ser. No. 541,973, Jan. 17, 1975, Pat. No. 3,991
This application Dec. 11,1975, Ser. No.
a39,739
U.S. C. $526-16$

$$
\begin{aligned}
& \text { application Dec. 11, 1975, Ser. No. } 639,739 \\
& \text { Int. C. }{ }^{2} \text { COBF } 830,8 / 14,28 / 06
\end{aligned}
$$

$$
26-16
$$

1. An antioxidant ester of a carboxylic acid-containing oil soluble polymer useful at high temperatures in lubricating oils for VI improving and anti-oxidant properties and having the general formula:
wherein $x$ is 1 or $2, \mathrm{R}$ is H or a $\mathrm{C}_{1}$ to $\mathrm{C}_{12}$ straight chain or branched alkyl group, and $A$ is an antioxidant structure of one of the following formulas, (a) or (b), or a mixture thereof:

(a)

where $n$ is 1 or 2 , and $\mathrm{R}_{1}$ is H or a $\mathrm{C}_{1}$ to about a $\mathrm{C}_{20}$ alkyl group.

## PROCESS FOR $4,096,320$

## 4, 096,320 <br> RUBBER

 Luigi Verde, Busto Arsizlo (Vareece), and Roberto Riccardi, SanL di Parabiago (Milan), both of Italy, asalgnors to Societa Italiama Resine S.I.R. S.p.A., Millan, Italy Claims priority, application Italy, Oct. 30, 1975, 28803 A/75 U.S. C. $526-72$ Int. C. ${ }^{2}$ C08F $2 / 0401975,28803$ A/75
In a process for the preparation of butyl 2 Claims 1. In a process for the preparation of butyl rubber, wherein is polymerized in a liquid diluent consisting of a halogenated is polymerized in a liquid iliuent consisting of a halogenated
aliphatic hydrocarbon, in the presence of a Friedel-Crafts catalyst dissolved in said liquid diluent, and where the reaction temperature is controlled by indirect heat exchange with boil ing ethylene subjected to a controlled pressure, the improvement which comprises the steps of dissolving in, or admixing with the ethylene used as heat-absorbent, a gas which is iner towards ethylene, and maintaining said pressure at a value not ene is nitrogen, and said nitrogen is admixed, or dissolved in the ethylene in an amount of 2 to 15 moles for each 100 mols of said ethylene
and
(b)

PROCESS TO PRODUCE OXAZINOMYCIN AND ODUCE OXAZIN
Manfred Weigele, North Caldwell, and Silvano DeBernardo, Upper Molge, North Caldwell, and Sivano DeRernarco, Upper Montclair, both of N.J., sealgnors to Hoterann Inc., Nutiley, N.J.
Filed Nor. 22, 1976, Ser. No. 743,887 Int. C1. ${ }^{2}$ C07H 15/04, $23 / 00$
U.S. C. $536-120$

18 Claims 1. A compound of the formula

wherein $R_{8}$ is lower alkyl, $R_{9}$ is hydrogen or lower alkyl and $R_{3}$ is selected from the group consisting of

wherein $\mathbf{R}_{4}$ is selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, halo and nitro
wherein $R_{s}, R_{6}$ and $R_{7}$ are lower alkyl. 3. A compound of the formula

wherein $R_{9}$ is hydrogen or lower alkyl and $R_{3}$ is selected from the group consisting of

wherein $R_{4}$ is selected from the grup consisting of hydrogen, and
wherein $R_{5}$, $R_{6}$ and $R_{7}$ are lower alkyl 5. A compound of the formula

wherein $R_{9}$ is hydrogen or lower alkyl and $R_{3}$ is selected from the group consisting of

wherein R , is selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, halo and nitro and

wherein $R_{5}$, $R_{6}$ and $R$, are lower alkyl.
7. A compound of the formula

wherein $R_{9}$ is hydrogen or lower alkyl and $R_{5}, R_{6}$ and $R_{7}$ ar wer alkyl.
11. A compound of the formula


POLYMERIZATION OF BUTADIENE Morford C. Throckmorton, Akrom, Ohio, asoignor to The Good

Filed Dec. 23, 1974, Ser. No. 535,637 Int. CL.' ${ }^{2}$ C08F $4 / 70,36 / 06$ U.S. C1. 526-133 1. The process for the polymerization of butadiene 7 Claims polybutadiene containing a high proportion of butadiene unitu with a catalyst configuration comprising contacting butadiene uminum componsisting essentially of (1) at least one organoelected frompound, (2) at least one organonickel compound cids, organic complex compounds of nickel salts of carboxylic cids, organic complex compounds of nickel and nickel tet alkyl substituted hydroxy containing aromatic compound wherein the alkyl groups leave the hydroxy groups unhindered for chemical activity in that no alkyl groups are present simullaneously on both positions ortho to the hydroxy groups and in which the mole ratio of component (1) to component (2) ranges from about $0.3 / 1$ to about $300 / 1$, the mole ratio of component (3) to component (2) ranges from about $0.5 / 1$ to
about $100 / 1$, the mole ratio of component ( 3 ) to component (1) ranges from about $0.3 / 1$ to about $10 / 1$ and the mole ratio of component (4) to component (1) ranges from about $0.01 / 1$ to about $2 / 1$

ANAEROBICALLY HARREENING ADHESIVES AND
EALANI GLYCIDYLMMETH)ACRYLATE AND HALF ESTERS OF DICARBOXYLIC ACIDS
Bernd Wegemund, Hann; Werner Gruber, Duseedorf-Gerre scheim, and Joachim Galinke, Langenfeld, all of Germany, samiguors to Henkel Kommanditgeellechat ouf Altien Dro seldorf-Holthueken, Germany
Flied Feb. 22,1977 , Ser. No. 770,381 Claims priorty, application Germany, Feb. 27, 1976, 2607962 Int. C1.2 CosF 4/32. 2/00, 210/50, 2006 U.S. C1. 526-317

1. An anaerobically setting adhesive and sealing 13 Crime comprising methacrylic- or acrylic esters, organic hydroperoxides, and optionally small amounts of additional polymerizable. unsaturated compounds, and ordinary auxiliary substances, which contain 10 to $90 \%$ by weight, based on the total weigh of the polymerizable portions of the composition, of condense tion reaction products of glycidyl (meth)acrylate with linear half esters of dicarboxylic acids and diols, prepared by esterifi
cation of dicarboxylic acids or dicarboxylic acid derivatives with diols in the molar ratio of $2: 1$, which reaction products o lycidyl (meth) acrylate with linear half esters are substantially free of epoxide groups, wherein more than 1 mole of glycidy neth) acrylate is reacted per mole of the linear half ester of a dicarboxylic acid and a diol.

## CYTTDINE NU, 096,324

CYTIDINE NUCLEOSIDE COMPOUND Robert C. Kelly, and William J. Wechter, both of Kalamazoo
Mich., apignors to The Upjohn Company, Kinmeo, Mich Mich., asedgars to The Upjohn Company, Kilameroo, Mich.
Division of Ser. No. 593,890 , Jul. 7,1975 , abasidoned, which is a continuation-in-part of Ser. No. 427,183, Dec. 21, 1973, abandoned, which is a continuation of Ser. No. 11,826, Feb. 16 No. 828,380 , Mey 27,98 , wich is $a$ continuation-im-part of Ser. No. 828,380, May 27, 1969, abandoned. This application Jen. 30, 1976, Ser. No. 654,019
Int. C. ${ }^{2}$ CO7H $19 / 08$
wherein $R_{5}$ is hydrogen or lower alkyl and $R_{5} R_{8}$ and $R_{7}$ are U.S. C. $536-23$

1. A compound having the following structural formule:

in which $\mathbf{A}$ and $\mathbf{B}$ are the same or different radicals selected from the group consisting of H , aliphatic of from 1 to 10 car bon atoms, monocyclic aliphatic of from 4 to 10 carbon atoms, and aromatic of from 6 to 10 carbon atoms, and further in
which $\mathbf{A}$ and B together can make up an aliphatic chain o from 3 to 6 carbon atoms, or the pharmaceutically acceptable acid addition salts thereof.

## 4,096,32

METHYL HYDROXYPROPYL CELLULOSE ETHERS James Teng, Frank Dai, both of St. Louis County, and Marcelle C. Stublss St. Louik, all of Mo., assignors to Anheuser-Busch,

Incorporated, St. Louis, Mo. Ser No, 659,746

$$
\begin{aligned}
& \text { Filed Feb. } 20,1976, \text { Ser. No. } 65 \\
& \text { Int. C. }{ }^{2}{ }^{2} \text { Co8B } 11 / 193
\end{aligned}
$$

U.S. C. 536-91

$$
\text { Int. C1.2 C08B } 11 / 193
$$

$$
\begin{aligned}
& \text { Int. C. }{ }^{2} \text { C08B } 11 / 193 \\
& \text { which comprises treating an alkali cellh } \\
& \text { xide in an amount of from } 1 \text { to } 8 \text { part }
\end{aligned}
$$ with propylene oxide in an amount of from alkali cellulose weight propylene oxide per part of cellulose at a temperature not in excess of $110^{\circ} \mathrm{C}$ until the propylene oxide is substantially fully reacted, and subsequently treating said cellulose with from 1 to 9 parts by weight methylating materia selected from the group of methyl halides and methyl salts per part of cellulose at a temperature from $40^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ until the etherifica-

tion is substantially complete, to produce a methyl hydroxy tion is subslantiall complete, toprocuce a mellar substitution of hydroxypropyl groups of 2.5 to 8 and degree of substitution of methyl groups of 1.0 to 2.4 which is able to gel an organic solvent having a solubility parameter from about 8 to about 16 or an organic solvent-water mixture in which the organic
solvent has a solubility parameter from about 8 to about 16 , said mixture containing less than about $60 \%$ water.
sole

## DIHYDROXYPROPYL

Dily HROXYPROPYL CELLULOSE Albert R. Reid, Hockessin, Del., assignor to Hercules Incorpo rated, Wilmington, Del.

Filed Oct. 13, 1976, Ser. No. 731,952
U.S. Cl. ${ }^{536-95}$

Int. Cl. ${ }^{2}$ C08B $11 / 08,11 / 20$
1.S. An ther of cellulose having at least about 1.4 Claims propyl units per anhydroglucose unit, said ether of cellulose being characterized by being soluble in water and by being
thermoplastic. thermoplastic.

## 4,096,327

MODIFIED KAPPA-CARRAGEENAN
Kenneth B. Guiseley, Union, Me, assignor to FMC Corporation,
Philadelphis, P2.
Filed Jan. 5, 1977, Ser. No. 756,815
Filed Jan. 5, 1977, Ser. No. 756,8
Int. Cl. ${ }^{\circ}$ C07H $5 / 10$
U.S. C. 536- 122 $\qquad$ 6 Claims 1. Kappa-carrageenan containing hydroxyalkyl groups each having 2 to 3 carbon atoms, the degree of substitution of such nan being from 0.1 to 2.0 gram-milliequivalent per gram.

4,096,328
DIVAL TY SILVR OXIDE CELL Akira Kayama, and Toyoo Harade, both of Tokyo, Japan, as. signors to Kabushiki Knisha Didin Seikooha, Japan
Flled Jun. 1, 1977, Ser. No. 802,470 Claims priority, application Japan, Jun. 1, 1976, 51-63694 U.S. C. 429-144


1. In a divalent silver oxide cell comprising a positive metal cup, a disc shaped pellet of a positive depolarizing mixture composed mainly of divalent silver oxide in said cup, a negave metal cap sealed to and electrically insulated from positive metal cup, a negative depolarizing mixture in said negative metal cap and a separator and a layer of electrolyte-containing mixture and said negative depolarizing mixture, the improvement that comprises a layer of foamed silver overlying the upper face of said pellet of positive depolarizing mixture and hereby disposed between said pellet and said layer of absornt material, said foamed silver having a porosity greater than $5 \%$.

CYANOALKYLURE096,329 Hermann Breuer, and Uwe D. Treuner, both of Regensburg, Germany, assignors to E. R. Squibb \& Sons, Inc., Princeton,
$\qquad$ continuation-in-part of Ser. No. 664,128, Mar. 5, 1976, application Feb. 2, 1977,
Int. C1. ${ }^{2}$ C07D $501 / 36$

## .S. Cl. 544-21

1. A compound of the formula

wherein $R$ is hydrogen, straight or branched chain alkyl of 1 to 4 carbons, benzyl, phenethyl, diphenylmethyl, trimethylsilyl, ion, dibenzylamine, $\mathrm{N}, \mathrm{N}$-dibenzylethylenediamine, methylamine, triethylamine, N-ethylpiperidine, or

## $-\mathrm{CH}-\mathrm{O}-\mathrm{i}-\mathrm{R}_{\mathrm{e}}$

$R_{1}$ is in the d-configuration and is hydrogen or methoxy; $A$ is straight or branched alkylene of 1 to 8 carbons or
$\mathbf{R}_{2}$ is phenyl, 2-thienyl, or 3-thienyl; $\mathbf{R}_{3}$ is hydrogen or lower alkyl wherein lower alkyl is straight or branched chain of 1 to
8 carbons; $R_{4}$ is phenyl, benzyl, phenethyl, substituted phenyl 8 carbons; $R$, is phenyl, benzyl, phenethyl, substituted phenyl
benzyl or phenethyl wherein said substituent is on the phenyl ring and is one or two members selected from the group consisting of chloro, bromo, methyl, ethyl, methoxy, ethoxy and hydroxy, or $\mathrm{R}_{\text {, is }}$ is mono-substituted or unsubstituted hetero nyl, 2 -furyl, and 3 -furyl wherein said heterocyclic substituent is attached at an available carbon atom and is chloro, bromo, methyl, or ethyl; $R_{\text {, }}$ is hydrogen or straight or branched chain alkyl of 1 to 4 carbons; $\mathbf{R}_{6}$ is straight or branched chain alkyl of 1 to 4 carbons; and X is a heterothio selected from the group sisting of

wherein $\mathrm{R}_{7}$ is hydrogen, methyl or ethyl and $\mathrm{R}_{8}$ is hydrogen, methyl, ethyl, methoxy, hydroxy, or chlorine.

## 4,096,330

T $\beta$-[l((2-CYANOMETHYL)AMINO]-1,2-DIOXOETHYL]D AMINO]ACYL CEPHALOSPORINS
Gre D. Treuner, and Hermann Breuer, both of Regensburg,
N.J. Fuled Apr. 21, 1977, Ser. No. 789,467
iled Apr. 21, 1977, Ser. No. 989
Int. CI. ${ }^{2}$ COTD 501/36

1. A compound of the formula

13 Claims

wherein $\mathbf{R}$ is hydrogen, lower alkyl, phenyl-lower alkyl,
diphenyl-lower alkyl, tri(lower alkyl) silyl, tri(lower alkyl)stan nyl, trihaloethyl, aluminum, alkali metal, alkaline earth metal phenyl-lower alkyl amine, $\mathbf{N}$, N-dibenzylethylene-diamine, $\mathrm{R}_{1}$ is phenyl, phenyl-lower alkyl, substituted phenyl wherecin $\mathrm{R}_{1}$ is phenyl, phestituent is one or two members selected from
said phenyl subser the group consisting of halogen, lower alkyl, lower alkoxy, and hydroxy, or a heterocyclic selected from the group consisting of 2-thienyl, 3-thienyl, 2-furyl and 3-furyl; $\mathbf{R}_{2}$ is hydrogen or methoxy; $R_{3}$ is hydrogen, lower alkyl, phenyl-lower alkyl or is a heterothio group selected from the group consisting of


$$
\begin{aligned}
& \text {-s- } \\
& -\mathrm{s}{\stackrel{N}{\mathrm{~s}} \|_{\mathrm{CH}_{2} \mathrm{R},}^{\mathrm{N}} \text {. }}_{\mathrm{N}}
\end{aligned}
$$

$\mathrm{R}_{6}$ is hydrogen or lower alkyl; and R , is carboxy, $\mathrm{COO}^{\boldsymbol{\theta}}$ ion ${ }^{\oplus}$ - COO -lower alkyl, $\mathrm{SO}_{3} \mathrm{H},-\mathrm{SO}_{2}$-lower alkyl or cyano.

1-SUBSTITUTED-3-AMINOETHOXYPYRROLIDINES
1-SUBSTITUTED-A-AMINOETHOXYPYRROLIDINES Robert Frederick Boswell, Jr., and Robert Lonis Duncan, Jr.,
both of Richmond, Va., asignors to A. H. Robins Company, Incorporated, Richmond, Va.

Filed Dec. 28, 1976, Ser. No. 754,928
Int. Cl. ${ }^{2}$ CO7D $413 / 12$
U.S. C. 544- 141 Int. C1. ${ }^{2}$ C07D $413 / 12$ 1. A compound selected from 1 -substituted-3-pyrrolidines having the formula:

wherein
Wherein; acetylphenoxylower-alkyl, 4-fluorophenoxylower-alkyl, or $3,4,5$-trimethoxyphenylacetyl and
Am is morpholino and pharmaceuticaly thereof.


CATIONIC SURFACE-ACTIVE AGENTS
 Frace
Dividion of Ser. No. 547,465, Feb. 6, 1975, Pat. No. 4,009,255, which is a division of Ser. No. 187, 151, Oct. 6, 1971, Pat. No. 3,879,464, which is a continuantion-in-part of Ser. No. 655,336 Jul. 24, 1967, abandoned. This application Nov. 17, 1976, Ser. Claims priority No. 742,671
1605, May 12, 19 5753657 .
Int. Cl. ${ }^{2}$ CO7D 295/10
U.S. CC. 541174

14 Claime
2. A cationic surface-active agent comprising a mixture of compounds having the formula
$\mathrm{RO}+\mathrm{C}_{2} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{O}+\mathrm{H}_{n} \mathrm{CHOH}-\mathrm{CH}_{2}-\mathrm{N}^{-\mathrm{R}_{1}}$
o-toluidine having the structural formula
herein X and $n$ have the aforementioned significance, with toichiometric excess of glacial acetic acid and acetic anhy dride.

## PROCESS FOR THE MANUFACTURE OF

CARBODIIMIDES Aktiengesellischaft, Frankfurt am Mnin, Germany Filed Dec. 15, 1976, Ser. No. 750,584
Claims priorty, application Germany, Dec. $17,1975,2556760$ Int. Cl. ${ }^{2}$ C07C 119/0ss, 169/76 1. In a process for the preparation of organic cartadimides wherein $R$ is selected from the group consisting of alkyl having 1. In a process for the preparation of organic carbodimides 8-22 carbon atoms, alkenyl having 8-22 carbon atoms and by heating an organic isocyanate or disocyanate, the improve alkyl phenyl having $8-22$ carbon atoms, $\mathbf{R}_{1}$ and $\mathbf{R}_{2}$ together ment which comprises heating said organic isocyanate or morpholine ring and n has a statistical average value of $0.5-10$. to $250^{\circ} \mathrm{C}$ in the presence of 2 -methyl-2,5-dioxo-1-oxa- 2 -phospholane.
4,096,333
PROCESS FOR THE PREPARATION OF SUBSTITUTED INDAZOLES
Engene P. Di Billa, Piccataway, N.J., sesignor to Tenneco Cremicales, Inc.. Seddice Broot, NJ.
 which is a continuation, in opart of Ser. No. 504400 , Sep. 9,1974 , Division of Ser. No. 426,058 , De. which is a continuation-in-part of Ser. No. 500,400, Sep.9, 1994, of Ser. No. 252,030, May 10, 1972. This 19pplication Feb. 7, 1977
abandoned. This application Jun. 1, 1976, Ser. No. 691,693 U.S. Cl. 548-371 Int. C1. ${ }^{2}$ CO7D 231/56 9 Cleims U.S. C1. 560-53 Int. C. ${ }^{2}$ COTC 69/76. $177 / 100$ 1. In the process for the production of substituted indazoles 1. An optically active compound of the for having the structural formula

wherein X represents chlorine or nitro and $n$ represents number in the range of 1 to 4 , by the reaction of a substituted
 whercin sodium nitrite is added to a reaction mixture that $M$ consists essentially of at least one acetanilide having the structural formula.

wherein $R_{1}$ is hydrogen or alkyl of one to 12 carbon atoms
wherein X and $n$ have the aforementioned significance, acetic acid, and acetic anhydride, said reaction mixture containing from 1 part to 20 parts by weight of acetic acid per part by weight of said acetanilide and from 1.0 mole to 1.5 moles of acetic anhydride per mole of said acetanilide, until from 1.0
mole to 1.5 moles of sodium nitrite has been added per mole of mole to 1.5 moles of sodium nitrite has been added per mole of
said acetanilide while maintaining the reaction mixture at a temperature between $50^{\circ} \mathrm{C}$. and its reflux temperature, thereby
forming a reaction product containing a substituted indazole, forming a reaction product containing a substituted indazole, and thereafter separating the substituted indazole from the
 $M$ is
renction product, the improvement wherein the reaction mix- $\mathbf{R}_{1}$ is hydrog

4,096,336
5,6-BENZO ANALOGUES OR PROSTAGLANDIN E obert Thomese Buckler, Edwardsburg, Mich,, zesignor to Milez Division of Ser. No. 671,425, Mar. 29, 1976. This application No. 27, 1997, Mer. No. 1899,133
Int. Cl. ${ }^{2}$ Co7C $177 / 00$
U.S. Cl. 560-53

1. A compound of the formula


4,096,338
BUTENOIC AND PYRUVIC ACID DERIVATIVES Mara Kogure, Kawngoe; Norlyochi Sueda, Tokyo; Sizuo Nakgeawa, Kawngoe, all of Japan, ascignors to Nimhin Flour Milling Co., Ltd., Tokyo, Japan Division of Ser. No. 599,775, Jul. 28, 1975, Pat. No. 4,016,196. Cuime propity, applicaton, Japen, Jel. No. 1974, 062 , 495622 Jul. 29, 1974, 49-86001 150 Int. C1. ${ }^{2}$ C07C 69/76
1 Claim

1. A hydroxy-butenoic acid compound of the general formula:

in which:
T is selected from the group consisting of carboxyl or alkoxycarbonyl
M is carbonyl;
L is methylene
J is selected from the group consisting of methylene, B
hydroxymethylene, or S-hydroxymethylene
$W$ is trans
$-\mathrm{CH}=\mathrm{C}-$
$\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ are attached to adjacent carbon atoms;
$T_{1}$ and $T_{2}$ are attached to adjacent carbon
$\mathrm{T}_{1}$ is hy selected from the group consisting of loweralkyl havin 1-5 carbon atoms or a polymethylene radical having 1-3 carbon atoms;
provided, however, that $T_{2}$ is the polymethylene radica only when it is joined with $W$ to form a cycloalkyliden radical having $5-9$ carbon atoms.

## 4,096,337

PROSTANE DERIVATIVE
Peter Robert Marcham, Macciesfield, England, asaignor to Imperial Chemical Industries Limited, London, England Cuime priorty application Uner.ed Yingiom, Jun. 13, 1975, 25378/75
U.S. C1. 424-308

$$
\text { Int. C. }{ }^{2} \text { C07C } 69 / 76
$$

1. A prostane derivative of the formula

wherein $\mathbf{R}^{1}$ is carboxy or $\mathrm{C}_{2}$.salkoxycarbonyl, $\mathbf{R}^{2}, \mathbf{R}^{5}$ and $\mathbf{R}^{6}$ are each hydrogen, $R^{3}$ is hydroxy and $R^{4}$ is hydrogen, $X$ is ethylen or cis-vinylene, $\mathbf{Y}$ is ethylene or trans-vinylene, $\mathbf{R}^{1}$ is hydrogen or $\mathrm{C}_{1+}$ alkyl, $\mathrm{R}^{8}$ is phenyl or naphthyl which is unsubstituted on alkyl or alkoxy, $m$ and $n$, which may; be the same or different, are each 1 or 2 , and $x$ is 0 or 1 , and for those compound wherein $R^{\prime}$ is carboxy, the pharmaceutically or veterinarily acceptable salts thereof.
wherein $\mathbf{R}^{1}$ is 4 -biphenylyl, 4 -cyclohexylphenyl, 3 -phenoxyphenyl, 4'-fluoro-4-biphenylyl, 2-fluoro-4-biphenylyl, 3-bengroup.


3,7-INTER-PHENYLENE-9-DEOXY-PGP-COMPOUND Gordon L. Bundy, Portage, Mich, asdgnor to The Upjohm Company, Kalamazoo, Mich. 17,1075 , Put Division of Ser. No. 614,243; Sep. 17, 1975, Pat. No. 4, 033 This application Apr. 11, 1977, Ser. No. 786,717
Int. CC. ${ }^{2}$ COOC $177 / 00$
U.S. CC. $560-61$

1. A prostaglandin analog of the formula

wherein Y is cis- $\mathrm{CH}=\mathrm{CH}-$ or trans $-\mathrm{CH}=\mathrm{CH}-$; wherein $m$ is one to 5 , inclusive; wherein $M_{1}$ is

wherein $R_{5}$ and $R_{6}$ are hydrogen or methyl, with the previso that one of
wherein $\mathrm{L}_{1}$ is

or a mixture of

wherein $R_{3}$ and $R_{4}$ are hydrogen, methyl, or fluoro, being the same or different, with the proviso that one of $R_{3}$ fluoro;
wherein $R_{1}$ is hydrogen, alkyl of one to 12 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, pheny to 3 carbon atoms, inclusive, or a pharmacologically ac ceptable cation; and
wherein $Z_{\text {g }}$ is

wherein $g$ is one, 2 , or 3

## 4,096,340

PROCESS FOR THE PREPARATIO ROCESS FOR THE PREHTRALATE
Takno Fuili; Shinichi Takedr; Satoehi T
Namie, all of Matsuyama, Japan, asaignors to Tejin Hercul
Oem

$$
\begin{aligned}
& \text { Co., Ltd., Tokyo, Japan } \\
& \text { Filed Jun. 3, 1975, Ser. No. } 583,39 \\
& \text { Int. C.'. }{ }^{2} \text { C07C } 69 / 82
\end{aligned}
$$

U.S. Cl. 560-77

$$
\text { Int. Cl. }{ }^{2} \text { conc } 69 / 82
$$

(1)
(2) arylene being unsubstituted or substituted with halo, lower alkyl or phenyl.

Ernest W. Yankee, Portage, Mich., assignor to The Upjohn Company, Kalamazzoo, M1ch. continuation-in-part of Ser. No. 289,317, Sep. 15, 1972, abandoned. This application Feb. 23, 1976, Ser. No. 660,754 U.S. Cl. $560-121$ Int. Cl. ${ }^{2}$ C07C $177 / 00$

1. An optically active compound of the formula

wherein $R_{4}, R_{5}$, and $R_{7}$ are hydrogen or methyl, being the same or different;
wherein $R_{13}$ is hydrogen, alkyl of one to 10 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, or phenyl substituted with one, 2 , or 3 chloro or alkyl of one to 4 carbon atoms, inclusive; including the lower alkano ates thereof, and the pharmacologically acceptable salts thereof wherein $\mathbf{R}_{13}$ is hydrogen.

wherein $R_{4} R_{5}$, and $R_{7}$ are hydrogen or methyl, being the same or different;
wherein $R_{13}$ is hydrogen, alkyl of one to 10 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, ralkyl of 7 to 12 carbon atoms, inclusive, phenyl, or phenyl substituted with one,
to 4 carbon atoms, inclusive
wherein $\mathrm{R}_{22}$ is alkyl of one to 4 carbon atoms, inclusive; es thereof, and the pharmacologically acceptable salts thereof wherein $\mathbf{R}_{13}$ is hydrogen.

## ELECTRICAL

4,096,344
ELECTRIC ARC FURNACE CONTROL SYSTEM William A. Munson, Williamacille, N.Y., asaignor to Westing. house Electric Corp., Pittrburgh, Pa. Filed Sep. 30, 1976, Ser. No. 728,106
U.S. CI. ${ }^{13-13}$

2. An electric arc furnace control system for controlling displacement of at least one furnace electrode comprising:
(a) means for deriving a signal
current of said electrode;
(b) means for deriving a signal which is a function of the arc voltage across said electrode;
(c) means for comparing said arc current signal with a refer-
ence arc current level, and for deriving a compared arc
current output;
(d) means for receiving said arc current and arc volt signals and for providing watt and var signal outputs; (e) means for dividing said var signal by said watt signal to provide the ratio: VARS to WATTS;
(f) means for comparing said ratio VARS to WATTS with a desired reference ratio: VARS to WATTS and for delivering a compared ratio VARS to WATTS output
(g) means for integrating said VARS to WATTS output signal and for delivering an integrated output;
(h) means for algebraic summation for receiving said compared arc current output and said integrated output, and for delivering a control signal; and
(i) means coupled to said electrode for receiving said control signal for rectilinear displacement of said electrode.
extending radially outwaraly from said central cember and contacting said outer sheath, said inner conductor

extending through said bore, said leg member having an aspect ratio greater than one.

4,096,346
WIRE AND CABLE
Clifford R. Stine, Solon; William J. Herbert, Mantus, and Bruce E. Klipec, Aurora, all of Ohio, asignors to Samuel Moore and Company, Mantua, Ohio 3,911,202, and Ser No Ser. No. 328,366, Jan. 31,1973 , Pat. No. ication Jen. 24, 1975, Ser. No. 543,79
Int. C. ${ }^{2} \mathrm{H} 01 \mathrm{~B} 3 / 28,9 / 06$
U.S. C. 174-36

4,096,345

## TRANSMISSION LINE

 George A. Kemeny, Sudbury, MElectric Cor.,
 Filed Mar. 29, 1977, Ser. No. 782,477
U.S. CT. 174-14 R
${ }_{1}$ A vertically aligned gas insulated trensmission linims prising:
an elongated, cylindrical outer sheath
an elongated, cylindrical inner conductor disposed within said outer sheath;
an insulating gas disposed within said outer sheath and elecan insulating gas disposed within said outer sheath and elec-
trically insulating said inner conductor from said outer sheath; and
sheath; and
support means for supporting said inner conductor within outer sheath, said support means comprising a central
said
member having a bore therethrough and a leg member tion systems having raceway cells extending below the surface
of a concrete or the like floor, comprising a base wall proportion to bridge between at least two separate raceway cells and ormed with separate openings adapted to connect with the pwardly from associated raceway cell, a sidewall extending end, said sidewall being proportioned to locate said open end adjacent to but below the surface of a floor, and closure means

## FLEXIBLE CONNECTOP $\stackrel{4,049}{ }$ <br> SYSTEMS TRACK LIGHTING

 SYSTEMS$\begin{aligned} & \text { Anthony C. Donato, Westfield. N. } \\ & \text { Incorporated, Jersey CIty, N.J. }\end{aligned}$. $\qquad$
$\qquad$ Filed Apr. 4, 1977, Ser. No. 784,136
U.S. C. 174-68 R

distal ends of spanner junction for electrically connecting the comprising first and second rigid spaced junction segments, each said junction segment including an outer end portion having a tap portion adapted to be mechanically and electri-
cally connected to a distal end of a light track section, and an cally connected to a distal end of a light track section, and an
inner end portion, a bendable section interposed between said junction segments, said bendable section including spaced end portions, each said end portion of said bendable section being fixed to an inner end portion of one of such junction segments,
said bendable section being formed of yieldable elastic insulatsaid bendable section being formed of yieldable elastic insulat-
ing material and including an axially extending internal passage ing material and including an axially extending internal passage
and at least two electrical conductor members disposed within said passage and electrically connecting said tap portions of said junction segments, said conductor members being formed
of stiff, bendable conductive material whereby said bendable section may be bent to any of a series of desired configurations in directions normal to the longitudinal axis thereof and will be maintained in said orientation by said bent conductors.

## 4,096,348

INTEGRATED TEST AND ASSEMBLY DEVICE David R. Robillard, Westboro, and Robert L. Michals, Marlton, Mass
ton, Mass.
Division of Ser. No. 583,739, Jun. 4, 1975, Pat. No. 3,984,620 This application Mer. 15, 1976, Ser. No. 666,826 U.S. C. $174-52$ FP

10 Claims


1. An interconnection device for use with an integrated circuit device for coupling an active integrated circuit chip to external lead means within a package frame comprising in combination:
a substantially planar wafer of semiconductor material, said wafer having one or more apertures therein, at least some of said apertures being adapted for receiving an integrated circuit chip;
one or more insulating layers upon at least a portion of a surface of said wafer; and
plurality of conductive lead
a plurality of conductive lead means disposed upon said insulating layers, one end of each of said lead means extending into the region of said apertures for making con-
nection to said integrated circuit chips, said ends having a substantially pointed tip thereon projecting into said aper tures in a direction substantially normal to said surface of said wafer.

CONNECTION STRUCTURE FOR COAXIAL CABLE Ernst Mayr, Starnberg, and Egid Kraus, Deisenhofen, both of Munich, Germany Claims priority, application Germany, Jan. 27, 1977, 2703406 S. C. $174-88 \mathrm{C}$ Int. C1 ${ }^{2} \mathrm{H} 02 \mathrm{C} / 5 / 08$

## 

1. A connection structure for coaxial cable comprising (A) a pair of coaxial cable members, each said cable member having an outer conductor in radially spaced, circumferentially extending relationship to at least one inner conductor, said cable members being in axially aligned, adja-
cent relationship with one another, cent relationship with one another,
(B) an elongated connective sleeve member for said pair of
inner conductors, said connective sleeve member having an internal diameter adapted to correspond to the outer diameter of said pair of inner conductors, said connective sleeve member being internally continuously threaded, portions of each one of said inner conductors having threads matable with said continuous internal threads of said connective sleeve member, with the threads on one said inner conductor extending an axial distance therealong at least about equal to the axial length of said connective sleeve member,
ably associated about equally with said associated sleeve
member, the
therebetween
(E) a pair of suppetwern, provide electrical interconnection supporting slecverting sleeve members, each one of said tial surface whose diameter supports radially an inner adjacent surface of the terminal portion of a different one of said outer conductors, and further having an axial aperture therein larger in internal diameter than the outside diameter of said inner conductors,
(F) a longitudinally mating, elongated pair of hemi-cylindrical shell members mounted circumferentialy about cirends of each one of said pair of outer conductors, and
(G) a pair of radially contractable contracted clamping means, each one thereof being mounted circumferentially about a different opposed end portion of said mounted pair
of hemi-cylindrical shell members, each said clamping of hemi-cylindrical being in radially adjacent, compressed relationship to a different one of said supporting sleeve members.
said body axis by a distance at least as great as the radius of said cylindrical body portion,
said head having an outer surface and an inner surface with a sealing ring of flexible material positioned adjacent said inner surface and encircling said body portion,

INSULATED AND BRID, 09631
COVERED ELECTRICAL
INSULATED AND BRAD CONDUCTOR FOR USE IN GASSY OIL WELLS
Robert V. Wargin, Darien, Il., asd Clinton A. Boyd, Tulsa,
Okla, assignors to Bors3-Wrmer Corporation, Chicngo, II.
Okla., sasignors to Borg-Warner Corporntion, Cal
Flued Aug. 24, 1976, Ser. No. 717,437 U.S. Cl. $174-102$ R Cl. ${ }^{2}$ H01B 7/18, 3/28 4 Claims


1. A multi-component electrical conductor comprising an electrical conductor, an oil-and brine-resistant insulating material surrounding said conductor formed of a cured compositio comprising EPDM (ethylene-propylenediene monomer terpolymer), hydrocarbon oil and polybutadiene; and a braid
layer formed from a fiber selected from the group consisting of nylon fiber, polyethylene terephthalate fiber, glass fiber, poly mion fiber, poly fliyiene lereper and fluropolymer surrounding and confining said insulating material.

## $\stackrel{4,096,352}{\text { ELECTRICAL FEEDTHROUGH }}$

Heimart ron Zreck, 221 Mount Auburn St., Cambridge, Mass.
02138 Filed Nov. 18, 1976, Ser. No. 742,780
U.S. C. 174-153 R Int. Cl. ${ }^{2}$ H01B 4 Claims 1. An electrical feedthrough for use in transporting curren across a gastight barrier wall resistant to high vacuum cond
tions of from $10^{-4}$ to $10^{-7} \mathrm{~mm}$ of Hg , said feedhrough comprising
an insulation housing defining a cylindrical threaded body having a central axis with an enlarged outer head of larger diameter than said body, said housing further defining an inner end,
a plurality of elongated conductors extending through said body and embedded therein with individual inner ends
thereof extending out of said body inner end at corresponding individual recessed areas defined by said body, said insulation being an epoxy material monte length of said
sealed to said conductors along the entire conductors in said body,
a plurality of mechanical contact means electrically joined
to said conductors at said outer head,
to said conductors at said outer head,
said pluraity of contact means being radially spaced from

a threaded nut threaded on said body and being screwable up said body toward said inner surface so as to insure, in conjunction with the sealing ring, a gastight seal between the feedthrough and an encircling barrier wall when mounted in said wermetically seared at vacuum conditions through being hermetically seare.
of from $10^{-4}$ to $10^{-7} \mathrm{~mm}$ of Hg .

## 4,096,353

MICROPHONE SYSTEM FOR PRODUCING SIGNALS FOR QUADRAPHONIC REPRODUCTION York, N.Y.
Flied Nor. 2, 1976, Ser. No. 737,760
Int. Cl. ${ }^{2}$ H04R $5 / 00$
U.S. C. 179-1 GQ ${ }^{\text {Int. Cl. }{ }^{2} \text { H04R } 5 / 00 \quad 6 \text { Claime }}$
6. Apparatus for producing composite signals $\mathrm{L}_{T}$ and $\mathrm{R}_{\boldsymbol{T}}$ for se in a matrix quadraphonic sound system wherein first and econd channels carry the composite signals $\mathrm{L}_{T}$ and $\mathrm{R}_{\boldsymbol{T}}$ respecively, and wherein each composite signal contains predeter ined amplitude portions of three or more directional inpu ignals representative of corresponding acoustical signals, to he extent they are present, in predelermined phase relationpropriate to the matrix system producing three or more outpu signals each containing a different directional signal as its
predominant component, the apparatus for producing the said composite signals comprising, in combination:
an array of microphones comprising a cluster of four microphones supported in close proximity to each other each
having a limacon sensitivity pattern substantially accordhaving a limacon sensitivity pattern substantially accordthe angular direction measured from the direction of maximum sensitivity, whose directions of maximum sensiivity 9 are azimuthally displaced one from the next by irst of which is displaced by about $+45^{\circ}$ from said refer ence direction and each operative to produce when dis posed within a sound field a respective signal the amplitude of which is a measure of the direction of inciden a sound signal relative to said reference direction, signals produced by the two microphones whose maximum sensitivity directions are oriented at $-45^{\circ}$ and $-135^{\circ}$, respectiveiy, relative to said reference direction and for combining said relatively phase-shifted signals for producing the $L_{T}$ signal, and
neans for relatively shifting by about $90^{\circ}$ the phase of the
signals produced by the two microphoses whose the mum sensitivity directions are oriented at $+45^{\circ}$ and $+135^{\circ}$, respectively, relative to said reference direction and for combecining said relatively phase-shifted signals for
producing the $\mathbf{R}_{T}$ signal.

## 4,096,354

APPARATUS FOR DISTINGUISHING BETWEEN FAILURES IN A DIGITAL TRANSMISSION NETWORK Werner Heinrich Blelckarit, Middletown, and Virgil Ivencich Johanneen, Holmdel, both of N.J., memignors to Bell Telephone Laboratories, Incorporated, Murray Hill, N.J. Filed Mar. 11, 1977, Ser. No.
Int. Cl. ${ }^{2}$ H04J 3/14

8 Claims



1. Apparatus for signaling a failure in a digital transmission network, said apparatus comprising:
n output terminal adapted to transmit a digital signal to a first signal level of the digital hierarchy of said network, from a signal level,
an input terminal adapted to receive a digital signal from a second signal level,
means responsive to said failure signal for distinguishing between failures in said network,
sid distinguishing means including code extender means for selectively coupling said input terminal to said outpt ter-
means for extending a predetermined code signal throug said code extender means to said output terminal.

COMMON CHANNE, 4,06,355 PLURALITY OF DATA STATIONETHOD FOR A TRANSMISSION SYSTEM AND CIRCUTT FOR IMPLEMENTING THE METHOD
Erast Hans Rothauser, Relchenburg, and Daniel Wild, Kilch berg, both of Switzeriand, medgiors to International Busines Machines Corporztion, Armonk, N.Y. Filed Oct. 13, 1977, Ser. No. 841,763
Claims priority, application Switzerkand, Nov. 12, 1976, U.S. Cl. 179-15 Int. C1.2 H04J 3/08
means for defining the types of calls prohibited to each station of said plurality of telephone stations, wherein said defining means are responsive to ssid initiated call for generating a distinctive signal indicaive of he types of stations associated with said initiated call;

rerouting means responsive to the concurrent generation of distinctive signals by said generating means and said defin ing means indicative that said initiated call is one of said types of calls prohibited to the one of said pluraility of
telephone stations associated with said initiated call for rerouting said initiated call to one of a plurality of alternate destinations.
ransmission system which a pluraity of data stations in a data in a predetermined sequence thereby en transmission channe| in a predetermined sequence thereby eliminating any possibil plural character address selected from an ordered set of plural character addresses and comprising the steps of:
at each said station requiring transmission capacity, transmit ting a unique indicio of its first address character in a first first unique multi-bit flag character;
thereafter each said station requiring transmission capacity transmitting a unique indicia of its second address charac ter in one time slot of a second group of fixed length time slots as a function of the total number of unique indicies
transmitted and received in the said first fixed length time slot and the order position of its first address characters; following transmission and receeipt of said second group of fixed length time slots each station requiring transmission capacity transmitting a unique indicia of its third address character in one time slot of a third group of fixed length
ime slots as a function of the total number of unique indicia transmitted and received in each of the time slot of the second group of fixed length time slots and the order position of its said second address character, the above described sequence continuing for as many times as
the stations have address characters until all stations requiring transmission capacity have transmitted a unique indicia for each character in the station address whereby the indicia transmitted in the first fixed length time slo and in the succeeding groups of time slots identify the
stations requiring transmission capacity; and, reafter at each station requiring transmiss transmitting a data packet in an ordered sequence indi-
cated by the unique address indicie. cated by the unique address indicia.

CALL REST 4,096,356
CALL RESTRICTION ARRANGEMENT Richard Duane Burtness, Boulder, Colon, and Louis Emanuel Theiemsque, Teliran, Iran, amaignors to Bell Telephone Labo Filed Jul. 26, 1977, Ser. No. 819,111 Int. Cl. ${ }^{2}$ H04M M $1 / 66,3 / 54$ .S. C. $179-18 \mathrm{DA}$

17 Claime 1. In a telephone switching system having a plurality of means responsive to the intriction arrangement comprising: switching system for generating a distinctive signal indicative of the type of call that has been initiated;

1. In a toll-call restriction system useful with a celephone un and a pair of telephone lines for restricting the telephone ex changes which can be reached from said telephone unit, said system including normally closed switch means connecting said telephone unit to said telephone lines and interrupt means
for opening ssid switch means to interrupt said connecton, the for opening suid sovement comprising:
manually actuatable means for generat
having predetermined characteristics;
detector means connected to said telephone lines for sensin
the generation of said sound wave; and
tion of said sound wave for disabling said interrupt means.

## 4,096,358

KEY TELEPHONE SYSTEM SIGNAL PRIORITY RRANGEMENT Richard Henry Bidleck, Boonton; Wayne Jay Eenn, Eatontown and Steven Gary Miller, Freebold Towmehip, Monmontia County, all of N.J., sasignors to Bell Telephone Lebortorien Incorporated, Murray Hill, N.J.

Filed May 24, 1976, Ser. No. 689,379
U.S. C. 179-99 9 Claims


1. In a key telephone system having a plurality of key telephone station sets wherein a pluraity of types of calls can be received by each of said key relephone station sets, a signal priority arrangement comprising. means for assigning a priority to every call in said key teleof the type of call, means responsive to
called one of to the receipt of an incoming call at a caged in an existing telephone station sets already enpriority assigned to said incoming call is higher than the priority assigned to said existing call, means responsive to a determination that said incoming call
has a higher priority than does said existing call for placing said existing call in an active noncommunicating condition, and for concurrently completing said means responsive to said determining means indicating that said incoming call has a higher priority than said existing call for generating a distinctive audible tone burst signal, and
generated sive to said generating means for applying said generated audible tone ball 4,096,359
SYSEM IN
KEY TELEPHONE
APPARATUS hn Anthony Barrellotti, Gwelph, Cannda, assignor to Interna Honal Standard Electric Corporation, New York, N.Y.

$$
\begin{aligned}
& \text { underd Electric Corporation, New Yorl } \\
& \text { Filed Oct. } 12,1970, \text { Ser. No. 731,710 } \\
& \text { Int. C. }{ }^{2} \text { HO4O } / / 02
\end{aligned}
$$

1. A key telephone system comprising a plurality of stations A. plurality of lines, a switching network having a plurality of input and output paths, each station having a station set with of input and output paths, each station having a station set with of said keys is representative of an individual one of said lines, each of said keys respectively coupled to one of said input paths to said network, said output paths comprising paths to lines of said system, the invention comecting input paths to plactput paths, said distributing means comprising a panel adjacent said switching network and including multiple conductor connector positions for each of said lines and multiple connector positions for each key of said station sets, means for selectively enabling the connection oresaic allowing ready re-asocition of lines and station
keys, said connecting means comprising conductors having plug-in members for joining respective selected lines to selected stations within the respective station key connector
position and wherein for each of said station positions, there is an alignment of connectors for each line which could be associ

TEST APPARATUS FOR OBBTAINING IMPEDANCE SETTINGS FOR HYBRID BALANCE NETWORKS Charles David Crawford, Burlington, N.C., asslignor to Bell Telephone Laboratories, Incorporated, Murray HIII, Filed Jun. 20, 1971 , Ser. No.
Int. C.2
U.S. C. 179-170 D

11 Claims

ated with the station represented by said position and each of said station positions include a first and a second set of connectors, said first set comprising connectors for providing a predetermined class of service appearances and said second comprising connectors without class of service restriction.

MULTICHANNEL RECORD DISC REPRODUCING
Nobuaki Takahshi, Yamstem Fulo Suzuki, Yokohama, and
Ketsuhiro Ohbe, Toyohashi, all of Japan, assignors to Victor Company of Japan, Ltd., Yokohama, Japan Claims priority, application Japan, Sep. 27, 1975, 50-116605; Oct. 8, 1975, 50-121567; Oct. 8, 1975, 50-121568; Oct. 30, 1975; SO-12733 Int. C1. ${ }^{2}$ G11B 3/74; H03D 3/00
U.S. C. $179-100.4$ ST

7 Claims


1. A multichannel record disc reproducing system compris-
ing:
first phase-locked loop including a phase comparator and a voltage controlled oscillator for demodulating an anglemodulated signal separated from a signal picked up from a multichannel an angle-modulated signal are recorded in a multiplexed state, said first phase-locked loop having a lock range of a first width;
a second phase-locked loop including a phase comparator and a voltage-controlled oscillator for demodulating said angle-modulated signal separated from the picked up signal, said second phase--ocked loop having a
of a second width which is less than the width of said first lock range; and
addition means for adding the demodulated output signal of said first phase-locked loop and the demodulated output signal of said second phase-locked loop.
2. Apparatus for automatically obtaining settings to adjus manually controllable impedance elements for obtaining an optimum driving point impedance to match substantially an a hybrid network having four sig
hybrid network being adapted to be connected to the unknown impedance to be matched;
a signal source for generating a test signal having at least one frequency component in a predetermined frequency band and being connected to a second port of said hybrid net work;
first adjustable impedance balance network having a plu
rality of controllably adjustable impedance elements and rality of controllably adjustable impedance elements and
being connected to a third port of said hybrid network: first control circuit connected in circuit relationship with said first hybrid port and said third hybrid port and being responsive to first and second signals developed at sai first and third ports, respectively, in response to said tes
signal, said unknown impedance and said first balance network impedance for generating a plurality of first control signals for adjusting corresponding ones of said impedance elements of said first balance network for yielding at said third port a driving point impedance to match substantially said unknown impedance;
at least a second adjustable impedance balance network
having a plurality of controllably adjustable impedance elements and an input, said input being in circuit relationship with said third hybrid port and being supplied with a signal representative of the current input to said first balance network and with a rounded off value of a predetermined one of said first control signals to adjust a corresponding one of said impedance elements in said at least secast a second control circuit developed at said first hybrid port and to a third signal developed at the input to said at least second balance network in response to the current supplied thereto and the impedance of said at least second balance network for generating second control signals to adjust the remaining adjustable impedance elements for yielding at said at least second balance network input an otpimum compromise driving point impedance to match substantially said unknown impedance, wherein rounded off values of said predetermined one of said first control signals and said second control signals represent discrete impedance val-
ues for adjusting a corresponding manually adjustable ues for adjusting a corresponding manually adjustable tially said unknown impedance.

4,006,362 LINCING NETWORK Telephone Laboratories, Incorporated, Murray Hill, N.J. Filed Jun. 20, 1977, Ser. No. 808,091
US. CI. 179-170 D Int. Cl. ${ }^{2}$ H04B 1/52
17 Claims


1. In a transmission network of a type including a 4-por ybrid network adapled for being connected to a transmissio adjustable impedance balance network having a plurality o adjustable impedance baance network having a plurality of mpedance at a second port, wherein the improvement com prises:
a signal source for generating a test signal having a plurality of frequency components within a predetermined fre-
quency band and having a first prescribed output impe quency band and having a first prescribed output impe-
dance, said signal source being adapted to be connected to a third port of said hybrid;
a second prescribed impedance being adapted to be connected to a fourth port of said hybrid; and
control circuit connected in circuit relationship with said first and second hybrid ports and being responsive to first and second signals developed at said first and second hybric ports, respectively, in response to said test signal said complex impedance of the transmission path and saic control signals for adjusting said controllable impedance elements of said balance network to yield a driving point impedance to match substantially the complex impedance of said transmission path over said frequency band.
2. In a transmission network of a type inclucing a 4-por path exhibiting a complex impedance at a first port and to an djustable impedance balance network having a plurality of ontrollable impedance elements for yielding a driving poin impedance at a second port, wherein the improvement comprises:
a signal source for generating a test signal having at least one
frequency component within a predetermined frequency frequency
band; and first and second hybrid ports and being responsive to first lirst and second hybrid ports and being responsive to firs
and second signals developed at said first and second hybrid ports, respectively, in response to said test signal, said complex impedance of the transmission path and said balance network impedance for generating a plurality of elements of said balance network to yield a driving point impedance to match substantially the complex impedance of said transmission path, said control circuit including means for generating a magnitude control signal and means for generating at least a first singularity control ing means generates a signal representative of the integral of the difference between a magnitude component equa to the difference between the absolute magnitudes of saii first and second signals modified by a first prescribed
weighting function, and a phase component proportion
tely equal to the difference between the phase of said firs ignal and said second signal modified by a second prescribed weighting function.

4,096,363
TRANSMISSION NETWORK INCLUDING FLUX Ronald Lee COMPENSATION Ronald Lee Earp, Burlington, N.C., assignor to Bell Telephone
Laboratories, Incorporated M Mirray Hill N.J. Filed May 24, 1977 , Filed May 24, 1977, Ser. No. 800,047
Int. Cl. ${ }^{2}$ H04Q 1/28; H04B $15 / 00$ U.S. CI. 179-170 R

1. A transmission network which comprises
transformer means including a core and at least a primary winding and a secondary winding for coupling alternating current signals from a first transmission path to a second transmission path;
first current sensing means in circuit with said primary winding for generating a first representation of the magnitude
of a direct current flowing in said first transmission path; first controllable current source means in circuit with said second winding of said transformer means and being responsive to said first representation for supplying a compensation direct current of predetermined polarity to said second winding having a magnitude to cancel effectively
a magnetic flux generated in said core because of the direct current flowing in said primary winding; and feedback means responsive to said compensation current for contring tins in ship.

## KEYBOAPD SWITCH 4,096,364 <br> CONTACT SYYER ASSEMBLY HAVING FLEXIBLE

 CONIACT LAYER WITH SNAP INTTIATOR DOME field, both of Mass., assignors to Chomerics, Inc., Woburn,Filed Feb. 22, 1977, Ser. No. 770,519 .S. C. 200-5 Ant. Cl. ${ }^{2}$ H01H 13/70, 1/00


1. A keyboard assembly comprising an insulator suppor nember, a first circuit pattern supported by said support memcircuit lines selectively coupled to said contactors, an insulator material snap through spacer over said support member and
first circuit pattern, said spacer having a plurality of openings edge portion exposed in the opposite direction the other of the therethrough each in register with different ones of said notches engages with said wall portion part. ing a plurality of flexible and resilient insulator plastic hav. in register with difneppable domes formed therein, said domes circuit pattern adhered to the flexibibsacer openings, a second second circuit pattern having contactors and circuit lines selec ively coupled to said contactors sid and circuit lines selec. ported on the under surface of said domes, at least some of said domes having a snap initiator formed in the dome at the top thereof, said initiator in the shape of a bar having a width less than its length at its base, the bar being concave with respect to the under surface of the dome.

## $4,096,365$

ROTARY WAFER SWITCH
James Anthony Hodell, Lovedean, England, aseignor to Wessex James Anthony Hodell, Lovedienn, Enjiand, asmgnor Io Wessex

Fiand Jan. 7, 1976, Ser. No. 647,203
Claims priority, application United Kingdom, Jan. 15, 1975, 841/75
U.S. C. $200-11 \frac{\text { Int. C. }{ }^{2} \text { H01H 19/58, 9/00 }}{}$

6 Claims


1. A rotary wafer switch comprising a wafer housing, at least one wafer positioned in a predetermined operative posi tion in the housing, said wafer carrying fixed switch contacts. a rotatable contact carrier, at least one movable switch contact carried by the carrier to co-operate with said fixed switch
contacts, and co-operating means on the wafer and on the housing for automatically retaining and positively locating the wafer in said predetermined operative position when the wafer reaches said position in the housing when the wafer is assem led into the housing, the wafer comprising terminals along an edge portion thereof, the wafer being adapted to be positioned
in the housing with said edge portion exposed from the housing selectively in either of two mutually opposite directions, the housing having two substantially parallel opposed wall portions, the wafer extending transversely between said two opposed wall portions and having two notches on at least one side thereof, at least one said wall portion having a part that snaps into a said notch to retain the wafer, said two notches being
equally spaced from a plane through the axis of rotation of the contact carrier perpendicular to said opposed wall portions, whereby when the wafer is positioned with said edge portion exposed in one direction one of the notches engages with said wall portion part and when the wafer is positioned with said

4,096,366
MEANS FOR DETECTING A LOSS OF VACUUM IN
MEANS FOR DETECIING A LOSS OF VACUUM IN POLYPHASE A.C. VACUUM CIRCUIT BREAKER Charles Hoff Titus, Newtown Square, Pa., asslgnor to General
Electric Company, Philadelphia, Pa.

Filed Nor. 1, 1976, Ser. No. 737,92
C. $200-144$ B ${ }^{\text {Int. Cl. }{ }^{2} \mathrm{H} 01 \mathrm{H} 33 / 66}$


1. Loss-of-vacuum detecting means for any one of the three vacuum-type circuit interrupters of switchgear comprising three-phase vacuum circuit breaker, said switchgear including:
(i) three current transformer secondary windings respectively coupled to the three phase conductors of the power circuit extending through the breaker, (ii) a shorting conductor, (iii) means connecting said secondary windings in parallel with each other and in series with said shorting conductor, and (iv) three overcurrent relays, one for each phase, each relay having
an input circuit connected in series with an associated curren transformer secondary winding and with said shorting conduc tor; said detecting means comprising the aforesaid components (i), (ii), (iii), and:
(a) a switch connected in said shorting conductor and in series with the parallel combination of snid three current transformer secondary windings, said switch being closed
(b) means for opening said switch when said circuit breaker (b) means for
(c) rectifying means connected across said switch and across the parallel combination of said current transformer secondary windings for developing a d.c. voltage when saic energized,
(d) and time-d
d) and time-delay relay means arranged to be energized by said d.c. voltage, said time-delay relay means being opera. level for a predetermined minimum period following opening of said switch.

4,096,367
GAS INSULATED CIRCUIT BREAKER GAS INSULATED CORCLETE MODUR INCORPORATING COMPLETE MODULAR
INTERRUPTER STRUCTURE AND OPERATING
enry L. Pe enry L. Peek, Brandon; Maurice J. Taylor, Florence; John J.
Abdou, and Amrut R. Patel, both of Brandon, all of Misa, assignors to Alli-Chalmers Corporation, Millwakee, Wis. Filed Nov. 24, 1975, Ser. No. 635,161

Int. C. ${ }^{2}$ H01H $33 / 82$
S. C. 200-148 B
ted circuit breaker;
3 Claims

1. In a gas insulated circuit breaker
a gas tight enclosure having insulating gas therein at a rela
pair of spaced apart circular corona shield members sup a pair of spaced apart circular
ported within said enclosure;
an elongated cylindrical housing of an insulating material secured to and between said shield members, said shield having is ends surfondes by said circular corona shields; housing; a source of insulating gas at a relatively high pressure, means and operable when actuated to direct a blast of insulating gas at a relatively high pressure from said ource to said current interrupting means;

means biasing said actuator outwardly of said housing; plurality of movable contact members, each carried by : respective leg; and
a plurality of pairs of laterally spaced stationary lear spring contacts mounted at the other end of said housing in
lateral peripheral arrangement and extending longitudi nally into said housing, each pair being slidingly bridged by a respective contact member driven therebecween by a wherein said legs have bifurcated notched inner ends and said contact members comprise complementally notched pins retained by said bifurcated ends of said legs in snap-in pins retan
relation

## 4,096,369

Junzo Tanaka, Fujiidera; Chikao Urushima, Nara, and Toabio unzo Tun Kal, Yamatokoriyama, all of Japan, asoignors
Electric Industrinal Co., 15 tdd, Onka, Japan

Filed Nov. 15, 1976, Ser. No. 742,122
Claims priority, application Japan, Dec. 2, 1975, 50-144467; Dec. 8, 1975, 50-146551; Nov. 20, 1975, 50-158273[(U] U.S. CI. 219-10.55 Int. Cl. ${ }^{2}$ H05B $11 / 00 \quad 6$ Claims
single actuating pull-rod means extending through said corona shield members and said elongated cylindrical housing in close adjacency to said interrupting means, said interrupting means in a current interrupting operation and said gas blast means in synchronism; and,
operating means connected to move said actuating means for operating said current interrupting means and said gas blast means in synchronism.

Stuart W. Greber PUSHBUF N WITCH
mer, Inc., Millwaukee, Wis. Filed Jul. 8, 1976, Ser. No. 703,5
Int. Cl. ${ }^{2}$ H01H 9/16, $13 / 60$
U.S. CI. 200-314


1. An electric switch
an elongated housing
an insulating actuator received at one end of said housing for
limited linearly reciprocal movement longitudinally therein and having a plurality of legs in lateral peripheral arrangement thereon and extending longitudinally into arrangenent
said housing;

2. A microwave oven comprising
heating cavity within a main body of said oven
door for closing and opening an opening of said heating cavity,
mid a resistive heater within said heating cavity for scorching the surface of an article to be cooked,
cooling device supplying cooling air to said oven,
cavity separated from a second portion by means of a
removable tray for supporting the article to be cooked,
said isolation chamber being adjacent said resistive heater,
and
shielding plate for blocking an opening of said isolation
chamber, said shielding plate being mounted on said door with an air gap therebetween so that said air gap communicates with said second portion of said heating cavity to through said sir gap and said second portion of said heating cavity.

## MICROWAVE OVEN 096,370 <br> DOOR INTERLOCK SWITCH SYSTEM

Eliot R. Duncan, Iowa City,
Inc., Bererly Hilk, Calif. Inc., Bererly Hille, Calif.

Flied Jun. 15, 1977, Ser. No. 806,617
U.S. C. 219-10.55 C 2 Chim 1. A power supply circuit for a microwave heating oven, between said lines for operating a magnetron tube, an oven
door interlock power switch in said power line adapted to
normally open and close with the respective opening and cavity in a workpiece by relative rotation between the tool closing of the oven door, a gate operated AC switch having a electrode and the workpiece, comprising:
gate in said power line, first and second branch lines extending
respectively from the power and neutral sides of said AC witch to said gate, a fuse in said first branch line having suit-
 electrical discharge machining apparatus, and at least one pecripheral undercutting cutting tooth; and, b. said body being provided with a longitudinal cutting face having a longitudinal cross section shape commensurate
with the longitudinal cross section shape of a cavity to be cut in a workpiece when relative rotation between the too cutting fice and tool electrode into the workpiece. cutting face and tool electrode into the workpiece.

4,096,372
Emerson J. Hallenbeck, 2934 Shoreland Ave., Toledo, Ohlo Filed Nov. 24, 1976, Ser. No. 744,76 U.S. Cl. 219-72 12 Claims
ble minimum and maximum ratings respectively relative to normal gate current in said first branch line and normal line
current in said power line, and an oven door interlock monitor current in said power line, and an oven door interlock monitor
switch in said second branch line adapted to normally close and open with the respective opening and closing of the oven door.

METHOD OF AND APPARATUS FOR ELECTRICAL Gernet W. Lozon
Garnet W. Lozon, 4287 S. River Rd., St. Clair, Mich. 48079 Filed Jul. 6, 1976, Ser., No. 702,913
Int. C1.2 B23P $1 / 08$
U.S. C. 219-69 E


20 Claims

1. A purge unit for establishing an enclosed zone around a weld area, said unit comprising an elongate member, a flexible, expandable member having an edge portion adapted to engage the surface of a workpiece around the weld area to establish he enclosed zone, and means connected to said elongate memchamber within said expandable member to urge said expandable member outwardly to form the enclosed zone with said expandable chamber-forming means being within said enclosed zone and shaped from the weld area.
2. An electrical discharge machining method of machining cavity having an arc
luding the steps of:
a. forming a segmental tool electrode rotatable about its longitudinal axis with an arcuate outer periphery and a
longitudinal cutting face having a longitudinal cross section shape commensurate with the longitudinal cross section shape of a cavity to be cut in a workpiece, and with the tool electrode having at least one peripheral undercutting cutting tooth;
b. placing the tool electrode with its longitudinal cutting c. providing relative rotation between the tool electroced and the workpiece about the longitudinal axis of the tool electrode to move the tool lelectrode into the workpiece to cut through the workpiece, and which cavity has a longitudinal cross section that is the same as the longitudinal cross section shape of the tool electrode cutting face.
3. A tool electrode for electrical discharge machining a

WELDING D,096,373
Heinz Roith, Munich, Germany, assignor to Linde Aktiengesellschaft, Wiesbaden, Germany
Filed Jun. 29, 1976, Ser. No. 700,776 Claims priority, application Germany, Jul. 3, 1975, 2529674 S. 1 Int. C. ${ }^{2}$ B23K $9 / 18$ , 222674
U.S. C. 219-73

1. A. device for welding horizontal edges of a pair of workpieces together across a horizontal welding gap to form a a burner unit above sisid.
ap for depositing a weldment in a means for displa said gap;
a pool-support member unit horizontally along said gap; juxtaposed with said composed disposed in said gap and said pool, at least the burner unit for forming a bottom for said pool, at least the pool contacting sing
ber being composed of tungsten, and
holder rigidly fixed to said unit and reaching downwardly along a path of travel, comprising a first strip clamp mounting into said gap ahead of said pool in the direction of dis- frame movable forwardly or backwardly of the strip path, a first strip clamp means mounted on said frame, a second strip
clamp mounting frame immovable forwardly or backwardly of clamp mounting frame immovable forwardly or backwardly of the strip path, a second strip clamp means mounted on said second frame, entrance and discharge side electrode mounting welding electrode means mounted on said electrode mounting frames, said last mentioned frames being releasably engageable with said first and second strip clamp mounting frames, a shear unit, a flash trimmer unit, first and second gantry-shaped frames arranged transversely outwardly of said entrance and

discharge electrode mounting frames, respectively, for move ment forwardly or backwardly of the strip path, said first and second gantry-shaped frames being interconnected with upper and lower guide beams extended transversely of the strip path between said gantry-shaped frames, a carriage disposed trans movement transversely of the strip path, said shear unit and said flash trimmer unit being mounted on said carriage for movement transversely of said strip material so that either said shear unit or said flash trimmer unit may be retractably distransverse guide beams.
$\qquad$
4,096,376
TEMPERATURE CONTROL DEVICE
2. A method of joining a first and second layer of material at
least said second layer being made of weldable material com prising:
(a) placing said first and second layers in face-to-face rela tionship;
(b) selecting a ball of weldable material having a diameter in the range of 2 T to 5 T where T is the thickness of said first layer;
(c) said first layer having at least one opening therein with a diameter in the range of $94 \%$ to $96 \%$ the diameter of said ball;
(d) positioning said ball in said opening so that the ball is in contact with an adjacent surface of said second layer; (e) applying electrical current and pressure to said ball and said adjacent surface of said second layer in amounts
sufficient to weld said ball to said second layer and to deform said ball so that said first and said second layers are deform
joined.

FLASH WELDING APPARATUS
Yoshiharu Fujino, Yokohama; Inwane Chiba, Soka; Toshimi Chiyonobu, Fukuyama; Tomihisa Takahata, Fukuyama, and Yasuhiko Kachi, Fukuyama, all of Japan, assignors to Japan

Filed Mar. 25, 1976, Ser. No. 670,561
Filed Mar. 25, 1976, Ser. No. 670,561
Claims priority, application Japan, Nov. 14, 1975, 50-136845
Int. Cl. ${ }^{2}$ B23K $1 / / 04$
U.S. C. 219-97

20 Claim

1. A flash welding apparatus for strip material movable
2. A bath-liquid temperature control device for maintaining preselected liquid temperature that is above the temperature conductive metal panel including means adapting one side of said panel for direct thermal response to a body of liquid, and thermostat enclosure carried by the other side of said pane uch that said panel forms part of at least one wall of the inne space otherwise defined by said enclosure, said enclosure hav ing at least one vent to ambient air, whereby the air tempera-
ure of space within said enclosure is a composite reflection of both ambient-air temperatu: $\epsilon$ and the temperature of liquid to
which said panel is thermally exposed, an electrical-heater more bits of data and at least one preamble symbol, each said element within said space, a power-input connection to said
enclosure, thermostatic-switch means within said space and set enclosure, thermostatic-switch means within said space and set said heater element upon achievement of a predetermined upper limit of heating of said space above ambient temperature,
the setting of said thermostatic-switch means being also such as the setting of said thermostatic-switch means being also such as for a detected temperature of said space below a lower limit above ambient temperature, and power-output connection
means so connected to said thermostatic-switch means that means so connected to said, thermostatic--switch means that
output power is deliverable via said power-output connection output power is deliverable via said power-output connection
means coincidentally with connection of said heater element to said power-input connection, whereby a bath-liquid heater connected to said power-output connection means may be effectively on-off regulated by said thermostatic-switch means in accordance with its composite response to the temperature
of ambient air and of bath liquid.

COUNTER MECHANISM
James A. Prentice, Orange, and John George Mitchell, Fountain Valley, both of Califf, , essignors to Coliffornia Injection Molding Co., Inc., Costa Mess, Calif. Ned Jul. 22, 1976, Ser. No. 707,837
Int. C1.2 GO6C $15 / 42$
U.S. C. 235-144 HC

11 Claims


1. In a counter having a housing, a plurality of number wheels rotatably mounted in the housing, a plurality of transfer
pinions interposed between and engaged with the number wheels and shiftable out of engagement therewith during resetting of the whecls, and a reset mechanism for resetting the number wheels and shifting the transfer wheels out of engagement with the number wheels, the improvernent comprising
a pair of mutually spaced side arms forming part of said ${ }^{\text {a }}$ pair of m
a plurality of indexing bosses formed integrally with and extending between both said side arms of said housing, said bosses being configured and positoned to mate with and to reset respective transfer pinions as the pinions are
shifted to a position out of engagement with said number wheels, said bosses strengthening and rigidifying said housing.

DISTORTED TWO FREQUENCY CODED DATA INTERPRETING METHOD AND APPAPATUS Albert Watson Vinal, Cary, N.C., assignor to International Business Machines Corporation, Armonk, N.Y. application Feb. 5, 1976, Ser. No. 655,337

U.S. CI. 235-106 Int. Cl. ${ }^{2}$ C00K 7/00

1. Aethod of initiating correct decoding of 72 Claims acceleration distorted F2F encoded data messages which are received in a distorted form at decoding apparatus from a communications channel or from record media scanning appa-
ratus, each said F 2 F encoded data message comprising one or
more bits of data and at least one preamble symbol, each said
preamble symbol being composed of two $1 F$ preamble symbol being composed of two $1 F$ frequency machine sensible optic, magnetic or electrical signal transitions
and one 2 F frequency machine sensible optic, magnetic or and one 2 F frequency machine sensible optic, magnetic or
electric signal transition located between said two 1 F frequency signal transitions, said preamble symbol having an undistortable characteristic with respect to spreading distortion and a separate, distortable characteristic with respect to



spreading distortion, said initiating method comprising the steps of:
measuring said undistortable characteristics of said received preamble symbol signals by measuring the interval between said two $1 F$ frequency signal transitions, and; controlling the duration of searching for a 2 F frequency sion to the results of said measurement of said preap symbol.

MODULAR ILLUM, 4 ,06,
Albert Taylor, 486 Kell Pl., Seaford, N.Y. 11738
Filed Aug. 24, 1976, Ser. No. 717,236
U.S. Cl. ${ }^{\text {Int. C1.2 }}$ A47G 33//16; F21P 1/02 $\quad 7$ Claims


1. A modular illumination device comprising
a plurality of rigid hollow illumination housings each forming a chamber therein and having at least one surface
thereof permittig the ransmision of ligt thereof permitting the transmission of light therethrough, cross section throughout the length thereof affixment means disposed on a first free end of each of said joining to housings, said affixment means for separably housing, said and free end of an adjacent illuminatio extending parallel to means having exterior surface surfaces of saiaid illumination housings
plurality of incandescent lamps, at least one of said plural ity of lamps disposed in lamps, at least one of said plural said plurality of illumination housings:
electrical coupling means for electrically coupling said plurality of lamps when said plurality of illumination housings are joined, wherein a portion of said electrical coupling means is disposed secured to and housed within said affixment means, the remaining portions of said electrica
coupling means located on said second free end of adjacent illumination housing being disposed within said affixment means when said illumination housing is joined to said adjacent housing; and
plurality of lamps, said power coupling means having a power coupling housing, said power coupling housing housing having a crosssection along the entire length thereof equivalently dimensioned to said uniform crosssection.

SYSTEM FOR TRANSMITTING LIGHT SIGNALS BETWEEN A MISSILE AND A MISSILE CONTROL
Kurt Eichweber, Holsteiner Chaussee 379/81, Hamburg.
Kchnelsen, Germany
Filed Jul. 9, 1976, Ser. No. 704,029
Claims priority, application Germany, Jul. 28, 1976, 2533697
U.S. Cl. $250-199$ Int. C1. ${ }^{2} \mathrm{H} 04 \mathrm{~B} 9 / 0$

13 Claims


1. A system for transmitting control and/or information signals between a missile and a missile control station without physical connection therebetween comprising means at said
control station for producing a transmission path for modulated light signals between said station and said missile during the flight of the missile, said transmission path consisting of an emitted laser beam, means for continuously aiming said laser
beam on said missile from the control station, reflector means carried by said missile for reflecting part of said beam back to said control station said reflector means including at least one triple mirror reflector for reflecting the laser beam, said missile being equipped with a signal producing device and an optical
modulator connected with the triple mirror reflector, the optical modulator being controllable by said signal producing device for modulation of at least one of said emitted and reflected laser beams to provide said signals, said missile being lected laser beams to protection device, said signal producing device being controlled by said target detecting device.

## $4,096,381$

ELECTRON IMAGE DETECTION SYSTEM
Robert L. Brown, Sr., 4805 Ratledge Dr. NW., Huntsville, Ala.
Continuation-in-part of Ser. No. 582,546, May 30, 1975, Condoned. This application Jul. 19, 1976, Ser. No. 706,70
U.S. CI. 250-213 VT
nt. C. ${ }^{2}$ H01J 31/50
6 Claims

1. An image detection sys
a source of electromagnetic rays for traversing at least a portion of the subject; a photointensifier with focusing
electrodes, a display surface and a phosphor coated device electrodes, a display surface and a phosphor coated device on said display surface, and
a converter device disposed for direct conversion of said traversing rays to light rays including rellecive ligh
tive to each other and each light tube consisting of a core other light tubes and said core material consisting of a phosphoric substance enclosed with a reflecting cladding glass for emission of light rays therefrom responsive to said traversing rays and a cathode face disposed for im

pingement thereon of said light rays from said light tubes to provide an electron image of said traversing rays; aid phosphor coated device being disposed for directly
receiving intensified projection of said electron image receiving intensified projection of said electron image
from said cathode face to provide a positive and vivid definitive image of said traversing rays on said display surface.

PHOTO-CURRENT LOG-COMPRESSION CIRCUTT buro Numata, and Shinichiro Okazaki, both of Urawa, Japan assignors to Fuil Photo Optical Co., Ltd, Omiyn. Claims priority, application Japan, Feb.9, 1976, 51-13748[U] U.S. C. $250-214 \mathrm{~A}$ Int. C. ${ }^{2}$ H01J $39 / 12$


1. A photoelectric current log-compression circuit comprising: a reference voltage source and a constant current source, an operational amplifier, a log-conversion diode connected to non-Inversion input terminal of said operational amplifier, a photodetector connected between the non-inversion input terminal and an inversion input terminal of the operational the resistance therature compensating element which changes the operational amplifier to control the amplification degree, and a temperature compensating diode connected between said sources and biased with a predetermined current therefrom, said log-conversion diode being connected between the operational amplifier and a connecting point between said constant current source and said temperature compensating diode diode is applied to the operational amplifier
 Ronald Alfred Mancini, Ridgeway, Va., and Douglas Kile Thomson, Greensboro, N.C., assignors to Gilbert \& Barke Manufacturing Company, Greensboro, N.C.


2. In apparatus utilizing a pair of light paths for sensing the revolutions of a shaft, the improvement comprising:
(a) a disc coupled to the shaft for revolving therew
(b) means for completing and interrupting the light paths at discrect intervals proportional to the revolutions of the shaft:
(c) a light-transmitting fiber optic cable having a portion split into a pair of ends, and a pair of light-receiving fiber optic cables, said split pair of light-transmitting ends and
said pair of light-receiving ends being shaped and presaid pair of light-receiving ends being shaped and pre-
cisely aligned with said radially spaced means for completing the whole light paths by means of said radially spaced means, the aligned ends of said cables being spaced apart less than the radial spacing of said radially spaced means;
paths; and
paths; and
(e) means positioned at the other end of the light paths for
(e) means positioned at the other end of the
sensing the completions of the light paths.

POSITION TRANSDUCER FOR MACHINE TOOLS AND MEASURING MACHINES ranco Francesco Germano, Turin, all of Ital, Moncalieri (Turin) Turin, all of itay, assignors to Dea Digital Electronic Automation S.p.A., Moncalieri, Turin, Italy
Filed Mar. 29, 1977, Ser. No. 782,476
Claims priority, application Italy, Apr. 2, 1976, 67764 A/76
Claims priority, application Italy, Apr. 2, 1976, 67764 A/76
U.S. Cl. $250-237$ G Cl. ${ }^{2}$ H01J 3/14
11 Claims


1. Position transducer for machine tools and measuring machines, arranged to measure relative displacements of a first
part with respect to a second part, wherein said transducer is obtained by means of the optical coupling of at least two pho oelectric readers fixed on said first part and at least two opt and whoterngraved rules rigidy yolection means are provided which are arranged
and to present in output the signals from one of said photoelectric readers.

CLAY CONTENT D,096,38 NATION BY NATURAL GAMMA RAY SPECTROMETRY Graham Marett, Paris, France, assignor to Schlumberger Tec nology Corporation, New York, N.Y
Claims priority, application United Kingdom, Feb. 25, 1976 7388/76
U.S. C1. 250-262 Int. Cl. ${ }^{2}$ G01V $5 / 00$


1. A method for automatically processing measurements of the total natural gamma radioactivity and the contents of three natural radioactive elements of a formation surrounding a arnote to obain a representation of the clay content of said ormation in a zone of the borehole where the presence of on of said elements, called a disturbing element, is not related to lay, comprising the steps of
 zome, and
at least two of said measurements in accordance produce a produce a representation of the clay content of the forma tion corrected for the effect of said disturbing element.

LIGHT REFLECTING ELECTROSTATIC ELECTRON LENS
Gertrude F. Rempfer, Forest Grove; George H. Lesch, and Osble Hayes Griffith, both of Eugene, all of Oreg, assignors to Taylor-Kinctid Company, Eugene, Oreg, Filed Apr. 4, 1977, Ser. No. 784,037
U.S. C. 250-365 Int. Cl. ${ }^{2}$ G01M 23/00 8 Claim 1. An electrostatic electron lens apparatus comprising: a plurality of electrically conductive electrodes including an electrode disposed an exit electrode and an intermedia( trodes;
insulative support means for mounting said electrodes with their apertures in alignment and for spacing and insulating
said intermediate electrode from said entrance electrode and said exit electrode; and

said entrance electrode having a substantially planar, fron surface with a mirror finish for reflection of light away
from the lens to a specimen positioned in front of said lens.

ULTRAVIOLET RADIATION DETECTOR
Robert Harling Buckley, Quebec, Canada, assignor to RCA Corporation, New York, N.Y.
Filed Dec. 9, 1976, Ser. No. 749,180 Int. C1. ${ }^{2}$ G01T 1/24


1. An ultraviolet radiation detector comprising:
for detecting radiation at a wavelength in the range of 4,000 to 12,000A;
n anitreflection layer on a surface of said silicon body
a phosphor layer on a surface of said antireflection layer, said phosphor layer being capable of converting radiation
at a wavelength in the range of 1,000 to $3,999 \mathrm{~A}$ into radia tion having a wavelength in the range of 4,0001 to 12,000A; and
a metallic film on a surface of said phosphor layer, said metallic film being substantially transmissive to radiation having a wavelength in the range of 1,000 to $3,999 \mathrm{~A}$ and
substantially reflective to radiation having a wavelength in the range of 4,000 to $12,000 \mathrm{~A}$.

4,096,388
MEASURING GASEOUS OXYGEN WITH U.v. ABSORPTION Jacob Y. Wong, Framingham, Mass., assignor to Hewlett-Pac kard Company, Palo Alto, Calif. Jun. 10, 1977, Ser. No. 805,551
Int. C1. ${ }^{2}$ G01J $1 / 42$
U.S. CI. 250-373

11 Claim


1. An instrument for measuring the concentration of oxygen a sample containing water vapor and other interfering gases omprising,
means providing ultraviolet light of at least two differen wavelengths, one of said wavelengths being in a band tha is strongly absorbed by oxygen, the other of said waveoxygen, both of said wavelengths being absorbed by water vapor and other interfering gases in nearly equal degree a sample chamber through which the sample to be examine can be passed,
means for alterna
means for alternately directing light of said first and second wavelengths from said means through said chamber means for developing electrical signals proportional to the
amount of light impinging on it, said means being mounted so as to intercept a portion of the light that passes through said chamber, and
a narrow band interference filter passing said two differen wavelengths of ultraviolet light and rejecting other wave lenghs of uitraviolet light that are less than and greater optical two different wavelengths, said filter being in the optical
ber.

## 4PPAPATUS 4,096,389

APPARATUS FOR MINIMIZING RADIATION EXPOSURE AND IMPROVING RESOLUTION IN RADIATION IMAGING DEVICES John B. Ashe; Grilym H. Williams, both of Palatine, and Kenneth L. Sypal, Glen Ellyn, all of Mi., 2ssig
Senre \& Co., Chicago, III. ${ }^{2}$


1. In a tomographic patient imaging apparatus of the type
wherein photons emitted by a radiation source through an perture means, he dimensions ar which define a bounary of he desired beam to be projected, are caused to pass in a bean of the patient and be at least partially attenuated and absorbed thereby, with the intensity of the emerging beam being deected and measured in a detector means so as to obtain signal slice, said signals being manipulated by a computer whereat the mage of said slice is reconstructed, said reconstructed image thereafter being displayed, the improvement of a collimating apparatus disposed adjacent the radiation source and defining radiation which is substantially non-diverging from said defined boundary in at least one direction to minimize radiation exposure to the patient outside the area of the selected thin lice, said collimating apparatus comprising an elongated sandwich assembly of a plurality of layers of material exhibiting
relatively high radiation attenuation characteristics, said atten uating layers being spaced apart and separated from one an other by interleaved layers of material exhibiting relatively ow radiation attenuation characteristics, said sandwich assemture means in the path and throughout the defined boundary o the radiation emitted through the aperture means, such that said attenuating layers are parallel to the desired direction of he projected beam with said interleaved spacing layers proprojected beam.

APPARATUS FOR EXAMINING OBJECTS BY MEANS OF PENETRATING RADIATION
Godrrey Newbold Hounsfield, Newark, England, assignor to U.S. C. 250-50
$X$-radiation in passing from one end to the other of a corresponding one of said beam paths, means for deriving second output signals each of which is a measure of a at least a portion of selected ones of said beam paths, which portion does not pass through the patient, each one of said fan-shaped distributions of beam paths including at least two of said selected beam paths angularly spaced from each other within the fan-shaped distribution by intermediate beam paths of the same distribution which pass factors for each fan-shaped distribution from said second output signals derived for selected beam paths of the distributions, which correcting factors are related to differences in the X -radiation passing along said intermediate beam paths of the distribution; and
signals and on said correcting factors and for displaying said picture of the slice of the patient examined with the X -ray machine.

4,096,391
METHOD AND APPARATUS FOR REDUCTION OF SCATTER IN DIAGNOSTIC RADIOLOGY Gary T. Barnes, Birmingham, Ala, asdignor to The Board of Trustees of the University of Alabema, Birmingham, Ala. Continuation-in-part of Ser. No. 732,858, Oct. 15, 1976, 1975, abandoned. This application May 31, 1977, Ser. No.

Int. C1. ${ }^{\mathbf{8}}{ }^{\mathbf{2} 1,801 \mathrm{~N}} 23 / 00$
EMI Limited, Hayes, England
Continuation of Ser. No. 659,155, Feb. 18, 1976, which is a
division of Ser. No. 474,767, May 30, 1974, Pat. No. 3,940,625. This application Jul. 27, 1977, Ser. No. 819,543 trast.
U.S. C. 250-507
(a) a base;
U.S. C. 250-M5 T

7 Claims


1. A medical diagnostic X -ray machine for examining patient and for building up and displaying a two-dimensional
picture of the X-ray response coefficients of the elements into picure of the $X$-ray response coefficients of the elemension to the patient is divided by a finite Cartesian matrix notionally superimposed on the slice, comprising:
means for passing X-radiation along each beam path of
fan-shaped distributions of beam paths of finite lengths, each fan-shaped distribution being made up of beam paths
which substantially coincide with said section and have which substantially coincide with said section and have one of their ends at a common apex on one side of the
patient and their other ends spaced from each other along the section at the opposite side of the patient, said apices being circumferentially spaced from each other along an
orbit which extend at least half way around the patient orbit which extends at least half way around the patient
and substantially coincides with said section, at least the and substantially coincides with said section, at least the
central beam paths of each of said fan-shaped distributions of beam paths passing through the patient along said section, and means for deriving first output signals each which is a measure of a response encountered by the

2. A method of improving image contrast in diagnostic radiology comprising the steps of:
producing an X -ray beam using a conventional X -ray source having a focal spot of a predetermined size,
creating a plurality of regularly arranged beam segments, each having a minimum dimension at least two times greater than said focal spot size; and, irradiated, for producing X-ray images of improved to be
irradiated, for producing X-ray images of improved con-

4,096,392
RACK FOR STORING SPENT NUCLEAR FUEL
Herbert J. Rabinstein, Los Gatoos; Philip M. Clark, and James D. Gilicrest, both of San Jose, all of Calif., assignors to Nu clear Services Corporation, Campbell, Calif. Filed Jul. 11, 1975, Ser. No.
Int. CI. G21f $5 / 00$

Int. Cl. G21f 5/00

1. A rack for spent nuclear fuel elements comprising
(b) a plurality of upstanding enclosures supported by said (b) a pluraility of upstanding enclosures supported by said
base for containing respectively a spent nuclear fuel element,
(c) neutron
neutron absorbers disposed in said pockets for control-
ling nuclear reactivity; and

(d) upstanding neutron absorber panels disposed exteriorly of said enclosures and along the outer limits of the rack for elements stored in said enclosures.


## 4,096,393

 Arden She23185 Continuntion-in-part of Ser No 631,699 Nor 13, 1975, Pat. Conitunaion-in-part of Ser. No. 631,689, Nov. 13, 1975, Pat.
No. 4,084,101. This application Jul. 7, 1976, Ser. No. 703,199 U.S. CI. 290-1 R Int. C. ${ }^{2}$ H02N $3 / 00 \quad 27$ Claim


1. Apparatus for converting radiant energy into electric energy comprising a capacior including an ionic dielectric and pair of electrodes, means responsive to the radiant energy fo periodically heating and cooling said dielectric at a predeter mined frequency, said dielectric having a dipole layer only o or near its surface, the capacitance of the capacitor being circuit means resonant to current derived from the capacitor in response to the capacitor modulation for connecting a load to be responsive to said current.

APPARATUS FOR SUPPLLYING ELECTRICAL ENERGY TO A LOAD


1. Apparatus for supply pulsed, or alternating electrical nergy of a desired predetermined, wave shape to a load (9) energy supply means $(\mathbf{1}, \mathbf{2}, \mathbf{3 6})$ which includes
a main energy supply device (1),
an auxiliary energy supply device (2);
an oupputy devices $(1,2)$ and to the connected to said energy suppiy devices (1,2) and to the load ( 6 , output conductor portion (36) to supplying energy to said under normal condition;
under normal condition; said auxiliary energy supply device (2) supplying energy to said output conductor portion to supply energy to the load
during interruption of the main energy supply respectively;
and means correcting for departures from, or distortion of the wave shape from said desired predetermined wave shape including
energy exchange and storage means (4) connected to the main energy supply device (1) to receive and store energy energy instantantaneously available to said load for bridg. ing brief disturbances in the supply of energy to the load from said energy supply means resulting in departure from or distortion of the wave shape with respect to the said desired wave shape;
and control means ( 5 ) which are connected to said energy exchange and storage means (4) comprising
reference means ( 504 ) generating a reference signal having a energy to be supplied to said load ( $)$;
ctual energy supply monitoring means including an outpu voltage monitor (502) and an output current monitor (503) valuating the instantaneous levels of energy being supplied to the load
comparator means (502) connected to said energy supply of the half wave current level and the flow direction of the energy actually supplied to the load and the instantaneous level of said reference signal,
and control logic means ( 501 ) connected to said comparator means (502) and controlling said energy exchange and
storage means (4) in dependence on the instantaneous energy level and the flow direction of said supplied energy to instantaneously supply energy stored from said energy exchange and storage means to the output conduc tor portion (36) and hence the load (6)

AUTOMATIC TRANSFER CONTROL DEVICE AND AUTOMATIC VOLTAGE SENSOR George F. Bogel, Pittsburgh, and Robert M. Oates, Murrysville, both of Pa., assignors to Wertinghouse Electric Corp., Pittsburgh, Pa.

Filed Jul. 19, 1976, Ser. No. 706,422
U.S. C. $307-64$

11 Claims


1. Automatic transfer control apparatus for selectively energizing an electrical distribution network from a pair of electricomprising:
means for generating output control signals to cause associated circuit interrupters to selectively connect and discon-
nect said electrical power sources to said distribution nect said electrical power sources to said distribution
network in response to activating signals; and
means for sensing the voltage of said electric
sources and supplying activating signals to said output control signal generating means when voltage upon said sources rises or falls beyond predetermined limits, said voltage sensing means comprising means for connecting said apparatus to ether three-wire, three-phase systems or four-wife, three-phase systems.

## 4,096,396

CHRONOMETRIC SYSTEM WITH SEVERAL SYNCHRONIZED TIME-BASE UNITS
Piero Belforte, and Fiavio Melindo, both of Turin, Italy, assignors to CSELT - Centro Studi e Laboratori Telecomunicazioni, Turin, Italy
Claims priority, Depplication Italy, Dec. 9, 1975, 70005 A/75 S. 101
Int. C..$^{2}$
H03K $1 / 02$
U.S. Cl. $307-219$ Claims

1. A chronometric system for generating separate but synchronized trains of timing signals, comprising:
at least three substantially identical time-base units each including a timing network and an associated decision network; and
a source of clock pulses common to said time-base units; each timing network having a stepping input connected to decision network, a main output for the emission of timing signals at a rate harmonically related to the cadence of said clock pulses, and a pluraity of ancillary outputs for the concurrent transmission of synchronizing signals to the decision networks of all time-base units a predetermined number of clock-pulse cycles after reception of a
coincidence signal from the associated decision network, each decision network including logical circuitry with
input connections to respective ancillary outputs of all timing networks to generate said coincidence signal in

response to concurrent synchronizing signals from at leas a majority of said time-base units.

## 4,096,397

## CHIC APPARATUS

 James A. Dreiling, Denver, Colo., assignor to Honeywell Inc., Minneapolis, Minn.Filed Mar. 29, 1977, Ser. No, 782,517
Int. Cl. ${ }^{2}$ H03K $\$ / 153$
U.S. C. 307-231

4 Claims


1. A trigger circuit comprising:
means for producing a stable reference signal
omparator means for comparing a repetitive wave form input signal with said reference signal;
said comparator means being responsive to
to produce a comparator output signal which compariso state in a first direction whenever the value of said input signal crosses the value of said reference signal on a positive slope of said input signal and in an opposite direction whenever the value of said input signal crosses the value of said reference signal on a negative slope of said input signal;
puise generator means for producing an output trigger pulse; $\quad$ first selectively enabled gating means responsive to said change of state of said comparator output signal in said first direction;
second selectively enabled gating means responsive to said change of state of said comparator output signal in said means connecting the out
vely enabled gating means to the input of said pulse generator means to initiate the operation thereof.

## 4,096,398

MOS OUTPUT BUFFER CIRCUIT WITH FEEDBACK Basant K. Khaitan, San Jose, Calif, assignor to National Semi conductor Corporation, Santa Clara, Calif.
$\mathrm{Cl}^{2}$ H03K $5 / 08$ 17/60. H03F $3 / 16,3 / 2$ U.S. CI. $307-237$


1. An MOS transistor universal output circuit capable of operating with both positive and negative power supplies
connected thereto and driving directly coupled logic gates that are adapted to operate using only a positive power supply, said circuit comprising:
an output stage including a pair of MOS output transistors one coupled to act as a current source and one coupled to
act as a current sink to an output terminal; act as a current sink to an output terminal;
ut transistors with commeans for limiting current flow in said output transistor coupled to act as a current sink, said means for limiting including amplifier means having in mat couterminal coupled to said driving means, and switching means operable to disable said amplifier means when said current sink transistor is turned off and to enable said amplifier means when said current sink transistor is turned on.

## 4,096,399 <br> CROSSPOINT BIAS CIRCUIT ARRANGEMENT

 James Alvin Davis, Glen Ellyn, and William Jay Ooms, Schaumburg, both of III., assignors to BellFated, Murray Hill, N.J.
Filed Mrr. 28, 1977, Ser. No. 781,789 Int. C1. ${ }^{2}$ H03K $17 / 00$


1. A semiconductor transmission circuit arrangement com-
prising:
a symmetrical transmission switching transistor comprising first and second emitter/collector transmission terminals high imped terminal; and
a high impedance bias circuit arrangement connected to one
8 Claims
of said emitter/collector transmission terminals and to saic base terminal and comprising regulating means for selec tively maintaining direct currents of equal amplitude in said base and in he dirct said emitter/collector terminals.

4,096,400
INDUCTIVE LOAD DRIVING AMPLIFIER
Michel Francois M. S. Ferry, Vallauris, and Daniel Franco Michel Francois M. S. Ferry, Vallauris, and Daniel Francois
Reynes, Villeneuve-Loubet, both of France, assignors to InterRational Businesse Machines Corporation, Assmonk, N.Y. national Business Michines Corporation, Armonk,
Filed Apr. 15, 1977, Ser. No. 788,094 Claims priority, application France, May 21, 1976, 7616128 U.S. Cl. 307-254 1 Claim


1. A transistorized power amplifier intended to drive an a first and a second series the feeding path of said load;
a current generator driving the base of said first transistor, means for driving the base of said second transistor so as to control the "on" and "off" turning operations of the ser ies-mounted circuit source which short-circuits the base current of said firs transistor when said second transistor is turned off; a Zener diode between the collector of said first transistor and ground;
ad may be driven without sufferin avalanche breakdown.

$$
\begin{aligned}
& \text { 4,096,401 } \\
& \text { AN MNO }
\end{aligned}
$$

SENSE CIRCUIT FOR AN MNOS ARRAY USING A PAIR OF CMOS INVERTERS CROSS-COUPLED VIA CMOS GATES WHICH ARE RESPONSIVE TO THE INPUT
Richard James Hollingsworth, P
Corporation, New Yin
Corporation, New York, N.Y.

> oration, New York, N.Y. Filed May 12, 1977, Ser. No. 796,335 Int. Cl. ${ }^{\text {H03K }} 5 / 20,3 / 286 ;$ G11C $7 / 00,1 /$
 1. The combination comprising:
first and second nodes
 for applying a second signal, to be compared with said first and second inverters; each inverter having an input and first and seco an output;
means connecting said input of said first inverter to said first means connecting said input of said first inverter to said first
node and means connecting said input of said second inverter to said second node;
first and second transmission gates, each transmission gate having a conduction path and a control electrode mean for controlling the conductivity of the conduction path sion gate between the output of said first inverter and said second node;
means connecting the conduction path of said second trans
mission gate between the output of said second inverter and said first node; and
means connected between said first and second nodes and
SUPERCONDUCTING HYBRID MAGNETIC FLUX PUMP
Mario Rabinowitz, Menio Park, and Thomas J. Rodenbaugh, Cupertino, both of Calif,, assignors to Electric Poter ReFiled Jun. 28, 1976 , Calif.


said control electrode means of said transmission gates for enabling and disabling said first and second transmission
gates in response to the voltage levels at said first and second nodes.

## 4,096,402

MOSFET BUFFER FOR TTL LOGIC INPUT AND METHOD OF OPERATION Pani R. Schroeder, and Robert J. Proebsting, both of Dallas,
Tex., assignors to Mostek Corporation, Carrollton, Tex. Filed Dec. 29, 1975, Ser. No. 644,856 U.S. C. $307-362$

6 Claims


1. In an MOSFET integrated circuit chip, the data input system comprising:
a data input terminal for receiving an input voltage signal from circuitry off the chip;
a capacitive isolation node; first circuit means including first and second transistors which are connected such that the data input terminal is connected through the channel of the first transistor to the capacitive isolation node and the
capacitive isolation node is connected through the chancapacitive isolation node is connected through the channel of the second transistor to the capacitive data input storage node;
second circuit means coupled to the gates of the first and second transistors for momentarily turning the first and
second transistors "on" then "off", substantially in synchronism, to charge the input storage node substantially to the voltage level of the input terminal and then trap the voltage level on the data input storage node; and
third circuit means for comparing the trapped voltage level
to a reference voltage level and producing a logic signal to a reference voltage level and producing a logic signal
defining whether the trapped voltage level was greater than or less than a voltage level which has a predete
mined relationship with the reference voltage level.
U.S. Cl. $310-10$
2. A magnetic flux pump comprising: a rotor having a plural ity of circumferentially spaced superconducting gates mounted pling the gates together, each gate being of a material having a relatively low critical field characteristic, each gate further having an upstream end and a downstream end and a current path extending between said ends, the current paths of said gates extending axially of the central axis of said rotor, saic wire means being of a material having a relatively high critica
field characteristic, said wire means further having wire por tions connecting the downstream end of each gate to the upstream end of the next adjacent gate to permit current flow through the gates in substantially one direction; means coupled with said rotor for mounting the same for rotation about its central axis; a source of magnetic field adjacent to said rotor and disposed to cause the gates to intersect the magnetci field
thereof as the rotor rotates about its central axis, whereby an electrical current is induced normally in the gates; a coil adjaent to said rotor and coupled with said wire means to form a circuit with the wire means and said gates; and means coupled with said rotor for rotating the same about said central axis.

## 4,096,404

HOISTING MECHANISM
Donat Konstantinovich Sukhanov, ulitua Vavilova, 56, korpus 1,
kv. 75; Sergei Ivnovich Blinoy kv. 75; Sergei Ivanovich Blinov, 1 Monetchikory perenlok, 5 ,
kv. 1; Leonid Leonidorich Bogoljabor, ulitsa Rusakovkaya, 6, kv, 59; Sergei Andreerich Kancheer, ulitita Chusorskaya, 11, korpus 8 , kv. 2, and Evgenia Nikolaerna Popora, Volokolamskoe shosse, 1, kV. 177, all of Moscon, U.S.S.R. Filed Feb. 3, 1977, Ser. No. 765,287
Int. Cl. ${ }^{2}$ H02K $7 / 10$
U.S. Cl. $310-67 \mathrm{R}$

$$
\begin{aligned}
& \text { eb. 3, 1977, Ser. No. } 763 \\
& \text { Int. Cl. }{ }^{\text {H02K }} 7 / 10
\end{aligned}
$$

1. A hoisting mechanism comprising: a casing; a rope-wind ing drum enclosed within said casing; a driving unit mounted coaxially with said drum and adapted to effect rotation of said drum to lift a load; a motor of said driving unit, accommodated within said drum and having a housing; a reducing gear of said
driving unit, operatively connected with said motor and having an input shaft and an output shaft; the shafts of said reducing gear being axially aligned; a brake of said driving unit, peratively connected with said motor; the housing of said motor at the side of said brake being accommodated in supports mounted on said casing and permitting angular displaceof symmetry of the mechanism and adapted to transmit the reaction torque to said casing; one end of said drum being
mounted in another support arranged between the external surface of said drum and said casing; a flange made on the CONTROL GRID WITH BONDED CONTROL GRID
eorge Valentine Miram, Atherton, and Erling Lovis Lien, Lo Altos, both of Calif,, assignors to Varian Associates, Inc., Palo Alto, Calif.

Filed May 10, 1976, Ser. No. 684,689
Int. Cl. ${ }^{2}$ H01J 1/46, 1/52, 17/04, 19/38 U.S. C. $313-348$


ther end of said drum and pivotally supported by the output shaft of said reducing gear.

ELONGATED ELECTRIC $\stackrel{4,096,405}{ }$ Eizo Goto, Chiguakishi, Japan, assignor to Tokyo Shibaur Electric Company, Limited, Japan

1, 1977, Ser. No. 773,289 Claims priority, application Japan, Mar. 1, 1976, 51-22015
U.S. C. 313-174

Int. Cl. ${ }^{2}$ H01K $1 / 50$


1. An elongated electric incandescent lamp comprising
an envelope having an inner diameter of less than 16 mm . containing an inert filling gas;
plurality of filaments arranged serially in the envelope; and
plurality of getters, one getter disposed in the vicinity of envelope blackening.
2. A method for fabricating a grid-controlled electro source comprising the steps of:
forming a continuous sheet laminate by bonding a barrie layer and a metallic layer to opposite sides of a sheet of insulating material
removing separated areas of said laminate to form an array of holes extending through the entire thickness of said laminate, said holes being separated by web members
consisting of the original thickness of said web members, bonding the barrier layer side of said web members to the emissive surface of a thermionic cathode, and said remov ing step being performed prior to said bonding of said
laiminate to said emissive surface. 4,096,407 TELEVISION CAMERA TUBE COMPRISING MOSAIC OF CONDUCTIVE REGIONS SEPARATED BY INSULATOR FROM SEMICONDUCTOR PLATE Arthur Marie Eugene Hoeberechts, Eindhoven, Netherlanda, assignor to U.S. Philipp Corporation, New York, N.Y Claims priority, application Netheriands, Feb. 27, 1976 7602013 , 1 U.S. CI. 313-367 ${ }^{\text {Int. C. }{ }^{2} \text { H01J 29/45, 31/38 }}$ 7 Claime

3. A camera tube having an electron source and a radiationsensitive target to be scanned by an electron beam emanating from said source, said target comprising a semiconductor plate which on the side to be scanned by the electron beam comprises a mosaic of electrically conductive regions each determining a picture element and separated from the semiconduc or plate by an electrically insulating layer, and a resistive laye esistive layer making a rectifying contact with the semiconductor surface via an aperture in the insulating layer present in each picture element so as to obtain exchange of charge be tween the conductive regions and the respective parts of the
targer present below the regions, the RC time of the capacitor formed by a conductive region, the insulating layer and the
underlying part of the semiconductor surface, and the part of from said wall along said entrance axis, and a final metal electhe resistive layer situated between a conductive region and trode member electrically insulated from and spaced from said
the semiconductor surface being shorter than the scanning metal members and wall; each of said intermediate members the semiconductor surface being shorter than the scanning
ime of the whole side to be sanned 6 Claims
 1. For use in a color television cathode ray tube, a unitized,
in-line electron gun; that is, a gun generating three coplana electron beams and having beam-forming and beam-shaping electrodes common to the three beams, said electrodes being
supported as a coherent unit in spaced tandem succession along supported as a coherent unit in spaced tandem succession alon teagun sectrol axis by electrode support tabs extending from ented solid structural beads positioned on opposite sides of the electrodes; that is, on opposite sides of the beam plane, at leas one of said electrodes having on each side thereof at least one
pair of widely spaced, relatively narrow tabs integrally formed with the electrode, and lying respectively in planes transverse o the gun axis, with said tabs embedded at widely spaced points on the glass bead to enhance the lateral stability of the electrodes, once embedded in the beads, to promote the estab
lishment and maintenance of parallelism, precise spacing, and aperture concentricity of adjacent ones of said electrodes, said gun being characterized by each of said support tabs in said pair of tabs having a distal end and a stress-absorbing section, said distal end of each of said tabs being embedded in one o
said structural beads, with said stress-absorbing section at mos said structural beads, with said stress-absorbing section at mos
partially embedded in said structural bead, and with said stress artiarbing section being of such composition, shape and dimen ion as to deflect beyond its elastic limit during its embedmen said structural bead and to thereby yield and set permanently residual stress upon said electrode and said structural bead which would tend to fracture said bead or displace said elecwhich would tenative to said bead and thus to others of said electrodes.
roder

## 4,096,409

MULTISTAGE DEPRESSED COLLECTOR Johann Richard Hechtel, Redrood CIty, Calif., assignor to Litton Systems, Inc., San Carios, Calif.
U.S. C1. 315-5.38

15 Clim 1. In combination with an electron tube of the type contain ing an interaction region and means, including a cathode, for generating and directing electrons through said interaction
region, a collector located beyond an end of said interaction region for collecting electrons, the improvement wherein said
metal members and wall; each of said intermediate members
having passage openings along said entrance axis to permit electrons to move toward said final member; said final metal member having a surface concavely curved along two dimensions and extending straight along the third dimension as
viewed from said entrance, said curved surface of said final metal member having an apex and said apex being laterally metal member having an apex and said apex being laterally
spaced from said entrance axis, wherein said entrance is located asymmetrically with respect to said final metal member;
from the DC source to high frequency alternating curren and in
lamp;
control means for controlling operation of the inverter; and means for protecting the control means from capacitiv displacement currents flowing in the circuit

## 4,006,411 <br> GAS DISCHARGE TUBE AND MEANS FOR GAS DISCHARGE TUBE AND MEANS FOR MAINTAINING AN INVISIBLE GAS DISCHARGE MANIANGEREIN

Willem Aling, Eindhoven, Netherlands, assignor to U.S. Philips Corporation, New York, N.Y.
Claims priority, application Netherlands, Nov. 21, 1975, Int. C. ${ }^{2}$ H05B 37/02, 41/392 U.S. C. 315-158

13 Claims

each of said intermediate electrodes being concavely curved along two dimensions as viewed from said beam entrance and extending essentially straight along the third dimension, and means for applying different voltages to each of said, metal
members and said wall, said voltages being progressively members and said wall, said voltages being progressively
smaller in level with respect to the voltage of said tube cathode, commencing with said metal wall for defining concaveshaped elestrostatic equipotentials as viewed from said beam entrance, whereby a substantial majority of electrons entering said collector through said entrance, are decelerated, and then least one of said intermediate metal electrode members.

## 4,096,410

INVERTER CIRCUIT PROTECTION
Robert P. Alley, Manlius, N.Y., asedgnor to General Electric Company, Carmel, Ind., 1976, Ser. No. 705,072 Int. Cl. ${ }^{2}$ H05B $37 / 00$ 8 Claims
U.S. C. 315-86
means for generating a coloration signal in response to said means ond output signal and said display information signal;
second first switching means coupled to each of said segment electrodes and conductive in response to said bleaching signal to cause an electric current to flow through said each of second switching means coupled to said each of said seg.

ment electrodes and conductive in response to said coloration signal to cause an electric current to flow through said each of said seg
induce coloration; and
means for generating an auxiliary signal to cause a display segment corresponding to said each of said segment elecodes to remain in its previously activated state for an xtended period of time.

4,096,413
LICKER ELIMINATING INTENSITY CONTROLLER FOR DISCHARGE LAMP DIMMING CIRCUIT Company, Carmel, Ind. N.Y., assignor to Gel iled Feb. 20, 1976, Ser. No. 659
lnt. C. ${ }^{2}$ H05B 41/392
U.S. CI. 315-276

3. An intensity control circuit for a gaseous discharge lamp mming system, comprising:
a transformer including a primary winding for connection to a line source of AC electrical energy, and
secondary winding having output means including a pair
of end leads and a center tap and rectifier means for producing a pulsating DC potential;
voltage regulating means connected to the output means of the secondary winding for producing a regulated DC ng means;
a programmable unijunction transistor regulating means; terminal, a cathode terminal and a gat having an anode terminal being connected to the a gate terminal, the anode viding anode voltage for the transistor;
voltage divider connected across the output means of the secondary winding and including means for providing a selectively variable gate voltage for the transistor;
at least one solid-state switch having a control lerminal
connected to the transistor cathode terminal for turnin
underlying part of the semiconductor surface, and the part of from said wall along said entrance axis, and a final metal elec the resistive layer situated between a conductive region and trode member electrically insulated from and spaced from said the semiconductor surface being shorter than the scanning metal members and wall; each of said intermediate members
time of the whole side to be scanned.

## 4,096,408

UNITIZED IN-LINE ELECTRON GUN HAVING
STRESS-ABSORBING ELECTRODE SUPPORTS
Lejos T. Bozzay, Chicago, and Norman F. Giola, Lombard, bo
of III., assignors to Zenith Radio Corporation, Glenview, III. Filed Jan. 28, 1976, Ser. No. 653,050
Int. C1. ${ }^{2}$ H01J 29/02. 29/46. 29/82
U.S. C. $313-417$

6 Claims


1. For use in a color television cathode ray tube, a unitized in-line electron gun; that is, a gun generating three coplanar electron beams and having beam-forming and beam-shaping electrodes common to the three beams, said electroses being
supported as a coherent unit in spaced tandem succession along supported as a coherent unit in spaced tandem succession along
the gun's central axis by electrod support tabs extending from each electrode and embedded in two elongated, axially oriented solid structural beads positioned on opposite sides of the
electrodes; that is, on opposite sides of the beam plane, at least electrodes; that is, on opposite sides of the eam plane, at least
one of said electrodes having on each side thereof at least one pair of widely spaced, relatively narrow tabs integrally formed waith the electrode, and lying respectively in planes transverse
to the gun axis, with said tabs embedded at widely spaced to the gun axis, with said tabs embedded at widely spaced
points on the glass bead to enhance the lateral stability of the points on the glass bead to enhance once embedded in the beads, to promote the establishment and maintenance of parallelism, precise spacing, and aperture concentricity of adjacent ones of said electrodes, said gun being characterized by each of said support tabs in said
pair of tabs having a distal end and a stress-absorbing section pair of tabs having a distal end and a stress-absorbing section,
said distal end of each of said tabs being embedded in one of said distal end of each of said tabs being embedded in one of
said structural beads, with said stress-absorbing section at most partially embedded in said structural bead, and with said stressabsorbing section being of such composition, shape and dimension as structural bead and to thereby yield and set permanently in a deformed but supportive attitude substantially free of any residual stress upon said electrode and said structural bead which would tend to fracture said bead or displace said electrode relative to said bead and thus to others of said electrodes.

## 4,096,409

## MUITISTAGE DEPRESSED COLLECTOR

Johann Richard Hechtel, Redwood Clty, Calif., assignor to itton Systems, Inc.., San Carlos, Calify, Calin.
Flled Oct 4, 1976, Ser. No. 729,488

Filed Oct. 4, 1976, Ser. No. 729,48
U.S. C1. 315-5.38

Int. Cl. ${ }^{2}$ H01J $23 / 02$
15 Claims U.S. In combination with an electron tube of the type containing an interaction region and means, including a cathode, for
generating and directing electrons through said interaction generating and directing electrons un end of said interaction region for collecting electrons, the improvement wherein said
collector comprises: a metal wall containing a circular electron collector comprises: a metal wall containing a circular electron
entrance for permitting electrons to enter, said entrance having an axis, a plurality of metal intermediate electrode members electrically insulated from and spaced from one another and
having passage openings along said entrance axis to permi
electrons to move toward said final member; said final metal nember having surface concavely curved and mota ions and extending straight along the third dimension as viewed from said entrance, said curved surface of said final metal member having an apex and said apex being laterally saced from said entrance axis, wherein said entrance is lo eng two dimensions as viewed from said beam entrance and xtending essentially straight along the third dimension, and
means for applying different voltages to each of said metal members and said wall, said voltages being progressively maller in level with respect to the voltage of said tube cath de, commencing with said metal wall for defining concave haped elestrostatic equipotentials as viewed from said beam said collector through said entrance, are decelerated, and then everse in direction of travel, and then strike the backside of a least one of said intermediate metal electrode members.

INVERTER CIRCUIT PROTECTION
Robert P. Alley, Manlius, N.Y., assignor to General Electric Company, Carmel, Ind.
U.S. C. 315-86


1. A circuit for operating at least one gaseous dist a ma DC electrical energy source, comprising:
from the DC source to high frequency alternating curren and including means for connection to the at least on lamp;
means for protecting the coprol means from capacitiv displacement currents flowing in the circuit

## 4,096,411

GAS DISCHARGE TUBE AND MEANS FOR
MAINTAINING AN INVISIBLE GAS DISCHARGE
THEREIN
willem Aling, Eindhoven, Netherlands, assignor to U.S. Philips Corporation, New York, N.Y. Claims priority, application Netherlands, Nor. 21, 1975 .
U.S. Cl. 315-158

13 Claims

8. A gas discharge display system comprising, a gas dis charge display tube having an anode and a plurality of cath odes coupled to a drive circuit for selectively applying first and second voltage levels to the cathodes, means for supplying a voltage level to produce a visible glow at those cathodes which are at the first voltage level but which is insufficient to produce a visible glow at the cathodes which are at the second voltage level, a first current path including a unidirectional conducting element for coupling the tube anode to the output of said pulse-shaped voltage supplying means, a direct current coupling the tube anode to a source of DC supply voltage so that an uninterrupted DC current flows from the DC voltage source to said anode at a level insufficient to cause a visible cathode glow but able to continuously maintain a substantially invisible gas discharge in the display tube.

## DRIVER CIRCUIT FOR ELECTROCHROMIC DISPLAY DRER CIRCUT FOR DEVICE

Fukuo Sekiya; Heihachiro Ebihara; Misao Uchino; Katsuo Nishimura, and Takanori Nanya, all of Tokorozawa, Japan, assignors to Citizen Watch Company, Limited, Tokyo, Japan Filed Jul. 27, 1976, Ser. No. 709,111
Claims priority, application Japan, Aug. 1, 1975, 50-94005; Oct. 31, 1975, 50-131002; Nor. 5, 1975, S.
Int. Cl. ${ }^{2}$ H05B 37/2
U.S. CI. 315-169 R 21 Claims 1. A driver circuit for an electrochromic display device having segment electrodes and a common electrode adapted to display information in response to a display information signal, comprising
torage means for storing said display information signal and from said display information signal;
eeans for generating a bleaching signal in response to said first output signal and said display information signal;
means for generating a coloration signal in response to said second output signal and said display information signal first switching means coupled to each of said segment elec trodes and conductive in response to said bleaching signa 10 cause an electric current to flow through said each of said segwithing means coupled to said each of said seg

ment electrodes and conductive in response to said color ation signal of cause an eletric current io dive throug said each of said segmen eans for gener
egment corresponding auxiliary signal to cause a display segment corresponding to said each of said segment eiec
trodes to remain in its previously activated state for an trodes to remain in tits
extended period of time.

4,096,413
FLICKER ELIMINATING INTENSITY CONTROLLER FOR DISCHARGE LAMP DIMMING CIPCUIT obert P. Alley, Manlius, N.Y., assignor to General Electric Company, Carmel, Ind.

Filed Feb. 20, 1976, Ser. No. 659,665
Int. C. ${ }^{2}$ H05B 4 $1 / 392$

5. An intensity control circuit for a gaseous discharge lamp dimming system, comprising:
a transformer including a primary winding for connection to $a$ line source of AC electrical energy, and
a secondary winding having output means including a pair
of end leads and a center tap and rectifier means for producing a pulsating DC potential;
the regulating means connected to the output means of the secondary winding for producing a regulated DC potential across the regulating means;
charging means connected across the regulating means a programmable unijunction transistor having an anode
terminal, a cathode terminal and a gate terminal, the anode terminal being connected to the charging means for providing anode voltage for the transistor;
voltage divider connected across the output means of the secondary winding and including means for providing a selectively variable gate voltage for the transistor; at eoast one solid-state switch having a control terminal on the switch upon conduction of the transistor; and means for eliminating the visual effects of non-synchronous, high frequency line perturbations.

Sabert N. HIMMER CONTROL CIRCUIT Sabert N. Howell
York, N.Y.

Filed May 24, 1977, Ser. No. 800,142 Int. Cl. ${ }^{2}$ GOSF 1/00; H05B 37/02, 39/04, 41/36 9 Clain
U.S. $\mathbf{~ C 1 5 - 2 9 1 ~}$


1. In a lighting system for television studios and the like including an AC voltage source for supplying voltage to one or more lamps and a dimmer unit connected to each of said one
or more lamps for controlling the effective voltage applied to a respective lamp and consisting essentially of a pair of gatecontrolled rectifiers having anode, cathode and gate electrodes connected with their anode-to-cathode paths in inverse parallel arrangement between one terminal of said AC voltage source former means for applying drive pulses to the gate electrodes of said rectifiers for rendering said rectifiers alternately conductive in successively occurring half-cycles of said AC voltage source, apparatus for producing drive pulses individual to each of said one or more dimmer units, said apparatus comprising, in combination:
termined shape and amplitude and of a duration corretermined shape and amplitude and of a duration corre--
sponding to the period of a half-cycle of the voltage from
said AC source and having a fixed phase-relationship thereto;
dimmer control channel for each of said one or more lamps, each including
control voltage and said she to receive an adjustable DC conerative to produce rectangular pulses the time of occurrence of the leading edge of which is determined by the combined potential of said DC control voltage and said shaped waveform, and the trailing edges of which are in
time coincidence with the zero crossing of said AC voltage source;
third circuit means connected to receive said rectangular pulses and operative in response thereto to generate drive pulses in time coincidence with the leading edge of each of said rectangular pulses; and
former means of a respective one of said dimmer units.

## 4,096,415

SWITCHED VERTICAL DEFLECTION CIRCUIT Peter Eduard Haferl, Adliswil, Switzeriand, assignor to RCA Corporation, New York, N.Y.
Filed Mar. 31, 1977 , Ser. No. 783,217
Clasime priority, application United Kingdom, Apr. 26, 1976, 16869/76

Int. C. ${ }^{2}$ H01J 29/72
U.S. C. 315-393

1. A switched vertical deflection system com, 10 Claims horizontal deflection circuit including first mpising: erating horizontal rate energy signals;
erating horizontal rate energ
energy storage capacitance means coupled to said vertical deflection winding;
first and second switching means coupled to said first means
and said energy storgese capacitance and said energy storage capacitance means; and second means coupled to said first and second switching means for switching conductive states of both of said
switching means for coupling successively smaller porswinching means for coupling successively smailer per-
tions of said horizontal rate energy signals to said energy storage capacitance means during a first part of a vertical
trace interval and successively trace interval and successively larger portions of said

horizontal rate energy signals during a second part of said vertical trace interval for developing a vertical deflection current in said vertical deflection winding during said
vertical trace interval, vertical trace interval, said second means causing said first switching means to
conduct during a vertical retrace interval for coupling substantial portions of said horizontal rate energy signals to said energy storage capacitance means during said vertical retrace ions hor prevening undesired oscill tions within said horizontal deflection circuit.

4,096,416
VERTICAL DEFLECTION CIRCUIT WITH RETRACE Sichael Le HITCH PROTECTION
ration, New York, N.Y.
Filed Nor. 19, 1976, Ser. No. 743,312
Filed Nor. 19, 1976, Ser. No. 743,312
Int. Cl. ${ }^{2}$ H01J 29/70
U.S. CT. 315-401


A vertical deflection circuit comprising: deflection winding;
deflection amplifier with an input terminal and having an output terminal coupled generating a trace current in salection cycle in response to ing a rrace intervalin each defection cyine in
drive signals coupled to said input terminal;
fors rotage source coupled to said amplifier for providing a frivs voltage source coupled to said amplifier for providing an operating voltage to said amplifier;
a second voltage source;
terminal and said second volupled between said outpu
voltage of greater magnitude than said first voltage source
for generating a retrace current in said deflection winding for generating a retrace current in said deflection winding
during a retrace interval in each deflection cycle, said during a retrace interval in each deflection cycle, said
bidirectional switching means including a controlled semi conductor comprising a control terminal coupled to a firs terminal at which there is developed a deflection rat signal and a main conductive path coupled to said second voltage souce and one of said output terminal and said
deflection winding, said control terminal responsive to said drive signals for biasing said main conductive path from one conduction state to another for providing said voltage of greater magnitude during at least a portion of said retrace interval; and
variable resistance means coupled in series with said main conductive path, said variable resistance means providing a relatively large resistance to the current in said main
conductive path when said drive signals bias said main conductive path into conduction during a substantia portion of said trace interval for limiting the current in said main conductive path, and said variame resistance during said retrace interval.

4,006,417
PRINTING RIBBON FOR A TENSIONIN
Jacques Andre Chambolle, Danjoutin, France, assignor to Comagnie Internationale pour 1 inform Societe Anonyme), Paris, France
Filed Oct. 28, 1976, Ser. No. 736,307 Claims priority, application France, Nov. 3, 1975, 7533579 Int. C1. ${ }^{2}$ H02P $1 / 42$
e. first permanent brake means mounted on said first rotatable shaff for resisting rotation thereof, second permanent brake means mounted on said second f. second permanent brake means mounted on
rotatable shaft for resisting rotation thereof,
$g$. an electric power source, and
switching means connected between said power source and said first and second rotary drive means to supply a
current to one of said drive means to cause the rotatable shaft associated therewith to be driven in its normal direction of rotation, and simultaneously to supply a current of higher strength to the other drive means to cause the driving shaft of the later to a diven higher than that of the rotatable shaft coupled to it.

UTOMATIC CHANGE,GEAR CONT USE IN ELECTROMOBIL
Katsujl Marumoto; Tsutomu Omae; Toshio Suzuki; Takanorl Shibata, all of Hituchi, and Hirohisa Yamamura, Naka, all of Industrial Science and Technology, Tokyo, Japan
Claims priority, application Japan, Jun. 18, 1976, 51-71229
U.S. C. 318- 12


An automatic change-gear control device for use in an electromobile, comprising:
a driving electric motor; motertric motor and a d.c. power source or battery;
transmission disposed between said driving motor and a driving wheel, and including a clutch and change gears; a main command circuit for controlling a motor current

1. Apparatus for driving ard tensioning a printing ribbon between a first roller and a second roller supported on respec tive first and second rotatable shafts, comprising: a driving a. first bi-directional rotary drive means having a driving shaft coupled to said first rotatable shaft for driving the first roller in a normal direction of raction to wirst roller,
ribbon on said firs ribbon on said first roller,
b. second bi-directional rotary drive means having a driving shaft coupled to said second rotatable shaft for driving the second roller in a normal direction of rotation to wind the ribbon on said second roller,
c. first friction clutch means mounted between said driving shaft of said first rotary drive means and said first rotatable shaft, and adapted to slip only when said driving shat of
said first drive means is driven in the reverse of its normal direction of rotation, at a speed higher than that of said rotatable shaft,
d. second friction clutch means mounted between said driv ing shaft of said second rotatable drive means and said driving shaft of said second drive means is driven in the reverse of its normal direction of rotation at a speed higher than that of said second rotatable shaft,
according to
brake means;
motor control circuit for feeding a control signal to said motor driving circuit by receiving an output of said main motor driving circ
means for detecting a motor current; change over and control said clutch and gears in said transmission according to a predetermined given pattern by using as an input a detected motor current and a vehicle speed, said logic circuit driving said clutch so as to
bring said gears in engagement with'said motor, after said gears have been selected, upon completion of speed matching;
speed matching control means for adjusting the r.p.m. of a motor commensurate with a gear ratio after gear-change, with said clutch maintain he time of gear change;
said motor control circuit and seircuit disposed between for stabilizing a control system; and
damping compensating circuit for detecting the time when the speed matching is completed, and generating a com-
pensating signal for increasing a motor current for a given including an oscillator having integral LC oscillation activat
whereby the build-up duration of a motor scurrent immediately after gear change may be accelerated so as to shorten
a gear changing time. a gear changing time.

4,096,419
ELECTRIC MOTORS
John Pelham Wren, and Michael Keith Steventon, both of Swindon, England, asaignors to Plessey Handel Und Investments don, England, assignors to Plessey Handel Und
AG., Zug, Switzerland
Filed Sep. 10, 1976, Ser. No. 722,269 Chims priority, application United Kingdom, Sep. 12, 1975, 37506/75; Sep. 23, 1975, $38898 / 75$
Int. C1. ${ }^{2}$ H02K 29/00
U.S. CI. 318-138

13 Claims


1. A motor arrangement comprising a rotor having an even number of permanent magnet rotor poles arranged on the
circumference of a circle centered at the moto shaft, a stator having at least one air cored stator winding per phase wherein the number of stator windings per phase is less than the number of rotor pole pairs, and commutator means for controlling
current to be fed to said stator windings so that said stator current to be fed to said stator windings so that said stator
windings react with the rotor poles to produce rotation of the rotor so that the sum, for all phases, of the product of magnetic flux and current for each phase at any angular position of the
motor shaft is substantially constant thereby to provide submotor shaft is substantially constant thereby to provide sub-
stantially constant torque at the motor shaft.

## 4,096,420

CONTROL CIRCUIT FOR A BRUSHLESS D.C. MOTOR Alexander Benett Gosling, and Barrie Ewart Mealing, both of Alexander Benett Gosling, and Barrie Ewart Mealing, both of
Cambridge, England, assignors to Danfoss A/S, Nordborg Denmark Filed Jul. 6, 1976, Ser. No. 702,494 ed Jul. 6, 1976, Ser. No. 702,
Int. C.2
U.S. CI. 318-254

8 Claims


1. A pressing machine, particularly a household refuse compactor or the like, comprising, in combination, a pressing ram drive means for moving said ram from a starting position to an ncluding an electric drive motor; and control means for establishing the end-of-stroke position of said ram, including a direc tion-reversing circuit connected to said drive means for revers-
ing the direction in which said drive means moves said ram and ing the direction in which said drive means moves said ram and comprising a direction-reversing arrangement having a curren
path for activating current, a controllable electronic switch ath for activating current, a controliable electronic switch said direction-reversing arrangement, and control-signalgenerating means connected to said drive motor and operative for controlling the conductivity of said switch by generating and applying to the control input of said electronic switch a control signal dependent upon the current flowing through for establishing a predetermined relationship between the pressing force exerted by said pressing ram and the drive motor current by automatically varying the relationship be tween said control signal and said drive motor current.

## MOTOR CONTROL SYSTEM

MOTOR CONTROL SYSTEM
John Augustus Fleming, and Frank James Allen, both of New. town, Conn., assignors to E. I. Du Pont de Nemours and Wilmington, Del.

$$
\begin{aligned}
& \text { Filed Dec. 3, 1975, Ser. No. } 637,540 \\
& \text { Int. Cl.2 H02P } 5 / 100
\end{aligned}
$$

U.S. Cl. 318-314

Int. Cl. ${ }^{2}$ H02P $5 / 00$

1. In a motor control system for controlling sped Claims able speed motor, using switching means for selectively vary able speed motor, using switching means for selectively vary-
ing the duty cycle of an alternating current signal supplied to said motor, in accordance with different operating conditions. the combination comprising:
a first signal level generator for generating a first signal level that varies in the presence of a first operating condition said hirsi sig the
responsive to tesence of said first operating incegrato
PRESSING MACHINE, PARTICULARLY HOUSEHOLD REFUSE COMPACTOR AND CONTROL CIRCUIT arl-Heinz Farber, THEREFOR assignors to Bosch-Siemens Hausgerate GmbH, Munich, Germany

Filed Jun. 18, 1975, Ser. No. 587,954 Claims priority, application Germany, Jun. 27, 1974, 2430903 U.S. Cl. 318-282 Int. C1. ${ }^{\text {H }}$ H2P 7/28
U.S. Cl. 318-282

position of said rotor, a controllable electronic switch element
ying in series with said stator coil and said D.C. source, said switch element controlling the current through said stator coil

For integrating in a first sense and in a second sense oppoTor integrating in a first sense and in a second sense oppo
site said first sense at all other times, thereby to vary said first signal level,
a second signal level generator for generating a second signal level that varies according to a second operating condition,
zero-crossover detector responsive to said alternating current signal for producing zero-crossover pulses corre-
sponding to the zero-crossover times of said signal for controlling said switching means, and
time delay means responsive to the greater deviation of said first and second signal levels from a predetermined leve for delaying said zero-crossover pulses for a time perio proportional to the amplitude of said greater deviation,
thereby to vary said duty cycle of said alternating current thereby to vary said with said first or second levels having the greater deviation from said predetermined level.

4,096,423
DIRECT CURRENT MOTOR CHOPPER PROPULSION
Ronald Barry Balley; Thomss Detlor Stitt, and Dennis Francis Williamson, all of Erie, Pa., assignors to General Electric Company, Erie, Pa.
Continuation-in-part of Ser. No. 662,885, Mar. 1, 1976 abandoned. This application Feb. 7, 1977, Ser. No. 766,297
U.S. CT. 318-370

18 Claims


A d-celeciric traction motor propulsion system compris-
ing:
a a bridge circuit having first, second, third and fourth sices, said first and third sides being opposite each other;
b. a d-c power source having a first terminal connected to a junction intermediate said first and second sides and having a second terminal connected to a junction iner
said third and fourth sides; a d-c electric traction motor including an connected to a junction intermediate said second and third sides;
d. a chopper circuit including a main thyristor and a commutating circuit, said main thyristor being connected in said first side for metering power to said armature; first side for metering power to said armature;
roviding an armature cur
propulsion of said motor circuit is non-conductive. third conduction means
providing an armature current path only during electrical braking of said motor; and
h. continuously variable impedance means serially connected between said second conduction means and ancommutating circuit being connected to a junction intermediate said variable impedance means and said armature.

4,096,424
ELECTRICAL CIRCUIT FOR CONTROLLING THE FEED RATE OF PARTS
George J. Hysler, St. Clair Shores, Mich., assignor to N.D.T Laboratories, Inc., Warren, Mich.

$$
\begin{aligned}
& \text { res, Inc., Jul. } 12,1976 \text {, Ser. No. } \\
& \text { Filed Jul, } 165
\end{aligned}
$$

U.S. CI. 318-480 Int. C1. ${ }^{2}$ G01D 5/34 $\quad 15$ Claims


1. In an electronic circuit for automatically controlling the feed rate of parts including:
motive means for causing movement of said parts along a
passageway; and
detector given point and producing a detector signal in respons thereto; the improvement comprising
ircuit means connected to said detector means for producing a rate signal related to said detector signal, including source of varying magnitude and first switching means for controlling the charge on said capacitance means in acco dance with said detector signal;
ontrol means connected to said circuit means for control ling the operation of said motive means in accordance with said rate signal, including second switching means connected in circuit with said motive means for changing the operative state of said motive means whenever the charge on said
mined level; and
reset means connected to said capacitance means for rapidly discharging said capacitance means whenever the magn tude of the signal from said voltage source decreases below said predetermined level.

## 4,096,425

SERVO Francis Brown, and Colin Kelth Sharp, both of Edinburgh, Scotland, assignors to Ferrant Limited, Hollinvood, England application Apr. 27, 1976, Ser. No. 680,779
U.S. CI. $318-561$

9 Claims
loop in.

1. A servo control system comprising a feedback loop including means for supplying an error signal representing the
difference between actual and desired conditiors of a con-
trolled system, means responsive to the error signal to produce a control signal for said controlled system, means for applying excursion of one polarity providing a disturbance signal and second excursion of opposite polarity to substantially cancel

NUTATION DAMPING $\stackrel{4096,427}{ }$
DEVICES Redondo Beach, both of Calif, and Jeremiah O. Salvatore, Rodondo Beach, both of Calif,, sssignors to Hughes Aircraft
Company, Culver City, Calif. Company, Culver City, Calif.

Filed Oct. 21, 1975, Ser. No. 624,342
Int. $\mathbf{C l}^{2}{ }^{2}$ B64C $17 / 02$

he effects of the disturbance signal on the system, means for extracting from the loop a loop response signal, comparison means for comparing the disturbance signal and the loop response signal and means responsive to the output of the
parison means to vary the gain in the feedback loop. parison means to vary the gain in the feedback loop.

## 4,096,426

NON-LINEAR ERROR SIGNAL ATTENUATOR FOR SERVO SYSTEM
Brian P. Tremaine, and Charies E. Mendenhall, both of San
Jose, Caili, assignors to Sperry Rand Corporation, New
York, N.Y. Filed Aug. 9, 1976, Ser. No. 712,717
U.S. C1. $318-611$

Int. C. ${ }^{2}$ G05B $5 / 01$
4 Claim


1. A servo system for controlling the energization of an actuator employed to move a member in response to an ene zizing signal, said system comprising in combination:
position sensing means for generating an error si
sive to the present position of said member;
sive to the present position of said member; velocity of said member;
a second circuit for receiving and attenuating said error
signal by an amount proportional to the magnitude of the error signal to generate a second signal;
to generate a differential signal for energization of said
to gener
actuator

2. A nutation control system for a dual-spin stabilized device having a rotor, a platform, a despin motor, a relative rate
sensor and a nutation sensor, in which the invention comprises a modulator coupled to the output of said relative rate sensor and to the output of said nutation sensor for modulating the signal from said nutation sensor with the signal from said relative rate sensor, the output of said modulator being coupled to said despin motor to cause said motor to apply a torque to said device to reduce the amount of nutation.

INSTRUMENT SUPPORTING TRANSFORMER UNIT INSTRUMENT SUPPORTING TRANSFORMER UNIT Kans., and Merwin K. Alexander, St. Louls, Moo., aesignors to Optical Associates, Inc., St. Lonis, Mo. Filed Oct. 7, 1976, Ser. No. 730,633 U.S. CI. ${ }^{\text {Int. C. }{ }^{2}}$ ( A61B 19/02; A61C 19/02; H01M $10 / 46$


1. A transformer unit for use in furnishing voltage to one or more electrically operated medical instruments comprising a mounting means, a transiormer means incorporating both
primary and secondary windings supported by said mounting means, a series of instrument supports held by the mounting means and electrically coupled with the transformer for furmeans and electrically coupled with the transformer for fur-
nishing an electrical charge to each support for selective energization of certain of its respective instruments, said transformer capable of electrically coupling to a source of energy
for energizing the unit, at least one of said supports including or energizing the unit, at least one of said supports inclucing ive recharging and electrical wiring its supported instrument. and a plurality of electrical connecting means provided upon each instrument support for their electrical coupling together
and to the transformer means for furnishing selected variable and to the transformer means for furnishing selected variable vion of its reapectively held medical instrument.
tion

VOLTAGE AND CURRENT REGULATOR FOR GENERATING SYSTEMS

METAL-OXIDE-SEMICONDUCTOR VOLTAGE Wesley K. Waldron, Scotia, N.Y., assignor to General Electric Company, Schenectady, N.Y.
Filed Apr. 4, 1977, Ser. No. 783,965

Filed Apr. 4, 1977 , Ser. No. 783,965
Int. Cl. ${ }^{2}$ GOSF $1 / 60$; H03K $5 / 20$
U.S. Cl. 323-22 R

16 CTaims


1. A voltage reference circuit including essentially only metal-oxide-semiconductor (MOS) transistors comprising: a first MOS transistor having gate, source and drain elec-
trodes; a second mOS transistor having gate, source and drain electrodes, the gate and source electrodes of said second ther and further connected to said drain of said first MOS transistor
third MOS transistor having gate, source and drain elec trodes, said gate electrode of said third MOS transistor connectrd to said gate and source of said second MOS transistor and said drain electrode connected to said drain electrode of said second MOS transistor and said source electrode connected
Mourth MO
trodes, said gate and having gate source and drain elecsource electrode of soid first MOS transistor and said drain electrode connected to said source electrode of said third MOS transistor;
and econd device MOnsistors characterized by firs and second device channel width to length ratios which are essentially equal.

4,096,431
DISCONNECTING THYRISTORS FROM THYRISTOR

## CONTROLLED REACTANCE

tiebolag, Vesteras, Sweden Sweden, assignor to
Cleime pried Marr 21, 1977, Ser. No. 779,460
Chims priority, application Sweden, Mar. 29, 1976, 7603736

```
U.S. C. 323-119
``` Cl. \({ }^{2}\) H02J 3/18
4. In a generating system including a generating device 4. olre current, and a regulator for monitoring he gencraco號 voluge is less than a predetermined value, an improved regulator comprising:
a first pair of terminals including a first terminal connectable to one side of the generator, and a second terminal;
fourth terminal connectable to the ther side of said and erator;
connecting strap connected across one pair of said first and second pairs of terminals, the other of said pairs of terminals being connectable across the field coil of the genera ing device;
sensing means responsive to the voltage developed between said first and fourth terminals and operative to develop a mined value, and operative to develop a second control signal when said vollage exceeds said predetermined value;
first resistor
a first switching means having a first electrode coupled to said first terminal by said first resistor, a second electrode coupled to said sensing means to receive said first and
second control signals, and a third electrode, said first second control signaing means being responsive to said first control signal and operative to switch to a first state in which a first current having a magnitude set by said first resistor is developed at said third electrode, and responsive to said second control signal and operative to switch to a second state in which current flow through said first resistor is
substantially prevented and as a result any second current developed at said third terminal is of no substantial value and
second switching means having a fourth electrode coupled to said second terminal, a fifth electrode coupled to said third terminal, and a sixth electrode coupled to said third electrode, said second switching means being responsive
to said first current and operative to switch to a first state to said first current and operative to switch to a first stat
wherein said second terminal is effectively connected to said third terminal so as to cause said field coil to be energized, and responsive to said second current and operative to switch to a second state wherein said field coil is energized.

1. Apparatus for phase compensation in an AC networ
pled to said network by transformer means in which the im provement comprises
switching means coupling said thyristor control means, said reactance means and said transformer means for disconnecting said thyristor control means from said reactance means and said transformer means and leaving said reac tance me

METAL DETECTORS FOR DISCRIMINATORY METAL DETECTORS FOR DISCRIMINATORY
Paul Anthony Spencer, London, England, assignor to Arado Electronics, London, England

Filed Dec. 1, 1976, Ser. No. 746,586
Claims priority, application United Kingdom, Jul. 14, 1976

29399/76
Int. C. \({ }^{\mathbf{2}}\) G01V 3/10

1. A metal detector comprising a coil arrangement having input and output terminals, an energizing audio frequenc acillator connected to the inpule a null signal at the outpur terminals in the absence of proximate conductive objects, means connected to the output terminals for separately detect ing in-phase and quadrature components of the said signal created by proximate conductive objects which absorb energy
and which influence the sense of the quadrature component in dependence upon whether the objects are non-ferromagnetic or ferromagnetic, a continuously variable frequency audio oscillator having a frequency control terminal responsive to the quadrature component to vary the frequency of the oscillator above and below a base frequency in dependence upon the an audible tone from the output of the oscillator, and mean responsive to the in-phase component to vary continuously the amplitude of the signal applied to the transducer in dependence on the strength of the in-phase component.

AUTOMATIC INSPECTION FOR THE DEPOSITION OF CONDUCTIVE LIQUIDS
Louis F. Marino, Teaneck; Paul P. Monteleone, Sparta, and James Remer, Matawan, all of N.J., assignors to The United Silise of America as represented by the Scretary of the Army, Washington, D.C.
\[
\begin{aligned}
& \text { n, D.C. } \\
& \text { Filed Sep. 1, 1976, Ser. No. } 719,55 . \\
& \text { Int. } \mathbf{l l}^{2} \text {. G01N } 27 / 42
\end{aligned}
\]
U.S. Cl. \(324-30 \mathrm{R}\) Int. C. \(2^{2}\) G01N 27/42 \({ }^{719}\) Ser. No. ductive liquid to a surface comprising:
a reservoir containing said conductive liquid
dispensing means, positioned above said surface, for apply
ing said conductive liquid to said surface;
means and said surface including a power dispensing
means for measuring current flow through said circuit;
whereby current can flow through said circuit only when means and said surface is unbroken;
probe means positioned above said surface for sensing the level of liquid deposited on said surface; and and said surface including a power source and means for

measuring current flow through said circuit, whereby measuring current flow through said circuit, whereby
current can flow through said second circuit only when current can flow through said second corrcuit only when
the liquid deposited on said surface contacts said probe means.

Filed Dec. 27, 1976, Ser. No. 754,292
Int. Cl. \({ }^{2}\) G01R 15/08, 1/22
U.S. Cl. 324-115

1. An automatic ranging clamp-on ammeter comprising clamp-on magnetic core including a section movable between the core open and closed positions, a measuring coil encircling said core, means for measuring the voltage across said measur-
ing coil including a meter and rectifier and a resistor connected ing coil including a meter and rectifier and a resistor connected varying magnetic flux in said core for varying the sensitivity of said voltage measuring means including a sensing coil encir cling said magnetic core, a shunt resistor and means including a relay having a control input responsive to the output of said sensing coil and having a switch output connected in series with said shunt resistor across said meter whereby variation of
said sensing coil output above and below a predetermined level alternatively opens or closes said switch to correspondingly vary said sensitivity.

\section*{4,096,435}

Ichiro Sabe, Yao, Japan, assignor to Sanyei Electronics, Corporation, Japan Filed Dec. 6, 1976, Ser. No. 748,066 Jun 21, 1976, 51.73529 U.S. CI. 324-122 t. Cl. \({ }^{2}\) G01R 13/02, 19/04

1. A level indicating device comprising first and second terminals for receiving a signal having a level to be indicated, a first plurality of similarly poled serially connected diode devices having junctions therebetween and first and second ends, a second plurality of serially connected resistive devices tween and first and second ends, a plurality of light emitting diodes each connected between corresponding junctions of said first and second sets of series connected devices and between the first and second ends of both said sets of series connected devices, whereby said light emitting diodes bridge both of said sets of series connected devices to form a ladderlike configuration, and said first end of said first set of series
connected devices and said second end of said second set of series connected devices are connected respectively to said first and second terminals.

\section*{4,096,436}
generate a product signal proportional to the produc thereof;
to isolation means operative to read said product signal and to generate an electrical output signal which is propo tional thereto and electrically isolated therefrom.

MAGNETIC MAGNETIC TESTING DEVICE FOR DETECTING LOSS DEFECTS IN ELONGATED OBJECTS
Frank Kitzinger, Montreal, and Gregory A. Wint, Pierrefonde both of Canada, assignors to Noranda Mines Limited, Tor onto, Canads Filed Sep. 30, 1976, Ser. No. 728,061 Claims priority, application Canada, May 6, 1976, 251932 U.S. CI. 324-227 Int. C. \({ }^{2}\) G01R 33/12 14 Claim
1. A magnetic testing device for detecting loss of metalic ally and internal and external defects in elongated magnetically permeable objects such as wire ropes and the like, the device comprising:
(a) a permanent m
(a) a permanent magnet assembly having poles adapted to be spaced apart in the longitudinal direction of an elongated tion of said object between the poles of the magnet assem bly which is strong enough to saturate said section of the object;
(b) a tubular pole piece adapted to surround said elongated object adjacent each pole of said permanent magnet assembly for directing said magnetic flux radially into the
object at one pole and out of the object at the other pole c) Hall effect devices spaced around at least one pole piece in the path of said magnetic flux for sensing the reduction of the radial flux entering said elongated object due to any reduction of the cross-sectional area of the elongate object between said pole pieces caused by loss of metallic d) a leake fux sisor secit; and
pole pieces for detecting external and internal defects in pole piececs
said object.

WALL THICKNESS GAUGE AND METHOD UTILIZINC REED SWITCH AND MAGNET MEANS ON OPPOSITE SIDES OF THE WAL
rederick H. Humphrey, 7 Orchard St., Markham, Ontario L3P259, Canada

> Filed Nor. 18, 1976, Ser. No. 742,84
> Int. C1. \({ }^{2}\) G01R \(33 / 12\)
U.S. C1. 324-229
8. In a power monitor of the type which calculates the instantaneous power drawn by an electrical load as the product flowing through the load and having sensible output means flowing hrough he comprising:
input means operative to detect the voltage drop across and current through an electrical load and to generate separate corresponding electrical signals in proportion thereto;
multiplier means operative to read the signals associated

1. 9 Claims magnetic material, comprising the steps of:
positioning magnetic means on one side of the wall to set up a magnetic field of which a portion extends beyond the other side of the wall,
positioning on the other side of the wall a magnetic reed switch within a solenoid,
ergizing the solenoid with a pulsed DC signal of unvarying frequency to alternately open and close the reed
switch and thereby to achieve in the reeds of the reed switch a substantially steady level of residual magnetism and causing the flux density component of said magnetic
field at the reeds of the reed switch to increase until the reed switch ceases to open and close alternately, by causing the reed switch and solenoid to approach said other

side of the wall, the method including stopping the approach when the magnetic reed switch ceases to open and
close alternately, noting a distance-related measuremen governed by the separation between the wall and the magnetic reed switch, and deriving from said measure ment the thickness of the wall by virtue of a prior calibra-
tion of the scale of such measurement tion of the scale of such measurement.

4,096,439
AMPLIFIED MICROPHONE ASSEMBLY
Peter A. Hochatein, 1402015 Mile Rd., Sterling Heights, Mich.
Filed Dee. 27, 1976, Ser. No. 754,249
Int. Cl. \({ }^{2}\) H04B \(1 / 40\)
U.S. C. 325-21

12 Claims

11. A microphone assembly comprising; transducer means for converting an audio signal to an electrical signal during transmit mode, amplifyying means for amplifying said electrica signal from said rranscucer means during said transmit mode rechargeabie power supply means for suppplyify chorging means for charging said power supply means during a receive mode and switching means for placing said assembly in one of said
transmit mode and said receive mode. transmit mode and said receive mode.

\section*{4,096,40}

CONTROL SYSTEM FOR MOBLE PADIO
Sedantsu Okasalk, YOMMMUNICATION graph and Telephone Public Corporation, Japan
Filed Apr. 22, 1977, Ser. No. 790,044
Fired Apr. 22, 1971, Ser. No. 790,04
Claime priorty, Application Japan, Apr. 26, 1976, \(51-4384\) Int. C.2. \({ }^{2}\) H04B 1/00
U.S. C. 325-53
1. A control prising:
a number of signal indicative of transmission by a first comm a contro frequency wave;
a plurality of base stations, each disposed in one of a plurality of small radio service zones respectively having an area
radio transmission power of each mobile station, each base tation having means for receiving the control signal from the mobile station in the corresponding one of the small signal in the form of a binary code; plurality of fixed transmission lines binary code regenerated by each of the plurality of base stations; and
control station connected to each of the plurality of fixed transmission lines for transmitting, in response to the
binary code, an idle channel indication signal to each of the mobile stations in the whole service area including all of the plurality of small radio service zones at a second common radio frequency wave, the idle channel indication signal having first and second states indicative of busy

and ide stat each of said base stations including means for applying to the control station information indicative of the detection of transmission from one of the mobile stations in the small
radio service zone of the base station by reversing the state radio service zone of the base station by reversing the state
of the binary code transmitted therefrom over the corresponding one of the fixed transmission lines, and
said control station including means for establishing the idle channel indication signal to the first state in accordance with the reversal of the earliest one of the binary codes arriving from the base stations, and means for detecting
initiation of restoration of the binary code control signal to its normal state, and means for changing the idle channel indication signal into the second state upon completion of reception of said control signal.

TEST INSTRUMENT FOR TRANSMITTERS
dwin L. Schwartz, Los Angeles, Calif, mesignor to Rite Auto tronics Corporation, Los Angeles, Calif. .S. Cl. 325-133 Int. Cl. \({ }^{2}\) H04B 1/04, \(17 / 100\)

1. A test instrument for selectively measuring the standing wave ratio between a transmitter and an associated antenna, prising:
a printed circuit board having a first conductive path rereon, means adapled for connecting said conductiv
ter and antenna, and a second conductive path contiguous direct current source having first and second terminals having to at least a portion of said first conductive path whereby a potential difference therebetween, comprising:
energy is electromagnetically coupled from said first to circuit means for sequentially
in opposite directions along said second conductive path and for selectively providing a first signal indicative o said standing wave ratio;
means for selectively providing a second signal indicative of the transmitter's output power;
tively ponitring antenna radiated power and for selec tively providing a third signal indicative of said radiated power; and
meter means
first, secons for selectively displaying an indication of said first, second or third signals.

CROSSTALK CORRECTOR AND DECISION DEVICE Faniel Dix McRee, and Earl Ford Smith, both of Melbourne Fin., assignors to Harris Corporation, Cleveland, Ohio Filed Apr. 26, 1977, Ser. No. 790,94
US. C1. 329-112
14 Claims
,
1. A method of demodulating a coherent frequency shif keyed (FSK) signal having a modulation index \(h\), wherein data symbois are represented by discrete frequencies, and the differof symbol frequency, comprising the steps of:
(a) measuring the phase of the FSK signal relative to the phase of one of the frequency components which may be
contained in said FSK signal at instants in time corre sponding to transition times between successive symbols;
(b) identifying respective pairs of phase nodes \(n 2 \pi h\) and
\((n+1) 2 \pi h\) where \(n\) is an integer, which correspond to those legitimate phases by which the FSK signal may be sured in step (a) lie;
(c) estimating, for each symbol transition time, the phase distortion introduced into said FSK signal and resulting in shift of the phase of the FSK signal at said transition (d) selecting, for each symbol transition time, one of the phase node values \(n 2 \pi h\) and \((n+1) 2 \pi h\) identified for each respective symbol transition time in step (b) in the basis of the phase distortion estimates obtained in step (c); and
deriving a sequence of frequencies by determining the values selected in step (d).

\section*{4,096,443}

BALANCED SOURCE FOLLOWER AMPLIFIER Warren E. Gilson, 4 Franklin Ave., Medison, Wis. 5370

Filed Feb. 16, 1977, Ser. No. 769,005
U.S. C. \(330-267\)

Int. C. \({ }^{2}\) H03F \(3 / 26\)
10 Claims
conjunction with an alternating current signal source and
first and second transistors each having a source electrode, a gate electrode and a drain electrode;
for esublishing a direct current conrection between each of said drain electrodes and the first terminal of said direct current source;
means for electrically coupling said first gate electrode to said first source electrode and for electrically coupling
said second gate electrode to said second source electrode, said electrical coupling means including means for cou-
sores


\section*{pling at least one of said gate electrodes to said alternating} current signal source;
center tapped autotransformer having two end taps and a center tap;
eeans for providing a direct current connection between the ource of said first transistor and one of said end taps and between the source of said second transistor and the other one of said end taps;
means for providing a direct current connection between said center tap and the second terminal of said direct current source; and
.
Jean Fellrati
-
Jean Feltre ACTIVE INTEGRATED CIRCUIT
Jean Fellrath, Neuchatel, Swltseriand, ampanor to Centre Elec. \begin{tabular}{l} 
tronique Horloger S.A., Nemchatel, Switnerinad \\
Filed Ang. 9, 1976, Ser. No \\
\hline
\end{tabular} Claimm priority, application Switzeriand, Aug. 12, 1975, Int. Cl. \({ }^{2}\) H03F 3/16; H03B 5/36, 5/20 U.S. CI. 330-277 14 Claims

1. An active circuit comprising an integrated circuit constructed of insulated gate field effect transistors, and including at least one amplifier stage, input and output circuits for said amplifier stage, said amplifier stage including an amplifying input and output circuits of the amplifier stage, and including capacitors coupling the gate and drain of said amplifying transistor to said input and output circuits, a first current source furnishing a current \(I_{D 1}\), the drain of said amplifyying transistor being connected to said first current source, said amplifier
stage including at least one negative feedback transistor of the stage including at least one negative feodback transistor of the
same conductive type as said amplifying transistor, the drain-
to-source path of said feedback transistor placed in series be-to-source path of said feedback transistor placed in series be-
tween the drain and gate of said amplifying transistor, a biasing circuit comprising two biasing transistors of the same conductive type as said amplifying transistor, one of said biasing
transistors having its source coupled to the same potential as the source of said amplifying transistor and its gate coupled to the same average potential as its drain, the other biasing transistor having its source connected to the drain of said one biasing transistor and its gate and drain connected to each other and to the gate of said at least one negative feedback transistor, a
second current source furnishing a current \(I_{D 3}\) having a given second current source turnishing a current \(I_{D 3}\) havio mplade to the supply current \(I_{D 1}\) of said amplifying transistor, and the drain of said other biasing transistor being connected to said second current source.

ELECTROMECHANICAL VIBRATION FILTER FOR RADAR MASTER OSCILLATORS
Francis W. Hop wood, Severua Park; John P. Muhlbaier, Joppan and Herman Roosman, Randallistown, all of Md., assignors to Westinghouse Electric Corp, Pittsburgh, Pa,
Filed Apr. 21, 1977, Ser. No. 789,487

17
Int. C. \({ }^{2}\)
U.S. C. 331-17

1. A system for providing a phase stable output oscillatory signal while affected by vibration noise encompassing a wide range frequency spectrum transmitted thereto by a vibaion
source, said system comprising: a first oscillator structurally coupled to the vibration source,
for generating a first oscillatory signal having a modula-
tion component being a function of the vibration noise
tion component being a function of the vibration noise
transmitted thereto by the vibration source;
a second oscillator for generating an output oscillatory sig
nal; nal;
vibration isolation system, structurally coupled between the vibration source and the second oscillator, for supporting the second oscillator while reducing the transmis sibility of a first range of vibration noise frequencies from the vibration source to the second oscillator, said isolation system also effecting an amplification of vibration noise in the second oscillator therethrough;
means, responsive to the first oscillatory signal, for controlling the second oscillator to render the output oscillatory signal generated thereby phase-locked with the frequency modulated first oscillatory signal, said controlling means being unresponsive in phase-locking the output oscillatory
signal to the frequencies of the modulation component of signal to the frequencies ol which are greater than a third
the first oscillatory signal predetermined frequency range, said first and second range of vibration noise frequencies being substantially within said third predetermined frequency range, whereby vibration induced modulation frequencies greater than the third predetermined frequency range a substantially filtered from the output oscillatory signal.

DISTRIBUTED FEEDBACK DEVICES WITH ERTURBATIONS DEVIATING FROM UNIFORMIT FOR REMOVING MODE DEGENERACY Herman Anton Haus, Lexington, Mass, and Charies Vernon
Shank, Holmdel, N.J., assignors to Bell Telephone Laboratories, Incorporated, Murray Hill, N.J. Filed Feb. 2, 1976, Ser. . No. 654,339
Int. Cl. \({ }^{2}\) H01S \(3 / 00\)
U.S. CI. 331-94.5 C

1. An optical frequency device for the stimulated emission of radiation comprising an active medium and a feedback mechanism, means for creating a population inversion in said active
medium, said feedback mechanism comprising perturbations in medium, said feed back mechanism comprising perturbations in continnoouslssyon characteristics of the medium substantially
cole ing a feedback parameter, \(k\), and a spatial periodicity of \(\lambda, 2\) at the Bragg frequency, said perturbations departing from uniformity in a step-wise change about the midpoint of the length of the medium sufficiently to produce an antisymmetric variation in the feedback parameter, \(\kappa\), said step-wise change in perturbations including an extra quarter-wavelength space
between two central perturbations, where the wavelength is between two central perturbations, where the wavelth of the optical wave, thereby promoting the
the amplification of a single mode at \(\lambda_{o}\) over the amplification of the adjacent modes.

UNSTABLE RESONATOR LASER SYSTEM Frederick R. Fluhr, Oxon Hill, Md., assignor to The United States of America as represented by the Secretary of the Navy, Washington, D.C.

Nov. 24, 1976, Ser. No. 744,476
Int. C. \({ }^{2}\) H01S \(3 / 091\)
Int. Cl. \({ }^{2} \mathbf{H 0 1 S} 3 / 081\)
U.S. C1. 331-94.5 C

3 Claims

1. An unstable resonator laser system which comprises:
an active laser medium;
an annular, aspheric, primary concave mirror opposite one end of said active laser medium and positioned with its focal ring centered on the axis of said active laser medium, said mirror being formed with a circular aperture through
the center thereof; an annular, flat feedback mirror positioned on the opposite side of said active laser medium in axial alignment with said primary concave mirror and perpendicular to the axis; and
an, aspheric secondary mirror encircled by said flat mirror
so that it is concentric therewith and acting to reflect light gas in a direction generally transverse to said flow direction, to said primary concave mirror, said secondary mirror comprising
having its focal ring centered on the axis of said active a first electrode disposed adjacent a first wall of said flow having its focal laser medium, chentered on the axis of said active a channel and extending in a direction generally transverse whereby said flat feedback mirror provides the resonant feedback for said system and said secondary mirror re flects the output through the aperture in the annular, aspheric, primary concave mirror.

PHASE-LOCKING OF INDEPENDENT LASER
PHASE-LOCKING OF INDEPENDENT LASER
OSCLLATORS Cecil L Haye Plecentis, Calit asedg
Cecil L. Hayes, Placentia, Caiif, assignor to Rockweil Interna-
tional Corporation, El Segundo, Calif. tonal Corportion, El Segundo, Caili.
Filed Jan. 12, 1977, Ser. No. 758,626
U.S. CI. 331 -94.5 ML

7 Claims

1. Apparatus for phase and frequency locking a first laser oscillator, comprising
an intermediate radio frequency ( \(\omega_{0}\) ) oscillator;
an electronically controlled light-beam frequency shifter
interposed in the optical path of the output path of reference laser and having a control input responsively coupled to the output of said radio frequency oscillator for providing a local oscillator output having a frequency \(\omega_{L} 0^{\text {indicative of the sum }\left(\omega_{s}+\omega_{0} \text { ) of the output frequen }\right.}\) cies of said reference oscillator \(\left(\omega_{)}\right)\)and of an output of said radio frequency oscillator ( \(\omega_{o}\) );
photoelectric detector means responsive to both said local oscillator output and an output \(\omega_{1}\) of said first laser oscillator for providing an electric signal output having a fre quency \(\left(\left(\omega_{s}-\omega_{1}\right)+\omega_{0}\right)\) indicative of the
difference between said inputs to said detector,
difference between said inpus having a first and second synchronous comparator means her hection
input a respective one of said output of said detector ( \(\left(\omega_{\text {s }}\right.\) \(\left.-\omega_{1}\right)+\omega_{a}\) ) and said radio frequency oscillator \(\omega_{0}\) for providing an output signal indicative of the phase and frequency difference between the inputs applied to said being responsive to said output signal of said synchronous comparator.

\section*{4,096,449}

APPARATUS FOR PRODUCING AN ELECTRIC GLOW DISCHARGE IN A FLOWING GAS
Jack D. Foster, Los Altos, Caliir, asignor to Universal Laser Corp., Los Altos, Calif.

Flied Jan. 14, 1977, Ser. No. 759,461
U.S. CI. 331-94.5 PE t. C1. \({ }^{2}\) H01S \(3 / 097\)

9 Claims 1. In a flowing gas high power glow discharge device in which a gas is moved in a predetermined direction along a channel where an electric glow discharge is maintained, appa-
o said flow and generally transverse to the direction of sid electric discharge
generally planar second electrode disposed adjacent a

second wall of said flow channel opposed to said first wall, said second electrode being formed of a material having a esistivity in the range of \(10^{2}\) to \(10^{\circ}\) ohm-centimeters and first electrode, and
means for electrically energizing said first and second elec-
trodes to establish a glow discharge through said flowing trodes to establish a glow discharge through said flowing gas between said first and second electrodes.

4,096,450
CONDUCTIVELY COOLED FLASHLAMP Lowell W. Hill, Playa del Rey; Robert L. Cassiero, Mar Vistas; Peter F. Taylor, Agoura, and Harold J. Tuchyner, Pacinc
Palisades, all of Calli, sasignors to Hughes Aircraft Com panise, Calver City, Calif.

Filed Apr. 22, 1977, Ser. No. 789,89
U.S. C. 331-94.5 \(\mathbf{P}^{\text {Int. C. }{ }^{2} \text { H01S 3/09 }} 14\) Cleims

1. A laser energizing arrangement in a laser pump cavity which is formed by a housing means, said pump cavity having n elongated channel comprising:
a flashlamp positioned within said channel, and
a packed powder positioned between the flashlamp and said elongated channel, the packed powder having thermal conductivity characteristics which allow the heat devel oped by the flashlamp to be conducted from the flashlamp through the elongated channel to said housing means. laser having a housing structure with a pump cavity having a elongated channel machined in at one surface portion of said cavity comprising the steps of:
a. fixedly mounting said flashlamp in said channel so as to create a gap between said flashlamp and said channel, packing a powder in said gap, created buster being selected
surface and the housing means, said powd with characteristics of high spectral reflectivity, therma conductivity that allows heat to be conducted from said flashlamp to said housing means, and the ability to withcreating a peite light,
of withstanding high temperature and vibration without breaking down under exposure to ultraviolet light emitted by said flashlamp, and
of the packed powder in order to maintain said packed powder in position

\section*{4,096,451}

HIGH SIGNAL-TO-NOISE RATIO NEGATIVE Bortolo Merio Pradal, Pittsburgh, Ph., asignor to RCA Corporation, New York, N.Y
Claims priority, application United Kingdom, Nov. 8, 1976, 46463/76

6 Claims

1. A high signal-to-noise ratio negative resistance oscillator comprising:
a current conducting device having input output and con trol electrodes,
means coupled to said electrodes for applying D.C. biasing potentials to electrodes of said current conducting device, said D.C. biasing means including an impedance coupled between the input electrode and a point of reference potential,
coupled between said control electrode and said point of reference potential, said frequency determining circuit rurther including capacitors connected in series between said control electrode and said point of reference poten-
tial,
means for connecting the input electrode of said current
means for connecting the input electrode of said current conducting device to the junction point of said series
connected capacitors for providing feedback to sustain oscillations,
the ratio of the total capacitance between the input electrode and reference potential to the total capacitance between the control and input electrodes is from 5.4 to 1 to 3.9 to

\section*{4,096,452}

TEMPERATURE COMPENSATED CRYSTAL
OSCILLATOR
Toehihiko Wakt, and Hirochi Shinohara, both of Tokyo, Japan, amedzaors to Sony Corporation, Toky, Japan
Claime priority, application Japan, May 13, 1976, 51.
59526[U]
Int. C. \({ }^{2}\) H03B \(5 / 36\)
U.S. C. \(331-116\) R \(\quad 11\) Clums
\(\qquad\)
1. A temperature-compensated crystal ascillator,
ing:
an oscillator circuit having a crystal and a variable capacitance;
a differential amplifier comprising first and second transistors establishing a current sink path;
onnecting means for connecting said differential amplifier to said oscillator;
ridge circuit means connected to said differential amplifie so as to supply a biasing voltage to said first and secon temperature sensitive element; and

compensation means connected to said current sink path of said differential amplifier having a temperature character istic which compensates a temperature characteristic of said variable capacitance.

4,096,453
DOUBLE-MODE TUNED MICROWAVE OSCILLATOR Robert G. Rogers, Los Altos, Calif, avelgnor to GTE Automatic Electric Laboratories Incorporated, Northlike, nl. Filed May 19, 1977, Ser. No
Int. Cl. \({ }^{2}\) H03B \(5 / 18\) U.S. C. 331-117 D

1. A microwave oscillator comprising:
first transmission line means comprising ground reference surface means and at least three parallel conductors supported in a parallel spaced apart relation with respect to supporting both even and odd mode fields;
second transmission line means comprising said ground reference surface means and at least three conductors, which may be at least portions of associated conductors of said first transmission line means, supported in a parallel spaced apart relationship with respect to each other and said ground means so as to
even and odd mode fields;
first means short-circuiting conductors of said first transmission line means together and to said ground means at first points on these conductors;
second means short-circuiting conductors of said second transmission line means together at second points thereon which are insulated from said ground means;
first amplifier means electrically connected to said first and second short-circuited transmission line means form and external feedback path type embedding network for said first amplifier means for causing the latter to oscillate; and means coupling an output signal from one of said amplifying
means and said first and second transmission line means.

AMPLITUDE AND DELAY EQUALIZATION OF SURFACE ACOUSTIC WAVE FILTERS IN AMPLITUDE MODULATION SYSTEM William Louis Behrend, Pittsburgh, Pa., amignor to RCA Cor
poration, New York, N.Y. Claims priority, application United Kingdom, Apr. 6, 1976, 13906/76

20 Claims
这

SURFACE \(\quad\) 4,096,456
SURFACE ELASTIC WAVE FILTER ard Conseot, and Olivier Mensger, both of Paris, France,
 Continuation of Ser. No. 597,574, Jul. 21, 1975, abbandoned. This
application Dec. 21, 1976, Ser. No. 753,351 Claims priority, application France, Jul. 24, 1974, 7425663
Int C. In. C. C. \({ }^{2}\) H03H 9/04, 9/26, 9/32; H01L 41/10 U.S. CC. 333-72

1. In an amplitude modulation system of the type including an amplitude modulator responsive to carrier waves and intel an amplituce modulator responsive to carrier wovested carrie ligence signals for providing ampiture mores
signals, the improvement therein comprising: a band pass filter for passing signals with low attenuation over a desired carrie frequency band coupled to said amplitude modulator,
said filter being a surface acoustic wave filter having a amplitude response being a selected one of maximum or minimum amplitude at a carrier frequency of said modula ripples over the passband, and
means responsive to said intelligence signals for distorting the intelligence signals to have an inverse amplitude ripple with resepct to that produced by the surface acoustic
wave filter. wave filter.
1. A surface elastic wave filter comprising a piezoelectric substrate upon the surface of which there are arranged at least one input transducer and one output transwoct, onectrades taking the form of two interdigitated comb structures having parallel teeth of predetermined lengths, two consecutive teeth belonging respectively to one and the other comb, overiapping over a given length for obtaining an overlapping portion defin-
ing a radiation element; said two interdigitated comb structures ing a radiation element; said two interdigitated comb structures
determining a central radiating element and a set of non-central radiating elements which are located at either side of said central radiating element; said radiating elements having predetermined lengths; each of said non-central radiating elements which is located on one side of said central radiating element seituated at the centre of said central radiating element, with one of said non central radiating elements located on the other side of said central radiating element, said centre of symmetry \(M\) being located upon an axis \(x x\) which is the propagation axis of said elastic wave.

4,096,455
SURFACE WAVE TERMINATION FOR SAW DEVICE William Seth Drummond, Cornelius, Oreg, assignor to Tek tronix, Inc., Beaverton, Oree Filed Feb. 23, 1977, Ser. No. 771,234
Int. C. \({ }^{2}\) H03H \(9 / 06,9 / 26,9 / 30,9 / 32\) U.S. CI. 333-30 R


In a surface acoustic wave device comprising a substrate of material capable of propagating acoustic waves along a surface of the substrate, and transoncer murface and responsive to acoustic waves propagated along a path on said surface,
surface wave termination means associated with said electrode for absorbing surface waves propagated along said path toward said means, comprising
wafer of an acoustically lossy polymeric material spanning
said path and coupled to said substrate surface, and
an edge of said wafer that generally faces said electrode.

\section*{4,096,457 \\ LOW PASS HARMONIC ABSORBER}
sichard V. Suyder, Lincroft, N.J., asignor to Harvard Industriee, Inc., Farmingdale, N.J.

Flied Oct. 29, 1976, Ser. No. 737,092 Int. C. \({ }^{2}\) H01P \(1 / 20,1 / 26,5 / 12\) Cleims U.S. C. 333-73 W

1. A microwave low-pass harmonic absorber comprising: a main waveguide for passing a desired fundamental fre quency, and
pluraity of shunt waveguides disposed on at least one wal of said main waveguide, each of said shunt waveguides quency of said shunt waveguide and substantially increas
ing the bandwidth of said shunt waveguide by lowering
the standing wave ratio for the higher order harmonics.

HIGH FREQUENCY TRANSMISSION CABLE Helmut Martin, Hanover, and O Otto Breitenbach, Nurember both of Germany, asiguors to Kibelan Metaly
hoftuugzhuette AG, Germany
Filed Oct. 18, 1976, Ser. No. 733,198 Claims priority, application Germany, Oct. \(25,1975,2547806\) U.S. C. \(333-96\)

1. In electric cable for the transmission of high frequency signals which includes a plurality of individual signal conveying conductors forming a cable core and an outer sheath surrounding said cable core; the improvement comprising each of said plurality of individual signal conveying conductors being formed of a central core of insulating material having an elecsaid electrically conductive layer being such that within predetermined frequency range current penetration is independent of frequency.

TWO WIRE TRANSMISSION LINE USING TUBULAR EXTENDIBLE STRUCTURES Herman Lowenhar, 422 Hudson St., New York, N.Y. 10014
Division of Ser. No. 400,201, Sep. 24, 1973, Pat. No. 3,975,581. This application Aug. 11, 1976, Ser. No. 713,289
Tho. This application Ang. 11, 1976, Ser
Int. C.1. \({ }^{2}\) H01P 3/02
U.S. C. 333-96

17 Claims

1. A two wire radio frequency energy transmission lin comprising a first tubular extendible element formed of a rolled
elongated web of material which curls when unrolled into a elongated web of material which curls when unrolled into formed on at least one surface of said first element and having a pair of laterally spaced elongated means capable of propagating radio frequency energy independent of said first element when unrolled forming said two wire transmission line, an means for coupling radio frequency energy to said pair o means for couping radio frequency energy to said pair of YIG filter having a center frequency \(f_{m \text { m }}\) and a tunable YIG longated means in the area at or after where said pair of pole-pieces having opposing surfaces forming a magenetic field longted means goes from a rolled to an extended condition. therebetween, one of said surfaces having portion which is

\section*{4,096,460}

Herald Gessinger, Bermhardsthal; Manfred Baumruck, Vienna, and Dietrich Kral, Wordern, all of Austria, assignors to Inter national Standard Electric Corporation, New York, N.Y. Filed Nov. 2, 1976, Ser. No. 137,970
Claims priority, application Austria, Not. 14, 1975, 8684/75 U.S. C. \({ }^{335-136}\)
application Austria, Nov. 14, 1975, 8684/75
Int. Cl. \({ }^{2}\) H01H \(50 / 64 \quad 16\) Claims U.S. C. 335-136

1. A relay having contact springs operated by a shifting member which is mechanically held in either one or the other of two end positions,
a shifting member:
a pair of magnetic drive systems each of said magnetic drive systems including an armature for shifting said shifting member from one of said end positions to the other of said end positions; raised above the other portion a distance at which the fre-
quency difference \(f_{0}-f_{m i}\) is independent of \(f_{o}\), and a plate of magnetic material on one said surfaces having a saturation agnetization which is smaller than the smallest magnetic fiel strength required.

4,096,462
DEFLECTION YOKE DEVICE FOR USE IN COLOR TELEVISION RECEIVER SETS Mitsuharu Akatsu; Ichiro Niitsu; Masso Obara; Ryoichi Hirota; Shuzo Matsumoto, and Takesuke Maruyama, all of Yokohama, Japan, assignors to Hitachi, Lidd., Japan
Filed Apr. 7,1977 , Ser. No. 785,523 Claims priority, application Japan, Apr. 9, 1976, 51-39339 u.S. C. 335-213 Int. Cl. \({ }^{2}\) H01F S/00
pair of overcenter springs coupled to said shifting member
at each end thereof such that said overcenter springs bear at each end thereof such that said overcenter springs bear
at one end on said movable shifting member and at the other end on a fixed surface which is connected to said relay;
abutment bearing means on said shifting member and on said
fixed surface arranged such that one ter springs bear on the abutment bearing means on said shifting member and the other end of said overcenter springs bear on the abutment bearing means on said fixed surface, said abutment bearing means further arranged abutment bearing on said shifting member and the distance between said fixed abutment bearings is between zero and substantially the length of the shifting movement of said shifting member

MAGNET SYSTEM FOR TUNABLE YIG OSCILLATOR Peter Roschmand TUNABLE YIG FILTER to U.S. Philips Corporation, New York, N Y Continuation of Ser. No. 601,641, Aug. 4, 1975, abandoned. This application Jan. 28, 1977, Ser. No. 763,625 Claims priority, application Germany, Aug. 23, 1974, 2440484 U.S. CI. 335-209 Int. Cl. \({ }^{2}\) H01F 1/00

5 Claims

ELECTRICAL OVERLOAD SWITCHING RELAY
ELECTRICAL OVERLOAD SWITCHING RELAY
Paul Chalfont Fryer, Bedford, England, assignor to Cutler-HamPaui Chalfont Fryer, Bedford,
mer, Inc., Milwaukee, Wis.
mer, Inc., Milwaukee, Wis.
Flied Jan. 17, 1977, Ser. No. 760,174
Claims priority, application United Kingdom, Feb. 25, 1976,
7466/76
U.S. CI. 337-49

Int. Cl. \({ }^{2}\) H01H \(71 / 16\)
12 Claims

comprising said pair of contacts and an element exhibiting impedance
said element sponsive to a change in electrical flow in said element; said submersible unit comprising an under-
water, sonic, com mitter and a receiver; and
means responsive to actuation of said switch from one state
to another to render said receiver operative and disable to another to render said receiver operative and disable
said transmitter and responsive to actuation of said switch from said other state to said one state to render said transmitter operative and to disable said receiver

ULTRASONIC \(\begin{gathered}\text { 4,096,467 } \\ \text { CONVERSION }\end{gathered}\) Patrick Harold Brown, Hillingdon, England, assignor to E M I Limited, Hayes, England
Claims priority, application United Kingdom, Dec. 17, 1975, 51724/75 Int. Cl.2 \({ }^{2}\) G01S 9/66; H01J 31/495 \(\xrightarrow[-5 \mathrm{MP}]{\mathrm{Int.} \mathrm{Cl} \cdot{ }^{2}}\)
1. An overload
supply, comprising:
U.S. Cl. 340-5 MP \(\quad 12\) Claims supply, comprising
a plurality of pairs of terminals connectable in series in (b) a plurality of conductive paths, one for each pair of terminals, the conductive paths being connected in series
between their respective terminals: between their respective terminals;
(c) a plurality of current responsive means, one for each
conductive path, responsive to respective phase currents conductive path, responsive to respective \(p\),
flowing in the respective conductive paths;
(d) a threshold means coupled to the plurality of current
(d) responsive means, said threshold means being responsive to a mean value of the currents on all phases exceeding a
first threshold and being also responsive to any differenfirst, above a second, differential threshold, between the currents of any two phases;
(e) said threshold means including means to increase said value of the currents of all phases; and
(f) a contact-breaking switch coupled to said threshold means to be actuated when said threshold means responds to either of the mean value of all currents on all phases
exceeding the first threshold and to any differential, above exceeding the first threshold and to any differential, above
said second threshold, between the currents of any two phases.

\section*{RWATER SWITCHING}

Dennis J. Johnson, 2382 Bayfarm PI., Santa Ana, Calif. 92707 Filed Apr. 20, 1977, Ser. No. 789,184
U.S. Cl. \(340-5\) T

1. An ultrasonic image converter tube arrangement includ ing a pick-up tube having, in an envelope, anode and cathod electrodes, an electron beam source and a scannable surface of a sensor plate with a capacitively coupled signal plate having
an output terminal connected thereto, means to scan a beam from said source over said scannable surface, means to modulate the current in said scanned beam and, connected to said terminal., means selectively responsive to a frequency compo-
nent resultant from the mixing of the beam current modulation nent resultant from the mixing of the beam current modulation signal and the signals representing an image in ultrasonic radia-
tion scanned off the sensor plate which image, in operation of the arrangement, is incident on said sensor plate in ultrasonic radiation, the selectively responsive means rejecting components at the frequency of said ultrasonic radiation.

1. In a submersible unit housed in an enclosure part of which
is exposed to water when submersed
ctions for electrical connection to an electric
battery;
anir of electrical electrodes carried by said part of said enclosure such that an electrical current path is formed
between said pair of electrodes when said enclosure is
immersed in water;

SOLID STATE SEQUENCE LOGIC CIRCUIT Joseph J. Kopera, Jr., Trenton, Mich., assignor to Chrysler Corporation, Highland Park, Mich. Filed Jul. 31, 1972, Ser. No. 276,635
U.S. C. \(340-52 \mathrm{E}\). 10 Claims 1. A solid state sequence logic circuit for generating an electrical signal whenever a plurality of independent events do not occur in a predetermined sequence, said circuit compris-
ing:
a first
a first NOR gate having first and second input terminals and an output terminal, wherein its said first input terminal is electrically connected to said first means;
a second NOR gate having first and second input terminals
and an output terminals, wherein its said first input termi-
nal is electrically connected to the output terminal of said nirst NOR gate and its said output terminal is electrically connected to the second input terminal of said first NOR
gate;
third NOR gate having first and second input an output terminal, wherein its said first input terminal electrically connected to the output terminal of said second NOR gate;
a fourth NOR gate having first and second input terminals
and an output terminal, wherein its said first input terminal

is electrically connected to said first means and its said second input terminal is electrically connec
output terminal of said third NOR gate; and
a second means for receiving another electrical signal re sponsive to a second event electrically connected to sai second input terminal of each of said second and third
NOR gates where in the normal state all the electrical NOR gates where in the normal state all the electrical
signals on said output terminals are electrically disabling signals on said output terminals are electrically disabling
and the output signal from said fourth NOR gate is electrically enabling whenever said first event is not succeeded
by said second event by said second event.

HAZARD WARNING SYSTEM FOR CERTAIN TYPES OF MOTOR VEHICLES
esse R. Hoinns, 40 Stoner Ave.. Great Neck, N.Y. 11021
Continuation-in-part of Ser. No. 580,562, M. Continuation-in-part of Ser. No. 580,562, May 27, 1975,
abandoned. This application Feb. 23, 1976, Ser. No. 660,380 U.S. C. \(340-81\) R Int. Cl. \({ }^{2}\) B60Q \(1 / 46\)

1 Claim

1. An improved hazard warning system for a commercia motor vehicle comprising a storage battery, said storage bat post being electrically connected to ground, said positive post post being electrically conected to the ignition switch of said commercial motor vehicle, the switch lever of a clearance/marker and identification light control switch of said commercommercial motor vehicle, a headlight switch of said commer-
cial motor vehicle, and one terminal of a flasher of said commerical motor vehicle, said switch lever cooperating with a first contact terminal, said first contact terminal being electrically connected to a second contact terminal, said second e/marker and identification light control switch, a third ce/marker and idenification light control switch, a third clearance/marker and identification light control switch, said third contact terminal cooperating with said second contact terminal, a fourth contact terminal, said fourth contact termi-
nal cooperating with said third contact terminal and being nal cooperating with said third contact terminal and being
electrically connected to a fifth contact terminal and a sixth contact terminal, the other terminal of said flasher being electrically connected to said sixth contact terminal, said fourth contact terminal being electrically connected to a seventh contact terminal and an eighth contact terminal, a ninth said seventh contact terminal and being electrically connected to one terminal of a pilot light bulb of said commercial motor vehicle, the other terminal of said pilot light bulb being grounded, a tenth contact terminal, said tenth contact terminal cooperating with said eithth contact terminal and being electri-
cally connected to said ninth contact terminal, said headlight switch being electrically connected to said ninth contact terminal, said headlight switch being electrically connected to the low wattage filament of a rear lamp housing of said commercial motor vehicle, said rear lamp housing also having a high wattage filament, said low and high wattage filaments bein ected to an eleventh contact terminal, a twelft contact termi nal, said twelfth contact terminal cooperating with said eleventh contact terminal and being electrically connected to liament in a front lamp housing, said front lamp housing filament being grounded, said headlight switch being electrically
connected to a high/low beam control switch of said commer cial motor vehicle, said high wattage filament being electri cally connected to said twelfth contact terminal, the other terminal of said stop light switch being electrically connected to a thirteenth contact terminal, said thirteenth contact terminal being electrically connected to a fourteenth contact termi being electrically connected to a filament of a front lamp housing, said filament being grounded, said third contact terminal being electrically connected to the filaments of the clearance/ marker and identification lights of said commercial motor
vehicle, said filaments of the clearance/marker and identification lights being grounded, a first two-position switch bridge said first switch bridge being triangularly shaped and spanning in one position said fifth, twelfth and fifteenth contact terminals and spanning in the other position said fourteenth and Weifth contact terminals, a second two-position switch bridg aid second switch bridge being triangularly shaped and spanrminals and spanning in the other position said eleventh and hirteenth contact terminals, a third two-position switch ridge, said third switch bridge spanning in one position said seventh and ninth contact terminals and spanning in the othe osition said ninh conth switch bridge spanning in one posion said third and fourth contact terminals and spanning in the ther position said third and second contact terminals, and fith two-position switch bridge, said fifth switch bridge span ning in one position said eighth and tenth contact terminals and panning in the other position said tenth contact terminal, all of said switch bridges moving in unison and being controlled by warning switch said clearance/marker and identification lights can burn steady on, and in the other position of said hazar warning switch said clearance/marker and identification lights can be intermittently flashed together with at least one other and identification lights being mounted at an elevated position on said commercial motor vehicle.

ALTERNATING LAMP FLASHING SYSTEM WITH ALTERNATING LAMP FLASHING SYSTE
LAMP FAILURE INDICATOR \begin{tabular}{l} 
Samuel Kimmelman, Cranford, N.J., assignor to Ideal Corpora \\
tion, Brooklyn, N. \(\mathbf{Y}\). \\
\hline
\end{tabular} tion, Brooklyn, N.Y.

Filed Apr. 21, 1977, Ser. No. 789,494
U.S. C. \(340-83 \mathrm{Int.}^{\text {Cl. }}{ }^{2}\) B60Q 1/38, 1/46

1. For a vehicle lamp circuit including two groups of signal lamps each of which comprises at least one lamp, a d.c. source, means including an alternating hasher switch sand lasper swith to said lamp groups
current load lines from said flasher sither for repetitively flashing said lamp groups alternately by current from said source, and a pilot lamp for indicating circuit conditions, the combination which comprises two separate
relay coils for connection respectively in said load lines as relay coilis for conderts thereof, said coils having a contactor associ-
cond ated therewith in common and each said coil being operative to displace said contactor in response only to a flow of current
through the coil at least as great as that which exists when through the coil at least as great as that which exists when
every lamp of the lamp group to be energized through the coil every lamp of the lamp group to be energized through the coil
is functioning, and a pilot circuit containing said contactor for energizing said pilot lamp upon each current-responsive displacement of said contactor, whereby said pilot lamp will appear to be illuminated steadily when all the signal lamps of
the alternately flashed lamp groups are functional and will be the atternately flashed lamp groups are functional and will be
illuminated periodically so as to indicate a lamp outage when any signal lamp of either lamp group does not function.

METHOD \(4,096,471\)
METHOD AND APPARATUS FOR TRANSFER OF ASYNCHRONOUSLY CHANGING DATA WORDS Kurt Roland Agerhall, Handen, and Yngre Allan Sundblad, M Ericsson, Stockholm, Sweden
Filed Nor. 26, 1976, Ser. No. 745,109
Claims priority, application Sweden, Dec. 22, 1975, 751450
U.S. Cl. \(340-146.1 \mathrm{R}\)

5 Claims

1. In apparatus where data words which change asynchro nously are transferred during transfer intervals to a data word receiver, each of said transfer intervals having a sampling
instant associated therewith during which the data word re-
ceiver operates to determine whether a data word changes uring the associated transfer interval, the method of indicat uring data word receiver whether a data word changes rst signal for duration at least as long as a transfer interval timal having deneration of said first signal relative to the time of occurrence generation of said first signal relative to the time of occurrence
of a data word change is in accordance with the occurrence of the sampling instant relative to its transfer interval, and sampling for the presence of said first signal at a particular instan predetermined with respect to the transfer intervals to give a ignal whenever a data word changes during the then occur ring transfer interval.

SYSTEMS FOR RECOGNIZING PRINTED CHARACTERS Denis Louis Mercier, St. Georges, France, assignor to Compag nie Internationale pour 1'Informatique Cii-Honeywell Bull (Societe Anonyme), Paris, France
Filed Apr. 25, 1977, Ser
Claims priority Application France, Apr. 26, 1976, 7612302 U.S. Cl. \(340-146.3\) ED Int. Cl. \({ }^{2}\) G06K 9/00 \(\quad 11\) Cleims

1. In a system for recognizing printed characters including a reading device having at least one amplitude discriminating circuit adapted to have various threshold levels applied to it, he threshold level being adjusted when a document is read for the first time to a first average value which is set to allow a
reference character whose mean inking is known to be recog. nized, means connected to the reading device for generating for each character read, items of binary coded information and an associated binary-coded error code obtained by checking he corresponding items of coded information, means for locating the point at which the reading of the document com reading the document and being adapted to generate a rea signal during the whole period when the document is being ead, and a buffer store connected to said reading means fo temporary storage of read characters which are satisfactor
for use, the improvement comprising means for repeat reading said repeat reading means being connected to said reading means and to the buffer store and said repeat reading means including storage means having a plurality of memory zone or storing items of information and associated error code memory zone and storing items of information and associate error codes resulting from each subsequent reading operatio in different memory zones as long as at least one erroneous character is detected in the course of a reading operation means to check whether an examination of all the error codes being recognized as erroneous; and means for generating central signal applied to said reading means to initiate a repeat
of the operation of reading the document with the threshold at
different respective values which are respectively ascending frequency signal, said low frequency signal being of the suband descending on one or the other side of the first value; the stantially continuous pulsating variety produced by heart and otal number of reading operations with the threshold applied lung function in an animate body;
to the reading device at different levels not exceeding a given number \(N\), and
means to read
a memory zone which is writen into in the course of the a memory zone which is written into in the course of the
most recent reading operation performed, if no erroneous character has been detected by the end of its reading operation.

4,096,473
HIGH OUTPUT SMOKE AND HEAT DETECTOR ALARM YSTEM UTLLIZING A PIEZOELECTRIC TRANSDUCE SYSTEM UTILIZING A PIEZOELECTRIC TRANS
AND A VOLTAGE DOUBLING MEANS
Louis P. Sweany, Carmel, and Michael T. Burk, Indianapolis, both of Ind., assignors to P.R. Mallory \& Co. Inc., Indianap olis, Ind.

Filed Dec. 9, 1976, Ser. No. 749,024
U.S. Cl. \(340-237.5{ }^{\text {Int. Cl. }}{ }^{2}\) G08B \(17 / 10 \quad 20\) Claims

1. In a smoke and heat detector comprising a low voltag power supply source, an ambient temperature detecting means
electrically coupled to said power supply source, at least one electricaly sonsing chamber electrically coupled to said power supply source in parallel with said temperature detecting means, and a voltage amplitude comparing means electricall coupled to said ionization sensing chamber and said power supply source, the improvement wherein sect
tude comparing means includes a field effect transistor and a bipolar transistor which in combination comprise a schmitt trigger.

APPARATUS FOR DETECTING PERSONS HIDDEN IN
Charles B. Greer, Clifton; Nathan Alter, Alexandria, and David E. Locke, Manassas Park, all of Va., assignors to The United States of America as represented by the Secretary of the Army, Washington, D.C.
Filed Apr. 12, 1976, Ser. No. 676,011 Int. C1. \({ }^{2}\) G08B \(13 / 00\)
U.S. Cl. \(340-261\)
U.S. C. \(340-261 \quad 10\) Claims 1. A detector unit for detecting the presence of animate
bodies in the immediate vicinity of a mobile inanimate structure in a relatively low noise environment comprising: a seismic transducer adapted to respond to low frequency signals in the single digit Hertz frequency range having at least
a selected magnitude and adapted to produce an output signal representative of the frequency and magnitude of said low
magnitude and frequency discriminator means connected to the output of said seismic transducer, said discriminator means adapted to discriminate between signals of continu--
ous duration for a selected period of time and signals of other than continuous duration for said selected period of time, said discriminator means also adapted to discriminate between signals having a magnitude of at least a

\(\underbrace{\text { mex }}\)
selected value and signals of lesser magnitude, said discrimination means having an output responsive to signals having a magnitude of at least said selected value and continuous for a selected period of time;
and alarm signal means connected to the output of saic discriminator means and adapted to produce an alarm signal in response to an output signal therefrom represen
tative of a detected signal of continuous duration for selected period of time and further characterized by hav ing at least a selected magnitude.

CIRCUIT FOR THE CONVERSION OF A DIGITAL SIGNAL TO AN ANALOG SIGNAL Kian Kie Ong, EEnchovenk, Netheriands, assignor to U.S. Phip
Corporation, New York, N.Y.
Division of Ser. No. 579,868, May 22, 1975, abandoned. This application Jun. 30, 1976, Ser. No. 701,309


\section*{1. A tuning system comprising}
circuit for the conversion of a digital signal to an analog comparator having inputs for comparing the value of the digital signal which corresponds to a digital number ( \(\mathrm{A}=\) \(\mathbf{A}_{n-1} \ldots \mathbf{A}_{0}\) ) to be converted, to the value of a digital comparison signal which corresponds to a periodically \({ }^{\text {occurring series of } n \text {-digit comparison numbers ( } C=}\) \(\mathrm{C}_{n-1} \ldots \mathrm{C}_{0}\) ) produced by said generator, and an output; adapted for the generation of a signal that corresponds to a series of digital comparison numbers of which for each subsequent comparison number ( \(\mathbf{C}=\mathbf{C}_{n-1} \ldots \mathrm{C}_{o}\) ) the
most significant first \(m\) digits \(\left(C_{n-1} \ldots C_{n-m}\right)\) count said carry signal \(\overline{C r(1)}\) and the inverted signal \(C r(1)\) of said
through a series of numbers \(\left(\mathrm{D}=\mathrm{D}_{m-1} \ldots \mathrm{D}_{0}\right)\) each of carry signal \(C r(1)\). through a series of numbers ( \(\mathrm{D}=\mathrm{D}_{m}\) which numbers monotonically increases or decreases each
time in value by one and corresponds to the m -counter time in value by one and corresponds to the \(m\)-counter
digits of a number \(\left(\mathrm{B}_{m-1} \ldots \mathrm{~B}_{0}\right)\), the least significant ( \(n-m\) ) digits of said comparison number forming a digital number ( \(\mathrm{E}=\mathrm{E}_{n-m-1} \ldots \mathrm{E}_{o}\) ) whose digits form an in verted order of the digits of a number \(\left(\mathbf{B}_{n-1} \ldots \mathbf{B}_{m}\right.\) ) of
\((n-m)\) digits, which each time increases or decreases \((n-m)\) digits, which each time increases or decreases
respectively by one when the number series ( \(C_{n-1}\).. \(\mathrm{C}_{n-m}\) ) of the first \(m\) figures, reckoned in sequence of \(\left.\mathrm{C}_{n-m}\right)\) of the first \(m\) figures, reckoned in sequence of
decreasing significance of the comparison number ( C ), has decreasing significance of the comparison number (C), has
been counted through. with the condition that \(n \geqq 3, m \neq\) \(1, m \neq n, n\) and \(m\) be positive integers;
a low pass filter having an input connec
said comparator and an output; and
said comparator and an output; and
a tuning unit connected to the output of said low pass filter.
identification s,096,47t
TRANSPONDERS CODED PASSIVE RANSPONDERS
Evapstein, Highland Park, and Bernard W. Jordan, Jr Evanston, both of Ill., assignors to Northwestern University Continuation-in-part of Ser. No. 725,195, Sep. 21, 1976, and Ser Apr. 22, 1977, Ser. No. 789,952
U.S. Cl \(343-\mathrm{Apr}\) Int. Cl. \({ }^{2}\) Ger. No. \(9 / 56\)

READING SYSTEM FOR A CODE DISK READ-TO-DIGITAL CONVERTER AND AN ABSOLUTE VALUE DETECTOR
Ryuji Toida, Nagoya, Japan, assignor to Okuma Machinery
Works Ltd., Nagoya, Japan
Claims priorited Sep. 3, 1976, Ser. No. 720,139

U.S. CI. 340-347 P

1. A reading system for a hybrid A-D converter including a least two \(n\)-digits code disks, \(n\) being equal to or larger than hree, and \(n\) logical circuits; any successive two of \(n\) outpu signals \(0,1,2, \ldots, n-1\) from one of said \(n\)-digits code disks being
generated so as to be overlapped with each other with respect generated so as to be overlapped with each other with respec
to the rotation angle of said \(n\)-digits code disk; each of said \(n\) oge rotation angle of said \(n\)-digits code disk, ead operation, \(L=1 \cdot\left(\right.\) Cr \(\left._{r} \overline{T-1}+\bar{C}_{r} \cdot \overline{+1}\right)\)
where, \(l-1, l, l+1\) are any successive three of the \(n\) outpu signals from one of successive two code disks of said at leas
(wo \(n\)-digits code disks; \(C \boldsymbol{r}(1)\) being a carry signal generated two \(n\)-digits code disks;
when one signal included in a group of larger numerical value of output signals from the lower order disk of said successive
two code disks appear and Cres two code disks appear, and \(C\) ( 1 ), whereby each of said
logical circuits provides a signal representative of one digit and a precise \(n\)-digits signal is obtained by said \(n\) logical circuits; said reading system comprises a neighborhood absolut value detector which is different from said \(n\)-digits code disks at low position, and a means which generates a carry sign Cr (2) when a neighborhood absolute value from said neighbor
hood absolute value detector is employed instear of said out put signals from the lower order code disk and one signal included in the group of larger numerical values of the neigh borhood absolute value appears; said carry signal \(C r(2)\) and the inverted signal \(C\) (2) of said carry signal \(C r(2)\) being adaped to
be supplied to said logical circuit in time-sharing relation to

1. An identification system comprising
ransmitter means for transmitting an electromagnetic signal passive surface acoustic wave identifier adapted to promagnetic signal, comprising a piezoelectric substrate, an input transducer carried by the piezoelectric substrate, a plurality of output transducers carried by the substrate and spaced from said input transducer at preselected intervals, and programming means for programming said ou
put transducers to emit an electronic reply having a prese lected sequential time order in response to a surface acous lic wave propogated by said input transducer, said programming means comprising pad means overlying said
substrate in a zone intermediate said input transducer and substrate in a zone intermediate said input transducer and
an output transducer, whereby pressure applied to said substrate through said pad means renders said substrate non-conductive to a surface acoustic wave in said zone, thereby rendering any output transducer spaced distally of said pad means unresponsive to a surface acoustic wave propagated by said input transducer, and producing a
preselectable variation in the coded electronic reply of said output transducers responsive to an electromagnetic signal;
receiver means for receiving said coded electronic reply;
and
decoder means for matching the coded electronic reply of said identifier with stored coded pulse patterns.

\section*{4,096,478}

INTRA-PULSE MTI SYSTEM WITH RANGE AMBIGUITY SUPPRESSION
Joe D. Chavez, Tarzana, Calif, assignor to International TeleJoe D. Chavez, Tarzana, Calif., assignor to International Tele-
phone and Telegraph Corporation, New York, N.Y.
Continuation of Ser. No. \(\mathbf{1 5 9 , 7 5 1 , \text { Jul. } 6 , 1 9 7 1 , \text { abandoned. This }}\) application Oct. 12, 1973, Ser. No. 408,967 Int. Cl. \({ }^{2}\) G01S 9/42, \(9 / 233\)
U.S. Cl. 343-7.7 7 Claims
1. An MTI Radar System comprising: first means for transmitting a pair of consecutive pulses of electromagnetic energy, one of said pulses being fre-
quency modulated in a first sense and the other being frequency modulated in the opposite sense;
second means for receiving reflected energy pulses resulting from illumination of targets by said first means, said secnd means comprising a pair of parallel fed channels each delay characteristic of said mulse compression means in each of said channels corresponding to the sense of said frequency modulation in a corresponding one of said transmitted pulses;
time aligning means connected to delay the output of the one of said channels corresponding to the first in time of the one pulse duration;
and pulse differencing means responsive to said delay means and the output of the other of said channels, the output of taining primarily signals cor responding to moving targets.

RADAR SIGNIFICANT TARGET
Lyman F. Van Buskirk, Ridgecrest, Calif., assignor to The United States of America as represented by the Secretary of the Navy, Washington, D.C.

Filed Apr. 14,1977, Ser. No. 787,732
Int. Cl. \({ }^{2}\) Ho10 \(15 / 18\)
U.S. Cl. \(343-18\) C

1. A radar reflective target comprising
at least one panel having inner and outer faces
a plurality of radar reflective corner reflectors formed in the
face of the panel;
each of said plurality of corner reflectors being comprised of intersecting surfaces;
a radar reflective coating on the surfaces of said plurality of corner reflectors;
said at least one
terast one panel comprising the outer surface of a
the inner portion of said tetrahedron abutting the inner face of said at least one panel being comprised of a buoyant material.

\section*{4,096,480}

AIR TARGET FUZE TIME.GATED DECISION CIRCUIT Mark S. Miner, Washington, D.C., and Charles W. Crickman Glen Echo Heights, Md., assignors to The United States of America as represented by the Secretary of the Army, Wast ington, D.C.

Filed Jun. 10, 1968, Ser. No. 738,714
U.S. C. \(343-100 \mathrm{LE}\)
1. A decision circuit for a proximity fuze comprising: (a) a first antenna connected to a first receiver channel, said first antenna having a pattern having a main beam and a plurality of side lobes;
(b) a second antenna connected to a second receiver channel, said second antenna having a pattern having a broad
beam and a gain of less than said main beam but greate than the gain of said side lobes of said first antenna;
(c) a first range gated means in said first receiver channel to detect and amplify a valid target return signal;
d) a second range gated means in said first receiver channel to detect and amplify target signals arriving at time other than said valid target return signal, said seond means having a higher gain than said first means output of said first means exceeds the output of said second means;

fa third range gated means in said second receiver channel to detect and amplify signals arriving in the same time period as signals received by said second range gated means; and
(g) a second comparison means for producing a signal when an output from said second range gated means taken at a output of said first range gated means exceeds the output from said third range gated means by a predetermined difference.

4,096,481
QUICK DISCONNECT C.B. ANTENNA WITH A KEY LOCKING MEANS
Stanley W. Widmer, Coon Rapids, and Bernard C. Salchow, St. Paul, both of Minn., assignors to Stanley Widmer Associates, Filed Sep. 27, 1976, Ser. No. 727,008
Int. Cl.2 H010 \(1 / 32\)
 1. An antenna connector assembly for antennas of mobile
vehicles such as \(C . B\). antennas including a base member mountable on a mobile vehicle, a cover member adapted to be
mounted on said base member, an antenna mounted on said mounted on said base member, an antenna mounted on said means to electrically connect said antenna lead and said anenna when the cover member is mounted on said base memer, said base and cover members including cooperating interpocking twist lock lugs movable from a released to a latched position upon relative motion of said base member and cover metrub, a locking inger mounted on one of said members and ugs are in a latched position and the cover member is mounted
on the base member, and means to lockably connect said base and one of said two faces being totally in contact with the member and said cover member including a key operated lock active surface which said strip partially covers, said frequency mounted on said other member and having a cam movable
between a locked and an unlocked position, said cam intercepting said locking finger and preventing movement of said cover member relative to said base member by interfering with movement of said locking finger and preventing the relative
movement of said base and cover members which moves the movement of said base and cover members which moves
twist lock members from latched to released position when said cam is in its locked position with the cover member mounted on said base member, and permitting movement of
said locking finger and separating movement of said cover said locking finger and separating movement of said cover locked position.

\section*{4,096,482}

WIDE BAND MONOPULSE ANTENNAS WITH
CONTROL CIRCUITRY
Glenn A. Walters, San Diego, Cilifif, assignor to Control Data Corporation, Minneapolis, Minn.

Filed Apr. 21, 1977, Ser. No. 789,399
Int. C.1. \({ }^{2}\) H01Q 13/00
U.S. CI. 343-778

selective absorber imparting an important attenuation in the band \(\Delta F_{H}\) and an attenuation which is substantially zero in the band \(\Delta F_{B}\)

1. A monopulse antenna system comprising, in combination: 1. A monopulse antenna system comprising, in combination:
at least four quadd ridged horns, each having a square horn at east four quad-ridged horns, each having a square horn walls extending between said waveguide section and said horn walis extending between said waveguide section and said hom mum height from the respective side wall adjacent said wave-
guide section and flaring to a minimum height at said horn guide section and flaring to a minimum height as said horn
aperture, each horn having a bandwidth in excess of one octave, said horns being arranged in a geometric array and being tave, said horns being arranged in a geometric array and being is contiguous to the horn aperture of at least one other horn;
dielecric means at the horn aperture of each of said horns for matching the impedance between the respective horn and free matching the impedance beiween the respective horn and free
space; electronic circuit means for processing signals in each of
said said horns; and coupling means connected to each of said horns
at the respective waveguide sections and to said circuit means at the respective waveguide sections and to said circuit means
for transmitting electrical energy between said horns and said circuit means.

4,096,483
REFLECTOR WITH FREQUENCY SELECTIVE RING OF RELECTOR WITH FREQUENCY SELECTIVE RING OF Nhu Bui Hai, and Philippe Magne, both of Paris, France, assignors to Thomson-CSF, Paris, France
Claims priority, Mapp. 9, 1976, Ser. No. 665,445 Claims priority, application France, Mar.
Int. Cl.
H01Q \(9 / 12\)
0. U.S. CI. 343-781 CA An antenna for working in two frequency bands, 2 Claims \(\Delta \mathrm{F}_{H}\) (with \(\Delta \mathrm{F}_{H}\) higher than \(\Delta \mathrm{F}_{B}\) ) and comprising \(n(n:\) positive \(\Delta \mathrm{F}_{H}\left(\right.\) with \(^{\text {in }} \Delta \mathrm{F}_{H}\) higher than \(\Delta \mathrm{F}_{\beta}\) and comprising \(n(n:\) positive
integer) radiating elements having respective active surfaces, integer) radiating elements having respective active surfaces, covered by a strip of frequency selective absorber having two faces and two edges, one of said two edges following the

4,096,484
Ferre, and Brent Rudy Miller both of Sandy, Utah Radford G. Ferre, and Brent Rudy Miller, both of Sandy, Utah, Filed Oct. \({ }^{26,1} 1\) 1976, Ser. No. 735,265
Int. C. \({ }^{\text {Go1D }} 9 / 00 ;\) G \(01 \mathrm{~S} 9 / 66\) Int. C.
\(46-33\) EC

17 Claims

1. A graphic recorder system for use in recording sona information and the like received over one or more informafirst manem, said system comprising first memory means for storing information received over an
information channel and including two storage areas dediincormation channel and
means for applying information received over such channel age area,
means for recording on a recording medium a graphic repre sentation of sequentially supplied information, said re cording means being adapted to record the graphic representation of the supplied information as the information is tance scale factors dependent upon the rate at which information is supplied to the recording means, and means for reading information alternately from one of said storage areas while information is being applied to the other storage area, and then from the other of said storage areas while information is being applied to the one storage
area, and for applying the information sequentially to said recording means at selectable and variable rates.

SUCCESSIVE DEVELOPMENT
SUCCESSIVE DEVELOPMENT MAGNETIC IMAGING Edward C. Sellers, Buffalo, and Chander Malkani, Tonawanda both of N.Y., assignors to Xerox Corporation, Stamford, Conn.
Division of Ser. No. 537,230, Dec. 30, 1974. This application Oct. 26, 1976, Ser. No. 735,474

Int. Cl. \({ }^{2}\) G03G \(19 / 00\)
U.S. Cl. 346—74.1

1. An apparatus comprising a first image forming means
medium by illuminating a multitude of points on the surface of the recording medium to form lines of image points, the recorder comprising, in combination, a plurality of light-emitting elements; transport means for effecting relative movement a predetermined transport direction at a predetermined rate, the light-emitting elements being arranged in a plurality of rows, the rows being arranged successively in the transport
direction, the rows extending at an angle relative to the transdirection, the rows extending at an angle relative to the rans-
port direction, the elements of each single row being offset relative to the elements of the other rows in a direction transverse to the transport direction, the offsets among the elements of the individual rows being equal to \(j \times d / N\), wherein \(j\) is an integer including unity, \(d\) is the distance between adjoining
elements of a single row, and \(N\) is the number of rows; optical means operative for receiving the light emitted by the individual light-emitting elements and projecting onto the recording medium a corresponding plurality of individual reduced-scale light points arranged in light point rows corresponding to the rows of light-emitting elements; and electrical control means operative for applying to the individual light-emitting elements on the recording-medium surface, and comprising means for effecting the formation of each line of image points by applyng to the rows of light-emitting elements respective groups of control signals all corresponding to the line of image points but delayed by respective time-delay intervals dependent upon the rate of transpond point rows as measured in the transport direc. among the light point rows as measured in the transport direc amon.
tion.
whereby an optical image is converted by development with magnetically attractable material to a magnetizable graphic
image, means to magnetize said graphic image, means to rede velop said magnetized graphic image with additional magneti-
cally attractable material, means to magnetize said redevelcally attractable material, means to magnetize said redevel
oped image and means to produce a latent magnetic image on oped image and means to produce a latent magnetic image on
a magnetic substrate wherein said magnetized redeveloped mage is brought into intimate contact with said magnetic image is
substrate.


\section*{RECORDING APPARATUS Minneaphater, Littleton, Colo., assignor to Honeywell Inc.,} Miled Noapolis, Minn. 19, 1976, Ser. No. 743,481
File Cl. \({ }^{2}\) GO1D \(15 / 24\) U.S. CI. \(346-110\) R
1. Recording apparatus having a light sensitive record receiving member, marking means including a cathode ray tube,
and motive means to move said record receiving member relatively to said marking means, means to produce a first signal the magnitude of which is indicative of a desired rate of movement of said record receiving member relatively to said marking means, means to produce a second signal the magnitude of which is indicative of the actual rate of said relative movement, and comparator means jointly responsive to said signals and operative upon start-up of said motive means to tic of said second signal bears a predetermined relationship to a characteristic of said first signal.

4,096,488
MODULAR STYLUS ASSEMBLY
Paul Angerame, \(88-47\) 198th St., New York, N.Y. 11423
Filed Feb. 22. 197, Ser. No. 700,288 Filed Feb. 22, 1977, Ser. No. 1 Int. C1. \({ }^{\text {G01G }} 15 / 06\)
U.S. CI. \(346-139 \mathrm{C}\)

11 Claims

1. A modular stylus assembly for printing alphanumeric or pictorial patterns on electrosensitive sheets comprising, in combination, a print-head module having a first wall, a pair of
spaced second walls extending from said first wall and defining spaced second walls extending from said first wall and defining
a channel therebetween, and a multiplicity of stylus wires extending rectilinearly and in parallel alignment through said second walls and within said channel alongside said first wall, and a connector module receivable in said channel and comprising a multiplicity of alternating electrically conductive and extending through said pair of spaced second walls, said electrically conductive wafers being spaced from one another by said electrically insulating wafers a distance corresponding substantially to the spacing between said parallel stylus wires whereby the electrically insulating wafers of a connector module received in said channel are respectively in electrically
conductive engagement with said stylus wires, said connector module having means for selectively electrically energizing said electrically conductive wafers and said stylus wires.

\section*{4,096,489}

ELECTROSTATIC-RECORDING GAS DISCHARGE DEVICE WITH IMPROVED SCANNING STABILITY oshizumi Terazawa; Takashi Kitagawa; Takanori Tanaka, and
Company, Ltd., Tokyo, Japan Ser. No. 716,74
Filed Aug. 23, 1976, Ser. No. 716,745
Claims priority, application Japan, Aug. 26, 1975, 50-103290 \begin{tabular}{l} 
Int. Cl. \({ }^{2}\) Jo3G \(19 / 00\) \\
\hline
\end{tabular}

1. An electrostatic-recording gas discharge device compris
ing: a p
a plurality of scanning electrodes arranged at a given spac-
ing;
a pluralit
of voltage inducing electrodes arranged in oppos ing relation to said scanning electrodes; teast one first opposing electrode ar
relation to said scanning-electrodes;
hermetically sealed envelope housing all of said voltage
hermetically seaied envelope housing alr of said voitage
inducing electrodes, said scanning electrodes and said first
opposing elect
filled therein;
plurality of recording envelope and electrically connected to said voltage induc ing electrode;
plurality of auxiliary discharge electrodes which are elec
trically connected least one sected to said voltage inducing electrodes; and relation to said auxiliary discharge electrodes in opposing opposing electrode and said auxiliary discharge electrode permitting a discharge between said auxiliary discharg electrodes and said second opposing electrode in a position spaced apart from said voltage inducing electrodes and said first opposing electrode before a discharge take place between said voltage inducing electrodes and sai
first opposing electrode due to a variation in potentials of said recording stylus electrodes.

EXPOSURE ADJUSTING MECHANISM IN CAMERAS usumu Fujita, Kobe, Japan, assignor to Fuji Photo Film Co. Ltd., Minami-ashigara, Japan
Filed Dec. 2, 1976, Ser. No. 746,777
Claims priority, application Japan, Dec. 2, 1975, 50-14436
U.S. C1. 354-21

2 Claims

\section*{}
1. In a compact photographic camera utilizing at least two ypes of film cartridge which contain therein respective roll
films of different sensitivity, at least one of said types of film cartridge being provided with an actuator which represents given sensitivity of the roll film contained in one of said types of film cartridge, and an exposure adjusting mechanism, said exposure adjusting mechanism comprising:
controlling the amount of rays of light to be exposed onto a frame of the film within the cartridge when loaded in the
camera;
an aperture setting slide supported in position for movement between first and second positions, said aperture setting
slide being operatively coupled with said aperture defining means such that, when said slide is moved to the first position, the controllable exposure aperture is adjusted to a maximum opening and, when said slide is moved to the second position, said controllable exposure aperture is adjusted to a minimum opening, said setting slide having
intermediate positions between said first and second posiintermedia
tions; and
an adjustably positioned, movable aperture scale means mounted on said camera for movement relative to a viewing window and having one surface bearing a plurality of
indicia equal in number to the number of the position of the aperture setting slide for display within said window;
and
linkage means responsive to presence or absence of the actuator in the film cartridge then loaded in the camera for adjusting the position of said aperture scale means indicia
relative to the viewing window for displaying given indicia indicative of the type of film cartridge carrying said film, the improvement wherein:
said aperture scale means comprises an aperature scale bar
he direction of movement of the aperture setting slide and opening, and operative when the scene brightness level is having a surface bearing a plurality of said indicia equal in within a second range for automatically selecting exposure
number to the number of positions of the aperture setting durations so long that during a substantial part of the exposure slide, with said surface underlying said viewing window the shutter will already be in the fully open setting thereof, the and movable with respect thereto, first spring means for biasing said slidingly supported aperture scale bar to a
position such that the whole number of said indicia on the scale are displayed to the photographer's view through said window, and said linkage means further includes a ransmission lever mounted for pivoting intermediate of its ends about an axis at right angles to the plane of slidin novement of said aperture scale bar, to one side of sa the end of the aperture scale bar for contact therewith, and L -shaped detecting lever having right angle arms in a plane parallel to the plane of the transmission lever and eeing pivotably mounted for pivoting about an axis paral side of the transmission lever opposite that of said apertur scale bar, said L -shaped detecting lever having one of said right angle arms being forked and overlying the other end faid transmission lever, a pin carried by said transmis sion lever fixed to said other end and being received
within said forked arm, and wherein the other arm of said -shaped detecting lever terminating at a point remor rom the pivot axis of said \(L\)-shaped detecting lever in a feeler which detects the presence of the actuator in the cartridge within said camera having an actuator, contact with said feeler causes said L -shaped detecting lever to pivot said transmission lever into contact with said one nd of said aperture scale bar and to displace said aperture some of the indicia on the scale bar is displayed through said window to thereby visually represent limited available f-stop numbers to the photographer.

PHOTOGRAPHIC CAMERA WITH AN AUTOMATIC EXPOSURE-CONTROL CIRCUIT INTO WHICH ONE OF TWO DIFFERENT LIGHT-SENSITIVE ELEMENTS IS
SWITCHED DEPENDING UPON SCENE BRIGHTNESS Eduard Wapensonner, Aschbeim; Peter Lermann, Narring, and Guinter Fauth, Unterhaching, all of Germany, assignors to AGFA-Gevaert AG, Leverkusen, Germany
Filed Mar. 9, 1977, Ser. No. 775,985
U.S. Cl. 354-31

1. In a photographic camera of the type provided with a hutter release, a shutter, means responsive to the activation of the release for performing a retarded opening of the shutter and means operative when activated for causing the shutter to
close, in combination, exposure control means operative when the scene brightness level is within a first range for automatically selecting exposure durations so short that during a substantial part of the exposure the shutter is in the process of
exposure control means comprising a light-integrating circui including first and second light-sensitive elements to be used alternatively for scene brightness levels in respective ones of the brightness ranges, and first and second controllable elecelements for switching one or the other of the light-sensitive elements into the light-integrating circuit; a bistable circuil provided with at least one information-signal input, two mutu ally complementary outputs, a clock input, and gating means independent of signals applied to the information-signal inpu except in response to the application of a clock pulse to the clock input, the two controllable electronic switches each having a control input connected to a respective one of the measuring circuit operative for determining whether the scene brightness level is within the first or the second range and correspondingly applying to the information-signal input of he bistable circuit one or the other of two information signals, he brightness-measuring circuit including setting means ope predetermined one of the two light-sensitive elements by set ing the bistable circuit to a predetermined one of its two stages irrespective of the signal applied to the information-signa nput by the brighness-measuring circuil, so hal he prelimusing the predetermined one of the two light-sensitive elements; and clocking means operative after completion of the preliminary brightness-measuring operation for applying brief clock pulse to the clock input of the bistable circuit the signals appearing at the mutually complementary outputs o be dependent upon the signal applied to the information-signal input by the brightness-measuring circuit, whereby 10 witch the appropriate light-sensiive element into the ligh mance of an exposure control operation.

\section*{CAMERA WITH DETA,096,492}

CAMERA WITH DETACHABLE ELECTRONIC FLASH UNIT AND EXP both of Mass., assignors Mass.
nuation of Ser. No. 569,762, Apr. 21, 1975, abandoned
This application Jun. 22, 1976, Ser. No. 698,715
1. An electronic fla 5 Claims of electrical power, the camera having selectively a supply means for producing a film exposure, means responsive to an inhibit signal for precluding operation of said selectively operative means, and means for producing a flash trigger signal said flash unit comprising.
flash means for charge and in response said forh tizger signa, for subsequenly producing a flash of light;
actuatable means for producing a first signal;
first switch device settable from a first to a second state responsive to said first signal and resettable to
state responsive to ssid flash trigger signal
means responsive to said flirst switch device being in its said second state for coupling said flash means to said power supply so as to store said electrical charge and responsive to said first switch device being in its said first state for decoupling said flash means from said power supply; charge sensing means for producing a second signal respon-
sive to said flash means being charged to a given level: sive to said flash means being charged to a given level;
means responsive to said second signal and said switch de-
vice being in its said second state for producing a third
signal: and signal; and
second switch second swich device settable from a first to a second state
responsive to said third signal and resettable to its said first state responsive to said flash trigger signal, said second
switch device providing said inhibit signal when said switch device providing said inhibit signal when said

second switch device is in its said first state and termina its said second state whereby in response to said trigg signal, both said switch devices are reset to their said firs states so as to automatically prevent further storing of saic
charge and operation of said selectively operative means when said flash of light is produced.

4,096,493
PHOTOGRAPHIC CAMERA HAVING
ELECTROMAGNETIC DIAPHRAGM CONTROL kkio Sunouchi, Tokyo; Y Yoshiaki Watanabe, Fujisawa; Fumio Ito, Yokohama; Yukio Mashimo, Tokyo; Nobuaki Date, Ka-
wasaki, and Tadashi Ito, Yokohama, all of Japan, assignors to Wanon Kabushiki Kaissa, Tokyo, Japan
Filed Oct. 13, 1976, Ser. No. 731,
 U.S. Cl. 354-38 Int. C.2 \({ }^{\text {G03B }} 7 / 08 \quad 17\) Claims

1. In a photographic camera having automatic diaphragm ontrol, the combination comprises:
(a) lens aperture mean said camera;
(b) an automatic exposure value computer;
(c) a diaphragm scanning mechanism having a scanning
member and a driving member for said scanning member,
member and a driving member for said scanning member;
(d) a diaphragm presetting member cooperative with either
of said diaphragm ring and said scanning mechanism for of said diaphragm ring and said scans
presetting said lens aperture means; (e) electromagnetically operated arresting means for arrest-
ing said scanning mechanism at a time when the output of said scanning mechanism has reached a lever dependen
upon the output of said exposure value computer; f) a release device for releasing positive connection between said driving member and said scanning member,
(g) shutter means;
(h) actuating means responsive to the termination of actua(i) automatic diaphragm closing down means cooperative with said lens aperture means; and
(j) pre-viewing means operatively connectable with said automatic diaphragm closing down means upon connec tion to permit checking of the depth of field in dependence on the manually adjusted setting of the diaphragm aper
ture by said diaphragm presetting member; whereby after the camera shutter is closed, the interlocking connection between said lens aperture means and said diaphragm scanning mechanism is released by said actuating means, enabling manipulation of said diaphragm ring followed by said pre-viewing means to check the depth of object fiel camera is in the cocked position.

4,096,494
Japan, assignors to Asahi Kogaku Koni Tano, Asaka, both of Tokyo, Japan
Claims priority, application Ser. No. 682,868 Claims priority, application Japan, May 2, 1975, 50-53984 U.s. Cl. 354-53
1. In a shutter speed indicator for a camera, said shutter speed indicator being of the type having an array of ligh emitting elements for illuminating a plurality of shutter speed indicating numerals, respectively, to cause the illuminated numeral to be visibe hrovement comprising; each said light emitting element having an anode and a cathode, the anodes of said array of elements being grouped into a plurality of groups, each anode being in only one anode group, and the anodes in each group being connected together to form an anode external termina the cathodes of said array of elements being grouped into an external terminals, the group connections are arranged so tha the combination of any one anode external terminal and any one cathode external terminal has in common only a single ight emitting element, and energizing means for providing nnique multibit digital signal responsive to a shutter speed value, each unique multibit digital signal causing energization
of a corresponding unique pair of said anode and cathode external terminals, thereby only the light emitting element common to said energized terminals is illuminated and the corresponding shutter speed indicating numeral becomes visi-
ble.

Israel Nesson, Fair Lawn; Edwin E. Faris, Wyckoff, and Robert Israel Nesson, Fair Lawn; Edwin E. Faris, Wyckoff, and Rober
G. Palmer, Wayne, all of N.J., assignors to Berkey Photo, Inc., Paramus, N.J.
Division of Ser. No. 296,591, Oct. 11, 1972, abandoned. This application Jun. 16, 1975, Ser. No, 587,036 U.S. C. \({ }^{354-59} \quad 5\) Claims

1. Mechanism for controlling the brightness of an image passing through an aperture and along a predetermined axis, comprising a first vane member movably mounted for recing
cating movement along a predetermined substantially linea path, said member having an elongated opening located to move longitudinally over said aperture as said first member eciprocated along said linear path, a mh, and means for mov member having an opening ing said second vane member along another path transverse to said linear path in response to the reciprocal movement of said first vane member, thereby effecting movement of said opening
defined by said second vane member across said aperture in a defined by said second vane member across said aperture in a
direction transverse of said elongated opening in said first vane direction transverse of said ember and its associated elongated opening moves longitudinally over said aperture.

\section*{4,096,496}

EXPOSURE CONTROL CIRCUIT FOR CAMERA Saburo Numata, and Shinichiro Okazaki, both of Urawa, Japan, assignors to Fuji Photo Optical Co., Ltd., Omiya, Japan assignors to Fuji Phot
Filed May 24, 1977, Ser. No. 800,067 Claims priority, application Japan, May 26, 1976, 51-60823 Cl \(354-60 \mathrm{At}\) Cl. \({ }^{2}\) C03B 7/00 U.S. Cl. 354-60 A

1. An exposure control circuit for a camera comprising power source, a crystal oscillator having an input and an output, a small current supply circuit connected between said power source and supplying a small current to the crystal oscillator, a digital control circuit connected with the output of said crystal oscillator for controlling an exposure factor, a normally opened switch connected between the power source and the digital control circuit and also between the power source and
the input of the crystal oscillator, said normally open switch
being closed upon the first stage of depression of a shutter release button of the camera.

\section*{4,096,497}

MOUNTING APPARATUS HAVING SHOCK MTABILIZING MEANS
Bruce K. Johnson, Andover, Mass., assignor to Polaroid Corporation, Cambridge, Mass.
U.S. C. \(354-86\) Int. Cl. \({ }^{2}{ }^{\text {G }}\) G3B \(17 / 50\) Int. Cl. \({ }^{2}\) G03B \(17 / 50 \quad 7\) Claims


\section*{1. Photographic apparatus} housing section for receiving and locating a mounting section including a wall having location, said housing elongated opening through which a film unit may be advanced and means for guiding the mounting bracket to said predetermined location;
pair of elongated pressure-applying members adapted to be mounted in juxtaposed relation for spreading a processing fluid across a layer of an exposed film unit; and
mounting bracket for coupling said pressure-applying members to said housing section with said pressure-apply ing members mounted in juxtaposed relain in said wall, said mounting bracket including a base section having oppos ing ends and means, located substantially intermediate said opposing ends, projecting therefrom and receivable by said guiding means in said wall for locating said mounting
bracket at said predetermined location and means for dampening a shock imparted to said mounting bracket via said wall and said projecting means whereby said oppos ing ends of said base section may flex about said projectin means and toward said wall.

\section*{4,096,498}

EXPOSURE PROPRIETY INDICATING DEVICE FOR EXPOSURE FLASH-PHOTOGRAPHY
eno Okuna, and Masumi Osumi, both of Kawasaki, Japan, assignors to Nippon Kogaku K.K.,. Tokyo, Japan
Filed Mar. 30, 1976, Ser. No. 672,065
Filed Mar.
Claims priority, application Japar, Apr.
Int. Cl. \({ }^{2}\) GO3B \(15 / 02\)
.S. CI. 354-127
A. exposure propriety indicating device for raphy of an object located a given distance therefrom comprisa. a film sensitivity signal generating circuit for generating a
first output signal in accordance with the sensitivity of a selected film;
b. an aperture value signal generating circuit for generating
a second output signal in accordance with an aperture
value;
c. a com
output signals, said comparison circuit generating an actu-

ation signal when a difference between said first output signal and said second output signal falls outside of a range
of be determined by the maximum and the minimum of be determined by the maximum and the minimum
amounts of flash light from an automatic control elec tronic flash; and
an indicator circuit for actuation by said actuation signal from said comparison circuit.
\(4,4,096,499\)
MIRROR SUPPORTING BODY AT A SINGLE LENS Retsuya Taguchi, Tokyo, and Nobuaki Date, Kawasaki, both of Japan, assignors to Canon Kabushiki Kaisha, Tokyo, Japan
Filed Aug. 16, 1976, Ser. No. 714,563 Filed Aug. 16, 1976, Ser. No. 714,563 Claims priority, application Japan, Aug. 22, 1975, 50-101861 U.S. Cl. 354-152

1. In a single lens reflex camera having a reflex lens system 1. In a single lens reflex camera having a refex lens system
including a rotatable mirror and a support therefor angularly positioned in the light path in said camera, said rotatable mirror support arranged for positively maintaining said angular position and comprising:
(a) a support base having a plurality of individual resilient
support members for supporing thereon.
thereon. portions for positioning said mirror on said base in a pre portions for positioning said mirror on said base in a pre-
determined position relative to said light path at one exdetermined position relative to said light pathe extremity for limiting the travel of said mirror when positioned on faid support,
(c) axxle support means carried by said arms at one of said extremities and forming an integral part thereof for main-
taining the fixed rotational position of said support base taining the fixed rotational position of said supp,
and mirror in the reflective plane of said mirror,
(d) adhesive means attached to said support members for adhering said mirror when placed thereon for movemen with said resilient members, said support base and fiexible
relation for said light path and being disposed to flexibly position said mirror on said support base for maintaining the fixed angular light path in response to the deteriorarelated to use and environmental conditions.
\(4 \begin{aligned} & 4,096,500\end{aligned}\) OR MOTION-PICTURE CAMERA OR REPRODUCING APPARATUS Peter Lermann, Narring, and Eduard Wagensonner, Aschheim, both of Germany, assigs to AGFA-Gevaert AG, Leverku sen, Germany
Filed May 23, 1977, Ser. No. 799,325 Claims priority, application Germany, May 26, 1976, 2623690 U.S. Cl. \({ }^{354-173}\) Int. Cl. \({ }^{2}\) G03B \(1 / 18,19 / 18,21 / 32\)
1. In a photographic apparatus, a circuit operative for conirolling the number of times, the durations, and the sequences in which scene-pause operations, scene-production operations,
scene-pause-and-production repetition operations, and the like, are performed, the circuit comprising, in combination, pulse-generating means operative for generating pulse trains;
frequency-dividing means for receiving the pulse trains and frequency-dividing means for receiving the pulse trains and producing frequency-divided pulse trains whose pulse-
repetition frequency and period determine the minimum repetition frequency and period determine the minimum
duration for each of the different operations; a series of digital counters, one for each of the different operations.
each counter having a counting input connected to receive one of the frequency-divided pulse trains,
each counter having a start input and a stop-and-reset input.
each counter having a plurality of outputs on which to furnish digital count signals;
an addressable read-only memory having a plurality of ad-dressing-signal inputs and plural sets of desired-value-signal outputs;
program-selecting means operative for causing different
desired-value signals outputs of the memory by applying to the addressing-sig. nal inputs thereof different addressing signals;
a series of digital comparators, one for each counter each comparator having a plurality of actual-value-signal inputs connected to the outputs of the associated counter,
each comparator having a plurality of desired-value-signal inputs connected to a respective one of the sets of desired value-signal outputs of the memory
each comparator having an output connected to the stop-and-reset input of the associated counter
each comparator except for the last in the series having its comparator output also c
next counter in the series,
nerey wher in the series, any one of the comparators coincide the resultant comparany one of the comparators coincide the resultant compar-
ator output signal stops and resets the respective counter for terminating the operation associated with that counter,

and whereby the comparator output signal of any comparator except the last comparator in the series additionally causes the next counter in the series to start counning
initiating the operation associated with such counter; electromechanical activating means controllable for effecting the performance of the different operations; and a logic circuit connecting the output of the last comparator to the start input of the first counter and operative for applying signals to the start input of the first counter in dependence upon at least the signals at the output of the
last comparator, and also connecting the output of at leas last comparator, and also connecting the output of at least
one of the comparators to the electromechanical activating means for controlling the latter in dependence upon the signals at the former. prising
a. a camera housing,
a. a camera housing,
b. a flat transparent plate in said camera housing
c. a lens associated with said housing, said lens being adjustc. able with respect to said flat plate,
able with respect to said flat plate,
d. means for adjusting the distance of said lens from said flat plate,
e. means for holding a film length flatly against said flat transparent plate during exposure of said film, said means comprising (i) a film engaging member, (ii) a shaft operamember, (iii) means for biasing said film engaging membe into engagement with said flat plate, for flatly pressing a film length located between said flat plate and said member against said flat plate, and (iv) means located exteri-
orly of said housing attached to said shaft for moving said film engaging member from a position pressing said member into engagement with said film to a position wherein said member is spaced from said flat plate and film disposed between said flat plate and said member may be removed therefrom, and
means for positioning a length of film adjacent said flat plate to be held thereagainst by said holding means, said film positioning means comprising an upper reel assembly and a lower reel assembly; said upper reel assembly including a housing distinct and separable from said camera housing, and said lower reel assembly incluaing a housing distinct and separable from said camera housing, and a vertical through-extending passageway being prover and said flat plate; and said film positioning means further comprising means for releasably connecting said upper and lower housings to said camera housing in light-sealing relationship therewith and in cooperation with sai through-extending passageway in said camera housing.

SAFETY DEVICE FOR THE ELECTRIC SHUTTER OF A CAMERA
kihiko Sato, Tokyo, Japan, assignor to Nippon Kogaku K.K Tokyo, Japan Filed Jun, 16, 1976, Ser. No. 696,492 Claims priority, application Japan, Jun. 21, 1975, 50-75066 U.S. CI. 354-234 Int. Cl. \({ }^{2}\) G03B 9/00.17/38 9 Claims

1. A safety device in a camera's focal plane shutter device hich comprises shutter moving means ( \(\mathbf{1 0 , 1 1 , 3 2 , 3 3 \text { ) having }}\) forward curtain interlocking portion interlocked with orward shutter curtain biased in the direction of movement predetermined for shutter release and a rearward curtain inter ocking portion interlocked with a rearward shutter curtain biased in the same direction as said forward curtain and said hutter curtains being simultaneously chargeable and sepa-
rately releasable, forward curtain restraining means (19, 190) disposed for displacement between a first position to restrain said forward curtain interlocking portion and a second position or release said restraint, rearward curtain restraining means ( 13 17, 150) disposed for displacement bet ween a first position to restrain said rearward curtain interlocking portion and a second position to release said restraint, rearward curtain coniro means in said first position thereof until a predetermined time for providing proper exposure elapses from the start of shutter release operation, and anticipatory actuation means ( 1 - 6 disposed engageably with said rearward curtain restrainin means, said anticipatory actuation means displacing said rear to shutter charge operation, and rendering said rearward curtain restraining means displaceable to its second position in response to shutter release operation; and
forward curtain control means disposed between said anticipatory actuation means and said forward curtain restrain ing means engageably with boin
aid forward curtain control means being effective during shutter charge operation to displace said forward curtain restraining means to said first position in coordination with said anticipatory actuation means.
said forward curtain control means, when said rearward curtain restraining means is restrained in the first position
by said rearward curtain control means, being effective to transmit the movement of said anticipatory actuation means to said forward curtain restraining means during shutter release operation to thereby displace the forward
curtain restraining means to said second position, and curtain restraining means to said second position, and
when said rearward curtain restraining means is in said second position, to render impossible said transmission.

SHU 4,096,504
SHUTTER CURTAIN HOLDER DEVICE Keisuke Mochizuki, and Yostiyuki Nakano, both of Tokyo, Japan, assignors to Nippon Kogaku K.K., Tokyo
Filed Feb. 5, 1976, Ser. No. 655,410 Claims priority, application Japan, Feb. 18, 1975, 50-22384[U] U.S. C. 354-241 Int. Cl. \({ }^{2}\) G03B \(9 / 28\)

1. A shutter curtain holder device for use in a camera, comprising:
(a) a shutter curtain folded adjacent to one end thereof to provide a reverse flap;
(b) a stem disposed inside the folded portion of said shutter curtain and comprising at least two short elements disposed adjacent to the upper and lower edges of said shutc) a shutter beam surrounding said folded portion of said shutter curtain, said shutter beam having indented portions formed adjacent to the ends thereof, each of said indented portions lying between said one end of said ween the opposed portions of said shutter curtain smaller than the transverse dimension of said stem taken in a plane perpendicular to the plane of a major surface of said flap, each of said indented portions of said beam including two dimples, one of said indented portions being disposed adjacent respective of said two elements.

\section*{4,096,505}

FOCAL PLANE SHUTTER FOR CAMERAS Eichi Onda, Yotsukaido, and Masanori Watanabe, Narashino, both of Japan, assignors to Seiko Koki Kabushiki Kaisha, Japan
Continuation-in-part of Ser. No. 686,501, May 14, 1976, abandoned. This application Aug. 11, 1976, Ser. No. 713,591 Claims priority, application Japan, May 14, 1975, 50-57100; May 14, 1975, 50-57102
U.S. Cl. 354-246

8 Claims

1. A camera shutter mechanism for opening and closing a shutter aperture to effect an exposure comprising: a group of on which they cover the whuter aperture to an closed position which they do not cover the shutter aperture to initiate an exposure; a group of closing blades movable, when released,
from an open position in which they do not cover the shutter a water supply conduit, in combination therewith, sucking aperture to a closed position in with they cover the shutter means powered by flow of water through the water supply aperture to terminate the exposure; release means for releasing conduit and operative for sucking out of the sucking mean
the opening blades thereby enabling them to move to the open position for initiating the exposure, and for subsequently re-- vapors forming a water-jet pump connected in the water supply leasing the closing blades thereby enabiling , and means includ- conduit ansed position for terminating the exposure; closed position for terminating the exposure, and mediately after completion of the exposure for moving the group of opening comple back towards the closed position so that the aperture is blades back towards the closed posit partialy covered thereby.
at least part

400506
,096,506
COVER PLATE FOR OPTICAL ELEMENTS OF A CAMERA
Bunde, Germany
CAMERA, Germany, assignor to Balda-Werke,
Bunde, Germany
Filed Oct. 5, 1976, Ser. No. 729,872
Claims priority, application Germany, Jul. 29, 1976,
U.S. C. 354-288 Int. Cl. \({ }^{2}\) G03B 17/02

10 Claims

supply conduit and through the water-jet pump, and means pneumatically connecting the suction port of the water-jet pump to the interior of the bleaching stage and operative for lransmitting said suction pumping force to the space above th deachioping in the bleaching stage to be drawn off into the suction port of the water-jet pump.
1. A slidable protective cover for the optometric elements of a camera of the type having the optometric elements thereof contiguously transversely aligned on the substantially planar panel overfiting said front panel of said camera, first means
mounted on said planar panel, said front panel of said camera mounted on said planar panel, said front paneling to said first housing including a second means corresponding second complementary means being cooperatively connectable for sliding said panel thereon between first and second positions, said first
spent position of said planar panel corresponding to a position of said
panar panel overlying said optometric elements, said second planar panel overlying said optometric elements, said second
position of said planar panel corresponding to a position of said
sid position of said planar panel correspondid optometric elements, said camera housing having an interior slot in which said pla nar panel is reasonably housed in said second position theree and cooperating corresponding complementary means on said
planar panel and in said camera housing for releasably securing planar panel and in said camera housing for reeeasably securid tively, on said housing.

4,096,507
CONTINUOUSLY OPERATING DEVELOPING
MACHINE WITH MEANS FOR REMOVING
MACHINE WITH MEANS FOR REMS
BLEACHING FLUID VAPORS
Juirgen Leuchter, Tutzing, Germany, assignor to AGFA-Gevaert AG, Leverkusen, Germany
Filed Jun. 18, 1976, Ser. No. 697,572
Claims priority, application Germany, Jun. 28, 1975, 2529008 Int. Cl. \({ }^{2}\) G03D \(17 / 100\)
U.S. Cl. 354-307 9 Claims 1. In a film-developing machine of the daylight type comprised of a plurality of processing stages, including a bleaching stage comprised of a bath of bleaching fluid and a washing stage, arranged one after the other in the direction of film
transport through the processing stages, and means for supplytransport through the processisig stages, and means
ing washing water to the washing stage, said means including

\section*{4,096,508}

MULTIPLE JUNCTION \(4,0 \%, 508\) SURERT MEMORY DEVICE UTILIZING FLUX VORTICES
heodore Alan Fulton, Warren Township, Somerset County, N.J., assignor to
Murray Hill, N.J.

Filed Nov. 14, 1975, Ser. No. 631,922
Int. Cl.
U.S. Cl. 357-5

6 Claims

1. A supercurrent device comprising a plurality of extende Josephson junctions stacked on top of one another and capable of supporting the propagation of mobile flux vortices, each of said junctions having a pair of superconductive layers and weak-link layer separating said pair,
a common extended Josephson junction having a weak-link layer in contact with each of the weak-link layers of said stacked junctions so togic state occupy one of said stacked junctions and said common junction and vortices corresponding to a differ ent logic state occupy another of said stacked junction and said common junction, the mutual magnetic repuision of vortices in said com maintain their ordering.

MNOS MEMORY 4,096,509 DEPOSITED SILICON NITR anklyn C. Blaha, Glen Buritride gate dielectric ville, both of Md., assignors to The United Stricchi, Catons as represented by the Secretary of the Air Force, Washington D.C.

Filed Jul. 22, 1976, Ser. No. 707,57
\({ }_{-23}\) Int. Cl. \({ }^{2}\) H01L 29/78, 29/34, 27/02
U.S. CI. \(357-23\)

3 Claims

1. A radiation hardened MNOS memory transistor compris-
ing a substrate of electrically insulating material,
a mesa of semiconductor material deposited on the surface thereof,
a source region formed by \(\mathrm{P}+\) diffusions into a portion of a drain region formed by \(P+\) diffusions into a portion of said mesa adjacent the edge thereof opposite said source re gion, said source and drain regions in part defining a
substrate gate region therebetween substrate gate region thereberween
a layer of silicon dioxide covering said substrate gate region
and portions of said source and drain regions, a portion of said silicon dioxide layer in the vicinity of said substrate gate region being removed to define a gate window,
a layer of non-memory silicon nitride covering said silicon dioxide layer,
a layer of memory silicon nitride covering said non-memory silicon nitride layer and said tunneling oxide layer,
a source electrode,
a gate electrode. \(\qquad\)
4,096,510
THERMAL PRINTING HEAD
Shoji Arai; Shige Kuninobu, both of Kyoto, and Sumio Maekawa, Hirakata, all of Japan, assignors to Matsushita Elec tric Industrial Co., Ltd., Kadomi, Japan
inuation of Ser. No. 605,922, Aug. 19, 1975, abandoned. This application Aug. 3, 1977, Ser. No. 821,92
Claims priority, application Japan, Aug. 19, 1974, 49-95300; May 19, 1975, 50-59826
U.S. Cl. \({ }^{\text {Int. }}{ }^{28}\) C. \({ }^{2}\) H01L 23/56, 29/66, 23/48 2 Claims
including said portion having said heating layer formed thereon;
polycrystalline silicon layer covering said silicon oxide film;
wear resistant layer formed of silicon carbide provided on a first portion of said silicon layer having therebeneath a
first portion of said heating layer and first portion of said heating layer; and
a multilayered electrode provided on a second portion of
said silicon layer, said electrode having a said silicon layer, said electrode having a contact part
extending through said silicon layer and said silicon oxide film into contact with a second portion of said heating layer, said electrode comprising a first layer formed of Mo or \(\mathrm{Ti}_{\mathrm{i}}\) in contact with said silicon layer, a second layer formed of Ni in contact with said first layer, and a third layer in contact with said second layer and formed of a
material selected from the group consisting of \(\mathrm{Cu}, \mathrm{Pt}, \mathrm{Pd}\) and Rh .

4,096,511
Philip Gurnell, Letchworth, and Michael Charles Rowland, Steeple Morden, both of England

Filed Nov. 28, 1972, Claims priority, application United Kingdom, Nov. 29, 1971, S.

Int. Cl. \({ }^{2}\) H01L \(27 / 14\)
U.S. CI. \(357-30\)

1. A transmission photocathode comprising:
a crystalline substrate transparent to the radiation to be a crystalline
detected,
at least one epitaxial intermediate layer comprising ( \(\mathrm{Ga}_{a_{1-x}}\).
\(\left.\mathrm{Al} \mathrm{l}_{x}\right)_{1, ~}, \mathrm{In}_{y} \mathrm{As}\), and
an epitaxial detector layer comprising p -type \(\mathrm{Ga}_{1-\nu} \mathrm{II}_{\boldsymbol{f}} \mathrm{A}\) wherein \(0<x \leqq 1\) and \(0<y<1\).
\[
\text { MONOI ITHIC, } \begin{array}{r}
4,096,512 \\
\text { IGHT }
\end{array}
\]

MONOLITHIC LIGHT DETECTOR
Murray Arthur Polinsky, Somerville, N.J., assignor to RCA


Int. C.2 H01L \(27 / 14\)
10 Claims

1. A thermal printing head comprising
a semiconductor silicon substrate
a low resistance heating layer formed by diffusion on a a silicon oxide film formed on the surface of said substrate,

1. A monolithic light detector comprising ane conductivity type, said substrate having a minatly of
(b) a pair of identically shaped regions having a conductivity memory means are constructed for causing the signals at said type opposite that of said substrate which extend into said four outputs to have identical amplitudes; and means con surface of said substrate and form PN junctions with said nected to combine the signals comprise four electrically identi-
substrate, each of said regions comprising a plurality of
cal combining components each connected to a respective one substrate, each of said regions comprising a plurality of fingers, the fingers of one of said regions being interdig (c) an opaque covering extending over one of said regions (c) an opaque covering extencing over
and its associated PN junction; and
(d) means for making electrical contact to said substrate and to each of said regions.

\section*{4,096,513}

COLOR VIDEO SIGNAL PROCESSING CIRCUITS Michael David Ross, Somerdale, N.J., assignor to RCA CorpoMichael David Ross, Somerdale, N.J., assignor
ration, New York, N.Y.
Filed Jun. 20, 1977, Ser. No. 808,293
Claims priority, application United Kingdom, Aug. 9, 1976, 33119/76 Int. Cl. \({ }^{2}\) H04N \(5 / 78,9 / 02\)

4 Claims U.S. Cl. 358-4 Int. Cl. \({ }^{2}\) H04N \(5 / 78,9 / 02\)

f said outputs and means connected for reversing the polarity of the undelayed signal and the signal delayed by three picture
1. In color picture information signal processing apparatus wherein carrier frequency waves are subject to frequency
modulation in accordance with the amplitude of composite color video signals, inclusive of a luminance signal component, and a chrominance signal component in the form of moduated comprising:
pre-emphasis circuit means for subjecting luminance signals to high frequency pre-emphasis;
first signal clipping means, coupled to the output of said pre-emphasis circuit means, for confining the pre-empha-
sized luminance signal to signal excursions within a first selected range of amplitudes;
means for combining the output of said first signal clipping
means with chrominance signals to form a composite
color vide cliol; and
signal combining means, for confining the composite color signal combining means, for contining the composite color
video signal formed by said combining means to signal excursions within a second selected range of amplitudes.

PLAYBACK CIRCUIT FOR A RECORDED THREE-LINE SEQUENTIAL COLOR TELEVISION SIGNAL SEQUENTIAL COLOR TELEVISION To Ted Bildplatten Aktiengesellschaft, Zug, Switzerland Aktiengeselischart, Zug, Siled Sep. 10, 1976, Ser. No. 722,338
Find Claims priority, application Germany, Sep. 17, 1975, 2541348
Int. Cl. \({ }^{2}\) H04N 9/42
U.S. C. 358-11
1. In a playback circuit for a three-line sequential color elevision signal, which circuit includes memory means composed of three delay lines connected together in series, each delay line producing a signal time delay equal to one horizontal picture line scanning period, means connecting one end of the the color television signal, means connected to the one end of the series arrangement and to the output of each delay line to present four outputs providing, the undelayed sequential signa and the sequential signal delayed by one, two and three horizontal picture lines, respectively, means connected to the four outputs to combine the signals thereat into a diference signal, and means connected for
three-line sequential signal, the improvement wherein: said
lines
lines.

1. In a color television receiver, an automatic hue control ircuit responsive to the VIR signal when present on a predeontrol circuit comprising.
chrominance signal processing means,
control means coupled to said chrominance signal processing means and responsive to said
means
means generating a hue preference signal, cludes said predermined line
and gate means coupling said control signal and said hue preference signal to said chrominance signal processing means under control of said timing signal so that a reference hue setting is established by said control signal dur ing the timing signal period and a preference offset to saic reference hue setuing is estabilhed by said hue preferent

ELECTRONIC SIGNA,096,516
Electronic signal processing apparatus Daiton Harold Pritchard, Princeton, N.J., assignor to RCA
Corporation, New York, N.Y. Corporation, New York, N.Y.
Filed Mar. 25,1977 , U.S. Cl. 358-31 Int. Cl. \({ }^{2}\) H04N \(9 / 535\)

13 Claims

1. Apparatus for processing electrical signals comprising: means for supplying an ingut signal containing at least a firs
information component, at least a portion of the frequency spectrum of said component being characterized by signal energy concentrated in the vicinity of each of a plurality of frequencies spaced apart by a difference which is equal to a first frequency;
clock signal generating means for supplying clock signals at at least first and secortional to said first frequency;
a signal input portd signal processing paths, each having a signal input port coupled to said input signal supplying
means and a delayed signal output port said first means and a delayed signal output port, said first and
second paths including unequal numbers of signal delay second paths including unequal numbers of signal delay-
ing stages coupled to said clock signal generating means and responsive to said clock signals for transferring signals representative of said input signal between said input and said output ports, said first and second paths providing a difference in time delay of said input signal which is in
versely proportional to said clock signal frequency and is directly proportional to the difference in the number of stages in said paths;
signal combining means coupled to said delayed signal output ports of each of said paths for combining signals de-
layed by different time intervals to produce at least one layed by difierent time intervals ty produce at east one with relative signal maximums spaced apart by said firs frequency; and
filtering means cou
filtering means coupled to said signal combining means for passing a band of frequencies including those associated
with said first information with said first information component.

\section*{VIDEO AMPLIFIER}

Werner Hinn, Zollikerberg, Switzeriand, assignor to RCA Cor poration, New York, N.Y.
Continuation of Ser. No. 688,408, May 20, 1976. This application Apr. 21, 1977 , Ser. No. 789,656
Claims priority, application United Kingdom, Nov. 25, 1975, C8352/75

Int. C. \({ }^{2}\) H04N \(9 / 537\)
U.S. Cl. 358-40 6 Claims 1. A video amplifier adapted to drive a color image repro ucing device comprising:
code amplifier configuration said arranged in a cascone a signal current input, said cascode amplifier hav ing a signal current input terminal associated with said with said second device, said first device being arranged in a current amplifying configuration and exhibiting a rela-
ively high current amplification factor for video signal frequencie
source of video signal current coupled to said input termi-
nal; a source of direct operating voltage having first and second terminals;
a load impeda
load impedance comprising a first diode and a third semi-
conductor device having a control electrode and a main current conduction path, said currententrode and a main said diode being coupled in series relation between said first and said output terminals;
voltage dependent current feedback means direct current

coupled between said output terminal and said current input terminal of said current amplifying device for providing degenerative feedback for said cascode amplifier;
and and biasing means comprising at least a first direct current path
coupled between said first terminal and sid trode for supplying bias current to said control electrode and direct current coupling means coupled between said control electrode and said output terminal for coupling quiescent current to said cascode amplifier, said biasing
means being arranged such that said first diode is based to eans being arrang such that said first diode is based to mode.

\section*{AVEPACE 4,096,518} ais Vaclav TuGE beam CURRENT LIMITER Harwood, Bridgewater, N.J Switzerland; Leopold Albert eneweg, Ottenbach, Switzerland, asssignors to RCA Corporaeneweg, Ottenbach, Switzerland, assignors to RCA Corporaion, New York, N.Y.

Int. C12.
Int. Cl. \({ }^{2}\) H04N 9,16
U.S. C. 358-74

10 Claims

10. In a system for processing a color image representative elevision signal, said system including a chrominance channel or processing a chrominance component of said television nent of said television signal, and a kinescope for reproducing a color image in response to television signals coupled via said
chrominance and luminance channels, a kinescope beam current limiter comprising:
means for deriving a control signal representative of the first means for coupling said control sign by to said luminance channel when said current exceeds a predetermined threshold level by an amount within a first range of cur-
rent, for varying a D.C. level of said luminance comporent, for varying a D.C. level of said luminance compo-
nent in a direction to limit said current above said threshnent in a direction
old level; and
second means for coupling said control signal to said luminance channel and to said chrominance channel when said current exceeds said threshold level by a relatively greater
amount within a second range of current, for varying the gain of said luminance and chrominance channels, and thereby peak amplitudes of said luminance and chrominance components, in a direction to limit said current above said threshold level.

4,096,519
CIRCUIT ARRANGEMENT FOR RESETTING THE SIGNAL IEVEL OF A DARKEST AREA OF A COLOR MONOCHROME IMAGE REPRODUCTION
ngo Hoffrichter, Kiel, and Hans-Georg Knop, Heikendorf, both of Germany, assignors to Dr.Jng. Rudolf Hell GmbH, Kiel Germany
iaims priority, application Germany, Dec. 9, 1975, 255529
S. Cl. 358-75 Int. Cl. \({ }^{2}\) G03F 3/00 8 Claim

1. A circuit arrangement for resetting a lowest brightnes level of a color signal having a plurality of colors variable in brightness including scanning and recording means for the point-by-point and line-by-line reproduction of a colored im age, photo-electrical transducer means connected to said scanning means for obtaining color signal voltages from the corresponding colors, at least one of said lowest brightness level for each of said colors:
adjustment means having an input and an output, and connectable between said photo-electric transducer mean and said recording means for resetting one of said minimal
brightness and lowest levels to a level having a predeter mined relationship to said black level,
voltage generator means for producing and feeding a control signal having selectable first and second waveforms of respective predetermined voltage values to the input
said adjustment means, comparator means having an out put a reference input and an actual value input, said actuput, a reference input and an actual value input, said accu-
al-value input being connected to the output of said adjustment means for receiving an actual value of the corresponding one of said color signal voltages,
rerence malue to said reference input of said comparato
means, said voltage generator means being connected to the output of said comparator means and providing a corresponding one of said color signal voltages the first waveform of said control signal to said adjustment means, said first waveform varying as a function of time, and waveform shaping means connected to the input of said adjustment means, said first waveform being con olled by said waveform shaping means for the control to diminis voltage generator means providing the second waveform of said control signal upon said reference and actual values of said one of said color signal voltages coinciding, and then retaining the instantaneous voitage values produced by said voltage generator means at the coincidence of said reference and actual values for a predetermined time.

RUN LENGTH ENCODING AND DECODING METHODS AND MEANS
Eiichiro Furuta, Ebina, Japan, assignor to Xerox Corporation, Stamford, Conn. Filed Sep. 27, 1976, Ser. No. 726,863 Claims priority, application Jappan, Sep. 29, 1975, 50-117396 The portion of the term of this patent subsequent to Nor. 1, 1994, has been disclaimed.
Int. \(\mathrm{Cl} .^{2} \mathrm{H} 04 \mathrm{M} \geqslant / 12\)
U.S. C. \({ }^{358-133}\)

\section*{}
*


\section*{- mococococowocomena}
* sumaranamarar
1. In a limited bandwidth raster scanned imaging system including run length encoding means for converting a binary
video signal having a raster scan format into binary black and video signal having a rater scan fement comprising:
white message codes, the improvement
ternary encoding means for selectively level shifting said binary message codes to provide a series of ternary black and white run length message codes having distinctive amplitude transitions at any intra-scan line code boundaries, and
modulating means for frequency modulating a carrier signal in accordance with said ternary codes to provide a passband signal having distinctive frequency transitions at said code boundaries.

\section*{PROTECTIVE COATING FOR HIGH VOLTAGE} DEVICES
Incith Gordon Spanjer, Schaumburg, II
Il
inc., Schaumburg, III.

1. An encapsul
1. An encapsulated semiconductor substrate con 2 Claim
(a) at least one semiconductor device disposed in said substrate;
(b) a coating disposed over said semiconductor device; and
(c) said coating comprising a polyimide of the following chemical formulation,

and ferric oxide for depleting excess electron charge and fo stabilizing ionic contaminants during operation of said sem 4,096,522
MONOLITHIC SEMICONDUCTOR MASK PROGRAMMABLE ROM AND A METHOD FOR PROGRAMMABLE ROM AND A METHE
MANUFACTURING THE SAME
Yasoji Suzuki, Kanagawa, and Kenshi Manabe, Yokohama, bo of Japan, assignors to Tokyo Shibaura Electric Coo,, Ltd.
Kavseaki, Jappan Kamasaki, Japan
Continuation of Ser. No. 616,626, Sep. 25, 1975, abandoned. This Claims priority, applic. 8, 1977, Ser. No. 822,657


1. A monolithic semiconductor mask programmable ROM gate enhancement type, characterized in that the respective gield effect transistors include a semiconductor substrate of one conductivity yype, a plurality of strip-like source and drain
diffusion regions formed at predetermined diffusion regions formed at predetermined intervals in said
substrate and having the opposite conductivity type, a plurality of strip-like electroconductive metal layers formed at predetermined intervals through a first relatively thick insulation layer on said substrate so as to intersect said source and drain diffusion regions, and a plurality of gate electrode foils, each gate
electrode foil formed through a second insulation layer thinner electrode foil formed through a second insulation layer thinner
han said first insulation layer on that portion of said substrate which is situated between the corresponding ones of said respective source and drain diffusion regions so that said gate
electrode foil extends integrally with the corresponding one electrode foil extends integrally with the corresponding one of thereof spaced for a predetermined distance from one of saia corresponding source and drain diffusion regions,
wherein said field effect transistors are divided in
wherein said field effect transistors are divided into first and second groups, the transistor of the first group being
arranged at specific positions corresponding to the information written therein and the transistors of the second group being arranged at specific positions other than those occupied by the first field transistors, and each of said fiel effect transistors includes an ion implantated region
formed beneath said second insulation layer between each gate electrode foil and at least one of the source and drain diftusion regions which are facing the gate electrode foil,
he ion implantated regions of the first field effect transisors of the first group having the same conductivity type as said source and drain diffusion regions and the ion second group having the conductivity type orposite to that of the source and drain diffusion regions.

COLOR CORRECTION SYSTEM Armand Belmares-Sarabia, 161 Millpond Rd., St. James, N.Y. 07054, and Robert M. Lund, 5 MacDougal Alley, New York, N.Y. 10011
Filed Jun. 29, 1976, Ser. No. 700,852 U.S. Cl. 358-80 Int. Cl. \({ }^{2}\) H04N 9/535 41 Claims

1. A color correction system comprising, in combination, means for converting images recorded on an image record standard correction signal levels for said component signals, adjusting means for adjusting said color component signals for different ones of said images and developing incremental values of said correction signals over said standard values, storage means, and means for storing signals corresponding to said incremental values in said storage means.

\section*{TELEVISION RECEIVERS}

TELEVISION RECEIVERS Electric Company Limited, England, assigno
Flaims pried Oct. 29, 1976, Ser. No. 337,046 Clas92/75

6 Claims
U.S. Cl. \(358-85\) 1. A combined carria
(A) television ricceiver means for deriving video signals from received television carrier signals,
(B) display means for displaying television picture information contained in said video signals,
(C) first means for deriving digitally coded data carried by a received television carrier signal during periods when said television carrier signal carries no picture information, (D) second means for deriving digitally coded data received over a telephone line,
(E) means for deriving display signals from said digitally coded data for display of data information on said display means,
(F) apparatus for generating synchronization signals for said
display means, and

detected change-representative data occurs in said second differential signal, and means for providing an indication detected change-representative data occurs in said firs differential signal.

4,096,526
UN LENGTH ENCODING AND DECODING METHODS iichiro Furuta, Ebina, Japan, assignor to Xerox Corporation, Stamford, Conn.

Filed Sep. 27, 1976, Ser. No. 726,864 Claims priority, application Japan, Sep. 29, 1975, 50-117393 has been disclaimed.
U.S. Cl. 358-133
(G) means responsive to the absence of a received television synchronization signal for energizing said synchronization signal generating apparatus.

4,096,525
VIDEO SCANNING CHANGE DISCRIMINATOR
William James Lathan, P. O. Box 2785, Grand Junction, Colo. \({ }_{8}^{81501}\)
Continuation-in-part of Ser. No. 665,155, Mar. 8, 1976, abandoned, and Ser. No. 434,014, Jan. 17, 1974, abandoned, said Ser. No. 665,155, is a continuation of Ser. No. 509,003, Sep. 25 ,
1974, abandoned U. . C. \(358-107 \begin{aligned} & \text { nint. C. }{ }^{2} \text { H } 04 \mathrm{~N} \mathbf{N} 7 / 18\end{aligned}\)

1. A system for analyzing video signals representing a field of view, comprising, in combination:
means for supplying video signal data representing sequen-
tially occurring video frames, each said frame including a plurality of horizontal scan signals;
omparison means for synchronously comparing horizontal scan signals from a first video frame with horizontal scan ignals representing like-positioned scan lines srom a a aterocur signals representing changes in said video data occurring along the scan-line positions of said horizontal scan signals, said changes indicating movement of an object in
said field of view;
storage means for storing said differential signals; and
storage means fortion sensing means synchronously responsive to a first differential signal prior to storage representing changes occurring along a given scan line position and to a second previously generated differential signal, received from
said storage means, representing changes previously ocsaid storage means, representing changes previousty oc-
curring along the same scan line position, said direction sensing means including means for detecting the relative
time of occurrence of change-representative data in said time of occurrence of change-representative data in said
two differential signals, means for providing an indication of rightward movement of said object when the first-

7 Claims i. In a limited bandwidth raster scanned imaging system iducing run length encoding means for converting a binary hite message codes, the improvement comprising ternary encoding means for selectively level shit
binary message codes to provide a series of ternary black and white run length message codes having one polarity corresponding to initial bits of black message codes, an other polarity corresponding to initial bits of white mes sage codes, and a rererence level corresponding to other mplitude sensitive means for phase modulating a carrier signal in response to ternary codes of said one and said other polarity and the interrupting said carrier signal ib response to ternary codes of said reference level, thereb generating a phase modulated, interrupted carrier pas generating a
band signal.

RUN LENGTH ENCODING AND DECODING METHODS DING AND DEC
AND MEANS Stamford, Conn.
Filed Sep. 27, 1976, Ser. No. 726,866
Claims priority, application Japan, Sep. 29, 1975, 50-117397 The portion of the term of this patent subsequent to Nov. 1, 1994 has been disclaimed
Int C. 2 H04N \(7 / 12\)
U.S. Cl. 358-133

Int. Cl. \({ }^{2}\) H04N \(7 / 12\)
..S. C1. 358-133 7 Claims 1. in a limited bandwidh raster scanned imaging system including run length encoding means for converting a binary white message codes the scan format into binary black and white message codes, the improvement comprising
ernary encoding means for selectively level shifting said
binary message codes to provide a series of ternary black and white run length message codes having one polarity corresponding to initial bits of black message codes, another polarity corresponding to initial bits of white mes-
sage codes, and a reference level corresponding to other
bits of black and white run length message codes; and
standard rate internal signal a nonst
repeating at a nonstandard rate; and sync producing means responsive to said coincidence signal,
said standard said standard rate internal signal and said nonstandard
internal signal for producing said internal vertical sync internal signal for producing said internal vertical sync
signals upon the occurrence of one of said coincidence signals upon the occurrence of one of said coincidence
signal, said standard rate internal signal and said nonstandard internal signal, said second counting means being reset upon such occurrence.

CIRCUIT FOR DETECTING GHOS
SYSTEMS
SETIS IN TV ANTENNA
Robert E. Baum, Dell Rapids, and Robert A. Winter, Sioux
Falls, Falls, both of S. Dak., assignors to Sencore, Inc., Sioux Falls,
modulating means for supplying a passband signal which is frequency and
ternary codes.

\section*{4,096,528}

STANDARD/NONSTANDARD INTERNAL VERTICAL SYNC PRODUCING APPARATUS
Alois Väclav Tuma, Schlieren, and Willem Hendrik Groeneweg,
Ottenbach, both of Switzerland, assignors to RCA CorporaOttenbach, both of
tion, New York, N.
Filed Jun. 25, 1976, Ser. No. 699,848
Claims priority, application United Kingdom, Dec. 23, 1975, 52565/75 \(\quad\) Int. Cl. \({ }^{2}\) H04N \(5 / 04\)
U.S. Cl. 358-148 Int. Cl. \({ }^{2}\) H04N \(5 / 04\)

6 Claims

\(=\sqrt[c c c]{n_{2}}\)
1. Apparatus for producing internal vertical sync signals at an output terminal in response to standard and nonstandard rate external vertical signals, comprising:
first resettable counting means responsive to said external vertical signals, the count of said first counting means
being incremented in response to a source of incrementing being incremented in response to a source of incrementing
signals repeating at a frequency integrally related to the frequency of said standard rate external vertical signals, said first resettable counting means being reset in the presence of said external vertical signals;
coincidence means coupled to said first counting means and
responsive to said external vertical signals for providing a responsive to said external vertical signals for providing a
coincidence signal when said external vertical signals are coincidence signal when said external verital are repeating at a standard rate
detection means responsive to
for providing after the elapse of a predetermined tien interval a detection signal indicative of the presence of said nonstandard rate external vertical signals;
second resettable counting means responsive to said source of incrementing signals for providing only a standard rate
internal signal;
first signaling me
ing means and responsive to said detection signal and said external vertical signals for providing in place of said

Filed Mar. 25, 1977, Ser. No. 781,209
Int. Cl.' \(\mathbf{i}\) H4N \(5 / 2 l, 7 / 02\)

1. A method of indicating the presence of a ghost in a television signal, comprising the steps of
voltage level on the fing an amplitude proporional to a portion of said television signal.
priviof said ile ion signal,
deriving a second signal having an amplitude proportional to a voltage level on the back porch of the horizontal sync portion of said television signal,
comparing said first and second sig
providing an indication reponsive to the difference in the
amplitude of said first and second signt amplitude of said first and second signals.

\section*{METHOD AND APPARATUS \(\begin{array}{r}4,09630\end{array}\)}

RASTER AND APPARATUS FOR OBSCURING THE RASTER LINES IN A PHOTOGRAPH OF A VIDEO ay S. Plugge, Brookfield; William H. Wes
Blake, both of New Berlin, all of Wis., assignors to General Electric Company, Schenectady, N.Y.

Filed Jun. 17, 1976, Ser. No. 696,880
 1. A method of vertically shifting a television monitor pic-
ture tube raster by a total amount substantially equal to ture tube raster by a total amount substantially equal to the distance between a pair of horizontal scan lines where said
raster is produced by scanning an electron beam horizontally raster is produced by scanning an electron beam horizontally
in response to occurrence of horizontal sync pulses and vertically in response to occurrence of vertical sync pulses and wherein video information signals for modulating said beam to produce picture information for a static picture are obtained from a composite video waveform which includes horizontal and vertical sync pulses, said method comprising the steps of:
separating horizontal and vertical sync pulses from said separamposite waveform,
comer
supplying signals corresponding with said horizontal sync
puises for each field to said monitor in the time relation- bearing surfaces to receive and support the bending portion of ship in which said horizontal pulses normally occur in said a saddle wound deflection coil supported within said separator ship in which said horizontal pulses normally occur in said
composire waveform to thereby effect horizontal deflections of said beam for each field,
generating a predetermined number of signals correspond ing with said vertical sync pulses which generated signals are increasingly delayed relative to the sync pulses in th sing said delayed vertical signals to control the ver positions of successive rasters in place of said vertical sync pulses in said composite signal.
. Means for vertically shifting a predetermined number of Is representing a picture on the display tube of number of monitor to obscure the horizontal lines ordinarily visible on the face of the display tube in a photographic film that has been xposed to a sequence of said television fields, said mean comprising:
sync pulse stripper and separator means responsive to being

supplied with a composite video waveform by producing uniformly timed trains of horizontal and vertical sync pulses
form, fiens for using said horizontal sync pulse trains for each
fis with control production of said fields correspondingl composite waveform
means responding to occurrence of a sequence of vertical sync pulses in said waveform by producing a correspond ing sequence of vertical sync signals that are equal in number to the number of shifts desired and are respec tively increasingly delayed relative to the vertical sy pulses with which sid corcespond, and
means for supplying said delayed vertical sync signals for in which their undelayed corresponding vertical sync pulses occurred in said composite waveform to thereby effect said shifting.

\section*{4,096,53}

\section*{DEFLECTION YOKE}

Yukio Yamada; Yoji Ishikawa, both of Yokohama, and Koichi Sakai, Tokyo, all of Japan, assignors to Sony Corporation, Tokyo, Japan Filed May 25, 1977, Ser. No. 800,576
Claims priority, application Japan, Jun. 1, 1976, 51-62893 U.S. C. 358-248 Int. Cl. \({ }^{2}\) H01C \(5 / 02\)

9 Claims
3. A deflection yoke for use on a cathode ray tube comprising a pair of identical separator halves joined together in a planar mating surface ortion, a rear portion and a gradually
comprising a front portion widening segment interconnecting said front and rear portions, said front and rear portions including outwardly facing flat
half and means on each s port said deflection coil

MAGNETIC TAPE COPYING METHOD AND E COPYING Mitsuaki Ono; Masehiko Yatsugake; Norio Miyatake, all of Katano, and Yukihiro Fukushima, Neyagawa, all of Japan, Katano, and Yukihiro Fulushima, Neyagawa, all or Japan,
assignors to Matsushita Electric Industrial Co., Ltd., Kadoma, assigno
Japan

Filed Apr. 14, 1976, Ser. No. 676,814 Claims priority, application Japan, Apr. 18, 1975, 50-47752; Jul. \(16,1915,57-8\) ] J7; Aug. 9,
1976,
1975,
U.S. C. \(360-16 \quad\) Int. C.2 \({ }^{2}\) G11B \(5 / 86 \quad 6\) Claims

1. A magnetic tape copying apparatus comprising supply means for retaining a recorded master tape and a non-recorded slave tape, each of said master and slave tapes having a magnetic coating surface and a base side, means for heating said slave tape to a temperature near the Curie point thereof,
means for pressing the magnetic coating surfaces of said heated slave tape and said master tape together and for press contact with each other, said slave tape being under a first predetermined amount of tensio
means for introducing said slave tape into said oven after means for introducing said slave tape into said oven after
being removed from press contact with said master tape, being removed from press contact with said master tape said slave tape being slack within said oven,
said oven at a second predetermined amount, said second said oven at a second predeterminned ans finite and less than said first predetermined amount of tension, and
akeup means for separately taking up said master and slave takeup mes.
tapes

CARTRIDGE TAPE TRANSPORT WHICH CCOMMODATES SINGLE OR DUAL CAPSTAN
John P. Jenkins, Towanda, III
John P. Jenkins, Towanda, III., assignor to International Tape-
tronics Corporation, Bloomington, III. tronics Corporation, Bloomington, IIl.

Filed Apr. 28, 1977, Ser. No. 791,707
Int. C1.2 G11B \(15 / 18\)
U.S. CI. \(360-94\)

1. In a tape transport mechanism
a frame:
a cartridge-supporting table on said frame;
means for training a magnetic tape along a path on said table, an upstream capstan, head means, and a downstream capstan located along the path of movement of the tape; frame for independent pivotal movement about their \(r\) spective axes and having upstream and downstream pres sure rollers respectively mounted thereon for independen
swinging movements between off positions beneath said swinging movements between of aposid table, said pressur
table to play positions above sal rollers in said play positions being effective to press said tape against said upstream and downstream capstans re spectively;
first actuating means for pivoting said downstream shaft to swing said downstream pressure roller to its said play ently of the other shaft and pressure roller, to thereby play a single capstan type cartridg when placed in play position over said downstream capstan and pressure roller;
a second actuating means for pivoting both of said shafts simultaneously to move both of said pressure rollers to type cartridge when placed in play position on said table over both said upstream and downstream capstans and pressure rollers; and
control means selectively operable to actuate said first or second actuating means.

TRACK ACCESSING CIRCUITRY FOR A DISK FILE WITH SWITCHABLE FILTER Dewey Earl Brownback; Calvin Shizuo Nomura; Dennis Patrick Sheehan, and Michael M. Siverling, all of Rochester, Minn assignors to International Business Machines Corporation assignonk, N.Y.

Filed Apr. 12, 1977, Ser. No. 786,917
U.S. C. \(360-78\)
int. Cl. \({ }^{2}\) G11B 21/08. \(5 / 55\)
1. Data storage apparatus comprising:
a moveable storage medium having a number of information carrying tracks thereon,
an electricer moveable across said tracks.
circuitry al actuator for so moving said transducer, circuitry connected with said transducer and providing a
transducer movement responsive signal the frequency of which is proportional to the velocity at which said trans ducer crosses said tracks, means developing a control velocity signal for a track ac-
cessing movement of said transducer from an initial track to a target track which gradually decreases in magnitude toward the target track,
velocity indicative circuitry connected with said first named velociciy indicad esponsive to the frequency of said trans-
circuitry and rest ducer movement responsive signal for providing a velocity signal indicative of the actual velocity of said trans-
ducer across said tracks,

means for comparing said two velocity signals control circuitry connected with said actuator and with said comparing means to cause said transducer to move at control velocity signal velocity as is indicated by said target track, target track,
switchable fil
tive signal attentuating and non-attenuating switched conditions for high frequency noise signals transmitted through said first named circuitry, and ontrol means for said switchable filter for switching said its said attenuating condition when the frequency of said transducer movement responsive signal drops below a predetermined frequency

ROTARY TRANSFORMER WITH UNIQUE PHYSICAL and ELECTRICAL CHARACTERISTICS
erry Lee Highnote, Boulder, Colo., assignor to International Business Machines Corporation, Armonk, N.Y. Filed Feb. 25, 1976, Ser. No.
Int. Cl. \({ }^{2}\) G11B \(5 / 52\)
U.S. Cl. \(360-84\) Int. Cl. \({ }^{2}\) G11B \(5 / 52\)

15 Claims 1. A concentric rotary transformer, for transmitting electricomprising, in combination:
an inner core assembly for mounting to the rotary member, an inner core assembly for mounting to the rotary member,
and an outer core assembly for mounting to the stationary meman outer core assembed concentrically with the inner core
ber and positioned cont said inner core assembly including a core piece with a pair of
displaced circumferential grooves machined about its outer surface;
first coil, having two terminals and two legs, fabricated
from a continuous conductor is grooves
grooves;
aid outer assembly including a core piece with a pair of


LEAD SCREW SUPPORT FOR A DISC RECORDER tto R. Butsch, Ann Arbor, Mich., assignor to Sycor, Inc., Ann Arbor, Mich.

Filed Mar. 16, 1977, Ser. No. 778,144
Int. Cl. \({ }^{2}\) G11B \(2 / / 08 ;\) G01N \(1 / 00 ;\) G01B \(5 / 30,7 / 16\)
Cl. \(360-11\) Claims

isplaced circumferential grooves machined about its inner surface; and
second coil, with two terminals and two legs, fabricated from a continuous conductor is positioned within the grooves of said outer core whereby the electrical signals are transferred as the inner core assembly rotates relative to the outer core assembly

DEVICE FOR 4,096,536
DEVICE FOR GRIPPING AND TRANSLATING A CASSETTE IN TAPE
Sid.
S.p.A., Rome, Italy
Filed Feb. 24, 1977, Ser. No. 771,487

Claims priority, application Italy, Feb. 25, 1976, 48269 A/76 Int. Cl. \({ }^{2}\) G11B 23/04, 23/68, 23/24 U.S. CI. \(360-96\)

1. A device for gripping and translating a cassette in tape recorders, comprising:
means having first slot;
nk means having first and second ends; in said first slot;
havin ar rocker means havid
said link means;
pair of expandable jaws for gripping and holding a cassette inserted therein, the jaws pivotally mounted to said link means;
means is in on said rock
means is pivotal; and servomechanism acting on said second pin to move the rocker means and pivot the rocker means about said sec ond pin thereby moting the tape recorder, whereby said inservomechanism implements a relatively large movement of said cassette gripping jaws.

An in lisc recorder coma rising:
rigid frame having a pair of mutually spaced and opposite ly-disposed rigid frame members, one of said frame members defining a first mount and the other of said frame members defining a second mount facing said first mount
said mounts being coaxially aligned with each other; said mounts being coaxially aligned with each other;
motor secured to said one of said mounts and having a output shaft;
lead screw secured rigidly to and extending coaxially from said motor output shaft towards said second mount, said lead screw having a free end and defining a seat at such
support means disposed at said second mount and having portions extending therefrom to contact the free end of said lead screw opposite said motor, for supporting said lead screw at sad a bearing support hub;
a convergingly tapered member rotatably supported upon a fixed axis of rotation by said bearing and bearing support hub, said tapered member extending cantilevered from said other frame member and toward the free end of said
lead screw along the axis of the lead screw, said tapered member having an apex contacting the seat of said lead screw; and
biasing means for biasing said tapered member into engagement with said lead screw seat to rotatably support the
free end of the lead screw from said other frame member. free end of the lead screw from said other frame member.

\section*{4,096,538}

TAPE SUPPORT PINS IN MAGNETIC TAPE CASSETTE Kengo
Ltd., Japan
Claims Filed May 12, 1977, Ser. No. 796,389 \(63280[\mathrm{U}] \quad\) Int. C. \({ }^{2}\) G11B 23/10
U.S. Cl. \(360-132\)

Int. CT. \({ }^{2}\) G11B 23/10

1. In magnetic tape cassette including a hollow casing hav-
ing an opening on the front face thereof through which a recording or reproducing magnetic head of a tape recorder is
inserted, a pair of cores rotatably mounted within said hollow inserted, a pair of cores rotatably mounted within said hollow
casing, a magnetic tape wound on said cores and fed from one core to the other, a pair of rotatable guide rollers for guiding the tape from one core to the other by way of the opening, a spring plate having a length which is a small fraction of the length of said casing disposed to face the opening, and a pad
provided on the front face of the spring plate to contact the provided on the front face of the spring plate to contact the comprising a pair of tape support pins disposed at a distance from each other which is less than the length of said plate so as to be closely spaced, said pins being located on opposite sides of the opening for holding the spring plate at the rear face thereof and supporting and guiding the tape passing over the opening at the front face thereof, each of said support pins
being provided with a concave guide surface on the front face thereof which is adapted to matingly engage the flexible tape and thus provides means for self-centering said tape and in conjunction with the close spacing of the pins to increase the stiffress of the tape by bending the same along its transverse axis and to guide the tape along a predetermined passage in
contact with a magnetic head which is inserted into the casing.

DETECTOR OF BACKFEED ELECTRICAL CURRENTS agelo J. Scaturro, 643779 th St., Middle Village, N.Y. 11379 Filed Aug. 31, 1976, Ser. No. 719,13
U.S. Cl. 361-93

13 Claims

ent electrical system having, in a three linee whire, alternating current electrical system having three lines which normally are at
different voltages at any given instant but having the three different voitages at any given instant but having the three
lines connected together by short-circuiting means of negligible impedance, the current flow in any one of said lines adjacent to said short-circuiting means, said apparatus comprising: coupling means including three transformers which may be
magnetically each coupled to a respective one of said lines adjacent said shor-circuiting means for providing an alternating current output whenever alternating current flows in any of said lines;
combining means having an input and an output and having its input connected to said transformers for combining the
alternating current output of the later and providing an alternating current output of the latter and providing an
alternating voltage at its output whenever there is alternating current flowing in any of said lines; and
indicating means connected to said output of said combining means and responsive to an alternating voltage at said output.

MINIATURE LIGHTNING PROTECTOR Jean A. Bohin, Lannion, and Max Goldman, Gif-sur-Yvette, Jean A. Bohin, Lannion, and Max Goldman, Gir-sur-Yvette,
both of France, assignors to Etat Francaise, Issy les Moulineaux and Agence Nationale de Valorisation de la Recherche
(ANVAR), Neuilly sur Seine, both of, France, part interest to each

Filed Feb. 7, 1977, Ser. No. 766,543
Claims priority, application France, Feb. 13, 1976, 7604005 U.S. Cl. \(361-120\) Int. Cl. \({ }^{2}\) H02H 3/22
U.S. Cl. \(361-120\)

\[
\begin{aligned}
& \text { PROTECTIVE RELAY CIRCOUTY FOR REGULATED } \\
& \text { POWER SUPPLY } \\
& \text { Kay G. Sears, Keyport, N.J., assignor to Entron, Inc., Morgan- } \\
& \text { ville, N.J. } \\
& \text { Filed Dec. 28, 1976, Ser. No. 755,011 } \\
& \text { Int. Cl.' H02H } 3 / 08
\end{aligned}
\]
1. Miniature lightning protector device comprising: metal case formed of a metal base, a cover, a plate of insulating material and an electrical circuit supported and
secured to said base on its side opposite to the components of said circuit;
said case enclosing an atmosphere;
aid electrical circuit including components formed of metal strips which are secured in flat relationship on the sam said circuit containing the following
(a) a first discharge electrode including a first means of connection connected to the case
(b) a second discharge electrode including a second means of connection connected across the case to said cover; (c) said first and second discharge electrodes being separated by a discharge gap;
(d) at least one discharge ignition electrode penetrating into
the discharge gap; and
(e) at least one electrical resistor coupling said ignition elec-
trode to one of said discharge electrodes.

\section*{4,096,542}

CONTROLLER FOR VIDEO TAPE RECORDER Frank Pappas, and John L. Rennick, both of Elmwood Park, III assignors to Zenith Radlo Corporation, Glenvien, Ill Filed Mar. 28, 1977, Ser. No. 781,611
Int. \(\mathbf{C l}\). \(\mathbf{H 0 2 H} 3 / 12 ; \mathbf{H} 04 \mathrm{~N} 7 / 00\)
U.S. CI. \({ }^{361-196}\)

5 Claims
CORONA DISCHARGE DEVICE WITH GRID GROUNDED VIA NON-LINEAR BIAS ELEMENT GROUNDED NIA NON-LNEAR Kozuka, Suita; Skoji Matsumoto, Neyagawa; Tetsuya Okada, Takatsuki; Katsuhiko Gotoda, and Tatsuo Aizawa, both of Osaka, all of Japan, assignors to Mita Industrial Company, Ltd., Osakk, Japan Filed Oct. 26, 1976, Ser. No. 735,505 Claims priority, application Japan, Oct. 25, 1975, 50-127886 Int. Cl. \({ }^{2}\) Hots 19/00 U.S. C1. 361-230

9 Claims

1. A controller for initiating operation of an electrically energized apparatus and for terminating operation of that apparatus, in response to a reduction in its power cons
to a prederermined livel, saignal;
a power transfer circuit for coupling said apparatus to a source of energizing potential;
normally-open switch means included in said power transfer
circuit and responsive to an actuating signal for closing circuit and responsive to an actuating signal for closing said switch to
thereby energize said apparatus;
a current transformer comprising a primary winding included in said power transfer circuit and a secondary winding;
means coupled to said secondary winding for developing a control signal having an amplitude proportional to the current drawn by said apparatus;
a signal comparator having a first input circuit coupled to said source of enabling signal and to said control signal developing means, and also having a fixed bias second input circuit,
said comparator further having an output circuit, coupled to said switch means, for establishing a switch actuating signal upon receipt by said first input circuit of an enabing
signal having an amplitude sufficient to overcome the fixed bias on said second input circuit, for maintaining said actuating signal during application of said control signal to said frst inpur control signal drops below the value of signal when said coned innut circuit.
1. A corona discharge device comprising a corona discharge electrode, an opposing electrode disposed opposite to the corona discharge electrode, a high voltage alternate curren source electically connected between the two electrodes, and grid disposed in a corona discharge current flow path betwee he two electrodes and grounded through a nonlinear bia lemendance element and a rectifier which are connected in parallel with each other.

4,096,544
AIR IONIZER
AlR
Filed Dec. 9, 1976, Ser., No. 749,173
U.S. Cl. 361-231 Int. Cl. \({ }^{2}\) H05F 3/06 15 Claims

1. An air ionizer comprising
dome-shaped housing including a center shell of insulating material having an inner surface and an outer surface, a plurality of apertures which expose said shell of insulating material,
plurality of first conductive plates seated on said insulating shell within said apertures but insulated from said conductive layer,
plurality of second conductive plates on said outer surface of said housing aligned with said holes in said conductive layer, and carrying a plurality of conductive filaments ing, and
source of voltage within said housing having one output coupled to said first plates and thus to said conductive coupled to said first plates and thus to said conductive
filaments whereby the air at said filaments is ionized, said voltage source having a second output coupled to said conductive layer.

\section*{4,096,545 \\ UPON A BASE UNIT} Emmy Helwig, Gladbacher Strasse 224, D-5151 Esch, Filed Feb. 4, 1977, Ser. No. 765,822

Escb, Germany Claims priority, application Germany, Feb. 5, 1976, 2605129 U.S. CI. \(361-380\) Int. Cl. \({ }^{2}\) H02B \(1 / 16\)

\section*{CIRCUIT BOARDS} to A.R.D. Anstalt, Vaduz, Liechtenstein
 application Jis application Jun. 14, 1976, Ser. No. 695,569
Int. Cl.2 H05K
\(7 / 20\) U.S. Cl. 361-383

1. A heat sink assembly for mounting electric circuit boards, comprising at least a pair of spaced parallel vertical metal
plates ( 2,4 in FIG. \(2: 60,70\) in FIG. 5 ) a pair of spaced horizontal top and bottom metal plates (10, \(\mathbf{3 0}\) in FIG. \(2 ; 90,80\) in FIG. 5) in good thermal contact with at least one of said vertical plates, a horizontal circuit board (B in FIG. 2; 78 in FIG. 5) supported by said assembly and spaced from and disposed
between said top and bottom plates, and a heat generating between said top and bottom plates, and a heat generating electrical circuit element (A in FIG. 2; 68 in FIG. 5) spaced
between said vertical plates and disposed above said horizontal circuit board, said verticl and horizontal metal plates providing a heat sink for said element, said top plate and said horizontal circuit board and said at least a pair of spaced parallel vertical metal plates defining between them a channel whose upper side
is closed by said top plate and which contains said circuit is closed by said top plate and which contains said circuit
element, there being a second channel between said horizontal circuit board and said bottom plate, said bottom plate closing the lower side of said second channel, whereby said vertical and horizontal metal plates provide electrostatic shielding for said circuit element and said horizontal circuit board

\section*{4,096,547}

HEAT TRANSFER MOUNTING DEVICE FOR METALLIC HEAT TRANSINTED CIRCUIT BOARDS Anthony D.
19082

Calabro, 8738 W. Chester Pike, Upper Darby, Pa. Filed Dec. 17, 1976, Ser. No. 751,272 Int. Cl.2 H02B 1/04; H05K \(1 / 00\); H01R \(13 / 20\)

1. A mounting device for printed circuit boards having improved heat transfer capabilities comprising.
an elongated generally U-shaped heat transfer support member made of a metallic material and being of generally and two upstanding arm portions, each of said arm portions including an inwardly directed flange disposed generally parallel to said base, said flanges being spaced a sufficient distance to enable the passage therethrough of the edge of the printed circuit board, and with one of said
flanges having a heat conductive element extending there-
auxil-
unit -
from for directly engaging the printed circuit board to facilitate the condu
circuit board; and
\(\square\) ar said U-shaped heat transfer support member for resiliently said -shaped heal transter support member
engaging and holding said printed circuit board.

\section*{MOUNTING STRUCTURE \(4,096,548\)}

Shigemi Misono, and Yukio Fujimi, both of signors to Kabushiki Kaisha Daini Seikosha, Japan signors to Kabushiki Kaisha Daini Seikosha, Japan
Filed May 18, 1977, Ser. No. 798,083 \({ }_{\text {63049 }}^{\text {Clu] }}\)
U.S. Cl. 361-399 Int. Cl. \({ }^{2}\) H02B \(/ / 02\)

1. A mounting structure for a printed circuit board, comprising a rack frame having guide rails to receive the circuit board, eaf spring mounted flexibly on said circuit board and having a etain said circuit board in fixed position in said rack frame, and a rod member cooperating with said leaf spring and operable to disengage said detent portion from said recess to release said circuit board for removal from said rack frame.

\section*{4,096,549}

MULTILAMP PHOTOFLASH ASSEMBLY Lester F. Anderson, deceased, late of San Diego, Calif. (by Emma M. Anderson, administratix); John J. Vetere, Danvers Mass., and William J. Harvey, Montourssille, Pa., assignors to GTE Sylvania Incorporated, Stamford, Conn

Filed Nov. 9, 1976, Ser. No. 7 ( \({ }^{\text {Int. Cl. }}{ }^{2}\) G03B \(15 / 02\)
U.S. Cl. 362-11
int. Ci. \({ }^{2}\) Go3B \(15 / 02\) cally connecting together the two auxiliary-current-path onacts of the base unit, grounding means in the adapter unit or grounding the elecrical appliance, the base unit and the dapter being so configured, and the contacts and grounding connecting means of the adapter unit being so located on the ase unit and the adapter unit, respectively, hat dapter unit is placed upon the base unit in a ance-current-path ontacts of the adapter unit engage those of the base unit, th connecting means of the adapter unit electrically connect ogether the auxiliary-current-path contacts of the base unit, cally connected to the grounding means of the base unit.

1. A multilamp photoflash assembly comprising: an elongated housing defining first and second separate regions therein, said housing including a first mounting
structure thereon located adjacent said first region and structure thereon located adjacent said first region and a
second mounting structure thereon located adjacent said second region;
a plurality of percussively-ignitable flashlamps positioned within each of said first and second regions;
a plurality of pre-energized striking mechanisms positioned within each of said first and second regions, each of said
striking mechanisms associated with a respective one of said flashlamps for firing said flashlamp upon actuation thereof; and
actuation means movably positioned within said housing and extending through said first and second regions for actuating said striking mechanisms in said frrto region in second mounting structure and for actuating said striking mechanisms in said second region in response to a mechanical actuation input from said first mounting structure.

ILLUMINATING ARRANGEMENT FOR A
4,096, FIELD-EFFECT LIQUID-CRYSTAL DISPLAY AS WELL AS FABRICATION AND APPLICATION OF THE Walter Boller; Marco Donati, both of Zurich; Jürg Fingerle, Boniswil, and Peter Wild, Wettingen, all of Switzerland, assignors to BBC Brown Boveri \& Company Limited, Baden, assignors to
Switzerland
Claims priority, application Switzerland, Jun. 24, 1976, 8067/76
U.S. C1. 362-31 Int. Cl.2 F21V 7/04

9 Claims

1. An illuminating arrangement for a field-effect-liquid-crystal display comprising:
a transparent plate of homogeneous constitution, which acts as a light distributor, being disposed on the reverse side of the liquid-crystal display, said plate having a thickened portion at one side thereof in which a recess is formed, said recess being accessible from the surface of said plate on the side away from the liquid-crystal display, and said
surface of said plate on the side away from the said liquidsuryal display being smoot ight source disposed in said tion of said plate; and
continuous reflectich roughened sufface sufface or ransparency and not a parent pigments and transparent binding agents having different indices of refraction being provided on the surface of said plate next to said liquid-crystal-display, on the surface of said thickened portion thereof and on the end surfaces of said plate to function as a background for daylight operation, the film having a thickness yielding a cienst incident light in daylight operation to produce a high contrast readout from the liquid-crystal display.

\section*{LAMP MOUNTING SYSTEM}

Lorrain Wilbert Prester, Dorchester, Nebr., assignor to PlexiLite Mfg., Inc., Lincoln, Nebr.

Filed Sep. 10, 1976, Ser. No. 721,963
Int. C1. \({ }^{2}\) B60 \(/ 1 / 32\)
S. CI. 362-83

Int. Cl. \({ }^{2} \mathbf{B 6 0 Q}{ }^{1 / 32}\)
6 Claims
1. A lighting assembly comprising:
seven straight sections; ing two legs and a connecting member;
certain of said seven sections being integrally formed with
other of said seven sections and forming a \(135^{\circ}\) angle
therewith; seven sections;
said lamp including an resistant. U.S. CI. 362-104

EMERGENCY TABLE LAMP
ateast two of said seven sections being hinged together, Thomas F. Roche, 21 W. Main St., Merrimac, Mass. 01860
whereby said seven sectionser whereby said seven sections may be formed into a figure
encompassing seven sides of an octagon or opened a dis-
tance greater than any diameter of the aforesaid octagon;
at least one lamp mounted to the connecting member
least one of said sections so as to extend therefrom

said lamp being electrically connected to conductors mounted within the legs of said U -shaped members of said
clear plastic housing;
said incandescent lamp member being embedded in said said incandescent lamp member being embedded in said
clear plastic housing, whereby said assembly is shock

\section*{\(\stackrel{4,096,552}{ }\)}

Josef Ben-Porat, 3014 Brighton 8th St., Brooklyn, N.Y. 11235 Filed Dec. 2, 1975, Ser. No. 636,928

1. An ornament with a flashing light adapted to be worn by a person comprising a case having a front wall with apertures mounted externally on said wall, in combination a lamp provided with a flasher unit mounted internally in said case in ignment with said lamp, including a battery and a switch in said case electrically connected with the lamp and a flasher nit, including external means on said case for actuating the
witch to cause emission of flashing light through said lens, including means for mounting the ornament on a person, wherein the ornament is a cylindrical pendant with a circumferented side wall and the first said means comprises a push button mounted on said side wall and the second said mean comprises a necklace secured to the case, or wherein the sechat, including a plurality of similar spaced lamps, apertures and lamps with flasher units combined in an electrical circuit within the case, in combination with a movable light transmit ing disc mounted in said case between said apertures and said means secured to the disc and extending externally through the case for moving the disc in a desired manner.

Filed Sep. 13, 1976, Ser. No. 723,045

1. An emergency table lamp comprising
1. An emergency table lamp co
at least one AC line voltage socket for holding a line voltage
bulb
bulb;
at least one low voltage socket for holding a low voltage
bulb; bulb
an independently-removable, rechargeable battery having a pair of spring terminals on one end thereof;
an independently-removable charger assembly within a housing
thereof;
means for applying line voltage to said AC socket and to said charger assembly;
an insulating contact plate having a first pair of electrically conductive buses on the upper surface thereof and a corresponding second pair of electrically conductive buses on the lower surface thereof located directly beneath said first pair of buses, each of said first pair of buses being electrically connected to a respective one of said second pair of buses;
means for securing said contact plate within the lamp body
for dividing the interior thereof into upper and lower for dividing th
compartments;
the charger assembly and the battery being located in said upper and lower compartments so that the spring terminals of each are compressed and in contact with the buses of said contact plate to provide electrical interconnection between respective terminals of the charger assembly and
battery, and to hold the charger assembly and battery in place by means of the forces exerted by said spring termiplace
nals;
means in said charger assembly operative in response to AC line voltage to provide a current to the charger assembly terminals for charging the battery through said buses; and means in said charger assembly operative in response to a
loss of AC line voltage to the charger assembly for connecting said battery terminals through said buses to the low voltage bulb.

ROTATIONAL COLLAR ALIGNMENT DEVICE Albert Alfonso Greene, Cleveland, Ohio, assign
A-Watt Corporation, North Canton, Ohio

A-Watt Corporation, North Canton, Ohio
Filed Oct. 19, 1976, Ser. No. 734,019
Filed Oct. 19, 1976, Ser. No. 744,019
Int. C1. \({ }^{2}\) F21S \(3 / 00 ;\) F21V 19/02
U.S. CI. \({ }^{362-220}\)

1. A self-co
combination:
combination:
a cover plate for mounting said fixture to an electrical outlet
box;
a fixture body cover in operative association with said cover
a fixture body cover in operative association with said cover
plate and which is adapted to receive and support a fluorescent light tube and its operative components, said fixx-
ture body cover including means for locating said body ture body cover including means for locating said body
cover relative to said cover plate while permitting said cover relative to said cover plate while permitting said
body cover to be selectively rotated relative thereto about aody cover to be selectively rotated relative herero about an axis disposed ger
fixture body cover;
force means for continuously exerting a biasing force against said fixture body cover to urge said fixture body cover saward engagement with said cover plate to retain said fixture body cover in a desired position relative thereto, said force means allowing forced rotational movement o said fixture body cover
a cover plate shield interposed between said cover plate and fixture body cover for disguising the interconnection between said cover plate and outlet box

\section*{4,096,555 \\ ICHTING FIXTURES}

Martin L Lasker, Edison, NJ, assignor to Wylain, Inc., Dallas, Tex. Filed Oct. 28, 1976, Ser. No. 736,317
U.S. Cl. 362-302

Int. Cl. \({ }^{2}\) F21V \(13 / 04\)
40 Claims 1. A light fixture comprising a light source, a reflector system surrounding said light source shaped and arranged to
concentrate light in a first angular range measured from downward vertical and provide progressively decreasing intensity of projected light with changes in the angle of projection from said range to downward vertical, said reflector system includ ing an upper, middle and lower nested reflectors generally
frustoconical in shape having a common vertical axis passing through said source, the upper one of said reflectors having an inner reflecting surface facing inwardly and downwardly, the lower one of said reflectors having an outer reflecting surface facing outwardly and upwardly and the middle one of said and downwardly and an outer reflecting surface facing up-
971 O.G. 47
16 Claims
wardly and outwardly, said reflectors being shaped and ar wanged so that light radiated by said source is reflected by the reflecting surface of said upper reflector to the outer reflecting surface of said middle reflector and then ree-reflected in said first angular range, light radiated by said source is reflected

rom the inner reflecting surface of said middle reflector and then re-reflected by the reflecting surface of said lower reflector in said first angular range, and light radiated by said source will pass without reflection between sald mlar range measured from downward vertical extending below said first range.

4,096,556
Sidney Berger, Great Neck, and Salvatore Buda, East Hills, both of N.Y., assignors to Berger Industries, Inc., Maspeth, N.Y. Filed Nov. 4, 1976, Ser. No. 739,024
U.S. C. \(362-417\)

Int. C1. \({ }^{2}\) F21V \(17 / 00\)

1. A lamp harp comprising:
(a) a bracket having a base portion and a pair of upwardly directed bracket arms having hollow interiors on diametrically opposite ends of said base portion
(b) a channel portion on each of said bracket arms formed by a pair of opposed parallel side walls and a base wall, said terminating in free longitudinal inner side edges and free top edges;
(c) a generally U-shaped portion joining said channels to said (c) a generally U-shaped portion joining said channels to
base having outwardly flaring, diverging side walls; (d) a resilient wire bail having a pair of opposed legs respec
tively terminating in elongated free end portions, each of
said end portions having an end face; said end portions having an end face;
(e) each of said pair of opposed parallel side walls con-
structed and arranged to slidingly receive one of said pair of end portions; and
(f) means on said bracket arms and said elongated free end portions for selectively securing each of said pair of end portions in its associaced bracket arm constructed and portions into said bracket arms to a first position therein and lateral inward movement of said end portions from said bracket arms when said end portions are in said first position, said means further constructed and arranged to prevent lateral inward movement of said end portions rom said bracket arms when said end portions are slidingly displaced longitudinally downwardly to a second position with respect to said bracket arms. said mean movement of said end portions in said bracket arms between said first and said second positions.

4,096,557
CONTROLLABLE FOUR QUADRANT A.C. TO A.C. AND D.C. CONVERTER EMPLOYING AN INTERNAL
FREQUENCY SERIES RESONANT LINK Francisc C. Schwarc, Round Hill Rd., Lincoln, Mass. 01773 Continuation-in-part of Ser. No. 474,788, May 30, 1974, Pat. Continuation-in-part of Ser. No. 474,78, Mas
No. \(3,953,779\). This application Dec. 29, 1975, Ser. No. 645,208 U.S. Cl. 363-9 Int. Cl. \({ }^{2}\) H02M S/4S

17 Claims

1. A high frequency link converter for transferring electrical power between a first power system and a second power system with each of the power systems operating with at les
power system connectors, comprising in combination:
capacitor means;
inductor means connected to said capacitor means forming a
series resonant circuit with said capacitor means;
ing said series resonant circuit between the first and sec ond power system connectors;
said first and second set of controllable switch means capa ble of controlling supply and return current between the
first and second power systems connectors: first and second power systems connectors:
control means connected for selectively energizing at least
two switch means of each of said first and second sets of controllable switch means in accordance with the available potential between one of said first and second power system connectors to transfer electrical power betwee the first and the second power systems through successive side of said series resonant circuit and into and out of the first and second power system connectors;
said control means including current sensor means for providing a current sensor output in accordance with the a current reference output;
means providing an algebraic summing output of said current sensor output and said current reference output; ntegrator means for integrating said summing output; and
means receiving the output of said integrator means for activating conduction of said switch means to substantially control the average current for each half cycle of oscillation of operation of said resonant circuit.

4,096,558
METHOD OF CONTROLING A THREE-PHASE METHOD OF CONTROLLING A THREE-PHAS INVERTED RECTIFIER AND EQUUPMENT
CARRYING OUT THIS METHOD Arne Jensen, Sonderborg, Denmark, asignor to Danfoss A/S, Nordborg, Denmark
Claims priority, application Ser. No. 746,390 U.S. Cl. 363-41 Int. C. \({ }^{2}\) H02M \(1 / 12 \quad 15\) Claims

1. A method of controlling a three-phase inverted rectifier with a constant DC voltage supply and adjustable frequency output voltage, particularly for feeding an AC motor, wherein the output voltage is formed alternately by the one and the other potential of the DC voltage supply and each half-wave of the phase voltages leads the associated potential continuously in first zones and in the form of impulses of variable width in
second zones, comprising the steps of dividing each half-wave second zones, comprising the steps of dividing each haif-wave
into six intervals of \(30^{\circ}\) each, forming a first zone with a constant voltage level in said third and fourth intervals. forming a second zone with \(n\) pulses in the second and fifth intervals of the width 2 B , and forming a third zone with \(n\) pulses in the first and sixth intervals of the.
\(\geqq 1.5\) and B is variable.

4,096,559
POWER SUPPLY CIRCUIT
Hiroshi Sakurada, and Toshiliko Tojo, both of Mobara, Japan, assignors to Hitachi, LLd., Japan
Filed Jun. 7, 1977, Ser. No. 804,385 Filed Jun. 7, 1977, Ser. No. 804,385
Claims priority, application Japan, Jul. 23, 1976, 51-87265 Int. Cl. \({ }^{2} \mathbf{H 0 2 M} 7 / 515\)

1. A power supply circuit comprising:
an inverter circuit including first and second switching ing reactor connected in series with said switching ele-
ments, and at least one commutating capacitor connected to a center tap of said commutating reactor;
a transformer having a primary winding connected to an output of said inverter circuit and a secondary winding; a third switching element connected in parallel with a series circuit including said commutating capacitor, said pri-
mary winding and a portion of said commutating reactor; mary
and
and
control
second and third switching elements;
and third swiching elemens;
sid hird switching element being energized by said contro means to establish a discharging loop for said commutal ing capacitor through said series circuit, whereby an
amplitude of a current supplied to said transformer is limited below a predetermined level.

4,096,560
PROTECTION CIRCUIT TO MINIMIZE THE EFFECTS OF POWER LINE INTERRUPTIONS ON THE CONTENTS OF A VOLATILE ELECTRONIC MEMORY John W. Footh, Orange, Calif., assignor to Rockwell Interns tional Corporation, El Segundo, Calif.

\section*{ilied Oct. 28, 1971, Ser. No. 846,480}
U.S. CI. \(\begin{array}{r}\text { I64-200 } \\ \text { Int. } \\ \hline\end{array}\)

7 Claims

1. In a system including an electronic memory and a microprocessor to control the reading or writing of data into said memory, a protection circuit to prevent the loss or alteration of memory data as a result
power level detecting means having input and output termipower level detecting means having inpur and output termi-
nal means, said level detecting means sampling the line power at said input terminal means thereof,
first and second multivibrator devices connected to said output terminal means of said level detecting means, said first multivibrator device responsive to increasing power levels and said second multivibrator device responsive to decreasing power levels, and
first and second multivibrator devices in order to receive output signals therefrom that are indicative of either an out of tolerance power line interruption or in tolerance power line stabilization,
said microprocessor and memory control gates adapted to selectively apply respective control signals to said microprocessor and to said memory to, thereby, inhitit the of data into said memory and to mainreading or writing of data into said memory and to mainduring the occurrence of undesirable power line interruptions.

APPARATUS FOR THE MULTIPLE DETECTION OF INTERFERENCES
Mario C. Trinchieri, Weston, Mass assienor to Honeywell Information Systems Inc., Waltham, Mass.
Filed Ot.
I 1976 , Ser. No

Filed Oct. 4, 1976, Ser. No.
Int. Cl. \({ }^{2}\) G06F \(15 / 16\)
U.S. Cl. 364-20

1. In a multiprogramming/multiprocessing computer system for executing a plurality of processes sharing common informa tion in the form of records, pages, or messages, an apparatus for identifying those processes of said plurality of processes which would interfere with a first predetermined proces xecuting on said computer system when said first predeter us comprising:
(a) first means for storing coded signals indicating the his tory of utilization of the common information by any on of said plurality of processes; and
(b) second means coupled to be responsive to said first means for identifying those processes of said plurality of procauses interference with said first predetermined process.

4,096,562
CLOSED LOOP CONTROL SYSTEMS AND CONTROL DEVICES FOR SUCH SYSTEMS
S.A., Emmenbrucke, Switzerland
Filed Apr. 13,1977

Claims priority, application United Kingdom, Apr. 14, 1976 15418/76

Int. Cl. \({ }^{2}\) G05B 13/02
U.S. C. \(364-105\)
1. A process for the automatic contro 2 Claim prising:
generating a preselected signal UK
enerating a reference signal Ui substantially linearly with time \(t\) such that
\(U i=c+K \cdot U k \cdot t\)
where \(c\) and \(K\) are constants
limiting the range of the reference signal Ui between prese lected limits + UL and - UL such that
\(-\mathrm{UL} \leqq \mathrm{U} i \leqq+\mathrm{UL}\)
generating a set point signal \(V\) which represents a set point value \(x a\) of a controlled variable \(x\).
generating a signal \(U p\), which is correlated to the value of
said contril said controlied variable \(x\) and which is dependent on said set point signal \(\mathbf{V}\) such that
\(\mathrm{U}_{\mathrm{P}}=a+b \cdot \mathrm{x}+\mathrm{V}\).

wherein \(a\) and \(b\) are constants and said signal \(U_{p}\) equals one of said limits \(\pm\) UL when the controlled variable \(x\) reaches said set point value \(x d\).
generating an error signal \(U e\) which is proportional to the
difference between said Up and \(U\) is signals,
generating a threshold signal Ut comparing the error signal
Ue with the preselected threshold signal Ut and automatically setting the reference signal \(U i\) to the \(v\)
the signal Up when the modulus of the error signal Ue the signal \(p\) when the modulus
exceeds the threshold signal \(U\).
\[
\begin{gathered}
\text { 4,096,563 } \\
\text { NTROL SY: }
\end{gathered}
\]

MACHINE TOOL CONTROL SYSTEM AND METHOD Kenneth Leonard Slawson, Clarence, N.Y., assignor to Houdaille Industries, Inc., Buffalo, N.Y.
Continuation of Ser. No. 421,103, Dec. 3, 1973, and Ser. No.
426,602, Dec. 20, 1973, abandoned, which is a division of Ser. No. 150,637, Jun. 7, 1971, Pat. No. 3,816 723 , which is a continuation of Ser. No. 744,392, Jul. 12, 1968, Pat. No.
3,634,662, which is a continuation-in-part of Ser. No. 652,968 ,
Jul. 12, 1967, abandoned. This application Jul 29, 1975, Ser No
The portion of the term of this patent subsequent to Jan. 11, 1989, has been disclaimed.
Int. C1.2 G06F 15/46; B23Q 21/00
U.S. Cl. \(364-107\)

61 Claims

1. A unitized machine tool control system for a single machine tool, operable both for generating new machine tool control instructions for the machine tool and for controlling movement of parts of the machine tool relative to respective sequence of machine tool control instructions, said utilized machine tool control system comprising:
(a) manually controlled input means operable to produce coded input signals as manually selected by an operator, (b) source means for supplying successive machine tool (c) stored program digital computer means operable to receive said coded input signals and said previously established sequence of machine tool control instructions, inage therein and retrieval therefrom of machine tool control instructions, and computer output means, and said stored program digital computer means being operable in a first mode to transmit to said computer memory means machine tool control instructions in accordance with coded input signals from said manually controlled input said computer memory means machine tool instructions in accordance with a previously established sequence supplied from said source means and being operable in a third mode to transmit to said computer output means digital command signals in accordance with a previously estab-
lished sequence of machine tool control instructions lished sequence of machine tool control instructions,
(d) plural axis closed loop machine tool control means on
d) plural axis closed loop machine tool control means oper-
atively connectable to the respective parts of the machine atively connectable to the respective parts of the machine
tool and responsive to said digital command signals to control movements of the parts of the machine tool relative to the respective machine tool axes in accordance therewith, and
(e) on-line connection means interconnecting said manually controlled input means, said source means and said stored ductor computer bus cable means extending from said computer output means of said stored program digital computer means to said closed loop machine tool control means for interconnecting said stored program digital computer means and said plural axis closed loop machine
tool control means, thereby to form one complete unitized device providing for on-line manual generation of machine tool control instructions, on-line editing of a previously established sequence of machine tool control instructions, and on-line operation of the machine tool in accordance with a previously established sequence of
machine tool control instructions.

\section*{4,096,564}

DATA PROCESSING SYSTEM WITH INTERRUPT DATA PROCESTNG SYSTEM
Fumiyuki Inose, and YuNCTIONS assignors to Hitachi, Yuzo Kita, bo
assignors to Hitachi, Ltd,, Japan
Filed Jan. 14, 1974, Ser. No. 432,871
Claims priority, application Japan, Dec. 1, 1973, 48-5941
U.S. Cl. \(364-200\) Int. C1. \({ }^{2}\) G06F \(15 / 16,9 / 18\)
U.S. Cl. \(364-200\)
1. A data processing interrupt system comprising
first and second arithmetic units for processing emergent tasks and non-emergent tasks respectively with only one arithmetic unit operating at a time;
memory means, connected to said first
memory means, connected to said first and second arithme-
tic units for storing data from said first and second arithmetic units;
means for requesting an interrupt of a task; and
ontrol means, connected to said first and second arithmetic units and said requesting means, for selecting one of either
an interrupt task requested by said requesting means and a task being processed by one of said first and second arith-
metic units in response to the priority levels of both tasks and for operating the first or second arithmetic unit in

dependence upon whether a selected task is an emergen task or a non-emergent task.

INTEGRATED CIRCUIT DATA HANDLING APPARATUS FOR A DATA PROCESSING SYSTEM, HAVING A PLURALITY OF MODES OF OPERATION
Hermann Ruckdecchel, Gauting, and Thomas Rambold, Munich, both of Germany, Filed Apr. 20, 1976, Ser. No. 678,622 Claims priority, application Germany, Apr. 21, 1975, 2517565 U.S. CI. \(364-200\)
1. Data handling apparatus constructed as an integrated circuit on a single subtrate for use in a data processing system incluaing at least
apparatus comprising:
a plurality of input/output gates for connecting peripheral punits in said data processing system to said data handling apparatus for receeiving data from said system in said data handling apparatus and for supplying the data to said data processing system, orage means having storage locations for, at least tempo-
rarily, storing data to be processed, said storage locations
forming a part of a data path between portions of said data processing system through said input/output gates, input counter means for generating addresses indicating storage locations in said storage means to which data from said input/output gates is to be coupled,
storage locations in said storage means from which data is to be coupled to said input/output gates,
mode switching means in said input and output counter means for selecting, respectively, one of a plurality of modes of operation for said input and output counter and emitted from individual storage locations, another in and emitted from individual storage locations, another in groups of said storage locations, and a third in which said input and output counter means receive and register externally supplied addresses for selecting said storage loc tions and
data supplied by a control unit of said data processing system for operating said mode switching means to select and operate according to one of said modes of operation, said input/output gates comprising
an input amplifier, an output bistable circuit connected in parallel therewith and electronic coupling means for mak-
ing operative the amplifier or the bistable circuit, responing operative the amplifier or the bistable circuil, respos,
sive to the content of said operational register means, said input/output gates each being operable upon receipt of appropriate control data to connect said storage means in he dat path between colrol system.

MODULAR SIGNAL PROCESSOR HAVING A HIERARCHICAL STRUCTURE
Jean-Claude Borie, Antibes; Alain Couder, LaGaude; Alsin Dauby, Nice; Michel Demange, St. Jeannet; Gerald Lebizay and Michel Lechaczynski, both of Nice, all of France, assignors to International Business Machines Corporation, Armonk,
N.Y. Filed Dec. 16, 1975, Ser. No. 641,202 Claims priority, application France, Dec. 27, 1974, 7443561 US. C1 364 int. C. \({ }^{200}\) Go6F 3/OS, 7/38; H04 \(3 / 12\) 6 Claims U.S. C1. \(364-200\)

1. A digital signal processing system for modifying timevarying input signals by performing one of a number of predetermined series of mathematical functions on samples of said
time-varying input signals to provide samples of time-varying time-varying input signals to provide samples of time
output signals of said system, said system including:
an input means receiving samples in digital form of signals to
be processed;
an output means to supply samples of processed signals; a plurality of subsytems connecting said input and outpu means, each subsystem including
at least one input/output port for in
at least one input/output port for interconnection with one
or more of said input means or said output meas or more of said input means or said output means; input/output port,
a control unit connected to said bidirectional bus to receive samples of said time-varying input signals from said por
and to generate control words in respons thertion at least one arithmetic unit connected to said bidire bus to receive data and control words from said control unit for performing mathematical operations on said data of data terms and summations of the prising multiplications multiplications to represent samples of said time-varying output signals; and
interbus adapting means for coupling said busses of sid subsystems in a tree type structure of a plurality of levels subsystems in a tree type structure of a plurality of levels
having master-slave relationships between subsystems of haifferent levels for increasing the processing power of the
digital signal processing system digital signal processing system.

INFORMATION STORAGE FACILITY WITH MULTIPLE LEVEL PROCESSORS
William H. Millard, 2816 Darius Way, San Leandro, Calif. 94577; Allan J. Killian, 427 Boynton, Berkeley, Calif. 94707 , and Bruce A. Van Natta, 14860 Wicks Blvd., San Leandro, Calif. \(94577^{\circ}\)

Filed Aug. 13, 1976, Ser. No. 714,212
U.S. Cl. \(364-200\)

1. A multi-level information storage facility for storing data base information in digital form and for enabling symbolic access to such information in response to information request signals fr
prising:
prising:
/output port meavel processor means having an input signals from said external processing device, said commu nications level processor means including means for initi-
ating internal processing of said request signals and means for generating acknowledgment signals for transmission to said external processing device via said input/output port means;
an intermediate level processor means for providing intermediate level processing of said request signals;
first shared memory means coupled to said communications
level and said intermediate level processor means for enabling data communication therebetween, said firs shared memory means including a first cache memory device for storing initiating request signals generated by
said communications level processor means and for storing resultant task signals generated by said intermediate level processor means
level processor means including seek a predetermined sequence for said ine memory device in nals, means for senerating intermediate level instruction nals, means for generating indermediate level instruction quest signals, and means for storing said resultant task signals in said first cache memory device:
storage level processor means having an input/output port means adapted to be coupled to a data storage device for controlling operation thereof; and
level and said storage level processor means for mabling data communication therebetween, said second shared memory re ans including a second cache memory device
for storing said intermediate level instruction signals from for storing saic! intermediate level instruction signals from data received from said storage level processor means; said storage level processor means including means for inter rogating said second cache memory device for said inter-
mediate level instruction mediate level instruction signals. means for generating
storage level instruction signals in storage level instruction signals in response to the detec
tion of said intermediate level instruction signals for trolling storage and retrieval of portions of said data base information from said storage device, and means for storing said data received from said storage device in said
second cache memory device.

4,096,568
VIRTUAL ADDRESS TRANSLATOR
Donald Bruce Bennett, Burnsville; Leo John Slechta, Jr., MinDonald Bruce Bennett, Burnsville; Leo John Slechta, Jr., Min-
neapolis, and Thomas Ormond Wolff, Fridey, all of Minn., assignors to Sperry Rand Corporation, New York, N.Y. Filed Sep. 24, 19:6, Ser. No. Int . \(\mathrm{Cl} .^{2}\) GO6F,371 \(9 / 20,13 / 00\)
U.S. Cl. \(364-200{ }^{\text {Int. Cl. }{ }^{2} \text { G06F 9/20, } 13 / 00} 6\) Claims

1. In a virtual addressing system including a central proces sor, a main memory having addressable word locations, a
virtual address translator responsive to virtual addresses virual address translator responsive to virtual addresses from
said central processor for accessing a word location in said main memory, and means for transferring a word between an accessed location in said main memory and said central procesor, the improvement comprising:
means in said central prossor
task names defining instruction for storing first and second storage space, respectively,
means in said central processor for generating subsegmen and deflection field portions of a virual address each time said memory is to be accessed; and,
means in said central processor for selecting said first or said pending upon whether said virtual address afdress detion, is for accessing said main memory for instruction or tion, is for accessing said main n
operand purposes, respectively.

DATA PROCESSING SYSTEM HAVING DISTRIBUTED PRIORITY NETWORK WITH LOGIC FOR DEACTIVATING INFORMATION TRANSFER
George J. Barlow, Tewksbury, Mass., assignor to Honeywell Information Systems Inc., Waltham, Mass.
Filed Dec. 27, 1976, Ser. No. 754,480
U.S. C. 364-200 Int. C.2 \({ }^{2}\) G06F 3/04 13 Claims

1. In a data processing system having a plurality of units 1. each of said units capable of either or both transferring of network including priority logic in each of said units, saic priority logic comprising
A. first bistable means for asynchronously indicating that a representative unit is ready to transfer information ove said bus;
B. second bistable means, responsive to said first bistable means indicating that said representative unit is ready to
transfer information over said bus, for generating a firs signal on said bus indicating to each of said units that said representative unit is ready to transfer information ove said bus;
C. means, responsive to the absence of a said first signal from said second bistable means in each of said units having a higher priority than said representative unit, for indicating that said representative unit is the highest priority unit;
D. third bistable means, responsive to said first signal gener-
ated by said second bistable means and an indication that ated by said second bistable means and an indication tha
there is no other higher priority unit ready to transfer information over said bus, for generating a second signal on said bus;
E. means, responsive to the receipt of said second signal from said bus, for generating a strobe signal for enablin the receipt of information from said representative unit; information has been received, for disabling said third bistable means of said representative units; and
G. second means, responsive to the disabling of said thir isabling said second bistable means of said representative unit.

4,096,570
SUBCHANNEL MEMORY ACCESS CONTROL SYSTEM Masamichi Ishibashi, and Shigeru Miyajima, both of Tokyo
Japan, assignors to Fujitsu Limited, Kawasaki, Japan Filed Dec. 29, 1975, Ser. No. 644,508
Claims priority, application Japan, Dec. 29, 1974, 50-777
U.S. Cl. 364-200
\({ }^{1 n t .}\) Cl. \({ }^{2}\) G06F 3/04, \(13 / 00\)
10 Claims
1. In a data processin
a plurality of input/output devices having corresponding device numbers and being of at least first and second type having corresponding first and second type data transfer least one chann
between said central processor and said first type input/output devices, and
at least one channel of a second type adapted for transfer of data between said central processor and said second type input/output devices,
input/output control means of a first type operatively associated with said at least one channel of said first type for controlling the transfer of data between said central processor and said plurality inpu sharing basis, and
input/output control means of a second type operatively
associated with said at least one channel of said second type for controlling the transfer of data between said central processor and said plurality of input/output devices on a non-time-sharing basis;
a subchannel memory access control system comprising subchannel memory means for storing unit control words used for enabling said data transfer to and from corre-
ponding ones of said input/output devices, said subchan-

nel memory means including a plurality of first addresshold unit control words which indicate the corresponding ones of said first type devices to or from which data is to be transferred, and a plurality of second addressable unit control word memory domains each assigned to hold unit ontrol words which indicate corresponding said second type input/output co
data is to be transferred, and
ubchannel memory addressing means for holding address information and responsive to any given device number corresponding to a given one of said irst type devices or corresponding said first unit control word memory domain according to the device number of said given one of said first type devices, and for accessing corresponding aid second unit control word memory domain according to the device number of said given one of said second type

SYSTEM FOR RESOLVING MEMORY ACCESS SYSICM FOR RESOLVING MENO AN MINIMIZING PROCESSOR WAITING TIMES FOR ACCESS TO PEMORY BY COMPARING WAITING TIMES AND BREAKING TIES BY AN ARBITRARY PRIORITY

RANKING
Corporation, Newton, Mass.
Filed Sep. 8, 1976, Ser. No. 721,375
Filed Sep. 8, 1976, Ser. No. 721,3
Int. Cl. \({ }^{2}\) G06F \(13 / 00\)
.s. Cl. \(364-200\)
1. In combination,
a plurality of processor
a corresponding plurality of logic circuits,
at least one memory device,
a bus connecting each of said processors with said memory
device,
a request line from each of said processors to one of said
corresponding plurality of logic circuits for making thereover a memory device use request
a memory status bus connecting said memory device with each of said logic circuits for simultaneous signalling thereto whether said memory device is available,
waiting time measuring means within waiting time measuring means within each of said corre-
sponding pluaraity of logic circuits for signalling the sponding plurality of logic circuits for signalling the
length of time a respective processor has been waiting, a waiting time bus for applying to all said logic circuits the longest available processor waiting time,
comparator means in each said logic circuit to compare the waiting time of its respective processor with that on said waiting time bus,
means in each said
different from that in circuit to provide a rank signal and

means to cause functioning of said logic circuits within coincident periods of time,
each logic circuit being adapted to connect its respective processor to said memory device when there is coincidence of a request for said memory device by said respective processor over a respective request line, an availability signal over said memory bus, and its waiting time line signa is equal the the signol or waiting time line signal or
one of equal to the largest other waiting time line signal and of higher rank signal, whereby no processor can reach said memory device twice before another that interveningly has requested it reaches it once, to minimize maximum waiting time.

\section*{COMPUTER SYSTEM W,096572 \\ M WITH A MEMORY ACCESS}

ARBITRATOR Electric Co., Ltd., Kavasaki, Japan
Filed Sep. 28, 1976, Ser. No. 727,356
Claims priority, application Japan, Sep. 30, 1975, 50-117912 Int. C1. \({ }^{2}\) G06F 9/18. \(13 / 00\) 1 Claim

1. A computer system comprising:
memory means having first and second terminals for reception of address transfer and read/write control informa-
tion and a third terminal, and means for switching the voltage level at the third terminal from a first voltage leve to a second voltage level representative of access ac-
knowledge during the time from reception of address
infor
data first, second memory utilization devices each having memory access acknowledged by wals and each having a level at it chird acknowledged by variation of voltag second voltage level, each memory utilization device being responsive to the first voltage level at its third terminal after issuance of a memory request signal on its fourth terminal to cause its first and second terminals to assume voltage levels representative of address transfer and responsive to the second voltage level at its third terminal to levels representative of data request or data issuance: bus means connected between the memory means and the first and second memory utilization devices for address and data transfer
means coupling the first and second terminals of each memory utilization device to the first and second terminals of means connected 5 , respectively; and
memory utiliz to the third and fourth terminals of each memory utilization device and the third terminal of the the first and second memory utilization devices one of the first and second memory utilization devices at the
second voltage level for the time during which the other memory utilization device is acquiring access to the mem ory means.

DLAT SYNONYM CONTROL MEANS FOR COMMON PORTIONS OF ALL ADDRESS SPACES
drew Robert Heller, Mohegan Lake, N.Y., and Richard Le Sites, San Diego, Calif, mesignors to International Busines Machines Corporation, Armonk, N.Y. 790,731

Filed Apr. 25, 1977, Ser. No. 7
U.S. Cl. \(364-200\)

10 Claims
private in each address space or shareable among all address spaces, the DLAT having a plurality of DLAT entries, each DLAT entry having fields for containing a virtual and a real dentifying an address space associated with the translated page in the DLAT entry
adaress ranslation means being actuated by a DLAT exception signal indicating no DLAT entry is found to contain a translation of a page containing the requesting virtual
address. DLAT loading means for loading the fields in a DLAT entry selected in response to no DLAT entry containing the translation of the page containing the requested address,
space portion selection means associated with and activated
by the address trand in the space portion store by means of a high order part of the requesting virtual address in the virual ordder part of ter to signal whether a corresponding address space portion has shareable or private status,
means for transferring a common portion identifier into the selected DLAT entry in response to a signal from the space portion selection mean tus, and
cans for
means for transmitting an address space identifier to the selected DLAT entry in response to the signal from the
space portion selection means indicating a private status space portion selection means indicating a private status.
whereby the common portion identifier in any DLAT entry whereby the common portion identifier in any DLAT entry
indicates that the translated page loaded into the DLAT entry is to be shared among the address spaces, and whereby a valid address space identifier in any DLAT entry indicates that the translated page is to be restricted to the private address space identified in the DLAT.

4,096,574
FRACTIONATION CONTROL
David A. Christie, Bartlesville, Okle., assignor to Phillips Petroleum Company, Bartlessille, Okla. Filed Jul. 28, 1977, Ser. No. 819,92 Int. CI. \({ }^{2}\) B01D 3/42; G06G 7/58 US. CT \(364-501\) 24 Claims

4,096,575
DELAY TIME COMPENSATION INCORPORATING akane Itoh, Yokohama, Japan, assignor to Nissan Motor Company, Limited, Japan Filed Apr. 5, 1977, Ser. No. 784,854
Clasims priority, application JJpan, Apr. 8, 1976, 51-40062 U.S. C. \(364-571\) Int. Cl. \({ }^{2}\) G01D 18/00 5 Claims
into an upper portion of said fractionation column means as external reflux therefor:
means for establishing a first signal \(T_{0}\) representative of the temperature of the said vapor stream at the top portion of said fractionation column means;
means for establishing a second signal \(\mathrm{T}_{R}\) re
the temperature of the said external reflux
the temperature of he said external refux; flow rate of said external reflux;
means for establishing a fourth signal \(K\) representative of the value of the specific heat of said external reflux divided by the heat of vaporization of said external reflu
means for establishing a fifth signal \(\mathrm{H}_{R} / \mathrm{H}_{R \mathrm{i}}\) representative of the value of the heat of vaporization of the said external reflux, said internal reflux being the reflux liquid flowing inside said fractionation column means;
means for establishing a sixth signal \(\mathbf{R}_{\text {id }}\) representative of the desired flow rate of said internal reflux; and
means for establishing a seventh signal representative of the value +1 ;
means for producing, in response to said first, second, third, fourth, fifth, sixth and seventh signals, an eighth signal and for utilizing said eighth signal to manipulate the flow rate
of said external reflux.
6. Synonym prevention control for a translation lookaside buffer (DLAT) in a data processing system, which addresses pages for multiple address spaces, each address space using the
same virtual addresses, the address spaces respective segment tables, a control register identifying an active segment table in a processor of the system, and a virtual address register in the processor for containing a requesting the active segment table, comprising
a space portion store for recording status fields that divide each of the address spaces in the system into corresponding portions, each status field being settabe to indicate
whether a corresponding address space portion is either
1. Apparatus comprising:
fractionation column means;
conduit means for passing a feed mixture to be separated into sid fractionation column means;
lower portion of said fractionation com product from a ower portions for said fractionation column means; upper portion of said fractionation column means: upper portion of said fractionation column means;
ondensing means for partially condensing said vapor stream; stream;
accumulator means for phase-separating the thus partially condensed vapor stream;
onduit means for withdrawing uncondensed vapor from said accumulator means as an accumulator overhead product;
conduit means for withdrawing condensate from said accumulator means and for passing at least a portion thereof

1. A delay compensation circuit comprising: first and second sensing devices each having a different time constant value of the first order time lag;
first and second difereniators connected to said first and second sensing devices, respectively;
a subtractor connected to said first and second sensing devices to provide an output representing the difference between the outputs from said devices;
a processing circuit receptive of the outputs from said first and second differentiators and said subtractor for generatand second differentiators and said subtractor for generat-
ing an output which represents the difference between a ing an output which represens the difference butw
physical quantity to be measured and the output from said first sensing devices; and
summation circuit for providing summation of the output from said first sensing device and the output from said processing circuit.

\section*{}
 Koro, both of Sendai, all of Japan, assignors to Fukuda Denshi Ko., Ltd., Tokyy, Japan
Filed Dec. 7, Claims priority, application Japen, De. 14, 1975, 50-147855


1. An analogue filter system comprising a first analogue filter connected to an input terminal for receiving an input analogue signal, a second analogue filter having similar characteristics to
the first analogue filter, delay means connected between the the first analogue filter, delay means connected between the
first and second analogue filters for storing the output from first and second analogue filters for storing the output from
said first analogue filter and for producing an output with the time axis thereof inverted under the control of a timing circuit, and means for restoring the inverted time axis of said output, whereby an output analogue signal is produced which is de-
layed in relation to said input analogue signal but free from any phase distortion.
circuit base plus the thickness of the thickest one of said computing elements and readout register, said number and
function keys are in the form of low-profile conductive elastomer diaphram switches comprised of a flexible keying printed circuit means carrying a printed circuit coupled to said first mentioned printed circuit and carrying a keying printed circuit terminal for each of said number
and function keys, a thin fiexible dielectric spacer covering said last mentioned printed circuit and having an opening at each of said keying printed circuit terminals, a flexible electrically conductive elastomer covering said dielectric spacer, number and function indicia carried on
said electrically conductive elastomer at each associated said electrically conductive elastomer at each associaed
opening of said spacer, and means fixing said keying opening of said space, antomer and number and function
printed circuit, spacer, elastor indicia together in proper alignment of keying terminals, spacer openings and indicia for effecting electrical engagment between said conductive elastomer and keying ter
minal when finger pressure is applied to the associated minal when finger pressure is applied to the associated
indicia.
\(4,096,578\)
MICROPR

DATA SYSTEM WITH MICROPROCESSOR FEATURING MULTIPLEXED DATA TRANSFER AND REPEAT CYCLE DRIVING ARRANGEMENT
Charles David Malkemes, Boca Raton, Fla, assignor to Interna tional Business Machines Corporation, Ammonk, N.Y
Filed Dec. 20, 1976, Ser. \({ }_{900}\) Int. Cl. \({ }^{2}\) G06F \(11 / 08\)

13 Claims
U.S. C. \(364-900\)

THIN FLEXIBLE ELECTRONIC CALCULATOR Leon A. Ferber, 48 Lake Ave, and Richard Pavelle, 3 Fieldstone Dr., both of Woburn, Mess. 01801
Continuation-in-part of Ser. No. \(\mathbf{5 5 5 , 0 7 5}\), Mar. 3, 1975, abandoned. This spplication Oct. 20, 1976, Ser. No. 734,285 U.S. C. 361-712 27 Claims

1. In an electronic calculator of the type having in combina1. In an electronic calculator of the type having in combina-
tion electronic computing elements with electrical conductor
leads, a readout register with electrical conductor leads, number and function keys, battery, a printed circuit and an ONOFF switch, the improvement wherein:
said printed circuit is comprised of a thin flexible dielectric material base carrying fiexible printed circuit electrical conductors with terminals in substantially a single plane
for receiving said electronic computing elements and readout register electrical conductor leads, means fixing said computing element and readout register electrical
conductor leads to associated ones of said flexible printed circuit terminals in manner to make electrical engagement with said terminals and to firmly fix said computing elements and readout register to a face of said flexible dielectric material base to thereby create a flexible calculator structure whose maximum physical thickness is substan
tially the same at the thickness of said flexible printed

a device controller, said controller providing data in succes sive controller cycles of operation representative of information to be printed;
a printer, said printer incorporating storage elements for storing data and operating elements operabie in successive
printer cycles to print information or perform functions, each of said printer cycles encompassing a minimum number of controller cycles numbering at least two controller cycles up to a preselected number greater than two controller cycles;
interconnection means for interconnecting said controller
ransfer means for effecting transfer of individual desired signal patterns of data from said controller to said printer, the majority of said signal patterns being transferred to said printer substantially in an errorfree form during con-
tinuing operation of said system but an individual signal pattern occasionally being transmitted erroneously; and
repeat cycle means in said system for repetitively transmitting each individual signal pattern of data from said controller to said printer for said minimum number of controller cycles in order to set up said printer storage means and operate said operating elements in accordance with said
majority of transmitted errorfree signal patterns representmajority of transmitted errorfree signal patterns represent-
ing each individual data signal pattern and effectively ing each individual data signal pattern and effectively
minimizing response in said system to the occasional erroneous signal patterns.
\[
4,096,579
\] VELOCITY CONTROL APPARATUS FOR DISK DRIVE隹 J. Black, San Jose; Sipe Cizmic, San Mrieo, and Davo poration, Stamford, Conn.

Filed Feb. 28, 1977, Ser. No. 772,692
Int. Cl. \({ }^{2}\) G11B 5/55, 21/08, \(17 / 100\)
U.S. Cl. \(364-900\)

10 Claims

1. Velocity control apparatus for a disk drive of the type comprising a recording disk rotatable about its axis, an electromagnetic read/write head for reading data from and writing data onto tracks on a surface of said disk, and means coupled to said head and responsive to velocity command signals for controlling the direction and speed of movement of said head said head over a desired track on said disk surface, said velocity control apparatus comprising:
a memory divided into a plurality of sections respectively associated with different ranges of desired distances to be traveled by said head, dressable storage locations havin velocity command signals stored therein together defining an approximation of a desired velocity trajectory curv for a desired distance to be traveled included within th range associated with that section;
irst means for generating a first position signal representative of a particular desired distance to be traveled and a second position signal representative of a predetermined
fraction of said particular desired distance to be traveled, said first means including means responsive to said firs position signal for generating a trajectory index signa
identifying the section of said memory associated with the range in which said particular desired distance lies;
second means coupled to said first means and being respon-
sive to said second position signal for generating a count ing signal representative of the distance actually traveled by said head;
means and being responsive to said trajectory index signal and to said counting signal for applying an address signal to said memory means for sequentially addressing the addressable storage locations of the associated section of
said memory during movement of said head said particusaid memory during movement of said head said particu-
lar desired distance to be traveled thereby providing a sequence of said velocity command signals together defining an approximation of the associated desired velocity trajectory curve; and
said means for controlling

LILE REDUNDANCY LOOP BUBBLE DOMAIN MEMORY Thomas T. Chen, Yorba Linda, Calif, assignor to Rockwell International Corporation, El Segundo, Callf. Int. Cl. \({ }^{2}\) G11C \(19 / 08\) U.S. CI. 365-1

10 Claims

1. A magnetic bubble domain system comprising, a primary propagation path for magnetic bubble domains, a plurality of \(n\) secondary propagation paths for magnetic bubble domains selectively coupled to said primary propagation path for transferring magnetic bubble domains therebetween
said secondary propagation paths coupled to said primary
propagation paths at locations which are separated by a prescribed distance,
plurality of \(m\) correction loops associated with said primary path where \(m\) is less than or equal io
each of said correction loops having a length which is equiv. alent to an integral multiple of said prescribed distance seetween said secondary propagation paths, said correction loops
ble domains, and
condur means associated with said primary propagation path and said correction loops,
parallel port means including at least two electrically parallel portions arranged such that, in response to an applied current signal, one of said parallel portions selectively causes magnetic bubble domains in said primary
path to traverse an associated correction loop only when the other of said parallel portions is selectively removed from said conductor means,
whereby said primary propagation path is effectively elongated by the addition of one or more correction loops when one or more of said secondary propagation paths is propagation path is preserved.

\section*{4,096,581 \\ EXTERNAL DRIVE COIL MAGNETIC BUBBLE} PACKAGE
mes Thomas Carlo, Richardson, and Alris Doyle Stephenson. Jr., Dalles, both of Tex., assienors to Texes Intruments Filed Aug. 16, 1976, Ser. No. 714,54
U.S. C. \({ }^{\mathbf{3 6 5}-\mathbf{2}} 12\) Claime 1. A magnetic bubble domain chip packaging assembly mprising:
a pair of magnetic field-producing coils including a firs inner coil having a plurality of turns of substantially uniform size and a second outer coil having a pluraity of
wound about said inner coil in orthogonal relationship with respect thereto and cooperating
pass a volumetric space therewithin,
pass a volumetric space therewithin,
said magnetic bubble domain chip being located externally with respect to said pair of magnetic field-producing coils and said volumetric space encompassed thereby,
interconnect means operably connected to said magnetic
bubble domain chip and providing externa bubble domain chip and providing external electrical
access to said chip for nabling selected bubble functions access to said chip for enabling selected bubble functions
to occur on said chip in accomplishing data processing to occur on
operations,

bias field magnetic means operably associated with said magnetic bubble domain chip for producing a magnetic bias field essentially perpendicular to said chip.
a body of insulating material encapsulating said magnetic coils, and said interconnect means, and
signal leads extending outwardly from said insulating body said signal leads being electrically connected to said inter connect means and to said pair of magnetic field-produc ing coils for providing input and/or output signals to and/or from said magnetic bubble domain chip and excita tion signals to said coils.

FIELD-ACCESSED MAGNETIC BUBBLE MUTUALLY EXCLUSIVE CIRCUITS WITH COMMON ELEMENTS
Paul T. Bailey, Crere Coeur; LL John Doerr, III, St. Lovis, and
Robert M. Sandfort, St. Charles, all of Mo., assignors to Robert M. Sandfort, St. Charles, al
Monsanto Company, St Filed May 30, 1974, Ser. No. 474,776
Fompany,
U.S. CI. 365-13

33 Claims

5. A bubble propagation system, comprising a sheet of bub ble material, means for producing and maintaining bubble therein, a ferromagnetic overlay pattern operatively disposed on said sheet including at least one composite circuit elemen mutually exclusive circuit elements defining a pair of distinc mutually exclusive bubble paths, means for generating two sets
of sequential drive field orientations in the plane of said sheet, of sequential drive field orientations in the plane of said sheet, of sequential drive field orientations in the plane of said shet,
one of said portions being responsive to only one of said sets for propagating bubbles on a corresponding one of said paths, ther one of said drive field sets for propagating bubbles on the other of said paths.

4,096,583
2kD CORE MEMORY Mart Wright, Burbank, and Thomas J. Gilligen, Marina del Rey, Kurt Wright, Burbank, and Thomas J. Gilligan, Marina del Rey,
both of Calif., assignors to Ampex Corporation, Redwood City, Calif.

Filed Oct. 15, 1976, Ser. No. 732,928

said memory when said memory is in
coupled to said input and output means; coupled to said input and outpurt means, MOS device, a first plurality of depletion mode MOS devices, a second plurality of depletion mode MOS de
vices, said second plurality of depletion mode MOS de vices, said second pluraity of depletion mode MOS de
vices being less conductive than said first plurality, and a vices being less conductive than said first plurality, and a
plurality of low threshold MOS devices, said low threshpld MOS devices having a threshold voltage of approxi-
old
and to one side of said first cylinder, the other side of said second cylinder is connected to a pressure fluid source and to the other side of said first cylinder through a shut off valve means operable by the piston of the first cylinder at the end of its backward stroke; and wherein said return line for the fluid material component is provided with a branched conduit hav-
ing a valve defining a narrow orifice for recycling the fluid ing a valve defining a narrow orifice for recycling the hirsial
material component at a higher pressure rate than the first
ment mode MOS devices and one of said second plurality ment mode mode MOS devices,
of depletion mever
device being employed as a load; device being employed as a load; said input and output means employing a plurality of said
low threshold MOS devices coupled to receive a signa low threshold MOS devices coup ted said input and output means during standby mode, said low threshold MOS devices coupled in series with said
enhancement mode devices and said first depletion mode
1. A core memory comprising
a plurality of pairs of memory cores;
a plurality of pairs of Y conductors inductively coupling a plurality of pairs of memory cores; plurality of \(X\) conductors, each inductively coupling dif.
ferent pairs of memory cores that are inductively coupled by the Y conductors; \(Y\) decoder circuitry coupled to select a pair o
in response to at least one address signal;
in response to at least one address signal; X decoder circuitry coupled to select at least \(t\) wo X conductors in response to at least one address signal;
cortion of a memory cycle to provide partial select a read currents through the pair of \(Y\) conductors, the \(Y\) read currents coupling each pair of cores inductively coupled to the selected pair of \(Y\) conductors with first and opposite polarities relative to a given direction of current through current control circuitry coupled thed portion of a memory cycle to sequentially provide a read portion of a memory cycle to sequentially provide partial
select X read currents through the selected at least two X conductors;
a sense amplifier circuit coupled to sense core switching voltage signals appearing sequentially on the selected pair of \(Y\) conductors as \(X\) read currents are provided sequentially on the selected X conductors.

4,096,584 LOW POWER/HIGH SPEED STATIC RAM Rich H. Owen, III, Mountain View; Kim R. Kokkonen, and Richard D. Pashley, both of Sunnyvale, all of Calif., asslgnors to Intel Corporation, Santa Clara, Calif.

Filed Jan. 31, 1977, Ser. No. 764,031
Int. C1. \({ }^{2}\) G11C \(11 / 40\)
1. An integrated circuit, metal-oxide-semiconductor (MOS), andom-access static memory comprising
a plurality of bistable memory cells;
input and output means for communicating with said mem-
ory cells;
devices
her by said memory is a fast random-access, static mem hereby said memory is a fast random
ory having low power consumption.

\section*{4,096,585}

APPARATUS FOR MIXING AND EJECTING
APPARATUS FOR MIXING AND EJECTIN Carlo Fiorentini, Varese, Italy, assignor to AFROS S.r.I., Caronno Pertusella (Varese), Italy Filed Nov. 22, 1976, Ser. No. 743,956.
Claims priority, application Italy, May 17, 1976, 23330 A/76 Claims priority, application Italy, May \(17,1976,2330 \mathrm{~A} / 76\)
Int. Cl. \({ }^{2}\) B01F \(15 / 04,15 / 06\) U.S. CI. 366-134

1. An apparatus for mixing and ejecting fluid materials, comprising a head defining a mixing chamber, said head including an outlet opening for ejecting the mixture at one end thereof, a plurality of inlet ports, each of said inlet ports com-
municating with a supply line for supplying a fluid material municating with a supply
component, a distributing valve, each of said inlet ports communicating, through said distributing valve, with an orifice opening into the mixing chamber and with an outlet port, said outlet port connected to a return line for recycling the fluid material component at a first pressure rate through a reservoir; a pin connected to a piston and reciprocable in awy from said outlet opening of the mixing chamber, said distributing valve being operated by a second double-acting cylinder connected
in parallel with said first cylinder, whereby one side of said in parallel with said first cylinder, whereby one side of said
second cylinder is directly connected to a pressure fluid source
sein in an aqueous medium which comprises
a source of casein,
a hydration tank in which water and powder form casein can be received, said hydration tank including stirring means for stirring said casein and water to form a suspension holding tank
means for conveying suspension from said hydration tank to said holding tank,

\section*{a solubilizing tank,}
means for conveying suspension from said holding tank to said solubilizing tank at such rate that the suspension has a residence time in said holding tank of at least 10 minutes, a source of solubilizing agent,
means for introducing the solubilizing agent into said solubi lizing tank, said solubilizing tank including a stirring device for stirring the suspension therein ate is formed in said solubilizing tank,
sive to the pH level of the caseinate in said solubilizing tank for controlling the solubilizing agent introduction means to control the rate at which said agent is introduced into said solubilizing tank,
means for withdrawing caseinate from said solubilizing tank and recycling a first portion thereof to said solubilizing tank, there further being means for conveying said solubilizing tank to a drying operation, and
a float control unit in said solubilizing tank connected to and operably controlling said withdrawal means responsive to variations in the level of caseinate in said solubilizing tank from a predetermined value.

4,096,587
MIXER FOR RESIN AND SAND Wilter Haller, Schlieren, Swizzeriand, assignor to Escher Wyss Limited, Zurich, Switzerland Filed Mar. 22, 1977, Ser. No. 780,117 \(\underset{03722 / 76}{\text { Claims }}\) priority, application Switzerland, Mar. 25, 1976, 03722/76 Int. Cl. \({ }^{2}\) B01F 5/22, \(5 / 26\) U.S. Cl. \(366-178\)

1. In a foundry mixing machine for preparing a mixture of sand and a resin having at least two components and which comprises wall means defining a sand inlet chamber, a prelimi. nary mixing chamber located below the inlet chamber, and an annular slot positioned vertically between said chambers and serving to allow sand to descend by gravity from the inlet chamber to the preliminary mixing chamber; and an annular
final mixing chamber having an inlet at its inner margin which communicates with the preliminary mixing chamber and an outlet at its outer margin, the final mixing chamber being defined by a gap between two axially spaced bodies of revolu-
tion, each of which bodies carries projections which extend toward the gap and the lower one of which rotates, the improvement which comprises feeding means for delivering the resin components, in non-atomized states, to sand in the preliminary mixing chamber and which includes
a. a dished member connected to rotate with, and located
centrally of, the rotatable body of revolution and havis an upper surface provided with at least a portion which
rises in the radially outward direction;
b. an annular disc coaxial with the dished member and
spaced axially therefrom to define an interstice which at spaced axially therefrom to define an interstice which, at
its outer periphery, opens into the preliminary mixing chamber,
c. the annular disc having a central opening and being connected to rotate with the dished member and the rotatable body of revolution; and
d. supply means for at least one of the resin components which is arranged to deliver said component through the central opening of the annular disc and onto said rising portion of the upper surface of the dished member,
. he dished member serving to coarsely disperse said one
resin component and project it radially through said interstice and into sand in the preliminary mixing chamber.

\section*{4,096,588}

RECYCLED ASPHALT-AGGREGATE PROCESS AND
Robert L. Lendenhall, 1770 Industrial Rd., Las Vegas, Nev.
artas 89102 Continuation-in-part of Ser. No. 603,357, Aug. 11, 1975, Pat. No. \(3,999,743\). This application Oct. 5, 1976, Ser. No. 729,705 U.S. Cl. \(366-7\) Int. C1. \({ }^{2}\) B28C \(5 / 20\)

8. A process for treating particles of asphalt and aggregate compositions comprising separating said composition particles into a plurality of portions, each portion having a different
particle size range between coarse and fine, introducing said particle portions into different mixing and heating drums, and heating each drum at a temperature below that which would burn the asphalt of the particles introduced in that drum.

\section*{DESIGN PATENTS}

GRANTED JUN. 20, 1978
ERRATA

248,191 Kalman Csiki, Landskrona, and Tord Rune Lundin, Biiiesbolm, Kalman Csiki, Landskrona, and Tord Rune Lundin, Bilieshoim,
both of Sweden, assignors to Gulifiber AB, Billeshoim, Sweden Division of Ser. No. 627,868, Oct. 31, 1975, Pat. No. Des. 244,491. This application Sep. 22, 1976, Ser. No. 725,44 Claims priority, appication Sweden, May
U.S. C1. D2-232 erm of patent 14 yea
Int. C1. D2-03


SHOE SOLE
Thomes Anthony Edmonds, Abingdon, Md., assignor to Bata Shoe Co., Inc., Belcamp, Md. Nov. 11, 1976, Ser. No. 741,14 Term of patent 14 years
U.S. C1. D2-320 Int. C1. D2-04


KNITTING AND SEWING EQUIPMENT HOLDER KNITTING AND SEWING EQQUPMENT HOLDER
Conrad A. Urben, and Susan H. Urben, both of Rte. 1, Hwy. 106, Fort Atkineon, Wis. 53338

Jul. 1, 1976, Ser. No. 701,659 Term of patent 14 years

248,192
SHOE
U.S. CI. D3-19 D


\(\qquad\)

PLANTER
PLilliam Donald Gordon, Sr., GTenver, ill., assignor to Arvey Corporation, Chicago, Il.

Filed Jan. 7, 1977, Ser. No. 757,463 Term of patent 14 years
Int. C. D6-06; D11-02
U.S. C. D6-113

\(\qquad\)
 Filed Jan. 7 , 1977, Ser. No. 757,464 Int. Cl. D6-06; D11-02
U.S. Cl. D6- 113

248,200
COMBINED MIRROR AND ADJUSTABLE HINGE THEREFOR
Kent E. Stratton, 2906 Coventry Ave., Fort Wayne, Ind. 46808
Filed Apr. 29, 1976, Ser. No. 881,572 Filed Apr. 29, 1976, Ser. No. 681,572 Int. Cl. D6-07

REVOLVING TRAY FOR BREAKFAST CEREAL BOXES Ernest Kelley, 20414 Warrington Dr., Detroit, Mich. 48221 Filed Dec. 10, 1976, Ser. No. 749,460

Term of patent 14 years
U.S. Cl. D7-2

248,204
SICE SHAKE
SPICE SHAKER
Robert H. C. M. Daenen, Hekelgem, Belgium, assignor to Dart Industries Inc., Los Angeles, Calif.

Filed May 20, 1976, Ser. No. 687,978 Term of patent 14 years U.S. Cl. D7-54

\(\qquad\)

248,205
CREAMER
\(\xrightarrow{248,202}\) COVERED SUGAR BOWL
Don Schreckengost, East Liverpool, Ohio, assignor to The Salem China Company, Salem, Ohio
iled Oct. 7, 1976, Ser. No. 730,15 Term of patent 14 year
U.S. CI. D7-17



CREPE MAKER
Alfred W. Madl, Glendale, Wiss, assignor to Oater Corporation,
Milwaukee, Wis.
Filed Jul. 14, 1976, Ser. No. 705,002 Terrm of patent 14 years
Int. Cl. D7-02
U.S. C1. D7-87

248,210 LACE SKATE SHARPENER AND LACENING
Gary G. Dill, 28392 Magnolia Drice North Olmoted, Ohio 44138 Fiied Jul. 2, 1976, Ser. No. 702,083 erm of patent 14 yea
Int. C. \(\mathbf{D 8}-05\)
U.S. C. D8-91


248,208
BAKING UTENSIL
Wililiam L. Mililer, 26089 Pinehurst, Roserille, Mich. 48066 Filed Oct. 26, 1976, Ser. No. 735,630 Term of patent 14 years
U.S. C. D7-96

Int. Cl. D7-02

\(\qquad\)

248,209
FIREPLACE POKER
Howard A. Holleman, Bay Village, Ohio, assignor to Hydro Tube Corporation, Oberlin, Ohio

Filed Aug. 16, 1976, Ser. No. 714,819 Term of patent 14 years
Int. C. D7-08
U.S. CI. D7-210


\section*{RING CLAMP, 211}

RING CLAMP AND HOLDER
94598
Hed Feb. 2, 1976, Ser. No. 654,57
Term of patent 14 years
Int. C1. D8-05
U.S. C1. D8-395


248,212 DOOR STOP OR SIMILAR ARTICLE
Robert E. Miller, Jr., Bronxville, N. Y., asdgnor to Robert E. Miller Co., Inc., Newark, N.J.

Term of patent 14 years Term of patent 14 years
Int. Cl. D8-09
U.S. CI. D8-402


248,213
COVER FOR FASTENER
COVER FOR FASTENER
Filed Sep. 23, 1976, Ser. No. 725,694
Term of pateat 14 years
248,216
COMBINED PACKAGING CONTAINER AND CLOSURE David O. Allen, and Harry A. E. Wombold, both of Wilmington, Oand O. Alien, and Harry A. E. Wombold, bation

Hied Mar. 25, 1976, Ser. No. 670,2 Term of patent
Int. C. D9-03
U.S. CI. D8-499
U.S. C1. D9-220


\section*{248,214 \\ COMAINED \({ }^{248,214}\) D CLOSURE}

David P. DiNuccio, Brooklyn Heights, N.Y., sasignor to Clairol

\[
\begin{gathered}
\text { Filed Sep. 13, 1976, Ser. No. } 722,832 \\
\text { Teroo potent } 14 \text { years } \\
\text { Int. CI. D9-01 }
\end{gathered}
\]
U.S. CI. D9-83


248,215
COMBINED PACKAGING CONTAINER AND LID Richard Sutton Cherry, Toronto, Canade, aesignor to Phillipe Pleatics of North America, Inc., Toronto, Cansda \begin{tabular}{l} 
Nor. 3, 1955 , Ser. 14 years \\
Term of patent \\
\hline
\end{tabular}
U.S. C. D9-219


248,218
NON-DRIP LIP FOR PAINT CANS
Thomas E. Clumb, Indianapolis, Ind., assignor to Alfred T. Smith and Darid J. Ganasak, part interest to each Filed Sep. 27, 1976, Ser. No. 727,57 Term of patent 14 yea
Int. Cl. D9—99
U.S. C. D9-290

CONTAINER CLOSURE David O. Alien, and Harry A. E. Wombold, both of Wilmington, Ohio, assignors to Buckeye Molding Company Mar. 16, 1976 , Ser. No. 601
Term of patent 14 years
U.S. C. D9-255

\(\stackrel{248,219}{\text { WRIST WATCH }}\)

> 248,222 WRIST WATCI

Ferdinand Alexander Porsche, Zell am See, Aus
\begin{tabular}{l} 
Monires Orfina S.A., Grenchen, Switzerland \\
Filed Oct. 15, 1976, Ser. No. 732, \\
\hline
\end{tabular}
Claims priority, application Switzerland, Apr. 26, 1976
ments James Lawrence, Dallas, Te

Filed Oct. 12, 1976, Ser. No. 731,385 Term of patent 14 years
Int. CI. D10—04
62959/76
Term of patent 7 years
Int. Cl. D10-02
U.S. CI. D10—32


248,220
WRIST WATC
William James Lawrence, Dallas, Tex., assignor to Texas Instru- Eugene Joseph Sulek, Plano, Tex., assignor to Texas Instruments Incorporated, Dallas, Tex.
Filed Oct. 12, 1976, Ser. No. 731,240 Term of patent 14 years
U.S. CI. D10-38


WRIST WATCH
24i, 221
William James Lawrence, Dallas, Tex., assignor to Texas Instru ments Incorporated, Dallas, Tex.

1976, Ser. No. 731,384 Int. Cl. D10—04
U.S. C1. D10—38
int. Cl. D10— 04


U.s. CI. DIOー

248,224
WRIST WATCH
Eugene Joseph Sulek, Plano, Tex., assignor to Texas Instruments Incorporated, Dallas, Tex.

Filed Oct. 12, 1976, Ser. No. 731,396 Term of patent 14 years
Int. C1. D10—04
U.S. CI. D10-38
ments Incorporated, Dallas, Tex.
Filed Oct. 12, 1976, Ser. No. 731,395
Oct. 12, 1976, Ser. No.
Term of patent 14 years
U.S. CI. D10-38



EXTENSION CONVEYOR
Joseph M. Casteel, 255 Lython Rd., Coraopolis, Pa. 15108 Filed Jun. 16, 1976, Ser. No. 6966683 Term of patent 14 years
Int. Cl. D12-05
U.S. C1. D12-58

\(\stackrel{248,226}{\text { STROLLER }}\)
George J. Sailer, Sr., 6 Almira St., Bloomfield, N.J. 07003 Filed Jan. 17, 1977, Ser. No. 759,739 Term of patent 14 yea
Int. Cl. D12-12
U.S. C1. D12-129


Philippe Jamain, Chatel-Guyon, France, assignor to Compagnie Generale des Etablissements Michelin, Clermont-Ferrand, France Filed Oct. 21, 1976, Ser. No. 734,441 Filed Oct. 21, 1976, Ser.
Term of patent 14 years
Int. Cl. D12-15
U.S. CI. D12-146


CARGO SUPPORT FOR 248,228
CARGO SUPPORT FOR THE BED OF A TRUCK OR THE Donald Keir Robertson, Corner Kew \& Mars Sts., Welshpool, Western Australis, Australia

Filed Sep. 3, 1976, Ser. No. 720,343 erm of patent 14 years
Int. C1. D12-16
U.S. Cl. D12-155


COMBINED VEHICLE BUMPER AND GRILL GUARD Jonathan Baker, 507 E. 33rd St., Joplin, Mo. 64801 Term of patent 14 year

Int. Cl. D12-16
U.S. Cl. D12-169


COMBINED CASSETTE RECORD

RADIO
Akire Katoh Chofy, Jeper, seateror to Loyd's Electrota, Inc., Compton, Calif.

Filed Aug. 4, 1976, Ser. No. 711,693 Term of patent 31 years
U.S. CI. D14-5 Int. C. D14-01, 03

248,232
COMBINED DATA PROCESSOR ANAL YZER AND DISPLAY INSTRUMENT
Jerry Lee Stamper, San Diego, Calif,, sssignor to Conic Corpo ration, San Diego, Callif.
Filed May 16, 1977, Ser. No. 797,473 Term of patent 14 year
U.S. CI. D14-43 erm of patent 14 years
Int. Cl. D14-02


248,231
LAPEL SPEAKER OR SIMILAR ARTICLE Armold Sherwin Goldman, Plantation, and John Allie Eckmann, Pompano Beach, both of Fan, assignors to Motorola, Inc., Schaumburg, III.

Filed Mar. 1, 1976, Ser. No. 662,64 Term of patent 14 yea
Int. CI. D14-01
U.S. Cl. D14-12


248,233
CARD READER FOR COMPUTERIZED ACCESS Luigi Dibenedetto, EONTROL Segundo, Calif., assignor to TRW Inc., Luige Dibenederto, EA Segurdo, Cairi, assignor
Los Angeles, Calif.
Flied Jun. 23, 1976, Ser. No. 699,152 ed Jun. 23, 1976, Ser. No.
Term of patent 14 years
Int. Cl. D14-02
U.S. CI. D14-49


\section*{248,234}

HOUSING FOR A TELEPHONE SET
Donald Michael Genaro, Haworth, N.J., and John Niel McGar.
vey, Drexel Hill, Pa., assignors to Bell Telephone Laborto. INTERNAL COMBUSTION ENGINES
ries, Incorporated, Murray Hill, N.J.
Ieliephone Laboration Company, Philadelphia, Pa.
Filed Apr. 7, 1976, Ser. No. 674,344
Filed Feb. 28, 1977, Ser. No. 772,992
Term of patent 14 years
U.S. Cl. D14-53

Int. Cl. D14-03


248,235
METALLURGICAL TEST SPECIMEN
 Richard E. Haughtington, 292 Cien 1213 W. Lincoln Hyy. Howald P Minami
Ind. 46300 , and Donald R. Wray,
Merrillville, Ind. 46410
Filed May 21, 1976, Ser.
U.S. C1. D15-144


Int. C1. D15-09

\(\bar{\square}\)



Filed Jul. 21, 1975, Ser. No. 595,361 Term of patent 14 years
U.S. C. D22-28

NERVOUS RESPONSIVE CHIROPRACTIC TRACING James P. Woods PI PENDULUM
James P. Woods, P.O. Box 86, Long Grove, Iowa 52756 Filed May 5, 1976, Ser. No. 683,679 Term of patent 14 yea
Int. Cl. D24-02


248,239
FISHING LURE
Cedi Lewis, Smilax, Ky. 41764
Filed Aug. 1, 1975, Ser. No. 595,363 Term of patent 14 years
Int. C1. D22-05
U.S. C. D22-28 Int. Cl. D22-05


RICATED FIREPLACE
PREFABRICATED FIREPLACE
Filed Dec. 15, 1976, Ser. No. 750,863
Term of patent 14 years
Int. C1. D23-03
U.S. C. D23-94


CIGARETTE LIGHTER
Vytautas Beleckis, Oakhurst, N.J., assignor to Ronson CorporaVytautas Beleckis, Oakhur
tion, Woodbridge, N.J.

Filed Feb. 10, 1977, Ser. No. 767,317 Term of patent 14 years
Int. Cl. \(27-05\)
U.S. C. D27-42

248,241
Mable Edith Duhon, 2501 Plantation Dr. Bossier City, La. 71010
Filed Oct. 26, 1976, Ser. No. 735,673 Term of patent 14 years Int. C1. D21-01
U.S. Cl. D34-4 \(R\)

7


248,245
DOLL
Mable Edith Duhon, 2501 Plantation Dr., Bossier City, La.
71010 Filed Oct. 26, 1976, Ser. No. 735,672
U.S. Cl. D34-4 R

Term of patent 14 years


248,247

GAME CABINET
Sarney H. Huang, Mountain Viev, Calif, assignor to Atari, Inc., Sunnyvale, Calif. Filed Nov. 4, 1976, Ser. No. 738,827 Term of patent 14 yea
U.S. CI. D34-5 L

248,248
Emilio Azcarate, Oviedo 18-16, Torrimar, Guaynabo, P, Filed Nov. 22, 1976, Ser. No. 743,689 Term of patent 14 years
Int. C. D21-01
U.S. CI. D34-5 SS Int. C. D21-01

Juan, P.R. 00919
U.S. C. D34-5 SS


TABLE BALL GAME BOARD DEVICE Michael Langieri, Butler, N.J., assignor to Louis Marx \& Co., Inc., Stamford, Conn.
Filed Dec. 20, 1976, Ser. No. 752,339 Term of patent 14 years
U.S. Cl. D34-5 JJ

\begin{tabular}{c} 
GAME BOARD \\
\hline 248,249
\end{tabular}
Marcos Garcia-Kuenzli, P.O. Box 2212, Hato Rey Station, San
Filed Apr. 5, 1976, Ser. No. 673,468 Term of patent 14 years
Int. CI. D21-01
int. C1. D21-01

GAME CABINET nyvale, Calif.

Filed Nov. 4, 1976, Ser. No. 739,028 erm of patent 14 yea
Int. Cl. D21-01
U.S. Cl. D34-5 L

\section*{LIST OF PATENTEES}

TO WHOM
PATENTS WERE ISSUED ON THE 20TH DAY OF JUNE, 1978 Note-Arranged in accordance with the first significant character or word of the name
(in accordance with city and telephone directory practice).
A. Ahlstrom Oaxkeyhtio: See-
Snygs. Kejij Kanlevi; and Korkolkinen, Aame Johannes, \(4,095,755\),
C1 C1. 242 2-6.000.
A.B.C.C.O. Industries, Incorporated: See-
Derk, Edamrd A.. \(4,095,668\), Cl. \(181-202.000\)

R.D. Anstalt: See

A/S Apothekernes Luboratorium for speciatlpr.
A-T-
Fox, RRbert J.; and Sturgis, Donald P., 4,095,739, C1. 235-382.00

 and Brandi, Sr. Adolph John, to Allied Chemica,
trolled Low strecther. \(4,095,318, \mathrm{Cl} .28-241.000\).
Hobit Laborriories:
Horrom, Bruce Wayne; and Barte, William Dougles, 4,096,261, Cl
Horrom, Bruce
\(42+250.000\).
Abdou, John J.: See-
Peck, Henry.\(;\) Taylor, Maurice J.; Abdou, John J.; and Patel,
Amnut R., \(4,006,367\), Cl. 200-148.00B. Abernethy, Robert B.; Preti, Edmond; and Rembold, John P., to United
States of America Air
Aorce Augmentor outer segment lockout and fan upmatch. 4,095,420, Cl. 60.204 .000 .


Hicksk Paul E., Jr.; and Hammonds, James C., 4,095,767, Cl. 248 .
119.00s. Adechi, Tadiyaki: See-
Moore Willim \(\mathbf{T}\);
Moorre, Williem T.; and Adachi, Tadayaki, 4,095,502, Cl. 841.130 Mams, Guy: See-
Goldman Joerph; Adams, Guy; and Goldman, Shirley, 4, 4095,588,
C1. 128-1.500. des, Edo Courd Pierre Julien, to Moulinex, Societe Anonyme. Electrice





Bianchin, Christian, Deneuville, Alsin; and Gerard, Philippe,

Agency of Induat




Basu, Prithwis, Neumann, Gunter, and Kaiser, Gunther, 4,096,020,
C.1. \(1165-519.000\).
Lerman, Peter; and Wagenaonner, Eduard, 4,096,500, C.

Wagensonner, Eduard; Lermenn, Peter, and Fauth, Gunter Wgensonner, El. 354 and. 31.000 .
Agins, Devid B. Wheel with molded tire for carta, 4,009,846, Cl


 Aimar, Michele, to ITW F 4 F
Airtek Corporation: Seev.
Rov, John R; Rop, Stephen; Roy, Mary L.; and Mooney, Daniel
Aisin Teiki KKbushikiki Keishh: See-
Ando, Mmamoto and Trchino, Tomio, 4,095,851, Cl. 303-115.000.

Ban, Hiroshi, 4,095,683, Cl. 192-70.180.
Kondo, Toshiyuki, \(4,095,848, \mathrm{Cl} .303-2.000\)
Izawa, Tatsuo: Serici,
Kozuka, Nobuhiko, Matsumoto, Shoij; Okade, Tetayyz; Gotode,
Katuuhiko; and Aizzw, Tatsuo, 4,096, \(433, \mathrm{Cl} .361-230.000\).

 4,096,462. Cl. 335-213.000
Kuni, Asahiro ald Akiyama, Nobuyukici 4,095,905, C1. 356-200.000. A.G. fur induasrielle Elektronic AGIE: SeeUllmann, Werner;
Akzona Incorporated: See-
Eakridge, Brewster B. Fink Roger H. Portw will
Eakridge, Brewster B.; Fink, Roger H.; Porter, William D.; and
Warren, Elbert K., \(4,095,317\), Cl. 28-221.000.
 Albrecht, Erhard, to Menser Grieaheim GmbH. Device for applying gas
to a liquid. \(4,096,215\), Cl. 261-121.00R.

 4,090, \(131, \mathrm{Cl} .12 .50 .79 .000\).

Merwin K... 4.096,428, C1. 320-2.000.

Alenndru Nicol
Chiuaru, Dumitru; and Alexandru, Nicolse, 4,095,700, Cl. 214
ling. Willem, to U.S. Philips Corporation. Ges diacharge tube and
means for maintuining an invisible gas diacharge thercin \(4,096,411\), Alliis, Andre: Meier, Jean; and Dersedt, Roger, to Rousecl Uclaf.
Novel inoles. \(4,006,260\), Cl. \(424-250.000\). Novel indoles 4, 4,096,260,
David E: Seer
Green, Donald L. L . Behrmann, William C.; and Allan, Devid E.,
\(4.096,999\), C. 20.633 .470 ,
 \(123-188.00 \mathrm{M}\). Se
Menig, Jo: Seph; and Allen, C. Tom, 4,095,667, Cl. 181-120.000.
Alen, Frink Jomea: See Allea, C. Tom, 4,095,667, C. 181-120.000.
Feming Jobn Augutur; and Allen, Frank Jameen 4,096,422, C1.
318.314.000.
\(318-314.000\).
Alen, Hertert, to
Cameron Iron Works, Inc. Annular blowour Alen, Herbert, 0 Cameron Iron. Works, Inc. Annular blowout pre-
venter. \(4,055,805\), Cl. 277-27.000.
 Aliey, Robert P, , \(\mathbf{t}\) OGenerl
intenity Electric Company. Ficker eliminating intennity controller for diacharge
\(315-20.000\)
Allied Chemical Corporation: See-




Peek, Heery L.; T.ylor, Menurice J.; Abdou, John J.; and Patel,
Amrut R., \(4,096,367\), C. 200-148. ansberger, Robert A.: See- Fen Ared A.; and Almanberger, Robert A., 4,095, 505, Hoey. Frod A.;
\(84-16.000\).
Almar Enterprines, Inc.: See-
Michereche Roy A., 4,095,717, C1. 215-220.000.


Wilkinon, Rompany: See- Lyon, James R., 4,096,305, Cl.
428-182.000. \(428-182.000\).
uminum Compeny of America: See-
Matrin. EdWard S .; and Wohleber,
,uleber, David A., 4,096,234, Cl. Alvarez, Joue Rafiel; and Fuche, Julius Jakob, wo Du Pont de Nemoura,


 American Cymanid Company: See
Casey, Dyomid Company: See
128.335.500. Conow, RRansom Brown; and Bernstein, Seymour, 4,096,174, Cl.
260-30.600. 260.506 .000 .
de lis Maxiungan, Fleur, 4,096,271, Cl. 424-270.000.
Gatrock, Willinm Henry; and Asto, Goro, 4,096, 15s, Cl. 260 -


3meran s.iffy Rezor Company: See-
Iten, Clemens A., \(4,095,691, \mathrm{Cl}\) 206-34.000.
Ameron, Inc.. See-.. du Freane, Eugene R., 4,096,064, C1. 210-120.000.


Anderbert, Thomess A. Aed Petrillo, Richard. Self-4upported water
sweeper. \(4,095,746\), Ci. \(239-287.000\).

inson, Ronald H.; znd Tinoco, Edward N., to Bocing Company, The.







han Mownhor for anti-klid brake control syztem. \(4,095,851, \mathrm{Cl}\).
303-115.000.





 procecing kparrior
Anvino. Reon
Anmond: See-



 Annovi, Giume
with serted
\(36-118.000\).
36-118.000.








Arado Electronict: See-- Sos, 42, C1. 60-398.000.
Spencer, Paul Anthony, 4,096,432, C1. 3243.000.

 Arendh Ronild H.; and Curran, Matthew J., to General Electric Com-
pany. Boron-conkuining electrichl steel having a calcium borate pany. Boron-conkining electrical stel having a calcium borate
coating and magnesias overcoating, and process therefor. 4,09,001,
C. 148.113 .000 . CII 1188.113 .0000





 Arnold, Francis T.: See- M.
Freemman; Lawrence M.; and Arnold, Francis T., 4,095,88s, Cl.
35s-3.0CH. Arrow Paper Products Company: Se-
Sratk Martin \(\mathrm{H} ., 4,05,512\), Cl. 93.81 .00 R.
Artin, Robert Lee to to Oster Corporation. Slicing and ahredding appara-
tus
tuh.
\(4,095,751\), Cl.





electronic timepicce. 4,095,407, C. \(88-23.00\) R.
Asato Goro: Sepion
Gastroct ASEA Axtictor
 shby, Bruce Allan, to Generil Electric Company Continuous devol tilization of silanol-terminated silicone polymer. 4,096,160, Cl. 260
443.20E.
48.20 E
Stearle
Sel B.; Willims, Gwilym H.; and Sypal, Kenneth L., to G. D.
 4shland Oil, Inc.: See
Skubon, Micheel J.; Spiwak, John J;; and Haneaworth, Richard F,
4,096,293, C. 47 , 134.000 .

 Asecman, George Abeer Apoloniris and Van der Leegte, Jooer Wilbel-


 Ater, Jomens. S . See Sen
der, Abbort T;; Buehring, Will J.; Miller, Warren G.; Alexan-
2-6.000. Atkinson, Renwick S., to Cariton Company. Method of making chivel
type cutter link. 4095,490, C1. \(76-112000\).

Alus Powder Company: See
Mechacek Oldrich, \(40.066,003\), C1. 149-2.000






 Aumann, Richardm F:; and Aumann, Robert J. Gras bagger. 4,095,398,
Cl. \(56-202.0000\). mann, Robert J.: See-
Aumann. Richard F.; and Aumann, Robert J., 4,095,398, Cl
56-202.000. Automated Packeging Systems, Inc.: See-
Lerner, Bernard, \(4,095,723\), Cl. 222-56.000.

Automation Designs Inc.: See-
O'Neil, James P., 4,095,699, Cl. 2141.08B.

Avco Corporation: See-
Banthin, Clifford R., 4,095,417, Cl. \(60-39.500\)
 Ayers, John Stephen; and Husbands, David Roderick. Method of
selcotively removing lippoprotein from blood plasma or serum usin AZO-Maschinenfabrik Adolf Zimmermann: SeeBaumann, Rudi; Link, Otmar; and Nied, Gerhard, 4,095,776, C
366-163.000. Azuma, Tomizo. See
Azua,
Tatcoka, Kiyosh; and Azuma, Tomizo, 4,095,509, Cl. 91-369.00B.
Baba, Kousaku: and Ban, Kazuhiro, to Mitsubishi Denki Kabushiki Baba,
Kaishas; and Nissen Motor Company, Limited. Apparatus for preven

Babayan, Eduard P., to Hitco. Method of manufacturing a high
strengh, polyurethane-impregnated polyamide cable. 4,095,404, C 57-164.000.
Babcock \& Wilcox Company, The: See-
Dempscy, John D.. \(4,095,806\), Cl. \(277-27.000\).
Babson Bros. Co.: See
Nedhem, Lyle L.; and Marusarr, Bruno J., 4,095,920, C
417-12.000.
 4.,095,824, Cl. 2833 -6.000
Baczek, Frank A.: See





 Baiocchi, Leandro. Process for the preparation of \(p\). isobutyl-hydra

 Chemy, Vialy Nikolaevich; Danchenko, Valentin Nikolaevich;
Balakin, Valery Georgievich; Bondarenko, Evgeny Stepanovich;

Balda-Werke: See- Lenge, Sarl-Heinz, 4,096,506, CI. \(354-288.000\).
Lange, Karl-Heinz, 4,096,506, Cl. 354,288.000.
Baldwi, Clif. CPyramid record cover and rack. 4,095,690, Cl
206-312.000.
206-312.000.
Baldwin-Gegenheimen Corporation: See-
Gasparrini, , R. Robert, 4,096,374, Cl. 219.94 .000 .
 mediates. 4,096,151, Cl. 260-294.900.
Pardee., Roberarch P. 4,0960,07t, Cl. 252-51.50R.
Bamberg, Wolfgang: See-




 Cl. 73.747 .0000 R. to Avco Corporation. Apparatus for and method
Banthin, Clifford Banthin, Clifford R., to Avco Corporation. Apparatus for and methoo
of suppresing infrared radiation emitted from gas turbine engine. of suppressing infrared radiation
4,095,417, Cl. 6.39 .50
Barabash, Ivan Mikhailovich: See-




Baran, Mirosiav: See-
Hujik, LLedislav; And Baran, Miroslav, 4,095,536, Cl. 112-121.260.
Bargar Metal Fariciating Company: See-
Bargar Mctal Fubricating Company: See- Richard A., 4,096,347, Cl.
Penczal, Joha P.; and Chokenea,
17448.000 .



\& Cia S.A. 4 - Trifuuromethylbenzoic acid derivatives as thromboem-
bolic agents. \(4,066,252\), Cl. \(424-230.000\).

reactorr \(4,096,033\), Cl. 1766.78 .000 .
Barselloti, , ohn Anthon, to International Standard Electric Corpora-
Darseliotiti, ohn Anthony, to International Standard Electric Corpora
tion. Key telephone system interconnection apparalus. 4,096,359, C1.
\(179-99.000\).
Barta, William Douglas: See-
Horlom Bruce Wayne; and Barta, William Douglas, 4,096,261, Cl.
424-250.0000. BASF Aktiengesellschaff: See-
Blechschith
Kurt; Reuter, Peter; and Wirrt, Friedrich, 4,096,094 Hamprecht, Gerhard, 4,096,181, Cl. 260.543.00R.
 Woifgang. 4,006,226, Cl. 2641168.0000 .
 Wurmb. Roiff; Beck, Fritz; Wunsch, Gerd; Boellke, Klaus; and
Trepow, Wolfram, \(4,096,318\), Cl. 429 -199.000. Basu, Prithwis; Neumann, Gunter, and Kaiser, Gunther, to AGFAGevaert AG. Apparatus for artaching adhesive-coated bands to
photographic fims or the like. 4,096,020, Cl. 156-519.000.
Hata Sho Company, Inc.: Seec-
Huji, Ladisisyl and
and
and

Pyccometer 4,095,473, Cl. 73.433 .000 .
Batchelle Deveppment Corporation: See-
Stambaugh.
Stambaugh, Edgel P.; and Chauhan, Satya P., 4,095,955, Cl. 44
1.00 .
Azocoumarinic-type dyes for the disperse dyeing of textile fabrics.
4.,096, 139 , Cl. \(260-152.000\).



 fabrik, Adoif Zimmer
4.OM5, 776, Cl \(366-16\)
Baumuck, Manfred: See
Gessinger, Herald. Baumruck, Manfred; and Kral, Dietrich,
\(4,006,460\), C1. 33 S. 136.000 .
Baxter, Roberil Oin: See - -
Rothischild, Anhili; and Baxter, Robert Olin, 4,095,736,
C1. 229.62 .500 . Cl. 229.62 .500 .
Cullis, Herol Lert Maratories. Inc. See-
4,095,923, Cl . 47 -475.000.

Culis, Herber M.. 4,095,923, Cl. 417 ,475.000.
Heavner.
2.168.0.0.0.

Bayer Aktriengesellschaf: See
 Blahak, Johannes; Wagner, Kuno; Mazanek, Jan; Muller, Hanns Bruch, Wermers Guth, Hans; and Kuhn, Helmut \(4,096,065, \mathrm{Cl}\).
210-188.000 2una-188.000, Will, Lewalter, Jurgen; Zecher, Wilfried; and Last,
Wolf-Dieter, 4,096,291, Cl. \(427-120.000\). Ellegast, Konrad; Feld, Fritzi, Fellgen, Karlheinz; Greiner, Horst Kohler, Armin; Kuhn, Woirgang Menenold, Reichard; Nasesenstei
Heinrich; and Weisbeck, Roland, 4,0055588 , C1. \(118-420.000\) Heinninh,
Klend
cosens ceased; and Klein nee Vinzelberg, Susanne, heir, 4,009,904, C1
\(356-197.000\) Len, Gunther; Merren, Josef; Krimm, Heinrich; Kassahn, Horst-
Guntriand Schnell, Hermann, 4,096,200, Cl. \(260-85900\),

 Schiopid, Robert Rudolf; Eue, Ludwig; and Rohe, Lothar,
4,095,972. Cl. 71-93.000. Tamura, Saburo, ; Saito, Junich; Kudamasu, Akio; Ishino, Yoji; and
Wort, Toshio, \(4,096,268\), Cl. 424 466.000 . Windemuth, Ewin, Dahm. Manfred; Dietrich, Manfred; and
Muller Perer, \(4,096,162, \mathrm{Cl} .260-488.20 \mathrm{~B}\).
Mayew, Dimiter: Wee--
Malfgang; Herion, Dieter; Bayew, Dimiter; and Bauer,

Decker, Thomass A.; Kuether, Chistian L.; Williams, Rober E;
and Jones, Den B


Bolier, Walter; Donati, Marco; Fingerle, Jurg; and Wild, Peter,
\(4,096,550, \mathrm{Cl} .362 .31 .000\)

Oberle, Arthur, 4,096,030, Cl. 176-20.00R.

Penninger, Hans, 4,095,499, Cl. \(60-39.120\).
Beachy. Alvin S. Garden (ractor. \(4.095,662\), Cl. 180.9 .220 .
 graphic cassette with forward cutout portions to elim
unwneted image areas. \(4,095,501, \mathrm{Cl}\). 3541 19.000.
 Patzilaf, Al, Abent
221-210.00
Beatrice Foods 0 .:
Beatrice Foods Co.: See-
Lindner, Henry, 4,095,773, Cl. 249-117.000.

Beaty Hanbai Kabushikk Kaisha. See-
Takeuchi, Shigeo, 4,095,673. Cl. 1841.500

Berger Industris, Inc.: Se
Berger, Sidney, anc. and Buda, Salvatore, \(4,406,556\), Cl. \(362-417.000\).
Berger, Sidney; and Buda, Sal vatore, to Berger Industrie, Inc. Lamp




Nesson, IIrrace.; Seee-
Clis
Cdwin E.; and Palmer, Robert G., 4,096,49S
Berley Jerry Wayne: See-
Aboti, James Gardner;
 Beckerere. Frawk S., Jr. Boat window. 4,095,640, Cl . \(160-92.000\). Beckerer, Fral.
Bednyakov, Vhimi Pr. Petrovich: See-
Shevchenko, Alexandr Andreevich; Gulyaev, Gennady Ivanovich; hevchenko, Alexandr Adreevich; Gulyaev, Gennady IVanovich
Chekmarev, Igo A Aexandrovich; Loskutov, Petr Alexeevich Chekmarev, Igor Alexandrovich; Loskutov, Petr Alexeevich,
Cherry. Vitaly N Nikolocrich; Danchenko Valentin Nikolevevich
Balakin, Valery Georgievich; Bondarenko. Evgeny Stepanovich



 equulization of surfece ecoustic was.
system 4.096.444, Cl. 332.37 .00 R .
 Beiber. P3ub, W.: See-
Diwson, Wyyne
\(4,005,566\), Cl. 118.230 .000 . Eeierndorf Aktien 1ie230.000.

Conrow, Ransom Brown; and Bernstein, Seymour, 4,096,174, Cl
Berthour, JJan; Chevallier, Yvonick; and Martinaud, Jecques-Pierre, to
Rhone-Progil. Process for manufacture of tertiary amines. 4,096, 150


Bhasin, Madan Mohan: See
Eligen, Paul Cilford; and Bhasin, Madan Mohan, 4,096,164, Cl
260499.00 R .
 yl-1.1,-propanediol. 4,096,192, Cl. \(1568-866.000\).
Bianchin, Christian; Deneuville, Alzin; and Gerard, Philippe, to Con
 tion de la Recherche (ANY AR). Electrochromic and photochromic
maererial and a method of fabrication of said material. 4,096,087, Cl



Cruning. Errand; Kuhlmann, Karl D.; and Lutz, Peter, 4,Os, 150 , Belforte, Piero, and Melindo, Flavio, oo CSELT - Centro Studi e
Laboratori Telecomunicazioni. Chronometric system with several

 \(156-214.000\)
Bell, Dale

 Burtioces Richard D. Dane. and Thelemsque, Louis Emanuel,

Cruwford, Charles David, 4,0066,362, Ci. 1799-170.00D.
Davis Jmes Alvin; and Ooms, William Jay, 4,096,399, Cl.

Fulton, Theodore Alan, 4.096.508, Cl . \(377-5.000\).
Haun, Herman Anton; and Shank, Charles Vermon, 4,096,446, Cl .
331.-94.







Bennett. Richand J.,t ot Philliph. Petroleum Company. Railcar running
gear. \(4,095,531\). C. \(105-182.00\).
 and Petrow, Vladimirir to Richardson-Merrell Inc. Me.thod of treating
Uhe yymptoms of menopause and ostoporosis. 4,096, 24, Cl.
424242.200 .
 Industries Limited. Process for the manufacture of dicyanobutene
from butadiene, bydrogen cyanide and oxygen. 4,096,171, Cl.
\(260-165.300\).
 yarn and fancy yamn. 4,095,403, Cl. 57-144.000.


Blount, David H. Process for the production of amino silicate com- Borradori, Elio, to Endermill Ans.
pounds and
Blount, David H. Proceses for the prodiction of resinous products by Bocch-Siemens Hauggerate GmbH: See

Blueberry Equipment. Inc.: See-
Patzaff Albber \(\mathbf{W}\).; and Beardsley, Paul G., 4,095,721, Cl
221-210.000. 221-210.000.
Blumenaus, EImars:


Bock. Edward C.: See
Shogren.
David
Kit Bock, Edward C.; and Zucker, Edwin,


 ties contained
423.101.000
Bochlike, Klaus: \(S\) Forber, Karl-Heinz; and Mayer, Rolf, 4,096,421, Cl. 318 -282.000.
Proces of Emerson, to Du Pont de Nemoura, E. 1., and Compeny Process of treating poly ester yarn to provide a pattern of portions
that differ in dyeabiity \(4,096,222\), Cl. \(264-78.000\). Bosshard, Hens: See-
Remp
Rect
Hent
Remplier., Hermann; Bosshard, Hans; and Weber, Kurr, 4,096,154,
Cl. 260 ,327.00R.



 Bower, Richard R. Expendable metal belt. \(4,095,415, \mathrm{Cl} .59-35.00 \mathrm{R}\).
Boyce, Cive B. . See.
Searte
 Boyd. Clinton A. See
Wargin, Rober
,
Boehlike, Klaus: See-
Wurmb, Rolf: Beck, Fritz; Wunsch, Gerd; Boehlke, Klaus; and Boyd, Romand Dean; See-
Flectwod Will



 156.80 P .

Bogel, Go.erge Fi; and Ontes. Robert M., to Westinghouse Electric
Corp. Auomatic transfer control device and voltage sensor.
4,086,395, Cl. \(307-64.000\).
Sogoljubov, Leonid Leonid
Sukhanol, Donnat Kooniovichn: See- Mlinotich; Blinov, Sergei Ivanovich,
Bogoliubov, Leonid Loonidovich; Kascherv, Sergei

Bohin, Jean A. and Goldman, Max, to Etat Francaise; and Agence
Nationale de Valoristion de la Recherche ANVAR), par interest to
each. Miniature lightwing protector. 4,096,541, Cl. 361-120.000.
Bokov, Vladimir Milkhailovich: See-



 Bolen, Chariles Edwin: See-

260.33 .6 UA .
enter, Walter; Donati, Marco; Fingerle, Jurg, and Wild, Peter to
BBC

Boller, Walter; Donati, Marco; Fingerle, Jurg; and Widd, Peter, to BBC
Brown Boocri \& Compan Limititd Illuminating arrangement for a

Mollenbruck, Wilbelm; and Bollmann, Werner, 4,096,219, Cl .

Bond. Willimen. R.. Sr. Sound barrier. 4.095,669, Cl. 181-210.000.
Bondarenko, Evgeny Stepanovich: See




aldehydes
Bonhoom, Ros.
 3.ODD.
3.

Bonnevaux, Henry: See-
Pomeret, Jean-Claude; and Bonnevaux, Henry, 4,095,752, Cl
214151.000.


Borie, Berrard. Francois. Tensioning means for sifter. 4,096,058, Cl.
209040.000.










 Toil for fixing coiled electrical conductors \(4,06 \%, 07\), Cli.
Bray, George A. Electric motor driven automotive vehicle having a
magnetic

 \({ }^{73}\) 73-146.000.

Breitenbach, OUto: See-
Marin, Helmut; and Breitenbach, Oto, 4,096,458, Cl. 333-96.000.




 \(271-173.000\).
Bridon Limited
O
Bridon Limited: See-
Brighthorne, Stephen, 4,095,328, Cl. 29-515.000.
Brighon Corporation: See-,
Markovitz Richard E., \(, 095,8566\). Cl. \(308-29.000\).
Bristow, Charles R., to Le Van Specialty Co. Inc. Method of bending
 Gamble Company, The Fabric conditioning compositions. 4,096,072,
Brook, Greville B.; Brooks, Peter L.; and IUes, Roger, to Raychem Corporation. Heat-rreating method. 4,095,999, C1. \(148-11.50\).
Brooks, Burton. See-
Brooks, Richard J.; and Brooks, Burton, 4,096,236, Cl. 423-210.000.

Brooks. Richer. 11.5 R . And Broiks Burton, to Chemithon


Company. Alignment apparatus for rolling
4,095,90,1, C. 3 36 1.13.000.
Brown Brothers \(\&\) Company, Led.: See-











 sthaf. Apparatus for,








Buck, John Kenne
Buci. Linidan Lee: See-


Apparatus and methoc whereby wave energy is cricleneted with

detector. 4,096,387, C1, \(250-372.000\). Walter T., to Armstrong Cork
Company. Transter sheet. \(4,096,310, \mathrm{Cl} .428-288.000\).
Bude Silavare:





 apparatus \(4,095,496\), Cl. 83.104 .000.
Bui Hzi , Nhu; and Magne, Philippe, to Th
Bui Hai, Nhu; and Magne, Philippe, to Thomson-CSF. Reflector with
frequency selective ring of absorptive material for aperture control.
4.096,483, Cl 343 -781.0CA.


428-288.000.
and Bulson, Walter T., 4,096,310, Cl .
Bunch, G. W. W. See-
Laurie. Aberr
Fis and Bunch, G. W., 4,005,560, Cl. 119-3.000.



Burchell, Edward V.. See
Thibodean, Raymond Jon; and Burchell, Edward V., 4,096,302, Cl.
Thibodeau, Raymond Jon; and Burchell, Edward V., 4,096,302,
28.9.5.0.0.
Burford. Charles E. Horizontal baler. 4,095,520, Cl. 10043.000 .



Cl. 424.250 .000 .
H. Heist Coppo
.

C. \&. Clark. Lad. See- Soert, 4,095,302, Cl. \(12-8.100\).
C. van der Lely N.V.:. See-
van der Lely N.V. Ary-
van der Lely, Bom, Cornelis Johannes Gerardus,
\(4.095,53\), Cl. A11-6.000. \(4,095,535 \mathrm{Cl}, 1116.6000\).
Cabor
Cerchoration: See-
Herchenroeder, Rober B. H. 4,095,976, CI. 75-122.000.
Caccamo, Emilio A.: See-
Newton, Gerald E.; and Caccamo, Emilio A., 4,095,607, Cl. 133 .
colen
1.00 A
Caccavale,
Young,






Annovi, Giuseppepe, 4,0095,355, C1. 36-118.000


Allen, Herbert 4,005,805, Cl. 277-27.000.
Campagne, Jean-Claude: See-
Falcor, Piicrece;
\(4,095,991\), Cl. \(106-208.000\).
 Campo, Edgar Alfredo. to Du Pont de Nemours, E. .1.2nd Company
Winding device and chuck therefor. 4,095,754, Ci. \(242-65.000\).
 Newson, Freeman Oswald; and At
\(4,09,24\), Cl. 42485.000 ,
Canadian General Electric Company: See
Canadian General Electric Company: See-
Lonseth, Primer; Panter, Hubert Gerald; and Moorby, Donald G
\(4,095,627\), Cl. \(141-250000\) Canon Kasubhhiki, Kaisha: See-
Katayama,

Sunouchi, Akio, Watanabte, Yoshiaki; Ito, Fumio; Mashimo, Yukio
Date, Nobuaki; and Ito, Tadshi,






Pettersson. Nilsen. See-
\(403-364.000\).

Aanicle, Francis Earl. Scrubber tower. 4,095,964, Cl. \(55-241.000\).
Camine Corportion: Se-
Carnine, Howard H.; and Robinson, Carter R., 4,096,039, C Camine, Howard H ; and Robinson, Carter R., 4,096,039, C
202.250.000. Canine, 1 Howard H .; and Robinson, Carter R., to Carnine Corporation
Conditon sen

C.096,429, Cl. 322 228.000.
Rorwhight Ber Wi. Cameron, Dugald; Hagaman, James A: Hoctger






June 20, 1978
ica, Army. Method of orienting seed crystals in a melt, and product
obuined hhereby. 4.096,025, तl. \(156-616.00 \mathrm{R}\).
Hill, Lowell W.; Cassiero. Robert L. Taylor, Peter F.; and Tu-

Caterpillar Tractor Co.: See-
Brown William \(\mathrm{J} . ;\)
.2 and
and Lewrence. Dean Merrill; and Popdan, Gary Lee, \(4,099,839, \mathrm{Cl}\).
\(296-2.200 \mathrm{C}\).



Cawthorne, Stephen, to Bridon Limited. Method of clamping sheathed
rod strand
CBS Inc:.
Be
CBaner. Beenjamin B.. 4,096,353, Cl. 179-1.0G0
Bue
Howell, Sabern .... 4,096,414, Cl. \(115-291.000\)
CCL Systems Limited: See-
CCL Systems Limited: See-
Outram, Christopher Divid; and Edwards, Hugh Jeremy Willis,
\(4,099,389\), Cl. 52.583 .0000 .
Celanese Corporation: See-
Celanese Corporation: See-
Vanderspurt, homas \(\mathrm{H} .4,096,193, \mathrm{Cl} .568-881.000\)
Celle. Pierre: See_

Central Illinois Tilie Co.: See- Schuter, William L.; and Kelly, Thomas T
Courson Then


 Chalk, Alag J.i. io Generan Electric Company. Aromatic carbonates.
4,096. 169 . Ci. \(260-433.00\).
 Chimboile, Jacques Andre, to Compagnie Internationale pour rInfor-
matique Ci.-Honeywell Buill (Societe Anonme. Apparas. for
driving and tenioning a printing ribbon for a printer. 4,096,417, CI.
3i8-7.000. driving and
3is.7.7.00
Champion Int
Champion International Corporation: See-
Stillman Nathan, \(4096,309, \mathrm{Cl}\). \(428-285.000\).
Chan, David Caheong King, to Cherron Research Company. Fungicidal
and herbicidal alpha-haloactanilides. 4,096.167, Cl. \(200-455.00 \mathrm{R}\).
Chandavoine, Marie-Madeleine: See. Marie-Madeleine; de Fillain, Paul
Pigerol, Charle; Chandavoine, Mand
de Cointer and


Chateau, Georges M. and Falkner, Chester B., Jf, to Societe Nationale
Chateau, George M. and Falkner, Chester B., Jr., 10 Societe Nationale
Elf Aquitaine (Production). Reentry system for subsea well appara-
tus. 4,005 5,649, Cl. . 1660.500
Chauhan, Satya P. Sge-
Sambongh, Edgel P.; and Chauhan, Satya P., \(4,095,955, \mathrm{Cl} .44\)
Chauveteru, Guy; and Moulu, Jean-Claude, to Institut Francais du
Petrole. Process for selectively plugging races in the vicinity of oil or


Chave2. Joe D., to Intermational Telephone and Telegraph Corpora-
tion. Intanalise MTI s.
tionstem
with range ambiguity suppresion.


Chaze, Gilbert; Cherel, Guy; Guilloteau, Renc; and Tucoulat, Daniel,
on Commisariat a 1 Energic Atomique; and Saint-Gobain Techniques


hevchenko, Alexandr Andrevich, Gulyaev, Gennady Ivanovich;
Chemarev Igor Alexandorvich; Loskutov, Pert Alexevevich;
Cheryy, Vitaly Nikolacvich, Danchenko, Valentin Nikolaevich;




Chemische Werke Huls Altiengesellischaft:
Kita, Ryuji, 4,096, 106, Cl. 260-29.70H.
971 O.G. 49

June 20, 1978
Cutler-Hammer, Inc.: See-
Fryer, Paul Chalfont, 4,0966465, Cl. 337-49.000.
Grebner, Stuar W., \(, 4096,688, \mathrm{Cl} .200-314.000\).
Cuzzi. Jaime R... See- .,
Danko Joseph
O., Jr.; and Cuzzi, Jaime R., 4,096,502, Cl Danko. Joseph
334203.00.
yyces Peugeot: See

Cyvas, Petras: See- Siar
Sepavich, F Fictor F , and Cyvas, Petras. 4,095,620, Cl. 139-196.200.
Dahm, Manfred: See--;
Windemuth, Erwin; Dahm, Manfred; Dietrich, Manfred; and
Mai. Frank: See-er, 4,096,162, C1.
Tenk James.
saib-91.000.
Daimler- Benz Aktiengesellschaft: See-
Kollmann, Karl, 4.035,573, Cl. 123 -140.0MP.
Kollmann, Karl, 4.09,531, Cl. 123140.0 MP . Paul, Jurgen; and Kostelezky. Waller, 4,095,
Schaper, Dieter, 4,095.819, ci. 280.784.000.
Dainichi-Nippon Cables. Ltt.) See-
Fujita, Hideo; and tioh, Hirotaka, 4,096,313, C1. 428-304.000.

Frisch, Kurt C.i. and Damusis, Adolfas, 4,096,128, Cl. 260-77.sss.
Danchenk.. VVlentin Nikolavich See
Shevchenko, Alexandr Andrevieh; Gulyaev, Gennady Ivanovich;


Bednyakov, Vladimir Petrovich, Bokov, Vladimir Mikhailovich;
and Vinogradov, Fedor Terentievich, 4,095,447, Cl. \(72-208.000\).
foss A/S: See-
Danfoss A/S: See-
Block, Albert, 4,095,513, Cl.
O2-187.000.
Biok, Alber, \(4,095,513\), Cl. \(92-187.000\).
Gosling, Aleander Benett; and Mealing, Barrie Ewart, 4,096,420,
Cl. 118 -254.000.


Daniel. Wendell E., to International Harvester Company. Tree digger.
4,009, 357 , C1. \(37-2.00 \mathrm{R}\).




Date, Nobuaki, Kohei; and Date, Masakazu, 4,095,945, Cl. 8-115.700.


David, Pierre Marcel. Safety braking device for a unit moving along
surface, in particular for a lift car. \(4,0095,681\), Cl. \(188-187.000\).
Davies, Gomer Lu


 Davis, James Alvin; and Ooms, William Jay, to Bell Telephone LaborsClites. Incorppora
Cli. 349.000.
Den
Davison, Sol: See-
Gergen, Willim P., and Davison, Sol, 4,096,204, Cl. 260-876.00B.
Dawson, Daniel Joseph: SeeDawson, Daniel Joseph: See
Oteson, Kenneth Melvin; and Dawson, Daniel Joseph, 4,096,134,
Cl. 260.79.50R.

 articless \(4,095,556\), C. 118 . 230.000 .
Dea Divial Electronic Automation S.p.A.
Sartorio
 De Angelo, Michael Anthon, io Western Electric Company, Inc. Method of selectively depp
4.030,0.043, Cl. 20415.5000
DeBernardo, Silvano
Weisgele, Maivano: See- Manfred; and DeBermardo, Silvano, 4,096,321, Cl.
s36-120.000. Secer, John W., t . Eagle.-Picher Industries, Inc. Method of making a
two-component gasket. \(4,096,228\), Cl, 264 271.000.



de Fillain, Paul de Cointet: See-
Pigerol, Charlese Chandavine, Marie-Madeleine; de Fillain, Paul
de Co Cointet and Nanthavong, Souli, \(4,096,112\), Cl. \(260-45.80 \mathrm{~N}\).

Deguchi, Takashi: See-
Nakamura, Shinji; Inokuma, Shun; Tanaka, Shin; Hirose, Kenich Nakamura, Shinji; Inokuma, Shun; Tanaka Shin, Hir
and Deguchi,
akashi, 4, 0 ,
Delbag-Lunfiniter Gmbit Se-
Neumann, Germard Max; and Sinhuber, Dellef, 4,095,965, Cl
55.270 . s5.270.000.
Delbrock, Franz; and Nickel, Wilfried, to Freya-Plastic Franz Del Delbrouck, Franz; and Nickel, Wilfried, to Freya-Plastic Franz Del
brouck Gmbl Plastic carrier fro fuid containess. \(4,995,720, \mathrm{Cl}\)
220.21 .000 . 2 brouck 1.1000.
lis Masilun
el lis Masilungan, Fleur, to American Cyanamid Company. Slow
release injectable formulations of teramisole and derivatives in ben-
zyl benzoate. \(4,096,271\), Cl 424270 . zyy benzoarte 4,006, 277, Cl. 424-270.000.
 thereof, \(4,095,942\), Cl. 8-62.000.
Delphia, ohh B. Double breath divers valve. 4,095,592, Cl. 128 . Delphia, John B. Double
1e22.00R.
DeLuca, John P.: See-
DeLuca, John P.: See-
EEetr,
L2wrence
B:; and DeLuca, John P., 4,096,231, Cl.
Ebert, Lawrence
423-1.000.
Demange, Michel: See-
Demange, Michel: See-
Borie, Jean-Claude; Couder, Alain; Dauby, Alain; Demange, M
Bone, Jean-Claude; Couder, Alain; Dauby, Alain; Demange, Mi- Mi-
chel;
364izazy, Gerald; and Lechaczy \begin{tabular}{l}
\(364,200.000\). \\
\\
\hline
\end{tabular}
Dempsey. John D., to Babcock \& Wilcox Company. The. Seal arrange-
ment. 4095,806 , C1. 277.27.000.
Deneuville, Alainh See-
Bianchin, Chistian; Deneuville, Alain; and Gerard, Philippe,
\(4,096,087\), Cl. \(252-3000000\).
De Nigisis, Frankk. See-
Dinan , James
Cis
Cit
CI. 40.603 .000 . Hade, Conrad, and De Nigis, Frank, 4,095,360,

4.095,865, Cl. 339 -16.00R.

Kki Kagaku Kogyo Kabushik Kaisha: See-
Kishi, 1 Iuiji; Nakano, Tassuo; and OKai, Hiroshi, 4,096,201, Cl.
260.879.000.
Dennis, Philip JJ; and Simpson, George H ., to GTE Sylvania Incorpo-
rated. Thermistor assembly having overload protection. 4,096,464,
rated. Thermistor
ric. 337.5 .5000 .
Deraedt. Roger. See
Deraedt, Roger: See-
Allais, Andre; Meier, Jean; and Deraedt, Roger, 4,096,260, Cl Allias, Andre;
424250.000.
Derighetti, Renato: See-
Ulamann. Werner; and Derighetti, Renato, 4,096,394, C
307-46.000.
307.46.000. .. to A.B.C.C.O. Industries. Incorporated. Sound

Derka, Edward A., to A.B.C.C.O. Industrics, Incorporated. Sound
seppressing machine cover. 4,09566 , Cl. \(181-202.000\).
Design \& Manufacturing Corporation: See.

Mayers, Josech B.: Dee- Demarchais, Walter E; and Shallenberger
Jonn M., \(4,096,032, \mathrm{Cl}\). \(176-38.000\). Detroit Gastere tand Manufacturing Company: See-
Doerling, Ralph \(\mathrm{G} .4,496,303, \mathrm{Cl} .428 .9 .000\).
Doerling, Ralph G., 4,006,303, Cl. 428.9. 1.000 .
Development Finance Corporation of New Zealand: See-
Pownall, Arthur Rober Glen, 4,095,400, Cl. \(57-37.000\).
 Diarmond, Julius, to William H. Rorer. Inc. Ethynylbenzene compounds
and derivatives thereof in the treatment of pain fever and inflamma-
tion. \(4,064,279\), Cl. 424330.000 .




Hermann; Kamp. Wulff Dicks, Manfred; and Plajer, Otto,
\(4,095,927\), Cl. 425 . 225.000 .

Dickson, Leon Larle Bee. Dickson, Leon L.; and Marsh, Gary L.,
Denisison, Early
\(4,095,865\), Cl. \(339-16.00\).
 \(\begin{aligned} & \text { 23-253.OPC. } \\ & \text { Diesel Kiki Co., Ltd. } \\ & \text { Yoshino. }\end{aligned}\) See
Yiesel Kiki Co.. Lted. See
Dietrich, Manfaseo. and Mori, Koichi, 4,095,574, Cl. 123-140.00R.
Windemuth, Eerwin; Dahm, Manfred; Dietrich, Manfred; and
Muller, Peter, 4,066,162, Cl. 260-448.20B.
Difrancesco, Alphonse Benjamin, and Hage, Charles Thomas, to
Eastman Kodat Company. Method and apparatus for producing
duplex copiess. \(4,095,979\), Cl. \(96-1.400\).
Dillon, Thomas J., to Forest City Dillon, Inc. Building and elevator
module for use therein \(4,095,380\), Cl . \(52-79.130\).
Dina, Inc. J Jeee M . Hede, Cone
inann. James M.; Hade, Conrad; and De Nigris, Frank, 4,095,360,
Cl. \(40-63.000\).
Dinann James M.s Hade, Corrad; and De Nigris, Frank, to Dinaco, Inc.
Display device. \(4,095,360\), Cl. \(40-603.000\).

Director-General of the Agency of Industrial Science and Technology:
Matsuda Osaku; Inoue, Kouzo; and Tsunematsu, Shuji, 4,095,986, \begin{tabular}{l} 
Disco Enginecring, Inc.: See- \\
Henson, Arel R., \(4,095,860, \mathrm{Cl}\) \\
\hline \(12-242.000\)
\end{tabular} Disney, Roy E. See-
Meyers, Bradley E. 4, 4,095,996, Cl. 1341.000 . Ditler Brothers. Inc. See
Bachman, Gilbert 4, \(, 095,824\), Cl. \(283-6.000\).

Dr. Ing. Rudoir Hell GmbH: See-
Hofrichter. Ingo; and Knop, Hans-Georg, 4,096,519, Cl Dr. Johannes Heidenhain GmbH: See- Feichtinger, Kurt, 4005 , 903 , Cl. 3 36-169.000

Composite carpet and foam laminate and method. 4,096,303, C1.
428-91.000.

Dollinger, Gustav: See-
Cuntze, Urich
\&.8.0A.
Donati, Marco: See
Bo.
Boller, Walter;
o.0. Donati, Marco; Fingerle, Jurg; and wild, Peter,
362.-31.000. Donato, Anthony C. . . Ligholier Incorporated. Flexible connector
for track lighting systems. \(4,006,349\), C1. 17468.00 R. for track lighthin
Dom, Hubert: See

Andresw, Pee-er, Dorm, Hubert; Federmann, Manfred; and Voege,
Herbert, 4.096 .262, Cl. 424250.000 . Herbert, 4,096,262, Cl. 424-250.000
Dorier GmbH: See-
Woitschelle, Heinz; Reuter, Woligang; and Swik, Rolf, 4,095,759,
Cl. 24417.10.
Dorsch. Dieter. Apparatus for dispensing a liquid from a container.
4.005, 727 , 12240.0 . Dosch, Werrer, and Koestel, Claudia,
hydrates. \(4,095,989\), Cl 1060104.000 .
Dow Chemical Company, The




2weigle, Maurice L., 4,096,133, Cl. \(260-79.30 \mathrm{R}\)
 Dreiling, James A." to Honey
4.096.397. Cl 307.23 .000.
Drew Chemical Corporation: See





















gesellschaft. Polyphosphinites and a process for their preparation.
4,096, . 20 . \(1.260-91.00\). Usterre, Pierre; and Pouard, Claude, to Commissariat a 1'Energie
Atomique. Method for controlling the solidification of a liquid-solid Aysmique. Method for controlling the solidificication of a liquid-solid
system and a device for the application of the method. 4,996,024, Cl
Dynamit Nobel Aktiengesellschaft: See-
Chhade, Gerhard; and Melin, Hans, 4,096,122, Cl. \(260-75.00 \mathrm{M}\).
Dynapol: See-
Outeson, Kenneth Melvin; and Dawson, Daniel Joseph, 4,096, 134,

E. Lemburg, Jombin \& Ce. and : Stee-
E I I Limitey, Dieter, \(4,095,623\), Cl. 140.92 .700 .

Breuer, Hermann; and Treuner. Uwe D., 4,096,399, Cl. 54421.000 .
Treuner. Uwe D; and Breur, Hermann, 4,096,330, Cl. \(544-26.000\). Eagle-Picher Industries. Inc.. See- \(\quad\) Decker, John W., \(4,096.228\) C. \(\mathbf{C l}\). 2641.000 .
 Transmission network including fux compensation. 4,096,363, C
179.170.00R.
East, Eldon Dwayne. Locking assembly. 4,095,828, Cl. 292-148.000.
 Difrancesco, Alphonse Benjamin; and Hage, Charles Thoma,
4,0597 , Cl. 96.1 .400 . Goiffe, Charles A., deceased; Jenkins, Philip W.; and Sturmer,
David M., 4,095,981, Cl. 96-48.0PD.
 Nelson, Jackson Lee, 4.095,319, Cli, 28.273,.000.
Pacifici, James G.; and Wang, Richard H. S., 4,095,939, Cl. 8.
i.00W.
 intercalation in grap phite \(4,096,231, \mathrm{Cl} .423-19.000\).
Ebihara, Heihachiro: See-
Sekiya Fuunoo: Ebee-hara, Heihachiro; Uchino, Misao; Nishimura,
Katsuo; and Nanya, Takanori, 4,096,412, Cl. 315-169.00R. Ed. Geistlich Sonne A. A. Pur Chemische Industric: See-

 Edmonds, James T, Jr., to Phillips Petroleum Company. Production of
p.phnylene sulfide polymers 4,096,132, Cl. 260-79.100.
Edo Western Corporation: See-p-phenylene sulfide polymers, 4,096,132, Cl. 260-79.100.
Edo Westen Corporation: See
Ferre. Radford Gi;) and Miller, Brent Rudy, 4.096,484, Cl. 346 . Ferre, Radford G.; and Miller, Brent Rudy, 4,096,484, Cl. 346
33.0.
 Edwards, Hugh Jeremy willis: See

Outram, Christopher Whilis: See-
\(4.095,389\), Cl. 52 . 83.000 . and 4,059.389, CI. 52.583.000.
Eertink, Bastian Bermard Boele:
veen Het
 Egan, Wayye Joy Ji. See-
Bidack . Richard Henry.
Ges.
Egan, Wayne Jay: See-
Bidark., Richard
Gary, \(4,096,388\), Cl. 17 I7.-99.000.



henbaum. Raymond: See- Elichenbaum, Raymond, 4,096,124, Cl.
Wu. William C. L.; and E.
260.75.00M.
Eichweber, Kurt. System for transmitting light signals between a mis Eichweber, Kurt. System for transmitting light signals between a mis-
sile and a missile control station. 4,096,380, cl
, 250 -199.000. sile and a missile control station. 4,096, 380 , Cl. \(250-199.000\)
Eisele. Adrian 5 . Navigational simulator and teaching device. 4,095,351,
Cldec Corporation: See
Blench Carl

 \(310-10.000\).
Elekrowat AG:










June 20, 1978

\section*{LIST OF PATENTEES}



 Encotech. Inc.: SSe-E,
Kindil Fred Heny, 4,095,954, Cl. 44-1.008.

 Ensor, John E. Flow-nose deployable streamining for vehicles. Enterprise Mechine and Development Corporation: See-
Polney, Richurd d ., \(4,055,320\), Il \(28-273.000\).
Entron, Inc. See- Sears, Kay G., 4,096,540, C1. 361-93.000.
Sears, Kay G., 4,096,540, Cl. 361-93.000. \(\quad \begin{aligned} & \text { Faulconer, Richard J. Fruit picker. 4,095,399, Cl. 56-336.000. } \\ & \text { Fnvirotech Corporation: See- }\end{aligned}\)

 Epstecin, Martin: Sel- Jamess; and Epstein, Martin, 4,095,600, Cl. Feichtinger, Hunt, to Dion. Johannes Heidenhain GmbH. Measuring Casey, 128.35 .50 nal.
Epatin, Max; and Jordan, Bernard W., J., to Northwestern University.

343.6.SSS.
Equipment Development Corporation: See-
Macklem, F. Sutherland \(4,096,376\), Cl. \(219-328.000\).

Equipment Renewal Company: See-
Hardcastle, Philip P., \(4,095,612\), Cl. \(137-246.220\).
ESB Incorporited. See-, 4, 4,096,317, Cl. 429-145.000

Eskridge, Brewster B:; Fink, Roger H.; Porter, William D.; and War-
ren, Elbert K.. to Akzona Incorporated
textured yam. \(4,005,377\), li. 28-221.000.


tueblisememant Francois S'alomon en Fils: Se-
Sellomon. Georges Pierre Joseph, \(4,095,821, \mathrm{Cl}\)
280-628.000.
Etat Francaise: See-
Bothin, Jean A.; and Goldman, Max, \(4,096,541, ~ C l . ~ 361-120.000 ~\)
Etoh, Kuniomi: See- \({ }_{\text {Ninnami, }}\) Yoshiharu; and Etoh, Kuniomi, 4,096, 123, Cl. 260-75.00N

Schmidt, Robert Rudolf;
4,095, 72 , C1. 71.93 .000 .

Everbrite Electric Signs, Inc.: See-







Feld, Fritz: See-
Ellegat, Korrad; Feld, Fritz; Feltgen, Karlheinz; Greiner, Horst;
Kohler, Armini
Kuhn, Woligang; Menold, Richard; Nessenstein Kohler, Armin, Kuhn, Wo irgang; Menold, Richard; Nasecnstein
Heinrich; and Weisbeck, Roland, \(4,005,558\), Cl. \(118-120.000\).


 Fellrath, Jean, to Centre Electronique
circuit 4,009,44, 1 l. 33027.000 .
Feligen, Karlheinz: See-

 Fengels, Gerd, to Bruggemann \& Brand KG. Freight pallet. 4,095,769,
C. 4 , 48 -346. 100 .


 Ferre. Rasford \(G\).; and Miller. Brent Rudy. to Edo Western CorporaFerre. Radford G.; and Miller, Brent Rudy, 10 Edo Western Corpora-
tion. \(\begin{aligned} & \text { raphic recording syicm. } 4006,484, \text { Cl. } 346-33.0 \mathrm{EC} \text {. }\end{aligned}\) Ferero, Francesco: SeeFerrero, Francesco: See- Ferrero, Francescoi; Sironi, Giuseppe; and
Fagherazzi, Giuliano
Vivisani, Bruno , \(0,096,292\), ci. 427.127 .000 .


 Allara, Giuseppe; and Marchetti, Giorgio, 4,095,57
188.00 M .









4,095,991, Cl. 106 -208.000. \({ }^{1} 1660-5000\).

\(4,095,878, \mathrm{Cl}, 351-161.000\).
Farber. Karr


Flett, Robert Jorn. P . Preperation and measurement of
amounts of








Ford Motor Company: See-
Rogerson, Jefry B.; and Harrison, Robert S., 4,096,212, CI. 261 -
39.00B.
Ford, RRobert. J. See
Scarpati, Thomas S.; and Ford, Robert J., 4.095,322, Cl. 29 .
cisf.80

Forest Fuels , Inc.. Ser A., 4,095,958, Cl. 48-111.00



Gutterman, Carl; and Steiner, Peter, 4,093,953, Cl. 23-277.00R. Fox, Clarence D., to Borg.Warner
tem. \(4,095,566\), C. 123.41 .490 .
Fox International. Inc.




Karas. Edwwin L.:. Annino. Raymond; and Kalinoski, Richard \(\mathbf{W}\).,
\(4,095.455\), Cl.
33-23.100
Frandsen. Warren \(E\)., to T\& \& F Industries. Inc. Method for carrying
fixeible goods such as tobacco. 4,09s,606, Cl. 131-140.00R.
Frank. Ed. See-
Belko, Reymond P.; and Frank, Ed., 4,096,012, Cl. 156-214.000.

ranzen, Erwin F:
Franzen, Erwin F.: See-
La
149.18. Mich
Mel
Frayer, Paul D. See
Lutzmann, H .
Frazer, August Henry, to Du Pont de Nemaur D., 4.096,013,





Freman, Lewrence M. and A.tnold, Francis T. Polarity switch circuit
for copying apparatus. \(4,095,885\), Cr. \(355-3.0 \mathrm{CH}\).

Brown. Charles T., Jr.; and Freestone, Harry T., \(4,096,515, \mathrm{Cl}\).
338.28.2.000.
French, Charles S. See-
Robran, David T; and French, Charles S., \(4,095,356, \mathrm{Cl}\)
36-121.000.




 duced by reaction between a triazole-stabilized isocyanate prepoly
mer and a diamine. 4,096.128, Fryer. Paul Chalfon, to Cutier-Hammer, Inc. Electrical overload
switching relay. 4,096,465, Cl. 337-49.000.

Fuchs, Julius JJakob: See-
Alvarez, Jose Rafael; and Fuchs, Julius Jakob, 4,096,166, Cl. 260
453.0RW. Fudatsuji, Toshiharu:
 Fuji into Fhiln Co., Let. See-
Fujita,
Susumu, \(4,096,490\), Cl. 35421.000 .



 Todao, 4,095,984, Cl. \(96-10000 \mathrm{~N}\).
Tamai, Yasuo; and Aonuma, Masashi, 4,096.316, Cl 428457.000

 Numata
Numa
20.0AA.


 Fujino, Yoshiharu; Chiba, Iwane; Chiyonobu, Toshimi, Taikanata,
Tominisa, and Kachi, Yasuhiko, to Ishikawaima-Harima Jukogy
Kabusi
 Fujisawa Pharmaceutical Co., Ltd. See
Kishimoto, Ceiji Ueda, lkuo; and Kato,
424-251.000
, Masayuki, 4,096,263, Cl Fujith, Hideo; and Itoh, Hirotaka, to Dainichi-Nippon Cables, Ltd.
EElectical insulating paper and method of making same. \(4,096,313\), Cl .
428-304.
 anism in camerass \(4,096,490, \mathrm{Cl} .35421 .000\).
Fujitsu Limited: See-
Imagi, Tsutumu; Fudatsuji, Toshiharu; and Torigoe, Yasuhiko,
4.095, 779 , Cl. 270.61.00F. Ishibashi, Masamichi; and Miyajima, Shigeru, 4,096,570, cl.
364200.000 Fukudd Denshi C0

Ohishi, Tetsui, and Fukushima, Hiroshi, 4,996,135, Cl. 260-79.50B.
Fukushima Yuikios See-
Ono, Mis
 Fulton, Theodore Alan, to Bell Telephone Leboratories. Incorporated.
Multipile
 Fulyyler. Mack. J., to Coulter Electronics. Inc. Particle a
with photochromic ifler. 4,095,898, Cl. 366-103.000.



Sueyoshi, Tohru; Furrachi, Nobuo; Okumura, Akio; and Shishido,
Tada, 4.0.95,94, Cl. \(96=100.0 \mathrm{~N}\). Furukawa, Akira, to Nippondenso Co... Lud. Altitude compensating
apparatus for use with an internal combustion engine. \(4,095,568, \mathrm{Cl}\).
123-117.00A





 Gabriel, Gunther, to Salewa Sportperatefabrik. mit beschrankter Haft-
ung. Carabiner. 4,095,316, Cl. 24-234.000. Ung. Carabiner. 4,099,516, C1. 24-234.000.
 Strobel. Albert F. \(4,096,242\), Cl. 42459.000 .
 Salinke, Joachim: See- Sec.
Wegemind
Wegemund, Bernd; Gruber, Werner; and Galinke, Joachim,
\(4,096,323, \mathrm{Cl} .526-317.000\).
 Office National d'Eudes et de Recherches Aerospatiale. Process for
forming surface diffusion alloy layers on refractory metallic articles. 4.006,266,
Gar Design Research, Inc.

Garchinkty, John S.,. 1 O. Gar Design Research, Inc. Pole base mourt




 ball return. 4.095,794, Cl. \(273-101.000\).
Gappri, Richard Alien; and Tarburton, Robert Baxter, to Harris Corpo-
ration. Retracting tucker blade and brush for cylinder folder.
 Gasparini, C. Robert, to Baldwin-Gegenheimer Corporation. Method
of joning
219.94.00. Gassman. Mannuel 1... to Maynard Plastics, Inc. Dual extrusion welt.
\(4,095,43\), C. 112.417 .000 .
 Company. 1,3-Dithiolane compoun
thereof. \(4,096,155, \mathrm{Cl} .260 .332 .20 \mathrm{~A}\)

Gates, Wendell C. See-
Schontiler,
73-215.000. 73-215.000.
Gaurraud, John . 4 , Northrop Corporation. Balancing system for
roary element. \(4,005,484\), Cl. \(74-573.00 \mathrm{R}\).

Gazzarn, Charles P.: \({ }^{\text {recel }}\)
 Viechnicki, D
IS6-61.00R.


Vasilievich, 4,096,069, Cl. \(210-342.000\).
Gebhardi, Adolph Amer. See-
Dunn Earl Francisi; and Gebhardt, Adolph Armer, 4,095,541, Cl.
\(112-256.000\)
Geiger, Robert W: Se
Geiger, Robert W. Wee-
Tcchani.
128.214.400.
\(128-214.400\). Pe Pirrmann, Rolf, to Ed. Geistlich Sohne A.G. fur
Geistich Peter;
Chemische Industrie. Tooth preparations. \(4,096,241\), Cl. 424-54.000.




nis Francis, 4,096,423, Cl. 318.370 .000 ,
Brown, Charles T., Jr.; and Freestone, Harry T., 4,096,515, Cl.





General Motors Corporation: See-
Sheffer Timoty K.;
123-il9.0EC.
Gerard Philippec See-
Bianchin, Chin hristian; Deneviille, Alain; and Gerard, Philippe,
4,090.087, C. \(252-300.000\).
4,096,087, Cl. \(222-300.000\). Sol, to Shell Oil Company. Haloge-
Gergen, William P.;
nated
876.000.
Gerhard, Helmut, to Westerwalder Eisenwerk Gerhard GmbHH. Re-
versing device for hoisting and tippisg freight containers. 4,095,708,

Gerlach, John N. See-
Rappas, Alkis. .and Gerlach, John N., 4,095,975, CI. 75-108.000.
Germano Francesco: See-
Germano, Francesco: See-
Sartorio, Franco Minucciani, Giorgio; and Germano, Francesco,
4.096, 384, , \(\mathbf{C l}\), \(250-237.00 \mathrm{G}\).
Gessinger, Herald; Baumuck, Manfred; and Kral, Dietrich, to Interna-



 Cli. \(250-231.0 \mathrm{SE}\).


 Gilson, Wa
330.267 .0
Gioia
Bozzay
Boza
 Gipperich, Theodin, to Schloeman-Siemag Aktiengesellischaft. Rol
housing ipperin,
housing of divorided to construction with
\(4,095,448, \mathrm{Cl} .72-238.000\).


MacK Kay, Raph J., 4,095,515, CI. 99-337.000.
Glasflex Corporation See-

Glasson, Richard E,t, to Cummins Engine Company, Inc. Anti rotation
seal asembly. \(4,095,808\), C1. \(277-81.00 \mathrm{R}\).
 oodijn, Willem, io Research Instituut "Sesto" b.v. Pot burner.
4,095,936, \(\mathrm{Cl} .431-377.000\).
oetzewerke Finfedich Goetze AG: See-
Jandt Siegrrid; and Hammerschmidt, Gerhard, \(4,095,807, C 1\) Jandr, 27.40 .0 grined; and
ond
 pany. Photographic material containing an energy-sensitive organic o-nitraarylidene dye and physical development process of forming an
image with said material. 4,095,981, C1. \(96-18.0 \mathrm{PD}\).

Goffe, Charles. A., , dececased; Jenkins, Philip W.; and Sturmer,
David M. \(4,495,981\), C1. \(96-48.0 \mathrm{PD}\). Goididh, Stenhen John, \(\mathbf{t o}\) Forster Whecerer Energy Corporation.
Damper with curved extension plates for wide range fow control Damper with curved exte
4.095s,534, Cl. \(110-263.000\).
Goldman, Joseph; Adams. Guy; and Goldman, Shirley. Vascular
cleansin. \(4,095,888\), Cl. 128.1 .500 .
cleansings. 4.005; 588 , Cl. \(128-1.500\).
Bohin, Jear A.: Send Goldman, Max, 4,096,541, Cl. 361-120.000.

Cl. 1281.1 .500.
Fen, Theodore D.
Fee-

Foldman, Theodore D.. See-
Fanhemam, Suton B:; and Goldman, Theodore D., 4.096,202, Cl.
260-873.3000.

S3-198.00R.

 tubes and tube bundles. 4,095,305, Cl. \(15-104.10 \mathrm{R}\).
Goodyear Tire \& Rubber Company, The: See-







electrophotographic printing machine. 4,095,889, Cl. 3554.4000 .
Goivaerk As See
Ehrenskjold. Nils Oluf; and Munk, Torben, \(4,095,919\), C1. 416-142.000. Mo.s.
Gorlot, Aleander Misevich. Apparatus for hamessing tidal power.
\(4,095,423, \mathrm{Cl} .60-398.000\). 4,099, A23, Cl. \(60-399.000\).
Gosling. Alexander Beneti; and Mealing, Barrie Ewort, to D Danfoss
A/S. Control circuit for a brushless D.C. motor. 4,096,420, Cl.

 Goot, Kenii, to Toyotat Jidosha Kogyo Kabushiki Kaisha, Devicce for
dececting the airffuel ratio of an internal combustion engine.
\(4,095,462\), Cl. \(73-116.000\).

Goto. Toshio: See-
Tamura. Saburo;

Goloda, Katsuniko: See-
Kouzuk, Natsumoto, Shoij; Okada, Tetsuya; Gotoda,
Katsuhiko; and Aizawa, Tatsuo, \(4.096,543, \mathrm{Cl}\). \(361-230.000\).
Katsuhiko, and Aizawa, Tatsuo, 4,096,543. Cl. 361-230.000.
Kow.. Se Robert M.. 4.095,707, Cl. \(214,301.000\).
Kourde and pivot pin
Goverale, Bernard C., to Peachtree Doors, Inc. Guide and

 9 9raham, David E.: See-
Thham, David E.: See-
Schnneider. Louis; and Graham, David E., 4.006,195, Cl.
200.646.000. 260-646.000.
Grimal refuse container. 4,095,562, Cl. 119.95.000.
Graham, Tessie. Animal refuse container. 4,095,562, Cl. 119-95.000.
Granberg, Frederick M. See
Lee. Charles A.; and Granberg, Frederick M., 4,096.060, Cl. 210 -
23.00R.
Granezzee, Dennis C ., to Modine Manufacturing Company. Heat ex






 Greengrass Michael, to Flexipane Limited. Reinforced flexible pancls.
4,096,304, Cl 428 . 138.000 .






Cll. 364900.000 .
Grifith. LOren B Ventiated litter box. \(4,095,559, \mathrm{Cl} .119-1.000\).
Giritht, Ostie Hayes. See-





, 4,096,323, Cl. 526-317.0bor. Werner; and Galinke, Joachim,
Gruneri Hartmut: See-
Sch

Grunke, Richard, to MTU Munchen GmbH. Method of making a
ceramic turbine wheel and turbine wheel made thereby \(4,096,120\), Cl.
26460.000 . ceramic tur
26460.000.
Grunwell, Jo


GTE Sylvenia Incorporated See-
Anderson, L.Lster Fi, decased
liam J.etere, John J.; and Harvey, Wil-

Guenon. Jean. Pierre, to Sperry Rand Corporation. Hillside bale wagon.
4.,095,01, C1. 2146.000 .

 Guillen, Raf Rel. Porppoise evacuation boat. 4,095,301, C1. 9-6.00R.
Guillotean, Rene. See
Chaze, Gilbert; Cherel, Guy; Guilloteau, Rene; and Tucoula


Guiseley. Kenneth B. to FMC Corporation. Modified kappa-carragee-
nan 4.,.066,327, Cl. \(336-122.000\).



Gulyav, Gennady IVanovich: See-
Shecchenk., Aleenand Andrevich; Gulyaev, Gennady Ivanovich,
Chekmarev, Igor Alexandrovich; Loskutov, Petr Alexeevich
hevchenko, Alexandr Andreevich; Gulyaev, Gennady Ivanovich;
Chekmarve. Igo Alexandorich; Loskutov, Pert Alexerevich;
Cherny, Vitaly Niko



ith. Hans: See-
Bruch
\(210-188.000\);
Wuth, Hans; and Kuhn, Helmut, \(4,096,065, \mathrm{Cl}\) uthlein, Heinz: See-
Korber, Joachim;
Korber, Joachim; Koch, Wilhelm; Guthlein, Heinz; Wagner, Rich-
ard; Franz
105-131.000.






 287.00B.
Gutl and Steiner, Peter, to Foster Wheeler Energy Corpo
ration. Modular system for reducing sulfur dioxide. 4,095,953, Cl
23.277 .00 .


H. C. Price Co.. See-
H. Kyke, Richard L. and Hennon, G. Joc, 4,006,017, Cl. \(166-275.000\).
H. Koch \& Sons: See-


Haagenson, Carl. Musical instrument. 4,005,503, Cl. 84, 173.000 .
Hade, Conrad See
Dinin. James Mi.; Hade, Conrad; and De Nigris, Frank, 4,095, 360 ,
C1. 40 -.003.000.



 Hage, Charles Thomas: See-
Diraracesco, Alphonse
4,095,979, Cl. \(96-1.400\).
 Hagihar, 427 Kazuo: 248.00 Ce .








 from thyristor controlled reactance. 4,096,431, Cl. 323-19.000.
Hammershmidt, Gerhard
Jandt, See-
infried and
27 40.000 .


JuNE 20, 1978
Hammonds, James C.: See-
Hicks, Paul E., Jr; and Hammonds, James C.. 4, 4,095,766, Cl. 248 Hick.s. Paul E., Jr; and Hammonds, James C., 4,095,767, Cl. 248.
119.00S. Hamprecht, Gerhard, to BASF Aktiengeselischaft. Substituted sulfamic

Hampshire, William J.i. See- Matvey, Paul R.; and Hampshire, william
Thompos.
non
 Hanagan, Michacl 1 . . 10 Corbin Gentry, Inc. Seat assembly for a cycle.
\(4,095,220\). C1. 280.29 .00 . Hanauer, Richard H. See-
Willetect. Gordion L.; and Hanauer, Richard H., 4,096,319, Cl.
526.1600 . \(526-16.000\).
Hancock, Peter; and Clifton, Terence Edward, 10 Imperials Chemical
Industries Limited. Monitoring systems and instruments. 4,095,474, Industries Limited. Monitoring systems and instrumentis. 4,003,47,
Candmana. Food
Hederic B., io Ehrenreich Photo-Optical Industries, Inc.

Hanes Corporation: See-
Di Tulio
Filavia, 4,095,291, Cl 2-67.000.
 Hanna Mining Company, The: See-






 Haraguchi, Youichiro: See-
Urai, Munchanu; Kozre,
4,096
Kiji;
 Hardin, George. T... to Roberrshaw Controls Company. Manifold means
and system for eloctics and or pneumatic control devices and







Cl. 270.73 .000 .1
McRex. Daniel Dix; and Smitb, Earl Ford, 4,096,442, C1.
329.112
329.112.000.
Harrisen, Rober S. See-
Rogerone. Jerry B.; and Harrison, Robert S., 4,096,212, Cl. 261 .
39.00B.










 Hasegawa, Toshifumi, to Toyoda-KOki Kabushikj-Kaisha Index appa- Hermenn Hemscheidt Maschinenfabrik: See-
ratus for machine coll




















Hiras Me.hary; and Taylor, Brian J., to Sankyo Electric co. Lid.

 Hirose. Se emicichi: see







 Hituchi, Led isee










 \(1252-30.40 \mathrm{R}\).



heoberechs, Arthur Marie Eugene, to U.S. Philips Corporation. Tele






















 Holland wirc Products. Inc. Sce- Ses










Hoiset Enginecering Company Linited, See




 \({ }^{4}\) infection cancon. caused by Pendomones aerruginase. 4,096,245, C
 and rain trough. 4,095, \(\mathrm{m}, \mathrm{Cl}\). \(266-45.000\).







June 20, 1978

Hood, Clifinn
214.83.180. Hooker Chemicals \& Plastics Corp. See- \(\quad\) Huston. Duance... to Olin Corporation. Fuel burning system. 4,095,930, Weingerg, Norman Louis, 4,096,044, Cl. 20459.50.
Weinberg, Norman Louis. \(4,096,052\), C1. 20478.000. Hopf, John L. Book case apparatus. \(4,095,858\), CI. 3120 -198.000.
Hopkins, Robert E., II, to Bater Travenol Laboratores, nec. Limulus Hopkins, Robert E.,
Iysate having inproved caparecty to procipitate in the presesce of low
endotoxin concentrations, and

 Cl. 331-17.000.

Horian, James G.. See-
Horian, R.ichard C .; and Horian, James G., \(4,095,802, \mathrm{Cl}\)
Horian, Rechard. \(\mathrm{C}_{1 ;}\), and
\(4,095,802\), Cl .27447 .000 .
4,095,8022. Cl. 274
Horie, Seijl: See-
 Horrom, Pruce Wayne and Bara, William Douglas, to Abbott Labora-
tories. Dibenzodiazepines. \(4,096,261\), C1. 424250.000 .



Hoshino, Osamu: See-
Kaiay
Osama, Hajime; Toriga, Aki, Akyoshi; Suda, Masashi; and Hoshino,
Hotham, Geonrrey A. Particle evaluator. \(4,095,775, \mathrm{Cl} .356-102.000\).
Houck, Frank S .
See-
Stieff, Locin R.; Pruith, Charles L. Ulrich, Reinhard R.; and
Houck, Frank \(\mathrm{S} .4,095,872\), Cl. 350.96 .240 .


ing objects by means of penetrating radiation.
Housse For.
Industrial Company Limited: See-




Howell, \(\begin{aligned} & 3 \text { S. Sibert } \\ & \text { Hudson Industris }\end{aligned}\)

Hudson Products Corporation: See-
Shipes, Kelly V., \(4,095,648\), Cl.
165-162.000


Hurke, Roger A., 4,095,412, Cl. 88.50 .00 .

Huikik, Ladisisav; and Baran, Miroslav, to Bata Shoe Company, Inc.
Discharge and cutting apparatus for tandem sewing machine.

recd switch and magnet means on opposite sides of the wall.
4.0.66,488, Cl. 324229.000
Hunger, Klaus, to Hocechst Aktiengesellschafi. Azamethine metal com-
plex compouns. \(4,069,157\), Cl. \(260-438.100\)
Hunter, Byron A.; and Prager, Irwin A., to Uniroyal, Inc. Blowin
agents-bis(hydrocarryy sulforyl) carbohydrazides. 4,096,100, CL 260.2 .50 R .
Hunter Doug

Hunce Dougas International N.V. See-
Brugman, Johannes Antonius Hendrikus, 4,095, 385, Cl. \(52-489.000\).
Hunter. Harry E. Air parrition for automobile passenger compartments.
\(4,095,837\), Cl. 2 .


Hurley, Kenneth D: See-
 Robinson, Ronald H.; and
244 115S.OA.
bands. David Roderick:
Husbanss. David. Roderick: See-
Ayers John Stephen; and Husbands, David Roderick, 4,096,136,
Cuschens, Rolf: See-



Jensen, William S.: See- Sell, Frank D.; and Hutchison, William S.,
4,095,934, Cl. \(431-89.000\).
wang, Y-TTanc, to Chemplex Company. Polymerization catalyst and



 Limited. Proceses for racem
4.096,186, Cli. \(260-584.00 \mathrm{R}\).

Shinohara. Toshio; Arai, Massatoshi; and Ichinohe, Shoji. 4,096,161,
Cl. 260 . 48.20 P .
CI Americas Inc. See
Rutlede. Thomas F., 4,096, 190, Cl. \(568-730.000\).
Kawaza: Mee Motaki; 1 Ide, Masataka; and Kawamura, Atsushi,
4,055,888, Cl. \(355-4.000\).



Co. Latd. High duty ductile cast iron with superp
treatment methods. \(4,996,022\), C1. 148-138.000.
Kikhata Yukio: See
Khidi, Thdahiro, Ikehata, Yukio; Ikenishi, Massakaka; and Ku-
shide


148-11.50R.
Illinois Toil Works. Inc. See-
Sidor, Edward Frank, \(4,005,468\), Cl. 73.362 .00 R


 260.465 .300. John ; and Waddan, Dhafir Yusur, 4,096,17, Cl.
Clement Pearson, Leo, 4,096083,

Clementson, John Joseph; and Pearson, Leo, 4,096,083, Cl.
252.11.000
Hancock, Peoerr; and Clifton, Terence Edward, 4,005,474, Cl.
73.579.000.
Marsham, Peter Robert, 4.096,337, Cl. \(424,308.000\).
IN. DA. TE. Akiengesellschaft: See-
J. Janovtchik. Viaceheslav Jansen, 4,095,517, C1. 99-495.000.


Incoc Corporation: Mee
Reitan, David \(\mathrm{M} .4,095,931, \mathrm{Cl} .425-664.000\).
 noso, Fumiyuki, and Kita, Yuzo, to Hitachi, Lid. Data, processing
system with interupt functions. 4096,564, Cl 364200000 .
system with interrupt functions. 4,096,564, Cl. 364200.000 .
Inoue. Kouro Ser
Masuda, Sosalu: Inoue, Kouzo; and Tsunematsu, Shuji، 4,095,986,
Insturt Electrosvarki Imeni E.O. Patons Akademii Nauk Ukrainskoi
SSR: See Paton, Boris Everievich; Mandelberg, Simon Lvovich; Biletsky,
Semen Mikhailovich; A Aamananchuk, Vyacheslav Anhastasievich; Semen Mikhailovich; Atamanchuk, Vyacheslav Anastasievich;
Kotenzhi,
Chanveteasu du Putrole: See -
and Moulu, Jean-Claude, 4, 4,095,651, Cl
156-294.000.
Beraud, Claudius; Guigal, Robert; Lehmann, Robert; and Lyoaneh,
Andre, \(, 4,95,003, \mathrm{Cl} .71 .144 .000\).
Institurul Pentru Proiectari de Sectii si Uzine de Laminare - Iprolam:
See-
Chiuaru,
1.0QA.
Intel Copporation: See-
Owen,
William H.,
Dil; Diternational Business Machines Corporation: See-



 H64-200.000.
Highnote, Jerry Lee, 4,096, 535, Cl. 360.84 .000.

Vinal, Albert Watzon, 4,006,378, Cl. 235-466.000.

international Filavors \&ragrances inc. See-
Evera. Willium John; and Mookherjee, Braja Dulal, 4,006,158, Cl
260.347 200.

International Paper Company: See ald
Rothschild, Arthur Louis, III; and Baxter, Rober Olin, 4,095,736,

assinger Hohn Anthony, 4,096,359, Cl. 179-99.000.
International TTpeteronics Corporation: See-








Ishikawa, Yoji: See-,
Yaman
358-248.0.000. I Ihiksawa, Yoji; and Sakai, Koichi, 4,096,531, Cl .



So AB, Inc.:
Kond
Kill
Kendall. Re- Ray; and McGhee, Burt Henry, 4,095,658, Cl.
17.-18.000. Iseard. GGerard, to Societe Wichard. Shackling device. 4,095,416, Cl .




Fuifte, Hideo, and Itoh, Hirotake, 4,096,313, Cl. 428.304 .000 .

 shilk K Kishh.
Izon Corporait
Corporio








 Osada. Nobuhisa; and Nakamura, Hideo, 4,095,764, Cl. 246-
Jenk.on. P . to International Tapetronics Corporation. Carridge
Japect transport which accommodates single or dual capstan cartridge.


 inverted rectirier and equipment for carrying out this method.
4,096588 , C1. \(363-41.000\). Jensen, Lary. Fi; Hatrzell, Frank D.; and Hutchison, william S." to
Mobil
431-89.000. Corporation. Waste gas recovery.
4,09s,934, Cl. Mobil Oil
Jetsew, Inc.:
etsew, Inc.: See-
Rockerah,
John L.; and Schreck, Harold J., 4,095,538, Cl.


Johannson, Hans A. V. Hoisting apparatus. 4,095,677, Cl. 187-17.000.
Johanson. Lloyd A. See
Porith, Budge \(\mathrm{T}_{;}\)Johanson, Lloyd A.; and Noall, Kenneth L.,

Johanson, Kur Eilern Roiler. 4 .095,660, CI. 177-136.000.
John J. Sundheim Fanily Estate: See-






 Johnson. Ralph. E., to Singer Company, The. Needle thread work limb
retainers. \(4,095,53\), Cl. 1121844.000 .
 Mechanical hydraulic coun
1on-8.000
Johnsten, John O'Neal: See
Bene




Jons, Frank W., to Fasline Food Equipment C.O. Sectioning device for
rounded food

pany. The. Article for cleaning and conditioning fabrics. \(4,095,446\),
Ci. .137 .000
Lurence E: See-
8.000. Roger A.; and Jones, Laurence E., 4,095,994, Cl. 106 -
308.008.
Jordan, Bermand
Epstest., Jr.: See- Max; and
Jordan, Bernard W., Jr., 4,096,477, Cl. 343 .
6.5SS.
Jordan, Hicin Dietrich. See-
Neeff. Rutger; and Jordan, Heinz Dietrich, 4,096,111, Cl. 260 -

Jordan. Robert F . Self-service gasoline pump handle clip. 4,009, \(629, \mathrm{Cl}\).
141-392.000.
141 i-329.00.
Joshi, Hargovind H. See-
Fisher, Charles F.; and Joshi, Hargovind H., 4,096,221, Cl.
Fischer, Charics F.; and Joshi, Hargovind H., 4,096,221, C1.
Jost, Jochen F. F., to Filmosto-Projektion Johanes Jost GmbH \& Co.
Container for photographs. \(4,055,694, \mathrm{Cl}\). \(206-455.000\).

JWI Lud. See- \({ }_{\text {Mackean }}\) Donald George, 4,095,622, Cl. 139-383.00A.











 4,005, 861, Cl. \(1212-200.000\).
Kahn, Stephen, to Bio-Dynmes, Inc. Method for the chromatographic

23.230 .300.
Kai, Tashio
Tanaka: Ju

Kaise, Gunher: See-
Cl. 156-519.000.

 hens, Rolf; Liepmann, Hans-Gunther; Stuhmer, Werner; and
Zeugner, Horst, 4,096,141, Cl. 260-239.0BD.





Kaltenbach, Kenneth Francis, and Zenger, Alfred John, to Singe
Compeny, The. Sewing machine suitch regulting mechanisms
\(4,095,40\), cl. 112 -210.000. 4,0mp,540, Tl. 112 -210.000.
Kameyama, Akira: See-
Yamada,
Takeo
Kameyama,
Kakira,


Kamyr Inc. See-
Sherman, Michel \(1 ., 4,066,027\), \(\mathrm{Cl} .162-18.000\).






T1.103.000.
Karamon
353.-122.000.

Foxboro Conpany, The Pneumatic delector for chromal
analy


Kaschecv, Sergei Andreevich: See-
Suthanov, Donat Konstantinovich; Blinov, Sergei Ivanovich;
Bogoliubov, Leonid Loonidovich; Kascheev, Sergei An-

ashio, Toshio, to Casio Computer Co., Ltd. Watch device. 4,095,408.
Kasshhn, Horst-Gunter: See-
Lenz, Gunther; Merten, Josef; Krimm, Heinnich; Kassahn, Hors
Gunter; and Schnell, Hermann, 4,096,200, Cl. 260-899.00R.
Kasuge Denki Co., Ltd. See-
Kakinaka, Arao, \(4,095,621\), Cl. \(139-370.200\)
Kakainaka, A Arao, \(4,095,621\), Cl. 139.370 .200 .
Katayama, Hajime; Torigai, Akiyoshi; Suda, Masashi; and Hoshino,
Osamu, to Canon Kabushiki Kaisha. Color copying apparatus.


 Katz, Martin; and Kent, john s., to Syntex Corporation. Inert core Kalk Mart, eplet 4.0.066,239, Cl. 424-21.000.
imwai, Mitsuo: See-
Kawai, Mastuo: See-
Kobyyshi.
195.00S.

 Kawamura, Aisushi: See-
 Kawan, Joseph C. See
Saxton James Ci. Osterberg, Bruce H.; and Kawan, Joseph C.,
4.093

 shiki Kaish. Shutter speed indicator device. 4,096,494, Cl .
35433.000 . Kawazu, Motoakk; Ide, Masataka, and Kawamura, Alsushi, to Ricoh
Company. Led. Color electrophotography apparatus \(4,098,888\), Cl. Kayma. Ak.ira, and Harada, Toyoo, to Kabushiki Kaisha Daini Seiko-
shh. Divaleni silver oxide cell. \(4,096,328, \mathrm{Cl} .429 .144 .000\) shas Dey. Thon mas John. Treating contaminated liquids. \(4,096,066, \mathrm{Cl}\).
\(210-19,500 \mathrm{R}\)


ture of carbodiumides. 4,096,334, Cl. \(560-35.000\).
Kelly, Charle A. .
Irick, Gether, Jer.; and Kelly, Charles A., 4,096,115, Cl. \(260-\)

 Kembar Ross john. Chessmen contained by chess board or a cube
 Emeny, ecorge A., to . Westinghouse Electric Corp. Verically aligned
ges insulated transmision line. 4,096,345, Cl. 17414.0 .




 Kenrich Peerrochemicals, Inc.: See-
Monte, Selvatore J.; and Sugerman, Gerald, 4,006,110, C1. 260 -
40.00 .
 Kent, Loren \(W\), suppor structure. and driving mechanism for tilting,
sliding




 pany, Limited. Low pressure automatic lubrication system. \(4,095,674\).
C1 1846,100 .
Ciffer, Richard, to U igne Carbone. Hard tantalum nitride base alloys.


Kienlec Apparate GmbH: See-
Schuh, Eduard; and Scholl, Hans-Peter, 4,095,737, C1. 235-30.00R.
Kiestead, Richard Wighman: See-







 Kimball. Jerome W. and Kimball. Kenny \(\mathbf{H}\). Woodcarver and engraver \({ }_{5}^{\text {and }} 5\)








 Kircchner, Peter, to
pinion stecring aplkswagenwerk
 Kogyo Kabu
260.879.000.

Koda, Kazuo; and Tsuchiya, Masato. 1o Nippon Kokan Kabushik
Kaisha. Apparatus for yetecting changes in parameters of siquid
flowing in a pipe based on sing-around method Kisho-879.000. Shinzo: See-

Yoney yama, Masakazu; Shimamura, Isao; Kishimoto, Shinzo; and
Hasebe, Kazunori, 4,095992 , Kishimoto, Teijiji; Ueda, 1 Luoo; and Kato, Massyuki, to Fujisawa Pharmaceutical Co.. Ldd. 1,2,3,4 Tetrahydroisoquuinolines and the prepa



 Kitaratus. \(4,095,781\), Cl. 2711.12 .000 . coating compositions conwaining a resin prepared from the reaction
product of polybutadiene with an unsaturated dicarboxylic acid or
anhydride. . \(4.996,106, \mathrm{Cl} .260-29.70 \mathrm{H}\).
Kita Yuzo: See-
Kitat Yuzo: See- Inose, Fumivki; and Kita, Yuzo, 4,096,564, Cl. 364-200.000.
Kitagawa, Takashi: See-

Kito, Yastami, It, Nippon Oris Elevator Company; and Kabushiki
Kaisha Meidensha. Control apparatus for an elevator system

 Magnetic testin
nal and
324-227.
exte.



 Kleber, Roin: See-
Cuntef, Urich;













Knippel, willis H., to Pullman Incorporated. Operating mechanism for Kostelezky, Walter: See
Paul, , Jurgen; and Kostelezky, Walter, 4,095,551, Cl. 116-35.00R

June 20, 1978

 Knyazhinsky. Zakhar Osipovich; OSada, Yako Efimovich; and
Kotennhi,







 polymers and a process for their preparation. 4,096,130, Cl. 260-
Kraffer. Union Aktiengesellschaft. Seee-
Kunstle, Konrad; Koch, Christian; and Reiter, Kurt, 4,095,959, Cl. Kunstle, Konrad; Koch, Christian; and Reiter, Kurs, 4,095,959, C
Kuter, Heinrich; and Weghaupt, Erich, 4.095,333, Cl. 29.998.000. Kuter, Heinrich; and Weghaupt, Erich, 4,095.333, Cl. 29.998.000
Nieman, Hanss.Joachim, 4,996.046, Cl. 204157.10 .

 forming method. 4,096,223, Cl. 264 -89.000.
Kramer. anicl E. Refrigeration system with hot gas defrost. 4,095,438,
C1. 22 278.000. Cl.
Kramer. 278.000 . Melvin
r.i.
to
to Brunton Company, The. Digital compass. Kranz, Ryse E.: Solano. Winilian E. and Johnson, Beverly E., to Salem
Furnace Co. Method and apparatus for operating a calciner under Furnace C.. Method and apparatus for operating
pressure differential. \(4,096,038\), Cl. \(201-32.000\).
Kraus, Egid: See-
 Krieger, Karl, to Hermann. Hemscheidi Maschinenfabrik. Hydraulic






 durable optical
Kubota, Letd.:





Kuhlmann, Karl D.: See-
Braunlina
Erhard; Kuhmann, Kar D, and Lutz Peter, 4, 096,007,

Bruch, Werner; Guth, Hans; and Kuhn, Helmut, 4,096,065, Cl.
210.188 .000 .
Kuhn, Wolfgang: See-
Ellegass Konrad; Feld, Fity; Feltgen, Karlbeinz; Greiner, Horst;
Kohler, Armin; Kuhn, Woligeng; Menold, Richard; Nassenstein,
Heinrich; and Weibect Roland, 4,095,558, C1. 118-420.000. Kulle, Lee K , to Baxiter Travenol L, Leoratories inc. Gill- 1 ype
protecotor for sealing open tubes and the like. 4,095,80,
\(277-208.000\). protecor
Kulle, Pecter:
Kee

 Union Aktiengesellischa
48.7.000.
Kunstmann, Rudolf: See-
unstmann, Rudolf: See-
Reuschling, Dieter-Berd: Kuhlein, Klaus Linkies Adolf: Kunst
 Kuparinen, Lasse, to Koh-I-Noor Rapidograph, Inc. Cover for scribe
 swinging-blade water wheel. 4,095,422, Cl. \(00-398.000\).
Kushida Shoze See

 gesellschafi. Method of inntroducing the coils or a superconductive
exiter widing into the slots of a turbogenerator rotor. 4,095,333, Cl.
29.598.000. exciter winding
2.9.9.8.0.00.
uusik. Uno: See
2usik, Uno: See-
Carwrigh, Bert W. Cameron, Dugald; Hagaman, James A.;
Hotger, Robert A.: Kuusik, Uno; and Nortman, William.





steelmaking furnaces and the like. 4,096,004, Cl. 149-18.000.
Pigerol, Charles; Chandavoine, Marie-Madeleine; de Fillain, Pau
 \(4,095,604, \mathrm{Cl} .131121 .100 \mathrm{~A}\).
Laboratioires Biotrol Societe Anonyme: See-
Simonet-Haibe, Denise, 4,095, 599 , Cl. \(128-283.000\)

agowski, Joseph V., to Fairchild Incorporated. Anti-abrasive flame
resistant noise-suppressant laminate. 4,096,307, CL 428-214.00.
akee, Doyuglas. Adjustable, fluid- ifled breast implant. \(4,095,295\), Cl


pump nonlinear control werth cam-artuated, adjustably -syduencenced
secondary control. \(4,095,424, \mathrm{Cl} .60-436.000\).
ampl. John A.: See
Kisner, Jerome L.: Aulte, Thomas R.: Lampl, John A.; and Uhland, Edwin H. and K. Kee, Richard \(\mathbf{C}\)., 1 to Polaroid Corporation. Cam cra with detachable electronic flash unit and exposure control system
therefor \(4,064.492\). C. 3 . 3433.000 ang, Walter, and Hegar, Gert, to Cibe-Geigy Corporation. Process for
the production of solutions of lower aliphatic carboxylic acid salts of ationic ctlyentufs. \(4,4095,943\), Cl. \(8-92.000\)
and
Chang, Clarencee- D.: Lang, william H.: Silvestri, Anthony J.; and
Smith, Robert L. 4,096,163, Cl. 260449.00 R .

 type catalyst system. 4,006,092, C1. 252.429 .00 C .
 compounds and method of use. \(4,096,24\), Cl. 424 . 180.0000 , or Lantos IVan, to SmithKine Corporation. Sulfonyl containing organic
gold gly.
\(424,180.000\).
.




Helmut: See-
Hiolst Amond Lask, Helmut, 4,096,312, Cl. 428-297.000.
Nischwit, Elrenfried; Uhl, Klaus; and Lask, Helmut, 4,096,289, asker, Martin L. L., to Wylain, Inc. Lighting fixtures. 4,096,555, Cl
\(362 \cdot 302000\). Lasarat Yve Abert Robert to Trouvay \& Cauvin. Automatic tube
puller. \(4,095,335\), Cl. 29.726 .000 .
 4




Smoke.resurdant chlorinated polymer compositions \(4,0,06,116\), C .


Lighoieier Incorporated: Sec-




met Lebiazay
 chell
\(364+20.00003\).





 ceds Trigevewerrarence divion of Rapid-American Corporation: See-
Urion, Kenard Emerson; and Tyre, John Harrison, \(4,095,636\), Cl .

Brown, William J.: and Legler, William F., 4, \(4,095,440\), C1.
\(62+50.000\).
Lemmann, Peterer, 10 Strapex AG. Tensioning- and friction welding
apparatus. \(4,906,019, \mathrm{Cl}\). \(156-494.000\).

Berruud, Cladiuius - Guigal. Robert: Lehmann, Robert; and Lyonnet,
Andre. 4.095,403, Cl. \(57-144.000\).
Andre. 4,095,403, Cl. 57-144.000.
Leinner Heinz: See-


Heavner, Paul W.; and Le May, William E., 4,005,293, Cl.
2-168.OOO.
Comburg, Jorn-Uwe, and
Ce..). Appartasur for severing and deforming the ends of helical bind-
ers or pads or the

 polyurethane/vinyl Polymer mixtures. 4,096,200, Cl. 260.859 .00 R .
Lermann. Peter;
Scill ond Suill or motion-pict
Cl. 354 137.000.

 diling system
222-56.060.
Leech, George H .
220.6. George H. See-
Rempfer, Gertrude Fi; Lesch, George H.; and Griffith, Osbic
Hayea Hayes 4,096,386. Cl. \(250-365.000\). AG. Continuously operating developing manchine with means for removing bleaching fuid vapors
\(4,006.50\). Cl. 3 S. 301.000 .
Leveen, Harry H. Multi-poral radiofrequency generator. \(4,095,602, \mathrm{Cl}\) Leveen. Harry H. Multi-poral radiofrequency generator. 4,095,602, Cl
\(128 .-13.000\).
Leveilke Jean Claude. Trays combinable into an assembly. 4,095,533, Leveille Jean Cla
Cl. \(108-90.000\).
Leve Brother





Li. Pei-Ching Se- See
Pappis. Jingen, Lewrence M.; and Li, Pei-Ching, 4,096,297,
C1. \(427-248.00 \mathrm{C}\).

Linder, Henry, to Beatice Fo. Fods co. Subassemblies for cube corner
type crerorefector molds. 4,095,773, Cl. 249-17.000.
Lindroos, Jari.

Ahonen. Heikkj; Lindroos, Jari; and Sarkkinen, Veli, 4,096,04S, Cl.
2till
Linceerry, Dewey D., to Chemetron Corporation.
doodorized edible oils. \(4,095,963\). C1. \(55-54.000\).


 Sies, Adolif: See-
Reuschling, Die
 Linkous, Cliovis E.. to General Electric company. Method of making
high efficiency induction motor with multi-cage circuit rotor.
\(4,095,332\), Cl 29.598 .000
4i,095,332, Cl. 29.598.000.
Listromberg. William John, to Whirlpool Corporation. Movable ice
receptacle. \(4,095,439\), Cl 62.344 .000











 mazov, Mark Abramovich: See-
Zabazz,
Ivrry Y Gigoricvich; K
 Ivan Mirhailovich; Svidnitsky, Tadeush Valentinovich; Lunic,
Dzhan Alievich; Brasialskayy, Elvire Alerevna; Lomzov,
Mark Abramovich; Rodnyansky, llya Grigorievich; Skorikov, Mark Abramovich. Rodnyansky, Uliya Grigoricvich; Skorikov,
Viktor redorvich; and Surkov, Vixtor Georgievich, 4,095,466,
ci. 72.88 .000 .

Lonsesh. Palmer; Panter, Hubert Gerald, and Moorby, Donald G., to
Canadian General Electric Company, Corona inhibition in dynamo-
 Loomis, James W. Scribe tool and mount therefor. 4,095,344, Cl. 33 .
18.0R.
Looney, Robert B.; and Smith, William E. E. to United States of America
Cl. 12041.500.


Hanss-Martin, 4,095.908, C1. 403-16.000.
L'OTeal: Seel
Goncalves
Goncalves, Antonin L., 4,095,725, Cl. 222-153.000.
Kalopissis. Gregoire; and Vanlerterghe, Guy, 4,096,332, C1.
s441174.000. Loskutrov, , Petr Alexecvich: See-
Shev

Shevchenko, Alexandr Andrecvich; Gulyaev, Gennady Ivanovich;
Chekmarev, Igor Alexandrovich; Loskutov; Petr Alexecvich;


 like. 4,009,376, Cl. S1-218.00R.
Leverig, Howard Bront
exposure apparatus. \(4,095,891, \mathrm{Cl}\) Corporation. 355 -50.000. On-the-fly photoresist

JuNE 20, 1978

 2-6.000.
Lowenhar, Herman. Two wire transmission line using tubular extend. Malknani, Chander: See-






connecting the end of an electric wire. 4,095,868, Cl. 339-99.00D.
Lund. Robert M.: See-









Lutuman, H. Haradi; and Frayer, Paul D., to National Can Corpora-
tion. Method of bonding shects in
din
dich by alternating current






Pilum, Barry L. , \(, 005,409\), Cle: 58 See- 13.000 .












 Meddox, Randall Adrinn, to International Business Machines Corpora-
 M1.103.000. seckewa, Sumio: See-
Arai, Shoiik
357-28.000. Magnovox Company. The: See-
Johson. Virgi. H.;. and Parker, David I., 4,095,526, Cl. 102-8.000.
 Mahig, Joseph; and Allen, C. Tom.
transducer. \(., 095,667\), Cl. \(181-120.000\).
 zuyhn, Robert H.; Maitlen, C. Eugene; Davis, Glen H.; and
Maiten, Randall
E., \(4,095,545\), Cl. 11426.000 .

971 O.G. 50

 Mass.-213.000.
, Yukio
See






Hechler, Valentine, IV; and Masters, Lewis E., 4,095.726, Cl.
222-175.000.


Mathe, Istyvn, to Bunker Ramo Corporation. Strain relief adapter for an Mecterical Byronnectior

 Duckworth, Clifrord, 4,095,944, Cl. 8-1 15.700 .
Mathur, Girish Prased, to Lever Brothers Company conposition and method. 4,096, Wi40, C1. 42459.000. Skin lightening

 ture chemical reaction processes utilizing fluid-wall reactors
4.095.974. C1. \(75-0.50\).





 Massumot, Shu
335-213.000.



357-28.000.
Ono. Mitsuaki; Yatsugake, Masahiko; Miyatake, Norio; and Fuku-
shima

2119-10.5SD.
Manthei, Heinich, to Max--Planck-Gesellschaft zur Forderung der
Wisesnechanten e.V. Stand for holding pipette cans. 4,095,697, Cl.
211-71.000.
\(211-71.000\).
Manveev, Felix Arkadievich; OTlov, Anatoly Nikolac vich; Rudakov,
 of manufacturing gla
St-5.7.00.
Matvey Paul R.: See-



 Mayer. Roif
Farber, Karl-Heinz;
Sand Mayer, Rolf, \(4,096,421\), Cl. \(318-282.000\).





 gech horizontal burner. 4,095,929, \(\mathrm{Cl} .431-19.000\).
 McDonald, George See-


JUNE 20, 1978



 Cl. 1341.1000
Meylan, Georg
 Miin, Abdus Salam, to Pitman-Moorc, Inc. Arginase test. 4,096.037, Cl.
195.-103.50R.
Michacels, Alan. S. See-
Zaflaroni, Alejandro; Michacls, Alan S.; and Theeuwes, Felix, 4.090,238, C. 424 tis. 0000 . Michaclen, Rey A.t. to Almar Enterpises, Inc. Safeety overcap for
standard metal screwcaps. \(4,095,717\), Cl. \(215-220.000\).






 Horst, to Kali-Chemice Aktiengeselischaft. Process for making ben-
zodiazpepine deinavites. 4,096,141, C1. 260-239.0BD.
Millard, John B.: See Beals, Robert C.; and Millard, John B. \(4,096,501, \mathrm{Cl}\). 354179.000 .
Millard, William H.; Killian, Allan J. and Van Natua, Bruce A. Infor-

Spain, Raymond G.; and Miller, Albert L., 4,096,104, Cl. \(260-\)
Miller. Brenn Rudy: See-
Ferre. Radford G.; and Miller, Brent Rudy, 4.096,484, Cl. 346






C1. 68.205 .00 R . Chemical Company, The Cellulosic pplp delig.
Mills. Jck F., Dow
nification using an acidic bromine-chlorine mixture. \(4,096,029\), CI. nification usion
Min2-8.000.
Minagawa Motonobu; Kubota, Naohiro; Shibata, Toshihiro; and
Sugibuch, Kazuo
to
ramethyl

 ica. Arry. Air target fuze time-gatod decision circur
343 -100.0.
iinnesota Mining and Manufacturing Company: See-


 Miram, George Valentine; and Lien, Erling Louis, to Varian Associ-
ates. Inc. Thermionic lectron source with bonded control grid.
\(4,096,406\), Cl. 313 .348.000.



Kazuk, Nobuhiko Matsumoto, Shoji; , kada Telsuya, Gotoda,
Katshiko and Aizawa, Tatsuo, 4,096,543, C1. \(361-230.000\).
control system in an electronic musical instrument. 4,065, 502 , Cl.



Mori, Kinys: See-
Hashimoto,
Hashimoto. Hiroshi; and Mori, Kinya, 4,095,325, Cl. \(29-407.000\)
Mori, Koichi: See-
 Mori, Mitsuo, Nakkane, Karsumi, and Hirano, Hideo. to Kabushik
Kaisha Toyoda Jidoshokki Seisakusho. Method and apparatus for


Morishita, Shigern: She - Inaba, Yutaka; Shiroishi, Kuniyasu; and Mori
Kawamata, Tohhio;


Morris. Haroild D.; and Asmar, Romeal F, to Systron-Donner Corpora
tion. Two acis rate gyro \(4,095,477\), Cl 745.60 D .

man, William T.. \(4,095,781, \mathrm{Cl} .271-12.000\).
Mostec Corporation:
Schee
Schroeder, Paul R.; and Proebsting, Robert J., 4,096,402, C
307-362.000.
Motorolal. Inc.: See-
Spanjer, Keith Gordon, 4,096.521, Cl. \(357-54.000\).
Mott, Richard C.. to Honevwell nnc. Proporional

Moutinex, Societe Anonyme: See-
Moulinex, Societe A Anonyme See-
Mould, Edeurd Pientre Juien, 4,095,499, C1. 83-471.000.
Moulu, Jean-Claude: Sre-
Chaveteau, Moulu, Jean-Claude, 4,095,651, Cl.
Guy


 purty iso-butylene recovery.
MTU Munchen GmbH Se Se.
Gunke, Richard, \(4,096,120\)


Muilbaier, John P.: See
 Mulic, Richard
2060.106 .000 .


Windemuth, Erwin; Dahm, Manfred; Dietrich, Manfred; and
Muler Peter 4,066,162, Cl. \(260-448.20\).

M16-14.2000. A. to Westinghouse. Electric Corp. Electric arc
fursonace William . . . .
Murphy, Alan P., to Procter \& Gamble Company, The. Fabric treating
compositions
252-8.8.00.
2525.8.0.00.
Murphy Rai

Murry, Inn; and Tatro, Clement A.s. to United Sutes, of America,
Enerryy. Pulse-actuated fuel-injection spark plug. 4,095, S80, Cl. \(123-\)
32.0ss.
Murray, Rob
Cook, Kent C. See-
324.142.000.th J.;
324142.000 .
Kumy, Avdiappen
Kumeses: See-

Murthy, Andiappan Kumareses: See-
Bonfield John Henry; Murhy Andiappan Kumaress; and Pickens,
Donald, 4,096,187, Cl. \(260-601.00 \mathrm{H}\).

Myreen, Betrelid and Nylund, UUf, to Paraisen Kadkki Oy - Pargan. Kalk
Myreen, Betrel; and Ny,
AB. Method and device for separataion of suspended material from a
nuid








Nagel, Dietmar: See-
Kennedy. Melvin; and Nagel, Dietmar, 4,095,784, Cl. 272-31.00A
Nakagawa, Koji: See-
 4,006, 186 , Yataro. \(260-584.00 \mathrm{R}\).
 Yahar, Takeo: Seec
Wananabe, Masamichi; Nakahara, Takuo; Sakamoto, Seiji; Bizen,
Kunio; Yano, Akikazu; and Otani, Yuzo, 4,096, 109 , Cl. 260. \begin{tabular}{c} 
Kunio; Yano, \\
40.00 R \\
\hline
\end{tabular}
Nakajima, Shinobu: Se-
TTnaka, Chiaki.
\(4,096,126, \mathrm{Cl}\). 260 akjima,
Ns.00R.


Oakamura, Nideo: See- Nobuhisa; and Nakamura, Hideo, 4,095,764, Cl. 246 Nakamura, Shinji; Inokuma, Shun; Tanake, Shin; Hirose, Kenich; and Nakamura, Shinji, Inokuma, Shun; Tanaka, Shin; Hirase, Kenichi; and
Deguhti, Takashi, to Sumitomo Chemical Compan, Limited. Pro-
cess for preparing acid amides. 4,096,184, Cl. 260-56i.00N. Deguchi, Takashi, to Sumitomo Chemical Company, Limited.
ceser for proparing caid amides. 4,096,184, Cl. 260 - 661.00 N .
Nakane, Katsumi. Nakane, Katsumi: See
Moin Mitsuo Nakenc, Katsumi; and Hirano, Hideo, 4,095,401, Cl
57.81 .000 .


 akano, Yoshiyuki: See
Nakano. Yoshiyuki: See-
Mochizhki.
S44241.000.




 1846.100 , Satou,
Rantheng Souli:

Nanya Thakanori: See-
Sekiya, Fukuo Ebihara, Heihachiro; Uchino, Misso; Nishimura,
Katsoo and

 cuttingeryge., \(4,05,338\), Cl. \(30-276.000\).

 National Can Corporation: See
Lutumand Hrayer, Paul D., \(4,096,013, \mathrm{Cl}\)
National Disilillers and Chemical Corporation, See-
Feldman, Julian; and Smith, David W., 4,096,149, C1. 260-295.50A

National Recacarch Development Corporation: See
Thobroce Eivind Christian \(4,095,373\), Cl. \(51-130.000\)









On, Donald Louis: See-
Webb, Benton Paul; and Nelson, Donald Louis, 4,096,108, C1.
260.38.000.
260-3.000.
Nelson, Elizabecth D., administratrix: See-
Nelson, Craig R.: Nelson, Roy A., decen



Nelson, Norman A., to Uujiohn Company, The. 13,14Dinydro-16- Nishida, Minorru: See-
phenoxy prostaglandin Ep, analogs 4,096,178, Cl. \(260-520.00 \mathrm{R}\).
Hatori, Tidashi;



\begin{tabular}{l} 
Nelon, Criig Re, Nelson, Roy A., deceased; and Nelson, Elizabeth \\
D., dministratrix, 4,093,393, Cl. \\
\hline
\end{tabular}

Neumann \& Co. AG: Se--
Strobl, Horsh, 4,095,383, Cl. 52-309.700.

GmbH. Absorption
Nilter. \(4,095,655\), Cl. \(55-270.000\).


4, \(4,096,059\), C1 2088.11 .0 LE .
New England Machinery, Inc.: See-
Iloneu, Cristina S. \(4,095,688\), Cl. 198-399.000.
Persen, Per Ser ingar, 4,095,74, C1. 228.104.000.




174.00 G,
Nicholson, David

Norandit Mines Limited: Seed, Winh Gregory A., 4,096,437, Cl.
Kitringer. Fl.
F3natk; and


Northrop Corporation: See-
Gautraud, John A... 4,095,484, C1. 74573.00R.

Nied, Gerhard: See-
Beamann. and Nickel, Wilfried, 4,0055,720, C1. 220-21.000.
366-163.000.













Kamade Takeo; Watanabe, Katsujiro; Ando, Seigo; and
Kameyme Akira, 4,095,469, C1. 73 -362.00R.


Cl. 123 -148.00E
Nogechi, Mashi, Sumi Moshi, Mesaharu, Tanaka, Yukiyasu; and

Nippon Steel Corportion: See-
Water Tohehiniko, 4,096,000, Cl. \(148-27.000\).


Nippon Zeon Co. LLd.: See-
Nipohishi, Tetur, and Fukushime, Hiroshi, 4,096,135, Cl. 260-79.50B.











 Oning insus.






 Homit







Okuate Seatatus, 1 Nippon Telegraph nad Telephone Fubicic Comp sion Contor sum
 Numata, Saburo; and Okazaki, Shinichiro, 4,096,382, Cl. 250
214.00.
Numata, Saburo; and Okazaki, Shinichiro, 4,096,496, Cl. 354


 prop riety \({ }^{\text {in }}\)
354 127.000 .
Sin Corporation: See
Boudakian, Max M.. 4, 4,096,196, Cl. 260-650.00F

 Specht Steven
20263.000.

 \(160-209.000\).
Olvey. Shellby Lew Se-
Mcier Charles Devid;
Ivey, Shelby Lewis: See-
Meer., harles David; and Olvey, Shelby Lewis, \(4,095,803\), cl.
\(277-12.000\).
mae. Tsutomu: See






Ono. Kausutosh; and Takaki, Yasumasas Speedometer with an exceed



Coms, William Jay: See-
Davis, James
307-249.000. Pland, Harry; Sharpe, Ralph S.; and Zawacki, Joseph H., to Lear
Siegler, Inc. Axle making method and apparatus. 4,095,450, CI. Siegler. nc
72.318 .000.




 Kov, Anatoly Alexervich
\(4,095,667\), C 6.77 .000

tho Pharmaceutical Corporation: See--
wachter, Michael P.; and Settepani, Joseph A., 4,096,253, Cl 424a, Nobuhisa; and Nakamura, Hideo, to Japanese National Rail-
ways. ways. Spot control type automatic crain stop system utilizizing ground
contro nunits common to more than one block signal. \(4,095,664, \mathrm{Cl}\).
246-182.008. 246-182.00B.
Osada, Yakov Efimovich: See-
sada, Yakov Efimovich: See-
Paton, Boris Evenenievich; Mandelberg, Simon Lvovich; Bilestsky,
Semen Mikhailovich; Alamanchuk, Vyacheslav Anatasiesich:

Oster Corporation: See
Arin, Rober Lee \(4,095,751, \mathrm{Cl} .241-37.500\)


improved position sensilive assemily 4, 4,09,62, Cl.
Osui. Massumi. See
Okuno. Keno; and Osumi, Masumi, 4,096,498. Cl. \(354-127.000\)
tani, Yuno. Keno; Se and Osumi, Masumi, 4,006,48. Cl. 334121.000 .
Watanabe, Masamichi, Nakahara, Takuo; Sakamoto, Seijij; Bizen.

Itsuka, Yasuhiro: See- Shich, Miura, Hirohisa; Uchida. Kiyoshi; and Ot
Masumoto Shinicter
and

 CCL Systems Limited. Joined concrete badies same \(4.095,389, \mathrm{Cl} .52\)-583.000
 Intel Corporation. Low power/high speed static ram. \(4,096,584, \mathrm{Cl}\)
\(365-227.000\).
wens, Addrew Charles: See-
Steele.
Raymond Emest; and Owens, Andrew Charles, 4,095,910,

 and method for making the sume. 4,096,246, Cl. 424-177.000. Sweany, Louis P.; and Burk, \(\mathbb{N}\) : teel \(T\)., 4,006,473, Cl. 340-237.500. X. Industries, Inc.: See-
MacDonald, Paul M. 4095,853, Cl. \(308-3.600\).

Facansky, Thomas J ., to Xerox Corporation. Process for preparing
watereress printing masters comprising copolymer of siloxane and
crevell
crystallized thermoplastic blockse \(4,009,294\), Cl. \(427-197.000\).



 Palum, Barry \(L\)., to Marine Midland Bank of Rochester. Chiming mechanism. 4,095, ,409, Cl. \(88-13.000\).
Panter, Huer Gerald Se- Sen
Lonseth, Palmer: Panter Huber Ger
Panter, Huber Gilarald: See-
Losseth, Palmer. Fanter, Hubert Gerald; and Moorby, Donald G.,
4,095,627, Cl. \(141-250.000\).



 Par-Way Mrg. Co.i. See-
Hanson,, ,
,



Parham, William L Lamar; and Saunders. Morton Jefferson, to Bell
Teleptone Latorioris Incorporate. Method and apparaus for

Parker Charle L. Heat exchanger for clothes dryer 4095349 , Parker, 348.00 . Carles L. Heat
Parker, David I: See-
Parker, David I. See-
Jahnson. Virgil.
Parker, Delmer Parker, David 1., \(4,005.526\), Cl. \(102-8.000\).

 Pach system. \(4,095,867\), Cl. \(339-92.00\)





Patel, Amrut R.: See- \({ }_{\text {Peek, Henry }}\) L; Taylor, Maurice J.; Abdou, John J.; and Patel,




221-210.000.
Paul. Jurgend and Kostelezky, Walter, to Daimer.-Benz Aktiengsell-
schaft. Indicating arrangement for a distance warning installation in
motor vehicales. \(4,095,51, \mathrm{Cl}\). \(116-35.00\) R.
Paul. Rolf: See




Coalle, Richard: See.
Pand Pavelle, Richard, 4,096,577, CII \(364-712.000\).

Peabody Galion Corporation: See
Walker, James Donald, 4,096,068, Cl. 210-293.000
Peachtree Doors Inc. See

Pearson, Leo: See
Clementson John Joseph; and Pearson, Leo, 4,096,083, Cl.
252.171.000.
Peavey Company. See








Person, Per. Ingemar, to Nitro Nobel AB, Metal wall provided with
either extemal or internal cladding. 4,095, 34, Cl. 228-104.000.

\section*{Cl. \(126-263.000\).
Petrillo, Richard: \\ Anderherg: See-
Thomas A.; and Petrillo, Richard, 4,095,746, Cl
239.000.}

Perrow, Madimir: See-
Benson, Harvey .i. Grunwell, Joyce Francis Johnston, Joh


 Pfeifer, Josef; PPulus, Rudilf; Gutmann, Walter, and Resch, Michael, to
AGFA-Gevaern AG. Recorder 4,096,486, Cl. \(346-107.00 \mathrm{R}\).
 power plant \(4,095,419, \mathrm{Cl}\), \(60-39.120\).
Prirrmann, Roif See-
Geistich Peter
Geistlich, Peter; and Pirrmann, Rolf, 4,096,241, Cl. 424,54.000.
Pharr Cecil
30-158.000. Finger actuator for folded knife blade. 4,095,337, Cl Phenicic, Ronald Eugene; and Wise, Rodney Mahlon, to Procter \&
Gambie Company The samble Company, The. Detergent compositions
silicate aggiomates. \(4,096,081\), Cl. \(252-89.00\).






Pickens, Donald: See
Bonfirid. Jonn Herry, Murthy. Andiappan Kumaresa; and Pickens.
Donald, 4,096, 187, Cl. 260-601.00H.
ickles. Wilfred:
Randel
Rell
sill
\(\stackrel{\text { Pierce, }}{260-966.000}\) Victor J.: See-
Young, Rober W.; Prusin, Samuel B.; Caccavale, John L.; and
Pierce, Victor J., \(4,096,281\), Cl. \(426-89.000\). iist, Phhmar w. Solar heating system. 4,099,584, Cl. 126-270.000.



opprated autematic canopy, release. \(4,095,3113\), Cl. 24-230.00A.






4,095,589, Cl. \(128-2.20 \mathrm{~F}\).
Plesser, Byron L .; and Salvadori, Larry A.,
Wandel Und Invester Wren Handel Und Investments AG.: See-
I18-138.000 Pelham; and Steventon, Mic
ex-Lite 138.000 .
Prester ,.orrain Welileren 4,096,551, Cl. 362.83 .000 .
Elecctric Company. Method and apparatus for obscuring the rastel lines in 2 a photogra
3388.244 .000 .
lommer, Derek: See-
Hunter, Rodney James Anthony; and Plummer, Derek, 4,095,434
Cl. \(61-6,3000\)
Cl. 61-63.000.
Pohl. Gerlard. Process for making and using high frequency weldable
material. 4,096,016. Cl. 156-274.000.






 Actint in inion.


Pool, Danny L.: and Pool, Robert R., 4,096,021, C1. 156-527.000.
Popdan, Gry Lee: See -
Popddan, Gary Lee: See-
Lewrence, Dean Merill; and Popdan, Gary Lee, \(4,095,839\), Cl.
296.28 .00 .
Popoz Evgnial Nikoleveva: See-
Suthanov, Donat Konstantinovic
 67.00 R . \(T\). Joponson, Lloyd A and Noall, Kenneth \(L\), 310 Porritt Budge T.; Johanson, Lloyd A.; and Noall, Kenneth L... to Ne
Energy source Company. Aparaus and method for recoecy
bituminnu product from iar sands. 4,096,057, Cl. 208-11.0LE.

Warren, EIbert K.. 4.095,317, C1. 28.221.000.
Poosanask, Mario and Raimann, Bernardo. Insullation for cultivating


Postavuichev. VIdaimir Konstantinovich; Klochkov, Vladimir IVano
vich; Gdalin. Semen Ilich; and Sharonov, Yacheslad Vasilievich
Filter for polymer melts and solutions. 4,096,069, Cl. 210-342.200.
Filter for polymer melts and solutions. 4,096,069, Cl. 210-342.000.
Pourd. Clavele See-
Dusserrce. Pierre; and Potard, Claude, 4,096,024, Cl. 156-601.000.
Poulhech Corporation: See-
Stone, Orison W., 4,095,735, C1. 229-39.00R.

Powers Regulator Company: S

Pownall, Arhur Robert Gilen, to Development Finance Corpo
New Realend. Spining machine. 4,095,400, C1. 57.37.000.
PPG Industrie Inc: See.
PPG Industries, Inc.: See-
Crwford Roger A:;
308. .00 B.

 Hunter, Byron A.; and Prager, Irwin A.,
Precision Toois Leti. See-
Perusco, Ivan, \(4,095,724\), Cl. \(222-95.000\).






26 willos.
2000 .
Priesmeyer, Charles H., eo Powers Regulator Company. Pressure
equalizing shower valve. \(4,095,610, \mathrm{Cl}\). \(137-100.000\).
Prince, Leon M., to Lever Brothers Company. Quick lathering toilet
bara and method of making sme 4.096,082. C.


4.095, 298 , Cl. \(5-263.000\).

processing apporatas. \(4,096,516, \mathrm{Cl}\) Corporation.
Trocter \(\$\) G

Jones. Kenneth L.: and Kingry. Gary W. \(4,005,946, \mathrm{Cl} .8 .137 .000\).
Murihy
 Phenicie, Ronald
Cl. \(252-89.00 \mathrm{R}\).
Probscsing, Robert J.: See-
Schrooder Paul R.; and Proebsting, Robet J., 4,096,402, Cl.
307.362.000.





Kitan






 compacting frecze-dried particulate foods. 4,096,283, Cl. 426-242.000.
Raimann. Bernaro:
Posnannsky
Mer


Rambold. Thomas: See-
Ruckescchel. Hermann; and Rembold, Thomas, 4,096,565, Cl.
364 . 200.000 .











Rau, Thomas A. See-, Slom Rau. Thomas A., 4.096, 301, Cl. 427-430.00A.


Mavi, Kramadhati Venkata, to Mobill Tyco Soalar Energy Corporation.
Manufacture of semiconductor riboon and solar cells. 4,095,329, Cl.
29-572.000.
29-572.000.
Ray, OOis. Eugen. Bait bucket. 4.095.365, Cl. 43-55.000.
Ray, Otis Eugen. Marble game resembling golf. 4,095,793, Cl. 273.
87.00R.
Ray, Rechard Estile H.: See-
Menegaz, Denis A.; Blumenass, Elmars; and Ray, Richard Estile

Raychem Corporation: See-
Brook, Grevile B;
148-1.1.50R.





C1. 427-244.000.
Roilard, David R.; and Michals, Robert L.. 4,096,348, Cl. 174
Sazdan Rajp Kumar: See-
Ghosh, Anil Chandra; and Razdan, Raj Kumar, 4,096,265, CI.

CA Corporation: See-
Behrcond, William Louis, 4,0964,444, C1. 332-37.00R.
Buckley, Robert Harling, 4,096,387, \(1.250,272.2000\).


Hollingsworth, Richard' James. 4,096.401, Cl. 307.355.000.
Horssin, Casel Willem; and Halli, William Bernard, 4,095,876, Cl.
350-343.000 3os-343.000.
Polinsky, Murr
Polinsty, Murray Arthur, 4,096,512, Cl. \(357-3.000\).
Tadal, Bortolo Mario, 4,096,451, C1. 31.116 .00 R .


Tuma, Alois Vaclav: Harwood, Leopold Albert; and Groeneweg,
Willem Hendrik, \(4,096,518, \mathrm{Cl}\). 358.74 .000 .
Tuma, Alois Vaclav; and Groeneweg, willem Hendrik, 4,096,528, Cl. 358.148 .0000 sea

Brower, Winlem; and Reardon, Richard J., 4,095,901, CI.
356-153.000.


Recac. Johannes: See-
Kraft, Kurt ; and Reces, Johannes, 4,096,130, Cl. 260-77.5CH.



 Appartus for tuning narro
Cl. 350.96 .140.
Rechert Kerl Ulich: See-
eichert, Karl-UIIrich: See-
Simon, Gunter;
Widmier, Walter; and Reicherr, Karl-Ulrich,
Simon, Gunter; Widmier, Walter; and Reichert, Karl-Ulrich,


4.096,198. Cl. 260-683.470.


and method, 4,095,931, Cl. 425-564.000.
Reiter. Kurt: Seal
Kunstle, Konrad; Koch, Christian; and Reiter, Kurt, 4,095,959,
48.7...000.

Reith, Robert A., to Standard Oil Company (Indiana). Method to
produce improved rubber-modified styrene polymer. 4,096,20S, Cl.
260-88.



Marino, Louis \(\mathrm{F} . ;\) Monelecone, Paul P.; and Remer, James,
4.,096,433,

lens. 4,096,386, Cl. 250.365 .000 .
Rempler, Hermann; Bosshard, Hans; and Weber, Kurt, to Ciba-Geigy

Rennick, John L. Sea- See-
Rech., Michacal! See- Rennick, John L., 4,096,542, Cl. 361-196.000.
ecch, Michacl: See-
Peifer, Josef; Paulus, Rudolf; Gumann, Walter; and Resch, Mi-
checl, 4.096,486, Cl.
chac, 4.096,486, Cl. \(136-107.00 \mathrm{R}\).


Reuter Pecter: \(\begin{aligned} & \text { Bee } \\ & \text { Blechechith } \\ & \text { Kurt; }\end{aligned}\) Reuter, Peter; and Wirth, Friedrich, 4,096,09


Reynee, Dyniel Francois: See
Ferry, Michel Francois M.


Reynolds, Teri Gene. Pusher plate for forklift vehicles. 4,005,715, Cl .
Rhoderes, willilim A. Turbine and method of using same. 4,095,426, Cl .
214620.000.
Rhollia
60496.000 .

Rhodis, Inc.: See-
dargill, Roland L., 4,095,971, Cl. \(71-78.000\).
 Falcoz, Pierre; Celle, Pier
\(4,005,991\) Cl. \(106-208.000\).
Rhone-Progil: See-
Berthux, Jean;
Pierre, \(4,096,150\), Cl.
Clilier,
260-293.520.
Rhythm Bend, Inc.: See-
Moore, William T;; and Adachi, Tadayaki, 4,095,502, C1. 841.130 .
Riccardi, Roberio: Sec
Verde. Luigi, and Ricardi, Roberto, 4,096,320, Cl. \(526-72.000\).
Richards, Clyde N. Electrostatic scrubber. 4,095,962, Cl. \(55-10.000\).

Eichards Manufacturing Co., Inc. See-
Graham, Charles M., Jr.; and Craig, Thomas L., 4,095,591, C Graham, Chat
128.92.08B.
Kichardonomentrill Inc.: See-
enson, Harvey D; Grunwell, Joyce Francis; Johnston. John
O'Neal; and Petrow, Vadimir, 4,096,254, Cl. 424242.2000 .





Riken Pision Ring Industrinl Co. Leti: See-
Ikaw, Kasuyn; and Tanake, Yuichi, \(4,096,002\), Cl. \(148-138.000\).

Hans-Martin 4,095,908, Cl. 403-16.000.
Rite Autoronics Corporitio: See-







Roberts, , \(\begin{gathered}\text { Fic } \\ \text { Fiberglas } \\ \text { Robernshaw }\end{gathered}\)



Canine, Howard H.; and Robinson, Carter R., 4,096,039, Cl.
202-205.000.


Robinson, Ronal
244 135.00 A
David
Robran, Dasid T.; and French, Charles S., to Scott USA, Inc. Boot
with pivoted upper. \(4,095,366\), C1. 36-121.000.






Rodnyansk, IIIy Grigorievich: See-
Zabsva, Jury Grigoricvich; Kogan, Rem Naumovich; Barabash,


 \begin{tabular}{l} 
rated. D. Din \\
117.00 D. \\
\hline
\end{tabular}
Rogerson, Jerry B.; and Harrison, Robert S., to Ford Motor Company
Carauretor choke valve positioner. 4,096,212, Cl. 261-39.00B.
he, Lothar: See- Rebert Rudolf; Eue, Ludwig; and Rohe, Lothar,
Schmide


Willerte. Gorrdon L.; and Hanauer, Richard H., 4,006,319, Cl.
\(526-16.000\).
S26-16.000.
Roith. Hein, 0 Linde A. Atiengesellischaft. Welding device and method.
\(4,096,373\), C1. 219.73 .000 .




Unnable YYG
\(335-2090000\).
osciliator and tunable YIG filer. \(4,085,461, \mathrm{Cl}\)


Rosenberger, Roy R., to Nalco Chemical Company. Feed forwarc
control of dissolved solids in a countercurrent separation and wash-
ing zone. \(4,096,028\), CC. ing 20ne. 4,096,0288, C1. 16249.000.
Higgins, Thomas Sengel; and Ross, Camilla Brems, 4,096,282, Cl
\(426-140.000\).



Rothauser, Ernst Hans; and Wild, Daniel. to International Business



Rouse. William W. Angle cutting guide. 4,095,500, Cl. 83-762.000. Roussel Uclaf: See-
Allasis Andre: Meier, Jean; and Deraedt, Roger, 4,096.260,
422 ,
Roussel, Abel: See




wland Michatel Charres: See-
Gurnell, Pheliphi
357-30.000.
357.30 .000 .
Roy, John R.: Roy, Stephen; Roy, Mary L.; and Mooney, Daniel \(T\)., to
Airck Corporation. Air pollution control device. \(4,095,514\), Cl

Rirres
gos. 58.000
Ros. Mary
Roy, Mary L.: See-
Roy, John Roy, Stephen; Roy, Mary L.; and Mooney, Daniel
I......55,

Ruben, 5 ol, to R Rettner, Richard G . a part interest. Construction of a
fitted corner for a bedcover. \(4.095,300\). Cl. \(5-334.00\).

 Ruckdecchel. Hermann; and Rambold, Thomas, to Siemens Aktien-
gesellcschaf. Intergatec circuiud data handing apparatus for a data
processing syiter

4.066.565. Cl. 364 200.000.
Rudakov. Anaty Alexevich See-
Matverv, Felix Arevedicvich; OrIo

Rudolph, Stephen Edward; and Glowaky, Raymond Charles, to Sher-

Ruetenik, Roger Ray. to
\(4,093,561\), Cl. \(119-29.000\).
Rupp. Waslere; and Finke, Manfred, to Hoechst Aktiengesellischaft. Process for the simultaneous preparation oc 2,5 -dioxien 1.12 .2eselischathaft.
pholes.
544.00 Y . Russell, Dennis A. See-
Sargent. Charies L.;

Rutledge. Thomas F., to 1II Americas Inc. Oxidative coupling o
alkyphenols catalyzed by metal ammonia complexes. \(4,096,100\),
568 .
Sk8.-73.0.000.
Rutz, Richard \(F\)
Rutz, Richard Frederick, to United Slates of America, Air Force.
Fabrication of an epitaxial layer diode in aluminum nitride




mining machines. 4.095,478, C1. 74-229.000.
Ryobi. Led.: Sees.
Morishite, Yasomatsu, 4,095,756, C1. 242-84.20G
 device. \(4,096,435\), Cl. 324.122 .000 .
Sackett Mavin Elmer. Writing instrument. \(4,095,906, \mathrm{Cl} .401-48.000\).
Sedanobu Sugimoto. See-
Noohikik. Hobara Katsumi, Hori; and Sadanobu, Sugimoto,
\(4,095,338\), Cl. \(30-276.000\). Saferstecin, Albeet. Worrkour device for tennis having a variable speed
control. \(4,095,787\), Cl. \(273-29.00 \mathrm{~A}\).



Saito, Hiroshi, to Kyodo Printing Co., Lid. Method of tion of a patteren from a master. 4,096,288, Cl. 427-24.000.
Saito, Junichi: See-

 using the same. 4,096,286, Cl. 426-577.00
Watanabe, Masamichi; Nakahara, Takuo; Sakamoto, Seiji; Bizen,
Kunio, Yano, Akikazu: and Otani, Yuzo, 4,096,109, Cl. 260 , Kunio: Yano, Akikazu: and Otani, Yuzo, 4,096,109, Cl. 260
40.00.
Yasuo: See-





salomon, Georges Pierre Joseph, to Etablissementes Francois Salomon Salvaid. Jaterty ski binding. \(4,095,821\), Cl. 280-628.000.

 Samuel Moore and Company: See-
Stine, Clifford Rillin Herber, William J.; and Klipec, Bruce E. Stine. Clifford R.: Herbert, William J.; and Klipec, Bruce E.
4.0.36. Cl. 17 . Sanada, Takamasa: See
Ohtake, Sada; Hayashida Shiyyij; Sanada, Takamasa; and Terai,
Shigeki, 4,095, 748 , Cl. \(239-19.300\).




anyei Electronics, Corporation: See-
Sabe. Ichire. 4,096,435, Cl. 324122.000 .
Sanyo Machine Works, LLd. See
Hashimoto. Hiroshi; and Mori, Kinye. 4,095,325, Cl 29.407.000.
vean, Archibald, to Wingard Limited. Exterior rear view mirror for
Sargent, Charles L., Coviello, Allan J.; and Russell, Dennis A.i, to
Thetford Coproration. Volume displacement rod and holder
\(4.096,067\) Co
Thetford Corporation.
4.096.067. Col. 120.252 .000 .
Arkinen, Veli: See-
Ahonen, Heikki; Lindroos, Jari; and Sarkkinen, Veli, 4,096,045, Cl.
204, 117.000.
Coron Engineering:


mea Digital Electronic Automation S.p.A. Position trancsucer, for
machin tools and measuring machines. \(4,096,384\), Cl. \(250-237.00 \mathrm{G}\).




tomi, Toyokazu, to Ricon Company. Lid. Drum cleaning method
and appartuz for electrostatography. \(4,095,980\), Cl. \(96-1.40\).

unders, Howard E.: See-
Croop, Edearar J. Saunders. Howard E.; and Westervelt, Dean C.,
4,095,557, Cl. \(118-301.000\).
 Saxon, Roberra; and Thelin, Jack Horstmann, to American Cyanamid

 ment apparatus and method. 4.095.795, Cl. 273-143.00R.
Scarte. Arhur to Flethher Sutcifice Wild Limited. Mine roof supports.


 Cl. \(36 .-93.000\). and Melin, Hans, to Dynamit Nobel Aktiengesell-
schaft. Procracs,
sor the the rod
 Marrin, to
4030.16.000. Schaper. Dieter, to Daimler-Benz Aktiengeseclischaft. Longitudinas
bearer for
 herces \(4,096,145\), Cl. \(260-281.0 G \mathrm{~N}\).
tiven


8.138.000.
cherr. George H. Immunological test procedure. 4,096,138, Cl


 Schilte. Hank
\(53-329.000\).
Schlaceppi, Fernand: See-
Dellian, Kurt A:
Schloeman-Siemag Aktien gesellschant: See
Gipprich, Theodor \(4,055,48, \mathrm{Cl}\). \(72-238.000\).
 Hermann; ' Kamp. Wulff Dicks, Manfred; and Plajer, Otto,
4,095,927, Cl. 425 S25.000.
Schlueter, William L. See-
Courson. Thomas S. Schueter, william L.; and Kelly, Thomas T
4.009, 358, C. \(37-90.000\).
Schlumberger Technology Corporation: See-
 Viechnicki, Dennis
IS6-616.00R
midlofor. Richard: See

\(\begin{aligned} & \text { 23-260.000. } \\ & \text { Schreck. Harold J. See- } \\ & \text { Rockerat, } \\ & \text { J12-147.000. }\end{aligned}\) L.; and Schreck, Harold J., 4,095,538, Cl. Mreck. Harol, J. See-
Rockerath John L.; and Schreck, Harold J., 4,095,538, Cl.
Il2-47.000.
Schreder, Paul R.; and Proebsting, Robert J., to Mostek Corporation. Schrocoder, Paul R.; and Proebsting, Robert J., to Mostek Corporation.
MOSET buffer for TTL logic input and method of operation.










 making power transmission belting. 4,095,48,

Scowarz, Francisc C. Controllabbe four quadrant a.c. to a.c. and d.c.
converter emploving
converter employing an in
4,096.557, \(1.363-9.000\).
eulon, Jean-Marice Schweisguth, Bernard; and Cognaaq, Jean-
Claude, \(4,096,270\). Cl. 424266.000 .
grasping apparatus. 4,095,706, Cl. 214 147.00G
Schwien Paul A. See
schwien Harold B. and Schwien, Paul A
Schwiwn, A.erold B.; and Schwien, Paul A., 4,005,706, Cl. 214
147.00 G .
SCM Copporation: See-
Mcinniss \(V\) Vincent Daniel, \(4,096,105, \mathrm{Cl}\). 260-29.6NR.
Scorpion, Inc.: See- P . \(4,095,479, \mathrm{Cl} .74230 .17 \mathrm{E}\).
Ludbers,

Teievision receivers. 4,096,524, C1. 358-85.000.
 ibiber, Alibert w. Stock feeder for punch presses. \(4,095,733, \mathrm{Cl}\).
Scribner, Alber
226-162.000.
Scriven, Eric
Scriven. Eric Thomas: See-
Wohrl, Josef. 4,095,463, C1. 73-141.00R

 Schmidt Industries. Inc. See-



 Schmidd, Robert Rudolf; Eue, Ludwig; and Rohe, Lothar, to Bayer
Aktiengesellschat. Herbicidal composition of particular triazinore


 Sthe-stage nitration process for preparing 4 chloro-3,5-dinitrobenzo-
trintuord from 4 chlorobenzorifluoride. \(4,096,195\), Cl. \(260-646.000\). Schnell, Hermann: See-
Lenz, Gunher, Meren, Josef; Krimm, Heinrich; Kassahn, Horst-
Gunter; and Schnel, Hermann, 4,096,200, Cl. \(260-899.00\) R.
 Hanson, Larry E.; Schober, Raymond F., Jr.; and Alexander,
Mewin \(\begin{aligned} & \text { 4.069,428, Cl. } 320-2.000 \text {. }\end{aligned}\) Schol, Hans-Peeter: See-


 for a recorded thre--line sequential color television signal. 4,006,514,
 tal Corporation. Quick insen
\(4,095,466\), Cl. 73 -21 5000 .

 ocen, Franciscus J. H. M. and Timmermans, Andreas P. H. Min,
ocevger der rrinten N.V. Method and means for preventing edge
shadow effects during episcopic exposure of an original. \(4,005,895\)



eiwell, Linda P., to Du Pont de Nemour, E1., and Company. Prepa-
ration of p-aminobenzorifuoride. 4,066,185, Cl. \(260-581.000\).
ration of p-aminobenzotrifluoride. 4,096,185, C1. \(260-581.000\).
Seki, Shojiro: See-
Hagiwara. Taro. and Seki, Shojiro, 4,

 4, 4,996,143, Cli. 5442.237.000. suo; and Nanna, Takanori, to Citizen Watch Company, Limited.
Driver circuit for electrochromic display device. 4,096,412, Cl.



Senese, Frank J., to Alantic Richfield Company. Apparatus for re- Shimomura, Raijil See-
moval of lubricating composition and methods. for using
Shimomura, Raiji: See-
Kasai, Maso, Kato, Kanij, Matsumura, Yasuhide; Talkeyasu,
Kiyoo; and Shimomura, Rajij, 4,095,481, Cl. 74469.000 .



Seragnoli, Enzo, to G. D. Docieta per Azioni. Device for guiding and
holding
from a cizarete batche in
 Servas, Francis Ma
Cl. 20. 12 ani.000
Selo. Yoshito: See-
Sero Yombito: See- Minory, Honda, Juntaro; Nagasaki, Katsumi; and Seto,
Yamemoto
Yoshito, 4,095,433, Cl. 6145.00 C .
Yamemoto, Minon: Honda, Juntaro; Nagasaki, Katsumi; and Seto,
 Shaser, Domald E.,
Cl. \(346-110.00\) R.
Sallenberger, John M.: See-
Mayers. Josenh B.: Desmarchais, Walter E.; and Shallenberger.
John

Shank, Charles Vernon: See-
Haus Herman Anton; and Shank, Charles Vermon, 4,096,446, Cl.
331 . 94.50 Cl .
Sharonov, Vyacheslav Vasilievich: See-
Possavnicher,
Ivanovich;
Gladatimir
Gdan

Vasilievich, 4,096,069, Cl. \(210-342.000\).
Sharp, Colin Keith. See-
Brown, Kan
Trancis; and Sharp, Colin Keith, 4,096,425, Cl .
\({ }^{318.566 .1 .000}\).

Sharps AAshciatec: See
Ghosh. Anil
424.256.000. Chandra; and Razdan, Raj Kumar, 4,096,265, Cl.
Shechan, Dennis Patrick: See-

Corporation. Electronic engine
tion. 4 . 0 S 5 , 50 , Cl. \(123-119.0 \mathrm{EC}\).









 Sherwind Williams Company. The: See-
Rudolph Stephen EEWard; and Glowaky, Raymond Charles,
4,095,992, Cl. 106 -213.000.

 Cherny, Viwly Nikolevevich; Danchenkoo Valentin Alikolecevich; Johnson, Ralph E., 4,095,539, Cl. 112-184.000.
 Vinogradov, Fedior Terentievich. Method and rolling mill for contin- Klebe, Elmer C.; and Greene, Edward N., 4,095,375, Cl. 51 Shous tube rolling. 4,0055,477, C1. 72-208.000.

Shibata, Toahihiro: See-
Minazguz Motonobu; Kubota, Naohiro; Shibata, Toshihiro, and
Suribuchi,


 \(336-100.000\).
Shimee
Yourre, 1850


2s2.-310.000.
.
Shinohara, Hiroshi See-
Waku, Toshihiko; and Shinohara, Hiroshi, 4,096,452, Cl.
i16,
Waku, Toshihiko; and Shinohara, Hiroshi, 4,096,452, Cl. 331 -
It.
Shinohara, Toshio; Arai, Masatoshi; and Ichinohe, Shoji, to Shin-Essu
Chemical Co., L. Process for the preparation of halogenosilanes
4.096, 161 . Cl. 260 . Chemical Co.. LAd Process
4.096, \(161, \mathrm{Cl} .260448 .20 \mathrm{P}\).








Cl. \(242-192.000\).
Shuk. Lowell ... United States of America, Energy. Method for
increasing the calorific value of gas produced by he in situ combus-







Silverman Machines Company: See- Silverman, Seymour; and Ng, Kwan Hong, 4,095,537, Cl.
vili-121.290.

Silh, Robert L., 4,096, 163, C1. 260.49.00R.
silvestri, Giovanni. Gear tooth alignment by strain. 4,095,323, Cl .
29.159.200.

Delvin Pl. See-
Anis, Russell K., Jr.; McKinney, John \(W\)., Jr.; Schenck, Robert

Cl. \(112-210.000\).
Klebe. Elmer C .; and Greene, Edward N., \(4,095,375, \mathrm{Cl}\). 51 -

Singer, Hans S. Yamn tension device. 4,095,757, Cl. 242-151.000.
Sinhuber, Deelef: See-
Neumann, Gerhard Max; and Sinhuber, Detlef, 4,005,965, Cl.
55.270 .000 .
Sioux Xteam Cleaner Corporation: See-
Finger, John \(\mathrm{F}, 4,4095,563\), Cl . \(122-235.00\) R.









Slawzon, Renneth Leonard, to Houdaille Indussties, Inc. Mechine 1001
connol system nnd method. 4,096,563, C1. \(364-107.000\).


\(73-368.000\)
Sliner, Keith Herold. Rotating cooking spatula. 4,095,832
and

Slominski, Leo J.; and Rau, Thomas A., to MacDermid Incorpolazod.
Apparatus and method for automatically maintaining an electroless


Smith, D.ide W. Sea
Feldman, Julian; and Smith, David W., 4,096,149, Cl. 260-299.50A.
mith Earl Ford: See-
McRes,
329-1 12.2000 Dix; and Smith, Earl Ford, 4,096,442, cl.
Smith, Franklyn D. Snap-in flange seal. 4,095,809, Cl. 277-180.000.
Smith, Harris L . Straight edge assembly. \(4,095,345, \mathrm{Cl} .33-80.000\).
Peters, Gordon L. and Smilth, John R., 4.095,544, Cl. 113-120.00A.
Smith, Marjoric An M. Traile frame. 4,09; 818 . Cl. 280.789.000.
Smith, Marjoric Ann M. Trailer frame. 4,0.05,818, Cl. 280.789 .0000 .




Smith, Walter
Smis. \(\mathbf{4}\).
mith Willian
mith, William E. L.: See-
Looney, Robert Be; and Smith, William E. L., 4,096,042, Cl.
2041.50.


Lantos, , ivan, 4,096, 247, Cl. \(424-1800.000\).
Lantos, Ivan,


Farlow caril Pel Surtherland, Joel P.; and Snow, William E.,
\(4,095,643, \mathrm{Cl} .164-301.000\).
Snyder, Richand V.:.tit Harvard Industris, Inc. Low pass harmonic
Snygg, Keijo Kalevi; and Korkolainen, Aarne Johannes, to A A. Ahl-
strom
2429.6 Oakeyhio. Rider roll assembly in a winder. \(4,095,755, \mathrm{Cl}\).
242-66.000.
Socievi italiana Resine S.I.R. S. S.A. S. See-
Verde, Leigi, and Ricardi, Roberro, 4,096,320, C1. \(526-72.000\).





See- Bodson, Fernand Jacques Joseph, 4,096,233, Cl. 423-101.000.
Societe Francuise des Echafaudages Self-Lock: See-


Chenet Jecquese \(\mathrm{L} .4 .095,567\), Cl. \(123-103.00\).
Societe Ind ustrielle d'Eudes et de Realisations Scienifiques S.I.E.R.S.:
See- Benon, Gabriel. 4,095,476, Cl. 73.747 .000 .
Sociect Nationale Elf Aquitaine (Production):

Sociece Technique Pour L'UUUilisation De La Precontrainte: See-
Harvey, John Terence Crawford, 4,095,36, Cl. 29-17.000.

Societe Wichard: See-
lsaard Cirrard, 4,095,416, C1. 59.86 .000 .




Waku Corportion: See-
116.00R. Yammden Yukio; Ishikawa, Yoji; and Sakai, Koichi, 4,096,531, Cl.
Southern California Edison Company: See-
Jones,
4,095,928, Cl \(431-8.000\).




Sectra-Strip Corpor A., 4.095,747, Cl. 239-288.500.


138-103.000.
Christy, Mark H.; and Spencer, Lloyd, 4,095,74s, Cl. 239-109.000. Spencer, Peul Anthony. to Arado Electronics. Metal detector3 for
discriminatory detection of buried metal objects. \(4,066,432\), Cl .
324.3 .000.
Serry Rand


remaine, Brian P.; and Mendenhall, Charles E., 4.096,426, Cl
3 . 18.61 .000.
Siegelberg. William D., to TRW Inc. Forging compound. 4,096,076,
Ci. 252 ,
Siw 20.000 .
C. 2222.30 .000 .
Spiwak, John J . See-
Skubon
kubon, Michael J. . Spiwak,
\(4,096,293, \mathrm{Cl} .427-134.000\).
Square D Company. See-
Brugner, J.i. Frank
S. \(4,095,977, ~ C 1\).
s.ehle, Hermann: See-

Hermann; Kamp. Wulf; Dicks, Manfred; and Plajer, Otto,
4.095.927, C1. 24S.25.00.


Stal-Laval Turbin AB. See-
39.09F.
Stambugi, and Torstenfelt, Ragnar, \(4,095,418, \mathrm{Cl} .60\)

Stambaugh, Edgel P.; and Chauhan, Saty P. P., to Battelle Development
Corporation. Fuel separation process. 4,095,955, Cl. 441.100 .


Swakon, Edward Antone,
Sundard Too \& Manufacturing \(\mathrm{Co}:\) See-



Staritutchins, Walterer J., \(, 0,095,635, \mathrm{Cl} .145 .-33.00 \mathrm{D}\).
Cl. 73-101.000.
uniform diameler Atauf Corporation: See-
Hermand
and
Hartmann, Erich, 4,095,327, Cl. 29-509.000.
Stuuffer Chemical Company: See-


Stavenauus. Hinrolid L., to Truth Incorporated. Window lock. 4,095,827,
Cl. 29265.000 .
Stecel Chemicals Co. Ldi.: See-
Kruger, Gunther, 4,006, \(142, \mathrm{Cl} .260-239.55 \mathrm{R}\).



envelope assembly and method of making. 4,095,695, Cl. 206-610,
Steiner, Peteres. Sece
Gutterman, Carl; and Steiner, Peter, 4,095,953, C. \(23-277.008\).
Gutterman, Carl; and Steiner, Peter, 4,095,953, Cl. 23-277.00R.
Stephenson, Alvis Doyle, Jr:: See-
 \(\xrightarrow[\text { Sterling Drug inc.: }]{\text { Cl }}\)



Stevention, Michace Keith: See-
Wren, John Pelham; and Steventon, Michael Keith, 4,096,419, Cl
318.138 .000 . Method of making decorative candles. 4,096,299,

Clemart William E. Method of making decoraive candes. 4,006,20
Stieff, Lorin R.: Pruitt, Charles L.; Ulrich, Reinhard R.; and Houck,



Moore and Company. Wire and cable. 4,096,346, Cl. 17436 . 10.000 .
Stitt Thomas Detlor: See- Stiley, Ronald Bary; Stit, Thomas Detlor; and Williamson, Den-
nis . Ronald Barry; Stitt, Thomas Dell
nis Fracis 4006,423, cl. 318.8370 .000 .
Stolley, Dietercis See-
Lemburg, Jom-Uwe; and Stolley, Dieter, 4,09s,623, Cl. 140-92.700.
Solteman, Donald D: See-
Sherfer, Timothy K.; and Stoltman, Donald D., 4,095,570, Cl.
123-119.0EC.


Stone, Orison W., 1 P Pollatch Corporation. Multi-partitioned carto
4.095, 735, Cl. \(229-39.00 \mathrm{R}\)
Storlie, Llewelilyn O.; and Beatry, James F. to Deco. Products Com
pany. Offcenter locking handle. 4,095,445, Cl. 70.215 .000 .
 flooding employing cross-linked
trol. 4,096.074, Cl. \(252-85 \mathrm{D}\).


Stoy, Vladimiri; Wichterle, Otoo; and Stoy, Arur, to Cestoslovenska
akedemie ved. Sof contact lens from a macromolecular block

\[
\begin{aligned}
& \text { Strapex AG: See AGer } 4,096,019, ~ \mathrm{Cl} .156-444.000 . \\
& \text { crebman, }
\end{aligned}
\]
 Corning Fiberglas Corporation. Moldable compositions comprising
theromesting polyester resin and thermoplastic resin. \(4,996,102\), C1.
\(260-22.00 \mathrm{D}\).


 ture, contuining a branched chain dodeceyl isomeric mixture of (dode-
cyl-hydroxyphenyl)-benzo-triazole and a heat or light sensitive mate-cyll-hydroxyphenyl) bbenzo-triazole and a heat or light sensitive mate-
rial. \(4.096,242\), ci. 42459.00 .



536.91.000.
Stuhmer, Werner: \(S\)

Suhmer, Werner: See-
Mik ownski, Wolifgan; Budden, Renke; Funke, Siegfried; Husc-
hens, Rolf; Liepmann, Hans-Gunther; Stuhmer, Werner; and



David M.. \(4,095,981\), Cl. \(96-48.0 \mathrm{PD}\).
Suda, Masashi: seej
Katayama, Hajime; Torigi, Akiyosh; Suda, Masashi; and Hoshino,
Osamu, 4,099.577, Torigu, Aki, 3554.000 .
Sueda, Noriyoshi: See- Sueda, Noriyoshi; Himoto, Sizuo; Yoshino,
Kogure Kasura,
Youziro; and Nakagawa, Kunio, 4,096,338, C1. \(560-59.000\),

Tadao, to Fuyit Photo Film Co., Led. Development inhibitor releasing
coupler and photographic element containing same. 4,095,984, Cl.
\(96-100.00 \mathrm{~N}\).

Monte, Salvatore J.
40.0.R.
Mugina, Kazuo: See-


Yasutoshi; and Hatayama, Yoshio, 4,096,096, Cl. 252 466.00J.
Sugiswa, Ko See
Sakakakibara, Sakuichi; Sugisawa, Ko; Matsumura, Yasushi; and

ugita, Terumitsu, to Seiko Seiki R Kabushikh Kaisha. Method to compen-
sate infeed for the error cuassed by the outer diameter error of
workpiece
workpiece in a centerless internal grinder. 4,095, 377, Cl. \(51-290.000\).
Suido Kiko Kabushiki Kaisha: See-
Hashimoto
\(210-44.000\).
Sukhanov, Donat Konstantinovich; Blinov, Sergei Ivanovich; Bogol
 Popova, Evgenia Nikolaevna. Hoisting me
310.6.0.00.
umitome Chemical Company, Liniter
Nake



Noguchi, Masaakid, Sumiyoshi, Masaharu; Tanaka, Yukiyasu; and
Tanaka, Taro, 4,095,565, Cl. 123-132.0SP.
dblad, Yngve Allan: See-
Agerhall, Kurt Roland; and Sundblad, Yngve
Agerhall, Kurt Roland; and Sundblad, Yngve Allan, 4,096,471, C
304-146.10R.
undheim, John. ., to John J. Sundheim Family Estate. Apparatus for
cleaning a carpet. \(4,095,309\). Cl. 15-320.000. Cleaning Akaio: Watanabe, Yoshiaki; Ito, Fumió; Mashimo, Yukio
Date, Nobuaki, Date, Nobuaki; and lio, Tadashi, to Canon Kabushiki K aisha. Yhoto
graphic camera having electromagnetic diaphragm control graphic Camera having
\(4,066,493\). Cli. 33438.000 .
Surkov, Viktor Georgievich:





Takahash, Nobuaki; Suzuki, Fujio; and Ohba, Katsuhiro
4,096,360, Cl. 179-100.4ST.
4,096,360, Cl. 179-100.4ST.
Suzuki, Toshio: See-
Marumoto
 Suzuki, Yakanoni; and Mamamura, Mentronise To Mano Shibaura Electric Co
Lid. Monolithic semiconductor, mask


Beraflind. Benkict: and Ohlsson, Olov, 4,095,634, Cl. 144-317.000.
vensson, Lennark: See-
 Zabava, Jury Grigorievich; Kogan, Rem Naumovich; Barabash,
Ivan Mikhailovich; Sviditsky, Tadeush Valentinovich; Dzhan Alievich; Braslaviskaya, Elvira Alencenowich; LLaric,
 Viktor Fedorovich; Rodnyansky, Ilya Grigorievich; Skoriko Surkov, Vikior Georgievich, \(4,095,446\)
Cl. \(72-88.000\). Svoboda, Joserf: See-


weany, Louis P.; and Burk, Michael T., to P.R. Mallory \& \(\mathrm{Co}^{\text {. }}\) In
High output smoke and heat detector alame
High Lutpur smoke and heat detector alam system utilizing a piezo-
electric ransducer and a voltage doubling means. \(4,096,473, \mathrm{C}\)
\(340-237750\)
wiecicki, Bronislaw Tennis racket with tensioned one-piece ball-strik-
ing frition imparting grid. 4,095,990, C1. 273-73.000.
wifft. Harold E. See-

Swikik. Rolf: See-.
Woischella Heinz; Reuter, Wolfgang; and Swik, Rolf, 4,095,759,
C.1.24417.170.
Sybron Corporation: See-
Shibe, Willian \(\mathrm{J}_{\text {., }}\) Jr.; and Wood, William, 4,096,089,
Sycor. Inc.. See-
Butsch, Otto R., 4,096,537, Cl. 360-106.000
Syter Coporation.: See-ent, John S., 4,096,239, C1. 424-21.000
Katz Martin; and Kent


T \& Frind Instries. Inc. See- Se9,
Frandsen, Warren E., 4,095,606, Cl. 131-140.00R.
Tachin. Tomio. SSe-
Ando, Masamoto and Tachin,










Takahiro, Sugiyama, to Asahi Kogaku Kogyo Kabushiki Kaisha. Miniature and large aperrure retrofocus wide-angle photographic lens.
4.095.873. C. 3 30 Takara Co., Ltd. See-

Tecumseh Pamoducts Company: See-
Farr Janes A. \(4,095,922\), Cl. 417.313 .000
Ted Bidd

Takata, Toshihiko: See- Wads Toller systems. \(4,096,576, \mathrm{Cl} .364602 .000\).
Wada, Toshyya; and Takata, Toshihiko, 4,096,000, Cl. \(148-27.000\).
Takeda, Shinicit See-
Fuiti, Takke


Takeuchi, Shigeo, to Beaty Hanbai Kabusthiki Kaisha. Oil changer
4.005, 67 , 1.184 .1500



85.00G.
Talmadge, Paul Conway, to Perkin-Elmer Conporation, The. Adaptive

Method of producing magg
\(4,096,16\), Cl
48.457.000.






 4,095,405, Cl. 58 8.00A






Tanaka, Yukiy ysu: Seee-
Noguchi, Massaki; Sumiyoshi, Masaharu; Tanaka, Yukiysusu; an
Tanaka, Taro, 4,095,565, Cl. 123/32.0SP.
Tano. Eiichi. See-
Kawasaki, Masahiro; and Tano, Eiichi, 4,096,494, Cl. 354,
Tarburron, Robert Baxter: See-
Gaspar, Richard Allen; and Tarburton, Robert Baxter, 4, 4, 095,780,


Akiko, 4,096,255, C1. 424246.000 .
Thagard Techology Company. See
Matovich, Ed Win, \(4,095,944\), CI. \(75-0.50 \mathrm{~B}\)
Theewwes, Felix: See-
eeuwes, Felix. See-
Zaffaroni, Alejndro; Michaels, Alan S:; and Theeuwes, Felix,
4,096,238, Cl. 424-15.000.



Tektronix, Inc. See See
Drummond, William Seth, 4,096,455, Cl. 333-30.00R.
Drummond, William Seth, 4,966,455, \(\mathrm{Cl} .333-3 \mathrm{c}\)
Iedyne Industries. Inc.: See-
Isley, Walter F., \(, 0,095,966, \mathrm{Cl}, 55-134.000\)
Teleydece Ryan Aeronautical Division of Teled yne Industries, Inc.:
See-
See-
Port, Donald MCChesney, 4,095,528, Cl. 102-49.800.
Telefinex Incorporated: See-
Tschank Augus E.; and Geiger, Robert W., 4,095,598, Cl.
128-214.400.
Telefonagtiebolaget L L M Ericsson: See-
Agerhall, Kurt
\(340-146,10 R\)
Agerhalit. 10 .
3. James; Daink


Ohake, Sadao; Hayashida, Shiyuji; Sanada, Takamass; and Terai,
Ohial

Teramachi, Hirishi. Bearing assembly for a sliding rectilinear motion.
\(4,095,84, \mathrm{Cl} .308\)-6.000






 Thermo Industries,
Thermo Industrises. Inc.: See-
O'Brien, Roerr C., 4.005. 290, Cl. 2-9.000.

Thetford Corporation: See- CI. 220.400
Sargent, Chatres: Lee- Coviello, Allan J.; and Russell, Dennis A.,
\(4,096,067\), C1. \(210-252.000\).
Thibodeau, Raymond Jon; and Burchell. Edward V., to Conwed Cor-
poration. Backing for tufted carpet of a thermoplastic net and plural-
ity of fibers. 4,096,302, t1. 428.95.000.




ration. Machine for producing spherical objects. 4,095,3/3, C1.
Thomas. Herbern J., Jr., 10 Holland Wire Products, Inc. Coil spring
 Thompson, Devid F.: See-
Mouton, William
415.7 .000
 Thompson, James O.; and Silation, Winston, D., to Thompson \& Slation, Inc. Transparent automobile top. 4,095,841, Cl. 296-137.00B.
Thompon \& Salton, Inc.: See-
Thompison. Jemes 0 . Thompson, JJmes O. , and Slatton, winston D., 4,095,841, Cl.
296-137.00B.
 252-173.000.
Thomsen. Wibur J. Fastener for securing a shaft to a plate. 4, 4, 095,914 ,
C1. 403.389000 Cl. 033 . 8189.000 .
Thomos.CSF:

Cousso, Gerard; and Menager, Olivier, 4,096,456, Cl. 333-72.000.
Thomon, Douglas Kile Sec.
Mancini, Ronald Alfred; and Thomson, Douglas Kile, 4,096,383,

Thorm Electrical Industries Limited: See-
Renby, Peler Whiten; and Hobbs, Doreen Yvonne, 4,096,088, Cl.
Thorrhill Fi. Frank' Warburton. Suspension means. 4,095,822, CI.
280-772.000
Thoman, Leonard A. Photographic developing apparatus employing





Timmermans, Andreas P. H. M. See-
Seetien, Franciscus J. H. M.: and Timmermans, Andreas P. H. M.
4.009, 895 , C1. 355.77 .000 . 4,095, 895 , Cl. 355
Tinoc., Eward A. See
Anderson, Ardell J. Anderson, Arde
Robinson, Ro
244.135.00A.
244135.00 A. and Tinoco, Edward N., 4,095,761, Cl. Titmus Eurocon Kontakktlinsen GmbH \& Co . KG: See-
 Phase ac. vacuum circuit breaker. \(4,096,366, \mathrm{Cl} .200-144.00 \mathrm{~B}\).
Weiel. Erwin and Svobode, Josef, 4,095,814, Cl. \(280-618.000\).
Toida, Ryvii, to Okum Machinery Works Lud. Reading sysiem for
code diak analog-todigital converter and an absoluce value detector.
\(4.096,476\)
4,096,476, Cli. \(340,347.001\)
Tojo, Toshinhiko: See-

Tokico Lld. See- Seali, and Azuma, Tomizo, 4,009,509, Cl. 91-369.00B.
Tateone Kiyohi,

Mesuo, Tetcuy, 4,095,738, Cl. 235-309.000.
Toky Shibura Elecric Compeny, Limitod: See-
Goto, Eizo, 4,096,405, Cl. 313-174.



425-57.000.
Tomiti, Umbert. Sucking tube in combination with a can. 4,095,710,
C1. 220.90 .200 .
Omy Kogo Co.. Inc.: See-
Kanno, Hideyuki, 4,095,792, Cl. 273-85.00R.
 Akilo, 4,096, 255, Cl. 424246.000.



Tanaka, Chiakj; Nakajima,
\(4,096,126\), Cl. \(260-75.00 \mathrm{R}\)


Yasuike, Akio; Odagiri, Tsutomu; and Toshibe Machine Co. Lim-
ited \(4,069,211\), Cli.
Cit
Townsend, Loren R,. Epp, Morris E. End Schmidh, Waler J. Pneu-
matic side roll mover. \(4,095,613\), Cl. \(137-344000\).






Kobayashi, Nobuyuki; and Kawai, Mitsuo, 4,096,050, Cl. 204 -
19as.o.s.
Masto Shinichi; Miura, Hirohisa; Uchida, Kiyoshi; and Ot-


Trame, Charles Edward, to Everorite Electric Signs. Inc. Tape holding
mechanism for display devicc. 4,093,399, Cl. \(40-46.000\).




Trepow, Wollfam: See- 31.000
Wurmb, Roll



 Treuner, UWe D.: See-
Mreuer, Hermañ; and Treuner, Uwe D., 4,096,329, C1. 544-21.000.
 Trinchiefi, Mariog...to Honewwell Information Systems Inc. Appara-
tus for the multiple detection of interferences. 4,096,561, Cl . 364.200 .000 .
Trouvay \(\&\) Cauv

Trouvay \& Cayvin: See-
Lassarat, Yve Albert Robert, 4,095,335, C1. 29-726.000.
Leth Incorporated. See-
Stacn, \(, 427, \mathrm{Cl} .292-65.000\)
Savenau, Harold L.



Tsuchiya, Masato: See-
Koda, Kazuo; and Tsuchiya, Mesato, 4,095,457, C1. 73-53.000.


 Limited, mnd Hayashibara Biochemical Luboratoricemi, Inc. Prompenyy,
coasitig. material for lithographic printing plate. \(4,095,525\), Cl.
101465.000 . 101465.000
Tsunazawa, Yoshio, and Nishide, Masenno, to Shimadzu Seiseskusho
Ld. Wavelenght driving device for use in monochromators. Tunazawa, Yoshio, and Nishide, Masenno, to Shimadzu Seisakusho
Led Wavelengh driving device for use in monochromators.
\(4,095,897\), Cl. \(356-100.000\).

 Cl. 106-52.000.
Tubaki, Hachir: See_
Shinozaki,


 Tuma Alois Vcalkv, Harwood, Leopold Albert; and Groeneweg,
Willem Hendrik to RCA Corportion. Average beam current lim-

 Turuer, Rooe. Eggs slicerer 4,095,339, C1. 30-279.00R.
Tyre, John Hartison: See
Tyre, John Harriison: See-
UUion, Kenar Emerion; and Tyre, John Harrison, 4,095,636, Cl. Union K. Kenard
S 5 S2.00A.
Uch
Uchide, Kiyoohi: See-
Mataumot, Shinich; Miura, Hirohiss; U.hida, Kiyoshi; and OT-
unk
 \({ }^{\text {andechbling }}\) 29-627.000.
Uchion, Misoo: See-
Seliya, Fukuo; Ebihara, Heihachiro, Uchino, Misoo; Nishimura, U.

 424.251.0h. Method of advancing a plurality of longitudinally
Uemura Koich. Uemura. Koichi. Method of advencing a plurality of longitudinally
arranged movable constructional units forwardy
celf- unnocecaing manner and apparatus ior performing asme. \(4,095,43\),


Cl. 123-148.00E.
Ugine Carbene See-
Kieffer, Richard, 4,095,978, Cl. \(75-238.000\).

Uhi, Khuss: Sire Eryinding and measuring 4,095,374, Cl. ST-165.00R.
Cl. 427 -32.000.

Miner, Mark S.; and Crickmen, Charles \(W\) W., 4,096,480, C1. 343.
100.OEE
Rahmen
Rahman, Abdul R., 4,096,283, Cl. 426-242.000.
Stiff, Lorin R.; Pruitt, Charles L.: Ulrich, Reinhard R.; and
Houck, Frank S., \(4,095,872\), Cl. \(350-96.240\).
Energy: See-
Hyyes, David W., 4,095,471, C1. 73 -421.00B.
Loney, Rober, B.; and Smith, Williem E. L., 4,096,002, C1
2041.500.

Shuck, Lowell Z,, 4,095,650, Cl. \(166-256.000\).
Nationk Aeronutics ind Space Administration: See-
 4.095,593, Cl. 12 i -142.700.


S. Philips Corporation: See-, Ali. 315.158 .000

Aling, Willem, 4,096,411, Cl. 31515158.000 . Van der Leegte, Jooer


 20410500 M .
.
Fried, Donald L...40906,041, Cl. 202-263.000.

niversal Laser Corp.: See.
Foster, Jack D., \(4,096,44, \mathrm{Cl} .331-94\). SPE.
Foster, Jack D., 4, 4.06,44, Cl. 31 -94.SPE.

Uhlmmn, Willim T.: See-
Kistren, ferome Le: Aultz, Thomas R.: Lampl, John A.; and Uh1-
man, William T.,


\(106-308.000\).
Urich. Reinhard \(R\).




 424-226.000. Ellgen, Paul Clifford; and Bhasin, Madan Mohan, 4,066,164, C1.
2mi49.00R.
Smith, Oliver Wendell; and Koleake, Joseph Victor, 4,096,125, Cl.



Ker, Neil, 4,095,550, Cl. 114-295.000.
Unied States of America
United Sates of America
Air Force: See-

> C1. Company, The poph Bundy. Gordion
undy, Gordon L.; 4,096,339, Cl. \(560-61.000\).
Kelly. Robert
\(536-23.000\).
Nclson, Norman A.. 4,096,178, Cl. 260-520.00R.
Nelson, Norman A., 40066179, Cl. \(260-520.00\).

 Urakami, Funkehi. Device capable of suction-adhering to 2 wall surfice
and moving herealons. \(4,0055,378\), Cl. \(51-425.000\).
and moving therealong. 4,095,378, C1. \(51-425.000\).
Tanake, Junzo; Urashima, Chikro; and Kai, Toshio, 4,096,369, Cl. 219.10.5sD.
Urion, Kenard Emerson; and Tyre, John Herrison, to Leeds Truvel.
wear, 1 division of R Rapid. American Corporation. Bowling ball bag


Uility Productse Inc.: See--
Forristall, David .; and Wright, Allen C., 4,095,671, Cl.

aleron Corportion, The: See-
Cook
324-14enneth J.;
and Murray, Robert C., 4,096,436, Cl.
Cook, Kenneth J.; and Murray, Robert C., 4,006,436, C.
3024.142.000. Frank George; and Woerner, Paul Frod, 4,095,449, C1.
Ro.

Air Force: See -
Aberach
Rort B.; Preti, Edmond; and Rembold, John P.,
 \(x_{i}\)


 Viechnicki, Dennis J.; and McCauley, James W., 4, 966,02,
ISG6-6.6.0R.
Greer, Charles

van Aalten, Hendrikus Alouisius Antonius: Seeanasc, George A, to United States of America, Air Force. Apparatus for double-beaming in fourier spectroccopy. 4,095,899, Cl. 356106.05.

Murphy, Rendall Ee. Vanasse, George A.; and Stair, Alva T., Jr.,
\(4,095,00\) C. \(366-106.000\).

 san de Gent,
retaining in
\(53-159.000\).
53-1 199.000.

 4,096,049, Cl. 204, 199.00 M .
pany. Preparation of esters. 4,096,170, C1. 260465.00D.




van direr LLilly, Cornelis. Soil cultivating implements. 4,095,653, cl.






 an Klismpenburg, Marlo O... 10 Truth Incorporated. Window lock



\section*{an Noitra, bruce A: Ste}





 Veg-A.Mix: See

elisicon Chemica A Colporation: See- 1
 \({ }^{5} 5.9 . A\)




cechiocki, Dennis 7 : Sl Se-


Minli, Anthony \(T\). Apparatus and method for supporing and protect.







 ceased, ndd

Virginin Chemicielis Inc. Se- Sen
Viscosuirse S.A. Sece



 \({ }^{4,005,680}\) Ci. 1188.1156 .000 .



in 3. Weock, Heimart Electrical feedhrough. 4,096,352, C1. 174












 \({ }_{c}^{\text {cmann }}\), Peter;

Kice, Richard Set-






















Wasmuthe ETWurd \(\mathrm{H}:\) See-
 Watanabe Akira,



Watanabe, Masamichi; Nakahara, Takuo; Sakamoto, Seiji, Bizen,
Kunio, Yano, Akikazu; and Otani, Yuzo, to Mitsubishi Chemer Indictrics Limited Apolye Orani, Yuzo, to Mitsubishi Chemica 4,096,109, Cl. 260-40.00R
Ondac, Euichi and Wee- Wanabe, Masanori, 4,096,505, Cl. \(354-246.000\)
Watanabe, Yoshiaki: Sea-
astanabe, Yoshiakki: See-
Sunouchi, Akio Wanabe, Yoshiaki; Ito, Fumio; Mashimo, Yukio





21447 7.0 DAA . Pul; and Nelson, Donald Louis, to Dow Chemical
Webb, Benton Paul,
Webb, Benton Paul; and Nelson, Donald Louis, to Dow Chemical
Company, The. hermosetishe resins and frictional matcrials made
therefrom. 4,096,108, C1. 260-38.000.
 tration. Cooling system for removing metabolics hea
cally
ceber. Eeded spacessitit \(4,095,593\), Cl. 128.142 .700 .

 \({ }^{2} 249-88.2 .000\).
Weber, Kurt: See-
Rempfer. Hermann; Bosshard, Hans; and Weber, Kurt, 4,096, 154,
Cl. 260.327 .00 , Cechter, William J. Se
Wecher, William J.: See-
Kelly R. Rebert C.; and Wecher, William J., 4,096,324, Cl.
\(536-23.000\). Wegemund. Berrd; Gruber, Werner; and Galinke, Joachim, to Henkel
Kommanditgesellschaft auf Aktien. Anacrobically hardening adhe-


Weghaupt, Erich: See- Kuter, Heinrich; and Weghaupt, Erich, 4,095,333, Cl. 29-598.000.
Wehinger, Egbert: See-
Moller. Eike. Meng, Karl; Wehinger. Egberr; and Horstmann,
Harald, \(4,096,152\), Cl. \(260-307.00 \mathrm{H}\).
 \({ }^{\text {Inc. }}\) Inc. Process to pro
Weigell, Christian: Shee-
Schinid, Joaccimi, Bamberg, Woifgang, Gruner, Hartmut;
Schorm, Erhard;
and Weigelt, Christian, \(4,095,952, \mathrm{Cl}\). Schid, Joachim; Eamberg, Ehard; and Weigelt, Christian, 4,095,952, C).
23-2.060.00.,
Erwin; and Sobobada, Josef, to TMC Corporation. Heel holder.
 Weinberg, Norman Leuis, to Hooker Chemicals \& Plastics Corp. Elec-c-
trochemical hydroxylation of certain aromatic compounds. 4,096,044,
Cl. 20459.00R. Cl. 204.59 .00 R .
Weinberg. Norman
trochemical hydroxlation of certain aromatic compounds. \(4,096,052\),

 Weisbeck, Roland: See the like. 4,005,379, Cl. 52-29.000.
 Wenner, Vallentin: SeeWenner, Valentin: See- Chert. Chaveron, Michel; and Wenner, Valentin,
Badertsher,
4,096,586, C. \(1.3666-136.000\).
 Cesmer, Arden L. Die holder. 4,095,917, Cl. 408-239.00R.



Western Electric Companyy. Inc.: See-
De Anglo, Michacl anthony, \(4,096,043, ~ C 1 . ~ 20415.000 ~\)
Westervelt, Dean C. Se Se-
Croop, Edward J. Saunders, Howard E.; and Westervelt, Dean C Westerwalder Eisenwerk Gerhard GmbH: See-


 Croop, Edward J.; Saunders3 How ard E.; and Westervelt, Dean C.,


Mayers, Joseph B.; Desmarchais, Walter E.; and Shallenberger
John M., \(4,096,032\), Cl. 17.38 .000 .
Munson, Wiiliam A., 4,006,344, Cl. \(13-13.000\)

 hirlpool 17.0000 . 0 .
Linstration: See-
Linstromborat. William John, 4,095,439, Cl. \(62-344.000\).
icherre, Otto: See-
Sherre, Otto: See-
Stoy Vladimir; Wichterle, Otto; and Stoy, Artur, 4,095,877, Cl.
3Si-1
 idakaier, Walter: See- Widmaier. Walter; and Reicher, Kerl-Urich
Simon, Gunter; \begin{tabular}{l} 
Simon, Gunter; Widmaier, Walter; and Reichert, Karl-Urich, \\
\(4,096,224\), Cl. \\
\hline 26492.000 .
\end{tabular} idmer, Sanley W. W.; and Salchow, Berrard C., to Stanley Widmer
Associates, Inc. Quick disconnect C.B. anterna with a key locking

Rothauser, Ernst Hans; and Wild, Daniel, 4,096,355, Cl. 179-
Wild, E...nst to Elektrowatt AG. Hygrostat. 4,005,458, Cl. 73-73.000.
d, Peter: See-
Boller, Walter, Donati, Marco; Fingerle, Jurg; and Wild, Peter,
4,096.550, Ci. \(362-31.000\).


Wilkes, John B., to Chevron Reearch Company. Hydroformylation of
olefins using azoxy-dentated ligands. \(4,096,191\), Ci. \(260-632.0 \mathrm{HF}\).
 pany. Rigid -when-wet paperb
\(4.066,30\), C. 428.182 .000 .
4iletere Gorron L., and Hanauer, Richard \(H\)., to Rohm and Haas
Company Polymers containing anti-oxidant functionality. \(4,096,319\),

Willim H. Rorer. Inc.: See-

series of metal members. 4,096,300, C1. 421.292.2000
Williams, Arthu
114283.000 .

\(4,095,593\), C1. \(128-142.700\).
williams, Gwilym H. See-
Williams, Gwilym H. See-
Ashe. John
4,096,389, Ci.
Williams
Gwilym H.; and Sypal, Kenneth L.
L.





Pacco., Williame: Martin, Sr; and Wilson, David Bruce, 4,095,444,
cli. 68 -205.00R.
Windemuth. Erwin, Dahm, Manfred; Dietrich, Manfred; and Muller
Peere, to Bayer Aktiengeselllschaft. Process for the production Peter, to Beyer Aikiengesellechaft. Process for the production of new
polysioxane-polyoxyalkylene copolymers with reduced buning
 Wing, Harold.
2ing.7.1.00.
Wingard Limited: See-, Sargeant Archibald, 4,095,483, Cl. 74501.00 M
Wint Gregory A. See-
Kitzinger, Frank; and Wint, Gregory A., 4,096,437, Cl. Kitzinger
324.22...00.
Frank
Winter, Robern A.:
Winter, Rober A. See- See- and Winter, Robert A,
Baum, Robert E. \(358-167.000\). E.; and Winter, Robert A.. 4,006,529,
Winterbottom, Harold E. Sof punch. 4,095,294, CI. \(2-424.000\).
Winzer, Gerhard: See-
Reichelt Achima and Winzer, Gerhard, 4,095,869, Cl. \(350-96.140\).
Wirth, Friedrich: See-
Biechschmith Kurt; Reuter, Peter; and Wirth, Friedrich, 4,096,094,
C1. 252-40.000.
Wirth, John C. J. Method for preserving the grinding characteristics of
a grinding tool. \(4,095,961\), C1. \(51-281.00 \mathrm{R}\).
 Wirhh Jon C. Condition rem
Wisce Rodney Mahlon: See-
Phencicic, Ronald Eugene; and Wisc, Rodney Mahlon, 4,096.081,
Cl. 25 ,-89.00R.
\({ }_{0}^{\text {Cl. } 252 \text {-89.00R. }}\) Chemical Corporation: See
Hec Chemical Corporation: See-
H2080. 4.000 . Samuel Isa; and Semon, John Howard, 4,096,056, Cl.
oermer, Paul Fred: See-
Roasch Frank George; and Woerner, Paul Fred, 4,095,449, Cl.
\(72-273.000\).

\section*{LIST OF REISSUE PATENTEES}

\section*{TO WHOM}

PATENTS WERE ISSUED ON THE 20TH DAY OF JUNE, 1978
Note-Arranged in accordance with the first significant character or word of the name
(in accordance with city and telephone directory practice).
 bamyl)-N-(hal ophenyl) glycolemides. Re. 29,675, Cl. \(560-31.000\).
Bell Telephone Lsboratories, Incorporated: See-
 Bonyhard, Peter Istvan; and Michaclis, Paul Charles, to Bell Telephone
Labortories Laboratories, Incolporated. Singlewall domen arrangement.
Re. 29,67, Cl. 365515.500 . Re. 29,677, CI. \(365-15.000\)
Deere \& Company:
See-
Vere Company: See- Welbert, Re. 29,671, Cl. \(60,45.000\).
Van Gerpen, Harlan Wen
Van Gerrenen, Harlan Welbert, Re. 29,672, C. \(60-445.0000\)
Van Gerpen, Hallan Welbert, Re. 29,672, C1. \(60-445.000\).
Van Gerpen, Harlan Welbert, Re. 29,673, Cl. \(60-445.000\). Hareyama, Kyuichi, and Nakarawa, Shuzi, to Nippon Electric Com-
pany, Limited. Matrix resistors for integrated circuit. Ree 29,676, Cl. \(\begin{gathered}\text { pany } \text {. Limited. Matrix resistors for integrated circuit. Re. 29,676, Cl. } \\ \text { Labbece, Francis Auguste Maurice; and Mithell, Michacel Bruce, to }\end{gathered}\) Labbe, Francis Auguste Maurice; and Mitchell, Michael Bruce, to
Molins Limited. Preparing cigarette filters. Re. 29,674, Cl. Michaclis, Paul Charles: See-

Mchaclis, Paul, Charles: See-
Bonhyard, Peter
Cl. 365.15 .000 . 1 tvan; and Michaclis, Paul Charles, Re. 29,677,
\[
\begin{aligned}
& \text { Re. Frincis Auguste, Mauy } \\
& \text { Re. } 29,674, \text { Cl. } 264151.000
\end{aligned}
\]

Nippon Electric Company, Limited: See-
Hareyama,

an Gerpen, Harlan Welbert to Deere \& Company. Demand compen-
sated bydruulic system with flow sensitive device Re 6045.000 .
an Gerpen, Harlan Welbert, to Decre \& Company De. \(29,671, \mathrm{C}\). Van Gerpen, Harlan Welbert, to Deere \& Company. Demand compen-
sated
\(60-445\) hdraulic system with presure amplifer. Re. \(29,672, \mathrm{Cl}\). Van Gerpen, Harlan Welbert, to Deere \& Company. Demand compen.
sated hydraulic system with pilot line dither. Re. 29,673, Cl.
60445.000 .

\section*{LIST OF PLANT PATENTEES} Holtkamp, Reinhold African violet plant. 4, 466, \(6-20-78\), Cl. 69.000 .
Holtikamp, Reinhold. African violet plant. 4,267, \(6-20-78\), CI. 69.000 . Holthamp, Reinhold. African violet plant. 4,267, \(6-20-78, \mathrm{Cl}, 69.000\).
Holtramp, Reinhold. African violet plant. \(4,268,6-20-78, \mathrm{Cl} .69 .000\). Middelburg B.V. See-
Middelburg. Nicolass, 4,269, C1. 74.000 .

Middelburg, Nicolaas, to Middelburg B.V. Chrysanthemum. 4,269, Middellburg, Nicolans, to Middleburg, B.V. Chrysanthemum. 4,270
6.20 .78, CI. 7.4000 .


\section*{LIST OF DESIGN PATENTEES}

Allen, David O.; and Wombold, Harry A. E., to Buckeye Molding
Company. Combined packaging container and closure. 248,216,
 Allen, David O.; and Wombold, Harry A. E., to Buckeye Moldin
Company. Container closure. 248,217, \(6-20-78\), Cl. D 9.255 .000 .
Arvey Corporation: See-
Gordon, William Donald, Sr., 248,195, Cl. D6-113.000.


Huang, Bagnec M.., 2488,24, Cli. D345.001.

Azcarate, Emilio. Game board. \(488,248,6-200-78, \mathrm{Cl}\). D34-5.0ss.
Baker, Jonathan. Combined vehicle bumper and grill guard. 248,229,

Bata Shoce Co.. Inc.: See-
Edmonds, Thomas Anthony, 248,193, C1. D2-320.000.
Eeckmonds, Thomas Anthony, 248, 193, C1. D2-320.000.
\(6-20-78\), C1. D2742.000.


Hell
Bell Teptonone LLeboratories, Incorporated: See-
Genaro. Donald Michael; and McGarvey, John Niel, 248,234, Cl.



Allen, David O; and Wombold, Harry A. E., 248,217, C1. D9. Castec, Jobepeph M. Extension conveyor. \(548,225,6-20-78\), C1. D12-
58.000 . Cherroy. Richard Sutton, to Phillips Plastics of North America, Inc.
Cold Combined packaging container and lid. 248,215, \(6-20-78\), Cl. D9.
219.000. Cibie. Pie.rre, to
D488.32.00R. D448.32.000.
Cibie Projecteu
Cibie Proiecteurs: See-
Clibie, Prerre, 248,255, Cl. D48-32.00R.
Clairol Inc.. See--

Compagnie Generale des Etablisecements Michelin: See-
Conic Corporation: Sher,
Conic Corporationt See-
Csiki, Kalman; and Lundin, TTord Rune, , , Guulliber, AB. Ear muff
suppor for a safety helmet with ear muffs. \(248,191,6-20-78, \mathrm{Cl}\).
D 2.232 .000 .
Dacenen, Robert H. C. M., to Dart Industries Inc. Spice shaker 248,204,

Daiwa Seiko, Inc.: See-
Sugimoto, Tatsuo, 248,253, C1. D87-1.00R

Dill, Gary G. ITe skate shappener and lace tightening device. 248,210,
\(6-20-78\), Cl. D8 91.000 .

DiNuccio. David P., to Clairol Inc. Combined bottle and closure.
248,214,
\(6-20-78\), Ci. D9.83.000. Duhon, Mable Edith. Doll \(248,245,6-20-78\), Cl. D344.00R.
Duhon, Mable Edith. Doll. 248,246, 6-20-78, Ci. D344.00R.
Eckmann, John Allie: See--winn and Eckmann, John Allie, 248,231, Cl.
Goldman, Arnold Sherwin D14.12.000.
dmonds Thomas \({ }^{6}\) G-20. \(\mathrm{Pb} \mathrm{D}^{2}\) D2-320.000.
Fukukuda Hiroshi, 248,237 . 23 , Cl. D16006.000. Fukuda, Hiroshi, to Fuji Photo. Film Co., Ltd. Photographic cam
with buithin กanh gun. \(248,237,6-20-88\), Cl. D16-06.000. Clumb, Thomas E - 248,218 Cl 9 ,290000
 enara, Donald Michase; and McGarvey, John Niel, to Bell Telephone
Laboratorics, Incororated. Housing for a celephone set. 248,234 6-20.78, Cl. D14 533.000 .
Goidmana, Arnold Sherwin, and Eckmann, John Allie, to Motorola, In
Lapel speaker or similar article. 248,231, \(6-20.78\), C1. D14-12.000


Gordon Willimen Donald, Sr., to Arvey Corporation. Planter. 248,197,
6-20.78,
Gordon, William Donald, Sr., to Arvey Corporation. Planter. 248,198,
G-20.8., ll. D-6-113.00.
Gulfiber AB: See-

Huyhtingion. Richard E.; and Wray. Donald R. Metallurgical test
specimen. 248,23s, \(6-20-78\), C1. D15 144.000 .
Hector, Roger D., to Atari, Inc. Game cabinet. 248,251, 6-20-78, Cl.
DIS.5.00.
Hollemand, Howard A., to Hydro Tube Corporation. Fireplace poker.
Hollemano, Howard A., to Hydro Tube Corporation. Fireplace poker.
\(248,209,6-20-78\), Cl. D7 7.210 .000 .
Huang, Barmey H., to Atari, Inc. Game cabinet. 248.247, \(6-20-78, \mathrm{Cl}\).
Huelseskopf, Alfred George. Window frame. 248.242, \(6-20-78, \mathrm{Cl}\). D25-
Huelsekopf, Alfred George. Window frame. 248.242, 6-20-78, Cl. D25-
S.2.00. James: See-
Huston
Watley. Lindell Dale; Inman, Wallace D.; Bell, Gregory L.; San--
 Huston, James. 248,199, Cl. D6-188.000.
Hydro Tube Coporation See.
Holleman, Howard A., 248,209, Cl. D7.210.000.
Imann, Wallace D. Dee- Sell
Wattey, Lindell Dale; Inman, Wallace D.; Bell, Gregory L.; San-

Jamain, Phili ipe, to Compagnie Generale des Etablissements Michelin.
Tire. \(248,227,6-20.78\). Cl. D12-146.000.
Katoh, Akira, to Lloyd's Electronics. Inc. Combined cassette recorder
and player and radio. 248,230, \(6-20.78\), C1. D14 5.000

\(6-20.7\), Cl. D. D-2.200.
Kirkland, Walte- Dean. Ring clamp and holder. 248,211, 6-20-78, Cl. K8.395.00.
Lengich



Lawrence, William James, to Texas instruments Incorporated. Wrist
watch. 248,21, ,-20.78, Cl. D10.38.000.
Lawrence, William James , to Texas.

Lewis, Cecilil. Fishing lure. 248,239, 6-20-78,
Lloyd's Electronics, Inc.. SeI
Katoh, Akira, 248,230, Cl. D14-5.000.


 Macl. A7. 87.000 .
Marvin Glass \(\&\).
Marvin Glass \& Associates: See-
Montague, Douglas P., \(248,206, \mathrm{Cl}\) D \(\mathrm{D}-78.000\).
 Dlts3.000. Michael; and McGarvey, John Niel, 248,234, Cl. Messer, Robert S. Prefabricated fireplace. 248,240, 6-20-78, Cl. D23-
4.000.




Miller, William L. Baking utensil. 248,208, 6-20-78, Cl. D7.96.000. or similar auticlece P. \(248,2066,6-20-78, \mathrm{Cl}\). D7.78.000.
Montres Orfina S.A. See -
Porsche, Ferdinand Alexander, 248,219, CI. DIO-32.000 Morse, Henry Clifin. CCO
\(6-20.78\), C. D. D74.000.
Goldman, Amold Sherwin; and Eckmann, John Allie, 248,231, C
DI4.12.000.
\(\begin{gathered}\text { Depper, Jhn } \\ \text { Watley. Lindell }\end{gathered}\)

Huston, Janes. 248,199, Cl. D6-188.000
Keeft, James R.: See-

ster Corporation: See-
Madl. Alfred W., 248,207, Cl. D7-87.000.
Phillips Plastics of North America, Inc. See-
Cherry, Richard Sut



like. 248,228 , \(6-20-78\), Cl. D12-15s.000.
Ben Corparition: Se-
Belcckis Y .


Shreckengost, Don 248,20s, Cl. D7-64.000
andenen Frank Jack: See-
Watley,
Watley, Lindell Deale; Inman, Wallace D.; Bell, Gregory L.: San-
decn. Frank Jack OMKecte, JJame R.; Nepper, John P.; and
Huston, James, 248,199 , Cl. D6-188.000.

 Eense., Frank J., to At Alantic Richifild Company. Vaccuum draining unit
for lubricanss from internal combustion engines. \(248,236,6-20-78, \mathrm{Cl}\).
IIS-150.00 Dheblessy. Waiter F:: See-
Talley, Thomas M.; and Sheblessy, Walter F., 248,252, Cl. D34 Smith, Alfred T. See-
Cumb, Thomas. E., 248,218, Cl. D9-290.000.
Chumb, Thomas
So., 248,218, C1. D9.290.000.
74.000. Stamper. Jerry Lee, to Conic Corporation. Combined data processor
Stealyzer and display instrument. \(248,232,6-20.78, \mathrm{Cl}\). D14
Steveno.



 Sulek, Evegene Joseph. to Texas Instruments Incorporated. Wrist watch 248,224, 6-20.78, Ci. Dio 0.38 .000 . Talley, Thomas \(M\). and Shebiessy, Walter \(F\). Deck of playing cards.
248,252, \(6-20-78\), cl. D34 13.00 R .



TRW Inc.: See-,
Dibenedetto, Luigi, 248,233, Cl. DI4
. 49.000

holder. 248, 194, , \(6-20-78, \mathrm{Cl}\). D3-19.00D.

Wispold, Harry A. E.: See- Sombold, Harry A. E., 248,216, Cl. D9.
Allen David O.; and Womber
Woods, James P . Nervous response chiropractic tracing pendulum
\(248,241,6-2.078\), Cl. D24.17.000.
Wray. Donald R.. See-
Haughtintion Richard E.; and Wray, Donald R., \(248,235, \mathrm{Cl}\)
Dis. 144.000 .

CLASSIFICATION OF PATENTS
ISSUED JUNE 20, 1978
Note.-First number, class; second number, subclass; third number, patent number

\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline &  \\
\hline &  \\
\hline \(\underline{\square}\) & \begin{tabular}{l}
三多 多 多 \\

\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 口 &  \\
\hline \multirow[t]{5}{*}{} &  \\
\hline & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
名名 \\

\end{tabular} \\
\hline & 苞 \\
\hline &  \\
\hline
\end{tabular}

Pl 48
CLASSIFICATION OF DESIGNS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D2- & \({ }_{3}^{232}\) & \begin{tabular}{l}
248.191 \\
248,192 \\
\hline 28
\end{tabular} & & 17
4 & 248,202 & D9- & \({ }_{83}^{499}\) & \({ }_{248,214}^{248,213}\) & D12- & 58 & \({ }_{248}^{248,2225}\) & & 114 & 248,235
248,236 & & & \begin{tabular}{l}
248.246 \\
\hline 24828 \\
\hline
\end{tabular} \\
\hline & 1320 & \begin{tabular}{l}
248,193 \\
\hline 248194 \\
\hline 1
\end{tabular} & & &  & & 219 & \({ }^{248,215}\) & & 129 & 2488,226 & \({ }^{\text {D16- }}\) & 06 & 2488,237 & & 5 S & \\
\hline D6 & 113 & 248,195 & & 78 & 248,206 & & 255 & 248,217 & & +146 & 248,228 & D22- & 28 & -248,238 & & & 248.251 \\
\hline & & 248,196 & & 87 & 248,207 & & 290 & 248,218 & & 1169 & \({ }_{248,298}^{24828}\) & & 94 & 2488,240 & & 5 SS & 248,248 \\
\hline & & \begin{tabular}{l}
248,197 \\
\hline 2489
\end{tabular} & & 96 & 248,2088 & D10- & 32 & 248,219 & D14 & 5 & 248,230 & \({ }^{\text {D24 }}\) & 4 & 2248,241 & & & 248,249 \\
\hline & & \(2488,1.198\)
248,199 & D8- & \(\stackrel{210}{91}\) & 248,209 & & 38 & \begin{tabular}{l}
2488.220 \\
248221 \\
\hline 1
\end{tabular} & & 12 & \({ }_{248,232}^{2482}\) & \({ }^{\text {D25- }}\) & S2 & \({ }_{2488}^{24824}\) & & c & - 248.282 \\
\hline & \({ }_{242}\) & 248,200 & & & \({ }_{248,212}^{248,210}\) & & & 2488.221
24822 & & 4 & \({ }_{248,233}^{248,23}\) & & - & 2248,243 & D48- & \({ }_{32}^{20 \mathrm{C}}\) & 248,254 \\
\hline D7- & 2 & 248,201 & & 402 & 248,212 & & & 248,223 & & 53 & 248,234 & D34- & 4 R & 248,245 & D87- & 1 l & 248,23 \\
\hline
\end{tabular}

CLASSIFICATION OF PLANTS

\section*{GEOGRAPHICAL INDEX OF RESIDENCE OF INVENTORS}
(U.S. States, Territories and Armed Forces, the Commonwealth of Puerto Rico, and the Canal Zone)



DESIGN PATENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline &  & 18 &  & 10
21
22
24 &  & \({ }_{3}^{29}\) &  & &  & &  \\
\hline
\end{tabular}

OFFICIAL GAZETTE of the
UNITED STATES PATENT and TRADEMARK OFFICE

\section*{CONTENTS}

Patent and Trademark Notices
Patent Cooperation Treaty Information
971 OG 26
Registration to Practice
971 OG 26
Reissue Applications Filed
Patent Notices
Certificates of C ..ection for the Week of June 27, 1978
Disclaimers
Dedications
Patents Available for Licensing or Sale
National Technical Information Service
971 OG 29
971 OG 29
971 OG 29
971 OG 29
972 OG 29
Inco Limited, Inco United States, Inc. and ESB Incorporated: Patents

> Available for Licensing .

971 OG 31
971 OG 33
1297
Reissue Patents Granted (29,678) . . . . . . . . . . . . . . . . 1297
Plant Patents Granted (4,271) 1301
Patents Granted
General and Mechanical \((4,096,589)\)
Chemical \((4,097,229)\)
1303
Elecrical ( 4097,679 )
Electrical \((4,097,679)\). 1639
Design Patents Granted \((248,256)\). . . . . . . . . . . . . . . . 1725
Index of Patentees . . . . . . .
Indices of Reissues, Plants and Designs
Classification of
Patents (Including Reissues)
Designs and Plants
Geographical Index of Residence of Inventors
Patents (Including Reissues)
Designs and Plants
Change of Address Form and Subscription Order Form . . . . . . . Back Page

The following are mailed onder direction of the Superintendent of Docaments, Government

all commanications addressed: THE OFFICIAL GAZETTE (PATENTS SECTION), issued weekly, subscription \(\$ 300.00\) De
 THE OFFICIAL GAZETTE (TRADEMARK SECTION), issued weekly, subseription 888.40 per annum, foreign mailing \(\$ 22.10\) additional; single copies 81.70 each
general information concerning trademarks. price 81.50 each
PRINTED COPIES OF PATENTS are farnlshed by the Patent and Trademark omee a 0 cents each; PLANT PATENTS in color, \(\$ 1.00\) each; copies of TRADEMARKS AND DESIG PATENTS at 20 cents each. Address orders to the Commisioner of Patents and Trademark Washington, D.C., 20231.

PATENT AND TRADEMARK OFFICE NOTICES

Patent Cooperation Treaty Information
 in International applications consult the Xotice entitled Gantner. Eric D., 325-1 Caribean Dr., South Lacuna Calis "Patent Cooperation Treaty (PCT) Implementation: Infor mation for Prospective Applicants" appearing in the OFFIC
GAzerte of May 16. 197s.
May 2, 197s.
cting Commissioner of Patents

\section*{Registration to Practice}

The following are names of persons anplying for repistra thon to practice bcfore the Cnlted States Patent and Trade
mark Office. Information tending to affect the elifitility of mark oflce. Information tending to affect the eligithity of
sald applicants on moral, ethical. or orher grounds, should be
furnished the Conmmissioner of Patents and Trademarks on furnished the Conmissioner of Patents and Tridemarhs
or before July \(14,19 \mathrm{~T}\).
Lutrelle f. Parieer,
June 5. 1978. Chairman, Committec on Enrollment

 \(\underset{\substack{\text { Andersin, } \\ 0+526}}{ }\) Ronald M., 148 Valle Verde Ct., Danville, Calif.

 Bentey, Gustavus A., 1801 Charlton, Ann Arbor. Mich. 48103
Bodenhelmer, Stephen J., Jr., 4029 S . 7 th St., Arilngton, Va. Both. William E., 2000 F St., Nw.. \(\# 10 \mathrm{~J}\), Washington, D.C.
20000



 19118
chrlsto. James
ridide.
Cole
 \({ }_{067}\) Gregory A., 11915 Morning Dew Lanc, Houston, Tex.

 Curatiolo, Joseph B.. 5850 Marra Dr.. Bedford Helghts, Ohio
Certintec. Walter J.. 5606 Liringston Terr.. Oxon Hill, Md.
20021. DAlexandro. Ralph. 1938 Harclar Pl. Luncaster. Pa. 17601
Delfache. Marc




 \({ }_{91745}\)
971 OG 26







Lashmit. Douglas A., 17600 Coller Cir., Poolessille. Md. Lazar. Dele, 5850 Cameron Run Terr., \#414, Alexandria, Va.

 01754 Wmiam A., 105 Newton St., Marihorough, Mass.
 м






 Holldrem, Bernhard P., Jr., 201 W .77 th St., \#9S, New York,



 Mumm, Frederick F.,
Murris.
20852.
2erald M., Jr., 6903 Stonewood Ct., Rockville, Md.
Nauphten, James R., 19997 Anita Ave., \#4, Castro Valles,
Callf. 94.446



 \begin{tabular}{c} 
Nussbacher. \\
IIl. 60614 \\
\hline
\end{tabular}
Oakes, Richard T., 5 Union St., Newbursport, Mass. 01950



Randeau, George C., Jr., 16625 wilton Pl., Torrance, Callf.
90.504
 Reese. Fenjamin P., II, 3504 Cheshire Sq., \#A, Sarasota. Fla.

 Coane: John L., 2034 E. Lacpenter Ave., St. Paul, Minn \({ }_{\text {Ross, }}^{55109}\) Monty L., 9508 Mercer Dr., Dallas, Tex. 75228

Uenishi, Roy K., 914 24th St., \#8, Denver, Colo. 80205
 Vorce, Brian D., Lower Glencoe Rd., Glencoe Sparks, Md
zotil2
Vozzo, Armand M., Jr., 709 Elm Are., Wyndmoor, Fa. 19118 w


 Zeitzew, Harris, 6646 Maryland Dr., Los Angeles, Calif. 90048
Zimmer, Eugene S., 1149 St. Charies Pl., Atlanta, Ga: 30306

\section*{REISSUE APPLICATIONS FILED}

Notice under 37 CFR 1.11 (b). The reissue applications
listed below are open to inspection by the general public listed below are open to inspection by the general public
in the indicated Examining Groups and copies may be
obtained by paying the fee therefor ( 37 CFR \(1.21(b)\) ).
3,805,795, Re. S.N. 901,962 , Filed May 1, 1978, Cl. \(128 /\) 419 D, AUTOMATIC CARDIOVERTING CIRCUIT, Rollin H. Denniston III, et al., Owner of Record: Medtronic, arron, Ex. Gp.: 335

3,805,795, Re. S.N. 901,963 , Filed May 1, 1978, Cl. \(128 /\)
419 D AUTOMATIC CARDIOVERTING CIRCUIT 419 D, AUTOMATIC CARDIOVERTING CIRCUIT Mieczyslaw Mirowski, et al., Owner of Record: Medtronic, Inc., Minneapolis, Minn.,
Barron, et al., Ex. Gp.: 33

3,806,558, Re. S.N. 901,400 , Filed May 1, 1978, Cl. 260 / 897 A, DYNAMICALLY PARTIALLY CURED THER MOPLASTIC BLEND OF MONOOLEFIN COPO liam K. Fischer, Owner of Record: Uniroyal. Inc., New York N. Y., Attorney or Agent: James J. Long, Ex. Gp.: 142

3,864,309, Re. S.N. 899,765, Filed Apr. 24, 1978, CI. 260/ 47 UA, COPOLYMER OF POLYIMIDE OLIGOMERS AND TEREPHTHALONITRILE N, N-DIOXIDE AND
THEIR METHODS OF PREPARATION, Norman Bilow THEIR METHODS OF PREPARATION, Norman Bilow, City, Calif., Attorney or Agent: W. H. MacAllister, et al., Ex. Gp.: 143
3,875,441, Re. S.N. 901,975 , Filed May 1, 1978, Cl. 313/ 104, ELECTRON DISCHARGE DEVICE INCLUDING AN ELECTRON EMISSIVE ELECTRODE HAVING AN UNDULATING CROSS-SECTIONAL CONTOUR Richard Dale Faulkner, Owner of Record: RCA Corporation,
Princeton, N.J., Attorney or Agent: E. M. Whitacre, Ex. Princeton,
Gp.: 252

3,890,420, Re. S.N. 900,337, Filed Apr. 26, 1978, Cl. \(264 /\) 261, METHOD OF MAKING A BIPOLAR ELEC TRODE STRUCTURE, Theodore C. Neward, Owner of
Record: Inventor, Attorney or Agent: John B. Young, et al., Record: Inven
Ex. Gp.: 147
Taylor, Roger D. 1301 S . Arlington Rldge Rd., \#311, Arling



3,918,522, Re. S.N. 901,017, Filed Apr. 27, 1978, Cl. 166/ 285, WELL COMPLETION METHOD AND SYSTEM George O. Suman, Jr., Owner of Record: Inventor, Attorney
or Agent: W. F. Hyer, et al., Ex. Gp.: 354

3,922,873, Re. S.N. 901,967, Filed May 1, 1978, Cl. 62/84, 4,031,981, Re. S.N. 90j,361, Filed May 5, 1978, Cl. \(182 /\) HIGH TEMPERATURE HEAT RECOVERY IN RE- 153, FOLDABLE WORK PLATFORM, Edward Spencer, FRIGERATION, Louis H. Leonard, Owner of Record: et al., Owner of Record: Little Giant Industries, Inc., Salt Carrier Corporation, Syracuse, N.Y., Attorney or Agent: J. Lake, City, Utah, Attorney or Agent: H. Ross Workman, et
Raymond Curtin, Ex. Gp.: 344 al., Ex. Gp.: 354

3,956,826, Re. S.N. 902,304, Filed May 1, 1978, Cl. 32/58, ULTRASONIC DEVICE AND METHOD, Rene J. Perdreaux, Jr., Owner of Record: Cavirron Corporation, New
York, N. Y., Attorney or Agent: Robert M. Skolnik, Ex. Gp.: York,
333

3,957,525, Re. S.N. 902,767 , Filed May 2, 1978, Cl. \(106 /\)
288 B, ROAD SURFACING MATERIALS, Geoffrey 288 B, ROAD SURFACING MATERIALS, Geoffrey Lees, et al., Owner of Record: Inventors, Attorney or Agent:
Davidson C. Miller, et al., Ex. Gp.: 113

4,007,721, Re. S.N. 897,659, Filed Apr. 17, 1978, Cl. 123 134, FUEL METERING APPARATUS FOR A CARBURETOR, Jose F. Regueiro, Owner of Record: Teledyne In-
dustries, Inc., Los Angeles, Calif., Attorney or Agent: Ernest dustries, Inc., Los Angeles, Caly
I. Gifford, et al., Ex. Gp.: 342
4,025,312, Re. S.N. 899,949, Filed Apr. 25, 1978, Cl. 23/ 259.5, APPARATUS FOR MAKING CARBON BLACK, Eulas W. Henderson, Owner of Record: Phillips Petroleum
Company, Bartesville, Okla, Attorney or Agent: Donald J. Quigg. Ex. Gp.: 171
4,028,103, Re. S.N. 901,969 , Filed May 1, 1978, Cl. \(96 / 29\) D, PROCESSING COMPOSITIONS FOR COLOR TRANSFER PROCESSES COMPRISING ALKALI Record: Eastman Kodak Company, Rochester, N. Y., Attorney or Agent: Harold E. Cole, Ex. Gp.: 166
4,029,025, Re. S.N. 880,989, Filed Feb. 24, 1978, Cl. 108/ 108, SHELVING STRUCTURE, Harald Lundqvist, Owner Ex. Gp.: 355

4,058,899, Re. S.N. 878,553, Filed Feb. 16, 1978, Cl. 33/26, DEVICE FOR FORMING REFERENCE AXES ON AN IMAGE SENSOR ARRAY PACKAGE, William S. Phy,
Owner of Record: Fairchild Camera and Instrument Corporation, Mountain View, Calif., Attomey or Agent: Alan H. MacPherson, et al., Ex. Gp.: 243

4,068,798, Re. S.N. 898,445, Filed Apr. 20, 1978, Cl. 233/
26, METHOD AND APPARATUS FOR STOPPER RE-26, METHOD AND APPARATUS FOR STOPPER REMOVAL, Vernon Carl Rohde, Owner of Record: E. I. Du Pont de Nemours \& Co., Wilmington, Del., Attorney or

4074,021, Re S.N. go 018, Fied Apr.
4,074,021, Re. S.N. 901,018, Filed Apr. 27, 1978, Cl. 429/ I, HIGH DISCHARGE BATTERY WITH DEPOLARElectric Fusel Propulsion Corp., Detroih, Mich., Attorney or Agent: John W. Malley, et al., Ex. Gp.: 114

4,078,107, Re. S.N. 903,356, Filed May 3, 1978, Cl. 428 56, LIGHTWEIGHT WINDOW WITH HEATING CIR OIT AND ANTI-STATIC CIRCUIT AND A METHOD OR ITS PREPARATION, Michael G. Bitterice, et al., wner of Record: PPG Industries, Inc., Pitrsburgh, Pa, At-

4,085,074, Re. S.N. 903,234, Filed May 5, 1978, Cl. 260/17 R, A PRE-MIXED CATALYZED VINYL ACETATE POLYMER ADHESIVE COMPOSITION, Ming Cho Attorney or Agent: Max R. Millman, Ex. Gp.: 143

\section*{PATENT NOTICES}


971 O.G. 29






 Assistant Ceneral Counsel Io rotent Matters,
Code \(6 P-2\), Washngron, D.C. 20546
 Patent application S55.763. Pseudo Continuous Wave Acoustic












\section*{U.S. Defartment of the air Force}


 Patant anpilication 871,066. High Power Pre-TR Switch. Filed


Pa tent application \(\mathrm{s} 72,203\). Wideband Waregulde Lens. Filed
d.S. Denarmext of Aghiculture

 Patent anpplication 873.5.7. Preparation of Highly Active Cop-
per Silica catalissts. Filed Jan. 30 . 1978 .

d.S. Depratmext of hentre, Edceatios, and Welfare

Nattonal Institutes of Health. Chilef, Watent Branch

 Patent apnnication 855.384. Fiber Optic pH Probe. Filed Nor.
Patent anplication 85.5.397. Dse Fixation by Copolymeriza-


 10, 1928. Yot naillabie XTIS.
 d.S. defartment of the Xavy
 Patent application 789,393. Blip Scan Analyzer. Filled Apr. Patent anplication 818,180. Distal Sidelobe Canceller. Filled


 Patent anplication \(50, .313\). Remote Target Hit Monitoring
System. Filed Nor 10,1977 . Patent. npplication siz, is6. solid state Data Recorder. Filed
 Patent anpliciction 854,45. Analog-to-DIgtal Con rerter. Filled







 Kational amonactics and Space Admivistration


 Patent application 861,390 . Hiph Pertormance Ammontum
Nitrate Propeliant. Filed Dee. 16 , 1977.












June 27, 1978 U. S. PATENT AND TRADEMARK OFFICE











 Patent 4.007.043. Optlcal Conrersion Method. Filed Jan. 21,


 cessorise. Filie




Inco Limited, Inco United States, Inc. and ESB Incorporated: Patents Available for Licensing




\section*{U.s. Pa. No}
\(\underset{\substack{3.579 .383 \\ \text { Pat. Mey } \\ 18.197}}{ }\)

\(\frac{\mathrm{com}}{\mathrm{com}}\)

 를
\begin{tabular}{|c|c|c|c|c|c|}
\hline 971 O．G． 32 & & OFFICIAL & GAZETTE & & 27， 1978 \\
\hline \multirow[b]{2}{*}{Us．Pun No．} & \multicolumn{2}{|l|}{} & \multirow[b]{2}{*}{Us．pun No．} & \multicolumn{2}{|l|}{\(\mathrm{Coman}_{\text {a }}\)} \\
\hline & Coment & \({ }_{\text {Numben }}\) & & \({ }^{\text {caname }}\) & man \\
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& 715,534^{\circ} \\
& \text { (Abandoned.) } \\
& \text { Patd. Aug. 18.' } 1976
\end{aligned}
\]} & come & \[
\begin{gathered}
940 \\
\hline
\end{gathered}
\] & &  &  \\
\hline & Redim & \({ }_{\text {Lisissig }}\) & No oow fidid & Unita Kiniomm & ： \(2 \times 23776\) \\
\hline & \({ }_{\text {A }}^{\text {Aumin }}\) &  & & & \\
\hline \multirow[t]{2}{*}{} & Damat & ：81776 &  &  & \\
\hline & 込 & － & & & \\
\hline \multirow{10}{*}{} &  & 退 & Liememw & Nome & atto ober \\
\hline & Nomen & ： \(7: 6\) & Aypinesta & mave ine & ， \\
\hline & simem & \％omem & Sexi peati & 为 & valub onie \\
\hline &  &  &  & No， & or written \\
\hline & & & Ec．Mmownem & & \\
\hline &  & &  &  & \\
\hline &  &  & & & \\
\hline & & & & & 为为my \\
\hline & coicle & & & & \\
\hline & Some & \％6\％（10） & & & \\
\hline
\end{tabular}

PATENT EXAMINING CORPS
RENE D．TEGTMEYER，Assistant Commissioner william feldman，Deputy Assistant Commissione CONDITION OF PATENT APPLICATIONS AS OF MAY 20， 1978
chemical examining groups








 lias and
li＇rocesses．
ellectrical examining groups






 DESIINS，GROUP 2 200－C．D．QUARFORTII，Director
Industrial Arts Househoid，Personal and Fine Arts
mechanical examining groups













\section*{REISSUES}

Re. 29,678
CAUTERIZING INSTRUMENT AND HOLDER
Frank P. Antonini, San Francisco, and Julien I. Schwalbe, Oak-
land, both of Calif.
Original No. \(3,934,715\), dated Jan. 27, 1976, Ser. No. 471,197, May 20, 1974. Application for reissue Aug. 2, 1976, Ser. No. 10,410 Int. CT. \({ }^{2}\) B65D 69/00, 81/24
U.S. CI. 206-571 71

1. A kit for an electro-surgical cauterizing instrument comprising a hollow handle, an electrode insertable in and removable from said handle, an electrical fitting in said handle, said handle having electrical contacts in its interior to establish
electrical connection with said electrode when said electrode is electrical connection with said electrode when said electrode is
inserted in said handle, an elongated [core] cord connected to said contacts inside said handle and extending out one end of said handle, a terminal on the end of said cord remote from said handle for electrical connection to a cauterizing machine, a holder formed with a sheath to receive said electrode and handle and having one closed end, said handle with said elecsaid holder and said electrode being protected from electrical and germ contact with the exterior when inserted in said holder, said holder being substantially larger than said handle, a flange on the open end of said sheath opposite said closed end, said flange formed with means for attachment of said handle, electrode and holder sterile until said envelope is opened, said electrode being inserted into said handle and electrically connected to said contacts, said electrode and the end of said handle adjacent said electrode being positioned said terminal being exposed immediately outside said sheath, said envelope enclosing the assembly of holder, handle, [core] cord and terminal.

Re. 29,679
STEM SEALING FOR HIGH PRESSURE VALVE OR THE
Boyd D. Boltnott, Jasper, Ark., assignor to Gray Tool Company, Boyd D. Boitnott,
Houston, Tex.
Original No. 3,99,
Original No. 3,990,679, dated Nor. 9, 1976, Ser. No. 560,237,
Ma3, 20, 1975. Application for reissue Sep. 15, 1977, Ser. No.
U.S. C. 251-214

Int. C. F16k 31/44
U.S. C. 251-214
1. Apparatus comprising:
a body having a cavity adapted to contain a fuid under
high pressure,
response to the rotation of a shaft,
c. a shaft extending through said body from said cavity to a
region outside said body of relatively low pressure,
d. means for providing a seal between said shaft and
d. means for providing a seal between said shaft and said body between said cavity and said region, said means
including a plurality of sealing elements which are successively disposed between the relatively high and low pres.
each having a side thereof toward said cavity and a side thereof opposite said cavity, [and]
a plurality of chambers, each in adjacent sealing element nearest thegion and the side of the
e.] f. means for ensuring that the differential pressure on each of said sealing elements is not greater than a predet ling element differential pressure is as large as the pressure differential between

said cavity and said low-pressure region [.], said means including means for providing flowable plastic material under pressure in each of said chambers decreassing from soid
high pressure bore to said region comprising a floating piston having one face thereof expased to the pressure of fluid within said cavity, and having the other face thereof bearing on flowable plasni material in a channel in fluid communic sure valve operatively associated with each of said chamber

REGENERATION OF ANON EXCHANGE RESINS Eli Salem, Brooklyn, N.Y; Donald J. Butterworth, Lyndhurs, and Leo F. Ryan, Sommerrille, both of N.J., assignors to Ecodyne Corp., Cricago, III.
, Apr. 20, 1970. Application for reissue Nor. 29, 1972, Ser. No , 1

Int. CT. \({ }^{2}\) Coss \(5 / 20\)
U.S. CI. 260-2.1 R
1. A method for converting strong-base 11 Claims sin having quaternary ammonium active anoups from the onovalent anion form to the hydroxide form comprising passing a [solution] source of polyvalent anions through a irst batch of said resin, whereby to displace said monovalent anions [with said polyvalent anions]; subsequently passing a olution of alkali metal hydroxide through said resin to convert said resin to the hydroxide form, and to produce an emluent neutralizing said effluent with an acid containing a source of polyvalent anions whereby to form a neutralized [solution] ource of polyvalent anions; and passing said neutralized [solution] source of polyvalent anions through a second batch of said
resin in the monovalent anion form.

Re. 29,681
METAL SALTS OF \(1,1,5,5\)-TETRASUBSTITUTED DITHIOBIURET
William R. Diveley, Wilmington, Del., assignor to Hercules Incorporated, Wilmington, Del.
Original No. 3,950,366, dated Apr. 13, 1976, Ser. No. 359,164, May 10, 1973. Application for reissue Jan. 12, 1977, Ser. No. 758,614

Int. Cl. \({ }^{2}\) C07F \(3 / 06\)
U.S. C. 260-429.9

1,1,5,5-tetrasubstituted dithiobiuret 7 Clai
1. A
formula:

\section*{NH}
in which \(\mathbf{R}^{1}, \mathbf{R}^{2}, \mathbf{R}^{\mathbf{3}}\) and \(\mathbf{R}^{4}\) independently of each other are selected from the group consisting of \(\mathrm{C}_{1}-\mathrm{C}_{18}\) alkyl, \(\mathrm{C}_{5}-\mathrm{C}_{12}\) aryl, \(\mathrm{C}_{3}-\mathrm{C}_{12}\) cycloakyl and these radicals substituted by at least one member of the group consisting of hydroxyl, \(\mathrm{C}_{1} \cdot \mathrm{C}_{4}\) alkyl, \(\mathrm{C}_{1}-\mathrm{C}_{8}[\) aryl] acyl, halo and nitro.

\section*{Re. 29,682}

LOW CALORIE DRY SWEETENER COMPOSITION John A. Cella, Carmel, Ind, and William H. Schmitt, Brandford, John A. Cella, Carmel, ind, and William H. Schmitt, Brand ford,
Conn., assignors to Alberto-Culver Company, Melrose Park, Conn., assignors to Alberto-Cuiver Company, Meirose Park,
Original No. 3,753,739, dated Aug. 21, 1973, Ser. No. 87,303,
Nor. 5, 1970. Application for reisure Aug. 19, 1974, Ser. No. Nor. 5, 1970. Application for reissue Aug. 19, 1974, Ser. No.
U.S. Cl. 426-548

Int. C1. \({ }^{2}\) A23L 1/26
1. A method of preparing a dry pulverulent low calorie sweetener composition containing an aspartyl dipeptide lower alkyl ester of the formula
\[
\begin{aligned}
& \mathrm{H}_{2} \mathrm{NCHCONHCHCOO} \text {-(lower alkyl) } \\
& \substack{\mathrm{CH}_{2} \\
1 \\
\mathrm{COOH}_{2} \\
\mathrm{COOH}}
\end{aligned}
\]
wherein X is selected from the group of radicals consisting of

and
\(\left.\left(\mathrm{CH}_{2}\right)_{n} \mathrm{SO}\right)_{m}\) (lower alkyl)
R being a member of the group consisting of hydrogen and a
R being a member of the group consisting of hydrogen and a
lower alkyl radical, \(m\) an integer selected from the group consisting of 0 and 2 and \(n\) a positive integer less that three, which comprises
2. preparing an aqueous starch hydrolysate solution having a
D.E. up to 20 and having a temperature of about \(30^{\circ}\) to about \(80^{\circ} \mathrm{C}\),
slurry of said ester having a temperature in the range up to about \(40^{\circ} \mathrm{C}\).
c. admixing a minor proportion of the b. solution or
with a major proportion of the a solution, and with a major proportion of the a. solution, and
d. promptly drying the \(c\). mixture to provide a dry pulveru-
lent composition containing from 0.5 to 10 percent, by lent composition containing from 0.5 to 10 percent, by
weight, of said ester, and not more than about 4 percent weight, of said ester, and not more than about 4 percent moisture.

Re. 29,683
ENCAPSULATION HOUSING FOR ELECTRONIC CIRCUIT BOARDS OR THE LIKE AND METHOD OF Ifred Ocken Jr ENCAPSULATIN Inc., Schaumburg II Original No. 3,869,563, dated Mar. 4, 1975, Ser. No. 401,471, Sep. 27, 1973. Application for reissue Feb. 28, 1977, Ser. No.
773,081 773,081
s U.S.C. \(174-52\) PE Cl. \({ }^{2}\) H05K 5/06; B29C 6/02

4,271
HIBISCUS PLANT NAMED LADY BALTIMORE Robert H. Darby, 4813 Harvard Rd., College Park, Md. 20740 Flled Sep. 22, 1977, Ser. No. 835,828
U.S. C. Plt.-68
1. A new and distinctive cultivar of hibiscus substantially as herein shown and described, a glowing pink-and-red bicollor of and elegant form profusely from midsummer to frost.

CHRYSANTHEMUM PLANT
CHRYSANTHEMUM PLANT
Walter H. Jessel, Jr., Grantsville, W. Va., and William E. Duf-
rett, Salinas, Calif., asslgnors to Yoder Brothers,
ton, Ohio
Filed Sep. 22, 1977, Ser. No. 835,829
Filed Sep. 22, 1977, Ser. No.
Int. C. \({ }^{2}\) A01H \(5 / 00\)

morifolium; Ramat, known by the cultivar name Yellow So
phisticate and particularly characterized as to uniqueness by
the combined characteristics of daisy capitulum type; fla the combined characteristics of daisy capitulum type; fla capitulum form; medium yellow ray floret color; yellow green short-day control
(immature) to yellow (mature) disc floret color; diameter branching pattern

CHRYSANTHEMUM PLANT
Walter H. Jessel, Jr., Grantsrille, W. Va., and William E. Duffett, Salinas, Calif., asslgnors to Yoder Brothers, Inc., Barberfett, Salinas,
ton, Ohio

Filed Sep. 22, 1977, Ser. No. 835,830 Filed Sep. 22, 1971, Ser. No.
Int. Cl. \({ }^{2} \mathbf{A 0 1 H} 5 / 00\)

\section*{PATENTS}

GRANTED JUN. 27, 1978
ERRATA
\begin{tabular}{|c|c|}
\hline For & See \\
\hline CLASS & Patent no. \\
\hline 004-255. & 4,096,597 \\
\hline 407-092 & 4,096,613 \\
\hline 126-271. & 4,096,861 \\
\hline 134-003. & 4,096,869 \\
\hline 134-028 & 4,096,870 \\
\hline 134-040 & .... 4,096,871 \\
\hline 400-110 & 4,096,934 \\
\hline 400-479 & .... 4,096,935 \\
\hline 366-165 & 4,097,026 \\
\hline 350-149 & .... 4,097,110 \\
\hline 350-027 & 4,097,141 \\
\hline 209-111.5 & .. 4,097,373 \\
\hline 428-035. & .. 4,097,385 \\
\hline 544-353. & .... 4,097,478 \\
\hline 544-366. & .... 4,097,479 \\
\hline 560-053. & .... 4,097,519 \\
\hline 568-807 & ... 4,097,537 \\
\hline 568-726 & ... 4,097,538 \\
\hline 568-751. & ... 4,097,539 \\
\hline 568-862 & ... 4,097,540 \\
\hline 423-303. & ... 4,097,583 \\
\hline 423-348. & ... 4,097,584 \\
\hline 423-574 R & 4,097,585 \\
\hline 260-045.8 A & ... 4,097,587 \\
\hline 560-030. & 4,097,657 \\
\hline 307-141. & 4,097,763 \\
\hline 307-200 A & .. 4,097,764 \\
\hline 307-212 & ... 4,097,765 \\
\hline 307-229 & ... 4,097,766 \\
\hline 307-229 & .. 4,097,767 \\
\hline 307-230. & ... 4,097,768 \\
\hline 307-252 B & ... 4,097,769 \\
\hline 307-252 J & ..... 4,097,770 \\
\hline 307-268 & ... 4,097,771 \\
\hline 307-279. & ..... 4,097,772 \\
\hline 307-296 A & . \(4,097,773\) \\
\hline 365-118. & 4,097,848 \\
\hline
\end{tabular}

365-118.
unblock the associated one of the valve seats wherein the other of the arms of he lever terminates in a \(U\) bent from the extent of the lever for engaging with the crank, the crank engaging the \(U\)-shaped portion in the second direction of rotation and pivoting the lever thereby for operating the one of the valve elements, and the crank moving away from and out of engagement tion of rotation while simultaneously operating the other of the valve elements and unblocking the other of the valve seats.

\section*{COMPOSTING TOILET}

Alexander Clark, 115 Pleassant St., Brunswick, Me. 04011

U.S. C. \(4-111\)

5 Claims

1. An improved composting toilet comprising: a substantially hollow casing having a substantially flat top and bottom and a front and rear, said casing's top havin defined therein a waste entry aperture in proximity to th front of said casing and an air vent chimney apertu lid member covering said waste entry aperture, said member being adapted to be manually opened in order to allow access to said waste entry aperture;
an air vent chimney positioned at said air vent chimney aperture;
a concave waste pile platform horizontally disposed intermedially within said hollow casing making contact around its perimeter with the interior of said hollow casing, said waste pile platform having defined therein a plurality of parallel elongated apertures running lengthwise in a fron to back direction within said casing and further havin point directly below said air vent chimney, the hollow of said concavity of said waste pile platform facing said casing top;
an air bypass tube positioned at said air bypass tube aperture and extending upwards, its top beeing disposed at the bot sectional area being smaller than the cross-sectional are of said air vent chimney, said air bypass tube adapted to allow air to pass into said air vent chimney from the are below said waste pile platform, said air vent chimney further having defined therein a cutaway section facin said casing's rront beneath said casing's top;
up said air vent chimney thereby assisting in circulation of air within said casing;
waste product area defined within said casing below said waste pile platform having positioned therein at least one
removable container adapted to rest on said casing's bottom to catch waste products which may fall through said elongated apertures in said waste pile platform;
door positioned in the side at the front base of said casing
lower than the disposition of said waste pile plaform lower than the disposition of said waste pile platform within said casing, said door adapted to allow for the
removal and reentry of said container for the purpose of emptying waste products from therein; hot air entry vent defined with door and below the disposition of said waste pile platform, said hot air entry vent having disposed before it outside of said casing a heating blower having a thermostat control hot air entry vent; and means to support, cover, said means having defined therein at least one air intake
vent. vent.

TOILET BOWL DISTMENSER
Eftichlos Van Vlahakis, 2423 The Strand, Northbrook, III. 60062 iled Jul. 15, 1976, Ser. No. 705,598
Int. Cl. \({ }^{2}\) E03D 9/02; A61L 9/04 U.S. C. 4-231

6 Claims

1. An improved
tive combination: (a) means for removably retaining said dispenser on the inner rim of a toilet bowl comprising a clip-on member having member joining said top and said bottom, lateral retaining means depending from said top member, said top member being disposed at an acute angle to said wall member to provide positive vertical clamping action to said rim between said top and bottom members for universal fit and secure retention of said dispenser on rims of varying size
and to maintain a disinfectant material retaining means above the normal water level in said bowl;
(b) means for retaining said disinfectant material disposed below said rim in the path of flush water dispensed from said rim comprising a member generally cup-shaped in cross section with imperforate end walls for permitting cup having an opening oriented generally facing an inner wall of said bowl to protect said disinfectant material from dissolving by water other than said flush water, said cup having an upper edge portion spaced from said inner wall of said bowl to provide space for flush water to flow
downwardly into contact with said disinfectant material disposed in said cup, and a lower portion of said cup including means extending into contact with said bowl inner wall to space said upper edge portion from said wall and for detaining the downward flow of water into said bowl to provide even dissolution of said disinfectant material along its length; and
against said inner wall of said toilet bowl, said urging
means connecting said cup means and said removable retaining means.

\section*{4,096,594}

MATTRESS DEVICE
Raymond A. St. Jean, West Warwick, R.I., assignor to The interest

Filed Dec. 30, 1976, Ser. No. 755,800
U.S. C. 5-90
cover, the improvement comprising the steps of locating a dispensing means in association with each section of said hopper in positions such that opposite surfaces of the filler are located adjacent said dispensing means when the filler is in the hopper, providing a supply for adhesive for said moving the filler into the cover whereby adhesive is deposited on the filler surfaces for contact with opposed cover surfaces to securely the filler into to the filler, and including the steps or pusher means, and pressing said pusher means into position adjacent respective hopper surfaces whereby said pusher means engag opposite edge portions of the filler at one end of the filler.

1. A mattress device for preventing discomfort to a bedwet er using a mattress, said mattress device comprising channel formed through a matress 10 provide a pair of a mattress having a top and sides;
a pan removably positioned in the channel for collecting liquids, said pan being positioned at a pitch in a manne whereby liquids collected therein flow
mined point at the bottom of the pan;
mined point at the bottom of the pan;
a hose having one end coupled to the predetermined point a a hose having one end coupled to the predetermined point a
the bottom of the pan for draining liquids in the pan therefrom;
mesh material covering the channel at the top of the mattress for supporting a person on the mattress over the channel and permitting liquid to flow therethrough; and other with the channel between them

MATTRESSES AND METHOD FOR PRODUCING
MATTRESSES
Richard H. Eide, Minneappolis, and Gerald A. Golembeck, Lake Elmo, both of Minn., assignors to The United States Bedding Company, St. Psul, Minn. Division of Ser. No. 729,386, Oct. 4, 1976, Pat. No. 4,051,644 This application May 12, 1977, Ser. No. 796,07
Int. C1. \({ }^{2}\) A47C 27/00; B65B \(63 / 02\) U.S. Cl. 5-345 R

1. In a method for filling a flexible cover with a resilient filler for the formation of mattresses or the like, said method including providing a hopper comprising upper and lower sections defining a filler receiving space and an open end, said cover
being dimensioned for attachment to the hopper whereby the being dimensioned for attachment to the hopper whereby the
interior of the cover communicates with said open end of the hopper, and including the step of driving said filler into said
1. In combination with a furniture deck having a top load upporting surface and a border member extending along and tached to the marginal edge of said load-supporting suriace, dedging strip comprising:
an an elongated body portion extending along and overlying said border member and the marginal edge portion of said deck, and being formed of a padding material
b. a first longitudinal fin integral with said body portion adjacent the horizontally outward edge thereof and at the bottom surface thereof and being inclined downwardly and inwardly from said body portion toward the horizontally inward edge of said body portion, whereby a groove is formed between said fin and said body portion, said border member being engaged in said groove,
the horizontally inward edge thereof, in transversely spaced relation from said first fin, said body portion and said first and second fins of said strip being of one-piece construction of a resilient, porous material of chemically homogenous nature throughout their entire volumes, with gas-filled cells distributed therein, the material forming
said fins being densified by a reduction of the volume of the gas-filled cells therein, whereby to be rendered relatively stiff and tough as compared to said body portion, and
d. fastener means securing said second fin to elements of said deck, whereby horizontally outward movement of said strip relative to said deck is prevented, and said first fin is secured in engagement with said border member.

1. An apparatus for opening clogged drains comprising. (a) an upper tube having one closed end and one open end (b) a lower tube fitted coaxially within said upper tube to freely telescope;
(c) a flexible plastic bag the open end of which is attached
within said lower tube and forming a within said upper tube;
(d) a base attached to the exposed end of said lower tube;
(e) a flap valve mounted in said base openable resiliently in
response to fluid under pressure exerted on opposite sides thereof to permit passage of said fluid under pressure
through said base in the direction of the applied presure (f) said base having a face normal to the axis of the sai coaxial tubes and a recess in said face open to said flap valve; and
(g) a separate member of elastomeric material removably fitted into said recess and having a face sloped at an angle of \(10^{\circ}\) to \(20^{\circ}\) to the face of said base.

\section*{4,096,598}

SELECTED DEPTH MOORING SYSTEM Mason, 30 Kensington Rd., Glen Falls, N.Y. 12801
Filed Mar. 21, 1977, Ser. No. 779,740 Int. Cl. \({ }^{2}\) B63B 21/52

\section*{U.S. C. 9-8 R \\ 1. A selected depth mooring system for use at sea of any} Abioph, conpring, in con the
flotation means deployable on the surface of the sea; ably coupled to said fotation means and deployable to selected depth relative to the surface, anchor means re leasably coupled to said submersible means and deploy able to the bottom of the sea, first cable means operativel connected between said submersible means and said an chor means for payout to a length equal to the distance from the selected depth to the bottom, the combined means being greater than the buoyant force of said submersible means; and
second cable means operatively connected between said
flotation means and said mooring means for payout to a length equal to the selected depth, the combined weight in

water of said mooring means and said second cable means being less than the buoyant force of said flotation means.

\section*{BRUSH RETENTION MEANS FOR FLOOR TREATING MEANS FOR \\ Haydn Frank Mayo, Hazlemere, England, assignor to R. G Dixon \& Company Limited, Wembley, England
Filed Mar. 2, 1977, Ser. No. 773,842 Claims priority, application United Kingdom, Mar. 4, 1976 U.S. Cl. 15 Int. Cl. \({ }^{2}\) A47L 11/162 \\ }
1. In a floor treating machine of the type comprising at least one rotary brush alternately engaged with and disengaged retaining element; an upstanding boss on the at least one brush said boss being slidably mounted on said brush retaining ele ment and connected to the rotary brush; an annular lip forma tion on said boss and including integral ribs defining two reces ses in said boss; and spring clip means mounted on a rotary par of the machine for cooperating with said annular lip formation, in one of the recesses when the rotary brush is engaged with the brush drive and receivable in the other of said recesses when the rotary brush is disengaged from the brush drive.

1. A friction curtain apparatus for washing or drying or
inishing a motor vehicle comprising a frame having an open- the looped portion to said first sheet to said elongated suppor ing provided with an entrance and an exit, said opening having element to prevent relative sliding movement therebetwee said opening being adapted to receive a vehicle for movement and forming a generally cylindrical, hexible material covered therethrough by relative motion between the aforesaid frame and the vehicle along a predetermined path between said encarried by said frame and disposed in said opening and capable of turning in alternate directions forward and then backwar with respect to said entrance and to said exit, each of said units eeing pivotable about a horizontal axis which is generally perpendicular to said longitudinally extending axis, one of said xis and the other of said units being located on the other side of said longitudinally extending axis, each of said units comprising an elongated rack having a plurality of transversel xtending elongated slot-defining apertures which are paralle to one another, said apertures having axes lying in a flat plane. apertures and forming a curtain, each curtain being arranged on each rack in spaced apart, generally parallel relation relaive to the other curtains, whench ally perpendicular to said longitudinally extending axis and
having an end portion which extends beyond a side of the vehicle, each curtain defining a row of closely arranged elongated flexible strips which hang freely when the units ar eyond the ends of the vehicle and are substantially in continu-

us contact with the vehicle during the swinging movement of he rack when the units overlie the vehicle, power actuated means for swinging said racks and the curtains carried thereb parting to said curtains a sweeping, scrubbing and flicking motion to permit said curtains to contact the exterior surfaces of the vehicle to finish the vehicle, said power actuated means ncluding means for coordinating the swinging of said rack and said curtains in a predetermined phase relationship
whereby the rack and curtains at one side of said longitudinally extending axis are out of phase with the rack and curtains on he other side of said longitudinally extending axis, each slo defining aperture having a key-hole configuration, each aper ture having a generally cylindrical inner portion opening
downwardly through a restricted neck portion, each pack unit comprising a substantially solid, elongated, headforming and pack reinforcing support element made from a resiliently firm yet flexible plastic material, said support element including enerally cylindrical, soid, bulb-like portion having single, substantially flat, integral, solid fin portion of rectangular sheet of generally flexible material having one portion looped tightly over said elongated support element so as to conform losely to the contours thereof and a second portion extending from the support element, said looped portion having a first
section closely overlying said bulb-like portion and second and third sections integrally contiguous with the respective opposite ends of said first section tightly overlying corresponding opposite sides of said fin portion, fastening means for securing
copically received in the corresponding aperture for replaceid mounting said pack unit thereto, said fill material forming artion of said first sheet and portion secured to the second
 portion of sa

1. An apparatus for the cleaning of carpets, upholstery and the like comprising:
housing formed with wall means defining a downwardly open suction compartment containing a rotatable brush a leading end of said housing, means for sucking air out said compartment, a hexibe surface vibraing bod rear face to be cleaned, said vibrating body being drivable to vibrate foam into said surface to be cleaned, a foam applicator in said housing rearward of said vibrating body, and means for feeding a foamable cleaning liquid oo said applicator, said applicator comprising a belt provided wit bristles and a pair of rollers spanned by the bell and rolating liquid to said surface to be cleaned; and
manually controlled drive means for selectively operating either said brush alone or both said body and said applicator in conjunction.
mes Edison, N.J.
S. Int. C. \({ }^{2}\) E05F 5/06
1. A 5 Clain aving ancess door pivotably secured near its lower edze to the front of the appliance: said door stop assembly comprising a unitary arcuate link pivotably secured at a point adjacen one end to the door;
said link having an inner arcuate surface;
roller means secured to the appliance and disposed trans verse to the curvature of said inner arcuate surface: a first detent in said inner surface of said link sized and a substantially \(180^{\circ}\) open position to limit and maintain said door in said \(180^{\circ}\) open position, said detent comprising a hooked portion
and biasing means consected to said link adjacent the othe end thereof to bias said inner arcuate surface of said link
into engagement with said roller means throughout the
length of travel of said link
length of travel of said link, said biasing means comprising

a spring connected between said other end of said link and the bottom wall of said appliance.

\section*{DRAWER PULL AND LABEL HOLDER}

Gerald R. Klaus, St. Charies, Ill,, assignor to Fellowes Manufac Geraid R. Kiaus, SL. Craries, 1 II., sssig
turing Company, Franklin Park,
IIl

Filed Nov. 1, 1976, Ser. No. 737,715
Int. Cl. \({ }^{2}\) A47B \(95 / 02\); B65D 5/46, \(25 / 28\)
\(16-110\) R
US. C. \({ }^{16-110 R}\)
3 Claims

1. A detachable drawer pull for a collapsible front panel of drawer which panel includes an outermost and innermost a drawer hinged together along a first edge of the panel, and said layer hinged together along a first edge of the panel, and said drawer along a second edge of said panel opposite said edge and said drawer having an opening adjacent said second panel edge, comprising:
a generally \(U\)-shaped member including first and second leg members and a bottom member, said U-shaped member second edge of a drawer panel front opposite said hinged edge so that the first and second leg members are adjacent to the outer and inner layers of the panel, respectively, said bottom member having a substantially flat outer surface and said first leg member having a substantially flat inner surface:
pull means positioned on the outer surface of said first leg
label holder means positioned on the outer surface of said first leg member; and
- flange adapted to engage a slot on the inner layer of the drawer front panel on said second leg member.

HINGE MECHANISM Friedhelm Eckhardt, Burbach-Niederdresselndorf, Germany, assignor to U.S. Philips Corporation, New York, N.
Filed Jul. 28, 1976, Ser. No. 709,333 Claims priority, application Germany, Aug. 2, 1975, 2534652 U.S. C. 16-128.1 Int. Cl. \({ }^{2}\) A47B 95/02
1. A hinge mechanism coupled on one side to a stationary housing and on the other side to a lid hingeable relative to the able relative to the housing during opening and closing of the lid and pivotably carried by said lid, at least one pair of links pivotably connected to each other, the free end of one of said inks being pivotably connected to said lid and the free end of he other of said links being pivotably connected to said housing, a guide affixed to the other link and pivotable simultaabout the pivotable connection of the latter to the housing, said guide being provided with a curved slot, and a pin slidable in said curved slot and arranged on a connecting link pivotably connected at one end to the housing, the other end of said
connecting link being pivotably mounted on said hinge spindle. connecting link being pivotably mounted on said hinge spindle.

LACING DEvCE 0 ,605
ACING DEVICE FOR SKI BOOTS Gluseppe Annovi, Montebelluna, Italy, assignor to Calzaturifcio Giuseppe Garbuio S.A.S., Montebellunn, Italy
Filed Nov. 30, 1977, Ser. No. 856,192
Claims priority, appllcation Italy, Dec. 7 , 1976, 12922 A/76 U.S. CI. \(24-70\) SK
sions or legs capable of slidably engaging to
provided on the anchoring guide element; anting two clamping portions which, in the operative position of the said clamping element, are arranged agains the outer sides of the legs of the carrier plate, i.e. the sides which are external with respect to the grooves engaged by the said legs, so as to aves.
out of the said grooves. out of the said grooves.

\section*{4,096,606}

FERRULE BUCKLE WITH SLIDING RELEASE BUTTON Robert Larry Stephenson, Sterling Heights, Mich., assignor Allied Chemical Corporation, Morris Township, Morris County, N.J.

Filed Mar. 4, 1976, Ser. No. 663,942


1. A buckle for engaging a tongue comprising: a ferrule having a slot at one end for engaging a tongue; a latch member with at least one latching tooth, said latch member pivotaly gaged position and a disengaged position in reference to said tongue; a sliding release button mounted at the front of the buckle, and a tongue ejector mounted on said latch member and cooperating with the latch member and the release button for engaging and disengaging the tongue, said release motion
of said latch member having a directional component which is parallel to the direction of motion of said tongue when said tongue is released from said buckle, withdrawal force on said tongue cooperating with said latch member to assist said reportion of said withdrawal force on said tongue for use in porteasing said latch member, said buckle thereby requiring a low release effort on said release button.

SNAP FASTENING DEVICE
Gunilla A.
Sisson, Skidbecken 38, S172
Sweden Filed Feb. 11, 1976, Ser. No. 657,315 Claims priority, application Sweden, Feb. 18, 1975, 7501797
U.S. Cl. 24-230 AP \({ }^{\text {Int. Cl. }{ }^{2} \text { A44G 13/00 }}\)
1. A snap fastening device comprising:

3 Claims
1. In a ski boot of the type comprising a ski boot upper provided with two flaps defining an opening, a lacing device including a hooked lever-like lacing member provided on one on the other flap, anchoring means for securing at least one of said lacing members hingedly and in a removable manner onto the corresponding flap, said anchoring means comprising:
an anchoring guide element in the form of a projection
provided on the flap and presenting two side grooves arranged transversally with respect to the opening;
(b) a carrier plate onto which there is hingedly mounted the lacing member, said carrier plate presenting two exten-

portion having a pair of shanks ( 7,8 ), and a connecting portion connecting said shanks, one of said shanks (8) an t least a portion of said connecting portion having a apart ears, a shaft (10) attached to said one shank (8) said pair of shanks and passing through said slot and be tween said ears, said closure link (9) being journalled around said shaft (10) with said one poring (14) of said closure link (9) being at least partly in the portion of said slot in said connecting portion and in the loop closed posi-
in then tion to permit swivelling movement of said closure link ( 9 ) about said shaft (10) through an angle of about 90 , said ears forming guiding or bearing surfaces for said on portion (14) of said closure link (9) when said closure link (9) is in the loop open as well as the loop closed position and the other shank ( 7 ) of said pair of shank means of
through hole (11) therein forming said locking means said fastener body (1), said substantially U-shaped portion cooperating with said closure link (9) to restrict said openable loop, and said closure link (9) comprising a portion

which in the locked or loop closed position bridges the shanks of said U-shaped portion;
said fastener body (1) having an external connection member opposite from said shanks ( 7,8 ); and
said locking means of said closure link (9) comprising a substantially straight groove (19, a spring actuated locking pin (12) which is displaceab in the locking position straight groove (16) and which in the locking position protrudes from an edge of said closure link for shaperat-
ing with said hole (11) formed in said other shank (7) of said \(U\)-shaped portion of the fastener body ( \(\mathbf{1}\) ) and a release member (21) including an actuation member provided with an actuation surface and protruding from said closure link (9), said release member (21) being coupled to said locking pin (12) for displacing said locking pin (12)
into the closure link (9) against the spring action upon exertion of a direct acting compressive force on said actuation surface to a release position in which said locking pin (12) is disengaged from said hole (11) and said closure link (9) can be swivelled open by rotation thereof through an angle of about \(90^{\circ}\) relative to said fastener body (1).

\section*{DRILL STRING HOLDER}

DRILL STRING HOLDER John Arne Lagerstedt, Skarholmen, Sweden, assi
Copco Aktieboleg, Nacka, Sweden Claims priority, application Sweden, Dec. 11, 1975, 7513972 Int. Cl. \({ }^{2}\) A44B 21/00; E21C \(11 / 00\)

\section*{U.S. C. \(24-249 \mathrm{R}\)}

24 Claims
1. Drill string holder in a rock drilling machine, comprising first and second jaws ( 24,25 ) mounted opposite each othe selectively gripping same, a spring (49) operatively coupled between the jaws \((\mathbf{2 4 , 2 5})\) to
force them towards each other into their gripping position ing a predetermined limit of stretchability to said selvedge
for gripping the drill string,
a first hydraulically actuated piston device (43) operatively coupled to the spring (49) and being selectively actuable to inactivate the spring and permit the jaws to be separated,
second hydraulically actuated piston and cylinder device
\((56,57)\) operatively coupled between the jaws \((24,25)\) for
Which is less than the longitudinal stretchability of said fabric to limit said longitudinal stretchability during heat setting to
the stretch which provides said predetermined course count, subjecting said fabric to stretching to the limit provided by said subelvedge, and heat setting and fabric.

METHOD OF KNITTNG 4
METHOD OF KNITTING A VELOUR FABRIC
Rudolph G. Bassist, 1003 McGrann Blvd., Lancaster, Pa. 17601 Filed Nov. 21, 1977, Ser. No. 853,683
U.S. Cl. 28-159

5 Claims

forcing them against each other in response to hydraulic
pressure acting on the second piston and cylinder device. pressu
and
and \((59,60)\) coupled to the second piston and cylinder
means
device ( 56,57 ) for variably and selectively applying said device (56,57) for variably and selectively applying said
hydraulic pressure acting on the second piston and cylinder device to vary the force applied thereby to the jaw force them together when the spring is inactivated.

4,096,609
PROCESS FOR MAKING STRETCH FABRIC CAPABLE OF COURSE COUNT CONTROL UPON HEAT SETTING Pont de Nemours and Company, Wilmington, Del.

Filed Jun. 28, 1976, Ser. No. 7018
Int. Cl. \({ }^{2}\) D04B 21/18
U.S. C. \(28-155\)

4 Claims

1. A process for producing a knit fabric capable of being longitudinally stretched and heat set to a predetermined course
count, comprising warp knitting a longitudinally stretchable count, comprising warp knituing a longitudinally stretchable
fabric of elastic and inelastic yarn and simultaneously warp knitting an additional inelastic yarn into the selvelge along each edge of said fabric, said first-mentioned inelastic yarn being overfed with respect to said additional inelastic yarn
during said warp knitting, said additional inelastic yarn impart
convolutions in filaments in yarn while travelling through said nozzle, delivery and guiding means for determining the path of the yarn prior to entering said nozzle and after leaving said nozzle, a member mounted in position for the yarn to pass formed with a convexly curved surface and located for the yarn to slide thereover along a curved path while travelling
towards said nozzle and said member being formed with at towards said nozzle and said member being formed waid path, and means for feeding liquid through said bore, the diameter of said bore being adapted to the titer of the yarn whereby the yarn travelling over said bore exerts a suction effect on the liquid and carries the liquid between its filaments of said noz zle.

\section*{4,096,612}

JET FOR FLUID TEXTURING YARN
Brian Michael Agers, Wilmington, Del., and Maurice Cornelius Brian Michael Agers, Wilmington, Del., and Maurice Cornelius
Todd, Glen Mills, Pa., assignors to E. I. Du Pont de Nemours and Company, Wilmington, Del.

Filed Oct. 13, 1976, Ser. No. 731,982 first venturi for normal fluid texturing operation, there being a
pace between said exit end of said element and said first venU.S. C. 28-272 \(\begin{gathered}\text { Filed Oct. 13, 1976, Ser. No. 731,982 } \\ \text { Int. C1. }{ }^{2} \text { D02G } 1 / 16\end{gathered}\)

8 Claims rid for throtling the flow of pressurized fluid that flows into
ind said space and out through the first vent atmospheric at the end of said element, thereby inducing an inward flow of atmospheric air through said passage to draw said yarn through said passage, the improvement for increasing said inward flow of atmospheric air through said passage to facilitate drawing yarn through said passage during said passage, said second venturi having a flared inlet and a flared outlet connected by a constriction, said flared outlet being gradually expanded from said constriction to a cylindrical section within said passage and extending through the exit end of said element.


1. In a yarn texturing jet including a body having yarn inlet and outlet ends connected by a central bore, means for introducing pressurized gas through a gas inlet into said bore be-
tween said ends, a nozzle block having a conical entrance tween said ends, a note baid outlet end, and a yarn guiding located in said bore at said outlet end, and a yarn guiding for introducing yarn into said jet, said element having a passage therethrough for guiding yarn from the yarn inlet of the body past the gas inlet through the exit end of said element to the conical entrance of the nozzle block, said element beling provide of the nozzle block for stringup and away from the
trand nozzle block for normal fluid texturing operation, there being a space between said exit end of said element and said conical entrance for throttling the flow of pressurized fluid that flow into said space and out through the nozzle block to create air pressure less than atmospheric at the end of said element
thereby inducing an inward flow of atmospheric air throug said passage to draw said yarn through said passage fo stringup, the improvement for increasing said inward flow of atmospheric air through said passage of aciile ate rawing yan
through said passage during stringup of the yarn comprising: a venturi positioned in said passage, said venturi having a flared inlet and a flared outlet connected by a constriction, said flared outlet being gradually expanded from said constriction to cylindrical section within said
the exit end of saide element.
5. In y yarn texturing jet including a body having yarn inlet 5. In a yarn texturing jet including a body having yarn inter ducing pressurized gas through a gas inlet into said bore be tween said ends, a first venturi located in said bore at said outlet end, and a yarn guiding element sealing off said bore at
the yarn inlet end of the body for introducing yarn into said jet, said element having a passage therethrough for guiding yarn from the yarn inlet of the body past the gas inlet through the exit end of said element to the conical entrance of the first
venturi, said element being provided with means for moveventuri, said element being provided with means fror the

1. A cutting tool comprising
an elongated bar member;
an anvil member removably fastened to one end of said bar member to rigidly clamp a cutting insert between said anvil and bar member for radial projection generally perpendicular to the axis of said elongated bar member;
a support rib projecting radially from said anvil member; an elongated recess provided in said anvil member and along
said rib in which said cutting insert may be removably received for said radial projection from said bar member and
a chip deflector of substantially harder material than said ba member affixed to said bar member for juxtaposed rela ionship with said cutting insert on the opposite side from said rib.

4,096,614
METHOD AND APPARATUS FOR REMOVING STATOR VANES

\section*{ills; Richard M. Galloway, and Don-} ald P. Kerwick, both of Cincinnatt, all of Ohio, assignors to General Electric Company, Cincinnati, Ohio
iled Sep. 2, 1975, Ser. No. 609,601
.S. Cl. 29-156.8 R
removing a single turbomachinery and associated platform from a circumferential slot containing plurality of vanes in an arcuate casing section comprising: (a) support means for placement on the concave side of the casing;
(b) an elongate strike element having its one end pivotably supported by said support means on the axis of the casin a dynamic impact against the single vane and away from
the plurality of vanes with the resultant force being in a direction aligned with the plane of the circumferential slot

to effect remov
ential direction \(\qquad\)
4,096,615
TURBINE ROTOR FABRICATION
Kenneth R. Cross, Lebanon, Ind., assignor to General Motors Corporation, Detroit, Mich.

Ied May 31, 1977, Ser. No. 802,020
Int. C1. \({ }^{2}\) B23P 15/04: B23K
U.S. CI. 29-156.8 R

4 Claims

1. A method for fabricating a hybrid dual property wheel 1. A method for fabricating a hybrid dual property wheel
assembly comprising: preforming a plurality of blades with a base tang thereon, preforming a blade support ring including a herein or circiung basetially spaced blade position slots adjacent blades are accurately dimensionally located one to the other, sealing each of said tangs within one of said position lots, thereafter machining the inside diameter of the joined blades and ring to expose portions of said blade base tangs, fitting the ring and blades to the disc to form a butt interface, sealing the hub disc and ring blade assemblies at joint lines on either side of the butt interface, thereafter hot isostatically pressing the joined blade, ring and hub disc components to form a diffused metallurgical bond between the blade base tangs, the ring and the disc at the interface therebetween.

METHOD OF MANE, 4096,616
TUAN HFATCURING A CONCENTRIC TUBE HEAT EXCHANGER
Electric Coffinberry, Cincinnatio Ohio, assignor to General Filed Oct. 28, 1976, Ser Int. C.2 \({ }^{2}\) B23P \(15 / 26\) 13 Claims

1. A method for use in fabricating a heat exchanger adapted to transfer heat between first and second fluids, said heat exconcentric tubes, one of said tubes disposed within the other to form a longitudinally extending annular flow channel therebeween and plurality of heat transfer promoting fins disposed within said annular flow channel, said method comprising the
steps of: steps of:
disposing one of said tubes within the other of said tubes to form a first longitudinally extending channel therebeinserting a plurality of spacer members into said flow channel at circumferentially spaced apart locations so as to form a plurality of longitudinally extending flow segments between said plurality of spacer members
positioning a plurality of heat transfer promoting fins within
said plurality of flow segments; and
applying a radially directed deforming
tubes in sufficient magnitude to achieve permanent deformation of said pair of tubes to retain said spacing members and said heat transfer promotion fins securely disposed within said annular flow channel.

PULLING
AXLE PULLING MEANS
Arthur J. Ritter, Jr., Metamora, III., assignor to Caterpillar Tractor Co., Peoria, ill.
\[
\begin{aligned}
& \text { o., Peoria, III. } \\
& \text { Filed May 26, 1977, Ser. No. } 800,822
\end{aligned}
\]

Int. Cl. \({ }^{2}\) B25B \(27 / 14\)
U.S. CI. 29-278

4 Claims 1. Structure for use in manipulating a heavy axxle such as during installation in and removal from a vehicle drive assemmeans at one end of said drive axle defining support surface, an annular boss at the inner end of said support surface, a radial outwardly facing limit surface at the inner end of said boss, and a male threaded surface at the outer end of said support surface; and a puller tool having an inner end portion defining a socket for snugly receiving said end of the axle, said socket being
defined by a distal end surface abutting said axle limit surface, an inner cylindrical portion snugly fitting said boss, an inner-intermediate cylindrical portion snugly fitting said axle support surface, and an outer-intermediate female threaded portion threaded to said axle male threaded surface, said puller tool further having an elon-
gated outer end portion defining a manipulating handle, the length of said inner-intermediate cylindrical portion being at least three times greater than the length of said outer intermediate female threaded portion, said inner cylindrical portion and inner-intermediate cylindrical
portion defining support surfaces providing positive surface engagement between the puller tool and the axle end


for positive control of the heavy axle during installation and removal operations.
\[
4,096,618
\]

HAND TOOL FOR FASTENING AND UNFASTENING I W P PAP FASTENERS
Irving W. Perlines Leonard Trapido, both of Kew Gardens; John J. Rottenkolber, Bronx, and Michael L. Rottenkolber, Mt. Vernon, all of N. Y., asesignors to Andrew Adams Developing

Dec. 8, 1976, Ser. No. 748,472
Int. Cl. \({ }^{2}\) B25B \(27 / 14\)
U.S. C. 29-278
int. C1. \({ }^{2}\) B25B 27/14

1. A hand tool for use in fastening together mating male and emale snap fasteners, comprising:
an elongated handie adapted to be held in user's hand and a fork type pronged element fixedly secured to one end of said handle, the prongs of which are laterally spaced, so as to be adapted to be disposed about one of said mating
fasteners so as to engage and hold the same during a fasteners so as to engage and hold the same during a
fastening or unfastening operation, and are disposed in a single plane which is substantially perpendicular to the longitudinal axis of said handle;
said pronged element having a tongue element at one end thereof, at the axial center thereof, fixedly secured to said handle, such that the axial center of said tongue is aligned
with said longitudinal axis of said handle, and a cut-out portion at the other end thereof which serves to define said pronged protions;
said element being folded substantially in half so as to have a substantially U-shaped configuration in side elevation such that the axial centers of said tongue and cut-out whereby the axial alignment of said handle, said

2 Claims
said cut-out portion permits insertion or withdrawa forces to be transmitted from said handle to said prongs and said held fastener. Charles R. CICONDUCTOR SCRIBING METHOD national Cook, Jr., North Palm Beach, Fla., assignor to Inter Telephone \& Telegraph Corporation, Nutley, N.J. Filed Jan. 31, 1977, Ser. No. 764,095
U.S. C. 29-413

14 Claims

1. A method of breaking a semiconductor material in accordance with a desired breakage pattern comprising: anodizing preselected regions of the semiconductor material; and
stressing sin
sressing said semiconductor material until said semiconductor material breaks in said regions weakened by the step of anodizing.

\section*{4ETHOD AND 4,096,62}

SUPPORT BASE TO THE BOTTR ASSEMBLING A SUPPORT BASE TO THE BOTTO
CONTAINER
Toledo, Ohio
led Jan. 6, 1977, Ser. No. 757,415
U.S. Cl. 29-428 Int. Cl. \({ }^{2}\) B23P 11/00 17 Claims

1. In a method of attaching a cup-shaped support base to a conveying a cup-shaped base ane steps of:
onveying a cup-shaped base along an arcuate path, simultaneously and separately conveying a container having a cent angularly related arcuate path, the opening in the cup-shaped base facing the convex container bottom and the central axes of the container and base being essentially parallel to the respective axes of the arcuate paths; and as the base and container ae conveyed along their respective arcuate paths, relatively axially displacing the base and the container toward one another while accommodating pivaxis of the container to telescopically assemble the base onto the convex container bottom.

1. The method of selectively controlling the threaded disposition of a threaded element having a turning portion defining tary threaded means, said flat sides of said element extending parallel to the axis of the threaded element and being disposed adjacent said member, comprising the steps of: fixedly securing a deformable retainer to said member to have a retaining portion of the retainer extend adjacent one of said element flat sides to effectively prevent threaded turning of said element camming surface of a tool with said retaining portion and a second, turning surface of the tool with said flat sides of the threaded element other than said one flat side for concurrently separately turning said retaining portion away from said element flat side and causing threaded turning of said element relative to said member without interference by said retainer.

4,096,622
ION IMPLANTED SCHOTTKY BARRIER DIODE Bernard A. MacIver, Lathrup Village, Mich., assignor to GenMotors Corporation, Detroit, Mich
Division of Ser. No. 600,888, Jul. 31, 1975, abandoned. This application Jan. 14, 1977, Ser. No. 759,324 U.S. CI. 29-578 Int. Cl. \({ }^{2}\) B01 \(7 / 00\)

1. A method of making a sub-surface Schottky barrier in a semiconductive body, which barrier has electrical rectification properties substantially unaffected by contaminants on said covering a preselected method comprising the steps of
semiconductive body portion with a layer that a beam of high velocity metal ions can penetrate, said layer having high velocity metal ions can penetrate, said layer having
con and a thickness commensurate with the thickness of an ion implanted region to be formed beneath said layer;
masking said surface surrounding said island-like region to masking said surface surrounding said island-like regio
isolate said surrounding surface from said ion beam; uniformly exposing said surface to a beam of high velocity ions of an electronically neutral metal, said ions having an average velocity imparted by an electrical potential preselected to cause only about \(50-60 \%\) of said ions to penetrate said layer. whereby substantially all of said ions that said surface and form a shallow island-like region in said portion having a narrow truncated substantially Gaussian concentration profile of metal atoms that is maximum at said surface;
continuing said exposure to said ion beam until said surface is given an ion beam dose of at least about \(1 \times 10^{15}\) atoms functionally metallic with respect to the remainder of said body portion, whereby said island-like region forms a surface-contaminant-free sub-surface Schottky barrier with said body portion within about 500 angstroms of said surface;
like region; and
making a low resistance electrical connection to said body portion outside said region

THYRISTOR AND METHOD OF PRODUCING THE Alfred Porst, and Gottfried Schuh, both of Munich, Germany, assignors to Siemens Aktiengesellschaft, Berlin \& Munich, Germany Division of Ser. No. 590,706, Jun. 26, 1975, abandoned. This application Jan. 18, 1977, Ser. No. 760,272 Claims priority, application Germany, Jul. 1, 1974, 2431506 U.S. Cl. 29—580 5 Claims

1. A process for producing a thyristor structure having a semiconductor body which includes a plane surface, an emitter zone at least partially covered by an emitter electrode, a base zone located adjacent said emitter zone and accessible at said plane surface of the semiconductor body, a control electrode having a plane surface in contact with said base zone, a contact plane face above said plane surface of the semiconductor body and an auxiliary emitter zone positioned between said emitter one and said control electrode and accessible al said plane urface of the semiconductor body, said auxiliary emitter zone having an auxiliary emitter electrode in contact therewith, the teps comprising:
providing a semiconductor body having at least a plane upper surface, an emitter zone, a base zone and an auxiliary emitter zone therein which are spaced from one
another and accessible at said plane upper surface of the another and accessib
semiconductor body;
semiconductor body;
depositing a metal layer on said plane surface of the semicon ductor body in a thickness corresponding to a desired height dimension of an emitter electrode;
masking areas of said metal layer at least partially above said zones in a pattern corresponding to a desired shape of an emitter electrode, a control electrode and an auxiliary
etching uncoated metal layer areas down to said surface of forming an annular shaped printed circuit board having a the semiconductor body and thereafter removing said first plurality of radially outwardly projecting terminals electrically photo-mask;
masking areas of the resultant metal layer at least partially interconnected by the printed circuit, positioning the annula above the emitter and base zones with a second photo- board coaxially on one end of the stator against the ends of the mask;
etching etching the uncoated metal layer area above the auxiliary mitter zone to a height less than the masked metal laye and
completing said thyristor structure.
4,096,624
METHOD OF MAKING A VARIABLE RELUCTANCE A.C. ELECTRICAL GENERATOR
Alden J. Gray, Ashfield, Mass.; Ian S. Sanderson, Kennebunk, and John C Hardy, Gorham, both of Me, sssignors to Mare mont Corporation, Chicago, III. 1966 , Pot No, \(, 025,960\) Division of Ser. No. 692,046, Jun. 2, 1976, Pat. No. 4,025,960
which is a continuation of Ser. No. 522,294, Nor. 8,1974 , abandoned. This application May 16, 1977, Ser. No. 797,344 U.S. Cl. 29-596 Int. Cl. \({ }^{2}\) H02K 15/14

2 Claims

coils from which the ends of the wires are brought out, wrap ping and securing the wire ends of each of the individual coils to adjacent ones of the radial terminals of the circuit board, and attaching external leads to terminals on the board.

1. The method of making a variable reluctance inductor alternator which method comprises
providing a stator housing structure having an annular cav-
ity substantially closed at one of its two ends and open a its other end and which cavity is defined in part by a central portion having a generally cylindrical outer sur-
face, face,
providing a tubular support having an internal cylindrical surface of such a diameter as to be capable of being slip fit over said central portion
preassembling on said tubular support (1) an annular stator core with an annular series of radially outwardly extending stator poles, (2) an annular field coil, and (3) a plurality of said stator poles,
thereafter axially sliding said preassembly of said support, said core, said field coil and said generating windings onto said central portion and into said cavity, and
subsequently fixing said preassembly to said housing structure.

4,096,626
METHOD OF MAKING MULTI-LAYER PHOTOSENSITIVE GLASS CERAMIC CHARGE PLATE Carlton Edward Olsen, San Jose, and Leroy Jasper Serpa, Campbell, both of Calif, assignors to International Busines Machines Corporation, Armonk, N.Y.

Filed Dec. 27, 1976, Ser. No. 754,70
Int. Cl. \({ }^{2}\) H05K \(3 / 10\). G01D \(15 / 18\)
U.S. Cl. 29-624

8 Claims
1. The method for forming a multi-layer laminated charge plate for an ink jet printer comprising the steps of: by etching each of said layers to producensitive material pattern comprising a plurality of openings and conductor paths therein;
stacking said etched layers to that cor
said openings are in coaxial alignment;
heat treating said layers by heating to a ter a period said hayers by heating to a termperature and for a period of time sufficient to bond said layers together; and
metallizing said conductor paths to produce electrically conducting circuits along said conductor paths.

\section*{METHOD OF FORMING PORT HOLE COAXIAL}

METHOD OF FORMING PORT
METHOD FOR INTERCONNECTING STATOR COILS Edgar Wilmot Forney, Jr., Harrisburg, and Richard Shure METHOD FOR INTERCONNECTING STATOR COILS
Anthony P. Morreale, Whittier, Calif,, assignor to Rapidsyn Co., Hogendobler, Camp Hill, both of Pa., assignors to AMP
Santa Fe Springs, Calif.
Incorporated, Harrisborg, Pa. Santa Fe Springs, Calif.
ion of Ser. No. 629,715, Nov. 7, 1975, Pat. No. 4,039,875

U.S. Cl. 29-596 3 Claims U.S. C. 29-628 Int. Cl. \({ }^{2}\) H01G 43/00 1 Claim
1. The method of providing electrical connections to a plu- 1. A method of crimping a coaxial connector, comprising the rality of individual wire coils wound on a salient pole motor steps of: inserting a coaxial connector through a rearward stator, comprising the steps of: bringing the two ends of the portion of a coaxial connector, projecting a center conductor
medial portion of a connector, inserting said center conductor into a barrel portion of an electrical contact supported in inspecting said center conductor and said insulation layer and said barrel portion through at least one of a pair of opposed port holes in said medial portion, applying a shielding jacket

over said rearward portion, applying a ferrule over said shielding jacket, nesting opposed flat surfaces on opposite sides of said medial portion between opposed walls of a first crimping
die, nesting one port hole over at least a portion of said firs die, nesting one port hole over at least a portion of said firs
crimping die, and crimping said ferrule and said barrel portio with said first and a second crimping die through said opposed port holes.

METHOD FOR MAINTAINING THE POSITIONING OF ELECTRICAL ELEMENTS WITHIN A CONTAINER Hans Bïckskog, Ludvika, Sweden, assignor to Asea AB, Vest eras, Sweden
Flaims priority, 2ec. 20, 1976, Ser. No. 752,281 U.S. C1. 29-628 Int. Cl. \({ }^{2}\) H01R 43/00 8 Claims

1. A method of assembling and transporting an electrica device which, when operational, includes electrical element within a container, comprising the steps of arranging the elec-
trical elements within a container which has openings in the walls thereof at predetermined locations, inserting transpor supports radially through the openings in the walls of the container in order to contact the electrical elements therein securing the transport supports between the container and the electrical elements, transporting the electrical device to an
erection site, removing the transport supports from within the container, and covering the openings in the walls of the con tainer.

MULTIPLE BLADED RETRACTABLE CLAW WEAPON Alfred B. Levine, 2924 Terrace Dr., Chery Chase, M. 20015 Filed May 16, 1977, Ser. No. 797,23
Int. C1. \({ }^{2}\) B26B 1/02. \(100827 / 00\)
U.S. CI. \(30-152\) Cli. \({ }^{2}\) B26B 11 Claims
1. An artificial claw weapon comprising:
a handle means having a shape to be substantially entirely enclosed within the encircling fingers of a closed human fist,
a plurality of claw-shaped blade members spaced apart from one another along the length of the handle means and
projecting transversely and substantially unidirectionally projecting transversely and substantially unidirectionally ing blade members corresponding to the width of a huma
the fingers and project outwardly from the fist when the handle means is enclosed by the fist, and means movably attaching the blade members to the
handle means for varying the orientation of the blade

memebers with respect to the longitudinal axis of the handle means to an inactive, more compact, reposed con
dition, thereby to provide case and safety in the storage and carrying of the claw weapon in the pocket and purse of the user.

4,096,630
OLE PRUNER
Cecil W. Honick, 4008 W. Ave. 43, Los Angeles, Calif. 90041 Filed Mar. 30, 1977, Ser. No. 782,640 Int. C1. \({ }^{2}\) B26B \(13 / 00\)

1. A pole pruner comprising:

a blade element having a generally-horizontal cutting edge portion facing downward and a generally vertically
depending stem portion; depending stem portion;
an anvil element having two spaced generally-horizontal
side bar portions facing said cutting edge generally vertically-depending anvil stem portion fastened thereto;
an actuating lever;
an actuating lever;
a side-plate and means fastening said side-plate to said pole; pivot pins connecting each said stem portion to said lever at stem pivot points;
a lever pivot pin con
a lever pivot pin connecting said lever to said side plate at a said lever thereby moving said stem portions in opposite
directions,
said anvil element side bar portions and said anvil stem portions being fastened together with an anvil back fille piece to form an open box-like structure,
said blade stem portion being slidably enclosed in said struc ture, and said pivot pins, guide pin, and back filler piec parallel relation; and further comprising. first pulley on a bracket at the outer po
a second pulley fastened to said pole, and
a flexible actuating cord extending from said bracket around said second pulley, then around said first pulley, and extendable downward therefrom.

4,096,631
MAT CUTTING MACHiNE
Richard Harry Ward, P. O. Box 241, Carpinteria, Calif. 93013 Filed Oct. 29, 1976, Ser. No. 737,055 Int. Cl. \({ }^{2}\) B26B 29/00; B26D 7/02
U.S. C. 30-294

12 Claims

1. A mat cutting machine including
1. A ma
a base,
a base,
a guide rail atrached to the base, the gurface terminating in a straight edge adjacent to the base and a second planar surface intersecting the first planar surface in a line parallel to the straight edge,
the base including a recess in line with the straight edge of the guide rail and in the plane defined by the first planar
surface, carriage and second planar surfaces in face-to-face contact with the first and second planar surfaces of the guide rail, the carriage including a cutting blade projecting beyond the straight edge of the guide rail and into the recess of the
base, a side end edge of the second planar surface of the base, a side end edge of the second planar surfars of tane
carriage defining a plane perpendicular to the first planar surface of the carriage,
the side end edge and the planar surfaces of the guide rail and the carriage planar surfaces guiding the blade along a plane parallel to the plane of the first planar surface of the guide rail and into the recess in the base as the carriage is
rocked onto the guide rail about the side end edge, whereby when a mat is placed between the guide rail and the base, the carriage as it is placed on the guide rail may be rocked down along the guide rail with the first planar surfaces transversely sliding past one another in face-toface contact and the cutting blade thereby caused to enter the mat at the predetermined angle, his ant.
bevel angle at which the mat is to be cut.

\section*{4,096,632}

DENTURE MATCHING APPAPATUS
Verry, 3300 Mannion Rd., Saginaw, Mich. 48603
Piled May 24, 1976, Ser. No. 689,637
U.S. C. 32-32
20. Denture

20 Claims
20. Denture mounting apparatus vable clampfirst and second, longitudinally spaced, denture support 971 O.G. 52
members for releasably supporting first and second den tures;
ceans mounting each denture support members on said clamping frame portions for bodily movement toward and movement relative to said frame portions to precisely align and orient said dentures; and
eans for clamping said clamping frame portions to said denture support members in any selected one of a plurality of positions;

said frame portions comprising generally horizontal, laterally spaced, vertically opposed clamping bars selectively movable toward and away from each other to clamp said
denture support members in adjusted positions; said denture support members in adjusted posirts, on said clamping bars for swinging movement between generally vertical positions perpendicular to said bars and generally horizontal positions parallel to said bars.


1. An airborne plotter for automatically providing a visual display containing potential collision information regarding first aircraft including a back plate and a relationShip by spacer means;
a relaionsip by spacer mears, , a transparent window provided in the face of the cover plate of the plotter having a semicircular compass rose imprinted thereon;
range circle also imprinted upon the windo
compass rose and being concentric therewith
an opaque mask positioned behind the window and being pivotably secured between the plates in the plotter about a pivot means positioned upon the range circle at the point where a diameter of the circle perpendicular to the base of
the semicircular compass rose intersects the circle opposite the compass rose, the mask having two perpendicular sides that intersect at the pivot point;
a course index line inscribed upon the viewing face of the longitudinal axes of said reference leg; means for adjustably mask which bisects the right angle between the sides supporting at least the first of said contact elements on said thereof for setting the aircraft course into the compas
rose whereby the sides cut arcuate shaped sectors in the rose whereby the sides cut arcuate shaped sectors in the
range circle that are indicative of zones of primary impor range circle
tance; and
means to move said mask to a desired heading.
7. An airborne plotter for providing potential collision infor-
mation in regard to other aircraft flying about the same altion
mation in regard to other air
of a first aircraft including
a back-plate and a cover plate sur a back-plate and a cover plate
relationship by spacer means;
transparent window formed in the cover plate having a semicircular compass rose imprinted thereon;
a transparent course indicator dial rotatably supported in the cover plate of the plotter upon a first pivot means located
at the radial center of the compass rose the dial havin at the radial center of the compass rose, the dial having range circle which is concentric with said radial center
and a diameter which is smaller than the diameter of the compass rose;
an opaque mask having two perpendicular sides, the mask
being pivotably supported in the course indicator dial being pivotably supported in the course indicator dia upon a second pivot means at a point on the range circle,
said two sides intersecting at said pivot point:
a stationary post supported in the back-plate of the plotter
and being arranged to extend into a slotted opening and being arranged to extend into a slotted opening ormed in the mask that is axially aligned along the bisector of the right angle formed by said sides of said mask, the
post being positioned on the range circle at the point post being positioned on the range circle at the point
where the radius of the compass rose normal to its base intersects the range circle; and
means to set the indicator dial into the compass rose to the aircraft heading whereby the sides of the mask are autowhich are of primary interest to the pilot of said aircraft. which are of primary interest to the pilot of said aircraft.

4,096,634
METHOD AND DEVICE FOR THE MEASUREMENT OF Alfred Gugles ON SPACE PLANES
Alfred Gudel, Gaswerkstrasse 26, 4900 Langenthal, Switzerland
Filed Jul. 19, 1976, Ser. No. 706,740
Claims priority, application Switzerland, Jul. 22, 1975
\(9595 / 75\); Jan. 31 , Int. Cl. \({ }^{2}\) G01B 3/56
U.S. C. 33-75 C

Int. C.' \({ }^{2}\) GOIB \(3 / 56\)
8 Claims

1. A device for angle measurement of space planes, includ ing: an angle element with two legs rigidly connected to each other and having a specific angle ratio to one another, said legs
having longitudinal axes which intersect at a right angle; a planar contact device formed by a plane surface of one of said two legs which is a reference leg for contact with at least two contact points of a space plane located at said reference leg, said planar contact device extending in parallel to said refer mounted on the other of said two legs which is a measuring leg mounted on the other of said two legs which is a measuring leg
for contact with at least two additional points of said space plane, whereby said contact elements determine at least two distance lines between said measuring leg and respective
contact points, said distance lines extending in parallel to the
measuring leg so that the distance of the respective contact
point is variable with respect to the measuring leg, said measuring leg having a longitudinal slot; said first contact element being mounted via slide means in said measuring leg so that it can be measurably moved along said measuring leg, said slide means being spring mounted in said slot to fix it movably in said slot, said first contact element being mounted on the mea suring leg at a greater distance from said reference leg tha
said second contact element, said second contact element on said measuring leg comprising a pair of contact elements for contacting said space plane at least at two spaced apart contac points, said two contact points defining a line which extend normally with respect to the plane defined by said two legs, a matic adjustment of the length thereof under contact pressure, a measuring device connected to said first contact element in order to measure the distance between the respective contac point of said first contact element and said measuring leg, measuring scale on said measuring leg between said two
contact elements in order to determine the distance between said two contact elements.

4,096,635
NAVIGATIONAL COMPUTER Lon M. McM
Ga. 31093

Filed Jul. 19, 1976, Ser. No. 706,183
Int. Cl. \({ }^{2}\) B43L \(13 / 00,7 / 06\); G06G \(/ / 02\)
U.S. Cl. \(33-98\)

9 Claims

1. A navigational computer comprising a first arm carrying indicia denoting a first scale, a second arm, said second arm carrying indicia denoting a second scale, a third arm, said third arm carrying indicia denoting a third scale, a first compass rose, means to pivotably secure one end of said first arm and
one end of said second arm and said compass rose to each one end of said second arm and said compass rose to each
other, said compass rose being disposed intermediate adjacent faces of said first arm and said second arm, said first compass rose carrying indicia in a first circularly disposed scale, means to slideably and pivotably secure one end of said third arm along a selected portion of a length of said second arm, means to slideably and pivotably engage a selected portion of the
length adjacent the other end of said third arm to a selected length adjacent the other end of said third arm to a selected
portion of the length adjacent the other end of said first arm, a second compass rose, said second compass rose being disposed at said selected portion of said length of said first arm, said second compass rose carrying indicia in a second circularly disposed scale, first indicating means for use as a sight in conjunction with said second scale extending across the entire width of said second arm, said first indicating means disposed use as a sight in conjunction with said third scale extending across the entire width of said third arm, said second indicating means disposed at said selected portion of said length adjacen said other end of said third arm, third indicating means for use
the entire width of said first arm, said third indicating mean disposed at said selected portion of said length adjacent said other end of said first arm, fourth indicating means for use as a
sight in conjunction with said first circular scale, said fourth sight in conjunction with said first circular scale, said fourth
indicating means disposed along the length of said first arm indicating means disposed along the length of said first arm
extending radially outwardly from the center of said first extending radially outwardly from the center of said first
compass rose and adjacent said first scale, fifth indicating means for use as a sight in conjunction with said first circular scale, said fifth indicating means disposed parallel to the longitudinal axis of said second arm and extending radially outwardy from the center of said second compass rose, sixth
indicating means for use as a sight in conjunction with said second circular scale, said sixth indicating means disposed substantially parallel to the longitudinal axis of said third arm extending radially outwardly from the center of said second compass rose and adjacent said second scale.

\section*{4,096,636}

MOTORCYCLE WHEEL ALIGNMENT TOOL Michael D. Little, 5718 N. 18 th Pl., Phoenix, Ariz. 85016 Filed Oct. 26, 1976, Ser. No. 735,15 U.S. CI. 33-169 \({ }_{\text {R }}^{\text {Int. }}\)
ing first pivotal means pivotally connecting said first leveling gauge means to the body for swinging movement in a first vertical plane, a second leveling gauge means including second pivotal means pivotally connecting the second leveling gauge means to the body for pivotal movement of said second leveling gauge means in a vertical plane perpendicular to the plane
of pivotal movement of said first leveling gauge means, and

adjustment means to pivotally move the gauges with respect to the body and to hold the gauges to the body in adjusted positions, and means to mount the body to said facebow with said first leveling gauge means being oriented generally parallel to a line connecting the ends of said temple portions, and said plane when said facebow is in its use position.

\section*{4,096,638}

Fred H. Schimming, Pea Ridge, Ark., assignor to Roland Clardy
1. An alignment tool for aligning the front and rear wheel mounted tires of a motorcycle having an alignment adjustment mechanism on one of the wheels, said tool comprising:
a. a first bar of a length sufficient to extend fore and aft along tires;
b. a first alignment edge disposed upon said bar for making contact on two points on the sidewall of the front wheel tire to define a plane orthogonal to the axis of the front wheel; and
a spacer bar having at least an L-shaped cross section having second and third alignment edges disposed each being capable of bar for making contact on two points on he sidewall of the rear wheel tire to define a further plane orthogonal to the axis of the rear wheel;
d. means mounting said spaces bar on said first bar for discrete lateral adjustment parallel thereto, said mounting
means being selectively connectable to either leg of said L-shaped cross section to permit selected use of said second and third alignment edges;
whereby, the front and rear wheel alignment is effected by setting the spacer bar at a predetermined position with respect
to said first bar corresponding to the desired wheel alignment, and operating the alignment adjustment mechanism until each of the first and selected alignment edges makes contact with the two points on the respective sidewall to bring said plane
into parallelism with said further plane.

\section*{4,096,637}

ORIENTING DEVICE FOR DENTAL FACEBOW OR
DEANTOGRAPH
Elwood H. Stade, R.R. \#3 Box 369C, Edwardsville, III. 6202
Filed Apr. 22, 1976, Ser. No. 679,465
Int. C1. A61C 19/04: G01C \(9 / 28\)
U.S. CI. 33-174 D
and Ray Green, Rogers, Ark., part interest to each
Filed Dec. 20, 1976, Ser. No. 755,623
Int. Cl. \({ }^{2}\) G01C \(9 / 12\)
U.S. C1. 33-396

1. A level comprising a body defining first and second pairs ing between and and a cylindrical opening in said body extendsaid second pair of sides outwardly of said first pair of sides, against a surface whose orientation relative to the horizontal is o be measured, a level assembly disposed in said opening, said level assembly including a sealed hollow housing having opposite sides facing outwardly of said first pair of sides, journal means carried by central portions of said housing sides, indicator means including a horizontal shaft extending between and journaled from said journal means and pointer arm means
carried by and projecting outwardly from at least one side of said shaft and including outer end provided with indicator means closely adjacent and swingable about the inner surfaces 3 Claims said facebow comprising a first and a second spaced temple portion and a transverse portion, said facebow being adapted o encircle the frontal face zone of a patient, said orienting
device comprising a body, a first leveling gauge means includ-
of the outer peripheries of said housing sides, said housing sides including indicia spaced about said outer peripheries with which said indicator means is registrable, second arm means carried by said shaft and projecting outwardly from opposite
sides thereof, the outer ends of said second arm means including float elements spaced along said second arm means in a line normal to a diametric plane of said shaft containing said indica-
- course index line inscribed upon the viewing face of the longitudinal axes of said reference leg; means for adjustably mask which bisects the right angle between the sides supporting at least the first of said contact elements on said
thereof for setting the aircraft course into the compass measuring leg so that the distance of the respective contact thereof for setting the aircraft course into the compass measuring leg so that the distance of the respective contac
rose whereby the sides cut arcuate shaped sectors in the point is variable with respect to the measuring leg, said measur range circle that are indicative of zones of primary impor- ing leg having a longitudinal slot; said first contact elemen tance; and
means to move said mask to a desired heading.
mation in regard to other aircraft flying about the same altitud
of a first aircraft including
a back-plate and a cover plate supported in spaced apari a transparent window formed
semicircular compass rose imprinted thereon;
a transparent course indicator dial rotatably supported in the
cover plate of the plotter upon a first pivot means located
at the radial center of the compass rose, the dial having at the radial center of the compass rose, the dial having
range circle which is concentric with said radial center and a diameter which is smaller than the diameter of the compass rose;
an opaque mask having two perpendicular sides, the mask
being pivotably supported in the course indicator dial being pivotably supported in the course indicator dial
upon a second pivot means at a point on the range circle said two sides intersecting at said pivot point;
a stationary post supported in the back-plate of the plotter and being arranged to extend into a slotted openin
formed in the mask that is axially aligned along the bisec tor of the right angle formed by said sides of said mask, the post being positioned on the range circle at the point
where the radius of the compass rose normal to its base intersects the range circle; and
means to set the indicator dial into the compass rose to the aircraft heading whereby the sides of the mask are automatically moved to cut arcuate sectors in the range circle
which are of primary interest to the pilot of said aircraft.

METHOD AND DEVICE FOR THE MEASUREMENT OF NGLES ON SPACE PLANES
Alfred Gudel, Gaswerkstrasse 26, 4900 Langenthal, Switzerland Claims priority, application Switzerland, Jul. 22, 1975, 9595/75; Jan. 31, 1976, 352/76
Int. Cl. \({ }^{2}\) G01B 3/56
U.S. Cl. 33-75 C

1. A device for angle measurement of space planes, inclua ing: an angle element with two legs rigidly connected to eac other and having a specific angle ratio to one another, said leg
having longitudinal axes which intersect at a right angle; planar contact device formed by a plane surface of one of said two legs which is a reference leg for contact with at least two contact points of a space plane located at said reference leg said planar contact device extending in parallel to said refe mounted on the other of said two legs which is a measuring le for contact with at least two additional points of said space plane, whereby said contact elements determine at least two
distance lines between said measuring leg and respective distance lines between said measuring leg and respective
contact points, said distance lines extending in parallel to the
ng leg having a longitudinal slot; said first contact element being mounted via slide means in said measuring leg so that it can be measurably moved along said measuring leg, said slid means being spring mounted in said slot to fix it movably in said slot, said first contact element being mounted on the mea said second contact element, said second contact element on said measuring leg comprising a pair of contact elements for ontacting said space plane at least at two spaced apart contac oints, said two contact points defining a line which extend least said said first contact element comprising means for auto matic adjustment of the length thereof under contact pressure, measuring device connected to said first contact element in rder to measure the distance between the respective contac point of said first contact element and said measuring leg,
neasuring scale on said measuring leg between said two ontact elements in order to determine the distance between said two contact elements.

4,096,635
NAVIGATIONAL COMPUTER
Gi M. McMiillan, Regency Apartments 209-5, Warner Robins Ga. 31093

Filed Jul. 19, 1976, Ser. No. 706,183
U.S. Cl. 33-98 9 Claim

1. A navigational computer comprising a first arm carrying indicia denoting a first scale, a second arm, said second arm
carrying indicia denoting a second scale, a third arm, said third arm carrying indicia denoting a third scale, a first compass rose, means to pivotably secure one end of said first arm and one end of said second arm and said compass rose to each other, said compass rose being disposed intermediate adjacent
faces of said first arm and said second arm, said first compass faces of said first arm and said second arm, said first compass
rose carying indicia in a first circularly disposed scale, means to slideably and pivotably secure one end of said third arm along a selected portion of a length of said second arm, means to slideably and pivotably engage a selected portion of the length adjacent the other end of said third arm to a selected
portion of the length adjacent the other end of said first arm, a portion of the length adjacent the other end of said first arm, a
second compass rose, said second compass rose being disposed at said selected portion of said length of said first arm, said lisposed compass rose carrying indicia in a second circularly sposed scale, first indicating means for use as a sight in conunction with said second scale extending across the entire at said one end of said third arm, second indicating means for use as a sight in conjunction with said third scale extending cross the entire width of said third arm, said second indicating means disposed at said selected portion of said length adjacen as a sight in conjunction with said first scale extending across
the entire width of said first arm, said third indicating means ing first pivotal means pivotally connecting said first leveling disposed at said selected portion of said length adjacent said other end of said first arm, fourth indicating means for use as a
sight in conjunction with said first circular scale, said fourth sight in conjunction with said first circular scale, said fourth
indicating means disposed alon the length indicating means disposed along the length of said first arm
extending radially outwardly from the center of said first extending radially outwardly from the center of said first
compass rose and adjacent said first scale, fifth indicating means for use as a sight in conjunction with said first circular scale, said fifth indicating means disposed parallel to the longi-
tudinal axis of said second arm and extending radially outtudinal axis of said second arm and extending radially out-
wardly from the center of said second compass rose, sixth indicating means for use as a sight in conjunction with said second circular scale, said sixth indicating means disposed substantially parallel to the longitudinal axis of said third arm extending radially outwardly from the center of said second compass rose and adjacent said second scale.

4,096,636
MOTORCYCLE WHEEL ALIGNMENT TOOL Michael D. Little, 5718 N. 18th Pl., Phoenix, Ariz. 8501 Filed Oct. 26, 1976, Ser. No. 735,15
Int. Cl. \({ }^{2} \mathbf{G 0 1 B} 3 / 30,5 / 255\)
U.S. Cl. \({ }^{33-169}{ }_{R}\)

5 Claims

1. An alignment tool for aligning the front and rear wheel mounted tires of a motorcycle having an alignment adjust a. a first bar of a length sufficient to extend fore and aft along chords on one side of the sidewalls of the front and rear \(\stackrel{\text { tires; }}{\text { b. a first }}\)
a first alignment edge disposed upon said bar for making contact on two points on the sidewall of the front wheel
tire to define a plane orthogonal to the axis of the front wheel; and
a spacer bar having at least an \(L\)-shaped cross section having second and third alignment edges disposed each being capable of bar for making contact on two points on
the sidewall of the rear wheel tire to define a further plane orthogonal to the axis of the rear wheel;
d. means mounting said spaces bar on said first bar for discrete lateral adjustment parallel thereto, said mounting means being selectively connectable to either leg of said ond and third alignment edges;
whereby, the front and rear wheel alignment is effected by setting the spacer bar at a predetermined position with respect to said first bar corresponding to the desired wheel alignment,
and operating the alignment adjustment mechanism until each of the first and selected alignment edges makes contact with the two points on the respective sidewall to bring said plane into parallelism with said further plane.

ORIENTING DEVICE FOR DENTAL FACEBOW OR PANTOGRAPH

Filed Apr. 22, 1976, Ser. No 679,465 Filed Apr. 22, 1976, Ser. No. 679,465
Int. Cl. \({ }^{2}\) A61C 19/04; G01C 9/28
U.S. Cl. 33-174 D
1. In combination, 3 Claims said facebow comprising a first and a second spaced temple portion and a transverse portion, said facebow being adapted to encircle the frontal face zone of a patient, said orienting
gauge means to the body for swinging movement in a first vertical plane, a second leveling gauge means including second pivotal means pivotally connecting the second leveling gauge means to the body for pivotal movement of said second leveling gauge means in a vertical plane perpendicular to the plane
of pivotal movement of said first leveling gauge means, and

adjustment means to pivotally move the gauges with respect to the body and to hold the gauges to the body in adjusted posi-
tions, and means to mount the body to said facebow with said first leveling gauge means being oriented generally parallel to a line connecting the ends of said temple portions, and said second leveling gauge means lying in a generally horizontal plane when said facebow is in its use position.

\section*{PENDULUM}

Fred H. Schimming, Pea Ridge, Ark., assignor to Roland Clardy and Ray Green, Rogers, Ark., part interest to each Filed Dec. 20, 1976, Ser. No. 755,623

\section*{U.S. Cl. 33-396}

1. A level comprising a body defining first and second pairs of opposite sides and a cylindrical opening in said body extendsid secoen and opening outwardly of said first pair of sides, against a surface whoses berieng adapted for selective abuting to be measured, a level assembly disposed in said opening, said level assembly including a sealed hollow housing having opposite sides facing outwardly of said first pair of sides, journal means carried by central portions of said housing sides, indicafor means including a horizontal shaft extending between and journaled from said journal means and pointer arm means
carried by and projecting outwardly from at least one side of carried by and projecting outwardy from at least one side of means closely adjacent and swingable about the inner surfaces of the outer peripheries of said housing sides, said housing sides including indicia spaced about said outer peripheries with which said indicator means is registrable, second arm means sides thereof, the outer ends of said second arm means including float elements spaced along said second arm means in a line normal to a diametric plane of said shaft containing said indica-
tor means, a quantity of liquid contained within said housing to level with said float elements disposed in said liquid and buoyed up thereby with a force substantially to the weight of said indicator means, whereby the shaft ends and journal means function primarily to guide the indicator means during its oscillation rather than support of the indicator means be
tween said housing sides, said float elements coacting with liquid to support said pointer arm means in vertical position, said housing including a pair of aligned cylindrical opposite end sections with said opposite sides of said housing closing the remote ends of said sections, the adjacent ends of said end sections being oppositely and complementary stepped and
interfitingly and sealingly secured together, corresponding peripheral portions of said adjacent ends having registered notches formed therein opening toward each other and defining a port through the corresponding outer peripheral wal portion of said housing centrally intermediate its opposite ends a puncturable resillient plug extending through said port and
overlapping the inner and outer surfaces of said corresponding peripheral wall portion, said plug being constructed of a material rendering said plug repeatedly puncturable by a hollow needle and self resealable each time the needle is withdrawn said housing being removably and rotatably received in said ody opening, said body having a bore formed therein extend ing generally radially of said cylindrical body opening and
opening outwardly of one of said second pair of sides of said body at its outer end and into said body opening at its inner end, the inner end of said bore including a diametrically en larged counterbore, the outer end of said bore being threaded an abutment screw threaded in said outer end of said bore and bore, an abutment piston disposed in said counterbore, and compression spring interposed between said head and abutment piston, said abutment piston being projectable, at leas flightly, from said counterbore into said body opening for portion of said housing.

\section*{4,096,639}

NICKEL-MISCHMETAL-CALCIUM ALLOYS FOR HYDROGEN STORAGE
Gary Dale Sandrock, Ringwood, N.J., assignor to The Interna tional Nickel Company, Inc., New Yorl, N.Y.
Filed Nov, 8, 1976, Ser. No. 739,483 Filed Nov. 8, 1976, Ser. No.
Int. Cl. \({ }^{2}\) F26B \(5 / 04\)
U.S. C. \(34-15\) Int. C. \({ }^{2}\) F26B 5/04
splitting
flow:
entraining the material surrounding the bottom end portion in the central passage forst flow and conveying it upwardly the central passage, so that due to the repetition of such

entraining the body of material becomes gradually turned over in the vessel; and
directing the second flow through the body outside the central passage, so as to trickle through and treat the
material of the body material of the body.

4,096,641
METHOD FOR STORING HYDROGEN IN NICKEL-CALCIUM
Dale Sandrock, Ringwood, N.J., assignor to The International Nickel Company, Inc., New York, N.Y.
Filed Nor. 8, 1976, Ser. No. 739,481
U.S. Cl. 34-15

Int. C. \({ }^{2}\) F26B \(5 / 16\)
1. An improve

2 Claims 1. An mproved method for hydrogen storage, the improvehydrogen partial pressure below about one atmosphere absolute and at temperatures below about \(40^{\circ} \mathrm{C}\).

APPARATUS FOR HEAT EXCHANGE BETWEEN FINE MATERIAL AND GAS Wolfgang Triebel, Oelde, Germany, assignor to Polysius, AG,

Filed Dec. 10, 1976, Ser. No. 749,473
Filed Dec. 10, 1976, Ser. No. 749,473
Claims priority, application Germany, Jan. 19, 1976, 2601776 S. 1 Int. Cl. \({ }^{2}\) F26B \(17 / 00\) 1. A method for storing hydrogen at pressures ranging from tacting a hydrogen containing gas with a granulated \(\mathrm{Ni}_{5} \mathrm{M}_{1}\) Ca, compound at an ambient temperature, where
mischmetal and \(y\) is from about 0.2 to about 0.9 .

\section*{4,096,640}

METHOD AND APPARATUS FOR THERMAL
TREATMENT OF OR FOR MATTER-EXCHANGE WITH
POURABLE MATERIAL
Wolfgang Krambrock, Ravensburg, Hansjörg Schwedes, Co logne; Wolfgang Richter, Refrath, and Klaus Elgeti, Schild
gen, all of Germany, assignors to Waeschle Maschinenfabrix gen, all of Germany, assigig
\(\mathbf{G m b H}, G e r m a n y\) Filed Sep. 3, 1976, Ser. No. 720,451 Claims priority, application Germany, Sep. 2, 1975, 2539042 U.S. C. \(34-10\) 1. A method of treating pourable material, comprising the accommodating a body of the pourable material in a vessel having a lower end and a central, upright unobstructed passage provided with a bo
surrounded by the material;
directing a stream of gaseous fluid into the lower end of the vessel;

1. Counterflow heat exchanger apparatus for heat exchange between fine material and gas, comprising a generally vertical
reaction vessel which is divided by funnel-like constrictions reaction vessel which is divided by funnel-like constrictions one inlet for introducing fine material into the top of the upper-
most of such chambers and an opening at the bottom of the board in a manner such that they may be selectively brought bwermost of such chambers for withdrawing heated fine into over-lying relationship, one with another thereby to obnaterial and for introducing hot gas to be exhausted from said tain a composite number by fields of color the corresponding stantially cylindrical portion above a funnel portion, and a making up said composite number, so that given a certain field entral scattering cone at the upper end of each of said funnel of color corresponding to a composite number, the student can portions, wherein the improvement includes guide element or the fine material extending downward along the inner lements being distributed around said inner surface of said at least one funnel portion.

4,096,643
PAPER WEB STREAK DRYING SYSTEM
Ralph James Futcher, Beaconsfield, Canada, assignor to Domin
ion Engineering Works Limited, Lachine, Canada
Claims priority, application Canada, Jan. 21, 1976, 244031
U.S. C. 34- 122 Int. Cl. \({ }^{2}\) F26B \(11 / 02\)

6 Claims

1. Web drying apparatus for use in providing selectively difyer drum rotatably mounted to receive thereon a web in drying relation; a plurality of hood segments in axial abutting elation to provide adjoining control zones across the width of the web, each hood segment having a plurality of outlet nozzles for the supply of pressurized air inwaraly owards the face
of the drum, and a plurality of return flow conduits to receiv in operation a return flow of air from the web surface; a return plenum having the return flow conduits connected thereto; hot air conduit; a cold air conduit; a mixing chamber communicating with the outlet nozzles; hot air supply means and cold and the cold air conduit; and hot air flow control means and cold air flow control means to regulate air flow and temperature within the mixing chamber, whereby the drying capability
of each respective hood segment can be selectively controlled.

\section*{\(4,096,644\)}

EDUCATIONAL AID
Dan Nesher, 7 Soroke St, Heify, and Yigael Zemer, 5, Kore Hadorot, Jerusalem, both of Israel Filed Jun. 9, 1976, Ser. No. 694,405 Clams priority, application I Srael, Feb. 18, 1976, 49058
U.S. C. \(35-31 \mathrm{R}\) Int. C1. \({ }^{2}\) G09B 19/02
\(\qquad\) eans each representing a certain basic color and a board o which a plurality of primary numbers are each represented by different one of said certain basic colors the transparen
match said field by the correct mixture of said means having basic colors and thereby find the factors of the number represented by said field, or conversely the student can mix said match the resulting color with a field of color and thereby learn multiplication.

\section*{4,096,645}

PHONETIC TEACHING DEVICE
Thomas Herbert Mandl, Oststrasse 20, 4005 Meerbusch 1, Ger.
Filed Nov. 8, 1976, Ser. No. 739,785
U.S. Cl. 35-35 \(\mathrm{R}^{\text {Int. Cl. }{ }^{2} \text { G09B 19/04, 23/32 }}\)

8 Cluims


8 Clai

1. In a teaching device, indicating means for indicating the forms of a plurality of articulation organs used during the oral production ors during the natural oral production of a particular sound, and control means for selective operation of said indicating means to indicate the positions of said organs during the natural oral production of a plurality of particular sounds, said indicating means comprising a plurality of indicating of articulation organs, and said control means comprising means for selectively positioning said plurality of indicating members, head structure means associated with said indicating members for indicating the form of internal passage walls which cooperate with said articulation organs in the produc-
walls to said articulation organs represented by said indicating stain-and tear-resistant panels simulating garment members to members, said indicating members including rear and front be interconnected in dressing operations, each pair being cenongue members for representing rear and front parts of a trally divided and each divided portion being swingable laterongue, first pivot means for supporting said rear tongue mem- ally away from the other portion thereof to expose the next
ber for pivotal movement and aiso for longitudional forward
and rearward movements relative to said head structure means, and second pivot means for supporting said front tongue mem
and ber from said rear tongue member.

DEVICE FOR IDENTIFYING AND LOCATING A STAR IN THE HEAVENS
Philip M. Solem, 30 W. Arrowhead Rd., Duluth, Minn. 55803 Filed Apr. 28, 1977, Ser. No. 791,68
Int. C1. \({ }^{2}\) G09B \(27 / 06\)
U.S. Cl. 35-43

1. A derising:
(a) an axis rod
(b) a
(b) a globe,
(d) means on said globe indicating the location axis rod, of the stars in the heavens,
(e) a hoop,
(f) means \(m\)
(f) means mounting said hoop on said axis rod for rotation (g) a mount.
(g) means slidably mounting said mount on said hoop, (i) viewing means carried by said mount,
(j) pointer means carried by said mount,
(k) means for mounting said axis rod and globe at selectid
angles,
(1) means for securing said globe against rotation on said axis \(\underset{(\mathrm{m}) \text { me }}{\mathrm{m}}\)
(m) means for securing said mount, said hoop and said glob
against movement against movement.

4,096,647
James Robert Barry, 160 Regent St., Lincoln, III. 62656 Continuation-in-part of Ser. No. 625,000, Oct. 22, 1975, abandoned. This application May 11, 1977, Ser. No. 795,752 U.S. Cl. 35-56 Int. C1. \({ }^{2}\) G09B 19/00 5 Claims

1. A learn-to-dress manual comprising: a relatively rigid flat base lamina; a shoe top, including lacings, fixed to the upper surface of said base lamina; a plurality of superposed pairs of
pair therebeneath, each pair having co-operating conventional means for interconnecting said divided portions in dressing-
simulating manner, the upper surfaces of said pairs of garment simulating manner, the upper surfaces of said pairs of gaimering
simulating panels being of bright attractive colors differing markedly from the colors of the immediately preceding and following pairs, and the under surfaces of said panels being of non-distracting coloration; a plurality of arched-portion rods fixed to the lateral margins of said base lamina; eyelets in the lateral margins of said panels loosely embracing said rods; a
pair of relatively stiff cover panels apertured to receive said pair of relatively stiff cover panels apertured to receive said
arched-portion rods; and at least one pair of belt sections in-arched-portion rods; and at least one pair of belt sections in-
cluding a belt buckle, to fasten said cover panels protectively over said pairs of garment-simulating panels and to constitute
an introductory exercise. an introductory exercise.

SKI BOOT FASTENER
Giuseppe Guolo, Treviso, Italy, assignor to Calzaturificio GiGiuseppe Guolo, Treviso, Italy, assignor
useppe Garbuio S.A.S., Treviso, Italy

Claims priority, application Italy, Oct. 10, 1975, 84149 A/75 U.S. Cl. \({ }^{36-50}\) Int. CC. \({ }^{2}\) A43B 11/00; A43C \(11 / 00 \quad 8\) Claims

1. A ski boot fastener comprising a leg portion including separated parts adapted to be fastened around a skier's leg, a mechanical fastener on one of said parts of the leg portion, a coacting fastening loop on the other part of said leg portion
and extending beyond the free end of said other part for conand extending beyond the free end of said other part for conbeing formed on its interior surface to provide spaced securing elements for selective engagement with the fastening loop to thereby render the fastening loop adjustable longitudinally on said other part to plural fixed positions, said other part being said securing elements, whereby one end of said fastening loop can be selectively engaged around one of the securing elements while the fastening loop is within the recess of the interior surface of said other part, and said spaced securing elements being flush with the interior surface of said other part and said loop during usage lying below said interior surface.

\section*{4,096,649}

ATHLETIC SHOE SOLE
Albert C. Saurwein, 19702 - 37th PI. S., Seattle, Wash. 98188 Filed Dec. 3, 1976, Ser. So. Seattle,
Int Cli,
U.S. Cl. 36-32 R Int. Cl. \({ }^{2}\) A43B 13/04 34 Claims 1. A shoe sole having a heel section and a toe section com-
prising. prising:
peripheral flange running substantially continuously
around the periphery of said heel section section, said peripheral flange being integral with said heel section and said toe section and extending downwardly section and said toe section and extending downwardly
and outwardly therefrom, said peripheral flange terminat-
ing in a substantially continuous bottom edge lying in a friction between said inner shoe and said lining, the coefficient first plane, and toe section of said shoe sole, said toe section flange having insuring a good fit of said inner shoe in said outer shoe an arcuate forward portion spaced inwardly from the forward portion of the peripheral flange on the toe sec tion, having laterally spaced, rearwardly extending side
portions spaced inwardly from said peripheral flange and portions spaced inwardly from said peripheral flange and
joined to the arcuate portion of said toe section flange, and joined to the arcuate portion of said toe section flange, and
having an arcuate rearward portion joined to the side insuring a good fit of said inner shoe in said outer shoe.
\(\begin{array}{ll} & \begin{array}{c}4,096,651 \\ \text { SKI BOOT }\end{array}\end{array}\)
Ancker, Vändstigen 4, S-181-42 Lidingö, Sweden
Filed Aug. 13, 1976, Ser. No. 714,119 Claims priority, application Sweden, Aug. 22, 1975, 7509358

portions of said toe section flange to form an annularly shaped toe section flange, said toe section flange termina ing in a substantially continuous bottom edge lying sub
stantially in a second plane parallel to said first plane said second plane lying below said first plane, and
a downwardly extending heel section flange positioned in the heel section of said shoe sole, said heel section flange having an arcuate rearward portion spaced inwardly from section and having spaced, forwardly extending portion joined with said arcuate portion.
U.S. Cl. \(36-120\) Int. Cl. \({ }^{2}\) A43B \(5 / 04\)

10 Claims

\section*{FOOTWEAR}

Gesellschaft mb, Gustria, assignor to Skischuhfabrik Dynafit
Filed Nov. 15, 1976, Ser. No. 742,060
U.S. Cl. 36-120 Int. C.2 \({ }^{\text {A43B }} 5 / 04,1 / 10\)

1 Claim

1. A ski boot for downhill skiing, comprising an inner shell including an upper tibia-supporting section and a unitary lower
foot-supporting section, means for pivotably connecting said upper section to said lower section for movement relative thereto about a horizontal pivotal axis, a sole adapted for mounting on a ski and an outer environment and climate shield enclosing said inner shell formed of a relatively soft material
foldable downwardly to expose said inner shell, said lower section of the inner shell being attached to the sole in such a way that it is pivotable in relation to the sole about an axis generally in the longitudinal direction of the ski and parallel to the platy RETRACTABLE SNOWPLOW WING AND MOUNTING William L. Raines, and John Karges, Jr., both of Sherman, N.Y., assignors to H. K. Nuttall Equipment Co., Inc., Sherman, N.Y. Nor. 8, 1976, Ser. No. 739,
Int. Cl.
E01H \(5 / 00\)
U.S. Cl. 37-41 Int. Cl. \({ }^{2}\) E01H 5/00 \(\quad 16\) Claims
1. A ski boot comprising: an outer shoe having an integral shell formed of at least partially transparent plastics material
and having an upper portion and a sole portion; a gaiter formed and having an upper portion and a sole portion; a gaiter formed
of at least partially transparent plastics material and hingedly onnected to and partially overlapping a portion of the outer criace of said upper portion of said outer shoe; a first lining lures up to about \(150^{\circ} \mathrm{C}\) and substantially resists penetration of he plastics material when the same is in a molten state, said rrt lining being firmly bonded to the inner surface of said outer shoe during the molding of the outer shoe; a second emperatures up to about \(150^{\circ} \mathrm{C}\) and substantially resists penetration of the plastics material when the same is in a molten state, said second lining being firmly bonded to the inner surace of said gaiter during the molding of said gaiter; and an 1. In a retractable snowplow wing: means for mounting said inner shoe inserted into said outer shoe, the inner shoe being at wing on a vehicle having a longitudinal frame comprising
least partially held in said outer shoe by the coefficient of opposed longitudinal members, said mounting means compris-

ing first means attached to the inboard end of said wing for supporting and raising said inboard end and second means, separate and distinct from said first means, attached to the outboard, trailing end of said wing for supporting and raising said outboard end, said first means comprising a member slidably mounted for vertical movement on support means carried by said frame, said second means comprising a strut and moto means both pivotally mounted on a rigid, non-movable bracke extends laterally therefrom, said strut constituting the sole support for the outboard end of said wing and being pivotally connected to said wing adjacent the bottom of said wing, and said motor means being operatively connected to and slidable on said strut adjacent its outer end for producing motion of board end of said wing
\(\qquad\)
CARTRIDGE \(\stackrel{\text { RTA, }}{\text {,096,653 }}\) EARTHWORKING TIPNS FOR
Willard Oswald Kaarlela, and Eugene L. Helton, both of Peoria, III., assignors to Caterpillar Tractor Co., Peoria, III.
Filed Oct
O1, 197,

Filed Oct. 31, 1974, Ser. No. 519,568
Int. Cl.2 E02F 9/28

1. In an earthworking device comprising a support member a work tool mounted on a forward end of said support member, a cylindrical pin having a generally smooth surface disposed in aligned bores formed through said support member pin in said bore, the improvement wherein said retaining means comprises an annular cartridge including a housing defining an annular chamber therein and an annular elastomeric member disposed in said chamber to have an inner portion thereof extend radially inwardly therefrom into circumferential fric-
tional engagement with said pin, said annular cartridge being tional engagement with said pin, said annular cartridge being
mounted in a counterbore in a lateral side of said suppori member coaxially with said aligned bores, said housing com prising a pair of cupshaped first and second members each having an annular outer wall and a sidewall extending radially inwardly towards said pin, the outer wall of said first membe being disposed in te
said second member

DRAG IMPLEMENT FOR GATHERING AND Henry Felton McLaughlin, 3925 Sand Ridge Dr., Gautier, Miss. Henry
39553

Filed Sep. 19, 1977, Ser. No. 834,071
U.S. C. \(37-118\) R Int. Cl. \({ }^{2}\) E02F \(3 / 00\) for use with a garden 4 Claims horizontally spaced lift arms extending rearwardly therefrom for raising and lowering the free ends thereof, and comprising: a. a rectangular bucket means having closed back, bottom and sides, and open front, and an open top, said bottom bucket for pivotally suspending on the raised free ends of
said rearwardly extending lift arms with open top up and said leading sharp edge parallel with the ground; ba first transverse element means fixed across said open top
adjacent said open front, for transversely bracing said closed sides
. jam bar assembly means center mounted on said firs transverse element means, and having a second transverse
element means slidably supported above said first trans verse element means, for defining an openable and clos able center space between said transverse element means; jam bar means, having a vertical dimension less than the height of said center space, pivotally mounted on the back

of said garden tractor and adapted for a free end thereof to extend through said center space for jamming between said first and closed second transverse elements means, esponsive to said leading sharp edge of said bucket bot tom, when lowered, engaging the ground to pivot said
bucket and edge to an angle of tilt limited by the ratio said center space vertical dimension to said jam bar means vertical dimension; and
converter link means mounted on the back of said bucket for pivotally engaging the free end of said jam bar means with said seconctansverse element means open and said normal to the ground for acting as a spreader of dirt.

\section*{4,096,655}

FABRIC IDENTIFICATION TAG
Myron E. Uliman, Jr., 120 Sleepy Hollow, Canfield, Ohio 44406 Filed Jan. 24, 1977, Ser. No. 761,953

6 Claims

\section*{U.S. CI. \(40-2 \mathrm{R}\)}

Int. C1. \({ }^{2}\) A44C \(3 / 00\)

1. A permanent fabric marking device comprising: an injection molded tag of resilient water resistant plastic including a body having top, bottom and side portions defining a central aperture; a tab molded to said top portion at an angle to the plane of said body having a width less than said aperture and a side portions and biasable through said central aperture by lexing; the free end of said tab being beveled on the inside dge to assist in biasing over said bottom portion; the outside dge of the free end of said tab and the outside edge of said oottom portion being opposed and wedge shaped to grip a
n one side of said body to a fabric gripping position on the ther side of said body places said top portion of said body in
 edges of said bottom portion and said free end of said tab.

LIGHTED MESSAGE BOARD CONSTRUCTION Giacomo Diceglie, Box 252, Windermere, Fla. 32786
Filed Dec. 3, 1976, Ser. No. 747,358 Filed Dec. 3, 1976, Ser. No. 747
Int. C. \({ }^{2}\) G09F 13/00
U.S. Cl. 40-564

Int. C. \({ }^{2}\) G09F 13/00

1. A lighted message board comprising:
a support defined by a back and opposing side walls;
a sheet of an insulating material within said support and
substantially parallel with said back; a plurality of conductive layers deposited on one side of said sheet;
a pluaraity of lighting elements carried by said sheet, each lighting element interconnected with selected ones of said conductive layers;
means electrically connected with said conductive layers fo means electrically connected with said
energizing said lighting elements;
a transparent layer overlying said support across the extremities of said side walls;
means for binding the periphery of said transparent layer to
the periphery of said side wall; and
a message panel carried by said transparent layer

\section*{4,096,657}

George W. Morrow, 19 Roceo Dr., Little Rock, Ark. 72209
Morrow, 19 Rocco Dr., Little Rock,
Filed Jun. 30, 1976, Ser. No. 701,321
U.S. Cl. 43-56 5 Claims 1. A minnow bait kit for making accessible a submerge minnow and facilitating its attachment to a fishhook compris ing: frustum of a cone, a flat bottom and a hinged lid swingable between an open and a closed position;
a horizontally disposed circular peripheral flange rigidly secured to the internal wall of said bucket, said flange
projecting radially inward and dividing the enclosed projecting radiall a small dry upper compartment and a large water-containing lower compartment suitable for containing submerged live minnows;
single fixed guide post extending axially from the bout of said bucket to an elevation above said flange;
a submergible perforated false bottom normally' disposed
coextensive with the bottom of said bucket, said false
bottom being slidably mounted on said guide post and movable upwardy therealong for capturing a submerge
water position determined by the engagement of said false ottom with the lower surface of said inwardly projecting lange; said flange including a pair of diametrically op-
posed spokes coplanar with the circular portion thereof, said spokes extending inwardly from said circular portion to engagement with the upper end of said guide post; tongs adapted to pick a minnow from the up-raised false bottom, said tongs manually resting on the upper surface of said flange within said upper compartment; and
coupling means effective to lift said false bottom to said

pper po
said coupling means including a crossbar mounted at the top of said guide post, said crossbar having a pair of vertically directed apertures radially spaced from opposing sides of said guide post, a flexible cord joined at its ends to said ides of said guide post and extending upwardly therealong in spaced relationship through said apertures to similarly spaced attachment fasteners secured to said hinged lid.

TOY MODEL VEHIC \(4,096,658\) SUPPORT SYSTEM Hermann Neuhierl, Waldstrasse 36, D-8510 Fïrth, Bayern, Germany Filed Mar. 21, 1977, Ser. No. 779,602 Claims priority, application Germany, May 21, 1976, 2622824 U.S. C. 46-17 Int. Cl. \({ }^{2}\) A63H 33/06
21 Clims 1. A support system for track for toy model vehicles comishg paired pylons, said pylons being positioning one on解 supporting the track connected together through means pylons, the pylons being formed from a plurality of substan-
tially flat elements including a base plate, an upper piece and
side pieces which interlock both the base plate and the upper

piece, the supporting means being connected to the pylons intermediate the base plate and the upper piece.

\section*{4,096,659}

Eunice R. Keane, 11 Maeven Ave., Kingston 10, Jamaica
Continuation of Ser. No. 610,658, Sep. 5, 1975, abandoned which is a continuation of Ser. No. 530,816 , Dec. 9,1974,
 U.S. CI. 46-47

1. A toy for use with a wand, said toy comprising a hollow, generally dome-shaped shell having a wall with an inner and an outer surface; said wall defining an apex and said inner
surface having a first lip defining a first opening; said wall surface having a first lip defining a first opening; said wall
extending from said first lip to a second lip defining a second extending from said first lip to a second lip defining a second opening; a first rim means extending from said inner surface at
said first lip for engaging an end of said wand and for enabling rotating movement of said wand to cause said toy to spin about said wand; and a second rim means extending from said inner surface at said second lip for engaging an end of said wand and for enabling rotating movement of said wand to cause said toy to spin about said wand.

\section*{4,096,660}

BALLOON POWERED AIRPLANE
Williem H. Ralph, 301 N. Blackman Ave., Duluth, Minn. 55811 Ralph, 301 N. Blackman Ave., Duluth,
Filed Sep. 2, 1976, Ser. No. 719,852 U.S. C. \(46-76 \mathrm{~A}\) Int. C1. \({ }^{\mathbf{2}}\) A63H 27/06
1. A toy balloon powered toy airplane comprising 1 Claim (a) a fuselage formed by a single piece rectilinear member and having,
(b) a wing secured thereto,
(c) a stabilizer mounted on said fuselage,
(d) a fin mounted on said fuselage,
(e) a balloon inflatable at one end thereof
(f) means for securing the other end of the balloon to said fuselage adjacent said wing, and (g) a loop connected to and depending from said fuselage loon extends for holding said balloon in alignment with said fuselage with said one end in position to power the airplane by expulsion of the balloon contents,

said means for securing the other end of the balloon to the fuselage including
(h) a support connected to the fuselage,
(i) said support having a hole therein,
portion of the balloon into said hole and for for forcing a frictional engagement with tho hor for raining it in

\section*{4,096,661}

METHOD OF INCREASING THE GROWTH OF PLANTS GROWN FROM SEED John Cleckner, 3414 Rustic Way La., Falls Church, Va. 22044 Filed Mar. 3, 1977, Ser. No. 773,985
Int. C.2.2 A01N \(7 / 00\)
U.S. Cl. 47-58 Claims
1. In a method of growing crops from seed in non-irrigated 1. In a method of growing crops from seed in non-irrigated fields in fertile soil suitable for growing the crop, the improvement which comprises applying only to that portion of the soil during the period from about two weeks prior to planting to about six weeks after planting, a growth promoting amount of a linear alkyl sulfonic acid surfactant of at least 6 carbon atoms, or a non-phytotoxic salt thereof.

4,096,662
PLANT STAKE INCLUDING BASKET Joseph Anderson, 1950 Kennedy Rd. \#505, Scarborough, On tario, Canada
Filed Jul. 19, 1976, Ser. No. 706,245 Int. Cl. \({ }^{\text {A }}\) A1G 9/02. 9/12
U.S. Cl. 47-70
level, said leg means terminating in ground anchor means, basket means suspended from said stake for carrying tuberous plants, hoisting means on said stake for raising said basket
means from a level beneath said post means to a level nexter adjacent said post means, said hoisting means comprising hreaded shaft means, threaded shaft receeving means operaively engaging said shaft means, crank means for turning said
shaft receiving means in relation to said shaft means, securin means on said shaft means for attaching said shaft means to said basket means.

PLANT WATERING SYSTEM AND PROCESS
Stanley Milton Silver, 1331 Lincoln Rd. \#705, Miami Beach, Stanley \(\mathbf{~ M} 3319\)

Filed May 25, 1977, Ser. No. 800,185
U.S. C. 47-80

27 Claims

1. An auto-moisturizing system for plants comprising an inner porous pot sealingly adhered near its lower end within a arger outer water-impermeable container for forming a reserooir between said pot and said container, whereby water in said reservoir may make contact with said pot and wicks by
capillary action up the porous side walls of the pot, means for capillary action up the porous side walls of the pot, means io
surfacing a lower interior part of the pot with a substantially surfacing a lower interior part of the pot with a substantially
water-impermeable coating extending from substantially the owest level at which soil may be contained upward to a predeermined height on the side walls to control the elevation at which the wicking water may contact potted soil through the
porous walls, and both said pot and said container being adapted to provide aerating means positioned at a lower region thereof.

SEAL TIGHT DOOR FOR WAREWASHER Kenneth E. Perry, Wellesley, Mass., assignor to Adamation, Inc., Newton, Mass.
ed Nor. 22, 1976, Ser. No. 743,932
U.S. Cl. 49-235
1. In a warewasher having a housing which housing includes 1. In a warewasher having a housing which hous,
an outer wall, the improvement which comprises:
n outer wall, the improvement which comprises:
(a) a door frame formed in the wall o the housing, the
including side edges, a top edge and a lower edge;
(b) first guide means secured to one of said side edges, said
guide means formed in a longitudinal substantially U . shaped configuration;
(c) second guide means secured to the other of said side edges and form;
configuration;
(d) a horizontal sliding door having a leading edge and a trailing edge and adapted to move between a closed position and an open position, the leading edge adapted to the trailing edge adapted to mate in sealing engagement with the second guide means such that any water contact ing the edges of the door will be directed downwardly;
inwardly and downwardly whereby water is directed fom the combination of the guide means and leading and railing edges inward the housing; and the upper edge of the door frame and including at leas

two stop cams, said cams disposed such that when the door is moved to the closed position the stop cams will prevent horizontal movement each of said cams substansectively

4,096,665
WINDOW SEALING STRUCTURE

Filed Mar. 10, 1977, Ser. No, 776,127 Int. Cl. \({ }^{2}\) E06B 7/16; E05D \(13 / 00\) U.S. Cl. 49-475
1. A weather seal structure for the juncture between a sash a rigid jamb member disposed in a window frame, means holding said jamb member,
a projection integral with said jamb member extending be tween the sash and the adjacent side of said window frame,
a flexible strip weather seal member extending along said projection of said jamb member integral therewith, said seal member having a side portion thereof at one side of said projection bearing against said sash, and said seal member having a portion at the other side of said projection bearing against said adjacent side of said win dow frame.

1. A plant stake comprising telescopically adjustable post means having a base, at least 3 leg means extending from said
base of said post means for supporting said base above ground

4,006,666
ROTARY SEA
David Brown, Stevenage, England, assignor to Osro Limited,
 Claims priority, application United Kingdom, Feb. 9, 1976, 5021/76; Jun. 2, 1976, 22842/76 US. C. 51-Int. C. \({ }^{2}\) B24B 31/00; F16J 15/40

1. An abrasive, surface finishing machine comprising a sta1. An abrasive, surface finishing machine comprising a sta-
tionary tub of generally cylindrical form and a rotary base, said tub and base having respective annular sealing members in mutual frictional contact, at least one of said members being of resiliently flexible material, and wherein the tub sealing member has a means defining a plurality of ports through it for the
injection of a pressurised fluid coolant between the contacting, injection of a pressurised furid coolant berweres of said sealing members, which surfaces are arranged to direct the injected coolant to the interior of said tub.

INTERNAL GRINDING MACHINE
Herbert R. Uhtenwoldt; Norman S. Humes, both of Worcester, and Richard E. Crossman, Leominster, all of Mass., assignors to Cincinnati Milazron-Heald Corp., Wreester, Mass. This application Aug. 17, 1977, Ser. No. 825,431 C1. 51-99 Int. C1.2 B24B 5/10 U.S. C1. 51-99

1. Internal grinding machine, comprising
(a) a base having two spaced abutments,
b) a primary bar extending between the abutments and
bar about an axis extending longitudinally of the bar and for movement of the bar in the direction of the axis, abutments and extending laterally thereof, said table including a wheelhead having a rotatable spindle on the end of which is carried an abrasive wheel,
(d) feed means located at a position substantially spaced from the primary bar for rotating the table and the ba (e) an actuator operating axis, and
bar and the table longitudinally along the bar to move the tor including a fluid cylinder providing the major longitudinal movements to the bar for bringing the grinding wheel toward and altuator for oscillating the grinding wheel when it is in contact with the workpiece.

\section*{4,096,668}

ENDLESS BELT SANDING TOOL Raymond D. Logan, 10525 Bethesda Church Rd., Damascus, Md. 20750

Filed Jan. 12, 1977, Ser. No. 758,821 Filed Jan. 12, 1977, Ser. No.
Int. C. \({ }^{2}\) B24B \(23 / 00\)

10 Claims

1. An end
(i) a body,
(ii) support means at spaced positions on said body, (iii) two thrust means at spaced positions on said body be tween said support means and having a common tangential plane,
(v) an endless
(vi) an endiess sanding belt engaged for returning about said support means and engaged over said thrust means, and vo a driving roller journalled for rotation on said body and positioned with a peripheral portion thereof extending between said thrust means beyond said common tangential
plane, to be contacted over an arc by the external face o plane,
run of said belt intermediate the portions of the belt engaged over said thrust means.

\section*{4,096,669}

MEMBRANE BUILDING SEGMENT CONNECTION Alton L. Pabst, Sarasota, Fla., assignor to Seaman Corporation, Sarasota, Fla. Filed Jul. 6, 1977, Ser. No. 813,319 U.S. Cl. 52-63 Int. Cl. \({ }^{\text {E }}\) E4B \(1 / 347,7 / 14\)
1. In a sealed joint structure connecting adjoining membran segments, an upright truss member forming part of a support ing framework and having an outer chord, attaching clips mounted at intervals along the chord, and link means detach ably connecting the side edges of two adjoining segments to
clips under tension, catenary hold-down cables extending
along the bottom edges of said segments and having their ends tiling and sarking and to extend over said fascia and a downanchored to said framework, said link means comprising links ward flange to lie in front of the fascia, integral spacing means adapted to detachably engage with like links for permitting the adjoining segments to the truss chord under decreased tension.

\section*{4,096,670}

BUILDING STRUCTURAL SYSTEM Ronald E. Fuller, P.O. Box 30485, Santa Barbara, Calif. 93105 Continuation-in-part of Ser. No. 619,372, Oct. 3, 1975, abandoned. This application Oct. 18, 1976, Ser. No. 733,423 U.S. Cl. 52-90 Int. Cl. \({ }^{2}\) E04B 7/02; E04C 3/02 5 Claims

1. A building structure system including interconnected girder and span members, the system incorporating interlock said means comprising:
a wedge-shaped girder element with convoluted sides,
a wedge-shaped span element with convoluted sides, the
convolutions of the girder element and the span element convolutioned to nestle and interlock with one another,
the span element including a top portion shaped to rest upon the top portion of the girder element and to transfer the load of the span member to the girder member,
the girder element and the span element each being formed as two vertical half sections, the half sections being sub-
stantially the mirror images of one another, the half sections including a vertical web at substantially the mid-line of the wedge-shaped portions, the ends of the vertical web of the girder element bearing upon the main longitudinal girder members to assist in transferring the load borne by
the girder element to the girder members and to assist in reinforcing the girder element, the vertical web of the span element being received between at least a portion of the vertical portions of the girder element, the span element incorporating reinforcing plates at the top portion,
the girder element and span element being formed from sheet metal sections bent to the shape of the respective elements,
means
and
means attaching the span element to the span member, the
span and girder elements being connected to their respec-
tive members such that when the members are attached to
one another, the wedge-shaped interlocking portions
point in a generally vertical direction, these convolutions

point in a generally vertical direction, these
both being sinusoidal-shaped in cross-section.
\[
\begin{aligned}
& \text { ROOF EAVE ASSEMBLY }
\end{aligned}
\]

Raymond Joseph Aarons, Jindalee, Australia, assignor Monier Colourtile Pty. Ltd., Darra, Australia

Filed Jun. 9, 1977, Ser. No. 804,880
U.S. C1. 52-94
U.S. Cl. 52-94
1. In a tiled roof having a fascia, rafters and sarking material
7 Claims a roof eave assembly comprising a sarking support of thin sheet material including a normally sloped portion to lie beneath the

flange and adapted to engage the fascia to space the flange from said fascia, and means to fasten the sloped portion of said support to the top edge of said fascia and to the roof rafters.

ANCHORING ARRANGEMENTT FOR SECURING AN OBJECT TO A SUPPORT STRUCTURE HAVING AN INTERNAL CAVITY
rtur Fischer, and Klaus Fischer, both of Tumlingen, Waldach tal, Germany
Continuation-in-part of Ser. No. 631,153, Nov. 11, 1975, Pat. No. 4,044,512. This application Oct. 14, 1976, Ser. No. 732,44 Claims priority, application Germany, Oct. 25, 1975, 2547823; 613178; Nov. 14, 1974, 2453957; May 26, 1975, 2523198; Jun 1975, 2525220; Jun. 17, 1975, 2525452; Jun. 14, 1975, 526744; Jun. 21, 1975, 2527773
U.S. C. 52-127 C. \({ }^{\text {Int. }}\) E04B 1/41; E04C 5/12 \(\quad 17\) Claims

1. An arrangement for securing an object to a support strucure having an anchoring hole which communicates with anvity within the support structure, comprising an elongated maller the element having one part of transverse dimension stantially corresponding to those of the anchoring hole so that said anchoring element is insertable into the anchoring hole one part on onen thereof until a leading end portion of said said anclextends into the cavity and said other part supports and closes ing element at the open end of the anchoring hor and closes the latter, said anchoring element having an interior leading and a trailing end portion of said anchoring element. and means for forming a plug about at least said leading end portion of said anchoring element to thereby attach the latter to the support structure and to prevent the extraction thereof from the anchoring hole, including a bag-shaped limiting merm ber mounted on the inserted anchoring element so as to surtherewith a compartment for accommodating a body of hard-
nable material for hardening therein, and being impermeable of a thickness " \(r\) " representing stacked members of a predeterto the hardenable material to prevent the latter from escaping permit venting of excess air from said compartment into the cavity and an interaction of the air in the cavity with the hardenable material in said compartment during the hardening
thereof, and means for introducing the hardenable material hereof, and means for introducing the hardenable material into said companment for hardening therein about said an-
choring element, including at least one passage through said leading end portion for communicating said interior of said anchoring element with said compartment, and shielding east during the introduction of the hardenable material int said compartment and operative for guiding the hardenable material through said interior toward said passage and for preventing the hardenable material from contacting said interhion thereof.

4,096,673
METHOD OF ANCHORING
Robert F. Deike, Cheyenne, Wyo., assignor to Foresight Industries, Cheyenne, Wyo.
Division of Ser. No. 668,695, Mar. 19, 1976, Pat. No. 4,044,513, which is a continuation-in-part of Ser. No. 535,428, Dec. 23, which is a continuation-in-part of Ser. No. 535,428, Dec. 23,
1974, Pat. No. 3,969,854. This application Nov. 11, 1976, Ser. No. 740,946
U.S. C. 52-156

Int. Cl. \({ }^{2}\) E02D \(5 / 80\)
ined cross-section, the false tenon comprising;
an elongated member of the
an elongated member of the full, predetermined cross-sec-
tion configuration; tion configuration;
cradle of a shape
cracle of a shape adapted to receive the predetermined
cross-section defined around a cradle axis through and adjacent to one end of the elongated members;
a first ten first tenon planar surface adapted to interface with the first planar structural surface defined at the end of the false line parallel to the cradle axis; and
a projection having a thickness of " \(t\) " extending from the
end of the elongated member end of the elongated member substantially in the direction

of the elongated member and defined by a second tenon planar surface adapted to interface with the second planar
structural surface which intersects structural surface which intersects the first tenon plana
surface at an angle substantially that of the given angle of the intersection of the planar structural surfaces and at a line substantially perpendicular to the line of intersection of the first tenon planar surface and the cradle surface, a
surface extending as a continuation of the cradle surface and having a configuration substantially that of a portion of the predetermined cross-section, and the surface of the elongated member;
whereby false tenons may be stacked with alternating false tenons formed in mirror image fashion to provide the members.
1. The method of forming a ground anchor which comprises inserting a driving tool into the trailing end of a hollow tubular member having a driving end with an internal abutment
adapted to be impacted by the driving tool for forcing the member lengthwise into the ground, providing an out-turned lip on the open trailing end of the member as a continuation of one side of the member to form a fulcrum for tilting the member, attaching a cable to the side of the member opposite the
out-turned lip side, impacting the tool against said internat abutment for driving the tubular member with the cable attached to a desired depth in the ground, pulling the cable to rotate the tubular member transversely of the hole formed by the driving operation, filling the hole with concrete, tensioning tubular member, compressing the concrete column to compact the ground surrounding the hole and to fill voids in the ground with concrete, and setting the concrete around the tensioned cable to form a compression loaded concrete column.

FALSE \(\stackrel{4,096,674}{ }\)
FALSE TENON STRUCTURE
Ernest Paul Kollar, and Julie Ann Kollar, both of Rte. 1, Bor 221-B3, Longmont, Colo. 80501
\[
\begin{aligned}
& \text { Imont, colo. } 8001 \\
& \text { iled Aug. } 26,1977, \text { Ser. No. } 827,995 \\
& \text { Int. Cl. }{ }^{2} \text { E04B } 1 / 10
\end{aligned}
\]
U.S. C1. 52-233 \(\qquad\)
1. A false tenon for use at the intersection of first \(\begin{array}{r}8 \text { Claims } \\ \hline\end{array}\) lanar structural surfaces which meet at a given angle with each of the structural surfaces having thereon facade members

SPLIT-SLAB HOUSE
PLIT-SLAB HOUSE CONSTRUCTION
both of Toward, Houston, and Robert W. Loomis, Freeport tion of Ame., assignors to Next Generation Housing Corpora Filed Aug. 25, 1976, Ser. No. 717,747
U.S. C. 52-79.1 34 Cleims
1. A method of erecting a house comprising the steps of constructing a transportable concrete first slab having a lower surface at a factory site,
constructing a superstructure upon said first slab, preparing
a mating site for said first slab on a lot remote from said factory site, said mating site having an upper surface, transporting said first slab and superstructure to said mating
site, and
mating said lower surface of said first slab with said upper
surface of said mating site such that there are no substansurface of said mating site such that there are no substar
tial air gaps between said lower surface of said first slab and said upper surface of said mating site and such that said first slab becomes substantially integrated with said mating site.

\section*{\(\stackrel{4,096,676}{ }\)}

Maurice Hibert, 6250, Bienville St., apt. A205, Brossard, Quebec, Canada

Filed Jul. 18, 1977, Ser. No. 816,678
U.S. C1. 52-220

Int. Cl.' E04B \(5 / 48,1 / 00\)
11 Claims
end is formed with at least one opening for receiving a fastener therethrough and said trailing edge adjacent to forming a second projection;
e. said leading edge at said second end is formed with at least one cut-out portion which is substantially equal in size and configuration to said second projection.
1. In a building construction, a wall member comprising:
1. In a building construction, a wall member comprising: ing an inner core, said shell being made of low heat expandable material;
said shell being formed with two substantially vertical faces; one said vertical face having a permanent building exterior or interior finish;
he other vertical face having a permanent building interior finish,
said shell being additionally formed with two substantially horizontal upper and lower faces wherein said upper face
of said shell is provided with a longitudinal tongue, a pair of fins being formed inside said shell opposite said tongue, the space between said fins corresponding to the thickness of said tongue, a groove being formed in said lower face of
said shell, said groove to receive a tongue of an adjoining said shell, said groove to receive a tongue of an adjoining
wall member, said tongue, said pair of fins and said groove all being centrally aligned to enable grooving of the ends of said wall member between said fins and including said tongue, said grooving thus producing a channel to permit engagement of said wall member with a structural mem
ber;
aid shell having its inner core filled with an insulating matesaid shell said shel.
rial. POST BASE
Tyrell T. Gilb, Berkeley, Calif., assignor to Simpson Manufacturing Co., Inc., San Leandro, Calif.
Filed Jun. 13, 1977, Ser. No. 805,638
U.S. Cl. 52-297 int. C1. \({ }^{2}\) E02D \(27 / 004\) Claims 1. A post base formed from a sheet metal comprising:
a. a strip of metal having a length several times greater than a. a strip of metal having a length several times greater than and having first and second ends;
b. said strip of metal consists of a mid-portion adapted for embedment in a concrete foundation and end portions
adapted for connection to a wood post;
said metal strip adjacent said leading edge is formed with at least one opening at said first end for receiving a fas-
tener therethrough and said leading edge adjacent to each of said openings is formed with additional metal forming a first projection and said trailing edge at said first end is and configuration to said first projections;

f. said strip of metal is folded at an approximately \(90^{\circ}\) angle at its mid-point along the short side of said strip of metal and is folded at an approximately \(45^{\circ}\) angle along said
short side along two shod parallel to said mid-point fold line; and
g. said strip of metal is folded at an approximately \(90^{\circ}\) angle at approximately the mid-point of said strip along the said first and second ends forming angle members.

4,096,678
INSULATED CONSTRUCTION ELEMENT
Manfred Diels; Karl Wilhelm Dienstuhl, both of Meinerrahagen; Tilo Jäger, and Eitel Hocker, both of Bielefeld, all of Germany, assignors to Otto Fuchs KG., Meinerzhagen and
Schico Heinz Schurmann GmbH \& \({ }^{\text {a }}\), Bielefeld, both of Germany Filed Nov. 22, 1976, Ser. No. 744,177 Claims priority, application Germany, Nov. 25, 1975, 2552700 U.S. C. 52-403 Int. C.2 \({ }^{2}\) E04B 1/62 13 Cleims

1. A construction element comprising
a elongated bar having a pair of longitudinally extending sides and formed along each of said sides with a longitudinally extending recess having a laterally directed face; of flanges forming a respective groove receiving a respective side of said bar, at least one of said flanges of each of said pairs being plastically deformed into the respective
tive recess;
a coating on at least one of said faces; and
particles imbedded in and projecting from said coating,
whereby the coefficient of friction between said bar and whereby the coefficient of friction between said bar and
said profiles is greatly increased at said recesses. said profiles is greatly increased at said recesses.

SELF-COMPENSATING \(\quad\),096,679
SELF-COMPENSATING TWO-PIECE SIDING OR
Paul Naz, 20502 Harper, Harper Woot
Filed May 27, 1977, Ser. No. 801,229
U.S. Cl. 52-551

9 Claims
thereby preventing said slat assembly from working loose and eliminating rattling and the like

REINFORCEMENT GRID FOR STEEL CONCRETE CONSTRUCTION
Klaus Ritter, Gerhard Ritter, and Josef Ritter, all of Graz, Austria, asssignors to Firma AVI Alpenlandische Veredelungs adustrie Gesellschaft mbH., Graz, Austria
Filed May 9,1977 , Ser. No. 795, 040
Claims priority, application Austria, May 7, 1976, 3378/76
Int. C1.2 E04C \(2 / 42\) U.S. CI. 52-665 Int. Cl. \({ }^{2}\) E04C 2/42

1. A reinforcement grid for steel concrete construction, consisting essentially of longitudinal and transverse rods cross ing one another at right angles, said transverse and longitudinal ods being tied together at a sufficient number of their crossing said tieings being by means of a loop formed by twisting th
1. An interlocking slat assembly for use as siding, roofing and the like to cover surface areas of buildings comprising:
a surface-covering panel including a generally L-shape anchoring configuration integral with a lower edge por
and tion thereof and a generally hook-like slide configuratio integral with the opposite edge portion thereof; and a separate attachment strip of substantially the same width as
said panel for securing said panel to said building surface so as to prevent "oil canning" caused by expansion and contraction, said attachment strip including a nailing tab adapted to be fixedly secured to said building surface by fastening elements, a generally C-shaped passage-defining configuration integral with said nailing tab for laterally
telescopically receiving said slide configuration therein to secure the upper edge portion of said panel to said attachment strip so as to provide compensation for expansions and contractions and a generally U-shaped groove-defin ing formation integral with said nailing tab for engagably receiving a portion of an anchoring configuration therein
so as to anchor the lower edge portion of another panel to be attached to said building surface, the anchoring config uration of the panel whose slide configuration is laterally telescopically received in said defined strip passage being
anchored in the groove of a previously installed anchored in the groove of a previously installed slat as-
sembly for interlocking said slat assemblies together sembly for interl
above the other,
said nailing tab inclu
tive ridge and valley portions perpendicular to the width of said nailing tab for engagably receiving fastening means therethrough for fixedly securing said attachment strip to the surface of said building being covered, said corrugation means cooperating with said building surface being
covered and said fastening elements for compensating for experession and contraction of said strips with changing weather conditions and for achieving a spring-type buckle washer effect for maintaining a tight fit therebetween reinforced by means of a separate doubling plate of stainless washer effect for maintaining a tight fit therebetween steel, which is softer and thicker than the hard-rolled sheet nds of a piece of wire together, the planes of half of the loop hus formed being \(90^{\circ}\) away from the planes of the remaining oops, the loops in the said former planes and the loops in said atter planes being uniformly distributed in said grid.

\section*{4,096,681}

FASTENER FOR RETAINING SHEET CLADDING Sture Netterstedt, and Bengt Lindstrand, both of Fagersta, Swede
den
Contit
Continuation-in-part of Ser. No. 677,986, Apr. 19, 1976 abandoned
Claims prio Int. C1. \({ }^{2}\) E04B 1/38 U.S. C1. 52-713

1. A composite fastener for retaining sheet cladding, such as roof or wall sheeting, with outstanding flange joints, comprising a plate having an anchoring portion formed with a bent ortion lying generally at right angles to the and a fastening ion, which is intended to be united with the outstanding flange of the sheet, said plate being made of hard-rolled one-layer thin heet of stainless steel with a thickness of 0.05 to 0.15 mm ., so hat it can be seam-welded to the outstanding flanges in conunction with welding these together without the continuity of
forming said plate, said doubling plate lying on an exterior surface of the anchoring portion, curved abo
and being welded to said anchoring portion. surface of the anchoring portion, curved about said bent end -

BUNDLING OF CIGARETTES
Michael H. Sheahan, Toronto, Canada, assignor to Rothmans of Pall Mall Canada Limited, Toronto, Canada
Division of Ser. No. 663,144, Mar. 2,1976 . This
Division of Ser. No. 663,144, Mar. 2, 1976. This application Dec. 27, 1976, Ser. No. 754,414
Int. Cl. \({ }^{2}\) B65B \(19 / 10\)
U.S. C1. 53-149

0 Claims

1. Apparatus for the formation of a nested group of ciga1. Apparitus consisting of three rows of cigarettes the central row of which contains one less cigarette than the other two rows, which comprises
a hopper for dispensing down
rows to an assembly station
a horizontal support platform at said assembly station to receive said dispensed rows of cigarettes thereon,
an elongate channel extending from said assembly station wards a wrapping starion or conveying a group of three rows of cigarettes therealong,
rface coplanar with said platg a generally flat bottom standing from said bottom surm and parallel side walls qual to the depth of the group of cigarettes, said side walls being spaced apart the width of said group of ciga rettes,
first elongate protrusion on one of said side walls extending longitudinally from said assembly station towards said wrapping station,
said first protrusion being dimensioned so that its maximum vertical thickness is equal to the diameter of a cigarette of
said group and it protrudes from said one wall towards said other wall a distance equal to the diameter of a ciga rette in said group, adjacent said assembly station and for a distance therefrom at least equal to the length of a cigarette in said group, said first protrusion thereafter tapering Iongitudinaily thereof to a dimension substantially equal
to the radius of a cigarette in the group,
said first protrusion having a lower surface spaced from said
bottom surface a distance equal to the diameter of a ciga rette in said group,
a second elongate protrusion on the other of said walls extending longitudinally from a position part way along station and corresponding to the position along the length of said first protrusion of commencement of said tapering thereof,
said second protrusion being dimensioned so that it protrudes from said other wall a distance increasing from its
upstream end to a maximum dimension substantially equal upstream end to a maximum dimension substantially equal
to the radius of a cigarette in said group at its downstream end which coincides with the downstream end of said first protrusion,
said bottom surface a distance at least the diameter of a cigarette in said group,
said first and second protrusions cooperating to displace the centre row of cigarettes in a group a distance equal to the group along said chan that row during movement of said pusher means for pushing past said protrusions, and nally thereof out of said assembly stationettes longitudichannel towards said wrapping station
aid pusher means comprising a substantially vertical ciga rette group-engaging surface, said surface having an opendimensioned to \(\begin{aligned} & \text { dimension } \\ & \text { through, } \\ & \text { said surface }\end{aligned}\)
said surface being positioned to engage all the cigarettes in said group with the exception of the one cigarette on the centre row at the end of said row corresponding to said one side of said surface, whereby, when said pusher moves said group of cigarettes out of said assembly station said one cigarette remains in said assembly station as the open ing in said surface by-passes said one cigarette.

\section*{4,096,683}

AMPOULE FILLING AND SEALING MACHINE
John F. McMickle, Jr., Piscataway, N.J., assignor to Cozzoli Machine Company, Plainfield, N.J.
iled Feb. 16, 197, Ser. No. 769,18
S. Cl. 53-244

5. An empty-ampoule feeding station of an ampoule filling ampty sealing machine comprising an inclined tray to receive below the lower edge of said tray, movable means having a vertical reach above said horizontal reach, and means to move the reach of said belt horizontally toward the filling station, so that empty ampoules sliding downwardly on said inclined tray onto said reach are moved toward the filling station by the reach of said belt and said movable means.

\section*{AUTOMATIC LE \(\quad\),096,684}

AUTOMATIC LENS GRINDING MACHINE Hayao Akaba, Akishima; Akira ikeda, Fussa, and Masayoshi
Lee, Kawasaki, all of Japan, assignors to Kabushiki Kaishe Hoya Lens, Tokyo, Japan
Continuation-in-part of Ser. No. 490,188, Jul. 19, 1974, sbandoned. This application May 27, 1976, Ser. No. 690,781 Claims priority, application Japan, May 30, 1975, 50-114211 U.S. C. 51-101 LG Int. C1.2 B24B 9/14

13 Claims 1. An automatic lens grinding device comprising a base; a glasses frame supporter rotatably mounted to said base and inner periphery of one side of the glasses frame; a plurality of evices mounted on said supporter for securing the glasses rame to said supporter in front of said circular opening; a profile tracing guide pin for tracing the inner periphery of said glasses frame, said pin being atached on one end of a shaf and
table containing a plurality of gears, slidable to forwardly and circular portions being arranged to direct said fluid such that a
rearwardly parallel to said supporter; first drive means for rearwardly parallel to said supporter; first drive means for pair of fluid vertices are created approximately perpendicular
moving said slidable working table; coaxial rotary shafts sup- to said interior surface and approximate perpendicular to the porting a lens to be ground therebetween; a recording assem. line of passage of said strand through said hollow body. by mounted to an extension of said one of said shafts, said recording assembly being provided with a recording substrate
second drive means for rotating driving shafts and said record-
\[
\begin{aligned}
& \text { ing plate through said plurality of gears; a grinding stone } \\
& \text { aligned with said slidable working table; third drive mean f for }
\end{aligned}
\]

FEED DEVICE FOR
OR OPEN-END SPINNING ASSEMBLY
\[
\begin{aligned}
& \text { aligned with said slidable working table; third drive means for } \\
& \text { driving said grinder stone; a pressure detector for detecting }
\end{aligned}
\] ladhahiecker, Bad Uberkingen, and Hans Raasch, MonchenFiled Mar. 14, 1977, Ser. No. 777,561
Claims priority, application Germany, Apr. 2, 1976, 2614182
U.S. C1. 57-58.95

Int. Cl. \({ }^{2}\) D \(01 \mathrm{H} 1 / 12\)
27 Claims
contact pressure between said grinding stone and for generaling an electrical signal corresponding to the detected pressure; a pattern detecting element for detecting the absence or pres-
ence of a pattern recorded on said recording substrate and control circuit means for receiving signals from said pattern detecting element and said pressure detector which are then put into a selecting circuit, which puts out a value larger than either one of said signals from said pattern detecting element or said pressure detector for actuating said first drive means drive circuit thereby controlling the functioning of said first drive
means.

METHOD AND APPARATUS FOR PRODUCING SLUBBY
Herbert W. March, Natron YARN Herbert W. Barth, Natrona Heights, and August G. Bony,
Lower Durrell, both of Pa., assignors to PPG Industries, Inc., Pittsburgh, Pa.
Continuation-in-part of Ser. No. 639,723, Dec. 11, 1975,
abandoned, which is a division of Ser 1975, abandoned. This application Dec. 9, 1976, Ser. No. 749,198 U.S. Cl. 57-34 B

33 Claims

1. A method of providing a slubby strand of fibers compris ing forming a low tension portion of said strand, passing the
strand through a slabbing tool having an interior surface, introducing onto the surface of the tool a fluid at high pressure, continuously while said strand is within said tool, both intermittently twisting and bulking the strand within said tool as the fluid passes through the strand, rapidly passing the strand so
twisted and bulked from said stubbing tool, and collecting from said slabbing tool a strand having slub thereon.
14. An air jet for forming twisted slubby yarn which comprises a hollow body having an interior surface and a nozzle having an end portion through which fluid is directed onto said

1. Feeding apparatus for a spinning assembly comprising: a transport arrangement for delivering sliver to an opener device and which fore
the opener device
a housing surrounding said treat
a sliver funnel disposed upstream of said transport arrangement, said sliver funnel having an outlet opening which and sliver funnel guilt arrangement, sliver funnel for movement between an mealy guiding said with said outlet movement between an operating position arrangement and a servicing vicinity of the transport arrangement and a servicing position with said outlet
opening exposed to the outside of said housing for accom modating visual inspection of the position of the sliver inserted in the sliver funnel without requiring opening of said housing, said sliver funnel guide means including means for supporting said sliver funnel in each of its operanting and servicing positions, without requiring opening of said housing for the transport arrangement.

METHOD FOR PRODUCING LUBED YARNS Alan T. McDonald, Cranberry, Pa., assignor to PPG Industries,
Inc., Pittsburgh, Pa. Inc., Pittsburgh, Pa.

Filed May 4, 1977, Ser. No. 793,673
USS. C. \({ }^{57-157 ~ F}\) Int.

1. A method for forming a randomly stubbed yarn compris passageways along its length said a fluid jet having a pair of
netted and overlapped along their lengths and having at leas ne fluid inlet in laid flow communication therewith, introducing the strand into one of said passageways while directing pressure to thereby treat said yarn with said fluid while moving the strand around the wall of said passageway, passing said yarn to said second passageway while directing a fluid circum erentially around said second passageway at a second pressure in the opposing direction to said directing of said fluid in said
first passageway to thereby treat said yarn with said fluid in said second passageway while moving the strand around the wall of said second passageway and alternating said yarn be tween said passageways in a random pattern during its passage
through the jet to thereby produce a randomly slubbed yarn.

\section*{4,096,688}

EXPANSIBLE LINKAGE FOR WRIST WATCH EXPANSIBLE LINKAGE FOR WRIST WATCH Kurt Albert Rieth, Warwick, R.I., assignor to Textron Inc Providence, R.I.

Riled. Apr. 15, 1977, Ser. No. 787,975
Int. C1.2 F16G \(13 / 24:\) AtC \(5 / 18\)
U.S. Cl. 59-79 R

1. In an expansible linkage including in combination
at least two sections of expansible linkages each of which
comprises
a row of top links and a row of bottom links,
means interconnecting the links of each row with the links of the other row to provide displacement of the links relative to each other when the expansible linkage section is
stretched longitudinally from a contracted to an expanded position, and
resilient means
resilient means associated with said links for resisting the displacement of said links and for returning them from
expanded to contracted positions upon release of the longitudinal stretching force,
the improvement comprising,
a channel shaped outer member which comprises a top wall, a pair of spaced side walls and a series
tons extending thru said side walls,
first spring pin means connected to one end of one of said expansible sections having the outer ends of its trunions expansible sections hearst selected pair of said aligned perfora-
exits.
tin to tons,
an depressed from the exterior of the channel shaped can be depressed from the exterior of the channel
outer member to adjust the length of the linkage.

\section*{HEATING CHAMBER SEAL PROVIDED IN A HEATING CHAMBER COMBUSTION ENGINE
reorg Karl Buergel, 6 Stone Rd., Plainviem, N.Y. 11803 \\ }

USS. CI. \(60-39.6\)

1. In a combustion engine comprising a housing, a cylinder defined within said housing, a piston disposed for movement housing, a fuel inlet and fuel igniting means in said heating hamber, a passageway disposed within said housing connect ing said heating chamber and said cylinder interior adjacent he cylinder head; that improvement including an extension o said piston for slidable movement on the wall of said cylinder above said piston, an opening provided in said extension consaid passageway line up with one another solely in the highest position of said piston whereby the gases within said cylinder pass into said heating chamber through said passageway at the nd of the compression stroke and return from said heating ing of the down stroke of said piston in a reciprocating mo ion.

4,096,690
James J. Flores, Troy, Mich., assignor to Ford Motor Company Dearborn, Mich.
Filed Dec. 27, 1976, Ser. No. 754,661
U.S. Cl. 60-282 Int. C. \({ }^{2}\) F01N 3/10 5 Claim
second spring pin means connected to one end of the other of said expansible sections having the outer ends of its trunions extending into a second selected pair of said trunions extending into a second selected pair of said
aligned perforations which are spaced longitudinally from aligned perfor
said first pair,
one-piece inner member which comprises a bottom wall and a pair of spaced upwardly extending side members and
means for detachably connecting said upwardly extending side members to said side walls of said channel shaped outer member substantially midway between the ends of said outer member,
whereby said inner member closes the opening between the lower ends of the side walls of said channel shaped outer
member, said ends of said expansible linkage sections are positioned between the top wall of said channel shaped outer member and the bottom wall of said inner member

1. In an internal combustion engine having a cast housing passage effective to conduct combusted gases from said cham
ber, said passage having cylindrical walls extending between (a) walls defining an a lor mouting surface about the exis of said passage,
(b) a unitary sheet metal cylinder having an annular flange effective to be mounted against said surface, said cylinder having a body extending from said flange into and body being spaced from said passage a distance of at least 0.035 inch except for the flange contact, said cylinder having one or more apertures therein and an integral baffle bent inwardly at the leading edge of each aperture,
said baffle extending inwardly from the wall of said cylin said baffle extending inwardly from the wall of said cylin-
der at an angle of about \(30^{\circ}\) and in the direction of the passage exit, said baffle acting as an air foil whereby the exhaust gases and the incoming secondary air are both directed at an inward angle with respect to the cylinder wall for proper mixing, and said bafle acting as a flame
holder for sustaining secondary combustion, said aper tures being spaced a distance from the inlet edge of said cylinder at least \(70 \%\) of the length of said cylinder, and
(c) means effective to convey a continuous supply of second-
ary air to said aperture at a controlled rate, whereby air i
drawn into and mixed with said exhaust gas to facilitate chemical conversion of certain exhaust gas constituents by the retention of heat in said gases within said liner and by the presence of a controlled amount of excess oxygen.

CATALYST CONTAINER 4
MANIFOLD Hidetaka Nohira; Hironori Bessho, and Yasuyuki Sakai, all of Susono, Japan, assignors to Toyota Jidosha Kogyo Kabushiki Knisha, Toyota, Japan
Continuation-in-part of Ser. No. 645,783, Dec. 31, 1975, abandoned. This application Jul. 12, 1976, Ser. No. 704,509 Claims priority, application Japan, Jun. 4, 1975, 50-66402; Sep. 26, 1975, 50-130998[U]
 U.S. CI. \(60-295\) has been disclaimed.
Int. C. \({ }^{2}\) F01N \(3 / 15\)

1. A catalyst container, for use in an exhaust manifold, hav ing perforated substantially vertically disposed inner and oute cylinders, with catalysts in a cylindrical space defined betwee said inner and outer cylinders, said container comprising: annular openings respectively of the cylindrical space defined between said inner and outer cylinders;
a circular inner cylinder lip covering the top opening of said a inner cylinder;
an outer cylinder lid on the top circumferential edge of said outer cylinder covering the top opening of said outer
cylinder and said circular inner cylinder lid, said outer cylinder lid including an annular portion, a cylindrical
portion having a threaded outer circumferential surface, and an outer cover portion, means defining a cavity hav ing a threaded wall in said outer cover portion, and said
outer cover portion being removably threadedly fitted on said threaded outer circumferential surface of said cylin drical portion, said outer cylinder lid and said inner cylinder lid defining a first space therebetween; and eans defining a hole in said upper annular lid throug space defined between the inner and outer cylinders

IR-PUMP STSTEM \(4,096,692\)
AIR-PUMP SYSTEM FOR RECIPROCATING ENGINES Hori, Nagaokakyo; Tatsuro Nakagami, Kyoto; Yutak Tsukamoto, Jyoyo, and Katsuo Akishino, Kameoka, all of Japan, assignors to Mitrubishi Jidosha Kogyo Kabushik Kaisha, Japaled
Claims priority, application Japan, Apr. 15, 1976, 51 7391[U]; May 28, \(1976,51-6942 \pi \mathrm{U}]\)
Int. Cl. \({ }^{2}\) F01N \(3 / 10\)
U.S. C. 60-307

1. A multicylinder engine, partition and air pump system comprising:
a cylinder block having therein a plurality of cylinders each with a piston reciprocable therein, the block also having plurality of division walls extending from the cylinders to provide crank chambers each communicating with one of the cylinders, the walls having bearings therein for a crankshaft to be rotated by the pistons, and the block having an oil pan at a bo by thereof,
cylinder block, the plate being secured to lower portions cylinder block, the plate being secured to lower portions
of the division walls of the respective chamber to separate that chamber from the other crank chambers and from the oil pan; and
an air pump having a variable-pressure chamber communicating with the separate crank chamber, also having an air-pressure chamber which has an inlet communicating in the atmosphere, an outlet for supplying atmospheric air to condition an exhaust of the cylinders, and controls for the inlet and outlet, the air pump having a pump mem-
ber responsive to differentials of pressure between said pressure chambers, and spring means for urging the pump member to move from one of the pressure chambers toward the other, the spring means having an oscillation frequency natural thereto whereby it is resonant with a predetermined and relatively low frequency at which the pistons reciprocate in the cylinders and supply air at vari-
able pressure through the separate crank chamber to the variable-pressure chamber of the air pump, to render the air pump ineffective when the pistons reciprocate at a
relatively high frequency, subject to renewed operation of the air pump with the pump member moving resonant to the relatively low frequency when the pistons again reciprocate at said relatively low frequency.

TORQUE CONVERTER 4,096,693 POWER TR FLSMISSON ROL SYSTEM FOR amio Kan
 Claims
\(44525[\mathrm{U}]\) Int. Cl. \({ }^{2}\) F16D 33/00
U.S. Cl. 60-337

1. In a power transmission system having a torque converter unit, a driving shaft drivably connected to the impeller of said torque converter unit, a driven shaft drivably connected at one bearing mounted on said driven shaft at a location axially spaced apart from said one end,
a torque converter fluid control system, comprising: a fluid source;
a fluid supply circuit and a fluid return circuit each interconnecting said fluid source and said torque converter unit,
said fluid return circuit including a fluid return passag having an annular passage portion formed about said driven shaft; and
maximum and a second position at which the displacemen of the motor is at a preselected minimum,
a fluid circuit connecting the pump to the motor;
a source of fiuid at a first preselected pressure evel;
valve means connected to the source of fluid and to the actuator means for controlling fluid flow therebetween, said valve means having a valve member movable be tween a first position at which the source of huid

a second position at which the source of fluid is in commu-
nication with the actuator means; first means for controllably automatically moving the valv member to the first position in response to the fluid pre sure in the fluid circuit exceeding a second preselected
second means for retaining the valve member in the firs position until the fluid pressure in the fluid circuit de creases from the second preselected pressure level to third preselected pressure level.

ENGINE DRIVEN HEATING SYSTEM COMPONENTS FOR STIRING ENGINE Owell A. Reame, Plymouth, and Andrew E. Geddes, Detroith both of Mich., assignors to Ford Motor Company, Dearborn, Mich.

Filed Mar. 3, 1977, Ser. No. 774,074
U.S. C1. 60-517

5 Claims
anrular passage formed about said driven sha an extension connected to said annular passage portion, a flow restriction ring mounted on said driven shaft and fluidly connected to said extension annular passage as a passage portion thereof, said flow restriction ring being situated upstream of said bearing for reducing the flow rate of fluid passed therethrough, a fluid seal mounted on said driven shaft downstream of said bearing for providing with said fluid drain passage having one end fluidly connected to said extension annular passage at a location between said flow restriction ring and said bearing and the other end fluidly connected to said fluid source.


CONTROL SYSTEM FOR A FLUID DRIVE CONTROL SYSTEM FOR A FLUID DRIVE
Cyril W. Habiger, and Leon E. Hicks, both of Joliet, III, assi ors to Caterpillar Tractor Co., Peoria, III. Filed Jul. 5, 1977, Ser. No. 813,029 Int. C. \({ }^{2}\) F15B 15/18, \(11 / 16\)
U.S. Cl. 60-459
1. A control system for a fluid drive 8 Claims a pump;
variable displacement wor means for controlling the displacement of the motor said actuator means being movable between a first position at which the displacement of the motor is at a preselected
1. A two power-source drive system for use in a Stirling engine having a longitudinally extending centerline and an engine driven elemen ower source, comprisin
ergized motor providing a second power source, first shaft being drivingly connected to said driven ele ment,
(c) a second shaft concentrically disposed about said first (d) maft,
first and second shafts,
(e) a plurality of combustion circuit components for sai engine, each of said components being connected to said second shaft, and
(f) means providing a one-way driven connection between said second shaft and motor whereby drive may be trans-
mitted either from said motor or first shaft to said seconshaft in the same rotative direction.
\(\stackrel{4,096,696}{ }\)
VEHICLE POWER BRAKE SYSTEM WITH MASTER BOOSTER AND SLAVE BOOSTER
tobert M. Van House, Dayton, Ohio, assignor to General Mo Corporation, Detroit, Mich. U.S. Cl. \(60-547\) Int. C.' \({ }^{2}\) B60T \(13 / 00\) ( 4 Claims

METHOD AND MEANS FOR
INTAKE AIR OF F SUPERCHITIONING TH LOW-COMPRESSION RATIO DIESEL ENGIN
1. A method for at least temporarily heating the pre-cominternal combustion engine at start and low-load operating conditions, said method comprising the step of at least temporarily pre-heating said intake air before it is used to support combustion for burning fuel in the cylinder, wherein the imstopped condition while temporarily delaying any fuel injection into at least one cylinder for at least one part of the starting time period of the engine and at the same time selectively impeding the exhaust gas streaming from said at least one gases in said at least one cylinder. gases in said at least one cylinder.
1. A brake system in a vehicle having first and second brake 1. A brake system in a vehicle having first and second brake
actuating circuits for actuating first and second brake sets, said system comprising:
a first differential pressure op
second operating pressures;
a first master cylinder actuatable by said first booster and having first and second brake actuating pressure outputs actuating circuits;
connected second operating pressures therefreceive said first and second operating pressures therefrom and having mean acting only upon the establishment of operating pressures of a predetermined differential in said first booster to
permit delivery of said differential operating pressures from said first booster to said second booster to operate said second booster;
a second master cylinder actuatable by the operation of said second booster and having normally open valve means in said second brake actuating circuit fluidly intermediate output and the second brake set; said normally open valve means permitting brake actuating pressure to pass through said second master cylinder from said first master cylinder to the second brake set while open, and arranged to be closed by initial operation of said second booster, said second master cylinder being actuatable by operation of said second booster when said valve
means is closed to pressurize the portions of said second brake actuating circuit from said second master cylinder to the second brake set in accordance with operation of said second booster.

4,096,698
SOLAR ENERGY CONVERTING DEVICE
S. Martin, 207 Hamilton Ave., Albemarle, N.C. 28001 Filed Jan. 14, 1977, Ser. No. 759,581
Int. C. \({ }^{2}\) F03G 7/02
U.S. Cl. 60-641

1. A solar energy converting device comprising: an upright internal air channeling area an elongated generally closed level to an upper elevated level; means provided about a lower level of said air channeling device for permitting air to enter the lower level thereof; preheating means disposed about the
lower level of said air channeling device for heating air enter-
ing the lower level thereof which tends to cause the preheated air to more readily move upwardly within the air channeling solar energy collectiong device having a main exposed outer energy and transferring surface for collecting available solar inwardly to the air moving vertically cherein so as to prevgy additional heat to the vertically moving air; windmill means additional heat to the vertically moving air; windmill means
having a plurality of radially extending vanes rotatively having a plurality of radially extending vanes rotatively
mounted about an upper level of said air channeling device and disposed such that a portion thereof lies in the normal air flow path of air moving vertically from the lower level of said air channeling device to an upper level of said air channeling device such that said windmill means is rotatively driven in response to rising air moving within said air channeling device
engaging vanes of said windmill means, thereby causing the vanes of said windmill means to be rotatively driven; energy conversion means operatively connected to said windmill means and driven thereby for converting energy of said rota-
tively driven windmill means to a desired form of useful energy; and means for collecting solar energy and storing at least a portion thereof during periods where solar energy is available for use during desired periods such as nighttime or during periods of limited sunlight for preheating said air entering said
air channeling device. air channeling device.

UXILIAPY MAN 4,096,699
AUXILIARY MANUAL TURBINE CONTROLLER William E. Zitelli, Monroeville, Pa., assignor to Westinghouse lectric Corp., Pittsburgh, Pa. Int. C. 2 F01K
control signal corresponding to a steam admission control valve; and
witching means operative to select one of the primary and auxiliary sets of valve position control signals to govern their respective rate of control means which controls the rate of position movement of each of the steam admission control valves.

4,096,700
OIL BOOM FOR DAMMING AND COLLECTING A FLOATING OIL SLICK
Takeo Muramatsu; Toshio Fukai, both of Yokohama, and Haruo Takahashi, Kawasaki, all of Japan, assignors
Tire Co., Ltd., Tokyo, Japan
Filed Nov
Claims priority, application Japan, Nov. 12, 1975, 50-152877, eb. 20, 1976, 51-18251 Int. Cl. \({ }^{2}\) E02B \(15 / 04\)

\section*{}
1. An oil boom for damming and collecting a floating oi slick comprising two rows of floats spaced apart from each other and partly submerged in water, one row being disposed
upstream of the other row, a flexible base sheet connected cross base portions of said two rows of floats and hanging own therefrom below into the water in a curved shape, a plurality of inlet openings arranged near said upper stream side loat and extending in its lengthwise direction, an inflow guide slate integral with said flexible base sheet and arranged below stream in a direction in parallel with the water surface, and plurality of outlet openings arranged in a rear portion of said exible base sheet and extending in its length wise direction, th talal opening area of said outlet openings per unit length of said exible base sheet in its lengthwise direction being larger tha that of the inlet openings.
1. A steam turbine control system comprising
a source of steam;
a steam turbine;
a plurality of steam admission control valves coupled be tween said steam source and said steam turbine to contro the steam flow passing through said steam turbine from
said steam source, said steam flow being a function of the position of each of said steam admission control valves;
rate control means for each steam admission control valv each of said rate control means being coupled to a correthe rate of position movement therein;
a position detection means for each steam admission control valve, said each position detection means operative to generate a primary and an auxiliary valve position signal both representative of the actual position of their corre sponding steam admission control valve
a primary turbine controller governed at times by said pri-
mary valve position signals to generate a set of valvel position control signals, each valve position control sign corresponding to a steam admission control valve;
an auxiliary turbine controller governed at times by sa iary valve position control signals, each valve positio

\section*{4,096,701}

MATTRESSES FOR SUBAQUEOUS STRUCTURES MATTRESES Abbenhroek, Netherlands rial Chemical Industries Limited, London, Enolar to Impe Filind Feb. 2, 1977, Ser. No. 764,863
Claims priority, application United Kingdom, Feb. 10, 1976
U.S. Cl. 61-38

Int. Cl. \({ }^{2}\) E02B 3/12
1. A mattress for civil engineering use, including use in subaqueous structures, comprising two plies of synthetic fabci, one of which is non-woven, the other being woven, said plies being joined by sewn threads along one length of the mattress in parallel lines \(10-100 \mathrm{~cm}\) apart with at \(10-100 \mathrm{~cm}\)
tying on fascines, said mattress being provided with fascines the foot of an edifice which is to be built, to at least the vicinity
attached by means of said loops, said fascines being formed from tubes of non-woven fabric. of the surface of the water, and the lower end of the construc

\section*{4,096,702}

MINE STOPPING DEVICE AND METHOD OF Willard J. Burton Box 20 UCTING SAME
Willard J. Burton, Box 20, Verdunville, W. Va. 25649 Filed Oct. 17, 1975, Ser. No. 623,457 U.S. Cl. \(61-45 \mathrm{R} \quad\) Int. Cl. \({ }^{2}\) E21F \(1 / 14\)

1. A permanent mine stopping device for use in an under ground coal mine tunnei or the like, comprising:
a plurality of individual self-supporting vertical
a plurality of inder each being laterally spaced from adj support members each being laterally spaced from adja
cent members said plurality of support members bein positioned so as to extend across the width of the mine
tunnel being stopped; tunnel being stopped;
each of said support members having a top and bottom end and adjustment means for vertically adjusting the length
of said support member so that the length of each of said support members can be extended until the top and bot tom ends respectively come into engagement with the roof and floor of the mine tunnel being stopped so that
said support members provide support for the roof of the said support members provide support for the roof of the
tunnel;
wire mesh secured to the individual support members and extending over substantially the entire cross-section of th
tunnel: tunnel;
ery in subst to the wire mesh and having its outer perip ery in substantially air-tight sealing engagement with the prevented from flowing through the tunnel, wherebeby in which the device is placed, each of said support members being
comprised of upper and lower members, said upper and lower members being connected together by said adjustment means so as to be movable toward and away from each other, and wherein each of said upper and lower members are provided along their length with a plurality
of apertures so as to permit the wire mesh to be secured to said support members.

\section*{4,096,703}

CONCRETE CONSTRUCTIONAL MEMBERS Friedrich Karl Luider, P.O. Box 2256, D-2400 Lübeck, German Fiiled Apr. 1, 1977, Ser. No. 783,744
U.S. Cl. 61-59 Int. C.2.2 E02D \(5 / 12\), \(5 / 32\). 1976,2614438 1. In a concrete constructional member for building wall 8 Claim and bulkheads and particularly moles, quay bulkheads, groin or the like edifices, consisting of a concrete body having a vertically continuous opening in the central area and having
pairs of divergent arms of different length on two opposing sides, the end faces of the shorter pair of arms being capable of being brought into contact with the inner faces of the longer pair of arms on an adjoining constructional member, the improvend which comists is con he consting in heibher is
tion, having an extension in the form of an apron which

projects beyond the lower end of the constructional member and which masks the space between said longer arms of the ross-section, except for the contact areas for said shorter arm of a succeeding concrete member

OFFSHORE PRODUCT 4,096 Ofewart Marr Adamson, and Alan Edgar TERMINAL Portchester, England, asslgnors to David Brown-Vosper (Offshore) Limited, Portchester, England

ILed Nov. 15, 1976, Ser. No. 742,123
Int. C1. \({ }^{2}\) E02B 17/00; B63B \(27 / 24\)
1. An offshore product-loading terminal comprising in com a support on a sea bed;
a turntable having a lower part fixed to said support and an upper part rotatable relative to said lower part about a vertical axis passing through said turntable
a buoy including means for mooring a ship
a universal joint connecting said buoy to said upper part of said joint to said upper part for joint rotation therewith said joint to said upper part for joint rotation therewith
and said buoy, joint, and turntable constituting a forcetransmission path from said means for mooring to said support;
pipe swivel outside said force path and including a first portion carried by said support and including a firs portion carried by said support and a second portion tion;
an input line connected to one of said portions and connect able to a source of the product to be loaded
an output line connected to the other of said portions and connectable to a deposit location for the product to be loaded, the line connected to said second portion bein fiexible.


LAYING OF UNDERWATER PIPELINES to Compagnie Generale Fontenay-aux-Roses, France, assignor nels des Richesses Sous-Marines "C.G. Doris", Paris, Franc Filed Jan. 5, 1977, Ser. No. 757,098
Claims priority, application France, Jan. 27, 1976, 7602135 Claims priority, application France, Jan. 27, 1976
Int. Cl. \({ }^{2}\) F16L \(1 / 00 ;\) B63B \(35 / 04\) U.S. C. 61-111

pressure to an expansion valve coupled to an evaporator, omprising the steps of
to a pressure depende gaseous phase from the evaporato condensing the fluid apt upon ambient temperature, Phase,
collecting the liquid phase fluid,
sensing a predetermined level of the collected liquid phase fluid
pumping the liquid phase fluid to a high pressure when the predetermined level is reached, and delivering the high pressure liquid phase fluid to the expansion valve.

\section*{4,096,707}

PORTABLE REFRIGERATION MACHINE
Taylor, 4541 Lyme Bay, Oxnard, Calif. 9303
Filed Oct. 18, 1976, Ser. No. 733,360
1. Apparatus for laying a pipeline on the bed of a body of U.S. C. 62-167

water by the process consisting of successively towing in the oody of water first and second pipeline sections each having a front end and a rear end, then joining the front end of the firs section to the rear end of the second section, comprising
towing means, including a traction machine, for applying traction effort at a traction point on a pipeline section being towed to draw the same forward, said traction poin being spaced from the front end of said section being towed;
holding means, including a holding machine, for applying a holding effort at a holding point on said pipeline section being towed to maintain the same in tension, said holding point being spaced from the rear end of said section being
towed; towed;
means for
means for connecting a front end portion of said pipeline section being towed to the traction machine, said fron portion being situated in front of said traction point; ballasting means incorporating a plurality of short trail-rop spaced along an intermediate portión of said pipeline section being towed, located between said traction point
and said holding point, for supporting said intermediate and said holding point, for supporting said intermediate
portion near to the bed of the body of water, thereby to portion near to the bed of the body or water, the
prevent said intermediate portion from deviaing;
and buoyancy means for conferring a positive buoyancy to said front end portion and to a rear end portion situated to the rear of said holding point, in order to maintain the
front and rear ends of said pipeline section being towed near to the surface of the body of water, thereby to make said joining easier

\section*{4,096,706}

FREE CONDENSING LIQUID RETRO-PUMPING REFRIGERATION SYSTEM AND METHOD Sterling Beckwith, 1824 Doris Dr., Menlo Park, Calif. 94025 Filed Mar. 9, 1977, Ser. No. 775,78
Int. C1.2 F25B U.S. Cl. \(62-115\)

8. The method of providing a condensed fluid at a high
1. A portable refrigeration machine including, in combina-
(a) a pressure vessel for receiving carbon dioxide in liquid and/or solid phases;
(b) a heat exchanger secured to the lower external portion of
said vessel;
(c) an outer housing surrounding said vessel in spaced relationship thereto leave an annulus between the exterior wall surface of the vessel and the interior wall surface of said housing above said heat exchanger, said housing having an upper air outlet opening communicating with neath said heat exchanger;
(d) a gas operated fan disposed to cause air flow across said heat exchanger;
(e) conduit means connecting the upper interior of said vessel to said gas operated fan to rotate said fan by ex-
panding carbon dioxide gas from said vessel and thereby causing air to enter said inlet opening and pass through said heat exchanger and annulus out said outlet opening, said heat exchanger absorbing heat in said air into said vessel whereby said air passing out said outlet opening is cool;
(t) temperature responsive control means including a baffle plate structure between said fan and said heat exchanger; ) hermal means connected to said baffle plate structure for increasing or decreasing the air flow passage therethrough from the fan to the annulus in response to increasing or
decreasing temperatures respectively falling outside given upper and lower temperature limits whereby the temperature of the circulating air is maintained within a desired range; and
(h) a cycling valve interposed in said conduit between said to said fan so that said fan is operupting the flow of gas
thereby provide inactive time intervals during which the air in a refrigerated compartment in which said machine is placed can redistribute itself to thereby provide a more ration compartment to be cooled.

\section*{4,096,708}

COMPRESSOR REFRIGERATION PLANT Bent Karll, Augustenborg, Denmark, assignor to Danfoss A/S,
Nordborg Denmark Continuation of Ser. No. 744,631, Nov. 24, 1976, abandone
This application Oct. 25, 1977, Ser. No. 845,119 Claims priority, application Germany, Jun. 22, 1976, 2553562 U.S. Cl. 62-275

1. A refrigeration unit having a normal operating cycle and a defrosting cycle, comprising, a compressor, a condenser unit, an evaporator unit, said units being connected in series by conduit means, a chamber in said conduit means between said condenser unit and said evaporator unit, a heating resistor in
said chamber, circuit means for supplying a current to said resistor, to produce the defrost cycle by heating the refrigerant to a gaseous state to add heat thereto and slow the flow thereof, throttling means downstream of said chamber formed by an axially short throttling element which only slightly impedes the flow of refrigerant in a liquid state but further slows the flow of a refrigerant in a gaseous state, the portion of rator unit being a single conduit which carries refrigerant in a liquid state during the normal refrigerating cycle and a reduced quantity of heated refrigerant in the gaseous state during the defrosting cycle.
said barrier and at least one of said tank walls having expended-air outlet passageways therethrough,

and means for discharging into said inner chamber of said tank below the water level thereof outside atmospheric winter air at below-water-freezing temperatures.

FOOT,06,710
JEWELRY
Betty Jeanne Sloan, 33915 Calle Acordarse, San Juan Capistrano, Calif. 92675 Continuation-in-part of Ser. No. 676,711, Apr. 14, 1976,
abandoned. This application Jan. 14, 1977, Ser. No. 759,486 U.S. Cl. 63-2

1. An ornamental ring removably attachable to at least two adjacent digits comprising:
an ornament;
attachment means for attaching the ornament to the two adjacent digits;
said attachment means including a wire-like element including first and second hooks and a reverse bend portion; each of said hooks having an inner end and an outer end, said revse bend portion joining said hooks at said inner ends; ach of said hooks including a digit embracing section; said attachment means including means for mounting said ornament on said reverse bend portion of said hooks with said hooks being on the same side of said ornament; said digit embracing sections extending generally away from eacace the two adjacent digits, respectively, each of said digit embracing sections extending circumferentially for less than \(360^{\circ}\); and
said reverse bend portion offsetting said inner ends of said hooks and at least substantial portions of said digit em.
bracing
hooks. \(\qquad\)
DUAL FLEX 4
George A. Carlson, and William O. Jankovsky, both of Peoria, III., assignors to Caterpillar Tractor Co., Peoria, III.

Filed Dec. 13, 1976, Ser. No.
Int. C. \({ }^{2}\) F16D 3/78
U.S. CI. 64-13

1. In a vehicle drive assembly, in combination, (a) a power source having an output,
(a) a power source having an output, having an input, said power source and said transmission
said power source and said transmission,
(d) said coupling having means connecting said coupling to said power source and to said transmission,
(e) said means comprising two flexible plates,
(f) each said flexible plate being secured along its outer peripheral portion to flanges on said coupling
peripheral portion to the output of the power its inner peripheral portion to the output of the power source, (h) the other of said flexible plates being secured along its
inner peripheral portion to the input of the transmissio inner peripheral portion to the input of the transmission,
(i) a spacer ring secured between each flexible plate and said
coupping, and
(i)
(j) oppositely extending pilots formed on each said ring with one pilot engaging the coupling and the other pilot engaging one of said flexible plates, said pilots positioning sad
flexible plates and said coupling relative to each other.

4,096,712
CONTROL COUPLINGS AND GEARING COMBINED THEREWITH
Oswald Webb, Coventry, England, assi
sions Limited, Birmingham, England
Filed Feb. 23, 1976, Ser. No. 660,075
Claims priority, application United Kingdom, Feb. 25, 1975,
7757/75
Int. C1. \({ }^{2}\) F16D 3/80; F16H 1/44; F16D 19/00, 31/00
U.S. Cl. \(64-26\) 1. A control coupling comprising an enclosure containing a
viscous liquid; first and second mutually interleaved sets of annular plates arranged for rotation about a common axis within said enclosure with the viscous liquid in contact with
adjacent surfaces of said plates, the first set of plates being arranged for driving connection with a first rotatable member and the second set of plates being arranged for driving connec-
aion with a second rotatable member; the plates of at least one tion with a second rotatable member; the plates of at least one
set being free to move in directions parallel to said common set being free to move in directions parailel to said common which projects within the enclosure and which has a bore which is open to, and forms part of, the enclosure volume; a piston slidable in the bore to vary die vol the the urging the
piston towards a limit position in which the volume of the bore in communication with the remainder of the enclosure is at a minimum; the strength of the resiliently yieldable means being chosen according to a desired torque transmitting characteris-

tic for the coupling, and the quantity of viscous liquid within the enclosure being such that at an ambient temperature of 25 C and with the coupling at rest the viscous liquid occupies a volume in the range \(85 \%\) to \(100 \%\) of the volume of the enclosure when said piston is in said limit position.

Kntone Lopes, Jristing NEEDLE rington, Conn, assignors to The Torrington Company, To rington, Conn. \(\begin{gathered}\text { Flled Aug. 8, 1977, Ser. No. } 822,446\end{gathered}\) Aug. 8, 1977, Ser. No.
Int. C. \({ }^{2}\) D \(04 \mathrm{AB} 35 / 04\)
U.S. Cl. 66-121

6 Claim

1. A latch needle comprising a blade a hook on one end the blade, said hook having a groove formed on its outer pe point on the outer perimeter of the hook longitudinally spaced rom the free end of the hook up to the free end, and a latch having one end pivotally connected to the blade, said latch eat in the groove of the hape of the latch being such that initially only the end portion the inner surface of the latch contacts the bottom surface of he groove in the latch closed position near said point on the uter perimeter of the hook with a remaining part of the inne surface of the latch located in the groove being spaced from the bottom surface of the groove, that portion of the inner surface of the latch coming into contact with the groove bot om surface gradually increasing in ace as the groove bottom needle operation.

4,096,714
SELF-CONTAINED GARMENT TREATING APPARATUS \(\begin{aligned} & \text { which it prevents the opening of said tongs, said lock device } \\ & \text { and the bolt member being connected to each other to move in }\end{aligned}\) Robert P. Nirenberg, 1314 17th St., \#32, Santa Monica, Calif. 90404

Filed Dec. 3, 1976, Ser. No. 747,232
Int. C1. \({ }^{2}\) D \(06 \mathrm{~B} 5 / 24\)
U.S. Cl. \(68-5 \mathrm{C}\) Int. Cl. \({ }^{2}\) D06B \(5 / 24 \quad 8\) Claims

8 Claims

1. Self-contained apparatus for vapor phase treating of garments with durable press treating agents, comprising a pressuring garments to be agent treated, means to vaporize said treating agent, means to feed the vaporized treating agent into said treating chamber for pressurizing said treating chamber and for treating the garments with said treating agent, pump means
conmunicating with said treating chamber for withdrawing conmunicating with said treating chamber for withdrawing
unused treating agent from said treating chamber and for cyclically depressurizing the chamber interior in time relation to said agent supply repressurizing said chamber with treating agent to relatively pressure-impregnate the garments with said
treating agent in vapor phase, and means in flow communication with said pump means for recovery of unused treating agent.

ANTI-THEFT DEVICE FOR A MOTORCYCLE HELMET Paul Lipechutz Croissy, France, assignor to Neiman S.A., Courberoie, France
Filed Mar. 4, 1977, Ser. No. 774,300
Claims priority, application France, Mar. 31, 1976, 7609261 U.S. CI. 70-59 Int. CT. \({ }^{2}\) E05B 69/00 10 Claims

1. An anti-theft device for a motorcycle helmet, said helmet having a continuous rib or the periphery of the edge of its opening, wherein there is provided means for gripping said
edge of the opening of the helmet behind said rib, and a lock device for locking said gripping means in the gripping position,
wherein said gripping means comprises two branches mounted wherein said gripping means comprises two branches mounted
to pivot about a pin remote from the ends of said branches, two to pivot about a pin remote from the ends of said branches, two
confronting ends of said branches having cooperative nose portions forming a tongs, and a bolt member actuated by a lock
device integral with one of said branches, said bolt member device integral with one of said branches, said bolt member
being capable of occupying a first position in which it does not prevent the opening of said tongs and a second position in translation.

\section*{Paul S. Cormier, \#2-520 LOCK-LATCH SET} Canada
\# 2-520 Victoria St., New Westminster, B.C.,
Filed Aug. 23, 1976, Ser. No. 717,261 U.S. C. \(70-139\)

1. A lock-latch set comprising
a latch member mounted for rotation between a lock position and an unlock position,
a plurality of locking trains of different lengths, mounted for movement in opposite directions between a locking position and a release position, said trains each having a pivot ally mounted outer end portion positioned to engage saic
stop means and an opposite slidably mounted inner end stop means and an opposite slidably mounted inner end portion, said outer end portion when the trains are moved
to a locking position engaging the stop means to retain the to a locking position engaging the stop means to retain the
latch member in the lock position and when the trains are oppositely moved to the release position disengaging the stop means to allow the latch member to rotate to the unlock position, and
a shaft assembly mounted adjacent said inner end portions of the locking trains, said assembly having means for receiving a key having a number of teeth of predeerenme lock-
lengths corresponding to the different lengths of the ing trains with said teeth positioned to engage the train inner end portions, said assembly allowing the key to be turned to permit the key teeth to engage said respective inner end portions to move the locking trains to the \(r\) lease position to allow the latch member to rotate.

\section*{4,096,717}

William DRANSMISSION SHIFT CONTROL Wiliam D. Cymbal, Freeland, Mich., assignor to General MoCorporation, Aetroit, Mich.
Flled Apr. 29, 1977, Ser. No. 792,313


1. For use with a synchromesh steering column including jacket having a rotatable shift bowl and a nonrotatable housin
mounted at the upper end thereof, a shift tube concentrically mounted within the jacket and shift bowl and slidably mounted
at its upper end within a central hub bushing secured to the at its upper end within a central hub bushing secured to the
housing, a shift lever pivotally mounted on the shift bowl with its inner end operatively connected to the shift tube for axially moving the latter in either direction within the central hub bushing, the shift bowl being rotatable by manual movement of
the shift lever through a predetermined angle in one direction to a common circumferential location for REVERSE position and at least one forward gear position, a gate formed on an
inner surface of the shift bowl, a lock cylinder mounted in a wall of the housing and having a rotatable gear sector mounted at its inner end in engagement with an axially movable toothed
rack having an off-set extension formed thereon, the improver rack having an off-set extension formed thereon, the improve-
ment comprising a cam formed on a side surface of the gear sector, a locking bar pivotally mounted on the central hub bushing adjacent the upper end of the shift tube, and resilient means operatively connected between the locking bar and the
central hub bushing central hub bushing for urging the locking bar into contact
with the cam, the shift tube being axially positioned to prevent the locking bar from being pivoted inwardly by the cam via manual rotation of the lock cylinder while in any forward gear position, thereby preventing the lock cyllinder from being
rotated into the OFF.LOCK position until the shift lever is manually moved into the REVERSE position, thereby causing the shift tube to move axially to a predetermined position wherein the locking bar is pivoted past the upper edge thereof
by the cam when the lock cylinder is rotated into the OFF by the cam when the lock cylinder is rotated into the OFF-
LOCK position, thus permitting the key to be removed from LOCK position, thus permiting the key to be removed from
the lock cylinder while positioning the toothed rack such that
the off-set extension of the toothed rack cooperates with the gate to prevent the shift bowl from being ropated by the shift lever.

\section*{4,096,718}

TAMPER-PROOF LOCKING DEVICE
Lionel S. Michelman, Pomona; Samuel M. Michelman; David L. Lionel S. Michelman, Pomona; Samuel M. Michelman; David L.
Michelman, both of Queens, and Milton Michelman, Long Michelman, both of Queens, and Milton Micheiman, Long
Beach, all of N.Y., assignors to Michelman Iron Works Corp., Brooklyn, N.Y.
Continuation-in-part of Ser. No. 693,293, Jun. 7, 1976, Pat. No. 4,031,722. This application Mar. 31, 1977, Ser. No. 783,274 The portion of the term of this patent subsequent to Jun. 28,

Int. Cl. \({ }^{1994 \text { E } \text { ESB } 65 / 52,67 / 38 \text {; EOSC } 19 / 18}\) U.S. C. \(70-63\)
idded container by placing the U -shaped section of the second member on a wall of a container with said legs straddling said wall and with said second leg and said screw means within the container, turning said screw means until the tip of said screw means contacts and presses against the wall of the container closing the lid of the container so that the edge of the lid rests
on the base of said U-shaped section, and mounting said first nember on both the edge of the lid and the projecting section of the second member with the first section of the first member extending over the edge of the lid, the second section of the irst member overlying the first leg of the \(U\)-shaped section, and the third section of the first member extending substanially over the projecting section of the second member, so that
said members are attachable to each other by lock means having a shackle extending through the opening in said third one of said sections of said first member and the opening in said projecting section of said second member, said first member having another section functionally unitary therewith to coop rate with said projecting section to inhibit relative angula ovement of the two members about the shackle.

\section*{ARRANG 4,096,719}

ARRANGEMENT IN DOOR-LOCKS
rik Rudolf Tranberg, Eskilistuna, Sweden, assignor to GKN Filed Feh 8, 1977, Ser. No. 766,821 Claims priority, application Sweden, Feb. 10, 1976, 7601429, Jun. 24, 1976, 7607329

\section*{US. Cl. 70-450 Int. Cl. \({ }^{2}\) E05B 9/08}

1. A tamper-proof locking device mountable on a lidded container or the like comprising a first member and a second
member, said first member being divided into a first, a second, member, said first member being divided into a first, a second, other, the third one of said sections being provided with at least one opening, said second member comprising a strip having a generally \(U\)-shaped section and projecting section, said \(U\)-shaped section having a first leg and a second leg, said projecting section extending laterally outwards from and substantially perpendicular to the lower end of the first leg of said
\(U\)-shaped section and being provided with at least one opening, the second leg of said \(U\)-shaped section being provided with a threaded bore, and screw means extending through the bore in said second leg, so that the locking device is mountable on a
1. A door lock assembly, comprising
a. a hollow, generally rectangular housing member formed by two connected halves and adapted to accommodate nism, including a latch bolt and a dead bolt extending outwardly from one side of the housing member,
b. face plate means, comprising:
1. an elongated face plate having apertures therein for receiving the latch bolt and dead bolt, the vertical height of said face plate being greater than the horizon ial depth of the housing member
an elongated U-shaped member comprising a bridging utwardly from the bridging portion, said bridging portion being rigidly joined to the back side of said face plate and said leg portions extending into mating en gagement wid sid one side of he housing membe plate, and
means removably connecting said leg portions to both halves of the housing member, whereby said U-shaped member stiffens and reinforces said housing member and forms a unitary assembly therewith which presents a high
degree of resistance to forcing.

APPARATUS FOR MAKING COR
METAL TUBING Leroy E. Anderson; Michael P. Schmidt, and William W. Wearer, all of Detroit Lakes, Minn., assignors to Manufacturers Systems, Inc., Detroit Lakes, Minn.
Division of Ser. No. 739,571, Nov. 8, 1976, which is a division of
Ser. No. 656,399, Feb. 9, 1976. This application Dec. 9, 1977, Ser. No. 859,258
Int. C1. \({ }^{2}\) B21C \(\mathbf{3 7 / 1 2}\)
U.S. CI. 72-50

9 Claims

1. Corrugated flexible cylindrical duct-forming mechanism for producing such duct from a flat narrow elongated strip of formable metal of small guage comprising
(a) a frame.
(a) a frame;
frame and consted powered roller means carried by said nally extending corrugations in such a metal strip and to form oppositely extending side edge portions thereon as it
passes therebetween;
cent said roller means in faid frame and positioned adjacent said roller means in metal strip-receiving relation for subsequent interlockingt, such side edges of such strip into seam elements as it passes therethrough
(d) a pair of rotatably mounted powered rollers carried by
said frame and positioned adjacent said guide means in position to receive therebetween such a metal strip after it passes through said guide means and constructed and arranged to form the oppositely longitudinally extending
side edge portions of such a strip into inboard and outboard seam elements extending generally at right angles to the general plane of the strip and in opposite directions; (e) a helically extending warping ring carried by said frame
immediately adjacent said seam element-forming rollers, immediately adjacent said seam element-forming rollers,
said ring having a generally circular helically extending inner warping surface, the axis of which extends substantially parallel to the axis of said seam element-forming rollers, said warping surface having a leading portion and a trailing portion, said leading portion of said ring warping
surface being located ahead of said seam element-forming surface being located ahead of said seam element-forming rollers in position to engage and extend into the corruga-
tion next to the inboard seam element of such a strip and positively direct the same within said ring along said
helical warping surface to the said trailing portion of said helical warping surface to the said trailing portion of said inner warping surface, said trailing portion of said inner
warping surface terminating adjacent to and laterally warping surface terminating adjacent to and laterally
outwardly of the outboard seam element of said strip which has been so guided by said inner warping surface into the outboard seam element of the strip in interengaging relation and thereby complete a convolution of the strip, and
(f) a pair of rotatably mounted lock-seam-forming rollers carried by said frame coaxially with said seam elementforming rollers and outboardly thereof, said lock-seamforming rollers having lock-seam-forming elements
thereon positioned to engage such interengaged seam elements and constructed and arranged to compress and
deform the same into a lock-seam constituting a common leg of a corrugation for the contiguous convolutions of the power driven. power driven.

HYDROSTATIC EXTRUSION METHODS AND APPARATUS Nazeer Ahmed, Princeton, N.J., and Ivan Gerald Histand, Cornwells Heights, Pa., assignors to Western Electric Company,
Inc., Ner York, N. Inc., Ner York, N.Y.

U.S. C. 72-60 8 Claims

1. A method of forming an elongated product from an elongated workpiece, which elongated workpiece is coated with a hydrostatic medium, the method comprising the steps of:
(a) applying frictional drag forces to the hydrostatic medium
in the direction of a die so as to advance the elongated in the direction of a die so as to advance the elongated
workpiece longitudinally, first toward an aperture extending longitudinally through the die, and then through the die aperture; and
(b) removing substantially all of the hydrostatic medium from each successive longitudinal element of the elongent reaches the die, such that the elongated workpiece passes through the die aperture in substantially uncoated condition.

ROL 4,096,722
ose Estaban Torralbe THREAD CUTTING DIE
Filed Jul. 26, 1976, Ser. No. 708,563 Claims priority, application Spain, Jul. 31, 1975, 214356 S. Cl. 72-104 Int. Cl.2 B21H 3/04
said roller extending radially outward from its associated selectively rotatable member;
support means for supporting each of said selectively rotatable members at said supported portions thereof and for leaving said end portions unsupported and unengaged by said support means; said support means positioning each of said selectively rotatable members such that the axis of
rotation of each said selectively rotatable member lies along a different axis spaced from and parallel to a central axis; and
said support means including means for retaining each of said at least three selectively rotatable members at prese-
lected angular orientations whereby said threads of said plurality of rollers may be adjusted to extend a preselected distance towards said central axis such that said rollers alone cooperate to position a shaft to be threaded along said central axis as said rollers thread said shaft;
a cover piece positioned above said rotatable member end portions and positioned to prevent said rollers from leavhaving a central opening therethrough of a diameter greater than the diameter of a circle defined by the axes of rotation of said selectively rotatable members, whereby a large head on a narrower shank to be threaded may be received in said central opening; said cover being attached
to said support means.
\(4,096,723\)
\(4,096,723\)
BLY FOR FORMING INTERNAL
GOOL ASSEOVES IN TUBES
Robin B. Rhodes, Ogdensburg, and Paul Vobecky, Lafayette,
both of N.J., assignors to Isothermics, Inc., Augusta, N.J.
Robin B. Rhodes,
both of N.J., assignors to
Filed Fothe
Filed Feb. 17, 1977, Ser. No. 769,795
U.S. C. 72-123

16 Claims

1. A tool assembly for forming internal grooves on the interior surfaces of tubular workpieces which comprises an essentially cylindrical tool holder, having a forming end and an actuating end, said tool holder housing at said forming end a mounted circumferentially about said holder within recesses provided therein whereby said wheels partially protrude from the permiter of said tool holder, and wherein the central axes of said wheels and the central axis of said holder are longitudinally coplanar but are respectively uniformly disposed at a
predetermined skew angle,
predetel holder support
detachably connected to said tool holder at said actuating end, said rotating motive means comprising a rotational actuator rollably mounted for the axial movement of said
tool holder longitudinally through a tubular workpiece in tool holder longitudinally through a tubular workpiece in
contact with the interior surface thereof, and
contact winh he inerior surface thereof, and
defining means at one end thereof for the support and securement of said tubular workpiece in axial alignment with said tool holder, said base defining along the remainder of the longitudinal dimensions thereof a travelway for
said tool support, said travelway comprising paired track members facilitating the rollable movement of ssid tool support thereon, said base further disposed at angle with respect to the horizontal whereby said workpiece secure-
ment means is apically located with respect to said track members.

4,096,724
METHOD OF COILING A FLAT STRIP arry J. Eshelman, Pendleton, and James R. Bish, Anderson, Larry. Est
both In Inch.
troit, Mich. troit, Mich.

Filed May 27, 1977, Ser. No. 801,069

1. A method of coiling a flat strip, said method comprising the following steps:
advancing the strip longitudinally at substantially constant speed through first and second longitudinally spaced sets of pinch driving rollers having parallel axes;
b. deflecting the end portion of the strip upwardly at the exit
from said second set of pinch driving roller, ing to advance said strip to form by bending beyond the elastic limit with substantially circumferential movemen of the end of the strip a partial loop capable of clearing an upper one of the second set of pinch driving rollers; discontinuing the deflection of said strip while continuing
the longitudinal advancement thereof to advance said partial loop and strip to a coil drive roller and a guide roller having axes substantially parallel to said first axes and initially located to engage an outboard circumferential surface of the partial coil substantially simultaneously to impart circumferential motion thereto in a windup
direction and thereafter to move so as to maintain engage ment with the periphery of the coil formed by continued winding action;
continuing the coiling of the trailing end of the strip by continued advancement thereof by the coil drive roller and
ejecting the finished coil

STRIPPER GUIDES FOR ROLLING MILL asunao Kano, Kashima, Japan, assignor to Sumitomo Metal Industries, Ltd., Osaka, Japan
Continuation-in-part of Ser. No. 692,022, Jun. 1, 1976, abandoned. This application Nor. 1, 1977, Ser. No. 847,618 tut. Cl. \({ }^{2}\) B21B 39/00
1. In combination a rolling mill for rollin 3 Claims or strip and having opposed horizontal upper and lowe into plate olls and work roll chocks in which said work rolls are mounted, stripper guides being disposed adjacent to the work
olls on the exit side of said rolls tripper guide roll rotatably mounted therein having a single stripper guide rolls being disposed above and below respective ine between the opposed work rolls and spaced from eack ther a distance equal to the work roll gap plus 5 to 20 mm for olled back more in line with the length end of a work being portion of the periphery of each stripper guide roll projecting
slightly from the guide surface of the respective stripper guide, second pistons, said pistons having coaxial rods extending each stripper guide roll being the same length as the corre- outwardly of the other end of said cylinder in opposition to
sponding work roll, the lower stripper guide being fixed to the said base, the rod of the first piston extending axially through sponding work roll, the lower stripper guide being fixed to the said base, the rod of the first piston exiending axialy through free end a tool, the rod of said second piston being tubular and being adapted to carry at its end holding means for the workpiece, conduit means leading to each of said first and second
fixed to the upper work roll chocks so that the vertical posi ons of the stripper guide rolls are adjusted relative to each the work rolls.

METHOD AND APPARATUS FOR DRAWING TUBES Otto Uhlmann, Burgdorf, and Norbert Stephan, Hanover, bot of Germany, assignors to Marshall Richards Barcro Limited Crook, England
\[
\begin{aligned}
& \text { debe. 11, 1977, Ser. No. 767,79! } \\
& \text { Int. Cl.2. } \mathbf{B 2 1 C} / / 34
\end{aligned}
\]
U.S. Cl. 72-291

1. In a tube drawing method having at least one drawing step a a drawing stage with a drawing die, a tube guide upstrean of the die for receiving and guiding the tube coaxially to the
die and a downstream rotatable draw block for drawing th tube through the die, comprising the steps of axially threading the tube through the guide and die with the tube guide a firs distance immediately upstream of the die to reduce the reand die, and drawing the tube through the guide and die with the draw block with the coaxial tube guide upstream of the die a second distance substantially greater than said first distance providing for accurately guiding the tube coaxially to the die.

\section*{4,096,727}

PUNCHING, STAMPING AND RIVETTING APPARATUS
UUNCHING, STAMM Daniel Pierre Gargailo, 71, rue Alexandre Boutin, Villeurbanne
\[
\begin{aligned}
& \text { France } \\
& \text { Filed Apr. 29, 1976, Ser. No. } 681 \\
& \text { Int. Cl. }{ }^{2} \text { B21D } 28 / 26
\end{aligned}
\]

chambers, and means for alternately delivering simultaneously to said first and second chambers hydraulic fluid of high pressure and lower pressure respectively to thereby sequentially reciprocate the rods of both said pistons outwardly in a work phase in which said workpiece holding means engages the
workpiece prior to the tool and said rod of said first piston workpiece prior to the tool and said rod of said first piston
inwardly in a retraction phase while maintaining the rod of said second piston in holding engagement with said workpiece.

6 Claims ADJUSTING DEvICE 4,096,728 ADJUSING DEVICE FOR SLIDE DRIVEN LIFT OUT Donald Leroy Glecker, John F. Roth, both of Salem, Ohio, and Peter N. Bosch, Kentwod, M, Sh, assigno. Filed Jul. 27, 1977, Ser. No. 819,489

Int. Cl. \({ }^{2}\) B21D 45/00
U.S. Cl. 72-345

15 Claims

1. In a press having a frame, slide means mounted on said rame for reciprocation toward and away from a bed on said and slide means, drive beans for reciprocating said slide means, shut height adjusting means connecting said drive means to said slide means for adjusting the shut height of said lide means relative to said bed, workpiece ejecting means in
one of said bed and slide means to eject a workpiece formed between said tooling means, and actuator means interconnect ing the other of said bed and slide means with said ejecting means and having a given positional relationship with respec to said ejecting means to actuate said ejecting means in re sponse to reciprocating of said slide means, the improvemen
comprising: actuator adjusting means for said actuator means,

4,096,729
SHEET METAL DRAW DIE APPARATUS William W. Dupler, Birmingham, Mi

Filed May 31, 1977, Ser.
Co. 801,77
Int. C1. \({ }^{2}\) B21D \(22 / 02\)
U.S. C1. 72-350

1. A sheet metal draw die apparatus for use with a die pres for drawing a planar metal sheet to a predetermined nonplanar ing an upper die secured to a vertically movable portion of the die press and including a first plurality of modules laterall paced in a first predetermined paltem y of cavities therebetween and having downwardly facing oo stationary base portion of the die press and including second plurality of modules laterally spaced in a second prede lermined pattern to provide a second plurality of cavities harebetween and having upwardly facing work contact suravities, the juxtaposition of said upwardly and downwardly facing work contact surfaces constituting a distinct, continuous urface defining the drawn article, with the surfaces of said irst and second pluralities of cavities being spaced apart from he bottoms of the cavities upon completion of the vertical the bottoms of the cavities

FORGING PRESS AND METHOD
Wayne A. Martin, Wilkins Township, Allegheny County, Pa, assignor to United States Steel Corporation, Pittsburgh, \(\mathbf{P a}\). Filed Jul. 1, 1976, Ser. No. 701,934 S. Cl. 72-352 Int. C.' \({ }^{2}\) B21D 22/00


4 Claims
ment said set of bottom dies being circular in plan, whereby indexing said set of bottom dies through a pattern of arcs moves a workpiece supported thereon successively to positions in which it can be forged throughout its area between said dies, the improvement in which the diameter of said set of bottom dies in larger than the diameter of said indexing table and has edge portions which overhang the table, and comprising a pair of removable diametrically opposed posts outside
said table under said set of top dies providing support for said edge portions in the regions which absorb force applied through said set of top dies during a forging operation.

\section*{4,096,731}

METHOD AND A MEANS FOR TRANSFERRING
METHOD AND A MEANS FOR TRANSFERRING
ARTICLES, IN PARTICULAR SEMIMANUFACTURED ARTICLES OR WORKPIECES, BETWEEN STATIONS ON MACHINERY FOR WORKING THESE ARTICLES Werner Uehlinger, MECHANICALLY
Werner Uehlinger, Arlesheim, and Pius Wendelspless, Binningen, both of Switzerland, assignors to KM-Engineering AG, Filed Dec. 8, 1975, Ser. No. 638,360 Claims priority, application Switzerland, Sep

22, 1975,
Int. Cl. \({ }^{2}\) B21D 43/18
U.S. C. 72-405

1. A method of transferring articles between successive work stations at which working operations are effected, said method comprising the steps of:
a. positioning an article at a first work station,
b. providing at each work station a jet of fluid material including a liquid medium, , mirecting said jet of and effective in one direction at the article located in the first work station to propel the article toward a successive work station,
d. guiding the article along a defined path to the successive
work station after the article has been propelled by said jel, and
prepare for a work operation
pre define a work operation,
teations and path is curved between the successive work guided by bearing against the outer side the article is guided by bearing against the outer side,
g. the positioning of said article in the successive work
station includes receiving said article along the inner side of said path.

\section*{4,096,732}

CAMERA TESTING METHODS AND APPARATUS Barry R. Springer, 10301 Margarita Ave, Fountain Valley, Calif. 92708
Filed Ang. 19, 1977, Ser. No. 826,109

Int. Cl. \({ }^{2}\) G03B \(43 / 00\) bottom dies for rotation on a vertical axis, said set of top dies generating an analog signal pulse responsive to the
and means to drive said actuator adjusting means and said shu height adjusting means to change said shut height and to main receive a workpiece, a cylinder axially disposed opposite to comprising: actuator adjucting means for said actuand means,
said base, first and second pistons slidably mounted within said and means todrive said actuator adjusting means and said shut
cylinder and defining therewithin a first chamber formed be- height adjusting means to change said shut height and to main-
tween the upper surface of said first piston and one end of said tain said given positional relationship between said actuator cylinder and defining therewinir a
tween the upper surface of said firt pon and one end of said tain said given positional relation
cylinder and a second chamber formed between the first and means and said ejecting means.

971 O.G. 53
defining the period of each said analog signal pulse by means
of a set minimum signal amplitude threshold, and

determining the cinematic frame rate of said camera in frames per second as being the reciprocal of the time sive signal pulses.

\section*{4,096,733}

TESTING FOOTWEAR SOLES
Arnold Cohen, Marblehead, Mass., assignor to Jones \& Vining, Incorporated, Braintree, Mass.
\begin{tabular}{ccc} 
Filed Sep. 17, 1975, Ser. No. 614,250 \\
Int. Cl. \({ }^{2}\) G01N \(3 / 56\) & \\
& & \\
\hline 12 Claims
\end{tabular}
base, said posts extending through openings in said treadmill supports, said resilient means comprising coil springs —

4,096,734
METHOD OF REMOVING HEADSPACE VOLATILES ANALYSIS THEREOF Ali Khayat, Carlsbad, Calif., assignor to Ralston Purina Company, St. Louis, Mo.

Filed Jan. 21, 1977, Ser. No. 760,872
Int. Cl. \({ }^{2}\) G01N \(31 / 08\)
U.S. Cl. 73-23.1

1. A method of removing volatiles present in the headspace area of a sealed container without prematurely releasing the vacuum and said volatiles in said container comprising the steps of
(a) ins
(a) inserting a first penetrating means into the headspace area of a sealed container,
(b) inserting a second penetrating means into said headspace area of said container,
(c) passing an inert carrier gas into said headspace area of (d) withdrawing said inert carrientrating means,
headspace area in said carrier gas and volatiles from said headspace area in said container through said penetrating
means other than the means utilized for the passing of said inert carrier gas into said container.
1. Apparatus for testing footwear soles, comprising a frame treadmill supports mounted on said frame for movement along an axis,
a treadmill assembly mounted on said supports, said assembly including an operative treadmill surface movable in its own plane along a direction transverse to said axis, resilient means connected to said frame and said supports for
biasing said treadmill surface in a rest position and for resiliently opposing movement of said surface along said
axis away from said rest position to a range of opeting axis away from said rest position to a range of operating positions, its longitudinal axis parallel to said operative treadmill surface and spaced from said rest position of said surface in the direction away from its said range of operating positions,
a drive for rotating said shaft above its said axis, and a sole support mounted on said shaft at a distance from said shaft axis sufficient so that when a sole to be tested is installed on said sole support and said shaft is rotated by said drive, said sole support will carry said sole along said
operative treadmill surface to move said surface along it operative tread, against the resilient force of said resilient
said means, to said range of operating positions,

\section*{ENGINE DETONATION SENSOR WITH DOUBLE ATION SENSOR}

Gerald O. Huntzinger; Charles E. Buck, and Robert E. Campbell, all of Anderson, Ind., assignors to General Motors Corporation, Detroit, Mic
Continuation-in-part of Ser. No. 767,995, Feb. 11, 1977,
abandoned. This paplication Sep 1 1977, Seb. No abandoned. This application Sep. 1, 1977, Ser. No. 829,778
Int. Cl. \({ }^{2}\) G01P 15/08; H011 4//14 U.S. Cl. 73-35

2 Claims
1. A detonation sensor for a vehicle mounted engine comprising, in combination
an elongated magnetostrictive element;
means associated with the magnetostrictive element effective to establish a magnetic flux therethrough;
a pickup coil disposed around the magnetostrictive element and responsive to changes in the magnetic flux through electrical output signals;
a generally cylindrical outer case comprising a magnetic
material and having a closed axial end with means for material and having a closed axial end with means for attachment to the engine for vibration therewith and an
posed coaxially within the case, the outer case forming a between said chambers for holding a workpiece in a gas tight first shield for the magnetostrictive element from external press wherein one side of the workpiece faces said compressed magnetic fields; material and being disposed coaxially within the outer case and around the magnetostrictive element to form a second shield for the magnetostrictive element from exter-
nal magnetic fields, the inner case having a closed end nal magnetic fields, the inner case having a closed end
adjacent the end of the magnetostrictive element opposite
 gas supply chamber in a gas tight relationship and the other
ide of said workpiece faces said acoustic testing chamber in a noise tight relationship; valve means on said compressed gas supply chamber, said valve means being operable to admir compressed gas from said gas supply chamber to the side of ultrasonic microphone said compressed gas supply chamber; an adapted for detecting gas noise created by gas passing through leak hole in the workpiece; a gas venting port disposed adjacent the periphery of said microphone and communicating with a labyrinth baffle with a gas vent passage leading to the atmosphere; and electrical control means for receiving gas leak noise signals from said microphone after said valve means has opened and for rejecting workpieces giving off gas leak noise signals.
the closed end of the outer case and
means on the open axial end of the outer case operatively engaging the closed end of the inner case and biasing the
inner and outer cases toward each other, the closed ends of the inner and outer cases operatively engaging and compressing the magnetostrictive element in compressive preload, whereby vibrations of the engine cause corresponding variations in said magnetic flux and thus in said
electrical output signals.

4,096,736
ULTRASONIC LEAK HOLE DETECTION APPARATUS Gary S. Moshier, North Haledon, N.J. Gary S. Mosbier, North Haledon,

Filed Feb. 25, 1977, Ser. No. 772,330
U.S. CI. 73-40


12 Claims

UNDERWATER WELLHEAD TESTING rank J. Scbuh, Dallas, Tex., assignor to Atlantic Richfield Company, Los Angeles, Calif.
Filed Nov. 7, 1977, Ser. No. 848,835
U.S. C1. 73-46

5 Claims hanger and an underwater wellhead wherein the casing sup-
ported by said casing hanger has a pressure rating above which said casing may collapse, said packoff sealing an annulus around the outside of said casing so that during pressure testing of said packoff if said packoff should leak said annulus around said casing will be pressurized and could possibly be pressurized beyond its collapse pressure, said casing having a drill
string communicating with the interior thereof, the improvestring communicating with the interior thereof, the improve-
ment comprising pressuring the interior of said casing through said drill string so as to maintain the differential pressure across 1. A leak detecting device for identification of can tops and
similar workpieces with leak holes comprising a compressed gas supply chamber providing a source of compressed gas for testing the workpieces for leaks; an acoustic testing chamber mounted adjacent said gas supply chamber; sealing means
said casing within said casing's collapse rating so that if said packoff does leak, the pressure buildup in said annulus around said casing will not exceed said casing's collapse rating, and during said interior pressurizing of said casing regulating the does not exceed the burst rating of said casing

Roland Rupp, Leverkusen; Hildegard Schnoring, Wuppertal; of Germany, asaignors to Bayer Aktiengesellschat, Leverku
sen, Germany Filed Mar. 9, 1977, Ser. No. 776,051 Filed Mar. 9, 1977, Ser. No. 776,051 \({ }_{26128096}\) Claims priority, application Germany
U.S. C. 73-52 Int. Cl. \({ }^{2}\) G01M 7/00

1. A method for testing filled glass containers in particular, ampoules for leaks and mechanical strength, comprising bringing the containers into an ultrasonic wave field produced by an ultrasonic source, without impact between the containers and
the source and setting the intensity of the ultrasonic source to the source and setting the intensity of the ultrasonic source to
intensity at a predetermined frequency to destroy defective containers, while mechanically perfect containers remain unaffected.

PROCESSABILITY TESTER
Robert I. Barker, Cuyahoga Falls, and David P. King, Akron, both of Ohio, assigpors to Monsanto Company, St. Louis, Mo. Continuation of Ser. No. 736,508, Oct. 28, 1976, abandoned. This application Aug. 17, 1977, Ser. No. 825,538 U.S. CI. 73-56


A strain detector comprising:
first oscillator including a first distortable frequency control element comprising first surface acoustic wave delay line means having frequency control characteristics which vary upon distortion of said first surface acoustic wave
delay line means to vary the oscillation frequency of said first oscillator;
a second oscillator including a second distortable frequency control element comprising second surface acoustic wave delay line means having frequency control characteristics which vary upon distortion of said second surface acousquency of said second oscillator;
a third oscillator including a third distortable frequency control element comprising third surface acoustic wave delay line means having frequency control characteristics which vary upon distortion of said third surface acoustic
wave delay line means to vary the oscillation frequency of said third oscillator; and
support means for affixing said first surface acoustic wave delay line means to a surface of a member in which strain is to be monitored, for affixing said second surface acous-
tic wave delay line means to a different surface of said member than that to which said first surface acoustic wave delay line means is affixed and for affixing said third surface acoustic wave delay line means to a different surface of said member than those to which said first and said second surface acoustic wave delay line means are frequency of said second oscillator different from the variations in the oscillation frequency of said first oscillator and variations in the oscillation frequency of said third oscillator different from the variations in the oscillation that the differences in the frequency variations provide an unambiguous indication of the magnitude and direction of strain in said member.

MATERIALS TESTING DEVICE
Sanford S. Sternstein, 9 Oak Tree Le, Schenectedy, N.Y. 12309 Filed Aug. 23, 1976, Ser. No. 716,647

12 Claims
U.S. CI. \(73-90\)
1. Apparatus for conducting transient characterization tests
12 tlaims 1. Apparatus for conducting transient characterization tests
on specimens of materials to be tested comprising means for 1. In the method of evaluating an extrudable material by on specimens of materials to be lested comprising means for charging a supply of such material to a chamber having an actuable direct current voice coil shaker motor secured to one outlet and movable member for forcing the material through end of said means whereby to apply a force rapidly to a speci-
the outlet and moving said member to force material from the men, command means for selectively applying an electrical outlet, the improvement which comprises stopping and secur- step function actuation signal to said shaker motor, means for ing the movable member at a predetermined position and producing an electrical response signal indicative of a prede-
measuring the force on the material as it decays with time.
termined parameter related to the force applied to the speci-
men, a motor control circuit responsive to said response signal for maintaining said parameter at a specified magnitude, said

motor control circuit producing a d.c. signal directly coupled to said motor

FLEXING DEVICE FOR TESTING RESILIENT ARTICLES AND METHOD OF COMPRESSION TESTING
Thomas Carl Musoif, and Harold Thomas Wyman, both of Sy \(\mathbf{W}\) Wandotte, Milch.
Wyandotte, Mich.
U.S. CI. 73-94


1. A flexing device for use in testing flexible foam articles
comprising
a bed for receiving samples in a testing position,
support means carried on the bed,
a fuid operated cylinder mounted on said support means,
said cylinder comprising a piston, a first passage means for providing fluid to proens for providing fluid of the piston, a second passage means for providing nuid the other side of the piston,
and a pressure foot member attached to the piston and and a pressure foo member atached
conduit means for carrying fluid to and from said first and second passage means,
a source of fluid under pressure in communication with said conduit means,
an exhaust means,
switching valve means for supplying fluid under pressure to one of said first and second passage means and for switch ing fluid from the other of said first and second passage means to said exhaust means,
ircuil neans for operating the switching valve means conprising a stepping switch, solenoid means for operating 1. An air data sensing probe of use in fluid streams, compris-
the switching valve in positions correspo tions of the stepping switch, and a pulse operated posive ing a barrel having a longitudinal axia, said barrel having a mechanism for driving the stepping switch, first switch means mounted on said support mean tion on an extended movement of the piston, and a second switch means mounted on said support means actuation on a retracted movement of the piston acduarion on a retracted movement or he piston said to sense static pressure of fuid surrounding said barrel where pulses and second switch means being located to provide there is relative motion between a fluid surrounding said
formed in said barrel to independently sense pressure at the second conversion transconductance corrector connected to
surface of said barrel, and said second port means being said second voltage-to-frequency converter whose output surface of said barrel, and said second port means being positioned at a location spaced axially along said barrel from
said first pressure sensing port means so that the pressures at the first and second pressure means so that the pressures at relative to each other when the longitudinal axis of said barrel deviates from a reference position, means to provide a pitot pressure signal due to relative motion between said barrel and
the surrounding fluid, and the surrounding fluid, and means to combine the sensed pressures and pitot pressure signal to provide an indication of
the angle of attack comprising the angle of the longitudinal the angle of attack comprising the angle of the longitu
axis of said barrel with respect to said reference position

\section*{METHOD AND APPARATUS FOR MEASURING MASS FLOW RATE OF INDIVIDUAL COMPONENTS OF} TWO-PHASE GAS-LIQUID MEDIUM
Ilya Yakovlevich Rivkin, 2 Kvesisskaya ulitsa, 22, kv. 16; Shamil Mustaforich Aisin, Tsvetnoi bulvar, 16/1, kv. 4; OOg Sama-
novna Garkusha, B. Serpukhovskya ulitse 245; Alexandr Lvovich Dondoshansky, 9 Parkovaya ulitss, 47, sorpus 1, kv. 70; Evgeny Alfredovich Zellis, Kashirskoe shome, 100, stroenie 1, kv. 44; Vladilen Efremovich Karpov, ulitsa Miklukho-Maklaya, 65, korpus 4, kr. 86; Vladimir Konstantinovich Sorokin, Leninsky prospekt, 37, kr. 26, and Oleg Petrovich Shishkin, prom
111, all of Moscon, U.S.S. R

Filed Feb. 13, 1276, Ser. No. 657,840
Int. Cl. \({ }^{2}\) G01F \(1 / 66,1 / 76\)
U.S. C. \({ }^{73-194}\) B

1. An apparatus for measuring mass flow rate of individual components of two-phase medium comprising: a sealed houstromagnetic coil for imparting oscillations to said pendulum, and a second electromagnetic coil for converting oscillation velocity of said pendulum into an electric signal, said first and
second coils being mounted on said housing; an amplifier having an input connected to the second electromagnetic coil, which convers the oscillation velocity of the pendulum and a control input, the output of said amplifier being connected to said first electromagnetic coil for imparting oscillations; an automatic gain control unit having an input connected to said
second electromagnetic coil for converting oscillation velocity and an output connected to said control input of said amplifier; a first voltage-to-frequency converter having an input connected to said output of said automatic gain control unit; a first zero corrector connected to said first voltage-to-frequency
converter; a first conversion transconductance corrector conconverter; a first conversion transconductance corrector con-
nected to said first voltage-to-frequency converter whose output frequency signal is proportional to mass flow rate of a two-phase medium being measure; a frequency-to-voltage
converter having an input and output; a second voltage-to-freconverter having an input and output; a second voltage-to-frequency converter having an input connected to said output of
said frequency-to-voltage converter; a second zero corrector said frequency-to-voltage converter; a second cero corrector
connected to said second voltage-to-frequency converter; a
said second voltage-to-frequency converter whose output requency signal is proportional to density of the two-phase pressure of the two-phase medium in the inner space of the housing.

\section*{4,096,746}

FLOW CONTROLLER-FLOW SENSOR ASSEMBLY FOR GAS CHROMATOGRAPHS AND THE LIKE of Conn., assignors to The Perkin-Elmer Corporation, Nor walk, Conn.
Filed Feb. 25, 1977, Ser. No. 772,179
U.S. CI. 73-205 R
\(\mathrm{Int}^{\mathrm{Int} . \mathrm{Cl} .^{2} \text { G01F } 1 / 34,25 / 00}\)

1. A flow controller-flow sensor assembly for regulating the low of fluid through a system, comprising, in combination: inlet channel means;
first flow restrictor
first flow restrictor means having an inlet and outlet for passing said fluids, said flow restrictor means having its
inlet positioned in fluid flow communication with said inlet channel means, said first flow restrictor means bein responsive to the difference in pressure between its inle and outlet to thereby control the flow rate through said system:
means disposed on the outlet side of said flow restrictor means for varying the pressure between the inlet and rate;
rutlet c
rate;
outlet channel means in fluid flow communication with the outlet of said restrictor means for returning the fluid ansducer means having a first and a
means for connecting said first port to the inlet of said flow restrictor means in fluid flow communication;
said transducer means including means for generating an electrical signal proporiond ports; said means for connecting said first
flow restrictor means including a sect to the inlet of said means, said second flow restrictor a second flow restricto tially the same flow rate characteristics as the substan tially the same flow rate characteristics as the first flow
restrictor means so that the time it takes for said first por to sense the pressure at the inlet of said first flow restricto means is substantially equal to the time it takes for the pressure at the outlet of said first flow restrictor means to build up to its anticipated value based on the setting of said means for varying the pressure between the inlet and outlet of said first flow restrictor means.

DIGITAL OUTP 4,096,747
Paul R. Gilson, 10012 Highcliff Dr., Santa Ana, Calif. 92705 Filed Oct. 14, 1975, Ser. No. 621,884 Int. Cl. \({ }^{2}\) G01F \(3 / 16\)
14. Cl. 73-251
14. A meter for measuring the flow of
a piston mounted for reciprocation within said housing outlet;
valve means for \(\quad \alpha_{0}=\) and said inlet and said outlet, said valve means closing when the diagonal including a voltage detector having an internal said inlet and said outlet, said valve means closing when resistance D, the voltage detector being connected to a com-
said piston is at said extreme adjacent said inlet and opening when said piston is at said extreme adjacent said outlet end; said valve means comprising:

an orifice for bypassing fluid around said piston; and
a valve member selectively closing against the down stream end of said orifice
means for biasing said piston toward said extreme adjacent
said inlet end; and said inlet end; and
position of said piston withut signal in response to the
position of said piston within said cylinder.

WHEATSTONE BRIDGE MEASURING CIRCUIT Michel Pichon, Fontenay, Bois, France, assignor to Compagnie
Internationale pour l'Informatique CII-Honeywell Bull (So Internationale pour 1'Informatique CII-Honeyw
ciete Anonyme), Paris, France
Claims priold Dec. 22, 1976, Ser. No. 753,305 70303
Claims priority, application France, Dec. 31, 1975, 7540363
Int. Cl.
G01K \(7 / 20\); GO5F \(3 / 02\)
U.S. CI. 73-362 AR

9 Claims

1. Apparatus for automatically measuring parameters comprising a Wheatstone bridge including first and second branches and a diagonal connected between taps of the first and second branches, the first branch including first and sec-
ond series connected resistors having values \(P\) and \(Q\), the second branch including third and fourth series connected resistors, respectively having values \(R\) and \(A\), said third resistor being responsive to the measured parameter in accordance with:
\(R=\frac{\left(1+a_{0} D\right)}{R_{0}}\)
where:
\(R_{o}=\) value \(T_{i}\)

4,096,749
CORE SAMPLING DEVICE Robert A. Stewart, 2844 54th St., North, St. Petersburg, Fla.
33710 Filed Apr. 29, 1977, Ser. No. 792,465
Int. Cl. \({ }^{2}\) B28B \(7 / 1 / 0 ;\) G \(01 \mathrm{~N} 1 / 08\)
U.S. Cl. 73-425.2

1. A core sampling device of the type primarily intended for forming concrete test cores in situ and facilitating the removal of such test cores, said core sampling device comprising: sleeve means comprising first wall means defining the exterior of said device and second wall means correspondingly configured as
said first wall means and disposed within said first said first wall means and disposed within said first wall means, said first and second wall means being interconnected at their bases; a plurality of insertion ledge means formed in intercon-
necting relation between said first and second wall means bases; and insertion means removably engageable with said sleeve means, said insertion means comprising body means dimensioned and configured for being removably disposed within the space defined between said first and second wall means, said insertion means further comprising a plurality of (1) insertion finger means formed around a peripheral edge of said
body means, said finger means being dimensioned and configured to operatively engage said insertion ledge means, whereby said insertion means may be utilized to place said sleeve means within fluid concrete to form a test core at least partially defined by said second wall means.

HAND-HELD MICROPIPETTOR WITH FLUID TRANSFER VOLUME ADJUSTMENT MECHANISM Ronald Leo Sturm, San Carlos, Califi, assignor to Oxford Laboratories Inc., Foster City, Calif. Filed Jun. 15, 1977, Ser. No. 806,910
In. Cl.
U.S. CI. 73-425.6
a manner that rotation of said element causes said stop to move axially along said plunger,
means within said body for normally restraining movement of said element, and

means responsive to said plunger being placed at a particular position for releasing said element restraining means,
whereby movement of said volume adjustment knob is whereby movement of said volume adjustment knob is
automatically locked unless the operator deliverately places the plunger in a particular position, thus avoiding inadvertent volume setting changes.
1. In a device having a plunger reciprocal within a body through a stroke distance defined by limiting abutments for transterring a volume of liquid proportional to the stroke
distance, an improved mechanism for adjusting an abutment on the plunger for varying the volume of liquid transferred, comprising:
a cylindrical-like sleeve held within said body against axial movement and surrounding said plunger,
a nut held on said plunger in threaded eng \(\qquad\) nut held on said plunger in threaded engagement there-
with, said nut travelling back and forth along the length of said plunger when rotated,
means operably connecting said nut and said cild sleeve in a manner that rotation of the sleeve causes rotation of the nut while at the same time permitting reciprocation of the plunger and nut as a nut with respect to the sleeve, and
means provided on the outside of said body for rotating said cylinder to effect a volume adjustment.

4,096,751
HAND-HELD MICROPIPETTOR WITH FLUID
HAND-HELD MICROPIPETTOR WITH FLUID TRANSFER VOLUME ADJUSTMENT MECHANISM Luaniey J. Withers, Berkeley, and Ronald L. Sturm, San Carios,
both of Calif, assignors to Oxford Laboratories Inc., Foster City, Callf.

Filed Jun. 15, 1977, Ser. No. 806,909
U.S. C. 73-425.6 Int. C1. \({ }^{2}\) B01L \(3 / 02\)
U.S. II. a device int. Cl. \({ }^{2}\) B01L 3/02
1. In a device having a plunger reciprocal within a body
Claims hrough a defined stroke distance set by limiting abuttments for ance, an improved mechanism for adjusting an abuttment on tance, an improved mechanism for adjusting an abuttment on transferred, comprising:
a volume adjustment knob located external of said body, a motion transmitting element held within said body surrounding a portion of said plunger and held to be rotatable
with respect to the body in response to rotation of said with respect to the body
volume adjustment knob,
an adjustable stop carried by said plunger within said motion transmitting element and operably connected therewith in
\% \(4,096,752\)
OIL WELL LOGGING PROBE ASSEMBLY

\section*{OIL WELL LOGGING PROBE ASSEMBLY \\ Data Inc., Bakersfield, Calif.}

Filed Jul. 6, 1976, Ser. No. 702,915
Int. Cl. E21B 47/024; H02G \(15 / 22\) U.S. CI. 73-431
1. In a cylindrical probe assembly adapted to include selected instruments arranged in a cylindrical stack each instrument communicating by way of a common coaxial cable having a braided wire strand shield thereof connected to support said probe assembly, the improvement comprising:
an annular guide segment including a first central bore con-
formed to the exterior of said cable, a first cavity axially formed to the exterior of said cable, a first cavity axially
aligned with said first central bore on the lower end of said segment a first threaded peripheral surface formed on the
interior surface of said first cavity, and a first sealing peripheral surface formed along said threaded first periph eral surface proximate the lower end of said segment; annular attachment segment including a first reduced
diameter section at the upper end thereof adapted for receipt within said first cavity for threadable engagement therewith and including a first sealing ring disposed peripherally thereabout to abut said first sealing peripheral surface said attachment segmen for thereof a second receive said cable, a second cavity formed in the lowe end thereof communicating with said second bore, a clamping device disposed within said second cavity for engaging the shield of said cable thereat, said clamping device having a male fitting including a peripheral flange on the upper portion thereof conformed threaded surface gage said second cavity, and exterior y threaded surface
over a lower portion thereof below said flange and an internally threaded annular female fitting provided with a plurality of longitudinal radially disposed openings conformed to receive selected wires of said braided wire strand shield, said wires extending to the upper end of said flange and a second threaded and sealing peripheral surface formed on the interior periphery of said second cavity proximate the lower end thereof; and
Tid fluid includes a non-conducting grease compound de
posited in said first cavity prior to the receipt of said first positiod in said
section

\section*{\begin{tabular}{l} 
4,096,753 \\
\\
\hline
\end{tabular}}

Rex Mullins, Burton Upon Trent, England, assignor to Coal Rex Mullins, Burton Upon Trent, England, a
Industry (Patents) Limited, London, England Continuation of Ser. No. 618, 163, Sep. 30, 1975, aban
 appication Mar. 17, 1977, Ser. No. 778,547
Claims priority, application United Kingdom, Nov. 19, 1974, 0091/74

Int. Cl. \({ }^{2}\) G01B 7/14
U.S. C. 73-432 R

9 Claims

1. Mine equipment for measuring the advance of a longwal 1. Mine equipment sections, comprising first and second components adapted to be releasably anchored adjacent to a mine goaf behind the conveyor, each of the components being capable of being advanced relative to the other component, control means for of the components is advanceable only when the other compoof the components is advanceable only when the other compo-
nent is anchored, and sensor means associated with both the components and sensitive to movement of at least one of the components relative to the other component.

Wendell Hazelton Bemoveridge, Jre., Claremont, and William Edward Van Over, Monrovin, both of Calif,, assignors to E. I. Du Pont de Nemours and Compeny, Wilmington, Del. S. \(\quad\) Int. Cl. \({ }^{2}\) G01L \(19 / 00\)
U.S. C. \(73-432 \mathrm{R}\)

8 Claims

1. A mounting for removably introducing a probe into a luid enclosure, said mounting including a boss having a bore nd a counter bore forming a positioning shoulder therebeaid boss, and an extension pipe connected to said valve, comprising:
removable housing in fluid tight end-to-end relation with said pipe and having a bore of lesser diameter than the therebetween, upling means to
end-to-end relationship.
end housing reaid nship, said housing, said pipe, said valve and said boss forming a said probe having a collar continguous one end for seating on said positioning shoulder or abutting said retaining shoulder, and
means for maintaining said probe collar seated on said positioning shoulder

ULTRASONIC INSPECTION APPAPATUS Leroy Robert Hause, Seattle, and Clarence William Coplin, Auburn, both of Wash., assignors to The Boeing Company, Seattle, Wash.

Filed Aug. 31, 1977, Ser. No. 829,400
Int. Cl. \({ }^{2}\) G01N \(29 / 04\)
U.S. Cl. 73-598
1. Ultrasonic inspection apparatus comprising a carriage movable over a surface to be ultrasonically inspected, alternate transmitting and receiving ultrasonic transducers mounted on
said carriage in a linear array and in contact with the surface to
be inspected such that ultrasonic wave energy from a transmitting transducer will pass through the surface to an adjacent receiving transducer, means for causing each of said transmit-
ting transducers to generate a burst of sound in the surface a separate detector for each of said receiving transducers for detecting a shift in phase in the sound received by its associated receiving transducer due to a defect in the surface, a separate indicator for each of the receiving transducers for momentarily indicating a shift in phase indicative of a defect, a single master indicator for all of said receiving transducers, and means for
actuating said master indicator for a predetermined period of time longer than the momentary indications of the separate indicators whenever a defect is sensed by any of the separate detectors.

\section*{4,096,756}

VARIABLE ACOUSTIC WAVE ENERGY
TRANSFER-CHARACTERISTIC CONTROL DEVICE Gerard Argant Alphonse, Princeton, N.J., assignor to RCA Filed Jul. 5, 1977
\(\begin{array}{ll}\text { Int. Cl. }{ }^{2} \text { G01N } 29 / 00 ; ~ H 03 H ~ 9 / 26 ; ~ H 01 L ~ 41 / 10 ~ \\ 12 & \text { Claims }\end{array}\)

1. A variable acoustic
control device including
layers of piezoelectric faces and define an interface between each pair of adjacent ones of said contiguous layers, each of said layers having
a respective specified thickness, first and second electrodes respectively at said outer faces, and at least one additional electrode at each interface;
an electrical circuit connected across said first and second electrodes; and
switch means for selectively connecting said at least one additional electrode to another one of said electrodes
which selectively short circuits at least a portion of tat least one of said layers of said piezoelectric element.

METHOD AND APPARATUS FOR EXAMINING WELD DEFECTS IN VERTICAL PIPES BY SUPERSONIC
Ryoichi Ishii; Yoshishige Sakurai; Hiroshi Yamada; Kuniharu Uchida, all of Yokohama, and Kanekichi Suzuki, Tokyo, all of
Japan Filed Dec. 7, 1976, Ser. No. 748,370
Claims priority, application Japan, Dec. 8, 1975, 50-145141; Dec. 8, 1975, 50-145143; Dec. 12, 1975, 50-147422; Dec. 12, 1975, 50-147423

Int. Cl. \({ }^{2}\) G01N 29/04
13 Claims
1. Supersonic defect detection apparatus for examining the weld of a vertical pipe comprising.
a supersonic probe,
means for revolving said probe along the inner surface of
said vertical pipe, said probe revolving means including a first disc mounted on a rotary shaft
means removably connected to the lower end of said pipe
for vertically driving said probe revolving means means connected to said vertically driving means for lating contact liquid between the operating surface of said probe and a tank containing said contact liquid, and

means for supplying said contact medium onto said first disc inclucing a baffle plate mounted above said first disc for
directing said contact liquid in the radial direction of said directing said contact liquid in the radial direction of said disc near the periphery thereof, and said first disc being provided with a notch above said probe for guiding the contact liquid between the operating surface of said probe and the inner wall of said pipe to be examined.

PRESSURE TO ELECTM
PRESSURE TO ELECTRIC TRANSDUCER Pa., assignor to Moorese Products Co., Spring House, Panty Filed May 24, 1977, Ser. No.
Int. C1. \({ }^{\text {G }}\) (01L \(9 / 12\) 10 Claims

1. A pressure-to-electric transducer comprising a housing,
a fluid pressure responsive member in said housing, a capacitor in said housing having a fixed plate and a mov able plate connected to said fluid pressure responsive an operational amplifier for delivery of an output signal, said amplifier having a negative input terminal, a positive input terminal and an output terminal, means for determining the output of said amplifier in re sponse to a fluid pressure applied at said fluid pressure responsive member,
said means comprising
said means comprising an oscillator as an input source connected to said positive input terminal, and
connected between said output terminal and said negative
input terminal of said amplifier for controlling the gain of said amplifier.

PRESSURE GAUGE FOR INDICATING SMALL PRESSURE CHANGES Gerhard Desor, Bad Homburg, Germany, assignor to Hauser
sel, Germany
Filed Mar. 7, 1977, Ser. No. 775,351
Claims priority, application Germany, Mar. 10, 1976, 2609882 S. C. \(73-731\) Int. Cl. \({ }^{2}\) G01L 7/00


16 Claims
ing outside said housing to provide a support for said pressure gauge and its other end extending inside said housing to provide a mounting for said gauge member; a pointer mechanism and pointer conent observable said gauge said view plate;
said rear side formed as a wall
formed with an edge thereof;
a closure element corresponding in size to said opening and having a first groove extending about its periphery to id closure element in said open said closure element having a second groove extending about its periphery, said second groove located so as to provide an opening into the interior of said housing; resilient membrane extending into said housing and having ing along its entire length; and
said closure element having a vent hole and capable of being pressed out of said opening when the pressure in said housing exceeds a specific value.

APPARATUS AND METHOD FOR INCREMENTALLY ROTATING A SHAFT
Keith E. Brown, Solon, Ohio, assignor to Addressograph-Multigraph Corporation, Cleveland, Ohio

Filed Jul. 15, 1976, Ser. No. 705,688
1. A pressure gauge for indicating small pressure changes U.S. Cl. 74-128
comprising a sac of thin flexible film material communicable with and inflatable by the pressure to be indicated, during use;
a base for supporting the sac wherein the sac effectively inflates generally outwardly therefrom, during use; a transmission plate; means pivotally mounting the transmission plate to rest freely against the sac, comprising a hinge connecting the
transmission plate to the base for free swinging movement of transmission plate to the bese or tre swingiation and deflation
the transmision plate in response to the inflater of the sac; and a pointer directly connected to the transmission plate to indicate the position thereof under the influence of plare
pressure to the sac to effect the indication of that pressure.

4,096,760
PREESURE GAUGEE
Paul Bilbert, Burgstadt, and Ewald Rössner, Oberaburg, both of Germany, assignors to Alexander Wiegand \(\mathbf{G m b H}\) u. Co., Armaturen- u.Manometerfabrik, Klingenberg, Germany Filed Jun. 10, 1977, Ser. No. 805,603
U.S. Cl. 73-738

4 Claims

1. A pressure gauge comprisin
a rigid housing having a peripheral wall, a front side and a
rear side;
a view plate mounted to seal said front side;
a view plate mounted to seal said front side;
an elongated gauge support member having one end extend-

1. An apparatus for providing intermittent rotary motion in predetermined direction comprising:
an endless substantially nonstretchable belt;
a pair of spaced driven pulleys around which said belt is trained with said belt having first and second continuous runs each disposed between said pulleys and each extending from one pulley to the other, said pulleys having their axes fixedly positioned and the length of the belt being trained arond the pulleys;
means for preventing rotation of each pulley in one direction while permitting it in the other, the directions of permitted rotation of the pulleys being alike with respect to a single predetermined direction of belt travel;
first deflecting means for alternately deflecting said first run
of the belt in a direction transversely of its path and then of the belt in a direction transversely of its path and then withdrawing trom the deflecting position; and second deflecting means for alternately deflecting the secand then withdrawing from the deflecting position, said first and second deflecting means being arranged for mu-
tual coaction such that the deflecting and withdrawing actions alternate in opposite sense to the actions of the other so as to maintain said belt substantially taut about the pulleys, whereby the pulleys are alternately stepped in their permitted directions of rotation.

TORSIONAL SONIC OSCTV TORSIONAL SONIC OSCILLATOR EMPLOYING UNIVERSAL JOINTS AND TANDEM ARRANGED
OSCILLATOR ROTORS Albert G. Bodine, 7877 Woodley Ave., Vna Nuys, Calif. 91406 Filed Jul. 30, 1976, Ser. No. 710,317 U.S. C. \(74-61\)

11 Claims

1. A torsional sonic oscillator for generating torsional vibration in a torsionally elastic member comprising:
a first eccentrically weighted rotor unit mounted for rotation on said elastic member,
a second eccentrically weighted rotor unit, similar in size, for rotation on said elastic member in tandem series driven relationship with said first rotor unit,
said rotor units being rotatably mounted on the elastic memser with their rotation axes substantially parallel to each-
other and each displated other and each displaced from a central axis of said elastic
member equally but oppositely in a non-aligned relationship with each other, the eccentrically weighted portions of said rotor units being in \(180^{\circ}\) phase relationship with each other,
linkage means
linkage means for coupling said rotor units to each other,
and
drive
means for rotatably driving said rotor units.
HYPOCYCLOIDAL REDUCTION GEARING
Nathaniel B. Kell, Indianapolis, Ind., assignor to General Motora Corporation, Detroit, Mich.

Filed Dec. 22, 1976, Ser. No. 753,261
Int. C1. \({ }^{2}\) F16H \(21 / 14\)
U.S. C. 74-69

4 Claims

1. A speed reducing mechanism comprising; a housing; an output shan rotatably supported in said housing; an input shan
supported in said housing and being drivingly connected to said input shaft; an internally toothed gear; a pinion gear rotat ably mounted on said gear carrier and meshing with said inte
nally toothed gear and having at least one-half tooth more or less than one-half the number of teeth on said internally coothed gear; a plate member having first and second slots formed thereon in intersecting relation to each other with said intersection occurring at the central axis of said internally
toothed gear; and first and second reaction means formed on said pinion gear and being disposed in said first and second slots; one of said internally toothed gear or said plate member being secured to said housing and the other being drivingly connected to said output shaft.

POWER TRANSMISSION BELT STRUCTURE AND METHOD OF MAKING SAME Kenneth D. Richmond, NaF; Russell E. Hartman, Springfield Jerry W. Rogers, Springfield, and Jack Nelson, Springfiel
all of Mo., assignors to Dayco Corporation, Dayton, Ohio Filed Mar. 30,1977, Serp. No
Folion, 782,699 U.S. C1. 74233
1. A power transmission belt structure having substantially is entire periphery covered by an outer fabric layer adjoined ayer and fabric layer being the only structure defining a teric sion section of said belt structure.

4,096,765
CONTROL LINKAGE ARRANGEMENT
Thomas E. Cochran, Yorkrille, III., assignor to Caterpillar Tractor Co., Peoria, III.
ed Feb. 28, 1977, Ser. No. 772,802
Int. CI. \({ }^{2}\) GOSG \(/ 1 / 00\) U.S. CI. 74-473 R 27 Claims

1. In a vehicle drive having speed control means including a movable control element for causing the speed of the drive to vary in accordance with the positioning of said control element, and a manually operable speed lever mounted for selec-
tive positioning about mutually transverse first and second pivot axes, an improved connecting means interconnecting said speed lever and said control element for moving said coldrol element as a function of pivotal movement of said
speed lever, comprising:
a pivot member;
means for mounting said pivot member for pivoting about
third, fixed pivot axis intersecting said first pivo bexis means connecting said pivot member to said control eleme to position said control element as a function of the pivota position of said pivot member about said third pivot axis
a ball connector;
spaced from said faid pivot member defining a channel spaced from said first pivot axis, said channel transversely ball container; and
extensible means connecting said ball connector to said speed lever for mounting therewith about said first and second pivot axes, movement of said speed lever about said second pivot axis causing said extensible mounting means to move said ball connector in said guide channe
from said third pivot axis to an operating position from said third pivot axis to an operating position spacee
from said third axis, and movement of said speed lever about said first pivot axis causing said extensible connect about seaid first pivot axis causing said extensible connect-
ing means to move said ball connector disposed in said operating position arcuately about said third pivot axis to
swing said control lever to an oxtent amount of pivoting of said speed lever about said first pivot axis.

SELF-CONTAT 4,096,766
ROBOTS JOINT, NOTABLY FOR ROBOTS
Pierre Pardo, and Francole Pruvot, both of Meudon la Foret, France, asselgiorst to Sofermo, Mevdon la Foret, France Cluims priority, application France, Jun, 13, 1975, 7518497 I.S. CI. \(74-640\) C. \({ }^{2}\) 25J \(17 / 00 ;\) A61F \(1 / 04 ;\) F16H 33/00 5 Cl

1. Self-contained modular joint adapted to interconnect two machine elements to permit a relative rotation of less than one strap consisting of a pair of wing-like extensions encompassing the second element in such a manner that said second element can pivot between said two wing extensions, each wing extension of said strap being provided with a bore concentric to the
axis of said relative rotation, said bore being adapted to be axis of said relative rotation, said bore being adapted to be
engaged by first and second members of revolution each adapted to center and position in the axial direction an inner race of rolling contact bearings capable of absorbing axial and radial efforts, the outer race of each one of said bearings being carried by third and fourth members of revolution centered and secured to said second element so as to constitute between
said two elements a joint free of both axial and radial play, said two elements a joint free of bout axial and radial play,
wherein one of said third and fourth members of revolution secured to said second element has fitted thereon a toothed annulus of a reduction gearing assembly and wherein another
element of said reduction gearing assembly comprises a flexible element of said reduction gearing assembly comprises a flexible
toothed ring which is secured to one of said first and second toothed ring which is secured to one of said first and second an output shaft, a differential gear set including an input ele--
members of revolution rigid with the wing extension of said ment connected to said input shaft and an output element
1. In a hydro-mechanical transmission hăving an input shaft,
strap which is opposite said one of said third and fourth members of revolution rigid with said second element having said in that said one of said first and second members of revolution also supports a control motor having a drive shaft mechanically connected to said reduction gearing assembly so as to
drive said reduction earing in such a maner the all drive said reduction gearing in such a manner that all the the axis of rotation about which one machine element can pivot in relation to the other element to an extent of less than one revolution.

4,096,767
NDEXING AND INTERMITTENT DRIVE MECHANISM mards, Incer Peters, Jr, Noreo, Calif, assignor to Box Inardas, Inc., Ansheim, Calif.

Int. C. \({ }^{2}\) B23Q \(17 / 000\) F1Ci \(27 / 02\)
U.S. CI. 74-822


\section*{In combination:}
housing;
shaft extending through opposite walls of said housing, said shaft being adapted to be coupled
first beve to be intermittently operated;
Hrst bevel gear in said housing fixed to said shaft;
pair of spaced bevel gear pinions on an axis at right angles
said pinions both being in mesh with said first bevel gear;
means supporting said pinions for angular movement in unison about said shaft,
means to reciprocally
means to reciprocally rotate said pinions about said shaft through a predetermined angle;
during angular movement of said pinions in one sirection: and means to prevent rotation of said first bevel gear and said shaf during angular movement of said pinions in the
opposite direction.

\section*{4,096,768}

HYDPO-MECHANICAL TPANSMSSION

\section*{akayuld Miyso, Toyota, Japan, meignor to Avisin Selld Kot}
shilid Kerisha, Jappan
Flled Oct. 3, 1975, Ser. No. 619,386
Claims priority, application Japan, Oct. 3, 1974, 49-114195
U.S. C. \(74-865\)
connected to said output shaft, a first positive displacemen hydraulic pump-motor connected to said input shaft, a secon hydraulic pump-motor connected to said frrst hydraulic pump
motor through a pair of conduits, a first clutch connected to said second hydraulic pump-motor for performing a low oper ational mode of a low speed ratio, and a second clutch connected to said second hydraulic pump-motor for performing a
high operational mode of a high speed ratio, the operational modes thereof being switched-over when the rotational speed of said first clutch corresponds to or is synchronized with that of said second clutch an actuator connected to said first hy draulic pump-motor for varying the displacement ratio of said ciated with said first and said second clutch the improvement which comprises:

a solenoid valve operatively associated with said first and cond calculator clutches
nected to means operatively associated with and con nected to said solenoid valve and actuable by a setting transmission;
a second valve means connected to and actuable by said first valve means for supplying the hydraulic pressure selec valve means for supplying the hydraulic pressure sel
tively to said first clutch or said second clutch; and
a third valve means operatively connected with said actuator for controlling said actuator in response to the move ment of said second valve means.

4,096,769
PLANETARY GEAR TYPE TRANSMISSION Kazuhito Horikiri; Hiroshi Hirasawa, and Minoru Fujiwara, all of Okayama, Japan, assignors to Kabushiki Keisha Toyot Of Okayama, Japan,
Continuation-in-part of Ser. No. 594,942, Jul. 11, 1975, abandoned. This application Apr. 22, 1976, Ser. No. 679,482
\(\qquad\)
U.S. C. 74-801 6 Claims 1. A planetary gear type transmission comprising a sun gear
formed integrally with a high-speed shaft, carrier arms secured torme a casing, a plurality of planet gears which are rotatably supported on respective spindles provided on the carrier arms
and which are meshed with the sun gear, a ring gear disposed and which are meshed with the sun gear, a ring gear disposed
in mesh with the planet gears, and a low-speed shaft in coaxial in mesh with the planet gears, and a low-speed shaft in coaxial
connection with the ring gear, wherein the improvement comprises:
an intermediate ring or annulus disposed coaxially with and between the ring gear and the low-speed shaft, the annulus ing gear and a second flange facing the low-speed shaft;
a first endless chain-like coupling means disposed between the ring gear and the first flange of the annulus; and tween the second flange of the annulus and the low-speed shaft, each of the endless chain-like coupling means being conposed of a plurality of lengthwise overlapped flat resilient link assemblies, adjacent ends of which are fixed

parallel resilient elements arranged so that each assembly of each connected pair of assemblies has alternate ones of its resilient elements overlapping alternate ones of the other assembly of the pair, said adjacent ends of the first
endless chain-like coupling means are alternately fastened to the ring gear and the first flange of the annulus, whereas he adjacent ends of the second endless chainlike coupling means are alternately fastened to said second flange of the annulus and the low-speed shaft.

4,096,770
METHOD AND APPARATUS FOR MODIFYING THE POSITION OF A MACHINE SLIDE TO COMPENSATE FOR DIFFERENT FOLLOWING ERRORS Randall Curtis Tanner, Lebanon, Ohio, assignor to Cincinnati Randall Curtis Tanner, Lebanon,
Milacron Inc., Clncinnati, Ohio

Filed Jun. 6, 1977, Ser. No. 803,566
U.S. CI. 82-1 C nt. Cl. \({ }^{2}\) B23B 1/00, \(5 / 46\)
1. A turning machine and a numerical control system of the type wherein a cutting tool initially contacts a rotating workpiece at the same angular position in response to a constant following error during successive machining passes, said nu-
merical control responding to input signals for enerating command signals to cause a servomechanism circuit to control the motion of the cutting tool relative to the workpiece, said input signals including a position signal representing a change of position of the cutting tool along an axis of motion and a velocity signal representing the velocity of the cutting tool
during a machining pass, wherein the improvement comprises:
(a) means responsive to first position and velocity signals fo generating first command signals to cause the servomech anism circuit to move the cutting tool through a first machining pass whereby the cutting tool initially contact the workpiece at a first angular position of the workpiece (b) means responsive to the first velocity signal and a subsequent velocity signal for producing a compensation signal,
said compensation signal representing a change in the following error caused by the difference between the first and subsequent velocity signals,
(c) means responsive to the compensation signal for generat ing second command signals to cause the servomechanism circuit to move the cutting tool through a displacemen
d) means responsive to subsequr position
subsequent velocity signal for generating third command signals to cause the servomechanism circuit to move th cutting tool through a subsequent machining pas whereby the cutting tool initially contacts the rotating workpiece at the first angular position of the workpiece. control system of the type wherein a cutting tool initially contacts a rotating workpiece at the same angular position in response to a constant following error during successive mahining passes of the tool past the workpiece, said numerical

signals to cause a servomechanism circuit to control the motion of the cutting tool relative to the workpiece, said inpu signals including a position signal representing a change o position of the cutting tool along an axis of motion and a velocity signal representing a velocity of the cutting tool during a
machining pass, the improvement comprising the steps of: nachining pass, the improvement comprising the steps of:
(a) generating, in response to first position and velocity (a) generating, in response to first position and velocity
signals, first command signals to cause the servomechanism circuit to move the cutting tool through a first machining pass whereby the cutting tool initially contacts the workpiece at a first angular position of the workpiece; (b) producing a compensation signal in response to the first representing a change in the following error corresponding to the difference between the first and subsequent velocity signals;
(c) generating, in response to the compensation signal, second command signals to cause the servomechanism circuit to move the cutting tool through a displacement defined b) menating in responsna; and
d) ge a subsequent position signal tsequent velocity signal and a subsequent position signal, third command signals to
cause the servomechanism circuit to move the cutting tool through a subsequent machining pass whereby the cutting ool initially contacts the rotating workpiece of the first angular position of the workpiece.

ADJUSTABLE AND FLOAT
STABILIZER BORING BAR Javid Jan Monro, Milford, Conn., assignor to USM Corpora tion, Farmington, Conn.

Oct. 8, 1976, Ser. No. 730,746
U.S. C. 82-35

1. A device for stabilizing the boring bar of a lathe adapted to machine an interior cylindrical surface of a hollow workplurality of sase a tool head mounted on the boring bar and a plurality of assemblies extending radially from the tool head for engaging said interior surface to support and stabilize the A. a cylindrical housing slidably
for adjustment radially of the boring bar,
B. a shaft slidable axially in the housing,
C. a guide mounted on the outer end of the shaf
. spring means in the housing urging the shaft outward radially of the boring bar to engage the guide with said
E. a flange threaded on the exterior of the housing and engaging the tool head for adjustably determining the ocation of the housing radially of the boring bar and forces acting against said interior surface.

4,096,772 Walter Dennis Hall, 13729 NE. Klickitat, Portland, Oreg. 92230 , Merrell Thomas Miller, 13707 NE. Marine Dr., Pre Preg. Filed Sep. 26, 1975, Ser. No. 617,060
U.S. C. 82-82

1. A tire slitting apparatus for slitting tire carcasses circuma. a frame segments, comprising.
a. a frame,
b. a tire head assembly mounted on the frame and receiving
c. a tire slitting head mounted on the tire head assembly and fitting ins
d. tire drive means engaging the outer crown of the tire and operative to rotate the tire around the tire slitting head, e. external guide means mounted on the frame and positionthe tire during rotation, and the external guide means comprising: 1. an L-shaped plate mounted on the frame parallel to the plane of the tire and positioned to make three point
contact with the side wall of the tire, contact with the side wall of the tire,
2. sliding support means mounting the plate to allow
lateral movement of the plate relative to the tire, and lateral movement of the plate relative to the tire, and 3. linkage means connected to the plate to initiate move-
ment of the plate on the sliding support means, and
f. cutting means mounted on the tire slitting head and posi-
tioned to slit the tire from the inside out.
3. A tire slitting apparatus for slitting tire carcasses circum-
ferentially into segments, comprising:
a. a frame,
b. a tire hea
b. a tire head assembly mounted on the frame and receiving
c. a tire slitting head mounted on the tire head assembly and
fitting inside the body of the tire engaging the inner crown thereof,
d. tire drive means engaging the outer crown of the tire and operative to rotate the tire around the tire slitting head,
the tire drive means comprising: the tire drive means comprising
dioned to frictionally engage the outer crown surface of the tire,
2. elastic bands defining a plurality of peripheral holes and configured to fit releasably over the drive rollers for frictional engagement therewith,
3. tire studs located within the holes and having head
portions positioned between the bands and the drive portions positioned between the bands and the drive
rollers and gripping portions protruding for the bands, and
4. power means for rotating the drive rollers,
e. external guide means mounted on the frame and positionable against the side wall of the tire to guide and stabilize
the tire during rotation, and the tire during rotation, and tioned to slit the tire from the inside out.

SELF-ALIGNING APPARATUS FOR SCORING FRACTURABLE MATERIAL Robert P. DeTorre, Pittsborgh, Pan, assignor to PPG Industries, Inc., Pittsburgh, Pa.

Filed Sep. 22, 1976, Ser. No. 725,222
Int. C1.2
U.S. CI. \(83-8\)
1. An apparatus for scoring a fracturable material, compris-
\(\quad 16\) Claims
an elongated member having a first section and a second section;
a rod end ball joint mounting said member between the first and second sections; scoring means mounting the first section of said member; and

biasing means acting on said elongated member to urge said scoring means under a predetermined scoring force scoring means under a predetermined sco
toward the fracturable material to be scored.

\section*{\begin{tabular}{l} 
TURRET PUNCHES \\
4,096, \\
\hline
\end{tabular}}
\begin{tabular}{l} 
Industries, Inc., Buffalo, N.Y. \\
\hline
\end{tabular}
Filed Jun. 21, 1976, Ser. No. 698,474
Int. C1.2 B26F \(1 / 14\)
U.S. CI. 83-552

14 Claims

1. In a machine tool having a work station and at least one otatable turret means carrying a plurality of individually utilized tools, the improvement of said turret means having a
support portion, a plurality of individual tool holding members support portion, a plurality of individual tool holding members
supported by said support portion coupling means retaing supported by said support portion, coupling means retaining
said tool holding members in a relatively fixed position with respect to the support portion and the turret means for rotation respect to the support portion and the turret means for rotation
with the turret means, at least some of said tool holding members receeving and accurately positioning with respect to the tool holding member a plurailty of individual tools, means for
assuring precise positioning of one of the tool holding members with respect to the work station when a given tool of the one tool holding member is positioned at the work station and said means for assuring positioning including reciprocatable means precise positioning of the one of the toll holding members. precise positioning of the one of the tool holding members.
\[
4,096,775
\]

METHOD OF CUTTING WRAPPERS FOR TOBACCO METHOD OFTS AND CUTTING TABLE FOR CARRYING OUT SAID METHOD
Jorgen Thyrsted Thomsen, Fredericia, Denmark, asignor to J. Jorgen Thyrsted Thomsen, Fredericia, Denmark,
P. Schmidt Jun. A/S. Fredericis, P. Schmidt Jun. A/S, Fredericis, Denmark Claims priority, application Denmark, Feb. 5, 1976, 481/76 U.S. C1. 83-511
1. A cutting device 3 Claims or cheroots from tobacco leaves, said device including a cigarillos ing table, a plurality of cutting knives having cutting a cut-
adjacent said table, said cutting edges of each of said knives defining a contoured shape desired for a wrapper with an acute lobe ar one end thereof, said table and said knives being movposition withdrawn from said table, said table and said knives position withdrawn from said table, said table and said knives
being operable to position said knives in said first position
\(4,096,777\)
Charles Lee AAND POWER TABLE SAW Filed Dec. 9,1976 , Serille, Ark, 72701 Filed Dec. 9, 1976, Ser. No. 749,111 U.S. C. 83-762

17 Claims

independently of one another, pressure means movable relative to said table and knives and cooperable with said knife edges when said knives are in said first position to cut tobacco leaves,
said knives being positioned relative to one another so that consecutive operations can be performed on a tobacco leaf after displacement of said leaf while maintaining the same orientation of the stem of the leaf.

\section*{EETAINER FOR \({ }^{4,096,776}\)}

RETAINER FOR PUNCH AND DIE SETS Canada 17 Farmstead Rd., \#1601, Willowdale, Ontario, Filed Aug. 8, 1977, Ser. No. 822,420
Int. C1. \({ }^{2}\) B26F \(1 / 14\) U.S. CI. 83-698

13 Claims

5. A punch or die retainer arrangement for securing a to within a bore formed in a tool holder body structure, the too etainer arrangement comprising:
sided portion integral with said tapered portion a straightthreaded portion integral with said straight-sided portion opposite said tapered portion, said pin retainer disposed within a retainer seat formed in said holder body extend ing transversely to said bore in said holder body, said retainer seat having a threaded portion engaging said
threaded portion on said taper pin retainer a tapered threaded portion on said taper pin retainer, a tapered
portion complementary to said taper portion on said taper pin retainer, and partially intersecting said bore in said holder body, and an intermediate straight-sided portion between said threaded and tapered portion adapted to receive said straight-sided portion of said pin retainer; and, a partially conical taper groove formed on said tool and complementarily shaped to said tapering portions of said
pin retainer and said retainer seats to be engaged by said pin retainer and said retainer seass
pin retainer taper portion as said taper pin retainer is advanced into said retainer seat by said threaded engagement

10. Hand power table saw apparatus comprising a handsaw with a semi-rigid blade,
substantially flat sheet material forming a horizontal work support means for supporting such sheet material abov floor level,
said sheet material being formed with a straight slot therethrough with a width at least slightly greater than the thickness of said handsaw blade and of a length at leas about wice the wridh of said handsaw blade,
spaced apart to form an opening of a width greater thers the thickness of said handsaw blade and a length at leas about twice the width of said handsaw blade,
means fixedly supporting such structure at least about onehalf inch to two inches above the upper surface of said saw blade between said parallel members and through said slot, and
means for fully restraining a workpiece being sawed, said means including at least one adjustable clamp device on said saw guide structure acting to clamp a workpiece downw suff and work surface and a work guide fixe on said surface at a predetermined angle to said paralled members.

APPARATUS FOR PROCESSING TONE SIGNALS Wilfried Dittmar, Halsenbech, Germeny, sesignor to WERS electronic GmbH \& Co . Komminditgesellschaft fur elek tronische Bauelemente, Hasbenbech, Germany

Filed Feb. 14, 1977, Ser. No. 768,546 Claims priority, appication Germany, Feb. 21, 1976, 2607136 U.S. C. \(84-1.25\)
1. Apparatus for
\[
\begin{aligned}
& \text { J.S. Cl. } 84-1.25 \\
& \text { 1. Apparatus for the processing of tone signals, particulars } \\
& \text { one signals which are nroduced by aleatronic panticu }
\end{aligned}
\] one signals which are produced by electrona, particularly rising a plurality of elay circed by electronic organs, comnd delay circuit each having aits including a first and a secncluding a tone signal receiving input and an output for deayed transmission of tone signals, a low-frequency oscillato ncluding an output for transmission of variable-frequency control signals, the control signals at the outputs of said oscillaors being out of phase with respect to each other, and a highrequency oscillator having an input connected to the output of the respective low-frequency oscillator and output means for
transmission of variable-frequency tone signal trensporting pulses to the respective shift register whereby the frequency of said pulses and the intervals of transport of tone signals
string having a sufficient length to extend through said second 1. In a braiding process of the type adapted to insert an
opening in the repetition lever for connection with said spring. additive thread along a fabric surface and including revolution
hrough said shift registers vary as a function of variations of mplitude of the respective control signals; and means for

respectively connecting the inputs and outputs of said shift registers to each other.

STRING ANCHOR REPLACEMENT FOR REPETITION LEVER AND JACK IN A PIANO ACTION Ernest Vagias, 265 Prospect St., Baden, Pa. 15005
Filed Jan. 7, 1977, Ser. No. 757,764 U.S. C1. 84-239

1. In a piano action of the type including a wippen having a support pedestal extending from the upper surface of said wippen, a repetition lever pivotally connected to said support pedestal, a jack pivotally connected at one end of the wippen spring having one end connected to said repetition lever and a free end overlying a second opening through said repetition lever to urge a regulation button mounted at the end of the repetition lever which is opposite the jack toward a contact area on said upper surface of said wippen, the improvement comprising, in combination, an anchor plate adhered onto the
upper surface of said wippen between said support pedestal upper surface of said wippen between said support pedestal
and the contact area, said anchor plate having a string opening and the contact area, said anchor plate having a string opening
therethrough at a generally underlying location beneath said second opening in the repetition lever, and a string having end portions anchored between said wippen and said anchor plate while (a) an intermediate looped portion extends through the string opening in said anchor plate, the looped portion of the

STEREOPHONIC \(\quad 4,096,780\) DEVICE FOR STRINGED MUOMAGNETIC PICKUP Lorna Ann Dawson, 12 Grove Rd., Pinner, Middlesex, England Filed Dec. 23, 1976, Ser. No. 753,734
U.S. Cl. 84-1.16

10 Claims

1. A polyphonic pickup device for use with a stringed musical instrument of a type having an instrument body, a plurality of strings of ferromagnetic material, means for suspending said strings under tension from two spaced portions of the instru-
ment body and means for individually adjusting the tension in ment body and means for individually adjusting the tension in
each string so as to adjust the musical pitch of that string, the pick-up device comprising. a support;
plurality of groups of electric coils mounted to the support. the number of groups of said coils corresponding to the coils being spaced apart from the other groups of coils, several of said groups having at least first and second
coils: coils;
cilalit
a plurality of spaced-apart permanent magnets mounted to the support and corresponding in number to the number of
groups of said coils and hence to the number of said groups of said coils and hence to the number of said
strings; each group of coils being positioned close to an associated one of the said magnets so as to be in the magnetic field thereof;
first electrical connections between said first coils of said groups of coils:
second electrical
said groups of coilsections between said second coils of the ratio of the number of turns in the first coil to the number of turns in the second coil being different for each group of coils;
means for mounting the support to the instrument body to place each string in the magnetic field of a respective one of the said magnets;
means for producing as a first electrical output signal a
combination of electric sigats combination of electric signals from said first coils resulting from vibration of said strings:
a combination of eling as a second electrical output signal resulting from of electric signals from said second coils resulting from vibration of said strings;
whereby
whereby polyphonic reproduction of said first and second electrical
individual strings of the musical instrument are widely spaced apart.

4,096,781
PROCESS AND MACHINE FOR PRODUCTION OF BRAIDED PACKING
Kurt Bock, Estebogen 49, 2151 Hamburg Cranz, and Georg Flohr, Margarethenstr. 25,2110 Buchholz, both of Germany Division of Ser. No. 503,435, Sep. 5, 1974, abandoned. This application Dec. 10, 1975, Ser. No. 639,410 U.S. C. 87-28

8 Claims
of a plurality of base material containing bobbins about a base material bobbin path, the improvement comprising:
(a) guiding at least one bobbin containing additive thread around said base material bobbins whenever the latter pass hrough a portion of said base material bobbin path corresponding to said fabric surface; and
(b) providing stationary switch means along said base matebobbins revolve exclusively about said portion, while said base material bobbins revolve about the entire base material bobbin path.

3. In a braiding apparatus of the type including a bobbin path, base material containing bobbins, and means for rotating said bobbins about said bobbin path to form a braided fabric, the improvement comprising:
path;
(b) means for driving said additive yarn containing bobbins along said bobbin path; and
(c) stationary switch means disposed along said path for limiting movement of said additive yarn containing bobbins to a certain bobbin path portion so that said additive yarn extends only along a certain fabric surface.

MOUNTING FOR AMMUNITION CONTAINERS ON RAPID-FIRE GUN MOUNTS

\section*{ich Wall Wir in} Heldmann, Kassel, all of Germany, assignors to Wegmann \& Heldmann, Kassel, all
Co., Kassel, Germany
Claims priled Dec. 6, 1976, Ser. No. 747,587 Claims priority, application Germany, Dec. 12, 1975, 2355126
Int. Cl. \({ }^{2}\) F41F 9/06 S. Cl. 89-34 10 Claims

1. A mounting for an ammunition container for mounted rapid-fire weapons comprising a yoke disposed on a bracket, said yoke pivotable about a horizontal axis disposed at about
the level of the upper edge of an ammunition container to be the level of the upper edge of an ammunition container to be
contained therein, said yoke being secured at its lowermost position by a catch means and consisting of a pair of laterally running, parallel arms joined by a transverse member.

4,096,782 Pierre J. Deschenes, Shrivenham, Nr. Swindon, England, assignor to Her Majesty the Queen in right of Canada, as represented by the Minister of National
Filed May 28, 1976, Ser. No. 689,173 Claims priority, application Canada, May 29, 1975, 228002 U.S. CI. 89-1 A Int. Cl. \({ }^{2}\) F41H \(11 / 08\)

\section*{4111414}
1. A barrier adapted to check passage of pneumatically tired vehicles comprising, in combination
an elongated rod,
a plurality of substantially planar cutters each having an aperture therethrough to enable the cutter to be mounted cutting edges oriented to engage a support surface and to project into the path of vehicle tires, each cutter compris ing two similar elongated plates, each plate having a profile defining a central portion and two diametrically op-
posed cutting tips extending outwardly of the central posed cutting tips extending outwardly of the central
portion; said two plates being secured together with the length dimensions at right angles to one another and spacer means for spacing said cutters along said rod.

1. An hydraulic power system comprising a housing, a piston reciprocally mounted in said housing, said piston having an opposing pair of piston heads defining with said housing a first to said piston for movement thereby, fluid delivery passageways and fluid discharge passageways in communication with said piston chambers, a first and a second control valve for sequentially introducing fluid under high pressure into said piston chambers, said control valves each having a valve stem nounting a high pressure valve member and a pressure relief valve stems from closed to opemed positions and return upon actuation of said valve stems, the high pressure valve member of the first control valve being connected to the fluid delivery
passageway of the first of said piston chambers, the pressure the fluid discharge said first control valve being connected chambers, the high pressure valve member of the second con trol valve being connected to the fluid delivery passageway of the second of said piston chambers, and the pressure relief valve member of said second control valve being connected to means for sequentially actuating said valve stems to open an close the valve members of said control valves so as to relieve high pressure fluid in one of said piston chambers prior to the chambers, and means for maintaining said passageways and said piston chambers filled at all times with fluid under positive pressure.

ELASTIC COLUMN OF ADJUSTABLE LENGTH
Winfried Wirgea, Koblenz, Germany, assignor to Stabilus Gmbr,
Filed Jun. 21, 1976, Ser. No. 697,980 Claims priority, application Germany, Jun. 28, 1975, 2528980 U.S. CI. \(91-416\) Cl. \({ }^{2}\) F15B \(15 / 17\); F16J \(1 / 10\)
U.S. C. \(91-416\)

1. A column of adjustable height comprising:
(a) a cylinder member having an axis and enclosing a cavity
a piston member axially slidable in said cavity and axially
dividing the cavity into two compartments sealed from
the ambient atmosphere;
(c) valve means operatively interposed between said compartments;
(d) valve operating means for moving said valve means
- toward and away from an open position in which valve means connect said compartments,
(1) said valve operating means including an operating member having a manually movable portion outside said cavity in said atmosphere,
(2) said operating member being connected to said valve operating member is moved.
(3) said valve means sealing said compartments from each other when away from said open position
(e) a piston rod member secured to said piston member for
relative axial movement and extendin relative axial movement and extending axially outward of
said cavity in movable, sealing eng cylinder member;
(f) a fluid under a pressure higher
filling said compartments; and
(g) yieldably resilient means abuttingly interposed between
said piston member and said piston rod member for imped-

ROTARY FLUID ENERGY TRANSLATING DEVICE ration. Schauer, Ames, Iowa, assignor to Sundstrand Corpo Filed May 19, 1977, Ser. No. 798,603
Int C. \({ }^{2}\) F01B \(13 / 04\) U.S. Cl. 91-499

1. A rotary fluid energy translating device comprising, otatable cylinder block having a plurality of cylinders therein valve means having inlet and outlet port means adapted to areas positioned to block a cylinder from a pair of cross-over
and areas positioned to block a cylinder from simultaneous commu-
nication with the inlet and outlet port means, each of said ylinders having a movable member with the members of the cylinders adjacent one cross-over area positioned to provide small fluid volume in the associated cylinders and the member of the cylinders adjacent the other cross-over area positioned
to provide large fluid volume in the associated cylinders to provide large fluid volume in the associated cylinders, a
trapped fluid chamber in each of said cross-over areas having a flow passage positioned to communicate with a cylinder prior to a cylinder communicating with one of the port mean in order to reduce the rate of pressure change when a cylinder subsequently communicates with one of said port means, mov ber, and means for controlling said movable means to have a small volume chamber when an adjacent cylinder has a small fluid volume and to have a large volume chamber when an
adjacent cylinder has a large fluid volume. adjacent cylinder has a large fluid volume.

\section*{4,096,787}

CYLINDER-AND-PISTON ARRANGEMENT AND METHOD OF MANUFACTURING THE SAME METHOD OF MANUFACTURING IHE SAME
Hartmut Sandau, Möglingen; Willelm Welgert, Schrieberdin gen; Winfried Steinel, Königsfeld; August Kraieel, Biltenfeld; Klaus Ritter, Stuttgart; Ervin Gaub, Zwelbriicken, and Heinrich Kochendörfer, Rommelshausen, all of Germany, assignora to Robert Bosch GmbH, Stuttgert, Germany
Claims priority, application Germany, Dec. 5, 1975, 2554748


11 Claims

1. A method of forming a fork-shaped member and of connecting the same to one end of a piston rod projecting outpiston, comprising the steps of bending without twisting a flat steel strip into a fork-shaped member having a base portion and a pair of parallel leg portions'projecting parallel to each other of the lattially normal to thase portion from opposite end of the latter to one side thereof; forming in said base portion
midway between said opposite ends a substantially circular midway between said opposite ends a substantially circula
depression extending from the other side of the base portion into the latter and having a planar end face; abutting said one end of said piston rod against said planar end face; and friction welding said one end of said piston rod to said end face to
fixedly connect said fork-shaped member to said piston rod.
4,096,788
APPARATUS FOR FORMING A CONTAINER SIDE
Jerry W. Young, Weston, Ma, sssignor to Phillips Petroleum Jerry W. Young, Weston, Mo.,
Company, Bartlessille, Okla. Filed May 18, 1977, Ser. No. 798,048
arm has stopped moving to effect further movement said second arm and said second wing means; and (e) third means operable for urging the overlapped side margins into engagement with one another and effec securing same together to form a tubular side wall.

\section*{4,096,789
SAW GUARD \\ James Edward Blessinger, Jasper, Ind., assignor to Kimball International, Inc., Jasper, Ind. Filed Apr. 6, 1977, Ser. No. 785,06
Int. Cl. \({ }^{2}\) B27G \(19 / 00\) \\ U.S. CI. 83-478 Int. Cl.2 B27G 19/00 7 Claim \\ }
U.S. Cl. 93-39 L

1. An apparatus for making a container by wrapping a blank 1. An apparatus for making a container by wrapping a blank
around a mandrel to form a tubular side wall for a container, said apparatus including:
(a) a mandrel;
(b) clamp means cooperating with said mandrel for holding
a portion of a blank in engagement with said mandrel;
(c) first and second wing means positioned for contact wit
an outer disposed surface of the held blank on opposite sides of the clamp means;
(d) first means operably connected to said first and second wing means for rotating said first and second wing means around the mandrel and for forminating rotation of the first wing means around the axis before opposite side margins of the blank are overlapped by continuing rotation of the second wing means around the axis, said first means including
(2) guide means for movably supporting said carriage;
(3) drive means operably connected to said carriage for effecting reciprocating movement thereof in forward and retractive directions
and retractive directions;
first and second wing means, respectively; one of said
(5) first and second arms each connected to one of said first and second shafts, respectively, said second arm having a first cam follower thereon;
(6) first cam means carried by said carriage and cooperating with said first cam follower whereby movement of
said carriage effects movement of said second arm sthereby rotation of said second shaft and the second
thent wing means;
(7) a third arm pivotally mounted on said carriage and movable therewith;
said first arm whereby monecting said third arm to fects movement of said first arm and thereby rotatio efsaid first shaft and the first arm and thereby rotation of (9) stop means cooperating with said first arm for substantially stopping movement thereof during forward movement of said carriage and thereby substantially stopping movement of the first wing means;
(10) second means cooperating with said third arm for selectively preventing pivotal movement thereof until said carriage nears the end of the forward movement
whereby upon pivotal movement of said third arm said carriage can continue forward movement after said first
1. A splinter shield for a downwardly opening housing adapted to be mounted above the saw blade and having a front and a side
a plurality of flexible strips depending from the front and
side of said housing, said strips being substantially wide than they are thick,
said strips across the front of said housing being arranged in edge to edge relation so that they are substantially coplanar with adjacent strips being in close proximity to one front to back relation and being spaced by an appreciab distance from one another,
plips along the side being substantially parallel to the
plane of strips across the front.

\section*{4,096,790}

VENTILATION AND INSULATION BAFFLE
VENTILATION 460 E. High Point, Peoria, III. 61614
Filed Jun. 24, 1977, Ser. No. 809,528
US. C1. \(99-37\) Int. C. \({ }^{2}\) F24F 7/00
2 Chims
1. An insulation baffle for mounting over an exterior wall and between a roof and ceiling of a building structure to proceiling and roof and to prevent insulation which is subse quently applied to the ceiling from clogging said passageway which the exterior wall paced from each other a predetermined distance, said insulation baffle comprising
rrmed sheeling of substancialy moisture impervious material, said sheeting including upper and lower surfaces opposed side edges, and opposed end edges;
being generally a multiple of the predetermined distance between adjacent rafters; relative to the edges being laterally upwardly offse relative to the upper surface of the sheeting and defining
predetermined height rafter overlying downwardly opening edge channel portions, each edge channel portio conforming to and being engageable with a substantial
portion of the width of a rafter along the upper edge of the rafter for the full length of the side edge of the sheeting at least one integral intermediate upwardly offset down wardly opening rafter overlying channel defined across
said sheeting parallel to and of equal height with the opposed side edge channel portions and spaced relative thereto, said intermediate channel conforming to and being engageable over the full width of a rafter along the upper edge of the rafter
the sheeting between the edge channel portions and the

intermediate channel forming planar panels of a width generally equal to the predetermined distance between adjacent rafters for engagement therebetween upon posi-
tioning of the edge channel portions and intermediate channel over adjacent rafters;
each of said planar panels having an integral full length extension along one end edge thereof, said extensions extending laterally downward from the lower surface o
the sheeting for engagement with the sill between adjathe sheeting for engagement with the sill between adja-
cent rafters whereby to block the movement of insulation particles from the interior of the structure past the sill.

APPARATUS FOR MAKING A FRIED FORMED CHIP Verne E. Weiss, Wayzata; Glenn M. Campbell, and Gerald L.
Wilson, both of Minneapolis all of Minn, asslone Wilson, both of Minneapolis, all of Minn., assignors to Gen
eral Mills, Inc., Minneapolis, Minn. eral Mills, Inc., Minneappolis, Minn.
Division of Ser. No. 355,260, Apr. 27, 1973, Pat. No. 3,935,322. This application May 21 , 1975, Ser. No. 579,748 S. C1. 99- 353 Int. C. \({ }^{2}\) A47J 37/12

7 Claims 1. Apparatus for making chip type snack products from a farinaceous dough, said apparatus comprising:
(a) first forming means comprising a pair of rolls for forming said dough into a continuous sheet;
(b) second forming means for forming and cutting said sheet into a continuous ribbon having alternative wide and narrow portions, said alternating wide and narrow por
tions defining a series of uniformly-shaped chip preforms
(c) frying means for frying said continuous ribbon of dough including means for constraining said ribbon in a uniform shape while frying said ribbon;
(d) severing means for severing said fried ribbon at said narrow portions, thereby providing a plurality of uniform
ly-shaped fried chips; and
dough from said first forming means to said second forming means, means for conveying said ribbon from said
second forming means to said frying means, means for n

conveying said ribbon through said frying means with a ositive movement, and means for conveying said fried ribbon from said frying means to said severing means. Horace L. Smith, Jr., Richmond, Industries, Inc., Richmond, Va.

U.S. CI. 99—355.

16 Claims

1. Apparatus for roasting coffee and the like which comprises: first and second reactors, each of which includes a shell, means in said shell comprising a movable assembly for support-
ing the beans to be processed therein, means for rotating the ing the beans to be processed therein, means for rotating the
movable assembly about a vertical axis to thereby displace the beans in the reactor from a first location in said reactor to a second location therein, an inlet means above the movable assembly through which beans can be charged into said assembly, and deflector means for keeping beans from falling between the movable assembly and the reactor shell, said movfirst member and a second member spaced inwardly from and extending above the first member and said deflector means extending inwardly from said shell to said outer wall means to direct beans falling outside the movable assembly through the gap between the first and second members of the outer wall introducing coffee beans into said first reactor at one location; means for roasting said beans as they are displaced from the
first to the second of said locations in said first reactor by so effecting a flow of roasting fluid upwardly through the first effecting a flow of roasting fluid upwardly through the firs reactor that the beans circulate into intimate and uniform
contact with the roasting fluid; means for discharging roasted contact with the reasting fluid; means for discharging roasted
beans from the first reactor at said second location and into the second reactor at the first location therein; means for cooling the roasted beans as they are displaced from the first location to the second location in said second reactor by so effecting
how of fluid upwardly through the second reactor that the roasted beans circulate into intimate and uniform contact with the fluid; and means for discharging cooled beans from the second reactor at the second location therein.

APPARATUS FOR COOLING HOPS
Rudolf Ludwig Wachter, and Winfried Franz Edinger, both of Rudolf Ludwig Wachter, and Winfried Franz Edinger, both of
Au, Hallertau, Germany, assignors to Firma Permahop HopAu, Hallertau, Germany, assignors to Firma
fenpulver GmbH \& Co. KG, Germany
Filed Mar. 25, 1976, Ser. No. 670,289 Filed Mar. 25, 1976, Ser. No. 670,289
Claims priority, application Germany, Mar. 27, 1975, 2513884 Claims priority, application Germany, Mar. 27, 1975, 2513884
Int. \(\mathbf{C l}{ }^{2}{ }^{2}\) A23L
3/36; \(\mathbf{B 6 0 H} 3 / 04\) U.S. CI. 99-467

1. Apparatus, for continuously cooling hops, comprising: ) a cooling chamber having an inlet opening adjacent to first end wall thereof and
second endwall thereof
(ii) an air lock charging means disposed at said first endwal of said chamber substantially centrally of one end of the chamber roof for charging hops into said chamber, said arlock charging means having a closure openable unde he weir lock discharging means disposed endwall in the bottom of said chamber for dischargite cooled hops therefrom and having a closure openable under the weight of hops accumulated thereon
(iv) a rotatable hop-distributing roller disposed in said cooling chamber adjacent to said charging means and above the direction of conveying movement of said conveyo belt, said roller being adapted to shift hops axially for distributing charged hops evenly on said conveyor belt (v) a driven gas-permeable mesh screen endless conveyor belt, having openings silighty smased substantially horizontally in said cooling chamber and extending substantially from said first endwall to said air lock discharging means and having a portion disposed to receive hops from said charging means to form a bed of hops on said conveyor belt
(vi) a second driven endless belt, having openings smailer than lupulin granules, disposed in said cooting chaxtening substantially from said air lock charging means to said second endwall for engaging said hops thereon to mainaain said bed of hops at a predetermined height on said conveyor belt
cooling gas through said bed of hops on said conveyor
belt, and for collecting said cooling gas after passage hrough said bed of hops, and (viii) means for receiving said collected gas, re-cooling it, and passing it to said gas directing means.

OLIVE 4,096,794
OLIVE PITTER AND STUFFER
Clemente del Ser Gonzílez, Villaverde Alto Paseo de Talleres No. 5, Madriad Spain \({ }^{\text {Filed Apr. 15, 1975, Ser. No. } 567,811}\) Claims priority, application Spain, Oct. 28, 1974, 431.436

1. An olive pitting and stuffing machine comprising hopper means for receiving olives to be pitted,
pair of olive selection disks rotatable in spaced-apart relaion in said hopper means to entrin successive olive thereon;
espective olive-conveying chains assigned to each of said disks and receiving olives in succession therefrom, each of said chains cary
pitting station;
pair of turntables in space-apart relationship provided with a set of axially displaceable pitting plungers individually successively positionable at the respective pitting stations in alignment with successive respective olives and being movable successively to respective stuffing stations by rotation of their respective turntables;
respective olive coring device disposed at each of said pitting stations opposite the respective turntable from it plunger and provided with a tubular knife for cutting an therethrough by the respective plunger;
common mechanism for rotating said turntables and axially displacing said plungers to eject the pits at the piting stations and to impale the olves thereon, io ransport the olives to the stuffing stations and ultimately to retrac from the olives at their respective stuffing stations; opposite each of said turntables from said plungers and each including retainers for retaining successive olives carried by the plungers in an open condition by engagement therewith;
eans for inserting stuffing through the retainers in the openings of the respective olives at the stuffing stations and
ing both said selection coring devices, rotating means, retainers, and stuffing devices.

OLIVE PITTING AND STUFFING MACHINE Clemente Del Ser Gonzalez, Po.de Talleres 36, Villaverde Alto (Madrid), Spain
Continuation-in-part of Ser. No. 701,942, Jul. 1, 1976, abandoned. This application Aug. 6, 1976, Ser. No. 712,320 Claims priority, application
Int. C1. \({ }^{2}\) A23N \({ }^{2}\) 23/08,
U.S. CI. 99-494

8 Claims

1. In a pitting and stuffing machine for olives and the like, a pair of juxtaposed gripper members having aligned central
passageways circumscribed by frusto-conical olive engaging surfaces defining an olive receiving chamber therebetween; powered means mounting said members for movement toward and from each other to grasp and to release olives therebetween; an elongated tubular cutter; means mounting the cutter for longitudinal reciprocal movement to and from the chamber to retract from the chamber; an elongated pitting plunger; means mounting the pitting plunger for reciprocal movement to and from the chamber through the passageway of the member opposite to the cutter in substantial alignment therewith; an
elongated feed plunger; means mounting the feed plunger for longitudinal reciprocal movement into and out of the cutter coaxially thereof; means for positioning stuffing material in alignment with the cutter when the feed plunger is retracted therefrom; and means sequentially moving the gripper mem-
bers toward each other to grasp an olive therebetween, thrusting the cutter into the chamber to core an olive held therein ing the cutter into the chamber to core an olive held therein and reracting therefrom, thrusting the pitting plunger into the of the cutter as the cutter is retracted, moving the feed plunger relative to the retracting cutter and in the opposite direction to
eject olive core therefrom, concurrently retracting the feed plunger from the cutter to receive stuffing materials therebetween, the pitting plunger from the chamber and re-inserting the cutter into the olive in the chamber, subsequently thrusting the feed plunger into the cutter for the delivery therethrough of stuffing material into the olive, and concurrently retracting
the feed plunger from the cutter, the cutter from the chamber the feed plunger from the cutter, the cutter from the chamber
and separating the gripper members to release the stuffed olive.
\[
\begin{gathered}
\text { APPARATUS AND METHOD FOR CONTROLLING }
\end{gathered}
\] PRESS RACKING
Robert J. Saunders, Leviston, IL., and Harold A. Keller, Clarkston, Wash., assignors to Potlatch Corporation, Lewiston, Id. Filed Dec. 22, 1975, Ser. No. 642,710
Int. C1.2
U.S. Cl. \(100-35\)
1. A method for reducing the amount of press racking to 1. A method for reducing the amount of press racking to which a platen press is subjected during production of recon-
stituted wood panels due to shingling of elongated wood stituted wood panels due to shingling of elongated wood
strands during mat formation in which transversely wood strands overlap one another and lie at acute angles relative to a horizontal plane along the direction of movement of a forming surface on which the mat is supported, the direction of
movement of the forming surface being perpendicular to the
ransverse orientation of the wood strands, said method comprising the following steps:
prising the following steps:
engaging the mat by a transverse roll at a location downstream of a mat forming unit and upstream of a platen press, said roll having a small uniform diameter outer cylindrical surface of 6 to 11 inches centered about a rotative axis for rolling engagement of the cylindrical surface aganst the upper surface of the formed mat;
urging the roll toward the formed mat to thereby ap downward pressure against the upper surface of the formed mat in opposition to the forming surface on which the mat is supported;
moving the formed mat beneath the roll at a selected translational velocity;

rotating the roll about its rotative axis at an angular velocity such that the roll periphery in contact with the formed mat tangential to a vertical plane through the axis has a translational velocity component parallel and identical to
the translational velocity of the mat so that there is no relative movement between the mat and the roll at the area of engagement between them;
the roll diameter and pressure being such as to apply an abrupt vertical downward rolling force to the top surface and interior of the formed mat so as to produce a standing
transverse wave across the moving mat immediately upstream of the roll which rearranges the mat structure to thereby reduce the amount of shingling therein and the consequent press racking that would othewise occur during pressing of the formed mat.
\(4,096,797\)
METHOD OF COMPACTING SOLIDS-CONTAINING Niklaus Seiler, Lenzburg, and Hanspeter Seiler, Aarau, both of Switzerland, assignors to Seiler Pumpenanlagen A.G., Erlinsbach, Switzerland
ion of Ser. No. 558,717, Mar. 14, 1975, Pat. No. 4,036,124. This application Mar. 5, 1976, Ser. No. 664,370 3701/74

Int. Cl. \({ }^{2}\) B30B \(1 / 32\)
U.S. Cl. \(100-39\)

6 Claims

1. A method of compacting solids-containing waste or the like, comprising the steps of accumulating a supply of uncompacted waste in a hopper having a trough-shaped extension
provided with a concave internal surface; reciprocating a piston which is retractable into said supply and thereupon moved forwardly and which slides on said surface, so as to intermittently force waste from said supply into an elongated confining path to thereby compact the waste and convert the
confining path upon completed expulsion of a slug therefrom and maintaining the front end of said confining path sealed
during retraction of the piston from said path into said supply.

PRESS SLIDE ADJUSTING AND OVERLOAD PROTECTION ASSEMBLY James M. Moskalil, Hastings, Mich., assignor to Gulf \& Western Manufacturing Company, Southfield, Mich.
U.S. Cl. 100-53 Int. C1. \({ }^{2}\) F16P 7/00 18 Claims

1. A slide adjustment and overload protection assembly fo a press including a slide having an axis and driven means to axialy reciprocate said slide, said assembly comprising, first one to said slide and the other to said driven means, and interengaging means on said first and second members supporting
said members for axial sliding movement relative to one an other between normal and overload positions, said interengag ing means including adjusting means interconnected with said second member for axial adjustment relative thereto, and over
load responsive means interposed between said adjusting means and said first member releaseably holding said members in said normal position, said overload responsive means including a housing removably mounted between said adjusting means and said first member, shearable metal means removably supported by said housing, and shearing member means sepa-
rate from said shearable metal means and removably supported by said housing, said housing, shearable metal means and shear ing member means being removable as a unit from between said adjusting means and said first member.

\section*{4,096,799
BALER FOR LOOSE WIRE}

Joseph Zupancic, Downey, Calif., assignor to Weiner Steel Corporation, Pico Rivere, Calif.
\[
\begin{aligned}
& \text { ion, Pioco Rivera, Calif. } \\
& \text { Filed Mar. 11, } 1977 \text {, No. } 776,513
\end{aligned}
\]
S. \(100-215\) Int. C1. \({ }^{2}\) B30B 15/30

3 Claims
1. A baler for baling loose wire which said baler receives from a loose wire loading device, said baler comprising:
a. a mounting member having a top, a base, a first and a. a mounting
b. a hopper having an open top, an open base and four side walls, said base of said hopper being disposed adjacent to said first end of said mouning
said top thereof; c. a cylindrical member having a first open end and a second
open end and also having one-quarter of its sidewall removed to form an opening, said cylindrical member being isposed on said top at said first end of said mounting member so that said opening has a first edge perpendicular to said top of said mounting member and a second edge said second end of said mounting member and also being disposed adjacent to said base of said hopper so that loose wire may enter therein, and said cylindrical member being adapted to receive a heavy pounding;

d. a first plate having a first end and a second end, said plate being disposed on said top of said mounting member and eing mechanically couple fo side reciprocally, horizonmember between its said first and second edges and contacts the oppositely disposed portion of said cylindrical member;
hydraulic means for reciprocally driving said first plate, mechanically coupled to said mounting member.

4,096,800
DETENT DEVICE FOR A KEY SHAFT OF A PRINTING MECHANISM
Heinz Kistner, Neckarsteinach, and Heinrich Volk, Beerfelden, both of Germany, assignors to Meto International GmbH, Hirschborn, Germany
Continuation of Ser. No. 605,783, Aug. 18, 1975, abandoned. This application Mar. 24, 1977, Ser. No. 780,952 U.S. Cl. 101-110 Int. Cl. \({ }^{2}\) B41J \(1 / 22\)

1. A printing apparatus for use with a price marking device id apparatus comprising
a housing;
a rotatable shaft extending into said housing;
a pinion gear attached to said rotatable shaft;
a plurality of read-out positioning wheels selectively engaga ble by said pinion gear;
a positioning wheel mounting shaft including an axial recess therein adapted to receive said rotatable shaft, said posi-
tioning wheels thereby surrounding said rotatable shaf and said mounting shaft;
a printing type means adapted to be driven by said positioning wheels, said printing type means comprising a plurality of printing type wheels having on the circumference ing type wheels being directly drivable by said positioning wheels;
a pointer carrying means including a pointer attached to said rotatable shaft;
detent rail ind to said pointer carrying means;
a detent rail including recesses therein for engaging said recess in said housing, said recess in said housing having slot-like opening on one side thereof through which th detent of said pointer carrying means passes; and,
a resilient means for holding said detent rail in engagement with said detent,
wherein said pointer and said detent and said pinion gear all le in substantially the same plane which is at right angle to said rotatable shaft.

MOTION-INDUCED STIMULI INITIATION SYSTEM Garry L. Waln, Sunnyvale, Calif., assignor to The United States of America as represented by the Secretary of the Navy Washington, D.C.

Filed Nor. 26, 1976, Ser. No. 745,131
U.S. Cl. 102-49.5 Int. Cl. \({ }^{2}\) F42C 11/06 4 Claims

1. A motion-induced stimuli initiation system for a multistage missile comprising:
(a) a plurality of firing units to initiate respective pyrotech (a) a plurality
nic events;
(b) means for obtaining motion-induced stimuli;
(c) means for computing from said motion-induced stimuli redundant acceleration, velocity and distance data; (d) means for combining said redundant acceleration, veloc said firing units should said obtaining means incur a partial said firing und
failure; and
(e) means for comparing said redundant data with predetermined values of acceleration, velocity and distance to assure that said missile has attained a nominal velocity and mined time after launch before initiation of arming of destruct system and of igniting a missile engine and to initiate said pyrotechnic events when said values have been attained.

SOLID PROPELLANT AIR TURBO ROCKET Lawrence W. Kesting, Huntsville, Ala., assignor to The United States of America as represented by the Secretary of th Army, Washington, D.C.

Filed Dec. 27, 1976, Ser. No.
Int. C1. \({ }^{2}\) F42B \(9 / 06\)
U.S. C1. 102-49.5 1 Claim

1. An air turbo solid propellant rocket motor comprising: a. a first chamber loaded with a fuel rich solid propellant and having a combustion space and an exhaust port;
b. a turbine located outside of said first chamber at said exhaust port with blades of said turbine in the exhaust path of gases produced by the combustion of said propellant whereby the passing of said gases cause said blades to
rotate;
c. a second chamber attached to said first chamber, said second chamber having a combustion
said gases from said first chamber pass;
d. a compressor driven by said turbine which compresse atmospheric air from outside said rocket motor and feed said compressed air into said combus said compressed ai
second chamber, whereby oxygen in ser reacts with fuel in said gases from said first chamber;
e. a nozzle attached to said second chamber through which combustion products of said compressed air and said gases pass into the atm
missile:
means fo
respective supporting rings, said jettisoning means bein actuated when the rocket motor reaches a velocity of about Mach 2.

\section*{4,096,804}

PLASTIC/MISCHMETAL INCENDIARY PROJECTILE Pephen J, Bilshury Shalimar, Fla issignor to tephen J. Bilsbury, Shalimar, Fia., assignor to The United
States of America as represented by the Secretary of the Air Force, Washington, D.C.

Filed Mar. 10, 1977, Ser. No. 776,387
U.S. Cl. 102-66

5 Claims

1. A plastic incendiary projectile for firing through weapon having a rifled bore comprising a thermoplastic jacke having an integral rotating band disposed around the oute circumference near the rearward end thereof, said thermoplas
tic jacket having a substantially hollow inner cavity with an pen forward end and a closed rearward end, a core of incendiary material substantially filling the inner cavity of said thermoplastic jacket, and a nose tip of resinous material having a ow coefficient of friction disposed over the open forward en target causing the jacket to rupture thereby allowing said core of incendiary material to break up by kinetic energy into lethal particles causing fire to start in the presence of flammabl material.

\section*{4,096,805}

AIR TARGET FUZE DECISION CIRCUIT
Mark S. Miner, Washington, D.C., and Charles W. Crickman Glen Echo Heights, Md., assignors to The United States of America as r ington, D.C.

\section*{Filed Apr. 9, 1968, Ser. No. 721,134}
U.S. Cl. 102-214 1. A decision circuit for a proximity fuze, comprising: (a) a frrst antenna connected to a first receiver channel, said
first antenna having a pattern having a main beam and a plurality of sidelobes;
(b) a second antenna connected to a second receiver chan nel, said second antenna having a pattern having a broad beam and a gain of less than said main beam but greater than the gain of said sidelobes of said first antenna; (c) a first means in said first receiver channel to detect and amplify a valid target return signal;
and amplify signals having a frequency different from that
of a valid target return signal, said
higher gain than said first means
(e) a first comparison means for producing a signal when the ond means;

(f) a third means in said second receiver channel to detect a frequency of a valid target return signal; and
g) a second comparison means for producing a signal when enough output from said second means at a lower gain point exceeds the output from said third means by a predetermined difference.

TRACK TAMPER WITH HINGEABLE UNITARY PIVOTABLE TAMPING UNIT Franz Allmer, Sophia, N.C assignor to Graystone Corporation, Monroeville, Pa. application Nor. 29, 1976, Ser. No. 745,602
U.S. C. \(104-12\)

1. A track tamping apparatus of the type comprising a pair of pposed, vibrating tamper arms pivotally mounted on a tamping frame member supported on a carriage, means for positionof a railroad tie, and means for drawing the vibrating arm together to compact the ballast thereunder, wherein the improvement comprises:
a pair of oscillating cylinders operatively connected between the drawing means and the upper ends of said tamper arms, respectively, such that reciprocation of each oscil arms to aid in compacting the ballast, said drawing means being respectively connected to said tamping frame mem ber, each of said oscillating cylinders having a supply line and a return line for filling and evacuating hydraulic fluid from said oscillating cylinder, respectively, said tamper arms, said drawing means, and said oscillating cylinder ber to define a unitary tamping unit;
frame assembly hingedly connected to said carriage, said frame assembly including vertically adjustable means fo
securing said tamping unit thereto so that said tamping unit is vertically movable relative to said frame assembly; pair of rotary valve means connected respectively to said supply and return lines for said respective oscillating cylinders with a common source of pressurized hydraulic fluids; and
ive means for imparting continuous rotation to each said rotary valve means.

4,096,807
Ernest F. Woodmard, 9950 A Royal Oak Ct., Sun City, Ariz. Filed Oct. 26, 1976, Ser. No. 735,400
U.S. C. 105-467 Int. C. \({ }^{2}\) B61D 45/00 3 Claims

(a) a pair of radially spaced, substantially coaxial tubes hav ing infeed ends and juxtaposed discharge ends,
(b) mounting means rotatably mounting one of the tubes, rotating it relative to the other of the tubes,
1. A cargo control restraint shield for use in a vehicle container which comprises.
a flexible sheet;
a pair of cables secured at opposite end portions thereof to taut lengths of cable;
a pair of clamps each received upon and slidable on a respective one of said cables, said clamps each including locking means which blocks movement of the clamp in one direc tion on its cable but permits movement in the opposite direction;
hooks mounted on said flexible sheet, said hooks each being attachable to a respective one of said clamps, said vehicle container being adapted to receive cargo, said clamps
being arranged so that said locking means blocks movement of said flexible sheet away from said cargo;
said hooks being detachable from said clamps and connec able to said cables for hanging said flexible sheet out of the way;
proxible sheet being formed of waterproof material for protection of the cargo within said container, said shee incorporating stiffening material extending horizontally from one side of said sheet to the other for causing said sheet to engage the sides of said container, said sheet
having a generally rectangular configuration with the upper corners thereof cut off at approximately a \(45^{\circ}\) angle, said hooks being mounted on said flexible sheet at said cu off corner areas with the hooks in board of the rectangula sides of said sheet.

\section*{4,096,808}

METHOD AND APPARATUS FOR BURNING AIR-SUSPENDED PARTICULATE FUEL Lorn L. Trickel, 8806 NE. Thompson St., Portiand, Oreg. 97220 Int Nov. 11, 1936, Ser. No. \(7 / 00\); F23K \(3 / 026\)
U.S. Cl. 110-244 \(\quad 7\) Claims 1. Apparatus for burning air-suspended particulate fuel comprising

4,096,809


APPARATUS FOR COMPENSATING FOR THERMALLY INDUCED DEFORMATION OF SECTIONS OF GRATES IN INDUSTRIAL FURNACES OR THE LIKE Germany, assignors to Josef Martin Feuerungsbau \(\mathbf{G m b H}\), Munich, Germany
Filed May 16, 1977, Ser. No. 797,18
Claims priority, appiication Germany, May 21, 1976, 2622965
U.S. Cl. 110-271

25 Claims

1. Apparatus for compensating for thermally induced dimensional changes of sections of grates in industrial furnaces or of analogous structural elements of the type having an elongated marginal portion extending transversely of the direction of wall adjacent to the marginal portion of a structural element which is subje the marginal portion of a structural element ably supporting said side wall including a fulcrams for swing ably supporting said side wall, including a fulcrum extending in substantial parallelism with the marginal portion of said ele-
ments; guide means for said supporting means, said fulcrum being movable with respect to said guide means substantially at right angles to the marginal portion of said element; and means of said element.

4,096,810
DEVICE FOR VARYING THE POCKET LENGTH DEVICE FOR VARYING THE POCKET LENGTH
PROVIDED ON SEWING MACHINES FOR MAKING PROVIDED ON SEWING MACHINES FOR MAKING
WELTED POCKETS Nereo Bianchi, Paria, Italy, asslgnor to NECCHI Societa per Azioni, Pavia, Italy
Filed Sep. 21, 1976, Ser. No. 725,416
Claims priority, application Italy, Oct. 3, 1975, 42907 A/75

U.S. CI. 112-65 2 Claims
is elevated and the traveling shoe member occupies a position abutting said stop means.

1. In a device for varying the pocket length provided on sewing machines for making welted pockets comprising a bed, a mounting, an arm and a head, two groups with adjustable positioning carrying a mounting for driving valves and a
mounting for one of the patch turners, the improvement com prising frames for carrying said valves and patch turner movable relative to said groups, a pneumatic cylinder fixed to each of said groups to move said frames to two extreme positions corresponding to the two extreme operating positions of saic
cylinders and defining two sizes of pockets and lock means positioned intermediate said extreme positions to define a pocket size intermediate the other two.

INTERLOCK FOR BUTTONHOLE SEWING PRESSER
Delter H. W. Marsh, DEVICE alter H. W. Marsh, Fanwood, N
Company, New York, N.Y.
Filed Jul. 7, 1977, Ser. No. 813,568
\[
\text { Int. C. }{ }^{2} \text { D05B } 3 / 24
\]
U.S. Cl. 112-77

\section*{(20)}
1. In a buttonhole sewing presser device of the type having work engaging presser foot member, a traveling shoe member, means shiftably supporting said traveling shoe member o
said presser foot member for movement with the work bein said presser foot member for movement with the work bein
sewn relatively to the presser foot member, stop means defin sewn relatively to the presser foot member, stop means defin spring means biasing said traveling shoe member toward saic extreme position defined by said stop means, the improvement which comprises clearance between the means shiftably sup porting said traveling shoe member on said presser foot memer permitting a predetermined amount of relative movemen elevated, and cooperating interlock elements carried respectively on said presser foot member and on said traveling shoe member for preventing travel of said traveling shoe membe relatively to said presser foot member, and said interlock el

CLUTCHING DEVICE FOR SEWING MACHINES Fritz Gegauf, Steckborn, Switzeriand, assignor to Fritz Gegnuf Aktiengesellischaft Berins-Nahmeschinenfabrik, Switzer-

Filed Dec. 16, 1974, Ser. No. 533,211 Claims priority, application Switzerland, Jan. 10, 1974, 273/74 Int. Cl. \({ }^{2}\) D05B 59/00
US. C1. 112-220

1. A clutching device, for a sewing machine having an arm, drive wheel, a sewing mechanism including an arm shaft, and a thread winder, said clutching device comprising, in combination, a clutch member interposed between said arm shaft and
said drive wheel to couple said drive wheel to said arm shaft; pivot means mounting said clutch member, intermediate its ends, on said arm shaft for pivoting about an axis extending diametrically through said arm shaft; said drive wheel being formed with a series of circumferentially adjacent recesses on its inner surface facing said clutch member, and said clutch mereof toward said drive wheel for engagement in one of said recesses; spring means biasing the opposite end of said clutch member away from said drive wheel to engage said at least one tooth in one of said recesses to normally couple said drive wheel to said arm shaft; said thread winder including a drive member and being swingable about a vertical axis to engage said drive member with said drive wheel; means operable by
said thread winder, responsive to said swinging movement thereof to engage said drive member with said drive wheel, to engage said clutch member at a point closely adjacent its pivot axis but spaced therefrom toward said opposite end to pivot said clutch member, against the bias of said spring means, to disengage said at least one tooth from the then-engaged drive heel recess to uncouple sadd anm shan fom said drive wheel, predetermined amount of thread on said thread winder, to swing said thread winder in a direction to disengage said drive member from said drive wheel; said means operable by said hread winder, responsive to such disengagement of said drive member from said drive wheel, disengaging said clutch member for biasing of said clutch member, by said spring means, to ple said drive wheel to said arm shaft.

INTERMITTEMT 4,096,813 INTERMITTENT STITCHING DEVICE FOR SEWING Masakatsu Niikura, Kokubunji, Japan, assignor to Janome Sewing Machine Co. Ltd., Tokyo, Japan 975, Pat No 4,027,610 This application Mar. 25, 1977, Ser. No. 781,444 Claims priority, application Japan, Jun. 26, 1974, 49-72233 U.S. Cl. 112-275 Int. C.2 \({ }^{2}\) D05B 69/10 6 Claims

CONTAINER WITH OUTWARDLY FLEXIBLE BOTTOM END WALL HAVING INTEGRAL SUPPORT MEANS AND METHOD OF MANUFACTURE THEREFORE oseph Francis Dulmaine, Wheatridge, and Michael Edward Bagrosky, Arvada, both of Colo., assignors to Coors Containe Company, Golden, Colo.

This application Ja, Nov. 13, 1975, Pat. No. 4,037,752. U.S. Cl. \(113-120 \mathrm{M}^{\text {In }}\) Int. Cl. \({ }^{2}\) B21D 1977 Ser. No. 763,293

1. A sewing machine comprising, in combination, a machine frame; a main shaft rotatably journalled on the machine frame frame; a main shaft rotatably journalled on the machine frame
and operative for vertically reciprocating a needle bar; an electric motor operative for rotating the main shaft; selector switch means having a continuous stitching setting and an intermittent-stitching setting for preselecting continuous or intermittent stitching operation of the sewing machine; user controlled switch means having a first state and a second state selector switch means and to said user-controlled switch means and operative when the selector switch means is in the inter-mittent-stitching setting and for so long as the user-controlled switch means is kept in the second state for repeatedly energizing the electric motor at predetermined time intervals; and a stopping mechanism operative when said selector switch
means is in the intermittent-stitch setting and for so long as the means is in the intermitent-stitch setting and for so long as the
user-controlled switch means is kept in the second state fo stopping the main shaft each time the main shaft reaches a predetermined angular position, the stopping mechanism in cluding engaging means coupled to and sharing the movemen of the main shaft, blocking means mounted for movemen between an inoperative position remote from and an operative position in the path of movement of said engaging means and movement of the engaging means and stopping the main shaft in the predetermined angular position, and means operativ when the selector switch means is in the intermittent-stitching setting and for so long as the user-controlled switch means is
kept in the second state for moving the blocking means into the kept in the second state for moving the blocking means into the operative position during successive rotations of the main shaft.

1. A method of forming integral support structure in the bottom wall of a metallic container comprising: firstly engaging the outer surface of the bottom wall with a first force applying tool having a centrally located protruding convexly curved dome-like area and forming a
central wall area of indentation in the bottom wall of generally concave curvature;
secondly engaging the inner surface of the bottom wall with a second force applying tool having a polygonally shaped central cavity defined by elongated peripheral edge surfaces; and
thirdly applying additional force to the outer surfaces of the bottom wall with said curved dome-like area on said first
force applying tool and thereby further forming said cenforce applying tool and thereby further forming said cen-
tral wall area of indentation in the bottom wall in said cavity without engagement of the inner surface of the bottom wall in said central area of indentation with said first force applying tool and simultaneously forming elonated peripheral edge surfaces on the outer surfaces of the bottom wall about said central wall area of indentation.

\section*{FORMING PROCESS}

Philip George Faulkner, Banstead, England, assignor to The British Petroleum Company Limited, London, England Filed Jun. 28, 1976, Ser. No. 700,557
Claims priority, application United Kingdom, Jul. 8, 1975,
Int. Cl. \({ }^{2}\) B21D 51/26
U.S. Cl. 113-120 A
1. A process for forming a metal workpiece invol Claims dominantly plane strain deformation and a change involving preproviding an inert coating on the finished workpiece which comprises applying directly on the surface of the metal prior to forming a coating, which is not removed after forming, of a composition consisting essentially of a high molecular weight polyolefin, containing in proportion of from 0.1 to \(20 \%\) by weight of radicals selected from carbonyl groups, carboxyl groups, organic derivatives thereof, carboxylate groups with associated metal ions and mixtures thereof, and then forming the metal with the polyolefin acting as lubricant between the forming tool and the metal.

4,096,816
CONTAINER LASH SYSTEMS W. W. Patterson, III, Witherow Rd., Sewickley, Pa. 15143, and Eugene F. Grapes, 1106 Eighth Ave., Irwin, Pa. 15642 Eugene F. Grapes, 111, Eighth Ave, Irwin, Pa. 15642
Division of Ser. No. 611,200, Sep. 8, 1975, Pat. No. 4,048,938. This application May 6,1 1977, Ser. No. 794,670
Int. Cl. \({ }^{2}\) B63B \(25 / 08\) U.S. Cl. 114-75

3 Claims

3. A container lashing system for fastening shipboard con3. A container lashing system for fastening shipboard con-
tainers comprising in combination a hollow corner casting on tainers comprising in combination a hollow corner casting on
lashing bar having at least one generally ball shaped end, a
keyhole slot in each corner casting opening into the hollow keyhole slot in each corner casting opening into the hollow
interior thereof and having an opening receiving said ball interior thereof and having an opening receiving said ball
shaped end of the lashing bar and a slot receiving said bar Shaped end of the ball shaped end in sliding engagement and retainadjacent ball within the corner casting, and means acting on the
ing the
lashing bar opposite the ball end to place said lashing bar under tension in the corner casting.

4,096,817
SUPPORTING FOIL FOR A HYDROFOIL COMPRISING at LeAst one deformable part Andre Jules Edmond Bordat, Aix en Provence, France, assigno to Societe Nationale Industrielle Aerospatiale, Paris, France
Filed Jun. 17, 1976, Ser. No. 697,270 Filed Jun. 17, 1976, Ser. No. 697,270
Claims priority, application France, Jun. 17, 1975, 7518874 Int. Cl. \({ }^{2}\) B63B \(1 / 18\); B64C \(9 / 00\)
1. A device for rapidly decelerating a high velocity projecie in a liquid medium comprising:
plurality of decelerating panels pivotably connected to the aft end of said projectile;
means in said projectile for deploying said panels upon the occurrence of a selected pressure condition;
ing the deployment of ing the deployment of said panels; and
said projectile to a and of said projectile for bringing said panels conforming to thed depth for release,
tile in the inoperative or neted periphery of said projec-

\section*{4,096,819}

MARINE PROPUISON DEVICE INCLUDING PROPELLER PROTECTION MEANS alph S. Evinrude, Jensen Beach, Fla., assignor to Outboard Marine Corporation, Waukegan, Ill.
Filed Nov. 3, 1976, Ser. No. 738,528
US. \(115-\mathrm{Int}\). Cl. \({ }^{2}\) B63H \(21 / 26\)

1. A supporting foil for a hydrofoil, comprising a rigid part having an inner cavity, at least one deformable part extending long the leading edge or the trailing edge of the foil over at least a fraction of its span, the deformable part essentially
comprising a mobile core of rigid material having a tubular comprising a mobile core of rigid material having a continuity of profile between the deformable part and the rigid part being provided by a ayer of resilient material deposited on to the mobile part an he tubular sleeve thereof and completely embedding them, the mobile core having a rigid prolongation beyond the tubular foil, and a single elongated connecting member joining the prolongation to the rear wall of the cavity and adapted for enabling the prolongation to pivot the connecting member
forming with the prolongation a single mobile wall dividing
1. A marine propulsion device comprising a lower unit ncluding a gear case which is normally submerged in water case for rotation end, a propeller shaft mounted in said gear pair of generally flat, horizontally extending side fins affixed on nd extending laterally in substantially coplanar relationship wholly rearwardly sides of said gear case, said fins extending wholly rearwardly from said gear case forward end, each of
the cavity in sealing-tight manner into two variable-volume DROGUE TYPE DECELERATION DEVICE
4,096,818
Richard F. Wameling, Crofton, Md.,. assignor to The Unite
States of America as represented by the Secretary of the Nav States of America as represented by the Secretary
Washington, D.C.
Filed May 24, 1977, Ser. No. 800,110 U.S. Cl. 114-311 Int. Cl. \({ }^{2}\) B63B 21/48 10 Claims
said fins having a laterally extending trailing edge located wholly forwardly of said propeller, a generally straight outermost edge extending to a location corresponding to the peripheral path of the propeller and forwardly from said trailing edge generally parallee to said propeller shaft axis, and a leading edge extending formard end toward said outermost edge.

\section*{4,096,820}

HYDRAULICALLY POWERED MARINE PROPULSION TILTING SYSTEM WITH AUTOMATIC LET-DOWN ASSEMBLY
Charles B. Hall, Ingleside, Ill., assignor to Outboard Marine Corporation, Waukegan, III.
tinuation of Ser. No. 571,077, Apr. 24, 1975, abandoned This application Jul. 15, 1976, Ser. No. 705,617 U.S. Cl. 115-41 HT \({ }^{\text {Int. Cl. }{ }^{2} \text { B63H 21/26 }}\)

6. A marine propulsion device including a member adapted 6. A marine propulsion device including a member adapted
to be attached to a boat hull, a propulsion assembly pivotally connected to said member for vertical swinging movement when said member is attached to the boat hull, a tilt hydraulic cylinder-piston assembly connected between said member and said propulsion assembly and including a tilt cylinder having
opposed first and second ends, pressure fluid supply and conopposed first and second ends, pressure fluid supply and con-
trol means including a control valve housing having first and second ends, first conduit means communicating between said first end of said tilt cylinder and said first end of said control valve housing and including a first valve preventing fluid flow
from said first end of said control valve housing to said first from said first end of said control valve housing to said first
end of said tilt cylinder and releasably preventing fluid flow from said first end of said till cylinder to said first end of said control valve housing, and second conduit means communicating between said first end of said tilt cylinder and said first end of said control valve housing and including a second valve preventing fluid flow from said hirten oust end of said control valve housing and releasably
said preventing fluid flow from said first end of said control valve housing to said first end of said tilt cylinder, and a normally closed third valve located between said first end of said control
valve housing and said first conduit means and arranged to releasably prevent fluid flow therethrough to and from said first end of said control valve housing.

SYSTEM FOR FABRICATING THIN-FILM ELECTRONIC COMPONENTS
Edwin W. Greeneich, Plum Borough, and William S. Escott,
McKeesport, both of Pre, assignors to Westinghouse Electric Corp., Pittsburgh, Pa.

Filed Dec. 13, 1976, Ser. No. 749,870
Int C1.2 C23C \(13 / 03\) : B05B \(15 / 04\)
U.S. C. \(118-10\)
1. A system for fabricating thin-film electronic components upon a substrate comprising:
(a) an evacuable chamber connectable to a vacuum system; and within the chamber are disposed,
(b) at least one evaporant material source;
(c) a substrate holder alignable with the evaporant source (d) movable aperture mask means comprising guide means on which is movably mounted a mask holder, a unitary elongated aperture mask supported by the mask holder
between the substrate holder and the aligned evaporant source, which aperture mask has discrete spaced apart aperture patterns in a linear array, which guide means are linear parallel rails extending in the direction of the linear array of aperture patterns, with the mask holder slidably mounted on said rails so that the aperture mask is con-

strained to movement in the direction of the linear arra and wherein the aperture mask has light reflective or absorptive alignment position indicia disposed herture
aligned with each of the discrete spaced apart aperture patterns; and
(e) position indicia sensing and indicating means including fhe evaporant source, for directing light onto holder and the evaporant source, for directing light onto the aperture position indicia to permit determining when a desired aperture pattern is aligned between the evaporant source and the substrate.

4,096,822
GASEOUS ATMOSPHERE CONTROL APPARATUS FOR A SEMICONDUCTOR MANUFACTURING SYSTEM Masao Yamanaki, Handa; Katsuo Aoki, Alchi; Yoshio Oka
Toyota; Takao Suzuki, Kariya; Osamu Ina, Okazaki, and Kunihiko Hara, Kariya, all of Japan, assignors to Nippon denso Co., Ltd., Kariya, Japan
Flaims priority Sep. 29, 1976, Ser. No. 727,772
Claims priority, application Japan, Sep. 29, 1975,
Int. Cl. U.S. CI. 118-48

1. A gaseous atmosphere control apparatus for a semicon uctor manufacturing system comprising. a reaction pipe through which semiconductor wafers are andirred in the longitudinal direction thereof; a gas distribution pipe longitudinally fixed to the inside wall
of said reaction pipe and having a plurality of blow-off holes for supplying heat-treating gas in said reaction pipe the diameters of said blow-off holes increasing with in crease in the distance from the gas inlet of said gas distribution pipe to thereby supply constant amount of heat a boat positioned slidably in said reaction pipe to
therethrough guided by said gas distribution pipe and having slits in which said semiconductor wafers are supported, said boat having two circular walls which contact both said gas distribution pipe and the inside wall of said reaction pipe to prevent lateral movement of said boat.

4,096,824 Marshall S. Levine, Wayne, and Albert A. Faulkner, Con shobocken, both of Pa, assignors to SmithKline Corporation, shohocken, both
Philadelphie, Pa .
U.S. C. 118-100
-

APPARATUS FOR METALLIZATION OF FIBERS Hermann J. Schladitz, Munich, Germany, assignor to University of Virginia, Charlottesville, Va.

Filed Jan. 27, 1977, Ser. No. 763,013
U.S. C. 118-48

10 Claims

1. An apparatus for decontamination and metallization of filament which comprises
a first decontamination chamber having two concentric tubes having an annular space therebetween, the inner
tube of which has a series of holes throughout its length; heating means for heating the entire length of said inner
tube;
space;
a second metallization chamber having two concentric twbes having an annular space therebetween, the inner tube of having an annular space therebetween, the inner tube
which has a series of holes throughout its length; second heating means for heating the entire length of said
inner tube of said metallization chamber: inner tube of said metallization chamber;
means in the outer tube of said second chamber to introduc gas into said second annular space;
one end of said first chamber and the other end of which one end of said first chamber and the other end of which
is connected to one end of said second chamber, such that the adjoining ends of said annular spaces in said first and second chambers are sealed air tight;
a membrane within said intermediate chamber; said membrane disposed transverse to the axial direction of said
inner tubes; said membrane dividing said intermediate chamber into two separate regions and said membrane having a small pinhole aperture colinear with the axes of said inner tubes;
said intermediate chamber being fully enclosed except that said inner tubes of said first and second chambers project into the respective ends of said intermediate chamber and except that in each or sadter:
means for moving said filament through the inner tubes of said first and second chambers and through said aperture in said membrane; and
air-tight sealing means for sealing the ends of said annular spaces of said first and second chambers which are unat tached to said intermediate chamber.

971 O.G. 54

1. A device for smearing on a slide liquid placed at a predeermined point on the slide comprising:
slide magazine containing a plurality of slides with the reception of a drop of liquid towards one end thereof, a spreader adjacent the other end of the uppermost slide, means to advance the spreader to said predetermined point on the slide and to retract the spreader to its original position to smear slide in the magazine.

APPAPATUS FOR AP,096,825 Tipton L. Goliss, Terans io Helena Laboratories Corporation, Beaumont, Tex.
, 8 , 1975, abandoned. This application Feb. 18, 1977, Ser. No. 769,977 U.S. Cl. 118-221

1. Apparatus for transferring uniform samples of blood or the like onto an absorbent sample support comprising: means defining a reservoir for receiving a relatively massive sample;
first guide means defining a first vertical guide path aligned with said reservoir means;
a sample carrier vertically displaceable relative to said first guide path toward and away from said reservoir means, said sample carrier being immersible in said sample; means for vertically displacing said sample carrier relative to said first guide path to removably immerse said carrier no the sample with the sample adhered to the sample carrier by surface tension;
a sample support base; and
a sample support base; and
second guide means defining a second vertical guide path aligned with said base;
said sample carrier displacing means also vertically displac-
ing said sample carrier relative to said second guide pather ing said sample carrier relative to said second guide path to removably contact said sample carrier with a sample
support on said sample support base to break the surface tension between the sample and the sample carrier and to deposit the sample on the sample support;
said sample carrier including a vertically displaceable slide bar having a slot extending therethrough;
said sample carrier including an applicator element freely slot so that upon vertically displacing said sample carrie said applicator element is vertically displaced solely under the influence of gravity to contact either the sample in said reservoir means when the sample carrier is displaced
relative to said first guide means or said sample suppor when the sample carrier is displaced relative to said sec. ond guide means.
4,096,826

MAGNETIC BRUSH DEVELOPMENT SYSTEM FOR MAGNETC BREXIBLE PHOTORECEPTORS Klaus K. Stange, Pittsford, N.Y., assignor to Xerox Corporation Stamford, Conn.

Filed May 21, 1976, Ser. No. 688,814
Int. C. \({ }^{2}\) G03G \(15 / 08\)
U.S. Cl. \(118-656\)

5 Claims

1. An improved magnetic brush development system for developing a latent electrostatic image on a flexible member comprising:
(a) a development zone defined by
(i) a magnetic brush development assembly positioned apart from the latent image-bearing surface of the flexi-
blemember; and (ii) deflection means
(ii) defiection means positioned adjacent to the non-image-
bearing side of the flexible member, said deflection means being provided with an air-cushion chamber, on wall of which comprises a plate having a plurality of apertures to permit formation of an air cushion at the interface of said chamber and the non-image-bearing
side of the flexible member and an actuator assembly, side of the flexible member and an actuator assembly
which upon receipt of an appropriate signal from machine logic, advances the air-cushion chamber and
air cushion against the non-image-bearing side of the air cushion against the non-image-bearing side of the
flexible member to permit feedable engagement of the flexible member to permit feedable engagement of the
developer assembly and a latent image-bearing side of developer assembly an
the flexible member;
(b) means for coordinating the activation of the activator assembly and moving the flexible image-bearing member and
(c) means for supplying a pulsating air stream to the air-cush ion chamber of the deflection means concurrent powder cloud of developer materials is created within the powder cloud of developer materials is created within the
development zone concurrent with the passage through
said zone of a latent image-bearing surface of the flexible

4,096,827
ames A. Cotter, 9195 Kit Waste disposal device Filed Jan. 11, 1977, Ser. No. 758,552 U.S. CI. 119-1

12. An animal waste disposal device, comprising: means for holding litter material in a manner which permits easy portability thereof and yet permits easy set up for
availability for use by an animal, the holding means in cluding two substantially identical compartments hinged along similar edges of the respective compartments; means for cleaning the litter material automatically whenever the holding means is arranged for use of the litter material by an animal, the cleaning means including a
screen member pivotally mounted between the two partments for free movement between or with either one of the compartments;
means for recerving waste accumulated by the cleaning means until said waste can be disposed of; and
a three-way latch structure associated with each of the
compartments and the screen between said compartments compartments and the screen between said compartments together or for latching the screen to either of the compartments.

\section*{4,096,828}

ROTARY PISTON INTERNAL COMBUSTION ENGINE Haruhiko Satou; Yoshinori Honiden; Motoyuki Hayashids, and Mutsuo Wakamoto, all of Hiroshima, Japan, assignors to Toyo Kogyo Co. Ltd., Hiroshima, Japan
Continuation of Ser. No. 325,979, Jan. 23, 1973, abandoned. This application Apr. 14, 1976, Ser. No. 676,783 Claims priority, application Japan, Jan. 24, 1972, 47-10219; Jan. 24, 1972, 47-10220; Jan. 24, 1972, 47-10221; Jan. 24, 1972, .10222

Int. Cl. \({ }^{2}\) F02B \(53 / 10\)
U.S. C. 123-209
1. In a two lobed and three apexed rotary piston internal combustion engine of the Wankel type comprising a housing surface and side housings having an end wall provided at both sides thereof, a cavity formed by said side housing end walls and said trochoidal inner peripheral surface, said housing being ormed with spaced intake and exhaust ports, a rotary piston having three side flanks and eccentrically rotatably mounted
a a power output shaft within said cavity, said rotary piston having three circumferentially spaced apexes and substantially flat end faces at opposite ends thereof, each of said apexes and flat end faces having sealing members engaging the inner housing surfaces of said cavity to form between said rotary piston and said housing a plurality of working chambers, a first com-
bustion chamber provided in said housing outside of said trochoidal inner peripheral surface, one of said working chambers
forming a second combustion chamber at the exploding stroke, a fuel injection nozzle and a spark plug provided in said firs combustion chamber, the improvement comprising: said firs combustion chamber having a volume of 35 to \(65 \%\) of the sum of the volume of he first combustion and second combustion cating between said first combustion and second combustion chambers, said passage means opening into said trochoida inner peripheral surface at a rotary angle in the range of the
short axis to \(10^{\circ}\) after the short axis as defined by the rotary short axis to \(10^{\circ}\) after the short axis as defined by the rotary
shaft and the intersection of the two arcuate portions of said trochoidal inner surface, and whereby said passage means is

located relative to said intake port such that the intake port is located relative to said intake port such that the intake port is
closed off to one of the working chambers by the rotary piston prior to the leading side apex seal for that chamber opening that chamber to said passage means, said passage means bein
located circumferentially relative to said exhaust port such that ocated circumferentially relative to said exhaust port such tha the trailing side apex seal for a given working chamber jus
crosses over the opening of the passage means to that working crosses over the opening of the passage means to that working
chamber as the leading side apex seal relative to that working chamber as the leading side apex seal relative to that working
chamber begins to open the exhaust port, and said passag means comprises a single duct having a cross sectional are
smaller than that of said combustion chamber, said cross sec smaller than that of said combustion chamber, said cross sec
tional area being 0.3 to \(2.4 \%\) of the area of the surface of on of said three side flanks of said rotary piston.

WATER INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINES
George B. Spears, 8634 Franklin Ave., Los Angeles, Calif. 90069 Spears, 8634 Franklin Ave.. Los Angeles,
Filed Apr. 29,1976, Ser. No. 681,418 U.S. Cl. 123-25 J

7 Claims

1. In liquid injection apparatus for use with an internal com bustion engine having an ignition system and an air intak manifold, the combination comprising
a. a liquid pump and electrical drive therefor, the drive communicable with the engine air intake,
b. and control means including an electrical make or break
switch and a pulse rate frequency to analog converter to
ontrol electrical current flow to the drive via said switch in response to and as a function of electrical pulses produced by said ignition system, whereby the flow of liquid output of the ignition system, the switch directly connected in series with the motor,
there being a switch actuator connected with the switch, the actuator operatively connected with the engine air fow to the drive when air pressure in the manifold drops to predetermined level, whereby said flow of liquid to the engine air intake will then be established, the switch, when open, blocking current supply to the motor,
d. the control means including a semiconductor connected toass drive current to the pump drive, and an opera-
tional amplifier connected between the converter and semiconductor to supply said drive current as a function of the voltage output of the converter,
. and an RC feedback loop connected between the motor ride of the switch and the operational amplifier to be responsive to closing of the switch to allow the control to the drive followed by a reduction in power supplied to the drive, whereby the device may be quickly brought up to speed for providing a rapid delivery of liquid to said outlet

CONTROL SYSTEM \(\quad\) 4,096,830
CONTROL SYSTEM FOR ELECTRICALLY ENERGIZED E. David Long, Elmira, N..Y., assignor to Allied Chemical Corpo-
ration, Morris Township, N.J. ration, Morris Township, N.J.

Filed Nov. 6, 1975, Ser. No. 629,349
S. Cl. 123-32 EA Int. Cl. \({ }^{2}\) F02B 3/00

17 Claims

1. A control system for a fuel pump for a spark ignited, internal combustion engine having a fuel injection system, said
fuel pump being a solenoid actuated, positive variable displacement piston pump; said control system comprising: means connected to the engine for generating an electric signal which varies as engine speed; and means controlled by said electric signal for generating one trigger pulse per engine cycle to said pump for energizing the solenoid of the pump to reset the
piston once per engine cycle to provide a fuel flow at a rate piston once per engine cycle to provide a fuel flow at a rate
which is a function of said signal, said means for generating one trigger pulse comprising counter means for generating said pulse, gate means for permitting delivery of said pulse to said solenoid once per engine cycle and pulse forming means for

FREQUENCY MODULATED FUEL INJECTION SYSTEM Rajamouli Gunda, Rochester, Mich., assignor to The Bendix Corporation, Southfield, Mich. Filed Oct. 4, 1976, Ser. No. 729,068
Int. Cl. \({ }^{2}\) F02B 3/00 S. Cl. 123-32 EG 10 Claims

1. A frequency modulated fuel injection system for internal combustion engines comprising:
of the engine and generating a pressure manifold pressure representing said manifold pressure;
means responsive to the rotational speed of the engine and generating a speed electrical signal representing said rota-
function gener
ruction generating means responsive to said pressure and
speed electrical signals for generating a directly proportional to a function of both said pressure and speed electrical signals;
means associated with the
ture of the engine and gengine for sensing the temperaature signals which vary as a direct and indirect femperrespectively, of the temperature of the indirect function, oscillator means connected in responsive relation to said unction generating means and said first temperature signal generating means for generating a frequency modulated electrical signal;
pulse generator means connected to said oscillator means for generating an electrical pulse signal in response to said frequency modulated electrical signal having a variable duty cycle, said duty cycle varying depending upon the
frequency of said frequency modulated signal. frequency of said frequency modulated signal;
injection means operative in response to said electrical pulse
signal for supplying the fuel demand to the engine; and signal for suppiying the fuel demand to the engine; and
cold start means connected to said injection means and responsive to said second temperature signal generated by said engine temperature responsive means for generating a
cold start electrical pulse signal having a fixed pulse width cold sarte electrical pulse signa having a fixed pulse width varying solely in proportion to the magnitude of said
engine temperature responsive means and independent of engine temperature responsive means and independent of
engine speed, said cold start electrical pulse signal being engine speed, said cold start electrical pulse signal being
ORed with said frequency modulated electrical signal. 4 IGNITION APPARATUS AND METHOD FOR AN Don C. Casull, 2459 Cardinal Way, Salt Lake City, Utah 84117 James M. Dalton, 253 Elm St. Salt Lake City, Utah 84117 , James M. Dalton, 253 Elm St, Salt Lake City, Utah 84107; 84117, and Amos R. Jackson, 2887 McClelland St, Salt Lake City, Utahh 84106

Filed Aug. 26, 1976, Ser. No. 717,970
U.S. C. 123-32 SP
U.S. C. \(123-32 \mathrm{SP}\)
1. An ignition apparat
and
tion engine comprising:
torch nozzle removably attached to a spark plug thereby
enclosing a spark gap of the spark plug in a torch cham-
ber, the torch nozzle being adapted to be screwed into the conventional spark plug opening in an engine block and thereby providing fluid communication between the torch chamber and the cylinder; and
means for introducing fuel and means for introducing fuel and air into the torch chamber comprising:
valving means in the fuel supply source upstream from the torch chamber and a means for diffusing the vaporized ing a porous plug in the fuel supply source, the porous

plug restricting fuel flow to seepage action thereby opposing reverse flow action from higher vapor pressures downstream from the porous plug, the seepage rate being generally proportional to the pressure imeans for inhibiting
ization of the fuel upstream of vaporizing means downstream of the valving means for vaporizing the fuel; and
means for diffusing the vaporized fuel into the torch

4,096,833
CIRCUIT FOR FREQUENCY MODULATED FUEL INJECTION SYSTEM Charles R. Sweet, Royyl Oak, Mich., assignor to The Bendix
Corporation, Southfield, Mich, Corporation, Southfield, Mich.

Filed Oct. 4, 1976, Ser. No. 729,070
Int. Cl.


1. A frequency modulated fuel injection system for internal combustion engines comprising:
pressure sensing means for measuring the manifold pressure pressure sensing means for measuring the manifold pressure
of the engine and generating a pressure electrical signal representing the manifold pressure of the engine including an operational amplifier having one input connected to the pressure sensing means and the other input connected to receive a reference signal;
means responsive to the rotational speed of the engine and generating a speed electrical signal representing said rotational speed including an operational amplifier and a uni-
junction transistor connected to an input of the amplifierjunction transistor connected to an input of the amplifier;
function generator means responsive to said pressure and speed electrical signals for generating an analog signal representative of a direct function of both said pressure
and said speed signals;
means for generating a reference signal;
voltage controlled oscillator means responsive to said analog signal and said reference signal for generating a frequency
modulated electrical signal including a current source modulated electrical signal including a current source
having a magnitude of current flow proportional to said analog signal and storage means connected to said current source, said current source charging said storage means;
pulse generator means connected to said frequency modu-
lated electrical signal for generating an electrical pulse lated electrical signal for generating an electrical pulse
signal having a predetermined duty cycle depending upon signal having a predetermined duty cycle depending upon
the frequency of said frequency modulated signal includthe frequency of said frequency modulated signal inclat
injection means connected to said pulse generator means and operative in response to said electrical pulse signal for supplying the fuel demand to the engine.

4,096,834
AIR-TO-FUEL RATIO FEEDBACK CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINES
Hideaki Norimatsu; Mitsuo Nakamura, both of Kariya; Toshio

Kariya, Japan
Filed Nov. 15, 1976, Ser. No. 742, 120
Claims priority, application Japan, Nov. 25, 1975, 50-141433 U.S. CI. 123-32 EE

14 Claims

1. An air-to-fuel ratio feedback control system for interna combustion engines comprising: means for comparing the detected ratio with a preset ratio indicative of the stoichiometric air-to-fuel ratio;
means for integrating the comparison results continuously with respect to time, the integration output value chang ing in increasing and decreasing directions
with the change in the comparison result;
weans for detecting a preselected first operating condition of said engine;
means for detecting a preselected second operating condition of said engine, said second operating condition being tion of said engine, sait second operating condition being
indicative of the position of a throttle valve of said engine means for controlling the integration output value of said integrating means to a preset constant value during said first operating condition irrespective of the comparison
result;
means for holding the integration output value of said inte-
grating means unchanged during said second grating means unchanged during said second operating condition irrespective of the comparison result, the unchanged integration output valve being equal to a value produced just before said second operating condition is U.S. Cl. 123-90.15
detected; and Clnims means for supplying said engine with air-fuel mixture of a type having an output shaft and a camshaft operable in timed ratio corrected in accordance with the difference between relation with the output shaft of a variable camshaft timing the integration value and the preset constant value, whereby said mixture supplying means is enabled during a first rotatable drive member driven by the output shaft,
said first and second operating conditions, to supply the a second rotatable drive member mounted on the camshaft
air-fuel mixture to the air--
than the stoichiometric ratio
INTERNAL COMBUSTION
4,096,835
ENGINE METHOD AND

Filed Jan. 4, 1977, Ser. No. 756,600


1. A method of deriving useful work from a gaseous charge and fuel in an internal combustion engine comprising the steps
ingesting a gaseous charge into a central cham
a piston, a cylinder and a movable head;
a piston, a cylinder and a movable head;
compressing the gaseous charge by moving the piston into compressing the gaseous
the central chamber;
supplying a quantity of fuel to the chamber to create a com supplying a quantity of the gaseous charge;
bustible mixture with the git
moving the movable head to maintain a predetermined schedule of compression ratio in the central chamber; igniting the combustible mixiure of the gaseous charge and resulting combustion product
transferring at least a portion of the combustion products from the central chamber to a surrounding chamber defined by the cylinder and a cooperating second piston; expanding the combustion products ill the surrounding
chamber to atmospheric pressure by allowing the combustion products to push against the second piston which is connected to a shaft that performs work; and
exhausting the expanded combustion products from the surrounding chamber.

4,096,836
VARIABLE TIMING DEVICE PARTICULARLY FOR
Variable ENGINE CAMSHAFTS eral Motors Corporation, Detroit, Mich.

Jan. 19, 1977, Ser. No. 760,
ype having an output shaf and a camshaft operable in timed
drive comprising
and operably connected with the first drive member for
rotation in timed relation therewith,
means mounting said second drive member on said camshaft for rotation on a common axis, said second drive member and said camshaft having opposing engageable surfaces capable of being secured together to fix the angular relation of said members, said mounting means being formed
to permit limited relative angular rotation of said members when said surfaces are not so secured, and
means for adjusting the relative angular positions of said second drive member and said camshaft and for securing
said second drive member to said camhaft in their ad said second drive member to said camshaft in their ad prising
an adjusting and retaining stud having an elongated body with first and second threaded coaxial end portions and an eccentric cam portion intermediate said end portions, said stud having its first end portion threadably retained in said
camshaft and its eccentric cam portion closely fitted be tween spaced parallel sides of a radially extending slotted opening in said second member, said stud second end portion including tool engageable means for rotating said stud in said camshaft to cause relative angular adjustment engagement of the stud eccentric cam portion with said opening parallel sides, and
a nut threadably received on said stud second end portion
and operatively engageable with said second drive memand operatively engageable with said second drive mem-

shaft and second drive member and prevent rotation of said members and said stud.
3. A drive coupling assembly comprising
on a common axis and having connected for rotation on a common axis and having opposing engageable surmembers in fixed angular relation but formed to permi limited relative angular rotation of said members when said surfaces are not so secured, and
means for adjusting the relative angular positions of said
members and for securing said members in their adjusted memitions, said adjusting and securing means comprising
an adjusting and retaining stud having an elongated body with first and second threaded coaxial end portions and an
eccentric cam portion intermediate said end portions, said eccentric cam portion intermediate said end portions, said
stud having its first end portion threadably retained in said first member, said stud extending through a slotted opening in said second member distant from said axis with the stud eccentric cam portion positioned within said slotted opening and closely fitting between angularly spaced
parallel sides thereof, said second end portion including paralilel sides thereof, said second end portion including
tool engageable means for rotating said stud in said first member to cause relative angular adjustment of said members through engagement of said stud eccentric cam por tion with the parallel sides of said slotted opening, and a nut threadably received on said stud second end portion secure together the opposing surfaces of said first and second members and prevent rotation of said members and said stud.

AUTOMATIC CHOK,1NG \(\quad 4,0837\)
HEATING TYPE Japan, assignors to Honda Giken Kogyo Kabushiki Kaisha, Japan Filed Dec. 8, 1976, Ser. No. 748,634 Claims priority, application Japan, Dec. 16, 1975, 50/149949 Int. CC.2. F02D \(11 / 08 ;\) F02M \(1 / 110,23 / 04\)
S. Cl. \(123-119\) F 34 Claims

1. An automatic choking device of an electric heating type
for use in an automobile engine, and the like which comprises (a) a carbureto
(a) a carburetor main body;
(b) a choke valve provided in said carburetor main body;
(c) a shaft for rotating said choke valve, said rotational shaft being supported on said carburetor main body in a freely rotatable manner;
(d) a bimetal member which is connected to said rotational shaft for the choke valve by means of a connecting member, and which causes said rotational shaft to rotate, when heating men said choke valve;
heat said bimetal member, said electric heating mechism to having functions to maintain said choke valve in a substan having functions to maintain said choke valve in a substan-
tially perfectly closed state without actuating said bimetal tially perfectly closed state without actuating said bimetal
member when the internal combustion engine is at a low temperature level, to open said choke valve by heating said bimetal as the temperature of the engine rises with lapse of time, and to lower the temperature thereof after choke valve; and
( f\()\) a switch means to open and close a connecting circuit
between said heating means and a power source for the same.

FUEL CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
Elizi Tanaka, Anjo; Michihiro Ohashi, Handa; Hiroshi Moassignors to Akira Nishimatsu, both of Okazaki, all of Japan, Filed Dec. 20, 1976, Ser. No. J52,305
Claims priority, application Japan, Dec. 26, 1975, 51-157416; Apr. 6, 1976, 51-38446
U.S. C. \(123-139 \mathrm{AW}\)

F02M 17/00, 19/00
1. A fuel contol syste
for a spark
ion engine having an intake pipe, comprising:
ling the flow of intaked within said intake pipe for control-
an air-flow measuring member mounted for an angula movement within said intake pipe at a position upstrea of said throtle valve, the amount of said angular movement of said air-flow measuring member being substan-
tially in proportion to the flow rate of said intere air fuel measuring means operatively connected to said air-flo measuring member and adapted to meter and control the
rate of fuel supply to said engine in accordance with said combustion engine having a combustion chamber arranged to angular movement of said airflow measuring member, said fuel metering means having a fuel metering shaft unitarily movement therewith and a bearing for rotatably support
ing said fuel metering shaft, said fuel metering shaft and ing said fuel metering shaft, said fuel metering shaft and
said bearing in combination defining at least one variable fuel metering orifice therebetween;
a first pressure-response means connected to said fuel meter-
ing shaft so as to drive the metering shaft and adapted to ing shaft so as to drive the metering shaf and adapted to in response to pneumatic signals;
a second pressure-responsive means connected to said fuel
metering shaft so as to drive the metering shaft and

adapted to control said angular movement of said fuel metering shaff in response to pneumatic signals;
mentenngt-pressure-differential valve adapted to control a pneumatic signal to be applied to said first pressure-
responsive means in response to a pressure differential across said air-flow measuring member, thereby to keep
said pressure differential at a predetermined value; and said pressure differential at a predetermined value; and detecting means mounted on said engine for detecting conditions of operation of said engine, and adapted to produce
pneumatic signals representative of said conditions, said pneumatic signals representine of manatically connected to said second pressure-responsive means so as to deliver sai
signals to whereby fuel-air mixtures of an air-fuel ratio corresponding to said conditions are supplied to said engine.

4,096,839
INTERNAL COMBUSTION ENGINE AIR-FUEL RATIO
CONTROL SYSTEM UTLIZING OXYGE SENAD CONTROL SYSTEM UTILIZING OXYGEN SENSOR Frank Niertit, Webster, N.Y., assignor to Stromberg-Carlson

Filed Feb. 24, 1976, Ser. No. 660,905 U.S. CI. \({ }^{123-139 ~ A W}\) Int. Cl. \({ }^{2}\) F02M 7/16

8 Claims

ombustion engine having a combustion chamber arranged to operate at subatmospheric pressures, an intake manifold com-
municating with the combustion chamber for providing a flow of air to the combustion chamber, adjustable throttle means in he intake manifold for controlling the flow of air through the intake manifold, and fuel pumping means for introducing a first ow of fuel into the intake manifold and producing an air-fuel mixture, the method comprising the steps of: continuously sampling
ing adjacent a first loation in the intake manifold;
continuously adjusting the air-fuel ratio at the first location
to the stoichometric value by adjusting the first flow of fuel into the intake manifold;
substantially continuously providing an additional flow of air at a second location in the intake manifold, spaced
apart from the first location in the direction of the combustion chamber, and
introducing a second flow of fuel into the intake manifold adjacent the second location in an amount sufficient to reduce the air-fuel ratio of the mixture flowing into the
combustion chamber below the stoichometric ratio when engine acceleration is desired.

\section*{4,096,840}

PULSE IGNITION DISTRIBUTOR
Richard J. Jordan, 15821 Chestnut, Roserille, Mich. 48066 Continuation of Ser. No. 654,376 , Feb. 2, 1976, abandoned, which is a continuation of Ser. No. 481,196, Jun. 20, 1974, abandoned. This application Dec. 20, 1976, Ser. No. 752,463 U.S. C. \(123-146.5\) Ant. Cl. \(^{2}\) F02P \(5 / 00\)

1. In a distributor for a spark-ignition internal combustion engine comprising a distributor body, a removable cap for said peripherally prod with a centrat terminals each connected to spark plug of said engine, a rotatable shaft extending through said body, a rotor mounted on the end of said shaff for placing said input terminal successively in spark gap proximity with
each of said output terminals in the course of a revolution of said shaft and timing means comprising a plate angularly positionable relative to said body about said shaft for advancing and retarding ignition as a function of engine RPM, the mprovement consisting of a high voltage high frequency generator having an output constantly electrically connected oo said input terminal, a dielectric timing ring disposed in said conductive segment for each of said output terminals carried by said timing ring and defining a contactless bridging member disposed in said spark gap corresponding to each of said outpu erminals, and means for mounting said timing ring on said plate for timing the occurrence of start of sparking through said spark gap relative to degree of angular rotation of said relative to said output terminals.

IGNITION SYSTEM 4,06841 INJECTED-SPARK IGNITED INTERNAL COMBUSTION Joseph C. Kindermann, Romeo, and Ronald L. Colling, Milling. ton, both of Mich esameo, to General Motors Conoraing ton, both of Mich., assignors to General Motors Corporation, Filed J
Int. Cl. \({ }^{\text {2 }}\) P Jun. 10, 1976, Ser. No. 694,784 U.S. Cl. 123-148 E

1. An ignition system for use with a fuel injected-spark ignited internal combustion engine of the type having a spark
gniting device for each cylinder thereof, comprising: a fuel injector having a movable member corresponding to each cylinder of an associated internal combustion engine for injecting fuel into the combustion chamber of the said cylinder to ber; means corresponding to and in cooperative relationship with the said movable member of each said fuel injector, each said means being responsive to the initiation of actuation of the corresponding said movable member to inject fuel into the injector having said actuated movable member corresponds for producing an output electrical signal of a selected polarity; circuit means responsive to each said electrical signal for pro-
ducing an ignition spark creating voltage; and means for directing said ignition spark creating voltage to the said spark ignit ing said ignition spark creating voltage to the said spark ignit-
ing device of the said cylinder of said engine next to be fired.
\(4,096,842\)
DEVICE FOR WINDING A SPIRAL SPRING TO START AN ENGINE
assignor to Honda Giken Noboru Kurata, Kamifukuoka, Japan, assig
\begin{tabular}{l} 
Kogyo Kabushikj Kaisha, Tokyo, Japan \\
FFied Dec. 15, 1976, Ser. No. 750,89 \\
\hline
\end{tabular}
(1) Sman, Dec. 20, 1975, 50-172608 U.S. C. 123-179. S C. \({ }^{2}\) F02N 3/04; F03G \(1 / 08\)
1. An apparatus for winding a spiral spring to start an engine, employing a pedal shaft; a starting pedal connected to said pedal shaft; a driving sprocket rotatably mounted on said pedal shaft having driving teeth formed on the outer periphery
thereof; clutch means mounted on said pedal shaft for respecthereoi; counch means mounted on sonecting and disconnecting said pedal shaft and said sprocket for integral or separate rotation in response to forward and reverse rotation of said pedal shaft; ratchet pawl means being engageable with said driving teeth for preventing
reverse rotation of said sprocket to permit forward rotation hereof; starter shaft means adapted to be drivingly connected with an engine; and spiral spring means having an inner end tionary member; a driven sprocket fixedly mounted on said starter shaft means being operatively connected to said driving sprocket through a power transmission chain, whereby said
spiral spring is wound around said starter shaft means as said spiral spring is wound around said starter shaft means as said
driving sprocket is rotated in a forward direction, said clutch means comprising: a driving clutch member mounted on said means comprising: a driving clutch member mounted on said
pedal shaft for axial sliding movement and being held against rotation relative thereto, ssid driving clutch member being provided with an actuating arm extending therefrom in a radial
direction; a driven clutch member integrally secured to said driving sprocket in axially opposed relation therewith; a clutch spring for directing said driving clutch member into engage-
ment with said driven clutch member and cam means cooper ment with said driven clutch member; and cam means cooper-
ating with said actuating arm of said driving clutch member for ating with said actuating arm of said driving clutch member for
directing said actuating arm to cause disengagement of said drivecing said actuating arm to cause disengagement of said
driving and dutch members against the action of said clutch spring as said pedal shaft is rotated in a reverse direction to restrict further reverse rotation thereof.

> 4,096,843 STARTING SYSTEM

Frederick J. Marsee, Clawson, Mich., assignor to Ethyl CorpoFrederick J. Marsee, Clawson, Mich., assignor to Ethyl Corp
ration, Richmond, Va. Continuation-in-part of Ser. No. 370,665, Jun. 18, 1973, abandoned, which is a continuation-in-part of Ser. No. 261,665,
Jun. 12, 1972, abandoned. This application Sep. 19, 1975, Ser. No. 614,856 U.S. C. \({ }^{\text {I23- }} 179\)

1. A system for improving the warm-up characteristics on cold starting of a spark ignition internal combustion engine which comprises in combination
(a) a distributor having at least a vacuum actuated spark advance means and a carburetor having throttle means
operatively connected to first control means for simulta neously
(i) opening said throttle means to obtain increased engine speed and
(ii) retarding spark advance, on starting said engine, said first control means acting to maintain said engine speed and spark retard for a predetermined time after starting said first control means comprising in combination (1) engine vacuum actuated throtlle means position control means,
(2) conduit means in communication at one end thereof
with said throttle means position control means and with said throttle means position control means and
said vacuum actuated spark advance means, and in communication at the other end with the atmosphere and with engine vacuum means
conduit, said valve means operable to alternatively the type having an intake manifold to direct fuel/air mixture connect said conduit means to the atmosphere or to into said cylinders wherein said manifold has a first passage (b) second control means, said second control means acting communicating with half of the eylinders and a separate, secto lock out said first control means when a predetermined engine condition exists, ained for the cold start engine operating mode

INTERNAL COMBUSTION ENGINE APPARATUS James Bellamy Mackaness, 28 The Crescent, Chettenham,
NSW, Australia (2119) NSW, Australia (2119)

This application Dec. 30, 1976. 19, 1974, abandoned.
This appication Dec. 30, 1976, Ser. No. 755,718
Int. Cl. \({ }^{2}\) F02F 1/00
U.S. Cl. 123-193 P

5 Claims

1. Internal combustion engine apparatus comprising body cylinder means defining a primary combustion cham means during compression and power strokes, respec means during compression and power strokes, respec-
tively, that reduce and increase the volume of said primary combustion chamber;
intake means for periodically introducing fuel charges into said primary combustion chamber;
ignition means for igniting the fuel charges introduced by said charge means;
xhaust means for re
xhaust means for removing residual gases from said pri-
mary combustion mary co
housing means mounted on and movable with said primery piston and defining an auxiliary combustion chamber, said housing means further defining an orifice providing communication between said primary and auxiliary combus tion chambers; and
purge means comprising an auxiliary piston reciprocable in said auxiliary combustion chamber, said auxiliary piston eing biased by a bias means toward a closed position herein said orifice is closed and movable during each compression stroke of saidd primary piston into a fully open position to allow complete filling of said auxiliary cham-
eer with a fuel charge in response to a given pressure in said primary chamber substantially less than the maximum compression pressure provided therein by said primary piston, said auxiliary piston being adapted to move into
said closed position during each power stroke of said said closed position during each power stroke of said
primary piston so as to purge through said orifice substantially all residual gases from said auxiliary combustion chamber.

SYSTEM FOR REDUCING THE NUMBER OF CYLINDERS USED IN A MULTI-CYLINDER ENGINE Charles F. Holmes, 804 E. Pembroke, Tuscola, III. 61953

Holmes, 804 E. Pembroke, Tuscola, 11.
Filed Jun. 30, 1976, Ser. No. 701,272
U.S. C. 123-198 F

F Int C. \({ }^{2}\) F02D 13/06
13 Claims 1. A conversion kif reactivating half of the cylinders of
ond passage communicating with the remaining cylinders, and having at least one intake valve opening and chast valve opening for each cylinder comprising:
of said intake manifold passages, thereby deactivating all of the cylinders served by this passage;

(b) means to maintain each of the intake valve openings in those deactivated cylinders connected by said first intake manifold passage in an opened condition throughout the cylinders and the first intake manifold passage form a closed chamber; and
(c) means to maintain each of the exhaust valve openings in hose deactivated cylinders connected by said first intake manifold passage in a closed condition throughout the operational cycle of the engine.

\section*{4,096,846}

ROTARY FLUID PRESSURE ENGINE Ilfred Biles, 74809 Sunset Dr., Twenty-Nine Palms, Calif.
\(\mathbf{9 2 2 7 7}\) Continuation-in-part of Ser. No. 503,837, Sep. 6, 1974, Int. C1. \({ }^{2}\) F02B \(53 / 00\)

1. An engine comprising: an annual cylinder of uniform cross-section forming a cylinder housing;
a rotor positioned in and movable in said cylinder housin having a width approximately equal to the width of said having a widch approximately equal to the width of said sections which are interconnected by at least one enlarged height section;
a plurality of valve members in said cylinder housing each valve member being movable when an enlarged heigh ction passes adjacent thereto
said valve members being movable in chambers formed in said engine, at least one of said chambers forming a com-bustion-exhaust chamber and another of said chambers forming a compression-intake chamber and means fo supplying an air fuel mixture coupled to said compressionintake chamber;
said valve members in each of said combustion-exhaust building having a hearth and provided with an open side
chambers have a pair of openings therein, a delay section chambers have a pair of openings therein, a delay section through which fuel can be inserted thereinto, hopper means openings being movable by said piston enlarged height beyond said floor, said hopper means having opening means on section and forming a path for enabling an air-fuel mixture to enter said delay section of said combustion chamber, and forming a path for enabling said air-fuel mixture to pass from said delay section to an ignition section of said combustion-exhaust chamber, and ignition means formed in said combustion-exhaust chamber for igniting said airmeans for intro
and
means for exhausting said fluid in a compressed form from
said cylinder. said cylinder

\section*{4,096,847}

Allen L. Mitchell, Butler, Ohio, assignor to Paul David Hill, Ashland, Ohio

Filed Aug. 27, 1975, Ser. No. 608,067
Int. Cl.2 \({ }^{2}\) F24C \(/ / 14\)
U.S. C. 126-61

12 Claims

1. A stove comprising: an enclosure having a front, back opposite sides and a top surrounding a fire chamber; a transverse warm air conduit opening outwardly of said enclosure;
longitudinally extending warm air conduit opening outwardly of said enclosure; said longitudinally extending conduit being positioned over said transverse conduit; means extending be-
tween said conduits to communicate air from said transverse tween said conduits to communicate air from said transverse
conduit to said longitudinally extending conduit; and a smoke exit opening for said enclosure positioned over said transverse onduit.
9. A stove comprising: an enclosure having four sides and a top surrounding a fire chamber for combustible material a being spaced from the side walls of said enclosure and opening outwardly of at least one of said sides of said enclosure; a smoke exit in the top of said enclosure positioned above said warm air conduit, said warm air conduit being positioned
adjacent the combustible material so that flame extends around said warm air conduit; and an inlet conduit bringing air to be heated upwardly and onto the bottom of a region of said conduit that is remote from the region which opens outwardly of
said enclosure.

\section*{4,096,848}

FIREPLACE ASH SYSTEM FOR BASEMENTLESS Willism M. Richman, Hill-Top Heig 69101 Continuation-in-part of Ser. No. 331,666, Feb. 12, 1973, abandoned. This application Nov. 5, 1974, Ser. No. 521,167
U.S. Cl. \(126-120\) Int. C1. \({ }^{2}\) F24B \(1 / 18\)

8 Claims
the horizontal that ashes can fall freely therethrough by gravity alone, said conveyor assembly having a drive motor, drive motor and drive train means being located in one of said regions, the area above said floor and to the side of said fireplace and the area above the ground outside of said building defining a pair of areas of easy human access, said building and earth
defining a building and earth assembly, said building and earth assembly creating an obstruction so great as to leave no passage of over four feet minimum height a human being can pass through from either one of said areas of easy human access so as to enter the space beneath said floor and surrounding said hopper means, said fireplace having a fireplace floor, said gether defining at least a partial barrier to access to the place in which said motor is disposed, said barrier having a servic opening means through it providing access to said drive motor for servicing, said fireplace being substantially spaced from the outer walls of said building whereby said auger is important said hopper having a motor access opening therethrough from portion of said service opening means.

FIREPLACE UNIT WITH SLOPING BED PLATE Alexander John Moncrieff-Yeates, 8609 Hillside Pl., Fairfax, Va. 22030

\section*{Filed Oct. 6, 1976, Ser. No. 729,955 Oct. 6, 1976, Ser. No.
Int. C1. \({ }^{2}\) F24B \(7 / 00\)}
U.S. Cl. 126-121 assembly comprising: a building, said building having a founda- circulating passageway including an incoming room air inle foundation, earth disposed under and against the outer side of into an inlet passageway underlying the bed plate of the fire foundation, earth disposed under and against the outer side of into an inlet passageway underlying the bed plate of the fir
at least a substantial part of said building, a fireplace in said enclosure, at least one vertical passageway defined in part by
wall of said fire enclosure, and an air outlet to a room, the other of said plate members and through which said gas de improvement wherein said bed plate is sloped upwardly in the scends, said first chamber communicating with said second chamber at their upper ends, the ratio \(\xi f\) of the width \(\mathrm{W} d\) of
said second chamber to the width \(W u\) of said first chamber as it flows toward said air outlet. Zealand 176740
U.S. Cl. 126-271 said heating bag is filled with liquid.

Tokyo, Japan
Filed Jul. 23, 1976, Ser. No. 708,189
U.S. CI. 126-350 R
said second chamber to the width \(\mathrm{W} u\) of said first chamber being equal to or less than 0.8, a flue at the upper end of said flue gas exit provided at the lower end of said second chamber

direction of flow of incoming air in the underlying passageway

HEAT ABSORBER FOR A 0 ,96,850 Hen Mastor her for a solar heating system

Claims Filed Feb. 24, 1976, Ser. No. 660,890
Int. Cl. \({ }^{2}\) F24J 3/02

1. A heat absorber for a solar heating system, said absorber including a support tray, a flexible heating bag having inlet and
outlet connections and arranged to be supported in use by said outlet connections and arranged to be supported in use by said
support tray, and a retaining grill or grid positioned in use on the opposite side of said bag from said support tray and engaging said bag so as to control the depth of said heating bag
between said support tray

4,096,851
LIQUID HEATING APPARATUS
Noboru Maruyama, No. 26-14, Shirasagi 2-chome, Nakano-ku,
Claims priority, application Japan, Aug. 11, 1975, 50-96682
\(\qquad\) Cl. \({ }^{2}\) F22B \(7 / 10\), 11, 1975, 50-96682 1. A liquid heating apparatus comprising a vertical rectangular outer body portion, an inner body portion which has a shape substantially the same as that of said outer body portion,
said inner body portion being disposed within said outer body sortion and being spaced therefrom to define an outside water jacket therebetween, two vertically oriented plate members disposed within said inner body portion, said plate member being spaced from each other to define an inside water jacket therebetween, said plate members also being spaced from said
inner body to define therewith a first chamber which extends alongside one of said plate members and through which heated gas rises and a second chamber which extends alongside the

flue gas exit, means defining at one end thereof with said flower end of said first chamber, and a combustion air supply tube surrounding the outside of said exhaust pipe and being ing with an opening in the side wall of said outer body portion and thereby communicating with said combustion chamber.

\section*{4,096,852}

SKIN CONDITIONING INDICATOR
Guy Adams, Monroe, N.Y., assignor to Solitron Devices, Inc.
Tappan, N.Y. Filed Dec. 22, 1976, Ser. No. 753,536
U.S. CI. 128-2 H Int. C. \({ }^{2}\) A61B S/00 \(\quad 4\) Claims

1. A constant current temperature measuring apparatus comprising:
a power source;
flow, said paths be to provide separate paths for curren flow, said paths being characterized as a first leg of the first field effect transistor in said first leg of the circuit; a second field effect transistor in said second leg of the circuit;
feans connecting said source to the drain terminals of said first and second field effect transistors;
resistance means in each of said first and second leg of the circuit, each said resistance means being connected to a effect transistors, terminal of said first and second field efrect transistors, said resistance means in said first leg
including a variable resistance whose control arm is con including a variable resistance whose control arm is con-
nected to the gate of said first field effect transistor and said resistance means in said second leg being connected to the gate of said second field effect transistor; a first terminal in said second leg of the circuit at the point of
connection of said resistance means with the gate of said second field effect transisto
a second terminal in said first leg of the circuit after the
an indicator connecte
an indicator connected between said first terminal and said
second terminal and
means to recombine said separate paths of said first and second leg of the circuit, said means to recombine having a first switch in said second leg, a calibration means in said second leg beyond beyond said first switch, a probe de-
vice in said second leg, a resistor in said first leg, a lead connecting said first leg and said second leg and a second switch connecting the lead to the source in completion of the temperature measuring apparatus.

DEVICE FOR THE INTRODUCTION OF CONTRAST MEDIUM INTO AN ANUS PRAETER tiengesellschent, Mainz, Germany, assignor to Hoechst A diengeselischaft, Frankturt am Main, Germany
Filed Jun. 15, 1976, Ser. No. 696,40
Claims priority, application Germany, Jun. 21, 1975, 2527706 U.S. Cl. 128-2 A

1. A device for the introduction of a contrast medium into a nus praeter formed in an abdominal wall comprising an inle pipe adapted to be inserted into said anus praeter, a housing having an open end, said housing surrounding said inlet pipe
and having an abdominal contact area surrounding said open and having an abdominal contact area surrounding said open
end, the housing being adapted to be positioned with said contact area against said abdominal wall with its open end facing the wall when said inlet pipe is in said anus praeter, and an inflatable bladder contained within said housing separate from and surrounding said inlet pipe, said bladder having a
least one flat surface defining an abdominal wall contact sur face surrounding said inlet pipe and extending radially therefrom for contacting the surface of said abdominal wall sur rounding said anus praeter when the bladder is inflated, and means for holding said contact area of the housing against said abdominal wall, thereby to hold said frat surface or said while the inflated bladder holds said inlet pipe against longitudinal movement.

\section*{4,096,854}

CARDIAC MONITOR WITH RATE LIMIT MEANS Jacob E. Perica, Warren; Wayne F. Poyer, Ann Arbor, Neale F. Koenig, Ypsilanti, all of Mich., assignors to Jacob E. Perica, Warren, Mich.

Filed Mar. 1, 1976, Ser. No. 662,540
Int. Cl. \({ }^{2}\) A 61 B S/02
U.S. C1. 128-2.05 T
diac monitor comprising:
5 Claims
1. A body worn cardiac monitor comprising:
transducer means adapted to be secured to the body of the wearer and adapled representative thereof,
means for receiving the signals from said transducer means
and producing a heart beat rate signal representative of the heart beat rate per unit time,
display means for displaying said heart beat rate signal, manually actuated means or variably establishing a pair of separated digital rate limits, said means for establishing a manually actuated switch operable upon activation to gate an output from the clock to an input for the counter, said counter having an output connected to the display means wher meas, a pair of memories, each memory on

ing an input and a gate connected to each input, said counter output being connected to each gate, and a manually operated switch connected with each gate which, upon activation, stores the instantaneous count in the respective memory, and
means for comparing said heart beat rate signal with said rate limits and means for actuating indicator means when-
ever the heart beat rate exceeds one of said preset limits or falls below the other preset limit.

1. An incentive spirometer for measuring the volume of inspired air or the volume of exhaled air capable of relatively easy assembly comprising an upper cylindrical housing having
an internal cylindrical surface, said upper cylindrical housing having an enclosing top, said top having at least one port means providing communication internally of said upper housing and externally thereof and adapted and constructed to eceive a tubular means when said incentive spirometer is used for measuring the volume of inspired air, a lower cylindrica housing having an internal cylindrical surface of the sam lower cylindrical housing having an enclosing bottom sai upper housing being open at its bottom, said lower housing
being open at its top, said upper housing at its bottom having
first outwardly radially extending annular flange, said lowe first outwardly racially extending annular lange, said extending annular flange, said first flange and said second flang being in confronting relating relationship mating said uppe and lower housings together, means associed winin said firt and said second flange to secure the upper housing and piston being positioned in said secured complementary mating upper and lower housings, saidn piston having outwardy radially extending means at the top portion hereor having bottom portion thereof, said radially extending means hal cylindrical surfaces of the upper and lower housings whereby the said extending means act as guide means against the internal cylindrical surface of the upper housing and virtually frictiondrical surface of the lower housing to permit virtually frictionpiston having an external diameter less than the diameters of the internal cylindrical surfaces of the upper and lower housings whereby an annular space is defined between said piston and said internal cylindrical surfaces of said housings, a flexible imperforate sleeve being positioned in said space, one end portion thereof beerng aiton, the other end portion being affixed metween said first and said second flanges of said housings, said sleeve having a length between its attachment on said piston and its attachment between said flanges of approximater
half of the length of said free floating piston, said upper housing having at least a portion that is transparent whereby any vertical movement of the piston in the upper housing may be viewed, said lower housing having at seast owe housing and providing thereof.

\section*{4,096,856}


8 Claims

1. A portable electronic physiological instrument including: a. separable first and second components, said first compo nent comprising an EKG monitor having a pair of signa inputs, and said second component comprising a defibril lator having a pair of paddle electrodes, wherein said
components have separate housings, each of said housing having a plurality of exterior surfaces;
having a pluraility of exterior surfaces; tongue member means coupled to the housing one of said first and second components and extending from one of said plurality of exterior surfaces thereof;
c. groove member means coupled to the housi ing of tirst and second components and extending from of said first and secong ofterior surfaces thereof, said
one of said plurality of one of member means receiving said tongue member
groans with a translative, sliding fit to provide mechanical
inter
nents; first and second electrical slide connectors located, re spectively, in the housings of said first and second compo nents in proximity to sid said first and second electrical slide connectors each including first and second electrical contacts, said first and second electrical contacts of said first and said second electrical slide connectors contacting each other upon said tongue member means being res ceived in said groove member means to provide electric interconne nents; and
cally connecting said pair of signal inputs to said first and second contacts of said first electrical slide connector, and said second component further comprising means for electrically connecting said pair of paddie electrodes to said first electrical slide connector.

4,096,85
TELESCOPICALLY ADJUSTABLE SURGICAL
Rudaff Cramer Piesenkam, and Juergen J. Hidebrandt, Brunnthal, both of Germany, assignors to Messerschmitt-BoelkowBlohm GmbH, Munich, Germany
Filed Dec. 27, 1976, Ser. No. 754,127
Claims priority, application Germany, Jan. 20, 1976, 2601938 Claims priority, application Germany, Jan. 20, 1976, 2601938
Int. Cl. \(^{2}\) A61F \(5 / 04 ;\) A61B \(17 / 18 \quad 6\) Claims U.S. Cl. 128-84 R

1. A telescopically adjustable surgical instrument, especially for performing an elongation osteotomy, comprising rigio guide rail means including a first end and a second end, reces means in said guide rail means extending from said second en toward said first end, rigid extension ral meing received for axial movement in said recess means of said guide rail means, firs bone connecting means forming part of said first end of saic igid guide rail means, second bone connecting means operavely secured to said rigid extension rail means, first extensio actuator support means operatively connected with said rigid suide rail means, second actuator support means operaitector neans for rigidly but releasably securing said guide rail means and said extension rail means to each other, said first extension actuator support means comprising connecting means located n said rigid guide rail means substantially adjacent to said firs end, wherein said second actuator support means comprise ail meank means rle ably seter theref, and wherei aid connector means comprise set screw means.

VOLUME-RATE RESPIRATOR SYSTEM AND METHOD Theodore B. Eyrick, Reading; Allen C. Brown, Acton, and Neil Hottes, Danvers, all of Mass., assignors to Chemetro Division of Ser. No. 545,287, Jan. 29, 1975, which is a division of Ser. No. 402,677, Oct. 2, 1973. This application Dec. 20, 1976, Ser. No. 752,753
Int. C1. \({ }^{2}\) A61M \(16 / 00\)
U.S. Cl. 128-145.6 \({ }^{\text {Int. Cl. }{ }^{2} \text { A61M 16/00 }} 7\) Claims

1. In a respirator system, the method of delivering a variable but selectable volume of breathing gas at a preselected limited rate, comprising:
withg a gravity-operated driver for vertical motion within a closed housing
defining within said housing an upper control chamber above said driver and a lower delivery chamber below said driver, said chambers being divided by a diaphrag
connected between said driver and said housing; producing a vacuum within said control chamber to lift sai driver and thereby expand said delivery chamber; ontrolling said vacuum to regulate the distance and the rate at which said driver is ifited
admitting breathing gas at substantially atmospheric pres
sure to said delivery chamber only during the lifting of
said driver; said driver;
releasing said vacuum at a controlled and variable rate to enable said driver to fall solely under the force of gravity vacuaximum to contract said delivery chamber;
discharging said breathing gas from said delivery chamber at a rate and pressure limited by the rate of release of said periodically and alternately producing and
vacuum for drawing in and discharging breathing gas in a breathing cycle.

\section*{4,096,859}

APPARATUS FOR PERITONEAL DIALYSIS
Mahesh C. Agarwal, 6040 Bathurst St., Suite 1707, Toronto, Ontario M2R 2A1, and Joseph E. Dadson, 2515 Bathurst St Filed Apr. 4, 1977, Ser. No. 7844,416 Filed Apr. 4, 1977, Ser. No. 784,416
Int. Cl. \({ }^{2}\) A61J \(7 / 00\); BO1D \(13 / 00\); A61M \(5 / 00\) U.S. CI. 128 - 213
1. A dialysis apparatus comprising:
first means for supplying dialysis fuid,
second means for measuring a predetermined quantity of
dialysis fluid,
third means for detecting a minimum quantity of dialysis fluid,
structural means supporting said first means above said second means, said second means above said catheter and said third means below said catheter,
a said fluid flow path interconnecting said first and second means,
second fluid flow path interconnecting said second means and said catheter,
third means, path interconnecting said catheter and said a fourth fluid flow path for fluid draining from said third means,
valve mea
valve means for selectively

(i) blocking said first and third paths while leaving said
second and fourth paths open,
(ii) blocking said second and third paths while leaving said
first and fourth paths first and fourth paths open, and
(iii) blocking said second and fourth paths while leaving said first and third paths open,
and timer/computer means for dict and timer/computer means for dictating the time intervals
during which the valve means is in modes (i), (ii) and (iii) \\ \section*{4,096,860 \\ \section*{4,096,860 \\ DUAL FLOW ENCATHETER}

William F. McLaughlin, 67 Balboa Cove, Huntington Beach, Calif. 92663
Filed Oct. 8, 1975, Ser. No. 620,60
Int. Cl. A61M 5/00
10 Claims

1. An apparatus for simultaneously withdrawing and implacing fluid within a blood vessel comprising:
an insertion conduit suitable for extending into a blood vesan insertion
sel;
a hub
hub connected to said insertion conduit having means to connect said insertion conduit to a device for withdrawing
fluid from a blood vessel; fluid from a blood vessel
insertion conduit to prevent the flow of fluid through said
ind insertion conduit from said blood vessel;
biaxial branch flow device having first and second branches and a main conduit within said device being in said hub;
said first branch within said biaxial flow device adapted for receiving fluid from said insertion conduit; and,
tube connected with said biaxial branch flow device for coaxially passing through said insertion conduit valv means and said main conduit in spaced relationship fro the interior walls of said main conduit to allow fluid flow
therebetween and wherein said tube is connected at on therebetween and wherein said tube is connected at one
end to said second branch and extends at its other end to the end of or beyond the distal end of said insertion con duit.

1. Apparatus for collecting solar heat comprising a substan1ially planar radiation receptor adapted to be supported at an inclination across the path of sunlight, said receptor being composed essentially of thin sheet material and comprising thin front panel exposed to the solar radiation, a back panel and means interconnecting said panels perion thereof so as to
along laterally spaced longitudinal regions ther define between them a shallow fluid-tight chamber subdivided into a multiplicity of long shallow channels for confining liquid filling them to a thin layer and extending from a common plenum space in the lower end, an inlet to said lower plenum
plenum space in its upper end, space for liguid flow thereinto, an outlet from said upper plenum space for outflow of liquid, said channels each being of not more than inch in average depth and being sufficiently limited in width so that liquid filling and being heated in said channels will not distort them and wal-specific gravity gradients to bring hotter liquid perferentially into said upper plenum space, conduit means for conducting liquid in a circuit from
said outlet to a heat exchnage zone and thence back into said said outlet to a heat exchnage zone and thence back into said completely filled with liquid and holding the liquid in said receptor constantly under a substantially uniform limited hydrostatic pressure insufficient to rupture said receptor, and means for continuously circulating the siquid in said circer a
into and upwardly through and from said receptor under into and upwardly through and from said receptor under
constantly low pumping pressure sufficient to prevent substantial deviation from said hydrostatic pressure as said liquid is being circulated,
said heat exchange zone comprising a heat exchanger having therein passageway connected in said circuit with said conduit means for conducting said liquid along one side of heat transfer walls adapted to be contacted over their
other side by a fluid to be heated, said liquid circulating other side by a fluid to be heated, said liquid circulating
means including a pump in said conduit means, means for means including a pump in said conduit means, means for
flowing said fluid through said heat exchanger in contact inperature of liquid in said chamber, means activated by
said sensing means for operating said pump when said emperature exceeds a first predetermined level, a second means for sensing the temperature of liquid being pumped through said circuit, and means activated by said second means for operating said means for flowing said huid hen to lif than said first level. mined level higher than said first level

\section*{4,096,862}

LOCATING OF TUBES IN THE HUMAN BODY alvatore A. DeLuca, 607 Revere Beach BIvd., Revere, Mass. 02151 Filed May 17, 1976, Ser. No. 687,103 U.S. Cl. 128-348 Int. Cl. \({ }^{\text {A661M 25/00 }} \quad 2\) Claims

1. A method for locating internal lines within a passage of a 1. A ment's body, comprising the steps of
(a) inserting a line into a passage of a patient;
(b) inserting a finite radioactive source into the line inserted by step (a), the inserting step (b) including the step of sheath closed only at one end for pre element inside a tion of the radioactive element; and
tion of the radioactive element; and (c) monitoring with a radiation measuring instrument the radioactive source inserted by step (b) and determining
the location of the line at the position of the radioactive the location of the line at the position of the radioactive

> 4,096,863

BAND FOR ANCHORING A CATHETOR OR ANY
OTHER TUBULAR DEVICE TO THE BODY
avid Kaplan; Irving Brezack, both of Sharon, Mass.; Nathan H. Young, deceased, late of Boynton Beach, Fla.; by David Kaplan, executor; by Irving Brezack, executor, both of
Sharon, Mass., and Herbert H. Wapner, Canton, Mass., 25 signors to Baka Manufacturing Company, Inc., Plainville, Mass.
Contin
Continuation-in-part of Ser. No. 612,364, Sep. 11, 1975, abandoned. This application Nov. 29, 1976, Ser. No. 745,804 U.S. CT. 128 Int. Cl. \({ }^{2}\) A61M \(25 / 02\)
 he body comprising;
n extendible primary strap adapted to encircle the portion of the body to which the device is to be anchored, astening means connected to the primary strap for securing it in place on the body
means made of a flexible material and means for connecting one end of the secondary strap mean
to the primary strap intermediate the ends of the primary
strap,
strap,
a relatively rigid clip having an eye through which another end of the secondary strap means may be threaded to form a loop for encircling the device,
means for securing the clip to the primary strap adjacent the one end of the secondary
respect to said one end,
and additional fastening me
ondary strap means for retans at the other end of the secwith the loop tightly bound about the device

\section*{4,096,864}

FLUID CARRYING SURGICAL INSTRUMENT OF THE FORCEPS TYPE
Harold D. Kletschka, Minneapolis, and Edson D. Rafferty,
Excelsior, both of Minn., assignors to Bio-Medicus, Inc., Minnetonka, Minn.
Continuation of Ser. No. 562,126, Mar. 26, 1975, abandoned,
Which is a continuastion of Ser. No. 446,408, Feb. 28, 1974,
abandoned, which is a continuation-in-part of Ser. No. 384,461,
Aug. 1, 1973, abandoned, which is a continuation of Ser. No.
198,900, Nov. 15, 1971, abandoned. This application Apr. 8,
The portion of the 1976, Ser. No. 674,916
Int. Cl. \({ }^{2}\) A61B 17/28; A61M \(1 / 00\) U.S. Cl. 128-35

44 Claims


\section*{33. A suction surgical instrument comprising}
(a) at least one elongated leg member of predetermined length and having a functional end constructed to perform
a surgical function; a surgical function
of said elongated le being adapted for connection to a sourceof flunduit tube (c) said fluid conduit tube terminating in on fluid pressure; predetermined cross sectional size disposed proximate the extreme functional end of said one elongated member, said open end lying in a substantially oblique plane which transects the fluid conduit tube, whereby the cross sec-
tional size of the open end is greater than the internal tional size of the open end is greater than the internal
perpendicular cross sectional size of the fluid conduit perpendic
tube:
(d) and first and second transverse openings formed through the wall of the fluid conduit tube in a position spaced from
said open end, said transverse openings being of fesser said open end, said transverse openings being of lesser
cross sectional size than said open end and disposed on opposite sides of the fluid conduit tube.

METHOD AND APPARRTUS 4,096 FOR MONITORING A TIMED FAILURE CONDITION RELATIONSHIP IN A CARDIAC PACER
Albert A. Auerbach, New York, and Sidney Steinberg, Spring
Valley, both of N.Y., assignors to Medalert Corporation, Nem York, N.Y.

Filed Mar. 8, 1976, Ser. No. 664,952 Int. Cl. \({ }^{2}\) A61N \(1 / 36\)
U.S. CI. 128-419 PT
U.S. Cl. \(128-7\) Claims pacer for cardiac pacing and condition monitoring, including generating means for providing periodic cardiac stimulating signals over a predetermined time period, sensing means re--
sponsive to cardiac activity for providing an electrical signal in sponsive to cardiac activity for providing an electrical signal in
accordance with said cardiac activity, comparing means for comparing a threshold signal level to said electrical signal, and

\section*{P}
monitoring means providing a first output signal for changing the electrical characteristics of the signals provided by said generating means by a first amount sufficient to be discernible did not exceed said threshold level, said sensing means responsive to each spontaneous cardiac event for resetting said gener ating means to the initial level of said predetermined time period, the improvement comprising means for providing a first signal corresponding to each said initial level, means for providing a second signal in accordance with each said spontafirst and second signals, means for generating a second output signal in response to said first and second signals not coinciding, said lack of coincidence indicating a sensing failure, and means responsive to said second output signal for changing the electrical characteristics of the signals provided by said gener
ating means by a second amount sufficient to be discernible.

RECHARGEABLE BODY TISSUE STIMULATOR WITH RECHARGEABLE Bobert E. Fischell, Silver Spring, Md., assignor to The Johns Hopkins University, Baltimore, Md. Division of Ser. No. 682,505, Apr. 30, 1976, abandoned. This application Jul. 29, 1977, Ser. No. 820,545 U.S. CI. 128-419 PG

1. An implantable stimulator for applying electrical stimula ion to body tissue of a patient comprising,
ion to body tissue of a patient comprising,
means constituting a source of operating energy
generator means operably connected to receive operating energy from said source means for generating said electrical stimulation,
said generator means including a circuit means forming a first primary generator of electrical stimulation and circuit means forming a second
back-up electrical stimulation, circuit means operably connected to said first primary and second stand-by generators for applying said electrical stimulation, and
ontrol means responsive to the output of said first primary generator for selectively rendering said second stand-b said first primary is not properly generating said electrical stimulation.--

APPARATUS FOR PYROLYZING TOBACCO Terence Michael Long, Yatton, and Clifford Hendrik Henneveld, Oldiand Common, both of England, assignors to Impe rial Group Limited, London, England
Claims priority, application United Kingdom, Oct. 10, 1975, 1648/75
U.S. C. 131-171 R R C. \({ }^{\text {In }}\) A24F \(1 / 10,47 / 00\)

1. Apparatus for use in determining the total particulat matter in tobacco smoke comprising, (a) a filter device, (b) within the filter device a filter for extracting particulate matter
rom tobacco smoke passing through the filter, (c) a reusable non-combustible cartridge for holding a charge of tobacco and aving an inlet and an outlet, (d) means for mounting the carriage when charged with tobacco on the filter device such
hat air passing through the tobacco charge will pass from th cartridge outlet through the filter, (e) heater means for pyroly sing the tobacco charge within the cartridge, and for enclosing t least a portion of the cartridge including the inlet tobacco
o pump means to draw air continuously through the tobacco fin pump means to draw air continuousiy through the tobacco heater means to pyrolyse the tobacco charge, (ii) for controlling the pump means to draw air continuously through the
charge and thence through the filter until the charge has bee completely pyrolysed, and, (iii) for thereafter resetting th apparatus for pyrolysis of a further charge of tobacco within apparatus for
the cartridge.

SMOKING APPARATS \({ }^{4,096,868}\) MND METHODS O CONSTRUCTING AND ATDIUING SAME Tom Norman, Flint, Mich.
\[
\begin{aligned}
& \text { Filed Nor. } 5,1976, \text { Ser. No. } \\
& \text { Int. Cl. }{ }^{2} 24 \mathrm{~F} \text { 1/30 }
\end{aligned}
\]
U.S. CI. 131-173
1. A smoking apparatus comprising:
an open top bottle of the commonly-
an open top bottle of the commonly-available type having a
elongated upper neck portion with a cross section substantially smaller than a similarly oriented cross section of said bottle near the bottom closed end of said bolte, said bottle being substantially of the same general configuration as said bottle being segmented
including a closed bottom end and an open top section large enough to enable standard size ice cubes to pas therethrough, and an upper bottle portion including a
open top end and an open bottom section adapted open top end and an
detachably engage said open top section of said lower detachably eng
first aperture provided in said lower bottle portion, said first aperture having removably disposed therein a tub extending from said first aperture;
a pipe bowl for retaining therein the outer end thereo product, while the inner end of said tube extends down wardly into the interior of said lower bottle portion int
close proximity with said closed bottom end of said lowe close proximity with said closed bottom end of said lower
/or ice cooling medium selectively disposed in said lower bottle portion for cooling smoke which passes from said mokable product through said tube into said lower bottle portion;
secord aperture provided in said lower bottle portion, said se ond aperture being disposed above the level of said ooling medium to serve as a ventilation hole for said apparatus;

a removable stopper member disposed in said open top end of said upper bottle portion to substantially cover and seal said open top end;
said stopper member having provided therethrough at least one aperture; and
a tube provided in said aperture of said stopper member and extending outwardly therefrom to enable a user of said smoking apparatus to inhale smoke therethrough.

FORMULATION FOR THE DISSOLUTION OF GYPSUM Michael B. Lawson, Duncan, Okla., assignor to Halliburton Company, Duncan, Okla.
\[
\begin{aligned}
& \text { Duncan, Okla. } \\
& \text { Filed May 5, 1977, Ser. No. } 794,277 \\
& \text { Int. C.2. }{ }^{2} \text { C23G } 1 / 02
\end{aligned}
\]
U.S. Cl. 134-3 10 Claims
1. A method for dissolving gypsum comprising contacting said gypsum with a solvent composition consisting essentially of water and an agent selected from the group consisting of ydroxamic acid, represented by the formula

alkali metal salt of said hydroxamic acid, an amine salt of said hydroxamic acid, an alkanol amine salt of said hydroxamic gen, alkyl groups having 1 to 10 carbon atoms and the group ?
> \(C^{\prime N-O H}\)
> он

and further wherein said salts are those derived from the reac tion of said acid with alkali metal hydroxides, ammonia, ammo
nium hydroxide, ethylenediamine, monoethylamine
methylamine, monoethanolamine, diethanolamine, triethanol- from said heating element during the drying operation comamine and mixtures thereof. prising a shallow receptacle disposed on said bottom wall

4,096,870
METHOD FOR CLEANING SOFT HYDROPHILIC GEL CONTACT LENSES
John A. Manfuso, Jr., Chevy Chase, Mc., assignor to Burton,
Parsons and Company, Inc., Washington, D.C Parsons and Company, Inc., Washington, D.C.
Filed Jun. 9,1977 , Ser. No. 805,147 Filed Jun. 9, 1977, Ser. No. 805,147
Int. Cl. \({ }^{2}\) B08B \(3 / 08\)
U.S. Cl. 134-28 Int. Cl. \({ }^{2}\) B08B 3/08

hydrophilic polymer gel contact lenses comprising: hydrophilic polymer gel contact lenses comprising:
dispersing an effective cleaning amount of an eye-compatiformulation being in the form of a tablet consisting essentially of pancreatin 4 X , sodium chloride and boric acid; contacting said lenses with said slurry for at least 10 minutes to remove said proteinaceous deposits; and
rinsing the cleaned lenses to remove pancreatin from the lens
surfaces.
between said heater and said bottom wall for collecting a sma quantity of the water employed in the washing operation.

\section*{4,096,873} IMMERSION CLEANER
Karl G. Otzen, Brookield, Wis., assignor to Safety-Kleen Corporation, Elgin, III.
Filed Jun. 20, 1977, Ser. No. 808,169 U.S. CI. 134-135

Eftichios Van Vlahakis, Northbrook, III.
Continuation-in-part of Ser. No. 614,30, 306, Sep. 17, 1975, abendoned. This aplication Apr. 13, 1976, Ser. 17, 1975, abandoned. This application Apr. 13, 1976, Ser.
Int. \(\mathrm{Cl} .^{2}\) B08B \(7 / 04 ;\) C \(23 \mathrm{G} / 1 / 02\) U.S. Cl. \(134-40\)

1 Claim
1. A method of opening domestic or industrial drain clogs comprising of the steps of:
a. contacting said clog with an aqueous sulfuric acid composition, consisting essentially of an aqueous solution of between \(80.8 \%\) to \(84.5 \%\) by weight of sulfuric acid,
\(0.1-0.5 \%\) by weight of corrosion inhibitors, and \(0.1-0.5 \%\) by weight of corrosion inhibitors, and
\(15.0-19.1 \%\) by weight of inert materials including \(10-19 \%\) by weight of water, to dissolve said clog in less than 5 minutes;
minutes; \(\begin{aligned} & \text { baid composition producing heat of solution upon dissolu- }\end{aligned}\) tion with water in said drain adjacent said clog in the raise the temperature of fluid adjacent said clog in the range of about \(161^{\circ} \mathrm{F}\left(71.6^{\circ} \mathrm{C}\right)\) to \(172^{\circ} \mathrm{F}\left(77.8^{\circ} \mathrm{C}\right)\); and c. flushing said dissolved clog material with water.

\section*{4,096,872}

HEAT SHIELDING STRUCTURE FOR DISHWASHERS Ky., assignors to General Electric Company, Louisville, Ky Filed Mar. 3, 1977, Ser. No. 774,208
U.S. Cl. 134-105 t. Cl. \({ }^{2}\) B08B 3/02. \(13 / 00\)
1. In a dishwasher including a tub formed of a material subject to deformation under heat, said tub including a sloping
bottom wall, and a heating element for drying article placed in said tub, said heater being in relatively close spaced relationship with a portion of said bottom wall, a heat shielding structure for preventing deformation of said bottom wall under heat
1. An immersion cleaner for parts and articles comprising, in combination, a receptacle for articles, a cover unit for a con lainer of cleaning liquid, a cam plate unit disposed on said cover and including a circumferentially extending cam track receptacle support and cam follower unit having a vertical axis of rotation and being disposed in use above said cam plate, said receptacle support unit including means adapted to engage saic cam track and to ride thereover upon oscillation of said support unit about said axis thereof, means attached to a portion of
said support unit for forming an operative connection between said receptacle and said support unit, said connecting means extending through a portion of said cover, means on said support unit for receiving a driving force for oscillating said sup.
to a container for a cleaning liquid, said securing means being
adapted to permit closing of said cover unit to prevent escape adapted to permit closing of said cover unit to prevent escape
of the contents therefrom and to permit opening said cover unit for access to said receptacle and to the interior of said cleaning liquid container.

WEATHER SHELTER
Mark G. Weatherly, Lyncbburg, Va., assignor to The Raymond Lee Organization, Inc., New York, N.Y., a part interest
\[
\begin{gathered}
\text { inization, Inc., New York, N.Y., a } \\
\text { Filed Apr. 8, 1977, Ser. No. } 885 \text {, } \\
\text { Int. C.' }{ }^{2} 04 \mathrm{~F} \text { 10/04 }
\end{gathered}
\]
U.S. Cl. \(135-5\) R

3 Claims
1. A disassembleable and portable weather shelter, compris-
ing plurality of like shelter supports equidistantly horizontally plurality of like sheter supports equidistantly horizontally
spaced in parallel vertical planes, each support consisting of a curved elongated unit having a central section resem-
bling the letter C said sectiov having a lower end portion bling the letter C, said section having a lower end portion ing in a bottom pointed end, each section having an upper end portion shorter than the lower end portion and exnding upwards and outwards to form a stub, each of said upports including two curved hollow tubes, one slidable nd adjustably positioned within the other
connector members being one less than, the number of upports, each of said connector members number of pposite ends and being connected at each having tpaced corresponding one of a corresponding pair of next-adjacent supports and extending horizontally therebetween the combination of supports and connector members defining a frame; and
a flexible waterproof cover applied over the frame and secured thereto, said cover having an opening extending vertically from the stubs to the lower end portions and extending horizontally along the entire frame and including end parts extending next-adjacent the supports at the opposite ends of said plurality of supports, each of the end parts having screened cutouts formed therein and flaps for selectively covering said cutouts.

4,096,875
PRESSURE FLUID-ACTUATED OSCILLATOR
valve the inlet port being in communication with one of the outlet ports during each part-cycle of the oscillating change-over, and the other outlet port being in communication with a respective one of the exhaust ports during each part-cycle, and each of the timer valves being set a a timing period determining the respective part-cycle;

(c) control means for directly adjusting the timing period of one of the timer valves whereby the duration of the parttimer valve is directly adjusted; and
d) means sensitive to the duration of said part-cycle for determining the timing period of the other timer valve.

\section*{4,096,876}

\section*{CONDENSATE CONTROLLER}

\section*{Otho E. Ulich, Three Rivers, Mich, assignor to Armstrong} Machine Works, Three Rivers, Mich. assignor Filed Jul. 2, 1976, Ser. No. 702,150
U.S. Cl. \(137-185\)

Norman Stewart Jones, Leighton Buzzard, and Geoffrey Rich ard Bennett, Linslade, both
Limited, Londion, England
Filed Mar. 5, 1976, Ser. No. 664,185
Claims priority, application United Kingdom, Mar. 7, 1975
Int. Cl. \({ }^{2}\) A61M \(16 / 00\)
U.S. C. \(137-102\) Claim
1. A pressure fluid-actuated oscillator comprising
(a) a double-piloted five-port valve including an inlet por
for receiving the pressure fluid, two outlet ports and two
exhaust ports; exhaust ports;
to a position above the upper end of said inlet conduit whereby
exhaust ports;
( two biased timer valves respectively connected to a vapor can continuously escape from the bucket regardless of
respective one of the outlet ports to control oscillating the vertical position of the bucket in the compartment, the
changeover between two part-cycles of the five-port improvement which comprises: wall means defining a closed change-over between two part-cycles of the five-port improvement which comprises: wall means defining a closed
cosper
chamber connected to said casing and located below the bottom wall thereof, an inlet connection for supplying vapor and condensate into the upper end of said chamber, said chamber defining a vapor space for absorbing pressure surges in the
pressure of the vapor and condensate fed into said chamber pressure of the vapor and condensate fed into said chamber,
said inlet conduit extending downwardly through said chamber to a location close to, but spaced upwardly from, the lower end of said chamber, the lower end of said inlet conduit defining an opening providing the sole communication between said chamber and the interior of said inlet conduit, said opening as
defined at the lower end of said inlet conduit being located defined at the lower end of said inlet conduit being located
below said inlet connection so that the vapor and condensate entering through said inlet connection flow downwardly to the lower end of said chamber and then the vapor flows upwardly through said opening into said inlet conduit and carries with it portions of condensate whereby to maintain the level of con-
densate in said chamber close to the lower end of said inlet densate in said chamber close to the lower end of said inlet
conduit, said blow-thru conduit extending through the lower end of said chamber for discharging outside the chamber the vapor that flows through said blow-thru conduit, and a flowimpingement plate positioned adjacent the upper end of said inlet at an elevation below the upper end of said blow-thru
conduit, said plate having a lower concave surface opening conduit, said plate having a lower concave surface opening
downwardly and being disposed in confronting relationship to the open upper end of said inlet conduit, the lower and radially outer edge of said concave surface being disposed radially
outwardly of the upper edge of said inlet conduit outwardly of the upper edge of said inlet conduit.
the force of said bias means and permitting said move pump-out passage selectively communicating said first chamber to atmosphere, Whereby upon inflow of water from said supply line said piston means to a fully charged position, whereupon said valve mean opens to permit flow of said water to said outlet device, and whereby upon termination of said flow and movement of said piston away from said fully charged position under the urging of said bias means said valve means closes, water in said firs by said piston in a pump-out stroke, and said stroke simultaneously draws water from said water outlet device into said second chamber.

4,096,878
VALVE GROUUP SUBASSEMBL
tanley B. Adams, Yorkville; Gregory A. Loebbaka, Aurora, and Michael P. Morge, Oswego, all of Ill., assignors to Caterpillar
Tractor Co , Peoria, III. Filed Apr. 9, 1976, Ser. No. 675,360

Int. Cl. \({ }^{2}\) Fi6K \(51 / 00\)
U.S. C1. 137-351

FREEZEPROOF SANITARY WATER SUPPLY E. R. Arledge, II 5600 "C"'
E. R. Arledge, II, 5600 "C"' St... Little Rock, Ark. 72205
Filed May 17, 1976, Ser. No. 687,327 -281 Int. Cl. \({ }^{2}\) E03B \(9 / 04\)


1. A freeze-proof sanitary valve assembly comprising: housing forming a combined cylinder and liquid reser and adapted to be buried in soil beneath a local frost line piston means slidable in said cylinder and normally sea
ingly dividing said reservoir into variable first and second chambers;
bias means urging said piston means to a position minimizing the volume of said first chamber;
pressurized water supply line selectively communicating to said first chamber
to atmosphere and cor device through which water passes ber;
ber, , 10 said second chamselectively communicating said supply line to means for device when said piston means has moved to minimize said volume of said second chamber;
said bias means being overcome by water pressure from said supply line exerted upon said piston means in opposition
1. In a vehicle having hydraulically operable mechanism means for providing controlled delivery of hydraulic fluid Murality pressurized supply to said mechanisms including plurality of main valves and a plurality of pilot valves for having removable movable valve members, a cab, a housing carried by the vehicle remotely of the cab, and operator-controllable controls in said cab for operating said pilot valves, the mprovement comprising: a unitary support; means mounting said main valves to said support; means mounting said pilo valves to said support; a manifold; means mounting said mani-
fold to said support; interconnecting duct means hydraulically interconnecting said valves and manifold; connecting means for removably connecting said interconnecting duct means to aid supply; connecting means for removably hydraulically connecting said main valves to said vehicle mechanisms; con-
necting means for removably hydraulically connecting said pilot valves to said controls in said vehicle cab; and means for removably mounting said support with said valves, duc means, and connecting means as a unit in said housing with said valves disposed to permit removal of said removable valve members from the valves with the valve body portion being mainained mounted to the support.

ADJUSTABLE FLUID FLOW REGULATOR uan Ricardo Serur, Brookline, and Herbert Heinz Loeffle Arlington, both of Mass., sssignors to International Biomedical Laboratories, Inc., Boston, Mass.
Continuation-in-part of Ser. No. 715,907, Aug. 19, 1976, abandoned. This application Sep. 27, 1976, Ser. 19, 1976, U.S. C. 137-391 Int. Cl. F16k 21/18
delivery system, the regulator comprising: an upper fluid chamber having a fluid inlet and a fluid outlet and further having means for maintaining a predetermined level of fluid in said upper chamber; a separate lower fluid chamber having a fluid inlet in fluid flow communication with said upper chamber fluid outlet; and vent means for communicating atmospheric pressure to each said chamber; the improvement in which structure defining a restricted metering orifice of prede-

\section*{}
termined cross-sectional area at said lower chamber fluid inlet in the fluid flow path from said upper chamber to said lower chamber for metering fluid flow to said lower chamber, said
tube connected to said metering orifice structure; the vertical tube connected to said metering orifice structure; the vertical
distance between said lower chamber and said upper chamber is adjustable to vary the distance between said metering orifice and said predetermined level in said upper chamber whereby fluid flow rate between said chambers may be adjusted by adjusting said vertical distance.

\section*{4,096,880}
said valve plunger
said valve plunger, smaller than said body bore but largertion of a diameter a gland, and each having a stem portion adapted to closely but slidably fit within an end of a gland opening,
each separator having a circular opening of a larger diameter than the external diameter of said valve plunger, such opening extending from the side face at saic head portion portion and merging thereat with a smaller diameter porportion and merging thereal with a smanler diamer por-
tion which closely but slidably fits over said valve plunger,
said separators and said glands being arranged in sequence on said valve plunger and stationary within said body bore with a pair of separator head portions on opposite side
faces of a respective one of said glands and with side faces of adjoining head portions in abutment, said stem portions of the separators on opposite sides of a gland closely but slidably fitting within opposite ends of a respective gland opening, the end faces of such stem portions being held from abutment to provide an annular space thereberween, and a seal within each such spacid sulare along he elerior surace of slunger
aid separator circular openings providing annular chambers
abalve plunger, which chambers are separated axially along said plunger and which communicate with respective ports of said valve body, and
said valve plunger being hollow and having radial ports of fuid between said valve body ports.

\section*{NUCLEAR-REACTOR 4,096,881}

4,096,881 valve
Hans-Peter Schabert, and Erwin Laurer, both of Eriangen, Germany, assignors to Kraftwerk Union Aktiengesellschaft, Mulheim an der Ruhr, Germany
Filed Jun. 26, 1975, Ser. No. 590,674
Claims priority, application Germany, Sep. 26, 1974, 2446044

CARTRIDGE VALVE
John C. Lemmon; Donald R. Olson, both of Salem, and Dean E. Zepernick, Hanoverton, all of Ohio, assignors to Hunt Valve Zeperrick, Hanoverton, all of Ohio, assignors to Hunt Valve Filed Sep. 15, 1976, Ser. No. 723,320
U.S. CI. 137-454.2

16 Claims

1. A fluid control valve, comprising
alve body having a bore, and a plurality of lateral port spaced-apart in a direction axially of said bore and each cartridge comprising an ax
valve plunger, a plurality of similar secable, cylinderica rality of similar plands surrounding separators and a plurality of similar glands surrounding said plunger in predetermined sequence axially of the latter
said glands each being of an external diameter to closely bu means on an exterior surface to seal against fluid flow along said bore, each of said glands having a circular
U.S. C. 137-492

9 Claims

1. A fast acting valve for use in the live steam line of nuclear reactor installation, which steam line leads from a a. a valve housing having a valve seat with an aperture corresponding to the diameter of the live steam line; b. a valve disc adapted for reciprocal motion with respect to said valve seat to move from a position where it fully closes said aperture to a position where said aperture is all
corresponding to the cross section in the live steam line
said valve disc supported for said reciprocal motion on a pistons to move apart from each other, said spring being com-
valve stem;
c. a first piston and cylinder arrangement having a piston pressed with an advance of the second piston so that force
valve stem;
c. a first pisto
a first piston and cylinder arrangement having a piston
rigidly coupled to said valve stem, said piston having a range of travel at least equal to the travel of said valve dis between said fully open and fully closed positions;
d. a second piston and cylinder arrangement with a range of
travel between first and second end positions less than the travel between first and second end positions less than the
range between said fully opened and fully closed position coupled to said stem such as to be moved to said first end position when said valve disc is in the fully closed position
and such as to permit moving said valve disc and stem and such as to permit moving said valve disc and sten
from said closed position to a first intermediate positio when at its second end position;
e. means coupled to the inlet side of said valve for supplying the steam pressure therein to said first piston and cylinder
arrangement when there is a leak in the steam line to move arrangement when there is a leak in the steam line to move
said piston and move said value disc from a fully open to a fully closed position and thereby move said second piston to its first end position; and
second means coupled to said inlet and responsive to an excess pressure above normal operating pressure at said
inlet to admit steam to said second piston cylinder ar rangement to move said piston from said first end position to said second end position thereby opening said valve to said first intermediate position.

4,096,882
Kazuhiko Yano; Kazuhiko Otsuki, both of Nishinomiya, and Ryota Ohashi, Sakai, all of Japan, assignors to Kanzaki Kokyukoki Mfg. Co., Ltd., Amagasalki, Japan
Filed Dec. 20, 1976, Ser. No. 752,198
Claims priority, application Japan, Dec. 24, 1975, 50-155529; Int. C. \({ }^{2}\) F15B \(13 / 06\) U.S. CI. 137-596.12

11 Claims

1. A control valve means comprising a valve case having an inlet port which is to be connected to a fluid pump, at least one inlet port which is to be connected to a a lluid pump, at least one
outlet port which is to be connected to a fluid operated means, and a fluid drain port which is to be connected to a fluid tank a rotor rotatably arranged in the valve case which rotor provides fluid passages for communicating said outlet port selec
tively to said fluid drain port at a neutral position thereof or tively to said fluid drain port at a neutral position thereornling
said inlet port at an operation position thereof; and a handling means for rotating said rotor selectively to one of said posi tions, characterized in that said rotor is provided with a hollow space having an opened rear end in which space are slidabl
inserted a first piston defining a first fuid chamber in the inserted a first piston defining a first fluid chamber in th
hollow space before the said piston and a second piston defin hollow space before the said piston and a second piston definpistons, said first piston further defining a fluid passage for communicating said inlet port to said outlet port within sai hollow space outside the first piston, and said first fluid cham
ber being communicated to said outlet port through a fluid perssage formed between the rotor and first piston at said opera tion position of the rotor, said first and second fluid chamber being in communication to each other through a throttled fluid passage formed in the first piston, and said second fluid chamdrain passage formed in the rotor; a compression spring prodrain passage formed in the roter; a compression spring pro-
vided between said first and second pistons for biasing the
pplied to the first piston by such spring is enlarged; said first piston being provided at the periphery thereof with a blocking ortion which blocks said fluid passage for communicating the tor when the ourtiet port at said operreated by a predetermined distance; and means for advancing said second piston by a selected distance.

CLOSED.CENTER CONTROLLER AND NEUTRAL BYPASS ARRANGEMENT THEREFOR James K. Yip, Richfield, Minn., assignor to Eaton Corporation, Cleveland, Ohic

U.S. Cl. 137-596.13

1. A closed-center controller for fluid pressure operated (a) , said controller comprising:
(a) a housing having a fluid inlet port, a fluid return port adapted to be connected to reservoir, and a pair of control fluid ports adapted for connection to a fluid pressure
operated device;
(b) valve means disposed within said housing and defining a
(b) valve means disposed within said housing and defining a
neutral position, said valve means including a generally neytral position, said valve means
cylindrical, hollow valve member;
(c) said housing defining inlet passage means in fluid communication with said fluid inlet port and said valve means defining first fluid passage means in continuous fluid compassage means being disposed toward an axial end of said valve means;
(d) said valve means defining a variable, main flow control orifice having a zero flow area when said valve means is in said neutral position, said orifice having a gradually insaid neutral position, said orifice having a maximum flow area capable of passing a maximum system flow; (e) said housing defining return passage means in fluid communication with said fluid return port and said valve means defining second fluid passage means in continuous fluid communication between the interior of said hollow said return passage means; said reurn passage means;
nicating between said fing bypass passage means commuinterior of said sollow first fluid passage means and the axial end thereof hillow valve member, toward said one variable bypass orifice bypass passage means including a maximum when said valve means is in said neutral position and progressively decreasing toward zero as said valve means is displaced from said neutral position; and (g) said bypass passage means, when said bypass orifice is at a maximum flow area, being capable of passing not more than about five percent of said maximum system flow
\(\stackrel{4,096,884}{ }\)
Charles Horowitz, Niles, Ill., assignor to Sloan Valve Company Franklin Park, III.
\[
\begin{aligned}
& \text { Park, III. } \\
& \text { Filed Dec. 20, 1976, Ser. No. 752,131 } \\
& \text { Int. Cl.2 F16K } / 1 / / 16
\end{aligned}
\]
U.S. Cl. 137-627.5

1. A relay valve for use in vehicle air brake systems including a housing having a service port, a supply port, at least one delivery port, and an exhaust port, a piston movable in sai housing in response to pressure at said service port to contro communication between said supply and delivery ports, shuttle movable in said housing to control communicatio
between said exhaust and delivery ports,
said shuttle having a groove and a sea
shuttle groove, sealing surfaces on said piston and housing, spring means urging said shuttle seal into sealing engagement with said piston and housing sealing surface
thereby closing communication between said supply and thereby closing communication between said supply and
delivery ports and between exhaust and delivery ports, and vent means connecting said shuttle seal groove and said exhaust port, to prevent pressure buildup behind said shutle seal.

\section*{4,096,88}

METHOD FOR SEALING LEAKING PIPES AND REPAIR Essebagners, NOR USE IN THE METHOD
an Essebaggers, Nieuwerkerk aan de IJssel, Netherla
signor to B.V. Neratoom, The Hague, 's-Gravenhage
Filed Feb. 2, 1976, Ser. No. 654,398
Claims priority, application Netherlands, Feb. 5, 1975,
501372 Int. Cl. \({ }^{2}\) F16L 55/18; F28F 11/00
U.S. Cl. 138-97

5 Claims

1. A method for sealing off a leaking pipe in a bundle of pipes
having first and second open ends terminating, respectively, in spaced apart first and second header plates of an apparatus adapted to transfer heat between a fluid flowing through the
pipes from the outer side of one header plate to the outer sid pipes from the outer side of one header plate to the outer side
of the other header plate and a liquid flowing through the space surrounding the pipes between the inner sides of the
adjacent to the inner side of the first header plate to permit liquid to enter the pipe from said surrounding space and to prevent thermal stresses in the pipe, and sealing the openings to the first and second ends of the pipe with first and second header plates, respectively, wherein the improvement comprises:
making at least one opening through the wall of said leaking pipe adjacent to the inner side of the second header plate ond the pipe interior at the at least one gitudially dividing the interior of the pipe at said and second ends into first flow paths connecting the intefior of the pipe inward of the severed portion and the at least one opening with the inner sides of the first and second closure members, respectively, and second flow paths berbers, and the severed portion and the at least one opening in the pipe wall, respectively, such that liquid passing through the severed portion and the at least one opening through the pipe wall will traverse the entire ength of the pipe and flow past the inner faces of the first of stagnant liquid adjacent to the closure members.

4,096,886
CLAMP FOR REPAR OF LEAKING UNDERWATER
PIPELNES
Ronald Albert Daspit, 2401 Delille St., Chalmette, La. 70043
Filed May 2, 1977, Ser. No. 784,340
IS Cle 138 Int. Cl. \({ }^{2}\) F16L \(55 / 16\)

1. A clamp for repair of leaking underwater pipelines em ploying two matching semicircular segments with longitudinal apertures in said segments to secure them together aligning slots in each opposing faces of the segments, elongated seals in said slots, annular seals at the ends of the segments, adapted to seal the clamp against leakage from the pipe on which it is mounted and circular grooves adjacent the ends of the clamp. externally thereof, a shroud spaced from the circular grooves plurality of ribs supporting the shroud to the clamp, and a plurality of apertures spaced about the periphery of the shroud for passage of liquid therethrough.

MULTIBORE CONDUIT
MULIBORE CONDUIT
Kenneth F. Streit, Mt. Prospect, III., assignor to Phone-Ducs, Inc., West Chicago, IIl. 1. An elongated lightweight injection molded plastic conduit wall means male and female ends comprising: an enclosing enerally flat parallel walls having adjacent ends intercon
nected by integral radial portions to define an elongated butyl interposed between and mutually securely bonded smooth surfaced, generally planar rectangular passage therein with partition wall means integral with said enclosing wall means to divide said passage into a plurality of elongated passageways, a plurality of longitudinally spaced transversely continuous reinforcing ribs extending outwardly from a peripheral surface of said enclosing wall means, said ribs extend-
ing completely around the periphery of said enclosing wall ing completely around the periphery of said enclosing wall
means, a plurality of transversely extending ridges extending outwardly from the peripheral surface each of said parallel walls, said ridges being spaced from one another and from said ribs and said ridges being parallel to said ribs and to one an-

other with at least two elongated ridges on each wall between adjacent pairs of ribs, said ridges each having an elongated dimension less than the dimension between opposite edges of
an associated wall with all of said ridges terminating in coman associated wall with all of said ridges terminating in com-
mon planes extending generally parallel to said passageways and spaced from said radial portions, each of said paidges having a substantially constant height and cross-section throughout a
major portion of the length thereof, each of said ribs having a constant height throughtout the length thereof with the height of said ribs being substantially greater than the height of said ridges, the enclosing wall means between said ribs and said
ridges being flat and having said given thickness dimension. ridges being flat and having said given thickness dimension.

HALOGENATED BUTYL INTERLAYER FOR REINFORCED ELASTOMERIC HOSE ARTICLES Gene E. Stefano, Littleton, and David N. Tally, Arvada, both o
Colo., assignors to The Gates Rubber Company, Denver, Colo Filod., assignors Jul. 7, 1975, Ser. No. 593,591 U.S. C. 138-125

12 Claims

1. A unitary reinforced vulcanized elastomeric hose article for conveying fluids including an inner tube and outer cover which are composed of dissimilar polymers not readily bond
able to one another comprising: ane to one another comprising:
to the conveyed fluids and composed of a terpolymer of
mixed mono-olefins and polyolefins;
an outer heat setting elastomeric cover
a reinforcement embedded within the hose article and tele-
scoped over and free from contact with the inner tube;
an elastomeric tie gum layer of a heat setting halogenated
buty interposed between and mutually sec
to each of said inner tube and outer cover; said tie gum layer exhibiting a substantially low ity to the conveying fluids than said given permeability to thereby provide an internal fluid barrier for the hose article and protection to the embedded reinforcement.

WEAVING LOOM
drianus Johannes Franciscus Larmit, Moergestel, Nethe lands, assignor to Ruti-te Strake B.V., Deurne, Netherlands Claims priority, application Netherlands, Ma 7605882
U.S. Cl. 139-435 Int. Cl. \({ }^{2}\) D03D 47/28

1. A loom comprising two sheets of warp threads which ar womentarily held in diverging planes to form a weaving shed in position at one cunnel for wefts, a blowing nozzle arranged such shed by means of a fuid discharged from wefts through main tensioning device arranged in position at the nozzle, and of such shed, operating with a fluid jet, to tension inserted wefts during the heating up movement of the loom, wherein he improvement comprises so arranging the jet that the jet issues substantially, transversely, and freely across the convey ing tunnel to suck in the weft and is caught by a passage disdevice similar to the main tensioning device is provided at the main tensioning device, the main and auxiliary tensioning devices being used for normal and startup operations, respecively, and each having fluid pressure supply means for normal or startup operation

\section*{4,096,890}

WOVEN FABRIC UTILIZING A PARTICULAR TEXTURED YARN AND METHOD FO MANUFACTURING THE SAME Haruhiko Kusakabe; Masashi Makita, and Masutoshi Ueda, all of Otsu, Japan, assignors to Toray Industries, Inc., Tokyo, Japan Continuation-in-part of Ser. No. 630,753, Nov. 10, 1975, abandoned. This application Jun. 1, 1977, Ser. No. 802,523
Claims priority, application Japan, Nov. 12, 1974, 49-129556 Nov. 12, 1974, 49-129557 U.S. Cl. 139-435 Int. Cl. \({ }^{2}\) D03D 47/28 U.S. Cl. \(139-435\)
1. process for 1. A process for producing a woven fabric fro 5 Claims wisted, multifilament yarn by means of a power a false ided with healds and a reed, which comprises a first step of preparing an interlaced yarn for utilization as warp from a false wisted multifilament yarn made from a multifilament yarn without twist, in such a condition that the degree of interlacing f said inter laced multifilament yarn (CF value) is in a range between 100 and 260 , a second step of carrying out a weaving operation by using said interlaced yarn without sizing as the
warp by means of a power loom in such a condition that an
average tension applied to said warp is in a range between 0.1 average tension applied to said warp is in water in at least 30
and \(1.0 \mathrm{~g} / \mathrm{d}\), and each said warp contains water

weight percent of said warp in a weaving zone between said healds and a cloth-fell defined by a beating motion of said reed.

METHOD AND APPARATUS FOR AUTOMATICALLY FORMING WIRE FRAMES
Katsuyasu Suzuki, Alchi; Yoshitoshi Morita, and Motoo Morita, both of Nagoya, all of Japan, assignors to Toyota Jidosha Kozh of Japan
Filed Jun. 8, 1977, Ser. No. 804,811
Claims priority, application Japan, Dec. 10, 1976, 52-149052 U.S. Cl. \(140-1\) Int. Cl. \({ }^{2}\) B21F 1/00. 21/00. 45/00 \(\quad 2\) Claims
unloader and conveys them singly onwardly at prescribed intervals;
three-dimensional bending press which receives the singly conveyed separated wire stock sections and which presses a three-dimensional bend into each of the wire stock sections; and
three-dimensional bending press auto loader which is provided between the wire stock separating device and the stock sections from the wire stock separating device into the three-dimensional bending press at one time, said three-dimensional bending press auto unloader further including an unloader arm which simultaneously ejects the wire stock sections which have been bent by the threedimensional bending press.

2. A production line for automatically forming wire frames comprising:
a wire reel stand for holding wire stock rolled on a reel; a wire straightening machine located adjacent said wire ree stand which straightens the wire stock unrolled from said wire reel stand;
a location stamping press provided adjacent to a wire stock exit side of said wire straightening machine in a direction of the wire stock for cutting the advancing wire stock into
prescribed lengths and forming ripples in the cut wire prescribed sections and ejecting the rippled cut wire stock sections in a lateral direction;
a press bender auto loader located adjacent to the wire stock ejection side of the location stamping press for gathering a presced from the location stamping press and intermit tently feeding them to a next process;
a press bender provided adjacent the press bender auto loader which receives the intermittently fed rippled cut wire stock sections from the press bender auto loader and which simultaneously bends a prescribed number of wir in the same plane as the ripples; in the same plane as the ripples;
press bender unloader which removes the wire stock sec pressing;
wire stock separating device which pools the wire stock sections which have been removed from the press bender
1. A device for cutting and/or scoring variable precision lengths of variable diameter tubular materials, particularly rigid or sen
including:
upply means for holding a continuous length of said tubular
material;
adjustable diameter means for straightening said material; reeding means for drawing an adjustably predetermined length of said material from said supply means through said straightening means and for advancing and guiding said straightened predetermined length of said material; means for positioning said predetermined length of straightmaterial;
additional means associated with said cutting and/or scoring means for scoring the end of one predetermined length of said material, for cutting said material to said predeter mined length and for scoring one end of the next length of said material;
said drawing means operating to cause a previously cut predetermined length of said material to advance be ously cut predetermined length of said material to advance;
means for activating said feeding means and said cutting and/or scoring means; and
said cut and/or scored predetermined lengths of said material.

4,096,893
SYSTEM AND APPARATUS FOR THE RECONSTITUTION OF A FOOD OR BEVERAGE John K. Harvey, Jr., Fairfield; Morris T. Watson, Danbury,
both of Conn.; Constantine F. Economy, Allentown, and Ro bert J. LeFerre, Bethlehem, both of Pa., assignors to American Can Company, Greenwich, Conn.
Filed Oct. 4, 1976, Ser. No. 729,033
U.S. C. 141-90

1. A system for reconstituting food concentrates and the like comprising, a container having an open end and a food concen
trate disposed therein, a pierceable and peelable cover adhere over said open end, means defining a source of reconstituting fluid, injection means comprising nozzle means in fluid flow communication with said source for discharging said fluid and
piercing means connected therewith, said nozzle means and said piercing means operable for substantially vertical move ment from a first, retracted position to a second, extended position to pierce said cover to form an opening therein and position said nozzle means to inject said fluid into said container through said opening to mix with and reconstitute said
food concentrate, said nozzle means and said piercing means in said retracted position further being displaced laterally as respects the direction of vertical movement, mechanism for guiding said nozzle means and said piercing means between said retracted and said extended positions, means defining a
source of rinsing fluid, means for directing rinsing fluid from said last recited source over said nozzle means and said piercing means upon movement thereof to said retracted position, means for positioning said container in relation to said nozzle means and said piercing means at said extended position to
accommodate said piercing and said fluid injection, and means accommodate said piercing and said fluid injection, and means
for controlling respective durations of the recited discharge of for controlling respective durations of the recited discharge of
reconstituting fluid and direction of rinsing fluid in the corresponding extended and retracted positions of said injection
having a first sealing surface thereon;
having a first sealing surface thereon
a sleeve, coaxial with and moveable along the lower portion
of said filler tube arranged to form of said filler tube, arranged to form a second annular cavity integral with said first annular cavily belween the said sleeve, the lower end of said sleeve adapted to form a second annular sealing surface with the bottom of said filler tube, the upper end of said sleeve adapted to engage said first sealing surface;

means to move said sleeve reciprocally along the longitudinal axis of said filler tube from a first position at which said upper end of said sleeve engages said first sealing surface while said lower end of said sleeve forms an annular open-
ing around the bottom of said filler tube, to a second ing around the bottom of said filler tube, to a second
position at which said lower end of said sleeve engages said bottom end of said filler tube while said upper end of said sleeve forms an annular opening between said sleeve and said peripheral edge of said chamber; and means for pulling a partial vacuum on said first annular cavity.
\(\stackrel{4,096,895}{\text { HAMMER-TPPE TOO }}\)
Kenneth Fernitz, Waterloo, Wis., assignor to The Raymond Lee Organization, Inc., New York, N.Y., a part interest
ined Nov. 7, 1977, Ser. No. 849,007
Int. C1. \({ }^{2}\) B25C \(1 / 00\). \({ }^{\text {B25D }} 1 / 00\) U.S. C. 145-29 R Cl. \({ }^{\text {Int }}\) B25C 1/00; B25D \(1 / 001\) Cla

means. the type wherein the material is dispensed into the containers ment which comprises, in combination;
a dust collecting chamber mounted on the upper portion of said filler tube coaxial therewith and extending outwardly to form a first annular cavity between said filler tube and the inner surface or said a peripheral edge forming an

\section*{DUST COLLECTION DEVICE}

Richard Ernest Guy, Baytown, Tex., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del.
and Company, Wilmington, Del.
Filed Aug. 10,1977 , Ser. No. 823,325
Int. C.2. B65B \(1 / 28\)
U.S. C. 141-93

tional area different from that of the remainder of the handle in a manner whereby the end area extends beyond the remainder of the handle at substantially diametrically
opposite points in a pair of spaced opposite protruding opposite points in a pair of spaced opposite protruding
portions extending substantially parallel to the axis of the handle, said end area having a pair of bores formed therehrough extending through the protruding portions in spaced relation substantially parallel to the axis of the andle, each bore opening at the opposite ends of the corresponding protruding portion;
hammer-type head mounted on the end area of the handle the handle;
metal plate at the end of the handle at which the end area is provided, said metal plate having larger dimensions than the cross-sectional area of the end area so that it overlaps yond said end area, and having a pair of holes formed therethrough coinciding with the bores through the protruding portions of said end area;
a pair of elongated screws each extending through a corresponding bore through the end area and a corresponding hole through the metal plate, each of the screws havin
pair of spaced opposite ends with a head at one end;
pair of lock washers each on a corresponding one of the screws at the other end thereof where it extends beyond the end area; and
pair of nuts each affixed to a corresponding one of the crews at the other end thereof, over the corresponding lock washer
straight surfaces of the opening when the first portion is straight surfaces of the opening when ine in the opening

and for providing an optimum torque transfer between the device and the tool member.

4,096,897
MOLDED COLLAPSIBLE SOLUTION CONTAINER
HAVING TRANSVERSE FOLD LINES
Frank Cammarata, III, Wheeling, III., assignor to Baxter Travenol Laboratories, Inc., Deerfield, III. Continuation of Ser. No. \(670,306, ~ M e\). 25 , 1976, at which is a division of Ser. No. 526,037, Nov. 21, 1974, abandoned. This application May 27, 1977, Ser. No. 801,494 US. CI 150 Int. C.2. \({ }^{\text {B65D } 1 / 02}\)
U.S. C. \(150-0.5\)
1. A tool receiving device having at least one openend axially extending opening of polygonal cross-section with combination:
a tool member comprising at least three axially coextensive portions including a first portion having a cross-section conforming generally to that of the polygonal opening and insertable therein and a generally intermediate annu lar recess, a second portion having a cross-section differ ent from and dimensionally larger than that of the first
portion, a facing surface contiguous to the first portion for portion, a facing surface contiguous to the first portion for
limiting the extent of insertion of the first portion into the opening, and a second facing surface spaced from the firs facing surface, and a third portion extending from the second facing surface and having a tool configuration a the free end thereof; and
an elastomeric ring arranged in the recess and having a outer diameter dimensionally greater than that of the 1. In a collapsible solution container, which container depolygonal cross-section of the first portion and of the fines a body portion having an integral neck portion and a
second portion for frictionally engaging the respective semi-rigid shoulder portion at one end thereof, and is sealed at
its end opposite said one end, said body portion defining, in its original, unstressed state, generally oval, transverse cross sections adjacent said neck and shoulder portions, said cross sec-
tions tapering progressively along a major portion of its length to a flat, sealed end portion at said end of the container opposite to said one end; transverse lines of folding weakness defined along opposite edges of said shoulder portion to facilitate the collapse of said container, and gusset portions defined in said body portion adjacent said shoulder portion and adjacent gusset portions including lines of flexing weakness to facilitate collapse of the container adjacent said shoulder portion, whereby said container collapses to a uniform flat configuration progressively from said opposite end toward said one end as the contents thereof are withdrawn through said neck portion, the transverse lines of folding weakness and gusset por-
tions causing said container to collapse about the inner surface of said shoulder portion as the container empties, whereby the residual volume of said collapsed container is minimal.

INTERNAL TIRE LUBRICANT James W. Messerly, Stow, and James J. Shipman, Akron, both
of Ohio, assignors to The B.F. Goodrich Company, Akron, Ohio Filed Feb. 9, 1976, Ser. No. 656,450
\(\begin{aligned} & \text { Filed Feb. 9, 1976, Ser. No. } \\ & \text { Int. Cl. }\end{aligned}\)
U.S. Cl. \(152-330 \mathrm{~L}\)

1. A radial cord tubeless pneumatic tire having an essentially inextensible belt under the tread to restrict the circumference and produce a low aspect ratio, and having an air-impervious liner layer and a layer of closed cell cellular rubber the cells of which contain nitrogen gas under pressure covering at least a portion of the liner, and an internal coating consisting essentially of a mixture of:
(a) 100 parts of a soft solid partly-crystalline polyethylene of average molecular weight between about 1000 and 5000 , a
density of about 0.88 , which becomes liquid at about \(85^{\circ}\) C , and
(b) about 35 parts of an amorphous noncrystallizable poly-
propylene of molecular weight about 900 which has a softening temperature of about \(82^{\circ}\) to \(95^{\circ} \mathrm{C}\),
the layer of closed cell cellular rubber and the internal coating extending across the entire inner surface of the crown region
including the shoulder zones on which the weight of the vehiincluding the shouldir zones on
cle rests when the tire goes flat.

1 Claim

4,096,899
LIGHT WEIGHT PNEUMATIC TIRE HAVING A THIN SIDE WALL RUBBER Yoichi Kitazawa, Kodaira; Takeshi Sato, Higashi.Yamato, and
Hisao Tsuii, Akigawa, all of Japan, assignors to Bridgestone Hisao Tsuji, Akigawa, all of Japan, assignors to
Tire Co., Ldd., Tokyo, Japan
Filed Sep Claims priority, application Japan, Sep. 18, 1975, 50-112066 U.S. Cl. \(152-354\) R

1. A light weight pneumatic tire having a thin sidewall rubber, comprising a bias laid carcass ply composed of cords
angularly disposed with respect to the circumferential direc tion of the tire and extending from one of a pair of bead por tions through a crown portion to another bead portion, breaker layer superimposed about the crown portion of said carcass ply, an upper ply disposed on said carcass ply and
extending from the bead portion to at least an edge of the crown portion and maintaining an overlapping relation with the breaker layer, said upper ply being composed of cords
ther crossed to the cords of the carcass ply symmetrically with respect to the circumferential direction of the tire, and a thin rubber layer disposed on the outer surface of said upper ply
and having a thickness of 0.5 to 3.0 mm and a Shore A hardness after vulcanization of \(40^{\circ}\) to \(55^{\circ}\).

Int. Cl. \({ }^{2}\) B60C \(9 / 06\)

\section*{EARTHMOVER 4,096,900}

EARTHMOVER TIRE AND RIM ASSEMBLY Richard J. Olsen, Massillon, Ohio, assignor to The Goodyear Tire \& Rubber Company, Akron, Ohio

Filed Jan. 5, 1976, Ser. No. 646,717
U.S. Cl. \(152-354 \mathrm{R}\) R.

1. A tire and rim assembly for use on earthmovers in which (A) the tire comprises a tread portion, a pair of sidewall por extending circumferentially around said tire and from one bead portion to the other bead portion, each said bead portion having an annular inextensible bead core, a bead seat surface dis posed radially inwardly of the annular bead core, a bead register surface extending radially outwardly of the axially outer
edge of the bead seat surface and a flange contact surface extending axially outwardly of the radially outer end of the bead register surface, (B) the rim is of the drop center type and
having a bead seat in engagement with the bead seat surface of the tire, a flange register in contact with the flange register straight throughout its axial extent and disposed at an angle of less than \(10^{\circ}\) with respect to the rotational axis of the tire and extending axially outward of the radially outer edge of the bead register for a distance equal to at least \(10 \%\) of the maximum axial width of said tire when mounted on the rim and inflated, (C) said assembly being characterized by the flange flange for a distance equal to at least \(10 \%\) of the section width of the carcass structure and the distance between the contact surface of the flange and the carcass structure decreasing from a maximum at the axially outer extremity of the contact surface to a minimum adjacent the bead register surface to provide a preloading on said flange when said tire is inflated.
\(4,096,901\)
TIRE PLUG FOR TUBELESS TIRES
William Reichenbach, 238 Java St., Brooklyn, N.Y. 11222 Continuation-in-part of Ser. No. 634,586, Nov. 24, 1975,
abandoned. This application Dec. 6, 1976, Ser. No. 747,740 U.S. CI. 152-370 Int. Cl. \({ }^{2}\) B60C 21/00

10 Claims

1. A tire plug for insertion into the puncture of a tubeless tire, said plug comprising:
tire, said plug comprising:
(a) a rigid body member having a plurality of integrally formed portions extending longitudinally of said member, said portions comprising
1) a pointed entrant portion located at one end of the body member;
(2) a severable finger gripping portion located at the opposite end of said member, said finger gripping portion providing the sole leverage for threaded insertion of said plug into the tire without the need of any separate tool;
(3) a tapered threaded portion located between said entrant portion and said gripping portion; and
4) a fracturable stem portion connecting said gripping portion to said tapered portion;
) said entrant portion having a smooth surface extending from the pointed end in the direction toward said tapered portion to facilitate initial sliding insertion of said plug into the puncture of said tire to a position to support itsel for threaded insertion therein;
(c) the diameter of said tapered threaded portion increasing an increasingly compressive force on the tire material of the wall defining the puncture to seal said puncture upon threaded insertion of said plug; and
(d) said stem portion fracturing in response to a predeter mined force; whereby said gripping portion is severed from said body member after the puncture has been sealed.

DOOR WITH FLEXIBLE WOUND SECTIONS Junod. 78, rue des Moulins, 1400 Yverdon, Switzerland Claims Filed Jun. 11, 1976, Ser. No. 694,946 C82/75
U.S. C. \(160-122\)

Int. Cl. \({ }^{2}\) E06B 9/08

1. A door comprising;
door frame having two side members, a top member and a bottom member jointly generally defining a vertical plane; pair of flexible door sections, aligned with one another in said plane, each section having a vertical winding tube rotatably mounted and extending along one of the sides of portion secured to the respective winding tube so that the section can be wound on the tube, and having a second and free vertical edge portion;
wo rigid uprights each extending along and secured to the free vertical edge portion of one of the fiexible door sections; mounting, driving and synchronizing system for the two
uprights, comprising (a) an upper toothed belt disposed adjacent and along the top of the frame and fixed to upper ends of the two uprights, the belt being movable to synchronously move the upper ends in mutually opposite directions in said plane, and a lower toothed belt disposed adjacent and along the bottom of the frame, fixed to lower
ends of the two uprights, and movable to similarly move the lower ends, (b) a driving shaft rotatably mounted at the top and bottom of the frame, extending through and supporting one of the winding tubes, and having upper and lower drive wheels secured to the shaft near upper and lower ends, respectively, of the winding tube supported by the shaft, for driving the upper and lower similarly mounted and having means for driving them by the belts; and (d) motor means for reversibly rotating the driving shaft;
wo carriages, one secured to the upper end of each upright wo carriages, one secured to the upper end of rail means for supporting and guiding the carriages to keep eflexible door sections in said vertical plane, and
pair of elastic biasing couplings, each interposed and acting
between one of the shafts and the respective winding tube for biasing the respective tube and first vertical edge portion towards winding said portion and the respective door section onto the tube to keep the flexible door sections flat in said vertical plane while the uprights and free edge portions are reversibly driven by the motor, drive
shaft and belts toward the sides of the frame, and while the door sections are held in resulting positions.

4,096,903
POWER DRIVE FOR A VENETIAN BLIND John Ringle, III, 1410 Fairmont St., Wausau, Wis. 54401 Continuation-in-part of Ser. No. 485,820, Jul. 5, 1974, abandoned, which is a continuation of Ser. No. 307,979, Nov. 20,
1972, abandoned. This application Sep. 8, 1975, Ser. No. 611,015 U.S. Cl. \(160-176\) R Int. Cl.? E06B 9/26

6 Claims
ing surfaces for causing said first and second brake shoes to be urged laterally outwardly proportional to the axia position of said axially moveable means; and
c.) means operatively engaging said axially moveable means for axially and adjustably positioning said axially move able means.

\section*{METHOD OF INTROD, 4}

METHOD OF INTRODUCING HARDENABLE MATERIAL INTO CONTAINING MEANS THEREFOR
Jesse A. Stoner, Scotia, N.Y., assignor to General Electric Com pany, Fort Wayne, Ind.
Division of Ser. No. 490,257, Jul. 22, 1974, Pat. No. 3,979,032 which is a division of Ser. No. 397,425, Sep. 14, 1973, Pat. No.
3,974,873. This application Oct. 14, 1975, Ser. No. 622,030 3,974,873. This application Oct. 14, 1975,
Int. C. \({ }^{2}\) B22D 19/04
U.S. C. 164-51
1. In a venetian blind drive and control, a reversible rotary nected to drive said motor, switch means in the motor circuit operable to select the direction of motor rotation and to deter mine the increment of movement in either directivel, a spee direction in accordance with the direction of motor rotation, an output shaft for said gear train, a cross shaft for said blind in
axial alignment with and coupled at all times to said output shaft and connected to the slats of the venetian blind to provide a predetermined tilt adjustment for the latter between predetermined opposite closure positions by a partial revolution of said cross shaft, a separate limit switch connected directly in a
branch of the power circuit of said motor for each direction of operation of the motor, and separate abutment means generally carried by and rotatable with at least one of saids shafts to
actuate corresponding of said limit switches to open the motor actuate corresponding of said limit switches to open the motor
circuit and stop said motor upon said shafts reaching a limit of rotation corresponding to a predetermined position of blind operation in either of the selected directions.
D. Donofrio, Ogdensburg, N. \(\mathbf{Y}\), MECHANISM

John D. Donofrio, Ogdensburg, N.Y., assignor to Joanna Wes Filed Aug. 29, 1977, Ser. No. 828,949
U.S. C. \(160-299\) Int. Cl. \({ }^{2}\) EO6B \(9 / 208\)

9 Claims

1. An improved roller shade of the type having an axially elongated barrel adapted to receive a shade wound therearound, said elongated barrel having an internally mounted
motor for urging said barrel to rotate in a shade winding dire motor for urging said barrel to rotate in a shade winding direc-
tion, said barrel further including an internally mounted braking mechanism for resisting rotation of said barrel, said braking mechanism comprising a hollow brake drum with an internally
disposed braking mechanism having first and second oppo disposed braking mechanism having first and second oppo-
sitely directed brake shoes, said brake shoes each having an outside surface adapted for frictional engagement with the interior surf
comprising:
(a.) said first and second brake shoes having opposed in wardly facing surfaces forming an axially tapering cavity (b.) an axially moveable means sadapted to be inserted in said

1. A method of casting a metal into means for containing it omprising the steps of:
(a) supplying the metal in its solid state to a receptacle there-
(b) transferring the metal in its solid state from the receptacle into means for casting the metal disposed in a first position generally adjacent the receptacle;
(c) displacing the casting means with the metal in its solid in to a second position for heating the metal and melting the metal in the casting means at the second position;
(d) moving the casting means from the second position to a position generally adjacent the containing means for cast ing the molten metal from the casting means into the
(e) casting the metal from the casting means into the containing means.

CASTING MACHINE WITH MULTI-BAND POSITIONING DEVICE
ves Bernard Bonnamour, Carrollton, Ga, mire Company, Carrolltin, Ga. This application Aug. 30, 1976, Ser. No. 718,497 The portion of the term of this patent subsequent to Nov. 16,
U.S. Cl. 164-433 1993, hass been disclaimed.
Int. Cl. \({ }^{2}\) B22D \(11 / 06\)
U.S. Cl. 164-433
1. In a casting machine for continuously casting 5 Claims metal wherein a flexible endless band is guided into closed relationship with an arcuate portion of the peripheral groove
of a rotatable casting wheel to form a casting mold and includ-
ing means for positioning the band over the peripheral groove of the casting wheel, said casting machine having a support means including at least comprising said band positioning said support frame aadjacent said casting wheel for supporting said endless band, said two band support wheels being rotat-
ably mounted on shafts arranged along axes substantially paralably mounted on shafts arranged along axes substantially paral-
lel to the rotational axis of said casting wheel, axial motion means operatively connected to each of said band support

wheels for independently moving each band support wheel along a line of motion substantially parallel to its axis of rota-
tion, and pivotal motion means axially immovably mounted relative to said support frame and operatively connected to the shaft of each of said band support wheels for independently pivoting the axis of rotation of such band support wheel about
a point laterally displaced therefrom and for transmitting axial thrust applied to said shaft by said axial motion means directly to said support frame.

\section*{4,096,007}

TRAND WITHDRAWAL ASSEMBLY FOR CONTINUOUS CASTING PL ANTS Heribert A. Krall, Wurzburg, and Helmut Maag, WaldbuttelHunn, both of Germany, assignors to Technica.Guss GmbH Wurzburg, Germany \({ }_{\text {Filed Jul. 25, 1977, Ser. No. 818,688 }}\) Claims priority, application Germany, Oct. 28, 1976, 2649015 U.S. C. \(164-448\)

3 Claims

1. A strand withdrawl assembly for withdrawal of strands emerging from a casting mould in a continuous casting plant.
said strand withdrawal assembly comprising:
a lower roller, said lower roller being rotatably carried in
said assembly and having drive means to rotate said lower said asse
roller;
roller;
at least first and second upper rollers, said upper roller being each rotatably carried above said lower roller on common eccentric shaft;
means roata
shaft; and
means raising and lowering said eccentric shaft to move said
upper rollers into contact with the strands positione
whereby said eccentric shaft rotates in said support means to position said upper rollers to apply equal pressure to the
strands positioned between said upper and lower rollers for uniform withdrawal of said strands.

\section*{4,096,908}
heating and cooling enclosure for a gas CHROMATOGRAPHIC COLUMN Henri Lamy, Morlass, France, assignor to EIf Union, Paris, France Filed Dec. 15, 1976, Ser. No. 750,998
Claims priority, application France, Dec. \(17,1975,7538735\) U.S. C. \(165-64\)

1. A heating and cooling enclosure for a chromatographic column comprising an insulating and demountable box unit which surrounds the column and has a side wall which rests on itself being constituted by a metallic tube having a constant cross-sectional area supplied with an electric heating current producing a circulation of air around the column within the box unit, wherein the means aforesaid comprise an open cylindrical skirt arranged coaxially within the interior of the column, a centrifugal fan placed in the axis and above the skirt so as to draw the air into said skirt and discharge the air into the spaces delimited on each side or the coly beelween he skir cated in the axis of the column beneath the skirt, an air-injection pipe which opens into the throat of the nozzle and openings for the discharge of the injected air after circulation within the box unit in contact with the column, said openings being provided through the bottom support of said box unit.

\section*{FLUIDIZED BED PROCESS HEATER \\ Falfred Wilhelm Jukbole Westpoct Cos heater tor} Oliver Incorporated, Stamford, Conn.
Filed Dec. 23, 1976, Ser. No. 754,063

Filed Dec. 23, 1976, Ser. No. 754,0
Int. C1. \({ }^{2}\) F28D \(13 / 00\)
U.S. CI. 165-76
bed process heater comprising 11 Claims 10. A fluidized bed process heater comprising a vessel of coroidal configuration having an outer wall and a generally extending between said outer and inner walls and separating a heater chamber in the upper portion of said vessel from a windbox occupying the lower portion of said vessel, said constriction plate being capable of supporting a fluidized bed o particulate solids thereon, a plurality of heat exchanger coil
tubing extending inwardly through the fluidized bed region of said heater chamber along a radius of said vessel, said horizon-
tal runs of tubing of aech of said coil units seing arranged one above the other and joined at the ends thereof by vertically

wall being outside said outer wall and the return bends adja cent said inner wall being supported in said heater chamber in recesses provided in said inner wall whereby said inner return bends are supported within said heater ch
from the erosive environment therein.

\section*{CONCENTRIC.TUBE STAC}

CONCENTRIC-TUBE STACKED PLATE HEAT
George A. Coffinberry, Cincinnati, and Howard B. Kast, Fair field, both of Ohio, assignors to General Electric Company, Cincinnati, Ohio
\[
\begin{aligned}
& \text { Filid Oct. 28, 1976, Ser. No. } 736,572 \\
& \text { Int. Cl. }{ }^{2} \text { F28F } 7 / 00 \text {; F28D } 7 / 10
\end{aligned}
\]
U.S. Cl. \({ }^{165-81}\)

13 Claims

1. In an apparatus for transferring heat between first and second fluids, the improvement comprising:
a first longitudinally extending annular flow passage adapted to provide a flow path for a first fluid flowing therein;
a second longitudinally extending flow passage adapted to provide a flow path for a second fluid flowing therein, said second flow passage disp
said first annular flow passage
first tubular means for at least partially defining said first and second flow passages
a first plurality of annular heat transferring plates disposed consecutively in the longitudinal direction in said first
annular flow passage and extending radially across said first annular flow passage said plates including a first set of hirst annular extending longitudinally therethrough and
apertures adapted to pass said first fluid
spacer means for maintaining an axial spacing between consecutively disposed plates of said first plurality of
and for providing a radial heat conduction path
and resilient means for biasing said spacer means in the radial direction and into heas transferring engagement with said first tubular means.

1. A well screen comprising a hollow, multiple channel core portion and a formed wire enwrapment portion defining open
sots for the passage of liquid or gas; said core portion compris slots for the passage of liquid or gas; said core portion compris-
ing a continuous ring of longitudinal channel members, each of ing a continuous ring of longitudinal channel members, each of
said channel members having a relatively wide web portion and relatively short leg portions extending radially outwardly from said web portion, said web portions being perforated
said leg portions being welded to said formed wire enwrapment at each juncture therewith.

METHODS FOR MINIMIZING PLASTIC FLOW OF OIL MEALE DURING IN SITU RETORTING Arthur E. Lewis, Los Altos, and Richard G. Mallon, Livermore, Arthur E. Lewis, Los Altos, and Richard G. Mallon, Livermore,
both of Calif,, assignors to The United States of America as represented by the United States Department of Energy, Washington, D.C.

Jun. 6, 1977, Ser. No. 804,194 Int. Cl. \({ }^{2}\) E21B 43/24. 43/26
U.S. Cl. \(166-259 \quad 8\) Claims in a subsurface oil shale formation by in siw kerogenpyrolyzin zone in the rubble region thereby decomposing the kerting and producing oil and gaseous products, product oil and prod the gate recovered from the retorting zone, and the shale establorting zone becomes spent, the steps comprising: establishing a downwardly moving retorting zone in the rubble region, thereby forming an upper zone of spen
shale and a lower zone of hot, rubblized oil shale in the rubble region; and
introducing carbon dioxide and water into the upper zone of spent shale in amounts sufficient to react with the minera constituents of the spent shale and form a cement-like
material which binds individual shale particles together material which binds individual shale particles togethe
and to the walls of the rubble region, thereby relieving th weight burden of the spent shale on the hot, rubblized oil shale in the lower zone and minimizing plastic flow of said hot, rubblized oil shale.

HYDRAULICALLY SET LINER HANGER AND
RUNNING TOOL WITH BACKUP MECHANICAL
John W. Kenneday; Cheries W. Kinney; Floyd L. Scott, Jr., al of Houston, Tex., and Phillip W. Schmuck, New Orleans, La. assignors to Baker International Corporation, Orange, Calif. Continuation-in-part of Ser. No. 758,359, Jan. 10, 1977, Pat. No 4,060,131. This application Aug. 22, 1977, Ser No 826,284 U.S. Cl. \(166-290{ }^{\text {Int. Cl. }}{ }^{2}\) E21B 43/10, 23/00
1. An apparatus \(\quad 38\) Claims well bore casing or running, setting and anchoring a liner in ing body; an outer longitudinally extending body around said
inner body; connecting means on one of said inner and outer bore and on said casing and for shifting said longitudinally inneries for connection of a liner therebelow; expander means shiftable tubular body upwardly with respect to said sleeve carried on one of said inner and outer bodies; gripping means means to cause said expander means carried by said tubula carried on the other of said inner and ourer bodes and engaga body to engage said gripping means carried on said sleeve
 able tubular running tool releasably secured to said inner and lar member extendible to the top of the well to release said outer bodies; drag means mounted on said running tool slidable longitudinally along said casing; means for selective disengage ment of said running setting means responsive to each of hiuid pressure and mechan-
cal manipulation and carried on said running tool to longitudnally shift one of said inner and outer bodies with respect to the other of said inner and outer bodies to anchor said liner to said casing, said drag means resisting longitudinal travel of said
 to support the weight ond operation of said setting means during response to mechanical manipulation.
37. A method of running, setting and anchoring a liner in a
3. well bore casing, comprising the steps of: (1) inserting within
said well bore and apparatus connectible to a tubular member extendible to the top of the well thereof, said apparatus comextendibe a longitudinally shiftable tubular body; expander
prising:
means carried by said tubular body; lower connection means

on said tubular body for connecting the tubular body to a liner therebelow; sleeve means mounted on said tubular body and operably associatable with said tubular body upon longitudinal hifting of said tubular body with respect to said sleeve means gripping means carried on said slewe means engagabie
expander means and movable outwardly into gripping engageexpander means and movable outwardy into gripping engagenally along said casing for resisting longitudinal travel of said apparatus while in said well bore with sufficient frictional force o support the weight of one of said tubular body and said
sleeve means therebelow; and setting means responsive to at sleest one of fluid pressure and mechanical manipulation, said setting means including slot means and carriage means initially selectively engaged to said slotted member for travel within said slot means to shift said longitudinally shiftable tubular
别 said well bore and on said casing, said setting means further somprising a radially extending annular piston chamber, and a piston element in said chamber responsive to selectively disengage said carriage means, and means for selective entrapmen well to a positionable depth within said well bore a Jjacent said casing; (3) applying pressure within said apparatus to activate said setting means to cause said carriage means to travel in said
slot means to position for anchoring said liner within said well

971 O.G. 55
power transmission means for rotating said crankshaft means
about the axis of rotation;
able EARTH DRILLING KNOBBY BIT being generally parallel to the axis of rotation of said Continuation of Ser. No. 617,959, Sep. 29, 1975, tex. 78216 being generally p
crankshaft means;
crankshaft means;
a pair of wheels rota
pair of wheels rotatably mounted at opposite ends of said axle for transporting th
at least three crankpins;
web means supporting said larly spaced about the axis of rotation of said crankshar means and rotating said crankpins about said axis in response to rotation of said crankshaft:
at least three tool support arms each including a bearing end pivotally mounted on one of said crankpins and a tool supporting end extending toward the ground;
at least three elongated ground working tools, each connected to a tool supporting end of a respective tool sup-
port arm and disposed between said wheels at the forward port arm and disposed between said wheels at the forward
portion of said support means, said tools having generally pointed ground impinging distal end portions; and
link means located between said wheels and pivotally s cured to said tool support arms and to said axle for restricting said tool support arms to paths of movement
wherein the ground working tools sequentially impinge upon the ground in a substantially vertical direction and proceed through the ground at a rearward inclination to draw the apparatus forward across the ground in response to rotation of said crankshaft means.

\section*{4,096,916}

DIESEL PILE DRIVER
Rudolf Hennecke, Buoch, and Albert Haussmann, Oberboibin. gen, both of Germany, assignors to Delmag-Maschinenfabrik Reinhoid Dornfeld, Esslingen am Neckar, Germany
Filed Feb. 27, 1975, Ser. No. 553,573
Claims priority, application Germany, Mar. 13, 1974, 2412036 U.S. C. 173-137 Int. Cl. \({ }^{2}\) E02D \(7 / 12\)

1. A diesel pile driver comprising a pile driver cylinder, pile driver piston mounted in said cylinder and having an impact surface, an impact member mounted in said cylinder adjacent to said piston and having an impact surface facing the
impact surface of said piston, a pair of liquid jet injection impact surface of said piston, a pair of liquid jet injection
nozzles mounted in the wall defining said cylinder for injecting liquid fuel onto the impact surface of said impact member, said nozzles being operable to discharge the liquid fuel onto the impact surface when the piston is descending from an elevated position for subsequent impact atomization of the fuel induced by the piston engaging the impact member, said nozzles being positioned to discharge jets of liquid fuel that impinge upon
one another on the impact surface of the impact member so as to destroy substantially the kinetic energy of flow of the liquid fuel, and a fuel injection pump for delivering fuel to said nozzles as an incident to the descending movement of the piston at said elevated position.
application Feb. 8, 1977, Ser. No. 766,589
Int. Cl.2 E21B 9/08; E21C \(13 / 01,13 / 06\)
U.S. C1. 175-228 13 Claims

1. A percussion drill bit having an upper end comprising an 1. A percussion drill ith having an upper end comprising an genierally cylindrical side surface adapted to be received for
slidable longitudinal movement in the casing of a fluid operslidable longitudinal movement in the casing of a fluid operated percussion hammer, said cutting bit having a central shank
portion offset relative to the longitudinal axis of said drill bit portion offset relative to the longitudinal axis of said drill bit
and terminating in a cutting end surface, and a rotatable cutting head secured on said shank portion for rotary motion thereon.

METALLURGIC 4
METALLURGICAL VAT SUPPORT SYSTEM James Ingram Beges, Hamilton, Canada; Karlhelnz Langlitz, Mulheim, Germany; Gunter Schmitz, Duisburg, Germany, and Woifgang Jansa, Moers, Germany, assignors to Demag Aktiengesellschaff, Duisburg, Germany
Filed Feb. 4, 1977, Ser. No. 765,795 Claims priority, application Germany, Feb. 5, 1976, 2604353 U.S. Cl. 177-145 Int. Cl.2 G01G 19/00 10 Claims

1. Apparatus for mounting dynamic test cells for tilting metallurgical vats to avoid outside influences from affecting
he test results, comprising (a) a vat:
(b) extensio therefrom;
(c) an annular ring surrounding said vat
(d) diametrically opposed bearings in said ring
(e) said vat supported in said ring for tilting through angles
of \(360^{\circ}\); the improvement characterid
(f) opposed horizontal surfaces on said extension means and said annular ring;
(g) a plurality of dynamic test cells mounted between said opposed horizontal surfaces; and
(h) a plurality of elongated vertically disposed expandable flexible connecting elements connecting said vat said annular ring, and said extension means
(i) whereby tilting said vat on said bearings also tilts said dynamic test cells.

\section*{4,096,919}

PROPULSION UNIT FOR SKIERS
Richard G
Thompson, 312 County Rd. \#5, Stillwater, Minn.
Richarr
55082
Filed Sep. 2, 1976, Ser. No. 719,855
U.S. CI. \(180-6\) R

14 Claims

1. Improved propulsion unit for skiers comprising
(a) a hollow cleated roller of resiliently flexible material including two molded shell members each having an end
wall and an open end, said end walls having axially aligned openings therein, at least one of said open ends containing flange means extending around its periphery, and said shell members being joined at their open ends; (b) first and second inner hub members extending through tively, for permitting relative rotation between said inner hub members and said roller;
(c) first and second handles attached to said first and second inner hub members, respectively;
(d) an engine frame positioned within said roller and rigidly mounted to said first and second inner hub members so as to secure said engine frame
of said inner hub members;
of in iner hub members;
(e) an engine mounted to siler, said engine including an output shaft; and
(f) drive means operatively connecting said output shaft to said inner hub members.

4,096,920
POWERED SHOPPING CART AND TRAILER Bennington Heyn, 1009 Alexander Ave., Ridgefield, N.J. 07657 Filed Dec. 30, 1976, Ser. No. 755,789
U.S. Cl. \(180-11\)
1. A shopping cart-trailer vehicle for operation either by a riding passenger or walking operator, comprising:
(a) A shopping cart basket frame,
(b) A basket removably attached to said basket frame for causing a load to be transported;
(c) a paid basket frame;
(d) A pair of rear wheels rotatably secured to the rear of said basket frame;
(e) A tiltable trailer operatively associated with said basket frame for transportating a passenger wherein said tiltable trailer comprises a drive wheel carrier and a pivotable and intable passenger carrying platform operatively associs passenger carrying platorm further comprises a ribb the
said passenger carrying platform
A pass nar carying plato for alternately engaging or disengaging the ground when said tiltable passenger carrying platform is tilted forward or rearward by movement of said passenger forward or rearward on said tiltable passenger carrying platform,
(g) Drive means mounted on said trailer and operatively
associated with said drive wheels for rotating said drive

wheels when they engage the ground thereby propelling the cart-trailer vehicle along the ground;
(h) A pair of wheels rotatably mounted toward the rear of said trailer to allow the trailer to traverse the ground; and (i) A plurality of springs operatively associated at one end
with said tiltable trailer and at their other end with said basket frame for urging said trailer and said drive wheels out of ground engagement when said passenger to be transported shifts his weight rearward on said passenge carrying platform.

\section*{4,096,921}

VEHICLE SUPPORTED BY AN AIR CUSHION
ne, 5, rue de Bagatelle, Neuilly, France
Filed Jun. 10, 1977, Ser. No. 805,526 U.S. Cl. 180-121 Int. C.' \({ }^{\text {B60V }} 1 / 04,1 / 16\)

1. A vicle supported by a air cushion extending beneath 1. A vehicle supported by an air cushion extending beneath
at least the greater part of the lower surface of the rigid strucure of the vehicle, characterised in that, the said cushion is ounded on each side of the axis of the vehicle by two parallel kirts, a peripheral skirt and an inner skirt, inclined towards the inside of the vehicle defining between them a row of auxiliary ir cushions separated by transverse partitions which form kirts at least in part inclined towards the rear with respect to hery air cushions being formed by perforated plates articulated one another, the edges of the said plates are connected to the rigid structure by flexible walls forming a flexible volume connected to the supply of air under pressure.

ROOF SUPPORT SYSTEM FOR A SUSPENDED
Harry S. Fisher, Renton, Wash., assignor to Spider Staging, Inc., Harry S. Fisher, R
Renton, Wash.

Filed Jun. 24, 1977, Ser. No. 809,553 Int. Cl. \({ }^{2}\) E04G \(3 / 10,3 / 14\)
U.S. CI. \(182-36\)

1. For use with a guidance and support rail positioned on a building roof above the roof level, inwardly from the roof edge, an outrigger which saging from the roof, said outrigger
supporting a suspended stagin comprising:
an elongated outrigger beam which during use extends outwardly from the side of the building;
carriage means including guideway means supporting said
outrigger beam for endwise adjustment relative to the rail, outrigger beam for endwise adjustment relative to the rail,
and mounting means engageable with the rail, for mounting said guideway means onto the rail for both translational movement along the rail length and angular movesaid outrigger beam having an outboard
during use projects outwardly of both the rail and the edge of the building roof, to serve as an overhead anchor
ent for a suspension line of a suspended staging, and an inopposite side of the rail; and
leg means for supporting said outrigger beam, said leg means depending from said outrigger at a location inwardly of said beam outboard end portion and outwardly of the rail.

FIRE ESCAPE TO BE ATTACHED TO THE OUTSIDE OF A BUILDING
Giuseppe Verderio, via Padana Superiori 1, Gessate (Milan), Italy Filed Jan. 7, 1977, Ser. No. 757,690 Claims priority, application Italy, Jan. 23, 1976, 19502 A/76
U.S. Cl. 182-83
1. A fire escape attached in parallel position to the outside of a face of a building having vertically aligned safety outlets of
like widths therein, said fire escaping comprising: like widths therein, said fire escaping comprising:
A. a different horizontal platform extending away from the
A. a different horizontal platform extending away from the
building at the sill of each safety outlet,
i. the widths of the platforms being substantially equal to the . the widths of the platforms being substantially equal to the widths of the associated outlets,
B. two supporting columns the lower ends of which are located adj
building,
i. said columns extending the whole height of the building, ii. said columns being located adjacent the outside corners of the platform and supporting the same
iii. one column being substantially horizontally registered with one vertically registered set of vertical edges of the
safety outlets and the other column being substantially
the municating with the outlet, a porous rod of sintered construc
set of vertical edges of the safety outlets whereby the columns are mutually spaced apart in a horizontal direc tion parallel to said face of the building by substantially the width of the safety outlets,
two sets of half-turn spiral stair winders
i. each set being associated with and supported by a different column, and
D. plural vertically registered series of straight steps, each series of straight steps of the plural series being
spaced away from the building and parallel to said face of spaced away from the building and parallel to said face of
the building and being located vertically midway between safety outlets,
E. the two sets of half-turn spiral stair winders, the plural series of straight steps and the platforms being interconnected in a sequence such that

a descending half-turn spiral stair winder of one set leads from a higher horizontal platform down and around to a scending half-turn spiral stair winder of the other se which leads down and around to the next lower horizontal platform which leads to the next lower descending halfturn spiral stair winder of the one set in a repeating ar-
rangement that terminates adjacent the base of the building,
whereby a building occupant in the event of fire when leaving the building by the fire escape exits through a safety outlet and then continuously moves down and around the curs for only a short span at the platforms and the series of straight steps so that the building occupants can descend the fire escape rapidly and without hindrance.

\section*{\begin{tabular}{l}
\(4,096,924\) \\
\hline
\end{tabular}}

Frank J L yden, Maner Wis, assignor to Oil-Rite Corpor tion, Manitowoc, Wis.
Division of Ser. No. 595,118, Jul. 11, 1975, Pat. No. 4,062,42 This application Apr. 4, 1977, Ser. No. 784,422 Int. Cl. \({ }^{\text {F }}\) 16N \(17 / 06\)
\[
\text { U.S. Cl. } 184-58
\]

9 Claims 1. In an oiler assembly for delivering a liquid libricant to
unint point of lubrication, a vented reservoir containing the lubri-
cant, a supply line extending from the bottom of the reservoir a body having an inlet communicating with the supply line and an outlet, said body further having a bore with one end thereof communicating with the inlet and the other end thereof com
municating with the outlet, a porous rod of sintered construc
said bore between the porous rod and the wall of the bore to preclude passage oflebricant from the inlet end to the outlet end of the bore except by passage through said placing the outlet of the body in communication with

the lubrication point, and a source imposing a vacuum at the lubrication point, said porous rod being of selected density to
provide for the desired feed rate of lubricant in response to the vacuum condition of the lubrication point.

ELEVATOR SYSTEM WITH DETECTOR FOR ELEVATOR SELATIVE POSITIONS OF CAR AND COUNTERWEIGHT
and Alan L. Husson, Budd Lake, both of N.J., assignors to Westinghouse Electric Corp., Pitts \({ }^{\text {burgh, Pa. }}\) Filed Apr. 8, 1977, Ser. No. 785,977 U.S. Cl. 187-29 R

1. An elevator system comprising
a building having a plurality of floors and a hoistway,
an elevator car,
a counterweight,
said elevator car and counterweight being mounted for guided movement in adjacent vertical travel paths in
hoistway of said building to serve the floors therein, detector means for determining the relative positions of said elevator car and counterweight,
said detector means including first and second vertically said detector means including first and second vertically spaced sources of electromagnetic radiation, apd first from
second vertically spaced switching devices operable for a first condition to a second condition in response to electromagnetic radiation from said first and se sources of elec
shielding means,
shielding means,
said detector means and said shielding means being mounted said detector means and said shielding means being mounted
for relative motion responsive to movement of said elevator car,
said shielding
said shielding means shielding said first and second switching devices from the electromagnetic radiation of said first
and second sources when the counterweight and elevator
car bear a predetermined positional relationship to one another,
first corditions second switching devices being in their first condit
radiation,
first means responsive to at least one of the first and second switching devices being in a predetermined one of its conditions for providing a sigitindicalingermined zone where collision could occur in the event the counterweight is outside of its normal travel path,
said first and second switching devices being sequentially operated by the shielding means as the elevator car and counterweight leave the predetermined zone,
and second means responsive to the sequence for indicating weight.

4,096,926 ACTUATOR AND COOLING S
Terme Tour d'Ivoire 28e, 1820 Montreux Suitzeriend , Continuation-in-part of Ser. No. 694,39, Jun. 9, 196, 9 , mish No. \(4,054,189\), which is a continuation of Ser. No. 415,681, Nov 1973, abandoned, which is a continuation-in-part of Ser. No. 288,287, Sep. 12, 1972, Pat. No. 3,885,650, which is 2 continuation-in-part of Ser. No. 33,566, Sep. 18, 191, Claims priority, application Germany, Dec. 2, 1969, 1960286 Dec. 27, 1969, 1965171; Dec. 27, 1969, 1965170; Switzerland , 17, 1972, 16741/72. Germany, Nov. 22. 1975, 2552451, Dec. 19, 1975, 2557331
U.S. Cl. 188-71.4 int. Cl. \({ }^{2}\) F16D ss/10

1. A fully lined disk brake adapted for motor vehicles com prising a rotating externally open, radially ribbed brake housing and a stationary brake carrier disposed over the brake ousing, brake lining disks suspended on the brake carrier and ally,
said brake housing being formed of two annular parts and having an inner wall member having circumferentially spaced openings, said annular parts having yoke-shaped housing extension members integral with the inner wall member between openings, means for attaching the brak housing to a flange on a wheel hub comprising bolts which connect the yoke-shaped housing eet to the flange
bers between bolts which attach the wheel and a hydraulic actuating device having two step rings, axial extending spaced projection members on each step ring, lying in the region of the step between the step rings, said projections contacting said brake disks.

\section*{SHOCK ABSORBER}
uehiro Takatsu, 3-21-6, Marunouchi, Naka-ku, Nagoya-shi,
Aichi-ken, Japan
Filed Apr. 19, 1977, Ser. No. 788,766 Claims priority, application Japan, Jun. 11, 1976, 51-68363 U.S. Cl. 188-268 Int. Cl. \({ }^{2}\) F16F 9/30 7 Claims

1. A shock absorber comprising a cylinder with a closed having, at an edge face, an abutment for cooperating with said lower end, a hollow tubular cushion fabricated of elastic mate- closing disc; said valve cage further having a disc-like portion
rial within the cylinder, an inwardly bent edge formed on the including first and second spring support faces for engagement cushion at the lower end thereof, a stopper on the cylinder
extending into the lower end of the cushion and engaged by the inwardly bent edge thereof to prevent movement of the cushion beyond a specified limit, a plunger above the cushion slidably fitted within the cylinder, and resistance means between the cylinder and the plunger for inhibiting sudden rever-
sion of the plunger to its original position while providing little resistance on the down stroke of the plunger whereby movement of the plunger into the cylinder causes the cushion to buckle and the resistance means prevents the plunger from
suddenly reverting to its original position by the elasticity of didenly reverring io its orighal posing bey the elasticity of prises saw-teeth arranged longitudinally on the inside wall of the cylinder and at least one elastic ring on the plunger that meshes with the saw-teeth as the plunger and the cylinder
move relative to one another, each saw-tooth having an inmove relative to one another, each saw-tooth having an in-
wardly and downwardly sloping upper surface and a lower surface at substantially right angles to the inside wall of the cylinder

VALVE ASSEMBLY FOR A SHOCK ABSORBER Roif Krafzig; Paul Langer, and Erhard Leppich, all of Wolfs. burg, Germany, assignors to Volkswagenwerk Aktiengesellschaft, Wolfsburg, Germany

Filed Jun. 14, 1977, Ser. No. 806,496
Claims priority, application Germany, Jun. 26, 1976, 2628893
U.S. C. 188-282 Int. Cl. \({ }^{2}\) F16F 9 /348
mbly for a shock abso 1. In a valve assembly for a shock absorber containing a and second channels for the opposite flow directions of the damping medium; the valve assembly having an axially displaceable valve body; at least one first valve and one second
valve arranged to control the first channel and the second channel, respectively; the first valve including at least one resilient valve disc, and a first spring urging the valve body against the resilient valve disc for spring-biasing the resilient valve disc; the second valve including a closing dise and a
second spring urging the closing disc into a closed position; and a shaft common to said first and second valves and being surrounded by the resilient valve disc and the closing disc; the improvement comprising an axially displaceable valve cage
being common to said first and second valves, said valve cag having a cylindrical portion surrounding said resilient valv

with said first and second springs.

\section*{4,096,929 \\ MULTIPURPOSE BAG Nancy R. Frey, Newport Beach, Calif., and Shirley Schieber Hanalei, Hi., assignors to ESEF Co., Newport Beach, Calif. Filed Oct. 11, 1977, Ser. No. 840,551} Int. C. \({ }^{2}\) A45C \(3 / 00\)
U.S. C1. 190-42

1. A multipurpose bag comprising.
first and second bag sections, each of said bag sections in ing said walls to define alls and means for interconnec tions having a peripheral edge:
said first bag section having means for providing access to the chamber thereof whereby items can be carried in said first bag section;
resilient means in
resilient means in said second bag section whereby said
second bag section is adapted to means for releasably joining said bag sections along a adjacent the peripheries of said bag sections with the inne walls of the bag sections confronting each other whereb a compartment is defined between said bag sections;
means for providing an opening to said compart means for providing an opening to said compartmen
through which access to said compartment can be obtained;
facilitate moupled to at least one of said bag sections to facilitate manual grasping of the multipurpose bag, said
opening to said compartment facing generally upwardly as a unit to said mounting support whereby said clutch and when the multipurpose bag is carried by said handle brake assemblies may be removed as separate assembled units means; and
to be separated whereby said first bag section can be used o be separated whereby said frst bag section con be used as a cushion.

4,096,930
GEAR SHIFT SELECTOR BRAKE INTERLOC rank Viscardi, 16 Benson Rd., Glen Rock, N.J. 07452

Filed Aug. 5, 1977, Ser. No. 822,294
Int. C1.
B60K \(29 / 02\).
U.S. C. \(192-4\) A


A mechanically-actuated gear shift selector brake inter ock mechanism, for motor vehicles having automatic trans missions comprising:
a gear shift selector
of a conventional steeriounted rotatably at the upper end said gear shift selector plate being circular and having gea
posicion markings along the periphery of said selector plate;
interlock pin holes situated on said gear shift selector plate an interlock pin means consisting of a tubular elongated lock pin;
said interlock pin holes on said gear shift selector plate serving to receive interlock pin of the interlock pin means; a brake interlock lever being an elongated rod-like structure extending from a linkage on the conventional brake peda means to said interlock pin means;
said interlock pin captured in said interlock pin hole on said is at park or neutral positions;
said interlock pin being retracted from interlock pin hol
located on said gear shift selector plate when brake pedal
means has been actuated.

4,096,931
MODULAR STEERING CLUTCH AND BRAKE PACKAGE
Cerald E Whitehurst, East Peoria, Ill., assignor to Caterpilla Tractor Co., Peoria, III.

Filed Jun. 16, 1976, Ser. No. 696,680
Int. Cl. \({ }^{2}\) F16D 67/04
U.S. Cl. 192-18 A
\(\begin{array}{r}12 \text { Claims } \\ \hline\end{array}\) 1. A clutch and brake asuport, comprising: a first housing; a brake pack having a plurality of brake plates; first biasin means for providing a predetermined adjustable bias of said brake plates; first bolt means removably securing said brake
pack in said first housing to define a brake assembly; a second housing; a clutch pack having a plurality of clutch plates; second biasing means for providing a predetermined bias said clutch plates; second bolt means femovably securing sal clutch pack in said second housing aintaining the alignment of said brake plates and said clutch plates during adjustment of the bias thereof by said first and second biasing means; and third bolt means for mounting the clutch and brake assemblies

from the support for servicing of either when desired without disassembly of the other.

\section*{4,096,932}

DRIVE FOR POWER TRANSMISSION Joseph C. Liberty, Jr., 4216 Grindley Park, Dearborn Heights, Mich. 48125
Filed Feb. 7, 1974, Ser. No. 440,454 U.S. Cl. 192-48.91 Int. Cl. \({ }^{2}\) F16D \(21 / 04\) 3 Claims

1. A power transmission device including, a drive shaft,
at least one rotatable driving element carried by said drive shaft,
a driven shaft,
a driven shaft,
at least one rotatable driven member caried
shaft,
driven means carried by said driven member
said driven member having sliding travel between a neutral position and a position of releasable driving engagemen with said driven means,
an actuator to effect said sliding travel of said driven member,
said driving engagement being effective to impart a rotational drive to said driven member, when the rotationa speed of said driving element exceeds the rotational speed of said driven member, wherein the improvement comprises
irst adapting means adapting said drive means for reverse engagement with said driven means in the sliding travel oi driven memberber when the rotational speed of said ing element, to retard the rotational speed of said gear, second adapting means adapting said driven means to receive such reverse engagement
a second lateral face on said member, confronting said firs lateral face,
said drive means being carried by said first lateral face, and said drive receiving means being carried by said second lateral face,
said drive means including a driving surface dispo
proximately transversely to said first lateral face, said driven means including a drive receiving surf posed for engagement by said driving surface,
a first cam surface inclined relative to and conve said drive surface,
a second cam surface inclined relative to and convergen with said drive receiving surface,
said cam surfaces co-acting to impel said driven member
from said rotatable driving element to a neutral position when the rotational speed of said member exceeds the rotational speed of said element, and;
said first and second adapting means being lips formed respectively on said first cam surface and said second cam
surface, for selective engagement of said lips responsive to surface, for selective engagement of said
said actuating means.

COIN.OPERATED VENDING SYSTEMS
4,06,93
Massa, Cohasset, Mass., assignor to Fred M. Dellorfan Frank Massa, Cohasset, Mass,, assignor to Fred M. Dellorfano,
Jr. and Donald P. Massa, Trustees of The Stoneleigh Trust \(\mathrm{u} / \mathrm{d} / \mathrm{L}\), both of Cohasset, Mass.

Filed Nov. 16, 1976, Ser. No. 742,192
Int. Cl. \({ }^{2}\) G07F \(3 / 02\)
U.S. C. 194-100 A

1. In combination in a coin-operated vending system, a
plurality of storage sections containing a plurality of dispensplurality of storage sections containing a plurality of dispens-
able items, a plurality of openings for receiving a plurality of coins of different denominations, guide means associated with
said openings for directing the trajectory of a coin after a coin said openings for directing the trajectory of a coin after a coin
is deposited in one of said openings, means located along the trajectory of said coin for causing said coin to vibrate at its resonant frequency mode, said means including a rigid plate
positioned with one surface of said plate perpendicular to the plane of the trajectory so that the edge of the coin strikes said surface while the coin is falling during the initial stage of its
trajectory and while the plane of the coin is at right angles to said rigid surface at the moment of contact, sensor means responsive to said resonant frequency mode of said vibrating coin, frequency measurement means associated with said sen-
sor means, frequency classification means associated with said frequency measurement means, said frequency classification means characterized in that each different coin is separately classified in accordance with its different resonant frequency mode of vibration, means for returning said deposited coin if
said frequency classification means indicates that the measured said frequency classification means indicates that the measured
resonant frequency of said coin lies outside the established resonant frequency of said coin hes outside the established
normal coin, coin identification means characterized in that the de-
nomination of said deposited coin is identified from the meanomination of said deposited coin is identified from the mea-
sured resonant frequency of said coin if the resonant frequency sured resonant frequency of said coin if the resonant frequency
lies within the acceptable frequency range established for an acceptable valid coin, coin storage means for holding acceptable valid coins which have been so recognized by said coin identification means, totalizing means characterized in that a
signal is generated by said totalizing means which is represen signal is generated by said totalizing means which is represen-
tative of the total value of the accepted coins, merchandise
dispensing means associated with said plurality of storage sections, control means for selectively operating said plurality
of storage sections for the dispensing of a desired item, said electively sections for the dispensing of a desired item, saic ctivated only when the totalizer signal which is renesenta ive of the total value of the accepted coins, indicates that the otal value of the accepted coins equals or exceeds the price of the selected item of merchandise to be dispensed.

METHOD AND APPARATUS FOR REPRODUCING DESIRED IDEOGRAPHS
Philip George Kirmser, 1009 Michael Rd., and Kuo-Kuang Hu on Ave., both of Manhattan, Kans. 66502
Filed Oct. 15,1975 , Oct. 15, 1927, Ser. No.
Int. Cl.
B41J
\(1 / 52\) U.S. CI. \(400-110\)

\section*{}
1. An input-output typing machine for selecting and printing 1. An input-output typing machine for selecting and printing
desired ideographs from a list of available ideographs compris ing means for storing information representing at least a portion of the phonetic spelling of the commonly used names of the ideographs and for storing information representing a descriptive characteristic of each ideograph in the list of avail. means for inputing information representing at least a portion of the phonetic spelling of a desired ideograph, means for inputing information representing the descriptive characteris ic of the desired ideograph, means for comparing the information representing the phonetic spelling and descriptive charac-
teristic of the desired ideograph with the stored information of the available ideographs, means for selecting the desired ideoraph based on the stored information and the input informa tion and means for visually reproducing the selected ideograph person without special training to uniquely identify and print each desired ideograph

\section*{\(4,096,935\)
INPUT DEVIC}

Takayoshi Hanakata, Yokohama, and Shunji Mitaka, Kawasaki, both of Japan, assignors to Canon Kabushiki Kaisha, Tokyo, Japan
This application Aug. 12. 1976, Ser. 1975, abandoned laims priority, application Japan, Feb. 22, 1974, 49-21682; Feb. 22, 1974, 49-21683; Feb. 7, 1975, 50-16101
Int. C1. \({ }^{2}\) B41J 5/12
U.S. C. \(400-479\) Int. Cl. \({ }^{2}\) B41J \(5 / 12\)
\({ }^{11}\) Claims 1. In apparatus of the type wherein desired letters, symbols medium by a printing device in agven direction on a recording corresponding keys on a keyboard, and having means for effecting relative displacement between said printing device and said recording medium wherein said printing device and sair recording medium are relatively displaced in said given the like, and means for printing a corrective character on said recording medium,
(a) first switching means for generating a first instruction for
effecting relative displacement between said printing de- belt, said movement control means being operatively convice and said recording medium in the direction opposite nected with said length registering means so as to cause con-
veying movement of said cross-conveyor means of as many (b) second switching means for generating a second instruc- \(\begin{aligned} & \text { veying movement onsective conveyor elements as occupied by an article to be }\end{aligned}\) tion for actuating said corrective character means; (c) a first push bution;

(e) means responsive to the displacements of said first and second push buttons for discriminatively actuating said first and second switching meais so hons and seare driven in ing means and sine order by the displacement of said first push button and that said second switching means and said first switching means are driven in the aforementione order by the displacement of said second push button.

4,096,936
SELECTIVELY CONTROLLABLE UNLOADING ARRANGEMENT FOR SORTING
Jacob August Nielsen, Vibly J., Denmark, assignor to Kosan Crisplant A/S, Denmark
Continuation of Ser. No. 270,030, Jul. 10, 1972, abandoned, which is a continuation of Ser. No. 86,250, Nov. 3, 1970,
abandoned. This application Aug. 19, 1975, Ser. No. 605,814 abandoned. Tris appplication Aug.
Claims priority, application United Kingdom, Nov. 3, 1969 , 53783/69; Nov. 19, 1969, 56596/69
U.S. Cl. 198-356 Int. Cl. \({ }^{2}\) B65G 43/00

18 Clain

1. A sorting conveyor having a main conveyor operable move forwardly in an article carrier run past at least two stationary discharge stations, said main conveyor comprising plurality of juxtaposed links each consituted by a conveyor
element \(t\), ing a cross-conveyor means mounted cross-wise of the moving direction of said conveyor element, movement control means operable to cause said cross-conveyor means to carry out a conveying movement being located adjacent said discharge stations and being selectively operable diversion of an article resting on said cross-conveyor means at a selected one of said discharge stations, said conveyor means of each pair of consective conveyor elements being operable to effectively support an article of a lengh greater han the width of the cross-conveyor means of each of said conveyor ele-
ments, length registering means being provided for resigtering the length of each article conveyed on said main conveyor
diverted

ARTICLE TRANSPO \(\begin{gathered}4,096,937\end{gathered}\)
ARTICLE TRANSPORT SYSTEM Sydney Johnstone Wallace, Point Roberts, Wash., assignor to American Can Company, Greenwich, Conn. American Can Company, Greenwich, Conn,
Continuation of Ser. No. 622,092 , Oct. 14, 1975, abandoned. This application Jan. 31, 1977, Ser. No. 764,451 Int. C1.2 \({ }^{2}\) B65G \(17 / 32,29 / 00,47 / 24,47 / 84\)
3 Claims

1. An article transport system comprising: a conveyor for noving a plurality of hollow cylindrical articles along a travel ath for subjection of said articles to irradiation, said conveyor nounted at spaced olders having a pulley portion associated therewith and disposed to rotate about a generally horizontal axis; and a rail sembly comprised of a series of axially-aligned, generally ylindrical members, the axial dimension of each said member being less than the recited spacing between said holders, and means supporting said members in mutually abutting relationhip while permitting independent movements of adjacent ones hereof relative to said supporing means in a subtantially long a least a portion of said travel path of said conveyor, and with said cylindrical members disposed above the recited horizontal axis and effective to undergo the recited indepen dent movements while resting upon and riding within said
pulley portions as said holders are moved therepast by said pulley portions as said holders are moved therepast by pulley portions to effect uniform rotation of said holders a they are moved by said conveyor along said travel path fo irradiation of said articles.

APPARATUS FOR TRANSFERRING CIGARETTES ON A CIGARETTE PACKAGING MACHINE
Leslie Elmer Payne, Winston-Salem, NC assignor to R J Reynolds Tobacco Company, Winston-Salem, N.C. inuation of Ser. No. 498,823, Aug. 19, 1974, abando
This application Jan. 8, 1976, Ser. No. 648,605 This application Jan. 8, 1 1976, ser.
Int. 1.2 B65G \(65 / 44\)
U.S. C. 198-420 9 Claims 1. An improved supply and transfer apparatus for a cigarette into compression pockets carried on an intermittent motion conveyor of said cigarette packing machine, said compression ockets being indexed adjacent said supply and transfer mech nism, said apparatus comprising:
at least three transfer chambers, each receiving a group
of cigarettes, each of said transfer chambers being in of cigarettes, each of said transfer chambers being in
registration with one of three adjacent compression pockets on said conveyor when said conveyor is indexed, (b) hopper means connected to said transfer chamber for receiving a supply of cigarettes and distributing said ciga c) at least three plungers being
engage the groups of cigarettes in said transfer chamber and insert the cigarettes into the three adjacent compres
sion pockets in registration with said transfer chambers when said conveyor is indexed; and

(d) means for operating said plungers only after at least each third successive index of said conveyor.

APPARATUS FOR FEEDING GLASS CONTAINERS AT SPACED INTERVALS
Darius O. Riggs, Ottawa Lake, Mich., and Charles G. Vogel Toledo, Ohio, assignors to Owens-IIlinois, Inc., Toledo, Ohio Filed Mar. 12, 1976, Ser. No. 666,2
Int. C1. \({ }^{2}\) B65G 43/00, 47/26
U.S. Cl. 198-460

1. In apparatus for feeding glass containers to a test device
wherein:
moving, horizontal conveyor carries a plurality of contain-
ers in single file to a means for ers in single file to a means for guiding containers from the
side of the conveyor into the entrance of a testing devic mounted at the side of the conveyor, the test device hav ing container sidewall engaging means for moving the containers in precession from the entrance, to and throug
a testing station, the improvement comprising: a testing station, the improvement comprising
leg and a long leg;
means mounting said arm at the entrance to said test device for pivotal movement about a vertical axis intermediate said legs:
said short leg, in a first position, contacting a container and container sidewall engaging means;
1. A conveyor system for feeding a web of corrugated fiber-
container sidewall engaging means; moved by said container engaging means to a point just prior to the testing station;
means biasing the long leg of said arm into engagement with a container
said biasing \(m\)
said biasing means permitting said arm to pivot into a second
position when position when the long leg is not in engagement with
container to thereby move the short leg out of said firs position and permitting a single container to move int engagement with said engaging means and said long leg of said arm whereby containers will be fed to the testing
device at spaced intervals depending on the length of said long leg.

CONVEYING APPARATUS
David Garner, Measham, England, assignor to Coal Industry (Patents) Limited, London, England
U.S. Cl. 198-560 Int. Cl. \({ }^{2}\) B65G 47/18

1. Apparatus for packing broken rock debris adjacent to a oad way in an underground mine, comprising a deck assembly nountable in the roadway and having an elevated deck, a hopper located below the deck for receiving broken rock
debris falling from the deck, a first displaceable paddle device movably mounted so as to urge broken rock debris out of the hopper in a generally horizontal direction, a second displace-
able paddle device movably mountable on advanceable staker able paddle device movably mountable on advanceable staker
means, displacing means for displacing said first and second means, displacing means for displacing said first and second
paddle devices which are repeatedly traversable to and fro in a conveying mode and in a non-conveying mode, and control means for the displacing means which thereby, in use, traverse the paddle devices in the conveying mode in sequence.

4,096,941
CONVEYOR SYSTEM FOR A CUTTER FOR A WEB OF CORRUGATED FIBERBOARD Masateru Tokuno, Nishinomiya, Japan, assignor to Rengo Kabushiki Kaisha, Osaka, Japan Claims priority, application Japan, May 28, 1976, 51 . \(\begin{array}{ll}\text { 69078[U] } & \text { Int. Cl. }{ }^{2} \text { B65G 47/91 }\end{array}\)
 ing:
belt conveying means at the entrance into and exit from said
cutter for carrying said fiberboard into and from said cutter, said conveying means comprised of:
cutter, said conveying means comprised of:
a plurality of parallel, longitudinal perforated conveyor a plurality of parallel, longitudinal perforated conveyor
belts arranged side by side leading into and from said cutter;
suction box means beneath said plurality of perforated con veyor belts and having a plurality of openings in the top thereof aligned win sad perit ats and said fiberboard belts for
thereon;
thereon,
for creating a means connected to said suction box mean tion control a vacuum in said suction box means; controlling the suction within said suction box means for controlling the suction through said openings in said
tion box means beneath said conveyor belts; and
detecting means at the forward end of said belt conveying means and connected to said suction control means for detecting the width of the fiberboard on said conveyor belts and for regulating said suction control means in said suction box means corresponding to the width of fiber board being carried by said conveyor belts, whereby the by providing vacuum from said suction box means only beneath those conveyor belts carrying fiberboard, said detecting means being comprised of a light source and a phototube on opposite sides of eact
tudinal perforated conveyor belts.

\section*{ROLIER TYPE OF CONVEYOR}

Thas Paul Shepherd, S45W22061 Tansdale Rd., Waukeshe, Wis. 53186 Filed Oct. 1, 1976, Ser. No. 728,559 U.S. C. 198-781

15 Claims

1. A roller type of conveyor comprising a support, a plural 1y of rollers rotatably mounted on said support for supporting items on said rollers and moving the items along said rollers when said rollers are rotated and each of said rollers having an external cylindrical surface thereon, driving pulleys rotatably mounted on said larger than said external cylindrical surface and in contact therewith to be rotatable relative to said rollers to slip thereon and also to be in selectable frictional drive contact relative to said rollers for frictionally drivingly rotating said rollers when said pulleys are pressed against said rollers, each of said pulleys having an external cylind rical groove, a powered driver, a driver and extending between and trained in said grooves of said pulleys and being taut between said pulleys for engaging said grooves and positioning said pulleys relative to the longitudinal axes of said rollers, and a tension member in contact with said drive means on the side thereof opposite from for urging said drive means toward said with said pulleys pulleys and thereby press said pulleys against said rollers to effect the frictional drive between said pulleys and said rollers.

NAP-ON TOP \(\begin{gathered}4,096,943 \\ \text { ASSEMBLY }\end{gathered}\) Stewart Gentsch, Longmeadow, Mass., assignor to Rexnord Inc., Milwaukee, Wis.

Filed Nor. 28, 1975, Ser. No. 635,837
S. Cl. 198-793 Int. C1.2 B65G \(17 / 14\)

7. A snap-on top (a) an inside steel saddle in the shape of a channel having a base and two upstanding legs, the legs having holes thereof the pins in a link of roller chain when the link is positioned within said inside saddle, said inside saddle being made from a relatively but not totally inflexible material; (b) an outside steel saddle in the shape of a channel having a base, two upstanding legs, and flanges extending outwardly from the ends of the legs remore from the base, saddle therewithin with the base and the legs of said outside saddle in close engagement with the base and the legs of said inside saddle and the legs of said outside saddle extending up along the legs of said inside saddle at least past the holes therein, said outside saddle being made from a relatively but not totally inflexible materia
(c) a top plate; said outside saddle; and (e) second means for retaining said top plate in place on the said inside saddle.

CARTRIDGE FOR GROUTING AN ANCHOR ELEMENT IN A HOLE OF A SUPPORT STRUCTURE Robert E. Simpson, Spokane, Wash., assignor to The United States of America as represented by the Secretary of the Interior, Washington, D.C.
Continuation-in-part of Ser. No. 809,883, Jun. 24, 1977, abandoned. This application Nov. 21, 1977, Ser. No. 853,700
Int. Cl. \({ }^{2}\) 665D 25/08; C04B 11/14; E21D \(11 / 00\) U.S. C. 206-219

1. A cartridge for grouting an anchor ele
gated hole of a support structure, comprising: an elongated tubular casing fabricated of a frangible material capable of being punctured and shredded by an anchor between enclosed ends sufficient to and having a diameter be introduced mixture of a
heterogeneous mixture of a continuous phase of dry hy draulic cement powder and a discontinuous phase of
multitude of water-containing microcapsules essentiall
uniformly dispersed in the continuous phase that fills the said barrier layer being bonded to the inner surface of said
interior of the tubular casing between the enclosed ends: interior of the tubular casing between the enclosed ends;
wherein the microcapsules have diameters in a range of 400 to 5000 microns and have inert, frangible shells enclosing droplets of liquid water that are pressure sensitive and are sapable of being progressively ruptured by the force of said anchor element being thrust into the cartridge when
the cartridge is positioned in the hole to thereby dispense the water substantially uniformly throughout the cement powder to enable the water and cement powder to thor oughly interact to form a flowable cement paste in inti-
mate contact with the hole wall and the anchor element mate contact with the hole wall and the anchor elemen
which when solidified forms a uniform grout about the anchor element to secure the anchor element to the sup port structure.
\(\qquad\)
SYSTEM FOR INJECTING PARTICULATE MATERI INTO THE COMBUSTION CHAMBER OF A
OPETITIVE COMBUSTION COATING APPARATUS REPETTITVE COMBUSTION COATING APPARATUS
Rosser B. Melton, Jr., Helotes, and Elbert M. Hubard, Dallas, Roser b. Melon, Jr., Helotes, and Eiber M. Aubbard, Dalilaa,
both of Tex., assignors to Southest Research Institute, San Antonio, Tex.
Division of Ser. No. 458,884, Apr. 8, 1974, Pat. No. 3,893,578. This application Nor. 4, 1974, Ser. No. 520,672
U.S. Cl. 206-469 Int. Cl. \({ }^{2}\) B65D 75/62 20 Claims

\section*{}

o said dried vinylidene chloride polymer coating layer by centained oil resistant adhesive and an oleaginous material ontained within said package.

SYNTHETIC RESINOUS NESTING CUP
Morse, 44 Honeck St., Englewood, N.J. 07631
Filed Jan. 21, 1977, Ser. No. 761,056
U.S. Cl. 206-519

1. The encapsulating tape for successively delivering prede termined quantities of particulate coating material to a pneu matic stripping station where the particulate coating material pneumatically removed from the tape and injected into a hea ing and pressurizing chamber, said tape comprising a plurality
of discrete encapsulating pockets each filled with a predeter of discrete encapsulating pockets each filled with a predete
mined quantity of very finely ground particulate material the particles of which are capable of being heated and impacte against a work piece to form a specialized coating on the wor piece, each pocket having a pneumatic inlet face and a pneu matic outlet face, the pneumatic inlet face including means for admitting gas to the interior of the pocket to burst the outle
ace before the inlef face is deformed by gas pressure applied to the inlet face to an extent sufficient to press the particulate material against the outlet face to rupture the outlet face to hereby prevent the lodging of the fine particulate material between the two faces.

\section*{4,096,946}

LAMINATE FOR USE IN PACKING OIL
Herbert G. Cook, and Jack A. McAvity, both of Toronto, Can ada, assig
Canada
Continuation of Ser. No. 506,582, Sep. 16, 1974, Continuation of Ser. No. 506,582, Sep. 16, 1974, abandoned,
which is a continuation of Ser. No. 277,049, Aug. 1, 1972, which is a continuation of Ser. No. 277,049, Aug. 1, 1972,
abandoned. This application Mar. 15, 1976, Ser. No. 667,030 abandoned. This application Mar. 15, 1976 U.S. C. 206-484. 2 formed from a s 8 Claims 1. A package formed from a sheet material which is a lami nate consisting essentially of outer layers of copolymer of
ethylene with propylene or butene and at least one inner bar rier layer consisting of a vinylidene chloride polymer in the rier layer consisting of a vinylidene chloride polymer in the
form of a dried emulsion coating which is free of plasticize

1. A nesting cup construction of resilient synthetic resinous material comprising: a bottom wall and a generally conically shaped side wall connected thereto, said side wall having a free said first wall portion interconnecting with said bottom wall, and having a conical outer surface and a conical inner surface, aid conical outer surface extending to said second wall porion, said conical inner wall surface extending past said second wail portion; said second wall portion being disposed above ng upwardly from said first wall portion to include a first apering portion forming a first ledge, and a first cylindrical surface extending upwardly from said ledge; said third wall having an inner second cylindrical surface adjacent a free upper edge thereof of unstressed diameter slightly less than hat of said first cylindrical surface of said second wall portion, and a tapering surface forming a second ledge selectively
engageable with said first ledge; whereby upon the nesting of engageable with said first ledge; whereby upon the nesting of
a first cup within a second cup, the ingress of the former with respect to the latter is limited by engagement of said first and second ledges, and a sealing action is accomplished by the sliding engagement of said first and second cylindrical surfa
resulting in the resilient expansion of said second cup.

COOK-IN CARTON W,096,948
COOK-IN CARTON WITH INTEGRAL REMOVABLE Morris W. Kuchenbecker, Neenah, Wiserefor Can Company, Greenwich, Conn.

Filed Mar. 18, 1977, Ser. No. 779,807
U.S. Cl. 206-622
int. C1. \({ }^{2}\) B65D \(5 / 70\)
1. A carton adapted for use in heating a product 8 Claims therewithin, comprising a plurality of hingedly interconnected
panels, two of said panels being similarly dimensioned and configured and being secured in face-to-face contact to pro vide a two-ply wall in said carton, a portion of the inner of sai two panels having openings formed therein to permit substan
tial exposure of the contained product, the outer of said two panels having a weakened area extending to opposite margin thereof defining therein a removable section dimensioned and configured to cover said open portion of said inner panel, said removabe section a rectilinear fold line extending between said

pposite margi.as of said outer panel at a location spaced to each side of said weakened area of said the portions being secured to said inner panel so tha upon removal of said removable section of said outer panel, said tab portions may be folded about said fold ines away from said inner panel, to thereby provide support legs on said car
ton, and disengagement of said removable section from the on, and disengagement of said removable section from the
remainder of said outer panel uncovering said openings and effecting substantial exposure of the product contained within said carton.

APPARATUS FOR PERFORMING A THREE-WAY SORT
 Tex., assignors to Geosource Inc., Houston, Tex.
asslgnors to Geosource Inc., Houston, Tex
Filed Jun. 1, 1976, Ser. No. 691,908
74 M Int. C. \({ }^{2}\) B07C \(5 / 342\)
16 Claims

1. Apparatus for sorting particles into three groups accor ing to predetermined physical characteristics comprising means for providing a singulated stream of particles; firt classifying means including a first viewing zone for
classifying each particle passed therethrough according to first physical characteristic thereof and for generating a irst electrical trip signal responsive to a particle having said first physical characteristic second classifying means including a second viewing zone
for classifying each particle passed therethrough accord-
ing to a second physical characteristic thereof and for generating a second electrical trip signal responsive to a particle having said second physical characteristic
first ejector element associated with said first classifying means and spacej a frirt predetermined sist first ejector element responsive to said first trip signal to expel a particle having said first physical charac eristic from said particle stream,
second ejector element associated with said second classifying means and spaced a second predetermined distance
therefrom, said second ejector element responsive to said second trip signal to expel a particle having said second physical characteristic from said particle stream, said first ejector element and said second ejector element both being disposed in a plane substantially normal to said particle stream particle stream
正t signal delay means disposed intermediate said first clas sifying means and said first ejector element for delaying a trip signal generated by said first classifying means for a He predetermined period of time functionally related to termined distance;
econd signal delay means disposed intermediate said second classifying means and said second ejector element fo delaying a trip signal generated by said second classifying means for a second predenind poriodicle to functionally related to the time required for a pa
means responsive to the simultaneous output of trip signal from said first and second signal delay means to said firs and second ejector elements for permitting actuation of inhibiting actuation of said other ejector element.

4,096,950
ORTING SYSTEMS AND SENSING DEVICES FOR USE THEREWITH
ichard Morley Brook, Huddersfield, England, assignor to AutoSystems Limited, England
Continuation-in-part of Ser. No. 495,016, Aug. 5, 1974, Pat. No. 3,997,013. This application Cet. 27, 1976, Ser. No. P6,059 The portion of the term of been disclaimed. Int. Cl. \({ }^{2}\) B07C \(5 / 28\)
U.S. Cl. 209-12

15 Claims

1. A conveyor system for use in sorting a plurality of articles according to their weight, said system comprising:
(a) an overhead conveyor comprising a continuous rail de fining a path and a plurality of shackles movable there along in succession, each shackle being arranged to carry a poultry carcass,
(c) an electronic weight sensing transducer arranged at said weighing station to emit a weight signal related to the weight of each poultry carcass as said carcass passes through said weighing station,
(d) a plurality of sorting stations spaced apart along said path
downstream of said weighing station, each sorting statio
being associated with carcasses having a particular weight
range, (e) a shackle release device and a carcass receiving container arranged at each sorting station,
time a shackle passes said sensing device and
(g) control means connected to said weight sensing trans ducer, said sensing device and each of said shackle release devices to receive and store said weight signals and said
counting pulses and to actuate each shackle counting pulses and to actuate each shackle release device
when there arrives at the associated sorting station a shackle carrying a carcass having a weight lying in the weight range associated with the particular sorting station to sort said articles by weight.

4,096,951
CAMPING UTILITY STAND
Leroy K. Menssen, Estherville, Iowa, assignor to The Raymond Filed May 12, 1977, Ser. No. 796,228

U.S. Cl. 211-207

3 Claims
1. A camping utility stand, comprising
main rod having spaced opposite first and second ends, said first end having a point thereon for piercing supporting
ground and said second end having a coaxial bore formed ground
therein;
an anchor member affixed to the main rod in the area of the first end thereof and surrounding said main rod for applying pressure to urge the main rod into the ground; and second ends with first and second cross rods at the first and second ends, respectively, and a grating at the first end of said square loop rod for supporting a bar of soap, the remainder of said square loop rod supporting square a loop rod for supporting a wash pan and end of the \(V\)-shaped support rod pivotally mounted on the first cross rod;
mounting means pivotally mounting the square loop rod on the main rod in an adjustable manner whereby said square oop rod is poitionable al a desired point along the length lar to said main rod to a position substantially next-adjacent said main rod; and
a plurality of spaced protruding members on the main rod for supporting the end of the support rod farthest from the square loop rod to maintain said square loop rod substan-
tially perpendicular to said main rod at different points therealong.

4 4,096,952
ADJUSTABLE JIB CRANE
Richard E. Diggs, 12A Rd., Carthage, Mo. 64836 Diges, 12A Rd., Carthage, Mo. 64836
Filed Dec. 21, 1976, Ser. No. 752,869 U.S. Cl. 212-56 Int. C1. \({ }^{2}\) B66C \(23 / 06\)

1. A jib crane comprising
base element mounted on a floor, said base element includ ing an anchor embedded in the building floor, a floor plat
mounted on the building floor and fixed to said annular collar having a top rim and a bottom rim fixed said floor plate to be coaxial with said anchor, a rotation boss seated in the annulus defined in said annular collar; lower tubular mast section having a mounting flange fixe to one end thereof, and a bearing surface on said lower mounting flange having a lower surface resting on said base element annular collar top rim, said lower mast sec tion having a plurality of fastener receiving holes defined therein, said fastener holes being spaced apart longitudi-
nally of said lower mast section upper tubular mast section teles lower section in one end thereof; sapingly receiving said longitudinally aligned and esseof; said mast sections being tongitudinally aligned and essentially upright;
top element connecting the other end of said up
to a ceiling in a manner such that said upaid upper section to a ceiling in a manner such that said upper section
freely rotatable about the longitudinal axis thereof, said top element including ceiling slope accommodating mean for connecting said upright upper mast section to a ceiling which slopes with respect to said mast sections; said connecting means including mast sections together adjustment means which comprises a tubular jacker tele scopingly receiving the other end of said lower mast section and having a plurality of fastener receiving holes
defined therein to be paced defined therein to be spaced apart longitudinally on said
tubular jacket, and a fastener fitting through said fastener receiving holes and coupling said tubular jacekt to said lower mast section in a manner which prevents rotation of said coupled elements with respect to each other thereby further preventing rotation of said upright upper mas height adjustment means which comprises a first flange on said tubular jacket, a second flange mounted on said upper mast section one end and having a plurality of bolt receiving openings defined therein, said flanges being faceially and received in said second flange bolt receiving openings, said bolts preventing rotation of said upper mast element with respect to said tubular element so that said
mast sections are coupled mast sections are coupled together in a non-rotatable
manner by said connecting means, and a locking nut threaded onto each bolt and engaging said second flange, said flanges being separated by a distance determined according to the position of said locking nuts on said bolts
so that the height of the crane is adjustable via said fine so that the height of the crane is adjustable via said adue
adjustment means independent of a crane height adjust adjustment means independent of a crane height adjust-
ment via said rough adjustment means and with said mas sections being non-rotatably connected together by said connecting means and load handling means connected to one of said most sections to move a load horizontally and vertically.

4,096,953
MECHANISM TO TRANSFER WORKPIECES BETWEEN LOCATIONS Arnold LeRoy Kellermann, Goshen, and David Ian McDonald, Cincinnati, both of \(\mathbf{O}\)

Inc., CIncInnati, Ohio

Filed Mar. 21, 1977, Ser. No. 779,732
U.S. C. 214-1 BT Int. Cl. \({ }^{2}\) B65G 47/91

1. A machine for transferring a workpiece substantially horizontally from a first location to a second location comprising
a machine frame; connecting rods between a driver link at the bottom and follower link at the top;
orkpiece engaging means supported from said follower link;
vertical driving means to substantially vertically drop then lift said four bar mechanism periodically by engaging said driver link;
constraining means supported from said frame to guide said four bar mechanism to move in a substantially vertical path relative to said frame; and
horizontal driving means supported from said frame to sub. stantially horizontally oscillate said follower link from one of said drop and lift positions at locsion and return;
both said vertical and horizontal driving means operating in timed relation to each other to vertically lift said four bar mechanism sufficiently for a workpiece at said first location to be engaged by said workpiece engaging means location has occurred.

\section*{4,096,954}

GONDOLA CAR LOADER
Walter E. Buckner, Hartselle, Ala., assignor to Lucky Manufac-
turing Company, Huntsville, Ala. Filed Apr. 22, 1977, Ser. No. 789,887 S. C. 214-38 CC

9 Claims

3. An apparatus moveable along the length of a plurality of railroad gondola cars positioned end to end comprising: a chassis; and
means for suppo
means for supporting said chassis on upper edges of the walls of the cars and for facilitating movement of the chassis across gaps between immediately adjacent cars, said means comprising:
a first pair of elongated beams mounted to a forward portion of said chassis, each of said first pair of elongated beams carrying a pluraity of wheels spaced along
he length thereof for engaging the upper edges of the walls of the cars, and each of said beams being selecfively pivotable in a substantially vertical plane with respect to the chassis at a point intermediate two of said plurality of wheels about an axis generally perpendicuar to the length of the beam; and
portion of said chassis, each of said second pair of elongated beams carrying a plurality of wheels spaced along he length thereof for engaging the upper edges of the walls of the cars, and each of said beams being selec ively pivotable in a substantially vertical plane with
respect to the chassis at a point intermediate two of said plurality of wheels about an axis generally perpendicular to the length of the beams.

4,096,955
LIFTING MECHANISM
Nolan Dake, 378 Connaught Way, Houston, Tex. 77015
Filed Sep. 10, 1976, Ser. No. 722,007
U.S. Cl. 214-75 G 6 Claims

1. In a lifting and lowering apparatus for wheelchairs and the cupants thereof to and from a motor vehicle comprising: cle,
an articulating arm means operatively interconnected to said supporting strut means for moving vertically with respect thereto,
wheelchair support frame supported from the remote end of the articulated arm means and including a pair of rail
supports for supportively receiving the rails of a wheelchair and,
motive power means and lifting means operatively associ-
ated with the articulating ated with the articulating arm means for moving a wheelchair on the rail supports to and from the interior of the
vehicle and
said rail supports being disposed at an angle with respect to the horizontal so that the ends thereof proximate the front
of a wheelchair carried thereon are higher than the back of a wheelchair carried thereon are higher than the back, ing the lifting thereof,
said wheelchair support frame including a substantially vertically disposed support housing bar, and coupling means connecting said rail supports to said support hous-
ing bar, said coupling means being vertically movable ing bar, said coupling means being vertically movable
toward said articulating arms upon actuation thereof so as to move the wheelchair on the ground and thus tilt it rearwardly prior to operation of said articulating arm
means. means.

4,096,956
Raymond Lester Gaskin, 809 Valley Crest, La Canada, Calif. Continuation of Ser. No. 592,349, Jul. 1, 1975, abandoned. This application Jan. 26, 1977, Ser. No. 762,40
Int. C1. \({ }^{2}\) B60P \(1 / 00\); B65F \(3 / 00\)
U.S. C. \(214-82\)

4 Claim

1. An apparatus adapted to be mounted upon a vehicle chassis rearwardly of the cab thereof for loading and compacting compressible material comprising:
(a) a refuse loading compartment dis
(a) a refuse loading compartment disposed rearwardly of the
cab having a floor and side walls; (b) a forwardly open storage comp
(b) a forwardly open storage compartment disposed rear-
wardly of said loading compartment and in open coll Wardy of said loading compartment and in open commu-
nication therewith having side walls, a substantially vertically disposed end wall and a floor elevated with respect to the floor of said loading compartment;
(c) a generally planar member disposed intermediate said
loading and storage compartments said member being loading and storage compartments said member being
pivotally connected to said storage compartment proximate the forward edge of said floor thereof and being pivotally movable from a first position defining an in
clined plane interconnecting said floors of said storage and clined plane interconnecting said floors of said storage and
loading compartments to a second generally horizontal position substantially coplanar with said floor of said storage compartment;
(d) a longitudinally movable, generally vertically disposed, substantially planar compaction blade including means fo
moving said blade comprising a fuid actuated assembly moving said blade comprising a fluid actuated assembly
consisting of a plurality of telescopically interconnected members housing a fluid actuated piston, one end of said assembly being connected to said compaction blade for uniform movement of said blade, the other end of said
assembly being connected to the forward end of the loading compartment, said compaction blade being movable relative to said planar member from a first position forward of the forward edge of said planar member wherein
said blade closes the forward opening in said storag compartment, to a second position proximate said rear ward end wall of said storage compartment said blade being constructed and arranged to cooperatively interact with said planar member for removing refuse from said
planar member when the later is in a second planar member when the latter is in a second position and storage compartment toward the end wall thereof for compaction of the trash between said compaction blade and said end wall;
(e) a pusher assembly carried within said loading compart-
ment and reciprocally movable rearwardly beneath ment and reciprocally movable rearwardly beneath said
compaction blade to a position proximate said compaction blade to a position proximate said plana
member for moving refuse deposited into said loading compartment onto said planar member when said latter member is in a first position, said pusher assembly being provided with a curved refuse engaging blade adapted to cooperate with said planar member to lift the trash depos-
ited thereon as said member is raised to said second position, the curvature of said blade closely corresponding to the arc generated by the movement of the forward edge of said planar member as said member moves from said first to said second position, whereby as said member is moved to said second position said blade and said planar member
cooperatively interact so that as the trash is lifted it will not fall between said blade and said planar member; and (f) means for moving said planar member from the first to
second postion. second postion.
-
\(\stackrel{4,066,957}{\text { PIVOT PIN ASSEMBLY }}\)
Lowell P. Iverson, Aurora; Gearge W. Dirscherl, Chicago, and Paul D. Hagen, Yorkville, all of Ill., assignors to Caterpillar ractor Co., Peoria, III. \begin{tabular}{cc}
\multicolumn{3}{c}{ Filed Jul. 18, 1977, Ser. No. 816,579 } \\
Int. Cl.2 B23P 19/04 \\
U.S. C. 214—145 R \\
6 Claims
\end{tabular}

1. In a loader bucket having a bucket bracket assembly secured thereto and mounted for rotation about a loader arm pin assembly for mounting the bucket brackets to thed pivot pin assembly for mounting the bucket brackets to the loader an elongated cylindrical
second end face;
afirst retaining sleeve having an inner surface and an outer surface and an interior end and an exterior end, the inner surface engaging the cylindrical pin, the exterior end of
said first sleeve being secured to the first end face of te elongated cylindrical pin, the outer surface of the sleeve engaging the bucket bracket assembly of the loader bucket;
a second
a second retaining sleeve having an inner surface and an outer surface and an interior end and an exterior end, the
inner surface engaging the cylindrical pin, the exterior end inner surface engaging the cylindrical pin, the exterior end
of the second sleeve being secured to the second end face of the elongated cylindrical pin, the outer surface of the
sleeve engaging the bucket bracket assembly of the loader bucket, flange means extending outwardly from the exterior end of the second retaining sleeve for abutting the
bucket bracket assembly, the flange means defining two bucket bracket assembly, the flange means defining two
spaced-apart sides; spaced-apart sides;
sleeve bearing havi
the cylindrical pin and an outer surface engaging the loader arm assembly, the sleeve bearing captured between
the interior surface of the first and the second reand the interior surface of the first and the second retaining sleeves; and
cover plate mounted on the bucket bracket assembly hav-
ing a channel for capturing the flanges between the cove plate and the bucket bracket assembly for restricting axial movement of the elongated cylindrical pin, and said two
spaced-apart sides retained in the channel for restricting spaced-apart sides retained in the channel for restricting
rotational movement of the elongated pin with respect to the loader bucket.

\section*{4,096,958}

METHOD FOR HANDLING BUNDLES OF SHEETS Walter John Stobb, Pittstown, N.J., assignor to Stobb, Inc., Clinton, N.J.
Divislon of Ser. No. 663,825, Mar. 4, 1976, Pat. No. 4,018,351. This application Feb. 14, 1977, Ser. No. 768,106 US. C. 214-152 Int. Cl. \({ }^{2}\) B21C 47/2
ositioned on said chassis having one end with a garbage eceiving opening facing toward the driver's cabin, a garbage
oading housing mounted on said chassis adjacent said cabin and having a top with a garbage receiving opening and an end opposite to the end facing said driver's cabin with a transfer pening adapted to align with the garbage receiving opening
or the transfer of garbage from the garbage loading housing to said garbage receiving container, a pivotal garbage can loader arm pivotally mounted on said chassis for pivotal movemen bout a horizontal axis adjacent said cabin and having mean hereon for engaging the garbage can, said loader arm being
ivotally movable with the garbage can through an arc extending from adjacent the ground level to said garbage can receiving opening to dump the garbage from the can into said loader housing, a pickup blade pivotally mounted on said loade housing adjacent the bottom of the transfer opening and hav


1. A method for automatic depalletizing rows of bundles of sheets from a pallet which is in a prone position with the bun-
dles of sheets lying thereon on top of each other, comprisin dhe steps of bringing a common vertical side of the pallet and bundles of sheets into contact with a vertical arm, tipping the said arm and pallet and the bundles of sheets to an uprigh side-by-side position and thereby positioning the bundles onto inclined anti-friction members on said arm and thereby present
upstanding rows of said bundles of sheets, moving all of said rows of said bundles of sheets in a first direction along a first conveyor which thus moves all of the rows of said bundles by gravity along said anti-friction members as a unit away from said pallet which remains stationary, holding some of said row of said bundles of sheets on said first conveyor while passing
one of said rows of said bundles of sheets to a second conveyor moving said one row of said bundles of sheets on said second conveyor in a direction ransverse to the movement of said rows of said bundles of sheets relative to said first conveyor
and thereby moving said one row of said bundles of sheets along the length of said one row and on said second conveyor and dispersing individual bundles of the sheets to different locations.

GARBAGE COLLECTING AND TRANSPORT VEHICLE Georg Schaffler, Augsburg, Germany, assignor to Industrie Werke Karlsrube Augsburg Aktiengesellschaft, Germany
Filed Oct. 7, 1976, Ser. No. 730,315 Claims priority, application Germany, Oct. 8, 1975, 254505 Int. Cl. \({ }^{2}\) B65F 3/02
1. A garbage 9 Claims arbage from a garbage can or similar container, for loading garbage from a garbage can or similar container, comprising a
wheeled chassis having a driver's cabin at one end of said chassis, a removable garbage receiving container adapted to be
ing an end opposite the pivotal mounting extending substantially to the bottom of said loader housing, said pickup blade being pivotal to raise the garbage in the loader housing to the level of the transfer opening, a closing blade mounted on saic garbage receiving container and said loader housing and being pivotally mounted adjacent the top of said transter opening
and being of a length to extend substantially to the bottom of he transfer opening and the inlet of said receiving container, said closing blade being pivotal to a position spaced from the ransfer opening in a direction toward the garbage receiving pening so as to permit the pickup blade to lift the garbage umped into the housing so as to place it in alignment with the ransier opening, said closing blade being pivotal backwardly pickup blade and to move it through the transfer opening into he garbage receiving container.

HAVSTACK M0, 0 ,096,960
HAYSTACK MOVER CONTROL MEANS Charles L. Gilmore, P.O. Box 231, Sterling, Kans, 67579 Filed Apr. 26, 1977, Ser. No. 790,988
U.S. C. 214-505

1. Mobile material handling apparatus and controls therefor comprising a wheeler trailer, hydraulic fluid actuated means mounted on the trailer for handing material, electrically oper led valves mounted on said trailer for controlling hydraulic uid actuation of the hydraulic fluid actuated means, an inter oupled to a hydraulic pump that is operationally connected to said valves, said trailer being provided with fifth-wheel towing vehicle coupling means at its forward end, said engine includ ing electrically operated components, electrical control means for said valves and for said components, said control means
including an array of electric switches and an elongated flexible multiconductor electric cable having its conductors at one
end thereof operatively connected to the valves and the engine components and having its conductors at its other end operatively connected to said array of switches, said cable having a
length such as to be extendible to position its said other end forwardly of the fifth-wheel coupling means, whereby the valves and the engine components can be controlled from a position remote from both the valves and the engine, and said electrically operated components including an ignition system theren when cold, can be started and stopped from said remote position.

\section*{4,096,961}

DUAL LOW LIFT TRUCK
Jack O. Rocco, Burlington, Mich., assignor to Clark Equipment Company, Buchanan, Mich.
Continuation-In-part of Ser. No. 673,221, Apr. 2, 1976, Pat. No. 4,065,012. This spplication Dec. 2, 197, Ser. No.
The portion of the term of this patent subsequent to Dec. 27, 1994, has been disclaimed.

Int. C1. \({ }^{2}\) B60P \(1 / 04\)
U.S. CI. 214— 510

1. In a dual low lift powered truck, a tractor drive portion having a main frame, a tractor non-drive portion having a main frame, coupling means connecting said tractor portions in side-by-side relation for operation as a single dual unit truck,
hydraulic actuator means and guide means supported from and hydraulic actuator means and guide means supported from and
rearwardly of the forward end portion of each of said main rearwardly of the forward end portion of each of said main
frames, vertical guide means supported from a forward end portion of each of said frames, a pair of relatively short L frame assemblies having a horizontal leg portion extending beneath and forwardly of respective ones of said main frames and a corresponding vertical leg portion actuatable by said hydraulic actuator means for guidend actuator assemblies conof elevatable load wheel means and accuator assemblies con-
nected to respective ones of said L -frame assemblies and coop erating with said hydraulic actuator means to raise and lower said L-frames bodily vertically, and a pair of relatively long \(L\)-frame assemblies coupled with respective ones of said verti cal guide means for guided vertical movement in at least a ping, extending forwardly of and elevatable by said short ping, exte

\section*{4,096,962}

RING OPENER FOR HERMETICALLY SEALED RING OPENER FOR HERMETCALLY SRS Arduino E. Riuli, Wayne, and Bernard F. Kopacz, Little Falls, both of N.J., assignors to Becton, Dickinson and Company, Rutherford, N.J.
\[
\begin{aligned}
& \text { Filed Aug. 1, 1977, Ser. No. 8. } \\
& \text { Int. Cl. }{ }^{2} \text { B65D } 1 / 02
\end{aligned}
\] U.S. C. 215-32 1. A ring-type opener for a plastic container having an inte 1. A ring-lype hermetically sealed, bulbous cap portion, which a cyprises;
a cylindrical ring member open at first and second ends and
having a bore therethrough communicating between the open ends;
hreads on the wall of said bore adjacent said first end, adapted to mate with threads on said plastic container immediately beneath said cap portion;
etainer means attached to said cylindrical member and
partially closing said second end; and partially closing said second end; and

chisel means mounted on the walls of said bore above said threads and extending towards said second open end at an angle so as to engage with the underside of said bulbous cap portion of the container when said cylindrical memall sides of said cap.

\section*{4,096,963}

Kenneth Francis Rumball, Great Bookham, England, assignor to Airfix Industries Limited, London, England

\section*{Fiiled Jul. 30, 1976, Ser. No. 710,222}

Claims priority, application United Kingdom, Jul. 30, 1975,
31954/75

1. A composite lid of given form comprising a blank of flexible sheet material and a peripheral moulding of synthetic
plastics material injection moulded in position on the blank and of form following the periphery of the blank, the blank comprising a generally planar central part, an inner marginal part displaced relative to the central part to extend from an inner
junction with the central part out of the plane of said central junction with the central part out of the plane of said central
part in a first direction and a generally planar outer marginal part in a first direction and a generally planar outer marginal inner marginal part in a plane substantially parallel with and spaced from the plane of said central part, said planar outer marginal part terminating in a free edge part, the moulding comprising an inwardly extending portion abutting and bonded by moulding in position on the blank to the displaced
marginal parts of the blank on the faces thereof which are directed away from said first direction, said moulding extending outwardly beyond the free edge part of said blank, said moulding including an integral skirt extending from the outwardly extending part of said moulding in a direction opposite to said first direction, the inwardly extending portion of the
moulding overlying the outer junction between the inner and outer marginal parts of said blank but not the inner junction between the inner marginal part and the central part.

UNIVERSAL ELECTRICAL OUTLET BOX AND
Earl Glick METHOD OF INSTALLING
Earl Glick, 13015 Lincoln St., NW., Massillon, Ohio 44646
Filed Jun. 3, 1977, Ser. No. 803,364
U.S. C1. 220-3.4

Int. Cl. \({ }^{2}\) H02G 3/08

\author{
11 Claim
}

5. An electrical outlet box and installation means comprising a substantially cylindrical outlet box body having an open forward end and a flat annular flange adjacent the open fo axial post on the rear wall and extending forwardly thereof in the box body, a mounting bracket means on the box body including a forward end apertured attaching web adapted fo securement to a wall stud, a dry wall panel penetrating mean temporarily telescopically engaged with said threaded pos and extending axially forwardly of the post and being readily
separable from the post after usage, and a rotary cutter means separable from the post after usage, and a roary cutter means
adapted to be centered on the penetrating means for producing a dry wall panel opening in substantial registry with said open forward end.

STORAGE DEVICE \(4,096,965\)
STORAGE DEVICE FOR SAMPLE CONTAINERS Werner Lessnig; Günter Metz, both of Cologne; Willi Spiege
and Jürgen Fleischer, both of Leverkusen, all of Germany ssignors to Bayer Aktiengesellschaft, Leverkusen, Germany Filed Sep. 17, 1976, Ser. No. 724,199
Claims priority, application Germany, Oct. 4, 1975, 2544533
Int. C1. \({ }^{2}\) A47B \(73 / 00\) : B65D \(53 / 00\) U.S. C. \(220-20\)

1. A device for the storage of sample containers comprisi a holder having a plurality of cavities therein, each cavit receptive of ardly therefrom; a common cover for all of the received sample containers and positionable over the holder and on the projecting portions of the containers to float thereon unsupported by the holder; and means coactive with said cove when disposed in position over the holder and unsupported thereby for individually sealing each sample container simult the cover, an elastic inflatable membrane disposed on the underside of the cover in the cavity deformable outwardly into
sealing engagement with the received sample containers and retractable into the cavity to release the sealing engagement.

\section*{4,096,966}

SELF-RIGHTING CUPS
SELF-RIGHTING CUPS 95125
Continuation-in-part of Ser. No. 598,235, Jul. 23, 1975, Continuation-in-part of Ser. No. 598,235, Jul. 23, 1975,
abandoned. This application May 20, 1976, Ser. No. 688,141 US. Cl. 220-69 Int. Cl. \({ }^{2}\) B65D \(11 / 00\)
1. A wo-piece self-righting drinking cup comprising a genrally rigid cylindrical hollow cup container having a down ottom wall which is for the recention and retention of quid, a separate base member which is circular in cross sec ion and on which the hollow cup container is mounted, means remounting said cup container on said base member, said base ressively decreasing ind having a convex outer surface pro member and said hollow cup member to the lowermostid base of said base member, said lowermost portion defining a flat external diameter of the hollow cup container, said base mem ber having a structure including an enclosed compartmen Containing ballast, said ballast having a center of gravity which lies on a vertical axis extending through the center of said cup zed by the following critical paratneters:
(a) the ratio of the diameter of the lowermost portion of the base to the greatest diameter of the drinking cup itself is about 0.39 to 0.75 ,
(b) the ratio of cup height to maximum cup diameter is about \(0.80-1.1\),
(c) the ratio of the cup height to the diameter of the lower most portion of the base is about 1.3 to 2.5 , and (d) the ratio of cup height to the height of the convex por
tion of the base member is about 1.8 to 3.2 . oin said self-righting drink cup resists being
but quickly self right itself without any substantial subsequen wobble after being knocked over.

ECOLOGICAL EASY-OPEN CAN END
Elton George Kaminski, Sidney, Ohio, assignor to The Stolle Corporation, Sidney, Ohio
U.S. C. 220-269
1. In an easy-open can end having a primary score defining tear tab, an integral rivet in said score, and a pull tab secured to said can end by means of said rivet, said primary score being center of the can end, the ends of the \(U\) being flared outwardly. and the parallel arms of the \(U\) being spaced very slightly fur her apart than the width of said pull tab, said tab having a penetrating nose disposed over the bottom center of the U stiffening beads embossed in said can end, one on each side of
said pull tab and parallel thereto, and extending slightly in front of said rivet, and a substantial amount behind said rivet,

\section*{}
and an axial bead debossed in said can end extending behind said rivet to a point beyond the end of said pull tab, whereby when said pull tab is raised to a vertical position, said penetrating nose ruptures said primary score, whereupon downward pressure on said vertical pull tab causes the remainder of said
\[
\text { U.S. Cl. 221-199 Int. Cl. }{ }^{2} \text { B65H 31/20 } \quad 10 \text { Claims }
\]

primary score to be ruptured and the tear tab to be bent dow wardly below the can end, and said tab may then be ben forwardy and snapped under the opened edge of said can end, can end.

\section*{DOOR MOUNTING 4ND 4} Fritz F. Treiber, Centerville, and Francis E. Graham, Kettering, both of Ohio, assignors to Hobart Corporation, Troy, Ohio Filed Sep. 16, 1977, Ser. No. 833,720 U.S. C. 220-314 \({ }^{\text {Int. C. }{ }^{2} \text { B65D 45/2 }}\)

1. Apparatus for mounting and actuating a closure door of a ressure vessel, comprising.
an elongated door support member positionable across the vessel opening and pivotally supported adjacent said opening to swing toward and away from said opening; a rocationally and axially movable
on said door support member;
on said foor support member; and said door support member for moving said shaft axially in response to rotation thereof; and
coupling means connecting said shaft to the door and responsive to axial movement of said shaft for shifting the door laterally with respect to said door support member and for causing translational movement of the door toward and away from said door support member in re-
sponse to shaft rotation.
1. An apparatus for adapting a conventional mechanical cigarette vending machine having a magazine for dispensing horter a garettes odispense longer cigarettes, said magazing
having a series vertical divider means for holding cigarettes, said apparatus comprising
a. a generally elongated, rectangular sleeve means liaving a flat back means;
b. two flat, rectangular side panel means extending approxi-
mately perpendicularly on the same side of said back panel mately perpendicularly on the same side of said back pane lip means coing connected thereto;
connecting said apparatus to of said sidewall means for d. front panel means connected to dividers; and side panel means to contain said longer cigarettes within said sleeve means.

4,096,970
METHODS OF AND APPARATUS FOR HANDLING arrays of paramagnetic articles Kenneth L. Wyatt, Oklahoma City, Okla, asslgnor to Western
Electric Company, Incorporated, New York, N. Y Electric Company, Incorporated, New York, N.Y.
Filed Mar. 31, 1977, Ser. No. 783,116
-264 Int. Cl. \({ }^{2}\) B07C 1/06 41 Claims

1. A method of successively loading a predetermined num ber of elongated paramagnetic articles out of a mass thereof wherein the articles of the mass are initially stored in paralle relationship within a magnetic field, into precisely spaced each array of aument transfer to an unloading station, wherea receiving areas of an associated workpiece aligned array or teps of:
maintaining the mass of stored articles temporarily with said magnetic field such that said articles have one of thei respective ends in contact initially with a smooth plana surface of a first non-magnetic but field transparent memperpendicular to the established lines of magnetic force
advancing said first planar member portion beyond the influence of said magnetic field such that a second non tioned within said field said last mentioned portion is pos tuting at least an associated coplanar extension of said first member portion, and being formed with a predetermined array of article-receiving and selectively-confining bores, the advancement of said second member portion within said magnetic field causing different ones of said stored mass of articles to be magnetically attracted to and ini-
tially confined at a predetermined depth within said respective bores;
withdrawing said second member portion with an array of articles confined within the bores thereof from within said magnetic field, and transferring said array of articles to the unloading station, while simultaneously advancing the planar surface of said first member portion back into said ing mass of stored articles, and
actuably releasing said confined articles within said respective bores at said unloading station so as to allow them to fall, at least in part by gravity, into respectively aligned rticle-receiving areas of an associated workpiece positioned therebeneath.

APPARATUS FOR THE SELECTIVE DELIVERY OF PORTIONS OF A FLUID MEDIUM PORTIONS OF A FLUID MEDIUM Uerikon, and Heinz Rutishauser, Greifensee, all of Switzer land, assignors to Mettler Instrumente AG, Greifensee Zurich, Switzerland
Claims priority, application Switzerland, Feb. 6, 1976 459/76
U.S. C. 222-135

Int. Cl. \({ }^{2}\) B67D \(5 / 60\)


4,096971
METHOD OF AND APPARATUS FOR DISPENSING SELF-CONSERVING LIQUIDS
Alexander Kïckens, Hamburg, Germany, assignor to Dagma GmbH \& Co. Deutsche Automaten- und Getrïnke - Maschinen, Reinfeld, Holstein, Germany
Continuation of Ser. No. 560,798, Mar. 21, 1975, abandoned, which is a continuation-in-part of Ser. No. 536,592, Dec. 26 ,
1974, abandoned. This application Sep. 30 , 1976, Ser 728,170
U.S. Cl. 222-1

Int. C1. \({ }^{2}\) B67D \(5 / 56\)
12 Claims

10. A method of dispensing liquids, comprising admitting high-viscosity first liquid into a mixing chamber; directing a less viscous second liquid into said mixing chamber via a supply opening therefor; mixing said first and second liquids in said proding chamber to form a product liquid; withdrawing opening therefor ; from said mixing chamber vita admitting for such a period subsequent to termination of said directing that said outlet opening becomes sealed by a quantity of said first liquid; and thereafter terminating said admitting.
5. An apparatus for the selective delivery of portions of fluid, comprising:
plurality of fluid delivery units each fuid der cery including a respective conveyor means for conveyin including a respective conveyor means for conveying
fluid to be delivered, said fluid delivery units being stationarily arranged along a circle having an axis, each delivery unit including a multi-way valve for controlling flow of fluid into and from its associated delivery unit; a journalled member arranged along said axis;
carre actuating means common to said multi-way valves and multi-way valve;
means common to
eans common to said fluid delivery units and carried by said journalled member for actuating the conveyor means jaid fluid delivery units; means for con
means; and electrically operated drive means connected to said jour nalled member for rotating said journalled member abou connecting means in a position for actuation of a selected fluid delivery unit.

\section*{4,096,973}

PORTABLE SEALANT APPLICATOR
John C. Checko, 5 Northern Dr., Bridgewater, N.J. 08807 Filed Mar. 17, 1976, Ser. No. 667,863

1. Apparatus for heating and extruding flowable sealan material onto a work surface comprising:
a portable feed chamber having an opening for receiving sealant material in bulk form and an outlet for supplying sealant material in a fluid state to a pump device;
first heating means disposed with respect to said feed ber for heating the bulk sealant material contained there to a fluid state having a pumpable viscosity;
onveyor means disposed within said feed chamber for rough said outlet o said pump device being disposed outside of said feed chanber with respect to said outlet for forcing the fluid sealan material under pressure through a heated hose, said pump
device including second heating means for maintaining the sealant material passing therethrough at a predeter
\[
\begin{aligned}
& \text { 4,096,969 } \\
& \text { CIGARETTE DISPENSER ADAPTER } \\
& \begin{array}{l}
\text { agusa, } 4916 \text { Rye St., Metairie, Le. } 70002 \\
\text { Filed May 9, 1977, Ser. No. 794,931 }
\end{array} \\
& \begin{array}{l}
\text { iled May 9, 1977, Ser. No. }{ }^{\text {Int. }} \text { I94,931. }{ }^{\text {B65H } 31 / 20}
\end{array}
\end{aligned}
\]
mined temperature level; said pump device further including a rotor and a stator and being of the positive displacement type having progressing cavities formed as the rotor turns within the stator
said heated hose being connected to said pump device for receiving fluid sealant material supplied therefrom under
pressure, said heated hose including third heating means pressure, said heated hose materiaining the sealant material passing therethrough in a fluid state;

feedback means connected between said pump device and said heated hose for returning fluid sealant material to said
feed chamber when the pressure in said heated hose feed chamber when the pressure in said heated hose
reaches a predetermined level, said feedback means inreaches a pretetermined heavel, said feeddack means in
cluding fourth heating means for maintaining the sealant material passing therethrough in a fluid state; and
means connected to said heated hose for applying said fluid means connected to said heated hose for
\(\xrightarrow{4,096,974}\) COVER ASSEMBLY FOR SPRAY CANS
COVER ASSEMBLY FOR SPRAY CANS and James G. P. Dehlsen, 1740 Plaza del Norte, Balboa, Calif
\[
\begin{aligned}
& \text { Filed Mar. 11, 1977, Ser. No. } 77 \\
& \text { Int. Cl. }{ }^{2} \text { B65D 83/14 }
\end{aligned}
\]

7 Claims
U.S. C1. 222-402.13
1. A cover assembly for spray cans including, in combination:
(a) a rotatable sleeve receivable over the normal discharge valve and nozzle on said spray can and having a discharge port in its side wall positionable to register with said discharge nozzle when rotated to a first position;
(b) a flexible hose connected to said discharge port;
(c) a cup shaped cover positioned over said sleeve and locked against rotation to said spray can, said cover hav nozzle through which said flexible hose extends; and
(d) means passing through the top of the cup shaped cover to effect engagement and opening of said discharge valve whereby fluid from said can is discharged through said flexible hose for accurate directing of the fluid and whereby said sleeve can be rowtrawn through said side
wall opening and wrapped around said sleeve in the annular space between the exterior of said sleeve and the inte-

rior of said cover to thereby store said flexible hose when not in use.

4,096,975
Mureo Furukawa, 8-2-22, Shakujiidai, Nerima-ku, Tokyo, Japan
Filed Jan. 17, 1977, Ser. No. 759,626 Claims priority, application Japan, Jan. 21, 1976, 51-4697[U] S. Cl. 222-552 Int. Cl. \({ }^{2}\) B67D \(3 / 00\)

1. A container and closure device comprising:
a container having a circular head at the top thereof, said head having an external spiral groove therein; an outlet projecting upwardly from the top of said head at a mainder of said head being closed, said outlet having a raised area therearound which extends above the remaining portion of said closed head; and
a cap having an opening therein, a closure means which is engagable with said raised area to close said outlet of said head, and an internal spiral groove for engaging said
external spiral groove of the said container, said closure external spiral groove of the said container, said closure
means of said cap opening and closing said outlet of said head by turning of said cap relative to said container, said opening of said cap being at least partly in registration with said outlet of said head when said cap is in an open position on said container and said closure means being in engagement with said raised area
closed position on said container.

4,096,976
VESSELS FOR TRANSFERRING LIQUID METAL
HAVING A REMOVABLE INSULATING LINING Henri Jean Daussan, Longeville-les Metz, France, assignor to Daussan et Compagnie, Metz, France
Filed JJn. 18, 1976, Ser. No. 697,633
Claims priority, application Luxembourg, Jun. \(\underset{72865}{\text { Claim }}\)

Int. Cl. \({ }^{2}\) B22D 41/02
U.S. Cl. 222-591

1. A vessel for transferring liquid metal and having pouring Frank M. Noice, Big Fork, Mont., assignor to Maran Corpora
BACKACK holes, said vessel having lateral walls and a bottom provided
with a permanent lining of refractory material, wherein the permanent lining is covered with a removable heat-insulation lining formed of inorganic particles embedded in a binder, said inorganic particles being sinterable at the temperature of the
liquid metal which is intended to be introduced into said transliquid metal which is intended to be introduced into said trans-
fer vessel, and wherein the vessel pouring holes are fitted with a detachable internal lining of insulating material which is also sinterable in contact with the liquid metal, said detachable internal heat-insulating lining being inserted between said
removable heat-insulating lining covering the permanent reremovable heat-insulating lining covering the permanent re--
fractory lining provided on the bottom of the vessel and said permanent refractory lining adjacent to the pouring hole.

DEVICE FOR ANCHORING BOTTLES OR THE LIKE, AND METHOD
George W. Barville, 268 Sheffield La., Glen Ellyn, Ill. 60137, nd Joel R. Peterson, Sr., 5542 S. Natoma, Chicago, III. 6063 Filed Aug. 24, 1976, Ser. No. 717,345
U.S. Cl. 224-5 BC

10 Claims

1. A device especially suitable for anchoring an object such
1. A device especially suitable for anchoring an object such
as a baby bottle or the like to a body encircling harness, com prising:
prising:
an elongate flexible element having a neck portion and opposite ends, one end being adapted for attachment to the
harness and the opposite end having a terminal eye with harmess and the opposite end having a terminal eye with
an eyehole therein; a resiliently flexible retaining ring of larger diameter that
said eyehole:
said terminal eye being adapted for projection throust
ring so that the ring encircles said neck portion
ring so that the ring encircles said neck portion;
said ring being compressible to collapse it, after it encircle
said neck portion, to a small enough elongated dimension to pass through said eyehole, with one end of the collapsed ring engaging a part of said neck portion adjacent ring providing a leading tip for guiding the collapsed ring through said eyehole to pull said neck portion part into a coupling loop and through the terminal eye, similarly as a needle passing through a fabric draws a thread through the fabric, and the ring then being permitted to expand to its ring form, and said terminal eye then engaging as ring-retaining locking collar about said neck portion adjaring attached to sid
and the thus retained expanded ring being adapted to fil about and thereby attach an object such as a baby bottle to the harness.
\[
\begin{aligned}
& \text { tion, Big Fork, Mont. } \\
& \text { Filed Aug. } 9,1976 \text {, Ser. No. } 712,741
\end{aligned}
\]
\[
\begin{aligned}
& \text { Filed Aug. } 9,1976, \text { Ser. No. } 712 \\
& \text { Int. Cl. }{ }^{\text {A45F }} 3 / 00
\end{aligned}
\]
1. In a back pack including a flexible bag comprising a front, a back, sides, a top and a bottom, for containing a load to be
packed and shoulder straps attached to and extending forpacked and shoulder straps attached to and extending for
wardly from the front of the bag, the improvement comprising means to adjust the interior volume of said flexible bag including an adjustable length connection means extending across the interior of the bag and interconnecting the front and rea hereof at locations spaced inwardly from the sides, the top d the bottom such that the effective interior volume of said means thereby drawing said locations on said front and said back together.

\section*{BELT BUCKLE KNIFE}

Walter W Collins Rock Hill, S.C assignor to Robert W Brewer, Jr., Rock Hill, S.C. Filed Nov. 22, 1976, Ser. No. 743,595
U.S. Cl. 224-26 B
I. 22, 1976, Ser. No. 743,595
Int. C. \({ }^{\text {A45C } 11 / 00}\)
U.S. C. 224-26 B 12 Clai 1. A combination belt buckle and knife comprising a base member having a recess therein, means on said base member
for attaching opposite ends of a belt thereto, a cover plate for aid base member recess, means for removably attaching said cover plate to said base member in overlying relation with said ecess, a knife blade, and means mounting said knife blade on he inside face of said cover plate for movement between a firs said knife blade is receivably concealed within said recess of
said base member when said cover plate is attached to said base edge of a body comprising supporting means having a receiv-
member, and a second position extending outwardly from said ing surface upon which the body with the continuous web is ally connected to the supporting means for assisting in direct ing the leading edge of the advanced continuous web vertically so as to facilitate a stripping thereof while permitting travel of the body along the path, stripping means including a pair of the supporting means and positioned along the path for grabbing therebetween the vertically deflected continuous web and stripping it from the body in response to the advancement of the body along the path, and advancing means operatively
means mounted on said one end of said container and situated paperboard, for providing a multi-cell arrangement within a ver said one nail whereby downward movement of said tapone nail and separates if from the remainder of said separated row of nails, and means to return said tappet means to the uppermost position whereby said means to urge said separated row of nails towards said one end projects a further nail hrough said aperture ready to be engaged by said tappet he remaining rows of nails including a wedge plate pivoted by one end thereof to one end of said container, said container including a base, a slot in said base to receive said wedge plate, ownward movement of said wedge plate disengaging said wedge plate from the interior of said container through said slot, upward movement of said wedge plate engaging said
wedge plate within said container and between adjacent rows wedge plate wilhits to separate one row from the remaining rows of nails, and magnetic means on one side of said wedge plate to mainlain said plurality of rows of nails against said one side of said wedge plate when said wedge plate is in said container and maintaining said rows of nails in the upright and operative position.

\section*{4,096,983}

BONDING COPPER LEADS TO GOLD FILM COATINGS ON ALUMINA CERAMIC SUBSTRATE Loraine F. Beilein, Pinellas Park, and Frank S. Burkett, Jr,
Seminole, both of Fla., asslgnors to E-Systems, Inc., Dallas, Tex.

Filed Apr. 11, 1977, Ser. No. 786,389
U.S. C. 228-122 Int. C1. \({ }^{2} \mathbf{B 2 3 K} 31 / 02\)

8 Claims

1. A process for bonding copper wire leads to gold films o alumina ceramic substrates, comprising the steps of:
(a) forming a gold die-formed head bonding pad on the gold film by thermocompressing a gold
die-formed head to the gold film;
b) removing the gold lead wire; and
(c) thermocompressing a copper wire to the gold die-formed wire and the gold film with a gold interface in between.

INTERNAL PARTITION ARRANGEMENT
Jeffrey M. Gardner, Wheaton, IIl., assignor to Container Corporation of America, Chicago, ill.

Filed Dec. 19, 1977, Ser. No. 861,879
U.S. Cl. 229-15

(a)
(a) a pair of first and second panel sections of substantially similar over
tion panels;
(b) each of said
b) \(e\) panch, ate panels foldably jocined to including a pair of intermediate panels foldably joined to each other on a common fold
line but being free from attachment to the intermediate panels of the other panel section;
(c) each of said panel sections including a pair of end panels foldably joined along their inboard edges to respective
outboard edges of adjacent intermediate outboard edges of adjacent intermediate panels along
second fold lines extending parallel to said comman fold line but being free from direct attachment to related end panels of the other panel section;
(d) a pair of generally triangular gussets, each being formed of material cut from a respective end panel of said first panel section;
(e) each of said gussets being foldably joined along one edge and being foldably joined ajong another edge to an adjacent end panel of said second panel section;
(f) said gussets forming the sole means of connection between the respective panel sections to permit the panels to
be folded into various planes, all of which are normal to a common plane, to form a plurality of cells separated from each other.

ARTICLE CARRIER AND BLANK THEREFOR Prentice J. Wood, Hapeville, Ga., assignor to The Mead Corporation, Dayton, Ohio
Filed Jan. 16,1978 , Ser. No. 869,467

Int. Cl. \({ }^{2}\) B65D 5,02, \(75 / 08,1 / 22\)
U.S. CI. 229-40

18 Claims

1. An article carrier comprising a bottom wall, a pair of side walls foldably joined respectively to the side edges of said bottom wall, a pair of overlapping top panels foldably joined aperture formed in one of said top panels and having a securing edge, said securing edge being disposed in diagonal relation to the side edges of said top panels, a securing tab foldably joined to the other of said top panels and disposed in said securing other top panel being disposed in substantial coincidence with said securing edge.

\section*{4,096,986}

FOOD TRAY WITH INTEGRAL LOCK
John Florian, Bakersfield, Calif, assignor to Mobil Oil Corpora
John Fiorian,
tion, New York, N.Y.
Filed Jul 23, 1976, Ser. No. 707,971

U.S. Cl. 229-44 R
1. A thermoplastic container comprising two dishlike claim tions which are hinged together along a common sidike secintegral flexible hingeline, cooperating locking means on each of said sections remove from said hingeline for releasably
locking said sections together one of said locking means on one of said sections comprising an outwardly projecting flute which terminates in an outwardly flared arrow head shaped
skirt, said second locking means on said other section comprisskirt, said second locking means on said other section compris-
ing an upwardly inclined lip on a portion of the periphery of

METHOD AND AN APPARATUS FOR THE DYNAMIC BALANCING OF ROTATING BODIES, PARTICULARLY FOR CENTRIFUGES
Giovan Battista Scuricini, Rome, Italy, assignor to Comitato Nazionale per l'Energia Nucleare, Rome, Italy
Filed Dec. 14, 1976, Ser. No. 750,455
Claims priority, application Italy, Dec. 16, 1975, 52710 A/75

said other section, said lip having a central cut out slot adapted to receive, in locking engagement, said arrow head shaped skirt, said arrow head shaped skirt being compressed by finger
action for insertion into said slot so that when said compression is released said arrow head shaped skirt expands in said slot to a locked position.
U.S. Cl. 233-23 A

1. A method for the dynamic balancing of a rotating body, particularly a centrifuge, while it is revolving within its own
frame, wherein the vibration amplitude, frequency and phase of said rotating body are sensed at least within two planes of said body, so that vibration signals are produced, which are processed and converted into piloting signals, said method comprising the step of using these piloting signals to actuate means which vary the mass of the rotating body
John Rodish, Ft. Wrinforct, Ky., assignor to The Ritter Company John Rodishati, Ohio

Filed Aug. 30, 1976, Ser. No. 718,408 55 Int. C. \({ }^{2}\) B65D 33/02

4,096,989
MONITORING APPARATUS FOR REDUNDANT CONTROL SYSTEMS David A. Tawfik, Fort Lee, N.J., assignor to The Bendix Corporation, Southfield, Mich.
Filed Jun. 20, 1977, Ser. No. 807,935 U.S. Cl. 235-307 Int. Cl. \({ }^{2}\) GO6F \(11 / 00\)

1. Monitoring apparatus for control systems including a plurality of redundant channels; comprising:
each of the channels in lom means for generating a command signal, means for generating a tracer signal, means for combining the command signal and the tracer signal, and comparator means; the comparator means in one channel comparing the com-
mand signal generated by the command signal generating
means in the one channel to the combined command signal and tracer signal from the combining means in one of the other channels, and providing an output which toggles between the "good" and "fail"
means in the one channel; and
means responsive to the toggle output for providing a failure logic output.

NOTE DISCRIMINATING APPARATUS Masayuki Iguchi, Himeji, Japan, assignor to Glory Kogyo Kabushiki Kaisha, Himeji, Japan
Filed May 13, 1976, Ser. No. 686,236 Claims priority, application Japan, May 13, 1975, 50-56632; Claims priority, application Japan, May 13, 1975,
May 13, 1975, 50.56631; Sep. 18, 1975, 50-112957, U.S. CI. Int. C. \({ }^{2}\). G06K \(13 / 198\); G06F 7/02; G06K \(7 / 08\)

1. A note discriminating apparatus comprising: detector means for detecting characteristics of a bank note; a reference level generating means receiving the output of said detector means for generating a reference level signal;
and and
level detecting means receiving the output of said detector means and said reference level signal from said reference level generating means for comparing the output of said detector means with said reference level signal and for generating a note discrimination signal.

4,006,992
SYSTEM FOR RECOGNIZING BAR CODE
INFORMATION
Tadao Nojiri, Kariya, and Akio Sugiura, Nagoya, both of Japan, assignors to Nippondenso Co.. Ltt.. Kariya, Japan
Filed Aug. 11, 1977, Ser. No. 823,737
Filied Aug. 11, 1977 , Ser. No. 823,337
Claims priority, application Japan, Sep. 6, 1976, \(51-106535\)

\section*{U.S. C. \(235-\frac{\text { Int. }}{-162}\)}
1. A data processing system comprising two computing systems receiving inpur data and independently operating on it, each computing system having separate microprocessing units ddress, data and control signal buses, a synchronizing unit onnected to said two computing systems, an address comparator unit including a first plurality of comparators connected in series and connected to the address bus of each computing system to compare associated address information, a data com parator unit including a second plurality of comparators connected in series and connected to the data bus of each computsignal comparator unit including a third plurality of compara tors connected in series and connected to the control signal bus of each computing system to compare associated control signal information, said address comparator unit, said data comparator unit and said control signal comparator unit connected in series, a keyable pulse current supply connected to said two nected address, data and control signal comparator units and receiving a keyable input pulse therefrom when all of the first, second and third plurality of comparators indicate the same conditions in said two computing systems, first and second power supplies, and first and second switching means con said first and second power supplies to said two computing system to disconnect power therefrom if any of said plurality of comparators do not receive comparable information.

1. A system for recognizing bar code information having a plurality of parallel bars recorded in different colors and widths on an object comprising:
a light source for supplying said object with illumination light;
an image sensor having a plurality of light responsive ele ments aligned to be transverse to the longitudinal direction of said parallel bars, said elements being adapted to be driven one by one by a first clock pulse of a first fixed frequency and to serially produce an image signal having the peak level varying with the density of refle
produced by said parallel bars on said object;
sample-and-hold circuit, connected to said image
for sampling the peak level of said image signal in syn-
chronization with said first clock pulse and for holding the sampled peak level of said image signal during one cycle period of said dirst clock pulse, thereby producing a stair
case output signal which changes the signal level from one to the other in synchronization with said first clock pulse a smooth circuit, connected to said sample-and-hold circuit for charging and discharging a capacitor in response to
said staircase output signal, thereby producing a continusaid staircase output signal, thereby producing a continu
ous output signal which gradually changes the signal level from said one to said the other during said one cycle period of said first clock pulse;
a comparison circuit, connected to said smooth circuit, for comparing said continuous output signal with a reference
signal, thereby producing a rectangular signal which changes the signal level each time the former signal reaches the latter signal; and
measuring means for counting a second clock pulse of a
second fixed frequency higher than said first fixed fresecond fixed frequency higher than said first fixed frequency during each time interval of said rectangular sig-
nal, thus measuring each bar width of said a plurality of nal, th
bars.

\section*{4,096,993}

COMPENSATED CONTROL VALVE
Joseph L. Behr, Des Peres, Mo., assignor to Emerson Electric Co., St. Louis, Mo.

Filed Jan. 21, 1977, Ser. No. 761,291
Int. C. \({ }^{2}\) F16K 31/18. G05D \(23 / 20\)
U.S. Cl. \(236-68\) B

MANUAL DEODORIZER DISPENSER hn D. Bryson, Milwaukee, Wis., assignor to Will Ross, Inc., Milwaukee, Wis.
. 21, 1977, Ser. No. 761,544
Int. Cl. \({ }^{2}\) A61L \(9 / 04\)
U.S. C. 239-57
1. A dispenser comprising a housing having a first end wall
having therein a first aperture, a second aperture spaced from having therein a first aperture, a second aperture spaced from said first end wall, a first valve member mounted on said hous-
ing for movement relative to said first aperture between a position closing said first aperture and a position opening said first aperture, a second valve member mounted on said housing for movement relative to said second aperture between a closed position closing said second aperture and an open position opening said second aperture, a pluraity of spaced legs
extending integrally from said first valve member in a direction extending away from said housing and adapted to support said housing in upright position on a supporting surface, to facilitate manual movement of said first valve member, and to afford flow of air between said legs and through said apertures and tions, and a container located in said housing and containing a substance which is to be dispensed in response to air flow through said housing
1. A temperature compensated electrically operated modulating valve, comprising:
a valve including a shell, said valve having an inlet, an outle and valve means for regulating fluid flow between said inlet and said outlet;
electrically energizable means for controlling the operating position of said valve means, said electrically energizable means including heater means mounted within said shell, said heater means comprising a first insulative surface, second insulative surface and a resistive heater interpose between said first and said second surfaces, said heate
means being flexible and folded to define receptacles fo means being flexible and folded to define receptacles for
receiving a plurality of bimetallic discs interleaved between folds of said heater means;
sensing means mounted to at least one of said bimetallic discs for sensing the temperature of said electrically energizable means, the temperature of said electrically energizable
means being dependent upon the temperature of said means being dependent means, the temperature of the fluid passing be tween the inlet and outlet of the valve, and the ambient temperature of the valve; and
means for regulating power input to said electrically energizable means operatively connected to said sensing said heater means to control the position of said valve means, said input power regulating means comprising summing amplifier having a first input and a second input, said first input being electrically connected to a reference
signal source, the second input being electrically con signal source, the second input being electrically conhaving an output operatively connected to said electrically energizable means.

VARIABLE SPRAY DIRECIION FUEL INJECTION
4,096,995
Edward D. Klomp, Mt. Clemens, Mich., assignor to General Edward D. Klomp, Mt. Clemens, M
Motors Corporation, Detroit, Mich
Motors Corporation, Detroit, Mich.
Filed Apr. 19, 1977, Ser. No. 788,989
Int. Cl. \({ }^{2}\) F02M 47/00
U.S. Cl. 239-94

1. A variable spray direction fuel injection nozzle includes a hollow nozzle body having a bored cylindrical portion at one end thereof closed by an end wall of said nozzle body, said nozzle body having an inlet for pressurized fuel at its opposite end, a hollow plunger valve, closed at one end and open at its predetermined axial movement relative thereto with its open end positioned to receive pressurized fuel from said inlet and
having its closed end forming with the closed end of said bored cylinder a low pressure fuel chamber, a radial port orifice in said nozzle body in communication with said bored cylinder a
predetermined axial distance from said end wall, a radial slot predetermined axial distance from said end wall, a radial slot extending through the peripheral wall of said valve and lo cated a predetermined axial distance frem its insed ence
whereby, during axial movement of said valve in said bored whereby, during axial movement of said valve in said bored
cylinder between a first position and a second position, said radial slot will be out of registry with said radial port orifice when said valve is in said first position and said radial slot will traverse said radial port orifice when said valve is in said second position, said nozzle body including first guide means ciated with said first guide means to position said radial slot in axial alignment with said radial port orifice, spring means operatively associated with said nozzle body and with said valve to normally bias said valve in an axial direction to said first position so that said radial slot is out of registry with said radial port orifice and, fuel bleed passage means, including a least a fuel port in said nozzle bocy, in communication and and
end with said low pressure fuel chamber and at its opposite end being operatively connectable to a low pressure fuel accumulator.

DUAL OUTLET CHECK VALVE ASSEMBLY ichard E. Larson, Minnetonka, Minn., assignor to Cherne Industrial, Inc., Edina, Minn. Continuation-in-part of Ser. No. 631,842, Nor. 13, 1975, U.S. CI. 239-413 Int. C.2 B05B \({ }^{\text {I/24 }}\) Int. C. \({ }^{2}\) Bo5B \(7 / 24\), Ser. No. 718,21 U.S. CI. 239-413

A diffuser construction for a fuel burner through which fuel is emitted in a conical stream, said construction comprising a generally conical wall forming a support having a central may pass, said support diverging in the direction of flow of said fuel stream; and at least one series of a plurality of jets supported by and extending through said wall and through each of which a combustion-supporting gas may pass into said support, said jets spiraling about said support from its smaller diameter
end toward its largor diameter end, each of said jets having a end toward its larger diameter end, each of said jets having a intersects the longitudinal axis of said support, and each of said jets having an inclination to said support such that the longitudinal axis of each of said jets forms with said wall an acute angle.
1. A check-valve assembly useful in dispensing the individual liquid substances of a two-substance chemical material without clogging the assembly, comprising:
ozzle means supported by said valve body for dispensing liquids under pressure, said nozzle means including at least wo nozzle elements, each of said nozzle elements having a tubular bottom portion which adjoins a flexible generupper portion having an exterior surface and an interior surface, said exterior surface having a conical shape tapering downwardly and outwardly from an apex spaced part from said valve body, and containing a discharge aperture extending between said interior and said exterior arfaces and bounded by opposite sides, said discharge end positioned generally at said conical surface apex and extending radially therefrom toward said valve body, said nozzle element upper portions being deformable from a ormally closed shape, in which the opposed sides of said ischarge aperture generally abut one another, to an open shape in which the opposed sides of said discharge aperform an opening therebetween in response to a positive pressure differential acting on said interior surface relative o said exterior surface, said nozzle element upper portion tending to be nondeformable in response to a positive pressure differential acting on said exterior surface rela-
tive to said interior surface, the bottom portion of each of id nozzle elements containing an inlet opening in communication with said discharge aperture; and
means for mounting said nozzle means in said valve body with said discharge apertures generally aligned, said discharge apertures being positioned facing one another to low fan-like sprays of fluids which may be ejected from said outlet aperture
ing of such fluids.


\section*{4,096,998}
ugeniusz Siwak; Andrzej Krainski; Krzysztof Lendzion, and Jerzy Wewior, all of Warsam, Poland, assignors to WarsFiled Apr. 30, 1976, Ser. No. 682,169
Int. Cl. \({ }^{2}\) B05B \(1 / 00\); F02M \(61 / 1413\) Claims
1. A yoke for a fuel injector to be secured in an interna 1. A yoke for a fuel injector to be secured in an internal
combustion engine, said yoke being an oval shaped ring of
miform cross-section throughout its extent and including
waist portion adapted to embrace an injector and at least on

projecting portion extending away from the waist portion and constituted as a loop to engage a fixing bolt to secure said yoke.

FUEL INJECTION VALVE FOR PRELIMINARY AND Tonrad Eckert PRINCIPAL INJECTION
Seifert, Esslingengant; Karl Hofmann, Neckarrems, and Kur GmbH , Stuttgart, Germany
Filed Nov. 29, 1976, Ser. No. 745,666 Claims priority, application Germany, Dec. 6, 1975, 2555019 U.S. CI. 239-533.5
1. In a fuel injection valve for injecting a preliminary and main fuel quantity under pressure, including a nozzle body defining a valve seat, an injection aperture least part of a pressure chamber and at least part of a fuel least part of a pressure chamber and at least part of a fuel
line through which fuel is delivered to the pressure chamber, said aperture, pressure chamber and fuel line being in
communication for the passage of fuel from the injection communication for the passage of fuel from the injection
valve; a closing spring; and a needle valve in communica. valve; a closing spring; and a needle valve in communica
tion with the pressure chamber, and displaceable by the force of the closing spring against the fuel pressure into engagement with the valve seat the thereby terminate fue flow from the injection aperture, the improvement com prising:
sure chame piston means in communication with the pres sure chamber, for joint displacement with the needle valve
by the fuel pressure, in a direction opposite to the direc tion in which the needle valve displaced by the closing spring; and
at least one a stop surface which is engageable with said at least one piston means, said stop surface defining means,
being located in the path of the displacement of said least one piston means by the fuel pressure such that the displacement of said at least one piston means by the fuel pressure is terminated prior to the termination of
displacement of the needle valve by the fuel pressure, said
joint displacement of the needle valve and said at least one piston means, being associated with the injection of the preliminary fuel quantity, and said displacement of the needle valve after termination of the displacement of said tion of the main fuel quantity.

4,097,000
Bernard A. Derr, 75 Granview Rd., Granville, Ohio 43023 Continuation-in-part of Ser. No. 593,198, Jul. 7, 1975, abandoned. This application Nov. 8, 1976, Ser. No. 739,503 U.S. Cl. 239-599 Int. Cl. \({ }^{2}\) B05B \(1 / 00\)

11 Claims
rial discharge mechanism mounted within operable to propel which said roll of paper toweling may rotatably journal as said material from within said tank over said discharge edge, said paper toweling is dispensed.
mechanism including rotatable shaft means and a plurality of flail members connnected thereto and extensible therefrom in esponse to the generation of centrifugal force by the rotation

1. A spray nozzle for producing a wide-angle, fan shaped fluid discharge pattern having a body with a longitudinal flow axis, a discharge end portion with an outer end face, and elon-
gated clearance channel formed in said discharge end portion in transversely oriented relationship to said flow axis opening at said outer end face, and a spray pattern control chamber formed in said body along said flow axis and having an inlet end axially spaced from said discharge end portion and an with said clearance channel thereby defining an outlet orifice, said control chamber being an elongated cavity of generally oval cross-section with a long axis thereof oriented perpendicular to said clearance channel and transversely to said flow axis, said chamber having axially extending sidewalls and edge verge throughout their length relatively inwardly toward each respective wall or edge portion in the direction of said outlet orifice said edge portions converging at a relatively greater
rate than said sidewalls.

DETACHABLE WEAR 4,097,001 MATERIAL SPREADER Warren H. Brackbin. Paradise, and William F. Ostergren, Terre
Hill, both of Pa., assignors to Sperry Rand Corporation, New Holland, \(\mathrm{P}_{\mathrm{a}}\)

Filed Jan. 27, 1977, Ser. No. 763,168
U.S. Cl. 239-658

6 Claims

6. In combination with a flail-type material spreader of the kind wherein a partially open topped tank has an arcuate-
shaped wall with an upper elongated discharge edge, a mate-
tially circular path adjacent the inner circumference of said wall and said discharge edge, wherein the improvement comprises:
a detachable wear absorbing member having at least one portion disposed inwardly from said inner circumference of said wall such that upon rotation of said shaft means not said wall thereby preventing damage to said wall in the event of wear elongation occurring in said flail mem-
bers. the ev.
bers.

CONSTANT PULL SAFETY
CONSTANT PULL SAFETY BELT RETRACTING ichard C. Stouffer, Auburn Heights, and Jerome W. Schotthocal Cow Baltimore, bou Hich., assigno Co Als cal Corporation, Morris Township, Morris County, N int. Cl. \({ }^{\text {A A62B }}\) 35/02; B65H 75/48
U.S. Cl. \(242-107\)

Claims

PAPER TOWEL HOLDER
PAPER TOWEL HOLDER
John H. Krueger, 29600 Hillerest Dr., Chisago City, Minn
55013 Filed Jan. 28, 1977, Ser. No. 763,349
U.S. C. 242-55.2 Int. Cl. \({ }^{\text {B65 B }} 19 / 00 \quad 4\) Claims

1. In a vehicle safety system including a safety belt adapted to restrain an occupant in position on a seat, a safety belt constant pull retracting mechanism comprising:
a housing;
a spindle journalled on said housing and adapted to receive said safety belt in helical wrap, said spindle being rotatable in a winding direction and in an opposite, unwinding direction
positive force coefficient characteristic biasing means for
biasing said spindle a spiral-shaped gear for coupling said biasing means to said
1. A device suited to hold and dispense paper toweling from roll thereof comprising, a first bracket, a second bracket, said ween first and second predetermined limits, a strap means, said first and second brackets each having a free end respecvely proximate each other and an end hingedly connected to said strap means, said first bracket comprising a first substanfirst slot located therein, means for slidably mounting said first bracket on a wall, said means for slidably mounting said firs bracket being introduced through said first slot into a wall and having a first camming surface along which said first slot may cam between first and second positions, said second bracket planar web, a pair of sidewalls, each sidewall depending nor mally from an opposite edge of said second web, each of said sidewalls terminating in a respectively inwardly turned lip lange, said second web of said second bracket having an interior longitudinally elongated second slot therein, means for for mounting said second bracket being introduced through said second slot into said wall and having a second camming surface along which said second slot may cam between anothe set of first and second positions, said free end of said firs defining first and second runners in closely spaced relationshi o each other, said first and second runners being telescopabl into said second-bracket, said interiorly extending longitudina slot having sufficient clearance so as to permit said first and second runners to by-pass said means for mounting said second a cantilevered position extending outwardly and normally rom a plane passing through said first bracket and said second bracket, and journal means mounted on said strap means on
spindle;
end of said spindle including a first pinion having a constant radius, and means for coupling said spiral-shaped gear to said first pinion; \(\quad\) decreasinged between said spiralshaped gear and said first pinion during protraction of said belt producing a negative coefficient of force characteristic to compensate for the positive characteristic of said iasing means, a resuling positive ched bell hereby from said housing; and
second biasing means biasing said spiral-shaped gear and said first pinion in enmeshment.

\section*{4,097,004}

METHOD AND APPARATUS FOR UNWINDING ROVING PACKAGES FROM THE INSIDE
alter J. Reese, North Huntington, Pa, tries, Inc., Pittsburgh, Pa.
\[
\begin{aligned}
& \text { Pittsburgh, Pa. } \\
& \text { Filed May } 6,1977, \text { Ser. No. 794,592 } \\
& \text { Int. C1.2 }{ }^{2} 65 \mathrm{H} 49 / 36
\end{aligned}
\]
1. Cl. 242-129.72
1. Apparatus for unwinding strand material 5 Claims 1. Apparatus for unwinding strand material from the inside suide means having an opening thereing an axially movable strand material is unwound, a slot connected to said opening within which the outside end of the package is isolated from he balance of the package and one or more legs upon which said guide means may stand, said guide means being sufficient
in weight to restrain lifting of the package during unwinding of said package and said legs being sufficient in height to avoid

MAGNETIC \(4,097,006\) MAGNETIC TAPE CASSETTE Ltd., Tokyo, Jap

Filed Aug. 4, 1976, Ser. No. 711,630 Filed Aug. 4, 1976, Ser. No. 711,630
Clasims priority, 2pplication Japan. Aug. 11, 1975, 50
10648[U]; Aug. 12, 1975, \(50-111300[\) U]; Aus. 14, 1955, 50


 007786[U Int. Cl. \({ }^{2}\) G11B 23/10 U.S. C1. 242-199 Int. C.2 \({ }^{2}\) G11B 23/10 7 Cliaims
langling of the package during the unwinding of the last por-
tions of said package.


\section*{WEB TRANSPORT SYSTEM}

Roger R. Sleger, Redwood City, Calif., assignor to Ampex Cor poration, Redwood City, Calir.

C2 May 3, 1976, Ser. No. 682,373


1. A web transport system comprising:
web storage system disposed to supply and take up web material that is movable bidirectionally along a web path; engagement with the web material to control the motion of web material along the web path in accordance with motion of the capstan;
a capstan energization system coupled to control bidirecpair of web tension arms position
opposite sides of the capstan to maintain buffer loops web material on opposite sides of the capstan and to main tain web tension on opposite sides of the capstan in acco dance with a torque applied to the respective tension arms;
pair of tension transducers coupled to apply torque to the pair of tension arms respectively in response to tension moments of web tension on said arms increasingly as said tension decreases and decreasingly as said tension increases; and
torque control system coupled to generate tension com port system operating conditions.
1. A magnetic tape cassette including a pair of upper and lower cassette halves molded from a synthetic resin material and having a generally similar configuration and dimension, said cassette halves being disposed in abutting relationship a heir opening ends to be joined together to define a substan ally flat rectangular cassette body, one lateral end face of right angles thereto being formed as a front end face; the cassette comprising a window slot centrally formed in the front end face by a pair of partitioning posts integrally formed with the cassette half or halves for receiving a pinch roller, pair of window slots symmetrically formed in front end face o opposite sides of the first mentioned window slot by simila formed adjacent to the front end face in alignment with th window slot associated with the pinch roller so as to extend vertically through the cassette halves, the aperture receiving capstan, a spring abutment formed with one of the cassette halves immediately behind the capstan aperture, a pair of ofsette positioning ape foront as face so to vertically extend through the cassette halves, a pair of openings vertically extending throug the cassette halves for receiving a pair of tape hubs, including a tape supply and a tape take-up hub rotatably disposed in the respective openings, a length of magnetic tape disposed on the tape supply hub and extending therefrom along the respective relationship with the plane thereof to be taken up on the tape take-up hub, a plurality of tape guide pins and tape guide rollers located so as to cause the magnetic tape to extend along the respective window slots, one of said cassette halves includ ing areas of a reduced wall thickness in its central portion which includes the tape hub openings and at positions rear wardly of at least some of said guide pins which are integrally
molded with said one of said cassette halves, the areas of reduced wall thickness serving to maintain the pins in their upright position, a pair of liner sheets disposed on the opposin unningaces of the cassette halves for providing a smoot disposed the magnetic tape, and a pad carrying leaf spring long the window slots and the spring abutment and carrying pair of tape pads which cause the tape to be urged against magnetic head or heads which are advanced into the window slot or slots associated with the magnetic heads.

4,097,007
MISSILE GUIDANCE SYSTE
UTILIZING polarization James J. Fagan; William F. Otto, and William B. McKnight, all is represented by the Secretary of the Army, Weshington as rep.
Continuation-in-part of Ser. No. 514,697, Oct. 15, 1974, Pat. No. 3,995,792. This application Sep. 13, 1976, Ser. No. 722.837 U.S. CI. 244-3.11 Int. Cl. \({ }^{2}\) F42B 15/00
rear endmost car of said cable train being tapered in a vertical plane rearwardly to fit snugly in the rear of the fuselage above said rear end ramp door when the latter is in said closed in5 Claims

1. A missile system for guiding a missile to a predetermined target comprising a launcher for launching a missile in a predetermined trajectory from the launcher to the target and in
which said missile is rotating, said missile having polarized reflector means thereon and detector receiver means interconnected to side thrusters on the missile for correcting the course of the missile; a tracker for tracking said missile and including radar transmitter means for transmitting electromagnetic rays
to said polarized reflector means and said detector receiver means and further including return detector means for detecting polarized reflections from said polarized reflector means; and a command computer means interconnected to said
launcher and said tracker for control thereof, said command computer means having a predetermined trajectory from the launcher to the target programmed therein, said command computer means receiving information from said tracker and said return detector means and comparing said received infor mation with said predetermined trajectory to cause error sig-
nals to be transmitted as correction coded signals from said radar transmitter means to said detector receiver means to cause appropriate ones of said side thrusters to be actuated and
cause the missile to be directed into a new trajectory relative to the target.

4,097,008
CARGO HANDLING SYSTEM FOR AIRCRAFT David R. Pender, 1018 Marion St., Columbia, S.C. 29201 Division of Ser. No. 735,130, Oct. 21, 1976. This a May 23, 1977, Ser. No. 799,172
Int. Cl. \({ }^{2}\) B64D Int. Cl.' \({ }^{\text {B64D }} 11 / 06\)

1. In an aircraft having a fuselage with a cargo door opening herein, a ramp door to seal at least part of said opening including the combination of hinge means to pivotally connect said ramp door to the fuselage of the aircraft, stationary ramp
support means carried by the fuselage at spaced-apart locations along each of opposite sides of said cargo door opening, stationary carrier members on said ramp door at spaced-apart locations along each of opposite sides thereof for interlocking engagement with said support means, and actuator means coupled with said hinge means to linearly translate the entire said ramp door including said stationary carrier members from are interlocked with said ramp support means and into an unlocked aft position of said ramp door wherein said carrier members are slidingly disengaged from said ramp support means.

\section*{4,097,010}

SATELLITE CONNECTED BY MEANS OF A LONG TETHER TO A POWERED SPACECRAFT bridge, Mass assignors to Smithhonian Institution, Washington, D.C.

Filed Oct. 8, 1975, Ser. No. 620,679
Int. C.'. \({ }^{2}\) B4G \(/ / 20\)
U.S. CI. 244-158

2. In a passenger and cargo handling system for an aircraft an aircraft fuselage having a rear end ramp door hinged to the bottom of the fuselage to swing downwaroly to an open posi-
tion and upwardly to a closed inclined position, tracks on the bottom of the fuselage longitudinally thereof, a roll-in-roll-out cable train of cars guidably engaging said tracks, said cars each including a portion which constitutes a floor section of the
aircraft and passenger seats above the floor sections and bag gage compartments beneath the floor sections, and at least the
1. A system for conducting space experiments comprising a . wered spacecraft, said spacecraft having thruster means apable of mainuaining said spacecran in a desired orbit, a upling said spacecraft a comprising the steps of:
(a) launching a satellite to an orbital altitude by carriage with a powered spacecraft,
(b) deploying said satellite from said powered spacecraft to
(b) a suborbital altitude by release of a tether, and
(c) maintaining said satellite and spacecraft in a uniform
orientation once deployed. orientation once deployed
 Robert F. Whlte, Speedway,
Corporation, Detroit, Mich. Filed Jul. 13, 1977, Ser. No. 815,108 U.S. CI. 248-5

2 Claims

1. A noise isolation mount assembly for association with an engine and an opposite sided engine support strut for isolating tructure borne transmission of high frequency gas turbine passenger compartment comprising: a trunnion fixedly connected to the gas turbine engine, said trunnion having a locater shoulder and an outboard stud with a fastener end, a doublewalled resilient bushing seated on said locater shoulder and the double-walled bushing to isolate noise vibration therebetween, said double-walled bushing including an integral, inner pilot tube close fit on said stud and further including an out board bushing with an integral outer tubular extension arranged concentrically of said inner pilot tube and close fit
within an engine strut, a double-walled resilient washer having within an engine strut, a dor said stud, said double-walled resilent washer including a second layer of elastomeric materia bonded within the double-walled washer for allowing move ment therebetween and to isolate high frequency noise transmission therebetween, and connector means connected to said fastener end to press said resilient double-walled washer and said outboard bushing against opposite sides of the engine strut
to radially pilot the strut with respect to said trunnion, said inboard pilot tube being in contact with the outboard one of the double walls of said resilient washer to rigidly couple the trunnion and said connector means, an inboard one of the double walls of said resilient washer being supported on said outer tubular extension, and means for resiniento causer engine said outer tubular extension on said ce transferred into said inboard one of the double walls of said resilient washer and into said outboard bushing to cause said first and second layers of elastomeric material to be placed in shear to support the aforesaid engine loads and to maintain a vibration isolation break
between said trunnion and the strut thereby to reduce structure
E. McIntyre, Akron, Ohio, assignor to
ment Company, Akron, Ohio
Filed Aug. 5, 1976, Ser. No. 711,855 \begin{tabular}{c} 
Filed Aug. 5, 1976, Ser. No. \\
U.S. Cl. 248-23 \\
Int. C1. \({ }^{2}\) B60R \(7 / 00\) \\
\hline
\end{tabular}

4,097,012
MOUNTING BRACKET ASSEMBLY Madsworth 2 Claim
between said trunnion and the strut thereby to reduce structure
borne transmission of noise between the engine and the strut.
(A) a unitary base having
(1) a central planar support portion, and
(1) a central planar support portion, and
(2) integral opposed leg portions projecting therefrom; (B) a first, generally U-shaped support member having its (B) a first. generally U-shaped support member having is base adjustably secured to said planar suppori porion of
said unitary base for movement about an axis normal to
the plane thereof and its opposed legs projecting normally said plane thereof and its opposed legs projecting normall to said plane;
(C) a pair of opposed, generally L-shaped second support members, each being
(1) releasably secure
ber for movement (a) about an axis normal
support member, and
(b) in a plane lying parale (b) in a plane lying parallel to the plane of the legs of
said support member; (D) the legs of said first support member each have a plural ity of vertically aligned through apertures lying along the longitudinal axis th
(E) said second support members having first and second
leg (F) haid first legs of each of said second support members having an elongate slot therein lying along the longitudinirst support members; and
(G) said opposed leg portions of said unitary base each being divided into first and second sections by a locally weak ened area of reduced cross-section and said second sec tions defining she fermirst sections.
relatively of said

\section*{4,097,013}

TRIPOD STAND FOR PROJECTION SCREEN
ichael D. Broome, Greenfield, Ind., assignor to Draper Shade and Screen Co., Spiceland, Ind.

Filed Apr. 13, 1977, Ser. No. 787,169
U.S. C1. 248-171
1. A tripod stand for a projection screen comprising a stan1ard having an upper end and a lower end, a set of legs, a bracket slidably mounted on the standard and pivotally connecting upper ends of said legs to the standard adjacent said
ower end thereof for swinging movement between extended ower end operative positions for supporting the stand and folded positions substantially parallel to one another, means atching the legs in the folded position thereof including an nnular keeper secured around the standard and extending egs and engaging in an open lower end of the keeper, a collar legs and engaging in an open lower end of the eeper, a collar
braces having corresponding ends pivotally connected to said
collar and opposite ends pivotally connected to said legs for \(\quad\),097,015
bracing the legs in their extended positions, spring means, Daniel Frishman, Andover, Mass.
supported by the standard and urging said collar downwardy,
Filed Sep.
Int. Cl.2

id spring means permitting upward movement of the collar with said bracket, legs and braces for displacing said detents bracket to the standard to retain the legs in folded, latched positions.

\section*{4,097,014}

COMBINATION SUPPORT BRACKET AND SELF-ADJUSTING WEDGE
Bruce K. Boundy, Holland, Mich., assignor to Westinghouse Electric Corp., Pittsburgh, P2. U.S. Cl. 248-225.4

7 Claims

1. A com
comprising:
an inverted \(U\)-shaped saddle member including a top wall and a pair of downwardly extending side walls;
resilient pad means mounted to the underside of said top wall
between said side walls; and
self-adjusting wedge means including a central planar por-
tion and a pair of mounting tabs, said mounting tabs mounted to said resilient pad means adjacent one of said side walls, and said wedge means being movable to vary the distance walls whereby said saddle member can accommodate panels of varying thicknesses.
U.S. C. 248-339

1. A ceiling hook comprising
helical segment spiralling through more than \(360^{\circ}\), said segment tapering from a maximum width at its center,
uniformly to a minimum width at each end, and having a substantially uniform thickness along its length;
and a means for pivotally securing said helical segment
remote from its ends to a support with the axis of the remote from its ends to a support with the axis of the segment substantially horizontal so that the ends of the them, said means for pivotally securing located at said center so that the ends of said segment form two hooks extending symmetrically on either side of said means for pivotally securing and said segment having a uniform aid helical segment formed
said helical segment formed with a cylindrical hole passing
through it substantially perpendicular to its helical axis at through it substantially perpendicular to its helical axis at
a point located midway between its ends, and wherein said means for securing comprises:
hollow, cylindrical spacer, adapted to fit loosely within said hole, and having a base formed on one end perpendicunarle means comprising a shaft fitting loosely within and extending along the axis of said cylindrical spacer; a head end adapted to rotatably support said helical segment and said cylindrical spacer, and a securing end adapted to attach to said support,
washer having an outer diameter larger than the circumference of said hole, and fitting around said shaft and seating
between said head of said axle means and the end of said cylindrical spacer opposite said base,
said cylindrical spacer having a length longer than the thickness of said helical segment so that when the securing ends of the axle means is attached to the support with said base
pressed firmly against the support, the helical segment pressed firmly against the support, the
rotates freely on the cylindrical spacer

ROTATABLE SEAT SUPPORT ASSEMBLY
ROTATABLE SEAT SUPPORT ASSEMBLY
Primo O. Petrucci, Livonia, Mich., asslgnor to Danbar, Inc., rimo O. Petrucci, Livonia, Mich., asslgnor to Dan
Warren, Mich.
U.S. C. 248-418

May 12,1977 , Ser. No.
Int. C..\(^{2}\) F16M \(13 / 00\)
1. I. 11 Claims 1. swiveling movear support assembly for supporting a seat (a) a seat pedestal means
(b) a support tube fixedly mounted on said pedestal means; (c) a ring bearing means mounted around the support tube; (d) a seat support means mounted around said support tube; (e) means retaining said seat support means on said ring
bearing means and on said support tube to prevent axial movement relative to said support tube and allow rotative movement about said support tube;
(f) means for releasably locking said seat support means in a normal use position;
(g) stop means for limiting a swiveling movement of the seat support means about the support tube; and,

(h) anti-noise means mounted between said support tube and means for retaining said seat support means on the bearing means.

\section*{FISHING \(4,097,017\)} Willinm H. Hevitit 112 "C" HOLDING DEVICE William H. Hazlitt, 112 "C"' St., Pacheco, Calif. 94553
Continuation-in-part of Ser. No. 550,772, Feb. 18, 1975, abandoned. This application May 18, 1976, Ser. No. 687,521 U.S. C. 248-515

1. A fishing rod holder comprising
a. pivotal cradle member having an integral support element constructed to receive a fishing rod mounted thereto, and having an integral depending pivot element depending a relatively short length from the integral support element; b. a pivot mounting member connected to said depending
pivot element of said cradle member, said pivot element of said cradle member and said pivot mounting member having cooperating pivot means for providing free rotation of said cradle member on said mounting member in a vertical plane within predefined limits; said means includ-
ing first stop means for limiting orientation said support element of said cradle member at a substantially horizontal position and second stop means for limiting orientation of said support element of said cradle member at a position approaching a vertical position, said cradle member being freely rotatable between said stop means; and
means for supporting said pivot mounting member to an includes a head portion having a receiving slot and a keyway; and, said depending pivot element has a depending tab with a distal end insertable in said receiving slot
and has a pair of projecting wing tabs transverse to said and has a pair of projecting wing tabs transverse to said
depending tab, said wing tabs having ends short of the distal end of the depending tab, said ends engaging said keyway for pivot of said cradle member on said mounting member; and wherein said keyway has stop surfaces en-
gageable with said wing tabs and limiting pivotal move-
ment of said cradle member in said mounting member, said stop surfaces comprising said first and second stop means.

\section*{4,097,018}

RIFLE PELLET CASTING MOLD
Charles R. O'Herien, Canastota, N.Y., assignor to The Raymond Lee Organization, Inc., New York,, N. Y., a part interest Filed Nov. 8, 1976, Ser. No. 739,67
Int. Cl. \({ }^{2}\) B22C 9/06, \(9 / 08\) U.S. CI. 249-105 6 Claims

1. A rifle pellet casting mold, comprising:
1. A rifle pellet casting mold, comprising:
a bottom section hingedly attached to a side section, the side section pivotally attached to a second side section, means for rigidly securing the sections together attached to the sections,
he assembled side sections forming a sprue through which molten material may be poured,
a section forming a gate connected to the sprue, \& a pellet may be cast.

\section*{4,097,019}

INGOT MOLD BASE MEMBER
Charles W. Connors, Wilmette, Ill., asignor to Nalco Chemical
Charles W. Connors, Wilmette, III, assignor to Nater
Company, Onk Brook, Ill. Filed Mar. 8, 1976, Ser. No. 664,725
Int. CI. \({ }^{2}\) B22D 7/12, 19/00; C04B \(35 / 10\) U.S. Cl. \(249-204\)

1. A cast iron ingot mold base member, the top portion of which contains a preformed integral refractory insert of at base member during the casting of said base member, and where the thickness of the ingot mold base member exceeds he thickness of the refractory insert.

\section*{PLANT-WATERING \(\begin{gathered}4,097,020\end{gathered}\)}

PLANT-WATERING DEVICE
Howard Sussman, c/o The Crackerbarrel, E. Shore Rd Filed Men 5, Filed May 5, 1977, Ser. No. 793,925
Int. Cl. \({ }^{2}\) B05B U.S. C. 251- \({ }^{10}\) 1. An improved device for watering par 4 Claims
location remote from a water source of the type including a flexible hose attached to convey water from said water source to the free end of said hose occupying an operative position in watering relation to said plant, said improvement comprising a clamp mounted adjacent said hose free end responsive to external pressure to partake of closing movement upon said hose for causing corresponding selected restricted flow of water exiting
from said hose, and a tubular-shaped holding member disposed in covering relation over said clamp, said diameter of said tubular-shape thereof being of a selected extent to normally hold said clamp in a position closed upon said hose providing
said
saw;
means, for urging means for fixedly maintaining and locking sasid pirot jaw; ment in a position wherein said first and second jaws are clamped about a tire stud disposed therebetween; and el pivotably affixed on one end thereof to said elongated element, said leg pivotable from a storage position adjacent to said elongated element to a use position extensive therefrom and adjacent to said first jaw.

4,007,022
WHEEL JACK APPARATUS
Robert E. Taylor, 309 SW. 11th St., Andrews, Tex. 79714 Filed Jul. 25, 1977, Ser. No. 818,8 U.S. Cl. 254—133 R
a desired restricted flow that obviates said exiting water from making splashing contact against said plant, and said construcmaking splashing contact against said plant, and said construc-
tion material of said holding member being a pliable plastic sufficiently rigid to hold said clamp in said position to provide restricted flow and sufficiently pliable to enable an external pressure applied in an area of said holding member coextensive with said internal clamp to be transmitted to said clamp for normally provides a desired restricted flow in said exiting normally provides a desired restricted fow in saide exiting water and further respor to
through said pliable cover to close upon said hose to provide complete shut-off of said water.

4,097,021
TIRE STUD PULLER
Walter J. Loboda, 1027 N. Lineoln, Park Ridge, III. 60068 Filed Jul. 29, 1977, Ser. No. 820,344
U.S. C. 254-22

6 Claims

1. A tire stud puller comprising:
an elongated element terminating in a first jaw;
said first jaw substantially positioned along the longitudinal
axis of said elongated element;
a pivotal element terminating in a second jaw, said pivotal

1. In combination with a vehicle supported by a plurality of wheels, each wheel having a circumferentially extending tire receiving rim spaced from a hub receiving bolt circle by a pluraity of spokes, with the rim forming a circumferentially extending shoulder, a wheel jack for engaging and lifting the wheel along with a vehicle attached thereto;
of lift detents formed vertical column having a plurality which cooperates with said detents to cause the lifting mechanism to climb said column;
wheel lift adaptor, means by which said adaptor is affixed to said lift mechanism; said adaptor having an upper end forwardly and below the location where the adaptor is attached to the lift mechanism;
said upper end of said adaptor terminates in an edge portion which engages said shoulder; the marginal lower end of
said adaptor has a fastener means formed thereon which said adaptor bas a fastener means formed thereon which
extends through said spokes and engages wheel structure located in opposition to said shoulder.

\section*{4,097,023}

ROPE CLAMPING ARRANGEMENTS FOR SAILBOATS OR OTHER APPLICATIONS Meschinen, Aaraa, Switzeriand, assignor
Maschinen-nnd Apparatebau, Switzerland
Filed Sep. 8, 1976, Ser. No. 721,384
Claims priority, application Switzerland, Sep. 12, 1975, 12086/75; Dec. 16, 1975, 16321/75
U.S. Cl. 254-156 Int. Cl. \({ }^{2}\) B66D 5/16 3 Claims
U.S. C. \(254-156\)
1. Rope clamping arrangement, comprising 1. Rope \(\mathbf{c}\)
a block;
a lever pivotally attached on said block at a first pivot mount and pivotable with respect to said block between a first and a second lever pivot position;
a cam pivotally attached on said block at a second pivot
mount spaced from said first pivot mount, and pivotable with respect to said black berween a third and fourth cam pivot position;
a pin on said lever and a slit in said cam in which said pin is
received, whereby said slit guides said pin and said pin is moved by said lever and, in turn, moves said cam; said pin
and said slit being generally at one side of said second and said slit being generally at one side of said second
pivot mount and said first pivot mount being at the opposite side of said second pivot mount; said cam thereby being connected to said lever such that pivoting of said
lever to its said first position pivots said cam to its said ever to its said first position pivots said cam to its said
third position and pivoting of said lever to its said second third position and pivoting of said lever to its said se
position pivots said cam to its said fourth position;

said cam having a clamping surface;
biasing means for biasing said cam to said third position rotatable roller supported to rotate on said block; said between said first and said second pivot mounts; said cam clamping surface being so positioned that when said cam is pivoted to its said third position, its said clamping surface presses a rope against said roller periphery

\section*{4,097,024}

HAND HOIST/PULLER OPERATING HANDLE/LEVER Kenneth D. Schreyer, Clarence, N.Y., essignor to Columbus McKinnon Corporation, Tonawanda, N.Y. Filed Oct. 6, 1975, Ser. No. 619,595
U.S. CI. 254-169

3 Claims

1. A hoist/puller unit comprising in combination:
a load pull mechanism comprising a body having an anchor
ing means on one side thereof, a flexible tension member issuing from the other side of said body and adapted for connection to a load, and drive mechanism for applying
tension to said tension member thereby defining a load
system having a center line which extends longitudinally of said tension elements and passes through said body to sable in said body about an axis which extends generally perpendicular to said center line;
handle for operating said drive mechanism, said handle including a first portion connected to said drive mechanism in offset, spaced relation to said center line, a hand operated end portion extending substantially parallel to
said center line and spaced more closely thereto than is said center line and spaced more-curved portion joining
said first portion, and a reverse-curved said first portion to said hand-operated end portion; said reverse-curved portion being formed of plastically deformable material whereby said hand-operated end will twist when the handle is subjected to an overioad in orde to apprise an operator of such overioad and upon such said center line which further apprises the operator of such overload. \(\qquad\)
4,097,025
ELECTRONIC FENCE SURVEILLANCE APPARATUS Charles R. Dettmann, Independence, and John J. Frederic Excelsior, both of Minn., assignors to Electronic Survelllance Fence Security, Inc., Wayzata, Minn.

Filed Jul. 19, 1976, Ser. No. 706,500
Int. C. \({ }^{2}\) E04H \(17 / 00\); G08B 21/00
U.S. Cl. 256 - \({ }^{\text {Int. }}\)

1. In combination with a fence enclosing an area to be proected against intrusion and supported by a plurality of spaced rigid, substantially vertical fence posts, an intrusion detection system comprising:
a plurality of sections of relatively rigid electrical conduit supported on and in contact with said fence serially therealong and independently of said fence posts so that relasaid conduit in contact therewith, said conduit being of ferrous material and having a wall thickness between approximately 0.10 and 0.12 inches,
a plurality of liquid tight housings, each interposed between and having a threaded, liquid tight connection with two adjacent sections of said conduit so that said sections are sially connected togeher by said housings,
a vibration sensor secured in each of said housings and responsive to vibrations transmitted to the housing in which it is located, each of said vibration sensors being effective to produce a vibratory electrical signal upon said conduit being vibrated,
n insecting device, and sensors to said indicating device.

Int. C1. \({ }^{2}\) B01F \(5 / 02\)
U.S. C. \(366-165\)

1. Apparatus for mixing a basic liquid with another medium,
mprising in combination
a container for the basic liquid having bor a. a container
ripheral walls,
b. a pressure source communicating with the interior of said container for producing a pressure stream of the basic liquid,
c. at leas
c. at lea
sure,
d. at least one mixing means comprising
a a tubular body having an inlet end connected to said supply pipe and an outlet end communicating with the basic liquid within and near the bottom of the container,
baffle means within said tubular body in the vicinity of said inlet end of the tubular body, said baffle means occupying a substantial portion of the central part of the cross section of said tubular body, and providing a substantially annular gap between the internal surface of the tubular body and
the periphery of the baffle means for directing a substantially annular flow of the basic liquid along at least a part of the internal surface of the tubular body, thereby leaving a hollow space within the annular flow in said part of the tubular body, and
means for supplying another medium into said hollow space within the tubular body behind the baffe means.

\section*{4,097,027 OXIDATION Process for Limiting Surface OXIDATI OF GLOWING HOT METAL DROSS Jean Michel, Marly, Switzerl
Ltd., Chippis, Switzerlend}

Filed Nov. 10, 1976, Ser. No. 740,421 Claims priority, application Switzerland, Nov, 21, 1975, 15102/75

Int. C. \({ }^{2}\) C22B \(21 / 00\)
3 Claims
U.S. Cl. \(266-44\)
1. A process for limiting surface oxidation of glowing hot 1. A process for limiting surface oxidation of glowing hot
metallic dross in an apparatus including a metal bell having a space formed therein and an open bottom, a container for holding the dross, a base for the container to rest on, and a tank filled with liquid for receiving the base, the bell being formed with openings near the bottom thereof for providing communication channels for the liquid to pass therethrough, the steps comprising:
placing the shallow container onto said base,
lowering the metal bell over said dross, and,

sealing off the space formed within said bell from the outside atmosphere, whereby additional oxygen is prevented from being supplied to the surface of said dross.

\section*{METHOD OF MELTING \(4,097,028\)} Hans-Jïrgen Langhammer, Platjenverbe, Germany, assignor to Klockner-Werke AG, Duisburg, Germany
Claims Filed Jan. 22, 1976, Ser. No. 651,526 2049 Claims priority, application Germany, Feb. 6 U.S. CI. 266-47

1. A melting method, comprising the steps of confining a charge of a material selected from the group consisting of scrap, sponge iron and pellets in a melting zone having a pegradually melt the material thereof, including concurrently introducing a stream of a combustion-supporting substance and a layer of a combustible hydrocarbon substance which at least partly surrounds the stream into the melting zone to obtain a combustible mixture of the substances in the melting zone, and combusting the mixture in the melting zone outside the periphsolidified quantity of the molten material at the peripheral region of the melting zone to serve as a support for the charge, including passing the stream and the layer through the peripheral region of the melting zone for the layer to cool the periphent at the terin extent sufficient for the molten material present at the peripheral region of
thereby form the protuberance

ENCLOSURE FOR STELE CONVERTING APPARATUS Joseph Ziegler, Apollo, Pa., assignor to Pennsylvania Engineer ing Corporation, Pittsburgh, Pa. Filed Dee. 31, 1975, Ser. No. 645,529
Int. Cl. \({ }^{2}\) C21C \(5 / 42\)
USS. C. \({ }^{266-142}\)
19 Claims

1. A converter vessel having a metal receiving opening formed adjacent an upper end,
an enclosure having an upper wall portion disposed above
said vessel and side wall portions extending downwardly along the sides of said vessel,
an access opening formed in one of said wall portions, door means mounted adjacent said opening and externally o said enclosure, said door means having an inner surface
mounting means disposed externally of movably supporting said door means and including firs rail means adjacent the upper end of said door means an second rail means disposed adjacent the lower end of said door mean
first roller means mounted on said door means externally of said access opening for engaging said first rail means, said
second rail means has one end adjacent one side of said opening and extends therefrom latiacent one side of said opening so that a substantial portion of the lower end of said opening is not fronted by said second rail means,
said door and the lower end thereof and adjacent one side thereof for engaging said second rail means, said second rail means having a surface portion disposed between said access opening and said second roller means, said door extending outwardly from said first rail means and relative to said opening whereby the center of gravity thereof
forwardly of a vertical plane containing said first rall means to create a moment urging said second roller means into engagement with said surface portion,
motive means coupled to said door means for moving the latter between open and closed positions relative to said access opening,
and exhaust means extending through the upper wall of said enclosure and being movable toward and away from the upper ens of
said vessel. \(\qquad\)
LANCE FOR DESULPHURIZING CAST IRON OR STEEL LANCE FOR DESULPHURIANG, 430 Grant, Rue Michel Body, 67,4330 Grace-Hollogne, Belglum

Filed Jan. 7, 1977, Ser. No. 757,533
Claims priority, application Belgium, Jan. 7, 1976, 45320; Dee. 17, 1976, 45792 Int. C. \({ }^{2}\) C21C 5/32
U.S. Cl. 266-225 Int. C. \({ }^{2}\) C21C \(5 / 32 \quad 7\) Claims 1. A desulphurize
steel comprising: an injection pipe,
means for connecting the injection pipe with a source of
desulphurizing agent and with a source of pressurized gas
lion pipe
a refractory sleeve consisting of superposed refractory rings mounted about the injection pipe,
a refractory head enclosing the lower port of the injection pipe below the refractory sleeve,
a distributor case attached to the injection pipe at the end ing said in m the refractory head and hermetically enclos ing said injection pipe about the refractory sleeve,
means for connecting the distributor case to
means for connecting the distributor case to a source of compressed air,
tightening means \(m\)
the refractory sleeve for resilient the distributor case and rings, one on tee for resiliently pressing the refractory n annular cooling che other, against the refractory head, parts and defined by the injection pipe, the refractory sleeve and the refractory head,

a plurality of inflow pipes connected to the distributor case at the bottom thereof and extending within the cooling chamber in a circumferential array parallel to the injection pipe as far as the lower part of the annular cooling cham-
bet, said inflow pipes having open ends facing the closed lower part of said chamber, and
at least one discharge opening for the annular cooling cham beer provided between the distributor case and the refrac tory sleeve at the top of said chamber such that cooling ai the inflow pipes rapidly into the lower part of the annular cooling chamber to immediately cool the refractory head, upwardly about the inflow pipes and within the refractory sleeve, to cool the injection pipe and the refractory sleeve upon rising discharging through the cooling chamber discharge opening.

\section*{4,097,031}

LANCE SUPPORTING AND GYRATING DEVICE IN A STEEL -REFINING CONVERTER
ousaku Higuchi, Kakogawa; Satoshi Sato, Kobe, and Susumu Wade, Yokohama, all of Japan, assignors to Kawasaki Juke gyo Kabushiki Kasha, Kobe and Nippon Kokan Kabushiki Kasha, both of, Japan
Filed Sep. 21, 1977, Ser. No. 835,290
Claims priority, application Japan, Sep. 25, 1976, 51-114938 Sep. 25, 1976, 51-128805[U]; Sep. 25, 1976, 51-128806[U]; Sep , 1976, 51-128807 (U]; Sep. 25, 1976, 51,
Int. Cl. \({ }^{2}\) C21C \(5 / 32\)
U.S. Cl. 266 Claims
1. In a steel-refining converter having a lance dispose l 1. en a steel-refining converter having a lance disposed device comprising:
a lance carriage disposed above the converter and supported transit passage being uniformly shaped throughout its entire and adapted to be movable in guided vertical movement; length, the cross-section thereof, transversally to its longitudiwobble bearing means attached to a part of the lance to pal axis, having an inverted trapezoid configuration, and said support the lance in a manner permitting the lance to weir comprising a pair of jaws defining a centrally dispose undergo gyratory motion relative thereto; ing means, supporting to undergo a revolutionary motion ing means, supporting to undergo a revolutionary mo
means for supporting the lance receiving structure on the
lance carriage in a manner permitting said revolutionary motion;
means for adjusting the radius of revolution of said revolutionary motion;
means for driving lutionary motion;
a lance holding means mounted on the lance carriage at a position vertically apart from the wobble bearing means in he lance supporting state thereof and operated to hold the
lance in vertically fixed position coincident with said specific vertical axis; and
ode bearing means for the lance provided at a position such as to fit into a stationary structure disposed below and spaced apart from the wobble bearing means when the
lance is in operative position in the converter and func toning to hold the lance against horizontal movement
thereof thereby to constitute a central node about which hereof thereby to constitute a central node about which receiving structure is thus driven in said revolutionary motion.

\section*{4,097,032}

FOREHEARTH WITH WEIR, PARTICULARLY FOR USE IN A BASALT SMELTING FURNACE Winter Mauritt, Bad Honnef, Germany, assignor to Schmelz-
basal twerk Kalenborn, Dr. Ing. Mauritz Kg, Kalenborn, Germany

Filed Mar. 3, 1977, Ser. No. 773,852
U.S. C. 266-230

1. A foundry forehearth for collecting molten material to be cast, comprising a weir disposed at the discharge end of the cast, comprising a weir disposed at the discharge end of the forehearth, said weir having a channel transversing the dip
surface thereof, for discharging molten material into the discharge end of the forehearth, a free-floating float being many times smaller than the forehearth and having a \(U\)-shaped cross section, said float bracing against said weir and defining.
 weir comprising a pair of jaws defining a centrally disposed
recess in the wall of said weir facing said float, a portion of said float being loosely held within the depth of said centrally disposed recess, such that said float is continuously free-floatof the molten material.

DRILLING MACH ,007,033
DRILLING MACHINE FOR BLAST FURNACE TAPHOLE
Pierre Mailliet, Howald, Luxembourg, assignor to S. A. ides
Anciens Etablissements Paul Worth, Luxembourg, Luxembourg Filed Feb. 18, 1977 , Ser. No. 770,191 (aims priority, application Luxembourg, Feb. 20, 1976, \(74398 \quad\) Int. Cl. \({ }^{2}\) C21B 7/12
U.S. Cl. 266-271

1. Apparatus for opening shaft furnace tapholes, the furnace having a vertical axis and an external longitudinally extending molten metal flow channel in registration with each taphole, the apparatus comprising:
support column means, said support column means having a longitudinal axis which is angularly inclined toward the being angularly inclined with respect to a vertical plane through the taphole and the axis of the flow channel in registration with the taphole with which the apparatus registration
arm means pivotally mounted on said support column means and extending outwardly therefrom, said arm means haveing an axis;
Dol holder means, said tool holder means including an elanmeans for rigidly attaching said tool holder means support bar to a first end of said arm means, said attaching means permitting adjustment of said tool holder means support bar relative to said arm means;
fluid operated drill means mounted on said tool holder means support bar for movement along said bar;
means for delivering operating fluid to said drill means; and means for rotating said arm means about the axis of said column means to move said tool holder means between operating and retracted positions, said rotating means including a hydraulic actuator having a movable output member coupled to said arm means, said rotating means
further including means for limiting the displacement of said actuator output member to an amount corresponding to the operating position of said tool holder means.
AIR-RIDE SUSPENSION SYSTEM Philip J. Sweet; Buck C. Hamlet, and David L. Sweet, all of Fresno, Calif., assignors to American Carrier Equipment, Inc., Calif.
Filed Apr. 7, 1977, Ser. No. 785,344
Int. Cl. \({ }^{2}\) B60G \(11 / 46\)
U.S. Cl. 267-15 A

1. In a suspension system for a wheeled vehicle characterized by at least one pair of laterally spaced longitudinal frame members, a load bearing axle and a pair of laterally spaced leaf spring assemblies mounted on said axle in transverse relation
therewith, the improvement comprising:
A. a load supporting cradle having
adapted to be extended ransversely elongated base laterally spaced frame members for a given vehicle;
B. means adapted to connect opposite end portions of the portions of a pair of laterally spaced leaf spring assemblies mounted on the axle in parallelism with the direction of intended vehicular travel for the vehicle;
C. means for supporting a pair of frame members for the vehicle including at least one pair of mutually spaced air
bags seated on said base and a pillow plate seated on the bags seated on said base and a pillow plate seated on the bers; and
D. centering means for restraining said cradle from trans verse motion relative to said pair of frame members in-
cluding a link rigidly extended in substantial parallelism with said base and adapted to be connected with at least one leaf spring assembly of said pair of leaf spring assemblies and one frame member of said pair for restraining the pair of frame members from lateral motion relative to said leaf spring assemblies.

\section*{CLAMPING FRAME FOR PLASTIC FORMING \\ APPARATUS \\ Filed May 31, 1977, Ser. No. 802,133 Int. Cl. \({ }^{2}\) B25B \(5 / 14\)}
U.S. C. 269-121 7 Claims 1. In apparatus for use in forming plastic material into prede-
comined configurations, the improvement comprising clamping frame for engaging the peripheral edges of a sheet of plastic material during plasticising and forming of said plastic
material, said clamping frame including: material, said clamping frame including
along the length thereof for engag edges of said plastic material, said side elements being arranged in a spaced parallel relationship with each said side element having a plurality of facing apertures formed along the length thereof and extending therethroug toward and away from one another to a plurality of positions at which said side elements have a predetermined spacing therebetween
apertures of said side elements to extend therebetween at all said positions thereof; and
(d) a plurality of individual clamping sub-assembly means said support means along the extending length thereof,

said clamping sub-assembly means having different predetermined lengths which provide, in selected combination means corresponding generally to said predetermined spacing between said side elements at each of said plurality of positions thereof

\section*{4,097,03}

CLAMPING DEVICE FOR A THERMALLY AND ELECTRICALLY PRESSURE-CONTACTED SEMICONDUCTOR COMPONENT IN DISK-CELL
Arno Henke, Gorxheimertal, Germany, asslgnor to BBC Brown, Company, Limited, Mannheim, Germany
Filed May 4, 1977, Ser. No. 793,775

1. A clamping device for a thermally and electrically pres-sure-contacted semiconductor component in diskcell construcof liquid-cooled capsules between which the semiconductor component is disposed, the two liquid-cooled capsules being squeezed together by a clamping device comprising four clamping bolts passing through the corners of a large-area central clamping screw pressing central threaded insert and a the two liquid-cooled capsules, the clamping screw being screwed over a certain rotation angle measurable on the clamping device, stressing the clamping plate and pressing on
the convex surface with a force proportional to said angle.

4,097,037
TABLE WITH LEAF AND LOCKING SYSTEM Victor H. Tardiff, San Jacinto, Calif., ass
ufacturing Co., Inc., Temecula, Calif.
Filed Jul. 8, 1977, Ser. No. 813,844
Int. Cl. \({ }^{2}\) A61G \(13 / 00\)
9 Clai
U.S. Cl. 269-323

1. In combination: a platform having a horizontal surface and an upright support beneath said horizontal surface, said support having a dimension of height; a horizontal first hinge means on sy said first hinge means to permit the leaf to hinge latform by said first hinge means; horizontal second hinge mean ro said leaf spaced from first hinge means; a lock shaft having an axis of motion, and being pivotally mounted to said second inge means; third hinge means attached to the support at a
levation below said horizontal surface; and releasable loc evation below said horizontal surface; and releasable lock shaft being engaged to said lock means for axial movemen herein, whereby a three link locking system is created for the
leaf as follows: a first rigid link between the third and first eaf as follows: a first rigid link between the third and firs econd hinge means, and a third rigid link between the second and third hinge means, said lock means being so constructed and arranged as releasably to lock the shaft thereto and at any shaft position in the range of permissible positions, thereby to
adjust the length of the third link and the angle of the lear, said hree link system being rigid when the lock means is locked, in which said lock shaft bears rack gear teeth, and in which saii lock means comprises an idler gear with teeth meshed to the rack gear teeth, and an disposed and arranged that they can also be meshed with the rack gear teeth to lock the gears ogether or removed therefrom to enable the rack gear teeth to move relative to the idler gear.

\section*{4,097,038}

Alan A. Jansen, 4201 SW. 47th Dr., Portland, Oreg. 97221
Filed Sep. 30, 1977, Ser. No. 838,2
U.S. CI. 269-328

11 Claims

1. A headrest which comprises a U-shaped body with an open unobstructed fron, top and bolized to freely surround a
human head, said side walls having bottom edges for resting on a supporting surface and smooth top edges, a flexible sling tape draped over said smooth top edges and suspended from said side walls for cradling a human head projecting through said open unobstructed front within the body in spaced relation from the side and end walls above the bottom of the body, faces of the side walls adhering when pressed together to adjustably anchor the sling to the side walls.

STRIP LAYING APPARATUS
Thomas A. Fischer, Fargo, N. Dak., assignor to Applied Power Inc., Menomonee Falls, Wis. Filed Jul. 23, 1976, Ser. No. 708,065
U.S. CI. 270—79

37 Claims

1. Apparatus for laying strip material including support
first translating means movably mounted on said support means for reciprocating movement in a first direction and in an opposite direction,
said first translating means comprising slider means, first slider supporting means mounted on said support means for supporting said slider means for siliding movement in said first slider supporting means including elongate means extending in said first direction, said slider means includes tubular means slidably mounted and telescopingly received on said elongate means,
means for reciprocating moveded on said first translating generally normal to said first direction
said second translating means including second elongated slider support means extending in said second direction and tubular means slidably mounted on said second slider
supporting means for reciprocating movement thereon, supporting means for reciprocating movement thereon,
elongate material distributing means universally pivotally mounted adjacent to an end on said support means and extending generally downwardly therefrom to define upper and lower ends, said material distributing mean being constructed and arranged for receiving material a its upper end and discharging the same from its lower end
said distributing means being coupled adjacent its lower end to said second translating means for movement therewith drive means coupled to each of said translating means fo moving said first translating means in said first and said opposite direction and for reciprocaing said second transing means,
an elongate, upwardly inclined conveyor means having one end elevated and disposed adjacent the upper end of saic material distributing means, said conveyor means being constructed and arranged for receiving an elongate strip of material,
generally upwardly toward the upper end of said distrib-
uting means, said conveying means including pressure means for biasing a strip of material against said elongate means whereby the latter moves said material upwardy to
said distributing means and guide means disposed above the upper end of said conveying means for redirecting said strip material downwardly to the upper end of said distributing means,
rotation about an axis ing first crank means mounted for ion and linkage means connecting said crank first direcaid second translating means for moving the second ranslating means in said second direction, and means for djusting the distance from said axis that said crank means is engaged by said linkage means so that adjustment thereof will change the magnitude of reciprocation of said second translating means.

\section*{4,097,040}

MULTIPLE SIZE ENVELOPE FEEDER
Gary L. Pugh, Kanses City, Mo., and Glenford Rowlett, Prairie Village, Kans., assignors to Stephens Industries, Inc., Lenexa,
Filed Oct. 28, 1976, Ser. No. 736,448
\({ }^{104}{ }^{\text {Int. Cl. }}\) B65H 3/08, 3/56
U.S. CI. 271-104

19 Claims

1. Apparatus for supplying envelopes one at a time from a stack of envelopes arranged on edge including, in combination: flist and second spaced retainer members for retaining one end of said stack; an arm having a suction device mounted at one and thereof; a pivot shaft supporting the arm at the other end for pivotal movement thereof; means for providing a slot
slidably receiving said pivot shaft; and means for sequentially moving said pivot shaft along said slot in one direction to move the suction device adjacent to said one end of said stack, rotating said shaft in such a direction as to move said suction device into engagement with said one end of said stack to grip the
leading envelope, rotating said shaft in the opposite direction to separate said leading envelope from said first retainer member, and then moving said pivot shaft along said pivot shaft slot in the opposite direction to separate said leading envelope from said second retainer member, said moving means including a
drive shaft having an eccentric mounted thereon, means coudrive shaft having an eccentric mounted thereon, means cou-
pling the eccentric to the pivot shaft, a cam shaft having a cam mounted thereon, a follower arm having one end fixedly attached to said pivot shaft, and means urging the follower arm against the cam.
\[
\begin{gathered}
4,097,041 \\
\text { CKDNN AP AP }
\end{gathered}
\]

SHEET FEEDING APPARATUS
Sakae Fujimoto, Chofu, Japan, assignor to Ricoh Company, Ltd., Tokyo, Japan
Claims priority, application Japan, Nov. 6, 1975, 50-133206 U.S. C. 271-114 Int. Cl. \({ }^{2}\) B65H 3/06, \(3 / 56\) U.S. CI. 271- 114 g apparatus for feeding sheets from a stack 1. A sheet feeding apparatus for feeding sheest from a stact
disposed on a sheet receptacle, said apparatus comprising:
pair of pivotable support arms having their free ends rock able toward and away from said sheet receptacle feed roller support shaft rotatably mounted on the free end of said support arms;
feeding means on said support shaft for engaging and freding a sheet from said sheet receptacle;
drive means for rotating said feed roller means;
means for controlling the operation of said drive means; means for rocking said support arms in a direction to cause said feed roller means to move away from said shee
receptacle at the termination of a feeding operation of a single sheet;
means for retaining said support arms in their removed position
means for
means for releasing said retaining means at the commencement of a sheet feeding operation;

corners of the front end of said sheet receptacle for bear ing against the opposite comers of the leading end of a sheet during a sheet feeding operation; and
neans for mounting said corner separators on said support
arms for movement at least partly in following relation ship with the rocking motion of said support arm whereby said corner separators bear against the opposite corners of the leading end of a sheet only during a sheet feeding operation, said mounting means comprising: a pair of support links having the corner separators
mounted thereon and respectively connected to the free ends of the respective support arms by freely pivoting a one end on the opposite ends of said feed roller support shaft; and
a pair of additional pivotable arms each having one of its ends loosely fitted on said rocking means and its other end respectively pivoted to the other ends of said support links.

\section*{BACKSTOP CONSTPUCTIO RUCTION FOR A STACKING MACHINE}

Vincent E. Rozga, Greendale, Wis., assignor to Kelley Company Inc., Milwaukee, Wis.

Filed Feb. 25, 1977, Ser. No. 771,976
U.S. Cl. 271-171

Int. Cl. \({ }^{2}\) B65H \(31 / 20\)
1. A machine for stacking sheet material, 11 Claim porting structure, a conveyor mounted on the supportip sructure to convey sheet material in a given direction, a lift table mounted on the supporting structure and disposed to cated above the table and mounted for movement with respect to said table in said direction, a carriage mounted for linea movement on tha direction, a carriage mounted for hea the truck between a first position adjacent the upstream end the truck to a second position adjacent the downstream end of
the truck, latching means to lock the carriage in the first posi- wherein said target means comprises a contact element dis-
tion, and a backstop carried by the carriage and disposed to be posed to receive the impact of said bat and pivot means fixedly

engaged by the leading ends of the sheets as they are stacked engaged by
on the table.

PLAYGROUND CLIMBER
Richard Rudy, Reedsille, Pa., assignor to Kilgore Corporation, Toone, Tenn.

Filed Feb. 20, 1976, Ser. No. 659,686
Int. C1. \({ }^{2}\) A63B \(9 / 00\)
U.S. C. 272-113

1. A playground climber, comprising a pluality of modular units connected to one another, each said modular unit being a units connected to one another, each interconnecting dodecahe dron structural member means having generally cylindrical climbing interconnecting struts on the face of the dodecahedron so closely spaced a child could stand on one strut and grasp any of the other struts of the face on which the child
climbing, each face of each dodecahedron unit comprising a regular pentagon and a majority of said faces being open to permit a child to pass therethrough climbing thereon and grasping of said climbing struts by a child, each said pentagon
comprising five climbing struts with two said adjacent struts comprising five climbing struts with two said adjacent strut meeting at an angle of \(108^{\circ}\), each said dodecanedron und he the ing twenty corners, and each said chang struts whereby a child can limb said playground climber by grasping and placing his feet on said struts which form each face of each unit.

\section*{4,097,044}
baseball batting training apparatus BASEBALL BATTIIGG TRAINING APPARATUS Filed Nov. 26, 1276, Ser. No. 745,062
U.S. Cl. 273-26 R
1. A batting training device comprising: support means \(f\) operatively positioning said device above a support surface; target means cioned to receive the impact of a bat swung into contact there-
tion with, said support means including cam means formed thereon to guide the movement of said target means whereby said target means will assur a subid target means by said bat, and
posed to receive the impact of said bat and pivot means fixedly
attached to said contact element, said pivot means including guide means formed thereon in engaging relation to said cam means; and attachment means disposed in axed, interconnect-

and comprising plate means for supporting said contact element to said pivot means and being attached to said contact element, said plate means and said contact element including correspondingly positioned apertures formed therethrough, and fastening means extending through said apertures, one end
of said fastening means being attached to said pivot means. of said fastening means being attached to
\(4,097,045\)
OWLING RAM Russell D. Bechtel, Pensacola, Fla, assignor to The Raymond Russel Organization, Inc., New York, N.Y., 2 part interest
Lee Filed Apr. 28, 1977, Ser. No. 792, U.S. Cl. 273-54 R \({ }^{\text {Int. Cl. }{ }^{2} \text { A63D 5/00 } \quad 1 \text { Claim }}\)
1. A bowling ramp for the acceleration of a bowling ball by handicapped, disabled, infirm, and the like, person, said owling ramp comprising
portable ramp for a bowling ball, said ramp being bent at approximately \(135^{\circ}\) to form a first substantially linear section of predetermined length and a second substantially linear section having a length approximately three times the predetermined length, said second section extending substantially angularly from said first section and curving
slightly at its end farthest from said first section, said ramp having a top with a central channel extending along its length for directing a bowling ball and a bottom;
pair of spaced socket members at the bottom of the firs section intermediate its end joining the second section and its end farthest from said second section;
pair of legs removably accommodated in the socket mem-
bers for supporting the ramp with the first section substan bers for supporting the ramp with the first section substan-
tially horizontal at a predetermined height above a supporting surface and the second section extending from said predetermined height to said supporting surface a approximately \(45^{\circ}\) and curving slightly upward in its area cal about a vertical line through the center of the firs
section and angularly disposed relative to said line since said electromagnetic coil between said electromagnetic coil
they diverge from said line as their distance from said first and said playing surfae they diverge from said line as their distance from said first and said playing surface, pole means rigidly connecting said
section increases
a rection increases;
rubber strip on the bottom of the ramp at the free end of
the second section for abutting the supporting surface and preventing slippage thereon and scuffing thereof
handle in the channel of the second section of the ramp for
facilitating carrying thereof; and
ramp for releasably sothon of the second section of the

LACROSSE STICK
Elias Stewart Friant, Baltimore, Md.
Filed Feb. 8, 1977, Ser. N
Filed Feb. 8, 1977, Ser. No. 766,654
U.S. Cl. 273-96 D Int. Cl. \({ }^{2}\) A63B 59/02

8 Claims

1. A lacrosse stick head, of the type including a frame and a 1. A lacrosse stick head, of the type incluaing a frame and a there along, said frame being formed of a length of flat strip material bent to provide at least one elongated side element and an end portion twisted with respect to said side element to
form the conventional scoop-shaped end of the frame; the form the conventional scoop-shaped end of the frame; the
novelty including that said strip of material has a narrow slot extending along the edge of said strip forming the back of said frame and the inner edge of said scoop-shaped end, said slot being narrow at the edge of said frame and having a larger section interiorly of said strip than at its edge, an elongated
flexable element carrying means fixed at spaced points therealong to which said net is secured, said elongated flexible element whith said means fixed thereto being slideable along said slot with said means extending outwardly through said
slot at the edge of said frame, said flexible element being of a diameter greater than said slot at the edge of said frame whereby said means spaced along said frame by said flexible
element forms a strons securement for said net on said frame element forms a strong securement for said net on said frame
and accurately spaces said means along said frame. and accurately spaces said means along said frame

\section*{device for kicking \(\begin{aligned} & \text { 4,097,047 } \\ & \text { MACHINE A PINBALL GAME }\end{aligned}\) MACHINE \\ Sega} Enterprises, Tokyo, Japan
Filed Dec. 20, 1976, Ser. No. 752,662 Claims priority, application Japan, Dec. 24, 1975, 50 -
Int. Cl. \({ }^{2}\) A63F 7/00
U.S. C. 273-127 R
int.
Cl. \({ }^{2}\) A63F 7/00
1. A device for kicking a ball in a pinball game Claims having a playing surface on which the ball is adapted to be when the same abuts thereagainst, wherein the improvement comprises a frame detachably mounted on the lower surface of said playing surface in position beneath each said bumper head, an electromagnetic coil secured to said frame and spaced
rmature disc to the respective bumper head and a switch connected to said electromagnetic coil to detect the tilting of

said bumper head upon abutment thereof by said ball so as to be closed for energizing said electromagnetic coil which
causes said armature disc to be attracted to said electromag netic coil and rapidly return said bumper head to a normal position to repel said ball.

4,007,048
LOT MACHIN
Freddy Poulsen, Höjbjerg, and Robert Edvin Poulsen, Hinne rup, both of Denmark, assignors to Bell-Matic A/S, Denmark Filed Jan. 27, 1976, Ser. No. 652,785
U.S. CI. 273-143 R

1. A slot machine which includes a common shaft, a plurality of rotary drums individually rotatable about said common haft, an annular row of various signs and symbols provided on each of said drums, a starting mechanism for providing a star otation of said common shaft, an actuator handle operatively
onnected with said starting mechanism, means for starting otation of the drums in response to an actuation of said starting mechanism by said actuator handle, and means for auto matically stopping the respective drums at mutually differen eriods of time after a start of rotation of the drums, character ized in that said starting mechanism includes means for causin said common shaft to be rotated initially in a first direction o
rotation in response to the actuator handle being pulled towar start position and for imparting to said common shaft a rapia start rotation in a second direction of rotation opposite to the start position, means are provided for mounting the drums o rotatable relative to the drums through at least a fraction to be
revolution including a one-way rotation clutch arranged be- shown on one surf tween the common shaft and each respective drum for causing mon shaft and for allowing the respective drums to continue rotation upon the rapid start rotation of the common shaft being stopped, said one-way rotation clutch including a release
for rendering the clutch inoperative thereby allowing the for rendering the cluth intan both ways between the common shaft and the relative rotation both ways betwenular row of abutments or notches are provided at each of the drums, said means for
automatically stopping the respective drums including a pawl automatically stopping the respective drums including a pawl position outside of the annular row of abutments or notches to an operative or stop position in engagement with one of the abutments or notches, means are provided for controlling said pawl means so as to maintain a pawl means in engagement with an abutment or notch duret in shaid first direction and to the inoperative position immediately before the rapid start rotation of the common shaft, and in that holding means are associated with he respective drums for enabling a player selected individual arresting of any one of the drums whide holding means including means for actuating said release means of the one-way rotation clutch.

SLIDE-PUZZLE
Marc Francois DeVos, Binnenhof 3, Knokke-Heist, Belgium and Hoan Giok Gouw, Porto Buenolaan 16, Ouderkerk a,d Amstel, Netherlands
Claims priority, application Netherlands, Aug. 28, 1975, 7510190
U.S. C1. 273-153 S

Int. C1. \({ }^{2}\) A63F 9/08

1. A slide puzzle comprising, in combination, a plate having space therein with inwardly directed flanges extending alon the inner surface of the part of said plate which forms the perimeter of said space, a pluraility of slide pieces each having
circumferential groove in the side thereof, said slide pieces ceing slidably retained in said space by means of said circumferential grooves interengaging at least two of said flanges, sai slide pieces being of such dimension that the surfaces there ie in the same plane as the surface of said plate, said space and two transverse portions, said transverse portions being dimensioned to accommodate three or a larger odd number o slide-pieces which are positioned in side by side abutting relationship in a row, said leg having an opening in communication with the middle thereof, said opening being dimensioned to being equal to the sum of the slide pieces that said two transverse portions can accommodate, said slide pieces having par of a picture on both surfaces thereof and said plate having par of a picture on the surfaces of the plate adjacent to the transverse portions of the space in side by the abutting relationship in the correct sequence in each transverse portion, two complete pictures are prisin prising:

BOARD GAME APPARATUS
Mason D. Miller, 821 Payson St., La Verne, Calif. 91750 Filed May 16, 1977, Ser. No. 797,053 U.S. C. 273-243 Int. Cl. \({ }^{2}\) A63F 3/00
U.S. Cl. 273-243

1. A game comprising
playing pieces for respective ones of different players, playing board having a central area
plurality of contiguous squares on said board surrounding said central area,
certain of said squares comprising starting positions for respective ones of said playing pieces, eriain of said squares being progressively numbered said numbered squares being marked to form cells, each of said cells having an entrance on one side only, a selection device for randomly selecting the number of
squares said playing pieces are to be advanced in turn squares said playing pitions around said central area,
from said starting position
a registering device for indicating throughout the game the highest numbered cell to which any player has advanced, said registering device having a plurality of registering elements, and
said registering elements with corresponding ones of said numbered squares.
\[
\begin{gathered}
\text { 4,097,051 } \\
\text { BOARD GAME APPARATUS }
\end{gathered}
\]
obert M. Goldberg, 1321 Dutch Broadway, and John R. 11581 Filed Nov. 11, 1976, Ser. No. 740,809
S. Cl. 273-254 Int. Cl. \({ }^{2}\) A63F \(3 / 84 \quad 9\) Claims

I. Game apparatus for play by two or more players, con
a game board on which is imprinted an unlegended map of at tively connected with the chuck jaws, to radially move the least a portion of the earth's surface, including latitude same, the improvement of, in combination with the above, parallels and longitude meridians at intervals of predeter- centrifugal balancing means including a plurality of axial holes mined indicated degree spacing dividing said map into through said chuck body open to a rear face of the chuck body,
spaces formed by the intersection of said latitude parallels spaces formed by the intersection of said latitude parallels one of each holes aligned with one of the chuck jaws, blind
and longitudinal meridians, and a plurality of indicia on
holes in rear faces of the chuck jaws communicating with the
 locations on the earth's surface,
a first plurality of mission cards, each of which bears a Written clue to the identity of one of said preselected
target sites and the nature of a mission to be performed thereat, for distribution of one or more to each of the players at commencement of play,
a plurality of playing pieces for each player, one for each mission card distributed to a player, each of said pieces being employed to designate movement of the player from
a starting point to a preselected tar means for randomly povesected target site, and means for randomly governing movement of said playing
pieces along paths comprised of the spaces formed by pieces along paths comprised of the spaces formed by
intersection of successive latitude parallels and longitude meridians.
\[
\begin{array}{r}
\text { 4,097,052 } \\
\text { ONTACT. }
\end{array}
\]

GAS-SEALED CONTACT-FREE SHAFT SEAL
Manfred Heinen, Oberhausen, Germany, assignor to Gutehoffnungshutte Sterkrade A.G., Germany
Claims priority, applicetion Germany, M64, 8 , 1975, 251019 U.S. CI. 277-96.2 Int. Cl. \({ }^{2}\) F16J IS/34

1. A seal for high speed shafts, comprising a shaft, a shaft 1. A seal for high speed shafts, comprising a shaft, a shaft packing ring, support means elastically suspending said packring and said packing ring being separated by a narrow sealing gap defining a gas cushion, said shaft ring being made of hard-
ened beryllium copper containing from 1 to \(4 \%\) of beryllium ened beryllium copper containing from 1 to \(4 \%\) of beryllium
and from 0.1 to \(0.5 \%\) cobalt, said packing ring being of aluminum material which has a surface opposed to said shaft ring which is provided with a hard oxide layer of said aluminum extending over at least a portion of the area of said packing ring surface.

\section*{4,097,053}

HIGH SPEED POWNER CHUCK
Joseph Steinberger, Dusseldorf, Germany, assi
Forkard Kommanditgesellschat, Germany Filed Mar. 16, 1977, Ser. No. 777,961 \(\begin{array}{lll}\text { Clasims priority, } & \text { application Germany } \\ \text { 7613635[U] } & \text { Int. C. }{ }^{2} \text { B23B 31/16 }\end{array}\)
U.S. Cl. 279-1 C

> Int. CI.2 B23B 31/16
1. In a commercial chuck for lathes hains 4 Claims with a rear face and a front face having a plurality of chuck aws therein, the chuck jaws radially movable in the chuck
body, chuck jaw movement control means including an axially movable member centrally received in the chuck body opera-
centrifugal weights carried by a weight carrying flange membeing radially movable with respect thereto, the centrifugal

weights positioned on an opposite side of the axial bores from the chuck jaws, a plurality of compensating levers with one of
said levers received in each of the axial bores and having opposed ends received respectively in the bores of the chuck jaw and the bores in an associated centrifugal weight, a central portion of each compensating lever forming a pivot within the axial bore whereby movement of one end of the compensating lever in a first radial direction will cause movement of the compensating lever in the opposite radial direction, the centrifugal balancing means being separate from and independent of the control means.

\section*{4,097,054}

DRILL CHUCKS
George Cecil Derbyshire, Sheffield, England, assignor to The Jacobs Manuacturing Company, Limiled, Shefsed, Englan Claims priority, application United Kingdom, 41056/75

1. A drill chuck comprising at least three jaw elements each having a conical tapered exterior surface of diminishing radii in the direction of the end thereof, a jaw carrier; respective flexible elements connecting said jaw elements to said jaw carrier, sion with the maximum arcuate dimension of the conical ja element to which it is connected; a nose cone having a frustoconical bore portion; and means for urging said jaw elements against the frusto-conical bore portion of the nose cone and are urged radially inwards, accompanied by flexing of the flexible elements, to grip the shank of a drill bit placed in the chuck.

SKI-SUPPORTED VEHICLE
Calgary, Aldell Laycraft, 142
berta, Canada (T2V 2V2) Claims priority, application Canada, Jan. 5, 1977, 26919301 U.S. CI. 280-16

1. A vehicle comprising: a rearwardly inclined supporting rame of closed-loop configuration incorporating a triangulated strengthening segment at the rear end thereal, said rianber; a steering mechanism comprising at least one steering column pivotally attached to an upper front portion of said rrame, and handle means attached to such steering mechanism; a front ski, pivotally attached to the lower end of said steering mechanism, pivotal movement being constrained at least one steering column; a rear supporting ski, rigidly attached to said generally horizontal lower member to extend longitudinally hereof such that the front portion of said rear ski extends substantially unsuppoitedy and forwardy for said lowe now surface and; seat means resiliently mounted on a upper rear portion of said frame.

4,097,056
MODULAR PART CART
Paul Eugene Castellano, Wyoming, Minn.
Filed Jan. 3, 1977, Ser. No. 756,413
fram
and (c) an inverted ' \(U\) ' shaped support men ad wherein said \(U\) 'sper frame unit comprises (a) a rectangular bottom frame having a mesh; (b) plurality of perpendicular tubular members fastened (c) a handicular to said rectangular bottom frame, (c) a handle fastened to one side of said rectangular bottom frame above said perpendicular tubular members; and d) plurality of sideably removeaber and wherein
(a) a back panel is pivotally attached to said upper frame unit under said handle via a rod;
(b) said bottom frame of said upper frame unit has additional tubular frame members fastened parallel to its sides; and upper frame unit have slots for sliding sections of said plurality of side panels of mesh.

\section*{4,097,057}

INDEPENDENT SUSPENSION SYSTEM
tanley R. Goodrich, Jr.; David J. Skolnik, both of Saginaw; Joseph A. Stearns, Frankenmuth; Robert C. Farrell; Richard R. Brezinski, both of Saginaw, and Robert R. Parks, Warren,
all of Mich., assignors to General Motors Corporation, Detroit, Mich.
Filed Dec. 27, 1976, Ser. No. 754,280

Fiied Dec. 27, 1976, Ser. No. 754,280
Int. C1. \({ }^{\text {B60GG }} 11 / 42\) F16F \(1 / 38\)
U.S. C. 280—96.1

7 Claims
U.S. CI. 280-47.3

1. A modular part cart for loading, transporting, and unload ing of oily industrial parts conveniently, expeditiously and economically comprising
(b) an upper frame unit slideably mounted over said lower
frame unit; and
c) a drip catch pan inserted between said lower frame unit and said upper frame unit; and
wherein said lower frame unit comprises;
(a) a tubular frame in ' \(U\) ' shape with perpendicular ends; (b) a plurality of casters fastened to said ' U ' shaped tubular


1 Claim -
1. In an independent front suspension system for a vehicle having a frame and including a wishbone-shaped control arm having an outer end mounted for pivotal movement on a steering knuckle and spaced apart inner ends each mounted around outer and inner metal sleeves, the inner sleve being mounted around the end portion of a control arm shaft, a coil spring and a shock absorber mounted between the control arm and the rame, and a road wheel and tire rotatably mounted on the pindle of the steering knuckle, elastomeric isolation mean o the control arm shaft and each having a side wall of reduced effective thickness facing the road wheel, a tubular member mounted around the elastomeric bushings with a predeter mined space between the ends thereof and the adjacent inner ands of the control arm bushings, clamping means mounter the nubular member to the frame, a shoulder formed on each end of the control arm shaft adjacent the ends of the tubular member, and end stop means mounted on each end of the shan between the inner metal sleeve of the control arm bushing and
the shoulder and adjacent end of the tubular member to limit xial and lateral movements of the control arm shaft relative to he tubular member as determined by the horizontal distortion of the elastomeric bushings by the movement of the contro rm shaft within the tubular member when the road whee contacts uneven terrain and during braking.

Cable OPERATED LOG BUNK Hassell, 250 Dead Indian Rd., Ashland, Oreg. 97520 Filed Nov. 8, 1976, Ser. No. 739,490
Int. Cl. \({ }^{2}\) B60P \(7 / 00\) U.S. CI. \(280-145\)
partially spherical surface dimensioned to be captured within said open-ended chamber; means for removeably retaining said partially spherical surface within said open-ended chamber, said removeable retaining means providing a bias means urged release lever; and

1. A log bunk assembly comprising:
1. A log bunk assembly comprising:
a. a bunk adapted for mounting transversely of a vehicle, b. a pair of stakes,
c. pivot means securing the lower end of each stake to an end of the bunk for angular movement between raised and
outwardly lowered positions. outwardly lowered positions,
for securing the stake in said raised position
e. securing means securing one end of each flexible link means to its associated stake intermediate the ends of the latter,
f. latch means releasably securing the other end of each flexible link means to the bunk intermediate the ends of the latter, whereby when each stake is secured in raised posi-
tion the associated fleaibs upward and outward frible link means extends angularly the stake,
a pair of of the bunk and
h. connecting means interconnecting each latch-operating means with the latch means at the remote end of the bunk for alternately shifting the latch means between latched and unlatched positions.

\section*{- 4,097,059 TOWING LAWN MOWER}

Joseph E. Springer, Sr., Star Rte. 2, Box 2116, Hernando, Fla. 32642

Filed Sep. 27, 1976, Ser. No. 726,495
U.S. Cl. 280-204

6 Claims 1. A connecting bracket for connecting a lawn mower to a powered vehicle or the like comprising:
a first elongated bracket for affixment on a first end thereof
dower resting on the earth;
an engaging element fixedly secured to the second end of
said first elongated bracket, said engaging element providing an open-ended chamber on a surface thereof, said chamber opening through said surface;
a second elongated bracket for affixment on a first end thereof to a powered vehicle resting on said earth; a ball element fixedly secured to the second end of said
second elongated bracket, said ball element providing a
haped, including a pair of legs having free ends and a base portion, said pair of free ends of said " U " shaped first bracket being fixedly secured to said lawn mower, said base portion of said " \(U\) " shaped first bracket being fixedly secured to said engaging element, and wherein said legs of base portion and are flexibly reconnected thereto by flexible connecting means.

\section*{4,097,060}

ROLL STIFFENING AND DAMPENING IN articulated vehicles Dale H. Unruh, Peoria, Ill., assignor to Caterpillar Tractor Co., Filed Mar. 30, 1977, Ser. No. 782,668 Int. C1. \({ }^{2}\) B62D \(53 / 00\)

1. An articulated vehicle comprising: first and second vehicle frames;
the underlying means on each of said frames for emgaging he underlying terrain and supporting the vehicle for
movement thereover;
means coupling said frames together for relative rolling movement about a generally horizontal axis and for relative pivotal movement about a generally vertical axis; and
means interconnecting said frames at a location on at least one frame remote from said coupling means for (a) resisting and (b) dampening rolling movement between said frames about said generally horizontal axis.
internal threads extending about said axis and along the body, the ski defining an opening into which said body is about said opening
(b) the external thread being locally interrupted along an arcuate locus intersecting at least three successive turns to form three chisel cutting edges proximate one end of the ody and adapted the cut onsert into said opening in the ski, the external thread having opposite flanks defining an angle less than about \(31^{\circ}\) in axial radial planes, one of said cutting edges having zero spacing from an axial radial plane and two adjacent cutting edges at opposite sides of said one edge
having positive spacings from said plane, there being a recess sunk in the body and having an arcuate side wal
(b) a position in which the boot is released
(b) a position in which the boot is released, a second axis on said mounting, said second axis being parallel with said first axis,
ramp and stop means provided respectively on one of said lever and jaw
and a resilient me
and a resilient means urging said ramp and said stop means into contact with each other, said resilient means being that it exerts traction between points of attachment of said resilient means to said jaw and said lever and causes automatic closing and opening of said jaw upon actuation of said lever

SKI INSERT FOR ANCHOOR,061
IN A SKI
91214 W. Dietlein, 2904 Harmony PI, La Crescenta, Calir
Filed Apr. 19, 1976, Ser. No. 677,899 Int. Cl. \({ }^{2}\) A 63 C C \(5 / 00\)
U.S. C. 280-607
with a ski, a ski
1. In combination with a ski, a ski insert 3 Claims (a) a cubular metallict comprising

adjacent the roots of said three turns, said recess bein shallow and having a bottom wall extending from said
arcuate wall to the body surface near continuations of said turns, said bottom wall defining a plane generally tangen to terminals defined by said continuations, said recess sized to collect cuttings, the outermost radial dimension o said chisel edges and said continuations closest to said edges being the same as the outer radius of said externa
thread, said continuations being spaced from said chise edges by the dimension of said interruptions, said continuations having edges which extend at sharp angles relative to intersecting radii from said axis, and relatively away
from said chisel edges, the interruptions of said turns from said chisel edges, the interruptions of said tharns
subtending angles substantially less than \(90^{\circ}\) about sai suxis,
(c) the internal thread receiving a ski binding screw. SKI, 097,062
SI BINDING
Georges Pierre Joseph Salomon, Annecy, France, assignor to Etablissements Francois et Fils, Annecy, France Claims priority, application France, Aug. 28, 1975, 7526507
U.S. CI. \(280-618\) Int. Cl. \({ }^{2}\) A \(63 \mathrm{C} 9 / 08\)

15 Claims

409706
PNEUMATIC COIL SPRING SUPPORT FOR VEHICLES Albert G Dean, Norberth Pa, assignor to The Budd Company, Troy, Mich.
Filed Dec. 27, 1976, Ser. No. 754,873 U.S. Cl. 280-712 Int. Cl. \({ }^{2}\) B61F 3/O8

4 Claims

1. Spring means for supporting a vehicle body on a truck, comprising in combination, a pneumatic-coil spring unit having end seats on the truck and vehicle body, said pneumaticcoil spring unit including pneumatic and coil spring compocoil spring components of said spring unit, said intermediate seat plate having an elongated rigid lateral stay member including a pivotal connection on the remote end thereof, and pivotal mean secured to said truck for pivotally receiving said pivotal connection and said pivotal connection and pivotal means co-acting for permitting arcuate movement of said intermediareat plate about said pivotal connection subs movern in aid pneumatic spring component.

Spring means for supporting a vehicle body on a

1. A binding designed to hold a ski boot to a support, such as 1. A binding designed to hold a skib boot to a support, such a ski or a plate mounted to paid a support,
a mounting secured to
a mounting secured pow maunted to pivot about a first axis of said mounting, a jaw mounted to parallel to the surface of the ski in \(s\) manner that said jaw is able to move between: (a) a position in which the boot is held to the support,


CUSHION 4,097,064
AIR-CUSHION DEVICE WITH A COVER AND A COVER CUTTER pan, assignors to Nissan Motor Company, Limited, Yokopan, assignors
hama, Japan
Filed Sep. 28, 1976, Ser. No. \(727,613,1931\) Claims priority, application Japan, Sep. \({ }^{\text {Int. C. }}{ }^{2}\) B60R \(21 / 10\)
U.S. C. 280-732 Int. Cl. \({ }^{2}\) Bon \(21 / 10\)
1. An air-cushion device having an expansible air-cushion during an accident, said air-cushion device comprising: cover means for substantially covering said air-cushion in collapsed condition; and
cutting means for cutting said cover means by the assistance area and positioned above said board, guide means connected of the expansion of said air-cushion so that said cover to said board for movably mounting said plate to said board said guide means comprising indexing means for restraining with respect to said board, record sheet-positioning means disposed on said board for releasably connecting such record sheet means thereto with such sheet means at least partially overlying said plate and said board, a shield overlying said
plate and carried thereby for movement therewith, said shield plate and carried thereby for movement therewith, said shield
and plate being adapted to sandwich such record sheet means therebetween, said shield having an opening therethrough for transferring information from pertinent data areas of an entry sheet to such record sheet means, said plate comprising positioning means for positively positioning such entry sheet and
means is broken to allow said air-cushion to get out from said cover means to fully expand.

SAFETY AIR CUSHION BAG IN AUTOMOTIVE
VEHICLES Acaka; Kiyoshi Honda, Motohiro Okada; Katsumi Oka, both of Asaka; Kiyoshi Honda,
Wako, and Kazuo Matsuura, Kamifukuoka, all of Japan, assignors to Honda Giken Kogyo Kabushiki Kaisha, Japan assignors to Honda Giken Kogyo Kabushiki Kal
Filed Oet. 6, 1976, Ser. No. 729,909 Claims priority, application Japan, Oct. 9, 1975, 50-122279
U.S. CI. 280—739

1 Claim

1. A safety air cushion bag for use in automotive vehicles and the like, which comprises in combination
(a) a main body of said air cushion bag;
(b) a circular air outlet port formd in one part of said air cushion bag;
(c) a gas-permeable cloth joined to said bag around the periphery of said circular air outlet port, said gas-permea--
ble cloth being stretchable in one direction and being ble cloth being stretchable in one direction and being
relatively difficult to stretch in a direction at right angles to the stretch direction; and
(d) a dart formed on said, gas-permeable cloth which extends
through the center of said circular air outlet port, folding through the center of said circular air outlet port, folding
lines of said dart being substantially at right angles to the lines of said dart being substantially at right angles to the
direction in which said cloth is relatively difficult to stretch,
so that said gas-permeable cloth is able to readily conform to
the deformation in said air outlet port the deformation in said air outlet port owing to the stretch of said gas-permeable cloth itself and to said dart.

SHEET ENTRY AND AUTOMATIC COPYING erbert C. Davis, 6321 Opparatus Filed Nov. 25, 1975, Ser. No. 635,046
U.S. CI. 282-29 B Int. C1. \({ }^{2}\) B41L 3 3 \(1 / 10\).
\(\qquad\) 1. A sheet entry and automatic copying apparatus for use in making entries on a means which includes a plurality of record sheets with pressure sensitive duplication means therebetween comprising a writing board of a predetermined area, a movable
carriage plate being of an area smaller than said predetermined

at a predetermined reduction in price, each of said individual panels being connected across said element to an adjacent individual panel by a rectilinear weakened zone, said weakened zones being perpendicular to the long axis of said element, said element being folded by a plurality of parallel over-and-over folds to a member that has the plan size of a single individual panel and a thickness of all of said individual panels combined, said parallel over-and-over folds including a first fold whereby the oblong elemen isered in provide pairs of individual panels which are registered in planar parailelism,
together with a single endmost panel not in registration with another panel, and with weakened zones being superimposed, and succeeding parallel over-and-over folding of said elemen at said superimposed weakened zones exclusive of said single endmost panel, terminating with a final parallel over-fold of the element exclusive of said single endmost panel onto said
single endmost panel, and means to secure said folder in folded condition against premature opening.

\section*{4,097,068}

FEED-BACK COMMUNICATION CARD
Robert C. Garnier, Sr., 9611 W. Lorraine Pl., Milwaukee, Wis. 53222

Filed Oct. 14, 1976, Ser. No. 732,371
U.S. C. 283-5

2 Claims

1. Feed-back communication cards to ascertain the views a meeting of participants, which comprises on the face of the card and at least along one edge hereorh pember facing outmembers to effect ready removal of the scored members and leave an elongated space along the facing edge of each card upon removal so that when the cards are stacked the spaces can readily be observed to determine the predominant views of the meeting and quickly provide at least an approximate nummember being slightly horizontally spaced from the base of each adjacent scored member to provide a spaced area there between, and ink marks extending over the extreme edge an edge face of each card in the spaced area between the scored members and horizontally spaced from each other to thereb border each side of a column of assembled card edges with which the spereen removed and for visual tabulation of the views expressed by those present.

MARINE RISER CONNECTOR

\section*{Charles D. Morrill, Bellaire, Tex., assignor to Mc} Equipment Company, Houston, Tex.
Filed Apr. 8, 1976, Ser. No. 674,775 Apr. 8, 1976, Ser. No.
Int. Cl. \({ }^{2}\) F16L 39/00
U.S. C. 285-84
said shield thereon, said shield generally coextensive with and underlying such entry sheet with said shield opening registering with pertinent data areas of such entry sheet, said shield having a solid portion underlying and extending across areas adjacent said pertinent areas of such entry sheer to shield said said pertinent areas, and a rigid anvil having a shape complementary to said shield opening and of a size smaller than said opening, said anvil being carried by said plate in underlying relation to said shield opening, said anvil being of a thickness generally the thickness of said shield whereby such record
sheet means positioned overlying said anvil will be pushed by said anvil into said shield opening generally in the plane of the upper surface of said shield.

PRINTED COUPON FOLDER
Sheldon Schechter, 34 Bush Pkwy., East Brunswick, N.J. 08816 Continuation-in-part of Ser. No. 626,629, Oct. 29, 1975, Pat. No. The portion of the term of this pan 1977, Ser. No. 756,077 The portion of the term of this patent subseg
1994, has been disclaimed.

Int. Cl. \({ }^{2}\) B42D \(15 / 04\)
U.S. C. 283-56

1. A printed coupon direct mail folder comprising an odd numbered plurality of individual panels that are oblonglin plan and equal in size and are attached edse to edge seriatim with
their narrow sides in alignment to form a unitary element that their narrow sides in alignment to form a unitary element that is oblong in plan, the long axis of each individual panel being individual panels bearing printed promotional material related to an associated saleable item, at least one of said individual panels bearing a printed redemption coupon, said printed cou-

1. A nut combination for supporting choke and kill line pipe sections and for holding a first member of a marine riser connection telescopically engaged to a second member of a marine riser connection, comprising:
a body having a bore axially
herethrough for receiving such holding means on the interior of said body for holding such members telescopically engaged; and
support means for rotatably supporting such choke and kill
line pipe sections on the exterior of said body.

\section*{4,097,070}

HIGH-STRENGTH PIPE COUPLING Petrus Marinus Acda, Enkhuizen, Netherlands, assignor to Polva Nederland B.V., Enkhuizen, Netherlands Claims priority, application Netherlands, Oct. 27, 1975 7512515

Int. C1. \({ }^{2}\) F16L 21/02

1. A coupling for high-strength connection of ends of plastic ipe, comprising a spigot portion formed on a pipe end, the er griten having a first cylindrical length a second cylin drical length having a plain cylindrical surface of lesser diame er than said first cylindrical length and extending beyond the aid first length having an annular sawtooth groove formed on is outer surface, the slanting side of the sawtooth groove converging toward the said terminal end of the pipe; a coupling sleeve formed of a synthetic resin material and having a center portion having an inner wall, and an end portion, the end portion having an inwardly extending annular ridge with a
counter profile to the groove and a plurality of longitudinal slots extending past the ridge but terminating short of the center portion, to permit radial flexing of portions of the end
portion between the slots; a seal member arranged between the inner wall of the center portion and the outer cylindrical sur-
face of the second cylindrical length; and a lock member tightly fitted around the coupling sleeve end portion, adapted to be so fitted around the coupling sleeve after insertion of the spigot.

\section*{CONDUIT with \(\begin{aligned} 4,097,072\end{aligned}\)} Willem Jan van Heijst MITH CARDAN JOINT Industrieele Handelscombinatie Holland, Rotterdam, Netherlands
Continuet. ion of Ser. No. 653,457, Jan. 29, 1976, abandoned. Th application Mar. 25, 1977, Ser. No. 781,422 , 1975 \({ }_{7501057}^{\text {Claims }}\) Int. Cl. \({ }^{2}\) F16L \(27 / 00\)
U.S. CI. 285-114

1. In a conduit comprising a pair of rigid conduit sections having ends disposed adjacent each other, a hose extending
between and interconnecting said adjacent ends of said conduit sections, a gimbal ring surrounding said hose, means interconnecting said gimbal ring and said end of one said conduit section for relative rotation about a first axis, and means interconnecting said gimbal ring and said end of the other said conduit section for relative rotation about a second axis perpendicular
to said first axis; the improvement comprising a first annular flange carried by one end of said hose, a second annular flange carried by said end of said one conduit section, said first annular flange having a sealing surface thereon on the same side thereof as said other conduit section, said second annular
flange having a sealing surface thereon on the opposite side thereof from said other conduit section, said sealing surface being in sliding sealing contact with each other, whereb orrional stresses on said hose are relieved by the sliding of said surfaces on each other.

TAPPING SLEEVE FOR LARGE SIZE PIPE Richard George Van Houtte, Bradford, Pa,, assignor to Dresse Industries, Inc., Dallas, Tex.

Filed Sep. 22, 1976, Ser. No. 725,207
Int. Cl. \({ }^{2}\) F16L \(41 / 00\)
U.S. Cl. 285-197

1. A tapping sleeve adapted for mounting onto a pipe section
of contemplated diametral variation per nominal pipe size in nation of complementary sleeve halves adapted to be secured logether in substantially encircling relation on the pipe section and a branch connection extending outward from one of said halves to define the location on the encircled pipe at which branch opening is to be formed, the improvement comprising provide added load support for the pipe wall agains internally imposed line content forces; and
b. joint means positively attaching said support means for articulated movement on
other of said sleeve halves.

\section*{4,097,074}

PIPE JOINT CONSTRUCTION
Nishizaki; Yuichi Watanabe and Yasuno Kitsukawa; Kozo asizasaki, Japan, assignors to Kubota, Itd., Osaka, Japan Filed May 23, 1977, Ser. No. 799,329 51 ,148067, an. 13, 1977, 52.333
U.S. C1. 285-231 int. C. \({ }^{2}\) F16L 21/08

8 Claims

1. In a pipe joint construction comprising a spigot having raper surface on the outer periphery at the front end, a socke adapted to be loosely fitted over said spigot, an annular groov disposed adjacent the inner side of said first projection and a packing seat formed adjacent the inner side of said annular groove, and a packing having a back-up portion with a fitting
portion projecting from its outer periphery for fitng in said portion projecting and a seal portion adapted to be interposed in squeezed condition between said packing seat and the oute peripheral surface of the spigot, the inner peripheral surface of
said packing tapering from the end edge of said back-up porsaid packing tapering from the end edge of said back-up po
tion toward the seal portion, the improvement comprising: (a) said packing seat being formed as an internal cylindrica surface extending from said annular groove inwardly of the socket;
tb a seand pro
b) a secnd projection formed on the socket at the inner end (c) a step surface provided on the socket in inwardly spaced relation to said second projection, said step surface being opposed to the front end of the spigot;
d) an annular seat provided in the outer peripheral surface of the spigot adjacent the front end thereof, a radially contractible lock ring fitted in said annular seat, said lock ring being disposed between said second projection and iajep surface and being engageabe wiation movement beprojection upon relative axial separating movemeant be-
tween the socket and spigot, and fastening means for preventing disengagement of said lock ring from said annular seat;
(e) the socket having an inner peripheral surface extending axially from said second projection towards said step such as to provide an annular clearance space with the outer periphral surface of the spigot for passage of said lock ring and such as to provide a radial clearance with the lock ring for relative bending movement between the socket and the spigot;
equal to the sum of the distance peripheral surface being
he spigot and the lateral surface of the lock ring opposed o said second projection and a distance provided for all lhowable relative axial movement between the socket and the spigot; and
(g) said inner peripheral surface of the packing tapering inwardly of the socket from a maximum diameter of at a minimum diameter on said packing seal portion which is compressively engaged by the outer periphral surface of the spigot.

4,097,075
 ration, Cleveland, Ohio
Filed May 26, 1977, Ser. No. 800,767 \begin{tabular}{l} 
May \({ }^{266,1977, \text { Ser. No. }}\) Int. \({ }^{2}\) F16L \(25 / 00\) \\
\hline
\end{tabular}
1. In a tire valve core including a tubular barrel and an xternally threaded head, the tubular barrel terminating at one extremity in an outwardly directed enlarged flange receivable hin annular wall portion terminating in an inwardly directed xtremity to insure retention therein of the annular flange on said tubular barrel, a gasket receiving area formed on said ubular barrel substantially centrally of the length thereof, said gasket receiving area being bounded by substantially perpen-
dicular wall portions formed on said barrel to define first and second shoulders spaced apart along the length of said barrel, nd a gasket surrounding said barrel and received between said rist and second shoulders; the improvement wherein said asket receiving area of said barrel is defined by a first annula ealing surface, a second annular sealing surface of smalle urface of smaller diameter than the second sealing surface, a first beveled transition area connecting said first and second ealing surfaces, and a second beveled transition area connect ing said second and third sealing surfaces.

\section*{FITTING PIECE FOR \(4,097,07\)}

Felut whice for rigid or flexible tube Helmut Wackenreuther, and Alexander Svec, both of Krems,
Austria, assignors to Oesterreichische Salen-Kunststoffwerk Gesellschaft m.b.H., Vienna, Austria
Filed Feb. 19, 1976, Ser. No. 659,359
Claims priority, application Austria, Feb. 25, 1975, 1444/75 S. Cl. 281

1. A fitting piece for connecting rigid or flexible tubes whic are made of plastic, said fitting piece including a body having
an opening to receive therein an end of the tube and being with a post on the vehicular frame and a door having a pane provided with at least one radially inwardly protruding annu- with a post-confronting surface, comprising:
lar rib having a base portion and a sharp tip, said rib being a key member fixedly mounted on said po
divided into segments by radial slots and tapering in cross-section from its base toward its tip, said tip being adapted to contact the surface of the tube when the tube is inserted into said opening, the center line of the cross-section of the rib
passing through said tip and the center point of the rib base forming an acute angle with the axis longitudinal of said opening, the vertex of said angle pointing to the interior of said opening, said rib and the portion of the body of the fitting surrounding said rib being made of one piece and the rib base adjoining said body being provided on the side facing toward extends approximately through half the cross-sectional width of the rib base.

4,097,077
Closure latch
James S. Gahrs, Cupertino, Calif., assignor to General Motors Corporation, Detrolt, Mich.

Flled Nor. 5, 1976, Ser. No. 739,101
a keeper on said post-confronting surface of said panel at th level of said key member, said keeper having an outer wall spaced from said surface and formed with a keyway receiving said key member upon closure of the door; plurality of fastening elements securing said keeper to the
door, said fastening elements penetrating said panel and traversing the space between said wall and said surface; detent means in said space engageable with said key mem ber, said detent means including a swingable catch fulcrum on one of said fastening elemenss, and and releasing said catch.

WINDOW L,09,079 Jean Louis Flynn, P.O. Box 1868, Deland Filed Feb. 28, 1977, Ser. No. 772,726 U.S. CI. 292-239 int. C1.2 EOSC 19/04 3 Claims
U.S. Cl. 292-216

Int. C1. \({ }^{2}\) EOSC \(3 / 26\)
3 Claims

1. A closure latch comprising in combination, a bolt movab between latched and unlatched positions, detent means for maintaining the bolt in the latched position, outside operating
means, locking means incuding a locking lever for selectively coupling and uncoupling the outside operating means and the detent means, an inside operator, means coupling the insid operator to the outside operating means, and means interco necting the inside operator and the locking means for operating the detent means upon operation of the inside operato


7 Claims

A Adow locking mechanism comprising in combina bracket means having a flanged portion attachable to a window and having a supporting portion protruding ove a window, said supporting portion having one angled side. and a supporting pin attached thereto; at least one disc shaped locking member rotably supported in said support
ing portion on said supporting pin of said bracket means ing portion on said supporting pin of said bracket means disc member will wedge between said angled member of said supporting portion of said bracket means and a win dow frame when said flanged portion is attached to a window having an opening force applied thereagainst than said supporting pin to thereby allow said disc to rotate on said supporting pin and to be lifted linearly hereon; and said bracket means supporting portion hav ing an arcuate portion formed therein with said locking can lift the locking member for disengaging the window locking mechanism.

4,097,080 TELESCOPING ENERGY ABSORBER WITH ANTI-ROTATIONAL INTERLOCK FOR VEHICLE BUMPERS
Ronald G. Petry, Xenia, Ohio, assignor to General Motors Corporation, Detroit, Mich.

\section*{Filed Mar. 28, 1977, Ser. No. 781,55} Int. Cl. \({ }^{2}\) B60R 19/06
U.S. Cl. 293-85
1. An energy absorbing system for a vehicle 3 Claims 1. An energy absorbing system for a vehicle comprising a
vehicle frame having left and right longitudinally extending
side rails, a pair of telescoping energy absorber units for said
side rails, each of said energy absorber units comprising a firs lubular part secured to an associated side rail and a secon
 tubular part and projecting longitudinaly outardy beyond laterally extending bumper beam spanning one end of said sid rails and operatively connected to said second tubular part o ach of said energy absorber units to thereby interconnect sai side rails, said first tubular part having a plurailty of axially
projecting teeth, said second tubular part has a plurality of axially projecting teeth secured thereto adapted to mesh with

the axially projecting teeth of said first part, yieldable means urging said tubular parts to an extended position with respect
to each other whereby said axially projecting teeth of said first part engage the axially projecting teeth of said second part to lock said tubular parts against relative rotation to thereby
minimize independent oscillatory movement of said side rails and increase the torsional rigidity of said frame until said teet of said first and second parts are disengaged by the telescopic oollapsing movement of said tubular parts with respect to each other in response to impact of said bumper beam causing said bumper beam to move toward said side rails.

4,097,081
LENSES
LEMOVING CONTAC
Robert C. England, 6710 C.R. 191, Bellerue, Obio 4481 Filed Jul. 14, 1977, Ser. No. 815,6
U.S. Cl. 294-1 CA Int. Cl. \({ }^{\text {A A61F 9/00 }} 7\) Claims

an elongated cylindrical body of resilient material having forward end and a distal end;
reilien aliond a coaxial with and carrid by the body at said forward end and having a concave face facing forwardly of the body;
said body having a through axial duct of small diameter relative to the diameter of the cup, and connected at it forward end with the cenral porion or said cup and ugh the rearmost portion of the distal end of the body
said body has a coaxial tapered portion tapering from location spaced from the distal end to the distal end said duct is coaxial with said tapered portion
form of a relatively small annular contact area surround ing the rear open end of the duct and which can be e gaged by one finger of the hand of a user to seal the distal
end of the duct while the body is held between the thumb and another finger of said hand;
e taper of said tapered portion, relative to the diameter of the duct, being such that the tapered portion can be comvolumetric capacity of the duct, thereby to render more effective the suction created by flexure and self-restoration of the cup resulting from the cup first being pressed gainst the lens in a direction toward the eye and moved in the opposite direction for withdrawing the lens from the eye by squeezing the capered portion lighty radially and holding the tapered portion in squeezed condition while the body is held between said thumb and said other finger and the duct sealed at least near to its distal end.

SANITARY PICKUP DEVICE FOR ANIMAL FECES ichael J. Orofino, 2 Brookside Dr., Baldwin, N.Y. 11510 \(\quad\) Mill
Int. Cl. \({ }^{2}\) A01K \(29 / 00\)
U.S. C. \(294-19\) R
1. A portable device for picking up animal droppings and a frame; a pair of blades pivotally mounted on said frame and eac having side edges, an upper edge and a bottom edge; a blade operating hinge having a pair of arms each having an being hingeably connected to a blade top edge;
an operating rod hingeably connected to said hinge upper edges and being movably connected to said frame so that movement of said rod with respect to said frame causes said blade upper edges to move via movement of said hinge, said blades being mounted on said frame to be movement of said upper edges; and
movement of said upper edges, and being located adjacent said blade bottom edges to be id bott sald blades when said blades are tilted to move said bottom edges toward each
positioned between said blades.

\section*{4,097,083}

ADJUSTABLE LIFTING THIMBLE William H. Schwarta, Novato, Calif., assignor to Roberton \& Schwartz, Inc., San Francisco, Cali Iled Jun. 15, 1977, Ser. No. 806,741
Int. Cl. \({ }^{2}\) B66C \(1 / 12\) U.S. CI. 294-78 A

11 Claims

1. A thimble for lifting a load attached to both ends of a rope, comprising:
a. a frame having means for supporting the rope between the ends thereof, said frame being relatively shiftable along the rope; and
means, pivotally mounted to said frame for automaticaliy
pivoting when a load is lifted to forceably contact the rope pivoting when a load is ifited to forceably contact the rope
to prevent the relative shifting thereof, said pivoting means including means having a first groove shaped to
conform to the circumference of the rope for pressing on the upper rope surface and means defining a passage for receiving the rope therethrough, said receiving means having a surface on which the rope forceably bears down-
wardly when a load is lifted to pivot said pivoting means wardly when a load is lifted to pivot said pivoting means and
first groove.

LIFTING GRAB FOR CYLINDRICAL OBJECTS John S. Russell, Pittsfield, Me., assignor to Russkraft, Inc., John S. Russell,
Pitsfield, Me.

Filed Mar. 18, 1977, Ser. No. 779,141
U.S. C. \(294-104\) Int. C1. \({ }^{2}\) B66C \(1 / 62\)

8 Claims
in combi-
U.S. C.I. 294- 104
1. A lifting grab
or cylindrical objects comprisin nation,
a hook member for surrounding closely about a circumferential arc an angle of more than one-quarter of the circum-
ference of said cylindrical object of a predetermined diameter,
a clamp member pivoted off center at a pivot position near one end of the hook member with a shorter portion continuing from said hook member closely about the circumencompass closely about said cylindrical objects a grasping circumferential arc of more than half its circumferential span and with' longer portion extending to an extremity lifting portion substantially located on a vertical diameter through an encompassed said cyling
substantially bisects said grasping arc,
a set of at least two cylinder grasping pads pivoted at pad pivot positions near the respective ends of said hook and clamp members when placed in said grasping arc and having a facing curvature substantially conforming to the
outer circumference of said cylindrical objects whereby outer circumference of said cylindrical objectis whereby
the pads pivot on the ends of said clamp and hook members when the clamp and hook members are lowered vertically over the horizontal diameter of said cylindrical
object thereby to maintain said clamp and hook member at a closer distance away from the circumference of the cylindrical object than possible with stationary pads, and whereby when said clamp member is lifted vertically by said lifting portion the pads pivot about their said pivo tion thereby causing said pads to grasp said cylindrical object below a horizontal diameter thereof,
a cam slot in said clamp member near said extremity lifting
portion,
a shackle coupled to said cam slot to move therein over a range of at least two positions wherein said clamp member

comprises a pair of spaced plate members each with a registering said cam slot, said shackle is coupled by shackle pin extending through both plates,
a tongue member extending from said hook member to engage and hold shackle pin when said lifting grab is in an open position just clearing the diameter of said cylindrical object with said pads, wherein the hook member is located clamp member thereby to permit vertical movement down over said cylindrical object without force or movement thereof, wherein said tongue member comprises a C-shaped hook into which the shackle pin may be inserted and removed by movement within said cam slot.

4,097,085
Arnold Eugene Nelson, Havre, Mont, assignor to Harmon's Northern Mfg., Inc., Havre, Mont.

Filed Aug. 10, 1976, Ser. No. 713,102
U.S. CI. 296-28 C \({ }^{\text {o. }}{ }^{713,102}\) .S. Cl. 296-28 C 21 Claims 1. An improvement to a tractor having an air conditioned means for cooling the air in said cab, and
a dome-shaped roof formed under the top of said cab, said roof having a plurality of downwardly directed holes
formed in uniform distribution therein, said holes being receptive of said cooled air from said cooling means for

uniformly directing said air through the roof of said cab and downwardly over said operator

4,097,086
bus Chair pillow sleeping device
M. Louise Hudson, 3544 Brenton Ave. Apt. B, Lynwood, Calif 90262 Filed Jun. 27, 1977, Ser. No. 810,421
U.S. C1. 297-217 Int. Cl. \({ }^{2}\) A47C 7/62 3 Claims

1. A bus chair pillow sleeping device for use by travelers in vehicles, comprising, in combination, a support assembly and a pillow assembly, said support assembly being supportable upon
a backrest of a passenger chair, said support assembly having a backrest of a passenger chair, said support assembly having
said pillow assembly attached thereto; said support assembly including a hood for fitting over an upper end of said chair backrest, a pair of straps secured at their one ends to a rear side of said hood, opposite ends of said straps being engagable
together, and incorporating means for attachment to said pil together, and incorporating means for altachment to said pild of one said strap having a short strap extending at right angle therefrom that engages said pillow assembly
support cushion on said back portion for selective adjust ment up and down longitudinally of the back portion and loward and away from said back portion; and,

(d) a centrally disposed, longitudinal spine support cushion fixedly mounted on said back portion in a position above the top end of the back portion.
\(4 \stackrel{4,097,088}{4}\)
dem DRIVER'S SEAT PARTICULARLY A Hermann Meiller, Amberg, Germany, assignor to Willibald Grammer, Amberg, Germany
Claims
Claims priority, application Germany, Aug 13, 1977, 25186[U]

Int. Cl. \({ }^{2}\) A47C \(7 / 54\)
U.S. Cl. 297-217
 Marco F. Garavaglia, 867 Briarcliff Dr., Grosse Pointe Woods, Marco \(\mathbf{F}\). Gara
Mich. 48236

Filed May 13, 1977, Ser. No. 796,838
U.S. C1. 297-284 Int. Cl. \({ }^{2}\) A47C \(3 / 00 \quad 9\) Claims
U.s. Cl. 297-284 9 Claims
1. In a back assemb
ing: a back portion;
(a) a (a) a back portion;
(b) a transversal lumbar support cushion; (c) means for adjustably mounting said transversal lumbar
1. An armrest assembly for seats, comprising an armrest, supporting lever for said armrest, means pivotably connecting said armrest to said supporting lever near one end thereof, dapted means near the other end of said supporting lever econd limiting positions, releasable motion between first and ecure said supporting lever in a position intermediate said first nd second limiting positions, and means limiting pivotal motion of said armrest between an inoperative position at which said armrest is disposed substantially as a longitudinal exten ion of said supporting suer and an operative position at whic aid armrest extends transversely to said supporting lever when the latter is in its said intermediate position.

\section*{4,097,089}

CHAIR ASSEMBLY having a telescoping sleeve-Like Warren D. Petersen, St. Charles, III Howell Division, St. Charles, III.
U.S. Cl. 297-447
 1. A chair frame which comprises a pair of tubular en
rames each formed from a single piece of bent metal tubing of generally C shape with a bottom horizontal front to rear por
tion, an upstanding rearwardly sloping front leg portion at the of the rear end of the dump box, the tail gate having an oute front end of the bottom portion, a rearwardly extending hori- side and a bottom, said flap retractor comprising in combinazontal seat support portion at the upper end of said front leg tio
portion terminating in a free end, a forwardly sloping upstanding rear leg portion at the rear end of the horizontal bottom- (a) a flap having first and second ends; portion projecting above the free end of said horizontal seat
supporting portion and inclined rearwardly at its top end to supporting portion and inclined rearwardly at its top end to and rear leg portions of each end frame and projecting laterally therefrom, the studs on one end frame being in mirror image relation with the studs on the other end frame, said tubular
studs being crimped into a flattened configuration with front studs being crimpled into a flattened configuration with front
and rear side walls abutted together between the arcuate top and bottom portions of the tubes, front and rear tubular
(b) attachment means for attaching said flap to the outer side of the tail gate, said attachment means having a first end pivotably coupled to the outer side of the tail gate and second end coupled to the first end of said flap; and and to said means coupled to the outer side of the tail gate means and thereby raising and lowering said flap betwee a first position wherein the first end of said flap lies en tirely below the tail gate and a second position wherein
stretchers between said end frames having hollow ends tele scretchers bet over the respective crimped studs on the front and re
 Iop ond botom porions of the studs and abutred azains the inner faces of said leg portions, serews erenending hrough he abutted side walls of said crimped studs, said rearwardly extending horizontal portions on the upper ends of the front legs of each end frame having flange members projecting in the same directions as said sudu on the frame members, a seat
secured on said flanges spanning the space between the end frames, and a back member mounted on the rearwardly in. clined portions of the upstanding rear legs of said end frames in spaced relation above said seat member.

FLAP RETRACTION SYSTEM
Cecil Payne, 1515 E. Bilby Rd., Tucson, Ariz. 85706, and Paul ors to Cecil Payne; Paul Payne and Paula Fletcher, all of Tucson, Ariz., part interest to each

Filed Jun. 10, 1977, Ser. No. 805,282
U.S. Cl. 298-15 G

10 Claims the first end of said flap is elevated above the bottom of the tail gate;
hereby said hap an be elevaled wing sect to the

\section*{4,097,091}

METHOD AND APPARATUS FOR SECURING MINING METHOD AND APPARATUS FOR SECURING MINING
MACHINES EMPLOYED ON INCLINED OR STEEP MACHIS SEAMS
Volker Knorr, Sprockhovel, Germany, assignor to Gebr. Eickh-
off Maschlnenfabrik und Eisengiesserel m.b.H., Bochum, off Maschlnenfabrik und Eisengiesserel m.b.H., Bochum, Germany Filed May 23, 1977, Ser. No. 799,400
Claims priority, application Germany, May 19, 1976, 2622218 U.S. C. 299-1 Int. Cl. \({ }^{2}\) E21C 29/22 9 Claims

1. A method for automatically braking a mining machine movable along a conveyor by means of a plurality of gear
wheels which engage a rack extending along the conveyor and are driven by separate motors on the mining machine; which comprises measuring the rotational speeds of the motors, com paring said rotational speeds, and actuating a brake device to stop movement of the mining machine when the ratio of the speeds of the motors varies.


\section*{4,097,092 \\ DISPERSER}

Walter Christian Lapple, Alliance, Ohio, assignor to The Babcock \& Wilcox Company, New York, N.Y application Mar. 9,1977 , Ser. No \(\mathbf{7 7 6}\), abandoned. This
ation Int. C.1.' B65G 53/28. 776,040
U.S. Cl. 302-25

Int. C.2 \({ }^{\text {B65G }} 53 / 28\) 2 Claims 1. In combination with a system for conveying gas entrained
particles, the system including a disperser comprising tubular particles, the system including a disperser comprising tubular-
walled inlet and outlet members, the inlet and outlet members having at least portions thereof concentrically disposed and spaced from one another to form an annular channel therebetween, plate means closing the bottom of the annular channel the inlet member defining a central channel for admitting gas entrained particles to the disperser, the outlet member having 1. A retractable flap system for a dump truck including a at least one wall opening, and the inlet member having a plural-
dump box and a tail gate pivotally coupled to the upper portion ity of wall openings located above the wall opening of the
outlet member, and means communicating with the outlet
member wall opening for supplying a pressurized gas to the

\section*{JOURNAL BEARING A,097,094} SOUR BEARING ASSEMBLY WITH FLEXIBLE SUPPORT AND VISCOUS DAMPING Willis W. Gardner, Waukesha, Wis., assignor to Waukesha Filed Aug. 24, 1976, Ser. No. 717,297 U.S. Cl. 308-9

9 Claims
anular channel to disperse the gas entrained particles exitin from said channel.

1. An anti-vibration journal bearing with flexible support and viscous damping characteristics and in which the flexible
support function is provided separately from the viscous dampsuide means mounted on said first arm means and positioned
in straddling relationship relative to a link assembly of the track assembly to limit lateral movement of the track assembly relative to the first arm means, said first arm means comprising first and second link members pivotally
mounted on the track frame, and wherein the guide means mounted on the track frame, and wherein the guide means
comprise a first plate fixed to the first link member, a second plate fixed to the second link member, and first and second elongated members secured to the first and second plates and disposed along either side of the track assembly

1. A lubricated anti-friction bearing cartridge adapted to fit within a conveyor roll shell comprising a housing, a bearing including coaxial inner and outer bearing races spaced apart to
provide a bearing cavity between their bearing surfaces, antiprovide a bearing cavity between their bearing surfaces, anti-
friction elements disposed between those races, sealing means teach end of those races spaced from them so as to provide a ubricant reservoir at each end of the races and to prevent leakage of fluid out of those reservoirs, and means exerting
support function is provided separately from the viscous damping function, said bearing comprising annular bearing means
for rotatably supporting a shaft, an annular bearing housing for rotatably supporting a shaft, an annular bearing housing said annular bearing means and said annular bearing housing against relative rotation, a variable clearance space between certain adjacent annular surfaces of said bearing means and housing, and means for introducing oil into said clearance
space to provide viscous damping for said bearing means, and spring elements physically separate from the annular bearing means and positioned between certain adjacent other annular surfaces of said annular bearing means and said annular housing for resilien
said housing.

4,097,095
PERMANENTLY LUBRICATED BEARING CARTRIDGE Aaron Zimmer, 6476 Monitor St., Pittsburgh, Pa. 15217 Filed May 12, 1977, Ser. No. 796,143
U.S. Cl. 308-20
1. Apparatus in combination with a track-type vehicle havaparater a track frame and a track assembly mounted on the track ing a track frame and a waprising: first arm means mounted said apparatus adjacent to the track assembly;
second arm means pivotally mounted on the first arm means and otherwise independent of the track frame for pivoting relative to the first arm means;
roller means rotatably mounted on the second arm means for ide means mounted on said in rolling contact; and
TRACK GUIDING MEANS FOR A TRACK-TYPE
Robert L. Shelby, Chillicothe; James T. Duke, and Duane Parker, both of Peoria, all of III., assignors to Caterpillar Tractor Co., Peoria, III. Fied Oct. 26, 1976, Ser. No.
Int. C.2.2 B62D \(55 / 16\)

axial pressure on one race, whereby when the lubricant reservoirs are filled to less than their maximum capacity and the bearing is rotated under load the lubricant fluid is thrown
outward by centrifugal force and circulates between reservoirs outward by centrifugal force and circulates between reservoirs
across the inner surface of t least a portion of the outer race in one direction and in the opposite direction through other portions of the bearing.
\(\qquad\)
4,097,096
REFRIGERATOR HEATER TUBE GROMMET Donald P. Kochendorfer, Daytor, Ohio, assignor to General Motors Corporation, Detrolt, Mich. Filed Jun. 16, 1977, Ser. No. 807,159
Int. Cl. \({ }^{2}\) F25B 4/00
U.S. C. 312-214 Int. C.2 \({ }^{2}\) F25B 41/00

1. In a refrigerator cabinet including an outer shell and an inner liner having an opening, insulation foamed-in-place within the space between the shell and liner, and a rigid tube
located in the space between the shell and liner for shielding an insulated electrical conductor, an improved grommet for interconnecting said tube, conductor and liner and for accommodating some misalignment of the tube with respect to said grommet, said grommet being formed as an integral member comprising, an outer sleeve section having spaced apart exit and entrance open ends, an inner socket section having a bore
for receiving said rigid tube therein and having spaced apart exit and entrance ends, and a frusto-conical shaped rigid tube lead-in section interconnecting the entrance ends of said outer sleeve and inner socket sections, said outer sleeve section having a pair of axially spaced circumferential flanges formed at the exit end of said outer sleeve section and sized to provide
sufficient engagement with the outer and inner surfaces of the sufficient engagement with the outer and inner surfaces of the
liner around said liner opening to prevent leakage of the foamed insulation thereby, said socket section positioned by the interconnection of its entrance end with said lead-in section in concentrically spaced relation within said outer sleeve sec-
tion, whereby said socket section is located axially intermedition, whereby said socket section is located axially intermediate the spaced apart ends of said outer sleeve section, the inner
surface of said socket section having a plurality of axially surface of said socket section having a pluraity of axially
spaced inwardly projecting concentric sealing flanges sized to form a press fit sufficiently tight seal with the rigid tube to prevent leakage of the foamed-in-place insulation thereby, the exit end of said socket section having an inwardly projecting rigid stop flange defining a circumscribing shoulder seating and stopping one end of the rigid tube, thereby obviating any contact by the insulated conductor with the end of the tube,
said stop flange having flexible centering means extending said stop flange having flexible centering means extending
inwardly therefrom to define a reduced opening for centering the insulated conductor as it passes therethrough, the interconnection of said socket section with said lead-in section being sufficiently yieldable to permit said inner socket section to move out of concentrically spaced relation with said outer
sleeve section while seating said one end of the rigid tube so as sleeve section while seating said one end of the rigid tube so as
to compensate for misalignment of the rigid tube with respect to said grommet.

BULK MAIL CONTAINER Robert M. Hosko, Stroudsburg, Pa., assignor to Banner Metal Division of Intercole automation, Inc., Compton, Callf. Filed Sep. 2, 1977, Ser. No. 830,053 U.S. Cl. \(312-250 \quad \begin{aligned} & \text { Int. C. }{ }^{2} \text { B62B } 11 / 00 \text {; A47B } 55 / 02 ; \text { B62B } 3 / 02 \\ & 2 \text { Claim }\end{aligned}\)

1. A container for bulk mail, and the like, comprising: a lower horizontal frame having a rear member, an open front, and side members which diverge outwardly from the rear
member; a plurality of spaced and parallel upright posts member; a plurality of spaced and parallel upright posts an intermediate shelf of generally rectangular configuration having a rear end and a forward end; means pivotally mount
ing the rear end of the intermediate shelf to the posts at the rea ing the rear end of the intermediate shelf to the posts at the rear upwardly turnable from a generally horizontal load-supporting position to an upright position; a lower shelf of generall rectangular configuration having a rear end and a forward end means pivotally mounting the rear end of the lower shelf to
said horizontal frame to permit the lower shelf to be upwardl turnable from a generally horizontal load-supporting position to an upright position; support means on each side of the container for teleasably supporting said first restraining bar a firs restraining bar removably attached to the front of the con tainer and extending thereacross at an intermediate position
thereon; flexible webbing having its midsection attached to said first restraining bar and extending upwardly and downwardly therefrom to enclose the front of said container; two further restraining bars respectively attached to said webbing at the upper and lower ends thereof; and support means
mounted at the upper and lower ends of the container for releasably supporting said further restraining bars all said restraining bars and flexible webbing forming separately openable upper and lower gates.

BUMPER LOCK FOR 4,097,098
BUMPER LOCK FOR DISHWASHING MACHINE RACK
SUPPORT
Virgil L. Fields, Troy, Ohio, assignor to Hobart Corporation,
Filed Jul. 22, 1977, Ser. No. 818,051 Int. C1.2 A47B S7/04, 88/04
U.S. C. \({ }^{12-311}\) U.S. C. \(312-311\)
1. In an inproved track system for a dishwashing machine having a tank defining a cleansing chamber, a rack within said
chamber having a bottom portion and parallel spaced side portions, elongated tracks extending adjacent said side por tions of said rack, each said track including longitudinally extending guideways one on each side of the track, roller means mounted on said tank and received within one of said
guideways of each said track and roller means mounted on each said side portion of said rack and received within the other said guideway of the corresponding said track, and a
bumper member mounted on each end of each said track, the mprovement comprising
a retaining tab formed as an integral extension to said bum. per member,

4,097,100
PANEL ASSEMBLY Co., Archbold, Ohio
Filed Jan

and a lock part on said tab engaged through a hole in said track.

DISHWASHER RACK SUPPORTING AND ADJUSTING
DISHWASHER RACK SUPPORTING AND ADJUSTING
Raymond William Splegel, Stevensvilt Whirlpool Corporation, Benton Harbor, Mich.
Filed Dec. 29, 1976, Ser. No. 756,53

Filed Dec. 29, 1976, Ser. No. 756,531
U.S. Cl. 312-311

10 Claims

1. In an apparatus for supporting articles in a dishwashe including an open dishrack having a pair of opposite side comprising spaced members, rack supporting and adjusting pparatus comprising:
a pair of housings each mounted on one of said opposite sides of said dishrack;
pair of arms extending in tandem from within each said housing and carrying spaced wheels engaging a suppor ing guide track that forms a part of said dishwasher;
fulcrum means within said housing for supporting each of ssid arms for arcuate movement thereof and thus of the
said wheels, each arm having an end within the housing said wheels, each arm having an end within the housing
comprising a sector gear each lying on an arc substantially concentric with said fulcrum, said sector gears being spaced apart substantially the width of a worm gear;
a worm gear within said housing between and engaging bot said sector gears for simultaneous movement thereof on rotation of said worm gear; and
means mounting said worm gear within said housing for externally controlled rotational movement thereo substantially simultaneously.
1. A panel assembly comprising,
to at least one surface thereof,
to at least one sufrace thereor,
four frame members next to the sides of said center panel each of said four frame members including an inner reverse taper portion and an integral outer portion, said
inner reverse taper portion having a thicker section disposed adjacent said center panel and a thinner portion adjacent said integral outer portion,
each of said four frame members comprising a core material having a thin surface layer attached to at least one surface thereof,
said four frame members having abutting and connected ends forming a four sided frame,
said four sided frame defining a continuous connector means on its inner periphery
the outer periphery of said center panel defining mating securing and holdi said continuous connector means for relatiog and holding said center panel in a self supporting said continuous connector means sided frame,
comprising at least one continuous groove and at least one projection received by said groove.

4,097,101
ELECTRICAL INTERCONNECTION BOARDS WITH LEAD SOCKETS MOUNTED THEREIN AND METHOD fichard C. Holt, Fairhaven, Mass.; Nell F. Damon, Manville, Richard C. Hoit, Fairhaven, Mass.; Nell F. Damon, Manville,
R.I., and Richard J. Halon, Attleboro, Mass., asslgnors to Augat Inc., Attleboro, Mass.

Filed Nov. 22, 1976, Ser. No. 744,134
U.S. Cl. 339-17 C
1. An electrical interconnection device comprising
a flat generally rectangular sheet of electrically insulative material;
electrically conductive material secured in discrete areas on at least one side of said sheet, said sheet having a multiplicity of holes therethrough, at least some of said holes nor mally intercepting one of said areas of electrically conducive material;
faces of at least some of said holes thereby forming plated.
through holes, said plating material being electrically areas of electrically conductive material; and
a substantially rigid lead socket force fitted into at least some of said plated-through holes, said socket having a gener ally cylindrical body portion, said body portion having a roughened surface, whereby upon force-fitting insertion
of said socket, some of said plating material in said plated. of said socket, some of said plating material in said platedlead socket being formed with an axial opening there through and a plurality of flexible fingers normally con verging toward one another at one end and a tapere opening at the other end, the top of said lead socket sur rounding said tapered opening being below the surface of
said electrically conductive material on said sheet, said tapered opening being adapted to receive an electronic component lead and said fingers being adapted to frictionally engage said lead as it projects through said lead socket.

TELEPHONE CONNECTOR BLOCK HAVING
ELECTRICAL CLIP INTERCONNECTING MEANS Paul V. De Luca, Port Washington, and Albert Atun, Valley Stream, both of N.Y., assignors to Porta Systems Corp., Syos set, N.Y.

Filed Jun. 22, 1977, Ser. No. 808,89
U.S. C. 339-19

4 Claim
B. means for mounting said enclosure in juxtaposition with C. a plurality of conductive straps disposed wholly within said enclosure, a different one of said straps associated with each busway tap;
D. means forming a window in said enclosure through
which the busway taps protrude when said enclosure is juxtaposed with the busway; E. a joint mounted within said enclosure, said joint including 1. a pair of opposed pressure plates, 2. an array of insulators disposed between said pressure plates.

3. a pair of conductive splice plates disposed between adjacent pairs of insulators, an associated strap and busway tap being received between each splice plate
pair; means forming registered openings in
plates, insulators and splice plates, and
5. a clamping bolt extending through said openings; and
F. means forming an opening in said enclosure to provide access for torquing said bolt to clamp said pressure plates
together pursuant to simultaneously perfecting discreet together pursuant to simultaneously perfecting discreet
electrical joints between associated ones of said straps and busway taps.
\[
4,097,104
\]

ELECTRICAL CONNECTION SYSTEM
4. In a combination electrically conductive elongated pin Robert J. Furey, Valdosta, Ga., and Lawrence J. Stupay, Endiand a flexible electrical conductor in interconnected relation thereto, the improvement comprising: improved clip means anterconnecting said pin and said conductor, said and hember of generally planar configuration and having an a first member of generally planar congurath and having an sponds to the diameter of said conductor means, said clip having a second member including first and second discreet circular portions in mutually spaced relation, a first portion of which is of internal diameter slightly greater than the internal diameter of said second portion, the diameter of said second whereby said first portion may serve as an alignment guide upon the engagement with said pin, and said second portion may serve a clamping function, the conductor receiving mouth of said slot and the pin entrance opening in said first portion facing in the same direction.

BUSWAY PLUG ASSEMBLY
Werner A. Krause, Plantsville, Conn., assignor to General Electric Company, New York, N.Y.
Filed May 18, 1977, Ser. Filed May 18, 1977, Ser. No. 198,193 U.S. Cl. 339-22 B Int. C1. \({ }^{2}\) H01R \(1 / 08\) 9 Claims a plurality of taps individually electrically connected to the various busbars of a busway and extending laterally out
from the busway; said plug comprising, in combination: A. an enclosure;
oott, N. Y.. assignors to Bunker Ramo Corporation, Oak Brook, III. Filed Aug. 4, 1976, Ser. No. 711,456
.S. Cl. \(339-74\) R

1. An electrical connection system for connecting to a thin metal plate, comprising: a contact member having a tunnel section with electrically conductive contact pillars retaining within the tunnel section, extensions of said contact pillars forming staple-like attachment arms extending outwardly from said tunnel section; and a thin metal plate upon which said
contact member is mounted, said staple-like attachment arms extending through said metal plate and being deformed against said metal plate to draw said contact member against the thin metal plate.

4,097,105
HARNESS FOR PLUG AND SOCKET
Hoyd A. Zumwalt, Rte. 2 Box 140 G, McMinnville, Oreg. 97128 \({ }_{75} \mathrm{P}^{\text {Int. Cl. }{ }^{2} \text { H01R } 13 / 54}\)
U.S. Cl. 339-75 \(P\)

2 Claims

1. A harness for attachment to and retention of various sized lectrical plug and socket combinations in coupled engagement, said harness comprising,
a primary member of flexible construction including a ring and socket combination,
longate flexible members integral at one of their ends with said ring forming primary member and extending outwardly therefrom in a substantially perpendicular manner, plug and socket contours, said elongate members having segments of reduced crossection whereby a predeter-
mined tensile load applied to said elongate members will mined tensile load applied to said elongate members will cause same to sever at said segments allowing plug and
socket separation by manual pulling on the plug or socke in emergency situations,
secondary member also of fiexible construction and adapted for placement adjacent the other end of the plug combination, and
nterengageable means carried by end segments of the elongate members and by said secondary member enabling coupling of the primary and secondary members at seected distances from one another whereby coupled plugs against accidental separation.

ERMINAL HOUSING HAVING AN INTEGRAL STRAIN Rerminal housing ralief
William Roderick Over, Harrisburg, and Joseph Agusta Wise, Mechanicsburg, both of Pa., assignors to AMP Incorporated, Harrisburg, Pa.
\[
\begin{aligned}
& \text { Apr. 4, 1975, Ser. No. } 565,283 \\
& \text { Int. Cl. }{ }^{2} \text { H01R } 13 / 38
\end{aligned}
\]
U.S. Cl. 339-99 R

4 Claims

1. An insulation displacement terminal for piercing the outer insulation of an insulated electrical wire to make contact with he central conductive core comprising:
unitary sheet metal body having a pair of end plate por tions juxtaposed in a closely spaced parallel relationship, central spring portion interconnecting parallel laterally relative movement of the plate portions in a direction transverse to their interconnected bottom edges, each of said end plate portions including a slot which has an outer open end at a free side edge of its respective plate and an inner closed end spaced therefrom,
said slots each including an outer energizing portion and an inner scissors portion, each of said outer energizing pordge angled with respect to an edge of the other for scraping a conductor core of an insulated electrical wire and moving said end plate portions relative to each other gainst the bias of the spring portion responsive to movealong said edges toward said inner scissors portion, wire each of said inner scissors portions having an edge angled with respect to an edge of the other for moving a scraped conductor core of an insulated electrical wire received in long said last mentioned edges and biasing it against the ner closed ends of said slots responsive to relative movement between said end plate portions under the bias of said spring portion.

\section*{4,097,108}

HOT LINE CLAMPS
Marcel Prodel, Arnac Pompadour, France, assignor to Sicame, Arnac Pompadour, France
Continution of Ser. No. 546,753, Feb. 3, 1975, abandoned. This application Feb. 28, 1977, Ser. No. 772,955
U.S. C. 339- 109

8 Claims
1. A housing for an electrical terminal, which comprises: a. a housing of non-conductive material having a passage a. a housing of non-conductive material having a passage-
way for receiving the contact portion of the electrical
terminal and a cavity axially positioned behind the pasterminal and a cavity axially positioned behind the pa sageway for receiving the wire engaging means of the
electrical terminal; and b. a strain relief member unitary with and of the same nonb. a strain relief member nity
conductive material as housing and axially positioned
behind the cavity, said strain relief member having a chan
nel therethrough for receiving the wire which may be connected to the terminal with the sidewalls of the channel adapted to be cold-formed around the wire in retaining engagement therewith

INSULATION DISPLACEMENT TERMINAL Harold G. Hawkins, Bristolville, Ohio, assignor to General Motors Corporation, Detroit, Micb. Filed Dec. 8, 1976, Ser. No. 748,486
U.S. Cl. 339-97 R \({ }^{\text {Int. Cl. }{ }^{2} \text { H01R 11/20 }}\)

10 Claims a main conductor, comprising a rigid generally U-shaped body having a pair of opposed legs, means for securing a branch
conductor on said body, a flap member rockably mounted about one leg of said U -shaped body between an open position for enabling the clamp to be received on a main conductor and a closed position for maintaining the clamp in place on the oward the open position, a pair of camming surfaces on said 971 O.G. 57
flap member disposed one on either side of said one leg and
adapted to cooperate with the main conductor when the clamp adapted to cooperate with the main conductor when the clamp ber to the closed position before tightening the hold on the main conductor, threaded pressure applying means threadedly received in one leg of said body and in unobstructed facing relation with the other leg of said body for movement towards
and away from said body for movement towards and away and away from said body for movement towards and away
from said other leg for respectively tightening and loosening the hold of the clamp on the main conductor with the main
 conductor in direct clamping contact with said one leg and said pressure applying means, and an operating member for apply-
ing force for rocking said member to its closed position and disposed on said threaded pressure applying member having a first mode of operation for exerting an axial force through said threaded pressure applying member to said flat member, for
automatically rocking the latter to its closed position and a second mode of operation for turning the threaded pressure second mode of operation for turning the hreaded pressure
applying member for tightening and loosening its hold on the
main conductor.

ACCESSORY ELECTPIC Wil ACCESSORY ELECTRICAL CONNECTOR William E. Cross, Brookfield, Ohio, assignor to General Motors Corporation, Detroit, Mich. Flied Jun. 27, 1977, Ser. No. 810,409
Int. Cl. U.S. CI. 339-147 R

4 Claims

cally secured to the accessory terminal by the attachment portion, said lead extending from the attachment portion
in a longitudinal direction past said contact portion and in a longitudinal direction past said contact portion and
out of the connector body cavity via the front opening whereby upon disposition of the connector body in the cavity of the terminal block, the accessory terminal and the available terminal are adapted to receive an electrical device to establish electrical continuity for the electrical
lead through the terminal block. lead through the terminal block.

4,097,110
DEPOLARIZATION MEASUREMENT BY OPTICAL HETERODYNE
Charles Carey, Burlington, Mass., assignor to Sanders Associates, Inc., Nashua, N.H. Filed Apr. 27, 1977, Ser. No. 791,365

Nashua, N.H.
Filed Apr. 27, 1977, Ser. No. 791,365
Int. C. \({ }^{2}\) G02F 1/11; G01J 4/04
U.S. CI. \(350-149\)

13 Claims

1. Apparatus for measuring depolarization of a coherent incident beam of light comprising:
a traveling wave/shear wave modulator interposed in the path of said beam for providing an unshifted, unrotated rotated so that its direction of polarization matches that of said signal beam;
means for selecting said unshifted unrotated signal beam and said shifted rotated local oscillator beam; and means for optically heterodyning the selected beams and producing an electrical signal representing the result of the heterodyning.

4,097,111
Roger A. Martin, Swampscott, Mass., assignor to The Murdock Corporation, Chelsea, Mass. Filed Jun. 1, 1976, Ser. No. 691,565
In.. C.2
U.S. Cl. 339-183

\section*{2 Claims}
1. An electrical accessory connector for a mounted terminal 1. An electrical accessory connector for a mounted terminal
block having a front opening cavity adjacent an available terminal carried by the mounted terminal block comprising: a connector body insertable into the front opening cavity of
the terminal block, said connector body having a longituthe terminal block, said connector body having a longitu-
dinal cavity having a front opening, an accessory terminal which is shaped for insertion into the
longitudinal cavity via the front opening, said accessory longitudinal cavity via the front opening, said accessory
terminal being disposed in the longitudinal cavity and having a body portion, a contact portion which extends
from the body portion in a longitudinal direction toward from the body portion in a longitudinal direction toward the front opening and which is in lateral alignment with
the available terminal when the connector body is disthe available terminal when the connector body is dis-
posed in the front opening cavity of the terminal block, and an attachment portion which is spaced from said contact portion in a transverse direction, and
an electrical lead having one end mechanically
1. A distributing station for an audio device whereby the ignal coming from the audio device (20) can be fed to a plural connecting plugs (15) to said distributing station, comprising (a) a rigid, one piece, integral insulating frame (12) formed
portions, a web (28) extending transversely of and connecting said side walls intermediate said top and bottom portions, and a plurality of plug guide apertures (31) in
said web each surrounded by a receptacle defining wall (29) formed on the bottom and top surfaces of said web and extending from said top to said bottom portions;
(b) two identical, resilient conductive plastic members (13,
14) free of metal and mounted across said open portions and having a plurality of orifices (21) aligned with said apertures, each of said members having integral, resilient gripping fingers (23) aligned with each of said orifices, and each of said members being supported upon said side walls and said receptacle defining walls;
aperiures and orifices, the plug is conductively sipped said resilient fingers to form an electrical connection therewith.

\section*{TILTING TERMINAL CLAMP ASSEMBLY}

Donald Richard Veldman, Oak Lawn, III., and Howard S. Langdon, 1250 Hiil Ra.,
Continuation-in-part of Ser. No. 719,897, Sep. 2, 1976, handoned. This application May 4, 1977, Ser. No. 793,44 Int. C1. \({ }^{2}\) H01R \(9 / 10\)

1. A tilting terminal clamp comprising a threaded shank having a head at one extremity and a lead point at the other extremity, said head being configured to cooperate with a tool whereby aperture,
a clamping plate substantially centrally apertured to loosely and tiltably receive said shank, said plate having a generally polygonal perimeter with said perime adateing equipped with 6,8 or 10 flat sides and corners adapted to receiving said clamp to prevent rotation of said clamping plate while at the same time avoiding the need for carepully orienting said plate within a terminal pocket, and
for
head.

4
ELECTRICAL CONNECTORS FOR PORTABLE LECTRONIC PHYSIOLOGICAL INSTRUMENTS HAVING SEPARABLE FIRST AND SECOND COMPONENTS
Stephen L. McKelvy, Woodinville, Wash., assignor to Physio Control Corporation, Redmond, Wash.,
Filed Sep. 3, 1976, Ser. No. 720,148
\[
\begin{aligned}
& \text { Filed Sep. 3, } 1976, \text { Ser. } \\
& \text { Int. } \mathrm{Cl} .{ }^{2} \text { A } 61 \mathrm{~N} \text {. } 1 / 360,
\end{aligned}
\]
U.S. C. 339-256 R \(\qquad\) 4 Claims
1. An improved electrical connector, for an electronic physi-
ological instrument which is contained within a housing havological instrument which is contained within a housing hav ing an exterior housing surface, away portion defining a housing aperture connector compris ing:
ing: a central contact support member of insulating material
pair of opposite, substantially parallel side surfaces bound ing said front surface,
ing said front surface, first and second contact retaining members, each of insulating material, and each having a substantially planar front surface and an adjoining side surface complementary to one of said pair of side surfaces of said central contact support member,
c) a plurality of metallic, leaf spring contacts, each of said
contacts being formed into a substantial U-shape and contacts being formed into a substantial U-shape and
thereby having a central, bowed contact portion, and adjoining first and second legs, each of said legs having extending therethrough an aperture, and electrical termi nal means being provided on one of said legs.
side surfaly of projections formed and extending from the side surfaces or one said central contact support memsaid pluarality of projections being spaced from each othe and a corresponding plurality of recesses formed in the

side surfaces of the other of said central contact support member or said first and second contact retaining mem bers, said \(p\)
each other, (e) said first and second contact retaining members being secured to said central contact support member, with each
one of said plurality of projections passing through one of said apertures in one of said plurality of contacts and being received in a corresponding one of said plurality of recesses to form a connector assembly, said pluraity of projections and said plurality of recesses being located so that said front surfaces of said central contact support member
and said first and second contact retaining members are substantially coplanar in said connector assembly; and, (f) means adapted to mount said connector assembly in the housing aperture so that said front surfaces of said central contact support member and said hind second contact retaining member \(\qquad\)
4,097,114
FUSE HOLDER WITH SEPARATE REJECT SPRING Roger Henwood Motten, Jr., Bowling Green, Ohio, assignor to Marathon Electric Manufacturing Company, Wausau, Wis. Filed Apr. 28, 1977, Ser. No. 791,795
Int. C..\(^{2}\) H01H \(85 / 24\)
U.S. Cl. \(339-259\) F

\section*{1 Claim}
said central contact support member having a substan
tially rectangular, substantially planar front surface and a use with ferrule type fuses having a grooved ferrule on one end
of the fuse to insure that only ferrule type fuses are accepted in first stage upon rotation of said first rotatable member, a secthe holder, which comprises a separate reinforcing spring ond stage provided on said first stage for sliding movement in therein in opposite sides of the walls of the clip and located a of said first stage, a second rotatable member rotatably sup-
below below the upper ends of the clip, means securing the assembled
clip and spring to the base of the fuse holder inwardly turned horizontally aligned abutments provided adjacent the upper end of the reinforcing spring and of a construction complementary to a groove in a ferrule type fuse which upon assembly
with the fuse clip extend inwardly of the clip through the with the fuse clip extend inwardly of the clip through the
respective slots to dispose the abutments inside the clip and thereby lodge the abutments in the annular groove of a ferrule type fuse when the latter is inserted in the clip, and flange means at the upper ends of the reinforcing spring extending horizontally outwardly therefrom to engage the walls of the
holder upon spreading of the fuse clip when a ferrule type fuse is inserted and limit displacement of the abutments inside of the clip to thereby provide for acceptance of only a ferrule type
fuse. fuse.

OPTICAL SCANNING DEVICE FOR PRODUCING A MULTIPLE LINE SCAN USING A LINEAR ARRAY O SOURCES AND A TEXTURED SCANNED SURFACE Yorktown Business Machines Corporation, Armonk, N.Y.
\[
\begin{aligned}
& \text { Filed Nov. 18, 1976, Ser. No. } 742,935 \\
& \text { nt. Cl. }{ }^{2} \text { G02B } 27 / 177 \text {; H04N } 3 / 34,3 / 08,9
\end{aligned}
\]
U.S. Cl. \(350-6.7\)

1. An optical scanning system for producing a multiple line
ard
a-dimensional array of display points comprising. wo-dimensional array of display points comprising:
at least one modulated light source
at least one modulated light source
controlled light scattering,
a first light deflecting means periodically rotating about an
axis for scanning said at least one modulated light from
said light source source and deflecting said light in a first said light source source and deflecting said light in a first
linear direction across said display screen to produce a display of at least one row of display spots,
and a second light deflecting means periodically rotating
about an axis orthogonal to said first deflecting means for about an axis orthogonal to said first deflecting means for
scanning said light on said display screen in a second scanning said light on said display screen in a second
direction to produce a two-dimensional display of spots representative of said at least one modulated light source.

\section*{4,097,116 \\ MICROSCOPE STAGE}

Noboru Kuroha, Yokohama, Japan, assignor to Nippon Kogaku
K.K., Tokyo, Japan
Filed Nov. 5, 1976, Ser. No. 739,335

Claims priority, application Japan, Nov. 10, 1975, 50-133968
U.S. C. 350- 86

Int. Cl. \({ }^{2}\) G02B 21/26
8 Claims tage so sa said shaft and threadably engaged with said second stage so as to move said second stage, and a pair of operating handles mounted for rotation about said shaft to individually operate each of said first and said second rotatable member, the first and second transm

of said pair of handles and said first rotatable member and between the other handle and said second rotatable member, respectively, to adjust the amount of movement of each of said stages caused by rotation of each of said handles so that for angular rotation of each of said handles within a predetermined angle of rotation, each of said stages corresponding to each of said handles is moved for fine adjustment and for rotation of each of said handles
beyond said predetermined angle of rotation, each of said stages corresponding to each of said handles is moved for coarse adjustment.
\(\qquad\)
4,097,117
OPTICAL COUPLER HAVING IMPROVED EFFICIENCY Clyde Carl Neil, Levittow, Pa.; Jacob Meyer Hammer, Lawrenceville, and Robert Alfred Bartolini, Trenton, both of N.J assignors to RCA Corporation, New York, N.Y.
Filed Oct. 30, 1975, Ser. No. 627,353 \({ }_{96.17}\) Int. Cl. \({ }^{2}\) G02B 5/14
U.S. Cl. \(350-96.17\)

4. In apparatus comprising a planar optical waveguide hav ing a diffraction grating disposed on its surfacae and a fiberby phase-matched evanescent fields to said planar optical waveguide through said diffraction grating; the improvement waveguic
therein:
wherein said coupling portion of said core has a contacting surface which is substantially a negative replica of the undulating surface of said diffraction grating, and
wherein said contacting surface of said coupling portion Wherein said contacting surface of said coupling portion of
said core is positioned to substantially fill the crevices of said undulating surface of said diffraction grating. he in one direction with respect to the stationary portion of the main body of a microscope, a first rotatable member rotatably engaged with said stationary portion so as to move said

OPTICAL WAVEGUUDE COUPLER EMPLOYING DEFORMED SHAPE FIBER.OPTIC CORE COUPLING PORTION
Jacob Meyer Hammer, Lawrenceville, N.J., assignor to RCA Corporation, New York, N.Y.

Filed Oct. 30, 1975, Ser. No. 627,354
Int. C. \({ }^{2}\) G02B \(5 / 14\)
U.S. Cl. 350-96.17 Int. C.2 \({ }^{\text {G02B } 5 / 14 ~} 3\) Claims

1. A method for increasing the optical efficiency with which a) each of a plurality of different modes of multimode light mode fiber-optic core having an initially cylindrical shape, and b) light having a given modal characteristic traveling in a second transmission medium comprising a planar optical waveguide cooperatively disposed with respect to a coupling por-
tion of said core, can be coupled between said two transmission media by phase-matched evanescent fields, said method comprising the step of:
flattening out said initially cylindrical shape of said coupling portion of said fiber-optic core in a direction substantially perpendicular to the plane of said planar optical wave-
suide and fanning out said initially cylindrical shape of aid coupling portion of said fiber-optic core in a direction substantially parallel to the plane of said planar optical
waveguide to deform said coupling portion of said fiberwaveguide to deform said coupling portion of said fiber
optic core into a predetermined spatulate shape that pro optic core into a predetermined spatulate shape that pro-
vides more efficient optical coupling by phase-matched veanescent fields of multimode light wave energy between said coupling portion of said fiberoptic core and said planar optical wavegudal distribution similar to said
multimode light into a mod given modal characteristic.

\section*{4,097,119}

OPTICAL FIBER CABLE
Hiroyuki Kumamaru; Hiromu Shioyama, and Masao Hoshikawa, all of Yokohama, Japan, assignors to Sumitomo Electric Industries, Ltd., Osaka, Japan
Filed Jun. 6, 1975, Ser. No. 584,663 Claims priority, application Japan, Jun. 7, 1974, 49-65202 U.S. C. \({ }^{350-96.23} \mathbf{I n t . ~ C . 2 . 2 ~}^{\mathbf{G}} \mathbf{G 0 2 B} 5 / 16\)

13 Claim
under applied stress to said cable. cushion layers disposed on the side of the low friction layers remote from said bundles of optical fibers, and
protection layers underlying the radially innermost cushion
layer and overlying the radially outermost cushion layer

IQUID CRYSTALINE COMPOUNDS AND MIXTURES Jan vanderVeen, and Theodorus Cornelis Jozef Maria Hegge, Jan vanderVeen, and Theodorus Cornelis Jozef Maria Hegge,
both of Eindhoven, Netherlands, assignors to U.S. Philips Corporation, New York, N.Y.
Division of Ser. No. 531,087, Dec. 9, 1974, Pat. No. 3,984,392. This application Jul. 22, 1976, Ser. No. 707,530, 129 , \({ }_{7317074}^{\text {Claims }}\)
U.S. Cl. \(350-350\) Int. Cl. \({ }^{2}\) CO9K 3/34; G02F \(1 / 13 \quad 1\) Claim . CI. \(350-350\)

1. An orientation-type liquid crystal display cell having a layer of a liquid crystal material disposed between a pair of electrodes, at least one of which is transparent, wherein said
liquid crystal material consists essentially of at least one compound of the formula

wherein \(n\) is 6 or 7 .
4,097,121
LIQUID-CRYSTAL DISPLAY WITH BISTABLE CHOLESTERIC LIQUID-CRYSTAL LAYER AND METHOD OF MAKING THE SAME
Miroslav Tauer, Munich, Germany, assignor to Siemens Aktiengesellschaft, Berlin \& Munich, Germany
Flaims priority, Sep. 14, 1976, Ser. No. 723,151 1975,2542166 Claims priority, application Germany, Se Int. C1. \({ }^{2}\) G02F \(1 / 1\)
1. An optical fiber cable comprising:
a plurality of bundies of optical fibers,
a strengthening member extending lengthwise along the cable,
low friction
low friction thin, polymeric tape slipping layers on respective sides of said bundles of optical fibers to permit slip-
ping movement between said optical fibers and said low
1. A liquid crystal display for the representation of visua mages comprising two carrier plates having therebetween in ermetically sealed arrangement, a layer of cholesteric liquid plates having homeotripic wall orientation, each of said carrier plates having a conductor array on its inner surface facing the

other, said liquid crystal having at least in a certain frequency range a positively anisotropic susceptibility, and at field
strent strengths equal to or greater than a first threshold value \(\mathbf{E}_{c n}\) taking on a homeotropically-nematic texture, in which it re mains as long as the applied field is greater than a second lower
threshold value \(E\) said conductor arrays having at least one separately operable conductor, the electrodes of at least one of the two carrier plates having a dielectric layer thereon, the dielectric constant of which is smaller than that of the LC layer, said dielectric layer being so dimensioned relative to the
associated electrode that marginal portions of the latter are exposed, respective marginal portions defining a plurality of picture segments, with said marginal portions defining a marginal zone each of which operatively encircles a respective display segment, which marginal zone during operation of the
liquid crystal display, each have a minimum field strength \(E\) equal or greater than \(\mathrm{E}_{c n}\), in the liquid-crystal layer, and simul. taneously a holding field strength \(\mathrm{E}_{h}\), lower than \(\mathrm{E}_{c n}\), at the location of the picture segment enclosed by the marginal zone, during operation of the liquid crystal display, the marginal edges of the combined electrode and dielectric layers forming
an approximately flat edge wall composed of the lower electrode edge and the upper aligned dielectric edge, such edge wall being inclined in the form of a beveled edge whereby the electrode edge extends outwardly beyond the dielectric edge.

LIGHT OPTIC DATA HANDLING SYSTEM
Joseph T. McNaney, 8548 Boulder Dr., Ls Mesa, Calif. 92041 Filed Dec. 23, 1976, Ser. No. 753,735
U.S. C. \(350-353\)

3 Claims

1. A light optic data handling system comprising
a. means for providing a beam of ligh
b. means for directing said beam of light along a primary
optical path within said system including an array ofligh reflecting surfaces, each surface presenting a length dimension and each angularly oriented so as to establish an optical relationship one with respect to the other for allowing said beam to be directed along said path forming a helix of plural revolutions, the optical center of said mined distance one with respect to the other in a side-byside relationship in the direction of said length dimension, said distance less than a cross sectional dimension of the beam in the direction of said length dimension so as to
provide a multiple overlapping of light of said beam along provide a multiple overlapping of light of said beam along
said path and a reflecting of light, simultaneously, from different portions of said beam toward a light output position of said system.

LIGHT BEAM POSITION CONTROL SYSTEM
Joseph T. McNaney, 8548 Boulder Dr., La Mesa, Calif. 92041
Filed Jan. 31, 1977, Ser. No, 764,408
The portion of the term of this patent subsequent to Jun. 25 1994, has been disclaimed. Int. Cl. \({ }^{2}\) G02F \(1 / 16\)
U.S. CI. 350- 353
U.S. C1. \(350-353\)
1. In a light beam position control system:
(a) a source of light;
(b) a
(a) a source of light;
(c) means for directing light from said
path toward said array of surfaces and thereupon along an
optical path within said array extending to a light emitting surface of said array, said light input path optically related through said array to a light output path stemming from said emitting surface, said reflecting surfaces of said array each presenting a length dimension, said emitting surface a predetermined one of said reflecting surfaces, each surface of said array angularly oriented one with respect to the other for allowing light directed along said optical ath to follow a helix of plural revolutions while undergo-

said light during a predetermined one of said revolutions incidence thereon for effecting a frustrating of a reflection of light therefrom
(d) means for directing light from said source along a first optical path within said array of surfaces so as to allow
said light to be refle said light to be reflected toward and incident upon a first
light output position along said light e) means for redirecting light from said source from said first optical path to and along a second optical path within said array of surfaces so as to allow said light to be re-
flected toward and position along said light emitting surface.

\section*{4,097,124}

Rinzo Watanabe, and Masatoshi Shimojima, both of Tokyo Japan, assignors to Vivitar Corporation, Santa Monica, Calif. Continuation-in-part of Ser. No. 258,816, Jun. 1, 1972, Pat. No.
3,784,285. This application Dec. 28, 1973, Ser. No. 429,348 3,784,285. This application Dec. 28, 1973, Ser. No. 429,348
Int. Cl. \({ }^{2}\) G02B \(15 / 18\) U.S. C. \(350-187\)

1. A variable focal length lens of the type including a fron focusing lens group and first and second axially movable len groups for varying the equivalent focal length of the lens,
comprising an elongated cylindrical member, a sleeve-like operating member disposed about said cylindrical member adapted to move axially with respect to said cylindrical member for varying the focal length and rotatably with respect
thereto for focusing, focusing means threadably front group to said cylindrical member for focusing movement. means connecting said focusing means to said operating mem. ber so that rotation of said operating member produces rotation of said focusing means on said mounting, said connecting means permitting axial movement of said operating membe
said focusing means, first and second guide slots defined in said
cylindrical member, each having axial and tangential directional components, a first mounting member for said first len group in said cylindrical member and having a arirt pin exenc
ing therefrom through said first guide slot, an axia slot define in said first mounting member, a mounting member for saic second lens group within said first mounting member, a second pin extending from said second mounting member through sai
axial slot into said second guide slot, and an annular channel defined in said operating member and receiving said first pin therein.

IMAGE FORMING OPTICAL SYSTEM
Akiyoshi Suzuki, Tokyo, Japan, assignor to Canon Kabushiki
Kaisha, Tokyo, Japan
Filed Jul. 1, 1976, Ser. No. 701,946 Claims priority, application Japan, Jul. 2, 1975, 50-82115 \({ }_{94} \mathrm{Int}\) Cl. \({ }^{2}\) G02B \(5 / 10\)

6 Claims
U.S. C. \(350-294\)

1. An image forming optical system comprising
(a) a concave mirror;
(b) a convex mirror having a smaller radius of curvature than that of said concave mirror and arranged in face-to-
face relation with said concave mirror at a location such face relation with said concave mirror at a location such
that the center of curvature of said convex mirror is that the center of curvature of said convex mirror is
spaced from that of said concave mirror toward said concave mirror, and
concave mirror, and
(c) said concave mirror comprising means for reflecting radiation incident on said optical system to said convex mirror and for reflecting said radiation from said convex
mirror out of said optical system in a direction generally mirror out of said optical system in a direction generally system.

OPTICAL LAYER DEVICE WITH REFLECTING
laser comprising a holder, a substrate of an elastic deformable naterial having a surface of a predetermined curvature in a ndeformed condition, said substrate being a collodion fo aid surface being provided with a reflecting surface layer comprising at least one layer of material selected from a group consisting of dielectric and metallic materials, said substrate having a periphery sealed to said holder to mount the substrate hereon, and means for selectively deforming the substrate to hange the predetermined curvature of said surface in a predelayer device functions as a variable reflector.

4,097,127
MIXED LIQUID CRYSTALLINE TEXTURE FORMATION Werner E. L. Hass, Webster, and Gary A. Dir, Fairport, both of N.Y., assignors to Xerox Corporation, Stamford, Conn.
U.S. C. \(350-332\)

Int. Cl. \({ }^{2}\) G02F \(1 / 13\)
6 Claims ocal-conic textures of the cholesteric mesophase, comprising: (a) providing a liquid crystalline material in a texture selected from the group consisting of the Grandjean texture and the focal-conic texture of the cholesteric mesophase, (b) applying an electrical field across said liquid crystalline material within the cholesteric-to-nematic electrical field range of said liquid crystalline marrial ing said liquid crystamine masoriase; and
mesophase to the nematic mesophas
(c) decreasing the magnitude of said applied electrical field over a period of time effective to transform said liquid crystalline material from the nematic mesophase to said mixture of the Grandjean and focal-conic textures of the cholesteric mesophase.

LIQUID CRYSTAL COLOR DISPLAY DEVICES Shoichi Matsumoto, Yokohama; Masshiro Kawamoto, Kamakura, and Kiyoshi Mizunoya, Yokohama, all of Japan, assignto Tokyo Shibaura Electric Co., Ltd., Kawa
Filed Apr. 20, 1976, Ser. No. 678,553 Claims priority, application Japan, Apr. 24, 1975, 50-49155; Oct. 9, 1975, 50-121269; Oct. 9, 1975, 50-121270; Oct. 9, 1975, 50-121271; Oct. 9, 1975, 50-121272

OPTICAL LAYER DEN COLLODION FOIL Hans Mahlein, and Walter Rauscher, both of Munich, Germany, assignors to Siemens Aktiengesellschaft, Berlin \& Munich, Germany
Filed May 25, 1976, Ser. No. 689,924 , U.S. C. \(350-295\) 1 Claim

1. An optical layer device for use as a mirror in a tunable
U.S. C. \(350-335\)

16 Claims

1. A liquid crystal color display device which comprises at least one liquid crystal cell formed of first and second substrates, at least one of which is transparent and both of which are coated with first and second electrodes, at least one of which is transparent and an nematic liquid crystal interposed
between the first and second substrates, the surface of the first substrate being so treated as to cause the molecules of the nematic liquid crystal to be orientated parallel with the substrate surface and the surface of the second substrate being so treated as to cause the molecules of the nematic liquid crystal
one polarizer; and means for varying the birefringence of the nematic liquid crystal.

\section*{4,097,129}

COUPLING DEVICE FOR PROTECTIVELY JACKETED Charles K. Wellington, Westrord , Westrord, and Mark L. Dakss, Waltham both of Mass., assignors to GTE Laboratories Incorporated, Waitham, Mass.

18 Claims

1. A device for coupling a pair of protectively jacketed optical fibers in axial alignment comprising
ng fibers in end-o-end abutme holding a pair of opposhe body receiving the fiber pair through opposite egds, fiber-receiving bore formed axially therethrough , bore having an oversized cross-section with respect to the
cross-sections of the received fibers, wherein the bore includes an inner portion for receiving bared ends of the
fiber pair and a pair of outer portions for receiving the fiber pair and a pair of outer portions for receiving the
jacketed portion of the fibers; and jacketed portion of the fibers; and
engaging areas along the bore wall in the abutment region engaging areas along the bore wall in the abutment region
to exert a lateral aligning force on the abutingly held fiber tips, and wherein the body compression means includes the inner bore portion to a fiber-engaging dimension and second means for reducing the cross-section of the outer bore portions to a jacket-engaging dimension.

MULTI-COLO 4,097,130
MULTI-COLORED LIQUID CRYSTAL DISPLAYS Herbert S. Cole, Jr., Scotia, N.Y., assignor to General Electric Company, Schenectady, N.Y Filed Mar. 11, 1977, Ser. No. 776,603
U.S. CI. 350-335

16 Claims

scond directions, said second polarization member absorbing light in a region about a first wavelength in the visible spectrum when the light is polarized with its elec-
ric field vecto parallel to the axis of polarization of said cond polarization member
liquid crystal cell positioned between said first and second polarization members and along the optical path in said tween first and second conditions of molecular orientation; and
means contained within said cell for absorbing visible light in a region about a second wavelength different from said
first wavelength, only when said cell is actuated to said first wavelength, only when said cell is actuated to said
first condition of molecular orientation; said means allowing transmission of light through said cell substantially without absorption when said cell is actuated to said second condition.

REFLECTIVE 4,007,131
Reflective type liquid crystal display Kaisha, Osaka, Japan
Filed Nov. 24, 1976, Ser. No. 744,775 Claims priority, application Japan, Nov, 28, 1975, 50 163399[U]
U.S. CI. \(350 — 338\) Int. Cl. \({ }^{2}\) G02F \(1 / 13\)


A reflective type liquid crystal display comprising: first and second support plates;
a segmented reflective electrode deposited on said first transparent electrode deposited on said second support plate;
a reflectiv
reflective coating deposited on said second support plate in a region except the region corresponding to said reflective electrode;
intermediate layer of insulator material interposed be tween said transparent electrode and said reflective coat-
ing, said intermediate layer being capable of preventing chesid intermediate layer being capable of preventing a parent electrode and said the interface between said trans parent electrode and said reflective coating; and
ched between said first and said second support plates.
\[
\begin{gathered}
4,097,132 \\
\text { OMO Nin }
\end{gathered}
\]

PROJECTOR MOLDED CHASSIS
Raymond W. H. Kim, Skokie; Robert A. Klein, Mt. Prospect; Edward H. Lodge, Wilmette; Arthur L. Lueders, Mundelein, and James \(\mathbf{G}\). Woodier, Morton Grove, all of III., assignors to
Bell \& Howell Company, Chicago, Bell \& Howell Company, Chicago, III.

Filed Feb. 18, 1977, Ser. No. 770,254
Int. Cl. \({ }^{2}\) G03B \(17 / 02\)
1. A housing for mounting mechanical and electrical compo
1. A transmissive display for selectively imparting one of a plurality of colors to visible light transmitted in a first direction a first polarization member having an axis of polarization nents to provide a motion picture projector that utilizes positioned in a second direction substantially perpendicu- manually shiftable controller assembly positionable in a plurallar to said first direction; a second polarization member ity of positions for selecting operational modes, the housing tion substantially perpendicular to both said first and
an upstanding edgewall extending from said base and de ing a mounting body having front and rear surfaces: strengthening flange
upstanding edgewall;
a lip disposed around at least portions of the perimeter of said strengthening flange for interfitting with a rear housing cover;
edgewall between a supply assembly position and a takegewall between a supply assembly position and a take-

up assembly position wherein said film path includes
plurality of non-aligned path portions, said film path ar ranged to pass through a shuttle assembly position and a gate assembly position intermediate the take-up and supply assembly positions; and
means for defining operational mode positions of the conmeans comprising detent positions defined at the upper means comprising detent positions defined at he upper
and lower extremities of an H -shaped pattern and at the extremes of the center cross-bar of the H-shaped pattern.
\[
\begin{aligned}
& \text { 4,097,133 } \\
& \text { CINEMATOGRAPHIC CAMERA }
\end{aligned}
\]

Otto Stemme, Munich; Peter Lermann, Narring, and Gabriele Otto Stemme, Munich; Peter Lermann, Narring, and Gabriele ert AG, Leverkusen, Germany , Ser. No. 772,970 Filed Feb. 28, 1977, Ser. No. 772,970
Clams priority, application Germany, Mar. 12, 1976, 2610515 C. 232 Int. Cl. \({ }^{2}\) G03B 17/00 19 Claim

1. A cinematographic camera, comprising a collapsible can ra housing having a first section provided with a viewfinder and a second section provided witc a photograp or telescoping
said sections being a movable section mounted for displacement relative to the other section between a retracted and an extended position in which said viewfinder is respeclively blocked and unblock and saip mounted on said camera
> d
housing for displacement between a retracted and an extended housing for displacement between a retracted and an extended from said camera housing; and means responsive to displacement of one of said movable sections from the retracted position thereof by releasing the other
placement to its extended position.

PROJECTION DEVICE
Hans G. Jerie, 15, Demmerakemp, Lonneker, Netheriand Filed Feb. 24, 1976, Ser. No. 661,003 U.S. C. 353-11 8 Claims
1. A projection device comprising
projection screen presenting a surface defining an image projection area;
means defining a fir
means defining a first area to be occupied by a first diapositive carrying a pictorial representation of a given subject; a first optical system arranged to project an image of the entirety of the first area that the image
tion area; tion area
a second area to be occupied by a second dapositive carrying a pictorial representation of the same subject, and to the same scale, as the first diapositive,
a second optical system producing a greater magnification than said first optical system and arranged to project an
image of a portion constituting a fractional part of the second area onto said screen in a manner such that the image of such portion fills substantially the entire image projection area; and
a transparent runner movable parallel to the first and second areas and provided with a window located adjacent the first area and corresponding in size to a portion of the first
area, said runner carrying at least part of said second optical system at a location relative to said window such that the location of the portion of the first area which is adjacent said window corresponds to the location of the portion of said second area which said second optical system is arranged to project on said screen.

\section*{4,097,135 \\ APPARATUS FOR AUDIO VISUAL PRESENTATION OF} MUSIC
Richard R. Castor, 164 Roselawn Cres., Fairport, N.Y. 14450 Filed Jan. 12, 1977, Ser. No. 758,593
U.S. CI. 353-15 1. Apparatus for
ing in combination:
a. a combination:
a preen hation sol
a. a pro note play men having indicia thereon representative
b. a film strip having recorded thereon a musical composi tion having measures of equal length and notes which are spaced within said measures according to their beat value sively projecting on said projection screen a plurality of
visual images of the musical composition recorded on the filmstrip;
e. a two channel tape operatively carried by said recorder
and including a first channel having a programmed master and including a first channel having a programmed maste signal recorded thereon and a second channel having a
plurality of synchronizing signals recorded thereon a plurality of synchronizing signals recorded thereon a desired musical tempo, said tape recorder being con

sructed and arranged to produce a first output in accor dance with said programmed master signal and a second output in accordance with said synchronizing signals; an audio-speaker having its input connected to said firs
output of said recorder; and
control means having its in
output of said recorder and its output connected to said advance mechanism to cause said projector to display
successive visual images of said composition in accorsuccessive visual images of said comp
dance with said synchronizing signals.

\section*{4,097,136 \\ PROJECTOR FOR VISUAL IMAGES}

Jose Manuel Alonso Astarioa, Bilbao, Spain, assignor to Iberastron, S.L., Bilbeo, Spain

Filed Oct. 21, 1976, Ser. No. 734,697
Int. Cl. \({ }^{\text {G03B }}\) 21/22, 27/52; H01R \(9 / 00\) U.S. Cl. \({ }^{\text {Int. }}{ }^{\text {Int. }} \mathbf{7 1}\)

4 Claims

1. A projector for visual images comprising a base, a column connected to said base, an adjustable arm positionable alon said column and a projector body carried by said arm, saic legs of said channel being resiliently spreadable, the end of said arm joining with said column including connection means for engagement within the channel of said column, said connec tion means being positionable within said column upon rotation of said connection means \(90^{\circ}\), said connection means being
rotatable after insertion \(90^{\circ}\) to return to its original position, rotatable after insertion legs to return to its original position,
said resiliency of said legs serving at least in part to locate said arm, a first annular member extending upwardly from said base
and a second annular member surrounding said first annular member and defining a space between said first and second annular members, said column being insertable in said space for between said annular members and said column for securing said column with respect to said base, conductor means mounted internally of said first annular member, and said column including conductive plates engaged with said conductor means when said column is mounted to said base.

\section*{4,097,137}

MICROFICHE HAVING INTEGRAL INDEXING MEANS George J. Yevick, Leonia, N.J., assignor to Izon Corporation, George J. Yevick, Leonia, N.J., assignor to \(\mathbf{S z o n}\), Conn.
Stamf, Apr. 9, 1975, Ser. No.
Int. Cl. \({ }^{2}\) G03B \(23 / 08\) U.S. Cl. 353-120

1. A microfiche assembly, including a microfiche defined by a transparent sheet adapted to carry stored micro optical information over its area, one surface of said sheet including a plurality of lenses, the improvement comprising an alignment member having optical apertures therethrough and also carrying regularly arranged downwardly extending positioning
nodules having valleys therebetween, the microfiche carrying a plurality of regularly arrayed upstanding positioning nodules positioned in the valleys between the said complementary regularly arrayed downwardly extending positioning nodules integral with said alignment member, the tips of said upstanding nodules defining said lenses, at least some of said lenses
being optically aligned with the optical apertures of the alignbeing optically aligned with the optical apertures of the align-
ment member, said optical apertures located in said valleys of said downwardly extending nodules whereby the two sets of positioning nodules align the microfiche with respect to the alignment member.

PHOTOCONDUCTIVE BELT INCREMENTING CTIVE BELT IN
William Kingsley, Rochester, N.Y., assignor to Xerox CorporaWilliam Kingsley, Rochester, N.Y.,
tion, Stamford, Conn.
Filed Aug. 27, 1976, Ser.

Filed Aug. 27, 1976, Ser. No. 718,
Int. CC.2 G03G \(15 / 00\)
U.S. Cl. 355-3 DR
1. An apparatus for incrementing a photoconductive belt to advance unused portions thereof to an phoconductive belt to used portions advance to an inoperative location, including. a support frame comprising at least a pair of segments;
at least a pair of supply stations having the unused portions
of the photoconductive belt stored therein, each of said supply stations being associated with one of the segments
of said support frame; of said support frame;
at least a pair of receiving stations having the used portions
of the photoconductive belt stored therein, of the photoconductive belt stored therein, each of said
receiving stations being associated with one of the seg. ments of said support frame; and
eeans for advancing automatically incremental portions of the photoconductive belt from each of the supply stations
to each of the receiving stations with one surface of the portion of each segment of said support freme during movement thereof from said supply station to said receiving stations, said advancing means comprising a gear connected to said receiving station, a pinion meshing with

METHOD AND APPARATUS FOR CLEANING TONER IN ELECTROPHOTOGRAPHIC COPYING MACHINES Kohji Suruki, Kamasaki, and Kazuaki Tagava, Tokyo, both of Japan, assignors to Ricoh Company, Ltd., Tokyo, Japan
Filed Jul. 22, 1976, Ser. No. 707.615 Claims priority, application Japan, Jul. 22, 1975, 50-8950 Int. Cl. \({ }^{2}\) G03G \(21 / 00\)

the gear, an actuating bar having one end portion thereof
the gear, an actuating bar having one end portion thereof
coupled to the pinion, and a cam engaging the other end of the actuating bar to periodically pivot the actuating bar so as to rotate the pinion meshing with the gear, thereby advancing an incremental portion of the photocondur
belt from the supply station to the receiving station.

\section*{4,097,139}

REPRODUCING MACHINE HAVING REPRODUCING MACHINE HAVING
INTERCHANGEABLE DEVELOPER HOUSINGS Oscar G. Hauser, Rochester; Thomas Meagher, and Freder R. Ruckdeschel, both of Webster, all of N.Y., assignors Xerox Corporation, Stamford, Conn.

Filed Sep. 30, 1976, Ser. No. 728,102
Int. Cr. \({ }^{2}\) G03G \(15 / 01\)
U.S. Cl. 355-4

23 Claims
1. A method of cleaning toner from the surface of a photosensitive member in an electrophotographic copying machine of the dry, transfer type in which a magnetic toner is used as a
developer, comprising the steps of: providing a rotatable cylindrical brush adjacent the surface of said photosensitive member to remove magnetic toner attached to the surface of the photosensitive member and transfer it to said brush by a mechanical rubbing action; transferring magnetic toner which attaches to the cylindrical brush onto a non-magnetic sleeve located adjacent the cylindrical brush and internally housing a magnet; providing relative rotation between the magnet and
the sleeve; and scraping off any magnetic toner which attaches to the sleeve by a separator which is located adjacent the surface of the sleeve.

1. A reproducing machine, including
a member arranged to have successive latent images re corded thereon,
first means for developing at least one of the latent images recorded on said member with particles of a first color; second means for developing the other latent images recorded on said member with particles of a second color; first means for moving said first developing means from an operative position in communication with the latent images to an inoperative position exter machine; and
from the inoper moving said second developing means machine to the operative position in communication with machine to the operative position in communication with
the latent images after said first moving means moves said first developing means to the inoperative position.

OPTICAL OBJECTIVES USING APERTURED RETRODIRECTIVE REFLECTORS David A. Warner, 100 Memorial Dr., Cambridge, Mass. 02142 Continuation-in-part of Ser. No. 568,939, Apr. 17, 1975, abandoned. This application Mar. 16, 1977, Ser. No. 778,212


1. An optical system comprising:
corrected lens mounted coaxially in front of a truncated retrodirective reflector, said lens having a reflective central portion so positioned as to receive light reflected from the truncated retrodirective reflector and redirect the light through the truncated portion of the retrodirective
reflector.

OPTICAL 4,097,142 Paul Cyril Moutou; Michel Hareng, and Serge Le Berre, all of Paris, France, assignors to Thomson-CSF, Paris, France Filed Dec. 14, 1976, Ser. No. 750,456
Claims priority, application France, Dec. 19, 1975, 7539184 U.S. CI. 355-45 Int. Cl. \({ }^{2}\) G03B 29/00. 27/70 4 Claims

1. An apparatus for tracing under the control of a set of external control signals a pattern onto a substrate coated with a photo-sensitive product, which comprises:
a liquid crystal cell;
means for recording an enlarged copy of said pattern onto said cell under the control of said external control signals, said recording means comprising a light source for emit ting a beam comprising substantially infrared radiations,
means for deflecting said beam along two seaprate directions, delivering a deflected beam, means for focusing said deflected beam onto said cell, and means for occulating said beam;
first means for optically projecting said enlarged copy on a reduced scale onto said substrate
a monitoring screen; and
second means for optically projecting said enlarged copy on
a far more enlarged scale onto said monitoring screen; said substrate said monitoring screen, and said first and second projecting means being secured to a frame movable be tween a monitoring position and a tracing position.

\section*{4,097,143}

Vernon G. Buchanan, Salt Lake City, and Carl E. Rhoades, Lindon, both of Utah, assignors to Microfilm Service Corpora tion, Salt Lake City, Utah

Filed Dec. 13, 1976, Ser. No. 750,007
U.S. Cl. 355-53
1. Photographic structure including, in combination a Claims camera structure spacedly disposed above said table, and a copyboard lock-positioned in a first discrete position on said table in registry with said camera structure and provided with fixed means for enabling upward translational movement of, turn of said copyboard to a second, locked, discrete position of said copyboard relative to said table, one of said table and said copyboard having a set of plural protrusions adjacent ones of which are equally spaced, the remainder of said table and
copyboard having a set of holes equal in number with and dentical in pattern to and positioned to receive all of said

protrusions for any position of said copyboard on said table one of said sets comprising said fixed means.

ADJUSTMENT DEVICE FOR PHOTOGRAPHIC
ENLARGING OR REPRODUCING APPARATUS Claus Prochnow, Brunswick, Germany, assignor to Rollei-
Werke Franke \& Heidecke, Brunswick, Germany Werke Franke \& Heidecke, Brunswick, Germany
Filed Nov. 17, 1976, Ser. No. 742,710 Filed Nov. 17, 1976, Ser. No. 742,710
Claims priority, application Germany, Nov. 28, 1975, 2553556
Int. C1. \({ }^{2}\) G03B 27/52: A47G \(29 / 00\) U.s. Cl. \({ }^{\text {355-63 }}\)

1. Device for displacing a body along a guiding column particularly suitable for the projection head of an enlarging or a. a guiding column said device comprising:
a. a guiding column including a pair of guiding surfaces extending along the column;
b. a sleeve substantially surrounding said guiding column, having an opening located over said pair of guiding sura shaft mounted on said sleeve across said opening with its axis of rotation extending tangent to said guiding column in a plane perpendicular to the direction of extension of said guiding column;
hereof being axially moisposed on said shaft, at least one through the opening in said sleeve to roll along said guidhrough the opening in said sleeve to roll along said guidrespectively held in rolling contact with a guiding surface of said pair; said guiding surface and said lateral surface forming an acute angle with each other; and, means for exerting axial forces on said wheels of the pair of said guiding column, whereby said shaft is wedged outwardly from said column pulling said sleeve more tightly around said column.

MEANS FOR SELF-POSITIONING PLATEN COVERS Harry E. Luperti, Wilton, and Robert E. Manna, Newtown, both Harry E. Luperti, wist to Pitney-Bowes, Inc., Stamford, Conn. of Conn., Filed Jan. 3, 1977, Ser. No. 756,348

\section*{12 Claims}

1. In a copier including framework and a platen on which respective documents of different thickness may be placed fo copying purposes, and means for covering said parations covering a. linkage means for movably supporting said covering means, said linkage means adapted to permit movement of
said covering means between a predetermined position adjacent to said platen for holding respective documen of minimal positions away from said platen for holding respectiv documents of greater thickness in contact with said plate b. resilient means for urging said covering means away from said platen, said resilient means including torsion ba
means biased to urge said covering means away from said means biased to urge said covering means away from saia
platen, said resilient means including coil spring means platen, saide resilient means inclide linkage means and said torsion ba means for balancing said covering means at respectiv levels of elevation with respect to said platen; and . latching means for releasably holding said covering means in said predetermined position.

\section*{4,097,146}

ORIGINAL HANDLING SYSTEM AND PROCESS ORIGINAL HANDLUNG Sapan, assignor to Rank Xerox, Ltd. London, England Filed Nov. 26, 1976, Ser. No. 745,516
No, Claims priority, application Japan, Dec. 18, 1975,
Int. Cl. \({ }^{2}\) G03B \(27 / 62 ;\) B65H \(9 / 04\) U.S. Cl. 355-75
 1. In a reproducing apparatus comprising:
means for discharging an original from an exposure station after exposure; said exposure station comprising: an exposure platen; fixed stop means having a stop surface for engaging an edge of said original for determining and
position of said original on said exposure platen; and means for projecting an image of said original at said platen onto a photosensitive body; said discharging means including means for feeding said said fixed stop means;
the im
cludes
ard across said direction in which said original is fed off said platen, said means for flowing air forming an air layer between said exposure platen and said original for lifting said edge of said original so that it can be discharged over said fixed stop means.

PRINT MACHINE FRAME
J. Milton Portewig, 405 E. Laburnum Ave., Richmond, Ve.

Filed Jun. 1, 1977, Ser. No. 802,392 Int. Cl. \({ }^{2}\) G03B 27/30, 27/02
U.S. CI. 355-106
1. A tray assembly to be used with a print machine, of a type having an exposure portion, said exposure portion including a first inlet for receiving original traces and print paper sheets and a first outlet for ejecting said original traces and printpaper sheets from said exposure portion, and a developing
prtion, said developing portion including a second inlet for ortion, said developing portion including a second inlet for jeceiving exposed print paper sheetsed print-paper sheets, said a tray assembly in cluding:
an originals/print-paper tray; and
a copies tray;
said originals
said originals/print-paper tray defining a relatively flat enve lope for holding originals to be copied and print paper on
which said copies will be printed in a substantially vertical orientation, said envelope having a mouth at one edge thereof through which originals and print paper can be inserted into and removed from said envelope, said origi-nals/print-paper tray inclucing a mounting means for mounting said originals/print-paper machine to have a substantially vertical orientation said envelope mouth facing upwardly adjacent said firs and second inlets of said print machine, said envelope being of a size tor hording said originals and print
with top edges thereof being adjacent said mouth;
said copies tray defining a relatively flat copies envelope for receiving and holding said copies in an orientation tendin toward a vertical, said copies envelope having a mouth a one edge thereor through whice said removed from said
ceived from said print machine and copies envelope by an operator, said copies tray including a mounting means for mounting said copies tray adjacen said print machine to have an orientation tending toward the vertical with said copies-envelope mouth facing up A method of making copies of larg achine of the type having an exposure porets with a print portion including a first inlet for receiving original traces and print paper sheets and a first outlet for ejecting said races and print-paper sheets from said exposure portion, and a ond inlet for receiving exposed print paper sheets and a second
outlet for ejecting developed print-paper sheets, said method jecting the antigen sample after said migration to immunodiffu-
comprising the steps of: comprising the steps of:
placing the originals in a substantially vertically-oriented envelope having a mouth opening upwardly adjacent to said inlets of said print machine, said originals facing said print machine;
placing a stack; of print paper in said originals/print-paper
envelope print machine;
extracting an original to be copied and a sheet of print paper from said originals/print-paper envelope simultaneously of print paper together into said first inlet of said print of print paper together into said first inlet of said print
machine;
upon its ejection from said first outlet, guiding said original back into said originals/print-paper envelope; and upon its ejection from said first outlet, guiding said print paper into said second inlet; and paper into a separate, substantially vertical copies enve-
lope. lope.

MODE LOCKED LASER RANGE FINDER
Stephen M. Fry, Woodland Hills, Calif., assignor to Hughes Aircraft Company, Culver Clity, Calif.

Filed Nor. 24, 1976, Ser. No. 744,531
Int. C. 2 Co1C \(3 / 08\). G01P \(3 / 36\)
U.S. CI. 356-5

9 Claims
-

\(\pm\)
1. A laser range finder comprising:
a mode locked laser having a cavity for providing mode ocked laser pulses oscillating in said cavity along an
switching means positioned external to said cavity in said optical path for passing at least one of said laser pulses therethrough;
optical means po
optical means positioned in said optical path for transmitting
at least one of said laser pulses passed through said switch. at least one of said laser pulses passed through said switch-
ing means toward an object, and including first pulse detector means for detecting a pulse returned from said object;
second pulse detector means positioned between said cavity and said switching means for detecting said laser pulses ounting means said cavity; and first pulse detector mean and said second pulse detector means for providing range counts during a counting interval.

\section*{4,097,149}

OUANTITATIUE PROTEIN ANALYSIS BY
IMMUNODIFFUSION
Frederick J.
Padmasini K. Ayengar, both of Pasa-
Filed Feb. 3, 1975, Ser. No. 546,351
U.S. CI. 356-72

Int. Cl. \({ }^{2}\) G01N \(27 / 26\)
16 Claims concentration of a protein in an antigen sample which has bee subjected to immunoelectrophoresis including the steps of producing selective protein migration by electrophoresis in
one dimension in a thin layer of supporting medium, and sub-
on with an antibody source containing an antibody specific to said protein, the protein and antibody diffusing into reactive layer intially free of both antigen and antibody and reacting to form an elongated precipitation zone; said method comprising scanning the zone by optical means under dark field illumination, at a selected time following initiation of said diffusion, along a plurality of generally parallel mutually
spaced scan paths which cross the zone transversely to develop electrical intensity signals representing the inten sity of the scattered light at a series of positions on each scan path, said positions being distributed partly within the zone and partly outside the zone,

deriving from said intensity signals for a plurality of said positions within the zone an electrical sum signal repre-
senting the sum of the effective excess of each of the intensities within the zone over intensities outside the zone,
and
and comparing the resulting sum signal with a set of refer ence sum signals derived from corresponding measure ments of reference zones produced by equivalent immunoelectrophoresis of a plurality of reference antigen solutions containing respective known concentrations of said protein, thereby providing a
tion of said protein

OPTICAL DETET, 097,150
OPTICAL DETECTION WEIGHING SYSTEM Sosco Wu, Trumbull, Conn., assignor to Pitney-Bowes, Inc. Stamford, Conn.
led Jul. 23, 1976, Ser. No. 708,444
Int. Cl. \({ }^{2} \mathbf{G 0 1 B} 23 / 36,9 / 02\)
U.S. Cl. 356-72

8 Claim

1. An optical detection weighing system, comprising a tare support means for supporting an article to be weighed through a weighing range, said tare support means being substantially rigid so that displacement of the tare suppor means through the weighing range will not be substan
tially visually appareet a and tially visually apparent; and
an optical detector for determining the extent of the tare support means displacement, the detector including a first
optical grating and a second optical grating seid first optical grating being fixed to the tare support means and being displaceable therewith through said weighing
range, said second optical grating being operatively fixed with respect to the displacement of the first optical grating and said nare sigporce means, the optical gratings being
including a light source positioned with respect to each other and said light source means for modulating light from said light source means to provide an optical interference pattern having at least one moire-type fringe, and photodetector means dital shift in
adjacent the optical gratings to detect an optical she one moire-type fringe in response to displacement of the tare support means, and provide an electrical output protaro support to the optical shift of said moire-type fringe, said optical gratings and said photodetection means being
constructed to operate in a generally linear, repeatable constructed to operate in a generally linear, repeatable
portion of a cyclic moire fringe output throughout the portion of a cyclic moire fringe output anroughout the
weighing range, whereby the weight of an article may be determined.

4,097,151
METHOD OF AND APPARATUS FOR LOCATING B TYPE AND POINT TYPE DEFECTS IN A GLASS RIBBON Hugh E. Shaw, Jr., New Kensington, Pa., assignor to PPG Industries, Inc., Pittsburgh, Pa.

Filed Mar. 16, 1976, Ser. No. 667,32
Int. Cl. \({ }^{2}\) G01N 21/00, 21/16
U.S. C. \({ }^{356-73}\)
ratio of light to dark areas of the seco beam caused by point type defects; and second ensity variations of the rectangular portion of the second scanning beam to determine point type defects.

\section*{SPECTROPHOTOMETER WTAH}

D DISPLAY
tanley J. Kishner, Pomona, N.Y., assignor to Kollmorgen Cor
poration, Hartford, Conn.
Filed Aug. 25, 1976, Ser. No. 717,587
Int. Cl. \({ }^{2}\) G01J \(3 / 42\) 2
U.S. C1. 356-96

1 Claim

1. A spectrophotometer for providing, simultaneously, a measurement of sample transmittance at any desired visible wavelength and a display of the visible transmittance spectrum
of the sample comprising:
(b) a lens for focusing the light produced by said filament; (c) a transmissive diffraction grating responsive to said light focused by said lens for dispersing said light into its component wavelengths and illuminating said sante with said dispersed light;
light transmitted by said sampler
(e) a photoconductive photoderector located proximate to
and below said display and slightly closer to said diffraction grating than said screen for simultaneously, selectively sensing a portion of the spectrum of saidelayed on the upper portion of said screen;
(f) means for indicating which portion of the spectrum of said dispersed light transmitted by said sample is being
1. In a method of inspecting a glass for point type and \(\mathbf{B}\) type defects wherein the method incluces the seps of diass of light through the glass as a transmitted beam of light; and displacing the beam of light and glass relative to one another to pass the beam of light through the glass allong a scan path, the improve ment comprising
spliting the tra
splitting the transmitted beam of light into a figh
light beam and a second scanning light beam;
passing a generally rectangular portion of the first scanning
light beam having a length greater that its width to (1)
minimize ratio of light to dark areas of the first scanning minimize ratio of light to dark areas of the first scanning
light beam caused by point type defects and (2) maximize ratio of light to dark areas of the first scanning light beam caused by B type defects;
sensing intensity variations of the generally rectangular
portion of the first scanning ige to determine
passing a generally rectangular portion of the second scan-
passing a generaly recing a length less than the length of the
ning light beam havian of the first scanning light beam to (1)
rectangular portion og
rectangular portion of the first scanning light beam to (1)
minimize ratio of light to dark areas of the second scanminimize ratio of light to dark areas of the second scan-
ning light beam caused by B type defects and (2) maximize
sensed by said photodetector; and
(g) means for providing a visual indication of the sample (g) means for pr
transmittance.

4,097,153
METHOD AND APPARATUS FOR MEASURING THE ELECTROPHORETIC MOBILITY OF SUSPENDED ELECTROPHORETIC MORICLES
Joseph DeRemigis, New Market, Canada, assignor to Sentrol Systems Ltd., Downssier, Canada
Int. C. \({ }^{2}\) F01N M1/00; G01P 3/36; B01X S/00; G01B \(9 / 02\) U.S. Cl. 356-103
1. In an apparatus for measuring the electrophoretic mobility of particles suspended in a fluid medium including a source of coherent electromagnetic radiation, means for directing source adiation upon said suspended particles to produce scattered
und cles in a certain direction, a radiation detector, means for
coupling source radiation and scattered radiation to said detect tor, said detector providing a heterodyne signal, and anally yer
means for determining the spectral composition mean signal, the improvement comprising means for applying to the suspended particles respective first and second electric

TARGET LOCATING SYSTEM Quentin D. Appert, Tustin, Calif, assignor to Rock
tonal Corporation, Anaheim, Calif. well Internproration, Anaheim, Calif.
Filed Jul Filed Jul. 24, 1967, Ser. No. \(\mathbf{6 5 6 , 9 8 7}\)
Int. Cl. \({ }^{\text {G }}\) G01B \(11 / 26\) G02B \(23 / 10\) U.S. Cl. \({ }^{356-152}\)

fields in said direction over first and second measuring inter-
vals, the magnitudes of said applied fields in said direction vals, the magnitudes of said applied fields in said direction
being constant over the duration of said measuring intervals. being constant over the duration of said measuring intervals,
and comparison means for determining changes in the spectral composition of said heterodyne signal between said first and second measuring intervals.

4,097,154
PRECISE POINTING ALO97,154
Pavid L. Peters, Whit PRES
David L. Peters, Whitney Point, and Philip R. Mart, Sr., Vestal, both of N.Y., assignors to The Singer Company, Binghamton,

Filed Sep. 21, 1976, Ser. No. 725,165
Int. C1. \({ }^{\text {2 }}\) (01B \(/ I / 26 ;\) G09B 9/08 USS. Cl . \(356-152\)

17 Claims

1. In a camera/model display system comprising two model 1. In a camera/model display system comprising two model
boards, each with its own optical probe and with means to control the positioning of said optical probes, apparatus to
enhance the positioning of said probes to allow each to reenhance the positioning of said probes to allow each to procisely view desired points on their respective model boards
with the same perspective comprising: with the same perspective comprising:
a. a laser having a characteristic light signature distinguishable ards;
b. means to communicate said laser light to a desired point on each model board from which point said light is emit-
bod ted;
c. means to distinguish said laser light from the light output of each optical probe as said probes view their respective model boards;
d. means to locate the relative positions of said laser light within the field of view of each of said optical probes and e. means to correlate said locations and to generate a differ ential control signal to apply to at least one of said optical
probes, said differential control signal enhancing the operaction of said means of controlling the position of said probes and being operative only when there is a difference in the relative positions of said laser light within the field of view of each of said optical probes.
1. In a target locating system wherein a target is illuminated by a pulsed laser illuminator, operating at a preselected fixed pulse rate, by a forward observer, means for use by a remote ing, in combination:
means for receiving and detecting the pulsed laser illuminatron reflected from that target, said means being sensitive to the direction of incidence of said reflection illumination with respect to a reference axis; and
means responsive to said direction sensitive n
eating a visual indication of the direction of said target with
and respect to said reference axis, said visual indication genesting means comprising means for preventing said visual indication from responding to light pulses whose repeti-
ion rate is different from said fixed pulse rate, whereby said remote observer may position said direction sensitive means to align said reference axis with the line of sight to said target.

4,097,156
REAL-TIME SYSTEM FOR AUTOMATICALLY MEASURING THE PERFORMANCE OF WEAPONS Arnold L. Garber, and Hans H. Cremer, both of San Jose, Calif., Filed Feb. 11, 1977, Ser. No. 767,729
Filed Feb. 11, 1977, Ser. No. 767, 2729
Int. Cl. \({ }^{\text {G01B }} 11 / 26\); F41F \(27 / 00\) UsS. CI. \(356-152\)

6. A real-time system for automatically evaluating the performance of a weapon by measuring the percentage of time
that the weapon is trained on a target, said system comprising:
flash lamp mounted on said target;
4,097,158
a flash lamp mounted on said target;
means for energizing said lamp so that said lamp flashes at a predetermined rate;
predetermined rate;
photodetector means mounted at said weapon;
means for directing flashes of radiant energy from said flash lamp to said photodetector means when and only when said weapon is aimed at said target, said photodetector means having means for developing a signal pulse for each hal generating means positioned at
oping oscillator pulses having a frequency substantially equal to the frequency of said lamp flashes;
first counting means for counting the number of oscillator pulses generated during the time period that said weapon is being evaluated; and
second counting means for counting the number of signal pulses developed by said photodetector means during said evaluation time period.

ALF-MAXIMUM THRESHOLD CIRCUIT FOR OPTICAL MICROMETER Jack T. Dehait, Dayton, Ohio, assignor to Systems Research Laboratories, Inc., Dayton, Ohio Filed Jan. 6, 1977, Ser. No. 757,218
Int. C12
U.S. Cl. \(356-160\)

VEHICLE WHEEL ALIGNER FOR MEASURING FRONT WHEEL TOE WITH RESPECT TO THE REAR WHEEL Melvin H bill axis of rotation San Jose, Calif.

Cited Mar. 2, 1977, Ser. No. 773,639
U.S. Cl. 356-152 Int. Cl. \({ }^{2}\) G01B 11/26

6 Claims


\begin{abstract}
1. Apparatus for measuring the front wheel toe angles of 1. Apparatus vehicle having pairs of front and rear wheels, said app ratus comprising alignment means adapted to be mounted upon one of said front wheels of the vehicle in a predetermine position with respect to the axis of rotation of said one front wheel, a mirror adapted to be mounted upon the sear one front wheel, said mirror being mounted in a predetermined position with respect to the axis of rotation of said rear wheel, said alignment means including means for projecting a beam of light to said mirror, said alignment means further including means for receiving the reflected beam of hight from said mel or and for calculating the toe angle of said ene in accordance relative to said axis of row received light beam, means mounted upon one of the front wheels of the vehicle for projecting a beam across the front of the vehicle toward the other from wheel of said vehicle, means mounted upon said other front wheel of said vehicle for projecting a beam across the vehicle toward said one front wheel, means responsive to the positions of said projected beams for providing a signal proportional to the total toe angle beteans connected to said last named means for calculating che, means connected between said two front wheels of the vehice, and logic means connected to both of said calculating means for subtracting the toe angle of said one front wheel from the total toe angle and for providing an output reading of the toe angle of the other said rear wheel.
\end{abstract}

1. In an optical micrometer wherein a beam of light is 1. In an optical micrometer wherein a beam of light is
scanned across an article placed within a zone of measurement of the size of the article, a method for determining accurately when the beam crosses the edges of the article including the steps of
generating a first set of electrical signals representing the intensity of the beam after it passes through the zone of measurement including a full-amplitude real time signal and a half-amplitude real time signal,
generating a second set of signals delayed in time from the first set of signals including a full-amplitude delayed signal and a half-amplitude delayed signal,
sensing when the beam is obscured by the article by comparrude delayed signal to produce a first output signal,
sensing when the beam emerges from the outer edge of the article by comparing said half-amplitude real time signal and said full-amplit output signal,
delaying the first
delay, and
 output signal to provide a composite output signal which represents the size of the article within the zone of measurement.

4,097,159
METHOD OF, AND DEVICE FOR EFFECTING CONTACT-FREE MEASUREMENT BY OPTICAL SCANNING
Per Strandberg, Vesteras, Sweden, assignor to Kockums Autonation AB, Vesteras, Sweden
Filed Aug. 6, 1976, Ser. No. 712,179 ant a plication Sweden, Oct.
Int. Cl. \({ }^{2}\) G01B \(11 / 04\) 22 Claims

1. A method of optically scanning an object which in its cross-section shows a first edge limited by a first pair of corner points, and a second edge and a third edge issuing from the first
and second corner points of the first pair respectively and terminating by a first and a second corner points of a second
pair respectively, comprising the steps of: moving in a direction at least approximately parallel with the said first edge the
object relative a scanning-and-sensing-system comprising least two emitters emitting scanning rays and at least two scanning ray receivers;
aligning the scanning ray receivers with the scanning rays for producing electrical signals whenever the respective scanning ray is obturated and whenever the obturation
subsequently is relieved; subsequently is relieved; indicating the said relative movement;
subtending a smaller angle with the scanning rays with the direction of transport than the said second and third edges;
evaluating, in correlation with the electrical signals received from the position indicator, the electrical signal received when a first scanning ray is obturated as the indication of second scanning ray is obturated as a first corner point in the said second pair and when the obturation of the said first scanning ray is relieved as the second corner point in
the said second pair and when the obturation of the said the said second pair and when the obturation of the said
second scanning ray is relieved as the second corner point second scanning ray
in the said first pair.

METHOD FOR INSPECTING OBJECT DEFECTION BY LIGHT BEAM
Masamichi Yataki, Tama; Hideyo Takahata, Yokohama, and Norio Simomura, Kawasaki, all of Japan, assignors to Canon Kabushiki Kaisha, Tokyo, Japan
application Apr. 4, 1977, Ser. No. 784,328
Claims priority, application Japan, Oct. 7, 1974, 49-115323; Oct. 2, 1974, 49-113610; Sep. 6, 1974, 49-1102679 U.S. C. 356-237 C. Goin 21/32, 21/48

> 1 Claim Sir Walter MORTISE AND TENON JOINT
> \(\begin{aligned} & \text { Sir Walter Lindal, Suite 1201, 1120-8th Ave., Seattle, Wash. } \\ & 98101\end{aligned}\)
> Filed Jul. 26, 1976, Ser. No. 708.409
U.S. Cl. 403-264 Int. Cl. \({ }^{2}\) B25G 3/00 28 Claims

COUPLING WITH OVERLOAD SAFETY DEVICE ermann Weiss, Kaarst, and Hans Wellkamp, Wittlaer, both of Germany, assignors to Atec.Weiss KG, Kaarst, Germany Filed Jun. 16, 1977, Ser. No. 807,339
Claims priority, application Germany, Sep. 11, 1976, 2640989
U.S. Cl. 403-2

1. A coupling apparatus employing two coaxially held coupling halves connected to one another by a tension member having a predetermined breaking point, said tension member
secured to one coupling half at one end and is radially and tangentially displaced to the other end of the tension member which is secured to the other coupling half, said apparatus including: a movable element ( \(6 c, 6 d\) ) of said tension member positioned at both sides of a predetermined breaking point (7) of said tension member, holding means \((9 a, 9 b, 11)\) disposed in proximity to said tension member which limit the swinging of
the movable elements ( \(6 c, 6 d\) ) of said tension member by centrifugal forces acting thereon after the tension member ( 6 ) has broken; a stop means (10) carried by a coupling half (2) associated with a first moveable element ( 6 c ) of said tension member (6), being provided in the path of movement of a second movshe element ( \(6 d\) ) of the tension member ( 6 , whereby the path of movement of the first movable element (6c) of said tension member (6). the steps of:
he steps of: \(\quad\) inspecting a defect of an object comprising projecting a narrow beam to the object, whereby a scattered light beam takes place from the spot on the object projected with the beam certain predetermined circular line to obtain a serial DC output signal when a defect does not exist at the scanned spot and to obtain a serial AC output signal when a defect exists at the scanned spot; and
whether the output signal is DC or AC

1. A construction member comprising a pair of mutually opposing, normally strip-like bodies of wood or other fastener impaable material, which are abutted face to face with one
another along a common axis to form the main body of the member, and define an elongated, axially extending slot at the interface therebetween which extends substantially full length of the member and opens at corresponding axial ends of the sorfaces thereof which are mutually opposed to having defining
the bodies across the interface, and there being an elongated strip of metal-like reinforcing material interposed in the slot face to face with said surfaces and extending lengthwise of the slot substantially the full length thereof, said metal--ike strip having integral tooth-like fasteners on the longitudinally ex tending edges thereof which are impaled in the bodies of fas-
tener impalable material at the aforesaid surfaces of the slot to tener impalace material at he aforesad surfaces of the
rigidy interconnect the bodies across the interface, said bodies of fastener impalable material substantially co-terminating with one another at the aforesaid axial ends thereof, and a portion of said metal-like strip projecting from the slot beyond said axia tenon on that end of the member.

4,097,163
METHOD OF SWAGE JOINING A ROD END TO A TUBE AND THE PRODUCT THEREOF Douglas K. Dubuque, Lynnwood, Wash., assignor to Tyee Aircraft, Inc., Everett, Wash.
Filed Jan. 10, 1977, Ser. No. 757,950
Int. Cl. \({ }^{2}\) F16B 29/OD
U.S. C1. 403-274

1. A combination swage-joined steel rod end having exter nal, imprinted, screw threads, having major and minor diame ters, extending from a free end portion toward an inner end portion thereof and terminating in a plurality of paralle grooves extending into and crosswise of said screw threads to provide axially spaced rows of grooves which rows are norm to the axis of said steel red, hinor diameter of said screw threads, and positioned in the rod adjacent the said inner end portion of said rod; and a relatively softer metallic tube threadedly connected to said rod end and swaged to the rod end by the flow of metal from said tube to
said rod end at the area of said grooves in said screw threads.

4,097,164
TERMINALS ON WIRE ROPE AND STRAND Robert Edward Campbell, Doncaster, Eggland,
don Limited, England
Con Continuation of Ser. No. 499,652, Aug. 22, 1974, aband Claims priority, application United Kingdom, Aug. 28, 1973, 40491/73

Int. Cl. \({ }^{2}\) F16G 1//02
U.S. C. 403-284

1. A terminal assembly
including in combination: \(\quad\) and
elongated terminal body means having an open end and a tially intermediate the length of said terminal body means,
said first bore portion being adapted to receive and engage he rope or strand upon insertion therein, said terminal body means further having a second longitudinal bore portion integral to said first longitudinal bore portion and xtending to said open end said termina and
lurality of separate and spaced deformable damping member means each comprised of an elongated plastic and resilient material positioned within said second longitudinal bore portion and adapted to surround the rope or said second longitudinal bore portion into said first longiudinal bore portion, such that when said terminal body means is radially compressed inwardly, said first bore portion engages and compacts the undeformed rope or lrand direchy over whe within longitual bore portion thereby preventing the rope or strand from being withdrawn from the terminal body means and said second bore portion engages said plastic and resilient material of said deformable damping member means to cause the same to engage transverse and longitudinal vibrations transmitted along the rope or strand towards the terminal assembly.

\section*{POLE TOP EXTENSION BRACKET} Jackson C. Quayle, 10225 Darrow Rd., Twinsburg, Ohio 4408 Continuation-in-part of Ser. No. 680,290, Apr. 26, 1976, Pat. No. 4,032,244. This application Apr. 29, 1977, Ser. No. 792,130 U.S. Cl 403-286 Int. Cl. \({ }^{2}\) F16B 7/00

1. A bracket for connecting a top extension pole member to an existing pole member each having an end portion comprisrally locaated shaft member extending perpendicularly wardly therefrom to be received in at least one corresponding center bore provided in one of said pole members; apertures provided through said plate; first sleeves matingly embedded in the end portion of the existing pole member concentrically aligned with said apertures; relatively large fastening means passing top of said existing pole to attach and hold said metal plate thereon; strap members positioned vertically along the outer surfaces of said pole members and said plate with apertures therein; second sleeves matingly embedded in said outer surfaces of said pole members concentrically aligned with said strap apertures; fastening means to secure said straps to the periphery of said plate; and asterid strap apertures and said second sleeves into said pole members to secure said strap members to said pole members to
form a unified pole structure capable of resisting significant shear and bending moment stresses.

LATCH FOR FILM CARTRIDGE
LATCH FOR FILM CARTRIDGE
Reid J. Stava, Fairport, N.Y., assignor to The Singer Company, New York, N.Y.

Filed Sep. 20, 1976, Ser. No. 724,882
U.S. C. 403-321

1. A latch detachably engageable with a film strip cartridge of the type having at least a pair of side walls and an aperture in each of said side walls comprising:
a plate portion rotatably supported on a support means and having an axis of rotation substantially normal to the plate;
a first tab located on a first area of said plate;
a second tab located on a second area of said plate. opposite
said tabs facing in opposite directions;
at least first and second spaced, opposed, parallel walls
defining a carridge restraint means; defining a cartridge restraint means;
said first sidewall having a first access port for said first tab;
said second sidewall having a second access port for said
second tab;
second tab
causes said first tater paid plate portion in a first direction second tab to enter said second access port:
and rotation of said plate portion in the second direction, opposite from said first direction, causes said first tab to
retract from said first access port and said second ta to retract from said second access port.
\[
\begin{aligned}
& 4,097,167 \\
& \text { HRUST COLLAP }
\end{aligned}
\]
\(\frac{4,097,167}{\text { THRUST Coltar }}\)
Andrew Stratienko, 8503 Elliston Dr., Philadelphia, Pa. 19118 Filed Mar. 7, 1977, Ser. No. 775,174
U.S. CI. 403-374
\[
\text { Int. Cl.2 }{ }^{2} \text { B25G } 3 / 20 \quad 11 \text { Claims }
\]

1. A thrust retaining device for positive axial securing of part on a smooth shaft, comprising:
a contractible inner collar ring for retaining thrust and hav-
ing an inner surface for gripping the outer surface of the shaft when contracted, an outer surface which is axially
inclined, and an end surface for positioning against the part to be secured;
outer collar ring to be placed over and for contracting the inner collar ring, the outer collar ring having an inne
surface which is axially inclined at the same angle as the surface which is axially inclined at the same angle as the
outer surface of the inner collar ring for engaging that surface, the end surface of the inner collar ring extending beyond the outer collar ring when the thrust retaining device is installed on the shaft, at least one of the axially a stable anti-friction material preventing metal to metal contact thereon, and the inner and outer collar rings complying with following condition:
\(f>\tan (a+\phi)\)
where:
\(f\) is the coefficient of starting friction of the inner collar ring on the surface of the shaft,
\(a\) is the angle of inclination of the axially inclined surface,
\(\phi\) is the frictional angle of the \(\phi\) coefficient of starting friction axially inclined surface, the face being tan \(\phi\), and face being tan \(\phi\), and
loading screw means attached to the outer collar ring for
applying axial force in the direction of the inner surface applying axial force in the direction of the inner surface
axial inclination, whereby the outer ring slides relative to the inner ring and causes the inner ring to contract and grip the shaft.

\section*{4,097,168}

PRESTRESSED CONNECTION AND FASTENER THEREFOR
aul V. Pagel, Fullerton, Calif., assignor to Microdot Inc., Grenwich, Conn.
Continuation-inn-part of Ser. No. 616,131, Sep. 24,1975 , Pat. No. 1912,884, which is a continuation of Ser. No. 182,535, Sep. 21, 19, abandoned. This application 7
1994, has been disclaimed.
Int. C.\(^{2}\) B25G \(3 / 36\)
U.S. C1. 403-388

1. A bolt for forming a controlled radially prestressed con nection between a plurality of members formed of material
relatively softer than the material of said bolt, said members having aligned bolt-receiving bores defining a right circula surface of revolution, said bolt including a head and having an longated shank having a nominal conical surface of revoluon, said shank having circumferentially spaced arcuate con inuously undulating axially extending alternate convex lobes, the crests of which define said conical surface of revolution,
and concave grooves, the number of said convex lobes divided by a nominal circumference of the shank portion of said bolt resulting in a number in the range of 14 to 32 , a radius of said bolt divided by the radius of said convex lobes resulting in a number within the range of 2 to 5 , corresponding portions of
the crests and roots of said convex lobes and concave grooves being spaced radially outwardly and inwardly, respectively ubstantially the same distance from said conical surface of revolution, said convex lobes effecting a radially outward compression of the material surrounding said bores to prestres
said material to a degree sufficient to cause flow of said material circumferentially and radially inwardly opposite direction, and including: into the concave grooves of said bolt to preclude excessive a low profile support to be transversely superimposed upon a pavement surface over which vehicular traffic is to pass
and comprising, a pair of spaced rails secured to said tween.

\section*{CLAMP ARRANGEMENT AND SYSTEM FOR SHEET MATERIAL \\ Clifford G. Kelly, \#2-10492 135th St., Surrey, British Columbia, Canada (V3T 4C5 \\ Continuation of Ser. No. 620,110, Oct. 6, 1975, abandoned. This \\ application Oct. 7,1976 , Ser. No. 730,371
Int. C.2 F16B \(2 / 02\) \\ U.S. C1. 403-391 \\ Int. Cl. \({ }^{\mathbf{2}} \mathbf{F 1 6 B} 2 / 02\) \\ 11 Claims} pavement surface, there being an upwardly open channel pavement surface, there rails;
and a plurality of modules selectively replaceable in a series along the rails and including barrier modules comprising, a slotted mounting plate secured to and extending between the rails, a barrier blade assembly journaled on spaced trunnions depending into said channel between the rails and with at least one barrier blade depressible through the mounting plate slotted therefor, and spring assembly to the mounting plate and yieldingly urging the barrier blade assembly into stopped engagement with the mounting plate to be visibly exposed thereabove for vehicle control.

\section*{4,097,171}

MANHOLE COVER SUPPORT RING Raymond L. Fier, 5323 Pin Oak Ave. NW., Massillon, Stark County, Ohio 44646

Filed Sep. 16, 1977, Ser. No. 833,805
Int. CC. \({ }^{2}\) E02D 29/14
U.S. Cl. \(404-26\)
1. A clamp arrangement for securing sheet material to a base comprising a clamp having a pair of jaw plates with opposed grooves therein to act as jaws for receiving a rod with a sheet
extending therearound and placed between the jaw plates, and extending therearound and placed blates together to cause saic clamping means for drawing tereb secure the sheet to said rod, said grooves being of a predetermined cross section to enclose a space therebetween shaped to receive a rod of substantially he same cross section, and said clamping means comprising in the other of said plates, a locking bar mounted for rotation on the bolt adjacent said other plate, restraining means on the bolt to prevent movement of said bar outwardly along the bolt, and a protuberance on said adjacent plate near the bolt, said bar being rotatable on the bolt from a position clear lof position on the protuberance to move the jaws towards each other to grip a rod and sheet therebetween.

\section*{4,097,170}

MODULAR TRAFFIC CONTROLLER Harry D. Dickinson, 1681 Larco Way, Glendale, Calif. 91202 Filed Feb. 18, 1977, Ser. No. 769,940
U.S. CI. 404-6 18 Claims
12. A manhole assembly including
a. a manhole frame adapled to be placed below a pavement surface, said frame having a generally vertically extending annular horizontal surface extending inwardly from said conical surface;
b. ring means having a generally vertically extending conical flange and an annular ledge mounted on the bottom of said onical flange and extending inwardly therefrom, said periphery forming a gap between spaced ends of said flange and ledge;
lever means pivotally mounted on the ring means and extending between and operatively engageable with the spaced ends of the ledge for expanding the ring means
outwardly upon movement of the lever means from an open position to a closed position;
d. the ring means being supported on the horizontal surface of the manhole frame, with the ring means flange being in abutting engagement with the conical surface of said and
e. a circular manhole cover lying within the conical flange of the ring means and being supported on the ledge of the ring means, verically naing the cover tal surface of the manhole frame.

\section*{\(4,097,172\)}

\section*{COLD-PATCHING}
ror Wurkhart Monace Pa, assignor to Arco Polymers,
Inc., Philadelphia, Pa.
Filed Dec. 21, 1976, Ser. No.
753,052
Filed Dec. 21, 1976, Ser. No.
Int. C. \({ }^{2}\) E01C \(7 / 35\)
U.S. Cl. 404-75
5. 8 Clain pavement surface area which comprises:

a. applying polystyrene dissolved in a volatile solvent to the deteriorated pavement area
b. applying polystyrene dissolved in a volatile solvent to the cold patch material,
cavity the treated cold patch material in the treated applying pressure to said area,
e. allowing pressure to said patched area,
therethrough the polystyrene whereby leaving deposited area and the cold patch applied thereto are interconnected by said polystyrene throughout the patch and the surrounding area to securely connect the cold patch material to the surrounding area

4,097,173
SELF PLACING AUTOMATIC FORM
John R. Tout, 3530 Platt Ave., Fresno Calif. 93702
John R. Tout, 3530 Platt Ave., Fresno, Calif. 93702 Filed Sep. 23, 1977, Ser. No. 836,046
U.S. Cl. 404-98 able inserts
special recess special recesses for inserts with outside guides provided in said hub and extending over ins widt grorts provided with U-shaped, finely machined, especially
ground guides fitting over edges of said special recesse ground guides fitting over edges of said special recesses,
one of said edges of at least one of said special recesses being provided with at least one step and
a wedge guided in said step.

\section*{4,097,175} MACHINE FOR DRILLING HOLES IN
RIGHT-ANGULAR WORK SURFACES Yoshihiro Tsukiji, Komatsu, Japan, assignor to Kabushiki Kai sha Komatsu Seisakusho, Tokyo, Japan Filed Jan. 5, 1977, Ser. No. 757,057
Int. Cl.'2 B23B 39/14. 4//00 U.S. Cl. 408-23 Int. Cl. \({ }^{2}\) B23B 39/14, 41/00
1. A self-placing automatic form machine, comprising a frame supported upon traction wheels, a concrete-mix hoppe secured to one end of said frame, three self-placing form units
secured to said frame for finishing the concrete mix, a plurality of parallel, spaced-apart rollers secured within said frame for engagement with the concrete mix, and a plurality of laterally ooving rollers for finishing the concrete mix

4,097,174
Werner Heinlein, Lichtenau, Germany, assignor to Hans Hein
lein, Zirndorf bel Nuremberg, Germany
Filed Nov. 8, 1976, Ser. No. 740,077
Claims priority, application Germany, Sep. 4, 1976, 263989 U.S. Cl. 407-46

1. A milling cutter form milling workpieces, the cutter com prising: hub having an annularly extending circularly arched groove and a pluality of recesses therein; plurality of interchangeable inserts each having a circularly arched edge, each insert being mounted in one of said annularly extending circularly arched groove; clamping means for holding said inserts in said recesses
1. In a machine tool, in combination, a table, a crossrai atending parallel to the surface of said table, a carriage ounted on said crossrail for movement therealong, means for id co said carriage along said crossrail, a ram mounted on said carriage for movement toward and away from said table said ram being further movable with said carriage along said
crossrail, means for moving said ram toward and away fom crossrail, means for moving said ram toward and away from
said table, a toolhead pivotally mounted on that end of ssid ram said table, a toolhead pivotally mounted on that end of said ram supported by said toolhead for rotation about an axis lying in a plane parallel to said crossrail and at right angles with the surface of said table, means for imparting rotation to said toolholder, a rotary cutting tool supported by said toolholder or simultaneous rotation therewith, said toolhead being pivotcrossrail and parallel to the surface of said table, and means for pivoting said toolhead relative to said ram wherein said tool has a first operative position such that its axis is perpendicular
to the plane of said table and said tool has a second operative to the plane of said table and said tool has a second operative with respect to the plane of said table.

ARTICLEASP 4,097176
PARTICLE-ASPIRATING ACCESSORY FOR A HAMMER DRILL
KarI Wanner, Echterdingen; Wilbert Reibetanz, Leinfelden Manfred Bleicher, Leinfelden, and Herbert Wiesser, Leinfelden, all of Germany, assignors to Robert Bosch GmbH Stuttgart, Germany
Filed Sep. 22, 1976, Ser. No. 725,446
Claims priority, application Germany, Oct. 28, 1975, 2548100 U.S. Cl. 408-56 Int. Cl. \({ }^{2}\) B23B 51/06
\(\qquad\) 1. In combination with a boring implement 5 Claims adapted to hold a tool having an axis, an accessory comprising a collar surrounding said chuck; end turned away from said collar and from said imple-
ment, whereby said implement can be stabilized by means of said handle;
structure forming a throughgoing passage extending from said
including a nipple extending in a direction parallel to said axis with said passage opening at said nipple in said direction, a cup open away from said implement at said and

a telescoping tube extending between said cup and said nipple and formed of a pair of telescoping tube sections, compression spring braced between said sections, and sections; and
means including a flexible conduit having an end portion attached to and in line with said handle at said outer en for drawing gas and particles from said tool through sai passage.

4,097,177
tated faster than said feed hub to effect axial feed of said spindle, and
means including a ring actuated dog for disconnecting said drive hub from said spindle so that continued rotation of said feed hub will cause the threaded connection between said feed hub and
retract the spindle.
DIEHEAD CHASER CARRIER

Denis Alfred Nerell, Coventry, England assignor to Alfred Herbert Limited, Coventry, England Claims priority, application United Kingdom, Jun. 11, 1975, 24931/75 U.S. Cl. \(408-151{ }^{\text {Int. Cl. }}\) B23B \(51 / 00,51 / 14 ;\) B26D \(1 / 1216\) Claims

9. The combination of a carrier and a holder for a chaser element maintainable on a die head for securing the chaser element at a required helix angle to a workpiece, sal hocss for eceiving and aligning the chaser element with respect to the workpiece, said body being deformable at least in part rransversely to said recess, and clamp means for securing said ing said bod to secure said chaser element in said recess.

4,097,179

\section*{CUTTING TOOL HOLDER}

Richard C. Gersch, 617 June Filed Jun. 21, 1976, Ser. No. 698,264 The portion of the term of this patent subsequent to Oct. 11, 1994, has been disclaimed.

A drilling and turning power head comprising a box beam frame,
a spindle including an externally threaded portion at one end and means to accomodate a work holder at the other end, and mounting said spindle on said frame for both rotatable means moun movent,
and axial movement
an internally threaded feed hub mounted for rotation on said frame and adapted to cooperate with the externally frame and adapted to cortion of said spindle to form a thread connection,
a drive hub mounted for rotation on said frame and adapted to be releasably attached to said spindle,
a motor-driven drive shaft rotatably mounted on said frame a motor-driven
generally parallel with said spindle,
means including first and second pulleys for drivingly con necting said drive shaft with said feed hub and said drive necting said drive shan wo adapted that said drive hub is
U.S. CI. 408-151

21 Claims

1. A cutting tool holder, comprising:
hub member having a mounting end and an outwardly extending end, said hub member having an axis and an axial bore formed in its outwardly extending end, cylindrical bushing adapted to fit within the hub bore and axis of the hub member,
a bar holder having a shank portion disposed in said eccentric bore and adapted to support a cutting bar having a
cutting edge cutting edge,
means for secu while permitting rotation holder in said eccentric bore ber whereby rotation of said bushing in said hub member alters the radial distance of the cutting edge of said cutting
bar from said axis of said hub
bar from said axis of said hub,
compressible polymer and disposed within said hub bore
between said hub member and said bushing between said hub member and said bushing, and
a second tubular cylindrical bearing sleeve constructed of a
compressible polymer and disposed in said ecentric bor compressible polymer and disposed in said eccentric bore
between said bushing and the shank of said bar holder.
9. A cutting tool holder, comprising:
a hub member having a mounting end and an outwardly
extending end, said hub member having an axis and an extending end, said hub member having an axis and an
axial bore formed in its outwardly extending end.
axial bore formed in its outwardy extending end,
cylindrical bushing adapted to fit within the hub bore having an inner bore formed therethrough eccentric to the axis of the hub member.
a bar holder having a shank portion disposed in said eccentric bore and adapted to support a cutting bar having a cutting edge,
means for securing said bar holder in said eccentric bore while permitting rotation of the bushing in said hub mem-
ber whereby rotation of said bushing in said hub member ber whereby rotation of said bushing in said hub member
alters the radial distance of the cutting edge of said cutting alters the radial distance of the
bar from said axis of said hub,
a first cylindrical bearing sleeve constructed of a compressible material and disposed within said hub bore betweens
said hub member and said bushing whereby said hub member and said bushing whereby substantially the entire outer periphery of said first bearing sleeve flatly
abuts against the hub bore and whereby substantially the entire inner periphery of said first bearing sleeve flatly abuts against the outer periphery of said bushing, and
second tubular cylindrical bearing sleeve
a second tubular cylindrical bearing sleeve constructed of
compressible material and disposed in said eccentric compressible material and disposed in said eccentric bore
between said bushing and the shank of said bar holder whereby substantially the entire outer periphery of said second bearing sleeve flatly abuts against the eccentric bore and whereby substantially the entire inner periphery of said second bearing sleeve flatly abuts against the outer
periphery of said bar holder. periphery of said bar holder.

\section*{CHASER CUTTING}

James A. Kwieraga, Durham, Conn., assignor to TRW Inc., James A. Kieveland, Ohio

Filed Feb. 10, 1977, Ser. No. 759,955
U.S. Cl. 408-154

Int. C1. \({ }^{2}\) B23G \(5 / 16\)
engaging an associated chaser and applying to said associated chaser a biasing force having a component acting to maintain said associated chaser in contact with its respec tive camming surface.

4,097,181
ROTARY CUTTING TOOL
Ted J. Fisher, 1322 Rarhart Rd., Poplar Bluff, Mo. 63901
Filed Mar. 7 , 197, Ser Filed Mar. 7, 1977, Ser. No. 774,782
Int. C1.2 B23B 27/00, \(51 / 00\)
U.S. C. 408-187

1. A rotary cutting tool having a shank, a generally cylindriald head at one end of the shank constituting its forward end,
aving a flat bed portion formed by a notch extend ing rearwardly from the forward end of the head, said notch having a width approximately equal to the diameter of the ead and a depth approximately equal to one-half said diame er, and means for mounting a bit on the bed portion, said hape for carrying the bit, said clamp being mounted on the bed portion by a threaded fastener extending through an axia hole in the clamp and into a tapped bore in the bed portion, the lamp being rotatable with respect to the bed portion for lamp having a groove therein offset and separate from said xial hole and extending completely across one face of the clamp with said bit being axially slidable in the groove to different extended positions, said groove having a depth less han the thickness of the bit such that the bit projects from th open side of the groove for engagement with said bed portion
whereby on tightening said fastener the clamp is drawn toward the bed portion thereby rigidly to clamp the bit in said groove gainst the bed portion in any predetermined adjusted angular and extended position.
9 Claims

1. An apparatus for producing threads or other configura tions comprising:
an elongated body
a plunger member mounted for axial movement in said body and having inclined camming surfaces;
at least one chaser member seated on each of said camming spring clip means extending generally radially outward
from adjacent each camming surface, each clip means from adjacent each camming serilien, each end portion

COMBINATION TAP AND DIE WRENCH Edward M. Rolnick, North Dartmouth, Mass., assignor to Gulf \& Western Manufacturing Company, Southfield, Mich. Int. \(\mathbf{C l} .^{2}\) B23B \(31 / 10 ;\) B23G \(5 / 04\) U.S. Cl. 408-239 R

1. A combination tap and die wrench having a center portio and a pair of opposite arm portions extending outwardly from
the center portion, said center portion including a pair of opposed flat surfaces with a central aperture extending through the thickness thereof from one of said surfaces to the opposite surface, and at least one receptacle on each of said
surfaces about said central aperture, wherein said central aperture is adapted to receive and positively retain tapping apparatus and wherein each of said receptacles is adapted to receive and positively retain a threading die therein.

METHOD OF AND APPARATUS FOR CONTROLLING Daumantas NY WY.PASS VALVE Calif, and Takao Kuwabara, Hitachi, Japan, assignors to Bechtel International Corporation, San Francisco, Calif. and Hitachi, Ltd., Tokyo, Japan

> Filed Jul. 9, 1976, Ser. No. 704,031
U.S. Cl. 415-1

13 Claims

1. A method of controlling a by-pass valve for use in combination with a penstock by means of a flow rate regulating device for regulating a quantity of water flowing through said
penstock, said method comprising the steps of cooperatively penstock, said method comprising the steps of cooperatively
opening or closing said by-pass valve in response to the operation of said flow rate regulating device to maintain the total quantity of water passing through said flow rate regulating
device and said by-pass valve constant when said by-pass valve is opened, and closing said by-pass valve at a sufficiently slow is opened, and closing said by-pass valve at a suffcente
speed not to induce an increase in water pressure within said penstock during the normal condition of operation in which
said flow rate regulating device is opened at a stable opening degree.

PRESSURE OPERATED VALVE
Gunnar Christer Hansson, Stockholm, Sweden, assignor to Atlas
Copco Aktiebolag, Nacka, Sweden
Filed Jul. 6, 1976, Ser. No. 702,984
Claims priority, application Sweden, Jul. 11, 1975, 7507972 Int. C1. \({ }^{2}\) F01D \(17 / 00\); G05D \(16 / 10\); F16K 31/12 U.S. Cl. 415-49 16 Claim

1. Pressure operated valve for automatic shut-off of a pneu matic circuit comprising:
a housing (19) connected to a pressure air source,
a valve body (21) movable within said housing between an
open and a closed position, and having an area (24) facing the closing direction and an area (22) facing the opening direction,
a first passage means (29) continuously connecting the closing direction facing area (24) of the valve body (21) to the pressure air source
open and closed positions, spring means ( 28,33 ) continuous
(21) toward its closed position,
second passage means (20) which direction facing area (22) of the valvects the opening pressure air source only when the valve body (21) occupeans definsed position, chamber in communication with said opening direction facing area (22) of the valve body (21) for receiving pressure air via said second passage means (26) and for building up pressure from said prossese position after being open so as to stabilize said valve body (21) in said closed position after being open, and said valve body including means (22) for closing said second passage means (26) when said valve body (21) occupies its passen position.
ond
\(4,097,185\)
LUBRICATING DEVICE
Rudolf H. Wolf, Adrian, Mich., assignor to Tecumseh Products
Company, Tecumseh, Mich.
U.S. Cl. 415-88 Int. C. \({ }^{2}\) F04B \(39 / 02\)

2 Claims a fluid sump and a vertically disposed rotary shaft above the fluid level in the sump, said tube comprising: a larger diameter upper cylindrical portion open at the upper end and adapted
for being fitted into a central bore in the shaft, said tube having a smaller diameter lower cylindrical portion adapted to be immersed in fluid in the sump and a tapering axial region connecting the upper and lower cylindrical portions, an inlet port extending axially into the lower end of said lower cylindiach pilly ind sid low

\section*{4,097,186}

MULTI-STAGE RING TYPE CENTRIFUGAL PUMPS
MULTI-STAGE RING TYPE CENRANS

\section*{Allan R. Budris, Nutley, N}

Inc., Mountainside, N.J.
Filed Nov. 18, 1976, Ser. No. 742,899
U.S. C. \(415-143\) Int. Cl. \({ }^{2}\) F04D \(29 / 44\) FiD \(5 / 22 \quad 27\) Cleims U.S. C.
1. In a multi-sta
a
1. In a multi-stage ring
b. said pump casing means having an inlet for fluid to be pumped, and an outlet for pumped fluid,
c. a pump shaft rotatably mounted in said casing, d. a plurality of serially arranged pumping stages having
impellers therein connected to and driven by said pump shaft, said pump casing inlet and said pump shaft constructed to accomodate a removable first impeller an
diffuser stage of said serially arranged pumping stages, diffuser stage of said serially arranged pumping stages,
e. inducer means in said pump casing means removabl e. inducer means in said pump casing means removably
associated with said shaft and with said pump casing inlet and occupying a position normally occupied by said first
impeller and diffuser stage, impeller and diffuser stage,

f. said inducer means having an inducer inlet in communica tion with said inlet for the pump and having an induce outlet disposed to deliver pumped fluid to the suction eye of the impeller of the adjacent one of the plurality of
serially arranged pumping sages, and serially arranged pumping stages, and
g. said plurality of serially arranged pumping stages concasing means.

\section*{4,097,187}
adJustable vane assembly for a gas turbine ohn Korta, Stoney Creek, Canada, assignor to Westinghouse Canada Limited, Hamilton, Canada
Cleims prity
Claims priority, application Canada, Oct. 14, 1975, 237568
U.S. CI. 415-161

shroud sections, a central projection means formed on said outer shroud section acts as a first locking member by keying said vane assembly into a first key groove on the interior of aid casing, second and third arcuate locking members being turbine casing, said second and third members also being keyed into a pair of key slots provided in said outer shroud, said key slots provided in said outer shroud being on opposite sides of
and spaced apart from said central projection means, said vane assembly being located in said turbine casing such that the axis of rotation of each rotatable vane extends in a radial direction and passes through said first key groove.
\(\stackrel{4}{4} 097,188\)
NOZZLE INSERT FOR A TURBINE Terence Owen Forster, 14 Stamford Rd., Exton, Oakham, Leics., England Filed Apr. 13, 1977, Ser. No. 786,968 Claims priority, application United Kingdom, Apr. 15, 1976, 15458/76 U.S. Cl. 415-202 Int. C. \({ }^{2}\) F01D 9/0

1. A nozzle insert for a turbine said insert having a turbine blade-confronting surface, a working fluid passageway extending through said insert, an inlet and an exit to said passageway, said exit being a rectangular opening in said turbine blade-confronting surface, said passageway having an arcuate section adjacent said inlet and a rectilinear section adjacent said centre line through the rectilinear section of the passageway making an acute angle with said turbineblade confronting surface.

AIRCRAFT PROPELLER AND BLADE PITCH CONTROL SYSTEM
W. Benjamin Harlamert, Piqua, Ohio, assignor to Hartzell Propeller, Inc., Piqua, Ohio
\[
\begin{aligned}
& \text { Filed Sep. 20, 1976, Ser. No. 725,008 } \\
& \text { I. C1. }{ }^{2} \text { B64C 11/38 }
\end{aligned}
\]
1. A vane assembly for a gas turbine engine the casing of
which engine is provided with at least three spaced circumfer which engine is provided with at least three spaced circumferential key grooves on the interior surace sereor to receive
and anchor said vane assembly in place, said vane assembly
being of arcuate shape and having inner and outer shroud being of arcuate shape and having inner and outer shrouc
sections being coupled together by a pair of stationary vanes to form an integral unit, a pair of rotatable vane members, each having an integral shaft means formed therein to provide a
suitable axis of rotation for each vane, said inner and outer suitabie axis of rotation for each vane, said inner and oute
shroud sections being provided with suitable bearing means to receive said shaft means of said rotatable vanes, said rotatable vanes being mounted in nesting relationship with said station
U.S. CI. 416-46

20 Claims 1. Aller hub adapted to be driven by system comprising a ng a plurality of angularly disposed adjustable pitch properler lades, means including a hydraulic fluid cylinder connected to djust the pitch of said blades, means for supplying hydraulic uid to said cylinder and including a fluid pressure responsive elief valve having means for relieving the pressure of the hydraulic fluid supplied to said cylinder when the pressure xceeds a predetermined pressure limit corresponding to a adapted to be located within a me aircraft cabin, control member
valve having a pressure member connected to move with said hub device comprising: sleeve means configured and dimencontrol member for infinitely varying said pressure limit of said sioned for sliding engagement with the hub of said propeller; a
 sioned for sliding engagement with the hub of said propeller; a plurality of blade notches formed in said sleeve means on at
least one end defining the periphery thereof, each of said notches being configured and dimensioned to receive a corre-
ermined range for changing the pitch of said blades.

\section*{4,097,190
WIND MOTOR}

Herbert O. White, 4242 E. Wilshire Dr., Phoenix, Ariz. 8500 Herbert O. White, 4242 E. Wilshire Dr., Phoenix, Ariz. 855,
Continuation-in-part of Ser. No. 641,390, Dec. 17, 1975, Continuation-in-part of Ser. No. 641,397 , Dec. 1, , \(\mathbf{1 9 5 , 3}\)
abandoned. This application Oct. 21, 1976, Ser. No. 73490 S. Cl. 416-117 Int. Cl. \({ }^{2}\) F03D 3/02

10 Claims

1. A wind motor for receiving the force of the wind and for ranslating the generally linear movement thereof to rotar motion, said wind motor comprising
(a) a stationary frame;
(b) a crank member including
(i) a crank shaft journalled in said frame for rotation about a first axis, and
(ii) a crank arm extending radially from said crank shaft; (c) a wind blade carried by said crank arm and rotatable about a
axis;
(d) timing means for maintaining a predetermined ratio between the speed of rotation of said wind blade about said second axis and the speed of said crank shaft about said first axis; and
(e) balance means rom
crank member for dynamic balance of the moving mass of said wind motor,
whereby said wind motor is self-contained, single blade, modu-
lar unit.

\section*{4,097,191}

Bennie Genuardi, Tampa, Fla., assignor to Irving Navarre, Tampa, Fla.
Filed Mar. 24, 1977, Ser. No. 780,770

Filed Mar. 24, 1977, Ser. No. 78120
Int. Cl. \({ }^{2}\) B63H \(1 / 20\)
U.S. Cl. \(\mathbf{4 1 6}^{416-170 R}\)
U.S. Cl. \(416-10 \mathrm{R}\), 10 Claim 1. An auxiliary hub device for use in combination with the
propeller of an outboard drive marine engine, said auxiliary

sponding one of the blades of said propeller therein; and lock means operatively disposed on the end of said sleeve means opposite from said blade notches, whereby said auxiliary hub device may be secured to the propeller drive shaft in locking, interconnecting relation between said drive shaft and said

TURBINE ROTOR AND BLADE CONFIGURATION Mark R. Kulina, Franklin Lakes, N.J., assignor to Curtiss Wright Corporation, Wood-Ridge, N.J.
Filed Jan. 6, 1977, Ser. No. 757,302
In.S. Cl. 416—175 Cl. \({ }^{2}\) F01D \(5 / 10 \quad 5\) Claims

1. A rotor for turbines, compressors or the like comprising an annular portion and a plurality of circumferentially-spaced annular eoch secured at one end to and projecting from said contact with each other, certain of said blades having eans differentiating said blades from the remainder of said blades to provide two sets of blades in which, except for said differentiating means, the blades of each set are similar to the other blades of said set except for differences resulting from manufacturing tolerances such that, because of said differentiating means, the average of the natural frequencies of vibration or one of said two sels set of said blades by a minimum percent age at least equal to the percentage spread of the natural freuencies of vibration of said blades resulting from manufacturing tolerances but no more than about \(15 \%\).

4,097,193
ELASTOMERIC DAMPING ARRANGEMENT Klaus Brinsch, Weidach, and Emil Weiland, Hohenbrunn, both of Germany, assignors
GmbH, Munich, Germany
Filed Dec. 17, 1976, Ser. No. 751,698
Claims priority, application Germany, Dec. 24, 1975, 2558709 U.S. Cl. 416-224 Int. Cl. \({ }^{2}\) B64C \(11 / 20 \quad 13\) Claims U.S. C1. 416-224 \(\qquad\)

such that in the event of structural failure of one plate, the remaining intact plate can support the load of the failed plate.

13 Claims HIGH VACUUM PUMP
Eugene F. Hill, Belmont Calif, sssignor to Varian Associates, Inc., Palo Alto, Calif. Continuation of Ser. No. \(549,217, ~ F e b . ~ 12, ~ 1975, ~ a b a n d o n e d, ~\) abandoned. This application Per. No. 367,025, Jun. 4, 1973, Int. Cl.' F04B 37/02; H01J \(19 / 70\) U.S. Cl. \(417-49\)

An elastomeric damping arrangement providing a damping force for a structural member having a given surface contour and being capable of vibrating in response to dynamic
deformations, especially for an airfoil, comprising damping layer means, cover layer means, and means operatively interconnecting said layer means to each other in a surface contact fashion, to form an integral structure arranged in intimate fashion, to form an tructural member solely in regions thereof subject to said dynamic deformations and to said vibrations, contour of said structural member in said dynamic deformation regions, said cover layer means being made of a high strength material having a high unidirectional rigidity which is effective in the direction of said damping force, said damping layer means being made of a viscoelastic material.

4,097,194
REDUNDANT DISC
William N. Barack, Morrow; Charles H. Gay, Jr., Loveland; Stephen W. Beekman, Fairfield, and Paul A. Domas, Cincin epresented by the Administrator of the National Aeronautics and Space Administration, Washhington, D.C. Filed Mar. 22, 1976, Ser. No.
Int. C1. \({ }^{2}\) Fo1D \(5 / 02\) U.S. Cl. 416-244 A

1. A rotatable disc comprising: a pair of, generally parallel plates for rotation about a common axis, each plate including a plurality of angularly spaced lands projecting axially from a face thereof and extending in a generally radial direction along the face, the lands of each plate intermeshing in alternating relationship with grooves formed between pairs of lands of the of adjacent plate sectors; and means for tightly joining the plates together such that each land is in abutting contact with the adjacent plate; and wherein each plate is redundantly sized

1. In a sputter-ion vacuum pump comprising an evacuable chamber including cathode and anode members each posi-
tioned within said chamber, means for maintaining a magnetic field within the region between said cathode and anode members, lead means for introducing an electrical potential difference between said cathode and anode members, whereby a plasma can be formed to cause gas ions to bombard said cathode member; he inprovement and said alloy comprising a major ber being made from an alloy, said alloy comprising a major
constituent selected from elements in Group IV B of the conventional long form of the Periodic Chart of the Elements and a minor constituent selected from elements in other than Group IV B of said Periodic Chart, which minor constituent is an amount that causes the transition temperature for the trans-
formation from the hexagonal close-packed crystal lattice form formation from the hexagonal close-packed crystal lattice form
to the body-centered cubic crystal lattice form for said alloy to be lowered from the corresponding transition temperature for said major constituent alone.

PILOT OPERATED PRESSURE COMPENSATED PUMP Cyril W. Habiger, Joliet, Ill., assignor to Caterpillar Tractor Co., Peoria, III.
\[
\begin{aligned}
& \text { a, III. IIled Jun. 1, 1976, Ser. No. } 692,178 \\
& \text { Int. Cl.' }{ }^{\text {Fo4B }} 1 / 30
\end{aligned}
\]
U.S. Cl. 417-222
U.S. Cl. 417-222
1. In a pump having a pump body, a swash plate the 1. In a pump having a pump body, a swash plate the rota-
tional position of which controls the displacement of said pump and means mounting said swash plate for rotation abou an axis generally centrally thereadjacent, an improvement fo controlling an output from said pump, comprising: means internal of said pump body and acting between said pump body and said swash plate for biasing said swash to a minimum displacement of said pump; and
means responsive to discharge pressure of said pump reach ing a first magnitude for overriding said biasing means and rotating said swash plate towards a full displacement position corresponding to a maximum displacement of
said pump, said overriding means comprising servo valve
means within said pump body and pilot pump means
acting to initially shift said servo valve means to allow

discharge pressure to be applied in opposition to said biasing means.

LIQUID PRESSURE INTENSIFIER
Joe Edward West, 11426 Goodnight La., Dallas, Tex. 75229 Filed Aug. 16, 1976, Ser. No. 714,355
U.S. CI. 417-227

8 Claims

1. A high pressure intensifier for liquids comprising.
a housing having an intensifying chamber therein, sai chamber being provided win outlet: a low pressure outlet, and a high pressure outlet;
a valve in said chamber positioned to block flow ihrough
said low pressure outlet upon closure thereof; means for closing said valve when the velocity of liquid flow therepast reaches a selected value
means for opening said valve;
a ram tube connected to said inlet and extending linearly away therefrom;
and a reaction ram tube connected to the ram tube at its end remote from said housing, said reaction ram tube extend ing parallel to and lying closely adjacent said ram tube, adjacent thereto in a liquid inlet;
sid reaction ram tube being substantially equal to said ram tube in length and diameter.

INTERNAL COM 4,097,198 INTERNAL COMBUSTION ASSISTED HYDRAULIC Allen R. Herron, 26235 Ravenhill Rd., Canyon Country, Calif. 91351
3,995,974. This applicer. No. 506,992, Sep. 18, 1974, Pat. No. 3,995,974. This application Nov. 15, 1976, Ser. No. 741,881
Int. C1. \({ }^{2}\) F04B \(17 / 00,23 / 06,27 / 08,49 / 00\) U.S. C. 417-245

1. A hydraulic engine comprising:
first and second sets of hydraulic cylinders, the pressurized fluid outlet of each cylinder being connectable to a common output line, the pistons of all cylinders being mechan-
ically attached to a common shaft. ically attached to a common shaf,
chamber assisted means for reciproc
nately to pressurize the hydraulic fluid in said first and second sets, and
hydraulic fluid supply means including:
a hydraulic fluid reservoir,
a pump for pumping hydraulic fluid from said reservoir to all of the hydraulic cylinders in the set that is not currently being pressurized,
motor driven by pressurized hydraulic fluid from said output line, and
a flywheel connected to said pump and to said motor.
DOUBLE ACTING RACK AND GEAR-DRIVEN PISTON James R. Dole, and Benjamin F. Blaine, both of Hutchinson, Kans., assignors to Arrow Machine, Inc., Hutchinson, Kans. Filed Oct. 14, 1976, Ser. No. 732,495
U.S. Cl. 417-286 7 Claims 1. A hand-driven hydraulic pump and reservoir adapted to drive fluid motors comprising:
a housing: a housing;
an oil reservoir and a pump discharge port in the housing: at least one cylinder bore in the housing.
a piston positioned in the bore forming two separate cylinder chambers one at each end thereof, a plurality of gear teeth disposed longitudinally on said piston forming a rack, a longitudinal passage through the piston supplying both cylindrical chambers;
cylinder chambers a pinion gear mounted in the housing engaging said rack for driving the piston in a reciprocal motion,
handle means connected to said pinion gear
first passage means in the housing connecting each cylinder to the pump discharge port; first check valve means positioned in each of the first pas-
sage means blocking flow from the discharge port to each separate cylinder chamber;
second passage means connecting the reservoir to each of
the cylinder chambers through said longitudinal passage: second check valve means positioned in each of the second
second and fourth conduits when the housing pressure relative to atmospheric pressure increases to said predeter mined amount so that air flow is prevented to said intake mined
port.
C \(\substack{4,097,201 \\ \text { COMBINED WELL PUMP HOUSING AND AERATION } \\ \text { MEANS }}\) MPANS

9 Claims
U.S. Cl. 417-360 Int. C.2 \({ }^{2}\) F04B 47/00

1. In combination with a water well of the type subject to contamination by sulphur gas and including an upper end commuiner disposed in said well below the water level therein, a water pump disposed within said container, said pump including a water intake below the upper portion of said pump and a water outlet, a water line in said well having an inlet end connected to said outlet, and said container including an upwardly opening water inlet spaced above said intake, a comand air pump and compressed air conduit means operative to pump ambient above ground air down into said well under pressure, said air conduit means being communicated with said air outlet.

AUXILIARY COMPRESSOR ASSEMBLY
11. For use with gear boxes, constant speed drives and the like employing a housing, a self-pressurization system comprislike ent
ing:
a pump having an intake port and a discharge port con nected to the housing;
a first conduit open to the atmosphere communicating with said intake port;
a source of liquid; and
a source of liquid; and a veressure differential between the housing and the atmosphere having an innet and a pair o
outlets, a second conduit between said source of liquid and outlets, a second conduit between said source of liquid and
said inlet, a third conduit having an orifice between on said inlet, a third conduit having an orifice between one
outlet and said intake port, a fourth conduit between the other outlet and said intake port, said valve providing communication between said second the third conduits
when the housing pressure relative to atmospheric preswhen the housing pressure relative to atmospheric pres-
sure decreases to a predetermined amount so that air from sure deccreases fows through said first conduit to said intake port, said valve providing communication between said
rank Price, 7752 Braniff St., Houston, Tex. 77061 Filed Jun. 21, 1976, Ser. No. 698,107
 U.S. C1. \(417-454\)
1. An auxiliary compressor assembly for use in providing
14 Claims large volumes of high pressure compressible fluid adapted to large vounted with a conventional compressor having a piston mounted for reciprocal movement in a cylinder, comprising: an auxiliary cylinder having a bore formed therethrough; said auxiliary cylinder having a first end surface and a seccylinder; said auxilia
surface of sailinder being positioned with said first end the cosaid auxiliary cylinder mounted on and adjacent ore of saidentional compressor cylinder and with said bore of said auxiliary cylinder aligned with the bore of the
conventional compressor cylinder;
a head removably mounted
said auxiliary cylinder;
said auxiliary cylinder; sor receiving fluid to valving chamber formed therein cylinder and a discharge valving chamber formed therein der through said head;
valve means removably mounted with said head for regulat ing the intake and discharge of compressible fluid, said valve means including
an intake valve unit mounted in said intake valving chamber allowing intake of compressible fluid into said auxiliary cylinder
thereof; and,
a discharge valve unit mounted in said discharge valving
respective pumping chamber and reciprocable longitudinaly of the pumping chamber axis, each actuator having a relatively
rigid main central portion and a peripherally extending elastic sealing ring retained in a clearance space in non-sliding fluidtight engagement between the main central portion and a lateral wall of the pumping chamber, valve means for each of the actuators controlling the flow of fluid through an associ-
ated one of the chambers from th inlet to the outlet, and drive means for reciprocating the actuators, the improvement wherein:
a. said pump further comprises a connecting member extending between, and joining, said main central portions of said
actuators and forming with said main central portions a substantially rigid unit;
b. said unit is supported, for movement along said pumping chamber axis, solely by resilient means including at least said sealing rings and providing greater resistance to dis-
placement of said unit in a direction radial to said pumping placement of said unit in a direction radial to said pumping
chamber axis than to displacement longitudinally of said

pumping chamber axis, to provide for high speed reciprocation of said unit;
chamber allowing discharge of compressed compresshamber fluid from said auxiliary cylinder through said head and preventing intake of compressible fluid there through;
said valve units reversible such that said intake valving chamber may act as said discharge valving chamber and said discharge valving chamber may act as said intake valving chamber upon respective reverse mounting of said intake valve unit in said intake valving chamber and reverse mounting of said
charge valving chamber
first releasable mounting means for releasably mounting said first end surface of said auxiliary cylinder with the con ventional compressor cylinder; and,
cond releasabie mounting means for releasably mounting said second end surface with said head.

RECIPROCATING PISTON PUM
Timothy John Selwood, Minstead, near Cadnam; Martin John Shelley Axtell, Lymington; John David Burton, St. Mary Bourne, near Andover, all of England; Peter Richard Selwood, deceased, late of Southampton, England; by Timothy John John Shelly Axtell, executor, Lymington, both of England, assignors to William R. Selwood Limited, Eastleigh, England Filed Apr. 14, 1976, Ser. No. 676,884
Claims priority, application United Kingdom
U.S. C. 417-480
\(\qquad\) posed 8 Claims 1. In a pump composed of a body including at least two pumping chambers aligned along an axis, each of said cham- the housing for rotation about an axis coincident with bers communicating at its opposite ends respectively with a in said housing on an axis eccentric to said interna pump inlet and a pump outlet, two actuators each disposed in gear; an external gear rotatably supported in a
cylindrical opening of said control ring for rotation about an axis coincident with the axis of said cylindrical opening, the axis of the external gear being eccentric to both said internal gear and saider conrol saidg, said external gear haid gears being in meshing engagement whereby said external gear is driven by said internal gear; the axis of said internal gear, said external gear and said control ring being aligned in a single plane disposed longitudinally of the axis of rotation of said drive shaft when the eccentricity berwen sear is maximum; a stationary arcuate sector portion integral with said housing disposed in the space between said gears substantially opposite the mesh point of said gears and

having an inner radius substantially equal to and disposed adjacent the outer radius of said internal gear and an outer
radius eccentric radius eccentric to its inner radius; an arcuate control sector portion integral with said control ring disposed in the space between said gears adjacent the outer periphery of said station-
ary sector portion, having an inner radius substantially equal to the outer radius of said stationary sector portion and an outer radius substantially equal to and disposed adjacent the inner radius of said external gear; and means for rotating said control ring, control sector and external gear through an arc about the
axis of said control ring relative to said stationary housing axis of said control ring relative to said stationary housing
whereby the eccentricity between said gears is altered so that the fluid displaced by the meshing gears varies as the eccentricity is altered.
spectively
flanges,
langes, said rotor being configured and disposed in the housing to have side surfaces of said first and second flanges in close proximity to corresponding first and second transverse side surfaces of the annular wall member, respec tively, an inlet plenum being formed intermediate the side surface an outlet plenum being formed between th housing second end wall and the rotor second end and the second side surface, and a central chamber being formed between the inlet and outlet plenums,
(c) a drive shaft journalled for axial rotation in the housing,
at least a portion of the shaft extending to axial ends of the rotor,
(d) connecting means for axially rotatably connecting the rotor to the drive shaft with an axial rotational axis of the rotor radially displaced from the rotational axis of the orbit about the central chamber when the rotor rotates relative to the drive shaft axis,
(e) a plurality of vanes radially slidably mounted in the rotor said vanes dividing the central chamber into a plurality o subchambers which change volume as the rotor orbits (f) means defining a pluralit
communicating between the inlet and outlet plenums and
con the subchambers, each passage communicating with a at the first rotor end and an outlet end at the second rotor end, and
(g) flow control means associated with the drive shaft for causing closing of the inlet ends of preselected ones of the passages al causing closing of thected rotor orbital positions and fo the passages at second preselected rotor orbital positions.

4,097,206
GEAR PUMP OR MOTOR WITH BYPASS THROTTLE PASSAGE TO PREVENT CAVITATION Erich Schonherr. Stuttgart, Germany, assignor to Robert Bosch GmbH, Stuttgart, Germany
Filed Nov. 18, 1976, Ser. No. 743,289 Claims priority, application Germany, Dec. 2, 1975, 2554105 Int. C1. \({ }^{2}\) F01C \(19 / 08,21 / 00\); F03C \(3 / 00\); F01C \(1 / 16\) U.S. Cl. \(418-78 \quad 10\) Claims
1. A gear pump or motor comprising a housing having a 1. A gear pump or motor comprising a housing having
chamber bounded by a circumferential wall and two opposite end walls; a high pressure channel extending through said circumferential wall and having an inner end communicating
with said chamber; a low pressure channel extending opposite with said chamber; a low pressure channel extending opposite
said high pressure channel through said circumferential wall said high pressure channelt hrough said circumferenial wall
and likewise communicating at an inner end with said chamber; a pair of meshing external gears mounted in said chamber for rotation about axially parallel shafts, each of said gears having two opposite axial end faces, the flanks of the gear teeth of the two gears engaging each other between the inner ends of
said channels along lines and forming between the engagin - lines interstices increasing in the region of the inner end of said
1. An orbital-type pump or the like, which comprises (a) a generally cylindrical housing having a circumferen ia wall portion and opposing first and second ar wall membe
walls and having therebetween an annular wall inwardly projecting from the circumferential wall po
tion, tion,
and first and second transverse ends which include, re- Int. C.2 \({ }^{2}\) Fo1C \(1 / 102\). \(19 / 00,21 / 08,21 / 12\)
S. 10 Claims \(418-61\) R
 Edward L. Miles, 1960 Port Claridge Pl., Newport Beach, Calif 92660

Filed Jan. 18, 1977, Ser. No. 760,273

ow pressure channel and decreasing in the region of the inne end of said high pressure channel; means mounting said shafts or rotation and engaging said opposite end faces of said gears nlet end in a region of said chamber which is under high ressure and an outlet end in the region of an interstice increas ing in volume during rotation of the gears and which is sealed off by the engaging flanks from said high and low pressure channels.

4,097,208
ULTRAHIGH PRESSURE APPARATUS FOR DIAMOND SYNTHESIS
Hiroshi Ishizuka,
Tokyo, Japan SYNTHESA
Tokyo, Japan
ahandoned. This sppt of Ser. No. 646,168, Jan. 2, 1976, U.S. C. 425-77 Int. C..\(^{2}\) B30B \(11 / 32\)


解ING FOR LIQUID-COOLED ROTARY PISTON Kuniaki Kakui, Aki, Japan, assignor to Toyo Kogyo Co., Ltd. Japan Filed Oct. 28, 1976, Ser. No. 736,326 Cleims priority, application Japan, Mar. 15, 1976, 51-29561 S. C1. 418-83 Int. C. \({ }^{2}\) F01C 21//06, 21/10


APPARATUS FOR FORMING A MINERAL WOOL
1. An ultrahigh pressure apparatus for diamond synthesis or the like which comprises:
(1) a pair of opposed frustoconical punches with a flat end surface; (2) an annular die made of a very hard metallic material and (2) an annular die made of a very
placed between said punches;
(3) a hollow cylinder made of a sintered alumina to be free of pores having an inner diameter substantially equal to that of the flat end surface of the punches;
(4) a pair of gaskets around and adjacent to the flank of said punches which gaskets each having an outer diameter larger than that of said hollow cylinder;
concentric cylindrical projection of an axial length equal to that of said hollow cylinder so that the bore is tightly fitted to the gaskets and the hollow cylinder. FIBERBOARD PRODUCT
John R. Garrick, and Richard E. Kottmeyer, both of Lancaster, Pa., assignors to Armstrong Cork Company, Lencaster, Pa. Filed Mer. 23, 1977, Ser. No. 780,419
Int. C1. \({ }^{2}\) B29C \(i 3 / 00\) U.S. Cl. 425-82.1 Int. C1. \({ }^{2}\) B29C 13/00 3 Claims
1. Casing for liquid-cooled rotary piston engine which com prises a rotor housing made of aluminum based alloy and having an inner wall of trochoidal configuration, a pair of sid housings made of cast iron and secured to the opposite sides of he rotor housing at mating surfaces thereof to define a cavity of trochoidal configuration for receiving a substantially polyg nal rotor therein, each of said side housings having cooling ity of locations, said rotor housing having cooling-liquid passage means opening to each of said mating surfaces at locations corresponding to locations of the openings of the passage means in said side housing and connected with the correspond ing passage openings in the side housings, the cooling-liquid cal dimension at the opening in the mating surface smaller than that of the corresponding passage in the side housing so that a shoulder is formed at junction of each passage opening in the otor housing with that of the side housing by an aluminum based alloy surface projecting into the opening.

971 O.G. 58
(c) means for exhausting air through said forming wires whereby the fiber and binder mixture is collected as two layers on the forming wires with the two layers becoming consolidated at the nip opening formed between the converging wires, and
(d) compacting and heating means whereby the mat of fibers and resin is compacted and cured to form a mineral fiber-
board product board product,
said exhaust system behind said wires being adjustable whereby the upper outer layer of fibers and binder initially predominantly fine fibers.

\section*{4,097,212
PELLETIZE}

Yukimas Morishima, KELLE; Minoru Yoshida, and Hideo Masuda, both of Hiroshima, all of Japan, assignors to The Japan Steel Works, Ltd., Tokyo, Japan Claims priority, application Japan, Jul. 25, 1975, 50-90303 U.S. C. 425-313


SYSTEM IN AN INDUSTRIAL POLYEXPANSION PROCESS
PROCESS Federico Hernando Romanillo, Canarias, 46, Madrid, Spain Continuation of Ser. No. 477,042, Jun. 6, 1974, abandoned. This application Jan. 2, 1976, Ser. No. 646,367 Claims priority, application Spain, Aug. 22, 1973, 418.110; U.S. C. 425-89 Int. Cl. \({ }^{2}\) B29D 27/04

13 Claims

1. In an apparatus for a polyexpansion process:
(a) a discharge stage having a base and side walls for receiving an expandable liquid material;
(b) a self-regulating surface to prevent a crowning effect of the liquid material is adapted to commence expanding, said self-regulating surface comprising:
(i) a plurality of elements each of which is rigid in a direc(i) a purnarmal to the longitudinal movement of the foam,
tion norma and
(ii) means for mounting each said element, said means for mounting being a double pivot whereby each said elemounting being a double pive wherizontal and vertical directions in response to pressure exerted thereof by the expanding liquid material;
(iii) said means for mounting being located down stream of said discharge stage; and
foamed matein andial freely positioned between the foamed material and the self-regulating surface.

4,097,211
Patent Not Issued For This Number
1. A pelletizer of the type having an underwater cutter omprising
horizontally located extruder unit having a housing within extending longitudinally thereof to force material strands therealong;
a vertically located cutter unit including a rotatable cutter mounted therewithin and having its axis extending at right angles to said extruder unit axis, said cutter having driving means connected therewith and located directly there-
above so that said cutter is rotatable to cut the strands into above so that said culler to be directed vertically upwards. said cutter having a plurality of blades the
said cutter having a pluraity of blades the outer edges of
which are each shaped as a truncated cone extending upwardly and outwardly to provide an inclination of said outer edges with respect to said cutter unit axis;
said cutter unit including a housing surrounding said cutter, said cutter housing comprising a housing wall and a die wall with said housing wall being connected to an end of said extruder unit housing
said die wall defining a chamber surrounding said cutter therefrom, said die wall a predetermined uniform distance wardly to form a first chamber area located upwardly from said blades that is of a larger size than a second chamber area located to surround said blades, said die wall formed to have the same inclination as said blade edge inclination
drive shaft connected to said cutter and extending up-
wardly therefro wardly therefrom, said cutter and drive shaft movable upwardly into said first chamber area to prevent clogging
of pellets and said cutter and drive shaft movable downwardly into said second chamber area to regulate the size of the gap between said blades and said die wall;
a plurality of die nozzles extending generally horizontally through said die wall to open into said second chamber area, said nozzles spaced vertically and provided to ex-
trude the material therethrough from said extruder unit into said cutter unit and heating means provided in said die wall comprising a pair of jackets spaced respectively above and below adjacent to said outer edges of said cutter, said jackets connected to flow passages with a
heating medium passing therethrough. heating medium passing therethrough.

4,097,213
MECHANISM FOR ADJUSTING AN EXTRUSION DIE CEREAL GRAIN EXTRUDER APPARATUS
Kenneth H. McComb, and Timothy I. McComb, both of Denver ver, Colo.

 1. An extruder apparatus for extruding a plurality of strands
of gelatinous cereal grain material which thereafter form of gelatinous cereal grain material which thereafter form
curled cereal grain food product, comprising, in combination: a housing means;
an auger member mounted for rotation in an axially stationary position in said housing means, said auger member
having helical groove means for moving cereal grain meal having helical groove means for moving cereal grain meal
material from an inner axial position to an outer axial and discharge position and for operatively changing cereal grain meal into a gelatinous material upon rotation of said auger member;
forming die member mounted in an axially stationary position adjacent the outer axial end of said auger member
for rotation with said auger member, said forming die member having a frustroconically shaped outer die surface and a plurality of grooves formed in the outer die surface, the grooves extending generally in an axial direc-

female die member mounted in a rotationally stationary
position circumjacent at least a portion of said forming die position circumjacent at least a portion of said forming die
member, said female die member having a frustroconically shaped inner die surface generally complimentary in shape to the outer surface of said forming die member, the inner die surface having a plurality of grooves formed therein he inner and outer die surfaces of said forming and female die members respectively defining an annular extrusion orifice through which a plurality of strands of the gelatinous material are extruded, the strands being formed a least in part by the grooves; and
die member for moving said female die with said female die member for moving said female die member axially
with respect to said forming die member to adjust the width of the annular extrusion orifice between the frustroconical die surfaces of said forming die member and said female die member to insure the change of cereal grain meal into the gelatinous materiarial from the annular extrusion orifice.

\section*{4,097,214}

PARISON EXTRUSION HEAD
John Shao-Tze Hsu, Nashua, N.H., assignor to Ingersoil-Rand Company, Woodeliff Lake, N.J.

Filed Dec. 8, 1976, Ser. No. 748,685
Int. Cl. \({ }^{2}\) B29D \(23 / 04\)
U.S. C. 425-466
1. An extrusion head for extruding a parison comprising:
housing having a plastic inlet and a plastic outlet; a plastic accumulating chamber in the housing for receiving the plastic from the plastic inlet; a longitudinally movable shooting man east two longitudinal portions of different cross section, with he larger cross section being less than the cross section of the chamber, the positions of the plastic inlet, plastic outlet, and shooting mandrel being such that when the shooting mandrel is

in the chamber full position, the larger cross section is at its closest point to the plastic outlet and furtherest point from the plastic inlet; program mandrel means operatively associated with said outlet for controlling the shape of the parison leaving the plastic outlet; and means operatively associated with said shooting mandrel for moving the shooting mandrel from the the plastic from the chamber in the form of a parison.

1. A briquetting roll, comprising:
(a) a central core having two sides and being a substantially radially symmetrical polygonal prism having a diameter reater than its length and being adapted for rotation about its axis;
b) each planar surface of the periphery of said polygonal a having at least one transverse groove; (c) a plurality of end-to-end removable mold segments
around the periphery of said core, each of said mol segments comprising:
(1) an arcuate top working surface;
(2) a flat bottom surface opposite, said working surface nous with one of the planar surfaces of the periphery of said core, said bottom surface having at least one transverse groove substantially complementing one of said grooves in the coterminous planar surface of said core
to form a transverse keyway; to form a transverse keyway;
(3) two opposite end walls connecting said top working surface and said bottom surface, said end walls diverg-
ing with respect to each other relative to said bottom ing with resp
surface; and
(4) two opposite side walls connecting said top working surface and said bottom surface;
(d) two annular retaining rings, one on each side of said central core, each spanning the interface between said mold segments and the periphery of said central core to secure said mold segments to said central core, said retaining rings having a plurality of spaced, centrally located
e) means on each side of said cor
and on each side wall of each of said mold segments proxiand on each side wail of each of said mold segments proxi-
mate its bottom surface for detachably connecting said retaining ring; and
(f) affixing means passing through said retaining ring holes and said keyways for drawing said two annular retaining rings together to effect secure attachment of said mold segments to said central core and for aligning and preventing movement of said mold segments relative to the pe riphery of said central core.

4,097,216
FILER FOR LQUIDS
Ladislao W. Putkowski, Scarborough, Canada, assignor to Magna International Inc., Downsview, Cannda Filed Mar. 11, 1977, Ser. No. 776,81
Int. Cl. \({ }^{2}\) B01D 35/02 U.S. Cl. 425-568 Int. Cl. \({ }^{2}\) B01D 35/02 3 Claims

1. An injection nozzle for a plastic injection moulding machine, the nozzle comprising:
body of generally cylindrical form having said body to an outlet which extends from an inlet end of which plastic material can flow from said inlet end to
said outlet end when the said outlet end when the nozzle is in use, said passageway including a plastic injection opening at said outlet
end of the body and a cylindrical filter chamber defined by a cylindrical inner surface portion of said body, one end of said chamber opening into said inlet end of said body and the opposite end of said chamber communicating with said plastic injection opening in the body; an external surface which includes a generaly conical surface portion at said outlet end of the body, tapering
towards said plastic injection opening; an externally screw threaded portion adjacent said inlet end of the body, by which the nozzle can be secured in an injec-
tion moulding machine; and a plurality of flats adjacent
o
said screw threaded portion at the side thereof remot from said inlet end of the body, by which the body ca be turned for securing the nozzle in the machine; and a filter element removably received in said filter cham ber and having an outer surface disposed closely adjacen said cylindrical inner surface portion of said body, saic
outer surface being defined by a plurality of slots which extend generally longitudinally of the filter element in circumferentially spaced positions and a correspondin plurality of intervening lands, each slot having a blind inner end and an outer end which opens into an end of th element and the slots being arranged so that alternate slots open at their outer ends at said inlet end of the body and ber, inlet flow channels for plastic material flowing through said body in use, while the intervening slots com municate with said plastic injection opening and similarly define outlet flow channels for said plastic material, the lands between the slots being longitudinally relieved to define filtering gaps which provide liquid communicatio sioned to prevent particles in said plastic material above a pre-determined size passing from said inlet flow channels o said outlet flow channels.

METHOD FOR CONVERTING COMBUSTOR FROM HYDROCARBONACEOUS FUEL TO CARBONACEOUS FUEL
Leonard J. Keller, Dallas, Tex., assignor to The Keiler Corpora tion, Dallas, Tex.

Filed Dec. 9, 1976, Ser. No. 748,939
Int. C.2. \({ }^{2}\) F23D \(11 / 44\)
U.S. Cl. 431-11

5 Claims

1. A method of converting a hydrocarbon-fired combusto to burn a carbonaceous fuel comprising the steps of: a. providing an oxygen-enriched first combustion supporting gas to a primary combustion chamber;
burning the carbonaceous fuel in the preser ourning the carbonaceous fuel in the presence of said firs
oxygen-enriched combustion supporting gas in said primary combustion chamber to produce a high temperature, combustible product gas comprising carbon monoxid and hydrogen and a molten slag that contains materials that would in a normal lower temperature combustion withdrawing said slag from said primary combustion chamber;
d. isolating and cooling said product gas with an inert ga that will not support combustion and simultaneously heat ing said inert gas;
e. passing the cooler product gas to said originally hydro-
carbon-fired combustor; carbon-fired combustor;
passing the heated said inert gas in heat exchange relationsecond combund combustion supporting gas to heat said cool said inert gas;
g. passing the heated said second combustion supporting gas
gases;
gases, gas in said combustor to produce waste
such that the atmospheric polutants in the waste gases are reduced by having removed said slag, and he dang of expl. sion is reduced by said inert gas isolating said product gas.

4,097,219
SETTABLE REGULATOR DEVICE FOR GAS/AIR MIXTURE RATIOS Werke \(\begin{aligned} & \text { owald, Hoechen, Germany }\end{aligned}\)
Cl. \({ }^{2}\) N16K. 17, 195 , Ser. No. 632,785


Int. Cl. \({ }^{2}\) F16K 31/365; F23N 1/02; G05D \(11 / 02\)

1. A device for setting and automatically regulating the mixture ratio of a mixture of first and second gases supplied to an industrial furnace comprising
(a) a first diaphragm pressure gauge comprising a first dia-
phragm mounted in a first housing;
(b) a second diaphragm pressure gauge having a second diaphragm mounted in a second housing; said second diaphragm pressure gauge being coaxial with said first
diaphragm pressure gauge; an adjustable gas ratio setting mechanism for setting the ratio of said first and second gases supplied to said furnace ratio of said first and second gases supplied to said furnace pressure gauges;
(d) first conduit means for connecting one side only of said first diaphragm pressure gauge with a supply of a first gas for a furnace, said one side being remote from said gas ratio setting mechanism;
(e) second conduit means for connecting one side only of said second diaphragm pressure gauge with a supply of a said gas ratio setting mechanism;
( \(f\) a first member mounted on said first housing for movement with said first diaphragm and extending freely from said first diaphragm pressure gauge to said gas ratio setting mechanism;
(g) a second member mounted on said second housing for movement with said second diaphragm and extending ratio setting mechanism
(h) means for operatively connecting said gas ratio setting mechanism and said first and second members for movement together
first gas valve means comprising a body through which a first gas is supplied to a furnace and a valve member moveable in said body to regulate the flow of a first gas therethrough;
(j) valve actuating means for actuating said valve member comprising an actuating arm operatively connected to
said first diaphragm on the side thereof remote from said said first diaphragm on the side thereof remote from said diaphragm and connected to said valve member such that said valve member is moved by movement of said first diaphragm.
(k) a third diaphragm mounted on said valve body and positioned to be acted on one side thereof by a first gas
regulated by said valve member, and the other side of said regulated by said value member, third diaphragm being open to said remote side of said first
diaphragm pressure gauge, said other side being posi-
tioned to be acted on by a supply of a first gas supplied by
said first conduit means; and said first conduit means; and
(l) means operatively connecting said third diaphragm and
said valve actuating arm for movement therewith whereby a change in pressure in a first gas supplied to said valve body and acting os said valve member is opposed by such change in pressure acting on said third diaphragm.

\section*{FLASH LAMP ARRAY HAVING SHORTING LAMPS Paul T. Coté, Cleveland Heights, and Lewis J. Schupp, Chester} land, both of Ohio, assignors to General Electric Company Schenectady, N.Y.

Filed Sep. 16, 1976, Ser. No. 724,014 lat. Cl. \({ }^{2}\) F21K \(5 / 02\)

4 Claims U.S. Cl. 431-143
square mil attached to and extending between said lead-in wires within said envelope, the sale material of said filament being selected from the group consisting of zirconium, hafnium, titanium, uranium, thorium, and the rare earth metals, and alloys comprised principally of one or more materials of said group.

ADJUSTMENT DEVICE FOR LIQUEFIED GAS LIGHTERS S.T. Dupont, Paris, France

Filed Mar. 19, 1976, Ser. No. 668,558 Filed Mar. 19, 1976, Ser. No. 668.558
Claims priority, application France, Mar. 21, 1975, 7508909
U.S. Cl. 431-95 A

1. A shorting type of flash lamp comprising an elongated
bulb containing combustible material and having a pair of bulb containing combustible material and having a pair of
lead-in wires sealed through a base of said bulb, the inner end lead-in wires sealed through a base of said bulb, the inner end
regions of said lead-in wires being bent transverse to the length of said bulb and positioned in mutual side-by-side spaced apart relationship over said base, and a single mass of primer material contained in said bulb over said base thereof and bridging
across and completely covering the bent end regions of the across and completely covering the bent end regions of the lead-in wires, said primer maternal low resistance residue after the lamp is flashed.
relatin

PHOTOFLASH L,097,221
FILAMENT COMBUSTIBLE
John W. Shaffer, and Emery G. Audesse, both of Williamsport, Pa., assignors to GTE Sylvania Incorporated, Stamford, Conn. Filed Nov. 25, 1974, Ser. No. 526,642
Int. C1.2 F21K 5/02 U.S. CI. 431-95 R

1. A photoflash lamp comprising:
an hermetically sealed, light-transmitting envelope;
a quantity of combustible fill material located in said envelope;
a combustion-supporting gas in said envelope; and ignition means disposed in said envelope in operative rela-
tionship with respect to said combustible fill material, said ionshio with respect to said combustible fill material, said ignition means including a pair of lead-in wires extending into said envelope, and a combustible filament having a
substantially constant cross-section of the order of one
1. In a liquefied gas lighter including a valve well formed herein, adjustable valve means secured in said valve well for controlling the flow of liquefied gas, a rotatable valve adjustment member operatively connected to said adjustable valve means, at least one fixed stop on said lighter, an adjustment including at least one movable stop intended to interact with said fixed stop in order to limit rotation of said adjustment mechanism, whereby to limit the range of flow control of the liquefied gas; the improvement in which said adjustment mechanism comprises a milled wheel provided with an annular groove having an end wall, into which said fixed stop fits with clearance, said m
said groove.

\section*{4,097,223}

John J. Garnier, Hales Corners, Wis., assignor to Cutler-Hammer, Inc., Milwaukee, Wis.

Filed Oct. 4, 1976, Ser. No. 729,354
Int. CC. \({ }^{2}\) F23C 3/10
U.S. Cl. 431-191

8 Claim 1. A combustible fuel gas burner assembly comprising:
supply means feeding air and gas to one end of said feeder tube means for combustion at the other end of said feeder tube means to form a burning zone thereat;
an exhaust tube having an inlet at said burning zone for carrying away the products of said combustion and, in the absence of said combustion, for carrying away the mixture of said air and gas;
means for varying the ratio of air to gas in said mixture in said exhaust tube such that the flame propagation speed of said mixture in said exhaust tube changes through a spec trum of values at least one of which is greater than the flow velocity of said mixture in said exhaust tube;
an ignition source spaced from said burning zone for igniting
said mixture in said exhaust tube when said fle tion speed is greater than said flow velocity, whereby said
exhaust tube also serves as a flash-tube through which a flame travels from said ignition source to said burning zone;

aid feeder tube means and said exhaust tube being stationary with respect to each other during variance of said ratio of ing air to gas.

4,097,224
STEAM GENERATING APPARATUS AND GAS BURNER Ralph D. Cooksley, 346 Barbour Rd., New Britain, Conn. 0605 Filed Mar. 15, 1936, Ser. No. 677,1 U.S. Cl. 431-352

5 Claims

1. A gas burner which comprises a base including means for connection to an associated source of a supply of a fluid fuel, a first tubular sleeve of generally circular cross section having one end affixed to said base in fluid communication with sall means for connection, and a second tubular sleeve of generaily a diameter large than said first sleeve disposed with one end dereof affixed to said said first sleeve disposed wave extending thereof affixed to said base aid first sleeve to provide an annular beyond the other end of said firs upwardly from said base, each spacing sereves having apertures extending therethrough into the cavity defined therewithin and spaced from said other end thereof, said base having a plurajity of axially extending apertures therethrough opening into said annular spacing.

4,097,225
PROCESS AND APPARATUS F
PROCESS AIMESTONE CALCINING Terence Arthur Rourke, Upper Long Beach Rd., R.R. 3, Nelson, British Columbia, Canada (VIP5P6) Continuation of Ser. No. 658,576, Feb. 17, 1976, Pat. No. 4,031,183, which is a continuation-in-part of Ser. No. 559,193, Mar. 17, 1975, abandoned. This application Jan. 17, 1977, Ser. Int. Cl. \({ }^{2}\) F27B \(1 / 26\)
U.S. Cl. 432-96

7 Claims

1. An apparatus for the production of calcined lime compris-
ing:
a refractory lined vertical shaft provided with material feed means and gas exhaust means;
coler means in communicaion with the lower end of said said vertical shaft and provided with means to withdraw calcined lime from said apparatus;
plurality of injector means spaced around horizontal plane spaced from said lower end thereof for introducing fuel into said shaft; and
means for supplying fuel at a pressure between 2000 and 15000 psi to each of said injector means in a predetermined sequence at a pulsed rate between ions inder paid injections occuring in a time period between 0.02 and 0.2 seconds with a time period of 0.1 to 0.5 seconds between injections, the time period between injections being longer than the time of the injecbetwe
tions.

\section*{4,097,226}

FURNACE FOR PRACTISING TEMPERATURE GRADIENT ZONE MELTING
Carl A. Erikson, Schenectady; John O. Fielding, Ballston Lake; Harvey E. Cline, and Thomas R. Anthony, both of Schenecasignors to General Electric Company,

Filed Oct. 26, 1976, Ser. No. 735,513
Int. Cl. \({ }^{2}\) F24J 3/00
U.S. C. \({ }^{432-120}\) \(\qquad\) 25 Claims 1. An apparatus for the simultaneous processing of one or 1. Aore bodies of semiconductor material by temperature gradiant zone melting, said apparatus comprising: bodies for processing;
a radiative heat source facing internally of said work chamber, said heat source comprising a first closure member for said work chamber;
heat sink provided with a multiplicity of closely packed radiation attenuating cavities disposed in a major surface
thereof facing internally of said work chamber and located opposite to, and facing, said heat source whereby when radiation is emitted from said heat source to said cavities the radiation is repeatedly reflected within the
interiors of said cavities to the extent of substantially

\section*{CHEMICAL}
complete attenuation, said heat sink comprising a second the resistance of said static pressure, means for pressurizing closure member for said work chamber;
said closure members defining at least in part said work said closure members defining at least in part said work
chamber and at least one of said closure members being


bustion, and means for varying the pressurization of said chamber in correspondence with variations in the static pressure.

4,097,228
FURNACE COVER
movable to allow access to the interior of said work cham-
movable
means disposed in said work chamber for supporting said
bodies of bodies of semiconductor material. Denys Reginald Rossling, Graniteville, S.C., assignor to The
Babcock \& Wilcox Company, New York, N.Y.
Filed Dec. 20, 1976, Ser. No. 752,341
\[
\text { 3-250 Int. Cl. }{ }^{2} \text { F27D } 1 / 18 \quad 7 \text { Claims }
\]


AIR MOVING DEVICE WITH OIL FIRED HEATING APPARATUS
James A. Brock, Sidney, Ohio, assignor to Aerovent, Inc.,
Piqua, Ohio
Filed Jun. 14, 1976, Ser.
Int. C1. \({ }^{2}\) F27B \(17 / 00\)
U.S. CI. 432-187
U.S. CI
\[
\text { for flowing heated air in direct contact with } \begin{array}{r}
24 \text { Claims }
\end{array}
\]
\[
\begin{aligned}
& \text { U.S. Cl. 432-187 } \\
& \text { 16. Apparatus for flowing heated air in direct contact with } \\
& \text { cereal grains, tobacco and like material for drying or curing }
\end{aligned}
\] cereal grains, tobacco and like material for drying or curing 1. A cover for sealing a furnace opening comprising a metal
thereof, including means for generating and directing a forced backing, panels disposed about the perimeter and extending flow of air, said means operating against a static pressure vary- backing, panels disposed about the perimeter and extending
transversely of the backing, flexible insulation material lining ing with the restriction to flow imposed by said materials, and overlappingthe backing and panels, and means connected means for heating the flowing air including means defining a to the panels and backing for adjustably moving the panels and combustion chamber positioned in said forced air flow and the insulation material associated therewith in the direction of providing an outlet from said chamber through which prod- the perimeter of the furnace opening to bring about sealing
ucts of combustion escape to join said forced air flow against contact of the insulation with the perimeter of the opening.

4,097,229
METHODS FOR DYEING OR PRINTING USING AMINO-ANTHRAQUINONE REACTIVE DISPERSE DYES Stefan Koller, Ramlinsburg, Urs Karlen, Magden; Werner Kneubuhler, Bockten, and Raymond Defago, Riehen, all of Switz
land, assignors to Clba-Geigy AG, Basel, Switzerland land, assignors to Clba-Geigy AG, Basel, Sivitzerland Dlvision of Ser. No. 689,985, May 26, 1976, Pat. No. 4,044,0 This application Mar. 1, 1977, Ser. No. 773,403
Int. C1. \({ }^{\text {D }}\) D06P \(1 / 38\); CO9B \(1 / 16\)
U.S. CI. 8-1 A \(\quad 12\) Claims 1. In the method for the dyeing or printing of organic fiber
1. material selected from the group of synthetic polyamide, natu-
ral polyamide and mixtures thereof which comprises contactral polyamide and mixtures thereof which
ing the said fiber with a dyestuf thereor, the improvement ing the said fiber with a dyestuff hereror, according to which the dyestuff is a reactive disperse dye of according to
the formula

wherein
\(\mathrm{R}_{1}\) represents hydrogen or alkyl,
\(\mathbf{R}_{2}\) represents hydrogen, alkyl, cycloalkyl, aralkyl or substi tuted or unsubstituted phenyl,
\(\mathbf{R}_{3}\) represents hydrogen or alkyl,
\(\mathbf{R}_{4}\) represents an alkyl radical of 1 to 6 carbon atoms which
\({ }^{2}\) is substituted in \(\alpha\)-position, or in \(\alpha\) - and \(\beta\)-position, by
halogen, or represents an \(\alpha, \beta\)-unsaturated alkene radical
which can be substituted in \(\alpha\) - or \(\beta\)-position by halogen,
A represents an alkylene or cycloalkylene radical which
A represents an alkylene or cycloalkyle
optionally contains oxygen or sulphur,
X optionally contains oxygen or sulphur, \(\mathrm{COOR}_{5}\), and
R , represents alkyl.
2. In the dry heat transfer dyeing or printing process which
comprises bringing an organic fiber material selected from the
group of synthetic polyamide, natural polyamide and mixtures
hereof into contact with the treated dyce off, subjecting the
material and carrier while in contact to a heat treatment to
meffect dyestuff transfer, and separating the material from the
carrier sheet, the improvement according to which at least on
ublimable dyestuff is a reactive disperse dye of the formula

wherein
\(\mathbf{R}_{1}\) represents hydrogen or alkyl
\(\mathbf{R}_{2}\) represesents hydrogen, alkyl, cycloalkyl, aralkyl or substi-
\(\mathbf{R}_{2}\),
tuted or unsubstituted phenyl,
\(\mathrm{R}_{3}\) represents hydrogen or alkyl,
\(\mathrm{R}_{4}\) represents an alkyl radical of 1 to 6 carbon atoms which is substituted in \(\alpha\)-position, or in \(\alpha\) - and \(\beta\)-position, by
halogen, or represents an \(\alpha, \beta\)-unsaturated alkene radical halogen, or represents an \(\alpha, \beta\)-unsaturated alkene radical
which can be substituted in \(\alpha\) - or \(\beta\)-position by halogen
represents an alkylene or cycloalkylene radical which
optionally contains oxygen or sulphur,
X represents hydrogen, chlorine, bromine, cyano or
\(\mathrm{R}_{5}\) represents alkyl

METHOD FOR TRANSFERRING METHOD FOR TRANSFERRING
HEAT-TRANSFERABLE DYES M. Akram Sandhu, Werster, N

Rochester, N.Y.
Filed Oct. 8, 1976, Ser. No. 730,884 Filed Oct. 8, 1976, Ser. No. 730,884
Int. C1. \({ }^{2}\) D06P \(5 / 00 ;\) C08G \(63 / 12\)
Int. C1.2 D06P 5/00; C08G 63/12 15 Claims


1. In a method for transferring a heat-transferable dye by vaporization and diffusion into a receiving substrate, the improvement comprising diffusing the heat-transferable dye into a dye receiving element comprising a transparent layer containing an amorphous, solvent soluble, aromatic polyester prised of the condensation of aromatic diol having the general formula:

HO-AR-X-AR-OH
aving the general formula:
HOOC-AR-X-AR-COOH
wherein \(A R\) is an aromatic radical and \(X\) is a saturated gembivalent radical having a saturated polycyclic three-dimensional structure that includes a sat yclic atomic bridged hydrocarbon ring member.

\section*{4,097,231
METAL-CONTAINING POLYPROPYLENE DYED WITH MONOAZO 1-ARYL 3 -ALKYL-5-PYRAZOLONES - Mouf Botros, Beech Creek, Pa., assignor to American Color} Raouf Botros, Beech Creek, Pa.,
Chemical Corporation, Charlotte, N.C
Chemical Corporation, Charlotte, N.C.
Filed Mar. 23, 1977, Ser. No. 780,405
Int C. \({ }^{2}\) C09B \(27 / 00\). \(45 / 000\)
U.S. C1. 8-41 D 1. Dyed metal-conta
heing of the structure:

where
\(R\) is H or alkoxy of \(1-4\) carbons,
\(\mathrm{R}^{\prime \prime}\) is alkyl of \(1-4\) carbons,
\(\mathbf{X}^{\prime}\) is \(\mathbf{H}\), chloro or bromo, and
\(\mathbf{X}^{\prime}\) is \(\mathbf{H}\), chloro or bromo;
and the metal of said metal-containing polypropylene fiber being selected from the group consisting of chromium, cobalt, nickel, aluminum and zinc.

METHOD AND APP 4,097,232
METHOD AND APPARATUS FOR TREATMENT OF
Edward J. Negole, Atlonts, and Jera Form
信 Ga., assignors to Glen Head, Inc., Jasper, Ga. Continuation-in-part of Ser. No. 628,374, Nov. 3, 1975,
abandoned, which is a continuation-in-part of Ser abandoned, which is a continuation-in-part of Ser. No. 541,127, Jen. 636,701 U.S. Cl. 8-65 \({ }^{\text {Int. C1. }{ }^{2} \text { D06P 5/22; D06B } 11 / 00}\)


METHOD FOR PREPARIN Iwamoto, Sohka, and Yasushi Okamoto, Ichikwa, all of
Japan, assignors to Nippi, Incorporated, Tokyo, Japan Japan, assignors to Nippi, Incorporated, Tokyo, Japa
U.S. Cl. 8-94.19 Int. \(\mathrm{Cl}_{2}{ }^{2} \mathbf{C 1 4 C}\), Ser. No. \(3 / 00\)
1. A method of preparing an aqueous dispersion of collagen 19 Claims fibers which comprises:
(a) soaking a material including bundles of collagen fibers in an aqueous solution 0.3 to 1.0 normal with respect to
NaOH, and containing \(10 \%\) to \(20 \% \mathrm{Na}_{2} \mathrm{SO}_{4}\) by weight and 0.05 to 0.3 mole per liter of an organic base until a portion of the telpeptides is removed from the collagen molecules in said bundles,
(1) said bundles having a length greater than 5 mm when being soaked in said solution,
(2) a length of said bundles greater than 5 mm being main tained during said soaking;
(b) washing the soaked material with water;
(c) grinding the washed material until said fiber bundles have a length of 5 to 70 mm ;
(d) tanning the ground fiber bundles; and
e) comminuting the tanned fiber, bundles in an aqueous
medium at a pH of \(2.0-4.0\) or 9.0 to 11.0 until medium at a ph of \(2.0-4.0\) or 9.0 to 11.0 until an aqueous
dispersion of collagen fibers having a mm is formed.
4.097,235
aUTOCLAVE AND AUTOCLAVE SYSTEM
1. The process of treating a mass of yarn in package form Hermann Stock, Neiumunster, Germany, assignor to Firma Her comprising the steps of infusing a yarn treating agent into introducing a heated fluid under pressure into said selected portions.
portions.
4. The method of treating a mass of yarn in package form to create repeating sequences of contiguous lengths of yarn having differing dye susceptibility comprising the steps of infusing a dye acceptance modifier into selected portions of the outer
surface of said package, and subjecting said selected portions of said package to a heated fluid under pressure to cause said modifier to at least partially penetrate said package.

\section*{\section*{4,097,233} \\ BASIC DYE COMPOSITION}

Maseoki Takahashhi, Tokyo, and Michio Fumishl, Fukuyama, both of Japan, aesedgaors to Nippon Kayaku Co., Ltd., Tokyo, Contimution of Ser. No. 424,699, Dec. 14, 1973, abandoned. This application Jun. 24, 1976, Ser. No. 699,501 Claimes priority, application Japan, Dec. 16, 1972, 47/126522 U.S. CI. 8-83
1. A basic dye composition consisting essentially of a finely disperied difficultly soluble dye complex salt consisting essentially of one or more anionic dispersants which are selected from the group consisting of ( \(\mathbf{a}\) ) a condensate of formaldehyde hyde with methylnaphthalenesulfonic acid (c) Lignin sulfonic acid and (d) sodium and ammonium lauryl sulfate and one or more water-soluble basic dyes and optionally water, said com-
1. An autoclave, for use in sterilizing articles and using a a vessel having a cylindrical shell, which has a horizontal central axis,
a row of outlet
mann Stock, Neiumunster, Germany
Filed May 25, 1976, Ser. No. 689,914
Claims priority, application Germany, Jun. 5, 1975, 252490 Int. Cl. \({ }^{2}\) A23LL \(1 / 00\), 3/14; A61L 3/00, 3/02 U.S. Cl. 21-93

row of outlet openings extending through said shell and openings being wpaced apart arior of said vessel, said outle openings be trix of said shell, a row of inlet openings for supplying the heated liquid ex tending through said shell communicating with the inte-
rior of said vessel and spaced apart rior of said vessel and spaced apart along a second geiteratrix of said shell, whic second generarix is anguri b
spaced about said shell from said lowermost generatrix by a central angle about the central axis of said shell in the

METHOD OF DETECTING HEAT SEAL BREAKS AND PACKAGE THEREO
William P. Daly, White Plains, N.Y.; Robert P. Lewis, Ocean port, N.J., and Oliver L. Pouliot, Oradell, N.Y., assignors to Filed Jan 24, 1977 Ser
Filed Jan. 24, 197, Ser. No. 762,066


1. Method of detecting a break in a heat seal between a paper member and a clear plastic member in a sterilizable package which comprises providing a paper member dyed a dark cotion but is impervious to bacteria, heat sealing the clear plastic member directly to the dyed paper member in the desired hea seal area, thereafter visually examining the heat seal to detect if the previously clear plastic member takes on a rranslucent
appearance in the area of the heat seal which translucent appearance provides a distinct color contrast and indicates boken seal.

DETERMINATION OF CELLS IN BLOOD
Bruce J. Oberhardt, Hartsdale, and Jack Olich, Mahopac, both of N.Y., assignors to Technicon Instruments Corporation, the steps of

Filed Mar. 4, 1977, Ser. No. 774,560
Int. Cl.2 G01N \(21 / 02,31 / 02,31 / 22,33 / 16\)
U.S. CI. 23-230 B

11 Claims

1. A method for determ
blood sample comprising: flowing a
sample;
introducing a known volume of an agglutinating agent and predetermined volume of a dye into said conduit, said predetermined volume of a dye into said conduit, said
agglutinating agent being characterized by a relatively aggh positive charge, said dye being of a material not present in blood samples of the type being determined,
caid dye also being of known concentration and water clot count;
adding calciu
mixing at least said sample and agglutinating agent while flowing along said conduit to agglutinate the red cells; decanting the agglutinated red cells from said conduit; and olorimerrically measuring the concritratid said dye in the plasma flowing along said conduit
\(4,097,238\) METHOD OF ANALYZING BLOOD PLASMA CLOTTING Sheldon J. Ashley, 147-15 84th Rd., Jamaica, N.Y. 11355 Filed Jun. 3, 1977, Ser. No. 803,070 U.S. Cl. 23-230.3 \({ }^{\text {Int. Cl. }}{ }^{2}\) G01N 33/16


A method of analyzing blood plasma clotting, comprising citrating platelet-rich blood plasma; adding a \(\mathrm{Tc}^{99 m}\) tagged particulate to the plasma counting the radioactivity of an aliquot of the citrated plasma with added
adding calcium chloride solution to initiate the clotting
a clot to ticoagulant to the solution
washing the resinual the clot reaction; resuspending the clot in a normal saline solution; recounting the radioactivity of the resuspended clot to provide the post-clot count and the cloting time.
1. A method for analyzing
thod comprising the steps of:

METHOD AND APPARATUS FOR TREATMENT OF Edward J. Negola, Atlanta, and Jerald Brown Ga., assignors to Glen Head, Incal., Jasper, Ga. Continuation-in-part of Ser. No. 628,374, Nov. 3, 1975, Jan. 15, 1975, abandoned. This application Dec. 4, 1975, Ser. No. Jan. 15, 1975, abandoned. This applís 636,701 U.S. Cl. 8-65 \({ }^{\text {In }}\)


METHOD FOR PREPARING DISPERSION OF METHOD FOR PREPARN FIBER
Imamonde, Chiba; Astuko Gotoh, Ichikawa; Kuniharu Japanato, Sohka, and Yasushi Okamoto, Ichikawa, all of Japan, assignors to Nippi, Incorporated, Tokyo, Japa
Filed Dec. 10, 1976, Ser. No. 749,307
U.S. Cl. 8-94.19 In 19 Claims fibers which comprises: (a) soaking a material including bundles of collagen fibers in an aqueous solution 0.3 to 1.0 normal with respect to and 0.05 and containing \(10 \%\) to \(20 \% \mathrm{Na}_{2} \mathrm{SO}_{4}\) by weigh portion of the telpeptides is removed from the collagen molecules in said bundles,
(1) said bundles having a length greater than 5 mm when being soaked in said solution,
(2) a length of said bundles greater than 5 mm being main-
(b) washing the soaked material with water;
(c) grinding the washed material until said fiber bundles
have a length of 5 to 70 mm ; have a length of 5 to 70 mm ;
(d) tanning the ground fiber bundles; and
(e) comminuting the tanned fiber bundles in an aqueous medium at a pH of \(2.0-4.0\) or 9.0 to 11.0 until an aqueou dispersion of collagen fibers having a length of at least mm is formed.

AUTOCLAVE AND AUTOCLAVE SYSTEM
1. The process of treating a mass of yarn in package form Hermann Stock, Neümunster, Germany, assignor to Firma Hercomprising the steps of infusing a yarn treating agent into mann Stock, Neiumunster, Germany
 Int. Cl.2 A23L \(1 / 00,3 / 14\); A61L \(3 / 00,3 / 02\) 4. The method of treating a mass of yarn in package form to U.S. Cl. 21-93
create repeating sequences of contiguous lengths of yarn having differing dye susceptibility comprising the steps of infusing a dye acceptance modifier into selected portions of the outer
surface of said package, and subjecting said selected portions surface of said package, and subjecting said selected portions
of said package to a heated fluid under pressure to cause said modifier to at least partially penetrate said package.

\section*{4,097,233}
\[
\begin{gathered}
4,097,233 \\
\text { BASIC DYE COMPOSITION }
\end{gathered}
\]

Masaoki Takahashi, Tokyo, and Michio Fumishi, Fukuyama, both of Japan, assignors to Nippon Kayaku Co., Ltd., Tokyo, Japan
Continuation of Ser. No. 424,699, Dec. 14, 1973, abandoned. This application Jun. 24, 1976, Ser. No. 699,501 Claims priority, application Japan, Dec. 16, 1972, 47/126522
U.S. Cl. 8-83

5 Claims
1. A basic dye composition consisting essentially of a finely dispersed difficultly soluble dye complex salt consisting essentially of one or more anionic dispersants which are selected from the group consisting of (a) a condensate of formaldehyde with naphthalenesulfonic acid, (b) a condensate of formalae-
hyde with methylnaphthalenesulfonic acid (c) Lignin sulfonic acid and (d) sodium and ammonium lauryl sulfate and one or more water-soluble basic dyes and optionally water, said composition having been prepared by a process consisting essentially of the step of dissolving or suspending 1 part of watersoluble basic dye in water, mixing 1 to 15 parts said anionic dye composition is intended to be powder.

1. An autoclave, for use in sterilizing articles and using a heated liquid as the sterilizing medium and which comprises a vessel having a cylindrical shell, which has a horizontal central axis,
a row of outlet
a row of outlet openings extending through said shell and communicating with the interior of said vessel, said outlet openings being spa
trix of said shell,
a row of inlet openings for supplying the heated liquid ex-
tending through said shell pommunicating with tending through said shell communicating with the inte-
rior of said vessel and spaced apart rior of said vessel and spaced apart along a second gereretrix of said shell, which second generatrix is angularly
spaced about said shell from said lowermost generatrix by a central angle about the central axis of said shell in the range of \(20^{\circ}\) to \(50^{\circ}\), and
means located exteriorly of said shell for receiving liquid from said outlet openings, for heating the liquid and for lation within said shell.

METHOD OF DETECTING HEAT SEAL BREAKS AND PaCKAGE THEREOF
William P. Daly, White Plains, N.Y.; Robert P. Lewis, Oceanport, N.J., and Oliver L. Pouliot, Oradell, N.Y., assignors to Faser Industries, Saddle Brook, N.J. Filed Jan. 24, 1977, Ser. No. 762,066 U.S. Cl. \(23-230 \mathrm{~L}\)

1. Method of detecting a break in a heat seal between a paper member and a clear plastic member in a sterilizable package which comprises providing a paper member dyed a dark color
which is sufficiently but is impervious to bacteria, heat sealing the clear plastic member directly to the dyed paper member in the desired heat seal area, thereafter visually examining the heat seal to detect if the previously clear plastic member takes on a translucent
appearance in the area of the heat seal which translucent appearance provides a distinct color contrast and indicates a broken seal.

DETERMINATION OF CELLS IN BLOOD
Bruce J. Oberhardt, Hartsdale, and Jack Olich, Mahopac, both of N.Y., assignors to Technicon Instruments Corporation, the steps of

Filed Mar. 4, 1977, Ser. No. 774,560
U.S. CI. \({ }^{\text {Int. }{ }^{23-230 ~}{ }^{2} \text { B }}\)

1. A method for determining the volume of red cells in a
flowing along a conduit a predetermined volume of said sample;
introducing a known volume of an agglutinating agent and a predetermined volume of a dye into said conduit, said agglutinating agent being characterized by a relatively
high positive charge, said dye being of a material not present in blood samples of the type being determined, said dye also being of known concentration and water soluble and characterized by (1) not penetrating said cells, (2) not forming a precipitate with said agglutinating agent
or with soluble components of said sample, and (3) not lysing said cells or altering the volume of said cells;
mixing at least said sample and agglutinating agent while mixing at least said sample and agglutinating er cells;
flowing along said conduit to agglutinate the red decanting the agglutinated red cells from said conduit; and colorimetrically measuring the concentration of said dye in the plasma flowing along said conduit.

4,097,238
METHOD OF ANALYZING BLOOD PLASMA CLOTTING Ashley, \(147-15\) 84th Rd., Jamaica, N.Y. 11355
Filed Jun. 3, 1977, Ser. No. 803,070 Int. Cl. \({ }^{2}\) G01N \(33 / 16\)
U.S. Cl. 23-230.3

1. A method of analyzing blood plasma clotting, comprising citrating platelet-rich blood plasma;
adding a \(\mathrm{Tc}^{99 m}\) tagged particulate to the plasma,
counting the radioactivity of an aliquot of the citrated plasma with added particulate thereby providing the preclot count;
adding calcium chloride solution to initiate the clotting process;
a clot to teragulant to the solution a
a clo to terminate the clot reaction,
washing the residual clot in a normal saline solution;
resuspending the washed clot in a saline solution; and ecounting the radioactivity of the resuspended clot to provide the post-clot count and the clotting time.

TWO-FLAME BURNER FOR FLAME PHOTOMETRIC aul L. Patterson, Weltection
aul L. Patterson, Walnut Creek, Calif., assignor to Varian Associates, Inc., Palo Alto, Calif.

Filed Feb. 28, 1977, Ser. No. 772,710
Filed Feb. 28, 1977, Ser. No. 772,710
Int. Cl. \({ }^{\text {GOO1J }} 3 / 48\); 01 N 31/12
U.S. Cl. 23-232 R

29 Claims
1. A method for analyzing a chemical substance, said ethod comprising the steps of:
introducing said chemical substance into a hydrogen-rich first flame,
passing combustion products and excess hydrogen from said having a into a second flame via a conduit structure having a substantial thermal conductance such that said
conduit structure, in operation, does not contribute to the in a trunk of an automobile, and adapted to be carried or held
coloration of said second flame, and

detecting the presence in said second flame of a color that is indicative of the presence of a particular constituent in
said chemical substance.

PROCESS FOR THE PRODUCTION OF A DIAGNOSTIC AGENT FOR THE DETECTION OF KETONES
Ifgang Hirsch, Wunstorf, Germany, assignor to Riedel-de Woirgang Hirsch, Wunstorf, Germany, assignor to R
Haen Aktiengesellschatt, Seelze, Hanover, Germany Filed Feb. 9, 1977, Ser. No. 767,028
Claims priority, application Germany, Feb. 11, 1976, 2605221 t. Cl. 23-253 TP Int. Cl. \({ }^{2}\) G01N 33/16 1. In a process for 6 Claims the detection of ketones, consisting of an absorbent carrier impregnated with sodium nitroferricyanide, an alkaline buffer substance and a water-soluble lower amino acid by impregnating the carrier in the first stage with an aqueous solution of the buffer, drying the carrier, impregnating it in a second stage with a solution of sodium nitroferricyanide in a solvent mixture containing methanol as one component, and drying the carrier again, the improvement which comprises using a solvent mix-
ture consisting of methanol and an organic solvent miscible ture consisting of methanol and an organic solve
with methanol which is not dimethyl formamide.

\section*{4,097,241}

PYROTECHNIC TIRE INFLATOR
Eugene F. Garner, and Brian K. Hamilton, both of Canyon Country, Calif., assignors to Allied Chemical Corporation, Morris Township, N.J.
Fled Nor. 4, 1974, Ser. No. 520,50
Int. C1. \({ }^{2}\) B01J \(7 / 100\)
U.S. C. 23-281

7 Claims

1. A light, portable, miniaturized tire inflator for inflating a tire without a source of stored gas, the tire having an inlet
valve having a valve stem, the inflator adapted to fit in a limited space, such as in a tire well for a deflated space-saving tire
in one hand, comprising: a pyrotechnic material to generate a low temperature, suba pyrotechnic material to generate a low temperature, sub-
stantially non-toxic, tire-inflating gas upon combustion to inflate a tire; said pyrotechnic material including by weight: about \(1 \%\) to about \(5 \%\) of a fuel; about \(40 \%\) to about \(60 \%\) of an inorganic oxidizer; and about \(35 \%\) to about \(55 \%\) of a combined binder and coolant:
a pressure vessel exterior of a tire to hold said pyrotechnic material, said pressure vessel having a first end and a
second end; said pressure vessel including a canister having a cylindrical shape, a first end corresponding to said ing a cylindrical shape, a first end corresponding to said
first end of said pressure vessel and a second end corresponding to said second end of said pressure vessel, said first end of said canister being open and having an outer edge; and a canister cap, a portion of which is adapted to fit within the outer edge of said first end of said canister; said pyrotechnic material compacted in the shape of a cylinder and having a coating of an inhibitor on the outer
surface of the pyrotechnic material between the pyrotechnic material and the walls of said canister and on an outer surface of an end of the pyrotechnic material, said inhibitor delaying burning of said outer surfaces of the pyrotechnic material; said canister cap including: a first place disposed within said canister cap and having apertures for permitting passage of said inflating gas; a coolant bed to bed; and a second plate disposed in said canister coap said second plate having apertures for permitting passage of said inflating gas; said coolant bed being disposed between said second plate and said first plate; said pressure vessel further including an over pressure relief means for release of excess pressure in the pressure vessel; and an ignitor mechanism located at said first end of said pressure vessel
to ignite and cause said pyrotechnic material to burn; said to ignite and cause said pyrotechnic material to burn; said
ignitor mechanism including: an ignitor body having a substantially cylindrical shape and a longitudinal bore, said ignitor body extending through said canister cap and into a portion of said canister; an actuator tube having a downstream end and an upstream end, said actuator tube disposed within a portion of said longitudinal bore of said ignitor body, said actuator tube being movable within said
longitudinal bore by a tire valve; a shear pin disposed in said ignitor body substantially radially to said longitudinal bore of said ignitor body and adapted to be broken by said actuator tube when said actuator tube is moved by a tire valve; a coil spring disposed inside a portion of said actuator tube in a compressed condition, said coil spring being released from said compressed condition when said shear
pin is broken, thereby allowing said coil spring to expand; pin is broken, thereby allowing said coil spring to expand;
a plunger having a downstream end and an upstream end, said plunger driven by said coil spring when said coil spring expands; a firing pin; a primer adapted to be actuated by said firing pin by impact of said firing pin upon said primer; an intermediate ignition material, adapted to be ignited by said primer, and a main ignition charge adapted to be ignited by said intermediate ignition material, said main ignition charge adapted
tion of said pyrotechnic material; and
nozzle mounted on said first end and
nozzle mounted on said first end of said pressure vessel,
said nozzle being adapted to be connected directly to a tire said nozzle being adapted to be connected directly to a tire
valve, said nozzle having a downstream end and an up stream end, said nozzle including: a well at the downstream end of said nozzle, said downstream end of said nozzle having means to connect said nozzle directly to a tire valve; and a stem depressor for depressing a valve
stem of a tire valve to allow inflating gas to pass through the valve into the tire, said stem depressor extending through a bore in the upstream end of the nozzle.

4,097,242
SULFONATION APPARATUS Keichi Tsuto; Kanji Majima, and Shigeyasu Imamura, all of Wakay
Japan
 This application Apr. 22, 1977, Ser. No. 789,873 Claims priority, application Japan, Jul. 21, 1975, 50-89069
 U.S. CI. 23-283
mixture of sulfur trioxide gas and inert gas, whereby the combined liquid streams from all of said first-stage reaction tubes form an annular falling thin film on the wall of said second-stage reaction tube and the sulfur trioxide gas in said additional stream reacts with previously unreacted liquid organic reactant to complete the sulfonation thereof.

1. An apparatus for reacting a liquid organic reactant with sulfur trioxide gas, comprising:
plurality of individual, parallel, vertically positioned, hol low, cylindrical, first-stage reaction tubes, each of said tubes being of circular cross-section and each of said tube a stream of a mixture of sulfur trioxide gas and inert gas a stream of a mixture of sulfur trioxide gas and inert ga
upwardly into the central region of the tube at the lowe end thereof and an outer annular iniet surrounding said central inlet and isolated therefrom for feeding an annular stream of said liquid organic reactant upwardly onto the said inlets for each tube terminating adjacent the lower end of the tube and the remainder of the tube being open to permit concurrent, upward, parallel flow and contact between said streams to effect the reaction whereby in each of said reaction tubes an annular rising thin film of
said liquid organic reactant is formed on the tube wall by said gas stream and the sulfur trioxide in said gas stream reacts with said liquid organic reactant;
means for cooling the external surface of each of said firststage reaction tubes along substantially the entire lengt thereof to remove the exothermic heaid organic reactant and said sulfur trioxide;
a single, vertically positioned, hollow, cylindrical, secondstage reaction tube of circular cross-section having an
inlet at the upper end thereof, an outlet at the lower end inlet at the upper end thereof, an outlet at the lower end second-stage reaction tube along the length thereof to remove the exothermic heat of reaction generated therein; each of said first-stage reaction tubes having a conduit extending from the upper end thereof to the inlet of said and liquid streams exiting from all of the first-stage reaction tubes are fed into the inlet of said second-stage reaction tube and are combined therein;
and a further inlet pipe extending to the central portion of the inlet of said second-stage reaction tube for supplying

4,097,244
PROCESS FOR REMOVING SULFUR FROM COAL Emmett H. Burk, Jr., Glenwood; Jin S. Yoo, South Holland, and
John A. Karch, Cicago, all of Ill,, assignors to Atlantic RichJohn A. Karch, Chicago, all of Ill., assignors to Atlantic Rich-

Filed Dec. 13, 1976, Ser. No. 749,952
Int. Cl. \(\mathbf{C l}{ }^{\text {C10L }} 9 / 10\) : C10B \(57 / 00\)
U.S. CI. 44-1 R
1. A process for reducing the sulfur con 33 Claims
ing the steps of:
1. contacting coal particles with an aqueous solution of iron complexing agent, and an oxidant to preferentially oxidize
at least a portion of the sulfur in the coal;
2. thermally treating the oxidized sulfur-containing coal at
elevated temperatures to reduce the sulfur content of the coal; and
3. recovering coal particles of reduced sulfur content.
3. recovering coal particles of reduced sulfur content.
21. A process for reducing the sulfur content of coal co prising the steps of:
1. contacting coal particles with an aqueous solution of iron complexing agent, and an oxidant to preferentially oxidize
at least a portion of the sulfur in the coal;
2. subjecting the oxidized sulfur-containing coal to a base thermal treatment comprising heating an aqueous slurry
of the coal and base to elevated temperature to reduce the of the coal and base to elevated temperature to reduce the
3. recovering coal particles of red
recovering coal particles of reduced sulfur content.
\[
4,097,245
\]

METHOD FOR PRODDCING CARBONACEOUS
a carbonaceous material having a size and shape characteristic of expansion without retraction
4. In a method as recited in claim 1 and comprising:
removing said carbonaceous material from said heating
slage;
and briquetting said carbonaceous material with a hydrocarbonaceous binder after its removal from said single heating stage;
no subsequen
no subsequent heating being performed after said heating step and prior to said briquetting step.
11. In a method as recited in claim 1 and comprising the briquetting said carbonaceous material;
curing said briquettes in a curing zone
and coking said cured briquettes in a coking zone down解 said curing and coking steps being conducted as a single continuous operation without cooling between the curing and coking steps.

METHOD OF MAKING AN ABRASIVE WIRE FOR SAWING STONE
farman R. Oison, Worcester, Mass., assignor to Olson Manufacturing Company, Holden, Mass.

Filed Jul. 1, 1976, Ser. No. 701,518
U.S. C1. 51-309 R

10 Claims

Michael O. Holowaty, Crown Point, Ind., assignor to Inland Steel Company, Chicago, Ill.

Filed Mar. 1, 1976, Ser. No. 662,449



In a method for producing a carbonaceous shape com posed of carbonaceous material derived from particulized coal and a hydrocarbonaceous binder, wherein said method in cludes briquetting and coking steps, the additional steps comprising:
preheating said particulized coal in a preheating stage to a preheating temperature which drives off moisture wil.
driving off volatile vapors and gases from said coal; heating the preheated coal, in a single heating stage, said preheating temperature to a temperature above 1400 \(\mathbf{F}\left(760^{\circ} \mathrm{C}\right)\), to drive off volatile vapors and gases from said coal, without combusting said coal, and to produce a nd capturing the gases \(d\)
said heating step being conducted prior to said briquetting and coking step;
said heating step being conducted in the absence of extraneous gas so that said captured gases consist essentially of
the volatile vapors and gases driven off from said coal the volatile vapors and gases driven off from said coal
said method comprising a plurality of steps, including said above-recited steps, which cooperate to avoid producing

1. In a conventional method of making an abrasive wire fo awing stone, said conventional method comprising the fol owing steps:
(a) forming a support element of malleable metal into a shape comprising two contiguous, axially aligned, cylindrical cond portion having a positioning the su
(b) positioning the support element into the bore of a die, the
bore having the same diameter as the ore having the same d:
(c) insertingport element; inserting a quantity of abrasive powder containing a
mixture including diamond grit and a sinterable metal mixture including diamond grit and a sinterable meta
binder into the bore of the die, the abrasive powder being positioned around the second portion of the support element;
d) compressing the abrasive powder axially towards the first portion of the support element, a part of the second portion of the support element protruding axially beyond ed abrasive powder;
(e) sintering the abrasive powder to produce a solid abrasive ( \()\) affixing
(f) affixing the solid abrasive body to the support element; (g) forming a central axial bore through the support element; (h) inserting a length of flexible wire rope through the suppor element bore; and
(i) affixing the support element to the wire rope; the improvement to said foregoing conventional method com-
prising: affixing the solid abrasive prising: affixing the solid abrasive body to the support
element by deforming the part of the second portion of the support element protruding axially beyond the compressed abrasive powder, said deformed second portion part having the same diameter as that of the first portion.

\section*{4,097,249}

ISOTOPE SEPARATION PROCESS
James B. Anderson, Hamden, Conn., assignor to The United States of America as represented by the United States Department of Energy, Washington, D.C.

Filed Oct. 10, 1972, Ser. No. 298,431
METHOD OF FLUID DEGASSING ictor Quin Phillips; Phil Harmon Griffin, and Martin James Sharki, all of Houston, Tex., assignors to Dresser Industries, Inc., Dallas, Te

Filed Dec. 27, 1976, Ser. No. 754,853
.S. Cl. 55-17
10 Claims
1. A method for the separation of species of different weight or different molecular size contained in a gas mixture, comprising the steps of:
introducing a low-molecular-weight stopping gas in the form of a jet into a vacuum chamber;
expanding said gas mixture through a nozzle to form a gas mixture jet directed to impinge upon said stopping gas jet o effect spatial separation of said different species of said gas mixture within said stopping gas jet; and
dividing said stopping gas jet downstream from the point of impingement of said gas mixture jet into separate streams the separated species of said gas mixture.

METHOD FOR DECONTAMINATING COMPRESSED Virgil L Frantz, Salem, Va., assigi assignor to Graham-White Sales Corporation, Salem, Va.
Filed May 15, 1974, Ser. No. 469,95 U.S. C1. 55-33


3 Claims
1. A method of adsorbing an entrained component from an cooling compressed gas supplied by a compressor during umping cycles thereof, comprising containing in a heat con ductive container a desiccant adapted to selectively adsorb said component, so passing said gas in a laterally confined path around said container as by partly converting kinetic energy of said gas into centrifugal force to concentrate heat from said gas and container on an outer confine of said path, externally gas and container and therethrough maintaining said desiccant in a temperature range of substantially optimum adsorption efficiency for said component, passing said cooled gas through said desiccant for adsorbing said component, and during idling cycles of said compressor discharging contaminants separate by said centrifugal force from said gas while preventing from said compressor from entering said confined path.


1. A method of removing a substantial amount of entrained as from a viscuous fluid such as drilling mud, said method introducing the fluid into a fluid pump and pressurizing the introduced fluid;
discharging the pumped fluid through a conduit and into a spray vessel;
spraying the fluid outward from a deflector in the spray \({ }^{\text {ing; }}\)
creating a vacuum in the spray vessel by said spraying step; flowing the sprayed fluid into a discharge outlet of the spray discharging said fluid into a closed degassing vessel; moving said fluid through an extended length of the degassing vessel while maintaining a fluidic barrier to gas flow between the extended length of the degassing vessel and the spray vessel; and,
ing the gas removed from the fluid in the degassing vessel. ing the gas removed from the fluid in the degassing vessel.

METHOD FOR THE PURIFICATION OF NATURAL GAS HAVING A HIGH CONTENTS OF ACIDIC GASES Giorgio Pagani, Milan; Gianfranco Guerreri, and Bruno Peri, both of San Donato Milanese (Milan), all of Italy, assignors to Snamprogetti, S.p.A., Milan, Italy Claims priority, application Italy, Mar. 5, 1976, 20900 A/76 S. Cl. 55-48 Int. C1. \({ }^{2}\) B01D 19/00

1. The method of purifying natural gas having a high content acidic gases, comprised of a sulfurous compound and \(\mathrm{CO}_{2}\) a series of stages which include:
a first stage which comprises, desulfurizing the gas to be purfined by feeding said gas and a selective solvent for said
sulfurous compound to a desulfurization column so that the sulfurous compound is absorbed by said solvent, recovering the solvent and material absorbed thereby as withdrawing desulfurized gas including natural gas and \(\mathrm{CO}_{2}\) from the head of the desulfurization column;
a second stage which comprises, regenerating the selective
solvent recovered in the bottom product of said first stage solvent recovered in the bottom product of said first stage
by feeding said bottom product to a stripping column so by feeding said bottom product to a stripping column so
that the sulfurous compound is stripped from the solvent therein, withdrawing said sulfurous product from the head of the stripping column, and recovering regenerated
solvent from the stripping column as bottom product; solvent from the stripping column as bottom product;
third stage which comprises, removing the major fractio of the \(\mathrm{CO}_{2}\) from the desulfurized gas withdrawn from the desulfurization column in the first stage by feeding said desulfurized gas to a separation column so that said gas is
subjected to a low temperature distillation whereby liquid subjected to a low temperature distillation whereby liquid
\(\mathrm{CO}_{2}\) is separated from said desulfurized gas and wherein the necessary refrigeration is supplied by evaporating liquid \(\mathrm{CO}_{2}\) separated in said distillation, withdrawing liquid \(\mathrm{CO}_{2}\) from the separation column as bottom product, and recovering natural gas and the bala
from the head of the separation column;
a fourth stage which comprises, purifying the natural gas withdrawn from the head of the separation column in said third stage by feeding said head product from the third
stage and said regenerated selective solvent recovered as bottom product in the second stage to an absorption col umn so that \(\mathrm{CO}_{2}\) in said third stage head product is absorbed by said regenerated selective solvent, recovering purified natural gas from the absorption column as head \(\mathrm{product}^{\text {prond }} \mathrm{OO}_{2}\) from said absorption column as bottom product; and recycling said fourth stage bottom product to the first stage desulfurization column

\section*{4,097,251}

METHOD OF FILTERING A STICKY MATERIAL-CONTAINING EXHAUST GA Takao Murayama, Yokoyama; Seiichi Shimizu, Tokyo, and Takeo Miyakawa, Kawasaki, all of Japan, assignors to Taisei
Kensetsu Kabushiki Kaisha \& Tokyo Gas Co., Ldd., Tokyo, Japan

Filed Mar. 17, 1977, Ser. No. 778,421 Claims priority, application Japan, Apr. 14, 1976, 51-41990
form a protective layer of pulverized coal and/or cok having a minimum thickness of at least 1.0 mm on th surace of each bag-filter, and
said hoterng the sticky material-containing exhaust gas into said proper in a manner such that the gas passes through said protective layer while said protective layer captures
and retains the sticky material.

\section*{Franz-Josef Kirchhoff, Olpe, and Joachim Brandt, Rothemuhle, both of Germany, assignors to Apparatebau Rothemuhle Brandt \& Kritzler, Rothemuhle, Germany
Filed Apr. 5, 1976, Ser. No. 673,58 Claims priority, application Germany, Apr. 5, 1975, 2514956 U.S. Cl. 55-135}

U.S. Cl. 55-97

1. A method of treating a sticky material-containing exhaust gas to remove the sticky material therefrom, which comprise cles, at least \(60 \%\) by weight of which have particle sizes of 0.3 mm or less, into the bottom of a hopper by means of a supply pipe connected to the bottom of said hopper, said hopper being positioned below, and integrally connected
with, a bag-house containing at least one bag-filter to cause a vertical rotary flow of pulverized coal and/or coke particles in said hopper and to gradually deposit and
7. A horizontal-flow electrostatic filter interconnected beween a boiler house of a steam generating plant and a chimney rreating the gas output of the boiler house and including ilter comprising a treated gas to the chimney of the plant, the horizontally extending gas-flow chambers each terminating at longitudinal ends of the housing, each chamber containing a lurality of arrays of collection and discharge electrodes which define a plurality of electrostatic precipitation field arranged in series for the passage therethrough sequentially of gas in each chamber in parallel directions, input duct means for ach chamber for bringing the gas output of the boiler house to he chambers and dividing it among them, said input duct means being at one longitudinal end of the housing for one of for another of the chambers, and output duct means for bringing the treated gas from the chambers to be reunited in the himney, output duct means for the one of the chambers being the other longitudinal end of the housing and output duct means for the other of the chambers being at the one end of the are parallel and opposite and the gas output of the boiler house is treated in a plurality of substantially equal streams totalling the said output, one stream to each chamber.

4,097,253
MUD DEGASSER TROUGH Victor Quin Phillips; Phil Harmon Griffin, and Martin James assignors to Dresser Industries, Inc., Dallas, Tex.

Filed Dec. 27, 1976, Ser. No. 754,855
Int. Cl. \({ }^{2}\) B01D \(19 / 00\)
U.S. C. 55-169

11 Claims

1. A degassing trough for removing gas bubbles entrained in
viscuous fluids such as drilling mud, said trough comprising: an enclosed inlet section having an inlet opening therein; a flow section connected to said inlet section and being relatively airtight;
restricted flow opening between said inlet and flow sec tions arranged to maintain a liquid barrier against open communication of gas between said two sections; gas discharge means in said flow section; and
fluid discharge means in said flow section.
partition, said filters being arranged in two paralle, spaced apart banks;
arraly of vertical dividers arranged in said first chamber above said two banks of filters to thereby define compart ments having mouths opening centrally of said first cham a mer; between said banks of filters and hain said first chamber conduit adapted to matingly register with and seal agains said compartment mouths;
drive means coupled to said cleaning head to move said head chamber between said band backward within said firs pressurized air supply means connected to said cleaning head to supply pressurized cleaning air thereto; alve means mounted on said cleaning head to normally
restrict flow of cleaning air from said delivery conduit and intermittently operable to transmit a burst of cleaning air through said delivery conduit; and
can discharge control means positioned and arranged with respect to said valve means to cause said valve means to transmit a burst of cleaning air through said delivery
conduit each time said delivery conduit aligns with a compartment mouth of one bank of filters as said cleaning head travels through said first chamber in one direction and to cause said valve means to transmit a burst of cleaning air through said delivery conduit each time said deliv
ery conduit aligns with a compartment mouth of the secery conduit aligns with a compartment mouth of the sec
ond bank of filters as said cleaning head travels through said first chamber in the opposite direction.

1. Apparatus for separating particulate matter from a gas tream, said apparatus comprising:
stream, said
a housing;
a substantially horizontal partition disposed interiorally of In a gas filter of the type including at least one porous said housing horizontal partition disposed interiorally of element having a hollow interior and a circular outlet commupartition and a second chamber beneath said partition, said nated gas to the exterior of said element for flow radially partition having a plurality of openings theretrition, said
an inlet conduit connected to said second chamber for did
recting a particulate laden gas stream into said second
chamber;
an outlet conduit con
a plurality of filters disposed in said second chamber and
having open ends secured to said openings through said
lement having a hollow interior and a circular outlet communated gas to the exterior of said element for for fow radially rough said element, into the interior and means communicat ing with the outlet for conducting filtered gas therefrom, imroved apparatus for periodically producing a reverse blast to islodge contaminates from the exterior of said element com rising a nozzle, means for supporting said nozzle adjacent said utlet for pivotal movement about an axis spanning the outle between an active position at which the nozzle is directed
oward said interior and a passive position at which the nozzle
having an opening aligned with said nozzle, means for mounting said venturi to said supporting means for pivotal movement
in unison with said nozzle, said venturi including a substanin unison with said nozze, said venturi including a substantially congruent to said outlet so as substantially to seal said outlet when in said active position, said marginal portion having a radius of curvature relative to said axis to afford movement of said ventur between said active and passive positions,
said venturi defining a central opening substantially coaxial with said nozzle, and a sleeve portion surrounding said central opening and extending toward said outlet, said sleeve portion terminating in an orifice disposed radially inward of said marginal portion to avoid interference of movement of said venturi between said active and passive positions, and means for sup-
plying compressed gas to said nozzle in the active position

4,097,256
POWERED CONTAMINANT DISCHARGE EVACUATOR IN CONNECTION WITH AIR CLEANER
Lewis A. Borsheim, Fargo, N. Dak., assignor to Mel
tries, Inc., Fargo, N. Dak.
Filed May 20, 1977, Ser. No. 798,857
U.S. Cl. 55-429

9 Claims

1. A positive discharge evacuating apparatus, having in combination
a housing,
receiving means within said housing including,
an annular chamber having an outlet,
a passage within said housing about said chamber having an
outlet,
a discharge passage within said housing about said last men-
tioned passage having a discharge outlet,
said outlet of said first mentioned passage and of said cham-
ber being misaligned circumferentially,
discharge means carried by said housing cooperating with
and being complementary to said receiving means comprising,
driving means carried by said housing driving said impeller
a hub portion of said impeller being disposed into said cham
seaid hub portion having a pair of oppositely disposed dis charge chutes which alternately provide communication between said chamber and said discharge passage,
vanes carried by said impeller upstanding therefrom dis-
posed in said first mentioned passage,
plurality of vanes carried by said impeller upstanding
a pair of opposed spaced pairs of said vanes in said first mentioned passage define pockets respectively alternately in register with said outlet of said chamber, and
said other vanes of said other mentioned passage and said vanes of said discharge passage obstructing communica-
tion between said outlet of said chamber and said outlet of said discharge passage when one of said discharge chutes of said chamber communicates with said discharge pas-

GLASS MOLDING PROCESS WITH MOLD LUBRICATION Richard G. Davey, Toledo, Ohio, assignor to Owens-Illinois, Inc., Toledo, Ohio
Continuation of Ser. No. 563,895, Mar. 31, 1975, abandoned This application Oct. 12, 1976, Ser. No. 731,591 U.S. C1. 65-26 Int. C1. \({ }^{2}\) C03B 39/00
semi-annular channel therebetween, said cylinder being rotatable about its longitudinal axis for stirring the molten glass and effecting a flow of glass through said semi-annu- Jiin-Duey Cheng, Wilmington, Del., sssignor to nnu- Jin-Duey Cheng, Wimington, Del., assignor and Company, Wilmington, Del.
Nemour
d. a first electrode inserted in the molten glass upstream of said cylinder and substantially
entire height of the molten glass;
\(\begin{array}{ll}\text { U.S. Cl. 71-90 } \\ \text { entire height of the molten glass; } \\ \text { e. a second electrode inserted in the molten glass within the } & \text { 1. A compound of the formula }\end{array}\)
Filed Apr. 22, 1977, Ser. No. 789,961
Int. Cl. \({ }^{2}\) A01W 9/12, 9/22; C07D 236/04, 277/04


semi-annular channel and substantially extending through the entire height of the molten glass, said first and second electrodes being offset from a vertical plane passing through the center of said elongated conduit and the center of said cylinder; and
f. means for energizing said first and second electrodes to produce an electric current flow through the molten glas between said electrodes to heat the molten glass therebe-
tween.

4,097,260
2.SUBSTITUTED-1,3(2H,4H)-ISOQUINOLINEDIONES AS PLANT GROWTH REGULANTS
John J. D'Amico, St. Louis, Mo., assignor to Monsanto Com
pany, St. Louis, Mo.
Filed Nov. 28, 1975, Ser. No. 636,012
Filed Nov. 28, 1975, Ser. No. 636
Int. Cl. \({ }^{2}\) A01N \(9 / 22\)
U.S. C. 71-94 5 Claims
1. A method of regulating the growth of leguminous plants which comprises treating said plants with an effe
lethal amount of a compound having the formula

wherein X and Y are selected from the group consisting trifluoromethyl, methoxy and chloro; and \(n\) is 0 or 1 .

4,097,261
METHOD AND COMPOSITIONS FOR CONTROLLING METHOD AND WATERHYACINTH
Kenneth Edward Conway; Thomas Edward Freeman, and Raghavan Charudattan, all of Gainesville, Laboratories, North Chicago, Ill.
Filed May 13, 1977, Ser. No. 796,565

Filed May 13, 1977, Ser. No.
Int. Cl. \({ }^{2}\) A01N \(9 / 00\) U.S. C. 71-66 \(\qquad\)
Rere
R is alkyl or alkoxy of 1 to 4 carbon atoms;
\(\mathrm{R}_{1}\) is hydrogen or alkyl of 1 to 3 carbon atoms. \({ }_{R_{2}}{ }_{R_{1} \text { is hydrogen or methyl; }}\)
\(\mathrm{R}_{3}\) is hydrogen or meming;
X is chlorine or bromine; and
Y is oxygen or sulfur.
11. A composition for the control of undesirable vegetation consisting essentially of a herbicidally effective amount of a compound of claim 1 and at least one of (a) a surface-active agent and (b) a solid or liquid diluent.

\section*{4,097,263}

ACYLAMINO-1,3,4-THIADIAZOLE-2-SULFONAMIDES oel L. Kirkpatrick USE AS HERBICIDE Corpoirkpatrick, Overland Park, Kans., assignor to Gulf Oil Corporation, Pittsburgh, Pa.

Filed Nov. 22, 1976, Ser. No. 743,543
Int. C. \({ }^{\text {A01N } 9 / 16 ; ~ C 07 D ~ 91 / 62 ~}\)
U.S. CI. 71-90
1.S. Cl. 71-90
1. The method of selectively combating unwanted verims tion in the presence of crop plants comprising applying pre- or post-emergently an effective amount of compound having the structural formula
\[
\mathrm{R}^{3}-\mathrm{CONH} \prod_{\mathrm{N}}^{1}-\prod_{\mathrm{N}}^{\mathrm{S}} \mathrm{SO}_{2} \mathrm{~N}^{\prime} \backslash_{\mathrm{R}^{2}}^{\mathrm{R}_{1}}
\]
in which \(\mathbf{R}^{1}\) and \(\mathbf{R}^{2}\) are selected from hydrogen and lower alkyl, alkenyl, alkylene and alkoxy structures and togethe ossess a total of 1 to 6 carbon atoms when \(R^{3}\) is ethyl, propy isopropyl, cyclopropyl, methoxy or tert-butyl.

\section*{4,097,264}

CHLORO-TERT.BUTYL \(1,3,4\) THIADIAZOLEUREA HERBICIDES AND USE TO COMBAT UNWANTED VEGETATION
boet. Kirkpatrick, Overland Park, and Jr. Doyle, Leawood, both I Kans., assignors to Gulf Oil Corporation, Pittsburg Filed May 14, 1973, Ser. No. 360,204 10 Claims U.S. Cl. 71-90 2 Claims 1. A mycoherbicide concentrate for the preparation of com- 1. The method of combating unwanted vegetation comprispositions effective to control waterhyacinth, said concentrate ing the step of applying to the area in which the vegetation is \(\begin{array}{ll}\text { comprising: the microorganism Cercospora rodmanii Conway } & \text { unwanted an effectival } \\ \text { adsorbed on an agronomically acceptable carrier. } & \text { structural formula }\end{array}\)
\[
\underset{\substack{\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{C} \\ \mathrm{C}-\mathrm{CH}_{2}}}{\mathrm{CH}_{3}}
\]
in which X is H and R is \(\mathrm{CH}_{3}\).
PURIFICATION AND REALLOYING OF
4, 297 ARSENIC/SELENIUM ALLOYS Gary P. Baccaro, Fairport, and James F. Seitz, Rochester, bot
of N.Y., assignors to Filed Jul. 5, 1977, Ser. No. 812,869
Int. Cl. \({ }^{2}\) B22D 23/08 8 Claims

3,5-DIMETHYL-2-THIENYLCARBOXANILIDE AND 3,5-DIMETHYL-2-THIENYL-N-HALOALKYLTHIOCAR
BOXANILIDE) HERBICIDES John W. Kobrina, Walnut Creek, Calif., ass Research Company, San Franclsco, Calif.
Rision Company, 15159 , 30, 1975. a continuation of Ser. No. 5770,339, May 21, 1975, Pat. No a continuation of Ser. No. 570,339 , May 21, 1975, Pat. No.
\(\mathbf{3 , 9 4 8 , 6 3 3 , ~ w h i c h ~ i s ~ a ~ d i v i s i o n ~ o f ~ S e r . ~ N o . ~ 3 8 3 , 7 5 1 , ~ J u l . ~ 3 0 , ~ 1 9 7 3 , ~}\) 3,948, No. \(3,892,775\). This application Jan. 31, 1977, Ser. No.
Pat. Int. C1. \({ }^{2}\) A01N 9/12; C07D 63/16
U.S. CI.

9 Claims
1. A compound of the formula

wherein \(R\) is hydrogen and \(A r\) is phenyl or 2 -fluorophenyl.

\section*{4,097,266}

MICROSPHERE OF SOLDER HAVING A METALLIC CORE AND PRODUCTION THEREOF
Eikichi Takahashi, Matsudo; Toshihiko Taguchi, Showa; Kazuo Fujikura, Mooka, and Toshihisa Sudo, Tokyo, all of Japa ssignors to Senju Metal Industry Co.. Ltd., Tokyo, Japan
Filed Dec. 30, 1975, Ser. No. 645,395 Claims priority, application Japan, Jan. 24, 1975, 50-10223 U.S. Cl. 75-0.5 R

1. A microsphere of solder comprising a metallic core grai and a solder coating thereon, which is prepared by melting at least one solder grain at a temperature higher than the melting
point of the solder grain but lower than the melting point of the metallic core grain, and in the presence of the metallic core grain and a flux, to envelop the metallic core grain with a solder coating, the thickness of the solder coating being more than 20 microns.
5. A process for producing a microsphere of solder comprising a metallic core grain and a solder coating thereon, compris ing preparing a predetermined number of solder grains and a at a temperature higher than the melting point of the solder grains, but lower than the melting point of the metallic core grain to envelop the metallic grain with a coating of solder.
U.S. C. \(75-0.5\) B
1. A method for the reclamation of arsenic containing sele (a) feeding which comprises:
(a) feeding the scrap to a premelter and heating it to a tem-
perature sufficiently high perature sufficiently high to cause its liquefaction;
(b) feeding the melted scrap into (b) feeding the melted scrap into a fractional distillation column to thereby repeatedly vaporize and condense the
(c) removing low boiling impurities from the scrap in the fractional distillation column and recovering substantially pure liquid selenium from the column;
(d) providing a liquid arsenic/selenium master alloy containing from about 10 to \(20 \%\) arsenic, said alloy having been
prepared by the vapor/iquid combination of arsenic and selenium in the proper proportions;
(e) combining the liquid arsenic/selenium master alloy with the liquid selenium obtained from the fractional distillation column in the proportion required to form a new
arsenic/selenium alloy containing the desired amount of arsenic;
(f) shotting the new arsenic/selenium alloy into a non-reactive liquid medium to form discrete solid particles of said alloy.

METHOD OF TREATING
METHOD OF TREATING MOLTEN FERROUS MATERIAL WITH COMPOSITE RODS CONTAINING CA
Tohei Ototani, and Yasuii Kataura, both of Sendai, Japan, signors to Tohel Ototani, Sendai, Japal Division of Ser. No. 598,477, Jul. 23, 1975, Pat. No. 4,035,892, which is a continuation-in-part of Ser. No. 374,431, Jun. 28, 1973, abandoned. This application Feb. 29, 1977, Ser. No.
Claims priority, application Japan, Jun. 30, 1972, 47/65757; Dec. 27, 1972, 48/1615
Dec. \(27,1972,48 / 1615\)
The portion of the term of this patent subsequent to Jul. 19, Int. C1. \({ }^{2}\) C21C \(7 / 02,7 / 06\)
U.S. CI. \(75-57\) (1) 4 Claims feeding a compressed and deformed composite calcium clad material of a solifified core encased in a sheath continuously to the bottom of a molten metal bath, said composite clad material onsisting of
A. a consisting essentially of
calcium ale selected from the group consisting of metallic and
nom and mixtes thereof B. at least one element selected from the group consisting of a sheath of iron or alloy thereof, the core being \(10-90 \%\) by weight based on the composite material, said clad material
having been subjected to mechanical compression and deforhaving been subjected to mechanical compression
mation prior to being fed into the molten bath.

4,097,269
PROCESS OF DESULFURIZING LIQUID MELTS Woifgang Holzgruber, Bruck an der Mur, Austria, assignor m.b.H., Bruck an der Mur, Austria Beratung Geselischaf m.b.H., Bruck an der Mur, Austria
atinuation of Ser. No. 645,326, Dec. 30, 1975, abandoned.
This application Dec. 21, 1976, Ser. No. 753,017 Claims priority, application Austria, Jan. 14, 1975, 245/75; Feb. 10, 1975, 993/75
U.S. Cl. 75-58 10 Claims 1. A process characterized by rapid desulfurization of steel
melts whose oxygen available for reaction is less than \(0.01 \%\) comprising:
raising the
raising the temperature of the melt above \(1500^{\circ} \mathrm{C}\)
injecting a desulfurizing slag into the melt by means of a non-oxidizing carrier gas;
said slag being in a finely divided state and having bee prepared by mixing, on a percent weight basis, 10 to \(60 \%\) \(\mathrm{CaO}, 10\) to \(70 \% \mathrm{CaF}_{2}, 0\) to \(40 \% \mathrm{All}^{2} \mathrm{O}_{3}\), a maximum of
\(20 \% \mathrm{SiO}_{\text {and }}\) a maximum of \(5 \%\) heavy metal oxides, \(20 \% \mathrm{SiO}_{2}\) and a maximum of \(5 \%\) heavy metal oxides,
melting the mixture and then cooling the melt to prepar meiting the mixture and then cooling the me prefused slag a prefused slag and then comminuting the prefused slag
into the finely divided state, said slag having a liquidus temperature such that the particles thereof become liquid at a temperature at least \(150^{\circ} \mathrm{C}\) below that of the steel mel and the particles of the slag being sufficiently smalt such
that they become liquid substantially immediately o contacting the melt;
the injection being carried out in a manner to produce a fine dispersion of the slag particles in the melt.

4,097,270
REMOVAL OF MAGNESIUM FROM AN ALUMINUM ALLOY
Mannige Vikram Rao, Princeton Junction; Bernard H. Coyle Jr., Voorbees, and Peter C. J. Gallagher, Hightstown, all of N.J., assignors to N L Industries, Inc., New York, N.Y.

Filed Jun. 3, 1977, Ser. No. 803,18
U.S. C. 75-68 R 23 Claims 1. A process for reducing the amount of magnesium metal from an aluminum alloy containing magnesium which comprises reacting the aluminum alloy containing magnesium metal with silica having a chemically reduced surface layer to magnesium oxide, and removing the magnesium oxide from said aluminum alloy.

HYDROMETALLURGICAL PROCESS FOR
HYDROMETALLURGICAL PROCESS FOR FROM METAL SULPHIDES
Godefridus M. Swinkels, Rossland; Edward F. G. Milner, Warfield, and Roman Michael Genik-Sas-Berezowsky, Edmonton, all of Canada, assignors to Cominco Ltd., Vancouver and Sherritt Gordon Mines Limited, Toronto, both of, Canada Filed Nov. 12, 1976, Ser. No. 741,280, 241806 Claims priority, application Canada, Dec. 11, 1975, 241806 U.S. C. 75-104 19 Claims 1. A process for the recovery of non-ferrous, ferrous and precious metal values and sulphur from concentrates contain ing metal sulphides which comprises the steps of:
(1) subjecting said concentrates to a leach at a temperature in
the range of about \(80^{\circ}\) to \(110^{\circ} \mathrm{C}\) under autogenous pres-
sure with lixiviant containing ferric chloride, cupric chlo-
ride and chlorine to form a leach solution containing
us chloride and a leach residue,
temperature in the range of about \(-35^{\circ}\) to \(+40^{\circ} \mathrm{C}\) under utogenous pressure to form a precipitate of cuprous chloride-butadiene addition compound and residual soluchlorid
tion;
(3) decom
) decomposing precipitated addition compound at a temperature of up to about \(80^{\circ} \mathrm{C}\). at atmospheric pressure for (4) returning recovered butadiene to step (2); (5) slurrying recovered cuprous chloride and treating the slurry with an oxygen-bearing gas at a pressure in the range of about atmospheric to 250 psi and at a temperature in the range of abou so to 1550 pio form a precipiate of cupric oxychloride
ride; (7) electrolyzing brine solution for formation of sodium hydroxide solution, hydrogen gas and chlorine gas;

(8) converting precipitated cupric oxychloride to cupric oxide and brine solution with an approximately stoichio emperature in the range of about \(80^{\circ} \mathrm{C}\) to the boiling point of the reaction mixture, under autogenous pressure, to give a final pH in the range of 7 to 11 ;
(9) returning brine solution to step (7);
(10) reducing cupric oxide to metallic copper with formed hydrogen gas;
(11) passing formed chlorine gas to step (1);
(12) treating residual solution from step (2) with an oxygenbearing gas at a partial pressure of oxygen in the range of from about 100 to 200 psi and at a temperature in the range of from about \(135^{\circ}\) to \(165^{\circ} \mathrm{C}\) for the regeneration of ferric chloride and the simultaneous precipitation of anhydrou ferric oxide; and
(13) returning regenerated ferric chloride to step (1)

\section*{WINNING NICKEL AND COBALT WITH MERCAPTIDE} EXTRACTANTS AND CARBON MONOXIDE STRIP Elkis S. Rappas, Bedford, and J. Paul Pemsler, Lexington, bot of Mass., assignors to Keunecott Copper Corporation, New York, N.Y.
Int Cl. \({ }^{\text {Ciled Sep. 8, 1977, Ser. No. 831,502 }}\)
Int. Cl. \({ }^{2}\) C22B 23/04; C01G 51/02, 53/02; C07C 149/00 16. A process for separating cobalt and nickel values from an queous solution containing ions of said metals, said process A provising the steps of.
A. providing an extractant comprising a water immiscible organic solvent containing solubilized mercaptide anion insoluble mercaptides;
B. contacting the extractant with the aqueous solution to in size and a hard-alloy matrix material into a graphite press produce a mixture of cobalt mercaptide and nickel \(m\)
captide in said extractant; captide in said extractant; step B from the mercaptide loaded extractan
D. contacting the extractant containing the mercaptides with an aqueous alkaline solution and carbon monoxide to
strip cobalt and nickel values therefrom and to produce gaseous \(\mathrm{Ni}(\mathrm{CO})_{4}\) and a water soluble salt of carbonyl cobaltate;

E. separating the metal depleted extractant produced in step D and recycling the extractant to step B;
. isolating the nickel carbonyl gas produced in step \(D\) and decomposing the nickel carbonyl to produce substantially
pure nickel metal and carbon monoxide; and pure nickel metal and carbon monoxide; and . isolating an aqueous phase containing carbonyl cobaltate
salts produced in step \(D\) and oxidizing the carbonyl cobaltate to water insoluble cobalt carbonyl compounds.

ARSENIC/SELENIUM RECOVER
Wolfgang H. H. Gunther, Webster, N.Y., assignor to Xerox Corporation, Stamford, Conn.
U.S. Cl. 75-121 10 Claims 1. A method for the recovery of arsenic/selenium alloys which comprises:
. dissolving an arsenic/selenium alloy containing from solution of morpholine pight percent arsenic in an aqueous ary amine of the formula:

nould with the diamond grains being evenly distributed throughout the hard-alloy matrix material; heating the mixture under a pressure of from 50 to \(100 \mathrm{~kg} / \mathrm{cm}^{2}\) to \(1,200^{\circ} \mathrm{C}\) at a rate quency currents through the press mould; maintaining the mixture in the press mould at \(1,200^{\circ} \mathrm{C}\) for less than 2 minutes to preclude graphitization and dissolution of the diamond grains; heating the mixture under a pressure of from 100 to 200 \(\mathrm{kg} / \mathrm{cm}^{2}\) to a sintering temperature less than \(1,800^{\circ} \mathrm{C}\) at a rate of from \(3,000{ }^{\text {to }}\) to 10,000 C per minute by simultaneously passing currents through the press mould; and maintaining the mixture in the press mould at the sintering temperature for a period of from 2 to 3 seconds.

CEMENTED CARBIDE \(4,097,275\) 4,097,275
UXILIARY ARBE MEAL ALLOY CONTAINING UUXILIARY METAL, AND PROCESS FOR ITS
Erich Horvath, Friedrich-Eckkard-Str. 21, 8 Munich 81, Germany
Continua
ntinuation of Ser. No. 376,354, Jul. 5, 1973, abandoned. This application May 5, 1976, Ser. No. 683,305
Int. C1. \({ }^{2}\) B22F \(3 / 12\)
U.S. Cl. 75-203 Int. CI. \({ }^{2}\) B22F \(3 / 12\)
1. A process for making a sintered carbide-metal 11 Clialms aining submicronic carbide particles comprising the steps of: forming a mixture of a carbide-forming charge selected from the group consisting of the dimetallic carbides, hydrides, eta carbides and elemental metals of groups 4a, 5a and 6 a of the periodic table and their mixtures and a binding metal powder selected from the group consisting of iron, cobalt, nickel and their mixtures;
converting said carbide-forming charge to a carbide or
carbides having a crystal structure different than the crystal structure of the carbide-forming charge by subjecting the carbide-forming charge-binder metal mixture to a gaseous carbon containing carburizing atmosphere at a temperature of 700 to \(1100^{\circ} \mathrm{C}\); and
liquid-phase sintering the thus formed carbide-binder metal to wet and split the carbide to form submicronic carbide particles.
\(4,097,276\)
LOW COST, HIGH TEMPERATURE TURBINE WHEEL COST, HIGH TEMP METHOD MAKING THE SAME Lyle D. Six, Phoenix, Ariz., assignor to The Garrett Corporation, Los Angeles, Calif.
Filed Jul. 17, 1975, Ser. No. 596,695
Int. C1. \({ }^{2}\) B22F \(3 / 00,3 / 14\)
U.S. Cl. 75-208 R

1. A method of manufacturing turbine wheels of the type having a plurality of blades radiating from a central hub comprising the steps of:
a. providing a ring of alternately arranged blades and spacers, said blades being preformed with each having a foot
portion projecting into the central region of the ring and
with shoulder surface areas on said foot portions facing with shourdly from the central region;
b. securing the blades and spacers together to retain them in ring forming order;
c. substantially completely enclosing the assembly of blades, spacers, and securing means in a heat softenable containe, blades with a powdered heat softenable material;
e. evacuating and sealing the container;
f. heating the container and contents to soften the container
and the powdered material; and
g. applying isostatic pressure to the exterior of the containe War and to collapse the container from substantially all sides and to compact the heated powdered materia oping the foot portions of the blades to form inwardly oping the foot portions of the blades to form inwardly
facing shoulders of the compacted heated powdered material opposite to and interlocking with the shoulder surface areas of said foot portions to intersecure the blades and the compacted heated powdered material.

PHOTOSENSITIVE MEMBER HAVING LAYER OF VINYL CARBAZOLE POLYMER CONTAINING NTIMONY CHALCOGEN COMPOUND OF ANTIMONY AND SULFUR
Yoshio Takasu, Tokyo, and Eiichi Kondo, Kamasalki, both of Japan, assignors to Canon Kabushiki Kaisha, Japan application Dec. 13, 1976, Ser. No. 749,974 Claims priority, application Japan, Jan. 31, 1973, 48-13140
U.S. C1. 96- 1.5 R Int. Cl. \({ }^{2}\) G03G 5/06
1. An electrophotographic photosensitive member compris ing an electrically-conductive substrate and a photoconductiv polymer selected from the group consisting of homopolymer of at least one vinylcarbazole monomer and copolymers thereof containing more than \(50 \%\) of the vinylcarbazole monomer, said polymer having dispersed therein from 1 to 30 parts by volume, per 100 pars by volume of said polymer, of an antimony chalcog
mony and sulfur.

4,097,278
REDOX AMPLIFICATION PROCESS EMPLOYING A COMBINATION OF OXIDIZING AGENTS
Vernon L. Bissonette, Brockport, N.Y., assignor to Eastu Continuation-in-part of Ser. No. 609,880, Sep. 2, 1975, Ini C12 \({ }^{2} 03 \mathrm{C} 7 / 16\) Oct. 8, 190 56, Ser. No. 730,914 U.S. CI. \(96-22\)
36. A method of 53 Claims 36. A method of forming a multicolor dye image in a photographic element comprised of a support and, coated thereon, at
least three layer units each comprised of at least one silver halide emulsion layer containing a developable latent image pattern, each of said layer units being primarily responsible to a different one of the blue, green and red portions of the visible spectrum, the blue-sensitive layer unit containing a yellow-dve-forming color coupler, the green-sensitive layer unit contive layer unit containing a cyan-dye-forming color coupler, comprising:
developing a silver image in each of the three layer
corresponding to the latent image pattern thereof;
with a first aqueous alkaline processing solution perfor a first redox reaction in eachlex, which permanen
leases ligands upon reduction, and a reducing agen together and into contact with the element containing the silver image pattern in each layer unit, wherein the
so that they are essentially inert to oxid
in the absence of the silver image, and permitting the selective reaction of the cobalt(III) complex and the reducing agent at the site of the silver (II) as an immobile each layer unit to produce cobalt II) as an immobile racion protern in each layer unit forming to the silver image pattern in each layer unit, \(\stackrel{\text { and }}{ }\) tion performing a second redox reaction by

bringing into mutual contact a peroxide oxidizing agent, the immobile cobalt(II) reaction product and a dye-image generating reducing agent capable of producing a dyeing agent and the dye-image-generating reducing agen are chosen so that they are essentially inert to oxidationreduction in the absence of a catalyst, and
permitting the selective reaction of the peroxide oxidizing agent and the dye-image-generating reducing agent in attern conforing to the layer units formed therein.

PROCESS FOR PREPARING AN IDENTIFICATION CARD \({ }_{2}\) Le, Alexandria, \(V_{\varepsilon}\) Edwin Ne
22307
Continut Ser. No 431,803, Jan. 8, 1974, and 1972, abandoned. This application Jul. 11, 1974, Ser. No.

1. A process, utilizing the following raw mand \({ }^{41 \text { Claims }}\) , A prost a rial that is photosensitive and becomes harder upon exposure light, and (c) a transparent heat-sealable cover, said surface sid bonding material and said cover being compatible in tha hey may be merged and caused to flow together to form one aplied to them for when adequate heal and pressure are ing: applying said bonding material to said surface of said backing means in a configuration that conforms to the picture to be included as a part of the identification card, the process including applying particulate material to the bonding material, placing the transparent heat-sealable cover over the bonding material and said surface, and applying heat and pressure to cause the materials comprising said surface, said bonding matefication card with improved alter-proof characteristics.
\(4,097,280\)
WEB WITH OVERLAYS FOR USE IN DOCUMENT PRESENTATION DEVICES OF COPYING MACHINE AND METHOD OF MAKING THE SAME
Annemarie Mannhardt, Munich; Rudolf Eppe, Taufkirchen, and Josef Pfeifer, Unterhaching, all of Germany, assignors to AGFA-Germert AG, Leverkusen, Germany This application Aug. 9,1976 , Ser. No. 712,960 Claims priority, application Germany, Jun. 23, 1973, 2332008
Int C..\(^{2}\). \(\mathbf{G} 03 \mathrm{C} 5 / 06 ;\) B32B \(31 / 00,3 / 00\) US C1. \(96-44\)

13 Claims
(b) an oxidation-reduction image-forming combination com prising:
notellurium (II) or (IV) compound as an oxidiz. ing agent, with
(c) a binder.

1. Elongated web for use in a document presentation device in a document reproducing machine having a copying aperture comprising a fexible transparent carrier foil of synthetic plastic material having portions movable into register with the copying aperture and at least one overlay of heat-weldabl opaque synthetic plastic sheet material heat-welded to at leas
one portion of said carrier and serving to conceal information one portion of said carrier and serving to conceal informaper
which it is not desired to expose through said copying aper ture. A method of affixing overlays which consist of heat
11. weldable opaque synthetic plastic foil material to a transpare web-like foil-material carrier which also consists, at least part, of heat-weldable syntheric plastic material and is movable
lengthwise in a document presentation device of a documen reproducing machine to place selected portions thereof into register with a copying aperture which is overlapped by an original document to be reproduced, comprising the steps heating the opaque overlays to an elevated temperature a which they are capable of heat-bonding with the foil materia
of said carrier, and pressing the thus heated opaque overlays against one side of the transparent foil-material carrier so that they become heat-bonded thereto and mask the transparent
portions of said carrier to which they are bonded. portions of said carrier to which they are bonded.

HEAT DEVELOPABLE PHOTOGRAPHIC MATERIAL AND PROCESS COMPRISING TRANSITION METAL AND PROCESS COMPRISING TRANSITION METAL
CARBONYL COMPOUNDS Sylvia Alice Gardner, Rochester, and Mark Lelental, Penfield, both of N.Y ב, assignors to Eastman Kodak Company, Roches. ter, N.Y.

Filed Oct. 17, 1977, Ser. No. 842,836
U.S. CI. 96-48 H Int. Cl. \({ }^{2}\) G03C \(5 / 24,1 / 100\)
U.S. C. heat developable, photographic elemert 33 Claims support having thereon, in reactive association,
(a) a photosensitive, transition metal carbonyl compound, wherein said transition metal is selected from transitio elements

ANIONIC IMINO-CONTAINING POLYMERIC ADHESIVES FOR PHOTOGRAPHIC MATERIALS ohn Michael Noonan; Robert Charles McConkey, and Michae John Hanrahan, all of Rochester,

Filed Oct. 15, 1976, Ser. No. 732,628
Int. Cl. \({ }^{2}\) G03C 1/76, \(1 / 48\). \(1 / 40,1 / 78\)
U.S. CI. \(96-73\)
15. An image transfer unit comprising:
a photographic element comprising a support having a photographic element comprising a support having
thereon at least one photographic silver halide layer; at least one layer comprising an adhesive comprising a water-soluble polyester which comprises
A. a glycol component comprising one or more diols said
glycol component comprising at least 50 mole percent glycol component comprising at least 50 mole percent o
an aliphatic diol selected from the group consisting of \(\mathrm{HO}-\mathrm{R}-\mathrm{H}\) wherein R is \(\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n}\), and
\(\mathrm{HO}+\mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CO}+{ }_{7}-\mathrm{S}-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{H}_{n} \mathrm{OH}\)
wherein \(n\) is an integer from 1 to 4 ; and
B. an acid component comprising greater than 15 and up to having an iminosulfonyl moiety having the formula
\[
\stackrel{\mathrm{O}}{\substack{\mathrm{C} \\-\mathrm{C}-\mathrm{Y}-\mathrm{Q}_{p}-\mathrm{C} \\ \mathrm{Q}^{\prime}}} \stackrel{\mathrm{O}}{\mathrm{C}}
\]
wherein \(m\) and \(p\) are integ
is defined by the formula

\(Q^{1}\) is selected from the group consisting of
wherein \(Y\) is arylene or arylidene; \(Y^{1}\) is selected from the group consisting of aryl and alkyl; and \(M\) is solubilizin cation; and from about 65 to about 85 mole percent of one or more other diacids;
means containing an alkaline processing composition adapted to discharge its contents within said unit; a neutralizing layer for neutralizing said alkaline processing composition; and
barrier layer which is permeable to the alkaline processing composition after a predetermined time, the barrier laye
being located between the neutralizing layer and the pho tosensitive silver halide layer.
23. The image transfer unit of claim 15 comprising:
a. a photographic element comprising a transparent support age-receiving layer; an alkaline solution-permeable, light-
eflective layer; an alkaline solution-permeable opaque layer; a red-sensitive silver halide emulsion layer having a ballasted redox cyan dye releaser associated therewith; a green-sensitive silver halide emulsion layer having a balasted redox magenta dye releaser associated therewith; and a blue-sensitive silver halide emulsion layer having a b. a cover sheet superposed over said blue-sensitive silver halide emulsion layer and comprising a transparent support coated with said neutralizing layer and said barrier layer; and
 composition and an opacifying agent, said container being so positioned during processing of said unit that a com-
pressive force applied to said container will effect a discharge of the container's contents between said cover sheet and said blue-sensitive silver halide emulsion layer.

herein \(Y_{1}\) and \(Y_{2}\) each represents a sulfur atom, a selenium atom, or an oxygen atom; \(R_{11}\) and \(R_{21}\) each reprekyl group, a sulfoalkyl group or a sulfoalkoxyalkyl group where any alkyl moiety has 1 to 8 carbon atoms; \(W_{1}\) and \(W_{2}\) each represents an alkyl group containing I to 4 carbon atoms, a phenyl group, an aralkyl group, an alkoxy group containing 1 to 4 carbon atoms, a hydroxy group, a halogen atom, a cyano group, a carboxy group, an alkoxy-
carbonyl group, the alkyl moiety thereof having up to 4 carbonyl group, the aikyl moiety ther a trifuoromethyl group; \(q\) and \(r\) each represents zero or an integer ranging from 1 to 4; \(\mathbf{R}^{0}\) represents a hydrogen atom, an alkyl group containing up to 4 carbon atoms, a hydroxyalkyl group, a carboxyalkyl group, a cyano group, an aralkyl group or a phenyl group; \(p\) represents 0 or 1 and \(X^{\ominus}\) represents an inorganic or organic acid anion which forms a salt logether win ine nal salt \(p\) is 0 and in other cases \(p\) is 1 , and
(2) a nitrogen-containing heterocyclic compound free of any acidic groups and having at least one mercapto group, which is capable of producing a silver salt which is less soluble in water than silver chloride upon reaction with silver ion, the combination being present in saic emulsion comprising a heterocyclic ring selected from the group consisting of a \(1,2,4\)-triazole ring, a \(1,3,4\)-thiadiazole ring and a triazolotriazole ring, said nitrogen-containing hetercyclic compound having an acid dissociation constant pKa of 3.5 or more.

\section*{4,097,285}

DIRECT-POSITIVE PHOTOGRAPHIC SILVER HALIDE EMULSION CONTAINING NOVEL DYE kira Tanaka, and Akio Yoshida, both of Nagaokakyo, Japan, assignors to Mitsubishi Paper Mills, Ltd., Tokyo, Japan Filed Feb. 17, 1977, Ser. No. 769 ,
Int. Cl. \({ }^{2}\) G03C \(1 / 16,1 / 28\)
U.S. C. \({ }^{96-132} 8\) Claims 1. A direct-positive photographic fogged silver halide emulsion characterized by containing at least one cyanine dye in which the position 2 or 4 of a 1,8 -naphthyridine ring is joined through the position 2 of a thiazole ring through a methine
linkage, said dye being present in an amount sufficient to sensitize said emulsion.

4,097,284
METHOD FOR SUPERSENSTTIZING SILVER HALIDE PHOTOGRAPHIC EMULSIONS
adaaki Tani, Minami Ashigara, Japan, assignor to Fuji Phot
Film Co., Ltd., Minami Ashigare Japan
Film Co., Ltd., Minami Ashigara, Japan
Continuation-in-part of Ser. No. 635,546 , Nov. 26, 1975, Continuation-in-part of Ser. No. 635,546, Nor. 26, 1975,
abandoned. This application Oct. 27, 1976, Ser. No. 736,047 Claims priority, application Japan, Nov. 26, 1974, 49-136908 Germany, Nov. 26, 1975, 2553082
U.S. C. \(96-126\)

Int. Cl. \({ }^{2}\) G03C \(1 / 14\)
1. A method for spectrally sensitizing a silver halide photographic emulsion,
(1) a trimethinecyanine dye of formula (11)

\section*{4,097,286}

METHOD OF DEPOSIIING A METAL ON A SURFACE Robert Vincent Dafter, Jr., Ewing Township, Mercer County Robert Vincent Datter, Jr., Ewing Cowsmip, Mercer County, Nivision of \(S\) This application Jan. 31, 1977, Ser. No. 764,330
U.S. Cl. 106-1.11

5. An electroless metal deposition catalyst 8 Claim ydrosol obtained by mixing together, in an acidic aqueous medium, a salt of a noble metal and an organic compound capable of reacting therewith to form said hydrosol, selected structural formula of
where \(\mathbf{R}\) is a member selected from the group consisting of alkyl radical and a hydrogen atom, (b) ethylene glycol and (c)
1,3 dioxane, and heating the resultant mixture having a pH of 1,3 dioxane, and heating the resultant mixture having a pH of from 0.3 ranging up to a value of less than 4.0 , and wherein said organic compo
6. The catalyst as defined in claim 5 wherein \(R\) is \(H\).
7. The catalyst as defined in claim 5 wherein \(R\) is \(\mathrm{CH}_{3}\).
8. The catalyst as defined in claim 5 wherein said noble metal
salt comprises a salt of palladium.

NORGANIC FIL \(\quad 4,097,287\)
CANIC FILM FORMING COMPOSITION FOR COATING
Hitoshi Ito, and Hideo Kogure, both of Hiratsuka, Japan, as signors to Kansai Paint Co., Ltd., Japan
Filed Sep. 2, 1976, Ser. No. 719,728
Claims priority, application Japan, Sep. 4, 1975, 50-106524 Apr. 8, 1976, 51-39666
U.S. Cl. 106-14.14 Int. Cl. \({ }^{2}\) CO9D 5/08 \(\quad 15\) Claims 1. An inorganic film forming composition particularly adapted for use as a
consists essentially of:
(A) colloidal silica dispersed in water in an amount of about
\(10-50 \%\) by weight as \(\mathrm{SiO}_{2} ; \frac{5}{5}\)
(B) at least one water soluble organic amine selected from the group consisting of monoethanolamine, diethanol amine, isopropanolamine, ethylenediamine, isopropyla-
mine, disopropylamine, morphorine, triethanolamine, diaminopropane and aminoethyl ethanolamine in a weigh ratio of amine to silica of \(1: 100\) to \(2: 1\);
(C) at least one powdery aluminum compound selected from the group consisting of aluminium oxide, aluminum hydroxide, aluminum silicate, potassium aluminium silicate,
calcium aluminum silicate, calcined products of other metallic oxides and inorganic pigments treated by aluminum compounds on the the surface thereof, in a weigh ratio of \(\mathrm{SiO}_{2}\) to powdery aluminum compound of \(1: 50\) to
5.1 . ratio
S: \(1 ;\)
(D) pow
micro
(D) powdery glass having an average particle size of 1 to 100 microns;
(E) up to 15 weight percent based on the weight of the water water soluble amino acid selected from the group consisting of glycine, alanine, an
valine, norleucine, norvaline and serine;
(F) up to \(10 \%\) by weight based on the weight of water of
thiourea; thiourea;
(G) up to \(55 \%\) by weight based on the weight of water of
(H) up to a molar ratio to silica of \(1: 50\) of at least one water (H) up to a molar ratio to silica of 1:50 of at least one water
soluble salt of a transition metal or potassium, sodium or ammonium salt of said transition metal wherein said transition metal selected from the group consisting of chro-
mium, molybdenum, tungsten, iron, cobalt, manganese mium, molybdenum, tungsten, iron, cobalt, manganese and vanadium.

HEAT SENSITIVE RECORDING COMPOSITION SPIRGPYRAN OR LEUCO LACTONE William R. Lawton, 6651 Jewett-Holmwood Rd., Orchard Park, Nilliam R. Law
led Feb. 25, 1977, Ser. No. 772,084
U.S. Cl. \(106-21\) int. C. \({ }^{2}\) C09D \(11 / 00\) 1. A heat
a binder,
a chromogenic compound reactive with a phenol at elevated temperatures to develop a color contrasting visibly with the normal color of said compound, said chromogenic
compound being selected from the group consisting of lactone type leuco dyes and spiropyran type leuco dyes, lactone
and
a hydrog
a hydrogen-bonded molecular complex of a phenol selected from Table III of the specification and a complexing agent selected from the group consisting of amines and amides,
said complex being in stable, uneactive form and dissociable into a phenol and an amine or amide by heating above a dissociation temperature in the range of from about \(50^{\circ}\) to \(220^{\circ} \mathrm{C}\).

INK WITH ESTER ADDITTVE PROVIDING EASY WIPE OFF OF INK MARKINGS
Hans Joachim Hofmann, and Axel Jenkewitz, both of Nurem berg, Germany, assignors to Schwan-Bleistift-Fabrik Schwan hausser \& Company, Nuremberg, Germany Filed Mar. 15, 1976, Ser. No. 666,900 Claims priority, application Germany, Mar. 22, 1975, 2512734 U.S. Cl. \(106-26\) 1. In an ink containing a readily volatile organic solvent, an ink binder based on a natural or synthetic resin or a cellulose derivative and dyestuff distributed in said binder, the improve ment for providing for easy wipe off of writing or marking the presence the ink, comprising. the presence in said ink of from 2 to \(20 \%\) by weight of the
```

R1-C-O-R2

```
wherein one of \(R_{1}\) and \(R_{2}\) is a saturated aliphatic hydrocarbo adical having 10 to 22 carbon atoms and the other of which is elected from the group consisting of a cyclopentyl, cyclo hexyl and saturated aliphatic hydrocarbon radicals having
from 2 to 10 carbon atoms.

4,097,290
BALL-POINT INSTRUMENTS WRITING WITH IMPROVED TRANSTTORIALIY ERASABLE TRACE AND INK COMPOSITIONS THEREFOR rank Andrew Muller, West Los Angeles, and Henry Peper, Jr. Pacific Palisades, both of Callf., assignors to The Gillett Company, Boston, Mass.
Continuation of Ser. No. 496,046, Aug. 9, 1974, abandoned. This application Mar. 26, 1976, Ser. No. 670,896
Int. C. \({ }^{2}\) Co8L \(93 / 100.609 \mathrm{D}\) U.S. C. \(106-30\)
1. In a ball-poin 3 Claims le of depositing an writing instrument containing an ink capaball on paper, said trace being capable of erasure by the use of a pencil eraser, said ink consisting essentially of between \(15 \%\) and \(45 \%\), by weight, of natural rubber or rubber which essen hally duplicates the chemical structure of natural rubber, said rubber being dissolved in a mixture of (a) a volatile low boiling
organic solvent having a boiling point less than \(180^{\circ} \mathrm{C}\) and
exhibiting \(100 \%\) evaporation within 60 minutes, said volatile low boiling solvent rapidly increasing the viscosity of the ink
in the trace to minimize the penetration of the paper by the ink in the trace to minimize the penetration of the paper by the ink
and (b) a high boiling organic liquid solvent having a boilin point of greater than \(300^{\circ} \mathrm{C}\), said vaporizable organic solven being present in an amount of between \(10 \%\) and \(50 \%\), b weight, and said high boiling organic liquid solvent being
present in an amount of between \(15 \%\) and \(30 \%\), by weight, and rom \(12 \%\) to \(30 \%\), by weight, of pigment particles uniformly dispersed in the rubber solution.

CORE AND MOLD M,097,291 CORE AND MOLD MATERIALS FOR DIRECTIONAL SOLIDIFICATION OF ADVANCED SUPERALLOY
Irvin C. Huseby, Schenectady, and Frederic J. Klug, Amster dam, both of N.Y., assignors to General Electric Company Schenectady, N.Y.

Filed Mar. 9, 1977, Ser. No. 775,763
Int. Cl. \({ }^{2}\) B22C 9/10; B22D 21//00; C04B 35/44; B28B 7/34 Int. C. \({ }^{2}\) B22C 9/10
U.S. C. \(106-38.9\)

0 Claim
1. A ceramic article useful in the casting and directional solidification of advanced superalloy materials consisting es sentially of
atophase mixture of a material which is one selected from the group consisting of \(\mathrm{La}_{2} \mathrm{O}_{3} \cdot 11 \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{LaA}_{3}\)
\(\mathrm{O}_{3} \cdot 11 \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Al}_{2} \mathrm{O}_{3}\) and \(\mathrm{MAl}_{3} \mathrm{O}_{4}+\mathrm{Al}_{3} \mathrm{O}_{3}\)
the material is characterized by a microstructure of a plura ity of microcracks emanating from approximately a firs interface of two different phases and extending at least part way through one phase towards a second interfac between two different phases;
the article has a predetermined amount of porosity which is greater than about 10 percent by volum
than about 70 percent by volume, and
at least some of the pores are interconnected.
4,097,292
CORE AND MOLD MATERIALS AND DIRECTIONAL SOLIDIFICATION OF ADVANCED SUPERALLOY
MATERIALS
rvin C. Huseby, Schenectady, and Frederic J. Klug, Amster
rvin C. Huseby, Schenectady, and Frederic J. Klug, Amster
dam, both of N.Y., assignors to General Electric Company Schenectady, N.Y.
Filed Mar. 9, 1977, Ser. No. 775,759
Int. C. \({ }^{2}\) B22C 9/10; B22D \(21 / 00\); B28B \(7 / 34\); C04B 35/44 U.S. C. 106-38.9 6 Claim advanced superalloy materials consisting essentially of
at least one ceramic material selected from the group con-
sisting of \(3 \mathrm{Y}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}\) and \(2 \mathrm{Y}_{2} \mathrm{O}_{3} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}\)
, and the article has a minimum porosity content of about 10 percent by volume.

\section*{4,097,293}

METHOD FOR MANUFACTURING HEAT-RESISTANT REINFORCED COMPOSITE MATERIALS Katsutoshi Komeya, Kawasaki, and Hiroshi Inoue, Kawaguchi, both of Japan, assignors to Tokyo Shibaura Electric Co., Ltd Kamasaki, Japan
Continuation of Ser. No. 270,543, Jul. 10, 1972, abandoned,
which is a continuation-in-part of Ser. No. 31,345, Apr. 23, 1970 Which is a continuation-in-part of Ser. No. 31,345, Apr. 23, 1970,
abandoned. This application Jul. 26, 1976, Ser. No. 708,354 Claims priority, application Japan, Apr. 30, 1969, 44-32734; May 2, 1969, 44-33552; United Kingdom, Apr. 28, 1970,
20413/70
Int. C1. \({ }^{2}\) C04B 35/52, 35/70
U.S. C. 106-43
manufacturing heat-resistant
1. A method for manufacturing heat-resistant reinforced composite materials having a fibrous structure which comcomposit
A. providing a mixture of:
(a) 99.8 to 90 percent by weight of a first component selected from the group consisting of nitrides and carbides of aluminum, silicon and boron and mixtures
thereof, said first component being 0.2 to 3.0 microns in average particle size, and
(b) 0.2 to 10 percent by weight of a second component selected from the group consisting of oxides of scandium, ytrium and said second component being 0.1 to 2.0 microns in average particle size,
B. molding said mixture by pressure into a desired form, and C. sintering the molded mass without application of pressure
thereon in at least one gas selected from the group consist-

ing of nitrogen, ammonia and inert gas at a temperature as specified below with respect to the first component contained in said mixture
aluminum nitride \(-1600^{\circ}\) to \(-2200^{\circ} \mathrm{C}\)
silicon nitride \(-1500^{\circ}\) to \(-1900^{\circ} \mathrm{C}\)
boron nitride \(-1700^{\circ}\) to \(-2200^{\circ} \mathrm{C}\)
aluminum carbide \(-1700^{\circ}\) to \(-2300^{\circ} \mathrm{C}\)
silicon carbide - \(1600^{\circ}\) to \(-2200^{\circ} \mathrm{C}\)
boron carbide - \(1800^{\circ}\) to \(-2200^{\circ} \mathrm{C}\)
A heat resistive, reinforced article formed of composite material which consists essentially of fibrous crystals of a firs mponent as defined in claim 1 and an amorphous matix of he method of claim 1.

\section*{4,097,294}

PREPARATION OF CERAMICS
Roy W. Rice, Alexandria; Kenneth J. Wynne, Falls Church, and William B. Fox, Alexandria, all of Va., assignors to Th es of America as represented by the Secretary of ton, D.C.
Filed Aug. 23, 1976, Ser. No. 716,72
U.S. CI. 106-43
1. A method for preparing a ceramic which 6 Claims heating a polymer of the general formul \(\left[\mathrm{C}_{2} \mathrm{~B}_{0}\right.\) of alkane, alkene, alkyne, aryl, alkylary] groups having from 1 to 10 carbon atoms and halogenated greater than 4 , \(n\) is an integer from 1 to 10 , and \(x\) is a heating rate to a temperature from \(700^{\circ}\) to \(2000^{\circ} \mathrm{C}\) with a heating
sphere;
maintaining said polymer at said temperature for at least hour; whereby said polymer converts to a ceramic, and cooling said resulting ceramic to room temperature.

4,097,295 FILICALUMINA-NITROGEN CONTAINING GLASSES
FOR PRODUCTION OF GLASS-CERAMICS enneth Chyung, Elmira, and Raja R. Wusirika, Cors of N.Y., assignors to Corning Glass Works, Corning, N.Y. Division of Ser. No. 735,313, Oct. 26, 1996, which is a
continuation-in-part of Ser. No. 664,263, Mer. 5 , 1976 continuation-in-part of Ser. No. 664,263, Mar. 5, 1976,
bandoned. This application Oct. 20, 1977, Ser. No. 843,872 U.S. C. \(106-52\) Int. C1. \({ }^{2} 003 \mathrm{C} 3 / 04,3 / 08\)

1. A thermally crystallizable glass consisting essentially, by weight, of about \(40-80 \% \mathrm{SiO}_{2}, 3.5-17 \% \mathrm{~N}\), said \(\mathrm{SiO}_{2}\) and N constituting at least \(50 \%\) by weight of the glass composition and at least \(15 \% \mathrm{M}_{x} \mathrm{O}_{y}\) wherein \(\mathrm{M}_{x} \mathrm{O}_{y}\) consists of about \(10-40 \% \mathrm{Al}_{2} \mathrm{O}_{3}\) and \(5-25 \%\) of at least one oxide selected from
the group consisting of the alkali metal oxides, the oxides of the the group consisting of the alkali metal oxides, the oxides of the \(\mathrm{B}_{2} \mathrm{O}_{3}\).

BARRIER COATINGS
Frederick J. Keene, Medford Lakes, N.J., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del.

Filed Aug. 7, 1975, Ser. No. 602,753
U.S. C. 106-177 3 Claims 1. A coating co aqueous solution of:
(A) \(25-99.5\) parts by weight, based on the weight of (A) plus
(B) plus (C), of nitrocellulose film-forming polym (B) plus (C), of nitrocellulose film-forming polymer;
(B) \(0.5-10\) parts by weight based on (B) \(0.5-10\) parts by weight, based on the weight of (A) plus
(B) plus (C), of a fluorochemical surface tension modifier selected from the group consisting of:
\[
\text { (a) } \mathrm{MO}-\frac{\mathrm{O}}{\mathrm{P}-\mathrm{OR}} \underset{\mathrm{O}}{\mathrm{O}}
\]
\(\begin{aligned} & \text { where } \\ & \mathbf{M}=\mathrm{H} \text { or cation; }\end{aligned}\)
\(\mathrm{R}=\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CF}_{2} \mathrm{CF}_{2}\right)_{n} \mathrm{~F}\) or mixtures thereof, and no more than one R can be H ;
and
\(\mathrm{n}=3-8 ;\) and
(b) an anionically, cationically or non-ionically N -substituted perfluoroalkyl sulfonamide; and
) plus (C) parts by weight, based on the weight of (A) plus (B) plus (C), of a plasticizer.

\section*{4,097,298}

COATING COMPOSITION HAVING COATING COMPOSITION HAVING A
WATER-DILUTABLE MALEINIZED OIL BASE Hartmut Haeufler, Aldingen, and Gerhard Glinther, Ettlingen, both of Germany, assignors to AKZO N.V., Arnheim, Netherboth
lands

Filed Jan. 19, 1976, Ser. No. 650,351 Filed Jan. 19, 1976, Ser. No. 650,351
Claims priority, application Netherlands, Jan. 22, 1975,

4,097,296
LOW-TEMPERATURE DEVITRIFIABLE SEALING COMPOSITION
Walter B. Thomas, III, Horseheads, and Christopher H. Welk Walter B. Thomas, 111, Horseeseads, and Christopher H. Wiker,
Corning, both of N.Y., assignors to Corning Glass Works, Corning, both
Corning, N.Y.

Filed Mar. 28, 1977, Ser. No. 781,845 Int. Cl. \({ }^{2}\) C03C \(3 / 22,3 / 12,3 / 10\)
U.S. Cl. 106-53
U.S. Cl. 106-5
rature devitrifiable sealing cor 2 Cl patible with color television picture tube glass, said compos patible with color television picture tube glass, said composi-
tion consisting of a zircon component and a devitrifiable glass
tion consisting of a zircon component and a devitrifiable glas
component and including 2-6 parts zircon by weight for eac
component and including 2-6 parts zircon by weight for eac
100 parts of devitrifiable glass by weight, wherein the devitrifi-
able glass component has a composition consisting essentially
in parts by weight, of about
\(7.4 \pm 2.0\) parts PbO
\(10.2 \pm 1.0\) parts ZnO
\(8.2 \pm 1.0\) parts ZnO
\(2.6 \pm 0.25\) parts \(\mathrm{SiO}_{2}\)
\(0.17 \pm 0.10\) parts MgO
\(0.22 \pm 0.10\) parts BaO , and
\(0.35 \pm 0.10\) parts \(F\)
said sealing composition exhibiting a sealing temperature of about \(410^{\circ}-425^{\circ}\) C. and providing a devitrified seal having a
thermal expansion mismatch value against 98 expansion color hermal expansion mismatch value against 98 expansion colo room temperature and does not change more than about 40 p.p.m. over the \(350^{\circ}-200^{\circ} \mathrm{C}\). temperature range
U.S. C. 106-243

11 Claims A. A water-dilutable maleinized oil and \(90-10 \%\) by weight of a solid particulate polyester which contains halogen-containing polycarboxylic acid in an amount whereby the solid particulate polyester contains a halogen in an amount equivalent to 5 to \(35 \%\) by weight of chlorine, the percentages by weight of the wo components being calculated on the sum of the solventrree weights thereof, said maleinized oil containing from \(10-40 \%\) by weight of residues from an \(\alpha-\beta\)-ethylenically unsaturated dicarboxylic acid.

ELEMENTAL S
RESISTANCE
RISROVED IMPACT
Eugene Ribello Rertozi, Yardley, Pa
ion, Newtown, Pa.
Filed Aug. 13,
19
Filed Aug. 13, 1976, Ser. Na 714,162
Int. C. \({ }^{2}\) C07G 17/00: C08G 75/10
U.s. Cl. \(106-287.32\)

9 Claims
1. A composition of matter which is a copolymer comprising sulfur and from 2 to 50 parts in the molten state of elemental sulfur and from 2 to 50 parts per hundred of a liquid polyfor-
mal-polysulfide polymer having terminals non-oxidatively curable by sulfur
1. A coloured pigment based on titanium compounds cha acterized in that it consists of the crystalline phases rutile \(\mathrm{TiO}_{2}\)
perowskite \(\mathrm{CaTiO}_{3}\) and trigonal CoTiO
3 by weight of cobalt and 4 to \(20 \%\) by weight of calcium, based on the weight of the total \(\mathrm{TiO}_{2}\), and it has a dominant wave length \(\lambda_{D}\) comprised between 530 and \(560 \mathrm{~m} \mu\).

\section*{4,097,301}

STABLE CHLORIDE PROCESS ANATASE SLURRIES
Hans-Achim Dietmar Wildt, Wilmington, Del., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del.
Filed Mar. 30, 1977, Ser. No. 782,738
\[
\begin{aligned}
& \text { Filed Mar. } 30,197, \text { Ser. No } \\
& \text { Int. C. }{ }^{2} \text { COSC I/366 }
\end{aligned}
\]
U.S. Cl. 106-300
1. In a process for the production of anatase titanium dioxid pigment by (1) oxidizing titanium tetrachloride in th vapor ining the anatase titanium dioxide pigment from the (2) comreactor with water to form an aqueous slurry,
the improvement for producing highly concentrated slurry having stable viscosity comprising adding to said aqueous slurry, consisting essentially of from \(600 \mathrm{~g} /\) to \(1400 \mathrm{~g} /\) of
anatase titanium dioxide pigment, from 0.03 to \(0.45 \%\) by anatase titanium dioxide pigment, from 0.03 to \(0.45 \%\) by
weight of an inorganic aluminum compound selected from weight of an inorganic aluminum compound selected from
sodium aluminate and aluminum trichloride, calculated as \(\mathrm{Al}_{2} \mathrm{O}_{3}\) and based on the weight of the titanium dioxide
pigment. pigment.

\section*{4,097,302}

FLATTING AGENTS
charge means surrounded by said lower end flange, housing means in which the centrifugal basket is mounted for rotation, aid housing means serving as a collecting space for receiving iquids drained through the liquid drain holes by centrifuga wall with an inner surface facing said upper flange, said centrifuge further comprising a cylindrical ring of an elastic, nonrigid material, and means fixedly mounting said cylindrical,

elastic ring coaxially of said basket above said upper end flang with the lower end of said cylindrical, elastic ring spaced a small distance from said upper end flange and radially out-
wardly of said central filling opening, said mounting means comprising annular means securing said cylindrical, elastic ring in such a position to divert any liquid travelling radially wardly on said inner surface of said wall and to direct suc iquid radially outwardly along said upper end flange.
\[
\text { CLEANING: } \begin{gathered}
4,097,304 \\
\hline
\end{gathered}
\]
eorge Taylor, Middlesbrouge OVEN DOORS Steel Corporation, London, England Claims priority, application United Kingdom, Nov. 10, 1975 Int. C. \({ }^{2}\) B08B 1/00, 3/02, 7/04
Howard Joseph Cohen and Francis Michael Vojik, both of Baltimore, Md., assignors to SCM Corporation, New York,

Filed Feb. 17, 1976, Ser. No. 658,276
Int. Cl.2 \(\operatorname{Co9C}\) 3/10, \(7 / 12\); CO9D \(5 / 00,7 / 02\)
U.S. Cl. 106-312
1. In a process for producing a silica fatting 8 Claim a silica hydrogel is treated with from 3.5 to 14.5 parts of a water insoluble inert wax by blending together a silica hydro gel with a wax selected from the group consisting of synthetic wax and microcrystalline wax, the improvement which con sists essentially of adding to the silica in a dry process free of
water dispersion or emulsification a mixture of waxes consisting of (a) 0.5 to 3.5 percent of a synthetic wax, and (b) 3-1 percent of a microcrystalline wax, wherein the percentages ar based on treated hydrogel product, and the ratio of \(a: b\) is \(1: 1.5\) to 1:12.

\section*{BATCH-TYPE CENTRIFUGE}

Helmut Korsch, Cremlingen-Weddel, Germany, assignor to Heimut Korsch, Cremingen-Weddel, Germany, assignor many Filed Dec. 29, 1976, Ser. No. 755,331
Cluims priority, application Germany, Jan. 23, 1976, ,
U.S. C. 127-19
1. A periodically operating batch type centrifuge comprising centrifugal basket having a cylindrical shell with liquid drain holes and a vertical axis of revolution, said basket further
comprising upper and lower end flanges directed radially inwardly toward the axis of rotation of the basket, said upper end flange defining a central filling opening and sugar dis-

1. A method of removing tarry deposits from an elongated narrow sealing surface of a generally rectangular coke oven door, the sealing surface extending continuously about the
 mprising
multaneously scraping the side portions of the sealing surface with bladed elements while directing a moving
high pressure fan-shem high preasure, fan-shaped liquid jet of water or an aqueous the bladed elements and the jet being reciprocated along
the seal surface, the jet being oriented so its long dimen son always extens acrs direced to intersof the sea surface, and the jet being
surface at an acute angle. 5. A cleaning machine for a vertical rectangular coke oven door having a peripheral sealing surface, said surface comprising two side portions joined by upper and lower end portions,
the machine including movable carrier means adapted to traverse at least a portion of the door sealing surface, and spaced scapers carried on the movable carrier means, said scrapers each having a pivoted blade urged by resilient biassing means towards the sealing surface of the door, and wherein the edge
of each blade leads the pivot axis in the scraper direction and lies outwardly of the scraper assembly so that on encountering a hard deposit the blade tends to be pushed outwardly to press more firmly into the deposit.

METHOD FOR REMOVING BOT EGGS FROM ANIMAL HAIR
Peter J. Chiessa, Jr., Coatesrille, and Meredith S. Ott, Hatfield, both of Pa., assignors to Bleckmore, Inc., Hudson, Mass. Continuation of Ser. No. 558,328, Mar. 14, 1975, abandoned. This application Feb. 22, 1977, Ser. No. 770,635
Int. C. \({ }^{2}\) A01K \(13 / 00\); B08B \(1 / 00\)
U.S. Cl. \(134=6\)
1. A method for remoring 5 Claim 1. A method for removing bot eggs from animal hair, which
method comprises applying to the hair to soften the cement by which the eggs are adhered to the hair, a thickened aqueous
solution containing at least about \(2 \%\) of an amphoteric surfacsolution containing at least about \(2 \%\) of an amphoteric surfac-
tant selected from the class consisting of imidazoline surfactant selected from the class consisting of imidazoline surfac-
tants and betaine surfactants and having a hydrophobic \(\mathrm{C}_{7}\) to \(\mathrm{C}_{12}\) hydrocarbyl group, the solution having a viscosity of at east about 1000 centistokes at ambient temperature, and then scraping the hair having the softened adherents.

\section*{4,097,306}

METHOD OF CLEANING SWAR
Lyle Carman, Mason, Ohio, assignor to Prab Conveyors, Inc. Kalamazoo, Mich.
Int. Cl. \({ }^{2}\) B08B 3/08, \(7 / 04\)
U.S. Cl. \(134-10\)

21 Claims

1. A method for removing cutting fluid residues from partic ulate swarf which comprises the steps of
ontacting said particulate swarf with an aqueous non-ionic detergent solution having a detergent concentration of about 1 to about 5 percent by weight to form an admixture of said swarf and said detergent solution containing deter gent in an amount sufficient to emulsify said residues, saic
detergent solution being alkaline and containing a water detergent solution being alkaline and containing a water forming a bed of said particulate swarf bearing the emulsified residues;
moving the emulsified residues from said particulate swar by passing through the formed bed a fluid stream at a rate
sufficient to entrain therein the emulsified residues and to cleanse the particulate swarf; and
\(\begin{aligned} & \text { 4,097,307 } \\ & \text { FILL CONTROL FOR AN AUTOMATIC DISHWASHER } \\ & \text { Paul B Geiger, Piqua, Ohio, assignor to Hobart Corporation, }\end{aligned}\) Paul B. Geiger,
Troy, Ohio
Filed

Fied Dec. 17, 1976, Ser. No. 751,684 Int. C1. \({ }^{2}\) B08B 3/02

13. A method of washing dishes in an automatic dishwasher providing an automatic cycle having several time periods in each of which liquid is introduced into, recirculated within, load of dishes contained therein, comprising. a) introducing liquid into the dishwasher at each such time period,
(b) recirculating the liquid by means of a recirculating pump as the liquid is being introduced into the dishwasher, and ang the amount of output of the recirculating pump, (d) cont
while the to introduce the liquid into the dishwasher while the sensed output is below the predetermined output Which is less than the maximum output of which the recirculating pump is capable, to introduce only the minimum quantity of liquid needed to partially close the pump intake to cause the recirculating pump to aspirate the
proper ratio of liquid and air into its input to cause the pump to develop the predetermined output, the quantity of liquid being a function of the size, the nature of the soil, and other conditions of the particular load of dishes present at the beginning of each time period, and ordinarily varying from one time period to the next during the A method of washing dishes in
providing an automatic cycle having several time periods in each of which liquid is introduced into, recirculated within, and then drained from the dishwasher for washing and rinsing a load of dishes contained therein, comprising
(a) sensing the pressure of the liquid at a predetermined
location as it is being recirculated within the dishwasher, (b) introducing the liquid into the dishwasher at the start of at least one designated period as long as the sensed pressure is below a first pressure to introduce sufficient liquid into the dishwasher to cause the same to develop the first pressure with as little liquid as needed therefor,
pressure during this designated dishwasher period first pressure during this designated dishwasher period, and
(d) recirculating the liquid within the dishwasher at a second pressure different from the first pressure during a subsequent designated dishwasher period to provide different recirculation pressures during certain periods of the auto-
matic cycle of the automatic dishwasher.

GLASS ENCLOSED \(\quad 4,001\)
William Richard Klein; Carl Leroy Kotile and PaNEL all of Hoiston, Tex., assignors to Tideland Signal Corpora tion, Houston, Tex.
Filed Aug. 17, 1977, Ser. No. 825,312
Claims priority, application United Kingdom, Apr. 28, 1977,
U.S. Cl. \(136-89 \mathrm{H}\)

Int. Cl. \({ }^{2}\) H01L 31/04


Company, Seatle, Wash.

Filed Jan. 31, 1977, Ser. No. 764,383
U.S. Cl. 136-89 PC \({ }^{\text {Int }}\)
1. A solar radiation converter comprising: means for converting electromagnetic wave energy int electrical energy, said means including a substrate o
semiconductive material of one type conductivity forming a P-N junction with a layer of semiconductive material of the opposite type conductivity, said means having a re ceiver surface adapted for exp sure to electromagnetic wave energy for conversion to electrical power, said
means including electrical interconnect means adhered to a surface thereof distinct from said receiver surface,
S. Cl. 136

a first cover plate covering at least one of said surfaces of a first cover \(p\)
said means,
second cover plate covering said first cover plate in an one of said first and second cover plates being adapted to absorb and radiate incident electromagnetic wave energy with a wavelength above 5 microns, and
standoff members interposed between said first and second cover plates in a manner to form a gap therebetween to define a thermal isolation barrier
4. A solar cell panel comprising,
a top molded glass plate having a downwardly sidewall extending around the outer periphery
a bottom molded glass plate positioned beneath and within
the downwardly directed sidewall of the top plate with the downwardly directed sidewall of the top plate with
the outer periphery of the bottom plate being closely the outer periphery of the botom plate being closely
adjacent the inside of the sidewall of the top plate fo providing a downwardly directed opening to the com partment formed between the top and botoom plates,
plurality of recesses molded in the bottom of the top plat or the top of the bottom plate for receiving solar cell,
whereby the thickness of the compartment is minimized a solar cell positioned in each of the plurality of recesses, potting compound having an index of refraction similar to the index of refraction of glass filling the compartmen electrical connections to said solar cells sealably extending
ener through the bottom plate.

4,097,309
THERMALLY ISOLATED SOLAR CELL
William E. Horne, BelleruTR, Wash., assignor to The Boeing
4,097,310
METHOD OF FORMING SLLICON SOLAR ENERGY
CELLS
Joseph Lindmayer, 6919 Blaisdell R., Bethesda, Md. 20034
Continuation of Ser. No. 583,274 , Jun. 3 , 1975, abandoned. This applicetion Jun. 16, 1977, Ser. No. 807,299
Int. Cl. \({ }^{2}\) H01L \(31 / 00\) U.S. Cl. \(136-89 \mathrm{SG}\)
ta. Cl. \({ }^{2}\) H01L \(31 / 00\)
6 Claims 1. A method of improving the electron generating efficiency of a silicon solar energy cell while forming same from an
individual wafer of silicon having at least one dimension larger than the corresponding dimension of the cell, comprising treating the wafer to produce at a surface thereof a junction at which electrons are generated when the surface is exposed to light, and thereafter using a dicing saw having a diamond blade
rotating at least at 5,000 r.p.m. and cutting the individual treated wafer at and through said surface junction to form a cell having at least one dimension less than that of said wafer improved electron generating efficiency when said surface is exposed to light.
6. A silicon solar energy cell formed by the practice of the method of claim 1.
ergy cell formed by the practice of the


ABSORPTION SUPF 4,097,311
ABSORPTION SURFACE OF SOLAR COLLECTOR ashihiro Ishibashi; Kinya Horibe; Masaharu Isbida, and Youri to Yazaki Sogyo KabuFiled Aug. 18, 1976, Ser. No. 715,309 Flied Aug. 18, 1976, Ser. No. 715,309
Claims priority, application Japan, Sep. 22, 1975, \(50-113747\)
Int. Cl.2 U.S. Cl. 148-6.21 Int. C. \({ }^{2}\) C23F \(7 / 04\) 14 Claims
absorption 12. A process for manufacturing the selective absorption surface of the solar collector, in which the stainless steel hav\(0.07 \mu\) or Rz of less than \(0.2 \mu\) determined according to the method of ISO Recommendation R 4688, and the metal composition comprising; \(0.001-0.15 \mathrm{wt} \%\) of \(\mathrm{C}, 0.005-3.00 \mathrm{wt} \%\) of \(\mathrm{Si}, 0.005-10.00 \mathrm{wt} \%\) of \(\mathrm{Mn}, 11.00-30.00 \mathrm{wt} \%\) of \(\mathrm{Cr}, 0.005\) \(-22.00 \mathrm{wt} \%\) of Ni , optionally \(0.75-5.00 \mathrm{wt} \%\) of Mo, and the consisting being Fe , is chemically oxidized in an acidic bath selected from the class consisting of \(100-400 \mathrm{~g} /\) of sodium, \(100-400 \mathrm{~g} / 1\) of potassium bichromate or \(40-700 \mathrm{~g} / \mathrm{l}\) of chromium trioxide, at the temperature of \(50^{\circ} \mathrm{C}\) to the boiling point, thickness of 500 to 2,000 A.

PRETREATMENT FOR THE RESISTANCE WELDING OF ALUMINUM
Geoffrey A. Dorsey, Jr., Danville Calif, assizor to Kaiser Geoffrey A. Dorsey, Jr., Danville, Calif,, assignor to
Aluminum \& Chemical Corporation, Oakland, Calif. Continuation-in-part of Ser. No. 709,026, Jul. 7, 1976, which is a continuation-in-part of Ser. No. 610,966, Sep. 8, 1975, Pat. No. \(4,004,951\), which is a continuation-in-part of Ser. No. 593,092, Jul 3, 1975, abandoned. This application Aus. 13, 1976, Ser. No.
U.S. Cl. 148-6.27
\[
\text { Int. C1.2 }{ }^{714,153}
\]
1. A method of preparing an aluminum workpiece for the resistance welding thereof comprising
(a) developing a freshly oxidized surface on the aluminum less than about 500 microhms; and
(b) stabilizing the freshly oxidized aluminum surface by treating with a hot aqueous alkaline solution having a pH of about 8-10 and containing at least one part per million 2-22 carbon atoms or an equivalent carboxylate compound.

\section*{4,097,313}

METHOD OF RECOVERY OF FERROMAGNETIC
METAL OR ALLOY PARTICLES BY USING A
MAGNETIC DRUM
Yesumichi Tokuoks; Kazumese Fukuda, and Akihiko Hosaka, ell of Tokyo, Jepen, eatigors to TDK Electronics Co Tokyo, Japan
Claims priority, Nor. 22, 1976, Ser. No. 744,116 501416160
U.S. CI. 148-105

Int. C1. \({ }^{2}\) H01F \(1 / 02\)
5 Claims

(b) coating the islands with an aluminum oxide layer at a first known temperature;
(c) coating the aluminum oxide layer with a polycrystalline
silicon layer silicon layer;
(d) coating the
d) coating the polycrystalline silicon layer with a doped (e) heating the coated polycrystalline silicon layer at a second temperature less than said first temperature for a preselected period to drive the dopant from the doped oxide into the polycrystalline silicon layer;
() removing the doped oxid
(g) depositing an undoped oxide adjacent the polycrystalli
silicon layer;
(h) defining said undoped oxide into a mask for gates;

(i) removing portions of the polycrystalline silicon layer and the aluminum oxide layer uncovered by the masks; island: fay a layer of N -doped oxide adjacent the P type
(k) forming another layer of P -doped oxide adjacent the N (type island;
(1) heat treating
(l) heas treating both islands simultaneously at a third temperature no greater than said second temperature for a predetermined period;
\(\mathrm{m})\) removing all oxides;
(n) oxidizing the wafer at a fourth temperature less than said third temperature for an oxidation period; and (o) annealing the islands in hydrogen at a fifth temperature less than said first temperature.

4,097,315
MAGNETIC ORIENTATION OF CASTING POWDER William H. Gardner GRANULES
Ashby, W. Gardner, Lavale, Ma.; Donald H. Graham, Fort Ashby, W. Va., and George M. Williams, Cumberland, Md., assignors to Hercules Incorporated, Wilmington, Del.

Filed Mar. 21, 1968, Ser., No.
Int. CI. \({ }^{2}\) CO6B 45/00
1. In a process for preparing ferromagnetic metal or alloy particles which comprises reducing ferromagnetic metal ions in a solution with a reducing agent to obtain a slurry of ferro-
magnetic metal or alloy particles and separating the said partimagnetic metal or alloy particles and separating the said parti-
cles from said slurry, the improvement which comprises: separating said particles from said slurry by atrracting said particles on a magnetic drum;
washing said particles;
recovering said particles from said magnetic drum.

\section*{4,097,314}

METHOD OF MAKING A SAPPHIRE GATE TRANSISTOR Kenneth Mansfield Schlesier, Stockton; Carl William Benyon, Jr., Trenton, and Joseph Michael Shar, East Windsor Town-
ship, Mercer County, all of N.J., assignors to RCA Corp. ship, Mercer
New York, N.Y.

Filed Dec. 30, 1976, Ser. No. 755,965
Int. C1. \({ }^{2}\) H01L 21225 Int. Cl. \({ }^{2}\) H01L \(21 / 225\)
U.S. C. 148-188
U.S. C. \(148-188\)
1. A method of making an improved comp
effect transistor pair comprising the steps of:
(a) forming a pair of laterally spaced semiconductor islands of N type and P type conductivity adjacent an insulating substrate;
S. Cl. 149-2 11 Claims rated therein a magnetic material having a magnetic susceptibility of at least about \(0.1 / 4 \pi\), said magnetic material being incorporated in said granule of propellant casting powder in an granule in the desired direction when said granule of propellant casting powder is subjected to an applied magnetic field.

METHOD FOR GELLING NITROPARAFFINS IN EXPLOSIVE COMPOSITIONS
John J. Mullay Hazelton, Pa., assignor to Atlas Powder Com-
pany, Tamaqua, Pa.
Filed Mar. 15, 1977, Ser. No. 777,694
Int. C1. \({ }^{2}\) C06B 45/00
U.S. Cl. 149-2
1. A process for preparing an explosive gel composition 1. A process for preparing an explosive gel composition
which comprises an inorganic nitrate and a nitroparaffin comwhich comprises an inorganic nitrate and a nitroparaffin com-
prising: (a) formin
b) adding a nitroparaffin to said aqueous solution;
(c) adding a polymeric thickening agent for nitroparaffins
selected from the group consisting of cellulose acetate,
cellulose acetate butyrate, cellulose acetate propionate, polymers of methyl, ethyl and butyl methacrylate, copoly mers of vinylidene chloride and acrylonitrile, and mix form a nigroparaffin gel dispersed within said aqueo solution;
(d) gelling said aqueous solution by adding an effective amount of an aqueous gelling agent.

4,097,317
DESENSITIZING AGENT FOR COMPOSITIONS CONTAINING CRYSTALLINE HIGH-ENERGY NITRATES OR NITRITES
Joel M. Schnur, Springfield, Va.; Richard S. Miller, Crofton, Mid.; James P. Sheridan, Burke, and A. D. Britt, Alexandria, both of Va., assignors to The United States of America a epresented by the Secretary of the Navy, Washington, D.C Filed Mar. 25, 1977, Ser. No. 781,278
In. Cl.
C06B \(45 / 34,25 / 34,45106\)
U.S. C1. 149-7
1. In a method for desensitizing a composite 6 Claims in mith for desensitizing a composite energetic com provement which comprises coating said crystals spio compounding said composition, with saligenin in a crystal-to saligenin weight ratio from 1820:1 to 600:1.

4,097,318
METHOD FOR SEALING PLASTIC-METAL LAMINATES Hans Joachim Olschewski, Berlin, Germany, assignor to FKF
Berlin Fleischwaren-und Konserven- Fabrik Schulz \& Bernd GmbH and Co., KG, Germany Claims priority, application Germany, May \(9,1975,2521234\) Aug. 26, 1975, 2538316
U.S. Cl. 156-69 Int. Cl. \({ }^{2}\) B29C 27/00

1. A process for sealing the plastic layers of two plastic metal laminates comprising the steps of:
heating and pressing together the laminates to place the plastic layers of said laminates in contact;
pidly increasing the pressure to a predetermined value ogether period; and
releasing the pressure from said laminates,
wherein the period for rapidly increasing the pressure to th predetermined value is less than \(20 \%\) of the total interval between the start of pressure increase and the start of
pressure release.

971 O.G. 59

4,097,319
FOAMED POLTURING A COMPOSIT FOAMED POLYOLEFIN SHEET Hayao Shimokawa, Ebina; Makoto Nakamuri; Hideyo Ueno both of Hiratsuka; Isamu Namiki, Yokohama, and Naonor tric C.., Ltd., Tokyo, Japan
Claims priority Feb. 24, 1976, Ser. No. 660,855 Int. Cl. \({ }^{2}\) B29D \(27 / 00{ }^{1975}\) U.S. Cl. \(156-79 \quad 13\) Claims

\section*{ \\ }

\section*{}
1. A method of manufacturing a composite foamed polyole fin sheet which comprises the steps of laminating a film of noncross-linked thermoplastic resin free from a crosslinking agent to at least one surface of a crosslinked polyolefin base sheet containing a thermally decomposable foaming agent or a linking agent, and carrying out thermal foaming of said filmlaminated sheet by heating said sheet on a supporting member under atmospheric pressure with the non-crosslinked resin film minated to the sheet being in contact with the supporting member.

5 Claims
METHOD OF MANUFACTURING A DOUBLE GLASS PANEL UNIT harald Otto Christian Brauer; Knud Sejr Jensen; Torben Andreasen, all of Korsor; Hilmer Jensen, Skaelskor; Mogens
Greve, and Peter Kürstein, both of Korsor, all of Denmark, assignors to Scanglas A/S, Kotrsor, Denmark all
Claims priority, Apr. 5, 1977, Ser. No. 184, 0 , 1976, 1694/76 U.S. Cl. 156-109 C. \({ }^{\text {Int. }} \mathbf{}\)

3 Claims
1. A method of manufacturing a double glass panel unit 1. A at least two glass panels between which a spacer frame is arranged consisting of straight, rigid rail means having a hollow profile, the rail means beeng mitre cut at their ends and joined edge against edge and held in position by angular couthe rails, and a seal being provided by injecting sealing material
in corner cavities, each of which is limited by an outwardly facing surface of the coupling member and the inner walls of the rail means, wherein a layer of adhesive is applied to surare mounted on the frame, said rail means being arranged and held in a position in which in each corner of the spacer frame a distance is provided between the inclined end surfaces of the rail means by the use of a coupling member having a strap
adapted to engage holes in the rail means when the rail means are in spaced relationship, and the adhesive is applied to the rail means in this position, whereafter the rail means are pushed together so that the inclined surfaces will abut each other before the sealing material after mounting of the glass panels is pressed into the corner cavities. sad
the adhesive supplying operation.

4,097,321
MACHINE FOR SPIRALLY WRAPPING A CONTINUOUS ELEMENT AROUND AN ANNULAR TIRE BEAD Emmett J. Kelly, and Leonard R. Smith, both of Topeka, Kans., assignors to The Goodyear Tire \& Rubber Company, Akron, Ohio Filed Aug. 16, 1976, Ser. No. 714,862
U.S. CI. 156- \({ }^{136}\)

10. Method of positioning a rotatable winding shutte, in a losed tire bead ring wrapping machine, relative to bead holding and rotating means comprising driving the shuttle in rotation about its own axis at a predetermined angular speed, counting the revolutions of said shuttle while in said rotation, actuating braking means in response to a first predetermined
number of the so-counted revolutions thereby decellerating said shuttle, and then actuating latching mechanism having a cooperable cam and a cushioned cam follower to stop and position said shutlle, relative to said bead holding and rotating means, and allowing said cam to override said cam foilo
said cam is rotating faster than a predetermined speed.

\section*{4,097,322}

MANUFACTURE OF RIGID ELONGATE MEMBERS OF RESIN BONDED REINFORCING ELEMENTS
David James Greene, Opy, and Colin Alfred Pearson, Wembley, both of England, assignors to BICC Limited, London, England Claims priority, application United Kingdom, Feb. 4, 1976, 4390/76

Int. Cl. \({ }^{2}\) B65H 81/00
U.S. CI. 156-149
U.S. 14 Claims 1. A method of manufacturing a substantially rigid elongate
member of resin bonded reinforcing elements which comprises:
ment through an apertured guide, which guide is trans-
versely spaced from the common axis of two hook means each mounted stationary in space with one substantially vertically above and spaced from the other and each
rotatable about their common axis, and securing one end of the reinforcing element to one of said two hook means; b) causing the apertured guide to travel in a direction substantially parallel to the common axis of said hook means to and beyond one hook means, the guide engaging and effecting partial rotation of the hook means about said common axis with respect to the guide as the guide ap-
proaches the hook means, reversing the direction of travel of the guide to wind the reinforcing element over the hook means, and repeating the aforesaid steps at each

hook means alternately to for
loops of reinforcing elements; a plurality of elongate c) cutting the reinforcing element and securing the free end of the element to one of said plurality of loops and one of
said hook means: said hook means
(d) rotatably driving at least one of said hook means with
respect to the other hook means about their common respect to the other hook means about their common
substantially vertical axis to twist the elongate loops to such an extent as to form a skein in which the helically \(t\) wisted resin impregnated reinforcing elements are held under tension between the two hook means; and e) curing the skein of resin impregnated reinforcing ele-
ments to form a substantially rigid elongate member.

\section*{4,097,323 \\ \(\stackrel{4,097,323}{\text { BUTT-SPLICER }}\)}

BUTT-SPLICER
Joseph Irma De Roeck, St. Katelijne-Waver, and Lucien Antoine Christiaen, Wilrijk, both of Belgium, assignors to AgfaGevaert N.V.., Mortsel, Belgium
Claims priority application United \(\mathbf{K}\). 692,146
24140/75 Int. Cl. \({ }^{2}\) B65H 19/08
U.S. Cl. 156-159

7 Claims 1. A butt-splicer apparatus for butt-joining a fresh web to a web, said apparatus comprising.
rotatable cylindrical web-supporting roller having perfora-
tions around its periphery and means for creating a vacuum in at least a segmental portion of its periphery, guide means for guiding said running web at least during a splicing operation along a path which extends into tangential contact with a point on the peripheral path of said roller and then wraps downstream from said tangential least about \(90^{\circ}\) of the roller periphery, whereby the running web is biased against the roller periphery by the
running tension therein, said arcuate portion including said segmental portion in which said vacuum is created, means for delivering the leading end of the fresh web into the convergence between the said web-supporting roller and the immediately upstream region of the running web
while said running web is passing through said path wrapped around said roller, whereby the fresh web end is engaged and held between the tensioned running web and the contiguous arcuate roller peripheral portion to advance the same,
a rotatable cutter disposed adjacent the web-supporting

molded therealong adapted to receive and engage an elongated filament; said elongated filaments to a temperature above the melting point of said joined elongated members of said lattice ructure
bringing each of said plurality of elongated filaments into engagement with one of said depressions molded along one of said elongated members of said lattice structure; applying pressure to the lattice combination of the heated elongated filaments engageu wide trict anable the transfer of heat from said elongated filaments to said elongated members to melt said elongated members adjacent said elongated filaments and adhere said elongated filaments to said elongated members of said lattice structure; and applying pressure and removing heat from said lattice comstructure adhered to said elongated filaments.

\section*{4,097,325}

LABEL-APPLYING APPARATUS FOR APPLYING LABEL-APPLYEN APLARAIC LABELS Edward A. Schnier, Hubbardston, Mass., assignor to A-T-O Inc., Cleveland, Ohio Filed Oct. 15, 1973, Ser. No. 406,334
U.S. Cl. 156-215

13 Claims
roller periphery at a locus within said predetermined arcuate portion, said cutter being operable to be brought into pressing contact with the running web surface to cut while both generally transversely along a common
white both are supported on the roller surface, and web-supporting roller peripheray at a locus downstream of said cutter but within said predetermined arcuate porbrought into pressing contact with the exposed surfaces of the margins of both webs adjacent said common cutting line to apply a tape splice thereto.

\section*{4,097,324}

METHOD AND APPARATUS FOR MAKING AN ELONGATED LATTICE STRUCTURE ELONGATED LATTICE STRUCTURE
\(\begin{aligned} & \text { Leroy L. Emmel, } \\ & 92627\end{aligned} \quad 1800\) Wallace Ave., Apt. R, Costa Mesa, Calif.

Filed Apr. 4, 1977, Ser. No. 784,603
Int. C1. \({ }^{2}\) B29D 3/00; B29C \(27 / 02\)
U.S. C. 156-179

11 Claims

1. A method for making a lattice supported filament struc ture comprising the steps of:
aure comprising the steps of:
applying heat to a first film belt to melt said first film belt; molding the heated first film belt into a lattice structure having a plurality of joined elongated members connected with periodically spaced cross-strips therebetween, each with periodically spaced cross-strips having a depression
1. The method of applying thermoplastic labels to containers comprising vacuum picking dry thermoplastic labels one at a place of application to a container, while making the transfer heating a portion of the label to render said portion tacky, pressing the tacky portion of the label against the container at the place of application and then while moving the container along a predetermined path away from said place of applicapressing it against the container.

POWER ACTUATED LAMINATING MACHINE Joe D. Giulie, and Leslie E. Worcester, both of Palo Alto, Calif,, assignors to Permax, Palo Alto, Calif.

Filed Apr. 5, 1977, Ser. No. 784,680
U.S. CI. 156-366 Int. Cl.2 B30B \(15 / 34\)
U.S. Cl. 156-366 \(\qquad\) 6 Claims
a
aminating packets wherein said packets have a pair of heat sealable sheets connected together at one edge with a tear-off tab at the point of connection, said tear-off tab having a generally straight end with a plurality of notches in said end, comprising in combination
upper and lower rollers adjacent the exit end of said heating elements and spaced therefrom;
stop fingers located between said heating element and said rollers, said fingers being adapted to engage the tab be-
said packet extend beyond said fingers and between said rollers; d. means for bringing said heating elements and said roller together to engage the heat sealable portion of a laminat ing packet between the heating elements and the tab beout of contact with said packet;

e. means for maintaining said packet between said heating elements for time sufficient to soften the laminating sheets f. motor means for rotating said rollers to pull said packe between said rollers to complete the laminating operation.

\section*{4,097,327}
apparatus to apply vibrations to partially OR COMPLETELY THERMOFUSIBLE ARTICLES Philipe Calemard, L'Etrat-Loire, France, assignor to Station Service-Textile F. Calemard et Cie S.A., Saint-Etienne, France Filed Mar. 5, 1976, Ser. No. 664,415 Claims priority, application France, Mar. 13, 1975, 7508478 U.S. Cl. 156-515

17 Claims

1. Ultrasonic apparatus for operation on material which is a least partially thermofusible, said apparatus comprising ultrasonic generator means including a low frequency generator, an
electroacoustic transducer coupled to said generator, a sonotrode coupled to said transducer and constituting a working tool, a counter tool having an upper surface facing said sonotrode, such that the material to be operated on can be trans
ported between the sonotrode and the counter tool, and sup ported between the sonotrode and the counter tool, and sup-
port means for said transducer, sonotrode and counter tool, port means for said transducer, sonotrode and counter tool,
said support means comprising an aperiodic support member, said counter tool comprising a base and a projection on said base having an edge of substantially reduced width in relation to said base to constitute a counter bearing impact surface for rial and fusion of the resulting selvedges at the cut edges, said support member having a recess with a shape corresponding to the base of said counter tool, said base being slidably and
demountably mounted in said recess in alignment with said
sonotrode, said support member including a lower portion having said recess and an upper portion carrying said sonotrode and to which said transducer is secured

TAPE CUTTER
T,097,38
Sakae Urushizaki, c/o Nishidotonbori Corpo, No. 4-1, 5-chome, tonbori-dori, Nishi-ku, Osaka-sphi, Osaka-fu, Japan
Filed Sep. 6, 1977, Ser. No. 830,793 Claims priority, application Japan, Mar. 9, 1977, 52-29083 U.S. Cl. 156-523

1. A tape cutter for adhesive tape comprising: a body,
swing member pivoted on said body to be pivotable about one end thereof, urged upwardly by a spring, to hold an adhesive tape rol rotaably,
swing member at the other ended on the bottom of said oller and the leading edge of thereof, said tape press protrude lhrouging edge of said adhesive tape adapted when said swing member is pivoted bown, of said body when said swing member is pivoted down,
the side plates of said body and of said swing member and to be rotatable as said swing member is pivoted up and down, and
blade mounted on said disc to cut the adhesive tape when the swing member is released to pivot up.

\section*{\(4,097,329\)}

PROCESS FOR THE PRODUCTION OF
MONOCRYSTALINE SILICON RODS
Horst Stock, Burghausen, and Adalbert Ellbrunner, Seibersdorf, both of Germany, assignors to Wacker-Chemitronic Gesellschaft fur Elektronik Grundstoffe mbH, Burghausen, Germany

Filed Sep. 13, 1976, Ser. No. 722,236 Claims priority, application Germany, Oct. 27, 1975, 2548046 U.S. C. \(156-617\) Int. Cl. \({ }^{2}\) B01J \(17 / 18\)
U.S. CI. 156-617 SP

In. C.2. B01J \(17 / 18\) 1. In a Czochralski process for the production of Claims crystalline silicon rod of the type wherein the rod is vertically withdrawn from a silicon melt in a single drawing chamber drawing spindle which is at least partiall a vertically-movable chamber and which is slidably received within a \(l y\)-arranged sealing gasket mounted on said chamber tricalhance hermetic sealing thereof, the improvement comprisinpassing a stream of protective gas into said chamber during the drawing operation by introducing it into the open, upper end of a vertically disposed tube of substantial length which is mounted within said chamber above said melt and which concentrically surrounds the drawing
spindle and the growing silicon rod and has a radial width spindle and the growing silicon rod and has a radial width
of about 5 to 60 mm to provide sufficient annular clearance of about 5 to 60 mm to provide sufficient annular clearance
and which has a lower, open end which is between 150 and 350 mm above the surface of the melt such that the protective gas flows along the spindle and silicon rod in the direction of the melt surface, so as to prevent diffusion
subsequent deposition thereon which, in turn, would be tance between the corners of said four fuel assemblies less a stripped therefrom by said sealing gasket and fall into the tolerance required for insertion, removal and thermal expanmelt therebelow, said protective gas being passed through sion of said fuel assemblies whereby the moderator in the space
 between said corners of said adjacent four fuel assemblies flatten the neutron flux therebetween, said moderator-displac ing member being formed with at least one longitudinal passage for receiving a neutron detector for monitoring the neutron flux in said space over the power range of operation of said core, said moderator-displacing member being formed of a metal selected such that said ransverse cross section dimen-
sions thereof are less than one-fourth of the reciprocal of the slowing-down power of said metal for fast neutrons and less than one-half of the reciprocal of the macroscopic absorption cross of said metal for thermal neutrons.

COOLANT MASS FLOW EQUUALIZER FOR NUCLEAR W EQUAL FUEL
Paul R. Betten, Windsor, Conn., assignor to The United States Paul America as represented by the United States Department of Energy, Washington, D.C.

Filed Jan. \({ }^{2}\), 1976, Ser. No. 646,010
Int. Cl. \({ }^{2}\) G21C \(3 / 08\)
U.S. CI. 176-81
said chamber in an amount between 300 and \(800 \mathrm{~N} 1 /\) hour and said drawing operation taking place at a reduced and said drawing operation taking
pressure of between 1 and 100 Torr.

4,097,330
NSTRUMENTATION ASSEMBLY FOR NUCLEAR John P. Neissel, San Jose; Harry H. Hendon, Saratoga, an James H. Terhune, San Jose, all of Calif,, assignors to Genera Electric Company, San Jose, Calif

Filed Jan. 10, 1977, Ser. No. 758,171
Int. Cl. \({ }^{2}\) G21C \(17 / 10\)
U.S. C. 176-19 R

1. A neutron detector assembly for use in a fluid moderated thermal neutron reactor core wherein said core includes plurality of replaceable fuel assemblies of substantially square ross section shape and wherein said feel assemblies are pos therebetween, comprising: an elongated solid moderator-displacing member adapted for positioning in said core between the corners of an adjacent four of said spaced fuel assemblies, said member extending through said core for a length at leas
equal to the active height of said core, said member having
transverse cross section dimensions equal to the diagonal dis-

1. In a fuel assembly for a nuclear reactor, the fuel assembly 1. In a fuel assenty duct and a bundle of elongated parallel fuel rods positioned within the duct, the fuel rods each being pro vided with a spirally wound external spacer member, the fue assembly having a plurality of sides defined by straight wal portions of the coolant duct, the improvement comprising:
a corrugated sleeve positioned within said coolant duct
between the fuel rods and the inner wall of the duct, said sleeve having a shape commensurate with the interior shape of the duct and comprising:
liner defining member, the liner defined by said member having a plurality of sides oriented generally parallel to the cool
thereto;
a plurality of vertically spaced inwardly displaced por tions of said liner defining member, said inwardly dis placed liner portions having a parallelogram shape, th displaced liner portions being determined by the pitch of the spirally wound spacer members, said inwardly displaced liner portions occurring in regions where the pacer member on the peripheral fuel rods of the fue od bundle are on the sides of the fuel rods disposed displaced liner portions are vertically displaced on
adjacent sides of the liner and closely approach the peripheral fuel rods; and
spring means on said liner defining member, said spring ant duct.

4,097,332
CORE A NUCLEAR REACTOR
John Francis Gibbons, and Daniel John McLaughlin, both of
Windsor, Conn., assignors to Combustion Engineering, Inc.,
Windsor, Conn.
Windsor, Conn. Filed Dec. 13, 1976, Ser. No. 749,860
U.S. Cl. 176-87 Int. Cl. \({ }^{2}\) G21C 13/02

6 Claims

1. In a nuclear reactor vessel, a structure for applying holddown force to the core support barrel, including.
an internal ledge formed on the upper end of the vessel,
a core support barrel positioned down and within the vessel
a core support barrel positioned down and within the vessel
a flange formed on the upper end of the core support barrel and arranged to engage the internal ledge of the vessel to hang the barrel from the ledge,
a closure for the reactor vessel and means for seating the closure on the upper end of the vessel with a predetermined force,
the closure to a seat on the core support barrel, the sea being located a substantial distance below the internal ledge.

\section*{4,097,333}

ENZYMATIC METHOD OF PRODUCING GLUCOSE FROM ETHYLENE TREATED CELLULOSE FROM ETHYLENE TREATED CELLULOSE arthur H. Freytag, Longmont, and James C. Linden, Loveland,
both of Colo., assignors to The Great Western Sugar Company, Denver, Colo.

Filed Jun. 22, 1977, Ser. No. 808,812
Int. Cl. \({ }^{2}\) C12D \(13 / 02\) C12B \(3 / 06\)
U.S. Cl. 195-33 9 Claims
U.S. Cl. 195- \(\mathbf{9 3}\) Claims
1. A method of producing glucose through the enzymatic which comprises cultivating Mycobacterium fortuitum NRRL 1. A method of producing glucose through the enzymatic which comprises cultivating Mycobacterium fortuitum NRRL
hydrolysis of cellulosic material, comprising contacting the \(\mathrm{B}-8129\) in an aqueous nutrient medium at a pH of 3.0 to 6.0 cellulosic material with a sufficient amount of ethylene to under aerobic conditions in the presence of a steroid with or enhance the production of glucose and hydrolyzing at least a without a 17 -alkyl side chain containing from 2 to 10 carbon portion of the cellulosic material to glucose in the presence of atoms, inclusive and recovering said compound from the cultivated medium.
wherein X is 1,2 -methylene or 1 - or 2 -methyl, comprising fermenting, in 1,2 aber of

wherein \(X\) is as above and \(R_{1}\) is a saturated or unsaturated hydrocarbon sterol side chain of \(8-10\) carbon atoms with a micro
chain

MICROBIAL TRANSFORM3 \(\quad 4,097\) OF STEROIDS Thomas R. Pyke, Portage, and Marion P. Salmond, Kalamazoo, both of Mich., assignors to The Upiohn Company, Kalamazoo,
Mich. \(\quad \begin{gathered}\text { Filed Feb. 14, 1977, Ser. No. 768,025 } \\ \text { Int. Cl.2 }\end{gathered}\) C07B 29/02 Int. C1.2 \({ }^{2}\) C07B 29/02
U.S. Cl. 195-51 S


4,097,336 4,097,336
REAGENT SYSTEM FOR BETA-AMYLASE ASSAY

Vista, Calif., assignors to Beckg, and Henriette Nadj, all of Stanley J. Marwil, Bartlesville, Okla., assignor to Phillips Pe
ton, Calif.
Continuation-in-part of Ser. No. 657,976, Feb. 13, 1976, Pat. No. 4,036,697. This application Jan. 11, 1977, Ser. No. 758,518 Int. Cl. \({ }^{2}\) G01N \(33 / 00\)

U.S. CI. 195-99 6 Claims
1. A reagent system for a beta-amylase assay comprising: (a) a polysaccharide having glucose mose
connected through alpha 1,4 linkages;
(b) phosphate ions;
(c) maltose phosphorylase;
(d) a co-enzyme selected from a group consisting of \(\beta\) nicotinamide-adenine dinucleotide, \(\beta\)-nicotinamide-ad nine dinucleotide phosphate, and mixtures thereof;
(e) glucose-6-phosphate dehydrogenas
(g) mutarotase;
wherein the above are present in amounts such that the beta amylase to be assayed is rate-limiting.
bacterial CULTURE MEDIUM

1. A fermentation apparatus for improved oxygen utilization adapted for the continuous aqueous aerobic fermentation of a microorganism, comprising a fermentation section with an
upper contiguous absorber section communicating therewith and adapted to the passage of gaseous efluent from the upper area of said fermentation section into the lower portion of said
and absorber section,
wherein said fermentation section is adapted to contain liquid aqueous ferment and comprises means for receivin portion of said fermentation section below the normal liquid level of said aqueous liquid ferment, means adapted for receiving a carbon energy source material and a nitro gen source material,

解 cellular material from said fermentation section, means for separating cellular material from said rich aqueou fermentation liquor, leaving lean fermentation liquor, means for cooling said lean fermentation liquor, wherein said absorber section , in sequence rela-gas-contacting zone, a liquid knock-out zone of substantially expanded diameter relative to said gas-contacting zone and sufficient to substantially reduce the linear gas velocity of gases exiting said gas-contacting zone, gas
venting means at the upper area of said knockout zone, means for recycling said cooled lean fermentation liquor to said gas-contacting zone, and
means for feeding make-up water and nutrients to said ab sorber section.

\section*{4,097,340}

APPARATUS FOR CLEANING COKE OVEN DOORS Erich Pries, Bochum, Germany, assignor to Dr. C. Otto \& Crich Pries, Bochum, Germany, assig
Comp. G.m.b.H., Bochum, Germany

Filed Aug. 24, 1977, Ser. No. 827,286
Int. Cl. \({ }^{2}\) C10B 43/08; B08B 3/02
U.S. Cl. 202-241
1. Apparatus for cleaning the regions of 5 Claims between a surrounding sealing edge and a refractory door plug, comprising a frame vertically reciprocable along the end plug, comprising a frame vertically reciprocable along the end
of a coke oven door which carries said sealing plug, a first pair
cellulose.
cellulos.
of nozzles carried on the upper portion of said frame and of nozzles carried on the upper portion of said frame and
arranged to force fluid into the upper portions of those regions of the coke oven door between a surrounding sealing edge and the door plug, and a second pair of nozzles carried on the lower portion of said frame and arranged to force fluid into the
lower portions of those regions of the coke oven door between lower portions of those regions of the coke oven door between
said surrounding sealing edge and the door plug, said nozzles being pivotal about generally vertical axes such that the first
an auxiliary electrode, and a first hollow test electrode at least partially into the fluid, the test electrode containing teat transfer fluid with a heat transfer coefficient similar 0 that of the test electrode,
means having hollow test electrode with electrical heating at least partially electrical input, the heating means being sensing a first temperature of the heat transfer fluid along an inside wall of the heated test electrode
sensing a second temperature of the corrodant fluid adjacent to an outside wall of the heated test electrode instantaneously measuring the corrosion rate of the test electrode using corrosion rate meter means connected to the reference, auxiliary, and heated test electrodes, and electronically feeding the first and second sensed tempera-\(U\)-meter and instantaneously measuring therein the heat transfer coefficient across the test electrode.

\section*{4,097,342}

ELECTROPLATING ALUMINUM STOC
pair of nozzles can be pivoted inwardly when they reach the William Ernest Cooke; John Hodgson, both of Kingston, Canupper edge of the coke oven door upon upward movement of
the frame to clean the region between the upper edge of the and Mitsuo Sasaki, Tondabayshi, Japan, assignors to
Alcan Research and Development Limited, Montreal, Canada the rame tean and
door plug and the upper horizontally-extending portion of the Continuation of Ser. No. 578,324, May 16, 1975, abandoned. sealing edge, the second pair of nozzles being pivotal inwardly This application Dec. 14, 1976, Ser. No. 550,352 when they reach the lower edge of the coke oven door upon downward movement of the frame to clean the region between the lower edge of the door plug and
extending portion of the sealing edge.

MEASURING CORROSION RATE UNDER SPECIFIED HEAT TRANSFER CONDITIONS
Charles E. Schell, Levittown; Dennis C. Deegan, Glenside, and
Donald F. Jacques, Cornwells Heights, all of Pa., assignors to Betz Laboratories, Inc., Trevose, Pa. Division of Ser. No. 644, 201, Dec. 24, 1975, This applit Division of Ser. No. 644,201, Dec. 24, 1975. This
Mar. 7, 1977, Ser. No. 774,723 Int. Cl. \({ }^{2}\) GOIN \(27 / 46\)
U.S. Cl. 204-1 T


6 Claims
1. A process for the production of metal-plated, elongated aluminum stock which comprises passing the aluminum stock continuously (1) during a minor part of a minute through a hot acid electrolytic cleaning bath containing an electrolyte having
a high dissolving power for aluminum oxide, said bath consisting essentially of an aqueous, acid solution selected from the group consisting of: 20 to \(50 \% \mathrm{H}_{3} \mathrm{PO}_{4}\) and 10 to \(25 \% \mathrm{H}_{2} \mathrm{SO}_{4}\), \(75 \% \mathrm{H}_{3} \mathrm{PO}_{4}\) and \(5 \% \mathrm{HNO}_{3}\), and \(80 \%\) by volume \(\mathrm{H}_{2} \mathrm{SO}_{4}\) plus 25 grams per liter \(\mathrm{CrO}_{3}\), and subsequently (2) through an electroplating bath containing a metal plating electrolyte, the firstmentioned bath having a cathode electrode immersed therein immersed therein, whereby to render the stock anodic in the first bath; the composition and temperature of the solution of the first bath being sufficient for removal of anodic oxide from the aluminum essentially as rapidly as it forms in the first electrolytic treatment, and said first treatment in the hot acid bath being effective to clean the aluminum during its passage aluminum surface; and electric current, from a supply, for electrolytic cleaning in the first bath and for plating the stock with metal in the second bath being passed from said anode successively through the second bath, the stock and the first bath, to the cathode, without sliding or rolling contacts between the stock and the electrical supply.

COATED SILICON 4 , 0 ,097,343
COATED SILICON-IRON PRODUCT AND PROCESS THEREFOR
Ronald H. Arendt, and Matthew J. Curran, both of Schenectady, N.Y., assignors to General Electric Company, Schenectady,

Filed Mar. 7, 1977, Ser. No. 774,807
U.S. Cl. 204-37
led Mar. 7,1977, Ser. No. 774,807
Int. Cl. \({ }^{2}\) C25D \(5 / 10,5 / 50.9 / 04\)
8 Claims

1. The method of producing grain-oriented silicon-iron shee which comprises the steps of providing a finegrained primary recrystallized silicon-rin shee cond 50 parts per million boron,
silicon, and between about 15 and 95 parts per million nitrogen in the ratio to boron of one to 15 parts per part of boron, electrolyzing a solid MgO containing aqueous solution consisting essentially of magnesium acetate and magnesium metaborate and containing magnesia with the silicon-iron sheet being arranged as the cathode in said solution and the said horeby covering the
temperature of at least about \(65^{\circ} \mathrm{C}\) and theren temperature of ar east abiaing adherent electrically-insulating
sheet with a boron-contain but relatively thin coating of \(\mathrm{Mg}(\mathrm{OH})_{2}\), and then electrolyzing a solid MgO-containing aqueous solution consisting essentially of magnesium acetate with the resulting coated sheet arranged thereby covering the boroncontaining \(\mathrm{Mg}(\mathrm{OH})_{2}\) coating with a substantially thicker \(\mathrm{Mg}(\mathrm{OH})_{2}\) coating, and thereafter subjecting the resulting double-coated sheet to a final heat treatme to develop (110) secondary recrystallization texture in the silicon-iron sheet.

4,097,344
ELECTROCHEMICAL COUPLING OF
PERFLUOROALKYL IODIDES
Robert Finley Drury, Roosevelt, N.J., assignor to E. I. Du Pon de Nemours and Company, Wilmington, Del.

Filed Jun. 29, 1976, Ser. No. 700,967
U.S. Cl. 204-59 R
is 0 to 4 , with the proviso that \(y+x\) is no more than \({ }^{2}\) is \({ }^{0}\) the crystal structure of the rhombohedral \(\mathrm{Na}_{5} \mathrm{YSi}_{4} \mathrm{O}_{12}\) type with the space group symmetry \(\mathrm{R} \overline{3}\) c.
\(\mathbf{M}^{4}\) is ytrium or at least one
\(\square\) is a sodium vacancy to preserve charge neutrality, \(x\) is 0 to about 0.5 when \(\mathrm{Zr}^{4+}\) or \(\mathrm{Hf}^{\mathrm{f}+}\) is included in M and 0 to about 0.1 when \(\mathrm{Th}^{4+}\) is included in \(\mathrm{M}^{\prime}\),
 DIACETONE-L-SORBOSE TO IIACEIONE-L-KETOGULONIC ACID 19 Bruttenerstrasse, Oberwil, Switzerland
Continuation-in-part of Ser. No. 559,605, Mar. 18, 1975, Pat. o. 4,040,938. This application Feb. 7, 1977, Ser. No. 766,517 Claims priority, applis
.s. Cl. 204-80 Int. Cl. \({ }^{2}\) C25B 3/02, 3/04

aring perfluoroalkanes comprising anod cally coupling at least one compound of the formula \({ }_{f} \mathrm{R}_{f}{ }^{2} \mathrm{CFI}\) wherein \(\mathrm{R}_{f}{ }^{1}\) and \(\mathrm{R}_{f}{ }^{2}\) are each independently fluorin a perfluoroalkyl radical containing from 4 to 40 carbo oms in a liquid carboxylic acid in the presence of a sma mount of carboxylate ion.

4,097,345
NA \(_{5}\) GDSI \(_{4} \mathrm{O}_{12}\) AND RELATED RARE EARTH SODIUM \(\mathrm{NA}_{5} \mathrm{GDSL}_{4} \mathrm{O}_{12}\) AND RELATED RARE EARTH SODIUM
ION CONDUCTORS AND ELECTROLYTIC CELLS THEREFROM
Robert Day Shannon, Wilmington, Del., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del
Filed Oct. 15, 1976, Ser. No. 732,748

Int. Cl. \({ }^{2}\) C25D 5/00, \(17 / 00\); H01M 4/36; H01B \(1 / 00\) I. Cl. \(204-59 \mathrm{AM}\)
U.S. Cl. 204-59 AM
1. The method of conducting sodium ions utilizing a composition having (a) the formula \(\mathrm{Na}_{5, x} \square_{x} \mathrm{Gd}_{1, y x} \mathrm{M}_{y} \mathrm{M}_{x} \mathrm{~S}_{4,2} \mathrm{Ge}_{2} \mathrm{O}_{12}\) wherein
1. Process for producing diacetone-L-ketogulonic acid by passing a solution of diacetone-L-sorbose through an electrochemical cell, in which said cell includes at least one electrode roll formed by spiralling a deformable sandwich arrangemen of electrode layers and spacing layers for preventing direct electrical contact between them, said electrode layers being made of an electrically conductive material, a least one of the spacing layers having shapes and material structures which cooperate with each other to enable electrolyte flow through said electrode roll or rolls, while applying electrical curren whereby to bring about oxidation of said diacetone-L-sorbos at the anode of said electrochemical cell, said anode having an active surface for the said oxidation, and recovering the

ELECTROLYTIC RECOVERY OF METALS
4,097,347
E. Packer, 1015 Prospect AEe., Plainfield, N.J. 07060
Filed Aug. 23, 1976, Ser. No. 716,828
Int. Cl. \({ }^{2}\) C25C \(1 / 20:\) C25D \(5 / 42\)
U.S. Cl. 204- \({ }^{\text {Int. }}\)

1. A metal recovery process for recovering those precious metals that are soluble in aqua regia from an ionic solution by an electrolytic process comprising the steps of:
selecting a cathode made of a material inert to aqua regia,
said cade being composed of metals from the group consisting of titanium and tantalum,
sand blasting the surface of said cathode,
preplating the surface of said cathode with a thin layer of a conductive adherent metal to provide a coated cathode
having a coat that is substantially impervious to hydrogen,
inserting said coated cathode into a solution of a precious metal that is soluble in aqua regia.
electrolytically recovering said precious metal on said cathode, and
dissolving sa
issolving said precious metal and said coat of conductive adherent metal from said cathode by use of aqua regia.

METHOD AND APPARATUS FOR PRODUCING
METHOD AND APPARATUS FO
Henry J. Gomberg, Ann Arbor, Mich., assignor to Texas Gas Transmission Corporation, Owensboro, Ky.
Continuation of Ser. No. 479,025, Jun. 7, 1974, abandoned. This application Apr. 8, 1976, Ser. No. 675,136 U.S. Cl. 204-157.1 H

12 Claims

1. A method of producing hydrogen for use as an ingredient 1. A method of producing hydrogen for
of hydrogen based fuels which comprises:
of hydrogen based fuels which comprises:
(a) introducing a quantity of gaseous HCl into a first cham(a) introd
ber;
(b) subjecting such quantity simultaneously to heat and
radiation to dissociate the HCl into \(\mathrm{H}_{2}\) and \(\mathrm{Cl}_{1}\);
(c) separating the gases by removing the \(\mathrm{H}_{2}\) and introducing
the hot \(\mathrm{Cl}_{2}\) into a secondary chamber
(d) introducing \(\mathrm{H}_{2} \mathrm{O}\) at about \(800^{\circ} \mathrm{C}\) into said secondary
(e) transferring said HCl to said first chamber and initiating a second and subsequent similar cycles.

PHOTOCHEMICAL PROCESS FOR FOSSIL FUEL COMBUSTION PRODUCTS RECOVERY AND UTILIZATION nty, 193 Talbott St., Rockville, Md. 20852
Filed Mar. 31, 1976, Ser. No. 672,124 Int. Cl. \({ }^{2}\) B01J \(1 / 10\) U.S. Cl. 204-158 R \(\quad 9\) Claims U.S. CI. 204-158 R
-
1. A process for treatment of a gaseous mixture containing \(\mathrm{O}_{x}\) and \(\mathrm{SO}_{2}\) wherein X is 1 or 2 , which comprises: a. addition of reactive olefinic hydrocarbon and oxygen to
said mixture in sufficient quantity to form an enriched mixture favorable to free radical formation and photochemical conversion of said \(\mathrm{NO}_{x}\) and \(\mathrm{SO}_{2}\).
b. irradiation of said enriched mixture with electromagnetic radiation having a wave length of from about 1500A to about 7500 A to form free radicals and produce particulate formation, and
separation of
separation of particulate material from said irradiated mixture.

\section*{4,097,350}
aCTINIC RADIATION CURABLE COMPOSITIONS Stephen D. Pastor, Edison; Martin M. Skoultchi, Somerset, and Henry R. Hernandez, Somerville, all of N.J., assignors to National Starch and Chemical Corporation, Bridgewater, N.J.
Continuation-in-part of Ser. No. 453,817, Mar. 22, 1974, Continuation-in-part of Ser. No. 453,817, Mar. 22, 1974,
abandoned. This application Jun. 19, 1975, Ser. No. 588,398 abandoned. This appication Int. Cl. C08F \(2 / 46\)
U.S. CI. 204159.23
ion curable prepolymeric compo
9 Claims
1. An actinic radiation curable prepolymeric composition of matter characterized by the presence of terminal unsaturation
consisting essentially of the reaction product of: consisting essentially of the reaction product of:
(a) from about 1.0 to about 48.0 mole percent of hydroxyalwherein the alkyl group of the ester moiety contains from 2 to 20 carbon atoms, and the acid moiety contains from 3 to 4 carbon atoms,
(b) from about 1.0 to about 48.0 mole percent of at least one polymerizable free-radical initiator activatable by actinic
radiation and selected from the group consisting of tetraradiation and selected from the group consisting of tetra-
chlorophthalic anhydride, tetrabromophthalic anhydride and \(1,4,5,6,7,7\)-hexachloro- 5 -norbornene-2,3-dicarboxylic anhydride and mixtures thereof;
(c) from about 1.0 to about 48.0 mole percent of at least one nonhalogenated cyclic anhydride containing from 4 to 10 carbon atoms; and
(d) from about 1.0 to about 48.0 mole percent of at least one epoxide containing 2 to 8 carbon atoms and selected from
the group consisting of epoxyalkyl acrylates and methacrylates and alkylene oxides.

4,097,351
PREPARATION OF METAL ALLOY COATINGS ON William F. Caley, Halifax, and Spero N. Flengas, Willowdale, both of Canada, assignors to The Governing Council of the University of Toronto, Toronto, Canada


1. A process of applying integrated metallic coatings to
ferrous metal substrates, which comprises:
forming a colloidal suspension of at least one metal oxide
selected from the group consisting of nickel selected from the group consisting of nickel oxide. chro-
mium oxide and mixtures thereof, in powder form, in an mium oxide and mixtures thereef, in powder form,
aqueous medium containing suitable dispersant;
immersing in said colloidal suspension a ferrous metal substrate and anodically polarizing the substrate;
electrophoretically depositing a film containing said at least one metal oxide from the colloidal suspension onto said
ferrous metal substrate anode; rying the film deposited on the
anode to remove a substantial amount of water therefrom; and heating the deposited firm containing said metal oxide in the presence of hydrogen at temperatures of from about
\(1000^{\circ} \mathrm{C}\) to about \(1500^{\circ} \mathrm{C}\) so as to reduce the deposited metal oxide to metal and form an integrated coating of metal oxide to metal and form an integral
said metal on said substrate by diffusion.

\section*{4,097,352}

ELECTRODEPOSITION OF COMPOSITIONS CONTAINING SULFONIUM RESINS AND CAPPED POLYISOCYANATES
Joseph F. Bosso, Lower Burrell, and Marco Wismer, Gibsonia, both of Pa., assignors to PPG Industries, Inc., Pittsburgh, Pa. Division of Ser. No. 594,152, Jul. 8, 1975, Pat. No. 4,038,232,
which is a continuation of Ser. No. 316,596, Dec. 19, 1972, abandoned. This application Apr. 11, 1977, Ser. No. 786,538 U.S. Cl. 204-181 C \({ }^{\text {Int. Cl. }{ }^{2} \text { C25D } 13 / 06}\)

9 Claims
U.S. Cl. 204-181 C
1. A method of coating a conductive substrate serving as a
cathode which comprises passing electric current between an cathode which comprises passing electric current between an
anode and said cathode in electrical contact with the water-dispersed composition comprising an aqueous dispersion compris-
ing: (A) a ternary sulfonium salt group solubilized synthetic organic resin containing free hydroxyl groups, said or ganic resin produced by reacting:
1,2-epoxy equivalency of greater thaterial having a (2) a sulfide-acid mixture, said sulfide-acid mixture being used in an amount to provide sufficient quaternary sulfonium groups to solubilize said resin, said sulfide being selected from the group consisting of aliphatic, mixed aliphatic-aromatic, aralkyl and cyclic sulfides;
and (B) a ca a capped, organic polyisocyanate stable at ordinary
room temperature in the presence of said resin (A) and reactive with said resin \((A)\) at elevated temperatures.

4,097,35
ARTICLE AND METHOD OF FORMING POROUS COATING ON ELECTRODE LAYER OF suhiro Kishida, Yok CELL TYPE OXYGEN SENSOR nochi Togawa, and Kazuo Matoba, both of Yakakura; KimJapan, assignors to Nissan Motor Coth of Yokohama, all of Japan, assignors to Nissan Motor Company, Limited, Yokohama, Japan

U.S. Cl. 204-195 S \({ }^{\text {Int. Cl. }{ }^{2} \text { G01N 27/26 }}\)
1. A method of forming a porous coating on an electrode layer of an oxygen sensor, said sensor comprising a layer of a solid oxygen-ion electrolyte for use in a combustion engine exhaust gas, said layer of said solid electrolyte having first and second sides and having first and second electrode layers electrode layer being in communication with said exhaust gases, said second layer being in communication with a reference gas, said porous coating being formed only on said first electrode layer which is exposed to, and in communication with, said exhaust gases, said method comprising the steps of:
applying fine particles of a heat-resistant and chemically applying fine particles of a heat-resistant and chemically
stable first material onto the surface of the electrode layer to form a porous layer by plasma-spraying said fine particles, said first material being selected from the group consisting of alumina, spinel, alumina cement, beryllia, zirconia, nickel oxide, silicon carbide, boron carbide and boron nilride;
applying a dispersion of fine particles of a heat-resistant and porous layer to impregnate said porous layer with said dispersion, said dispersion containing at least one compound selected from the group consisting of alumina and silica; and
baking the impregnated porous layer to fix said particles of
said said second material to said porous coating, said fine particles and said dispersion being applied such that the total pore volume in the porous coating after the comple. tion of the baking step ranges from between about 0.09 to
\(0.16 \mathrm{~cm}^{3}\) per one gram of the porous coating. \(0.16 \mathrm{~cm}^{3}\) per one gram of the porous coating.

\section*{4,097,354}

CONTINUOUS PROCESS FOR ELECTROLYTIC REFINING AND ELECTROWINNING OF ELEMENTS AND COMPOUNDS Ginatta, Corso Alberto Pico, 35, Turin, Italy
Filed May 11, 1976, Ser. No, 685,305
Filed May 11, 1976, Ser. No. 685,305
Claims priority, application Italy, May 12, 1975, 68194 A/75; Claims priority, application
Apr. \(26,1976,68012\) A/76
Int. Cl. \({ }^{2}\) C25C \(1 / 12,1 / 18,7 / 02\)
1. An 204-206 16 Claims 1. An apparatus for the continuous electrolytic refining and raction of metals, metalloids, elements, compounds and alloys, wh;
a tank;
an electrolyte, contained within said tank
continuous cathode means;
first transfer means for supporting and moving said continuous cathode means along a predetermined path between one end of said tank and an opposite end of said tank, said continuous cathode means being at least partially submerse
and
second
and
second transfer means for supporting and moving said con-

tinuous anode means along a path within said tank which
is parallel to said predetermined path of said continuous is parallel to said predetermined path of said continuous
cathode means, wherein each submersed portion of said cathode means, wherein each submersed portion of said
continuous anode means moves in a direction of travel opposite the direction of travel of an adjacent portion of said continuous cathode means, between said ends of said ank, said anode means being at least partially submersed in said electrolyte.

\section*{4,097,355}

WATER STERILIZATION APPARATUS Wolfgang Fischer, Konigsburg, Germany, assignor to Sach Systemtechnir, Schweinfurt am Main, Germany
Filed Jun. 8, 1977, Ser. No. 804,559 Claims priority, application, Germany. Jun. 14, 1976, 2626570 Int. Cl. \({ }^{2}\) C02B 1/82; C25B \(15 / 00\)

therein, said housing separated by a fluorinated polymeric ion-permeable membrane to define said anode and cathode compartments, with said anode compartment adapted for receiving sodium chloride and water and said cathode
compartment adapted for receiving water; compartment adapted for receiving water; . a timer electrically connectable to an external power
source for timing activation of said generator and further connected to a power supply for controlling the passage of a direct current through said electrodes;
a chlorine aspirator in communication with said anode
compartment for receiving chlorine generated in said .

anode compartment and a hydrogen aspirator in communication with said cathode compartment for receiving drogen generated in said cathode comparment: d. a conduit in fluid communication
rator and said hydrogen aspirator;
a pressure gauge in said anode compartment for measuring the gas pressure of the chlorine produced by said chlorine generator, with said pressure gauge electrically connected ine pressure below a predeternined level to deactivate said generator.
\(\qquad\)
METHOD AND DEVICE FOR REGENERATING ZINC Jean Jacquelin, Marolles en Hurepoix, France, assignor to Compagnie Generale d'Electricite S.A., Paris C Cedex, France
Filed Jul Claims priority, application France, Jul. 21, 1975, 75 22661;
Dec. 3, 1975, 75 36967; Jun. 3, 1976, 76 16842; Jun. 3, 1976, 76 Dec. 3, 1975, 75 36967; Jun. 3, 1976,
16843; Jun. 9, 1976, 76 I7455
Int. Cl. \({ }^{2}\) C25C \(1 / 16,7 / 02\) U.S. Cl. 204-252
1. Water sterilization apparatus, comprising in combination a water purification cell having an internal resistance varyin as a function of the conductivity of water passing there-
through, said purification cell being effective only when the voltage thereacross has an amplitude in a range between a predetermined minimum amplitude and a predetermined maxi mum amplitude and requiring a substantially constant current connected to said water purification cell for furnishing said constant current; and monitoring means for monitoring the oltage across said water purification cell and furnishing oult signal when said voltage is outside said range.

4,097,356
CHLORINE GENERATOR
Dow Yates, 212 Westwood Dr., Friendswood, Tex. 77546 Filed Sep. 8, 1977, Ser. No. 831,485
U.S. Cl. 204-237

9 Claims

1. A chlorine generator comprising and cathode compartments 1. A device for regenerating zinc from an alkaline zincate a. a housing with separate anode and cathode compartments solution, said device comprising: a duct, a negative electrode
for conveying said solution for regeneration within said duct, said duct being constructed from a porous insulating hydrophilic material to allow the alkaline solution to infiltrate but trode from passing therethrough; a positive electrode disposed in the form of a layer on the outer surface of the tubular duct, said positive electrode being constructed from a porous conductive material containing inter alia nickel to cause oxygen to be released to the exterior; and a layer of a porous water-repeloroethylene being disposed on the outer surface of the positive electrode, to cause oxygen to be released to the exterior but preventing the solution from seeping therethrough.

WORKPIECE-SUPPORTING RACK Walter E. Davitz, Columbus, Ohio, assignor to White Castle System, Inc., Columbus, Ohio
 Int. Cl. \({ }^{2}\) B05C 11/00; C25D 17/08; A47F 5/08; B05C \(11 / 16\)
3 Claims
U.S. Cl. 204-297 W

APPARATUS FOR RELEASE OF AN ENTRAINED GAS IN A LIQUID MEDIUM Russel M. Wiseman, Mentor, Ohio, assignor to Diamond Shamrock Corporation, Cleveland, Ohio

Filed Aug. 30, 1976, Ser. No. 718,833
Int. C.2 2 C25B 9,00 .
U.S. CI. 204-270

1. A device for the release of an entrained gaseous substanc from a liquid comprising: a cylindrical top section; a conical bottom section attached to said cylindrical top section at the which is equal in conjugate plane of said conical bottom section line for the liquid near the top of said cylindrical top sectio and attached thereto in a tangential fashion so as to communicate with the interior of the device: a planar top attached to the op of said cylindrical top section; tubing extending ind of the device; at the exterior end of said tubing, a plug sealingly engaged therein with the center drilled and tapped to receive an orifice containing bolt; said bolt having a gas release orific of sufficient size as to allow the escape of the gaseous substance while severely restricting the flow of the liquid therefrough an outlet for the liquid of the same diameter as the feed liner ander sen said conical bottom section which is equal to the diameter of said outlet to communicate with the interior of the device; and a planar baffle attached to the interior wall of said outlet so as to protrude slightly into said conical bottom section for arresting the circular motion of the liquid

1. A rack supporting workpieces during coating operations comprising
(a) an essentially open border frame of electrically conduclive material including at least one transverse member socket means thereon;
(b) a plurality of electrically conductive, workpiece-supporting hooks detachably and electrically engaged with the (c) removable cover means for covering the engaged portions of said hooks and socket means; and
(d) an electrically conductive connector carried by said frame for suspending it from and establishing electrical connection with an overhead carrier.

QUENCHING PYROLYSIS REACTOR EFFLUENT STREAMS
Stuart Sack, Upland, Calif., assignor to Occidental Petroleum
\[
\begin{aligned}
& \text { ion, Los Angeles, Calif. } \\
& \text { Filed Jun. 25, } 1976 \text {, Ser. No. } 700,047 \\
& \text { Int. C1.2 C10G } 1 / / 02
\end{aligned}
\]
U.S. Cl. 208-8 1. A continuous process for recovery of values contained in feed stream conta
(a) directly contacting under turbulent flow conditions in cocurrent, entrained flow quench zone at least a portion of the feed stream with a stream containing volatilized hy drocarbons resulting from pyrolysis of he solid carbona and rapidly quench the volatilized hydrocarbons: (b) separating a stream containing the preheated solid carbo naceous material from the volatilized hydrocarbons; (c) pyrolyzing the stream containing preheated solid carbo naceous material in a pyrolysis zone maintained at a tem perature higher than the temperature of the quench zone by contact with a particulate solid source of heat to yield a pyrolysis hydrocarbons and a carbon containing particulate solid residue;
(d) separating volatilized hydrocarbons from the carbon containing particulate solid residue;
(e) passing at least a portion of the separated volatilized hydrocarbons to the quench zone to directly contact carbonaceous material in the feed stream;


4,097,361
PRODUCTION OF LIQUID AND GASEOUS FUEL PRODUCTS FROM COAL OR THE LIKE Robert A. Ashworth, Strongsville, Ohio, assignor to Arthur G
McKee \& Company Independence, Ohio McKee \& Company, Independence, Ohio

> ompany, Inaepenaence, Unio تiled Aug. 24, , 976, Ser. No. 717,10 Int. CI. 2 C10G \(1 / 08\); C10J \(3 / 62\)
U.S. Cl. 208-10
1. A multistage process for conversion of solid carbonaceous
feed material to valuable liquid and feed material to valuable liquid and gaseous productsocompris ing passing a slurry of the particulate feed in a hydrocarbon oi
solvent with hydrogen at high temperature and pressure through a reaction zone of a hydroextraction unit maintaine under hydraccracking conditions to provide for coal dissolu tion, withdrawing liquid and gaseous effluent streams from th reaction zone including unconverted feed material, a fraction
comprising a solvent oil being separated from the liquid efflu comprising a solvent oil being separated from the liquid efflu
ent and continually recycled for mixing with the incomin ent and continually recycled for mixing with the incoming
particulate feed, the amount by weight of recycled solvent oil being greater than the amount of particulate feed and sufficien to dissolve most of the particulate feed, feeding that portion of the effluent stream from said hydroextraction unit containing
the heavier oils and unconverted feed material to the reaction the heavier oils and unconverted feed material to the reaction agglomerated ash particles to effect thermal cracking, withdrawing oil and gas from the residue of char and ash produced in said pyrolysis unit. feeding the char and agglomerated ash from said pyrolysis unit to the reaction zone of an ash-
agglomerating char gasification unit and reacting it with an oxygen-containing gas and steam exothermically to produce fuel gas while generating heat and causing agglomeration o ash particles, and recycling the hot agglomerated ash from said gasification unit to the reaction zone of said pyrolysis unit to
transfer heat to said reaction zone and to catalyze the cracking reactions therein.

METHOD FOR ENHANCING DISTILLATE LIQUID Yield from an ethylene cracking process Joel Drexler McKinney; Raynor T. Sebulsky, both of Pittsburgh, and Francis Edmund Wynne, Jr., Allison Park, all o
Pa... assignors to Gulf Research \& Deyelo Pa., assignors to Gulf Research \& Development Company,
Pittsburgh, Pa Pittsburgh, Pa.
\[
\begin{aligned}
& \begin{array}{l}
\text { Fint. Cl } \\
\hline
\end{array} \\
& \text { S. C1. C1. C10G 37/02. 9/32; C07C } 11 / 04
\end{aligned}
\]
1. A combination catalytic and thermal cracking process 1. A combination catalytic and thermal cracking process
comprising catalytically cracking a relatively high boiling comprising catalytically cracking a relatively high boiling
relatively high sulfur hydrocarbon feed oil comprising a \(650^{\circ}\) F. + heavy gas oil or residual oil in the presence of entrained zeolite cracking catalyst at a temperature between about \(900^{\circ}\)
and \(11100^{\circ}\) F. and recouering cataltically cracked and \(1,100^{\circ} \mathrm{F}\). and recovering catalytically cracked effluent including catalytically cracked liquid product, separating said
catalytically cracked liquid product into a catalytically catalytically cracked liquid product into a catalytically
cracked residue liquid containing slurried catalyst particles and a catalytically cracked distillate liquid; thermally and non catalytically cracking a lower boiling and lower sulfur hydro-
carbon feed oil to produce ethylene in the presence of encarbon feed oil to produce ethylene in the presence of en-
trained catalytically inert hot solids and a gaseous diluent at a trained catalytically inert hot solids and a gaseous diluent at a
temperature between about \(1,300^{\circ}\) and \(2,500^{\circ} \mathrm{F}\). and recovering a thermally cracked effluent including gaseous products and thermally cracked liquid product, injecting said catalytically cracked residue liquid containing slurried catalyst particles into said thermally cracked effluent to thermally quench from said thermally cracked effluent, passing said coke-laden solids to a coke burner, separating said thermally cracked
liquid product into a thermally cracked residue liquid contain-
bustion as burner fuel.

THERMAL CRACKING \(4,097,363\)
SEVERITY TO ETHYLENE
GIL AT HIGH Joel Drexler McKinney; Raynor Trylene burgh, and Francis Ed, Raynor T. Sebulsky, both of Pittsburgh, and Francis Edmund Wynne, Jr., Allison Park, all of Pa.. assignors
Pittsburgh, Pa.

Filed Jul. 12, 1976, Ser. No. 704,465
int. C1.2 C10G 37/02. 9/32; C07C \(11 / 04\)
U.S. CI. 208-78

19 Claims
1. A process for producing ethylene by thermally cracking a hydrocarbon feed at least 90 volume percent of which comand \(650^{\circ} \mathrm{F}\). comprising passing said hydrocarbon feed, a diluent gas, and entrained inert hot solids through a cracking zone t a temperature between \(1.300^{\circ}\) and \(2.500^{\circ} \mathrm{F}\). for a residence
time of 0.05 to 2 seconds, the weight ratio of diluent gas to feed time of 0.05 to 2 seconds, the weight ratio of diluent gas to feed
oil being at least 0.3 , the cracking severity corresponding methane yield of at least 12 weight percent based on said feed oil, and quench cooling said product immediately upon leaving said cracking zone to a temperature below \(1,300^{\circ}\). so that the ethylene yield is greater than the methane yield on a weight

\section*{4,097,364}

YDrocracking in the presence of water and A LOW HYDROGEN PARTIAL PRESSURE Company, San Francisco, Calif. Division of Ser. No. 586,673, Jun. 13, 1975. This application Mar. 24, 1976, Ser. No. 669,779
Int. Cl. \({ }^{2}\) C10G 13/04: B01J \(1 / / 40\)
U.S. Cl. 208-111

5 Claims 1. A process for hydrocracking high-boiling hydrocarbons
boiling in the range from \(400^{\circ}\) to \(1000^{\circ} \mathrm{F}\) to form lower-biling boiling in the range from \(400^{\circ}\) to \(1000^{\circ} \mathrm{F}\) to form lower-boiling hydrocarbons boiling in the range from \(80^{\circ}\) to \(700^{\circ} \mathrm{F}\), which
comprises contacting said high-boiling hydrocarbons in a comprises contacting sasid high-boiling hydrocarbons, in a
reaction zone, in a feedstock containing from 4 to 15 weight percent water and containing straight-chain olefins and oxy-gen-containing water precursors including CO and \(\mathrm{CO}_{2}\) and
from about 1 to 20 weight percent of oxygen-containing orirom about 1 to 20 weight percent of oxygen-containing or-
ganic compounds, based on said feedstock, said feedstock ganic compounds, based on said feedstock, said feedstock
containing less than 5 ppm sulfur, by weight, and greater than containing less han 5 ppm sufur, by weight, and greater than
55 weight percent of water and oxygen-containing water preSc weight percent or water and oxygen-conaining water pre-
cursors, with a hydrocracking catalyst including a Group VIB or Group VIII metal supported on a refractory cracking base at hydrocracking conditions including a partial pressure of hydrogen of from 50 to 450 psi and a temperature of from \(450^{\circ}\)
to \(750^{\circ} \mathrm{F}\), to convert 75 to 99 percent of said oxygen-containing organic compounds to hydrocarbons, to convert said high. boiling hydrocarbons to said lower-boiling hydrocarbons, and to convert a substantial portion of said straight-chain olefins to isoparaffins and paraffins.

4,097,365
PROCESS
HYDROCRACKING PROCESS AND CATALYST FOR PRODUCTION OF MIDDLE DISTILLALE OILS PRODUCTION OF MIDDLE DISTILLATE OILS Cohn W. Ward, Yorba Linda, Calif., assignor to Union Oil
Company of California, Los Angeles, Calif. Division of Ser. No. 668,039, Mar. 18, 1976, Pat. No. 4,062,809. This application Mar. 28, 1977, Ser. No. 781,536
It. \(1 .{ }^{2}\) C10G \(13 / 06 \cdot\) B01J \(27 / 04\) U.S. Cl. 208-111
U.S. Cl. 208- 111
1. A process for hydrocracking a mineral oil feedstock boil-
ing predominantly above about \(700^{\circ} \mathrm{F}\) to produce a middle ing predominantly above about \(700^{\circ} \mathrm{F}\) to produce a middle
distillate product boiling in the range of about \(300^{\circ}-700^{\circ} \mathrm{F}\),
which comprises contacting said feedstock plus added hydro- particle-free inert gas being introduced into the fluidized bed which comprises contacting said feedstock pist a catalyst com- reactor at a point above the point wherein the fluidizing gas is
gen, and under hydrocracking conditions, with prising a molybdenum and/or tungsten first component plus a introduced into the reactor.
nickel and/or cobalt second component supported on a hetero geneous support consisting essentially of about \(10-50\) weight-
percent of a finely divided cracking component dispersed in an

alumina matrix, said cracking component being a silica alumina cogel or copolymer containing about \(50-96\) weigh
percent \(\mathrm{SiO}_{2}\), said hydrocracking conditions being correlate o as to give at least about 50 volume percent conversion of edstock \(0^{\circ} \mathrm{Fing}\) above \(700^{\circ} \mathrm{F}\) to liquid products boiling below \(700^{\circ} \mathrm{F}\).

\section*{4,097,366}

METHOD FOR PREVENTING THE FORMATION OF COKE DEPOSITS IN A FLUIDIZED BED REACTOR Tsunemitsu Tanaka, Yokohama; Tetsuo Nakagawa, Fujisaw Shiro Abiko, Tokyo, and Norio Kaneko, Yokohama, all o Japan, assignors to Mitsubishi Petrochemical Company Li ited, Tokyo and Chiyoda Chemical Engineering a Constra
tion, both of, Japan
tion, both of, Japan
Continuation-in-part of Ser. No. 666,070, Mar. 11, 1976, abandoned. This application Sep. 8, 1977, Ser. No. 831,673 Claims priority, application Japan, Mar. 1, 1975, \(50-28681\)
U.S. CI. 208-127

5 Claims

1. In the process of thermally cracking a heavy hydrocarbo oil by feeding said oil into a fluidized bed reactor as a high
velocity atomized gas stream by blowing said oil therein from a gas-mixing type nozzle along with an atomizing gas and carrying out the thermal cracking of the oil at above sontaining heat transfer particles therein fluidized by means of a fluidizing gas, the improvement which comprises blowing in a particlefree inert gas to the eddying part formed in the environs of said
atomized gas steam in said fluidized bed reactor at a velocity atomized gas steam in sard huidized bed res. thereby preventing
sufficient to block the formation of eddies, the accumulation of coke deposits on the outside wall of said nozzle and the walls of the fluidized bed reactor in the vicinity

4,097,367
CONVERSION OF OLEFINIC NAPHTHA Werner O. Haag, Lawrenceville, and Tracy J. Huang, Trenton, both of N.J., assignors to Mobil Oil Corporation, New York, Filed Jul. 25, 1977, Ser. No. 818,632
Int. Cl. \({ }^{2}\) CiOG \(35 / 06\) U.S. Cl. 208-135 Int. Cl. \({ }^{2}\) C10G 35/06 8 Claim

1. A process for upgrading of pyrolysis gasoline and other lefinic naphthas which contain olefins which comprises conacting said naphtha at severe conditions of \(900^{\circ}\) to \(1200^{\circ} \mathrm{F}\), a ressure of atmospheric to 400 pounds per square inch and osite of zinc and a Onsisting of IB and VIII of the Periodic Table in intimate association with a porous crystalline aluminosilicate zeolite having a silica to alumina ratio of at least 12 and a constrain index between 1 and 12 .

MULIC ULTIMETALLIC CATALYTIC COMPOSITE Hayes, Palatine, II. assignor to UOP Inc., Des Plaine,

Continuation-in-part of Ser. No. 576,924, May 12, 1975, Pat. Continuation- in-part opler. This application Oct. 18, 1976, Ser. No. 734,473 Int. Cl. \({ }^{2}\) C10G 35/08. 13/02: C07C 5/28: B01J \(11 / 08\)
S. Cl. 208-139 24 Claims 1. A process for converting a hydrocarbon which comprises
contacting the hydrocarbon at hydrocarbon conversion conditions with an acidic catalytic composite comprising a porous carrier material containing, on an elemental basis, about 0.01 to about 2 wt . \% platinum group metal, about 0.01 to about 2.5 wt. \% nickel, about 0.05 to about 5 wt . \% cobalt and about 0.1 about 3.5 wt . \% halogen; wherein the platinum group meta, persed throughout the porous carrier material; wherein substantially all of the platinum group metal and nickel are present in the elemental metallic state; and wherein substantially all of he catalytically available cobalt is present in the elemental metallic sate under hydrocaton conversion conditions or in mixture of these states.

PROCESS FOR RECL 4,097,369
OILS Eckhard Ebel; Hans-Rudolf Kobel, and Ernst Widmer, all of Bern, Switzerland, assignors to Adolf Schmids Erben Aktiengesellschaft, Bern, Swizzerland
Filed Feb. 27, 1976, Ser. No. 661,857
Claims priority, application Germany, Feb. 28, 1975, 2508713 Claims priority, application Germany, Feb. 28, 1975, 2508713
Int. Cl. \({ }^{2}\) C10M \(1 / / 00\) U.S. Cl. 208-180
portion of the hydrotreated effluent recycled to the hydrotreating zone, at least \(S\) mole percent of \(\mathrm{C}_{5}\) and lighter hydrocarbons to provide in said hydrotreating zone sai log mean hydrogen partial pressure at said total pressure.

\section*{4,097,371}

SEPARATION OF FLUID MIXTURES ictor A. Giroux, Bartlesville, Okla., assignor to Phillips Petro leum Company, Bartlesville, Okla.

Filed Sep. 21, 1976, Ser. No. 725,306


1. A method of separating a pyrolysis gasoline which con ains benzene, toluene, xylenes, paraffins and naphthenes,
Which water and light hydracarbons have been removed by distillation and wherein the oilsarbore prepurified either by coag iation, adsorption, a combination of coagulation and aco
ion, by filtration or by vacuum distillation, with subsequen fractional distillation and after-treatment, the improvement which comprises subjecting the prepurified product to ual metal contents prior to the fractional distillation and aftertreatment by contacting said prepurified oil with an agent selected from the group consisting of alkali metals and alkali metal hydrides.

HYDROTREATING OF PYROLYSIS GASOLINE Ari A. Minkkinen, Mountain Lakes, N.J., assignor to The LumAri A. Minkkinen, Mountain Lakes
mus Company, Bloomfield, N.J.

Filed Apr. 14, 1977, Ser. No. 787,506 Int. Cl. \({ }^{2}\) C10G 23/00

7 Claims

1. In a process for hydrotreating pyrolysis gasoline wherein fresh feed pyrolysis gasoline, hydrogen-containing gas and recycle hydrotreated effluent are contacted in a hydrotreating
zone, a hydrotreated effluent is withdrawn from the hydrotreating zone and a portion of the hydrotreated effluent is recycle
ing:
operating said hydrotreating zone at a total pressure of from 200 to 400 psig and a log mean hydrogen partial pressure
fractionating the pyrol
rich in benzene, a second stream rich in toluene and a thir rich in bencene, a second stream rich in toluene and a third
stream rich in xylenes, the amounts of paraffins and naph thenes in said streams being determined by the boiling points of the paraffins and naphthenes;
passing said first stream to an extractive distillation column passing said second stream to said extractive distillatio column at a second location intermediate the top and bottom thereof, said second location being above said first location;
passing said third stream to said extractive distillation column at a third location intermediate the top and bottom second locations;
introducing into said extractive distillation column at a loca tion above said third location a solvent which selectively absorbs aromatics in preference to paraffins and naph thenes;
withdrawing a raffinate stream from said extractive distilla portion of the paraffinste stream containing a major pyrolysis gasoline; and
pridrawig ande, and \(\frac{1}{}\) tion colum said tion of the benzene, toluene and xylenes present in said pyrolysis gasoline
\(\qquad\)
4,097,372
METHOD FOR IMPROVING CLAY BRIGHTNESS UTILIZING MAGNETIC SEPARATION Alan J. Nott, Crantock near Newquay, England, assignor to Anglo-American Clays Corporation, Sandersville, \(G a\) Continuation-in-part of Ser. No. 513,154, Oct. 8, 1974, Pat. No The portion of the term of this patent subsequent to Aug. 10, 1993, has been disclaimed.
Int. Cl. \({ }^{2}\) B03B \(1 / 00\)
U.S. Cl. 209-3

A method for brightening a kaolin clay comprising 8 Clai forming an aqueous dispersion of said clay and blunging and
conditioning said dispersion to dissipate at least 10 hp -hrs of energy per ton of solids, at least said conditioning step being conducted in the presence of a collector agent comprising a complex phosphate ester or salt thereof, of a non-ionic surface active compound; said phosphate ester
being selected from the group of mono-esters, di-esters, being selected from the group of mono-esters, di-esters,
and mixtures thereof; said non-ionic surface active com pound being the condensation product of an organic hy droxy compound of from 8 to 50 carbon atoms selected from the group consisting of alkyl phenols and alkanols with at least one mole of an alkylene oxide having from 2 to 3 carbon atoms, the non-ionic surface active compound ene oxide based upon the weight of the non-ionic surface active compound;
subjecting the resultant blunged and conditioned slurry to a froth flotation treatment to remove titaniferous impurities and
subjecting the product from said froth flotation treatment \(t\) a wet magnetic separation to further increase the bright
ness of said clay by removal of discoloring contaminants in addition to said titaniferous impurities, by passing said product through a slurry-pervious ferromagnetic matrix positioned in a high intensity magnetic field, the retentio time in said field being at wase is seld the field being maintained at an average field intensity of from 7 to 22 kg .

4,097,373
HIGH SPEED PARTICLE SORTER USING A FIELD EMISSION ELECTRODE
John Caldwell Allred, 1300 Antigua La., Houston, Tex. 77058 Filed Mar. 23, 1977, Ser. No. 780,281
U.S. Cl. 209-111.5

1. An apparatus for analyzing and sorting small partics he basis of preselected parameters of combinations of prese lected parameters comprising
generating means for segregating one of said particles in at least one liquid dropler,
downstream of said generating means for sensing the presence and
rameter of said particle;
rameter of said particle; mow means for passing said particles from said generating cathode being located downstream of said sensing means,
discrimination means responsive to said sensing means and functionally connected to said field emission cathode for selectively establishing a high potential electric field on said field emission cathode when said particle is closely adjacent said cathode if said sensed particle displays said preselected parameter; and
cathode for receiving said particles.

4,097,374
SCREENING APPARATUS HYDROFOI ouglas Leonard Young, Lennoxville, Canada, assignor to Cana dian Ingersoll-Rand Co. Ltd., Montreal, Canada
Filed Jan. 26, 1977, Ser. No. 762,475
\begin{tabular}{l} 
Int. Cl. \({ }^{2}\) B07B \(1 / 52\) \\
\hline
\end{tabular}
U.S. Cl. 209-379

1. In combination with a screening apparatus for screening iquid suspension containing desirable fiber and undersirable ontaminants: a cylindrical screen plate having a curved outer revent while passing acceptable fibers; at least one rotatable element ositioned adjacent said inner accepts surface; said elemen having a leading edge, a trailing edge, and a radial outer sur ace comprising a circumferentially curved portion conforming to the inner accepts surface of the screen plate, and lly inward from said curved portion said curved portion and aid substantially flat portion being interconnected by a wall and said substantially flat surface extending to the leading edge of the element; and means for rotating the element in a positio lose enough to the inner accepts surface of the screen plate tween the curved portion of the element and the scree plate.

\section*{4,097,375}

HYDROCYCLONE SEPARATOR
Arvid A. Molitor, Elgin, Ill., assignor to Lubring Chicago Industries, Des Plaines, 111.

Filed Jan. 31, 1977, Ser. No. 763,808 U.S. Cl. \(210-23\) H

10 Claims
1. A method for separating a solvent from a solute, the mprovement comprising introducing solute-containing solbase thereof, to manner into a conical chamber adjacent the taining solvent, and passing said spirally moving solute-containing solvent over porous media defining at least a portion of
said conical chamber, and passing solvent outwardly through
said porous media for separation from solute said porous media being of the type to permit the flow of solvent therethrough while preventing the passage of said solute.
whing

PROCESS FOR THE PURIFICATION OF INDUSTRIAL PROCESS FOR THE PURIFLCATIS Hans Wegmuller, Riehen, and Jaroslav Haase, Basel, both of Switzerland, assignors to CIBA-GEIGY Corporation, Ardsley, N.Y.
which is a division of Ser. No. 356,853, May 3, 1973, abandoned. This application Feb. 24, 1977, Ser. No. 771,596 Claims priority, application Switzerland, May 10, 1972, 00712/72
Int. Cl.2 C02B 1/60; C02C 5/08
1. A process for purifying industrial effluents containing residual substances comprising dyestuffs, optical brighteners dyeing auxiliaries, detergents, tanning agents or mixtures hereof, which comprises bringing said effluents into contact
with a cellulosic absorbent pretreated with with a cellulosic absorbent pretreated with
(a) a water soluble basic aminoplast, and
(b) a polyanionic polymer.

\section*{4,097,377}

METHOD OF PURIFICATION OF WASTE WATER B TREATMENT WITH ZIRCONIUM SALT
Buichiro Ayukawa, Musashino, Japan, assignor to Shikoku Paper Mfg. Co., Ltd., Japan

519,866, Nov. 1, 1974, Pat. No. 3,997,439 This application Dec. 22, 1975, Ser. No. 643,499 Claims priority, application Japan, Nov. 7, 1973, 48-125118
The portion of the term of this patent subsequent to Dec. 14, 1993, has been disclaimed.
U.S. CI. \(210-50\)
t. Cl. \({ }^{2}\) C02C 5/04; C02B \(1 / 20\)
1. A method of purification of waste water containg claims age including living sewage, food sewage, foam forming detergents, phosphates, carboxymethyl cellulose, lignin, sewage from mines, a dye, clay and colloidal aluminum, comprising
coagulating and precipitating suspended substances and colloidal dispersed particles, and precipitating non-colloidal dissolved, low molecular weight, substances by adding an aqueous solution of \(\mathrm{ZrOCl}_{2} .8 \mathrm{H}_{2} \mathrm{O}\) to the said waste water, adjusting the pH to \(4.5-6.8\) to form water insoluble precipitates or c lates thereof and removing said precipitates and chelates

\section*{4,097,378}

MULTIPLE EFFECT EVAPORATION OF WATER FROM WATER CONTAINING COMBUSTIBLE SLUDGES John Craig St. Clair, Box 216 Rte. 5, London, Ohio 43140 ontinuation of Ser. No. \(\mathbf{6 1 8 , 0 4 8 , \text { Sep. 30, 1975, abandoned. This }}\) application Mar. 22, 1977, Ser. No. 780,064
U.S. Cl. 210-67 Int. Cl.2 B01D \(12 / 00\)
recovering combustible solids 4 Claims 1. A process for recovering combustible solids of vegetable
origin from water wet combustible concentrated solids, comprising the steps of:
(a) pumping both water wet combustible solids and a preheated water insoluble liquid that is also a liquid at the condition of pressure and temperature in each of steps vessel,
(b) feeding a stream containing steam to said vapor and
liquid contacting vessel and mechanically mixing the liquid contacting vessel and mechanically mixing the
steam just mentioned and the concentrated solids and the steam just mentioned and the concentrated
water insoluble liquid mentioned in step (a),
water insoluble liquid mentioned in step (a),
(c) withdrawing at least a first stream comprising water, said water insoluble liquid and said solids, from the vapor and liquid contacting vessel mentioned in steps (a) and (b),
(d) pumping said first stream, mentioned in step (c), to a first mechanical separato
e) mechanically separating said first stream mentioned in step (d) into a stream consisting essentially of water and a and said solids, whereby water, water insoluble liquid tially reduced in water content relative to said first stream, f) feeding said second stream, mentioned in step (e), to a first flash tank and flashing said second stream to a first rean overhead stream comprising steam and a third stream comprising water, water insoluble liquid and said solids, whereby said third stream is further substantially reduced in water content relative to said second stream,
(g) feeding said third stream, mentioned in step ( f ), to a second flash tank and flashing said third stream to a second reduced pressure, whereby said reduced pressure is ( f , thereby to yield an overheated stream comprising steam and a fourth stream comprising water, water insoluble liquid and said solids, whereby said fourth stream is further substantially reduced in water content relative to said third stream,
h) feeding said fourth stream, mentioned in step (g) to a
second mechanical separator,

(1) mechanically separating said fourth stream, mentioned in step (h), into a stream comprising said water insoluble liquid and a fifth stream comprising said solids and said water insoluble liquid, whereby the water insoluble liquid content said ning sream is substancially reduced relastream.
(j) withdrawing at least a portion of said fifth stream, mentioned in step (i), as product. Passing at least another portion of said fith stream to a heat exchange zone wherein this last mentioned portion of the first stream is first heated and then mixed with the second stream, which
was mentioned as produced in step (e), before the seco was mentioned as produced in step (e), before the second (k) recycling said water insoluble liquid stream mentioned in step (i) to a point in said process downstream of said first mechanical separator, as mentioned in step (d), as up stream of said first flash tank, said water insoluble liquid stream being at least part of the water insoluble liquid stream mentioned in step (a),
And hydrogenating solids, while contained, in a portion of the fifth liquid stream, with the formation of a hydroge-
nated water insoluble fraction being formed which is a least partially recycled to the process as the water insoluble liquid previously mentioned.
 U.S. CI. 210-167

15 Claims

1. A self-cleaning filter assembly comprising
a collecting tank for receiving a quantity of a liquid containing suspended substances
a hollow drum rotatably mounted in said collecting tank for movement through liquid contained in said collecting tank
and including a plurality of perforations in the outer periphery thereof;
a pliable filter material disposed about the outer periphery of said drum for filtering suspended substances from the liquid passing therethrough, the filtered
quently passing through said drum perforations into the interior of said drum:
a layer of porous, resilient material, capable of absorbing a portion of the filtered liquid passing through said filter
material, interposed said filter material and the outer periphery of said drum;
squeezing means adapted to bear against the outer surface of
said filter material and compress said resilient material as said drum is rotated so that a portion of the filtered liquid
retained in said resilient material is forced back through retained in said resilient material is forced back through
said filter material and serves as a back wash for dislodging filtered substances collected on said filter material,
collecting means located adjacent said squeezing means for collecting the back wash liquid containing the dislodged substances; and
means for discharging the filtered liquid from the interior of said drum.

4,097,380
SEPTIC TANK-LEACHING POOL ARRANGEMENT Sarl Carlson, Kings Park, N.Y., assignor to Anthony J. Scotto, Smithtown, N.Y
U.S. Cl. 210-170 Int. Cl.2 B01D 43/00 7 Claims

1. A septic tank for use with a leaching pool having an upper 1. A septic tank for use with a leaching pool having an upper the fluid may be drained; a funnel-shaped member secured to wall edge, saidere, said cylindrical portion defining therein a the drainage opening; an exchangeable collecting vessel for precast concer for the storage and treatment of raw sewage and collecting and retaining the particles, said collecting vessel chamber for the storage and treatment of raw sewage and collecting and retaining the particles, said cone wherein are provided inlet and outlet having an inlet opening located below the funnel-shaped mem-
ber and an outlet having a self-closing resilient membrane hereacross; and means for piercing said resilient membra and for sealably engaging it with the drainage opening.

\section*{PROCESS FOR PR 4,097,383}

Sumio Ohtani; Nobuo Hiratsuka, and Ma
mi Ohani, Nobuo Hiralsuka, and Masaru Horiguchi, all Minami Ashigara, Japan, assignors to Fuji Photo Film Co. Continuation of Ser No, 581,062
nuation of Ser. No. 581,062, May 27, 1975, abandoned.
This application Mar. 14, 1977, Ser. No 777,481
This application Mar. 14, 1977, Ser. No. 777,481
Thims priority, application Japan, May 24, 1974, 49-58472



Ronald DeWayne Crues Carlisle Ohio, assignor to The Black
onald DeWayne Cruea, Carlisle, Ohio,
Clawson Company, Middletown, Ohio
Filed Mar. 28, 1977, Ser. No. 781,729
U.S. Cl. \(210-456 \quad 11\) Claims
1. A microporous membrane filter produced by the steps consisting of bonding a microporous sheet directly to a plate
said microporous sheet having larger pores at its interior that at either of its original surfaces and; splitting the sheet along plane perpendicular to the thickness direction of the sheet by a peeling operation into two microporous membrane sheets Wherein one sheet is retained on said plate and the other shee is peeled from the retained sheet and; removing the retained
sheet from the plate, said filter being either the peeled micropo rous membrane sheet or the microporous membrane shee removed from said plate, said filter having a pore size at its peeled surface larger than the pore size at its original surface 9. A process for producing a microporous membrane filter hich consists of
bonding a microporous sheet directly to a plate said shee
having larger por having larger pores at its interior than at either of its dicular to the thickness direction of the sheet by a peeling operation into two microporous membrane sheets heet is oneeled from is retained on said plate and the othe rom the retained sheet having larger pores at the surface formed by peeling than at the opposite original surface and being suitable for use as a microporous membran filter.

PROCESS FOR URANIUM \(\xlongequal{4,097}\)
PR CSS FOR URANIUM ISOTOPE SEPARATION John H. Coleman, Locust Valley, N.Y., and Tobin J. Marks, Evanston, Ill., assignors to Northwestern University, Evan.
ston, Ill. and Plasma Physics Corporation, Locust Valley,
N.Y.

Filed Mar. 22, 1976, Ser. No. \(\mathbf{6 6 8 , 8 2 9}\)
Int. Cl. \({ }^{2}\) B01J \(1 / 10\) : B01K
.S. C. 250-527
nt. C.2. B01J \(1 / 10\); B01K \(1 / 00\)
11 Claims
1. Apparatus for separating isotopes of a metallic element to provide an iostopically-enriched product, said apparatus comprising
reaction chamber means for retaining a chemical composition including a plurality of isotopic species of the metallic element,
valve means for controlling introduction of the chemical means for controlling reaction chamber means, reaction chamber means,
temperature control means, temperature control means to regulate the
riorly of said reaction chamber means.
riorly of said reaction chamber mean
generator menas including power supply
ing a beam of radiated energy,
means including electrode means to direct said beam to
mpinge upon said chemical composition contained in said
chamber means to interact with and to modify properties

of said chemical composition so as to facilitate the separa tion of isotopic components thereof.

4,097,385
FIRE-PROOFING SEALING ELEMENTS
Wulf von Bonin, Leverkusen, Germany, assignor to Bayer Ak. tiengesellschaft, Leverkusen, Germany
Filed Jan. 13, 1976, Ser. No. 648,850 Filed Jan. 13, 1976, Ser. No. 648,850
Claims priority, application Germany, Jan. 30, 1975, 2503712 Claims priority, application Germany, Jan. 30, 1975, 2503712
U.S. CI. \(428-35\)
1. A fire-proofing sealing material comprising a flexible tube
3 Clims 1. A fire-proofing sealing material comprising a flexible tube
impermeable to water, resistant to aqueous alkali and enclosing an aqueous alkali metal silicate in the form of a solution or a gel.

\section*{4,097,386}

LUBRICATING OIL ADDITIVE COMPOSITION
Warren Lowe, El Cerrito, Calif., assignor to Chevron Research Company, San Francisco, Calif.

Filed Apr. 1, 1976, Ser. No. 673,063
Int Cl. \({ }^{2}\) C10M 1/48, 3/42. 5/24, \(7 / 46\)
S. Cl. \(252-32.7\) R
U.S. Cl. \(252-32.7\) R

12 Claims
ase lubricating oils comprising:
(1) an oil-soluble antioxidant selected from aromatic or alkyl
sulfides and polysulfides, sulfurized olefins, sulfurized
carboxylic acid esters, and sulfurized ester-olefins, and
(2) an oil-soluble tertiary amine of the formula
wherein each R is independently \(\mathrm{C}_{3}-\mathrm{C}_{10}\) alkyl.

\section*{\(4,097,387\)}

OLEFIN-DIMERCAPTO-THIADIAZOLE COMPOSITIONS AND PROCESS
Gunter Caspari, Wheaton, Ill., assignor to Standard Oil Company (Indiana), Chicago, Ill. , 1976 , Ser. No. 720,266

Filed Sep. 3, 1296, Ser. No. 720,2
Int. Cl. \({ }^{2}\) C10M \(1 / 38,3 / 32\)
U.S. Cl. 252-47.5 50 Claims 1. A lubricating oil composition having anti-wear properties comprising a major proportion of lubricating oil and an effective amount of an oil soluble additive, soldinald lithium, sodium or potassium 2,5 -dimercapto-1,3,4-thiadiazole or mixtures potassium thereof; and a sulfur compound selected from the group consisting of \(\mathbf{S}_{2} \mathrm{Cl}_{2}, \mathrm{SCl}_{2}, \mathbf{S}_{2} \mathrm{Br}_{2}, \mathrm{SBr}_{2}, \mathrm{R}-\mathbf{S}-\mathrm{Cl}, \mathrm{R}-\mathbf{S}-\mathrm{Br}\), and mixtures thereof, wherein \(R\) comprises \(C_{1}-C_{100}\) hydrocarbyl or bromo, chloro or hydroxy substituted hydrocarbyl and said additive comprises,

wherein \(\mathbf{X}\) comprises \(R_{1}-\mathbf{S S}-R_{2} ; R_{1}\) comprises \(C_{6}-C_{100}\) hydrocarbyl or brome, chloro or hydroxy substituted hydro
carbyl, and \(R_{2}\) comprises \(R_{1}\) or

and Y comprises H or X .

\section*{4,097,388 \\ LINEAR FLUORINATED POLYETHER LUBRICANT COMPOSITIONS CONTAINING
PERFLUOROALKYLETHER SUBSTITUTED PERFLUOROALKYLETHER} Carl E. Snyder, Jr., Trotwood, and Christ Tamborski, Dayton, both of Ohio, assignors to The United States of America as represented by the Secretary of the Air Force, Washington, D.C. Filed Oct. 12, 1976, Ser. No. 731,483 The portion of the term of this patent subsequent to Mar. 8, 1993, has been disclaimed.
U.S. Cl. 252-49.9

Int. \(\mathbf{C l}^{2}{ }^{2}\) C10M \(1 / 10\)
9 Claim 1. A lubricant composition comprising (1) a base fluid con-
sisting essentially of a mixture of linear fluorinated polyethers having the following formula:
\(\mathrm{R}_{\mathrm{f}} \mathrm{O}\left(\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{O}\right)_{m}\left(\mathrm{CF}_{2} \mathrm{O}\right)_{n} \mathrm{R}_{f}\)
wherein \(\mathrm{R}_{f}\) is \(\mathrm{CF}_{3}\) or \(\mathrm{C}_{2} \mathrm{~F}_{y} m\) and \(n\) are integers whose sum is between 2 and 200 and the ratio of \(n\) to \(m\) is between 0.1 and 0; and (2) a corrosion-inhibiting amount of a perfluoroalk lether substituted aryl phosphine having the following for mula:

wherein one of the R 's is a perfluoroalk

NOVEL AMINO ALCOHOL REACTION PRODUCTS AND COMPOSITIONS CONTAINING THE SAME Harry J. Andress, Jr., Wenonah, N.J., assignor to Mobil Oil Corporation, New York, N.Y.
Continuation-in-part of Ser. No. 494,789, Aug. 5, 1974,
abandoned. This application Jut abandoned. This application Jul. 19, 1976, Ser. No. 706,411 U.S. Cl. 252-51.5 A

12 Claims
U.S. Cl. \(252-51.5\) A
1. A product prepared by reacting, at a temperature of from about \(100^{\circ}\) to about \(200^{\circ} \mathrm{C}\)., one mole of alkenylsuccinic acid anhydride or acyl halide with from 0.05 to 5 moles of a hydrox-
ylated primary amine selected from the group consisting of ylated primary amine selected from the group consisting of
1 -amino-2-hydroxypropane, 1 -amino- - -hydroxypropane, amino-2,3-dihydroxypropane, \(\quad 1\)-amino-2,3,4-trihydroxybu tane, 1-(hydroxymethyl)aminoethane, tris(hydroxymethyl) aminomethane, 1,1 -bis (hydroxymethyl)aminoethane and 1 (hydroxymethyl)benzylamine and reacting the resulting prod uct with a reactant selected from the group consisting of (1)
from about 1 to about 2 moles per mole of said product of from about I to about 2 moles per
boron compound of the formula
\[
\begin{gathered}
\mathrm{R}^{\prime} \mathrm{O}-\mathrm{B}-\mathrm{OR}^{\prime} \\
1 \\
\mathrm{OR}^{\prime}
\end{gathered}
\]
in which each \(\mathbf{R}^{\prime}\) is individually selected from the group consisting of hydrogen and a \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyl, aralkyl or aralky product of an organophosphonate of the formula
\[
\stackrel{\mathrm{O}}{\mathrm{R}^{\prime} \mathrm{O}_{2}-\mathrm{P}-\mathrm{H}}
\]
in which \(R^{\prime}\) is individually selected from the group consisting of hydrogen and a \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyl, arayl, aralkyl or alkaryl group (3) or from about 1 mole to about 2 moles per mole of said
product of an aldehyde of the formula \(\stackrel{\mathrm{O}}{\mathrm{R} \cdot \mathrm{CH}}\)
in which \(\mathbf{R}^{\prime}\) is selected from the group consisting of hydrogen and a \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyl, aryll, aralkyl or alkaryl, the reaction of the boron, phosphonate or aldehyde with said product taking place at from about \(50^{\circ}\) to about \(250^{\circ} \mathrm{C}\).
7. An organic fluid composition comprising a major proportion of a mineral lubricating oil, a synthetiti lubricating oil, a
grease prepared from these or a nomally liquid hydroarbon grease prepared from these or a normally liquid hydrocarbon fuel and a detergent amount of a product prepared by reacting
one mole of alkenylsuccinic acid, anhydride or acyl halide with from 0.05 to 5 moles of a hydroxylated primary amine selected from the group consisting of 1 -amino-2-hydroxypropane, 1 -amine- 3 -hydroxypropane, 1 -amine-2,3-dihydroxypropane, 1 -amino- \(2,3,4\)-rihydroxybutane, 1 -(hydroxymethyllaminoethane, Iris(hydroxymethyl)-aminomethane, 1,1-bis(hydroxymethyl)aminoethane and 1 -(hydroxymethyl) benzyl amine and reacting the resulting product with a reactant se
lected from the group consisting of (1) from about 1 to about 2 lected from the group consisting of (1) from about 1 to about
moles per mole of said product of a boron compound of the formula
\[
\begin{gathered}
\mathrm{R}^{\prime} \mathrm{O}-\mathrm{B}-\mathrm{OR}^{\prime} \\
\mathrm{I} \\
\mathrm{OR}^{\prime}
\end{gathered}
\]
in which each \(\mathbf{R}\) is individually selected from the group consisting of hydrogen and a \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyl, aralkyl or aralkyl group, (2) from about 1 mole to about 2 mole of said product of an organophosphonate of the formula
in which \(R^{\prime}\) is individually selected from the group consistin of hydrogen and a \(\mathrm{C}_{1}-\mathrm{C}_{2}\) alkyl, arayl, aralkyl or alkaryl group
or (3) from about 1 mole to about 2 moles per mole of said product of an aldehyde of the formula
in which \(\mathrm{R}^{\prime}\) is selected from the group consisting of hydrogen and a \(\mathrm{C}_{1}-\mathrm{C}_{30}\) alkyl, aryl, aralkyl or alkaryl, the reaction of the boron, phosphonate or aldehyde with said product taking
place at from about \(50^{\circ}\) to about \(250^{\circ} \mathrm{C}\).

LIQUID DEVELOPER FOR ELECTROPHOTOGRAPHIC OFFSET MASTERS
Elias P. Moschovis, and John L. Gilson, both of Morton Grove,
III., assignors to A. B. Dick Company, Niles, III

The portion of the term of this patent subsequent to Dec. 6, 1994 has been disclaimed.
Int. Cl. \({ }^{2} \mathbf{G} 03 \mathrm{G} 9 / 12\)
U.S. C. \(252-62.1 \mathrm{~L}\)

8 Claim 1. A liquid composition for treatment of the surface of an offset master for development of a latent electrostatic image
which is oleophilic, ink receptive, and water repellent, and in which is oleophilic, ink receptive, and water repelient, and in
which the imaged surface is treated with a conversion solution for rendering the non-imaged portions of the master surface ink repellent, water receptive and hydrophilic, the improvement wherein the liquid composition which, in addition to a
water repellent, ink receptive, oleophilic toner, is formulated water repellent, ink receptive, oleophilic toner, is formulated
to contain an amine selected from the group consisting of morpholine, N -ethyl morpholine and N -methyl morpholine.

\section*{4,097,392}

COPRECIPITATION METHODS AND MANUFACTURE OF SOFT FERRITE MATERIALS AND CORES lex Goldman, Pittsburgh, and Alfred M. Laing, Butler, both of Pa., assignors to Spang Industries, Inc., Butter, Pa.
Filed Mar. 25 , 1975, Ser. No. 561,833 Filed Mar. 25, 1975, Ser. No. 561,833
U.S. Cl. 252-62.62

30 Claims
wherein \(n\) is an integer of about 1 to 10 and \(x\) and \(y\) are integers such that their sum is equal to about 7 to 23 ; (2) from about 1 salt thereof of the structure

wherein \(R\) is an alkyl group of about 8 to 20 carbon atoms and about 0 is hogen, alkali metal or ammonium ion; and (3) from alcohol) carboxylate ester of a sulfosuccinic acid or salt thereof of the structure

\(\mathrm{MO}_{3} \mathrm{~S}-\stackrel{\mathrm{CH}}{\mathrm{C}} \mathrm{COOM}\)
wherein R is an alkyl group of about 8 to 26 carbon atoms, \(n\) is an integer of abo
ammonium ion.

1. Wet process for producing a material, consisting essen tially of metal carbonates and metal hydroxides, for conversion into pulverant ferrimagnetic material compactable into sof errite components consisting essentially of ferric oxide and a east one divalent metal oxide, comprising the steps o
(a) producing a precipitate and a liquid phase by
(i) forming an aqueous metal ion solution of ferrous ions and divalent ions of at least one other metal in which the divalent metal ions of said at least one other metal are selected from the group consisting of \(\mathrm{Mn}^{++} \mathrm{Zi}^{++}, \mathrm{Ni}^{++}\) and Mg
(ii) providing a solution containing carbonate ions and hydroxide ions in which the source of carbonate ions is selected from the group consisting of ammonium bicar bonate, ammonium carbonate, sodium carbonate, and potassium carbonates.
(iii) reacting said metal ion solution with said solution containing carbonate ions and hydroxide ions to copre-
cipitate ferrous carbonate and said other divalent metal ions as metal carbonates and to concurrently coprecipi late ferrous hydroxide and said other divalent metal ions as metal hydroxides, essentially without convertin
ferrous ions to ferric ions: ferrous
(iiii) controlling such coprecipitation to select a desired ratio
between carbonate groups and hydroxide groups in the between carbonate groups and hydroxide groups in the
coprecipitated material, with the carbonate groups being
rom the liquid phase and the hydroxide groups being at a level to maintain sufficient residual hydroxide groups to extend solid-state reactivity of coprecipitated particles for grain growth and densification purposes until a final hea treatment of a pressure compacted component;
(b) separating said coprecipitated material from the liquid phase, and
(c) drying said separated coprecipitated material.

\section*{SILICONE 4, 4,097,393}

SILICONE OCARBON COMPOSITIONS Shiffler, Briarcliff Midgefield, Conn., and Richard Welty Corporation, New York, N.Y

Filed Feb. 9, 1976, Ser. No. 656,386 Int. Cl.2 C10M 3/44, \(/ 1 / 50\)
U.S. CI. 252-78.3
1. A composition of matter consisting essentially 5 Claims dimethyl siloxane oil having a viscosity of from about 10 to about 100 centistokes at about \(25^{\circ} \mathrm{C}\) and consisting essentially of siloxy units of the formula \(\mathrm{R}_{2} \mathrm{SiO}\) and end-blocking siloxy units of the formula \(\mathrm{R}_{3} \mathrm{SiO}_{0.5}\) wherein R represents a methyl radical, and (B) naphthenic oil having a Saybolt seconds uni-
versal viscosity at \(100^{\circ} \mathrm{F}\) of from 30 to 500 , and a viscosity gravity constant of at least 0.84 ; wherein the proportions of components of (A) to (B) ranges from about 70:99 percent by volume of (A) to about \(30: 1\) percent by volume of ( \(\mathbf{B}\) ), and wherein said proportions of (A) and (B) are selected such tha said components \((A)\) and (B) remain mis 5. A protesh for transmixing force
means of a vehicle through hydraulic line means brake pedal master brake cylinder means and to activated means compris ing substantially filling said hydraulic means, said master brake cylinder means and said activated means with a composition of matter as defined in claim \(\mathbf{1}\)
\(4,097,394\)
FOR ETC
ETCHING LIOUID FOR ETCHING ALUMINUM Gijsbertus Gerlact, and John Joseph Kelly, both of Eindhoven, Gijsbertus Geriact, and York, N.Y.
Continuation of Ser. No. 607,557, Aug. 25, 1975, abandoned. This application May 2, 1977, Ser. No. 792,641 \(\underset{411645}{\text { Claims }}\)
Int. C1.2 C09K 13/02; C23F 00/00

1. An etching solution for selectively etching layers at leas \(100 \mu\) thick of aluminum and alloys of aluminum, said solution least one alkaline material selected from the group consisting of alkali metal carbonates and alkali metal hydroxides in an amount of from 0.1 to 2 mole/l, a soluble ferricyanide in a mount of from \(5 \mathrm{~g} / \mathrm{to}\) saturation, the molar ratio of hydro de to ferricyanide being at most equal to 1 and a soluble salt of phosphorus acid derived from trivalent or pentavalent phos phorous oxide selected from the group consisting of ortho-
hosphates. metaphosphates, polyphosphates. pyrophosphates and phosphites in an amount sufficient to reduce undercutting.

\section*{4,097,395}

MOLD AND MILDEW REMOVAL COMPOSITION AND MOLD AND MILDEW REMOVAL COMPGE Dan E. Posey, and Benjamin Mosier, both of Houston, Tex assignors to Chempro Corporation, Houston, Tex. \({ }^{\text {Con }}\), 1976, Continuation-in-part of Ser. No. 720,986, Sep. 7, 1976,
, 15 , abandoned, which is a continuation or Ser. No.
1973, abandoned. This application Jan. 17, 1977, Ser. No. 1973, abandoned. 73is 259,747
U.S. CI. 252-106
int. Cl.2 C11D 3/065, 3/48
12 Claim 1. A concentrate which when added to water and an oxidizing agent produces a reactive mixure capable of
removing mold and mildew consisting essentially of the fol lowing constituents:
\begin{tabular}{|c|c|}
\hline Constiuent & Range in \% by weight \\
\hline Woner & \(93.30-87.65\) \\
\hline \({ }_{\text {Wader }}\) Sodium melasilicate & 0.00-0.90 \\
\hline Sodium tripolyphosphate & \(2.50-3.50\) \\
\hline Sodium alkyl benzene & 0.10-.80 \\
\hline Solyethoxylated nonyl & \\
\hline phenol & 0.50-1.50 \\
\hline Sodium-o-phenylphenolate & \(2.00-5.50\) \\
\hline
\end{tabular}

4,097,396
SOAPS AND DETERGENTS CONTAINING SOAPS AND DETERGENS CS AS PERFUMES William J. Evers, Red Bank; Howard H. Heinsohn, Jr., Hazlet, both of N.J., Edward J. Shuster, Brooklyn, N.Y., and Freder-
ick Louis Schmitt, Holmdel, N.J., assignors to International Flavors \& Fragrances, Inc., New York, N.Y
Division of Ser. No. 723,534, Sep. 15, 1976, Pat. No. 4,065,408 This application Jul. 28, 1977, Ser. No.
Int. Cl. \({ }^{2}\) C11D \(3 / 50\), \(9 / 44\)
U.S. Cl. 252-132
 U.S. Cl. \(252-132\)
1. A perfumed : comprising at least one compound having the structure:
wherein R is one of hydrogen or methyl and X is a ketog group having the structure

\section*{[i굴}
and \(Y\) is selected from the group consisting of methyl, methallyl having the structure


1-propyl, 2-methyl-1-propyl and acetyl, and a soap or detergent.

4,097,397
RY CLEAVING DETERGENT COMPOSITION DRY CLEANA, Yachiyo; Masaru Tamura, Sakura, and Ka Hiroshi Mizutani, Yachiyo; Masaru Tamura, Sakura, and Kat
sumi Saegusa, Funabashi, all of Japan, assignors to Kao Soap sumi Saegusa,
Co., Ltdo., Tokyo, Japan
Filed Jun. 24, 1977, Ser. No. 809,524 Claims priority, application Japan, Oct. 27,
.S. Cl. 252-153 153 11 Claims lially of (A) from 10 to 30 percent by weight of an alkanolamine salt of a linear alkylbenzenesulfonic acid having 10 to 14 carbon atoms in the alkyl group and wherein said alkanolamine is a monoalkanolamine, dialkanolamine or trialkanolamine
having 2 or 3 carbon atoms in the alkanol having 2 or 3 carbon atoms in the alkanol group, (B) from 30 to 50 percent by weight of a dialkyl ester of sulfosuccinic acid having 8 or 9 carbon atoms in the alkyl group, (C) from 2 to 20 percent by weight of an adduct of 1 to 7 moles of an alkylene oxide having 2 or 3 carbon atoms to a higher fang 10 to 18
kanolamide prepared from a fatty acid having from kanolamide prepared a monoalkanolamine or dialkanolamine
carbon atoms and having 2 or 3 carbon atoms in the alkanol group, and (D) the balance is essentially an organic dry cleaning solvent.

\section*{4,097,398}

CONSTANT BOILING ADMIXTURES
CONSTANT BOILTH Hutchinson, deceased. late of Bartlesville, William , and by Florence M. Hutchinson, executrix, Claremore, Okla., assignors to Phillips Petroleum Company, Bartlesville, Okla. Division of Ser. No. 690,807, May 27, 1976, Pat. No. \(4,039,465\), which is a division of Ser. No. 602,353, Aug. 6, 1975, Pat. No which is a division of er. No. Mar. 31, 1977, Ser. No. 783,243
\(4,024,086\). This application Man Int. Cl. \({ }^{2}\) C11D 7/50. 7/30; C23G 5/02 3 Claims U.S. C. 252-162 1. A substantially constant boiling admixture of A) \(1,1,2\)--r. huoroethane and (B) 1,2-dichloro-1,1,2,2-2 \(\mathbf{w}\) (B) about 58.4 weight percent at substantially atmospher pressure

PROCESS FOR PREPARNG
PROCESS FOR PREPARING AN OXYALKYLATED PRODUCT
Arthur L. Austin, Southgate; William W. Levis, Jr., Wyandotte; Louis C Pizzini, Trenton, and Robert J. Hartman, Southgate, all of Mich., assignors to BASF Wyandotte Corporation, all of Mich., aish.
Division of Ser. No. 425,524, Dec. 17, 1973, Pat. No. 3,957,922. This application Jun. 25, 1975, Ser. No. 590,332
Int. Cl. \({ }^{2}\) C07F \(9 / 145\) : C08G 71/04 Int. Cl. \({ }^{2}\) C07F 9/145; C08G
U. Claims
1. Process for preparing an oxyalkylated product which U.S. Cl. 252-182 1. Proces
comprises
1. providing a mixture containing
a. a phenol, at least in an amount sufficient to form a a. a phenol, at least in an amount sufficient
complex with an aluminum or iron substance in the mixture,
b. a non-phenolic active hydrogen compound having 2 to 8 active hydrogens per molecule and having an averag molecular weight below about 10,000
c. a substance containing aluminum or iron which will c. a substa complex with phenol, and d. an organic acid and (dise, at least one of which components (a), (b), and (d) is halogenated,
heating the mixture to a temperature in the range of from about \(80^{\circ} \mathrm{C}\). to about \(250^{\circ} \mathrm{C}\)., and . oxyalkylating the heated mixture by adding thereto sufficient alkylene oxide having from 2 to 12 carbon atoms to form an oxyalkylated polyol produrt.

FLAMEPROOF POLYURETHANES Joachim Wortmann, Turnich; Franz-Josef Dany, and Joachim Kandler, both of Akiengesellschaft, Frank of Germany, assign many
Continuation-in-part of Ser. No. 527,444, Nov. 26, 1974, abandoned. This application Apr. 9, 1976, Ser. No. 675,533 Claims priority, application Germany, Nov. 30, 1973, 2359700
Int. Cl.
U.S. Cl. 252-182 2 Claims 1. A homogenized mixture for the production of flameproof polyurethanes or polyurethane foams by reacting the said polyhydroxyl compound of high molecular weight, water, a polyhydroxy compound of
catalyst, surfactants and ammoniumpolyphosphate as flameproofing substance, the ammonium polyphosphate having the general formula:
\(\mathrm{H}_{(n-m)+2}\left(\mathrm{NH}_{4}\right)_{m} \mathrm{P}_{n} \mathrm{O}_{3_{n+1}}\)
in which \(n\) stands for a whole number averaging a numerical value of between about 600 to about 800 , and the ratio of \(m\) : \(n\) being approximately 1 :

\section*{409741}

THERMODYNAMICALLY STABLE PRODUCT FOR PERMANENT STORAGE AND DISPOSAL OF HIGHL PERMANENT STORAGE AND DISP
RADIOACTIVE LIQUID WASTES
Walter Guber, Leopoldshafen; Jaroslav Saidl; Paul Daruschy, both of Karlsruhe, and Werner Hild, Hochstetten, all of Germany, assignors to Gesellischaft fur Kernforschung m.b.H
Karlsruhe, Germany
Filed Oct. 30, 1975, Ser. No. 627,310
Claims priority, application Germany, Jul. 30, 1975, 2534014 IS. \({ }^{\text {Int. Cl. }}{ }^{2}\) G21F \(9 / 34\)
U.S. C. 252-301.1 W 7 Claims 1. A thermodynamically stable microcrystaline glass ce--
ramic or glass ceramic-like product for permanent disposal and storage of highly radioactive wastes in a manner harmless to the environment or the biocycle, comprising:
(a) a solidifying matrix containing the components of a boro-
silicate glass including, by weight of the thermodynami\(10 \% \mathrm{Al}_{2} \mathrm{O}_{3}, 3\) to \(6 \% \mathrm{~B}_{2} \mathrm{O}_{3}, 0\) to \(5 \% \mathrm{Na}_{2} \mathrm{O}\);
(b) a plurality of nucleation agents, including, by weigh
\(6 \% \mathrm{MgO}, 8\) to \(10 \% \mathrm{Li}_{2} \mathrm{O}\) and 3 to \(6 \% \mathrm{~K}_{2} \mathrm{O}\) and
(c) 20 to \(30 \%\) by weight of waste fission and corrosion
products; said thermodynamically stable product is pro-
ducible by a process with a highest process temperature
used of \(1200^{\circ} \mathrm{C}\) or less.
used of \(1200^{\circ} \mathrm{C}\) or less.

\section*{4,097,402}

NUCLEAR FUEL ASSEMBLY AND PROCESS
Willard T. Grubb, Schenectady, N.Y., assignor to General Electric Company, Schenectady, N.Y. Filed Jun. 29, 1976, Ser. No. 700,736
Int. Cl. \({ }^{2}\) G21C \(3 / 42\) \({ }_{1}{ }_{R}^{\text {Int. }}\)
\(122^{200,736}\)
16 Claims
U.S. Cl. 252-301.1 1. For use in a nuclear reacellet form containing at least one fissionable isotope and an amount of a metallic material seected from the group consisting of gold, silver and palladium and mixum resulting from nuclear fission chain reactions of the nuclear fuel material through a reaction between the said cadmium and the said metallic material and thereby prevent cadmium embrittlement of nuclear fuel cladding at reactor operation temperatures.

4,097,403
OIL-IN-WATER EMULSION AND EMULSIFYING OR SOLUBILIZING AGENT COMPOSITION USEFUL

Hisao Tsutsumi, Sakura; Shizuo Hayashi, Sugitomachi; Hirokau Nakayma, and Toshinao Uka, Wa yama, all of Japan, assignors to Kao Soap Co., Ltd., Tokyo,
Filed Jan. 21, 1977, Ser. No. 760,962
Claims priority, application Japan, Feb. 5, 1976, 51-11525
U.S. C. 252-312

10 Claims 1. An emulsis
I.
ansentially of
1. from 58 to 95 per
having the formula

\section*{\(\xrightarrow{\mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)}\)}
\(\qquad\)
\(\mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n_{0}} \mathrm{X}\)
wherein the sum of \(n_{1}\) to \(n_{0}\) is from 10 to 100 and, on the average, from 3 to 6 of the \(X\) 's are branched saturated acy groups having from 11 to 21 carbon atoms and the balance of the \(X\) 's are hydrogen,
II. from 0.5 to 2.5 percent by weight of an alkali metal salt of f finear or branched fatty acid having from 11 to 21 car-
a bon atoms,
fatty acid having 11 to 23 carbon of a linear
for
fatty acid having 11 to 23 carbon atoms, and
V. from 2 to 35 percent by weight of a branched saturated fatty acid ester of polyethylene glycol having an average molecular weight of 150 to 2000 , wherein the branched saturated fatty acid ester moiety has from 11 to 21 carbon atoms.
7. An oil-in-water emulsion containing as an emulsifier for as claimed in claim 1.

PROCESS FOR PROVIDING COMPOSITION
ober Brown, Rochester, N.Y., assignor to Xerox Corporation, Stamford, Conn.
Filed Jan. 29, 1973, Ser. No. 327,528
U.S. C1. 252-316

Int. Cl.2 \({ }^{2}\) B01J \(13 / 02 \quad 8\) Claim 1. A method of providing encapsulated toner materials com-
U.S. prising dissolving a polymer in a monomer other than the
monomer of said polymer which polymer is incompatible with the polymer of the monomer employed to form a solution said polymer being referred to as polymer A; dispensing said soluion in a continuous phase; polymerizing the monomer so that polymer A forms a solvent-rich phase which forms the wall o
the encapsulated toner material and the resulting polymer he encapsulated toner material and the resulting polymes
being referred to as polymer B forms a solvent-poor phase which becomes the core of the encapsulated toner material said polymer A, the monomer and polymer B having a very limited solubility in the continuous liquid phase employed for polymerization.

PARTICULATE THICKENING AGENT Ronald E. Watts, Harlow, England, assignor to Minnesota Min ing and Manufacturing Company, Saint Paul, Minn. Flaims priority, application United Kingdom, Jul. 14, 1975, 29490/75

Int. Cl. \({ }^{2}\) B01J \(13 / 00\) C08K \(3 / 36\) U.S. Cl. 252-316 U.S. A. hickener microns, said particulate matter conte matter of less than 425 from \(7 \times 10^{-3}\) to \(6 \mu\) bonded to an acrylic polymeric material comprising on a dry basis. from 14 to \(40 \%\) by weight of said particulate matter and capable of hydrogen bonding and being
sufficiently hydrophilic to be dispersible in water or other aqueous liquids, said silica having a large surface area and being capable of aggregating because of hydrogen bonding when dispersed in water.

\section*{4,097,406}

GLYCOL AND SILICATE-BASED SURFACTANT COMPOSITION
Robert N. Scott, Wallingford, and Thomas A. Knowles, Chesh ire, both of Conn., assignors to Olin Corporation, New Haven, Conn. Filed Jan. 8, 1976, Ser. No. 647,355 U.S. Cl. 252-351 Int. Cl. \({ }^{2}\) B01F \(17 / 54\) 28 Claims tant composition which comprises:
(a) preparing a silicate-based component by:
(i) reacting together, at a temperature of about \(40^{\circ}\) to \(200^{\circ}\) C,
) a silicon tetrahalide selected from the group consist.
ing of silicon tetrachloride, silicon tetrabromide and ing of silicon tetrachloride, silicon tetrabromide, and
silicon tetraiodide, and, per every mole of said silicon silicon terraiodide, and, per every mole of said silicon
tetrahalide (2) about 0.2 to 2.0 moles of water and (3) at least about one mole of an alcohol represented by the formula \(\mathrm{R}_{1} \mathrm{OH}\) wherein \(\mathrm{R}_{1}\) is alkyl of 2 to 20 carbon atoms or aryl of 6 to 14 carbon atoms, the reaction yielding a product made up of a volatile portion and a non-volatile portion, and
presence of a transesterification catalyst, reacting the non-volatile portion of the product of step (i) with a polyether alcohol having a molecular weight of about 500 to 5,000 and represented by the formula \(\mathrm{R}_{2}\left(\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}\right) \mathrm{H}\) wherein \(\mathrm{R}_{2}\) is alkyl of 1 to 10 carbon
atoms and the moiety ( \(\mathrm{C}, \mathrm{H}_{2} \mathrm{O}\) ) represents a polyoxyalkylene chain consisting of from about 10 to \(100 \%\) by weight of oxyethylene units, and, correspondingly, about 90 to \(0 \%\) of oxypropylene units, oxybutylene units or a mixture of oxypropylene and oxybutylene units, said polyether alcohol being employed in a molar proportion ranging from about 0.006 to about 1.1 moles
per every mole of said silicon tetrahalide which is used in step (i), with the proviso that the molar proportion of said polyether alcohol is no more than about \(55 \%\) of the molar proportion of alcohol consumed in the reaction of step (i); and
byol component obtained with a
\(\mathrm{R}_{3} \mathrm{O}+\left(\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{O}+{ }_{0}\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}\right)_{b}-{ }_{m} \mathrm{H}\right.\)
\(\mathrm{R}_{1}\)
containing about 3 to about \(60 \%\) by weight of glycol component, based on the total weight.

CLEANING COMPOSITION DERIVED FROM POTATO PROCESSING WASTES Esthmel W. Ady, Richland, Wash., assignor to Larry Dale Ady,
Kennewick, Wash. Kennewick, Wash.

Filed Apr. 4, 1975, Ser. No. 565,241
U.S. Cl. 252-370 Int. Cl. \({ }^{2}\) C11D 13/00, 9/38 14 Claims

1. A process for preparing a soap concentrate from potato processing wastes comprising the steps of:
(a) mixing pulverized starch-containing potato processing (a) mixing pulverized starch-containing potato processing sodium and potassium hydroxide in the presence of water to form a liquid potato digest;
(b) reacting a fatty acid source selected fom consisting of animal fats and vegetable oils with group selected from the group consisting of sodium and potassium hydroxide at a temperature in the range \(135^{\circ}-150^{\circ}\) F. to form a liquid soap;
(c) admixing said liquid soap and potato digest in a weight ratio of from 80:20 to 40:60 on a dry solids basis;
(d) heating said admixture in the presence of oxygen at a temperature in the range \(180^{\circ}-212^{\circ} \mathrm{F}\). for from 30 to 60 minutes to form (e) additionally
tion to about \(150^{\circ} \mathrm{F}\).;
(f) adding from one-half to from the group consisting of pound of dry caustic selected droxide for each consising of sodium and potassium hycomposition;
(g) diluting the mixture resulting in ( \(f\) ) with water
(h) boiling the resulting aqueous mixture; and,
(i) permitting the boiled mixture to cool and to separate into a solid soap portion and a liquid cleaner portion.

\section*{DIPEROXYESTER MIXTURE PREPARED BY} REACTING DIHYDROPEROXIDES AND CARBONYLS Jose Sanchez, Grand Island, ration, Philadelphia, Pa.

Filed Jan. 6, 1977, Ser. No. 757.179
wherein \(\mathrm{R}_{3}\) is hydrogen or an alkyl having about 1 to about 10 carbon atoms, \(R_{4}\) is an alkyl having about 1 to about 4 carbon \(a+b\) is greater than zero, and \(m=1\) to 17 , said components being combined so as to produce a surfactant composition
\[
\text { U.S. Cl. 252-426 It. }{ }^{\text {Int. }} \quad 30 \text { Claims }
\]
U.S. C1. 252-426
1. A method of prep
tion which comprises:
A. reacting 100 mole \% of a dihydroperoxide having the structure:
is \(0,1,2\), or \(3, X\) is halogen and \(R\) is an alkyl group containing \(1-6\) carbon atoms at a temperature below \(40^{\circ} \mathrm{C}\), said catalyst having a magnesium concentration of from about 0.5 to \(20 \%\) by weight based on the weight of the silica and magnesium compound together and a itanium concentration in the range of from about 0.01 to \(20 \mathrm{wt} . \%\) based on the total weight of the herein \(R\) is selected from the group consisting of an catalyst
alkylene diradical of 2 to 4 carbons, an alkynylene carbons, 1,3 phenylene diradical and 1,4 phenylene carbons,
diradical,
in the presence of 190 to 300 mole percent of a base with 80 to 220 total mole percent of at least two peroxyester forming carbo

HYDROCARBON CONVERSION CATALYST CONTAINING A CO OXIDATION PROMOTER Elroy M. Gladrow, Baton Rouge, La., assignor to Exxon Re-
search \& Engineering Co., Linden, N.J.
Filed Jun. 23, 1976, Ser. No. 698,902
U.S. CI. 252-455 Z

Int. Cl. \({ }^{2}\) B01J \(29 / 06\)
11 Claims
wherein
wherein oxy, primary alkenyl, alkenyloxy, or cycl
ii. \(Y_{1}\) is selected from chloride, bromide or
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular} particles of crystalline aluminosilicate zeolite containing rare a corth metal and particles of an ultra-stable Y zeolite containing porous oxide matrix ter, which particles are dispersed in a wt. \% of a rare earth produce a catalyst containing 0.8 to 4.5 CO oxidation erorth metal (as oxides) and 2 to 100 ppm of a a metal selected from Periods 5 and 6 of Group VIII of the Periodic Table, rhenium, chromium, manganese and combinations thereof.
\({ }_{\mathrm{R}}^{\mathrm{wh}} \mathrm{m}_{\text {isein }}\)
\(\mathrm{R}_{2}\) is selected from a primary aralkyl, cycloalkyl, cy-
cloalkenyl or sect cloalkenyl or secondary alkyl. and
\(\mathrm{R}_{2}-\stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{C}-\mathrm{O}\)
\(\stackrel{\mathrm{O}}{\mathrm{R}_{3}-\mathrm{C}-\mathrm{Y}_{3}}\)
wherein
i. \(\mathrm{R}_{3}\) is selected from a tertiary alkyl, secondary and tertiary aralkyl, or tertiary cycloalkyl, 1 -alkoxy-1-alkyl,
1 -aryloxy-l-alkyl, a-aloxy-tertiary alkyl or a-aryloxy-ter-1-aryloxy-1-alkyl, a-aloxy-tertiary alkyl or a-aryloxy-terii. \(Y_{3}\) is selected from chloride, bromide or


4,097,409
PREPARATION OF TITANIUM CONTAINING PREPARATION OF TITANIUM CONTAINING John Gabriel Speakman, Bo'ness, Scotland, assignor to Th British Petroleum Company Limited, London, England Filed Dec. 1, 1976, Ser. No. 746,494 Claims priority, application United Kingdo
49813/75
Int. Cl. \({ }^{2}\) C08F \(4 / 02,4 / 10\)
U.S. C. 252-429 R Int. Cl.
29 R
for the pro
1. A process for the production of a supported Ziegler cata st comprising treating: (a) a magnesium-containing suppor material obtained by heating at a temperature in the range of about \(150^{\circ}-1000^{\circ} \mathrm{C}\) a magnesium halide or a magnesium alkoxide with an inorganic oxide having surface hydroxyl groups, said inorganic oxide being silica or a silica composite containing at least \(50 \%\) by weight of silica with (b) a halogen contain

CATALYST FOR PREPARATION OF
CATALYST FOR PREPARATION
ORTHO-ALKYLATED PHENOLS
Bernardus J. van Sorge, Selkirk, N.Y., assignor to General Bernardus J . van Sorge, Selk, Mass.
Electric Company, Pittsfield, Mass
Continuation of Ser. No. 846,967, Aug. 1, 1969, abandoned. This
application Jan. 22, 1976, Ser. No. 651,251
U.S. Cl. 252-457

9 Claims
U.S. C. \(252-45\)
1. A molded to shape catalyst comprising a mixture of a magnesium oxide bonded with a minor amount of silica, the catalyst having a surface area of at least 20 sq. meters per gram. 2. The catalyst of claim \(\mathbf{1}\) where the silica comprises from to \(15 \%\) by weight of the catalyst.

CATALYST CARRIERS AND A PROCESS FOR THEIR IIERS AND A PR
PREPARATION
Alain Muler Le Havre, France, assignor to Compagie Francaise de Raffinage, Paris, France
Filed Dec. 7, 1976, Ser. No. 748,302
Claims priority, application France, Dec. 8, 1975, 7537506 Int. Cl. \({ }^{2}\) B01J 21/04, 23/28, 23/30, 23/74 U.S. Cl. 252-465

4 Claim 1. Process of preparation of a cataly omprising the following principal steps:
(a) hydrolysis of a solution of an organic aluminum salt in a first organic solvent by mixture with an aqueous solution of at least one water-soluble salt of at least one second metal selected from the group consisting of nickel, tung sten, molybdenum, and cobalt, producing a coprecipitated gel;
(c) said of the gel obtained between \(70^{\circ}\) and \(140^{\circ} \mathrm{C}\); solvent and then kneaded.
desulfurization Process and catalyst Howard D. Simpson, Irvine, Calif., assignor to Union Oil Co pany of Califortio, Los Angeles, Calif.

Filed Dec. 17, 1976, Ser. No. 751,38 Int. Cl. \({ }^{2}\) B01J 21/04, 23/88
U.S. Cl. 252-465
1. A method for the manufacture of a hydro 4 Claim catalyst which comprises:
() comulling boehmite alumina with sufficient of an aque-
ous ammonium molybdate solution to provide \(18-30\) weight-percent of \(\mathrm{MoO}_{3}\) in the finished catalyst: (2) drying the composite from step (1) at temperatures below about \(500^{\circ} \mathrm{F}\) to a water content of between about 20 and 40 weight-percent;
(3) intimately admixing the dried composite from step (2) with sufficient of a water-soluble cobalt salt to provid about 4-12 weight-percent of CoO in the finished cata-
lyst, and with sufficient water to provide an extrudable paste;
(4) extruding the paste into extrudates having a diameter between about \(1 / 20\) and \(\frac{1}{1}\) inch; and
(5) calcining the extrudates at a temperature which is (a) the \(\mathrm{MoO}_{3}\) content of said catalyst so as to correlated with the \(\mathrm{MOO}_{3}\) content of said catalyst
surface area of at least \(\mathrm{m} / 0.14 \mathrm{~m}^{2} / \mathrm{g}\), where M is the weight-percent of \(\mathrm{MoO}_{3}\) in said catalyst.

MODIFIED ETHYLENE OXIDE CATALYST AND A PROCESS FOP ITS PREPARATION
Stanley B. Cavitt, Austin, Tex., assignor to Texaco Development
Corp., New York, N.Y.
Filed Aug. 30, 1976, Ser. No. 719,042
Int. CI. \({ }^{2}\) B01J 23/04, 23/50
U.S. Cl. 252-476
1. A cesium-modified, activated silver catalyst for the vaims 1. A cesium-modified, activated silver catalyst for the vapor xidizing agent prepared by:
ang a porous, inorganic,
with an impregnating solution; and, from about \(50^{\circ} \mathrm{C}\) to \(300^{\circ} \mathrm{C}\) to evaporate volatiles and activate said catalyst
herein said impregnating solution comprises an effective ate amine complex of a silver carboxylate dissolved in solubilizing amount of an amine-containing complexing agent selected from the group consisting o
(a) aliphatic diamines selected from the group consisting of N -alkyl substituted piperazines and C -alkyl substi tuted piperazines;
(b) aliphatic polyam
moieties wherein at least one is primary or secondary and
(c) aliphatic amino ethers containing at least one ether linkage and at least one amino moiety which is primary or secondary.

4,097,41
PRODUCTION OF IMPROVED ANODES FOR SOLID ELECTROLYTE CAPACITORS Jean-Claude Moulin; Balint Escher, and Dominique Prince, all of Paris, France, assignors to Societe Lignes Telegraphiques et Telephoniques, Paris, France
Claims priority, application France, Mar. 3, 1975, 75 09029 Jun. 6, 1975, 7517382
U.S. Cl. 252-512 nt. Cl. \({ }^{2}\) H01B \(/ / 02\)
U.S. Cl. 252-512 1. A method for producing anodes of film
providing a quantity of powdered film forming metal to constitute an anode,
mixing said powder with a binder mixing said powder with a binder, pressing the resulting mixture into a pellet,

introducing within said pellet an additive comprising a com pound of an element selected from the group consisting o the group consisting of \(\mathrm{O}, \mathbf{S}, \mathrm{Se}\) and Te , and sintering the resulting pellet.

4,097,416
1-(2-PROPENYL)-3-(4-METHYL-3-PENTENYL)- \(\Delta^{3}\) -CYCLOHEXENE-1-CARBOXALDEHYDE AND CYCLOHEXENE-1-CARBOXALDEHYDE AND CYCLOHEXENE-1-CARBOXALDEHYDE, PERFUME COMPOSITIONS
Hugn B. Hall, Rumson; Mark A. Sprecker, Sea Bright; Manfred Hugo Vock, Locust, all of N.J.; Edward J. Shuster, Brooklyn,
N.Y.; Joaquin Vinals, Red Bank, and Robert M. Novak N.Y.; Joaquin Vinals, Red Bank, and Robert M. Novak,
Fords, both of N.J., assignors to International Flavors \& Fragrances Inc., New York, N.Y.
vision of Ser. No. 741,088, Nov. 11, 1976, Pat. No. 4,068,012.
This application Aug. 24, 1977 Ser. No. 827,298 This application Aug. 24, 1977, Ser. No. 827,298
U.S. Cl. 252-522 2 Claims

1. A perfume composition comprising a mixture of the com pounds 1-(2-propenyl)-3-(4-methyl-3-pentenyl)- \(\Delta^{3}\)-cyclohex tenyl) \(\Delta^{3}\)-cyclohexene- 1 -carboxaldehyde defined by the structure:


10 Claims wherein the carboxaldehyde moiety is bonded either at the enyl moiety and at least one adjuvant selected from the group
consisting of natural perfume oils, synthetic perfume oils,
alcohols, aldehydes, ketones, nitriles, esters and lactones.
conols, aldehydes, kernes,
PHOTOCURABLE ELECTROCONDUCTIVE COATING COMPOSITION
Stephen D. Pastor, Edison; Martin M. Skoultchi, Somerset, an
Henry R. Hernandez, Somerville, all of N.J., assignors
aional Starch and Chemical Corporation, Bridgewater, N.J. Filed May 2, 1974, Ser. No. 466,264
Int. Cl.2 H01L 13/00: C08F 8/00, 2/46
U.S. Cl. 252-501
1. An actinic radiation cross-linkable coations 11 Claims matter consisting essentially of:
(A) an acrylic monomer devoid of groups which inhibit free late or substituted acrylate group.
(B) a photoactivatable freee radical polymerization initiato selected from the group consisting of 3 -hydroxy-2-buta none, phenanthrene-quinone, polyhalogenated aromatic
anhydrides, ( \(C_{1}-C_{4}\) ) benzoin ethers and benzoins of the anhydrid

where R is a member of the group consisting of hydrogen halogen and \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyl, said initiator being present as a separate species or in a chemical combination with said monomer, and
(C) a copolymerizable monomer which is an organic compound having at least one terminal ethylenically unsatu-
rated group and selected from the group consisting of salts of allyl substituted quaternary ammonium compounds and alkali metal salts of acrylic, methacrylic and vinylbenzene sulfonic acids,
erein at least on
wherein at least one of said monomers in part \(A\) or part \(C\) contains more than one terminal ethylenically unsaturated

\section*{4,097,418 \\ GRANULAR COLORED SPECKLES}

Thomas Richard Rolfes, Wyoming, Ohio, assig
Procter \& Gamble Company, Cincinnati, Ohio
Procter \& Gamble Company, Cincinnati, Ohio
a continuation-in-part of Ser. No. 598.523, Jul. 23, 1975,
abandoned. This application Jan. 10, 1977, Ser. No. 758,361
\({ }^{2}\) C11D 3/065, 3/40, 11/00, 17/06
U.S. Cl. 252-531
1. The method of making a low- 2 Claims peckle which comprises agglomerating from-staining colored weight of the granular colored speckle, of a water-soluble, hydratable inorganic alkaline salt selected from the group consisting of sodium tripolyphosphate, sodium pyro phosphate, sodium orthophosphate, and mixtures thereof, with from about 15 to about \(35 \%\) by weight of the granular colored speckle, of an aqueous anionic surfactant paste comprising
from about 20 to about \(50 \%\), by weight, of an anionic surfacrant selected from the group consisting of sodium alkylbenzen sulfonates having 10 to 14 carbons in the alkyl chain, sodium coconut alkyl sulfate, sodium tallow alkyl sulfate, the sodium salt of the sulfated condensation product of \(\mathrm{C}_{10}\) to \(\mathrm{C}_{18}\) alcohol having an average of 3 moles of ethylene oxide per mole of
alcohol, and mixtures thereof, and having admixed in said paste rom about 0.5 to about \(10 \%\), by weight of the granular col ored speckle, of a coloring agent selected from the group consisting of phthalocyanine blue, phthalocyanine green, ultra-
che marine bue, Polar Bixtures thereof.
2. A granular colored speckle in agglomerate form made by the process of claim 1.

PROCESS FOR STABILIZED HIGH STRENGTH UREA-ALDEHYDE POLYMERS Chemiliam Percy Moore, Jr., Hopewell, Va., assignor to Waverly Chemical Co., Hopewell, Va.
U.S. C1. 260-2.5 F

Int. Cl. \({ }^{2}\) C08J \(9 / 30\). \(9 / 12\)
1. An improved process for producing stable urea-aldehyde insulating foams having properties of improved structura strength and low formaldehyde vapor emission, from two separate storable liquids, said process comprising: blending a
air-foamed solution containing dialdehydes having two to eight molecular carbons, surfactant, and mineral acid, with a partially cured aqueous urea-formaldehyde resin containing between 1.3 and 1.5 mols of formaldehyde per mol of urea and about 50 percent total solids, so that the molecular aldehyde
moieties supplied by the dialdehyde are between 0,2 and 0.4 times the number of aldehyde moieties supplied by formaldehyde, and the molecular ratio of total aldehyde moieties to urea is between 1.7 and 2.0 ; curing and drying the blended fluids a
a pH between 2.0 and 3.5 at ambient conditions until the foam hardens.

4,097,420
METHOD FOR PREPARATION OF MACROPOROUS AMPHOTERIC ION EXCHANGERS WITH HIGHLY CROSSLINKED HYDROPHILIC POLYMERIC MATRIX takar Mikeś; Petr Štrop, and Jirí Coupek, all of Prague Czechoslovakia, assignors to Ceskos Prague, Czechoslovakia
Claims priority, application Czechoslovakia, Feb. 12. 1974 978/74
S. C1 260 Int. Cl. \({ }^{2}\) C08F 2//8; B01D 15/08 .S. C. \(260-2.1\) R \(\qquad\) Claims 1. A method for preparation of hydrophilic macroporous ion tion of biological materials, comprising the steps of polymerizing a mixture of (a) anionogenous monomers, selected from a group of compounds comprising sulfoalkyl methacrylates, sulfoalkyl acrylates, sulfoalkylacrylamides and sulfoalkyime-
thacrylamides, (b) cationogenous monomers, selected from a thacrylamides, (b) cationogenous monomers, selected from a
group of compounds comprising aminoalkyl acrylates, aminogroup of compounds comprising aminoalkyl acrylates, aminomethacrylamides and their quaternary ammonium compounds and (c) at least 10 mol \% of crosslinking monomers of acrylate or methacrylate type, selected from group of compounds comslycol and polyglycol diacrylates and dimethacrylates, bisac ylamides, bismethacrylamides and divinylbenzene, in the resence of inert organic compounds, selected from a group of cohols, organic acids, amines and nitriles, in an aqueous dispersion phase.

4,097,421
FOAMABLE STRUCTURAL THERMOPLASTIC
FOAMABLE STRUCTURAL THER
ai Ming Chang, Tallmadge, Ohio, assignor to The Goodyea Tire \& Rubber Company, Akron, Ohio

Fer Company, Akron, Ohio
Filed Apr. 8, 1974, Ser. No. 458,747
Int. Cl.2 C08J 9/00
U.S. Cl. \(260-2.5 \mathrm{~N}\)

15 Claims
1. Foamable thermoplastic polyester moldable composition olyester resid melt viscosity compared with the origina (a) thermoplastic polyester resin homopolyesters selected from the group consisting of poly(ethylene terephthalate) from the group consisting of poly(ethylene terephthalate)
physical blends of homopolyesters and copolyesters of grams of said organic polyisocyanate, and wherein said comethylene terephthalate and of tetramethylene terephthal- position is a solid/solid xerosol
ate having crystalline melting points above about \(300^{\circ} \mathrm{F}\)., 6. The composition of claim 1 wherein an inert liquid boiling
(b) 0.05 in 15 parts by weight based on the weight of polyes- at temperatures from \(-25^{\circ}\) to \(+50^{\circ} \mathrm{C}\) is included in the reac (b) 0.05 to 15 parts by weight based on the weight of polyes- at temperatures from \(-25^{\circ}\) to \(+50^{\circ} \mathrm{C}\) is included in the reac-
ter resin of a melt viscosity reducing agent selected from tion mixture as a blowing agent in a quantity of up to \(50 \%\) by the group consisting of esters of organic acids containing weight and the reaction mixture is allowed to react to complefrom 10 to 27 carbon atoms and alkali or alkaline earth metal salts of an organic acid having from 10 to 25 carbon atoms.
(c) 0.05 to 15 parts by weight based on the weight of the polyester resin of a hydrocarbyltetrazole which can be
decomposed to release a gas harmless to the polyester, and (d) 2 to 45 parts by weight of a reinforcing agent selected from the group consisting of glass fibers, potassium tita-
nate fibers, aramid fibers, asbestos fibers and graphite nate fibers, aramid fibers, asbestos fibers and graphite
and the reinforcing agent.
\[
4,097,422
\]

INORGANIC-ORGANIC COMPOSITIONS
Peter Markusch, Leverkusen, Germany, assignor to Bayer Aktiengeselischaft, Leverkusen, Germany

Filed May 13, 1974, Ser. No. 469,253
Claims priority, application Germany, May 17, 1973, 2325090 Int. Cl. \({ }^{2}\) C08G 18/12. 18/77; C08K 3/36 U.S. CI. 260-2.5 AK

28 Claims 1. A porous inorganic-orga
reacting a mixture comprising
(A) from \(5-98 \%\) by weight of an organic polyisocyanate selected from the group consisting of
organic polyisocyanas con ionic groups in the proups o of alkali, and
(ii) non-ionic-hydrophilic polyisocyanates prepared by reacting an excess of an organic polyisocyanate with an organic hydrophilic compound concaining at least on group which is reactive with isocyanate groups,
(B) from 2-95\% by weight of an aqueous silica sol ing about \(20-60 \%\) by weight of said silica, and
(C) from \(0-93 \%\) by weight of an inorganic water-binding component, said water-binding component being capable of absorbing water to form a solid or gel, all of said per
cents by weight of components (A). (B) and (C) being cents by weight of components (A), (B) and (C) being said composition being a solid/solid xerosol.

\section*{4,097,423}

INORGANIC-ORGANIC COMPOSITIONS Dieter Dieterich, Leverkusen, Germany, assignor to Bayer Ak tiengesellschaft, Leverkusen, Germany
Continuation-in-part of Ser. No. 446,558, Feb. 27, 1974, which is a continuation-in-part of Ser. No. 364,763, May 29, 1973,
abandoned. This application Nov. 26, 1974, Ser. No. 527,476 Claims priority, application Germany, Jun. 3, 1972, 2227147, Mar. 21973, 2310559; Nov. 30, 1973, 2359610; Nov. 30, 1973, 2359616; Jun. 14, 1974, 2435950
Int. Cl.2 C08G 18/32: C08K 3/34, 3/36, 3/40 U.S. Cl. \(260-2.5 \mathrm{AK}\)
1. An inorganic-organic composition obtained by reacting 1. An inorganic-organic of
mixtu) of
(A) from \(5-98 \%\) by weight of an organic polyisocyanate, (A) from \(5-98 \%\) by weight of an organic polyisocyanate,
(B) from 2-95\% by weight of an aqueous alkali metal silicat solution containing about \(20-70 \%\) by weight of said alkali metal silicate, and
(C) from \(0-93 \%\) by weight of a water-binding component a solid or a gel,
a solid or a gel,
wherein said percents by weight of (A), (B) and (C) are based wherein soal weight of (A), (B) and (C), with the proviso tha when (C) is \(0-20 \%\) by weight, component (A) contains 2-200
milliequivalent of ionic groups or groups capable of forming milliequival groups in the presence of alkali metal silicates per 100
tion while foaming.
13. The composition of claim 1 wherein said composition is based on:
(A) \(10-80 \%\) by weight of said organic polyisocyanate
(B) \(20-80 \%\) by weight of said aqueous alkali metal silicate
(C) \(10-70 \%\) by
14. The composition of claim 13, wherein the reaction mixture contains a foam stabilizer

PROCESS FOR \(4,097,424\)
POLY(URETHANE SILICATE) RESIN AND FOAMS David H. Blount, 5450 Lea St., San Diego, Calif. 92105 Continuation-in-part of Ser. No. 599,000, Jul. 7, 1975, which is a continuation-in-part of Ser. No. 71,628, Sep. 11, 1970,
 U.S. Cl. 260-2.5 A U.S. C. \(260-2.5 \mathrm{~A}\)
1. The process for the production of poly(ur
(a) providing about 1 mol the steps of:
(a) providing about 1 mol of silicic acid gel which has been
air dried at \(25^{\circ}\) to \(75^{\circ} \mathrm{C}\); mols of silicicic acid are calculated on the basis of the amount by weight of silicon dioxide in the silicic acid gel;
(b) mixing therewith from about 0.5 to about 2 mols of an organic dissocyanate selected from the group consisting of toluene-2,4-diisocyanate; toluene-2,6-diisocyanate; di-phenylmethane-4,4'-disocyanate; naphthalene-1,5diisocyanate; hexamethylene diisocyanate; \(3,3^{\prime}\)-dimethyl-diphenylmethane-4,4'-diisocyanate; meta-phenylene diisocyanate; triphenylmethane triisocyanate; dianisidine diisocyanate; xenylenedisocyanate, dale nate; and mixtures thereof; nate; and mixtures thereof;
(c) maintaining said mixture
\(20^{\circ}\) to about \(60^{\circ} \mathrm{C}\); and
(d) agitating said mixture until is obtained.
2. The process according to claim 1 including the further steps of adding water and a catalyst to said mixture and heating
said mixture to a temperature of from about \(90^{\circ}\) to about \(150^{\circ}\) C until said mixture expands in volume at least 3 times, forming a self-sustaining foam.

THERMOPLASTIC FORMABLE BLENDS, A FOAMING METHOD AND PRODUCTS MADE THEREBY George E. Niznik, Elnora, N.Y., assignor to General Electric Company, Schenectady, N.Y.
Companinuation-in-part of Ser. No. 608,451, Aug. 28, 1975, abandoned. This application Mar. 22, 1976, Ser. No. 669,028 U.S. Cl. \(260-2.5 \mathrm{~N}^{\mathrm{N}}\)
U.S. CI. 260-2.5 N ht. Cl. \({ }^{2}\) C08J 9/08 \(9 / 10\)
1. A substantially uniform injection moldable foamable \(0.1 \%\) to \(25 \%\) by weight of 5 organic polymer and from zin-2-one. zin-2-one.

CURING AGENTS FOR POLYURETHANE FOAMS AND ELASTOMERS AND PROCESS OF USE
Wataro Koike; Masami Takayama, both of Shizuoka; Hideak Ohashi, Fujieda, and Sadayoshi, Matsui, Shimizu, all of Japan,
assignors to Ihara Chemical Kogyo Kabushiki Kaisha, Toky, assignors to Ihara Chemical Kogyo Kabushiki Kaisha, Tokyo
Filed Oct. 26, 1976, Ser. No. 735,101
Claims priority, application Japan, Sep. 29, 1976, 51-117038

dehydrocondensation 4, 4'-methylene-bis (2-chloroani ine) and formaldehyde in a mol ratio sufficient to produce a solid mixture of reaction products.

\section*{CATIONIZATION OF STA, \\ CATIONIZATION OF STARCH UTILIZING ALKALI} METAL HYDROXDE, CATIONIC WATER-SOLUBLE STRENGTH
Thomas Aitken, Chicago, III., and Wilfred D. Pote, Appleton,
Wis., assignors to
innors to Nalco Chemical Company, Oak
Filed Feb. 14, 1977, Ser. No. 768,114
U.S. Cl. \(260-9 \quad 8\) Claims
1. An improved method for the cationization of starch which comprises cooking starch at a temperature and for a period of time to cause gelation and under alkaline conditions presence of an oxidizing agent from the group consisting of ammonium persulfate, potassium persulfate, hydrogen peroxide, sodium hypochlorite, ozone, and \(t\)-butyl hydroperoxide.
1. A curing agent for polyurethane which comprises a mix ture which is solid at room termperature and has a melting poin
of at most \(110^{\circ} \mathrm{C}\) of at least two compounds represented by the of at most \(110^{\circ} \mathrm{C}\)
general formula:

wherein \(n\) stands for zero or a positive integ
Wherein \(n\) stands for zero or a positive integer and is greate the compounds having been prepared by subjecting to dehydrocondensation 4,4 -methylene-bis (2-chloraaniline) an mixture of reaction products.
8. A process for the production of polyurethane which comprises reacting a mixture of a polyol and a polysoccyanat or a polyurethane prepolymer having terminal isocyanate
groups with a curing agent in the presence of a blowing agent groups with a curing agent in the presence of a blowing agent
characterized by using as said curing agent a mixture which is solid at room temperature and has a melting point of at mos \(110^{\circ} \mathrm{C}\) of at least two compounds represented by the general
formula:

wherein \(n\) stands for zero or a positive integer and is greater than zero in at least one of said compounds,

FORTIMICIN C AND PROCESS FOR PRODUCTION THEREOF
Takashi Nara, Tokyo; Ryo Okachi; Mitsuyoshi Yamamoto, both of Machida; Yasuki Mori, Kawasaki; Moriyuki Sato, Machida; Masahiro Sugimoto, and Yoshiaki Shimizu, both of North Chicago, III.
Division of Ser. No. 708,681, Jul. 26, 1976, Pat. No. 4,048,015. This application May 26, 1977, Ser. No. 800,925 Claims priority, application Japan, Aug. 1, 1975, \(50-93182\)
U.S. Cl. \(260-345.9 \mathbf{R}\) Int. Cl. \({ }^{2}\) C07D 309/22
1. Fortimicin C , a mposition of matter having an antibac


4,097,429
THERMOPLASTICALLY PROCESSIBLE MOULDING COMPOUND OF CELLULOSE ESTERS AND
ETHYLENE/VINYL ESTERS COPOLYMERS Salah Elabd Elghani, Zarga, Jordan; Winfried Fischer, Cologne and Richard Prinz, Leverkusen, both of Germany, assignors to Bayer Aktiengesellschaft, Leverkusen, Germany
Continuation-in-part of Ser. No. 581,706, May 28, 1975, Continuation-in-part of Ser. No. 581,706, May 28, 1975, Claims priority, application Germany, May 29, 1974, 2426178 Int. Cl. \({ }^{2}\) C08L \(1 / 14\)
1. An injection molded or extruded article of 1. An to 1 j9ction percent by weight of at least one cellulose a \(\mathrm{C}_{1}-\mathrm{C}_{5}\)-aliphatic carboxylic acid, the relative viscosity thereof being between 2.5 and 6.0
(2) 99 to 1 percent by weight of an incompatible ethylene/vi-
of vinyl esters of \(\mathrm{C}_{1}-\mathrm{C}_{18}\)-aliphatic or \(\mathrm{C}_{7}-\mathrm{C}_{11}\)-aromatic
carboxylic acids and carboxylic acids and (3) \(0-50\) percent by weight of a compatible ethylene/vinyl ester copolymer containing 75.1 to 98 percent by weigh
of vinylesters of \(C_{1}-C_{18}\)-aliphatic or \(C_{7}-C_{11}\)-aromatic carboxylic acids, the sum of components (1) to (3) being 100 percent by weight.

AQUEOUS POLYMERIC DISPERSIONS MADE HIXOTROPIC BY CERTAIN AMMONIUM
\[
\begin{aligned}
& \text { POTASIUM ZIRCONIUM CARBONATES } \\
& \text { Id Francis Phillis. Cincinnati. Ohio, assimnor to }
\end{aligned}
\]
nd Francis Phillips, Cincinnati, Ohio, assignor to M
sium Elektron Ltd., Swinton, England
Continuation of Ser. No. 500,735, Aug. 26, 1974, abandoned which is a continuation-in-part of Ser. No. 297,415, Oct. 12, 1972, abandoned. This application Aug. 12, 1976, Ser. No. Claims priority, application United Kingdom, Oct. 22, 1971, 49144/71

Int. Cl. \({ }^{2}\) C08L \(1 / 28\)
13 Claims
U.S. Cl. \(260-17 \mathrm{R}\)
1. A method of making a thixotropic aqueous dispersion of a
13 1. A method of making a thixotropic aqueous dispersion of a
polymer or copolymer selected from the group consisting of
alkyd resins and products obtained by polymerisation of at alkyd resins and products obtained by polymerisation of at least one of vinyl esters, acrylic esters, methacrylic esters, styrene, acrylonitrile, ethylene and vinylidine chloride which compris
mer
an amount sufficient of an aqueous solution of ammonium zirconium carbonate to impart thixotropic properties to
said dispersion, said solution containing \(18-25 \%\) by weigh said dispersion, said solution containing \(18-25 \%\) by weigh molar ratio of carbonate to zirconium not greater than 2.05; and
(2) a water-soluble organic colloid containing an hydroxy
group. group.

AROMATIC COPOLYESTER COMPOSITION Nakaba Asahara; Hiroyuki Takao, both of Uji, and Kenji Yasue Kyoto, all of Japan, assignors to Unitika Ldd., Amagasaki,

Japan Filed Jul. 30, 1976, Ser. No. 710,050
Claims priority, application Japan, Jul. 30, 1975, \(50-93300\)
U.S. Cl. \(260-22\) R

Int. Cl. \({ }^{2}\) C08G \(63 / 02\)
U.S. CI. \(260-22\) R
1. A resin composition consisting essentially of: 29 Claims 1. A resin composition consisting essentially of:
(A) an aromatic copolyester derived from (a) a mixture of
terephthalic acid and/or its functional derivative and terephthalic acid and/or its functional derivative and
isophthalic acid and/or its functional derivative, with the terephthalic acid unit/isophthalic acid unit mole ratio
being about \(9: 1\) to about \(1: 9\), and (b) 2,2 -bis( 4 -hydroxyphenyl)propane, or its functional derivative, and
(B) a phosphite compound of the general formula

wherein \(R_{5}\) and \(R_{6}\), independently from each other, represent a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, an aryl group having 6 to 16 carbon atoms, a cycloalkyl group
having 6 to 12 carbon atoms, an arylalkyl group having 7 to 38 having 6 to 12 carbon atoms, an arylalkyl group having 7 to 38
carbon atoms, an alkylaryl group having 7 to 38 carbon atoms carbon atoms, an alkylaryl group having 78 to 3 carbon atoms a polyhydric phenol residue having
1 to 2 hydroxyl groups remaining, or a polyhydric alcohol residue having 2 to 22 carbon atoms and 1 to 2 hydroxyl groups remaining, or such residues where at least
groups is in the form of a phosphite ester.
9. A resin composition consisting essentially
(A) an aromatic copolyester derived from (a) a mixture or
cerephthalic acid and/or its functional derivative and isophthalic acid and/or its functional derivative, with the terephthalic acid unit/isophthalic acid unit mole ratio
being about \(9: 1\) to about 1.9 , and (b) 2,2 -bis (4-hydroxybeing about \(9: 1\) to about 1:9, and (b) 2,2-bis(4-hydroxyits functional derivative
(B) a phosphite compound of the general formula
\[
\mathrm{R}_{5}-\mathrm{O}-\mathrm{P}-\mathrm{OHC}_{2}-\mathrm{CHC}<\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}
\]
wherein \(\mathbf{R}_{5}\) and \(\mathbf{R}_{6}\), independently from each other, represent a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, an aryl group having 6 to 16 carbon atoms, a cycloalkyl group having 6 to 12 carbon atoms, an arylalkyl group having 7 to 38 carbon atoms, an alkylaryl group having 7 to 38 carbon atoms, 1 polyhydric phenol residue having 7 to 28 carbon atoms and residue having 2 to 22 carbon atoms and 1 to 2 hydroxyl groups remaining, or such residues where at least one of the hydroxyl groups is in the form of a phosphite ester, and
(C) a salt formed betwen
C) a salt formed between an organic carboxylic acid conlaining 2 to 22 carbon atoms and a metal of Groups I, II, III and IV of the Periodic Table.

\section*{4,097,432}

FLAME AND SMOKE.SUPPRESSED YINYL CHLORIDE RESIN COMPOSITIONS
Jame D. Nichols, York, and Edwin J. Quinn, Lancaster, both of Pa., assignors to Armstrong Cork Company, Lancaster, Pa.
Filed Mar. 28,1977 iled Mar. 28, 1977, Ser. No. 781,677
U.S. Cl. \(260-23 \mathrm{XA}\)
\[
\text { Int. C1. }{ }^{2} \operatorname{CosK} 5 / 1
\]
1. A flame and smoke-retarded composition comprising a resinous polymer of vinyl chloride and a flame and smoke-suppressing amount of
(a) at least one compound of the formula

9 Claims
wherein \(R\) is \(\mathrm{C}_{1}\) to \(\mathrm{C}_{18}\) linear or branched alkyl and \(\mathrm{R}_{1}, \mathrm{R}_{2}\), and
\(\mathrm{R}_{3}\) are the same or different and are hydrogen, \(\mathrm{C}_{1}\) to \(\mathrm{C}_{8}\) linear or branched alkyl or halogen; and
(b) an oxide, hydroxide or salt
b) an oxide, hydroxide or salt of iron (III), zinc or mixtures thereof.

\section*{4,097,433}

HEAT-SEALABLE YINYLIDENE CHLORIDE HEAT-SEALABLE VINYLIDENE CHLORIDE
COPOLYMER COATING COMPOSITION William Paul Kane, Bon Air, Va., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del.
Filed May 20, 1976, Ser. No. 688,477

Filed May
Int
\(50-23 \mathrm{AR}\)
9 Claims
1. A heat-sealable coating composition comprising a copolymer of vinylidene chloride, at least one other ethylenically unsaturated monomer copolymerizable therewith, and at least
5 weight percent of methacrylonitrile the copolymer contain5 weight percent of methacrylonitrile, the copolymer containing at least about 88 weight percent vinylidene chloride, and, per 100 parts by weight of the total copolymer, 2.7 to 3.3 parts
by weight of behenic acid, 0.4 to 0.6 part by weight of carby weight of behenic acid, 0.4 to 0.6 part by weight of car-
nauba wax, 1.2 to 1.8 parts by weight of candelilla wax, 0.5 to 1.0 part by weight of stearamide, and 2.7 to 3.3 parts by weight of glyceryl monostearate.


\section*{4,097,434} ADHESIVE COMPOSITION George T. Coker, Jr., Houston, Tex., assignor to Shell Oil Company, Houston, Tex.
Continuation of Ser. No. 673,517, Apr. 5, 1976, abandoned. Th application Sep. 1, 1976, Ser. No. 719,494
U.S. CI. \(260-23.3\)
U.S. Cl. \(260-23.3\)
1. An adhesive composition comprising: \(\quad 4\) Claims (a) 100 parts by weight of a block copolymer having at least
two monoalkenyl arene polymer two monoalkenyl arene polymer end blocks A and at least
one elastomeric conjugated diene mid block B, said blocks one elastomeric conjugated diene mid block B, said blocks
A comprising \(10-30 \%\) by weight of the copolymer; (b) about 50 to about 200 parts by weight of a tackifying resin compatible with block B; and
(c) about 10 to about 100 parts by weigh
(c) about 10 to about 100 parts by weight of a rubber compound oil plasticizer having a saturates content of less than
about \(15 \%\) by weight, an aromatics content of above about \(15 \%\) by weight, an aromatics content of above about \(55 \%\) by weight, a specificic gravity or
a viscosity at \(212^{\circ} \mathrm{F}\) of 80 to \(1,000 \mathrm{SSU}\).

GLASS-FILLED POLYCARBONATE OF IMPROVED DUCTILITY
Herbert L. Rawlings Arthur L. Baron, both of New MarHerbert L. Rawlings, tinsville, W. Va., assignors to Mobay Chemical Corporation, Pittsburgh, \(\mathbf{P a}\).

> a. Apr. 11, 1977, Ser. No. 786,308 ed Int. Cl. \({ }^{2}\) C08K \(7 / 14, ~ S / 10\) o
U.S. Cl. 260-28 R
U.S. Cl. \(260-28 \mathrm{R}\). 11 1. A polycarbonate molding an aromatic polycarbonate resin,
(a) an aromatic polycarbonate resin,
(b) about 5 to \(40 \%\) by weight, based upon the total composition, of glass fibers, and
(c) about 0.1 to \(2 \%\) by weight, based upon the total composition, of an ester wax of montanic acid made by esterifying
said acid with a fatty alcohol or a low molecular weight \begin{tabular}{l} 
lycol, said alcohol or glycol having upto and including \\
gitan \\
\hline
\end{tabular} 26 carbon atoms.

HYDROLYZED VINYL ACO97,436 ACEATE.VINYL ALKOXY SILANE POLYMERS
leglar, and Gerhard Bier Troisdorf, both of Germany, assignors to Dynamit Nobel Aktiengesellschaft, Troisdorf, Germany
Continuation of Ser. No. 558,505, Mar. 14, 1975, abandoned.
This application Jun. 11, 1976, Ser. No. 695,222
Claims priority, application Germany, Mar. 14, 1974, 2412292
U.S. C. \(260-29.6 \mathrm{H}\)

5 Claims
1. A water soluble copolymer having recurring units of the formula
\[
\begin{gathered}
\stackrel{\mathrm{OH}}{1} \\
-\left(\mathrm{CH}_{2}-\mathrm{CH}\right)_{x}-\left(\mathrm{CH}_{2} \mathrm{CH}\right)_{y}-\ldots \\
\\
\\
\mathrm{R}_{n}-\mathrm{Si}_{\mathrm{i}}(\mathrm{OH})_{3-n}
\end{gathered}
\]
wherein
\(X\) and \(y\) may be equal or unequal to one another and independently represent a whole number of 1 or more and up to 2,000;
, aryl, cycloalkyl or a branched or represents hydrogen, aryl, cycloakkyl or a branched
unbranched saturated alkyl of 1 to 18 carbon atoms, said polymer consisting essentially of the acidified saponified polymerization product of vinyl acetate and vinyl alkoxy silane copolymer which is polymerizable with vinyl acetate, sai ooplymer containing 0.1 to 20 weight percent vinyl alkox polane units based on the total weight of monomers, the vinyl
sila
nits, the vinyl silane component being present in an amount of to 2,000 units, the unacidified and unsaponified copolymer having a relative viscosity determined in a 1 weight percent solution in ethyl acetate at \(20^{\circ} \mathrm{C}\) of 1.05 to 6 , said polymer when dissolved in water and apphed as substrate and drie ble sheet.

\section*{4,4007,437} THIXOTROPIC AQUEOUS COATING COMPOSITION OF SOLUBILIZED POLYMER WITH DISPERSION OF HYDROCARBON
Shimashanker Gopal Dhake, Livonia, Mich, assignor to M \& T Cemicals Inc., Stamford, Conn.

Filed May 27, 1977, Ser. No. 801,224
nt. C1.2 C08J 3/08; C08K 5/19.9/04; C09D

1. A thixotropic aqueous coating composition comprising (1) from 15 to \(25 \%\), based on the weight of said composition, of a film-forming, solubilized polymer,
(2) from 0.5 to \(5 \%\), based on the weight of said composition,
of finely divided silica, , concentration of non-
(3) sufficient water to achieve a concentration of
volatile materials of from 30 to \(60 \%\), based on the weight of said composition,
(4) from 0.5 to \(5 \%\), based on the weight of said composition, of a smectite type clay which has been modified by reaction with a quaternary ammonium salt of the general
formula \(\mathbf{R}_{2}{ }^{1} \mathbf{R}_{2} \mathbf{N}^{\oplus} \mathbf{X}^{\ominus}\) wherein \(\mathbf{R}^{1}\) is alkyl and contains from 1 to 4 carbon atoms, \(\mathrm{R}^{2}\) is alkyl and contains from 12 to 20 carbon atoms and \(X\) is chlorine or bromine, said smectite clay being present as a dispersion in a waterimmiscible liquid aliphatic hydrocarbon that constitutes from 1 to \(10 \%\) of the total weight of said aqueous coating
composition and boils within the range from \(100^{\circ}\) to \(200^{\circ}\)
(5) from 0.1 to \(1 \%\), based on the weight of said composition, of a monohydric alcohol of a molecular weight from 32 to 118 , and
(6) from 0.5 to \(5 \%\), based on the total weight of said composition, of a cationic surfactant.

\section*{4,097,438}

WATER-BASED LINERS FOR BEVERAGE CONTAINERS Roger M. Christenson, Gibsonia, and Rudolf Maske, both of Pa., assignors to PPG Industries, Inc., Pittsburgh, Pa. Continuation-in-part of Ser. No. 470,480, May 16, 1974, Int. Cl. \({ }^{2}\) CO8L 33/02
U.S. Cl. 260-29.4 UA \({ }_{\text {UA. }}^{\text {int. }}\)
1. A water-based coating composition for use as an internal sanitary liner for metal containers adapted for packing beverages, said composition especially adapted for spray application and consisting essentially of:
(A) from about 5 percent to about 60 percent by weight of an amine partially-neutralized interpolymer formed in the
presence of a vinyl polymerization catalyst and in the absence of mercaptan, said interpolymer being comprised absenc:
of:
(1) fro
(1) from about 5 percent to about 25 percent of acrylamide or methacrylamide in units of the structure

wherein \(R^{\prime}\) is methyl or hydrogen and \(R\) is hydrogen or
butyl with at least 50 percent of the groups represented
by R being butyl; by R being butyl;
(2) from about 3 pe (2) from about 3 percent
(3) from about 5 pylic acid; monomer units derived from styrene; and
(4) from about 5 percent to about 75 percent of flexibiliz ing monomer units derived from ethyl acrylate; wherein the acid groups of said interpolymer are partially
neutralized with a sufficient amount of monomeric amine to
solubilize the incter solubilize the interpolymer but with an amount of amine which
does not produce more than 0.764 milliequalents does not produce more than 0.764 milliequivalents of salt pe
gram of resin solids; and (B) from about 40 perce
(B) from about 40 percent to about 95 percent by weight of
a liquid medium consisting of a mixture of water soluble or water miscible organic solvents in water wherein at least
60 percent by weight of the mixture is water. 60 percent by weight of the mixture is water.

POLYURETHANE COATING CO \(\begin{array}{r}4,097,439\end{array}\)
BY ADDITION POL COMPOSITION CURABLE BY ADDITION POLYMERIZATION
Thomas Robert Darling, Wimington, Del., assignor to E. I. D
Pont de Nemours and Company, Wilmington, Del. Nemours and Company, Wilmington, Del
Filed Feb. 8, 1977, Ser. No. 766,598 Filed Feb. 8, 1977, Ser. No.
Int. Cl. \({ }^{2}\) C08L \(/ 8 / 04\)
U.S. C. \(260-31.2 \mathrm{~N}\)

Int. Cl.2 C08L \(18 / 04\)
col monobutyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol
diethyl ether, ethylene glycol monomethyl ether acetate methyl ethylketone, acetone, methyl propyl ketone and diace methyl ethylkerone, acetone, methyl propyl ketone and diace
tone alcohol and about 5 to about 70 parts by weight of at leas one compatible plasticizer characterized by having a melting point of about \(-40^{\circ} \mathrm{C}\). to about \(25^{\circ} \mathrm{C}\)., a boiling point of a least \(95^{\circ} \mathrm{C}\). and a solubility parameter of about 8 to about 16 range of about \(100^{\circ} \mathrm{C}\). to about \(300^{\circ} \mathrm{C}\)., and is prepared by the method which comprises free radical aqueous emulsion polymerizing, in an aqueous medium having a pH in the range of about 2 to about 7 , or free radical organic solution polymeriz ing a monomer mixture which comprises, based on 100 weigh (1) about 70 enomers
segment hydrophobis weight percent of at least one hard segment hydrophobic enhancing monomer selected from
styrene, a-methyl styrene, acrylonitrile, vinyl toluene methyl methacrylate, vinyl chloride and vinylidene chloride,
(2) about 15 to about 25 weight percent of at least one soft segment hydrophobic enhancing monomer selected from acrylate, butyl acrylate, 2-ethylhexyl acrylate, laural acry late, isodecyl methacrylate, butyl methacrylate, isobuty methacrylate, at least one vinyl ether selected from ethyl. butyl. octyl, decyl and cetyl vinyl ether and/or at least
one diene selected from 1,3-butadiene, isoprene and 2,3dimethyl butadiene, provided that said dienes of monomer part (B) and said monomer part (A) vinyl chloride and vinylidene chloride are not mixed together and copoly merized, and
C) about 3 to 10 weight percent of at least one hydrophilic enhancing organic acid selected from acrylic. meth re, Iumaric, ilaconic and maleic acid.

4,097,441
5,6-DIHYDRO-4-OXO-4H-THIENO[ 2,3 -b]THIOPYRAN-5.
where \(G\) is a bivalent organic radical resulting from removal of terminal hydrogen groups from a diol, a diamine, or an ami-
noalcohol having a molecular weight of 300 to 3000 , B is a bivalent organic radical having a molecular weight of about 80 to \(400, \mathrm{Q}\) is a bivalent organic radical having the formula
\[
-\frac{i}{c}-\alpha-\frac{i d}{i-c}
\]
where \(Q^{\prime}\) is formed by removing two active hydrogens from a primary or secondary diamine having a molecular weigh between 60 and \(300, \mathrm{X}\) is a monovalent organic radical formed by removal of an active hydrogen from an alcohol or a monoamine having a molecular weight of not greater than about 300,
and containing at least one polymerizable ethylenic linkage, and containing at least one polymerizable ethylenic linkage,
and \(n\) is the integer \(1,2,3\) or 4 , said coating composition having a viscosity between about 1 and 3000 poises.

\section*{4,097,440 \\ RESIN COMPOSITION}

Michael J. Maximovich, Akron, and Gary L. Burroway, Doylestown, both of Ohio, assignors to The Goodyear Tire \& Rubber Company, Akron, Obio
Division of Ser. No. 680,818, Apr. 28, 1976, Pat. No. 4,064,092
which is a continuation of which is a continuation of Ser. No. 529,829, Nov. 4, 1974, abandoned. This application Aug. 23, 1977 Int. \({ }^{2}{ }^{2} \mathbf{C 0 8 F} 6 / 14\)
U.S. CI. 260-31.4 R
\(\qquad\) composition whic 1. A water reducible composition which 5 Claims 1. A water retion of 100 parts of resin with about 50 to about
mixture or solution mixture or solution of 100 parts of resin with about 50 to abou
100 parts by weight of a coalescing solvent therefor comprising at least one solvent selected from ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene gly-

CARBOXAMIDES
Jagadish C. Sircar, Dover; Stephen J. Kesten, Morris Plains, and Harold Zinnes, Rockaway, all of N.J., assignors to Warn-er-Lambert Company, Morris Plains, N.J.
Division of Ser. No. 749,507, Dec. 10, 1976

Dec. 7, 1977, Ser. No. 858,233 Int. Cl.2 C07D 495/04
U.S. CI. \(260-332.2 \mathrm{~A}\).

wherein \(R_{1}\) is hydrogen, halogen or lower alkyl; \(R_{2}\) is hydrogen, lower alkyl or phenyl; and Ar is phenyl; or its pharmaceutically acceptable salts.

\section*{4,097,442}

SANDABLE POLYURETHANE ADHESIVE COMPOSITION AND LAMINATES MADE THEREWITH COMPOSITION AND LAMINATES MADE THEREWITH Alvin J. Kieft; Richard L. Cline, and Thomas G. Rabito, all of
Ashland, Ohio, assignors to The Goodyear Tire \& Rubber Company, Akron, Ohio

Filed Sep. 21, 1977, Ser. No. 835,258
Int. C1. \({ }^{2}\) Co8L \(75 / 08\)
U.S. Cl. 260-37 N
U.S. Cl. \(260-37 \mathrm{~N}\)
1. A polyurethane adhesive th
comprising a reaction mixture of
about one mol of a reactive hydrogen containing polymeric material of 500 to about 3000 molecular weight
selected from the class of polyester polyols and polyether
polyols of 2 to 4 hydroxyls;
(b) about 2.5 to 7 mols of an isocyanate composition comprised of a mixture of toluene diisocyanate and methane di(phenylisocyanate); and
(c) a filler composed of about 50 to 200 parts by weight of
silica platelets and about 50 to 200 parts of glass spherical silica platelets and about 50 to 200 parts of glass spherical particles, a plasticizer amount of a polyvinyl chloride
plasticizer, a polyurethane catalyst and sufficient monomeric nitrogen containing tetraol of 200 to 1000 molecular weight to provide 0.5 to 1.0 mol of curative for each mol of excess isocyanate.

METHOD FOR MANUFACTURIN
MEIO HOR MANUFACTURING FOUNDRY MOLDS pan, assignors to Sumitomo Durez Company, Ltd., Tokyo, an, assignors to Sumitomo Durez Company, Ltd., Tokyo,
Filed Oct. 30, 1975, Ser. No. 627,413 Claims priority, application Japar, Nov. 1, 1974, 49-125508 U.S. Cl. 260-38 Int. Cl. \({ }^{2}\) C08K K \(3 / 36\)
U.S. C. 260-38 9 Claims 1. A self-curing process for manufacturing foundry sand
cores and molds which comprises preforming a mixture concores and molds which comprises preforming a mixture con-
sisting essentially of the sand, resin consisting essentially of a phenol-formaldehyde resol resin and a volatile organic solvent for said resol resin selected from the group consisting of methanol, ethanol, propanol, acetone, methylethyl ketone, diacetone, ethyl acetate, butyl aceeate, and mixures thereof,
of resin being about 0.5 to 3 weight percent based on the weight of sand and the amount of solvent being about 0.2 to about 7 weight percent based on the weight of sand and evaporating the solven from said preformed mixure at about \(20^{\circ} \mathrm{C}\) composition.
\[
4,097,444
\]

PROCESS FOR THE DYEING OF WATER-INSOLUBLE THERMOPLASTIC POLYMERS AND POLYCONDENSATES IN THE MASS
Wolfgang Teige, Kelkheim, Taunus, and Rudolf Schickfluss,
Frankfurt am Main, both of Germany, assignors to Hoechst
Aktiengesellschaft, Frankfurt am Main, Germany
Filed Feb. 28, 1977, Ser. No. 772.573
Filed Feb. 28, 1977, Ser. No. M72,573
Claims priority, application Germany, Mar. 2, 1976, 2608482
US. \(260-40 \mathrm{Plt}\). Cl. \({ }^{2}\) C08K \(5 / 35\)
6, 2608482
U.S. Cl. 260-40 P 6 Claims 1. Process for the dyeing of a water-insoluble thermoplastic
polymer or polycondensate in mass, which comprises adding polymer or polycondensate in mass, which comprises adding
to the said thermoplastic material before the final molding to the said thermoplastic material before
thereof with an azlactone dyestuff of the formula ( 1 )

(1).
in which A and B each represents phenyl, lower alkylphenyl, ower alkoxy-phenyl, chlorophenyl, nitrophenyl, cyanophenyl,

methylene-dioxy-phenylene or naphthyl, A and B being identi-methylene-dioxy-phenylene or naphthyl, A and B being
cal or different, E represents phenylene, lower alkyl-phenylene, di-lower alkoxy-phenylene, monochlorophenylene, dichlorophenylene, biphenylene or naphthylene, and \(n\) repre ents the integer 0 to 1 , or with a mixture of dyestuffs of the said formula (1).

POLY(ESTER-AMIDE) HOT MELT ADHESIVE CONTAINING SPHEROIDAL METAL POWDERS oseph G. Martins, Ludlow, and Donald D. Donermeyer, Springfield, both of Mass, assignors to Monsanto Company, St. Louis, Mo.

> ed Feb. 2, 1976, Ser. No. 654,4! Int. Cl. \({ }^{\text {Co }}\) K 3/08

20 Claims
1. An adhesive composition comprising:
, from about 60 to about 30 parts by weight of a poly-(ester-
amide) block copolymer melting in the range of about amide) block copolymer melting in the range of about
\(155^{\circ}\) to about \(225^{\circ} \mathrm{C}\). having from about 30 to about 70 percent by weight of crystalline polyester segments derived from at least one aliphatic or alicyclic diol having from 2 to 10 carbon atoms and at least one alicyclic or aromatic dicarboxylic acid having from 8 to 20 carbon amorphous polyamide segments derived from an aliphatic polycarboxylic acid containing at least 40 weight percent of a \(\mathrm{C}_{18}\) to \(\mathrm{C}_{54}\) polycarboxylic acid and an aliphatic or alicyclic primary diamine containing 2 to 10 carbon atoms; and
b. from about 40 to about 60 parts by weight of finely divided spheroidal metal powder selected from the group zinc of particle size in the range of about 0.2 to about 150 microns.

4, 4,097,446
REINFORCED INTERCRYSTALLINE THERMOPLASTIC POLYESTER COMPOSITIONS
Visvaldis Abolins, Delmar, and Fred F. Holub, Schenectady, both of N.X., assignors to General Electric Company, Pittsfield, Mass.
Continuation of Ser. No. 185,886, Oct. 1, 1971, Pat. No.
\(4,013,613\). This application Aug. 25, 1976, Ser. No. 717,533 \(4,013,613\). This application Aug. 25, 1976, Ser. No. 717,533
Int. Cl. \({ }^{2}\) C08K \(3 / 40\)
U.S. C. 260-40 R 27 Claims 1. A reinforced intercrystalline normally rigid thermoplastic molding composition, consisting essentially of in combination, (a) at ely melt,
(b) at least one high molecular weight normally crystalline, normally amorphous or normally partially crystalline and partially amorphous polymer in the concentration range of from 1 to 99 parts by weight of (a) to 99 to 1 parts by weight of (b); th
polyethylene,
polyethylene,
a copolymer of ethylene and ethyl acrylate, poly(vinyl chloride),
copolymer of vinyl chloride and vinyl acetate, natura rubber,
a rubbery copolymer of butadiene and acrylonitrile,
a polyamide,
a polyorganosiloxane
a copolymer of a polyorganosiloxane and a vinyl aromatic monomer, an acrylic monomer or an aromatic carbon ate, and
siloxane-nitrogen copolymer containing amido, amideimido or imide groups; and bination.


4,097,448
THERMOSETTABLE EPOXIDE-POLYANHYDRIDE
William J. Heilman, Houston, Tex. Frank
Mo.; Mical C. Renz, and Leslie P. Theard, both of Houston, Tex., assignors to Gulf Oil Corporation, Pittsburgh, Pa.

Filed Mar. 4, 1977, Ser. No. 774,379
U.S. Cl. 260-42.18
1. A method of forming a handleable, thermosettable com-
formin which comprises
forming a homogeneous liquid resin mixture substantially
free of active hydrogen comprising (a) about five to about 80 weight percent based on the total
resin components of an olefinically unsaturated monome resin components of an olefinically unsaturated monomer
selected from styrene, ring-substituted chloro., bromo or lower alkylstyrenes, lower alkylacrylates, lower alkylmehacrylates, vinyl acetate, acrylonitrile, vinyl chloride vinyl bromide and vinylidene chloride, and mixtures
(1) an olefinically unsaturated monoanhydride selected from maleic anhydride, chloromaleic anhydride, meth ylmaleic anhydride, ethylmaleic anhydride, di-\(n\)-butylmaleic anhydride, phenylmaleic anhydride, di phenylmaleic anhydride, chloromethylmaleic anhy dride, bromophenylmaleic anhydride and itaconic an hydride, the molar ratio of the olefinically unaturated dride being from about \(0.5: 1\) to about \(8: 1\);
(2) a saturated polyanhydride comprising the copolymer having between two and about 500 repeating units and prepared from one to 10 mols of said olefinically unsatu-
rated monomer (a) per mol of said unsaturated manaanrated monomer (a) per mol of said unsaturated monoan
hydride (b) (1) or prepared from equimolar amounts or had unsaturated monoanhydride (b) (1) and one or more two to 20 carbon 1 -alkenes or halogen-substituted 1-alkenes; and
(3) a saturated monoanhydride selected from phthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, dodecenylsuccinic anhy-
dride, chlorendic anhydride, and a mixture of methy bicyclo (2.2.1)heptane-2,3-dicarboxylic anhydride iso mers:
(4) the ratio of the anhydride equivalents of said olefinically unsaturated monoanhydride (1) to the sum of the total anhydride equivalents in the resin solution bein
from about \(0.2: 1\) to about \(1: 1\) and the ratio of anhydride equivalents in said saturated polyanhydride (2) to the
anhydride equivalents in said saturated monohydride (c) an epoxy component substantially free of active hydrogen consisting of (1) a saturated monoepoxy compound having between three and about 20 carbon atoms, and (2) an epoxy resin having a 1,2 -epoxy equivalent value or is capable of forming a homogeneous dispersion in the resin solution, (3) the ratio of epoxy equivalents in the monoepoxy compound to the epoxy equivalents in the epooxy resin being
greater than \(1: 1\) and an \(A / E\) ratio of total anhydride greater than \(1: 1\) and an \(A / E\) ratio of total anhydrid
equivalents to total energy equivalents in the resin solution of about \(0.1: 1\) to about \(2.5: 1\); and
(d) from about 0.01 to about 10 weight percent of an anhydride accelerator which is substantially inactive during the copolymerization reaction of said olefinically unsatu rated monomer (a) and said anhydride (b); and copolymerizing said olefinically unsaturated monomer (a) with perature up to about \(150^{\circ} \mathrm{C}\). without substantial reaction of the anhydride groups with the epoxide present in the resin mixture whereby a handleable, thermosettable composition comprising a homogeneous mixture of polyanhydride molecules, epoxide molecules and anhydride accelerator is obtained.

4,097,449
HANDLEABLE, THERMOSETTABLE
EPOXIDE-POLYANHYDRIDE COMPOSITIONS William J. Heilman, Houston, Tex.; Frank C. Peterson, Joplin,
Mo.; Mical C. Renz, and Leslie P. Theard Mo.; Mical C. Renz, and Leslie P. Theard, both of Houston Filed Mar. 4, 1977, Serat. No. 774,442 Filed Mar. 4, 1977, Ser. No. 774,442
Int. C. \({ }^{\text {C }}\) C08K 7/14; C08L \(63 / 00\)
U.S. CI. 260-42.18

16 Claims
1. A method of forming a handleable, thermosettable com osition which comprises
forming a homogeneous liquid resin mixture substantially
free of active hydrogen comprising
(a) about five to about 80 weight percent based on the
total resin components of an olefinically unsaturated monomer consisting of
(1) one or more alkenes having from about 6 to about 18 (2) up to 90 mol percent of styrene, ring-substituted chloro-, bromo or lower alkylstyrenes, lower alkylacrylates, lower alkylmethacrylates, vinyl acetate, acrylonitrile, vinyl chloride, vinyl bromide or vinylidene chloride
(b) an anhydride component consisting of from maleic anhydride, chloromaleic anhydride methylmaleic anhydride, ethylmaleic anhydride dichloromaleic anhydride, dimethylmaleic anhydride, \(n\)-butylmaleic anhydride, phenylmalecic anhy dride, diphenylmaleic anhydride, chloromethyl-
maleic anhydride, bromophenylmaleic anhydride and itaconic anhydride, the molar ratio of the olefinically unsaturated monomer (a) to the olefinically unsaturated monoanhydride (b) (1) being about 1:1;
(2) a saturated polyanhydride comprising the copolymer having between two and about 500 repeating cally unsaturated monomer (a) (2) per mol of said unsaturated monoanhydride (b) (l) or prepared from equimolar amounts of said unsaturated monoanhy dride (b) (1) and one or more two to 20 carbo alkenes or halogen-substituted 1 -alkenes; and anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, dodecenylsuccinic anhy dride, chlorendic anhydride, and a mixture of methyl
bicyclo(2.2.1)heptane-2,3-dicarboxylic anhydride isomers;
(4) the ratio of the anhydride equivalents of said olefinically unsaturated monoanhydride (b) (1) to the sum of the total anhydride equivalents in the resin solution being from about \(0.2: 1\) to about \(1: 1\) and the ratio of anhydride equivalents in said saturated polyanhydride (b) (2) to the anhydride equivalents in said saturated monoanhydride (b) (3) being at least about c) \(n\) :
gen selected from
gen selected from
(1) a saturated monoepoxy compound having between three and about 20 carbon atoms, or
(2) an epoxy resin having a 1,2 -epoxy equivalent value greater than one which is soluble in the resin solution
or is capable of forming a homogeneous dispersion in or is capable of forming a homogeneous dispersion in
the resin solution, or a mixture of said saturated monoepoxy compound and said epoxy resin,
(3) said epoxy component having an A/E ratio of total anhydride equivalents to total epoxy equivalents in the resin solution of about \(0.1: 1\) to about \(2.5 \mathrm{~s}: 1\); and (d) from about 0.01 to about 10 weight percent of an anhydride accelerator which is substantially inactive
during the copolymerization reaction of said olefinically unsaturated monomer (a) and said anhydride component (b); and
copolymerizing said olefinically unsaturated monomer (a) with said anhydride component (b) by free radical means at a temperature up to about \(150^{\circ} \mathrm{C}\). without substantial
reaction of the anhydride groups with the epoxide groups reaction of the anhydride groups with the epoxide groups
present in the resin mixture whereby a handleable, thermosettable composition comprising a homogeneous mixture of polyanhydride molecules, epoxide molecules and anhydride accelerator is obtained.

PERINONE COM 4,097,450
PERINONE COMPOUNDS AS COLORANTS FOR
Theodor Papenfuhs, Frankfurt am Main, and Helmut Tröster, Konigstein, Taunus, both of Germany, assignors to Hoechst Aktiengesellschaft, Frankfurt am Main, Germany
Continuation of Ser. No. 723,072, Sep. 14, 1976, abandoned, which is a continuation of Ser. No. 618,800, Oct. 2, 1975, abandoned. This application May 26,1977 , Ser. No. 800,895
U.S. Cl. 260-42.21 Int. Cl. \({ }^{2}\) C08K \(5 / 34\)

2 Claims
1. In a process wherein a pigment is incorporated into a ing as pigment a compound of the formula

wherein \(A_{1}\) is phenylene which is unsubstituted or substituted by 1 or 2 substituents selected from fluorine, chlorine, bromine, lower alkyl, lower alkoxy, phenyl, phenoxy, hydroxy, ben-
zyloxy, lower alkanoylamino, benzoylamino, lower alkylsulfo nyl, nitro, nitrile, trifluoromethyl, carboxy, carbalkoxy of 2 to nyl, nitro, nitrile, trifluoromethyl, carboxy, carbalkoxy of 2 is
5 carbon atoms and carboxylic or sulfonic acid amide which is
and unsubstituted or substituted at the nitrogen by 1 o selected from lower alkyl, phenyl or nitrophenyl.

FLAME-RETARDANT RESTNOUS COMPOSITIONS Donald A. Keyworth, Houston, Tex.; Eugene P. Di Bella, Piscataway, and Marvin Rosen, Warren, both of N.J., assignors to Tenneco Chemicals, Inc., Saddle Brook, N.J. Continuation-in-part of Ser. No. 423,565, Dec. 10, 1973,
abandoned. This application Apr. 24, 1974, Ser. No. 463,566

\section*{Int. Cl. \({ }^{2}\) C08K \(5 / 02\)}
U.S. CI. 260-45.7 R
\(\mathrm{R}^{\mathrm{lnt}} \mathrm{Cl}^{2}\)
1. A flame-retardant resinous composition 8 Claims thermoplastic organic polymer selected from the group consisting of polyolefins and vinyl chloride polymers and
retarding amount of \(1,1,2,3,4,4\)-hexabromobutene-2.

\section*{\(\xrightarrow{\text { 74-SUBSTITUTED }}\) \\ STABILIZERS \\ orbert Mayer, Gersthofen; Gerhard Pfahler, Augsburg, and Hartmut Wiezer, Gersthofen, all of Germany, assignors to Hoechst Aktiengesellschaft, Frankfurt am Main, Germany Filed Feb. 16, 1977, Ser. No. 769,331 S. 1 Int. Cl. \({ }^{2}\) C08K 5/34 \\ 7 Claims \\ U.S. Cl. \(260-45.8 \mathrm{~N}\)
5.
Plastics 5. Plastics compositions consisting of a polyolefin, a chlo5.
}
wherein X is \(=\mathrm{O},=\mathrm{NH}\) or
\(\qquad\)

T

\section*{4,097,453 \\ 4,097,453}

PROCESS FOR THE PREPARATION OF ETHERIFIED Pierino Radici, Turate (Como); Sergio Custro, Gorla Maggiore Pierino Radici, Turate (Como); Sergio Custro, Gorla all osgitaly (Varese), and Paolo Colombo, Saronno (Varese), all of Italy, Italy Filed Dec. 22, 1975, Ser. No. 642,81 Claims priority, application Italy, Dec. 20, 1974, 30831/74 U.S. CI. 260-45.9 P Int. C.' \({ }^{\text {C }}\) C08K \(5 / 42\) 19 Claims 1. A method for the etherification of the unstable terminal hydroxyl groups of an acetal polymer, which comprises bring ing said acetal polymer into contact with an etherification epoxides and acetals in the presence of 4 (p-toluenesulphonamide) diphenylamine as an additive stabilizer and subsequently etherifying said acetal polymer in a liquid reaction medium a temperature of from \(50^{\circ}\) to \(200^{\circ} \mathrm{C}\) wherein said additive is liquid reaction medium.

BENZOPHENONE BASE STABILIZING AGENT FOR BENZOPHENONE BASE STABILIZING AGENT FOR
POLYMERS AND POLYMERS STABLIZED THEREBY POLYMERS AND POLYMERS STABILIZED THEREBY Antonio Tozzil, lasso Marconi, and Pail Cassandrini, Bologna,
both of Italy, assignors to Chimosa Chimica Organics S.p.A., Bologna, Italy
Continuation of Ser. No. 476,340, Jun. 4, 1974, abandoned. This
application Jun. 10, 1976, Ser. No. 694,591
Claims priority, application Italy, Jun. 8 ,
Int. Cl. \({ }^{2}\) C08K \(5 / 13\)
U.S. CT. \(260-45.75 \mathrm{~N}\)

N . Cork
1. A stabilizer for polypropylene against the action of light comprising a mixture containing sa

wherein \(\mathbf{R}\) is a linear alkyl chain from 1 to 18 carbon atoms. with compounds of the formula
wherein Me is Ni or Co , and R is a linear alkyl chain from I to wherein Me is N is
18 carbon atoms.
6. A polypropylene stabilized with the stabilizer according
to claim 1 by adding to it said stabilizer to the proportion of to claim 1 by adding to it said stabilizer
0.05 to 1.5 weight \(\%\) of said polymer.

4,097,455
MOULDING COMPOSITIONS OF MIXTURES OF
MOULDING COMPOSING NS OF MIXTURES OF POLYFUNCTIONAL AROMATIC CYANIC ACID ESTER
Claus Burkhardt; Karl -Heinrich Meyer) both of Krefeld, and
Kurt Weirauch, Bergisch Gladhach, all of Germany, assignors
Kurt Weirauch, Bergisch Gladbach, all of Germany, assignors
to Bayer Aktiengesellschaft, Leverkusen, German
Claims priority, application Germany, Mar. 23, 1976, 2612312 U.S. CI. 260-47 CB
1. Moulding compositions for the production of 6 Claim with fire-retarding properties comprising mixtures of
aromatic \(9 \%\) by weight of at least one polyfunctional aromatic halogen-free cyanic acid ester or a prepolymer
thereof which is still fusible or soluble in solvents and (B) 10 to \(90 \%\) by weight of at least one polyfunctiona aromatic halogen-containing cyanic acid ester or a prespolymer.
vents.

\section*{4,097,456}

PREPARATION OF ACETYLENE-SUBSTITUTED POLYIMIDE OLIGOMERS AND POLYAMIDE
WaLter P. Brie, Jr., Shaper Township, Allegheny County, Pa., assignor to
burgh, Pa .

Filed Mar. 28, 1977, Ser. No. 782,001
U.S. Cl. 260-47 UA Int. Cl. \({ }^{2}\) COnG \(73 / 12 \quad 22\) Claims 1. A process for the preparation of
polyimide oligomer which comprises
polyamide oligomer which comprises
reacting a stoichiometric excess of a dianhydride of an aroreacting a stoichiometric excess of a dianhydride of an arr-
matic tetracarboxylic acid, or a lower alkyl diester of said
aromatic tetracarboxylic acid, with an aromatic diamine to form an anhydride-capped polyamic acid or acid-estercapped analog in the presence of at least a sufficient
amount of a solvent consisting essentially of N -methyl-2 pyrrolidone to form a solution at elevated temperatures; hereafter reacting said anhydride-capped polyamic acid or analog with an aminoarylacetylene compound in the pres ence of said solvent to produce an acetylene-terminated polyamic acid oligomer
converting said acetylene-terminated polyamic acid oligo-
mer to the corresponding polyimide in the continued presence of at least a portion of said solvent;
and thereafter recovering the desired acetylene-substituted polyimide oligomers substantially free of said solvent.

PROCESS FOR PREPARe, \(\begin{aligned} & \text { 4,097,457 } \\ & \text { HIGH MOLECULAR }\end{aligned}\) WEIGHT POLYCARBONATE Takeaki Megumi, Sakai, and Shigeo Kondo, Toyonaka, both of Japan, assign o
Tokyo, Japan
Filed Dec. 3, 1975, Ser. No. 637,30 Claims priority, application, Japan, Dec. 9, 1974, 49-141319 U.S. Cl. 260-47 XA \({ }^{\text {Int. C. }{ }^{2} \text { C08G 63/62 }}\)
1. A process for preparing a high molecular weight polycar(A) reacting phosgene with a dihydroxydiarylalkane at temperature of from \(0^{\circ}\) to \(80^{\circ} \mathrm{C}\) in the presence of an acid acceptor and a solvent by adding a monohydric phenol and at least one member selected from the group consist. ing of compounds having the formulas
where R is a hydrocarbon residue having 1 to 10 carbon atom elected from the group consisting of saturated aliphatic hy rocarbon residues, aliphatic hydrocarbon residues having an is chloro or substituent and alicyclic hydrocarbon residues. in 01 or promo; the quantity of monohydric phenol is ne: and the 3 ene compound according to Formula (1) nd (2) is from 0.5 to 100 mole percent, based on the dihydrox diarylalkane, to produce a polycarbonate prepolymer having he chains terminated with residues of compounds (1) and/or Ostwald viscosimeter in methylene chloride at \(25^{\circ} \mathrm{C}\) with an (B) heating and melting under reduced pressure the prep orly mer so formed to cause polycondensation thereof at temperature of \(220^{\circ}\) to \(320^{\circ} \mathrm{C}\).

METHOD FOR PREPARING POLYPHENYLENE ETHER
James G. Bennett, and Glenn D. Cooper, both of Delmar, N.Y
assignors to General Electric Company, Pittsfield, Mass
The portion of the term of this patent subsequent to Feb. 24,

> the term, has been disclaimed. 1991, Int. .le C08G \(6 / 44\).
U.S. Cl. 260-47 ET U.S. CI. 260-47 ET
1. In a process for forming a polyphenylene ether by an oxidative coupling reaction in the presence of a catalyst which
comprises a complexed metal ion and an amine, said process comprises a complexed metal ion and an amine, said process
comprising passing an oxygen-containing gas through a reacion solution of a phenol and said catalyst, the improvement which comprises separating the catalyst from the polyphenyl ne ether by the addition of a sufficient amount of a complex ing agent selected from the group consisting of biguanide
di-o-tolylbiguanide, dicyanodiamide and L-Arginine to produce a complexed catalyst mixture and the polyphenylene said mixture.

\section*{}

METHOD FOR PREPARe
METHOD FOR PREPARING POLYPHENYLENE James G. Bennett, and Glenn D. Cooper, both of Delmar, N assignors to General Electric Company, Pittsfield
Filed Dec. 26, 1973, Ser. No. 428,450
The portion of the term of this patent subsequent 1991, has been disclaimed.
Int. \(\mathbf{C l} .^{2}\)
C08G \(65 / 44\)
U.S. Cl. 260-47 ET
S. Cl. \(260-47 \mathrm{ET}\)
1. In a process for forming a polyphenylene ether by an
13 Claims 1. In a process for forming a polyphenylene ether by an
oxidative coupling reaction in the presence of a catalyst which comprises a complexed metal ion and an amine, said process comprising passing an oxygen-containing gas through a rearton solution of a phenol and said catalyst, the improvement which comprises separating the catalyst from the polyphenylene ether by the addition of a sufficient amount of a
ing agent selected from compounds of the formula

\section*{}
and mixtures thereof wherein \(n\) is a positive integer of from o 10 , to produce a mixture of a complexed catalyst and the ene ether from said mixture.

Oxide 4,097,46 OXIDATIVE COUPLING OF ALKYLPHENOLS OR NAPHTHOL CATALYZED BY METAL COMPLEXES
OF DIKETO COMPOUNDS Thomas F. Rutledge, Wilmington, Del., assignor to ICI Americos Inc., Wilmington, Del.

Filed Dec. 3, 1976, Ser. No. 747,183
Int. Cl.2 \({ }^{2}\) C08G \(65 / 44\)
U.S. CI. 260-47 ET
1. A method of preparing a condensation product of an "alkylphenol", an "alkoxyphenol" or a " 1 -naphthol", by an oxidative coupling reaction said method comprising contactcontaining gas in the presence of sufficient amount of alkaline material to sustain pH in the range of about \(5-10\) during the oxidative coupling reaction and a catalyst system comprising a cupric, manganous, cobaltous, or chromic metal complex of diketone or keto ester having the structural formula
wherein \(R_{1}\) and \(R_{\text {s }}\) may be independently linear, branched or cyclic alkyl or alkoxy or may be joined together to form a saturated or unsaturated cyclic compound; \(\mathbf{R}_{2}, \mathrm{R}_{3}\) and \(\mathbf{R}_{4}\) may be independently hydrogen, halogen, alkoxy, alkyl, or aryl; and \(n\) is 0 or \(l\).

PROCESS FOR MAKING POLYPHENYLENE OXIDES alter Karl Oleander Clifton Park, N: Y, assignor to General Electric Company, Pittsfield, Mass.
Filed Jan. 23, 1976, Ser. No. 651,682
The portion of the term of this patent subsequent to May 11, In, has been disclaimed
U.S. Cl. 260-47 ET C. \({ }^{2}\) Cos U.S. Cl. \(260-47\) ET
1. A process for the preparation of a polyphenylene oxide resin composition which comprises the steps of:
a. oxidatively coupling a phenolic monomer having the formula

wherein X is a substituent selected from the group consisting of hydrogen, chlorine, bromine and iodine, Q is a monovalent substituent selected from the group consisting of hydrocarbon radicals, halohydrocarbon radicals having at least two carbon atoms between the halogen atom and the phenol nucleus, ydrocarbloxy at leas and the phenol nucleus; and \(\mathrm{Q}^{\prime}\) is as defined for Q , and in addition, halogen, and \(\mathrm{Q}^{\prime \prime}\) are each as defined for \(\mathrm{Q}^{\prime}\) and in addition hydrogen with the proviso that \(\mathrm{Q}, \mathrm{Q}^{\prime}\) and \(\mathrm{Q}^{\prime \prime}\) are al ree of a tertiary carbon atom in the presence of oxygen in
 complex of the formula:
(L) Mn
herein L is a ligand derived from a \(\omega\)-hydroxyoxime of th formula


Wherein \(R\) and \(R^{1}\) are tertiary alkyl radicals containing from 4 of hydrogen and methyl and wherein all parts are parts by
wherein \(\mathrm{R}_{\sigma} \mathrm{R}_{b}, \mathrm{R}_{c} \mathrm{R}_{d}\) and \(n\) are selected from the group consisting of hydrogen, acyclic and cyclic organic radicals and
\(n\) is a positive integer equal to 0 or \(1, M n\) is the transition metal \(n\) is a positive integer equal to 0 or \(1, \mathrm{Mn}\) is the trans
manganese (II) and x is at leat equal to about 0.5 ;
b . adding an antisolvent to the reaction mixture of (a) to
b. adding an antisolvent to the reaction mixture of (a) to
precipitate out the polymer and catalyst to obtain a polyprecipitate out the polymer and catal
phenylene oxide resin composition.

\section*{weight per 100 parts of total monomer.}

LIQUID COATING COMPOSITIONS Dieter Berger, Marl, Germany, assignor to Chen
Huels Aktiengeseslischaft, Marl, Germany
Filed May 14, 1976, Ser. No. 686,48
Filed May 14, 1976, Ser. No. 686,483
Claims priority, application Germany, May 17, 1975, 2522044
U.S. Cl. 260-75 EP

Int. \(\mathrm{Cl} .^{2}\) C08G \(63 / 12\)
10 Claims
1. In an epoxy resin based liquid varnish coating composition
whose binder comprises one or more cyclic anhydrides of whose binder comprises one or more cyclic anhydrides of
saturated and/or unsaturated aliphatic and/or cycloaliphatic saturated and/or unsaturated aliphatic and/or cyclooliphatic
dicarboxylic acids, or a mixture consisting essentially of carboxylic acid anhydrides of saturated and/or unsaturated aliphatic and/or cycloaliphatic and aromatic dicarboxylic acids, wherein the melting point of the anhydride or anhydride mix ture is below \(100^{\circ}\). C., the improvement wherein the coating composition contains at most up to \(25 \%\) volatile solvent and
the binder is a mixture of A ) glycidyl esters and B ) one or more the binder is a mixture of A) glycidyl esters and Be one or more
of said anydrides, in a ratio such that the binder contains 0.7 -1.5 anhydride equivalents per epoxide equivalent of glycidy ester, wherein the glycidyl esters have \(1.6-2.8\) epoxide equivalents \(/\) mole, an epoxy number of \(0.1-0.35\) epoxid
equivalents \(/ 100 \mathrm{~g}\). a hydroxyl number of \(20-130 \mathrm{mg}\). \(\mathrm{KOH} / \mathrm{g}\) equivalents \(/ 100 \mathrm{~g}\)., a hydroxyl number of \(20-130 \mathrm{mg}\). KOH/g.
and a number average molecular weight of \(600-2000\) and are prepared by glycidylating an esterification product containin free carboxyl groups with a molar excess of a 2,3 -epoxyhaloalkane in the presence of an agent which splits off hydrogen \(60-220 \mathrm{mg}\). KOH \(/ \mathrm{g}\)., a hydroxyl number of \(0-100 \mathrm{mg}\) \(\mathrm{KOH} / \mathrm{g}\)., an average molecular weight of \(550-1800\) and a average degree of polymerization of \(4.8-15\), and wherein the sterification product is prepared by condensing a reactio mixture consisting essentially of:
(a) \(100-50\) molar percent of at least one aliphatic or cycloaliphatic diol wherein the hydroxyl functions are separated from each other by \(2-12\) carbon atoms and \(0-2\) of saic carbon atoms are substituted by an oxygen atom which
oxygen atoms when present are separated by at least oxygen atoms when present are separated by at least 2
carbon atoms from each other and from the hydroxyl groups, and correspondingly \(0-50\) molar percent of at
least one aliphatic polyol of \(3-6\) carbon atoms and 3 or 4 least one aliphatic polyol of \(3-6\) carbon atoms and 3 or 4 hydroxyl groups; and
(b) a mixture of \(15-40\) molar percent of at least one saturated aliphatic dicarboxylic acid of 4-12 carbon atoms or an intramolecular anhydride thereof, and correspondingly
\(85-60\) molar percent of at least one aromatic or cycloal \(55-60\) molar percent of at least one aromatic or cycloal
phatic dicarboxylic acid other than terephthalic acid of 6-12 ring carbon atoms or an intramolecular anhydride thereof, or a corresponding mixture thereof and up to 30 3 or more carboxyl groups or an intramolecular anhydrid 3 or mor
thereof.

\section*{4,097,467}

PROCESS FOR THE PREPARATION OF A COPOLYMERIZABLE COMPOSITION Lodewijk Roskott, Gorssel, and Arnold Schroeder, Deventer both of Net Filed Jun. 20, 1975, Ser. No. 588,993 Claims priority, application Netherlands, Jun. 21, 1974, \({ }_{7408353}\)

Int. C.2 \({ }^{\text {Co8G }}\) 63/52; C08L 67/06
U.S. Cl. 260-75 UA 2 Claims 1. In an improved process for the preparation of a copolymer-
izable composition containing an unsaturated polyester resin, a izable composition containing an unsaturated polyester resin, a provement comprises the step of incorporating in said composition as the peroxide initiator a peroxide composition consist-
ing essentially of an alkylaldehyde peroxide which may be ing essentially of an alkylaldehyde peroxide which may be
synthesized by reacting an alkylaldehyde with hydrogen persynthesized by reacting an alkylaldehyde with hydrogen per-
oxide, said allyyl aldehyde peroxide being selected from the group consisting of an unsubstituted alkylaldehyde peroxide, group alkyl-substituted alkyladlehyde peroxide, and an aryl-sub-

Stituted alkylaldehyde peroxide, and said alkylaldehyde perox ide containing not more than 20 carbon atoms and at least 1.5 active oxygen atoms per carbonyl group of said alkylaldehyde. 4,097,468
PROCESS FOR PREPARING POLYESTERS Leonard Evans James, Richmond; Laszlo Joseph Balint, Chester, and Stanley David Lazarus, Petersburg, all of Va., assignors to Allied Chemical Corporation, Morris Township, Morris County, N.J.
\[
\begin{aligned}
& \text { ounty, N.J. } \\
& \text { Filed Mar. } 15,1977, \text { Ser. No. } 777,819 \\
& \text { Int. Cl. }{ }^{2} \text { CoBG } 63 / 18
\end{aligned}
\]
U.S. Cl. 260-75 M 8 Claims 1. In a continuous process for the preparation of high molec lar weight linear polyesters of terephthalic acid which com prises partially esterifying terephthalic acid with an alkylene lycol containing 2 to 10 carbon atoms per molecule unde pelycondensing the partially esterified product until there is obtained a polyester of the desired molecular weight, the im provement which comprises:
(a) continuously subjecting
(a) continuously subjecting to conditions of direct esterification at a temperature of \(270^{\circ}-280^{\circ} \mathrm{C}\). and a pressure of
\(100-150\) psig a fowable, uniform dispersion comprised of (1) a paste consisting of said terephthalic acid, about 1.0 to 1.2 mols of said alkylene glycol per mole of terephthalic acid, and about 0.4 to 1.8 mols of water per mol of tereph halic acid, and (2) about 20 to about 40 parts by weigh per part of paste of a partially esterified product of said terephthalic acid with said alkylene glycol, said partially
esterified product having a reacted glycol to terephthalic acid mol ratio between 0.9 and 1.2 and a carboxyl conversion of about 70 to 80 percent, said partially esterified product being continuously recycled to the esterification zone at a temperature of \(270^{\circ}-280^{\circ} \mathrm{C}\). and a pressure of
\(100-150\) psig and said paste being continuously added 100-150 psig and said paste being continuously added (b) continuously withdrawing a portion of the partially esterified product from step (a) equivalent to the tereph thalic acid added in step (a), and continuously reacting said portion of the partially esterified product with abou
0.5 to 0.7 mol of said alkylene glycol per mol of terephthalic acid added in step (a), said reaction being carried out at a temperature of \(270^{\circ}-280^{\circ} \mathrm{C}\). and a pressure of \(90-100\) psig, thereby producing an esterified product having a reacted glycol to terephthalic acid mol ratio between 1.4 and
to 95 percent;
(c) continuously further esterifying the esterification product of step (b) at a temperature of \(270^{\circ}-280^{\circ} \mathrm{C}\). and a pressure of 300 to 400 mm of Hg to produce an esterified product having a reacted glycol to terephthalic acid mo ratio between 1. and
1099 percent; and
(d) continuously further esterifying and polycondensing the esterification product of step (c) at a temperature \(260^{\circ}-300^{\circ} \mathrm{C}\). and a pressure less than 300 mm Hg until there is obtained an improved polyester of the desire molecular weight, whereby the molecular weight distriweight average molecular weight to the number average weight average molecular weight
molecular weight is less than 2.25 .

PROCESS FOR PREPARING POLYAMIDES OF PACP Robert S. Shue, Bartlesville, Okla., asssignor to Phillips Petro leum Company, Bartlesville, Okla.

Filed Apr. 15, 1976, Ser. No. 677,210
U.S. C1. \(260-78 \mathrm{R}\)
1. A pro
teps of:
eps of:
heating at least one (A) diamine and at least one (B) diacid
employing a molar ratio of diamine:diacid from about 2.75 percent molar excess of diamine to about 1.75 percent molar excess of diacid, employing an effective amount of a catalyst system comprising manganous hypophosphite and water, at elevated temperatures and pressures, and for a time sufficient, to obtain a prepolymer exhibiting an inherent viscosity in the range of about 0.6 to 0.95 a
heating said prepolymer at elevated temperatures ander substantially vacuum conditions for an effective time thereby polycondensing said prepolymer to a polyamide product exhibiting an inherent viscosity higher than that of said prepolymer, and in the range of about 1 to 1.8 , wherein said (A) diamine is 2,2 -bis( 4 -aminocyclohexyl)pro pane or methyl derivatives thereof wherein each cyclohexyl ring has 0-1 methyl group, and
ylic acid selected from the group consisting of (B1) at leas ylic acid selected from the group consisting of (B1) at least
one \(\mathrm{C}_{8}\) to \(\mathrm{C}_{12}\) diacid, and (B2) adipic acid and at least one \(\mathrm{C}_{8}\) to \(\mathrm{C}_{12}\) diacid

4,097,472 HARMACEUTICALLY ACCEPINAMIDES AND THE Shosuke Okamoto; Akiko Hijikata, both of THERER Ryoji Kikumoto, Machida; Yoshikuno Tamo Yo Kobe; Ryoj Ohkubo, Machida; Tohru Tezuka, Yokohama, and Shinji Tonomura, Tokyo, all of Japan, assignors to Mitsubishi Chemical Industries Limited, Tokyo and Shosuke Okamoto both of, Japan
4,036,955, Ser. No. 723,474, \(\mathbf{S}\) 707, 1436, Jul. 22, 1976, Pat. No. Sep. 30, 1976, Ser. No. 671,436, Mr, 29, Ser. No. 728,051, Sep. 30, 1976, Ser. No. 671,436, Mar. 29, 1976, Pat. No.
\(4,066,758\), and Ser. No. 671,568, Mar. 29, 1976, Pat. No 4,049645 , said Ser. No. 671,436 , and Ser. No. 671,568 , each is division of Ser. No. 622,390, Oct. 14, 1975, abandoned. This application Jan. 19, 1977, Ser. No. 760,676
The portion of the tern The portion of the term of this patent subsequent to Jul. 19, Int. Cl.2 C07C
1903/52; A61K \(37 / 00\)
U.S. CI. \(424-177\)
U.S. \(\mathrm{Cl}^{2}\). \(424-177\)
(I). An \(\mathrm{N}^{2}\)-arlysulfonyl-L-argininamide having the formula
(1):
dialkylcarbamoyl, amino, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylamino, mercapto, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio, \(\mathrm{C}_{7}-\mathrm{C}_{12}\) aralkyl, carboxyl, \(\mathrm{C}_{2}-\mathbf{C}_{10}\) \(C_{10}-C_{10}\) alkylcarbonyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylcarbonyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\)
haloalkyl and phenyl optionally substituted with at leas ne hydroxy \(\mathrm{C}_{1}-\mathrm{C}_{5}\) alkoxy or mixtures thereof, naphthy substituted with at least one substituent selected from the dialkylcarbamoyl, amino, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylamino, mercapto \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio, \(\mathrm{C}_{7}-\mathrm{C}_{12}\) aralkyl, carboxyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkoxycarbonyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) carboxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) acylamino \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylcarbonyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{1}\) haloalkyl and phenyl optionally substituted with at leas one hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{5}\) alkoxy or mixtures thereof;
6,7,8-tetrahydronaphthyl substituted with at least one ubstituent selected from the group consisting of halo nitro, cyano, hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy
and mino, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylamino, mercapto, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio \(\mathrm{C}_{7}-\mathrm{C}_{12}\) arakyl, carboxyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkoxycarbonyl, \(\mathrm{C}_{2}\) \(\mathrm{C}_{10}\) carboxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) acylamino, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylcarbo

PROCESS FOR SUL \(4,097,474\) ( FURIZIN COMPOUNDS

\section*{Herbert Fran Ath} kingham, and John Scotchford Elliott, Beaconsfield, all of England, assignors to Edwin Cooper and Company Limited, Bracknell, England
Continuation-in-part of Ser. No. 541,995, Jan. 17, 1975, abandoned, which is a division of Ser. No. 459,938, Apr. 11, 1974, Pat. No. 3,882,031. This application Mat. 664,547
Cited Kingom, Apr. 12, 1973 \({ }_{17728 / 73}^{\text {Claims }}\)
U.S. Cl \(260-139\) Int. Cl. \({ }^{2}\) C07G 17/00
U.S. C. \(260-139\)
\[
\text { Int. Cl. }{ }^{2} \mathbf{C 0 7 G} 17 / 00
\]
1. A. process for preparing a normally liquid, 40 Claims metal-free, phosphorus-free substance by reacting sulfur with compound selected from dimers of cyclopentadiene, methylcyclopentadiene and mixtures thereof, said by reacting being carried out in the absence of a solvent or in the presence of non-polar solvent, the amount of sulfur reacted being 0.1-4 moles per mole of said compound.

4,097,475

\section*{DISPERSE MONO AND BISAZO DYES DERIVED FROM} 2-AMINO-4,5-DICYANOIMIDAZOLE de Nemours and Company, Wilmington, Del.
\({ }^{2}\) It. \(\mathrm{Cl}^{2}{ }^{2} \mathrm{CO9B}\) 29/36. \(29 / 38.31 / 04\)
1. An Cl azo dye of the generic formula \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{6}-\mathrm{C}_{10}\) aryl, \(\mathrm{C}_{7}-\mathrm{C}_{12}\) aralkyl or 5-indanyl; and
 er of acrylic or methacrylic acid, said side chain containing a linear moiety containing at least three carbon of N -alkylmethacrylamide, N -alkylacrylamide, \(\mathrm{N}, \mathrm{N}\)-dialkylacrylamide, wherein alkyl has 1 to 6 carbon atoms and may late and mixtures thereof

\section*{4,097,471 \\ POLYPEPTIDES WITH MORPHINE-LIKE ACTIVITY Dimitrios Sarantakis, West Chester, and Larry Stein, HaverCorporation, New York, N.Y. \\ Filed May 26, 1977, Ser. No. 800,678}

Int. Cl. \({ }^{2}\) C07C 103/52; A61K 37/00
U.S. Cl. \(260-112.5 \mathrm{R}\)

H-Tyr-Gly-Gly-Phe-Leu-Thr-Ser-Glu-Lys-Ser-Gin-
Thr-Pro-Leu-Val-Thr-OH
or a non-toxic salt thereof, all optically active amino acids being of the L-configuration.
nyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) haloaklyl, oxo, and \(\mathrm{C}_{1}-\mathrm{C}_{5}\) alkoxy or mixtures thereof;
naphthoquinonyl, anthyrl, phenanthryl, pentalenyl, heptale nyl, azulenyl, biphenylenyl, as - indacenyl, S-indacenyl acenaphthylenyl, phenylcarbonylphenyl, phenoxyphenyl, benzofurayl, isobenzofuranyl, benzo [b] thienyl, isobenzo thienyl oxanthrenyl, thianthrenyl, dibenzofuranyl, diben zothienyl, phenoxathininy, indoly, is , i -quinolyl, phthalazinyl, 1,8 -naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, carbazolyl, acridinyl phenazinyl, phenothiazinyl, phenoxazinyl or benzimidazo yl group any of which is unsubstituted or substituted with one or more groups selected from the group consisting of halo, nitro, cyano, hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy
\(\mathrm{C}_{2}-\mathrm{C}_{20}\) dialkylamino, sulfoamino carbamoyl, \(\mathrm{C}_{3}-\mathrm{C}_{1}\) \(\mathrm{C}_{2}-\mathrm{C}_{20}\) dialkylamino, sulfoamino carbamoyl, \(\mathrm{C}_{3}-\mathrm{C}_{10}\)
\(\mathrm{~N}, \mathrm{~N}\)-dialkylcarbamoyl, amino, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylamino, mercapto, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio, \(\mathrm{C}_{7}-\mathrm{C}_{12}\) aralkyl, carboxyl, \(\mathrm{C}_{2}\) capto, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio, \(\mathrm{C}_{1}-\mathrm{C}_{12}\) aralkyl, carboxyl, \(\mathrm{C}_{2}\)
\(\mathrm{C}_{10}\) alkoxycarbonyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) carboxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) acyl \(\mathrm{C}_{10}\) alkoxycarbonyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) carboxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) acy
amino, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylcarbonyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl, \(\mathrm{C}_{1}\)
 \({ }_{\text {least one hydroxy }} \mathrm{C}_{1}-\mathrm{C}_{5}\) alkoxy or mixtures thereof.
wherein \(R_{1}\) is furfuryl, 3-furylmethyl, tetrahydrofurfuryl or ietrahydro-3-furylmethyl; \(\mathrm{R}_{2}\) is hydrogen, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, car-
boxy, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkoxycarbonyl, phenyl optionally substituted boxy, \(C_{2}-C_{10}\) alkoxycarbonyl, phenyl optionally substituted
with one or more \(C_{1}-C_{5}\) alkyl, \(C_{1}-C_{5}\) alkoxy or mixtures whereof, \(C_{7}-C_{12}\) aralkyl or ring substituted benzyl wherein said substituent is \(C_{1}-C_{5}\) alkyl or \(C_{1}-C_{5}\) alkoxy; \(R_{3}\) is hydrogen.

\(\mathrm{R}_{1}\) is \(\mathrm{C}_{1-4}\) alkyl, \(-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\).
\[
-\mathrm{CH}_{2} \mathrm{CHC}_{1}
\]
\(-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{R}_{8}, \mathrm{C}_{1-4}\) alkyleneCN, \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OR}_{7},-\mathrm{CH}_{2}-\mathrm{CH}=\) \(\mathrm{CH}-\mathrm{R}_{8}, \quad-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{CONH}_{2}, \quad-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{CONHC}_{1}\) \(-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{CON}\left(\mathrm{C}_{14}{ }^{\mathrm{alkyl}}\right)_{2}\) and \(-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{C}_{14}\)-alkyl; is a coupling component selected from: a 5 -or 6 - me bered heterocycle consisting of 5 -aminopyrazole, pyrazolone, barbituric acid, 6 -hydroxypyrid- 2 -one, hydroxycoumarin and 1,2 -dialky ,


W is 1,4 -naphthylene or

\(\mathrm{R}_{2}\) is \(\mathrm{H}, \mathrm{F}, \mathrm{Cl}_{1}, \mathrm{C}_{1 \_ \text {alkyl, }} \mathrm{OC}_{1}\) alyl: \(\mathrm{R}_{3}\) is cyclohexyl or \(\mathrm{C}_{1-\text { alkylene- }} \mathrm{R}_{2}\)
\(\mathrm{R}_{2}\) and \(\mathrm{R}_{3}\) together with the nitrogen atom optionally form a 6 -membered ring optionally substituted with -OH , \(\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{CN}\) or \(\mathrm{OCOC}_{1 . \text { salkyl }}\).
\(R_{4}\) is H ,
\(-\mathrm{CH}_{2} \mathrm{CHC}_{1-\mathrm{alkyl}}-\mathrm{CH}_{2} \mathrm{CH}-\mathrm{R}_{8}-\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OR}_{8}\)

\(R_{3}\) and \(R_{4}\) together optionally form a 6 -membered heterocyclic ring containing the nitrogen atom;
\(\mathrm{R}_{5}\) is \(\mathrm{H}_{\text {; }}\)
 \(\mathrm{kyl}, \quad \mathrm{NHCOCH}=\mathrm{CH}_{2}, \quad \mathrm{NHCOC} 1_{1,4}\) alkyl, \(\mathrm{NHCOR}_{8}\),
 lene-R \(\mathrm{R}_{10} \quad \mathrm{NHCOC}_{1-4}\) alkylene-OC \(\mathrm{O}_{1, \text { alkylene- }}\) \({ }_{\text {NHCO }}^{2}{ }_{2} \mathrm{C}_{1-4}\) alkylene \(\mathrm{OC}_{1+1}\) alkyl;
\(\mathrm{R}_{5}\) and \(\mathrm{R}_{6}\) together optionally form \(-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\). CH-;
\(\mathrm{R}_{\text {, }}\) is H or \(\mathrm{C}_{1+\mathrm{acyl}}\);
\(\mathrm{R}_{8}\) is phenyl or phenyl optionally substituted with \(1-2\) groups selected from \(\mathrm{Cl}, \mathrm{Br}, \mathrm{CN}_{1}, \mathrm{CF}_{3}, \mathrm{NO}_{2}, \mathrm{C}_{14}\) alkyl, \(\mathrm{OC}_{1,4}\) alkyl,
\(\mathrm{R}_{6}\) is \(\mathrm{H}, \mathrm{OH}, \mathrm{CN}, \mathrm{COC}_{1,4}\) alkyl, \(\mathrm{OCOCH}=\mathrm{CH}_{2}, \mathrm{OCOC}\) talkylene- \(\mathrm{R}_{11}, \mathrm{OCOR}_{8}, \mathrm{CO}_{2} \mathrm{R}_{8}, \mathrm{CO}_{2} \mathrm{C}_{1.4}\) alkylene- \(\mathrm{R}_{12}\),

TRISAZO DYES HAVING A 2,7-(1-AMINO-3,6-OR 4,6-DISULFO-8-HYDROXYNAPHTHYLENE) RADICAL Heinz Wicki, Basel, Switzerland, assignor to Sandoz Ltd., Basel, Switzerland
Filed Jun. 10, 1975, Ser. No. 585,663
Claims priority, application Switzerland, Jun. 17, 1974, 8252/74
U.S. Cl. \(260-173\) Int. Cl. \({ }^{2}\) C09B 31/24; D06P 1/06, 3/32 43 Claims 1. A compound of the formula

or a mixture thereof,
wherein A is sulfonaphthyl, substituted sulfonaphthyl, disulfonaphthyl, substituted disulfonaphthyl or

where
and each substituent of substituted sulfonaphthyl and substituted disulfonaphthyl is independently hydroxy or \(\mathrm{C}_{1-\text { alk }}\) alkoxy, X is hydrogen, chloro, \(\mathrm{C}_{1,4}\) akyl, \(\mathrm{C}_{1,4}\) alkoxy, \(-\mathrm{SO}_{3} \mathrm{M}\) or Y is
one Y is \(-\mathrm{SO}_{3} \mathrm{M}\) and the other is hydrogen,
\(\mathrm{R}^{\prime}\) is hydrogen or \(\mathrm{C}_{1 . \text { alk }}\) eal, and
cation.

STEROID COMPOUNDS AN7,477
STEROID COMPOUNDS AND PROCESSES THEREOF Gunther Kruger, St. Laurent, Canada, assignor to Steele Chemicals Co. Ltd., Pointe Claire, Canada Continuation-in-part of Ser. No. 516,597, Oct. 21, 1974, abandoned. This application Jul. 9, 1976, Ser. No. 703,825 Claims priority, application Canada, Nov, 29, 1973, 18696 U.S. Cl. 260-239.57 t. Cl. \({ }^{2}\) C07J 17/00, \(19 / 00\) 1. A compound of the formula

17 Claims

\(\mathrm{OC}_{1-\text { alkylene- }} \mathrm{R}_{10,} \quad \mathrm{CONHC}_{1-4}\) alkylene- \(\mathrm{R}_{11,} \quad \mathrm{SO}_{2} \mathrm{R}_{8}\) \(\mathrm{OCONHC}_{1 \text { alylene- }} \mathrm{R}_{10} \quad \mathrm{NHCOC} \mathrm{C}_{1+\text { alkylene }-\mathrm{R}_{10}}\) NHCONHR \({ }_{8}\), NHCOR \(_{8}\) or \(\mathrm{R}_{10}\) is \(\mathrm{CN}, \mathrm{OH}, \mathrm{Cl}, \mathrm{Br}\) or \(\mathrm{R}_{1}\)
\(\mathrm{R}_{11}\) is \(\mathrm{H}, \mathrm{Cl}, \mathrm{Br}, \mathrm{OC}_{14}\) alkyl or phenyl;
\(\mathrm{R}_{12}\) is \(\mathrm{H}, \mathrm{OH}, \mathrm{OC}_{14}\) alkyl, \(\mathrm{OCOC}_{14}\) alkylene- \(\mathrm{R}_{11}\) or \(\mathrm{OCOR}_{8}\)
\(\mathrm{R}_{13}\) and \(\mathrm{R}_{14}\) are independently \(\mathrm{H}, \mathrm{C}_{14}\) alkyl, \(\mathrm{C}_{14}\) alkoxy or \(\mathrm{Cl}_{\text {; }}\) \(m\) is 0 or 1 ; and
\(n\) is 1 to 3 .

wherein \(\mathrm{R}_{1}\) is \(\mathrm{H}, \mathrm{OH}, \mathrm{O}, \mathrm{O}\)-acyl,

\[
\stackrel{\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}}{ }
\]

with an alkali-metal or ammonium azide in a polar organic and \(\mathrm{R}_{3}\) is selected from the group consisting of \(\mathrm{H}, \mathrm{CO}_{3} \mathrm{H}\), with an alkali-metal or ammonium azide in a polar organic \(\mathrm{C}=\mathrm{CH}\) or an \(a\)-oxide; and the \(\Delta 2, \Delta 3, \Delta 4, \Delta 5(6), \Delta 7\) and ing \(\Delta 20(22)\) dehydro analogs thereof.
reacting the nitrile and the azide in an amine having a \(\mathrm{pK}_{\text {o }}\) of from 2 to 6 and a boiling point of from \(100^{\circ}\) to \(250^{\circ} \mathrm{C}\) a he solvent and in the presence of an acid-addition salt o the amine as the catalyst.

2,2-DIMETHYL- 7 -AMINE-ALKOXY-4ARYLTETRA
4,097,478
PROCESS FOR PREPARING PYRAZINES
Kanji Sato, Fuji, Japan, assignor to Tokai Denka Kogyo Kabushiki Kaisha, Ohte, Japan
 Claims priority, application Japan, Sep. 20, 1921
Int. Cl. \({ }^{2}\) C07D 241/04. 241/06
U.S. Cl. 544-353
1. A process for preparing pyrazines characterized in that diol represented by the formula
\[
\begin{gathered}
\mathrm{HO}-\mathrm{CH}-\mathrm{CH}-\mathrm{OH} \\
1 \\
\mathrm{R}_{1} \\
\hline
\end{gathered}
\]
wherein \(R_{1}\) and \(R_{2}\) are each a hydrogen atom or a hydrocarbon adical selected from the group consisting of aliphatic, aro HYDROQUINALINE DERIVATIVES
\[
\begin{aligned}
& \text { Int. C. } \\
& 353 \\
& \text { for prep }
\end{aligned}
\]
Cl. C07D 241/04, 241/00 matic and alicylic hydrocarbon radicals, and a diamine repre sented by the formula
\[
\begin{gathered}
\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}-\mathrm{CH}-\mathrm{NH}_{2} \\
1 \\
\mathrm{R}_{3} \\
\mathrm{R}_{4}
\end{gathered}
\]
 Beecham Group Limited, United Kingdom
Filed Jun. 1, 1976, Ser. No. 691,860
Claims priority, application United Kirgdom, Jul. 28, 1975, Int. C1. \({ }^{2}\) C07D 215/20; A61K 31/47 U.S. Cl. \(260-286 \mathrm{R}\) 1. A compound of the formula (II):

wherein \(R_{3}\) and \(R_{4}\) are each a hydrogen atom or a hydrocarbo radical selected from the group consisting of aliphatic, aromatic and alicyclic hydrocarbon radicals, are sabalyst containing phase contact reaction in or zinc in combination with at least one other metal selected from the group consisting of cobalt, nickel, iron, alumi num and chromium. wherein X is

R is hydrogen, methyl or ethyl; \(R_{1}\) is phenyl, naphthyl or phenyl substituted by a member selected from the group con-
sisting of fluorine, chlorine, bromine, methyl, methoxy and irifluoromethyl; \(\mathbf{R}_{2}\) is hydrogen or methyl; \(\mathbf{R}_{3}\) is hydrogen, methyl, ethyl or benzyl; \(\mathbf{R}_{4}\) is hydrogen or methyl; and \(\mathrm{R}_{5}\) is hydrogen or methyl.

4,097,479

\section*{SYNTHESIS OF 5 -SUBSTITUTED TETRAZOLES}

Theodore J. Leipzig, Elkhart, Ind., assignor to Miles Laboratories, Inc., Elkhart, Ind.

Filed Mar. 11, 1977, Ser. No. 776,619
U.S. Cl. 544-366 Int. Cl. \({ }^{2}\) C07D 403/06 4 Claims
U.S. Cl. \(544-366\) a method for the preparation of tetrazolyl compounds having the formula,


4,097,481
TERTIARY AMIDE DERIVATIVES OF PYRROLIDINE AND PIPERIDINE Elden H. Banitt, Woodbury, Minn., and William E. Coyne Hudson, Wis., assignors to Riker Laboratories, Inc. Filed Nov. 8, 1976, Ser. No. 739,613 U.S. C. 260-293.77 of the formula 1. A compound of the formula

wherein and elsewhere in this claim \(R\) is a hydrogen atom, a halogeno, or a trifluoromethyl substituent and \(n\) is an integer of the set \(1-4\), by reacting a nitrile of the formula,
wherein \(\mathrm{R}_{\mathrm{f}}\) is a perfluoroalkyl radical containing one to three carbon atoms, \(n\) is one to three, Q is methyliene or methyl-
methylene and X is a cycloalkyl group containing five or six
carbon atoms or a pharmaceutically acceptable salt thereof carbon atoms or a pharmaceutically acceptable salt thereof.

4,097,482
5-0.CYANOBENZYL-4,5,6,7-TETRAHYDRO-THIENO[3,2clPYRIDINE MALEATE
Armand Amselem, Toulouse, France, assignor to Centre d'Etudes Pour L'Industrie Pharmaceutique, Toulouse, France Claims priority, application France, Aug, 6,1975 Claims priority, application France, Aug. 6, 1975, 7524486
Int. Cl. U.S. Cl. \(260-294.8 \mathrm{C}\)
1. 5-o-cyanobenzyl-4,5,6,7-tetrahydrothieno[ 3,2 -c]pyridine maleate.

\section*{\(4,4,097,483\)}
sutomu Irikura, Tokyo, Japan, ass PRIDIN sutomu Irikura, Tokyo, Japan, assignor to Kyorin Pharmaceu
tical Co., Ltd., Tokyo, Japan tical Co., Ltd., Tokyo, Japan
Division of Ser. No. 623,311, Oct. 17, 1975, Pat. No. 4,028,37 This application Aug. 31, 1976, Ser. No. 719,328 Claims priority, application Japan, Nor. 1, 1974, 49.126319
U.S. Cl. \(260-296 \mathrm{H}\) nt. Cl. \({ }^{2}\) C07D 401/02 126319

a]pyridine.

MIXED COMPLEXES OF METHINE DYES
Alexander von Zelewsky, Givisiez; Christoph Frey, Aesch, and
Francois L'Eplattenier, Therwil, Alexander von Zelewsky, Givisiez; Christoph Frey, Aesch, and
Francois L'Eplattenier, Therwil, all of Switzerland, assignors to Ciba-Geigy Corporation, Ardsley, N.Y.
Claims priority, application Switzerland, Oct. 17, 1974, 13920/74
 U.S. Cl. \(260-299\)
1. Mixed complexes of methine dyes of the formula

wherein \(M_{1}\) represents zinc, cadmium, lead or manganese, \(M_{1}\) represents cobalt, copper of nickel, \(R\) represents an organic radical selected from the group consisting of cyano, carbamoyl, methylcarbamoyl, phenylcarbamoyl, methoxycarbonyl,
ethoxycarbonyl, phenoxycarbonyl, 2 -benzimidazolyl, methyl, ethoxycarbonyl, phenoxycarbonyl, 2 -benzimidazolyl, methyl,
phenyl, 2-benzthiazolyl, or 2 -benzoxazolyl, \(Z_{1}\) represents an oxygen, a sulphur atom or an imino group, \(X_{1}\) and \(Y_{1}\) represen hydrogen, halogen atoms, alkyl, alkoxy, alkox ycarbonyl, alkylsulphonyl or alkylcarbamoyl garoups of 1 to 6 carbon atoms. nitro, or carbamoyl, or the radicals \(X_{1}\) and \(Y_{1}\) form a fuse benzene ring, \(X\) represents a hydrogen atom, \(Y\) represents a
halogen atom and \(Z\) represents a nitro group or a group of the formula \(R_{1} Y_{2}-\), wherein \(R_{1}\) represents a hydrogen atom, an
alkyl or cycloalkyl group of 1 to 6 carbon atoms, naphthyl, phenyl, p-chlorophenyl, and \(Y_{2}\) represents an oxygen or a
sulphur atom, \(m\) is 0 to \(4, n\) is 0 to \(4, p\) is 0 to 3 , and the sum of \(m+n+p\) must be 4 , and wherein the atomic ratio of \(\mathrm{M}_{1}: \mathrm{M}_{2}\) is between \(5: 95\) and \(95: 5\) prepared by metallizing an isoindolinone of the formula

wherein R, X, Y, Z, \(X_{1}, Y_{1}, Z_{1}, m, n\) and \(p\) are as defined above, with a mixture which consists of 5 - 95 molar percent of a salt selected from the group consisting of a formate, acetate or
stearate of zinc, cadmium, lead or manganese and of \(95-5\) molar percent of cadmium, lead or manganese and of 95-5 molar percent of a salt of cobalt, copper or nickel.

4,097,485
THIAZOLYLIMIDAZOLIDINONE ESTERS OF FURYL AND THIENYL SUBSTITUTED ACIDS ohn Krenzer, Oak Park, and Chin Ching Wu, Libertyville, both of III., assignors to Velsicol Chemical Corporation, Chicago,
Filed Jun. 17, 1976, Ser. No. 697,294 U.S. Cl. 260-3068 D. Cl.2 C07D 285/12 U.S. Cl. \(260-306.8 \mathrm{D}\)
1. A compound of the formula

wherein X is selected from the group consisting of chlorine bromine, fluorine, and lower alkylsulfonyl; \(\mathrm{R}^{1}\) is selected from the group consisting of lower alkyl, lower alkenyl, lower haloalkyl and propargyl; m is an integer from 0 to \(3 ; \mathrm{Y}\) is
selected from the group consisting of selected from the group consisting of lower alkyl, chlorine, bromine, fluorine; and n is an integer from 0 to 2 .

HERBICIDAL THI 4,097,486
ESTER Coh Krenzer, Oak Park, III., assignor to Velsicol Chemical Corporation, Chicago, IIl.
Filed Oct. 29, 1976, Ser. No. 736,913
The portion of the term of this patent subsequent to May 3, 1994, has been disclaimed.
U.S. Cl. 260-306.8 D
1. The compound

3,4-dimethyl-5-acetyloxy-1,3-3imidazolin-2-one

PYRROLIDINYL 4,097,487
PYRROLIDINYL AND PIPERIDINYL BENZAMIDE DERIVATIVES
Masuo Murakami; Kozo Takahashi, both of Tokyo; Yasufumi Hirata, Ageo; Mutsuo Takashima, Kawagoe; Sumio Iwanami, Ageo; Osamu Hasegawa, Kamifukuoka; Yoshihisa Nozaki, Tokyo; Shiro Tachikawa, Omiya; Masaaki Takeda, Urawa, Yamanouchi Pharmaceutical Co., Ltd., Tokyo, Japan chi Pharmaceutical Co., Ltd., Jokyo, Jap
Filed Mar. 29, 1976, Ser. No. 671,583
Claims priority, application Japan, Apr. 2, 1975, 50-39957; Dec. 17, 1975, 50-150948; Dec. 29, 1975, 51-156396; Dec. 27, Dec. 17, 1975, 50-150948; Dec. 29, 1975, 51-156396; Dec. 27 ,
1975, \(51-157835\); Dec. 27 , 1975, \(51-157834\); Dec. 29, 1975, 51-156394
Int. Cl. \({ }^{2}\) C07D 207/16. 211/60
U.S. Cl. \(260-326.85\)
1. A ben-326.85 13 Claim

wherein X represents a lower alkoxy group; Y represents a hydrogen atom, an amino group, or a mono- or di-lower alkyl amino group; Z represents a halogen atom, a lower alkylthi group, a lower alkylsulfinyl group, a lower alkylsulfony
group, a sulfamoyl group, or a lower alkylsulfamoyl group group. a sulfamoyl group, or a lower alkylsulfamoyl group;
and W represents a 1 -ethyl-5-phenyl-2-pyrrolidinylmethyl group, a 2-(2-phenyl-pyrrolidino) ethyl group or a group shown by the formulae:

and

\(\mathrm{R}_{8}\) represents a lower alkyl group; \(\mathrm{R}_{9}\) represents a hydrogen atom, a halogen atom, or a lower alkoxy group; and \(n\) repreents 1 or 2 , and the pharmaceutically acceptable nontoxic salts hereof.

4,097,488
N.(3-FLUORANTHYL)MALEIMIDE; A FLUORESCENT N.(3.FLUORANTHE STUDIES OF THIOL COMPOUND Yuichi Kanaoka, Sapporo, Japan, assignor to Teika Seiyaku Kabushiki Kaisha, Toyama, Japan Claims priority, application Japan, Apr. 6, 1976, 51-38485 Int. Cl. \({ }^{2}\) C07D 207/30
U.S. Cl. 260-326.5 C lint. Cl. \({ }^{2}\) C07D 207/30
1. A compound of the formula:



9-DEOXY-9a,6-NITRILO OR \(\begin{gathered}4,097,489\end{gathered}\)
ITRILO OR 6.9a-IMINO-PGF COMPOUNDS
Gordon L. Bundy, Portage, Mich., assignor to The Upjohn Cordon L. Bundy, Portage,
Company, Kalamazoo, Mich.

Jun. 17, 1977, Ser. No. 807,514
Int. Cl. \({ }^{2}\) C07D 209/55
U.S. Cl. \(260-326.27\) Int. Cl. \({ }^{\text {2 }}\) (07D 209/52 \(\quad 52\) Claims
1. A prostacyclin analog of the formula

wherein
\(Z_{2}\) is
\(Z_{2}\) is
\[
\mathrm{N}_{\substack{\left(\mathrm{CH}_{2}\right)_{2}-\\ \mathrm{N}=\mathrm{C}-\mathrm{CH} \\ \hline}}^{\substack{\left(\mathrm{CH}_{2}\right)_{2}-\\ \mathrm{C}_{2}}}
\]
\[
\mathrm{NH}_{-\mathrm{CH}}-\mathrm{CH}_{2}
\]
\(\left({ }_{\zeta}^{\left(\mathrm{CH}_{2}\right)_{2}}-\right.\)
wherein
\(R_{2}\) is alkyl of one to 4 carbon atoms, inclusive, or alkylcarbo-
nyl of one to 4 carbon atoms, inclusive;
wherein \(\mathrm{Z}_{1}\) is
(1) \(-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\),
(1) \(-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\),
(2) \(-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{CF}_{2}\), or
(2) \(-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CF}_{2}-\), or
(3) trans \(-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}=\mathrm{CH}-\),
wherein
g is the integer zero, one, or 2 .
\(\mathrm{R}_{8}\) is hydrogen, hydroxy, or hydroxymethyl; wherein
\(\mathrm{Y}_{1}\) is
(1) trans \(-\mathrm{CH}=\mathrm{CH}-\)
(1) rans \(-\mathrm{CH}=\mathrm{CH}-\)
(2) cis \(-\mathrm{CH}=\mathrm{CH}-\)
(2) \(\mathrm{cis}-\mathrm{CH}=\mathrm{CH}\)
(4) trans- \(\mathrm{CH}=\mathrm{C}(\mathrm{Hal})-\), or
(5) \(-\mathrm{C}=\mathrm{C}-\)
wherein
Hal is chloro or bromo;
wherein
\(M_{1}\) is

wherein
Wh is hydrogen or alkyl with one to 4 carbon atoms, inclu-
sive sive.
wherein
\(\mathrm{L}_{1}\) is

or a mixture of

wherein
\(R_{3}\) and \(R_{4}\) are hydrogen, methyl, or fluoro, being the same or different, with the proviso that one of \(R_{3}\) and \(R_{4}\) is fluoro
only when the other is hydrogen or fluoro only when the other is hydrogen or fluoro;
wherein
\(\mathrm{X}_{1}\) is
\(X_{1}\) is (1) -COOR , wherein \(R_{1}\) is hydrogen; alkyl of one to 12 carbon atoms, inclusive; cycloalkyl of 3 to 10 carbon atoms, inclusive, aralkyl of 7 to 12 carbon atoms, inclusive; phenyl; phenyl substituted witth one, two, or three chloro or alkyl of one to 3 carbon atoms; phenyl substi-
tuted in the para position by

wherein \(\mathrm{R}_{25}\) is methyl, phenyl, acetamidophenyl, benzamidophenyl, or - \(\mathrm{NH}_{2} ; \mathrm{R}_{26}\) is methyl, phenyl, \(-\mathrm{NH}_{2}\), or methoxy; and \(R_{27}\) is hydrogen or acetamido, inclusive; or a pharmacologically acceptable cation
(2) \(-\mathrm{CH}_{2} \mathrm{OH}\); or
(a) amido of the formula \(-\mathrm{NR}_{21} \mathrm{R}_{22}\), wherein \(\mathrm{R}_{21}\) and \(\mathrm{R}_{22}\) are

YROGLUTAMIC \({ }^{4,090}\) \(\mathrm{R}_{22}\) are
(i) hydroge
(ii) alkyl of one to 12 carbon atoms, inclusive; (iii) cycloalkyl of 3 to 10 carbon atoms, inclusive; (iv) aralkyl of 7 to 12 carbon atoms, inclusive; (v) phenyl;
(vi) phenyl substituted with one, 2 , or 3 chloro, alky (vi) pheny \(\begin{array}{ll}\text { U.S. C. } 2 \text { eroglutamic acid.R-1-t-butylamino-2,3-dihydroxypro- }\end{array}\)
or (d) hydrazino of the formula \(-\mathrm{NR}_{23} \mathrm{R}_{24}\), wherein \(\mathrm{R}_{24}\) is amido of the formula \(-\mathrm{NR}_{21} \mathrm{R}_{22}\), as defined above; wherein
to 3 carbon atoms, inclusive, carboxy, alkoxycar bonyl of one to 4 carbon atoms, inclusive, or nitro; (vii) carboxyalkyl of one to 4 carbon atoms, inclusive (viii) carbamoylalkyl of one to 4 carbon atoms, inclu(ix) cyanoalkyl of one to 4 carbon atoms, inclusive; (x) acetylalkyl of one to 4 carbon atoms, inclusive; (xi) benzoylalkyl of one to 4 carbon atoms, inclusive,
(xii) benzoylalkyl substituted by one, 2 , or 3 chloro alkyl of one to 3 carbon atoms, inclusive, hydroxy alkoxy of one to 3 carbon atoms, inclusive, carboxy, alkoxycarbonyl of one to 4 carbon atoms, inclusive, or nitro
(xvii) hydroxyalkyl of one to 4 carbon atoms, inclu sive;
(xviii) dihydroxyalkyl of one to 4 carbon atoms; or thix) trihydroxyalkyl of one to 4 carbon atoms; with the further proviso that not more than one of \(\mathrm{R}_{2}\) and \(\mathrm{R}_{22}\) is other than hydrogen or alkyl; (b) carbonylamido of the formula \(-\mathrm{NR}_{23} \mathrm{COR}_{21}\), wherein \(R_{23}\) is hydrogen or alkyl of one to 4 carbon
atoms and \(R_{21}\) is as defined above; or sulphonylamido of the formula \(-\mathrm{NR}_{23} \mathrm{SO}_{2} \mathrm{R}_{21}\) \(\underset{\mathrm{R}_{7} \text { is }}{\text { where }}\)
(1) \(-\left(\mathrm{CH}_{2}\right)_{m}-\mathrm{CH}\)
\(-\left(\mathrm{CH}_{2}\right)_{m}-\mathrm{CH}_{3}\),


wherein \(m\) is the integer one to 5 , inclusive, \(h\) is the integer b) zero to 3 , inclusive; \(s\) is the integer zero, one, 2 , or 3 , and \(T\) is chloro, fluoro, trifluoromethyl, alkyl of one to 3 carbon atoms, inclusive, or alkoxy of one to 3 carbon atoms, inclusive, or alkoxy of one to 3 carbon atoms, inclusive, or with the proviso
that not more than two T's are other than alkyl; and the pharmacologically acceptable acid addition salts thereof when \(\mathbf{R}_{2}\) is not aikylcarbonyl and \(R_{1}\) is not a pharmacologically acceptable cation.

\section*{4,097,494 \\ NOVEL CYCLOPENTANONE \\ Jean Buendia, Nogent-sur-Marne, and Jeanine Schalbar, Suresnes, both of France, assignors to Roussel Uclaf, Paris, \\ France Filed Nov. 19, 1976, Ser. No. 743,507 \\ Claims priority, application France, Nov. 26, 1975, 7536161
Int. Cl.2. C07C \(69 / 74 \cdot\) C07D
 \\ 3 Claims}
1. A compound of


AMIDES OF 2-(3-DIBE 4,097,497 Leo Berger Montlair, and Robert Augu ALKANOIC ACIDS both of N.J., assignors to Hoffmann-La Roche Inc., Nutley, N.J.
Division of Ser. No. 548,658, Feb. 10, 1975, Pat. No. 4,022,805, Dhich is a continuation-in-part of Ser. No. 448,853, Mar. 7,1974 ,
whic abandoned. This application Jan. 27, 1977, Ser. No. 763,446 U.S. Cl. 260-346.71 int. Cl. \({ }^{2}\) C07D 307/91

4 Claims
wherein AIK is alkyl of 1 to 4 carbon atoms. \(R\) is selected from he group consisting of hydrogen and \(\alpha\)-tetrahydropyranyl and
Ys are hydrogen.
\[
\xrightarrow{4,097,495}
\]

TETRAMETHYL-BENZYLOXY CHROMANS
Ka-Kong Chan, Stanhope, and Gabriel Saucy, Essex Fells, both of N.J., assignors to Hoffmann-La Roche Inc., Nutley, N.J.
Division of Ser. No. 638,382, Dec. 8, 1975, Pat. No. 4,029,678, which is a continuation-in-part of Ser. No. 544,153, Jan. 27, 1975, Pat. No. 4,000,169. This application Feb. 22, 1977, Ser. U.s. Cl. \(260-345.5{ }^{\text {Int. Cl. }{ }^{2} \text { C07D } 311 / 72}\)
1. A compound of the formula:


1 Claim
wherein \(R\) is hydrogen, halogen, hydroxy, cyano, lower alkyl, hydroxy-lower alkyl, lower alkoxy, alkanoyl of 1-7 carbon
atoms, benzoyl, benzyloxy, lower alkylthio, trifuoromethyl. carbo-lower alkoxy, nitro, amino, mono-lower alkylamino, di-lower alkylamino, sulfamoyl, di-lower alkylsulfamoyl or difluoromethylsulfonyl; \(\mathrm{R}_{1}\) is halogen, cyano, lower alkyl, hydroxy-lower alkyl. lower alkoxy, alkanoyl of 1-7 carbon atoms, benzoyl, acetamido, benzyloxy, lower alkylthio, trifuoromethyl, hydroxy, carbo-lower alkoxy, nitro, amino, monolower alkylamino, di-lower alkylamino, sulfamoyl, di-lower

1. A compound of the formula

wherein \(R\) is benzyl, benzhydryl or trityl; and \(R_{3}\) is 3,5 -dinitro-
benzoyl, p -nitrobenzoyl or benzoyl.

\section*{NOVEL CYCLOPENTANE DERIVATIVES}

Milos Babej, Frankfurt am Main; Wilhelm Bartmann, NeuenMilos Babej, Frankfurt am Main; Wilhelm Bartmann, Neuen-
hain, Taunus; Gerhard Beck, Frankfurt am Main, and Ulrich Lerch, Hofheim, Taunus, all of Germany, assignors to Ho-
echst Aktiengesellschaft Frankfurt am Main Germany echst Aktiengesellschaft, Frankfurt am Main, Germany Division of Ser. No. 480,319, Jun. 17, 1974, Pat. No. 3,984,459. This application Jun. 23, 1976, Ser. No. 698,842 C. 260-345.8 Int. Cl. \({ }^{2}\) C07G 177/00

8 Claims U.S. Cl. \(260-345.8 \mathrm{P}\)
1. A cyclopentane compound of the formula

wherein \(R_{3}\) is alkyl of 1 to 5 carbon atoms; \(R_{4}\) is hydrogen, alky f 1 to 5 carbon atoms, or a physiologically tolerable monovalent or polyvalent cation; \(\mathrm{R}_{5}\) is cycloalkyl of 5 to 8 carbon
atoms wherein the \(-\mathrm{CH}_{2}-\) group in the 2 -position is replaced toms wherein the \(-\mathrm{CH}_{2}-\) group in the 2 -position is replaced by oxygen; \(U\) is -(CH
is a simple bond or
\[
-(\hat{i}
\]
wherein B is amino, hydroxyamino, mono-lower alkylamino or di-lower alkylamino; Y is hydrogen and X is lower alkyl; and its enantiomers; or when \(R\) or \(R_{1}\) is amino, mono-lowe alkylamino or di-lower alkylamino, an addition sal thereof with a pharmaceutically acceptable acid.
where \(R_{8}\) and \(R_{9}\) are the same or different and are hydrogen or alkyl of 1 to 5 carbon atoms; and X is - \(\left(\mathrm{CH}_{2}\right)_{n}\)-wherein \(n\) is an integer from 0 to 5 .

4,097,498
PROCESS FOR PREPARING MALEIC ANHYDRIDE Bruno J. Barone, and Ralph O. Kerr, both of assignors to Denka Chemical Corporation, Houston, Tex., assignors to Denka Chemical Corporation, Houston, Tex.
Division of Ser. No. 558,738, Mar. 17, 1975, Pat. No. 4,018,709, This application Sep. 20, 1976, Ser. Po. 724,558 U.S. CI. \(260-346.75\) 1 nt Cl. \({ }^{2}\) C07D 307/89 8 Claims 1. A process for the production of maleic anhydride com prising contacting feed of normal \(\mathrm{C}_{4}\) hydrocarbons in vapo phase at elevated temperatures in the range of \(375^{\circ}\) to \(550^{\circ} \mathrm{C}\) with oxygen and a catalyst complex consisting essentially of principal active components in the atom ratios vanadium I: phosphorus 0.90 to 1.3 Me 0.005 to 0.4 wherein Me is a mixture \(\mathrm{U}, \mathrm{W}, \mathrm{Cd}, \mathrm{Ni}\) and Si and mixtures thereof Ni and Si and mixtures thereo

409749
1-[5.(4-CHLOROPHENYL)FURFURYLAMINO]-2. 1-[5-(4-CHLOROPHENYL)FURFURYLA
Stanford S. Pelosi, Jr., Norwich, N.Y., assignor to Morton-Norwich Products, Inc., Norwich, N.Y.

Filed Aug. 1, 1977, Ser. No. 820,548
U.S. Cl. 260-347.7
nt. Cl. \({ }^{2}\) C07D 307/52 ride.
\[
\begin{gathered}
4,097,500 \\
\text { ITROPHENY }
\end{gathered}
\]

N-METHYL-5.(4-NITROPHENYL)-N-(A-METHYL-
HENETHYL)FURFURYLAMINE HYDROCHLORIDE
PHENETHYL)FURFURYLAMINE HYDROCHLORIDE
wich Products, Inc., Norwich, N.Y.,
Filed Jul. 25, 1977, Ser. No. 818,527
Int. Cl. \({ }^{2}\) C07D \(307 / 52\)
U.S. CI. 260-347.7
nt. Cl. \({ }^{2}\) C07D 307/52
1. The compound N -methyl- 5 -(4-nitrophenyl)- N -(a-methyl-phenethyl)-furfurylamine hydrochloride.
\[
\begin{gathered}
4,097,501 \\
\hline
\end{gathered}
\]

USE OF COATED CATALYSTS IN THE PREPARATION OF MALEIC ANHYDRIDE
Serge R. Dolhyj, Parma; Ernest C. Milberger, Solon, and R. Evans, Cleveland, all of Ohio, assignors to The Standard Oil Company, Cleveland, Ohio

\section*{Filed May 19, 1976, Ser. No. 687,827}
\(1 \mathrm{mt}\). Cl. \({ }^{2}\) C07D \(307 / 60\)
U.S. Cl. 260-346.74

7/60
1. In a process for the preparation of maleic anhydride by the eaction of benzene with air, and optionally steam, in the pres nce of an oxide catalyst which is useful in a fixed-bed reactor, he improvement comprising:
using a catalyst consisting of
(a) an essentially inert, at least partially porous support having a particle size of at least 20 microns, wherein said
support has an outer surface, said support being selected suppor the group consisting of silica, alumina, silicon carbide, alumina-silica, titania and zirconia; and
(b) a coating consisting essentially of a catalytically active oxide material on said outer surface of said support which strongly adheres to said outer surface of said suppor at
wherein said catalytically active oxide material contains at least an oxide of vanadium or an oxide of molybdenum, and wherein said catalyst is prepared by (1) contacting the support with a liquid to produce a partially wet support, said partially wet support being one that does not have the appearance of having liquid on the outer surface of said
support; and (2) contacting said partially wet support with a powder of a catalytically active material to produce a support having a strongly adherent coating of said catalytically active material on the outer surface of said support
PHOSPHATIDYL LULFONIUM HYDROXIDE COMPOUNDS
Barry D. Sears, 43 Bay State Rd., Marblehead, Mass. 02215 Barry D. Sears,
Continuation-in-part of Ser. No. 731,132, Oct. 12, 1976. This application Feb. 22, 1977, Ser. No. 770,407
U.S. Cl. 260-399 Int. Cl.2 \({ }^{\mathbf{2}} \mathbf{C 0 8 H} 3 / 00 \quad 10\) Claims 1. Synthetic phosphatidyl sulfonium [hydroxide] com ounds represented by the formula
\(R-\lambda-O-\mathrm{CH}_{2}\)
\(\begin{array}{rl}R-X-O-C-H & 0 \\ H_{2} C-O-P \\ 11 \\ 1 \\ 0\end{array}\) 1
\((-)\)
wherein X is an acyl group ( \(\mathrm{C}=\mathrm{O}\) ) [or a carbon atom ( C )]; R
is a hydrocarbon radical; \(R_{1}\) and \(R_{2}\) are selected from the
group of alkyl, alkylene, phenyl and benzyl radicals; and \(\mathrm{R}_{3}\) group of alkyl, alkylene, phenyl and benzyl radicals; and \(R_{3}\)
is a \(\left[C_{1}-C_{10}\right.\) hydrocarbon] methyulene radical of from 1 to 10 carbon atoms.
10. The compounds of claim 1 selected from the group onsisting of
dioleoyl phosphatidyl-(methylethylene-S-diethyl)sulfonium dipalmitoyl phosphatidyl-(ethylene-S-dimethyl)sulfonium; distearoyl phosphatidyl-(ethylene-S-diethyl)sulfonium; oleoyl-palmitoyl phosphatidyl-(ethylene-S-dimethyl)-sulfonium; dimyrisoyl phosphatidyl-(tetramethylene-S-dipropylmethyl)sulfonium
dipalimoy;
egg phosphatidyl-(trimethylene-S-dimethyl)sulfonium; soybean phosphatidyl-(trimethylene-S-dimethyl)sulfonium and
dipalmitoyl phosphatidyl-(tetramethylene-S-dimethyl)-sulfonium.

PHOSPHATIDYL PHOSPHONIUM HYDROXIDE COMPOUNDS Carry D. Sears, 43 Bay State Road, Boston, Mass. 02215 Continuation-in-part of Ser. No. 731,132, Oct. 12, 1976. This
application Feb. 22. 1977. Ser application Feb. 22, 1977, Ser. No. 770,290 U.S. Cl. 260-403

Int. \(\mathrm{Cl}^{2}{ }^{2} \mathbf{C 0 8 H} 3 / 00\)
10 Claims pounds represented by the formula:
wherein \(R\) is a long-chain hydrocarbon radical; \(R_{1}, R_{2}\) and \(R_{3}\) are \(C_{1}-C_{4}\) alkyl radicals, phenyl radicals or benzyl radicals; \(\mathbf{R}_{4}\) is a methylene radical of from 1 to 10 carbon atoms, excep where \(R_{4}\) is dimethylene and \(R_{1}, R_{2}\) and \(R_{3}\) are methyl radical 5. The compound of clai ing of:
dioleo
\(\qquad\)
phosphatidyl-(methylethylene-P-triethyl)phos phonium
dipalmitoyl
phonium; phonium;
distearoyl phonium;
leoyl-palmital phor oleoyl-palmitoyl
phosphonium; dhyl)phosphonium thyl) phosphonium;
dipalmitoyl phosphatidyl-(trimethylene-P-trimethyl)phosphonium;
gg phosphatidyl-(trimethylene-P-trimethyl)phosphonium; soybean phosphatidyl-(trimethylene-P-trimethyl)phosphonium; and phosphatidyl-(tetramethylene-P-trimethyl).

\section*{4,097,504 \\ 112 4,097,504} Edward J. Cragoe, Jr.; John B. Bicking, and Robert L. Smith, all of Lansdale, Pa., assignors to Merck \& Co., Inc., Rahway, N.J.
Division of Ser. No. 669,118, Mar. 22, 1976, Pat. No. 4,066,692, which is a continuation-in-part of Ser. No. 571,038, Apr. 23,

389,901, Aug. 23, 1973, abandoned, which is a continuation-in-part of Ser. No. 302,365, Oct. 30, 1972, abandoned. This application Dec. 17, 1976, Ser. No. 751,501 U.S. Cl. 260-405
U.S. C. \(260-405\)
1. The compound having the following formula

9 Claims
\[
\left.\left.\right|_{\substack{\mathrm{R}_{2}^{\prime} \\ \mathrm{CH}_{2}-\mathrm{Z}-\mathrm{C}-\mathrm{C}\left(\mathrm{R}^{4}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{R}^{5} \\ \mathrm{R}^{2}}} ^{\mathrm{C}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{A}-\mathrm{R}} \mathrm{OR}^{3}\right)
\]
wherein R is carboxy, a carboxy salt having the formula \(\mathrm{COO}^{-} \mathrm{Me}^{+}\)wherein Me is a pharmaceutically acceptable cation derived from a metal or an amine, or derivatized car boxy having the formula -COOY wherein Y is alkyl having \(1-10\) carbon atoms, 1 -succinimidoethyl, 1 -(pivaloyloxy)ethy
\(A\) is ethylene, trimethylene,
methylethylene, \(\alpha, \alpha\)-dimethylethylene, or \(\beta, \beta\)-dime thylethylene;
\(R^{1}\) is formyl, acetyl, propionyl, acryloyl, hydroxyacetyl, 3 -hydroxypropionyl, hydroxymethyl, 1-hydroxyethyl, 1,2-dihydroxyethyl, 1,3-dihydroxypropyl, or 1-hydroxy Z is methylethyl;
Z is methylene, ethylene, trimethylene, tetramethylene vinylene, or ethynylene
\(\mathrm{R}^{3}\) is independently hydrogen or methyl;
\(\mathrm{R}^{3}\) is hydrogen or loweralkanoyl;
\(R^{4}\) is selected independently from the group consisting of hydrogen and methyl; and
\(R^{5}\) is lower alkyl of \(1-4\) carbon atoms joined with the \(R^{2}\) methyl (with abstraction of hydrogen) to form a carbocy \(R^{5}\) is lower alkyl of 6 to 9 members; or
atom bearing \(\mathrm{R}^{2}\) and \(\mathrm{OR}^{3}\) an atoms joined to the carbo from 5 to 8 members.
2. The compound of claim 1 wherein \(R\) is carboxy or a harmaceutically acceptable carboxy sal
3. The compound of claim 2 which has the formula

wherein \(\mathbf{R}^{1}\) is formyl, acetyl, propionyl, hydroxyacetyl, hy droxymethyl, 1 -hydroxyethyl, or 1 -hydroxy- 1 -methylethyl; A is ethylene, trimethylene, \(\alpha\)-methylethylene, \(\beta\)-methyle thylene, \(\alpha, \alpha\)-dimethylethylene, or \(\beta, \beta\)-dimethylethylene, \(Z\) is methylene, ethylene, trimethylene, vinylene or ethynylene
and \(n\) is an integer of 2 to 6 .
4. 8 - Acetyl- 11 -(1-hydroxy
4. 8 -Acetyl-11-(1-hydroxycyclohexyl) undecanoic acid, the
compound of claim 3 wherein \(A\) and \(Z\) are ethylene, \(R^{1}\) is acetyl, and \(n\) is 3 .

CIS-13-9.DEOXY, \({ }^{4,097,505}\)
Gordon L. Bundy, Portage, Mich., assignor to The Upjohn Company, Kalamazoo, Mich.
Division of Ser. No. 614,243, Sep. 17, 1975, Pat. No. 4,033,989. This application Apr. 11, 1977, Ser. No. 786,701
U.S. Cl. \(260-413\) Int. C1. \({ }^{2} \mathbf{C 0 7 C} 177 / 00\)
1. A prostaglandin analog of the formula

wherein \(m\) is one to 5 , inclusive;
wherein \(M_{3}\) is

wherein \(R_{s}\) and \(R_{6}\) ae hydrogen or methyl, with the pro viso that one of \(R_{5}\) and \(R_{6}\) is methyl only when the othe is hydrogen;

or a mixture of

and
wherein \(R_{3}\) and \(R_{4}\) are hydrogen or methyl, being the same wherein \(R_{3}\) and \(R_{4}\) are hydrogen or methyl, being the same
or different, with the proviso that one of \(R_{3}\) and \(R_{4}\) is herein \(R_{1}\) is hydrogen, alkyl or one to 12 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, pheny substituted with one, two, or three chloro or alkyl of on to 3 carbon atoms, inclusive, or a pharmacologically ac wherein \(g\) is one, 2 , or 3
10. A prostaglandin analog of the formula

wherein \(m\) is one to 5 , inclusive;
wherein \(m\) is
wherein \(\mathrm{M}_{4}\) is

wherein \(R_{1}\) is hydrogen, alkyl or one to 12 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, pheny to 3 carbon atoms, inclusive, or a pharamacologically acceptable cation; and wherein \(g\) is one, 2 , or 3 . 19. A prostaglandin analog of the formula

\section*{CIS-139.DEOXY PGF COMPOUNDS}

wherein \(m\) is one to 5 , inclusive,
wherein \(R_{1}\) is hydrogen, alkyl of one to 12 carbon atoms inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, pheny
substituted with one, two, or three chloro or alkyl of on to 3 carbon atoms, inclusive, or a pharmacologically ac ceptable cation; and
wherein \(g\) is one, 2 , or 3
on L. Bundy, Portage, M
Division of Ser. No. 614,243, Sep. 17, 1975, Pat. No. 4,033,989 This application Apr. 11, 1977, Ser. No. 786,700
U. C. 260-413
1. A prostaglandin analog of the formula

wherein
\(m\) is one to 5 , inclusive;
wherein \(M_{1}\) is

or

wherein \(R_{5}\) and \(R_{6}\) are hydrogen or methyl, with the proviso that one of \(R_{5}\) and \(R_{6}\) is methyl only when the other is hydrogen;
wherein \(\mathrm{L}_{1}\) is

and

wherein \(R_{3}\) and \(R_{4}\) are hydrogen, methyl, or fluoro, being the same or different, with the proviso that one of \(R_{3}\) and \(R_{4}\) is fluoro only when the other is hydrogen or fluoro;
wherein \(R_{1}\) is hydrogen, alkyl of one to 12 carbon atoms,
inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, pheny substituted with one, two, or three chloro or alkyl of one to 3 carbon atoms, inclusive, or a pharmacologically ac-
ceptable cation; and
wherein \(\mathrm{Z}_{\text {, is: }}\)
(1) \(-\left(\mathrm{CH}_{2}\right)_{3}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CF}_{2}-\) or
\((2)-\left(\mathrm{CH}_{2}\right)_{3}-\left(\mathrm{CH}_{2}\right)_{g}-\mathrm{CH}_{2}\)
wherein \(g\) is one, 2 or 3 .
4,097,507
PROCESS FOR SEPARATING STRAIGHT AND PROCESS FOR SEPARATING STRAIGHT AND
BRANCHED CHAIN SOAPS AND THEIR ACIDS BRANCHED CHAIN SOAPS AND THEIR ACIDS
ucien Person, Levallois Perret, France, assignor to Produit Lucien Person, Levallois Perret, France, assignor
Chimiques Ugine Kuhlmann, Paris, France
UFiled Dec 28, 1976, Ser. No. 754,964
Filed Dec. 28, 1976, Ser. No. 754,964
Claims priority, application France, Jan. 13, 1976, 7600680 Claims priority, application France, Jan. 13, 1976, 7600680
U.S. C. \(260-413\) Int. C1. \({ }^{2}\) C11C \(1 / 00\)
\(\qquad\) 1. A process for separating straight and branched chain soaps comprising adding to a solution thereof a water-soluble itrate, and organic acid salt from a hydroxide, halide, sulfate ande, and organic acid salt in at least an amount stoichiomet corresponding lithium salts, separating said lithium salts as precipitate from said solution, acidifying said salts to recover straight chain organic acids and a lithium salt, and recovering branched chain organic acids from said solution.

CIS-4 5-DIDEHYDRO 4,097,508
CIS-4,5-DIDEHYDRO-13,14 DIHYDRO-9, DIOXY PGF Gordon L. Bundy, Portage, Mich., assignor to The Upjohn Company, Kalamazoo, Mich.
Company, Kalamazoo, Mich.
Division of Ser. No. 614,243, Sep. 17, 1975, Pat. No. 4,033,989. This application Apr. 11, 1977, Ser. No. 786,714
U.S. CI. \(260-413\) Int. Cl. \({ }^{2}\) C07C 177/00 \(\quad 12\) Claims 1. A prostaglandin analog of the formula

wherein \(m\) is on
wherein \(M_{1}\) is
A double-ylide metal complex of the formula

in which M stands for magnesium. zinc, cadmium, nickel, palladium or platinum.
3. A double-ylide metal complex of the formula

\(\left(\mathrm{H}_{3} \mathrm{C}\right)_{2}\)
in which \(\mathrm{M}^{\prime}\) stands for boron, aluminum, gallium, indium. thallium or gold.

4,097,510
WATER-INSOLUBLE NICKEL-COMPLEX DISAZO METHINE COMPOUNDS
Theodor Papenfuhs, Frankfurt am Main, and Heinrich Volk, Bad Vilbel, both of Germany, assignors to Hoechst Aktiengesellschaft, Frankfurt am Main, Germany
Filed Dec. 16, 1975, Ser. No. 641,252

Filed Dec. 16, 1975, Ser. No. 641,252 Claims priority, application Germany, Apr. 9, 1975, 2515523 U.S. Cl. 260-439 R \(R\) R.
1. A compound of the formula

wherein \(R_{3}\) and \(R_{4}\) are hydrogen, methyl, or fluoro, being the same or different, with the proviso that one of \(\mathrm{R}_{3}\) and \(\mathrm{R}_{4}\) is fluoro only when the other is hydrogen or fluoro
wherein \(R_{1}\) is hydrogen, alkyl of one to 12 carbon atoms,
inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, phenyl substituted with one, two, or three chloro or alkyl of one to 3 carbon atoms, inclusive, or a pharmacologically acceptable cation; and
wherein \(g\) is one, 2 , or 3 .

\section*{4,097,509}

DOUBLE-YLIDE METAL COMPLEXES
Hubert Schmidbaur, Garching, and Oswald Gasser, Munich, both of Germany, assignors to Hoechst Aktiengesellschaft,
Frankfurt am Main, Germany
Filed Mar. 22, 1977, Ser. No. 780,130
2612644; Jan. 21, 1977, 2702326 Germany, Mar. 25, 1976,

U.S. CI. 260-430
U.S. Cl. \(260-430\)
1. Bis-methyl-gold-bis-trimethylphosphano-methane of the formula: \(\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}\right]_{2} \mathrm{C}\left(\mathrm{AuCH}_{3}\right)_{2}\).
where Q is a monovalent radical selected from the class consisting of alkoxyalkyl, fluoroalkoxyalkyl, isocyanatoalkyl, methylthioalkyl, phenylthioalkyl,
\[
\underset{\left.\substack{\mathrm{YCH}_{2} \mathrm{CHCH}_{2} \\ 1 \\ R^{\prime}} \underset{R^{\prime}}{ } \mathrm{RSO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}}{\mathrm{R}^{\prime}}
\]

R is a monovalent hydrocarbon radical free of aliphatic unsaturation; \(R^{\prime}\) is selected from the class consisting of hydrogen and
 radical; \(Y^{\prime}\) is selected from the class consisting of \(Y\) and \(R\); and and \(R_{3}\) is hydrogen or lower alkyl.
\(a\) is an integer of from 1 to 5 .

4,097,512
N-TETRACHLOROFLUOROETHYLTHIO-HALO-BENZ N-TETRACHLOROFLUOROEEIHYLTHIO-HALO-BENZ
OYL ANILIDES AND THEIR USE AS FUNGICIDES Hsiao-Ling Lam, EI Cerrito, and Ferenc M. Pallos, Walnut
Creek, both of Calif., assignors to Stauffer Chemical Company, Westport, Conn.
Continuation-in-part of Ser. No. 613,642, Sep. 15, 1975, abandoned, which is a continuation of Ser. No. \(\mathbf{5}\) 37,24, De. 30
1974, abandoned. This application Jan. 31, 1977, Ser. No. Int. Cl .2
C07C \(69 / 00\); A01N \(9 / 12\)
U.S. Cl. 2 ,

2 Claims
1. A compound of the formula

in which R is chlorine, bromine, iodine or trifluoromethyl and \(R^{1}\) is hydrogen, chlorine, bromine, iodine, trifluoromethyl, alkyl having 1 to 5 carbon atoms, alkoxy having
atoms or alkylthio having 1 to 2 carbon atoms.

\section*{4,097,513}

PROCESS FOR THE PREPARATION OF 2-FLUORO-2,2-DINITROETHYL ISOCYANATE Alain G. Becuwe, Mennecy; Jean-Pierre G. Senet, Melun, an Claude M. Ucciani, Vert le Petit, all of France, assignor
Societe Nationale des Poudres et Explosifs, France Societe Nationale des Poudres et Explosifs, Franc
Filed Dec. 13, 1976, Ser. No. 749,892
Claims priority, application France, Dec. 23, 1975, 7539426 U.S. Cl. 260-453 PH \({ }^{\text {Int. }{ }^{2} \text {.2 }} \mathbf{C 0 7 C}\) 118/02, 119/042 6 Claims 1. A process for the preparation of a solution of 2 -fluoro- 2,2
dinitroethyl isocyanate which comprises reacting phosgene dinitroethyl isocyanate which comprises reacting phosgene
with 2-fluoro-2,2-dinitro-ethylamine in solution in the absence of an added acid acceptor at a temperature of \(-15^{\circ}-+5^{\circ} \mathrm{C}\) to obtain 2-fluoro-2,2-dinitro-carbamyl chloride in the first step and then decomposing said carbamyl chloride in a second step
in the absence of an added acid acceptor at a temperature in the absence of an added acid acceptor at a temperature
between \(20^{\circ}\) and \(50^{\circ} \mathrm{C}\) while passing through the solution a stream of an inert anhydrous gas.
\[
4,097,514
\]

PROSTAGLANDIN DERIVATIVE
Donald P. Strike, St. Davids, and Wen-Ling Kao, Devon, both of
Pa
assignors, to American Home Products Corporation, New Pa., assignors to American Home Products Corporation, New York, N.Y.
Division of Ser. No. 384,769, Aug. 1, 1973, Pat. No. 3,845,042 Which is a continuation-in-part of Ser. No. 282,200, Aug. 21,
1972, abandoned. This application Aug. 2, 1974, Ser. No. 494,15 \begin{tabular}{l} 
Int. Cl. \({ }^{2}\) C07C \(121 / 46,12 / / 48\) \\
\hline
\end{tabular}

and \(R_{3}\) is hydrogen \(R_{2}\) is hydrogen, acetoxy

PROCESS FOR THE MANUFACTURE OF CYANO-SUBSTITUTED STILBENE COMPOUNDS Adolf Emil Siegrist, Basel, and Vincenzo Coviello, Marly, both
of Switzerland, assignors to CIBA-GEIGY Corporation, Ardsley, N.Y. Division of Ser. No. 519,164, Oct. 30, 1974, Pat. No. 4,008,224.
This application Sep. 16, 1976, Ser. No. 723,691 Claims priority, application Switzerland, Nov. 19, 1973, 16246/73; Nov. 19, 1973, 16247/73 U.S. Cl. \(260-465\) G 1. A process for
d.

11 Claims 1. A process for the manufacture of cyano-substituted stilbene compounds of the formula

wherein either \(X_{1}\) represents the cyano radical and \(X_{2}\) represents hydrogen, chlorine or fluorine or together with \(\mathrm{R}_{2}\) represents a fused benzene ring, or \(X_{2}\) represents the cyano radical
and \(X_{1}\) represents hydrogen, chlorine or alkyl with 1 to 4 and \(X_{1}\) represents hydrogen, chlorine or alkyl with carbon atoms or together with \(\mathrm{R}_{\text {, represents a fused benzene }}\) ring, \(R\), represents hydrogen, chlorine, fluorine or alkoxy with 1 to 4 carbon atoms or together with \(X_{1}\) or \(X_{2}\) represents a or alkoxy with 1 to 4 carbon atoms and A represents a phenyl, naphthyl, biphenyl, or stilben-4-yl radical, which is unsubstituted or substituted by chlorine and/or alkoxy with 1 to 4 carbon atoms or a radical of the formula

wherein either \(\mathrm{X}^{\prime}\), represents the cyano radical and \(\mathrm{X}^{\prime}\), represents hydrogen, chlorine or fluorine or \(X^{\prime}\), represents the with 1 to 4 carbon atoms, each of \(R^{\prime}\), and \(R^{\prime}\), independently represents hydrogen, chlorine, fluorine or alkoxy with 1 to 4 carbon atoms and \(A_{1}\) represents \(1,4,-, 1,5-\) or \(2,6-\) naphthylene, 1,4 -phenylene or \(4,4^{\prime}\)-bisphenylene which comprises reacting a toluene derivative of the formula

wherein \(X_{l}, X_{2}, R_{1}\) and \(R\), have the meaning given above, with cleavage reaction occurs at the prevailing temperature and wherein \(X_{1}, X_{2}, R_{1}\) and \(R_{2}\) have
a Schiffs base of the formula

\section*{pressure with formation of a cyano group and an ester group.}
(IV)

METHOD FOR THE CATALITTIC PRODUCTION OF ACRYLONITRILE
Sumio Umemura; Kyoji Ohdan; Taizo Uda; Tokuo Matsuzaki; Mikio Hidaka; Yasuo Nakamura, and Tsuruoka, Masao, all of Ube, Japan, assignors to Produits Chimiques Ugine Kuhl-
mann, Paris, France mann, Paris, France

Filed Oct. 19, 1976, Ser. No. 733,771
U.S. CI. \(260-465.3\) Claims
1. A method for the catalytic production of acrylonitrile by mmoxidation of propylene, comprising bringing at an elevated temperature, a reaction feed containing propylene, ammonia and molecular oxygen in the gas phase into contact with cording to the formula:
\(\mathrm{Mo}_{\mathrm{C}} \mathrm{Co}_{3} \mathrm{Fe}_{\mathrm{C}} \mathrm{X}_{\mathrm{d}} \mathrm{O}_{\mathrm{e}}\)
wherein X represents at least one element selected from the group consisting of calcium, tungsten, chromium, zirconium titanium, zinc, manganese and tin; the subscripts \(a, b, c\). and \(d\) respectively represent the atomic ratios a:bc:c:d, of the elements in the range of 12:(4 to 10):(1 to 6):(0.1 to 1.0 ): and the subscript e represents
valence of the elements, the ratio a:e being in the range of \(12: 40\) to 70.
4,097,519

2,2-DIFLUORO-16-PHENOXY-PGA ANALOGS Udo F. Axen, Plainwell, Mich., assignor to The Upjohn Com pany, Kalamazoo, Mich.
on of Ser. No. 552,708, Feb. 25, 1975, Pat. No. 4,001,300 This application Sep. 17, 1976, Ser. No. 724,239
Int. Cl. 2 C 07 C
\(65 / 22,177 / 00\)
U.S. C1. 560-53
1. A compound of the formula

58 Claims
Tis cyano;
M is carbonyl;
\(J\) is methylene;
W is trans \(-\mathrm{CH}=\mathrm{C}\)-;
\(T_{1}\) and \(T_{2}\) are attached to adjacent carbon atoms;
\(\mathrm{T}_{1}\) is hydrogen only if \(\mathrm{T}_{2}\) is loweralkyl; and
\(T_{2}\) is loweralkyl having \(1-5\) carbon atoms.

\section*{4,097,517}

CLEAVAGE OF ALPHA-OXIMINOKETONES,
CLEAVAGE OF ALPHA-OXIMINOKETONES,
ALDEHYDES AND ACETALS AND THEIR NITROSO
Milorad M. Rogic, Whippany; Timoth R. Demmin, Morris or a mixture comprising that compound and the enantiomer Plains, both of N.J., and Karl P. Klein, Alexandria, Va., then assignors to Allied Chemical Corporation, Morris Township, assignors to At, N.J.
Morris County, N.J.
Filed Sep. 10, 1976, Ser. No. 722,249
U.S. CI. 260-465.4
\[
\begin{aligned}
& \text { Filed Sep. 10, 1976, Ser. No. } \text {. } 222,249^{\text {Int. Cl. }{ }^{2} \text { C07C } 120 / 00} \\
& \text { So-465.4 }
\end{aligned}
\]

13 Claims 1. Process for cleavage, in an alpha-oximino-ketone, alde-
hyde or acetal, or in the monomeric or dimeric alpha-nitroso hyde or acetal, or in the monomeric or dimeric alpha-nitroso
isomer of such compound, of the bond joining (a) the carbon atom bearing the oxime or nitroso group and (b) the carbonyl carbon atom or dialkoxy substituted carbon atom of an acetal
of such carbonyl group, which process comprises: contacting said alpha-oximino ketone, aldehyde or dialkyl acetal having no substituents except permissibly alkyl and chloro, or the
monomeric or dimeric alpha-nitroso isomer thereof with at monomeric or dimeric alpha-nitroso isomer thereof with at least one reagent of the group consisting of ortho esters of with Lewis acids - or maintaining a solution of an adduct of such ortho ester with such oximino compound - in an inert liquid electrophilic reaction medium for a time such that the

whereof,
wherein \(g\) is 2 to 4 , inclusive;
wherein \(M_{1}\) is
wherein \(M_{1}\) is

herein \(R_{8}\) and \(R_{8}\) are hydrogen or methyl, with the proviso wherein \(T\), is \(R_{8}\) is methyl only when the other is hydrogen; herein T is alkyl of one to 3 carbon atoms, inclusive,
fluoro chloro, trifluoromethyl, or - OR alkyl of one to 3 carbon atoms, inclusive, and wherein \(s\) is zero, one, 2 , or 3 , with the proviso that not more than two T's are other than alkyl;
inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, stainless steel packing whose passage diameter is less than the aralkyl of 7 to 12 carbon aubstituted with one, 2 , or 3 chloro, alkyl of one to 4 the oxygen concentration at less than \(10 \%\) by volume in said carbon atoms, inclusive, or a pharmacologically accept- chamber and maintaining the reaction gas velocity in the exable cation,

wherein \(R_{5}\) is hydrogen or methyl, with the proviso that \(R_{S}\) is methyl only when \(R_{7}\) and \(R_{8}\) are both hydrogen.
PREPARATION OF PERACETIC ACID BY OXIDATION OF ACETALDEHYDE
Gerald Hoimes Slattery, Pasadena, Md., assignor to FMC Cor-
poration, Philadelphia, Pa.
Continuation of Ser. No. 105552, Jan. 11, 1971. This application Feb. 1, 1974, Ser. No. 438,949
U.S. Cl. \(260-502\) A

1. In the process of producing peracetic acid by the vapor phase oxidation of acetaldehyde in a reaction zone, in which the reactants, acetaldehyde and oxygen, are mixed before
introducing the reaction gas mixture into the reaction zone, introducing the reaction gas mixture into the reaction zone, which is maintained at a temperature of \(100^{\circ}\) to \(230^{\circ} \mathrm{C}\) at a
pressure of up to 50 pounds per square inch, and recovering the product peracetic acid by absorption in a liquid selected from the group consisting of acetone and ethyl acetate, the improve ment which comprises: (a) mixing the reactants in a cylindrical
plosion suppression chamber in excess of the flame velocity of the reaction gas mixture, and (b) introducing the mixed reaction gas mito in the reaction zone is maintained at less than \(10 \%\) by volume of the reaction gas mixture.

\section*{4,097,521}

MANUFACTURE OF AMIDOSULFONIC ACIDS Hans Rupert Merkle, Ludwigshafen, and Albrecht Miieller, Frankenthal, both of Germany, assignors to BASF Aktiengesellschaft, Ludwigshafen, Germany
Filed May 13, 1977, Ser. No. 796,548
Claims priority, application Germany, Jun. 23, 1976, 2628195 U.S. Cl \(260-513.6{ }^{\text {lnt. Cl. }}{ }^{2}\) C07C 143/86

7 Claims
U.S. CI. \(260-513.6\)
1. A process for the manufacture of amidosulfonic acids of the formula
\[
\begin{gathered}
\mathrm{R}^{\prime}-\mathrm{N}-\mathrm{SO}_{3} \mathrm{H} \\
1 \\
\mathrm{H}
\end{gathered}
\]
where \(R^{\prime}\) is an aliphatic or cycloaliphatic radical, which comprises reacting a Schiff base of the formula
\[
\mathrm{R}^{1}-\mathrm{N}=\mathrm{C}--_{\mathrm{R}^{3}}^{\mathrm{R}^{2}}
\]
where \(R^{1}\) has the above meanings and \(R^{2}\) and \(R^{3}\) may be identical or different and each is an aliphatic or cycloaliphatic radical or a furyl radical, and \(\mathrm{R}^{2}\) may also be hydrogen, with sulfur trioxide in a first stage and then reacting the adduct formed in the first stage with water in a second stage.

SYNTHESIS OF M-BENZOYL-HYDRATROPIC ACID eandro Baiocchi, Rome, Italy, assignor to Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.p.A., Rome, Italy Claims priority, application Italy, Jun. 5, 1975, 49925 A/75 U.S. Cl. 260—517 Int. Cl. \({ }^{2}\) C07C 65/20 5 Claims 1. A process for the production of \(m\)-benzoyl hydratropic and a compound selected from the group consisting of pyruvic acid and its ester to obtain a reaction mixture containing as a reaction product 7 -benzyol-3-methyl-2,4,5,6-tetrahydro-ben-zo[b]-furan- 2 -one, and then (b) heating the reaction mixture at a temperature of excess of an acid catalyst.

\section*{4,097,523}

LIOUID PHASE OXIDATION OF UNSATURATED ALIPHATIC ALDEHYDES TO UNSATURATED aliphatic acids
Jar-Lin Kao, Cherry Hill, N.J., and John Joseph Leonard, Springfield, Pa., assignors to Atlantic Richfield Company, Los Angeles, Calif.

Filed Jan. 12, 1977, Ser. No. 758,623
S. Cl. \(260-530 \mathrm{~N}\)
1. A process for the liquid phase oxidation of ana, \(\beta\) nsaturated aliphatic aldehyde containing from 3 to 6 carbon toms in an inert solvent solution to the corresponding unsaturated aliphatic carboxylic acid which comprises contacting
said aldehyde with oxygen or an oxygen-containing gas at a
temperature of from about \(0^{\circ} \mathrm{C}\). to \(100^{\circ} \mathrm{C}\). and a pressure between about atmospheric and 1500 psig in the presence of
from about 0.00001 to 0.5 mole of a thallium compound or from about 0.00001 to 0.5 mole of a thallium compound or
mixture of thallium compounds selected from the group consisting of thallium triacetate, thallous acetate, thallium trihexanoate, thallium tripropionate, thallium acetylacetonate, thallic bromide. thallic chloride, thallic nitrate, thallic sulfate, thallic oxide, thallous iodide, thallous hydroxide, thallous chloride, thallous bromide, thallous carbonate, thallous sulfate, thallous effect an in situ decomposition of intermediate peroxide compounds formed during the oxidation to said unsaturated aliphatic carboxylic acid. \(\qquad\)
4,097,524
PROCESS FOR THE PREPARATION OF FORMAMIDES Haven Sylvester Kesling, Jr., Drexel Hill, Pa., assignor to Atlantic Richfield Company, Los Angeles, Calif.

Filed Dec. 27, 1976, Ser. No. 754,151
U.S. Cl. 260-561 R

Int. Cl. \({ }^{2}\) C07C \(103 / 02\)
15 Claims
U.S. Cl. \(260-561 \mathrm{R}\)
1. A process for the preparation of formamides which com-
claims prises reacting a tertiary aliphatic, cycloaliphatic or heterocyclic amine with carbon monoxide in the presence of a sufficient amount of a copper compound catalyst to effect the carbonylation of the amine, an agent capable of oxidizing copper and a dehydrating agent.

4,097,525
AROMATIC AMIDINES AS ANTIVIRAL AGENTS IN
AROMATIC AMIDINES AS AN
Allen R. Kraska, East Lyme, and Rodney C. Schnur, Noa both of Conn., assignors to Pfizer Inc., New York, N.Y.
 which is a division of Ser. No. 708,180, Jul. 23, 1976, Pat. No. 4,025,555. This application Oct. 13, 1977, S
U.S. C. \(260-564 \mathrm{R}\) nt. Cl. \({ }^{2}\) C07C 123/00
1. A compound of the structure

and the non-toxic acid addition salts thereof wherein
\(\mathrm{R}_{1}\) and \(\mathrm{R}_{\text {2 }}\) are each alkyl of from 12 to 24 carbon atoms; and
\(R_{1}\) and \(R_{2}\) are each alk
\(R_{3}\) is dimethylamino. 7 Claims tural formula.

\section*{4,097,526}

PREPARATION OF ORGANIC SULFONE COMPOUNDS
PREPARATION OF ORGANIC SULFONE COMPOUNDS bide Corporation, New Yeston, W. V

Filed Feb. 10, 1977, Ser. No. 767,487 ed Feb. 10, 1977, Ser. No. 76
Int. Cl. \({ }^{2}\) C07C \(131 / 00\)
66 AC
U.S. Cl. \(260-566 \mathrm{AC}\)

27 Claims its corresponding sulfone compound with a mixture of hydroits corresponding sulfone compound with a mixture of hydrogen peroxide and a carboxylic acid, the improvement which
comprises conducting the reaction in the presence of a catalytically effective amount of a mineral or an organic sulfonic acid
[N-(2-DIPHENYLMETHOXYETHYL).N.(1-METHYL-2. PHENOXYETHYL)-N-METHYL] AMINE Angel Lazaro Porta, and Antonio Ibainez Paniello, both of Barcelona, Spain, assignors to Doctor Andreu, S.A., Spain Filed Jul. 28, 1977, Ser. No. 819,900
Claims priority, application Spain, Aug. 5, 1976, 450.500; Aug. 1976, 450.501; Aug. 5, 1976, 450.502; Aus
Int. Cl. \({ }^{2}\) C07C \(93 / 08\)
U.S. C. \(260-570 \mathrm{R}\)
[ N -(2-diphenylmethox yethyl)-N.(1-methyl-2-ph 1 Claim thyl)-N-methyl] amine of the following structural formula:

NTIOXIDANTS AND P,097,527
ANTIOXIDANTS Richard H. Kline, Cuyahoga Falls, Ohio, assignor to The Good year Tire \& Rubber Company, Akron, Ohio

Filed Dec. 9, 1971, Ser. No. 206,501
U.S. Cl. \(260-570.8 \mathrm{R}\)

3 Claims
1. A process of preparing a compound having the following

comprising (I) reacting, under basic conditions. a combination comprising (A) a phenolic compound having the following structural formula:

wherein X is selected from the group consisting of \(\mathrm{Cl}, \mathrm{Br}\).

wherein \(R^{5}, R^{6}, R^{7}\) and \(R^{8}\) are alkyl radicals having 1 to 4 carbon atoms and (B) a nitroalkane having the following struc-

and its pharmaceutically acceptable salts.

2-DECARBOXY-2-HYDROXYMMETHYL-11-DEOXY-PGE
ANALOGS
orman A. Nelson, Galesburg, Mich., assignor to The Upjohn Company, Kalamazoo, Micb.
Division of Ser. No. 647,369, Jan. 28, 1976, Pat. No. 4,032 This application Apr. 6, 1977, Ser. No. 784,994
S. Cl. \(260-586\) R \(\quad 15\) Claims
I. A prostaglandin analog of the formula

wherein \(M_{1}\) is

wherein \(\mathrm{R}_{\mathrm{L}}\) is hydrogen or methyl; wherein \(L_{1}\) is
and (II) reducing the product of step (I), wherein \(R\) and \(\mathbf{R}^{\prime}\) are and (II) reducing the product of step (I), wher ein \(R\) and \(R^{1}\) are from the group consisting of hydrogen and alkyl radicals having 1 to 6 carbon atoms, \(R^{3}\) is selected from the group consisting of hydrogen and alkyl radicals having 1 to 6 carbon atoms and \(R^{4}\) is an alkyl radical having 1 to 6 carbon atoms.

\section*{PROCESS FOR THE PROOU 4}

PROCESS FOR THE PRODUCTION OF SQUARIC ACID Manfred Schroeder, and Wolfgang Schaefer, both of Marl Germany, assignors to Chemische Werke Huels Aktiengesell schaft, Marl, Germany \(\begin{gathered}\text { Filed May 19, 1977, Ser. No. 798,546 }\end{gathered}\)
Filed May 19, 1977, Ser. No. 798,546
Claims priority, application Germany, May 28, 1976, 2623836

I.S. Cl. \(260-586 \mathbf{C l a i m s}\)
1. A process for the production of squaric acid, comprising reacting hexachlorocyclobutene with \(70-96 \%\) by weight sulfureacting hexachlorocy
ric acid at \(80^{\circ}-150^{\circ} \mathrm{C}\)

\section*{SUBSTITUTED 4,097,531}

SUBSTITUTED CYCLOPROPANE PROCESS AND PRODUCT
James O. Bledsoe, Jr., and Walter E. Johnson, Jr., both of Jacksonville, Fla., assignors to SCM Corporation, New York, N.Y.

Continuation-in-part of Ser. No. 692,978, Jun. 4, 1976,
abandoned. This application Apr. 11, 1977, Ser. No. 786,125 U.S. CI. \(260-586\) R \(\mathbf{R}\) Cl. \({ }^{2}\) C07C 45/00, 49/61

12 Claims
1. A substituted cyclopropane selected from the group represented by the following general structures:
-
where \(R\) is a monovalent alkyl or alkylene radical, and \(R^{\prime}\) is hydrogen or \(R\).
5. The process for making substituted cyclopropane repre sented by the following general structures:
where \(\mathbf{R}\) is a monovalent alkyl or alkenyl radical, and \(\mathbf{R}^{1}\) is hydrogen or \(R\), which comprises:
resence of an alkaline arrh metal carbonate and liquid glycol vehicle, a compound represented by

Wherein \(R_{3}\) and \(R_{4}\) are hydrogen, methyl or fluoro, being the same or different, with the proviso that one of \(R_{3}\) and \(R_{4}\) is methyl only when the other is hydrogen or methyl; wherein \(g\) is one, 2 , or 3 ; and
where X is a halogen atom, until said substituted cyclopropan is formed.

ALPHA-OXY(OXO)SULFIDES AND ETHERS William J. Evers, Red Bank, and Howard H. Heinsonn, Jr., Fragrances Inc., New York, N.Y. Division of Ser. No. 730,538, Oct. 7, 1976, Pat. No. 4,045,491. This application Mar. 31, 1977, Ser. No. 783, 4,85
U.S. Cl. \(260-590\) D Int. Cl. \({ }^{3} \mathbf{C 0 7 C} 49 / 76\)
1. The compound having the structure:


4,097,533 ARUID PHASE PROCESS FOR THE PRODUCTION OF
AROMATIC ALDEHYDES John A. Scheben, Erlanger, Ky., assignor to National Distillers and Chemical Corporation, New York, N.Y.

Filed Nor. 19, 1976, Ser. No. 743,435
U.S. Cl. 260-599
int. C1. \({ }^{2}\) C07C 45/00

wherein \(n\) has an average value of from about 1.5 to about 10 by polymerizing \(4,4^{-}\)-thiobis ( 6 -tert-butyl-m-cresol) which comprises reacting said cresol with oxygen at a molar ratio of from about 2 to about 3.2 and at a temperature of from about \(20^{\circ} \mathrm{C}\). to about \(80^{\circ} \mathrm{C}\). in the presence of a copper salt/amine complex
catalyst and an inert diluent, the molar ratio of said cresol to said complex being from about 35 to about 45 , the molar ratio of said cresol to said amine being from about 40 to about 53 and the molar ratio of said copper salt to said amine being from about 0.8 to about 1.4 , said copper salt being selected from chloride, bromide, acetate, propionate, palmitate and benzoate, and said amine being selected from pyridine, cyclohexylamine,
diethylamine, di-n-butylamine, n-butylamine, t-butylamine, \(t\)-octylamine and tetramethylethylene diamine.

PREPARATION OF ALDEHYDES FROM ALCOHOLS 10 Claims Kang Yang; Kaye L. Motz, and James D. Reedy, all of Ponca 1. A process for the preparation of aromatic aldehydes which comprises contacting at a temperature of from about \(140^{\circ}\) to about \(300^{\circ} \mathrm{C}\) toluene or a substituted toluene in which the substituent is lower alkyl or lower alkoxy in the liquid phase with oxygen in the presence of a catalyst comprising at
least about \(1 \%\) by weight of phosphoric acid and of water and catalytically effective amount of palladium and at least about \(0.01 \%\) by weight of a modifier selected from the group consisting of:
(a) compounds of the formula, \(\mathrm{R}-\mathrm{Z}\) in which R is alkyl, aryl,
aralkyl or alkaryl of up to about 8 carbon atoms and Z is
SH - SR' -SSR' \(\mathbf{R}^{\prime} \mathrm{SO}_{-}\)R'SO
wherein \(R^{\prime \prime}\) is \(H\) or lower alkyl and \(R^{\prime}\) has the same meaning as R ;
(b) cyclic compounds containing a hetero sulfur atom selected from the group consisting of thiophene, phenothiazine, thiazole and benzothiophene and sulfones and sulfoxides thereof
(c) thiourea and N -lower alkyl thiourea;
(d) tertiary amines containing up to about 10 carbon atoms; and
e) \(\mathrm{R}_{3} \mathrm{PO}_{3}\) and \(\mathrm{R}_{3} \mathrm{PO}_{4}\) wherein R has the same meaning as
said percents by weight being based on the weight of the supported catalyst.

PROCESS FOR POLYMERIZING
PROCESS FOR POLYMERIZING
4-THIOBIS(6-TERT-BUTYL-M-CRESOL Richard H. Hirsch, St. Louis, Mo., assignor to Monsanto Company, St. Louis, Mo. \(\begin{aligned} & \text { Filed Dec. 16, 1976, Ser. No. 751,774 }\end{aligned}\) Int. Cl. \({ }^{2}\) C07C 148/00
U.S. Cl. 260-609 F
U.S. C. \(260-609 \mathrm{~F}\)
1. Process for preparing a polymer of the formula

13 Claims

Kang Yang; Kaye L. Motz, and James D. Reedy, all of Ponca
City, Okla., assignors to Continental Oil Company, Ponca City, Okla.,
City, Okla.

Filed Jan. 31, 1977, Ser. No. 763,958
U.S. Cl. 260-603 C
\[
\mathrm{c}^{\text {Int. Cl. }{ }^{2} \text { Co7C 45/16 }}
\]

7 Claims
1. In the method of preparing \(\mathrm{C}_{5}-\mathrm{C}_{15}\) aldehydes from pri-
mary \(\mathrm{C}_{5}-\mathrm{C}_{5}\) alcohols by passing alcohol and an oxygen-conmary \(\mathrm{C}_{5}-\mathrm{C}_{1}\) alcohols by passing alcohol and an oxygen-con-
taining gas over silver catalyst at an elevated temperater taining gas over silver catalyst at an elevated temperature the
improvement comprising passing a the alcohol and an oxygenmprovement comprising passing a the alcohol and an oxygencatalyst, and being at a temperature in the range of about \(25^{\circ}\) to about \(300^{\circ} \mathrm{C}\)., and then passing the reactants through the reaction zone which is at a temperature of above \(300^{\circ} \mathrm{C}\). to about \(600^{\circ} \mathrm{C}\)., said pre-reactor zone having a maximum temperature of at least from about \(25^{\circ}\) to \(50^{\circ} \mathrm{C}\). below the reaction
zone temperature, said improved process being characterized further as providing a conversion of at least \(90 \%\) with a selectivity of at least \(85 \%\)

4,097,536
PREPARATION OF A BLEACH
Robert Charles Patrick Cubbon, New Castle-U-Lyme; Peter John Russell, Eastham The Wirral; Robert Eric Talbot, Burtonwood, and David Thomas Woodbridge, Hitchin, all of
England, assignors to Interox Chemicals Limited, London, England
Continuation-in-part of Ser. No. 683,817, May 6, 1976, Continuation-in-part of Ser. No. 683,817, May 6, 1976, abandoned. This application Apr. 26, 1977, Ser. No. 791,003 Claims priority, application United Kingdom, Nov. 18, 1975,
47388/75; Ireland, Nov. 1, 1976, 2426/76 Int. Cl. \({ }^{2}\) C11D 7/38, 7/54, 7/18
U.S. C. \(260-610 \mathrm{R}\) (laims 1. A process for the production of diphthaloyl peroxide
comprising the steps of comprising the steps of:
(i) forming a mobile slurry or paste containing aqueous hydrogen peroxide and particulate phthalic anhydride in a (ii) maintaining the slurry or \(1: 10\);
slurry or paste for a period of at least half an hour at a temperature of from ambient to \(50^{\circ} \mathrm{C}\), thereby forming particulate diphthaloyl peroxide and;
(iii) thereafter separating the diphthaloyl peroxide from the aqueous phase.

2-DECARBOXY-2-HYDROXYMETHYL-3,7-INTER-M-
PHENYLENE-PGF COMPOUNS Norman A. Nelson, Galesburg, Mich., assignor to The Upjohn Company, Kalamazoo, Mich. vision of Ser. No. 647,363, Jan. 8, 1976, Pat. No. 4,028,419
This application Mar. 17, 1977, Ser. No. 778,647


> U.S. Cl. \(568-807\) 1. A prostaglandin analog of the formula

wherein Y is trans- \(\mathrm{CH}=\mathrm{CH}-\) -
wherein \(M_{1}\) is

wherein
\(\mathbf{R}_{5}\) is hydrogen or methyl;
\({ }_{\text {wherein }} L_{1}\) is

or a mixture of

and
which process comprises (1) treating the aforesaid trichloroethane with from 3 to 20 moles anhydrous liquid ammonia per mole trichloroethane thereby to form a substantially pure
dichloroethylene compound of the above formula, (2) removing unreacted ammonia, (3) dissolving the reaction product in an amount of a methanol/water mixture whose pH has been adjusted to from 3 to 11 sufficient to dissolve both the formed ammonium chloride and the aforesaid dichloroethylene compound, (4) heating the mixture of ingredients and then allowing the mixture to cool until precipitation of the dichloroethylene compound is accomplished and (5) isolating the precipitated dichloroethylene compound

\section*{PROCESS OF SCRUBBING P539} Hans-Martin Stönner, Schwalbach, and Paul Wiesner, Oberursel, both of Germany, assignors to Metallgesellschaft Aktien. gesellschaft, Frankfurt am Main, Germany
Claims priority, application Germany, Dec. 28, 1973, 2365064 U.S. Cl. \(568=751\) Int. Cl. \({ }^{2}\) C07C 37/34

1 Claim
U.S. Cl. \(568-751\)
1. A process for the recovery of phenols in admixture with diisopropyl ether serving as an extraction solvent which comprises the steps of:
(a) deriving from the pressure gasification of coal and gas containing in addition to monovalent and polyvalent phenols, ammonia, carbon dioxide, hydrogen sulfide, ammonia salts with chlorine and fluorine, fatty acids, dust, tars and oils as impurities;
(b) scrubbing the gas derived in step (a) with water to produce a scrubbing aqueous mixture containing some of said impurities and some of said phenols, thereby producing a precleaned gas; from;
(d) condensing a phenolic fraction from the cooled pre cleaned gas and removing tar and oil from the resulting condensate, said condensate constituting an aqueous mix
ture relatively rich in monovalent phenols; iure relatively rich in monovalent phenols;
valent phenols with diisopropyl ether solvent in monosaid monovalent phenols and form a further solvent consisting of monovalent phenols and diisopropyl ether; (f) extracting the scrubbing aqueous mixture separately from the aqueous mixture relatively rich in monovalent phenols
with the further solvent produced in step (d) to extract the polyvalent phenols in said further solvent and leaving monovalent phenols in said scrubbing aqueous mixture; monov
and
and
(g) extracting monovalent phenol with fresh diisopropyl ether from said scrubbing aqueous mixture after step (f) and combining the resulting mixture of diisopropyl ethe step ( \()\).

PROCESS FOR THE PREPARATION OF Immel, Krefeld; Hans-Helmut Schwarz, Krefeld-Traar, and Oskar Weissel, Krefeld, all of Germany, assignors to Bayer Aktiengesellschaft, Leverkusen, Germany
Claims priority, application Germany, Aug. 27, 1976, 2638733
U.S. C1. 568-862

Int. Cl. \({ }^{2}\) C07C 29/14
14 Claims the formula
wherein R represents an alkyl radical of 1 to 20 carbon atoms which comprises contacting a 2 -alkylacrylaldehyde of the formula
\[
\begin{gathered}
\mathrm{CH}_{2}=\mathrm{C}-\mathrm{CHO} \\
\substack{1 \\
\mathrm{R}}
\end{gathered}
\]
wherein \(R\) has the meaning given above with formaldehyde and thereafter contacting the resultant reaction mixture hydrogen in the presence of a hydrogenation catalyst.

4,097,541
PROCESS OF PRODUCONG MAINLY MONOCYCLIC AROMATIC COMPOUNDS FROM UNUTILIZED CARBON RESOURCES MAINLY COMPOSED OF POLYCYCLIC AROMATIC COMPOUNDS Tomoya Sakai, Nagoya, and Naoki Negishi, Tokyo, both of Japan, assignors to Kogyo Kaihatsu Renkyusho (Industria Research Institut), Tokyo, Japan
This application Aug. 13, 1976, Ser. No. 714,006 Claims priority, application Japan, Jun. 21, 1973, 48-69221 Mar. 13, 1974, 49-28046; Mar. 14, 1974, 49-28541; Mar. 14, Mar. \(13,1974,49-28542\)
1974 Int.
R
Cl. \({ }^{2}\) C07C 1/20, 15/02 U.S. Cl. \(260-668 \mathrm{R}\)
1. A method for decarbonylating an oxygencontaining
10 Claing condensed polycyclic aromatic hydrocarbon having at least one group selected from the group consisting of carbonyl hydroxyl, and carboxyl which consists essentially of heating said oxygen-containing condensed polycyclic aromatic hydro-
carbon at a cemperature of from about \(500^{\circ} \mathrm{C}\) to about \(900^{\circ} \mathrm{C}\) carbon at a temperature of from about under atmospheric pressure in contact with hydrogen and in under absence of a catalyst, to thereby stoichiometrically split off carbon monoxide.

4,097,542
PRODUCTION OF ALKYLBENZENES Ivan James Samuel Lake, Middlesbrough, England, assignor to Imperial Chemical Industries Limited, London, Engl Claims priority, application United Kingdom, Sep. 29, 1976, 40388/76

\section*{Int. Cl. \({ }^{2}\) C07C \(3 / 52\)}

11 Claims
U.S. C. \(260-671 \mathrm{M}\) Claims 1. A process for effecting the alkylation of an aromatic hydrocarbon which comprises contacting an aromatic hdition carbon with an aikylautng agent under reaction conditions
which are effective for accomplishing alkylation of the arowatic hydrocarbon and in the presence of a catalyst comprising zeolite nu-1 having a composition expressed by the formula
0.9 to \(1.3 \mathrm{R}_{2} \mathrm{O}: \mathrm{Al}_{2} \mathrm{O}_{3}: 20\) to \(150 \mathrm{SiO}_{2}: 0\) to \(40 \mathrm{H}_{2} \mathrm{O}\)
where \(\mathbf{R}\) is one or more of hydrogen, ammonium, phosphonium of \(1 / n\) of a cation having a valency \(n\) and having an X-ray
diffaction pattern when \(R\) is \(H\) substantially as shown in Table

4,097,543
SELECTIVE DISPROPORTIONATION OF TOLUENE Werner O. Haag, Lawrenceville, and David H. Olson, Penning-
ton, both of N.J., assignors to Mobil Oil Corporation, New York, N.Y.
Continuation-in-part of Ser. No. 685,869, May 12, 1976, abandoned, and a continuation-in-part of Ser. No. 685,872, May 12, 1976, abandoned. This application Jan. 21, 1977, Ser. No. Us. Cl 260-672 Tnt. C1.2 \({ }^{2}\) C07C 3/6
U.S. Cl. \(260-672 \mathrm{~T}\)
1. A process for the selective production of paraxylene by 1. A process for the selective production of paraxylene by
disproportionation of toluene in the presence of a catalyst comprising a crystalline aluminosilicate zeolite having a silica
to alumina ratio of at least about 12 and a constraint index to alumina ratio of at least about 12 and a constraint index
within the appoximate range of 1 to 12, which catalyst has within the approximate range of 1 to 12 , which catalyst has
undergone controlled precoking by exposing the same to a undergone controlled precoking by exposing the same to a
thermally decomposable organic compound at a temperature in excess of the decomposition temperature of said compound but less than about \(1200^{\circ} \mathrm{F}\)., at a hydrogen to organic compound mole ratio of between 0 and 1 to deposit at least about
2 weight percent coke thereon and thereafter contacting tolu2 weight percent coke thereon and thereafter contacting tolu-
ene with the resulting coke-containing catalyst under disproene with the resulting coke-containing catalyst under dispro\(800^{\circ}\) F. and \(1025^{\circ}\) F. at a hydrogen to toluene mole ratio greater than 1 and up to about 10 and recovering a product mixture containing para-xylene in an amount greater than the xylenes produced. sylenes produced.

\section*{4,097,544}

SYSTEM FOR STEAM.CRACKING HYDROCARBONS AND TRANSFER-LINE EXCHANGER THEREFOR Robert J. Hengstebeck, Valparaiso, Ind., assignor to Standard Oil Company, Chicago, III.

Filed Apr. 25, 1977, Ser. No. 790,329
Int. Cl. \({ }^{2}\) C07C 3/30; F28F 19/00
U.S. Cl. \(260-683 \mathrm{R}\)
1. A transfer-line exchanger, useful in a system for steamracking hydrocarbons to produce ethylene, which comprises a vertical tank having: cylindrical intermediate portion with side opening
adjacent the top and bottom ends to withdraw and adjacent the top and botlom ends
introduce, respectively, fluid coolant;
a conical bottom entrance end portion connected to the bottom end of said intermediate portion; and
\[
\begin{aligned}
& \text { a conical top exit end portion } \\
& \text { said intermediate portion; }
\end{aligned}
\]
said intermediate portion; a horizontal top cube sheet having a number of openings and supported by said tank a
horizontal bottom tube sheet having a number of open ings corresponding to and in vertical alignment with ings corresponding to and in vertical alignment with
said openings in said top tube sheet, said bottom tube saic openings in saited in said tank at the bottom end of
sheet being supporter said intermediate portion of said tank;
conical shield having its vertex below its base and sup. ported within said conical bottom entrance end portion of said tank to provide an upper chamber between said
shield and said botom tube sheet and a lower chambe between said shield and the bottom part of said conical bottom entrance end portion, said shield having openings in vertical alignment with said openings in said tube heets;
sheet and extending through said bottom tube sheet to said openings in said conical shield; and
means to introduce steam into the chamber between said conical shield and said bottom tube sheet, aid conical shield being constructed with respect to sid tubes or said conical bottom entrance end portion so that steam introduced into said upper chamber between said conical shield and said bottom tube sheet can pass downwardly into said lower chamber in said conical bottom entrance end portion to mix with gas passing upwardly hrough said conical bottom entrance end portion of said tank before the gas passes upwardly through said tubes.

\section*{
 \\ }

10. A system, as an apparatus, for steam-cracking hydrocarbons to produce a gaseous steam-cracked product containing bons to produce a gaseous
ethylene, which comprises:
ethylene, which comprises: a first furnace for steam-cracking a heavy hydrocarbon feed, said first cracking furnace having a pipe with an inlet for entrance of the heavy hydrocarbon feed with water and an outlet for gaseous cracked product;
a second furnace for steam-cracking a lighter hydrocarbon feed, said second cracking furnace having a pipe with an inlet for entrance of the lighter hydrocarbon feed
water and an outlet for gaseous cracked product; a mixer having first inlet, a second inlet and an outlet, said
first inlet being connected to said outlet of said pipe of said first furnace;
a first transfer-line exchanger having an outlet connected to said second inlet of said mixer and an inlet connected to
said outlet of said pipe of said second furnace; and said outlet of said
second transfer-line exchanger having an inlet connected to said outlet of said mixer,
whereby, in the use of the apparatus, the gaseous cracked product from the lighter hydrocarbon feed is cooled by passage through said first transfer-line exchanger and then mixed feed before that product from the heavy hydrocarbon feed is passed through the second transfer-line exchanger.
15. A system, as a process, for steam-cracking hydrocarbons to produce a gaseous steam-cracked product containing ethylene, which comprises:
steam-cracking a heavy hydrocarbon feed at an elevated temperature to produce a first gaseous steam-cracked product containing ethylene:
separately steam-cracking a lighter hydrocarbon at an elevated temperature to pro-uce a second gaseous stea cracked product containing ethylene;
cooling the second gaseous steam-cracked product by passing it through a transfer-line exchanger in indirect heat ixing the cooled second gaseous steam-cracked prod with the first gaseous steam-cracked product; and passing the mixture through a second transfer-line exchanger for indirect heat exchange relationship with aqueous fluid coolant.

HEAT-RESISTANT 4,097,545 HEAT-RESSTANT THERMOSETTING POLYIMIDE RESIN WITH BIS-PHENOL-EPICHLOROHYDRIN ReACTION PRODUCT
Keiichi Akiyama, Yokosuka; Junichi Kamiuchi, Yokohama; Itsuo Matsuda, Chofu, and Takara Fujii, Yokohama, all of
Japan, assignors to Toshiba Chemical Products Co. Ltd., Japan, assignors
Tokyo, Japan
Tokyo, Japan
Division of Ser. No. 615,933, Sep. 25, 1975. This application Aug. 30, 1976, Ser. No. 718,931
Claims priority, application Japan, Sep, 25,
 Mar. 6, 1975, \(50-27292 ;\) Mar. 6, 1975, 50-27293
Int. Cl.
U.S. C. \(260-830 \mathrm{P}\) \(\qquad\) 8 Claims
1. A heat-resistant thermosetting resin composition consisting essentially of a reaction product of components (A), (B) and (C) wherein:
rated dicarboxlic acid expressed by

wherein R is a divalent radical having at least two carbon atoms and \(\mathbf{R}^{\prime}\) is a divalent radical having a carbon-carbon double bond, and (b) about \(30 \%\) by weight based on the total weight of (a) plus (b)
(B) is at least one selected from the group consisting of B) is at least one selected from the group consisting of
cyanuric acid, isocyanuric acid and tris (epoxy propyl) isocyanurate, and
(C) is at least one compound selected from the group consisting of pyromellitic diimide; benzophenone tetracarboxylic acid diumide; 2, 3,5, 7-naphthalene-tetracarboxylic acid diimide, \(3,3^{\prime}, 4,4^{\prime}\)-diphenyltetra-carboxy
hydantoin or derivative of the formula:

\section*{4,097,547}

STABILIZED POLYCARBONATES
Thomas H. CTeveland, and John V. Bailey, both of New Martinsville, W. Va., assignors to Mobay Chemical Corporation, Pittsburgh, Pa. Division of Ser. No. 165,300, Jul. 22, 1971, Pat. No. 3,733,296 which is a continuation-in-part of Ser. No. 342, Jan. 2, 1970 abandoned. This application Dec.
Int. C1. \({ }^{2}\) C08K \(3 / 26\)
wherein \(R_{1}\) and \(R_{2}\) may be the same or different and repre and barbituric acid or derivative of the formula:

wherein \(R_{3}\) and \(R_{4}\) may be the same or different and represent hydrogen or one to five carbon atom alkyl radicals.

\section*{4,097,546}

OZONE RESISTANT, CATIONIC DYEABLE NYLON CONTAINING LITHIUM, MAGNESIUM OR CALCIUM

SALTS OF SULFONATED POLYSTYRENE
COPOLYMERS
Robert Alden Lofquist, Richmond, Va., assignor to Allied Chem Filed Mar. 30, 1976, , Ser. .No. 671,789
U.S. CI. 260-857 UN

Int. C1. \({ }^{2}\) C08L 77/00
U.S. CI. 260-857 UN
1. In a method to make a fiber-forming
polyamide having a repeating structure of
where \(R\) and \(R^{\prime}\) are radicals of 3 to 13 carbon atoms, receptive to cationic dyes by the addition of a sulfonated polystyrene or amine gram equivalents per \(10^{6}\) grams of polymer and a ratio of less than ten sulfonate gram equivalents per amine gram equivalents, the improvement comprising
adding to said polyamide a water soluble salt selected from the group consisting of the lithium, magnesium and cal-
cium salts of a sulfonated copolymer, said salt sulfonated cium salts of a sulfonated copolymer, said salt sulfonated
to over 90 percent of the theoretical maximum of co plete monosulfonation of each styrene residue moiety and having a pH of between about 3 and 8 , said sulfonated copolymer is selected from the group consisting of a
copolymer containing at least \(50 \%\) by weight of styrene copolymer containing at least \(50 \%\) by weight of styrene
or vinyl toluene reacted with each other or at least one of the following monomers or their next adjacent homologs, acrylonitrile, acrylate esters, methacrylate esters, acrylic acid, methacrylic acid, butene, methyl vinyl ether, ethylene, propene, 2-pentene, 2 -methyl propene, said salt has a molecular weight of from about 15,000 to about 300,000 and containing the salt is between about 50 and about 150 gram equivalents per \(10^{6 / 8 \text { roms polymer, ond }}\)
shaping said polyamide into a shaped article,
whereby said dyed polyamide article has highly improved resistance to fading of the cationic dye due to exposure to ozone.
U.S. Cl. \(260-860\)
1. A polycarbonate composition comprising in admixture an aromatic polycarbonate of a dihydric phenol and a carbonate precursor and 0.01 to about 5.0 weight percent, based on the total weight of the polycarbonate composition, of an aikaline arbonate, strontium carbonate, and calcium carbonate; said romatic polycarbonate being selected from the group consising of (a) a polycarbonate of a halogen substituted dihydric phenol, (b) a copolycarbonate of an unsubstituted dihydric phenol and a halogen substituted dihydric phenol, (c) mixture of (a) and (b) and (d) mixtures of a member selected from the group consisting of (a) and (b) with a polycarbonate of an
unsubstituted dihydric phenol; said halogen being selected from the group consisting of bromine and chlorine and being a substituent on the aromatic hydroxyl bearing phenyl moiety.

\section*{4,097,548}

POLYESTER-CONTAINING HOT MELT ADHESIVE COMPOSITION
Mohan V. Kulkarni, Ashland, and John Von Kamp, New Lon Mohan . Kuikarni, Assiand, and Jonn Von Kamp, New Lon-
don, both of Obio, assignors to The Goodyear Tire \& Rubber Company, Akron, Ohio

Filed Jun. 23, 1977, Ser. No. 809,479
U.S. Cl. 260-873 Int. Cl. \({ }^{2}\) C08L \(67 / 00 \quad 6\) Claims
1. A hot melt adhesive composition having a softening point of about \(215^{\circ}\) to \(225^{\circ} \mathrm{C}\)., a Shore \(D\) hardness of at least 50 to 60 ; 8 Claims a Brookfield Thermoseal melt viscosity at 245 C . of 1000 to 1500 poises and comprised of about 9 to 30 percent by weight
of a copolymer of ethylene and ethyl acrylate or methacrylate, of a copolymer of ethylene and ethyl acrylate or methacrylate, obtained by condensing terephthalic acid with a mixture of thylene glycol and neopentyl glycol, about 50 to 55 percen by weight of a terpolyester of a siructure obtained by condensing ethylene glycol with a mixture of terephthalic acid, iso phthalic acid and azelaic acid.

\section*{4,097,549}

POLYMER POLYBLEND COMPOSITION
Robert L. Kruse, Springfield, Mass., assignor to Monsanto Company, St. Louis, Mo.

Filed Dee. 29, 1975, Ser. No. 645,1
Int. Cl. \({ }^{2}\) C08L \(51 / 04\)
U.S. Cl. \(260-876\) R

17 Claims
1. An improved polymeric polyblend composition characA. a polymer of
A. a polymer of at least one monoalkenyl aromatic monomer having dispersed therein an amount sufficient to toughen said polymer of
B. a diene rubber, sad
a diene rubber, said rubber being dispersed as crosslinked rubber particles being grafted with said monomer as polycles having a weight average din said polymer, said parti10 microns, wherein said improvement comprises:
C. said rubber particles having a rubber moiety structured in a morphological form comprising rubber fibres or rubber sheets and mixtures thereof said polymeric polyblend said monoalkenyl aromatic monomer and said diene rubber under catalytic conditions with back mixed agitation
to about 10 to \(50 \%\) conversion; then discontinuing such

tion until the monomer is substantially polymerized; then heating and separating said polyblend from said monomer.

\section*{COMPOSITION OF A RADIAL TELEBLOCK}

COMPOSITION OF A RADIAL TELEBLOCK
AROMATIC COMPOUND AND AN \(\alpha, \beta\) UNSATURATED
William Robert Haff, Voorhesrille; Gim Fun Lee, Jr., Albany,
both of N.Y., assignors to General Electric Compnay, Pittsfield, Mass.

\section*{Filed Jun. 8, 1976, Ser. No. 693,895
Int. Cl. \({ }^{2}\) C08L \(51 / 00,53 / 00\)}
U.S. CI. \(260-876\) B

13 Claims
1. A thermoplastic molding composition which consists
essentially of, in intimate admixture:
(i) a copolymer of a vinyl aromatic
ansaturated cyclic anhydride, and
unpound and an \(\alpha, \beta\) -
(ii) a radial teleblock copolymer of a vinyl aromatic com-
pound, a conjugated diene, and a coupling agent.
RUBBER 4,097,551
RUBBER MODIFIED DICARBOXYLIC ACID
COPOLYMER BLENDS
Adoiph V. DiGiulio, and Jack N. Bauer, both of Pittsburgh, Pe
assignors to Areo Polymers, Inc., Philadelphis, Pa.
U.S. Cl. \(260-876\) B
U.S. C. \(260-876\) B
1. A thermoplastic molding tially of a blend of
. \(5-15 \%\) by weight, based on total molding composition, of
A. \(2-50 \%\) by weight, based on block copolymer, of mono-
vinyl aromatic monomer and
B. \(50-98 \%\) by weight, based on block copolymer, of a
conjugated diene monomer, and
a copolymer made by polymerizing
A. \(60-95 \%\) by weight, based on copolymer (b), of a mix-
ture of
(1) \(4.35 \%\) by weight of an ethylenically unsaturated dicarboxylic acid moiety and
(2) \(65.96 \%\) by weight of one or more monomers copolymerizable therewith selected from the group
consisting of monovinyl aryl monomers, unsaturated nitriles, and acrylic monomers, in the presence of
B. \(5-40 \%\) by weight, based on copolymer (b), of a diene rubber;
whereby the whereby the sum of the block copolymer (a) and the diene tion.

NITROGENOUS POLYMER COMPOSITIONS Gary L. Deets, Springfield, and Peter Shapras, Wilbraham, both of Mass., assignors to Monssanto Company, St. Louis, Mo. Filed Jun. 20, 1977, Ser. No. 807,870
U.S. CI. \(260-876 \mathrm{R}\)

6 Clams
1. A polymer composition comprising a nitrogenous polymer and from 2.5 to 20 percent by weight of an alkaline earth
metal oxide and from 2.5 to 20 percent by weight of sulfur, all percentages being based on the polymer weight.

\section*{4,097.553}

ACRYLIC GRAFT COPOLYMERS BLENDED WITH
ACRYLIC GRAFT COPOLYMERS
Ernest Richard Noval, Vienna, W. Va., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del.
Filed Jun. 20, 1977, Ser. No. 808,396
Filed Jun. 20, 1977, Ser. No. 808,36
Int. Cl. \({ }^{2}\) C08L \(51 / 00,53 / 00\)
U.S. C. \(260-876\) R

5 Claims
1. A method of improving the handleability of a resilient, acrylic graft rubber composed of particles having an outer layer consisting essentially of an alkyl methacrylate polymer
which has a glass transition temperature greater than \(25^{\circ} \mathrm{C}\) and the alkyl glass transition temperature greater than \(25^{\circ} \mathrm{C}\). inner layer consisting essentially of a resilient acrylic copolymer that has a glass transition temperature of \(25^{\circ} \mathrm{C}\) or less which comprises mixing the acrylic graft rubber while still in is emizable salt in which thit medium with a solution of an about 1 and 100 gm /iter in an amount such that the resulting mixture contains between about 5 and about 25 times by agitating the resulting mixture at a temperiture bele salt, and, \(30^{\circ}-70^{\circ} \mathrm{C}\). until the graft rubber particles coesween about adding to the coagulated dispersion a dispersion of an alky methacrylate resin prepared by emulsion polymerization and the alkyl glass transition temperature greater than \(25^{\circ} \mathrm{C}\). die alkyl group has \(1-4\) carbon atoms, in an amount suffiweight acrylic tre presence of beween about 10 and \(99 \%\) by weight of rubber and said alkyl methacrylate resin and agitating the resulting mixture at a temperature between about \(60^{\circ}-120^{\circ} \mathrm{C}\)., followed by isolating the coagulated materials.

PROCESS FOR PREPARING NOVEL POLYMER PROCESS FOR PREPARING N
Hiroshi Yui; Tetsuji Kakizaki; Hironari Sano; Masakazu Arai, and Hiroshi Matsui, all of Yokknichi, Japan, assignors to Mitsubishi Petrochemical Company Linited, Japan
Filed Sem. 7,1976 , Ser. No, 720,761
Claims priority, application Japan, Sep. 8, 1975, 50-108739
U.S. Cl. \(260-878\) R

7 Claims
1. A process for preparing novel propylene polymer parti(a) pre
(a) preparing an aqueous suspension comprising 100 parts by weight of propylene polymer particles, about 5 to 200
parts by weight of a vinyl or vinylidene monomer, and about 0.01 to 1 part by weight, to 100 parts by weight of the monomer, of a radical polymerization initiator having a decomposition temperature of about \(85^{\circ}\) to \(130^{\circ} \mathrm{C}\) for
b) heating the resulting aqueous suspension under sucb conditions that substantially no decomposition of the
initiator takes place thereby to impregnate the propylene
polymer particles with the monomer to such an extent that less than about \(20 \%\) by weight of the monomer remain
free in the liquid phase; and (c) raising the temperature of substantially complete the polymerization of the monomer.

\section*{4,097,555}

TRANSPARENT POLYMERIC POLYBLEND
James R. Moran, Hampden, Mass., assignor to Monsanto Com pany, St. Louis, Mo. \(\begin{aligned} & \text { Filed May 11, 1976, Ser. No. 685,240 }\end{aligned}\)

Filed May 11, 1976, Ser. No. 685,240
Int. C. \({ }^{2}\) Co8F 291/02; C08L 51/00, \(53 / 00\)
U.S. Cl. \(260-880 \mathrm{R}\)
1. An improved transparent polymeric polyblend composi- 14 Claims tion formed of diene, alkenyl aromatic, alkenyl nitrile and acrylate monomers havin
transparency comprising:
A. from about 70 to 98 percent by weight of a matrix terpolymer having from about 35 to 45 percent by weight o an alkenyl aromatic monomer, from about 15 to 25 per ent by weight of an alkenyl nitrile monomer and from selected from the group consisting of alkyl acrylate and alkyl alkacrylate monomers, wherein the improvement alkyl alkacrylate monomers, wherein the improvement
comprises: having dispersed therein from 1 to 20 percent by weight of,
B. a block diene copolymer rubber as rubber particles having an average particle size of 0.30 to 1.5 microns, said rubber particle being grafted with and have occluded a matrix terpolymer wherein said graft and occluded terpolymers are present in amounts of from 0.50 to 5.0 parts per part of said rubber.

PPO-GRAFT COPOLYMER AND PROCESS FOR PRO-GRADUUCING THE SAME
Kunio Toyama, Yokohama; Isamu Shimizu, Yamato; Takeo Imamura, Yokohama, and Atsuo Nakanishi, Kanagawa, all of Japan, assignors to Asahi-Dow Limited, Tokyo, Japan Claims priority, application Japan, May 24, 1976, 51-59053 U.S. C. 260-886 Inplication Japan, May
Int. C1.2 \({ }^{2}\) C08L \(51 / 08\) 19 Claims 1. A graft copolymer comprising polyphenylene ether having styrene polymer segments grafted thereon improved in moldability, said styrene polymer segments being formed by melting and kneading continuously a mixture of y (a)

wherein \(R_{1}\) and \(R_{2}\) represent an alkyl group having 1-4 carbon atoms or a halogen atom, respectively, and \(n\) represents the degree of polymerization and is \(90-250\), (b) a styrene polymer containing at least 80 weight \(\%\) of styrene units and (c) sty rene-containing monomers in the presence of a radical initiator
at a temperature in the range from \(160^{\circ}\) to \(300^{\circ} \mathrm{C}\) thereby to complete graft polymerization within a time ranging from 0.5 to 15 minutes.

\section*{METHOD OF PREPARNG \(\quad 4\) \\ METHOD OF PREPARING BLOCK POLYMERS} Tire \& Rubber Company, Akron, Ohio

Filed Aug. 6, 1973, Ser. No. 385,915
U.S. C. \(260-880\) B

It. Cl. \({ }^{2}\) C08F 297/04
7 Claims
.S. CI. 260-880 B 1. A method of preparing block polymers under solution
polymerization conditions at temperatures from about \(-20^{\circ} \mathrm{C}\) polymerization conditions at temperatures from about \(-20^{\circ} \mathrm{C}\)
to about \(100^{\circ} \mathrm{C}\), consisting of contacting ( A ) \(\alpha\)-methyl styrene with an organo monolithium initiator to form a living polymer of poly- \(\alpha\)-methyl styrene having a molecular weight from about 10,000 to about 40,000 , subsequently adding a mixture consisting essentially of (B) a conjugated diene and (C) vinyl aromatic compound selected from the group consisting of
styrene, vinyl toluene, \(p\) - \((t-\) butyl) styrene, vinyl toluene, \(p\)-(t-butyl)styrene and \(p\)-(ethyl)styrene,
to form an ABC block polymer in which the molecular weight of the poly- \(\alpha\)-methyl styrene block ranges from about 10,000 to about 40,000 , the polyconjugated diene block ranges from about 40,000 to about 150,000 and the polyvinyl aromatic block ranges from about 40,000 to about 150,000 .
\[
\text { RESIN BLEND FOR MAKING PLASTISOLS AND }
\] ORGANOSOLS
Leroy B. Kuhn, Easton, Conn., assignor to Stauffer Chemical Company, Westport, Conn.
Continuation of Ser. No. 624,497, Oct. 21, 1975, abandoned, which is a division of Ser. No. 506,131, Sep. 18, 1974, Pat. No. Cct. 4,1973 , Oct. 4, 1973, abandoned, which is a continuation-in-part of Ser o. 202,456, Nov. 26, 1971, abandoned. This application Apr. 7
1977, Ser. No. 785,484 Int. Cl.2 C08L 27/06
U.S. CI. 260-899

899
1. A bulk handleable, dry, non-coagulated blend of vinyl chloride emulsion resin and vinyl chloride suspension resin adapted for use in preparing plastisols and organosols, said (a) from about 30
(a) from chl \(30 \%\) to about \(99 \%\), by weight, of particles of in the chloride emulsion resin having an average diameter in the range of from about 0.1 to about 3.0 microns and a relative viscosity as determined as a \(1 \%\), by weight, solution in cyclohexanone at \(25^{\circ} \mathrm{C}\)., of from about 1.5 to abou 3.5; and
(b) from about \(1 \%\) to about \(70 \%\), by weight, of particles of diameter in the rangenion resin having an average particle and a relative viscosity as determined as a \(1 \%\), by weight, solution in cyclohexanone at \(25^{\circ} \mathrm{C}\)., of from about 1.5 to about 3.5 , substantially all of the emulsion and suspension resin particles in the blend being in the form of a plurality cles are in contact with at least one centrally positioned suspension resin particle.

4,097,559
CHLOROALKYL POLYPHOSPHATES METHOD FOR CHLOROALKYL MAKING SAME Anthony Joseph Papa, Saint Albans, and Walter Warren Run-
yan, Charleston, both of W. Va, essignors to Union Carbide Corporation, New York, N.Y.

Filed Dec. 29, 1975, Ser. No. 644,789 \(\xrightarrow{\text { Int. }}\)
1.S. Cl. 260-928 20 Claims 1. A process for producing polyphosphates which comprises following structure:
\[
\stackrel{\mathrm{O}}{(\mathrm{RO})_{\cdot n} \mathrm{P}^{\mathrm{P}}(\mathrm{OR})_{n}}
\]
wherein R is \(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}\) or \(\mathrm{C}_{4} \mathrm{H}_{4} ; \mathrm{R}^{\prime}\) is a \(\mathrm{C}_{5}\) to \(\mathrm{C}_{10}\) hydrohaving the following structure:
wherein \(x\) is Cl or Br ; \(\mathrm{R}^{\prime \prime}\) is \(\mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{Cl}\) or \(\mathrm{CH}_{2} \mathrm{Br}\); and R and \(n\) are defined above, in the presence of a catalyst, for a time and at a temperature, sufficient to produce polyphosphate
thermal condensates of the reactants, and thermal condensates of the reactants, and
B. recovering said polyphosphate therma
B. recovering said polyphosphate thermal condensates.

NOVEL PHOSPORUS 409760
NOVEL PHOSPHORUS COMPOUNDS AND FLAME RETARDANT COMPOSITIONS CONTAINING SAME
Stanley Littman, Sharon, Mass., and Irving Touval, Edison, tanley Littman, Sharon, Mass., and Irving Toural, Edison,
N.J., assignors to M \(\&\) T Chicals Inc., Stamford, Conn. Filed Jun. 29, 1977, Ser. No. 811,050

Int. Cl. \({ }^{2}\) C07F 9/28; C08K \(5 / 53\)
U.S. CI. \(260-931\)
Cl. \({ }^{2}\) C07F 9/28; C08K 5/53 22 Claims 9. A flame retardant composition consisting essentially of (1)
substrate that, in turn, consists essentially of a natural or a substrate that, in turn, consists essentially of a natural or
synthetic organic polymer, and (2) a flame retarding agent of synthetic organal formula

wherein \(R^{1}\) and \(R^{4}\) are each the same or different alkylene and contain from 1 to 12 carbon atoms, \(R^{2}\) and \(R^{3}\) are individually selected from the group consisting of hydrogen and alkyl containing from 11 to 12 carbon atoms, \(\mathbf{R}^{5}\) is alkyl and contains from 1 to 12 carbon atoms and \(n\) represents an integer having
an average value of from 1 to about 50 , wherein the amount of an average value of from 1 to about 50 , wherein the amount of
said flame retarding agent is sufficient to impart the desired level of flame retardancy to said substrate.

\section*{4,097,561}

IDLE MIXTURE ADJUSTING DEVICE OF IDLE MIXTURE ADJUSTING
Chichitada Seki, Yokosuka, and Nobuo Furuhashi, Tokyo, both of Japan, assignors to Nissan Motor Company, Limited Japan
Claims priority, Jan. 12, 1977, Ser. No. 738,815 S. C. 261-41 D Int. C. \({ }^{2}\) F02M 3/08
U.S. Cl. 261-41 D
1. A Combination comprising:

7 Clsims
1. A Combination comprising:
An idle adjustment screw turnably and operatively installed in a carburetor of an internal combustion engine, for adjusting an air-fuel mixture supplied to the engine during idling of the engine when turned, said idle adjustment means; turning tool for turning the screw head of said end portion
ment screw, said turning tool having an end ment screw, said with second engageable means which is engage able with the first engageable means of said idle adjustment screw to turn said idle adjustment screw after the
second engageable means engages with the first engage-
covering member for covering the screw head of said idle adjustment screw, said covering member including cylindrical member surrounding the screw head of said idle adjustment screw and secured to the body of the
carburetor so that only its axial movement is permitted, carburetor so that onbe having an annular groove formed
said cylindrical member hat at one end thereof and a flange portion at the other end thereof, the flange portion being contactable to the bottom surface of the screw head of said idle adjustment screw,


420
a disc member turnably received at the annular groove of said cylindrical member the disc member having a slot formed through the wall thereof, the slot being generally in the shape which is produced by projecting the shape of the second engageable means on the surface of said disc member,
urge the disposed inside of said cylindrical member to urge the disc member so that the movement of the disc member within the annular groove of said cylindrical member is restricted, and
second spring disposed between the body of the carburetor and the flange portion of said cylindrical member to urge screw head of said idle adjustment screw.

\section*{4,097,562}

Douglas Hayward Blakeway, Burnaby, Canada, assignor to Blakeway Industries Ltd., North Vancouver, Canada Continuation-in-part of Ser. No. 628,759, Nov. 4, 1975, S. \(\mathrm{Imt}\). C. \({ }^{2}\) F02M \(11 / 08\) U.S. C. 261-41 B
1. A carburetor for mixing air and fuel prior to combustion, central axis and a sidewall, the carburetor being characterized by: (a) a fuel spray tube having jet means and extending into the throat generally normally to the throat axis and being dapted to receive fuel and to discharge fuel into the throat,
(b) a valve assembly having: a valve axis extending across

the throat and normally to the throat central axis, first and
second sliding gate valve members, and complementary valve guide means to mount the valve members for generally transverse sliding along the valve axis between closed and wide open positions; each valve member having an inner portion having an inner edge disposed generally spond to approximately one half of the sidewall of the throat in the wide open position, the valve members being adapted to cooperate with each other so that inner por tions thereof overlap each other to close essentially th
hhroat when in the closed position, and also to cooperate with the the jet means of the fuel spray tube so as to open and close the jet means as required,
valve actuating means cooperating with the valve members to move the valve members concurrently in opposite
directions between the respective oper and closed positions in response to an operator control so that movemen of the valve members controls the jet means,
(d) fuel metering means responsive to valve position to meter fuel prior to being discharged from the fuel spray (e) fue,
tube, fuel atomizing means cooperating with the jet means of the fuel spray tube, so that fuel metered by the metering means atomizes and there is discharged into the throat a acceptable fuel mixture for combustion for all valve posi tions.

\section*{4,097,563}

ALTITUDE CORRECTION DEVICE OF A CARBURETOR Haruo Yuzawa, Tokyo, Japan, assignor to Nissan Motor Com
pany, Limited, Japan
Filed Jan. 8, 1976, Ser. No. 647,555
Cliled Jan. 8, 1976 , Ser. No. 647,55s
priority, application Japan, Jan. 14, 1975, 50-6637 U.S. CT. 261-121 B


3 Claims
preheating unit through a crosshead extrusion die assemly having a core tube, a tip, and a die, said core tube and lip defining a sleeving passage of greater diameter than the greater than that of the flexible sleeving and having sub stantially zero land length, said tip and said die defining an xtrudate channel meeting said sleeving passage at an extrudate channel meeting said sleeving

(d) extruding an electrically insulative resinous material onto said flexible sieeving under conditions of very low radial pressure and comparatively high axial pressure in said crosshead extrusion die assembly; and
e) cooling the coated, flexible sleeving issuing from said
crosshead extrusion die assembly.

4,097,565
TIRE PRESS AND MOLD LEAKAGE CONTROL Carence R. Cole, Medina, and Robert L. Duncan, Akron, both
of Ohio, assignors to The Goodyear Tire \& Rubber Company Akron, Ohio
Division of Ser. No. 457,029, Apr. 1, 1974, Pat. No. 3,942,922. This application Nor. 28, 1975, Ser. No. 636,346 U.S. Cl. \(264-40.3\) Int. Cl. \({ }^{2}\) B29H s/24

2 Claims
1. Fuel supply apparatus and means to manually control the 1. Fuel supply apparatus and means to manually control the
supply of supplemented air into a fuel passage thereof, comprising a hollow coupling member, a housing mounting a filter element and including a passage connector having an open axial passage and a solid connector, each adapted to optionally receive said hollow coupling member, one end of said hollow coupling member being mounted on one of said connectors
and the other end thereof being operatively connected to supply air to said fuel passage.

\section*{4,097,564}

METHOD OF COATING FLEXIBLE SLEEVING
Wilbert M. Lair, Londonderry, N.H., assignor to Electronize Chemicals Corporation, Burlington, Mass.
Filed Noo, 8, 1976, Ser. No. 739,718 Filed Nov. 8, 1976, Ser. No. 739,718
Int. C.2 B29F \(3 / 08,3 / 10\)
U.S. C1. 264-22

8 Claim
1. A process for coating continuous lengths of flexible sleeving with an e
(a) passing the flexible sleeving through a preheating unit; (b) heating the flexible sleeving in the preheating unit to an outside surface temperature insufficient to damage the
fexible sleeving yet sufficient to aid extrudate bondin hexible sleeving yet sufficient to
thereto between \(500^{\circ}\) and \(800^{\circ}{ }^{\circ}\).
(c) passing the preheated flexible sleeving issuing from the
1. The method of preventing under-cure in curing a tire in an automatic succession of tires, the tire having a cavity, said curing being effected in a tire mold during a predetermined time cycle wherein the curing is effected by steam which supplies heat, and by inert gas which supplies pressure in said
cavity, the pressure of said gas being greater than the pressure cavity, the pressure of said gas being greater than the pressure
of said steam, the method comprising admitting steam into said cavity during a first part of said cycle, then stopping flow of steam into the cavity and admitting an inert gas during a second part of said cycle, during said second part of the cycle closing said cavity to flow communication into and out of the cavity while the cavity contains both steam and inert gas for a predetermined time periosure in said cavity during said time
cycle, monitoring the pressur period to detect a time rate of change of pressure in excess of a predetermined acceptable rate and extending said time cycle in response to detection of such time rate of change to said excess to compensate for reduction in the quantity of heat due to cooling of the steam by the inert gas and provide for complete cure of the tire.

\section*{EXTRUSION LINE CONTROL SYSTEM} Michael C. Bertin, Irvine; Richard L. Hicksted, Orange, and James M. Mitsuhashi, Los Angeles, all of Callf, assignors to Nucleonics Data Systems, Irrine, Calif. S. C. 264-40.7 \(\begin{aligned} & \text { Filed Jun. 1, 1977, Ser. No. 802,442 } \\ & \text { Int. Cl. }\end{aligned}\)

31. A method of controlling a rubber extrusion line having an extruder, a take away conveyor, a unit weight scale, and a skiver, with the extrudate moving in a cont hem the extruder onto the take away conveyor, pst the unit weigh cale to the skiver, including the steps of:
producing a first signal varying as a function of the weight;
sensing the extrudate speed and swell at the output of the extruder and producing a second signal varying as a function of the speed and swell;
filtering the first signal substantially removing short term filtering thens thereof; substantially removing long term filtering the second signal subs long term componer varies with a period of about 10 to about 60 minutes and a short win a period of about 10 to about ion minuts and a shout 60 seconds; and
yorying the speed of the take away conveyor as a function o the combination of the filtered first and second signals.

\section*{4,097,567}

TITANIUM DIBORIDE SHAPES
Walter S. Cebulak, New Kensington, and John D. Weyand, Greensburg, both of Pa., assigno to Aluminum Company of America, Pittsburgh, \(\mathrm{P}_{2}\)

Filed Aug. 25, 1976, Ser. No. 717,698
U.S. C. \(264-65 \quad 1\) Claim
1. The method comprising blending a mixture consisting of 90 parts by weight titanium diboride and 10 parts by weight boron nitride, cold isostatically pressing the blend lo a shape a
60,000 pounds per square inch pressure, and sintering the shape
at \(1975^{\circ} \mathrm{C}\) in an inert atmosphere in the absence of pressure.

\section*{4,097,568}

WALL CONSTRUCTION
Kevin M. Foley, Toledo; Harold A. Dewhurst, and Frank P McCombs, both of Granville, all of Ohio, assiga
corning Fiberglas Corporation, Toledio, Ohio This application Aug. 30, 1976, Ser. No. 719,013
U.S. CI. 264-216 . A method for producing a cylindrical wall \(c\) steps of:
(a) applying a filler and cement to a continuously rotating
(b) distributing glass fibers in random orientation and then adding phenol, formaldehyde, and at least one polyhydric phenolic compound alone or in combination with an amino compound while continuing the rotation of the form; and
(c) curing the resin.

MODIFIED VINYL ESTER RESIN
THEREFROM AND PIPE MADE
Okia, assignor to Youngstown Sheet and Tube Company, Youngstown, Ohio Division of Ser. No. 589,539, Jun. 23, 1975, Pat. No. 4,018,250, which is a division of Ser. No. 428,118, Dec. 26, 1973, Pat. No 3.928,491. This application Oct. 13, 1976, Ser. No. 732,034 Int C1. \({ }^{2}\) B29C \(5 / 04\)
1. The method for forming centrifugally cast pipe comprising:
inserting a sock of fibrous reinforcing material into the mold of a centrifugal casting machine;
injecting into said mold a quantity of a first thermosetting
resin, said quantity being sufficient to substantially encapresin, said quanforceing material,
otating said mold so as to distribute said injected first resin longitudinally of said mold throughout said reinforcing material to thereby form within said mold a cylindrical matrix of said first ther injecting into the bore of said cylindrical matrix of said first thermosetting resin and said fibrous reinforcing materia a second thermosetting resin comprising an admixture of (1) a neat thermosetting resin formed by reacting an epoxy
resin, a carboxyl terminated elastomer selected from the group consisting of carboxyl terminated homopolymers and copolymers of conjugated dienes and an unsaturated monocarboxylic acid, with approximately one chemical equivalent of epoxy being provided for each chemical equivalent of carboxyl provided by said elastomer and said acid con
rotating said mold to distribute said second thermosetting resin longitudinally thereof to form an unreinforced inner liner for said pipe on the inner surface of said cylindrical matrix of said cirst thermosething curing of said first thermosetting resin to thereby permit limited intermingling of said first and second thermosetting resins at their interface, and
pplying heat to said mold while said mold is rotating to cure said first and second resins and to cross-link said first and form an unreinforced inner lining of said second thermosetting resin for said pipe.

\section*{4,097,570}

METHOD FOR MAKING PLASTIC ARTICLES andrew C. Dickson, and Robert F. Konta, both of Toledo, Ohio assignors to Owens-Illinois, Inc., Toledo, Ohio

Filed Apr. 15, 1976, Ser. No. 67,09
Int. C1. \({ }^{\text {B29 }}\) 29/ \(17 / 02,17 / 07\)
U.S. Cl. 264-296 8 Claims 1. In a method of making a thermoplastic parison having an integral finish and an adjacent integral, annular supporting ring, the steps of: heating an end portion only of the parison to tion in a mold in general radial alignment with adjacent, annular, longitudinally spaced finish and supporting ring cavities; supporting one longitudinal end of the parison while axially displacing the other, remote parison end toward said one en force at least a portion of the heated plastic material from
said heated end portion of the parison outwardly into at least one of the adjacent annular, longitudinally spaced cavities; and displacing said one parison end to force additional heated

plastic material from said heated end portion of the parison into at least the other of the adjacent, annular, longitudinally spaced cavities to complete the formation of the integral finish

METHOD FOR PRODUCING
Bernard K. Cox, R.R. 5, Box 293, Connersville Ind 47331 Division of Ser. No. 655,518, Feb. 5, 1976, This application 27, 1976, Ser. No. 735,974 Int. Cl. \({ }^{2}\) B29F \(1 / 00\)
U.S. CI. 264-296

1. A method of forming with an injection mold a plastic piece with a living hinge, comprising the steps of
providing a mold having a cavity with two immovable the cavity from one surface of the opposed surfaces and a push bar slidably mounted in a channel and mutually opposed from the rib, the push bar projecting into the cavity from the other surface of the opposed surfaces; injecting liquid plastic into the mold to only partially fill the cavity therein
moving the push bar within the channel through a space extending at least one-half the distance across the cavity in moving forcing the liquid plastic to flow opposite said direction of the push bar toward the other surface and to completely fill the remaining portion of the cavity surrounding the channel, said moving thereby forming mutually opposed and aligned grooves in the plastic; and
flow of liquid plastic behind the push bar and into the space through which the push bar travels during said moving.

METHOD OF FORMING \(4,097,572\) Grant W. Walker, Sacramento Calis Lar CONTAINER sorption Systems, Inc Chicalili, assignor to Energy Absorption Systems, Inc., Chicago, III.
Filed Aug. Int. Cl. \({ }^{\text {B29C }}\) B29 5/04; B29D 3/02
U.S. C. 264-310

1. A method of forming a tubular container consisting of the steps of providing a drum rotatable about an axis and having a within said drum in in surface, disposing an axially split liner ing said drum in contact with said wall surface, then rotatdepositing a time-settable liquid matrix within said axis, then liner to assume an annular shape and adding lengths of roving to said matrix while leaving the inner surface of said annular shape exposed to the air, then continuing rotation of said drum and liner and matrix and roving for a time until said matrix is at least partially set as a body able to maintain a stable annular shape, then stopping the rotation of said drum and liner and
matrix and roving, then axially withdrawing said liner and said matrix and said roving in said maintained annular shape while continuing to leave the inner surface of said matrix exposed to the air, then slightly expanding and removing said liner from said matrix and said roving, and then replacing said removed iner in said drum.

METHOD FOR BENDING TH
METHOD FOR BENDING THERMOPLASTIC PIPES unnar Parmann, Mathopen, Norway, assignor to Rieber \& Son Continuergen, Norway
Which is a Chich is a division of Ser. No. 321,028, Jan. 4, 1973, Pat. No
3,884,612. This application Claims priority, application Nors, 1976, Ser. No. 717,674 S. Cl \(264-322 \mathrm{Int}\) C. \({ }^{2}\) B29C \(17 / 02\)
U.S. CI. 264-322
11 Claims

\(\underset{\text { 1. A }}{ }\)
locating one end of the pipe in a fixed position,
blowing a flow of heat-transfer medium from only one side of the pipe onto and around a circumferential surface of a peripheral pipe section facing said flow while guiding th heat transfer medium towards an opposite peripheral pipe section to heat said opposite peripheral pipe section to a lesser extent than said first section,
internally reinforcing said heated portion of the pipe during bending said heated portion of the pipe.
8. A method of bending thermoplastic pipes comprising the \(\quad 4,097,575\)
steps of
introducing a thermoplastic pipe into a heat transfer means and simultaneously engaging at least one end of said pipe with a locating means in a fixed position externally of the heat transfer means,
introducing a means into the pipe for internally reinforcing the pipe,
pipe initially as a pressurized flow against a circumferenpipe initially as a pressurized flow against a circumeren-
tial surface of a portion of the pipe to effect a preliminary uniform heating of said circumferential surface and thereafter increasing the pressure of the heating medium to heat a first section of the periphery of the pipe within the heat boundary layer of the flowing medium to be displaced at a location on the periphery of the pipe between said first section and a second section of the periphery of the pipe to thus cause an enhanced whirl effect immediately adjacent said second section whereby said second section is heated to a lesser extent than said first section,
subsequently cooling the pipe after bending of the
subsequently cooling the pipe after bending of the pipe is concluded. Eddie THE TREATMENT OF LATERITE ORE Greenwich, Conn.
U.S. C. 423-150

Int. C. \({ }^{2}\) C01G S \(53 / 10\)

ROAST-NEUTRALIZATION-LEACH TECHNIQUE FOR Dale K . Chour, Arvada; Craig B. Bariow, Wheatridge, and o., assignors to Amax Inc.,

Nov. 5, 1976, Ser. No. 739,244
Int. C.2 \({ }^{\text {C01G }} 53 / 10\)
12 Claims


4,097,574
PROCESS FOR PRODUCING A SYNTHETIC RUTILE
FROM ILMENTITE
Robert G. Auger, Monroeville, and Edward F. Restelli, Jr.,
Oakmont, both of Pa., assignors to United States Steel CorpoOakmont, both of Pa., assignors to United States Steel Corpo-
ration, Pittsburgh, Pa. Filed Jun. 16, 1976, Ser. No. 696,596
Int. C1. \({ }^{2}\) C01G 23/04, 49/06, 49/02 U.S. CI. \({ }^{423-74}\)

12 Claims

1. Method of processing ilmenite to produce a synthetic rutile comprising subjecting the ilmenite or a concentrate thereof to gaseous oxidizing conditions to oxidize \(\mathrm{Fe}_{2} \mathrm{O}\). to \(\mathrm{Fe}_{2} \mathrm{O}_{3}\), exposing the ilmenite to a hydrogen atmosp
fluidized bed at a temperature of at least \(1400^{\circ} \mathrm{F}\) to reduce iron therein to a solubilized metallic state, cooling the ilmenite thus reduced to below \(1000^{\circ} \mathrm{F}\) in a nonoxidizing atmosphere, and contacting the reduced proxize iron therein to an insoluble iron
solution to dissolve and oxide physically separable from said leach solution and from residual insoluble reduced ilmenite product consisting at least substantially of \(\mathrm{TiO}_{2}\)
3. Method of claim 1 in which the aeration-leached ilmenite is subjected to an acid leach to remove traces of metallic iron is subjected to an acid
1. In a method of leaching a low-magnesium nickel-contain1. oxide ore wherein an oxide ore containing by weight at least about \(0.8 \%\) nickel and magnesium ranging up to about \(5 \%\) is leached in a sulfuric acid solution at an elevated temperature exceeding about \(150^{\circ} \mathrm{C}\) and an elevated pressure exceednickel therefrom and form a pregnant lo liquor substantially the than about 1 and a leached residue, and wherein said pregnant liquor is neutralized by adding thereto a raw high-magnesium nickel-containing serpentine silicate ore containing at least about \(0.8 \%\) nickel and over \(5 \%\) magnesium while at the same ime leaching nickel from said serpentine ore, the improvement of enhancing the neutralization capability of said raw highmagnesium ore which comprises,
oxidizing roast prior to said neutralization step at a temperature below the temperature at which forsterite recrystallizes,
said roasting temperature being below \(820^{\circ} \mathrm{C}\),
sald roasting temperature being below \(820^{\circ} \mathrm{C}\),
subjecting said pregnant liquor to neutralization at atmospheric pressure and a temperature not exceeding about raise the pH to above 2 while leaching nickel from said high-magnesium ore and provide a residue thereof, the rate of neutralization with roasted ore being faster than the rate using unroasted ore,
separating said neutralized pregnant liquor from said highmagnesium residue for the recovery of nickel therefrom,
recycling said high-magnesium residue back into the leaching process for mixing with fresh low-magnesium ore for leaching at said elevated temperature and pressure, leaching said fresh low-magnesium ore together with said high-magnesium residue at said temperature exceeding about \(150^{\circ} \mathrm{C}\) and said pressure exceeding about 150 psig to form leached solids thereof and said pregnant liquor of pH after neutralized with said and disposing of said leached solid

REDUCTION CATALYST FOR REMOVAL OF
REDUCTION CATALYST FOR REMOVAL OF
NITROGEN OXIDES IN EXHAUST GAS Takankd Tamura, Tokyo; Norihiko Fuita, Musashinoshi;
Chihiro Matsuara, Tokyo; Wataru Ito, Hachiojishi, and Chibhiro Matsuaura, Tokyo; Wataru Ito, Hachiojishi, and
Naoki Negishi, Tokyo, all of Japan, assignors to Kogyo Kaihatsu Kenkyusbo (Industrial Reseanch Inssistitut), Tokyo, Japan Flied Mar. 4, 1976, Ser. No. 663,833
Claims priority, application Japan, Mar. 8, 1975,
U.S. Cl. 423-239 A Int. Cl. \({ }^{2}\) BO1D \(53 / 34\)
U.S. C. 423-239 A
1. A method for 4 Claim exhaust gas which comprises: contacting said NO \(\mathrm{NO}_{x}\) containing exhaust \(g\) gas with \(\mathrm{NH}_{3}\) in a mol ratio of \(\mathrm{NH}_{3}: \mathrm{NO}_{x}\) of from about \(0.8: 1\) to \(2: 1\) at a temperature of above about \(200^{\circ} \mathrm{C}\) and at a space velocity of from about 10,000 to about \(15,000 \mathrm{hr}^{-1}\) in the presence of a catalyst comprising a naturally-occurring inorganic material consisting essentially of \(\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}\), and \(\mathrm{H}_{2} \mathrm{O}\) containing 1 to \(10 \%\) by weight of an alkali metal oxide and an
alkaline earth metal oxide having an X-ray diffraction pattern as shown in Table A or Table B carrying thereon at least two metal ions added thereto in sequence with heat treatment after
each sequential addition, said metal ions being selected from each sequential addition, said metal ions being selected from
the group consisting of metals of Group Ib, Group Ib, Group the group consisting of metals of Group Ib , Group IIb, Group
VIII of the periodic Table, chromium, manganese and vanadium, said naturally-occurring inorganic material having been metal ions. :

\section*{4,097,577}

METHOD OF LOWERING INTRAOCULAR PRESSURE WITH ANTAZOLINE
Harry Salem, Elkins Park, and Domingo M. Aviado, WynnePa, assignors to Cooper Laboratories, Incorpo-
rated, Parsippany, N.J.

Flied Aug. 12, 1976, Ser. No. 713,805
Int. Cl. \({ }^{2}\) A01N \(9 / 22\)
U.S. C. 42-273 R R \({ }^{12}\) Cl. \({ }^{2}\) A1N \(9 / 22\)
1. A method for reducing intraocular presur 3 Claims having intraocular hypertension comprising topically adminis lering to a mamsuilian eye an effective amount for reducing phosphate and a non-toxic, pharmaceutically acceptable, oph thalmological carrier.

\section*{4,097,578}

1-(3'-TRIFLUOROMETHYL-4'-NITROPHENYL)-4,4 DIMETHYL IMIDAZOLIDINES
Jacques Perronnet; Pierre Girault, both of Paris, and Claude Bonne, Bry-sur-Marne, all of France, assigoors to Roussel Filed Oct. 21, 1976, Ser. No. 734,557
Claims priority, application France, Oct. 29, 1975, 7533084
Int. C1.2 A61K 31/415; C07D U.S. Cl. \(424-273\) R
1. A compound of the formula

-(2-PYRROYL)-1,2-DIHYDRO-3H-PYRROLO[1,2-2]PYR ROLE-1-CARBOXYLIC ACID DERIVATIVES AND PROCESS FOR THE PRODUCTION THEREOF Joseph Martin Muchowski, Sunnyvale, and Arthur Frederick
Kluge, Los Altos, both of Calif,, assignors to Syntex (U.S.A.) Inc., Palo Alto, Calif.

Int. Cl. \({ }^{2}\) C. 31, 1977, Ser. No. 783,09
U.S. Cl. \(424-274\)
1. A compound selected from the group of those represented
14,
1. 1. A compound
by the formula

and the individual (1)-acid and (d)-acid isomers thereof and the pharmaceutically acceptable, non-toxic alkyl esters having each of \(R\) and \(R^{1}\) is independently hydrogen or a lower alkyl group having from 1 to 4 carbon atoms.
18. A composition for treating inflamm
18. A composition for treating inflammation, pain or pyrexia
in mammals consisting essentially of a pharmaceutically acin mammals consisting essentially of a pharmaceutically ac-
ceptable non-toxic excipient and a therapeutically effective amount of a compound represented by the formula
(A)

or the ( 1 )-acid isomers of Formula ( \(\mathbf{A}\) ), and the pharmaceuti cally acceptable, non-toxic alkyl esters having from one to
welve carbon atoms and salts thereof, wherein each of \(R\) and \(\mathbf{R}^{1}\) is independently hydrogen or a lower alkyl group having from 1 to 4 carbon atoms.
20. A composition for administration to a pregnant mamma to delay onset of parturition consisting essentially of a pharma-
ceutically acceptable non-toxic excipient and a thereapeutically effective amount of a compound represented by the formula

(A)
or the (1)-acid isomers of Formula (A), and the pharmaceut cally acceptable, non-toxic alkyl esters having from one to
twelve carbon atoms and salts thereof, wherein each of \(R\) and \(\mathrm{R}^{1}\) is independently hydrogen or a lower alkyl group having from 1 to 4 carbon atoms.

2,3-DIHYDRO-1,4-DITHIN \(\mathbf{4 , 0 9 7 , 5 8 0} \mathbf{1 , 1 , 4 , 4 - \text { TETROXIDE }}\) ANTIMICROBIALS
Arthur D. Brewer, Puslinch, Canada, and Robert A. Davis,

\section*{wherein X is selected from the group consisting of oxygen and \\ This Ser. No. 481,010, Jun. 20, 1974, Pat. No. 4,004,018}
imine.
A method of inducing antiandrogenic activity in warmblooded animals comprising administering to warm-blooded
and Uniroyal Itd., Guelph, Canedra

This application Nov. 18, 1976, Ser. No. 742,933
Int. Cl. \({ }^{2}\) A01N \(9 / 00\)
U.S. C. \(424-277\)
1. A method of controlling viruses comprising contactin
said viruses with a viricidally effective amount of a 2,3 -dihy- amount of at least one compound of the formula \(I\) according to dro-1,4-dithiin 1,1,4-tetrooxide having the following structural claim 1.

wherein \(\mathbf{R}_{1}, R_{2}, R_{3}\), and \(\mathbf{R}_{4}\) are independently hydrogen, alky having 1 to 14 carbon atoms, aryl, aryl substituted with one to alkyl, halogen, lower alkoxy, nitro, and aryl, alkoxymethyl wherein the alkyl group contains 1 to 8 carbon atoms, arylox methyl, alkylaminomethyl wherein the alkyl group contains 08 carbon atoms, or adjacent R's may be joined together as a chain of 3 to 4 methylene groups.

\section*{4,097,581 \\ DIOXOLANE DERIVATIVES}

Saleem Farooq, Aesch, and Friedrich Karrer, Zofingen, both of Switzerland, assignors to CIBA-GEIGY Corporation, Ards
ley, N.Y. Filed Dec. 7, 1976, Ser. No. 748,783
Claims priority, application Switzerland, Dec. 12, 1975,
16153/75; Dec. 24, 1975, 16783/75; Sep. 1, 1976, 11069/76; 16153/75; Dec. 24, 1975, 16783/75; Sep. 1, 1976, 11069/76
Nor. 19, 1976, 14584/76 Int. C1.2 A61K 31/335; C07D 317/10; A01N 9/28 U.S. C. \(424-278\)
1. A compound of the formula I

18 Claims
(I), \(\stackrel{\mathrm{a}}{\mathrm{p}}\)

wherein
\(\mathrm{R}_{1}\) represents a \(\mathrm{C}_{1}-\mathrm{C}_{7}\)-alkyl, \(\mathrm{C}_{3}-\mathrm{C}_{6}\)-cycloalkyl, \(\mathrm{C}_{2}-\mathrm{C}_{3}\)-alkenyl, \(\mathrm{C}_{2}\) - \(\mathrm{C}_{3}\)-alkinyl, \(\mathrm{C}_{2}\) - \(\mathrm{C}_{4}\)-methoxyalkyl, chloromethyl or benzyl group,
\(\mathrm{R}_{2}\) represents a hydrogen atom or a \(\mathrm{C}_{1}-\mathrm{C}_{6}\)-alkyl group, or
\(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together represent the - \(\left(\mathrm{CH}_{2}\right)_{\text {n }}-\) group, in which \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together represent the \(-\left(\mathrm{CH}_{2}\right)_{n}-\) group, in which
\(n\) is 4 or 5 , or together with the carbon atom to which they are attached represent the group

15. An insecticidal and acaricidal composition comprising as active ingredient an insecticidally and acaricidally effective amount of a compound of the formula I according to claim 1 together with a suitable carrier therefor. 16. A method of controlling insects and acarids which are locus thereof an insecticidally and acaricidlly effective

4,097,582
\(6^{\prime}, 2\) (2'-ARYLCHROMONYL) PRROPIONIC ACIDS, AND NALGESIC AND ANTI-INFLAMMATORY DERIVATIVES THEREOF
Philippe Briet; Jean-Jacques Berthelon; Jean-Claude Depin, al of Lyon, and Eugene Boschetti, Venissieux, all of France assignors to Lipha, Lyonnaise Industrielle Pharmaceutique, Lyon, France

Filed Nov. 12, 1975, Ser. No. 631,40 Claims priority, application France, Nov. 20, 1974, 7438080
 1. A carboxychromonyl compound having the 10 Claim

in which \(X\) is selected from the group consisting of phenyl, halophenyl, polyhalophenyl, lower alkylphenyl, and trihalomethylphenyl; and R is selected from the group consisting of hydrogen, lower alkyl, lower omega-hydroxyalkyl, morpholinoethyl and lower dialkylaminoalkyl, together with
(a) salts of said compound with pharmaceutically acceptable acids when R is morpholinoethyl and lower dialkylaminoalkyl and (b) salts of said compound with pharmaceutically acceptable mineral and organic bases when \(R\) is hydrogen. 8. An analgesic and anti-inflammatory pharmaceutical composition which comprises (a) the carboxychromonyl com-
pound claimed in claim 4 in an amount sufficient to provide analgesic and anti-inflammatory activity together with (b) a
.
PROCESS FOR THE PRODUCTI 4 OF PHOSPHORUS PENTASCIION Hermann Niermann, Erttstadt Bliesheim, and Franz Mainzer, Hurth, both of Germany, assignors to Hoechst AktiengesellSchan, Frankfurt am Main, Germany Continuation of Ser. No. 657,548 , Feb. 12, 1976, abandoned Thich is a continuation of Ser. No. 480,353, Jun. 18, 1974, Claims priority, (laims priority, application Germany, Sep. 19, 1973, 2347062
U.S. Cl. 423-303
1. In the process for the manufacture of phosphorus sulfides by reacting phosphorus with sulfur at elevated temperatures in a reaction zone surrounded by a heat exchanging material prises maintaining in the reaction zone by heating and cooling respectively, a temperature below the boiling and above the solidification point of the reaction mixture by causing a gas stream having the temperature necessary for heating and cooling, respectively, to flow around the reaction zone, conducting substantially instantaneously from heating to cooling and vice versa, the gas stream for cooling being suction drawn past the eaction zone to create a sub-pressure with respect to the interior of the reaction zone for preventing the gas from penetrating the reaction zone whereby any liquid phosphorus sul-
fide escaping from the reaction zone is immediately solidified in the presence of the gas stream flowing around the reaction zone at a high velocity of flow, and the gas stream for heating comprising combustion and off-gases, being free from oxygen and originating from a mixture of a combustible and air, the
improvement wherein the heat exchange in the bottom
of the reactor is effected by means of a system actuated and operated separately and independently from the heat exchange system surrounding the lateral walls of the reactor whereby the resulting formation of a final product is obtained which is
homogeneous and contains as little as one to two ppm. of iron in comparison to much more ppm. of iron contaminent are obtained by the same reaction in a reactor which is the same as previously described, except that the heat exchange in the bottom portion is not effected by means of a heat exchange system which is actuated and operated separately and independently from the heat exchange sys
walls of the reactor; and whereby:
(a) the lateral walls of the reactor are heated by means of hot
combustion gas for performing the reaction at low throughput conditions
(b) both the bottom portion and the lateral walls of the reactor are cooled with air for performing the reaction at standard throughput conditions; and
and the lateral walls of the reactor are cooled with air for performing the reaction at high throughput conditions.

\section*{4,097,584}

METHOD OF PRODUCING SILICON USEFUL FOR SEMICONDUCTOR COMPONENT MANUFACTURE onrad Reuschel, Vaterstetten, and Norbert Schink, Munich, both of Germany, assignors to Siemens Aktiengesellschaft, in \& Munich, Germany
Filed May 19, 19
Claims priority, application German, May 25, 1976, 2623413 Int. Cl.2 CODB
U.S. C. \(423-348\)

4 Claims

1. A method of producing silicon having a boron and pho phorous content of less than 1 ppm so that such silicon can be utilized for manufacture of silicon components, comprising: confining technical-grade silicon in a reaction chamb heated to a temperature in the range of \(1420^{\circ}\) to \(1480^{\circ} \mathrm{C}\). oo as to produce a silicon melt within said chamber, said phosphorous therein greater than 1 ppm ; and
providing a stream of hydrogen-containing gas having at least \(0.1 \%\) water vapor, at least \(1 \%\) hydrogen and an ine as therein and controllably passing said stream throug said silicon melt within the reaction chamber so that an amount of phosphorous escapes from such silicon melt as gaseous phosphorus hydrogen compound and is removed ber and an amount of boron escapes from such silicon melt as boron oxide and is removed from said melt in a slag that forms on top of said silicon melt, which slag is removed

PRODUCTION OF SULFUR FROM CLAUS PROCESS erbert Fischer, Lollaste GAS
schaft Aktiengesellschaft, Frankfourt am Main Metallgesellschaft Aktiengesellschaft, Frankfurt am Main, Germany
Filed Sep. 26, 1977, Ser. No Fired Sep. 26, 1977, Ser. No. 836,464
Claims priority, application Germany, Oct. 25, 1976, 2648190 .S. Cl. 423-574 R \({ }^{\text {Int. Cl. }}{ }^{2}\) C01B 17/04 S. Cl. \(423-574 \mathrm{R}\)
1. In the process for producing sulfur wherein hydrogen
10 Claims
\(\qquad\) sulfide contained in a feed gas is partially combusted to form sulfur and sulfur dioxide, the balance of the hydrogen sulfide is catalytically reacted with the sulfur dioxide at a low tempera-
ture to form sulfur, and the sulfur produced is separated from ture to form sulfur, and the sulfur produced is separated from the residual exhaust gas, the improvement which comprises
(a) catalytically hydrogenating the residual exhaust gas with
a hydrogen containing gas to form hydrogen sulfide from the sulfur and residual sulfur in such exhaust gas;
(b) simultaneously with step (a) catalytically hydrolyzing the carbon oxysulfide and carbon disulfide contained in the exhaust gas with steam to form hydrogen sulfide; (c) oxidizing part of at least one of the hydrogen sulfide
contained in the initial feed gas and the ultimate sulfur product with air in stoichiometric or slightly less amount to form sulfur dioxide;
(d) adding the sulfur dioxide produced in step (c) to the
hydrogen sulfide-containing exhaust gas which has been hydrogen sulfide-containing exhaust gas which has been subjected to steps (a) and (b) in an amount to establish a ratio of hydrogen sulfide to sulfur dioxide of about \(2: 1\);
(e) catalytically reacting the hydrogen sulfide still contained in the exhaust gas after step (d) with sulfur dioxide at about \(100^{\circ}\) to \(150^{\circ} \mathrm{C}\) to form sulfur, and recovering the sulfur; and
(f) regenerating the catalyst with an oxygen-free hot gas containing hydrogen sulfide.

MMUNO 4,097,586
IMMUNOCHEMICAL ASSAY METHOD Stanley Joseph Gross, Encino, Calif., essignor to Biological Developments, Inc., Encino, Calif.
Continuation-in-part of Ser. No. 160,559, Jul. 7, 1971, Pat. No. 3,940,475, and Ser. No. 462,517 , Apr. 19, 1974, said Ser. No.
160,559, is a division of Ser. No. Ser. No. 89,929, Nov. 16, 1970, Jul 11.1970 is continuation-in-part of Ser. No. 45,558, Jul. 11, 1970, abandoned, said Ser. No. 462,517, is a continuation-in-part of said Ser. No. 45,558 , This application
Feb. 17, 1976, Ser. No. 658,180 The portion of the
\[
\begin{aligned}
& \text { 1993, has been disclaimed. } \\
& \text { Int. C. }{ }^{2} \text { A61K 43/00; G01N } 33 / 00,33 / 16
\end{aligned}
\]
U.S. Cl. \(424-1\)
U.S. Cl. 424-1 1
1. In a quantitative immunoassay for the presence of a target in a sample comprising producing a mixture of the sample, a specific for the target antibody which is immunologically mmunologically harget, and a known quantity of a standard said antibody competitivelys to the target, so as to bind with standard having a covalently bonded denivative capabs emitting radiation from the mixture, providing for competitive antibody binding to take place and measuring the radiation emitted from a portion of the derivative, which radiation mea standard binding with the relative proportions of target and target present, the improvement comprising eme amount of antibody, antibody raised by and specificing to the hapten portion of a synthetic antigen comprising a plurality of hapten moieties cally hly bound to a carrier, said moieties being immunologiby \(-\mathrm{N}=\mathrm{N}-\) sroup coupled directly to an otherwise unsub stituted ring atom of the hapten.
3. \(4,007,587\) 3,DECANE-2 STABILIZERS
and allowing said clear solution to come to an ambient temperSTABILIZERS Nobuo Soma; Tomoyuki Kurumad, both of Ther Heimo Brunetti, Reinach, and Jean Rody, Basel, both of Switzerland, assignors to Sankyo Company, Limited, Tokyo, Japan and CIBA-GEIGY Corporation, Ardsley, N.Y. Filed May 19, 1976, Ser. No. 687,794 Claims priority, application Japan, May 28, 1975, 50-63851
U.S. C. \(260-45.8 \mathrm{~A}\)
1. A piperidine compound having the formula (I):

14 Claims

\({ }^{\text {wherein }}\)
\(\mathbf{R}^{a}\) represents methyl group;
\(\mathbf{R}^{b}\) represents ethyl group; \({ }^{\mathbf{R}^{b} \text { represents ethyl group; }}{ }^{R^{c} \text { represents an alkyl group of } 1 \text { to } 5 \text { carbons; }}\) \(\mathbf{R}^{c}\) represents an alkyl group
\(\mathbf{R}^{d}\) represents ethyl group;
or \(R^{c}\) and \(R^{d}\), together with
\(\mathbf{R}^{c}\) and \(\mathbf{R}^{d}\), together with the carbon atom to which they are
attached, represent a cycloalkyl group of 5 to 7 carbons attached, represent a cycloalkyl group of 5 to 7 carbons;
one of \(R^{\prime}\) and \(R^{c}\) represents hydrogen atom and the other of \(R^{f}\) and \(R^{\prime}\) represents a lower alkyl group of 1 to 4 carbons or an allyl group;
\(n\) is 1 or \(2 ;\)
Y represents
Y represents hydrogen atom or, when neither X nor \(\mathbf{Z}\) represents hydrogen atom, \(Y\) represents hydrogen methyl X represents hydrogen atom, or an alkyl group of 1 to 4 carbons;
when \(n=1\) :
\(\mathbf{Z}\) represents hydrogen atom, an alkyl group of 1 to 18 carbons 2,3 -epoxypropyl group, or phenyl group when \(n=2\) :
X represents an alkylene group of 1 to 10 carbons and acid addition salts thereof wherein the acids are selected from the group consisting of sulphuric acid, hydrochloric acid or phosphoric acid; \(\begin{aligned} & \text { ricmic acid, acetic acid, valeric acid, stea- } \\ & \text { ricile }\end{aligned}\) acic acid, adipic acid, sebacic acid, maleic acid, benzoic acid, p-t-butylbenzoic acid, 4 hhydroxy- 3,5 -di-t-butyl-
benzoic acid, salicylic acid or terephthalic acid; methanesulbenzoic acid, salicylic acid or terephthalic acid; methanesulphonic acid or p-toluene-sulphonic acid; or phenylphosphonic
acid.
4. A polymer composition stabilized against photo- and 4. A polymer composition stabilized against photo- and
thermal-deterioration thereof wherein there is incorporated, in thermal-deterioration thereof wherein there is incorporated, in
an amount sufficient to prevent said deterioration, a piperidine an amount
(I)

4,097,589
Albert Shansky, Norwalk, Conn., assignor to Del Laboratories, Inc., Farmingdale, N.Y. Continuation-in-part of Ser. No. 654,153, Feb. 2, 1976, abandoned. This application Jul. 11, 1977, Ser. No. 814,439
U.S. C. 424-61 Claims 1. A liquid nail polish for application to nails on a human, said nail polish constituting a composition essentially consisting of:
(A) nitrocellulose,
(B) a mixture of solvents for nitrocellulose comprising ethyl acetate, butyl acetate, toluene and butyl alcohol,
(C) a terpolymer of
(i) laurolactam,
(iii) hexamethylene diamine adipate,
(D) a solvent for cail proportions,
(D) a solvent for said terpolyer, comprising trichloroethane and ethyl alcohol,
E) the nitrocellulose and the terpolymer being dissolved in
the solvents for the nitrocellulose and for the said terply mer,
(F) the dissolved terpolymer initially being of a particle size less than 80 microns, (G) said dissolved terpolymer being present in an amount in the nail polish of from between \(0.001 \%\) to \(0.1 \%\) by weight
of the composition which is effective to impart to the nails an improved flexural strength when the composition is applied as a coating thereon and permitted to dry.


4,097,590
METHODS AND COMPOSITIONS FOR TREATMENT OF BACTERIAL AND FUNGUS INFECTIONS OF THE SKIN Geraldine Fay Weisz, 2240 Harmain Rd., Pittsburgh, Pa. 15235 Continuation-in-part of Ser. No. 598,635, Jul. 24, 1975, Pat. No. 3,996,350, which is a continuation-in-part of Ser. No. 537,969 , , in. 2, 1975, Pat. No. 3,995,029. This application Jul. 19, 1976, The portion of the Ser. No. 706,44 C. C. \({ }^{2}\) A01N \(11 / 00\); C11D \(3 / 48\), 9/50
U.S. CI. 424-151

9 Claims
1. A composition for treating bacterial and fungus infections the skin such as acne vulgaris and athlete's.foot comprising mixture of about \(0.05 \%\) to \(1 \%\) of a wetting agent and the balance a water soluble fluoride.
\(\mathbf{N}^{2}\)-ARYLSULFONYL-L-ARGININAMIDES AND THE \(\mathrm{N}^{2}\)-ARYLSULFONYL-L-ARGININAMIDES AND THE
PHARMACEUTICALLY ACCEPTABLE SALTS THEREOF PHARMACEUTICALLY ACCEPTABLE SALTS THEREOF
Shosuke Okamoto; Akiko Hijikata, both of Kobe; Ryoji Kikuhosuke Okamoto; Akiko Hijikata, both of Kobe; Ryoji Kiku-
moto, Machida; Yoshikui Tamao, Yokohama; Kazuo Ohkubo, Machida; Tohru Tezuka, Yokohama, and Shinji Tonomura, Tokyo, all of Japan, assignors to Mitsubishi both of, Japan

\section*{Continuation-in-part of Ser. No. 760,677, Jan. 19, 1977, which is} 2 continuation-in-part of Ser. No. 638,985 , Dec. 9,1975 , Pat. No. 4,055,636, Ser. No. 646,522, Jan. 5, 1976, Pat. No. 4,018,915, Ser. No. 649,219, Jan. 14, 1976, Pat. No. 4,018,913, Ser. No. 10, 1976, Pat. No. 4,046,876, Ser. No. 669,743, Mar. 24, 1976, Pat. No. 4,070,457, Ser. No. 671,436, Mar. 29, 1976, Pat. No. \(4,066,758\), and Ser. No. 703,704, Jull. 8, 1976, Pat. No. 4,069,323, said Ser. No. 671,436, is a division of Ser. No. 622,390, Oct. 14,
1975, abandoned. This application Mar. 10, 1977, Ser. No. 1975, abandoned. This application Mar. 10, 1977, Ser. No.
The portion of the term of this patent subeequent to Jan. 3, 1995, Int. C1. \({ }^{2}\) A61K been disclaimed.
U.S. C1. \(424-177\)

An \(\mathrm{N}^{2}\) arylsulfonyl-L-argininamide having the formula (I)

or a pharmeceutically acceptable salt thereof, wherein R is
henyl substituent selected from the group consisting of sulfoamino substituent selected from the group consisting of sulfoamino,
carbamoyl \(, \mathbf{C}_{3}-\mathbf{C}_{10} \mathrm{~N}, \mathrm{~N}\)-dialkylcarbamonyl, amino, \(\mathbf{C}_{1}-\mathrm{C}_{1}\) alkylamino, mercapto, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio, \(\mathrm{C}_{7}-\mathrm{C}_{12}\) aralkyl, carboxy, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkoxycarbonyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) carboxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) acylamino, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylcarbonyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) haloalkyl and phenyl optionally substituted with at least one hydroxy, \(C_{1}-C_{\text {s }}\) alkoxy, or mixutres thereof, and at least one substituent selected from the group consisting of \(\mathrm{C}_{2}\) - \(\mathrm{C}_{2}\) dialkylamino; oxanthrenyl or dibe
least one substituent selected from the group consisting of halo, nitro, cyano, hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy, \(\mathrm{C}_{2}-\mathrm{C}_{20}\) dialkylamino, sulfoamino, carbamoyl, \(\mathrm{C}_{3}-\mathrm{C}_{10} \mathrm{~N}, \mathrm{~N}\) \({ }^{\text {dialkylcarbamoyl, amino, }} \mathrm{C}_{1}-\mathrm{C}_{10}\) alkylamino, mercapto, \(C_{1}-C_{10}\) alkyithio, \(C_{1}-C_{12}\) aralkyl, carboxyl, \(C_{2}-C_{10}\) alkoxy-
carbonyl)
\(C_{2}-C_{10}\) carboxyalkyl, \(C_{1}-C_{10}\) acylamino, \(C_{2}-C_{10}\) carbonyll, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) carboxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) acylamino, \(\mathrm{C}_{2}-\mathrm{C}_{10}\)
alkylcarbonyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) haloalkyl, and phenyl optionally substituted with at least one hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{5}\) alkoxy, or mixtures thereof;
\(\mathrm{C}_{7}-\mathrm{C}_{12}\) aralkyl, tetrahydronaphthyl, 1,2 -ethylenedioxyphe-
nyl, chromanyl, 2,3 -ethylenedioxynaphthyl nyl, chromanyl, 2,3 -ethylenedioxynaphthyl or xanthenyl
group, any substiuted with at least one substiuent selected from the group consisting of halo, nitro, cyano, hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy, \(\mathrm{C}_{2}-\mathrm{C}_{20}\) dialkylamino, suloamino, carbamoyl, \(\mathrm{C}_{3}-\mathrm{C}_{10} \mathrm{~N}, \mathrm{~N}\)-dialkylcarbamonyl, amino, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylamino, mercapto, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio, \(\mathrm{C}_{7}-\mathrm{C}_{12}\) aralkyl, carboxyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkoxycarbonyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) carboxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) acylamino, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylcarbonyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyal. kyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) haloalkyl, oxo and phenyl optionally substituted
with at least one hydroxy, \(\mathrm{C}_{1}\) - \(\mathrm{C}_{5}\) alkoxy, or mixtures thereof; a naphthoquinonyl, anthryl, phenanthryl, pentalenyl, heptalenyl, azulenyl, biphenylenyl, as-indacenyl, S-indacenyl, acenaphthylenyl, phenylcarbonylphenyl, phenoxyphenyl, benzofuranyl, isobenzofuranyl, benzo (b) thienyl, isobenzo-
thienyl, thianthrenyl, dibenzothienyl, phenoxathinyl indothienyl, thianthrenyl, dibenzothienyl, phenoxathinyl, indo-
lyl, 1 H -indazolyl, quinolyl, isoquinolyl, phthalazinyl, 1,8 . yl, 1 H -indazolyl, quinolyl, isoquinolyl, phthalazinyl, 1,8 .
naphthridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, caraazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl or benzimidazolyl group any of which is unsubstituted or substituted with one or more groups selected from the group consisting of halo, nitro, cyano, hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy, \(\mathrm{C}_{2}-\mathrm{C}_{20}\) dialkylamino, sulfoamino, carbamoyl
\(\mathrm{C}_{3}-\mathrm{C}_{10}\)
\(\mathbf{N}, \mathrm{~N}\)-dialkylcarbamoyl, amino, \(\mathrm{C}_{1}\) - \(\mathrm{C}_{10}\) alkylamino,

 amino, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylcarbonyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\)
haloalkyl and phenyl optionally substituted with at least one hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{5}\) alkoxy, or mixtures thereof;
a \(\mathrm{C}_{9}-\mathrm{C}_{16}\) cycloalkylphenyl, \(\mathrm{C}_{10}-\mathrm{C}_{18}\) cycloalkylalkylphenyl,
\(\mathrm{C}_{9}-\mathrm{C}_{16}\) cycloalkyloxyphenyl \(\mathrm{C}_{9}-\mathrm{C}_{16}\) cycloalkylthiophenyl, 9,10 -dihydroanthryl, \(5,6,7,8\)-tetrahydroanthryl, 9,10 -dihy. drophenanthryl, \(1,2,3,4,5,6,7,8\)-octahydrophenanthryl, indenyl, indanyl, fluorenyl, acenaphthenyl, phenylthiophenyl, isochromanyl, 2,3-dihydrobenzofuranyl, 1,3 -dihydroisobenzofuranyl, thioxanthenyl, 2 H -chromenyl, 3,4 -dehydro-1-isochromanyl, 4H-chromenyl, indolinyl, isoindolinyl, \(1,2,3,4\) any of which is unsubstituted or substituted with one or more groups selected from the group consisting of halo, nitro, cyano, hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy, \(\mathrm{C}_{2}-\mathrm{C}_{2}\) dialkylamino, sulfoamino, carbamoyl, \(\mathrm{C}_{3}-\mathrm{C}_{10} \mathrm{~N}, \mathrm{~N}\)-dialkylcarbamoyl, amino, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylamino, mercapto, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio, \(\mathrm{C}_{1}-\mathrm{C}_{12}\) aralkyl, carboxyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkoxycarbonyl, \(C_{2}-C_{10}\) carboxyakyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) acylamino, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylcarbo
nyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) ahdroxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) haloalkyl, oxo and pheny optionally substituted with at least one hydroxyl, \(\mathrm{C}_{1}-\mathrm{C}_{5}\) alkoxy, or mixtures thereof; or benzene ring-substituted
wherein \(\mathrm{R}_{3}\) is hydrogen, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{3}-\mathrm{C}_{10}\) alkenyl, \(\mathrm{C}_{3}-\mathrm{C}_{10}\) alkynyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkoxyalkyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylthioalkyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylsulfinylakkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl \(\mathrm{C}_{2}-\mathrm{C}_{10}\) carboxyalkyl, \(\mathrm{C}_{3}-\mathrm{C}_{10}\) alkoxycarbonylalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) haloalkyl, \(\mathrm{C}_{5}-\mathrm{C}_{15}\) \(\mathrm{C}_{4}-\mathrm{C}_{10}\) cycloalkylalkyl; \(\mathrm{R}_{4}\) is \(\mathrm{C}_{1}-\mathrm{C}_{5}\) alkyl, carboxy, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkoxycarbonyl, phenyl, \(\mathrm{C}_{1}-\mathrm{C}_{12}\) aralkyl or ring substituted benzyl wherein said substituent is \(C_{1}-C_{5}\) alkyl or \(C_{1}-C_{5}\) alkoxy; \(\mathrm{R}_{5}\) is hydrogen, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{6}-\mathrm{C}_{10}\) aryl, \(\mathrm{C}_{7}-\mathrm{C}_{12}\) aralkyl or 5 -indanyl; and \(m\) is an integer of 0,1 or 2 ;
Ar is a phenyl or naphthyl group, either substituted with a least one substituent selected from the group consisting of
sulfoamino, carbamoyl, \(\mathrm{C}_{3}-\mathrm{C}_{10} \mathrm{~N}, \mathrm{~N}\)-dialkylcarbamonyl, amino, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylamino, mercapto, \(\mathrm{C}_{1}\) - \(\mathrm{C}_{10}\) alkylthio, \(\mathrm{C}_{7}\) \(-\mathrm{C}_{12}\) aralkyl, carboxy, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkoxycarbonyl, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) car-
boxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) acylamino, \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkylcarbonyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) hydroxyalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) haloalkyl and phenyl optionally substi-
thyl]-(thiono)-(di)-thiol-phosphoric(phosphonic) acid ester or ester-amide of the formula
wherein \(R_{6}\) is hydrogen, \(C_{1}-C_{10}\) alkyl or \(C_{1}-C_{10}\) alkoxy, and wherein \(R_{6}\) is hydrogen, \(C_{1}-C_{10}\) alkyl or \(C_{1}-C_{10}\) alkoxy, and
said substituent is a teast one \(C_{1}-C_{5}\) alkoxy or mixtures thereof.

\section*{4,097,592}

O-[1-SUBSTITUTED-6-PYRIDAZINON(3)YL]THIONOALKANEPHOSPHONIC ACID ESTERS FOR COMBATING INSECTS AND ACARIDS
Wolfgang Hofer, Fritz Maurer; Hans-Jochem Riebel; Lothar Rohe; Rolf Schröder, all of Wuppertal; Ingeborg Hammann,
Cologne; Wolfgang Behrenz, Overath-Steinenbrueck, and Bernhard Homeyer, Leverkusen, all of Germany, assignors to Bayer Aktiengesellschaft, Leverkusen, Germany
Filed Jul. 26, 1976, Ser. No. 708,669
Filed Jul. 26, 1976, Ser. No. 708,669
Claims priority, application Germany, Aug, 5, 1975, 2534893
Int. CI. \({ }^{2}\) C07F 9/65; A01N 9/36 U.S. CI. 424-200 \(\underset{\substack{\text { Int. C1. } \\-21 \text {-substi }}}{ }\)

10 Claims 1. An O-[1-substituted-6-pyridazinon(3)yl)(thiono)(thiol)alkanephosphonic acid ester of the formula
in which

in \(\mathbf{R}_{1}\) and
MONO-5-SUBSTITUTED \(\quad\),097,594 Clin-4ONE ANTIFUNGAL AGENTS Wayne Nelson Hre and Bruce Lloyd Davidson, Middleport, all of N.Y., assignors to FMC Corporation, Philadelphis, Pa. 82,860 Filed Mar. 30, 1977, Ser. No. 782,86
atoms, \({ }^{2}\) each independently is alkyl with 1 to 7 carbo
atoms,
\(\mathbf{R}_{3}\) is alkyl, cyanoalkyl, alkylcarbonylalkyl, carbalkoxyalkyl, hydroxyalkyl, alkylthioalkyl or halogenoalkyl with 1 to 4
carbon atoms per alkyl radical, alkenyl or alkenyl with 3 to 5 carbon atoms, benzyl, benzyl carrying at least on substituent selected from halogen and alkyl with 1 to 3 carbon atoms, or phenyl, phenyl carrying at least one
substituent selected from nitro, halogen, alkyl with 1 to 3 substituent selected from wro, hilogen, alkyl whith io piperidinomethyl,
\(R_{4}\) and \(R_{5}\) each independently is hydrogen or alkyl with 1 to 3 carbon atoms, and
X and Y each independently is oxygen or sulfur.
9. A method of combating insects or acarids which com an insecticidally or acaricidally effective amount of an este according to claim 1.

\section*{4,097,593}

O-ALKYL-S-[1,6-DIHYDRO-6-THIOXO-PYRIDAZIN. O) YL METHYL-(THIONO)-(DI)-THIOL-PHOSPHORIC (PHOSPHONIC) ACID ESTERS AND ESTER-AMIDES ACARICIDAL COMPOSITIONS THEREOF Fritz Maurer, Hans-Jochem Riebel, both of Wuppertal; In geborg Hammann, Cologne, and Bernhard Homeyer, Leverku sen, all of Germany, assignors to Bayer Aktiengesellischaft Leverkusen, Germany
Claims priority, application Germany, Jan. 28, 1976, 2603052 U.S. C. \(424-200\) 1. An O-200

An O-alkyl-S.[1,6-dihydro.6-thio 9 Claim
U.S. C1. 424-246
\[
\begin{aligned}
& \text { Mar. } 30, \text { 1977, Ser. No. } \\
& \text { Int. Cl. }{ }^{2} \text { A01N } 9 / 12
\end{aligned}
\] 1. A method for control of fungal disease on plants comprisapplying to the locus where control is desired an effective formula:

in which \(X\) is halogen, phe
phenoxy having the formula
-dyl-S-1,6-dihydro-6-thioxo-pyridazin-(1)-ylme
wherein each R group is a substituent independently selected from the group consisting of lower alkyl, halo, hydroxy, lower alkoxy, nitro, cyano, amino, carboxyl, lower acyl, lower acyl-
amino having \(1-4\) carbon atoms, lower alkoxycarbonyl, carboxy(lower)alkyl, lower alkylureido, phenylureido, trihalo methyl, cyano(lower)alkyl, pheny(lower)alkoxycarbonyloxy lower alkylaminocarbonyloxy, phenylaminocarbonyloxy lower alkylthio, lower alkylsulfinyl and lower alkylsulfonyl and wherein \(n\) has a value of 1 to 3 inclusive, except when each R is halogen, \(n\) has a value of 1 to 5 inclusive.
which
R is alkyl with 1 to 6 carbon atoms,
\(\mathbf{R}^{1}\) is alkyl, alkoxy, alkylmercapto or alkylamino with a maximum of 6 carbon atoms per alkyl chain,
\(\mathbf{R}^{2}\) is halogen, alkoxy with 1 to 5 carbon atoms or alkyl with \(\mathrm{R}^{3}\) to 5 carbon atoms, \(\mathrm{R}^{4}\).
hdrogen or conjointly form a fused benX is an oxygen or
8. A method of or sulfur atom.
which comprises combating nematodes or insects and acarids acarids or to a habitat thereof a ne nematodes or insects and or acaricidally effective amount of a compound insconticidally claim 1

\section*{7-AMINO-THIAZOLYL ACETAMIDO} René Heymés, Reprailiosporanic ACIDS Rene Heymes, Romainville, France, assignor to Roussel Uclaf,
Paris, France Filied Jan. 12, 1977, Ser. No. 758,634
Claims priority, application France, Jan. 14, 1976, Claims priority, application France, Jan. 14, 1976, 7600843 U.S. CI. \(424-246\)
1. 7 -amino-thiazolyl-acetamido-cephalosporanic acid 15 Claims pounds of the formula

wherein R is selected from the group consisting of hydrogen ert.-butoxy carbonyl, trityl, benzyl, dibenzyl, trichloroethyl, carbobenzyloxy, formyl and phthaloxy, \(R_{1}\) is selected from the group consisting of alkyl of 1 to 4 carbon atoms, furyl, thiazolyl, oxothiazolinyl, isothiazolyl, oxazoly1, imidazolyl, diazolyl, thiadiazolyl and tetrazolyl, and \(\mathbf{A}\) is selected from the group consisting of hydrogen, alkali metal and equivalents of
alkaline earth metals, magnesium and a non-toxic, pharmaceutically acceptable organic amine. 12. A method of combatting bacterial infections in warmblooded animals comprising administering to warm-blooded
animals an antibacterially effective amount of at least one animals an antibacteri compound of claim 1.

INHALATION THERAPY FOR RELIEVING
4,097,596
BRONCHIAL SPASM USING OUATERNARY SALT BRONCHIAL SPASM USING QUATERNARY SALTS OF PROMETHAZINE
Albert J. Begany, Tucson, Ariz; Marrin E. Rosenthale, Havertown, and Alphonse Dervinis, Wayne, both of Pa., assignors to American Home Products Corporation, New York, N.Y. Filed Nov. 2, 1976, Ser. No. 737,927
Int. Cl. \({ }^{2}\) A61K 3 \(1 / 54\)
U.S. CI. 424-247
1. A method of relieving 16 Claims 1. A. method of relieving bronchial spasm and facilitating breathing in warm-blooded animals which comprises adminis-
tering orally or nasally to a warm-blooded animal in need tering orally or nasally to a warm-blooded animal in need
thereof, by aerosol route, an amount sufficient to relieve bronchial spasm and facilitate breathing in said warm-blooded animal of a composition comprising:
(a) a compound of the formula:

wherein \(\mathbf{R}\) is cyclopropylmethyl or alkyl of from 1 to 4 carbon atoms; \(\mathbf{X}\) is a pharmacologically acceptable anion; carbo
and
(b) a ph
(b) a pharmacologically acceptable carrier.
dibenzo \(\begin{aligned} & 4,097,5][1,4] \text { DIAZEPINES }\end{aligned}\) Bruce Wayne Horrom, Waukegan; Frederick Nelson Minard Lake Bluff, and Harold Elmer Zauge Lake Forest, Minard, assignors to Abbott Laboratories, North Chicago, Ill. Filed Feb. 23, 1977, Ser. No. 771,216 Int. Cl. \({ }^{2}\) A61K 31/55; C07D 403/04
\(\mathbf{2 5 0}\) U.S. Cl. 424- 250 1. A compound of the structure

wherein \(R\) is \(H\), loweralkyl, hydroxyloweraikyl or R.- icwhere
H or
\(R_{2}\) is an alkyl group of 1 to 15 carbon atoms; and \(R_{1}\) is
\(0-1+2\) \(\stackrel{\mathrm{O}}{\mathrm{R}_{2} \mathrm{C}}\)
where \(R_{2}\) is an alkyl group of 1 to 15 carbon atoms. 7. A composition of long lasting activity in the treatment of schizophrenics comprising as the active component a compound of the formula

wherein \(R\) is \(H\), loweralkyl, hydroxyloweralkyl or

\section*{R- i-}
where \(\mathrm{R}_{2}\) is an alkyl group of 1 to 15 carbon atoms; \(\mathrm{R}_{1}\) is H or cally acceptable carrier.

4,097,598
QUATERNARY SALTS AS HYPOGLYCEMIC AGENTS Donald E. Kuhla, Gales Ferry, Conn., assignor to Pfizer Inc., New York, N.Y.
Division of Ser, N. 712,204 A 10 , 1076, Pat No, 4,04, 015 , and a ontinuation-in-part of Ser. No, 609,914, Nop. 3,1975 sbandoned. This application Aug. 8, 1977, Ser. No. 822,746 abandoned. This application Aug. 8, 1977 , Ser. No. 822,746
Int. Cl. \({ }^{2}\) A61K \(31 / 435,31 / 47\) U.S. Cl. 424-256 \(\xrightarrow{\text { Int. Cl }}\)
1. A method for reducing the blood-sugar level of a diabetic
mammal which comprises orally or parenterally administering to said mammal a hypoglycemic amount of a compound of the formulae


TRIAZOLES Brighton, and George Holan, Brighton, both of Australia, assignors to Commonwealth Scientific and Industrial Research Organization, Campbell, Australia
Division of \(S\)
Division of Ser. No. 522,626, Nov. 11, 1974, Pat. No. 4,038,405. Claims application Mar. 10, 1977, Ser. No. 776,187 Claims priority, application Australia, Nov. 13, 1973, PB5638 U.S. C. 424-263 A01N 9/22; C07D 249/08, 401/04 1. 3 (5)-(4-Pyridyl)-5(3)-trifluoromethyl-1,2,4-triazole. 6 2. \(3(5) \cdot(2,3,6\)-Trichlorophenyl)-5(3)-trifuoromethyl-1,2,4triazole.
3. 3(5)-(4-Nitrophen yl)-5(3)-trifluoromethyl-1,2,4-triazole. 4. A pest control composition comprising an acaricidally effective amount of a triazole compound as defined in claim 1 in admixture with a solid or liquid carrier material.


PHARMACEUTICAL COMPOSITION CONTAINING QUATERNARY AMMONIUM COMPOUNDS Robert Andrew Bauman, New Brunswick, N.J., assignor to Colgate Palmolive Company, New York, N.Y.
Division of Ser. No. 659,618, Feb. 20, 1976, Pat. Division of Ser. No. 659,618, Feb. 20, 1976, Pat. No. 4,007,281, which is a division of Ser. No. 134,827, Apr. 16, 1971, Pat. No. Pat. No. \(3,621,048\), which is a continuation-in-part of Ser. No. 578,981, Sep. 13, 1966, abandoned. This application Nov. 12, 1976, Ser. No. 741,580
Int. Cl. \({ }^{2}\) A61K 31/445
U.S. C. 424-267 8 Claims
1. A pharmaceutical composition comprising an effective amount of a chemical compound effective against gram positive microorganisms represented by the formula:

where \(\mathbf{R}^{\prime}\) is selected from the group consisting of an alky group containing 1 to 22 carbon atoms, a phenyl group, a
wherein \(R\) is hydrogen or the carbon and hydrogen atoms completing a fused 6,7 -benzo moiety; \(R_{1}\) is hydrogen, chlorine, enzyl, \(\alpha\)-naphthylmethyl, \(\beta\)-naphthylmethyl, \(\beta\)-phenethyl or by halogen selected from the group consisting of chlorine and bromo, dichloro, trifluoromethyl, cyano, methylsulfonyl
famoyl, dimethylsulfamoyl, carbethoxy, phenyl or methoxy; containing is selected form atoms, a phenyl group substituted \(\mathrm{R}_{4}\) is selected from the group consisting of alkyl having one to by halogen selected from the group consisting of chlorine and hree carbon atoms, benzyl and substituted benzyl wherein said bromine, a phenyl group substituted by an alkyl group contain substituents are selected from the group consisting of chloro and dichloro; \(R_{3}\) and \(R_{6}\) are each selected from the group
consisting of phenyl and hydrogen, provided that when \(R\), and consisting of phenyl and hydrogen, provided that when \(R_{s}\) and of benzyl and substituted benzyl wherein said substituent is
selected from the group consisting of chloro and dichloro; \(X\) is
a pharmaceutically acceptable anion; \(\mathbf{Y}\) is chlorine, bromine,
a pharmaceutically acceptable anion; \(Y\) is chiorine, br
hydrogen or methoxy; and \(Z\) is hydrogen or chlorine.
\[
\begin{aligned}
& \text { g } 1 \text { to } 5 \text { carbon atoms, and a phenyl group s } \\
& \text { Ikoxy group containing } 1 \text { to } 5 \text { carbon atoms; }
\end{aligned}
\]
\(\mathbf{Y}\) is selected from the group consisting of oxygen and sulfur
\(Z\) is selected from the group consisting of oxygen and sulfur
\(x\) and
aid compound being admixed with a pharmaceutically accept able carrier.

\section*{4,097,601}

2-DESCARIBONE DEPOSITION BY ARYL PROSTAGLANDINS Thomes Ken Schanf, Old Lyme, Conn., assignor to Pfizer Inc New York, N.Y.
\[
\begin{aligned}
& \text { iiled Aug. 26, 1977, Ser. No. 827,935 } \\
& \text { Int. C. }{ }^{2} \text { A61K 31/41 }
\end{aligned}
\]
U.S. C. 424-269 Int. C. \({ }^{2}\) A61K 31/41
1. In the treatment of bone disorders, a method to increas the amount of both the osteomineral deposit and the osteoid present within bone by administration to a subject in need of the structure

or the pharmacologically acceptable salts thereof wherein: A is ethylene or cis-vinylene:
M is oxo.

\(\mathbf{R}\) is hydrogen or methyl;
and Ar is phenyl or monosubstituted phenyl, said monosubmethyl, methoxy and phenyl

METHOD OF INHIBTING
METHOD OF INHIBITING BLOOD PLATELET Melvin J. Silver, 6640 Wissahickon
19119; John Bryan Smith, 40 Needlepoint Miladelphia, Pa delphia Pa. 08016, and Co needelepoint Lane, both of PhilaLa., Willingboro, N.J.
Continuation of Ser. No. 528,594, Nov. 29, 1974, abandoned This application Aug. 24, 1976, Ser. No. 717,277 Int. C1. \({ }^{2}\) A61K 31/19, 31/20, 31/215 U.S. Cl. 424-305
1. A method for inhibiting blood platelet aggregation com prising administrating to an individual disposed toward undesirable blood platelet aggregation from about \(5-400 \mathrm{mg} / \mathrm{kg}\) o
body weight of \(8,11,14\)-cicosatrienoic acid, the ester thereof or a pharmaceutical acceptable salt thereof.

\section*{4,097,603}

GASTRIC CYTOPROTECTION WITH
NON-ANTISECRETORY DOSES OF PROSTAGLANDINS pany, Kalamazoo, Mich.

Filed Sep. 6. 6, 1977, Ser. No. 830,559
Int. CC. \({ }^{2}\) A61K 31/215, 31/19
U.S. Cl. 424-305
1. A method of preventing non-NOSAC-induced 7 Clim inflammatory disease in a human with high susceptibility to the acquisition of said disease, which comprises:
tory dose of said humans systemically a non-antisecre tive to prevent the development of said disease.

METHOD OF TRE 4,097,604
GINGIVITIS Ltd., New Oxford, Pa.
Continuetion of Ser. No 642114 , De \(18,1575,2\), Continuation-in-part of Ser. No. 2833.662, Dec. 18, 1975, and a continuanion-iin-part of Ser. No. 283,662, Aug. 25, 1972, Pat. No
\(\mathbf{3 , 8 0 5 , 7 7 6 ,}\) Ser. No. 283,633, Aug. 25, 1972, Ser. No. 123,830, 3,805, 12, 1971, Pat. No. 38367, Aus, 25, 1972, Ser. No. 123,830,
Mand Ser. No. 113, 362, Feb. 8, 1971, Pat. No. 3,741,204, saidd Ser, No. S42, 114 , is a continuation of Ser. No. 483,010, Jun. 25, 1974, Pat. No. 3,982,017, which is a continuation-in-part of Ser. No. 369,236, Jun. 12, 1973, Pat.
No. 3,924,000, which is a continuation in ppart of Ser. No. No. 3,924,000, which is a continuation-in-part of Ser. No.
283,662, said Ser. No. 283,663, said Ser. No. 123,830, and Ser. No. 113,362, said Ser. No. 283,662, said Ser. No. 283,663, and said Ser. No. 123,830, each is a continuation-in-part of said Ser. No. 113,362, said Ser. No. 283,662, and said Ser. No.

663 , each is a continuantion-in-part of said Ser. No. 123,
This application Dec. 29, 1976, Ser. No. 755,400
Int. C1.2 A61K \(31 / 20\), \(7 / 16\) U.S. Cl. 424-318

10 Claims related periodontal diseases of the gingival tissue which and prises contacting the diseased gingival tissue with a liquemcomposition consisting essentially of (i) 0.5 to 10 percent by weight of a fatty acid salt prepared from an unsubstituted unsaturated fatty acid having one double bond and from an alkali metal or an alkali metal compound or a basic alkali metal compound, said fatty acid having 14 to 22 carbon atoms; (ii) a liquid carrier; (iii) an effective amount of a buffering agent, and (iv) an effective amount of ethanol, the pH of said liquefied composition being between 9 and 11 .

\section*{4,097,605}

ALKYL THIOUREA MITICIDES
Chemilyn W. Fancher, Orinda, Calif,, assignor to Stauffer Chemical Company, Westport, Conn.
Continuation of Ser. No. 597,104, Jul. 18, 1975, abandoned. This application Nov. 15, 1976, Ser. No. 742,157
Int. C1.2 A01N \(91129 / 20\). C07C \(157 / 09\) U.S. Cl. 424-322
1. A compound having the formula
\[
\begin{array}{ccc}
\mathrm{H} & \mathrm{~S} & \mathrm{H} \\
1 \\
\mathrm{R}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{R},
\end{array}
\]
wherein \(R\) is benzyhydryl, and \(R_{1}\) is alkyl containing from 7 to
5. A method of controlling mites consisting of applying to said mites a miticidally effective amount of a compound having the formula

\section*{\(\xrightarrow{H-H^{\prime}}\)}
wherein \(R\) is selected from the group consisting of benzhydryl, \(3^{\prime}\) '(2' ethylhexoxy)-propyl, allyl, cyclohexyl, cycloheptyl, \(1^{\prime}, 3^{\prime}\)-dimethylbutyl, and alkyl containing from 7 to 13 carbon atoms, inclusive; and where \(R\) is benzhydryl, \(R_{1}\) is alkyl con-
taining from 7 to 11 carbon atoms, inclusive; where \(R\) is \(3^{\prime}\) - 2 -ethylhexoxy)-propyl, \(R_{1}\) is alkyl containing from 1 to 12 carbon atoms, inclusive; where \(R\) is allyl, \(R_{1}\) is alkyl containing from 9 to 13 carbon atoms, inclusive; where \(R\) is cyclohexyl, \(R_{1}\) is dodecyl; where \(R\) is cycloheptyl, \(R_{1}\) is heptyl; where \(R\) is \(1^{\prime}\)-3'-dimethylbutyl, \(R_{1}\) is \(n\)-heptyl or dodecyl; where \(R\) is sive; where \(R\) is octyl, \(R_{1}\) is alkyl containing from 6 to 10 sive; where \(R\) is octyl, \(R_{1}\) is alkyl containing from 6 to 10
carbon atoms, inclusive; where \(R\) is nonyl, \(R_{1}\) is alkyl containcarbon atoms, inclusive; where \(R\) is nonyl, \(R_{1}\) is alkyl contain-
ing from 3 to 9 carbon atoms, inclusive; where \(R\) is decyl, \(R_{1}\) is alkyl containing from 3 to 7 carbon atoms, inclusive; and
where \(\mathbf{R}\) is undecyl, dodecyl, or tridecyl, \(\mathbf{R}_{1}\) is alkyl containing from 2 to 7 carbon atoms, inclusive.

\section*{4,097,606}

APAP TABLET CONTAINING AN ALKALI METAL
CAPBOXYMETHYLATED STARCH AND PROCESSE
FARBOX MANUFACTURING SAME
Leonard Chavkin, Mountainside, and F. Henry Merkle, Scoteb Plains, both of N.J., assignors to Bristol-Myers Company New York, N.Y.
\[
\begin{aligned}
& \text { led Oct. 8, 1975, Ser. No. } 620,688 \\
& \text { IIt. C. }{ }^{2} \text { A61K } 31 / 65.47 / 108
\end{aligned}
\]
U.S. Cl. 424-324 Cl. \({ }^{\text {A }}\) 161K 31/165, 47/00
1. As an article of manufacture, a tablet having a relatively high absorption rate for N -acetyl-p-aminophenol as measured by the blood plasma level of N -acetyl-p-aminophenol ove time after ingestion comprising:
(a) from about 190 to 1000 milligrams of N -acetyl-p-aminophenol;
(b) from about 30 to 90 milligrams of
metal carboxymethyl starch; and
(c) a non-toxic, pharmaceutically acceptable binder
the ratio of N -acetyl-p-aminophenol to sodium alkali metal
carboxymethyl starch, on a weight basis, being in the
carboxymethyl starch, on a weight basis, being in the range of from about \(5: 1\) to \(10: 1\);
the quantity of binder present being in the range of from 0 to
an amount no greater than the amount of N -acetyl-p
aminophenol contained in the tablet.

4,097,607
DETERRENT COMPOSITION, METHOD OF USING SAME AND APTICLE COATED THEREBY
SAME, AND ART Commerce Dr., Fort Collins, Col 80522

Filed Dec. 10, 1976, Ser. No. 749,303
U.S. C. \(424-324\)
1. A deterrent for mammals comprising a carrier Claims 1. A deterrent for mammals comprising a carrier and an
effective amount of cinnamic aldehyde wherein the carrier is an ointment which is substantially insoluble in water.

\section*{4,097,608}

ANTI-ULCEROUS TYROSINE DERIVATIVES osaku Miki; Yasuhiro Hosokawn; Tamotsu Miwa; Hiroshi Fuitara, Mmeahide Asano, and Shunzo Aibara, all of Tokyo, Japan, asaignors to Daiichi Seiyalk Co., Ltd., Tokyo, Japan Division of Ser. No. 639,117, Dec. 9, 1975, Pat. No. 4,025,64 This application Dec. 20, 1976, Ser. No. 752,511 Claims priority, application Japan, Dec. 18, 1974, 49-145133; \(50-1000\)
Int. CC. \({ }^{2}\) A61K 31/085, 31/165; C07C 103/78 U.S. C. \(424-324\)
1. A compound of the formula:

\section*{4,097,609}

2,4-DISUBSTTTUTED-4B,5,6,7,8,8A,9,10-OCTAHYDRO-9. OXO-PHENANTHRENES
Sandor Barcza, West Orange, N.J., and James B. Hendrickcon, Camb
Division of Ser. No. 637,718, Dec. 4, 1975, Pat No. 4,034,045, which is a continuntion-in-part of Ser. No. 566,759, Apr. 10, 1975, abandoned, which is a continuation of Ser. No. 368,939 , Jun. 11, 1973, abandoned. This application Mar 2, 1977, Ser Int. C1. \({ }^{2}\) No. 77 49,82;
U.S. Cl. 424-331 1.

where R represents hydrogen or lower alkyl having 1 to carbon atoms.

PROCESS FOR MAKING FISHBATT AND THE PRODUCT PRODUCED THEREBY
Ronald L. Morrison, 3719 NE. 74th Pl., Seattle, Wash. 98115 Filed Jan. 28, 1977, Ser. No. 763,543
Int. C. \({ }^{2}\) A23L \(/ 325\)
U.S. C. \(426-1\)
1. A process 9 Claims 1. A process
(a) Mixing fish eges, at least some of which are whole with residue to form a mixture;
(b) Spreading said mixture into a container
(c) Brushing the exposed surface of the mixture in the container with oil; and
(d) Heating said mixture until it forms a soft pliable con gealed mass, with the whole fish eggs being held in the now-solidified slurry, said congealed mass forming the fishbait, which may be conveniently cut into bait size portions.

4,097,611
SLICED FOOD PACKAGE WITH SIDE WINDOWS Scar E. Seiferth, and Calvin T. Royston, both of Madiso Wis., assignors to Oscar Mayer a Co. Inc., Madison, Wis. Filed Mar. 15, 1973, Ser. No. 341,390
Int. Cl. \({ }^{2}\) B65D 85/72: B65B U.S. CI. \(426-121\)

3 Claim
wherein \(R_{1}\) is phenyl or cycloalkyl and the phenyl may have at east one substituent selected from the group consisting of wer alkyl, lower alkoxy, halogen, amino and nitro; and \(\mathrm{R}_{2}\) is
6. A method of treating ulcers in humans which comprises administering to said human a compound of claim 1 in an amount effective for treating said ulcers.

 1. A folding carton formed of paperboard and erectable from
flat sleeve or collapsed tube condition so as to have a top
panel which includes a window opening glazed with transpar- fortified, natural cereal product having a protein content of at ent film having relatively low resistance to wrinkling, a bottom panel and two sidewall panels with projecting unfolded end along panel-interconnecting score lines, at least one sidewall panel having at least one window opening therein with each sidewall window opening extending all the therein with each adjacent score lines which is interrupted by the presence of each window opening, said sidewall window opening or openings in aggregate being at least of such area that the material remaining in said side panel containing said window opening or openings will not provide sufficient residual stiffness to consistently initially fold or hinge only along said interrupted a relatively stiff substantially non-wrinkling piece of transparent window glazing material adhered to said sidewall containing said window opening or openings with one edge thereof substantially coincident with said interrupted score line, the stiffness of said piece of transparent window glazing material
combined with the residual stifness of said window sidewall panel to prevent folding or creasing of said window sidewall panel on erection except along said interrupted score line.

\section*{POTATO TREATMENT PROCESS}

William Duncan Powrie, and Marvin Tung, both of Vancouver, Canada, assignors to Creston Valley Foods Ltd., Vancouver,
Continuation-in-part of Ser. No. 531,166, Dec. 9, 1974, Continuation-in-part of Ser. No. 531,166, Dec. 9, 1974,
abandoned. This application Mar. 16, 1976, Ser. No. 667,460 abandoned. This application Mar. 16, 1976, Ser. No. 667,460
Claims priority, application Canada, May 10, 1974, 199477 U.S. Cl. 426-269 Int. Cl. \({ }^{2}\) A23L 1/216
\(\qquad\) 16 Claims
U.S. C. \(426-269\)
1. A process for treatment of raw white potatos., which

16 Claims have previously been stored at temperatures of about \(40^{\circ}\) to \(45^{\circ}\)
\(F\), to improve their quality for subsequent thermal sterilization F, to improve their quality for subsequent thermal sterilization comprises immersing said stored potatoes, after they have been peeled, in whole or divided form, successively in:
(a) an aqueous solution containing
sium citrate, and (2) 0.005 to \(0.8 \%\) by
or in the form of sodium of sulfur dioxide in free form metabisulfite of sadid aqu or potassium sulfite, bisulfite or to 6.5, the immersion of the potatoes in said a pH of 2.3 being from about 1 minute at \(190^{\circ}\) F to 5 minutes at \(110^{\circ}\) F ; (b) an aqueous solution containing sodium or potassium
pyrophosphate in a concentration of 0.5 to \(1.5 \%\) by weight, the immersion of the potatoes in said solution (b) being
and
(c) an
salt in a colution of a non-toxic alkaline earth metal mmersion of thtration of 0.05 to \(0.5 \%\) by weight, the 15 seconds at \(212^{\circ} \mathrm{F}\) to 60 seconds at \(140^{\circ} \mathrm{F}\) and being from
and ter sealing the peeled potatoes, without added liquid, in a flexible storage container and subjecting the peeled potatoes in the flexible container to thermal sterilization.

\section*{4,097,613}

PROCESS FOR PREPARING A PROTEIN FORTIFIED natural Cereal
William R. DeLauder, Manchester, Mo., and Ferdinand E. Spring, Davenport, Iowa, assignors to Ralston Purina Company, St. Louis, Mo
abandoned. This application Dec. 22, 1996, Ser. No. 753,118 Int. Cl. \({ }^{2}\) A23L \(1 / 10\) t. Cl. \({ }^{2}\) A 23 L I/ 10 6 Claims
east about \(20 \%\) by weight comprising.
(a) forming a mixture of different, whole farinaceous grains, and a fortifying amount of a textured vegetable protein
material having a protein content of above \(30 \%\) by material having a protein content of above \(30 \%\) by
weight, said amount being sufficient to provide greater weight, said amount being sufficient to provide greater than a \(20 \%\) protein content in the final product;
(b) coating said mixture with an oil prio
coating with sweetening solution and
c) drying said mixture at a temperature and period of time sufficient to provide a moisture content below about \(5 \%\) by weight thereby providing a protein fortified natural cereal product.

METHOD OF REMOVING BITTER SUBSTANCES FROM brewers yeast and brewers yeast
Simon Michael West, Williamstown, Australia, assignor to Kraft Foods Limited, Port Melbourne, Australis
Filed Dec. 23, 1976, Ser. No. 753,688
Claims priority, application Australia, Dec. 24, 1975, 4395/75 U.S. Cl. 426-422
1. A method for

8 Claims
1. A method for removing isohumulones from suspensions of suspensions or autolysates are yeast autolysates, wherein the composite adsorbent material which comprises antact with a on particles and magneric which comprises adsorbent carmatrix of organic polymeric material, the pod in a porous matrix being within the range \(2-30 \mathrm{~nm}\) and such as to allow molecules of the isohumulones to enter freely into the interstiial structure of the matrix, but to exclude larger molecules heated, and wherein the in the suspension or solution being reated, and wherein the loaded composite adsorbent material都 separated from the suspension or solution being reated.

4,097,615
FLAVORING WITH 3-PROPYLTHIO-4-HEPTANOL William J. Evers, Red Bank; Howard M. Heinsohn, Jr., Hazlet, and Manfred Hugo Vock, Locust, all of N.J., assignors to Division of Ser. No. 730,537, Oct. 7, 1976, Pat. No. 4,044,164. This application Feb. 4, 1977, Ser. No. 765,833
U.S. Cl. 426-535

Int. Cl. \({ }^{2}\) A23L \(1 / 226\)
1. A process for augmenting or enhancing the 2 Claims of a foodstuff coraugrising the step of adding to said foodstuff from about 0.1 ppm up to about 50 ppm by weight of said foodstuff of 3 -propylthio-4heptanol having the structure:


OW TEMPERATURE 4,097,616 LOW Pienperature soft Candy process both of France, assignors to Georgeral Letourneau, Lagny, Montreuil-sous-Bois, France
Claims priority Japp. 12, 1977, Ser. No. 758,537
U.S. Cl. 426-548

Int. Cl. \({ }^{2}\) A23G 3/00 4 Claims
1. A process for making a soft candy containing a sweetener 1. A process for making a soft candy containing a sweetener
substantially completely in the crystalline state and which does
not lose its crystallinity throughout the process which consists of the steps of
(a) admixing, at a temperature of from about \(45^{\circ} \mathrm{C}\). to about
\(60^{\circ} \mathrm{C}\)., to form a soft paste,
(1) from about \(85 \%\) to about \(90 \%\) by weight of the final product of a crystalline sweetener selected from the
group consisting of an edible polyhydric alcohol su group consisting of an edible polyhydric alcohol, su-
crose, glucose and mixtures thereof, all of said sweetener having a particle size of 100 microns or less, with (2) a binder consisting of from about \(4 \%\) to about \(8 \%\) of an aqueous gelatin sol containing approximately \(33 \%\) of gelatin by weight of the sol, and
ing and edible aciduant,
(b) extruding the soft paste to form rods and/or sheets,
(b) extruding the soft paste to form rods and/or sheets,
(c) cooling the extruded rods and/or sheets of soft paste to
room temperature, and
(d) forming and shaping the cooled, extruded paste into

\section*{4,097,617}

PHOSPHONITRILE FLUOROELASTOMER COATED CARRIER PARTICLES FOR USE IN
Pabitra Datta, Cranbury, N.J., assignor to Addressograph-Mul tigraph Corporation, Cleveland, Ohi

Filed Sep. 7, 1977, Ser. No. 831,147
Int. C.2 \({ }^{\text {G03G }} 910.9 / 14\)
U.S. CI. 427-14

8 Claims
7. A process fo
which comprises
which comprises mixing an electroscopic powder with a carrier comprising a member selected from the group consisting of metallic
particles and siliceous particles to the surface of which is adhered a phosphonitrile fluoroelastomer to impart oppo site electrostatic charges to said electroscopic powder and said carrier, whereby said electroscopic powder is at tracted to said carrier and transerring said electroscopic powder from said carrier to said latent electrostatic image.

METHOD OF TRANSFERRING A SURFACE RELIEF POLY(1-METHYL-1-CYCCOPROPENE SULFONE) LAYER TO A NON-METALLIC INORGANIC LAYER Eugene Samuel Poliniak, Willingboro, N.J., assignor to RC Corporation, New York, N.Y. Filed Mar. 9, 1977, Ser. No. 775,862
U.S. C. \(427-41\)

7 Claims

1. A method for forming a surface relief pattern in a nonetallic inorganic layer which comprises:
a. dissolving poly( 1 -methyl-1-cyclopropene sulfone) in solvent; dhe resultant solution to the non-metallic ino
b. applying the resultant solution to the non-metalic ino
ganic layer to form a wet poly ( 1 -methyl-1-cyclopropen sulfone) layer on the non-metallic inorganic layer;
c. exposing the wet layer to a modulated beam of electrons d. developing the exposed wet layer to form a surface relie pattern;
e. bombarding the developed surface with sufficient ions to rubstantially remove the wet layer and form the surfac relief pattern in the non-metallic inorganic layer

\section*{4,097,619}

MANIFOLD CARBONLESS FORM AND PROCESS FOR THE CONTINUOUS PRODUCTION THEREOF Gerald Titus Davis, and Dale Richard Shackle, both of Chilli cothe, Ohio, assignors to The Mead Corporation, Dayton,

Filed May 7, 1976, Ser. No. 684,460 Int. Cl. \({ }^{2}\) B05D 3/06
U.S. Cl. 427-44
1. A process for the continuous production 17 Claims arbonless form having two or more surfaces a manifold romogenic material comprising
(a) providing a plurality of continuous webs; each of said b) advancing each web a first and second surface; at substantially the same speed plurality of continuous webs he same speed, said plurality of continuwebs being spaced apart and being advanced in cooperating relationship with one another;
(c) marking at least one surface of at least one web of said plurality of continuous webs with a pattern
(d) applying a first non-aqueous, solvent-free coating of a
first chromogenic material to at least a portion of said firss surface of at least one web of said plurality of continuou webs, said first non-aqueous, solvent-free coating compris ing said first chromogenic material dispersed in a hot mel suspending medium, said coating being heated to a tem ing medium to permit fluid application of said first coating composition to said first surface;
e) setting said first coating by means of temperature de crease;
(i) applying a second coating of a second chromogenic material to at least a portion of said second surface of a least one web of said pluralhy of continuous webs, said terial dispersed in a hot melt suspending media, said second coating being heated to a temperature above the melting point of said hot melt suspending media to permit fluid application of said second coating composition to said second surface, said second chromogenic material being reactive with said first chromogenic material to form a color;
g) setting said second coating by means of temperature decrease;
(h) collating said plurality of continuous webs such that said first and said second chromogenic materials are in facing relationship to a coreactive chromogenic material; and (i) placing said collated continuous webs in contiguous rela tiontip to one another to create a manifold form

\section*{4,097,620}

MAGNETIC TONER PARTICLE COATING PROCESS Chin H. Lu, Webster, N.Y., assignor to Xerox Corporation, Stamford, Conn. iied May 2, 1977, Ser. No. 792,63
Int. Cl. \({ }^{\text {GO3GG } 9 / 08: ~ H 01 F ~} 1 / 11\)
U.S. C. 427-127 18 Claim 1. A process of coa 1. A raizing a fatty acid material selected from the group conprising falty acids, fatty acid derivatives and mixtures hereo mpound in aqueous solution, adding patticles to the sonuion
heating the solution at below the boiling pont, filtering the the direction, feeding said fabric in a new direction along a solution, washing and drying to recover the coated particles second straight path subsequent to changing the direction, releasing the opposed edges of said running length of fabric diagonally of the second straight path and taking up said fabric


\section*{4,097,622}

Patent Not Issued For This Number

\section*{4,097,623}
wherein said fatty acid material is present in an amount be- SHAPED ARTICLE OF CELLULOSE HYDRATE WITH A tween about 0.1 and 10 weight percent of the particle.

METHOD FOR MANUFACTURING BIAS FABRIC Kamame Shirssaka, Takatsulct; Yochihiro Nakagami, Aka Taknschi Tomiyori, Kobe; Masamori Nkemoto, K Kobe, an Belting Lud., Kobe, Japan
Division of Ser. No. 580,280 , May 23, 1975, Pat. No. 4,034,702 Divich is a continuation-2in-part of Ser. No. 404,566, Oct. 9,1973,
whin
abandoned. This application Oct abandoned. This application Oct. 7, 1976, Ser. No. 730,393 Claims priority, application Japan, Oct.
Int. Cl.
D06C
\(3 / 02\)
U.S. C1. 427-173


3 Claims
 COATING OF PLASTIC MATERIAL OF CHEMICALLY MODIFIED PROTEIN AND PROCESS FOR THE Klaus-Dieter Hemoduction thereor Schroider, both of Wiesbaden, all of Germany, assignors to Hoechst Aktiengesellschart, Germany
Filed Oct. 3, 1975, Ser. No. 619,225 Claims priority, application Germany, Oct. 7, 1974, 2447757
Int. C. \({ }^{2}\) B05D \(7 / 02.7 / 22\); A22C \(13 / 100\) U.S. C. \(427-230\)
1. A process for coating the surface of a shaped article of cellulose hydrate with a layer of polymer material which comprises applying to the surface of a shaped article in the gel state and based on cellulose hydrate, a liquid layer of an aqueous solution of a chemically modified protein obtained by mixing an aqueous alkaline protein solution with an aqueous mide or of the alkoxy derivatives thereof of aliphatic alcohols with 1 to 8 carbon atoms, particularly of organic, tetrafunctional, doubly unsaturated compounds of the general formula
said membrane prior to said passing through the metallization chamber.
the reactive OH groups of the chemically modified protein and he OH groups of the cellulose hydrate forming the shaped portion in the range between 8 to \(12 \%\) by weight of wate calculated on the total weight of the shaped article.

LOW MELTING TEMPERATURE METAL COATING PROCESS, APPARATUS AND PRODUCT Norman Laurence Lunn, Beaver; Charles Jeffrey McCrea, New Galilee, both of Pa.; Raymond Darid Pregaman, Norcroses, Ga., and Lawrence Edward Turowski, New Kensington, Pa., assignors to St. Joe Minerals Corporation, New York, N.Y. Continuation of Ser. No. 511,203, Oct. 2, 1974, abandoned, which is a continuation-in-part of Ser. No. 43,523, Jan. 15, 1974, abandoned. This applicatio Int. C1. \({ }^{2}\) C23C 7/00; B44D 1/44; B32B 35/00; B37B \(31 / 00\) Hermann J. Schladith, Munich, Germany, assignor to University of Virginia, Charlottessille, Va.
Division of Ser. No. 763,013, Jan. 27, 1977. This application Sep. 30, 1977, Ser. No. 838,063
Int. Cl. \({ }^{2}\) B05D \(3 / 04,7 / 20\)
U.S. C1. 427-251

8 Claims

1. A method for decontaminating and subsequently metalliz
ing a filament which comprises passing the filament through
the inner tube of a first chamber for decontamination which
comprises two concentric tubes having an annular space there-
comprises tho concentre of which has a series of fine holes therein; wherein said inner tube is heated and said annular space contains an inert gas such that said gas flows through said holes in heated passing said heated and decontaminated filament into a s ond chamber for metallization also comprising two concentric tubes having an annular space therebetween, the
inner tube of which has a series of fine holes therein inner tube of which has a series of fine holes therein
wherein said inner tube of said second chamber is heated and said annular space of said second chamber contains a gaseous, thermally decomposable metal compound such that said gaseous metal compound flows through said holes in heated jet streams and impinges upon said heated and decontaminated filament, thereby thermally decomdisposing an intermediate chamber in alignment with and
with ends in sealing relationship with the respective ends
of said decontamination and metallization chambers and
having a membrane disposed intermediately and transversely thereof;
communicating each said inner tube with its associated sec tion of the intermediate chamber
arem material entering each said section from said inner tubes; and
said intermediate chamber and through a pinhole aperture

1. A method of mechanically bonding to a non-metallic porous substrate a metal selected from the group consisting of ead or lead-base alloys, zinc or zinc-bease and alumin aloys, cadmium or cadmium-base aesting said selected metal oits molten state; supporting a non-metallic porous substrate on a heat sink; while supported dispensing in a continuous rectilinear pattern a stream of the molten metal on the supported non-metalice porous subsrate to be coated; connin
ously pressing the dispensed metal while still molten into the substrate and causing said dispensed metal to solidify immediately following the pressing step.

\section*{4,097,626}

CONSTRUCTION FOR A FIBER REINFORCED SHAFT ichard Lee Tennent, La Mesa, Calif., sesignor to Grafalloy Corporation, El Cajon, Calif. Filed Jun. 7, 1976, Ser. No. 693,147

1. A construction for a fiber reinforced generally 6 Clinima 1. A constructio
a first circumferential section of the thickness of said shaft comprising a plurality of radial plies forming in transverse aspect alternate interleaved wound helicies,
shaft
in which
\(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are hydrogen or an alkyl group with 1 to 6 carbon \(\mathrm{R}_{3}\) is the group \(-\left(\mathrm{CH}_{2}\right)_{n}-, n\) being an integer from 1 to 8 , or
the group
\[
-\frac{1}{\mathrm{CH}-\mathrm{R}_{4}}
\]
in which \(R_{4}\) is an alkyl group with 1 to 18 carbon atoms, subjecting the liquid mixture to a dwell time, heating the coated shaped article at a temperature in the range between \(80^{\circ}\)
and \(120^{\circ} \mathrm{C}\), which heat is sufficient to remove the water from ing the shaped article and to effect the chemical reaction between
each of said plies comprising a plurality of parallel reinforc- lines of weakening being liquid-impervious, said lines of weak ing fibers in matrix material oriented in longitudinal aspect ening being defined by grooves extending only partially said shaft at substantially \(35^{\circ}\),

the fibers in alternate radial plies having pitch angles of opposite inclination, wherein the inner terminus of alter-
nate of said radial plies are substantially diametrically opposite.

\section*{4,097,627}

DOUBLE FACED TAB FASTENER CHARACTERIZED BY PAPTIY BEYOASE AGENT DESIGNED TO EXTE PARTLY BEYOND THE WIDTH OF A STRIP OF
suzette B. Nemeth, Painesville, and David W. Wilson, Mentor, both of Ohio, assignors to Avery International Corporation, San Marino, Calif.
Filed Nov. 22, 1976, Ser. No. 743,640
Int. C1. \({ }^{\text {A41B }}\) 13/02; A61F 13/16; B32B 7/06, 7/14 .S. C. \(428-40\)
1. A web construction of linerless diaper tab stock made up f. A web construction of linerless diaper tab stock made up passes along the machine direction of a coating and laminating ne and to be self-rolled for storage and shipment, and unrolle y web coating and slitting operations and without the neces sity for folding or web-to-web fastening operations, and suit able for high speed dispensing on automatic equipment, includ ing a substrate extending, transversely to machine direction,
along first and second endward length portions and an intermediate third length portion between the other two, the substrat bearing first adhesive on its top side along the first lengt portion, the substrate bearing second adhesive on its bottom dide along the second length portion, the substrate being free o adhesive on each side along the intermediate third length bottom side for releasably supporting adhesive, corresponding o said first adhesive, that is associated with an adjacent wrap when the web construction is self-wound, said last-named release means extending partially across said intermediate thir ortion but stopping short thereof to define a gap on the bot om of said third length portion which gap bears no releas means, said second length portion bearing release means on it op side for releasably supporting said first adhesive when tab ave been formed from said stock and said first length portio is folded back over said second length portion.

\section*{4,097,628}

Albert B. Cheris, Glenview, and Lonnie E. Frye, Elk Grove Village, both of III., assignors to Tenex Corporation, Elk Grove Village, III
led Dec. 8, 1975, Ser. No. 638,703
J.S. C. 428-43 Int. \({ }^{\text {C. }}{ }^{2}\) B65D \(65 / 28\) 1. In a carpet runner including an elongated web of Clexible liquid-impervious, plastic material having on one side thereof a plurality of projections for gripping the nap of an underlying carpet, the improvement wherein said web is provided with plurality of substantially equally spaced, transverse lines of
weakening whereby a desired predetermined length of said web may be easily separated from the remainder thereof alon desired one of said lines to provide a carpet runner of desired length without the use of cutting tools or the like, said

through said web, said grooves including spaced strengthening ribs.

PROCESS AND APPARATUS FOR THE PRODUCTION OF LAMINATED SHEETS Walter Schneide
Switzerland

Filed Feb. 14, 1977, Ser. No 768.028 Claims priority, application Switzerland, Feb. 24, 1976 2223/76

Int. C. \({ }^{2}\) B32B 3/00

1. A process for the production of sandwiched sheets with a east one sheet core of stable shape which is provided on both a thermally insulating and sound-attenuating mich consist icularly for the production of doors, cupboards, chests and milar containers as well as of partition walls in buildings, in which both sides of said sheet core are formed of foam plastic and a fusion adhesive is applied to both sides of said sheet core e melting point of said adhesive being below the conversion oint of said foam plastic, after which the said sheet core is lter, is heated for a short time to the melting point of the asion adhesive, moulded in the heated state and cooled during the moulding.

\section*{4,097,630}

FLAME RETARDANT CARPET
dd Leonard Schwartz, Chester, and Richard Eugene Mayer Richmond, both of Va., assignors to Allied Chemical Corpora-
tion, Morris Township, Morris County, NJ tion, Morris Township, Morris County, N.J.
Filed Sep. 7, 1976, Ser. No. 721,003 The portion of the term of this patent subsequent to Oct. 12, 1993, has been disclaimed.
Int. Cl. \({ }^{2}\) B32B \(3 / 0233 / 00\)
U.S. Cl. 428-97 Int. C1. \({ }^{2}\) B32B 3/02,33/00
U.S. Cl. 428-97 nt pile carpet having a relatively \(8_{8}\) Clai 1. A flame-retardant pile carpet having a relatively pliable prised of fibers selected from the group consisting of polyester and polyamide fibers having incorporated therein from 0.1 to 15 percent by weight of zinc oxide, said fibers being bonded to said backing with a bonding substance comprising a latex ride polymers and vinyl chlorine-vinylidene chloride copolymers, and a hydrate material selected from the group consisting of aluminum hydroxide and hydrated aluminum oxide, the
ratio by weight of said latex material to said hydrate material 8. In a process for producing a pile carpet having a relatively
liable primary backing through which polyamide fibers a pliable primary backing through which polyamide fibers are tufted, the improvement which comprises incorporating in said
fibers from 1 to 12 percent by weight of zinc oxide, and bondibers from 1 to 12 percent by weight of zinc oxide, and bond prising a latex material selected from the group consisting of vinylidene chloride polymers and vinyl chloride-vinyliden chloride copolymers, and a hydrate material consisting of
hydrated aluminum oxide, the ratio by weight of said latex hydrated aluminum oxide, the ratio by weight of said latex 1:4.5, whereby the carpet has improved flame-retardancy.

4,097,631
SURFACE COVERING WITH INTERWOVEN FABRIC
Sudy Wilken, 15143 Kennedy Rd, Los Gatos, Calif. 95030 Filed May 23, 1977, Ser. No. 799,890
U.S. C. 428-114
hickness of said plastic face, said plastic strip extending a han the thickness of said plastic face, and said plastic strip being suitable for bonding to said plastic face; and a layer of dhesive between said plastic strip and said abraded band for
bonding said plastic strip to said abraded band adjacent said convoluted edge, the edge of said plastic strip adjacent said said metal strip to abut maid convolute fold but not be mechanically gripped by said convolute fold.

1. In a surface covering: a backing sheet forming a base; plurality of first, flat fabric strips extending along one face he backing sheet and being in substantially parallel, side-by side relationship to each other; a number of second flat, side strips and interwoven therewith, each of the first and second trips having spaced, first segments contiguous to the base an egments of adjacent strips; and means on said one face of said base for bonding said first segments thereto, the widths of certain of the strips being different from the widths of othe strips, and the strips being sufficiently flexible to permit the second segments of at least some of the strips to bow out-
wardly of the adjacent first segments to provide a quilted appearance for the covering when the same covers a surface.

PRODUCT FOR CONSTRUCTING THREE-DIMENSIONAL SIGN CHARACTER
Robert W. Minogue, Cupertino, and Lloyd E. Troyer, San Car Edmonton, Canada Edmonton, Canada
Division of Ser. No. 379,012, Jul. 13, 1973, Pat. No. 3,937,384, which is a continuation-in-part of Ser. No. 356,983, May 3, 1973, abandoned. This application Sep. 12, 1975, Ser. No. 612,896
US. C. 428- 130 Int. C.. GoyF \(/ / 12\)
Int. C1. \({ }^{2}\) G09F \(7 / 12\)
5 Claims 1. An opaque sheet strip for circumscribing the periphery sign character having a plastic face, said sheet strip compri dges, at least one of said edges of said metal strip having onvolute fold wherein a first longitudinal area immediately djacent said convoluted edge is folded back to contact udinal area; an abraded band on said sheet metal strip adjacent said convolute fold; a plastic strip overlying said abraded band, said plastic strip having a width substantially greater than the

PERFORATED, EMBOSSED FILM TO FOAM LAMINATES HAVING GOOD ACOUSTICAL PROPERTIES AND THE PROCESS FOR FORMING SAID Bruce E. Focht, Trainer, Pa., assignor to Scott Paper Company Philadelphia, Pa.
Continuation of Ser
Which is a continuation-ino- 883,799 , Jun. 4, 1955, abandoned, abandoned. This application Nor. 22, 1976, Ser. No. 743,664 S. Cl. \({ }^{2}\) B32B 3/24, 5/32; E04B 1/86; E04F 13/00; G10K 11/0 J.S. C. \({ }^{428-138}\)

1. An acoustical film-to-foam laminate comprising an open cell foam and a deformable film, said foam having a surface embossed with a non-random, predetermined pattern having sively attached to the foam, conforming to the pattern on the mbossed surface and having perforations through the film predominately in sidewalls and valleys of the pattern, said valleys having a depth of at least \(1 / 160\) of an inch and said film ving a groce coated hereon. m -to-foam laminte aestherici
an open cell foam and aprising: surface embossed with a pallern having crowns, sidewan-random, predetermined able film being adhesively attached to the foam deform ing to the pattern on the embossed the foam, conform of from about 3 er to provide a porosity of the laminate about 100 cubic feet per minute per square foot, and said film having a coating of a hydrophobic lubricating and release agent.

THERMOPLASTIC RESTN MOLDING OF COMPLEX DECORATIVE RELIEF ing and Manufecturing Company, St. Paul, Minn. Filed Apr. 19, 1976, Ser. No. 678,363
U.S. Cl. 428-156

1. Process for forming essentially continuous thermoplastic resin molding on a continuously rotating forming wheel hav ing a complex intaglio in its circumferential surface and docto a pair of interstices at the sides of the orifice comprising the steps of
(1) heating the thermoplastic resin to a molten state,
(2) providing a bank of the molten resin in contact with the to fill the intaglio as the forming wheel rotates and to flow through said interstices to provide a pair of resin flashes (3) cooling the resin deposited in the intaglio while th forming wheel continues to rotate until the resin develops (4) continuously removing from the intaglio a cooled resin molding which has complex decorative relief and yet is essentially free from external defects and internal strains.
\[
\begin{gathered}
\text { 4,097,635 } \\
\text { DECORATIVE PANEL }
\end{gathered}
\]

José Antonio Sanz Hernsindez, and Cassiano Mesquita Netto both of Salto, Braril, assignors to Eucatex, S.A., Sao Paulo Filed Dec. 27, 1976, Ser. No. 755,54
Int. C. \({ }^{2}\) B32B 3/02, 3/10, \(9 / 04\) 4 Claims

1. In a decorative panel comprising a pigmented base coated substrate, a silicone containing printing ink forming a patterm on a portion of said substrate and a top coat material covering said patterm and the remaining portion of said substrate, the improvement comprising said printing ink containing at least \(S\)
weight percent silicone, said top coat material weight percent silicone, said top coat material containing an
effective amount of silicone, and said silicone in said printing ink and said silicone in said top coat material being such as to produce a depression at the printing ink-top coat interface adjacent the periphery of the pattern formed from said printing
ink and an elevation immediately ontwardly of the said depresink and an elevation immediately ontwardly of the said depres-
sion so as to produce a three-dimensional effect, with the level of the top coat material over the remainder of said patterm

9 Claims
being substantially the same level as the remainder of said panel wherein the remainder of said pattern and the remainder of said panel are smooth and essentially free of separate islands
of said top coat material.

Frank Zygmunt METALLIZED DEVICE Hawrylo, Trenton, and Henry Kressel Elizabeeth, both of N.J., assignors to RCA Corporation, New York, N.Y.
Division of Ser. No. 490,792, Jul. 22, 1974, Pat. No. 3,945,902 This application Jun. 18, 1975, Ser. No. 588,025 U.S. CI. 428-209 Int. Cl. \({ }^{2}\) B32B 15/04 2 Claims

1. A metallized diamond device comprisin
a body of diamond material of silicon or aluminum having a thickness of 400 to 500 A having a layer consisting essentially of an oxide material on a
metallic layer on said oxide layer.

\section*{4,097,637}

LATENT IMAGING MASTER
drian M. Loria, Evanston, and Richard E. Thomas, Chicago, Filed Mar. 29, 1976, Ser. No. 671,137 Filed Mar. 29, 1976, Ser. No. 671,137
Int. C1. \({ }^{2}\) B32B \(5 / 16\), \(7 / 02\); B41M \(5 / 0\)
U.S. Cl. 428-212 12 Claims 1. A master for producing multiple latent imaged copies comprising a base sheet and multiple coatings on the surface of the base sheet including a base coat containing a water and/or alcohol soluble colorless color-forming component and at least two electrically conductive coatings overlying the base coat vide an electrical gradient of increasing conductivity in the direction towaids the base coat.

4,097,638 SELECTIVELY SORPTIVE REINFORCED SHEET Otis R. Videen, St. Paul, Minn., assignor to Conved Corpora. tion, St. Paul, Minn.

Flied Dec. 20, 1976, Ser. No. 752,528
Int. Cl. \({ }^{2}\) B01D 39/18
1. A wipe sheet for selectively sorbing at least one hy Claims bon liquid from an aqueous-hydrocarbon mixture, said wipe sheet comprising
a) at least two cotton fiber layers, each said cotton fiber layer being non-woven and being predominately compolymeric fibers preferentially sorptive of hydrocarton liquids over water, said cotton fibers having an average length of at least about one-half inch and having been sized with at least one oleophillic, hydrophobic agent, and each said cotton fiber layer being from about \(1 / 64\) inch to about inch in thickness and having a density of from (b) a flexible net 2 pounds per cubic foot;
b) a flexible net reinforcing layer, said reinforcing layer oriented after extrusion to at least 5 times its extruded
dimension and said reinforcing layer having a weight of from about it to about 3 pounds per thousand square feet reinforcing layer sandwiched therebetween.

\section*{4,097,639}

FLAMBOYANT FINISH AND PROCESS FOR APPLYING
John M. Millar, Joppa, Md., assignor to Beatrice Foods Co.,
John M. Mingo, IIl.
Filed Nov. 24, 1976, Ser. No. 744,763
U.S. CI. 428-215

33 Claim
1. A method of applying a coating having good depth apcomprising
applying to said substrate a coating at least mil thick of first coating composition consisting essentially of at least one substantially clear thermosetting film-forming polymer, a catalytic amount of at least one blocked catalyst fo ture at least, \(5^{\circ} F\) above the melting temperature of said hermosetting polymer, and a pigmenting amount of at least one bright reflective leafing flake pigment,
heating the first coating composition on said substrate to a first temperature below the catalyst unblocking temperaure and above the polymer melting temperature to permit el to the surface of said composition away from said substrate, and thereafter gelling or curing said polymer by heating said first coating composition to a higher second temperature which is above the catalyst unblocking temperature while maintaining the flake pigments substan-
tially in said oriented position, to produce a gelled or cured first coating having a bright reflective appearance, and thereafter coating the first coating with a second coating at least one half mil thick of a transparent second coating composition consisting essentially of at least one at least inctorial amount which is at least about \(0.1 \%\) by weight, based on the weight of said second coating composition, of at least one coloring agent which is substantially soluble in said second polymer and heat stable at the curing or fusing temperatures of said second polymer
an integral film thereof.
\[
4,097,640
\]
(a) a weight of at least 210 g.s.m.;
in the machine direction of at least 9.8 Kenley
c) a ratio of stiffness in the machine direction and in the cross-machine direction of substantially \(1: 1\).

FLAME RETARDANT FINISHES FOR TEXTILE MATERIALS
Ray E. Smith, and James A. Albright, both of Ann Arbor, Mich assignors to Velsicol Chemical Corporation, Chicago, III. assignors to
Continuation-in-part of Ser. No. 660,520, Mar. 22, 1976, Pat. No. 4,015,037, and Ser. No. 660,500 , Feb. 23, 1976. This application Dec. 9, 1976, Ser. No. 748,957
U.S. CI. 428-245 Int. Cl. \({ }^{2}\) C09D \(1 / 00\)
1. A flame retardant textile finish consisting essentially of: (i) from about 2 to about 60 percent (by weight) of a flame retardant compound of the formula
wherein \(\mathrm{X}, \mathrm{X}^{\prime}\) and \(\mathrm{X}^{\prime \prime}\) are hydrogen, chlorine and bromine; \(a\) is 0 or \(1 ; n\) is an integer of from 1 to \(7 ; m\) is an integer of from 1 to \(n ; b\) is
of from 1 to \(b ;\)
(ii) from about 2 to about 18 percent (by weight) of an emul-
sifying agent;
(iii) from abou
(iv) from about 0.4 to about 48 percent of an organic solvent.

FABRIC COATED WIT, 097,642 CONTAININ TWO PERFL WORO RF-GLYCOLS CONTAS
Robert Ernest Arthur Dear, Mt. Kisco, and Robert Allan Fallk, Nen City bth of Y , Mignors to Cibe Caigy Corporetion, Ardsley, N.Y.
Division of Ser. No. 631,004, Nor. 12, 1975, Pat. No. 4,054,592, which is a continuation-in-part of Ser. No. 439,497, Feb. 4, 1974 Pat. No. 3,935,277. This application May 19, 1977, Ser. No.

PRODUCTION OF FIBROUS SHEET MATERIAL Harold George Curry, Hambrook, near Bristol; Brian Willian Attwood, Hanham, near Bristol; Derek Graham Walter White, Bristol, all of England; John Mosgard Christensen, Risskov, as assors to Karl Kroyer St. Anne's Limited, Bristol, England
Continuation of Ser. No. 534,240, Dec. 19, 1974, abandoned, which is a division of Ser. No. 375,094, Jun. 29, 1973, abandoned. This application Dec. 16, 1976, Ser. No. 751,038 Claims priority, application United Kingdom, Jul. 8, 1972 U.S. CI. 428-219 \({ }^{\text {Int. Cl. }}{ }^{2}\) B32B 29/00; B65D 5/00
U.S. Cl. 428-262 Int. C. \({ }^{2}\) C07C 125/06
1. A \(428-262\) substrate bearing from 0.01 to \(10 \%\) Claims urethane composition which contains at least one unit of formula

whe
Rjis perfluoroalkyl of 1 to 18 carbon atoms or said perfluoroalkyl substituted by perfluoroalkoxy of 2 to 6 carbon atoms,
\(\mathrm{R}_{1}\) is branched or straight chain alkylene of 1 to 12 carbon atoms, alkylenethioalkylene of 2 to 12 carbon atoms, al kyleneoxyalkylene of 2 to 12 carbon atoms, or al-
kyleneiminoalkylene of 2 to 12 carbon atoms where the nitrogen atom contains as a third substituent, hydrogen or alkyl of 1 to 6 carbon atoms,
alkylene of 1 to 12 carbon atoms; straight or branched
chain alkylene of 1 to 12 carbon atoms substituted by one chain amylene of
or two of phenyl or cyclohexyl; of \(R_{2}\) and \(R_{3}\) are a group of \(\left.{ }_{\mathrm{C}_{m} \mathrm{H}_{2 m}}^{\text {the formula }} \mathrm{OC}_{k} \mathrm{H}_{2 k}\right) \mathrm{r}\)
where
where
\(m\) is an integer from 1 to 12,
\(k\) is an integer from 2 to 6,
\(r\) is an integer from 1 to 40 .
4,097,643
COMPOSITIONS COMPRISING (1) A COPOLYMER FORMED FROM AN UNSATURATED ACID AND (2) AN EPOXY GROUP-CONTAINING SILANE ARE USEFUL
TEXTILE AND PAPER FINISHING MATERIALS
Yoshiyuki Hasegope Ichihara Japan assignor to Tray Sill
signor to Moray Sill-
cone Company, Ltd., Tokyo, Japan
Filed Jan. 7, 1977, Ser. No. 757,707
Filed Jan. 7, 197, Ser. No. 757,707
Claims priority, application Japan, Feb. 5, 1976, 51-10830
Int. Cl. \({ }^{2}\) D06M 15/38
U.S. C. 428-270 \(\qquad\) 1. An improved resin for resin finishing textiles, fibers and
paper which is a composition of matter which consists essenpaper which is a composition of matter which consists essen-
tally of \((A)\) copolymeric organic resins which are prepared from unsaturated aliphatic organic acids and an ester selected from the group consisting of (i) acrylic acid esters and (ii) methacrylic acid esters,
weight percent, based on the weight of the components
(A) and (B), of a silane which contains epoxy groups.
7. A textile when treated with the composition of claim 4
wherein the textile is selected from a group consisting of cot-
wherein the textile is selected from a group consisting of cot-
ton, linen, rayon, wool, nylon and polyester.

\section*{4,097,644}

INORGANIC RAW FELT INTENDED FOR THE PRODUCTION OF ROOF FELT Harald This Evensen, Porsgrunn, and Ola Tellesbo, Heistad, both of Norway, assignors to Isola Fabrikker A/S, Brevik, Norway
Continuation of Ser. No. 256,427, May 25, 1972, abandoned.
This application Aug. 5, 1975, Ser. No
. This application Aug. 5, 1975, Ser. No. 602,001
 U.S. C. 428-281
1. A raw felt possessing improved strength, flexibility and bulk, for use in producing an asphalted roofing covering, said raw felt comprising an adhesively bonded porous non-woven sheet of an inorganic fibrous material selected from the group
consisting of glass fibers, asbestos fibers and mixtures thereof, and \(0.5-50 \%\) by weight, based on the total weight of the raw felt, of finely divided vulcanized rubber particles distributed with said fibrous material.

4,097,645
SYNTHETIC PAPER HAVING GOOD INK ADHESION Takashi Toyoda; Yoshio Mivereto
Takashi Toyoda; Yoshio Miyabe, and Masaaki Yamanaka, all of Ibaraki, Japan, assignors to Oji Yuks Goseishi Kabushiki
Filed Oct. 21, 1977, Ser. No. 844,482
Claims priority, application Japan, Oct. 22, 1976, 51-126941 U.S. C. 428-306 \({ }^{\text {nt. Cl. }}{ }^{2}\) B32B 3/26, \(5 / 25\)
U.S. C1. 428-306 Int. Cl. \({ }^{2}\) B32B 3/26, 5/25

13 Claims 1. A synthetic paper having good ink adhesion thereto
A. a synthetic
which is a stretched substrate comprising a papery layer which is a stretched resin film which contains fine filler
particles dispersed therein and has microvoids dispersed therein and surface ruptures thereon; and
B. a layer for improving ink adhesion to the synthetic paper which is provided on at least one surface of the papery

layer and comprises, as an essential constituent, an ethyleneimine adduct of a polyaminepolyamide.

ELECTROSTATIC 4,097,646
4,097,646
ELECTROSTATIC RECORDING MATERIAL HAVING A Makoto Kitcric Copolymer Coated layer Arica, and Shoji Bozo Ishikawa; Kazuharu Katagiri; Tetsuo Coper Co Coyer Co., Ltd., Tokyo, Japan
Claims priority, application Japan, Aug. 22, 1974, 49.96374; Oct. 11, 1974, 49-116114
U.S. Cl. 428-323 Int. Cl. \({ }^{2}\) B32B 5/16
1. An electronic 10 Claims having on one surface thereof a dielectric layer, which comprises a free carboxylic acid group containing copolymer of (1) about 15 to \(70 \mathrm{~mol} \%\) of methacrylic acid and (2) about 85 to 30 mol \% of (a) a methacrylate having at least 6 carbon atoms or b) an acrylate having at least 7 carbon atoms, said copolymer being water-soluble or water-emulsifiable and up to \(10 \%\) of said carboxylic acid groups being in the form of an ammonium or amine salt thereof.

4,097,647
Michael J Sthographic Printing plate Michael J. Shaw, Kalamazoo, Mich
Incorporated, Kalamazoo, Mich.

Filed Nor. 24, 1975, Ser. No. 634,900
Int. Cl. \({ }^{2}\) B41C \(1 / 10\); B41N 1/08; B32B 13/08
13
Claims 1. A lithographic printing plate having a lithographic print ing surface thereon capable of receiving an ink receptive image comprising a coating in the amount of about 1 to 10 pounds per ream consisting essentially of a fine particle size pigment and a ydrophilic cross-linked cationic resinous binder.
6. A method of making a lithographic printing plate having ink receptive image comprising preparing an aqueous coating composition consisting essentially of a water-soluble hydrophilic cross-linkable cationic resinous binder and a fine particle size pigment, applying said composition to a paper base in the amount of about 1 to 10 pounds per ream, and drying the composition on said base.
11. A lithographic printing plate having a lithographic printing surface thereon capable of receiving an ink receptive image a paper base;
a coating on said paper base in the amount of about 1 to 10 pounds per ream consisting essentially of a non-flocculating fine particle size pigment and a hydrophilic crosslinked cationic resinous binder, said pigment and binder weight pigment and about \(10-50\) parts by weight binder by weight binder
said binder being the product of self-crosslinking or crosslinking with about 0.1 to about 10 parts by weight extranepus cross-linkér per part of binder

LAMINATED STRUCTURAL 4
LAMINATED STRUCTURAL MEMBER AND METHOD
John Philip Pringle, Allen, Tex., assignor to Capital Wire \& Cable, Division of U.S. Industries, Inc., Plano, Tex.
Division of Ser. No. 548,731, Feb. 10, 1975, Pat. No. 4,016,232 which is a continuation-in-part of Ser. No. 466,242, May 2, 1974 Pat. No. 3,956,541. This application Aug. 16, 1976, Ser. No. U.S. Cl. 428- \({ }^{\text {Int }}\)
\[
{ }_{26}^{\text {nt. Cl. }{ }^{2} \text { B32B } 5 / 16 ; \text { B65D } 71 / 000}
\]
\[
\begin{aligned}
& \text { Int. } \\
& \hline 226
\end{aligned}
\]

1. A flexible laminated structural member which comprises in combination:
1. from about 30 to about 60 weight percent of a scrap particulate thermoplastic material wherein at least 50 percent of the particles have a particle dimension of from about \(1 / 16\) inch to about \(\{\) inch;
2. from about 70 to about 40 weight percent of a particu2. late wood filler material;
3. from about 11 to about 18 weight percent of a thermesetting binder, said weight percent based upon the total weight of the particulate thermoplastic material and r material; and
(b) a second ayer comp er

RESIN-I 4,097,649 RESIN-IMPREGNATED SELF-ADHERING OR heat-sealable papers and method of making mut Neumann, Goddelau, Germany, assignor to Rölm
GmbH, Darmstadt, Germany
Filed Nov. 10, 1975, Ser. No. 630,328
Claims priority, application Germany, Nov. 16, 1974, 245449
U.S. C1. 428-327 Int. Cl. \({ }^{2}\) C09J 7/04 8 Claim 1. A method for making a synthetic resin-impregnated self adhering or heat-sealable paper which comprises saturating an
absorbent paper with an aqueous dispersion of a self-cross-linking synthetic resin, in which dispersion the resin particles have an average particle size of less than 2 microns, and, without drying, applying an aqueous suspension of a thermoplastic resin, in which suspension the resin particles have an average particle size of over 2 microns, te that se self-adhering or heat-sealable, and then drying said paper.

4,097,650
MAGNETIC RECORDING MEDIUM
Ryuii Shirahata; Tatsujii Kitamoto; Massaki Suzuki, and Shinichiro Dezawe, all of Odamara, Japan, assignors to Fuji Phot Film Co., Ltd., Minami-Ashigara, Japan \(\quad\) Filed Aug. 24, 1976, Ser. No. 717,323 Claims priority, application Japan, Aug. 28, 1975, 50-103481 U.S. Cl. 428 Int. CC. \({ }^{2}\) B32B 15/04; G11B 5/74 UTS. C. \(428-336\)
1. A non-binder type magnetic recording medium 11 Claim recording at a relative speed, \(v\), to a magnetic reproducing head, comprising a ferromagnetic metal thin film as a magnetic the surface roughness of the support is between 0.04 and 0.08
\(\mu \mathrm{m}\) and the period of the surface roughness is at most \(v / 10^{6} \mu \mathrm{~m}\) where \(v\) is the relative speed between the magnetic head and the magnetic recording medium in \(\mu \mathrm{m} / \mathrm{sec}\).

\section*{4,097,651}

ERSTRATES COATED WITH END AND DIANHYDRIDE AND REACTION PRODUCTS OF A KIANHYDRIDE AND A HYDRAZINE OR HYDRAZIDE of Pa., assignors to PPG Industries, Inc., Pittsburgh, Pa. Ser. No. 511,322, Oct. 2, 1974, Pat. No. 4,020,050, which is a division of Ser. No. 369,628, Jun. 13, 1973, abandoned. This
application Nov. 16, 1976, Ser. No. 742,306
Int. Cl.2 B32B 27/04, 27/12, 27/34; H01B 3/18
14 Claims
Cl. 428-375 U.S. Cl. 428-375
1. An article of manufacture comprising a polymer consisting essentially of the repeating structural formula

deposited on a substrate; wherein \(R\) is a tetravalent organic radical having at least 2 carbon atoms, \(R\), is a divalent organic radical selected from the group consisting of alkylene, arylene, \(\mathrm{R}_{3}\) are hydro sen or monovalent alkyl, aryl, aralkyl, or cycloal kl radicals.
3. The article of claim 1 wherein said substrate is fibrous.
7. An article of manufacture comprising a polysalt coated on a metal substrate wherein said polysalt has therein a moiety of the structural formula:
wherein \(R\) is a tetravalent organic radical having at least two carbon atoms, \(\mathrm{R}^{\prime}\) is an aliphatic or cycloaliphatic, monofunctonal alkyl radical, \(R_{1}\) is a divalent organic radical selected from the group consisting essentially of alkylene, arylene, and heterocyclic radicals, \(R_{2}\) and \(R_{3}\) are hydrogen or monovalent 1 or 0 .
11. An article of manufacture comprising a polysalt coated on a metal substrate wherein said polysalt has therein a moiety of the structural formula:


wherein \(\mathbf{R}\) is a tetravalent organic radical having at least two carbon atoms, \(\mathbf{R}^{\prime}\) is an aliphatic or cycloaliphatic monofunc tional alkyl radical having it 2 carbon atoms. \(R\), is a divalen
organic radical selected from the group consisting essentially of alkylene, arylene, and heterocyclic, radicals, \(R_{2}\) and \(R_{3}\) are hydrogen or monovalent alkyl, aralkyl, or cycloalkyl radicals
and \(x\) and \(y\) are either 1 or 0 .

> 4,097,652

POLY (ETHYLENE OXIDE) MONOFILAMENT
Richard Joseph Hartignn, Jr., Delmar, N.Y., assignor to Alban International Corp., Albany, N.Y.
Filed Aug. 28, 1975, Ser. No. 608,666

Int. Cl. \({ }^{2}\) D01D \(5 / 10\)
U.S. C1. 428-401
\[
\text { Int. CI. }{ }^{2} \text { DUID J/IU } 3 \text { Cla }
\]
1. A monofilament of a poly (ethylene oxide) homopolyme 900,000 , said monofilament being characterized by a diameter 900,000 , said monofliament being characterized by a diameter
of from 5 to 15 mils and a tenacity of at least \(3.0 \mathrm{gms} . /\) denier

COBALT BORIDE CONDUCTOR COMPOSITIONS Frank Knowles Patterson, Wilmington, and Joseph Richar Nemours and Company, Wilmington, Del.

Filed Mar. 7, 1977, Ser. No. 775,275
Int. Cl. \({ }^{2}\) H01B //06
U.S. Cl. 428-433

Int. C1. \({ }^{2}\) H01B \(/ 1 / 06\)
19 Claim
1. Conductor compositions of finely divided inorganic pow der dispersed in an inert liquid vehicle, the inorganic
consisting essentially of \(50-100\) wt. \(\% \mathrm{Co}_{x} \mathrm{~B}_{y}\) wherein
\(x\) is in the approximate range \(50-75\),
\(y\) is in the approximate range \(25-50\), and
\(x\) and \(y\) total 100 and are atomic ratios, and \(0-50 \mathrm{wt} . \%\)

4,097,654
THERMAL SHUNT FOR RADIOISOTOPE BATTERY HYBRID CONFIGURATION
Guido Eddardo Guazzoni, Wayside, N.J., assignor to The United
States of America as represented by the Secretary of the Army, Washington, D.C.

Filed Apr. 14, 1977, Ser. No. 787,413
Int. C1. \({ }^{2}\) H01M \(14 / 00\)
U.S. CI. \({ }^{429-5}\)
1. An assembly including a holder and a plurality of Claims al energy sources in said holder for supplying a load, said ources having different thermal characteristics comprising:
a block of thermally conductive material having a first cav ity accommodating a radioisotope thermal electric gener ator having a first thermal characteristic and a second
cavity accommodating a chemical battery having a seccavity accommodating a chemical battery having a sec-
ond thermal characteristic, said cavities being surrounded by said block, and a layer of thermal insulation disposed
on and surrounding said block, said insulation layer trapping heat therein and said block directing heat between
id different sources having said different thermal characteristics.

4,097,655
CONDUCTING ELECTRODE Prist Witzke, Princeton, N.J., essignor to Optel Corporation Princeton, N.J. and Grumman Ae
page, N.Y., part interest to each

Filed Jul. 16, 1976, Ser. No. 706,078 US. C. \(429-111{ }^{\text {Int. Cl. }}{ }^{2}\) H01M \(6 / 30,6 / 36\)

1. A photogalvanic cell comprising a light passing substrate a light transmissive electrode supported by the substrate; a counterelectrode located in spaced registry from the elec trode;
semi-solid electrolyte means containing titanium dioxide positioned between the electrode and the counterelec light energy to electrical energy and for retaining electrical charge after removal of light.

PROCESS FOR IMPARTING ANTISTATIC PROPERTIES O PLASTICS Franz-Josef Dany, Erftstadt; Gerhard Mietens, Efferen, and
Erich Schallus, Koln-Klettenberg, all of Germany, assignors to Erich Schallus, Koln-Klettenberg, all of Germany, assignors to
Hoechst Aktiengesellschaft, Frankfurt am Main, Germany Hoechst Aktiengeselischath, Frankfurt am Main, Germany
Filed Apr. 7, 1976, Ser. No. 674,573 Claims priority, application Germany, Apr. 10, 1975, 2515632 Int. Cl. \({ }^{2}\) C08K \(3 / 04\)
U.S. C1. 526-1
1. In the process for imparting antistatic properties to plas ics by blending a pulverulent plastics material with conduc iics by blending a pulverulent plastics material with conductive carbon black and making the resulting blend into a mould-
ing composition, the carbon black having been made by sub jecting hydrocarbons, which are liquid at room temperature, o thermal conversion at \(1000^{\circ}\) to \(2000^{\circ} \mathrm{C}\), under pressures within the range 1 to 80 atmospheres absolute, and in the presence of oxygen or an oxygen-containing gas, scrubbing the ing the carbon black from the aqueous phase, the improvemen which comprises intimately blending the aqueous, carbon black-containing phase with vaporizable liquid aliphatic or
cycloaliphatic hydrocarbons at temperatures within the range \(100^{\circ} \mathrm{C}\). in the presence of a catalytic amount of a Ziegler-type
\(50^{\circ}\) so and \(120^{\circ} \mathrm{C}\), under pressures within the range 1 and 20 catalyst, the impro
atmospheres absolute, at a pH -value of 7 to 10 , and for a period pared by reacting
of 1 to 20 minutes, separating liquid matter from the carbon pared by reacting a black and then heating and thereby freeing it from hydrocar ons and water, annealing the carbon black for 20 to 30 min utes at \(200^{\circ}\) up to \(2200^{\circ} \mathrm{C}\) and blending the carbon black having a water absorption stiffness (AS-number) of 15 to 35 , a specific electric resistance of \(10^{-1}\) up to \(10^{-3}\) ohms . cm under
a moulding pressure of 100 to 180 atmospheres absolute, a bulk a moulding pressure of 100 to 180 atmospheres absolute, a bulk
density of 100 to 180 g /iter, and a BET-surface area of 100 to density of 100 to 180 g /iter, and a BET-surface area of 100 to
\(1000 \mathrm{~m}^{2} / \mathrm{g}\) with pulverulent plastics material in an amount o about 4 to 12 weight \(\%\).

4,097,657
SURFACE-TREATED SOFT CONTACT LENSES
Charles L. Sieglaff, Mentor, Charles J. Hora, Willoughby Hills, and Joseph P. Tiefenbach, Mentor, all of Ohio, ssslgnors to Diamond Shamrock Corporation, Cleveland, Ohio Int. Cl. \({ }^{2}\) C08F 8/32, 8/34
U.S. C1. 526- \(\mathbf{3 0}\)
producing a soft contact lens rea
O

A process for producing a soft contact lens resistant Claim difusion and accumulation therein of substances which will romote its clouding and discoloration in use which comprises reating a soft contact lens acrylic ester hydrogel with a compound selected from the group consisting of aliphatic dithiols and aliphatic amines, each of said compounds containing at least one functional group reactive with the polar functional
groups in said acrylic ester hydrogel, the treatment being groups in said acrylic ester hydrogel, the treatment being
conducted for a sufficient period of time to structurally modify at least a major portion of polymer molecules on the oute surfaces of the hydrogel by incorporating therein the modify ing compound through its functional groups.

POCESS FOR PREPARING
PROCESS FOR PREPARING COPOLYMERS OF
ELASTOMERIC PROPERTIES FROM OLEFINIC
Artur Simon; Gyula Sarosi; Balazs Keszier; Attila Toth, and Maria Rethy, all of Budapest, Hungary, assignors to Muanyagipari Kutato Intezet, Budapest, Hungary
Claims priority, application Hungary, Aug. 19, 1975, MU 542
U.S. C. 520-143

Int. C1. \({ }^{2}\) C08F \(4 / 16\)
2 Claims 1. A process for preparing copolymers of elastomeric prop erties by the polymerization of olefinic monomers with catabyosgene or acetyl chloride, in a medium of hydrocarbons or chorgene or acetryl chled hydrocarbons, followed by the prcipitation of the obtained polymer with a \(\mathrm{C}_{1 \text {.s.s.c. alchol containing an antiage }}\) ing agent, characterized by using as an olefinic monomer mixture of isobutylene and butadiene in which the amount of
butadiene is between \(30 \%\) and \(95 \%\), the said mixture containing, if desired, at most \(20 \%\) by weight of butene- 1 and/or butene-2, related to the total amount of monomers.

\section*{4,097,659}

PROCESS OF POLYMERIZING \(\alpha\)-OLEFINS IN THE LIQUID PHASE
M J C Cuen Cet \(J\) J Beek(L), and Hendrinus M. Verschoor, Geleen, all of Nether lands, assignors to Stamicarbon, N.V., Geleen, Netherlands Continuation of Ser. No. 463,432, Apr. 23, 1974, abandoned which is a continuation of Ser. No. 232,522, Mar. 7, 1972, abandoned. This application Apr. 15, 1976, Ser. No. 677,063 Cluims priority, application Netherlands, Mar. 11, 1971, 7103232
Cl. \({ }^{2}\) C08F 4/66, 10/00
U.S. CI. 526- 151
Int.
\(\qquad\) 1. In a process for suspension polymerizing at least on
(1) a solution of an ether-free inert hydrocarbon solvent in
which is dissolved at least one organomagnesium comwhich is dissolved a
\(\mathrm{MgR}_{2}^{\prime}\)
wherein each \(\mathbf{R}^{\prime}\) is independently a hydrocarbyl group of 1 30 carbon atoms selected from the group consisting of alky ryl, cycloalkyl, aralkyl, alkaryl and alkenyl,
wherein said \(\mathrm{MgR}^{\prime}\), is solubilized in said hydrocarbon solvent by treating said \(\mathrm{MgR}^{\prime}\), free iner amount of \(\mathbf{R "}^{\prime \prime}{ }_{m} \mathbf{A l X}^{\prime}{ }_{n}\) which is effective to cause the disso lution of said \(\mathrm{MgR}^{\prime}{ }_{2}, m\) being an integer of 1 to 3 and \(n\) being an integer of \(0-2\), wherein \(\mathbf{R}^{\prime \prime}\) is alkyl, cycloalkyl aralogen or alkoxy of \(1-25\) carbon atoms;
with (2) at least one aluminum halogen compound of the formula
\(\mathrm{R}_{\mathrm{m}} \mathrm{AlX}_{3-m}\)
herein each \(\mathbf{R}\) independently represents a hydrocarbyl group 1 - 30 carbon atoms selected from the group consisting of ch X in, cycioalk yl , aralkyl, alkaryl, alkenyl and alkadienyl, less than 3,
wherein the molar ratio of X :magnesium is at least 0.01 , to form a reaction product in the form of a precipitate, and thereafter mixing the resulting reaction product with a least one transition metal compound of a metal of Group IV-B, V-B and VI-B of the Periodic Table, which transithe said transition metal compound selected from the group consisting of halides, alkoxides of \(1-20\) carbon atoms, and mixtures thereof, to reduce said transition metal compound,
and thereafter activating the resulting reduced catalyst system with an activating amount of at least one organo aluminum compound, said organo-aluminum compound alkyl aluminum halides, alkyl aluminum hydrides an corresponding compounds wherein one or more alky radicals are replaced by alkenyl radicals or alkadieny radicals, and mixtures thereof, said alkyl radicals and said alkenyl or alkadienyl radicals having 1-20 carbon atoms.

HETEROGENEOUS ANIONIC POLYMERIZATION ANIONIC PROCESS
iia Rashkov, Sofia, Bulgaria; Jean Golé, Thurins, France, Daniel Guerard, Malzerille, France; Albert Herold, Laxou, France; Gérard Merle, Oullins, France; Ivan Martino Panayotov, Sofia, Bulgaria; Jean-Pierre Pascault, Villeur banne, France; Quang Tho Pham, Caluire, France; Christi Pillot, Caluire, France, and Robert Salle, Lyons, France, (ANVAR), France
Divislon of Ser. No. 695,837, Jun. 14, 1976, Pat. No. 4,035,562. This application May 4, 1977, Ser. No. 793,551 Claims priority, application Bulgaris, Jun. 14, 1975, 30292 U.S. C1. 526-173
1. A heterogeneous anionic polymerization process, wherein reaction medium is formed and comprises firstly at least one monomer having a conjugated diene structure, secondly east one catalyst comprising a carbon with a graphitic strucium, and thirdly at least a solvent chosen from the following hydrocarbon solvents, a saturated aliphatic solvant with a
straight or branched chain, and a saturated alicyclic solvant, in
which the monomer is dissolved and in which the catalyst is in which the mo

PROCESS FOR PRODUCING CONJUGATED PROCESS DIOLEFINIC POLYMERS
Koei Komatsu, Yokkaichi; Kenji Itoyama, Ichihara; Jun Hirota, Ichihara, and Akio Nishijima, Ichihara, all of Japan, assignors
to Japan Synthetic Ruber Co Ltd to Japan Synthetic Rubber CO., Ltd. and Denki Kagaku Kogyo Kabushiki Kaisha, both of Tokyo, Japan
Filed Apr. 18, 1977, Ser. No.
Claims priority, application Japan, Apr. 19, 1976, 51-43707
U.S. C. \(526-175\)

\(\qquad\) 21 Claims by polymerizing at least one conjugated diolefin or copolymerizing at least one conjugated diolefin with at least one vinyl aromatic hydrocarbon in a hydrocarbon solvent in the pres-
ence of an alfin catalyst and at least one molecula weight ence of an alfin catalyst and at least one molecular weight
regulator selected from the group consisting of \((A)\) unsaturated regulator selected from the group consisting of (A) unsaturated
halohydrocarbons represented by the general formula, RCX halohydrocarbons represented by the general formula, RCX
\(=\) CYZ, wherein R represents hydrogen, an alkyl group having 1 to 7 carbon atoms, a vinyl group, a phenyl group, a substituted phenyl group, or a halogen atom and \(\mathbf{X}, \mathbf{Y}\), and \(\mathbf{Z}\) represent independently hydrogen or a halogen atom, at least
one of said \(\mathbf{R}, \mathbf{X}, \mathbf{Y}\), and \(\mathbf{Z}\) being a halogen atom, (B) halogenated aromatic compounds, (C) ethers, polyethers, and acetals, and (D) tertiary amines, and, if necessary, a dihydro aromatic compound, characterized in that said polymerization or copolymerization is effected in the presence of 0.03 to 0.9 mole of
water, an alcohol of the formula, R-OH, where R is a saturated or unsaturated aliphatic or alicyclic group having 1 to 20 carbon atoms, or a mixture of water and the alcohol, per mole of organosodium contained in said alfin catalyst.

CO-POLYMERS OF BUTADIENE AND CARBORANYL METHACRYLATE
Chester W. Huskins, Huntsville, Ala, assigoo to Chester W. Huskins, Huntsvile, Ala., assignor to The United
States of America as represented by the Secretary of the States of America as rep
Army, Washington, D.C.
Filed Oct. 29, 1976, Ser. No. 736,806
The portion of the term of this patent subsequent to Oct. 21,

U.S. Cl. \(526-217\)

3 Claims
1. A method of making a co-polymer having a controlled 1. A method of making a co-polymer having a controlied
molecular weight and a relatively low viscosity, said copolymer consisting in a weight percent range of the monomers carboranyl methacrylate from about 20 to about 90 weight percent and butadiene from about method employing an emulion polymerization process comprising the steps of:
(a) combining said monomers in said weight percent range together in an aqueous mixture containing a weight percent of the total weight of the two monomers, a polymeri-
zation initiator of azo-bis-isobutyronitrile up to about 2 weight percent, a chain terminating agent of dodecylmercaptan up to about 10 weight percent to control the molecular weight of said co-polymer by employing a higher weight percent of said dodecylmercaptan when a lower molecular weight co-polymer is made and by employing a
lower weight percent of said dodecylmercaptan when a higher molecular co-polymer is made, and an emulsifier of benzylcetyldimethylammonium chloride up to about 10 weight percent;
(b) reacting said aqueous mixture with agitation for a period (c) separating from said mixture
formed by said reaction by pouring the mixture into formed by said reaction by pouring the mixture into a
container, acidifying with hydrochloric acid, adding sufficient tetrahydrofuran to separate said co-polymer from
the mixture to the tetrahydrofuran, separating said copolymer contained in said tetrahydrofuran from said mixture, and removing said tetrahydrofuran from said coproaching \(100 \%\) as calculated on the basis of the weight of the ingredients used and the weight of said co-polymer recovered.

\section*{4,097,663}

LOW FUSION COPOLYMER COMPRISING VINYL CHLORIDE, VINYL ACETATE, AND BIS(HYDROCARBYL)VINYLPHOSPHONATE City, both of N.Y., assignors to Stauffer Chemical Company, Westport, Conn., assignors to Stauffer Chemical Company, Filed J.
Int. C. 2
.S. C. Cl. \({ }^{2}\) C08J 9/00; C08F \(30 / 02,4 / 32\)
1. Cl. \(\mathbf{5 2 6 - 2 7 8}\)

5 Claims 1. An emulsion copolymer having a fusion temperature of merizing:
a. from about \(75 \%\) to about \(90 \%\), by weight, vinyl chloride; b. from about \(5 \%\) to about \(15 \%\), by weight, vinyl acetate;
and and byl) vinut \(5 \%\) to about \(15 \%\) by weight of a bis(hydroca
\[
\mathrm{CH}_{2}=\stackrel{\mathrm{C}}{\mathrm{x}-\mathrm{P}}
\]
where X is selected from the group consisting of hydrogen halogen, cyano, aryl and \(C_{1}-C_{18}\) alkyl, and \(R\) and \(R^{\prime}\) are unsub stituted and substituted \(C_{1}-C_{12}\) alkyl groups.

> DERIVATIVES OF AN ANT

DERIVATIVES OF AN ANTIBIOTIC XK-62-2
Japan, assignors to Abbott Laboratories, North Chicago, IIl. Filed Jul. 12, 1976, Ser. No. 704,750 The portion of the term of this patent subsequent to Feb. 28, Claims priority, application Japan, Jul. 15, 1975, 50-85767; Claims priority, application Japan, Jal.
Jul. 15, 1975, \(50-85758\)
Int. Cl. \({ }^{2}\) C07H \(15 / 22\)
U.S. Cl. \(536-17\)
1. Compounds represented by the formula:

wherein \(R_{1}\) represents a hydrogen atom or a methyl group, and \(n\) is an integer of 1,3 or 4 , and the pharmaceutically acceptable,

DIACYLNUCLEOSIDES AND PROCESS FOR PREPARING THE SAME
Torao Ishida; Minoru Akiyama; Daikichi Nishimura; Hiroshi Hayashi, all of Fuij; Yoshio Sakurai, Mitaka, and Shiger Tsukagoshi, Tokyo, all of Japan, assignors to Asahi Kase
Kogyo Kabushiki Kaisha, Osaka, Japan
Filed Nov. 24, 1975, Ser. No. 632
Claims priority, application Japan, Nov. 22, 1974, 49-133556
U.S. CI. 536-23 int. Cl. \({ }^{2}\) C07H 19/08
U.S. Cl. 536 23
1. A compound selected from the group consisting of com-
pounds represented by the general formulae


wherei
(a) \(\mathbf{B}\) represents \(\mathrm{OZ}_{2}\) ' or hydrogen
(b) one of \(Z_{1}^{\prime}, Z_{2}^{\prime}, Z_{3}^{\prime}\) and \(Z_{4}^{\prime}\) represents \(A_{1}\) and anothe represents \(A_{2}\) and the remainder represents hydrogen or protective group wherein
\(\mathrm{A}_{1}\) is \(\mathrm{C}_{14} \mathrm{C}_{22}\) aliphatic acyl selected from the group consisting of myristoyl, palmitoyl, margaroyl, stearoyl, nnonadecanoyl, arachidoyl, n-heneicosanoyl, behenoyl, leoyl, arachidonoyl, or the aliphatic acyl substituted with fluoro, chloro, bromo, iodo, hydroxy, mercapto, phenyl,
phenoxy, thiophenoxy, nitrophenyl, cyclohexyl, 2-thienyl, -tetrahydropyranyloxy, methoxy, thiomethoxy, carboxy methyl, epoxy and oxo;
\(\mathrm{A}_{2}\) is \(\mathrm{C}_{2}\) - \(\mathrm{C}_{11}\) having carboxy or the acyl substituted with group selected from the group consisting of phenyl, hyyamino, cyclohexyl, mercapto nitro, furane pyridine yamino, cyclohexy, mercapo, adrantane, oxymethenylcarboxy and thiomethenylcarboxy; and
the protective group is selected from the group consisting of isopropylidene, ethylidene, benzylidene, tetrahydropyranyl, tetrahydrofuranyl, ethoxyethyl, methoxymethyl, ethoxymethyl, methoxyethyl, triphenylmethyl, 2,4-dini-
troanilino, methoxycarbonyl, trichloroethoxycarbonyl roabromoethoxycarbonyl, formyl, trifluoroacetyl, tri chloroacetyl, benzyl, benzhydrine, 2,4-dinitrophenylsulphenyl, propenyl, borate, vinylthioether and benzoylpropyl; and
(c) X is selected from the group consisting of hydrogen fluorine, chlorine, bromine and iodine;
and pharmaceutically acceptable salts thereof

4,097,666
SOLVENT SYSTEM FOR POLYSACCHARIDES St. Albans, W. Va., assignors to The Institute of Paper Chemistry, Appleton, Wis.

Filed Apr. 29, 1976, Ser. No. 681,56
U.S. Cl 536-57 Int. Cl. \({ }^{2}\) C08B 11/02, 16/00
1. A composition comprising a natural or modified polysac 23 Claims charide dissolved in a solvent system comprising dimethyl sulfoxide and formaldehyde.

HYDROXYALKYL CELLULOSE ETHERS Arno Holst, and Michael Kostrzewa, both of Wiesbaden, Ger. many, assignors to Hoechst Aktiengesellechoft, Fronkfurt am Filed Dec. 16, 1976, Ser. No. 751,457 Claims priority, application Germany, Dec. 17, 1975, 2556754 U.S. Cl. 536-87 nt. C.2 \({ }^{2}\) C08B \(11 / 08,11 / 20\) 2 256754
\(\qquad\) 12 Claims 1. A process for the modification of a cellulose ether contain-
ing hydroxyalkyl groups, which comprises the step of reacting said ether with a chloroformic acid ester in an aqueous organic medium containing an alkali metal hydroxide, whereby the
cellulose ether is rendered at least partially insoluble in water cellulose ether is rendered at least partially insoluble in water.

2-[(P-METHOXY-BENZOYL) \(\stackrel{4,097}{ }\) QUINOXALINE-1,4-DIOXIDE Pal Benko; IIdiko Simonek; Laszlo Pallos; Jeno Kovacs, and Karoly Magyar, all of Budapest, Hungary, assig
Gyogyszervegyeszeti Gyar, Budapest, Hungary Continuation-in-part of Ser. No. 630,762 , Nor. 11, 1975, abandoned. This application Mar. 9, 1977, Ser. No. 775,998
Claims priority, application Hungary, Nov. 21, 1974, EE 2278 Int. C. 2 C07D 241/00; A61K 31/085, 31/165, 31/495 U.S. C. \(542-418\)
1. 2-[[p-Methoxy-benzoyl)-hydrazono-formyl]-quinoxaline1,4. dioxide and its pharmaceutically acceptable acid addition
salts. salts.

2-SUBSTITUTED-5-TRIFLUOROMETHYL-1,3,4-4 THIADIAZOLES Hans Scheinpflug; Bernhard Homeyer, both of Leverkugen; and Peter Roessler, Bensberg, all of Germany, assignors to Bayer Aktiengesellschaft, Leverkusen, Germany
Filed Jul. 14, 1976, Ser. No. 705,375

Filed Jul. 14, 1976, Ser. No. 705,375
ority, application Germany, Jul. 26, 1975, 2533604 U.S. Cl. 542-413 Int. Cl. \({ }^{2}\) C07D 285/12
U.S. Cl. \(542-413\)
1. A 2 -substituted 8 Claims formula
\(\mathbf{R}\) is phenylalkenyl; phenyl monosubstituted in the o - or m position, polysubstituted phenyl, or substituted pheny-
lalkenyl, the substituents being selected from alkyl with 1 lalkenyl, the substituents being selected from alkyl with 1
to 4 carbon atoms, halogenoalkyl, halogenoalkylthio or 4 carbon atoms, halogenoalkyl, halogenoalkylthio or
alogenoalkylsulfonyl each with 1 or 2 carbon atoms and 2-5 halogen atoms, alkoxy, alkylcarbonyl or alkoxycarbonyl each with 1 to 4 carbon atoms in the alkyl moiety, hydroxyl, carboxyl, cyano and thiocyano or naphthyl; membered or 6 -membered heterocyclic radical with 1 to
substituted benzimidiazolyl or benzthiazolyl; optionally substituted naphthyl; quinolyl; cyano or one of the groups

wherein
\(\mathbf{R}^{1}\) and \(\mathbf{R}^{2}\) conjointly are a trimethylene, tetramethylene or
pentamethylene group, X is \({ }^{\text {pextamethylene group, }}\)
\(\mathrm{R}^{\prime}\) and \(\mathrm{R}^{\prime \prime}\) each independently is alkyl or, together with the nitrogen atom and optionally further hetero-atoms selected from \(\mathbf{O}\) and N atoms, form an optionally substituted 6 -membered or 7 -membered ring, and
\(n\) is 0,1 or 1 .

4,097,670
CARBOXYALKYLUREIDO CEPHALOSPORINS Hermann Breuer, and Uwe D. Treuner, both of Regensburg Hermann Breuer, and Uwe D. Treuner, both of Regensburg,
Germany, assignors to E. R. Squibb \& Sons, Inc., Princeton,
N.J. Filed Apr. 5, 1976, Ser. No. 673,222

The portion of the term of this per. No. \(\mathbf{6 7 3 , 2 2 2}\) subbequent to Apr. 25, 1995, has been disclaimed
Int. Cl. \({ }^{2}\) C07D \(501 / 36\)
U.S. C1. 544-27
1. A compound of the formula

wherein \(\mathbf{R}\) is hydrogen, lower alkyl, phenyl-lower alkyl, diphenyl-lower alkyl, tri(lower alkyl)silyl, trihaloethyl, an alkali metal ion, an alkaline earth metal ion, dibenzylamine,
\(\mathrm{N}, \mathrm{N}\)-dibenzylethylendiamine, methylamine, triethylamine, N N-ethylpiperidine, or

\(\mathbf{R}_{1}\) is in the a-coniguration and is hydrogen or methoxy; \(\mathbf{R}_{2}\) is hydrogen, lower alkyl, phenyl, phenyl-lower alkyl, diphenyllower alkyl, an alkali metal ion, or an alkaline earth metal ion; \(\mathrm{R}_{3}\) is hydrogen or lower alkyl; \(\mathbf{A}\) is straight or branched chain alkylene of 1 to 6 carbons; \(R_{4}\) is phenyl, phenyl-lower alkyl,
substituted phenyl or phenyl-lower alkyl wherein said phenyl substituent is one or two members selected from the group consisting of halogen, lower alkyl of 1 to 4 carbons, lower alkoxy of 1 to 4 carbons, and hydroxy, or a mono substituted or unsubstituted heterocyclic selected from the group consisting of 2 -thienyl, 3 -hhienyl, 2 -furyl, and 3 -furyl wherein said heterocyclic substituent is attached at an available carbon atom and is lower alkyl; \(\mathrm{R}_{\text {, }}\) lower alkyl; and X is heterothio selected from the group consisting of 32 Claims

wherein \(\mathrm{R}_{7}\) is hydrogen or lower alkyl of 1 to 4 carbons and \(\mathrm{R}_{\mathrm{g}}\) is hydrogen, lower alkyl of 1 to 4 carbons, methoxy, hy-
droxy, or halogen. droxy, or halogen.

\section*{DIHYDROOXADUA, 4097,671 \\ MAKING METHOD FOR} MAKING George E. Niznik, Elnora, N.Y.,
Company, Schenectady, N.Y.
\[
\begin{aligned}
& \text { U.S. Cl. } 544-66 \\
& \text { 1. The compr }
\end{aligned}
\]
\[
\begin{aligned}
& \text { ctady, N.Y. } \\
& \text { Iug. 28, } 1955, \text { Ser. No. } 608,450 \\
& \text { Int. C.2. } \mathbf{C O T D} 273 / 04
\end{aligned}
\]
\[
\text { U.S. C1. 544-66 Int. CI. }{ }^{2} \text { CO7D 273/04 }
\]
\[
\begin{aligned}
& \text { U.S. CI. } 544-66 \\
& \text { 1. The compound } \\
& \text { 2-one. }
\end{aligned}
\]

PHENYL PYRAZOLE THIOAMIDES
Malcolm W. Moon, and Gabriel Kornis, both of Kalamaroo, Mich, assignors to The Unjohn Company, Kalamazoo, Mich.
Division of Ser. No. 686548 , May Division of Ser. No. 686,548, Maypany, Kalamazoo, M continuation-in-part of Ser. No. 524,231, Nov. 15, 1974,
sbandoned. This application May 9, 1977, Ser . No. 795,103 abandoned. This application May 9, 1977, Ser. No. 795,103
Int. C1. \({ }^{2}\) C07D 231/12, 231/16 U.S. CI. 548-377 1. A compound of the formula:

where \(R_{1}\) is hydrogen, alkyl of 1 to 7 carbon atoms, inclusive, haloalkyl of 1 to 7 carbon atoms, inclusive, phenyl, benzyl or cycloalkyl of 3 to 6 carbon atoms, inclusive, with the proviso that when \(R_{1}\) is benzyl or cycloalkyl \(m=\)
\(0 ; R_{2}\) and \(R_{\text {, are }}\) the same or different \(0 ; R_{2}\) and \(R_{\text {s }}\) are the same or different and are hydrogen,
halogen, alkyl of 1 to 6 carbon atoms inclusive halogen, alkyl of 1 to 6 carbon atoms, inclusive, haloalkyl
of 1 to 6 carbon atoms, inclusive, or phenyl; \(R_{1}\) and \(R_{2}\) together with the attached carbon atom can be cycloalkyl of 3 to 6 carbon atoms, inclusive, when \(m=0, R_{1}\) is not hydrogen and when \(m=1\) at least one of \(R_{2}\) or \(R_{s}\) is hydrogen; \(R_{3}\) is hydrogen, alkyl of from 1 to 8 carbon
of from 1 to 6 carbon atoms, inclusive, and \(R_{3}\) and \(R_{4}\) can be joined together to form a heterocyclic ring selected from the group consisting of pyrrolidine, or piperidine; A
and \(\mathbf{B}\) are the same or different and are hydrogen, alkyl of and \(B\) are the same or different and are hydrogen, alkyl on cyano, haloalkyl of 1 to 6 carbon atoms, inclusive, alkoxy or alkylthio in which the alkyl group is from 1 to 3 carbon atoms, inclusive, or trifluoromethyl and when adjacen can be joined to form a ring of from 5 to 7 carbon atoms, inclusive; where \(X\) is halogen, nitro, cyano, acetyl, dime-
thylcarbamoyl, alkyl, haloalkyl, alkoxy or carboalkoxy in which the alkyl group is from 1 to 3 carbon atoms, inclusive, phenyl, benzyl, 2 -phenylethyl and \(n\) is 0,1 , or 2 or an acid addition salt thereof.

2-NAPHTHYLACETIC ACID DERIVATIVES John H. Fried, and Ian T. Harrison, both of Palo Alto, Calif., assignors to Syntex Corporation, Palo Alto, Calif. Division of Ser. No. 558,874, Mar. 17, 1975, Pat. No. 4, 4,001, 301,
which is a division of Ser. No. 195,875, Nov, 4, 1971, Pot No which is a division of Ser. No. 195,875, Nov. 4, 1971, Pat. No. 3,896,157, which is a division of Ser. No. 694,711, Dec. 7, 1967,
abandoned which is a continuation-in-part of Ser. No 608997, Jan. 13, 1967, abandoned. This application Sep. 27, 1976, Ser. No. 727,082
U.S. CI. \(560-100\)

Claims

\(\mathbf{R}^{\prime}\) is methyl, ethyl, isopropyl, cyclopropyl, trifluoromethyl, vinyl, ethynyl, fluoro, or chloro;
one of \(\mathbf{R}^{10}\) and \(\mathbf{R}^{11}\) is hydrogen, the other being methyl or difluoromethyl or \(\mathbf{R}^{10}\) and \(\mathbf{R}^{11}\) taken together are methylene or diffuoromethylene;
and the corresponding alkyl esters of 1-12 carbon atoms and
pharmaceutically acceptable acid addition salts thereof.

\section*{HERBICIDAL CARBAMATES AND} Julius Jakob Fuchs, Wilmington, Del., assignor to E. I. Du Pont de Nemours and Company, Wilmington, Del. which is a division of Ser. No. 356,422, May 2, 1973, Pat. No. 3,882, 160, which is a continuation-in-part of Ser. No. 312,904, Dec. 7, 1972, Pat. No. 3,823,179. This application Oct. 13, 1976, Dec. 7,1972 , Par. No. 3, Ser. No. 732,282
U.S. Cl. \(560-16\) Int. Cl. \({ }^{2}\) C07C 149/40, \(79 / 46\)
1. A compound of the formula

\(\mathbf{R}_{1}\) is

wherein
Q is hydrogen, fluorine, chlorine, bromine, a \(\mathrm{C}_{1}-\mathrm{C}_{4}\) alkyl, a \(\mathrm{C}_{1}-\mathrm{C}_{2}\) alkoxy or alkylthio group, nitro or trifuoromethyl group;
Y is hydrogen, chlorine, or methyl; and
Z is hydrogen or chlorine;
\(\mathrm{R}_{2}\) is a \(\mathrm{C}_{1}-\mathrm{C}_{3}\) alkyl;
\(\mathrm{R}_{3}\) is hydrogen, methyl, or ethyl;
\(R_{4}\) is a \(C_{1}-C_{4}\) alkyl, a \(C_{3}-C_{4}\) alkenyl, a \(C_{3}-C_{4}\) alkynyl, or methoxyl;
\(R_{\text {s }}\) is \(-O R\)
\(\mathrm{R}_{5}\) is \(-\mathrm{OR}_{6}\), wherein \(\mathrm{R}_{6}\) is a \(\mathrm{C}_{1}-\mathrm{C}_{8}\) alkyl substituted with X is oxygene atoms or \(0-1\) methoxyl; and

971 O.G. 62
 Ernest W. Yankee, Portage, Mich., assignor to The Upjohn Company, Kelamazoo, Mich. which is a continuation-in-part of Ser. No. 289,317, Sep. 15, 1972, abandoned. This application Feb. 23, 1976, Ser. No.
U.S. Cl. \(560-121\)

Int. Cl. \({ }^{2}{ }^{0} 01 \mathrm{Cl} 177 / 00\)
9 Claims
An optically active compound of the formula

wherein \(R_{4}, R_{5}\), and \(R_{7}\) are hydrogen or methyl, being the same or different;
wherein \(R_{13}\) is hydrogen, alkyl of one to 10 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive,
aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, or phenyl substituted with one, 2 , or 3 chloro or alkyl of one to 4 carbon atoms, inclusive; including the lower alkanoates thereof, and the pharmacologically acceptable salts thereof wherein \(R_{13}\) is hydrogen.

\section*{ELECTRICAL}

METHOD FOR THE PREPARATION OF AROMATIC URETHANS
Ugo Romano, Milan, Italy, assignor to Anic S.p.A., Palermo, Italy
Claims priority Nov. 22, 1976, Ser. No. 744,109 Claims priority, application Italy, Dec. 3, 1975
Int. Cl.
C07C
\(125 / 04,125 / 06\) 29960 A/75 U.S. Cl. \(560-132\)
1. In a method for preparing aromatic urethans of the formula:

UNSATURATED ESTERS OF GLYCOL MONODICYCLOPENTENYL ETHERS
D. Emmons, Huntingdon Valley, and Kayson Nyi, Sellierssille, both of Pa, asslgnors to Rohm and Haas Company, Philadelphis, Pa.,

Filed Jul. 7, 1976, Ser. No. 703,348
Int. C1. \({ }^{2}\) C07C \(69 / 54\)

whe (a) Alkylene groups having 2 to 6 carbon atoms and wherein Ar is selected from phenyl, naphthyl and alkyl., aryl., (b) Alkylene heteroalkylene groups wherein the total num-aryloxy-, halogen- and dialkylamino- substituted derivatives thereof and \(\mathbf{R}\) and \(\mathbf{R}^{\prime}\) are each selected from hydrogen or lower alkyl comprising reacting an aromatic carbonate of the formula: or S .

\section*{\(\Delta^{9}(11) .5 \alpha-\) D-HOMO-20-KETO STEROIDS}

Urich Kerb; Rudolf Wiechert, and Otto Engelfried, all of Berlin, Germany, assignors to Schering Aktiengesellschaft, Berlin and Mergkamen, Germany
Claims priority, application Germany, Jun. 11, 1975, 2526372 Int. C. \({ }^{2}\) C07J 63/00
1. A compound of the formula
with an aliphatic amine of the formula:

wherein \(A r, R\) and \(R^{\prime}\) are as defined above, the improvement which consists of effecting the reaction,
optionally in the presence of an organic solvent, between \(20^{\circ}\) and \(100^{\circ} \mathrm{C}\) and employing stoichiometric amounts of said aliphatic amine thereby preventing formation of un desired urea by-product.

wherein, \(R\) is hydrogen, \(m\)-iodobenzoyl or the acyl radical of an alkanoic acid of \(1-6\) carbon atoms, \(R_{1}\) is hydrogen or methy and \(R_{2}\) is methyl or ethyl.

4,097,679
SIDE WALL OF THE ULTRA HIGH POWER ELECTRIC ARC FURNACES FOR STEELMAKING Ichiro Fukumoto, Kanzakl, and Susumu Hayashida, Himeji,
both of Japan, assignors to Sankyo Special Steel Co., Ltd both of Japan,
Japan
Filled Sep. 21, 1976, Ser. No. 725,289 Claims priority, application Japan, Jan. 9, 1976, 51/1585 U.S. Cl. 13-32 Int. Cl. \({ }^{2}\) F27D \(1 / 12\)

4 Claims

1. A water cooled panel for use as a part of an inside wall within an outer shell in an ultra-high power electric arc furnace, comprising walls forming a panel having a plurality of hollow water channels extending therethrough, said panel
having a first side facing toward the outer shell and an oppohaving a first side facing toward the outer shell and an oppo-
sitely directed second side facing inwardly into the furnace, a sitely directed second side facing inwardly into the furnace, a
water inlet and a water outlet connected to the first side of said water inlet and a water outter connected to the first side of said
panel for flowing water through said water channels, a plurality of fins formed on said second side and extending therefrom inwardly into the furnace, said fins being spaced apart forming multi-sided chambers closed by said second side and said fins and open to the inside of the furnace, a castable refractory deposited into and filling the space within said multi-sided second fins extending transversely of said first fins, said first fins being at least 10 mm in thickness, said first fins extending horizontally and projecting into the furnace from said second wall for a dimension of at least 70 mm and said first fins being spaced apart in the vertical direction in the range of 30 to 80 mmed walls and said fins being formed of one of copper and a copper alloy.

4,097,680
SPINNING DISK ELECTRICAL ISOLATOR FOR A FLOWING SEAWATER STREAM
Cesar Clavell, Jr., San Diego, Calif., assignor to The United States of America as represented by the Secretary of the Nary, Washington, D.C.

\section*{Filed Mar. 10, 1977, Ser. No. 77614
Int. Cl. \({ }^{2}\) H01B \(17 / 00\)}
U.S. Cl. \(174-8\)


\footnotetext{
1. An apparatus for breaking the electrical conductivity
}
continuity in
omprising: drivable impelling means coupled to the source for impelling the fluid therefrom; the impelling means for radially dissipating the fluid in the form of a multitude of separated droplets;
lets forranged to collect the multitude of separated drop lets for coalescing them into a reservoir of fluid; drivable expelling means coupled to the reservoir of fluid for expelling the fluid therefrom and to the instrumentation; and
means connected to the drivable impelling means and drivable expelling means for synchronously driving them of fluid.

INTERFACE FOR HIGH VOLTAGE OIL-FILLED AND GAS-FILLED APPARATUS
ward M. Spencer, Mississauga, Canada, assignor to I-T-E Industries Ltd., Mississanga, Canada

Filed Jan. 31, 1977, Ser. No. 763,833
Int. Cl. \({ }^{2}\) H01F 27/O4; H01B 17/26
12
U.S. CI. \(174-12\) R

\author{
6 Claims
}

1. Apparatus for connecting a gas-insulated high-voltage conductor to oil-insulated electrical apparatus; said gas-
insulated high-voltage conductor comprising a central conductor suspended within a gas-filled elongated grounded housing; said oil-insulated apparatus comprising electrical apparatus disposed within a grounded oil-filled housing; said connecting apparatus comprising an intermediate oil-niled housing, an oil-filled bushing connected to said electrical apparatus and extending through said grounded oil-filled housing and into
said intermediate housing, and a sealed gas-filled bushing consaid intermediate housing, and a sealed gas-filled bushing con-
nected to said central conductor and extending into said intermediate oil-filled housing; the conductors of said oil-filled bushing and of said gas-filled bushing being connected together within said intermediate housing; and pressure differential means for maintaining the oil pressure within said grounded oil-filled housing greater than the oil pressure within said intermediate housing, whereby gas which escapes into said oil in said intermed.
oil-filled housing.

4,097,682
MEANS FOR PROTECING UNDERGROUND RLECTRICAL EQUNAWAY
Elijah R. Perry, Portola Valley; Meredith J. Angwin; Mari Rabinowitk, both of Menlo Park, all of Calif., and John F Shimshock, Somerset, N.J., assignors to Electric Power Re-
search Institute, Inc., Palo Alto, Calif. search Institute, Inc., Palo Alto, Caifi.
Filed Ang. 27, 1976, Ser. No
U.S. CI. \(174-15\) R

33 Claims

1. In a method for protecting underground heat-generating 1. In a method for protecting underground heat-generating
electrical equipment from thermal runaway, the steps of (a) laying the equipment in an open trench,
(b) back-filling the trench with soil in which water-absorbent particles are dispersed, said particles comprising a water-swellable, hydrophilic polymer gel material capable
of swelling to absorb at least ten times its own weight of of swelling
water, and
(c) soaking said absorbent particles with water.

4,097,683
TERMINAL HOUSING FOR BURIED ELECTRICAL
CABLES AND METHOD OF EXPANDING SAME Frank C. Summers, Park Ridge, III., assignor to Coil Sales \&
Manufacturing Co., Rolling Meadows, Ill. Manufacturing Co.. Rolling Meadows, Ill. Filed Sep. 15, 1976, Ser. No. 723,57
Int. C. \({ }^{2}\) H02G 9/02
U.S. Cl. 174-38

1. An apparatus for housing surface electrical connections of buried electrical cables and components coupled thereto comprising a base, a first bracket means mounted in upstanding relation on said base for supporting an electrical componen
vertically above said base, an adapter mounted on said base said adapter having a component supporting area greater than said base, second bracket means mounted in upstanding rela tion on said adapter for supporting an additional electrical
component above said adapter and base, said second bracke means being positioned at a predetermined angle with respec to said first bracket means to insure proper positioning of an chamber, an open lower end and a closed upper end, said cove being mounted on said adapter with said first and second bracket means being received within said chamber to thereby protect them from flooding by air contained within said cover, means for preventing axial movement of said adapter relativ to said base, and means for preventing axial movement of said
cover relative to said adapter. 9. A method for expanding electrical cables and components coupled thereto which housing includes a base, a first bracket means mounted on the base in upstanding relation for supporting an electrical componen and a removable cover mounted on the base and enclosing th irst bracket means comprising the steps of
installing an adapter
on the base, said adapter having a commounting a second bracket means in upstanding relation on the adapter for supporting an additional electrical component above the adapter and base, installing an enlarged cover having an internal chamber, an
open lower end and a closed open lower end and a closed upper end on the adapter
with the first and second bracket means being received within the chamber to protect them from flooding, and locking the adapter on the base and the enlarged cover on the adapter to prevent axial movement of the adapter relative to the base and the enlarged cover relative to the adapter.

DISCRETE CROSSOVER CHIPS FOR INDIVIDUAL DISCRETE CROSSOVER CHIPS FOR INDIVIDUAL
CONDUCTOR TRACK CROSSOVERS IN HYBRID CIRCUITS AND METHOD FOR CONSTRUCTING SAME Karl Breuninger, Munich; Detlef Haberland, Worthsee, and
Roland Herberger, Gottmadingen, all of Germany, assignors
to Siemens Aktiengesellschaft, Munich, Germany
Filled Oct. 6, 1976, Ser. No. \(\mathbf{C l}\)
Claims priority, application Germany, Oct, 17, 1975, 2546736 U.S. C. \(174-68.5\)
sulated-conductor cable, said plurality of tensile-load-bearing elements being synthetic plastic yarns oriented generally straight and parailel to each other, the yarns being composed
of high-tensile-strength aromatic homo- or copolyamide fila ments, the cable further including a plurality of highly stretch able synthetic plastic filaments oriented generally straight and parallel to each other, the yarns and the highly stretchable synthetic plastic filaments being bound together to form a unitary core structure.

assover wherein the integrated circuit comprises a substrate having a thin-film metal coating on one side, which metal coating is coated with a photosensitive plastic composition
which is discontinuous in at least two points for solder points, the improvement comprising:
peripheral areas adjacent the crossover point of the conduc-
tor paths are free of the metal coating, the plastic coating surrounding said peripheral areas.

OPEN-AIR OR OVERHEAD TRANSMISSION CABLE OF HIGH TENSILE STRENGTH
Jiirgen Gladenbeck, Röttgen; Gerald Müller, Cologne; Karl Schörken, Nettetal, Hinsbeck, and Hans-Peter Schwinden Schorken, Nettetal, Hinsbeck, and Hans-Peter ScawindenGuilleaume Carlswerk Aktiengesellschaft, Köln-Müheim Germany
Continuatio
Continuation of Ser. No. 695,652, Jun. 14, 1976, abandoned, which is a continuation of Ser. No. 495,121, Aug. 2, 1974, abandoned. This application Jan. 27, 1977, Ser. No. 762,958
Claims priority, application Germany, Aug. 4, 1973, 2339676 Claims priority, application Germany, Aus Int. CI. \({ }^{\text {H01B } 5 / 10}\)
U.S. CI. \(174-131 \mathrm{~A}\)

4 Claims

1. A prefabricated electric wire assembly board comprising an insulating base having substantially parallel upper and lower surfaces, a plurality of metal conductors each performed as a continuous elongated unit independent of said base and coated
with a layer of insulating material independent of said base and with a layer of insulating material independent of said base and in the form of a predetermined circuit pattern, adhesive means conding said conductors in fixed relationship on one of said
surfaces, an aperture in said base, at least one of said plurality surfaces, an aperture in said base, at least one of said plurality wall of the base surrounding the aperture, and a metal terminal in the aperture contacting the wire end, thereby electrically connecting said one surface to the other of said surface. ELECTRIC WIRING ASSEMBLIES
Robert Page Burr, Huntington, N.Y., assignor to Kollmorgen Technologies Inc., Dallas, Tex. Continuation of Ser. No. 209,626, Dec. 20, 1971, abandoned, and
Ser. No. 344,111, Mar. 23, 1973, abandoned, Ser. No. 344,111, Mar. 23, 1973, abandoned, which is a division
of Ser. No. 10,039, Feb. 9,1970 , Pat No. \(3,646,572\). This application Oct. 8, 1974, Ser. No. 513,190
Int. Cl' 2 H05K U.S. Cl. 174-68.5 3 Claims

cable for the transmission of high-voltage electrical en ergy, comprising, in combination, a plurality of uninsulated electrical conductor elements; and a plurality of tensile-loadbearing elements combined with said plurality of uninsulated
electrical conductor elements to form a cable, said tensile-loadelectrical conductor elements to form a cable, said tensile-load bearing elements being made of high-tensile-strength aromatic
homo- or copolyamide, and said uninsulated electrical conductor elements constituting the outermost elements of the unin-

4,097,687
PARTIAL RESPONSE SYSTEM
Masaru Yamaguchi, Tokyo, Japan, assignor to Nippon Electric
Masaru Yamaguchi, Tokyo, Japan, assignor to No., Ltd., Tokyo, Japan
Filed Oct. 13, 1976, Ser. No. 731,960
Claims priority, application Japan, Oct. 14, 1975, 50-123922 U.S. C. 178-68 Int. C. \({ }^{2}\) H04L \(3 / 00\)

5 Claims

\section*{}
1. In a partial response system including a transmission system adapted to provide an output having a frequency spectrum substantially given by \(2 j \sin ((\omega \mathrm{~T}) / 2) \cdot k)\) in response to a single
pulse input of pulse width T and of amplitude 1 , and a prepulse input of pulse width \(\mathbf{T}\) and of amplitude 1 , and a pre-
code-converter provided on the input side of said transmission system, thereby to regenerate a bi-level signal applied to the input of said pre-code-converter at the output of said transmission system; the improvement comprising:
a waveform converter inserted between said pre-code-converter and said transmission system, the frequency spectrum of the output of said waveform converter in response converter being substantially equal to either \(2 * 1-\cos\) \([(\omega / 2) \cdot T]) / \omega\) or \(2 j(1-\cos \omega T) / \omega\), and
said transmission system includes a waveform shaping filter connected to the output of the waveform converter and having a transfer function represented substantially by
either either
\[
\frac{\omega}{1-\cos \left(\frac{\omega}{2} \cdot T\right)} \cdot \sin \left(\frac{\omega T}{2} \cdot k\right)
\]
\(\frac{\omega}{1-\cos \omega T} \cdot \sin \left(\frac{\omega T}{2} \cdot k\right)\).
where T represents one time slot length, \(\omega\) represents an angular frequency, and \(k\) represents a positive integer.

4,097,688
STEREOPHONIC REPRODUCING SYSTEM Yoshiaki Ochi, Osaka, Japan, assignor to Matsushita Electric Industrial Co., Ltd., Osaka, Japan
Claims priority, application Japan, Nov. 16, 1970, 45-101767; Nov. 18, 1970, 45-102278
.S. C. 179-1 GQ Int. CT. \({ }^{2}\) H04R 5/00
1. An audio \(\mathbf{C l}\). 179 \(\qquad\)
1. An audio reproduction system comprising:
left and right input te
left and right amplifiers having their inputs coupled to said
left and right terminals respectively,
front-left and rear-left amplifiers coupled to the output of
said left amplifier, and front-right and rear-right amplifiers coupled to the output of said right amplifier,
front-left and front-right speakers coupled to the outputs of said front-left and front-right amplifiers respectively
rear-left and rear-right speakers coupled in series betwee
the outputs of said rear-left and rear-right amplifiers, different one of said speakers being positioned approximately at each of the four corners of a quadrilateral area, which may be occupied by a listener, said speakers direct ing sound towards the interior of the area, wherein said fron--left and front-right speakers are respectively posi

the listener and said rear-left and rear-right speakers are positioned in the left and right rear corners of the area facing the listener, and
an impedance element coupling said rear-left and rear-right amplifiers, the impedance of said impedance element having a substantial value capable of supplying paritial eakage
of a signal amplified by said rear-left amplifier to said rear-right amplifier and partial leakage of a signal amplified by said rear-right amplifier to said rear-left amplifier without degradation of the degree of separation between sound signals supplied to said fronteft and front-righ speakers, respectively.

4,097,689
OUT-OF-HEAD LOCALIZATION HEADPHONE
LISTENING DEVICE Akitoshir Yamada, Daito; Toshiyuki Goro, Katano; Yoichi
Kimura, Suita, and Yoshinobu Kikuchi, Neyagnaa, all of Japan, assignors to Matsushita Electric Industrial Co., Lid., Kadoma, Japan

Filed Feb. 9, 1976, Ser. No. 656,209 Claims priority, application Japan, Aug. 19, 1975, 50-100792;
Aug.27, 1975, \(50-104377\); Aug. 27, 1975, 50-104378; Oct. 1, Aug. 27, 1975,

Int. C. \({ }^{2}\) H04R \(5 / 00\)
U.S. C. 179-1 G \(\qquad\) rransducers comprising: channels to produce fing stereo signals of right and left eans including reverber respective direct sound signals; said four direct sound signals supply circuits for applying ion supply circuits to produce four indirect sound signals. means for mixing said indireet sound signals with said direct four mixed signals; and
means for applying one of the two mixed signals of the right channel and one of the two mixed signals of the left channel to the left electro-acoustic transducer and for applying
the others of said mixed signals of right and left channels he others of said mixed signals of right and left channels 7. An out-of-head localization headphone listening device having left and right electro-acoustic transducers comprising: means for mixing two direct sound signals applied from a two channel stereo apparatus;
means including a reverberation supply circuit for produc-
ing an indirect sound signal by applying said mixed direc signals to said reverberation supply circuit; attenuator means for attenuating the intensity of said indirect ound signal to control the ratio of the intensity of the nal;
means for twofold dividing said indirect sound signal attenuated by said attenuator;
means for mixing each divided indirect sound signal with the

respective direct sound signal to produce two mixed sig nals to be applied to said left and right electro-acoustic transducers respectively;
first and second attenuators; and
first and second adders receiving respectively said first and second direct sound signals, said first attenuator being coupled to said second adder and said secind alesective one of said two direct sound signals with the other channel direct sound signal.

4,097,690
INTERCOMMUNICATION AND ALARM TELEPHONE SYSTEM
onald L Kuntr, Wayne, III., and David Kent, Palm Harbor Fla., assignors to Precision Components Inc Adi Harbor, Filed Nov. 5, 1976, Ser. No. 739,189 Int. C. \({ }^{2}\) H04M \(11 / 00\)
U.S. Cl. 179-2 A 14 Claims


A telephone system comprising a central unit and a plura iy of station units interconnected by at least one transmission cyclically recurring control pulses between said units via said
transmission channel, said pulses being divided into uniforml recurring pulse groups with the pulse positions within each group identifying specific command functions, at least some of the pulse positions in each pulse group being dedicated to an identification of any selected one among said plurality of station units which is being individually commanded to perform in each pulse group, and means in each of said units for exchanging switching and control information by distinctively modulating individual ones of the pulses in said pulse grou according to the command functions embodied in said informa tion, whereby either the individually-commanded station or a group of stations may perform the commanded functions.

METHOD AND APPARATUS FOR THE TWO.WAY TRANSMISSION OF PULSES inst Felix, Uster, Switzerland, assignor to Zellweger, LtdClaims priority Aug. 25, 1976, Ser. No. 717,68 12474/75 priority, application Switzerland, Sep. 25, 1975, Int. Cl. \({ }^{2}\) H04M 11/00; H04H 1/14; H04L 5/00 U.S. C. 179-2.5 R

14. An apparatus for the two-way transmission of data between a plurality of out-stations connected in common to a power supply network and at least one control unit also connected to said network and including means for applying start pulses to said power supply network at periodic intervals, comprising
modulating means for effecting high frequency modulation of the data to be transmitted, means for coupling the detecting modulated high frequency signals carried by said power supply network, and means for demodulating said detected high frequency signals;
each nut-station including means synchronized to the frequency of said power supply network for generating clock pulses, means responsive to detection of a start pulse
carried by said power supply network for counting said clock pulses, and means responsive to detection of an assigned count of said clock pulses for enabling said means for coupling the modulated data to said power supply network.

SWITCHING SYSTEM FOR AN AUTOMATIC TELECOMMUNICATION EXCHANGE WITH A PLURALITY OF INTERMEDIATE LINES THAT ARE

GROUNDED WHEN NOT IN USE U.S. Philips Corperation, Knegsel, Notherlands, assignor to
Unt
1. A portable coupler assembly, self-adjustable for use with any of a plurality of telephone handset configurations, comprising in combination:
a thin base member having at least one cavity in a main surface area, and having a peripheral groove; circuit means retained within said cavity in the base member; cable means coupled to said circuit means and adapted to be resilient coupler means having a substantially flat uper surface, having a central aperture in said flat surface, said coupler being normally positioned within said base cavity and being pivotably mounted for cooperating with any of the handset configurations;
a retaining means attached to said base and having a firs position for releasably retaining said handsets in tight retaining said cable means within said peripheral groov of the base member; and
transducer means coupled to said circuit means and retained within said central aperture of the coupler means for providing audio signal coupling with said retained hand

Claims priority, application Netherlands, Jun. 16, 1975,
\({ }_{7507122}^{\text {Clims }}\)
U.S. CI. 179-15 AT

Int. CT. \({ }^{2}\) H04J 3/10
twork for coupling che division multiplex lines, said network comprising a first switching stage including switches, each switch having one input for each incoming line and a plurality of outputs; a plurality of intermediate time division multiplex lines coupled to said outputs respectively; a second switching stage including switches equal in number to said plurality of outputs of a first stage
switch, each switch having a plurality of inputs coupled to said intermediate lines respectively and a plurality of outputs for coupling to said outgoing lines respectively; each of said
ing routing mining a plurality of crosspoint elements; circulating routing memory means including address information for each element for time multiplex controlling each of said ele-
ments to achieve a given connection in a respective time slot of
a multiplex frame; and means for coupling all of said intermedi- output, second and third gates connected between said first ate lines for at least one half of the duration of said time slots line conductor and the inputs of said demodulator-adder circuit of said each trunk circuit, a fourth gate connected between circuit and said second line conductor, a common signal sound generating device connected to the inputs of said fourth gates through fifth gates respectively, a subscriber scanning device for receiving said hook signal from a first telephone set and producing a subscriber discriminating signal for said telephone set, a central information processing device for storing the
statuses of said plurality of telephone sets and trunk circuits and time-division gate control signals which are peculiar to said respective telephone sets, producing a first subscriber information signal corresponding to said first telephone set and a trunk signal for designating a vacant trunk circuit in response to said subscriber discriminating signal and also producing a
second subscriber information signal corresponding to a secsecond subscriber information signaled telephone set which is designated bytput of the coded information receiving circuit of said designated trunk circuit in response to said output and producing sound signal information indicative of the sound signal to be generated by said sound signal generating device, and a gate control device for supplying said time-division gate control signal which is peculiar to said first telephone set to said first gates connected
to said first telephone set and to said second, fourth and fifth to said first telephone set and to said second, fourth and fifth plying said time-division gate control signal which is peculiar to said second telephone set to said first gates connected to said second telephone set and to said third, fourth and fifth gates connected to said designated trunk circuit.

\section*{ASYNCHRONOUS ADDRESSABLE MULTIPLEX Alan G. V. Grace, 11 Bey VSTEM Alan G. V. Grace, 11 Bay View Dr., San Carlos, Calif. 94070,
and Janet C. Wong, 123 Flying Mist Isle, Foster City, Calif.} 94404 Filed Jul. 11, 1977, Ser. No. 814,677
U.S. CI. 179-15 BA Int. Cl. \({ }^{2}\) H04J \(6 / 00\) Claims

1. An asynchronous, addressable multiplex system which comprises:
(a) a master station having means for formatting and trans-
comprises mitting a series of outgoing message blocks, each block containing a number of data bytes and a destination ad the other bytes being unaddressed, and each block being followed by an intermessage block gap, and
(b) a plurality of slave stations, connected in parallel to the master station, each slave station having an assigned address and each including means for receiving said outgoing message blocks, and means initiated by the intermes-
sage block gap for recognizing and decoding decoding said destination address and for accepting only those message blocks having a destination addresses corresponding to the assigned address.
1. A telephone exchange system, comprising a plurality o telephone sets each having a microphone and an earphone,
means for generating a hook signal in response to a telephone call starting action and means of generating coded information signals, a plurality of pairs of first gates connected respectively to said microphones and earphones, a first line conducto connected in common to the outpuss of said inst actor connected in common to the inputs of said first gates connected to said earphones, a plurality of trunk circuits each including a demodulator-adder circuit for demodulating and then adding the inputs thereof and a coded information receiving ccirc receiving selectively said coded information signals from said

METHOD AND APPARATUS FOR POLLING SECURITY INSTALLATIONS
Robert J. Nyhuis, 7806 Maiden La., Portage, Mich. 49081, and
Terrence F. Sman
Terrence F. Smith, 6903 Blair Rd., Kansas City, Mo. 64152 Filed Sep. 15, 1975, Ser. No. 613,173
U.S. C. 179-2 A Int. Cl. \({ }^{2}\) H04M \(1 / 104 \quad 24\) Claims

1. Apparatus for polling security alarm installations, each alarm installation having a remote site telephone number and
being interconnected with a conventional telephone dial net
work, said apparatus comprising
a central monitoring station having the combination of an means thereat;
said automatic dial controller means being comprised of a memory unit means for storing remote site telephone
numbers, a manual control panel means for entering said numbers, a manuers in said memory unit means and for displaying said telephone numbers, and logic circuitry means for controlling the polling sequence operation by repeatedly retrieving said remote site telephone numbers from said memory unit means in a set sequence, a request
cally dialing the retrieved telephone number and request cally diaing the retrieved telephone number and request ing delivery of securitoring station from the alarm installation corresponding to the dialed telephone number;
and process security status information derio to receive and process security status information delivered to sas coniron monitrengi station from said alarm installations; and said local line controller means with said telephone dial network;
a remote line controller means for collecting security infor mation from said alarm installations and for transmittin said information to said central monitoring station upon request; and
means interconnecting said remote line controller means with said telephone dial network, said automatic dial controller means and local line controller means thereby effecting the polling of each of said alarm installations and said remote line controller means being operable to collec
security information and transmit same to said centra security informatio
monitoring station.
\[
4,097,697
\]

DIGITAL SIGNAL PERFORMANCE MONITOR tephen George Harman, Ottawa, Canada, assignor to Northeri Telecom Limited, Montreal, Canada Filed Jun. 2, 1977, Ser. No. 802,376
U.S. C. 179-175.3 \(\mathbf{R}\) Rt. C1. \({ }^{2}\) H04B \(/ 4\) Claims 1. In a performance mircuit comprising:
regenerators for regenerating the degraded digital signal and the degraded digital signal offset against a d-c voltage; comparator for delecting parity aital signals; negative feedback circuit, responsive to the number of
parity errors at the output of the comparator, for varying he magnitude of said d-c voltage to maintain a substantially constant erro
digital signals; and

utput means for the d-c voltage; whereby the magnitude of the \(d-c\) voltage is a measure of the sity.

SEISMONASTIC SWITCHES WITH INERTIA RESPONSIVE CONTROLLER Peter Ronald Jackman, Basingstoke, Englnad, assignor to Inertia Switch Limited, United Kingdom
Filed Mar. 9, 1976, Ser. 10344/75
U.S. CI. \(200-61.45 \mathrm{R}\)


1. A seismonastic control apparatus comprising:
a two-mode control device operable, in different modes, to perform two different control functions and having a plunger which is moveable along a plunger axis and operable on actuating movement along said plunger
housing enclosing said control device and defining a con cave seat having a circular cross-section and a central axi extending parallel to an imaginary axis which extend parallel to the plunger axis;
a spherical seismonastic roller accommodated in the seat, for unobstructed radial movement from a rest position on the central axis of the seat as a result of a predetermined
variation in the resultant of all forces acting on the roller; a displaceable member supported in spaced relation to the seismonastic roller when the roller is in its rest position, the displaceable member having a part which is engage-
able with the plunger and parts defining a surface extendable with the plunger and parts defining a surface extend-
ing transversely of the central axis so that, on a predetermined extent of radial movement of the roller from its rest position, in any direction, the roller strikes said surface and moves said displaceable member away from the seat; and
part of the displaceable member which is engageable with said plunger is moveable by an amount sufficient to effect said actuating movement of said plunger;
he seat defining a concave surface of revolution extending which is engaged by the seismonastic roller during radial movement of said predetermined extent from its rest position and at which region there is an increase in the inclination of the surface of the seat to said central axis so that, in
any axial plane, the increased inclination is greater than the inclination of the tangent to the roller at the point of contact between the roller and the seat when the roller is
in its rest position. in its rest position.

VISCOUS DAMPED CRASH SENSOR UNIT WITH INERTIA SWITCH
Doughes A. Larson, Oak Park, Mich., assignor to Eaton CorpoFiled Sep. 7, 1976, Ser. No. 720,867 U.S. CI. \(200-61.45\) Int. \(_{\text {R }}\) 9 Claims

1. A viscous damped inertial sensor operable to sense velocty changes in excess of a predetermined magnitude for actuating an impact responsive system, the sensor comprising:
A. housing means;
A. housing means;
B. means defining a sealed chamber containing gas and defining a substantially cylindrical bore, said chamber being disposed within said housing means;
C. means for resiliently isolating and mounting said sealed
chamber within said housing mand
D. a mass slidably received in said bore in closely fitting relationship thereto and defining therebetween an annular gas metering orifice, said mass being movable from a first position in said bore upon said housing means experiencing a change in velocity in the direction of said bore, said mass including switch engaging means;
to said first position;
F. electrical switch means disposed in predetermined spaced relationship from said mass in said first position such that, upon said housing means experiencing a predetermined
velocity change in the direction of said bore, the resultant inertial force on said mass overcomes said preload and bias and said mass moves in said bore displacing said gas, and
said displaced gas flows through said annular metering orifice for providing a predetermined viscous force, retarding the movement of said mass with respect to said bore such that said mass moves from said first position to
place said switch engaging means in contact with said place said switch engaging means in coneact with change
electrical switch means only when said velocity chang reaches said predetermined magnitude.

\section*{4,097,700}

SWITCH MECHANISM FOR A TURN SIGNAL Kunio Okazaki, Hatano, Japan, assignor to Stanley Electric Co., Ltd., Tokyo, Japan
Claims Filed Sep. 30, 1976, Ser. No. 728,173 \({ }_{\text {154807 [U] }}\) (liority, application Japan, Nov. 14, 1975, 50 U.S. Cl. 200-61.27 \({ }^{\text {Int. Cli }}{ }^{2} \mathbf{H 0 1 H} 3 / 16,9 / 00 ;\) B60Q \(1 / 00\) U.S. CI. \(200-61.27\)

1. A switch mechanism for a turn signal comprising an operating knob (80) extending in a first direction, housing divided into an upper space \((\mathbf{9 0})\) and a lower space
(100) by a partition extending at least partially thereacross. said upper and lower spaces extending one after the other at an angle relative to said first direction,
a first assembly in one of said spaces of said housing, said first assembly including: a set of fixed contacts (11),
at least one movable contact piece (3),
said operating knob (80) being coupled to said movable contact piece (3) for moving said movable contact piece (3) and
stopper means (2) for holding said movable contact piece
(3) at a position moved by (3) at a position moved by said operating knob (80), bias means (12) for applying a biasing force to said operating
knob (80) to cause said operating knob (80) to return to a desired position,
release means (4) for generating a releasing force for releasing the holding force of said stopper means (2), said release means including a solenoid (4) having a movable plunger ( 6 ), and said release means being located in the
other of said spaces of said housing and in side-by-side orher of said spaces of said housing and
relationship with said first assembly, and
transmitting means (1) coupled between said stopper means (2) and said release means (4) for transmitting said releasing force to said stopper means (2), said transmitting means (1) including a lever arm (1), one end of which is mechanically coupled to a said stopper means (2) and the
other end of which is mechanically coupled to said other end of which is mechanically
plunger (6) of said release means (4).

\section*{4,097,701}

COAXIAL POLARITY REVERSING SWITCH WITH ROTARY ACTUATION
Donald B. Steen, Bowie, Md., assignor to The United States of America as represented by the Secretary of the Navy, WashAmerica as re
ington, D.C.

Filed Feb. 2, 1977, Ser. No. 764,929
U.S. Cl. \(200-153 \mathrm{~S}\)
1. A coaxial high current switch having rotatable cylindrical
outer switching means, and an inner switching means mounted said stationary electrical contact member, said cam follower coaxially of said outer means and operating in conjunction being moved axially out of alignment with said ramp portion of a coaxial cable, with the outer switching means including ond spring arm when said outer circumferential surface is of a coaxial cable, with the outer swiching maing ond spring arm when sollower.

means for connecting the switch to the outer conductors of the means for conneers with said inner means including means for
coaxial cable, and connec
cable.

THEREFORE
Martin Houser, Pickens, S.C., assignor to The Singer
\[
\begin{aligned}
& \text { connec } \\
& \text { cable. }
\end{aligned}
\]
cable.

RIGGER SWITCH AND LO Company, New York, N.Y.
Filed Aug 5, 1977

Filed Aug. 5, 1977, Ser. No. 822,166
Int. Cl. \({ }^{2}\) H01H \(9 / 06\) U.S. C. 200-157 17 Claims

1. A releaseable lock mechanism for a trigger-switch mounted in the handle of a drill housing for activating a motor of a drill, said mechanism selectively to lock the trigger-swith in the activated condition comprising:
(a) a trigger of the trigger-switch slidably connected in the handle and normally biased with the switch off and extending outwardly of the handle, and being depressed to
(b) a camming member affixed in the handle in spaced rela-
tion to the trigger, (c) a locking member shiftably disposed in the handle, and having a lever extending outwardly of the
cam shoe engaging the camming member,
(d) the lever being moved relative the handle to cam the cam shoe against the camming member causing it to shift into a wedge lock against the trigger, and
(e) a resilient means in the housing normally to urge the locking member out of engagement with the trigger and to cause release of the wedge-lose of the trigger and deactivathe trigger resuitch.
1. A cam actuated reversible switch comprising; a rotatable member adapted to be rotated on an axis in a clockwise and
counterclockwise direction having an outer circumferential counterclockwise direction having an ont cam means formed
surface concentric to the axis of rotation; cam on said rotatable member having a substantially radial step portion in a plane oblique to the axis of rotation and a ramp portion, both said oblique step portion and said ramp portion intersecting said outer circumferential surface; and electric contact member and a movable electrical contact member having a first spring arm, a second spring arm disposed normal o said first spring arm and a cam follower at he distal end o said second spring arm, said cam follower being maintained said electrical contact members being maintained in electrica contact when said cam follower is abutting said outer circumferential surface, said electrical contact members being rapidly eparated by said first spring arm when said rotatable member roateditted to move radially inward by said oblique step portion, said cam follower being maintained in abutment with said oblique step portion by said second spring arm when said rotatable member is rotated in the other direction and said said oblique step portion to align said cam follower with said ramp portion, said ramp portion forcing said movable contact member radially outward into closing electrical contact with

\section*{4,097,704}

NDUSTRIAL REVERSING SPEED CONTROL TRIGGER SWITCH WITH SNAP-IN MODULES
arl T. Piber, Oconomowoc, Wis., assignor to Cutler-Hammer
Inc., Milwaukee, Wis.
Iled Aug. 2, 1976, Ser. No. 710,921
9. C. 200-157 12 Chaims
9. A reversing speed control trigger switch of modula onstruction comprising
an insulating housing including an upper module having a trigger aperture at the foreward end thereof, and a lower module having a verticaly positioned substrate carrying said lower module into two compartments and extending partially up into said upper module, and double-pole onoff switch contacts mo ments;
snap-in means coupling said lower module to said upper
module;
a trigger slidably mounted in said upper module directly above said lower module and extending out through said aperture, said trigger having a channel overlying the
upper portion of said substrate including means therein fo
operating said speed control circuit, and said trigger hav-
ing means for operating said on-off switch contacts;
a spring biasing said trigger forwardly;
reversing switch modul on top of said upper module and Joseph T OPENGS FORMED IN IT having reversing contacts and an operating lever extending forwardly above said trigger
snap-in means coupling said reversing switch module to said upper module;

means for connecing an external circuit to said on-off switch contacts in said lower module;
means for connecting an external circuit to said reversing
contacts in means connecting said speed control cir of said reversing switch.
1. In a molded enclosure including a wall with a predeter mined material thickness, said wall having an opening in it for permitting passage of a second structural member through in,
the improvement comprising means for defining the opening such that the opening has zero effective draft, said opening defining means comprising a first edge, and a second edge oppositely opposed to and spaced from said first edge, each of
said first and said second edges including a surface area, said said first and said second edges including a surface area, said
surface area being formed from a part of a conic section, each surface area being formed from a part of a conic section, each
conic section having at least one line segment parallel to a line segment of the opposed edge, said conic section including substantially the entire thickness of said material thickness.

APPARATUS FOR CONTROLLING HEATING TIME UTILIZING HUMIDITY SENSING
Tetsu Kobayashi; Takato Kanazawa, both of Nara, and Makoto Tsuboi, Yamatokoriyama, all of Japan, assignors to Matsu-
shita Electric Industrial Co, Ltd Oaka cetric Industrial Co., Ltd., Osaka, Japan
Filed May 17, 1976, Ser. No. 687,303
QUICK LOCK-RELEASE MECHANISM FOR A TRIGGER SWITCH
Don L. Harvell, Greenville, S.C., assignor to The Singer ComClaims priority, application Japan, May 20, 1975, 50-60751; May 20, 1975, 50-60752; Nov. 17, 1975, 50-138327 U.S. CI. 219-10.55 B
U.S. CI. 200-157

5 Claims

1. A heating time control apparatus for use in a microwav
oven having a heating cavity, heating means for heating food tuff in said heating cavity, and air blowing means for blowing comprising: humidity said air blowing means, for comparing the sensed to said humidity sensing means humidity level and for generating a signal when the sensed humidity level and for generating a signal when the sensed
heating time determining means for determining the total heating time consisting of first and second heating time periods for said food-stuff, said first time period being measured from the applicauion of power to said heating
1. A quick lock-release mechanism for a trigger of a trigger switch mounted in the handle of a drill housing for activating a motor of a drill, said mechanism selectively to lock or release he trigger comprising:
(a) the trigger slidably connected in the handle,
(b) a tapered member affixed in the handle,
a a locking member slidably connected to the tapered (d) a spring disposed position to the trigger,
member no
member normally to urge each in opposite direction, and
) the locking member movable outwardly to be forced by the tapered member into a wedge-lock position against the trigger whereby the trigger-switch is locked "on" and releasable upon slight trigger depression.

received and said second time period corresponding to the shield provided at the underside of the microwave generator in product of a heating time coefficient and said first time spaced relationship from the ceiling of the oven compartment, period, said heating time coefficient being predetermined
depending on the type of food-stuff, and heating control means for controlling the supply of power to said heating means in response to a signal from said heat ang time determining means.
ind

SOLID STATE MICROWAVE OVEN POWER SOURCE Samuel H. Bickel, Garland, Tex., assignor to Texas Instruments Incorporated, Dallas, Tex.
Continuation-in-part of Ser. No. 497,152, Aug. 13, 1974, Pat. No. 3,953,702. This application Apr. 2, 1976, Ser. No. 673,024 The portion of the term of this patent subsequent to Apr. 27,
            1993 , has been disclaime
Int. C.
U.S. CI. 219-10.55 R

Int. C. \({ }^{2}\) H05B 9/06
10 Claims

1. A solid state microwave power source comprising a plu rality of solid state microwave oscillators and an equal phase power combiner and imperance matchis coupled to input ports of said power combiner whereby the power from each oscillator is coupled to an output port in phase with all the other of said oscillators. waveguide means closed against the oven compartment subof the oven compartment but otherwise impermeable to microwaves, said waveguide means having air permeable walls, and blower means for feeding cooling air between the heat shield and the ceiling of the oven comparment and in a direction extending transversely through the waveguide means by means of said air permeable walls thereof

METHOD AND APPARATUS FOR ELECTRICAL MACHINING Alfred Marie Aimé Millet Versailles Yvelines France, as signor to Carel Fouche Languepin, Paris, France Continuation of Ser. No. 600,905, Jul. 31, 1975, abandoned, which is a continuation-in-part of Ser. No. 395,590, Sep. 10,
1973, abandoned. This application Feb. 16, 1977, Ser. No. Int. C1. \({ }^{7}\) B23P \({ }^{\text {B2 }}\) / \(1 / 0\)
U.S. CI. 219-69 D 21 Claims


\section*{4,097,709
OVEN}

Jakob H. Bächtold, Meisterschwanden, and Martin Dahmen, Beinwil am See, both of Switzeriand, assignors to Elektromas chinen AG, Hory Switzerland
Claims priority, application Switzerland, Dec. 17, 1975, 16327/75
U.S. C. 219-10.55 \({ }_{\text {R }}^{\text {Int }}\)
int. C. \({ }^{2}\) H05B 9/06
7 Claims

1. A baking oven comprising means defining an oven com partment, means for heating the oven compartment with circucompartment with microwaves, said oven compartment including a ceiling, said microwave generator being located luding a celing, said microwave generator being locid aven compartment and having an underside, a heat
1. A method of machining a metallic workpiece by electrorosion, comprising the steps of:
positioning an electrode adjacent said workpiece with an intervening gap;
continuously passing a weakly conductive ionizable liquid zap; and
with a unidirectional voltage sufficient to generate ionic discharge pulses with a cadence in a range of substantially 20 to 200 Hz within said liquid in said gap with a spacing sufficient to allow detritus to be swept off, thereby letting the current in said gap substantialy new puise.
electro-erosion, comprising an electrode spaced by
to be machined; \(\quad\) gap from a surface of a workpiece
a reservoir containing a weakly conductive ionizable liquid;
pump means for continuously driving said liquid through said gap; and
a source of intermittent unipolar voltage pulses with a ca across said electrode and said workpiece for periodically energizing said electrode and said workpiece to generate ionic discharge pulses within said liquid with a spacing sufficient to allow detritus to be swept off, thereby letting the current in said gap substantially decay before each new pulse.

ROLLER SHELL HARD COATING Bani Ranjan Banerjee, Skillman, N.J., assignor to IngersollRand Company, Woodcliff, N.J.

Filed Sep. 16, 1976, Ser. No. 723,786
Int. Cl. \({ }^{2}\) B23K \(9 / 04\)
U.S. CI. 219-76.15

1. A
prises:
1. A method of hard surfacing a steel roller which com-
car
carburizing the steel surface of the roller to a depth equal to
at least half the depth of the hard surfacing required at least half the depth of the hard surfacing required; applying hard surfacing particles by immersing them in
weld puddle formed on the steel surface from the stee weld puddie formed on the steel surface from the steel process so that a uniform dispersion of particles is present in the weld whereby a high effective hardness within the entire thickness of the weld is obtained; and
heat treating the weld to achieve the required properties of
base and surface structures. base and surface structures.

\section*{4,097,712}

METHOD OF JOINING NUCLEAR FUEL ROD END
METHOD OF JOINING NUCLEAR FUEL ROD END
Helmut Bezold, Erlangen, Germany, assignor to Kraftwerk Union Aktiengesellschaft, Mulheim (Ruhr), Germany
Filed Nov. 8, 1976, Ser. No. 739,640
Claims priority, application Germany, Nov. 7, 1975, 2550079 U.S. C. 219-107 3 Claims

so as to weld the end cap to the end of the cladding tube end portion.

\section*{PLASMA ARC CUTTING}

PLASMA ARC CUTTING WATER TAbles Steel Corporation, Pittsburgh, Pa. Filed Jan. 21, 1976, Ser. No. 651,484 Filed Jan. 21, 1976, Ser. No.
Int. Cl. \({ }^{\text {B23K }} 7 / 06\)
U.S. C. 219-121
1. A cutting table for a movable plasma-arc torch cutting arrangement, said cutting table being adapted to receive and support a metallic product to be cut into a given number of sections by the torch arrangement, said cutting table comprishaving a length and width greater than the product to be \({ }^{\text {cut; }}\)
non-metallic support means periodically located within said container for supporting the product to be cut at a level just above the water contained within said container, said supportive and being of a material characterized in releasing, to the water in said container, any slag formed as a result of cutting such metallic product; and means, releasably attachable to such product to be cut, for
grounding the product to be cut during the total time the grounding the product to be cut during the total time the ment may operate.

\section*{THERMIONIC HEATER CATHO}

HERMONIC HEATER CATHODE ASSEMBLY OF
Igor Vladimirovich Shergov, Festivalnaya ulitse, 75, kv. 108, and Sergei Nikolaevich Melbard, ulitsa Akndemika Pavlova, 50 , v. 42, both of, Moscom, U.S.S.R.
\[
\begin{aligned}
& \text { oth of Moscow, U.S.S.R. } \\
& \text { Filed May 10, 1977, Ser. No. 795,504 }
\end{aligned}
\]
U.S. Cl. 219-121 EB
1. Method of joining fuel rod end caps and fuel rod cladding tubes by resistance pressure welding within a welding chamber, which comprises the steps of bringing a welding device
into engagement with an end portion of a rigidy mounted into engagement with an end portion of a rigidly mounted cladding tube, shifting an opened chuck as well as a divided welding electrode, both of which are mounted at one side of the welding chamber, along a predetermined length of the divided welding electrode into contact with the cladding tube end portion, thrusting into the welding chamber from the other side thereof another welding electrode carrying an end cap so that the end cap is fed to the open end of the cladding tube end portion and, after the welding chamber is sealed by sealing
members sealingly engaging the cladding tube end portion and members sealingly engaging the cladding tube end portion and the other welding welding chamber and filling it with protective gas, pressing the missive material; a U-shaped ribbon filament with a thermionic nd pap onto the open end of the cladding tube end portion, portion and current-carrying sections arranged in parallel near and passing a welding current through the welding electrodes said disc cathode; a holder connected to ends of the current-
carrying sections of said ribbon filament; the ends of said rib- only of the joint with the weld filling said slots and melting said bon filament sections, connected to the holder lying in a plane land normal to the ends of the same section
onic portion of said ribbon filament.

4,097,715
LASER JET BELL KILN
John N. Frizzi, Pittsburgh, Pa., assignor to General Refractories
Company, Bala Cynwyd, Pa.
Filed May 19, 1977, Ser. No. 797,343
Int. C1. \({ }^{2}\) B23K \(9 / 00\)
U.S. Cl. 219-121 LM

WATER BED MATTESS \(4,097,717\)
WATER BED MATTRESS WITH REGULATED HEATING MEANS THEREFOR AND CONTROLLING THE HEAT LOSS THEREFROM AND THE METHOD OF MAKING Raymond M. Phillips, 2566 TuME
90265

90265
Filed May 17, 1976, Ser. No. 686,885
\begin{tabular}{ll}
12 Claims & \(\begin{array}{l}\text { Filed May 17, 1976, Ser. No. } \\
\text { Int. Cl. }{ }^{2} \\
\text { H05B } 1 / 00\end{array}\) \\
\hline
\end{tabular}
1. A method of firing refractory ware which comprises the steps of providing a bell defining an enclosure and having a pluerafy lowering said bell over refractory ware inwardl sealing said bell enclosure, evacuating air from within said bell enclosure, injecting a fluidized system of a chemically inert non-combustible, high thermal absorption material into saic evacuated bell enclosure, firing said lasers into said bell enclosure, said fluidized material absorbing and diffusing the light
and heat energy from said laser beams and re-radiating said absorbed energy to thereby heat the bell enclosure and fire said refractory ware.

\section*{4,097,716 \\ WELDING METHOD}

Walter R. Relchelt, Jr, and Malcolm G. Hoy, both of New Kensington, Pe., assignors to Aluminum Company of America, Alcoa Center, Pa.

Filed Sep. 27, 1976, Ser. No. 726,786
U.S. CI. 219-137 R

5 Claims
1. A welding method for forming a fillet welded joint com prising the steps of placing an abutting edge of a first metal member onto a surface of a second metal member at generally night angles thereto, the abutting edge having a series of and
nating lands and slots extending through the entire thickness of said first member, and arc welding employing a consumable electrode to form a fully penetrated fillet weld from one side

DEVICE FOR HEAT TREATING HAIR ON THE HUMAN HEAD, AND THE LIKE HAIR CURLING DEVICE HAVING SELF-REGULATING PTC HEATER Hans Joachim Weise, Altenstadt, Germany, assignor to Braun Filed Jan. 14, 1976, Ser. No. 649,099 Claims priority, application Germany, Feb. 1, 1975, 2504237 Int. Cl. \({ }^{2}\) H05B \(1 / 02\); A45D \(1 / 02,2 / 36\) U.S. Cl. 219-222
1. A water bed mattress with regulated heating means there1. A water bed mattress with regulater
or, said water bed mattress comprising:
(a) an upper and a lower sheet surrounded by a peripheral wall to form a water chamber therebetween, said upper and lower sheets and peripheral wall being formed of ddable flexible plastic materal
conductive foldable flexible plastic material and bein heat sealed to one or more of said upper and lower sheet and peripheral wall and forming a substantially completely enclosed heat generating chamber formed by sai one of said sheets and said panel means,
said heat generating chamber and capable ocated within heat conductively passed through said sheets or peripheral wall to water in said wper or lower (d) connector means operatively provided for connection aid heating matwardy of said heat generating chamber to a source of electrical power, and
control means operatively associated with said connector means for regulating the heat supplied by said heating means.

1. A heat-treating device, particularly for treating hair,
comprising in combination, an outer hair-ngaging structure about which hair to be curled or waved can be wound, the hair-engaging structure including holding means for holding
hair in position on the hair-engaging structure; a combined heating and temperature regulating means within a cylindrical bore in the hair-engaging structure and including mounting means comprising a pair of mounting components made of thermally and electrically conductive material and defining an intermediate gap, and a plurality of cylindrical PTC resisto bodies located in the gap confined between the pair of mount ang components in electrically conductive and thermally conresistor bodies being spaced apart from one another within said gap; and means for applying a voltage across the pair of mount ing components to establish a flow of heating current through the PTC resistor bodies, the mounting components being elongated generally semi-cylindrical components electrically con necting the cylindrical PTC resistor bodies in parallel, and the of the cylindrical PTC resistor bodies being cylindrical and complementary, thereby establishing good thermal and electrical contact between said contacting surface portions.

4,097,719
CONTROL SYSTEM FOR CHARGING AND CONTROL SYSTEM FOR CHARGING AND
DISCHARGING AN ELECTRIC STORAGE HEATER Gunnar Ernst Rudolf Olsen; Poul Christian Carlos Iversen, both of Nordborg, and Bertel Birker, Sonderborg, all of Denmark, assignors to Danfoss A/S, Nordborg, Denmark
Filed Aug. 24, 1976, Ser. No. 717,253 Claims priority, application Germany, Sep. 3, 1975, 2539065 Int. C.2 H05B 1/02; F24H 71/04; F24D 11/00 U.S. Cl. 219-364

1. An electric storage heater assembly comprising, a heat torage core, a resistance heater for heating said core, a charg ing said switch having sirst heater, a comparator for opera responsive control element movably responsive to the temperature of said core, first control means operated by said contro lement for sensing the instantaneous temperature of said core input to impart a corresponding signal thereto, second control means movable at the end of the charging period by carrying means associated with said control element to an adjusted position which corresponds to the final temperature of saic core for the charging period, said second control means being connected to said second input to impart a corresponding gnal thereto, selling means for sel position during the charg ing period and means for releasing said setting means after the end of the charging period to allow said carrying means to move said second control means to said adjusted position.

Bobert H SASEBOARD HEATER
Robert H. Sand, Canton, Conn., assignor to The Vulcan Radia tor Company, South Windsor, Conn.

Feb. 11, 1976, Ser. No. 657,099
Int. Cl. \({ }^{2}\) F24H Int. Cl. \({ }^{2}\) F24H 9/08 11 Claims
said inverted channel and positioned substantially transverse thereto and spaced outwardly from the aligned terminals of said heating units,
eerminal block connector means supported by said first heat shield in position between said first heat shield and said inverted channel and having two connectors,
parallel circuit means having connections from one connec-
tor of said terminal block connector means to the adjacent electrical terminals of said heating units and having return connections from the nonadjacent electrical terminals of said heating units along the underside of said inverted
channel to the other connector of said terminal block channel to the other connector of said terminal block safety limit switch means associated with each of said heating units, said connections serving as temporary sup-
ports, by said channel, for said terminal block connector means,


first line power supply wiring extending from said terminal block connector means and mounting and extending hrough said first heat shield to a first pair of connector er supply wiris
nal block connector means along the underside of the inverted channel and mounting and extending through aid second heat shield to a second pair of connector end outwardly thereof,
block connector means of said assembly may teach be block connector means of said assembly may each be
secured to such bottom wall of such cabinet, the inverted channel and cabinet bottom together forming a wiring aceway, and such cabiner coid pairs of connector ends.

\section*{HAIR BLOWER WITH ORIFICE CONTROL}

MULTIPLE UNIT ELECTRICAL BASEBOARD HEATER Michael J. DelPercio, Imperial, and Wayne E. Krejci, St. Louis, both of Mo., assignors to Intertherm, Inc., St. Louis, Mo. Filed Feb. 2, 1977, Ser. No. 764,827
Int. C.2 F24H 9004: H05B 3/06
U.S. CI. 219-366

5 Claims
.S. CI. 219-36
in an elon 1. An electrical heating assembly for installation in an eloncomprising
an inverted channel,
upright support means mounted on said inverted channel, a plurality of elongated electrical heating units each of the type having an electrical terminal at each end, said heating means parallel to each other and with their terminals aligned,
first heat shield outwardly adjacent to one end of said inverted channel and positioned substantially transverse of said heating units at one end thereof, a second heat shield outwardly adjacent to the other end of
1. Apparatus for supporting and housing an elongated hea ack panel member with a rear face comprising an elongated wall and a front face defining upper and lower integrally formed L-shaped flanges projecting forwardly from and extending the entire length of said back panel member to define vertically spaced channels, at least one support bracket having a vertically extending web oriented transversely with respect wardly open slot to receeive and support an elongated heat exchange element, said bracket further including upper and lower flanges projecting generally perpendicularly from said web and defining vertically spaced projections, said projec tions slidably received in said vertically spaced channels of said
back panel member, and said back panel member further including forwardly projecting legs also extending the entire length of said panel member and defining a conduit channel herebetween, a cover plate supported by said legs, and said support bracket web being relieved along its rear edges between said upper and lower flanges to accommodate said conduit channel defining legs and cover plate. Norman V. Soler, Port Colborne, and Richard E. DeSisto, Welland, both of Ca

Filed May 24, 1976, Ser. No. 689,211
Int. Cl. \({ }^{2}\) A45D 20/12; B05B \(1 / 12 ;\) F24H 3/04
U.S. CI. 219-368
.S. C. 219-368 8 Cl
1. In a hand held electric hair dryer having a barrel provided
with an exhaust orifice, an electric heating element disposed in with an exhaust orifice, an electric heating element disposed in
said dryer, a blower for directing a fow of air over said heating element and through said barrel and out of said orifice, and a pistol type hand grip for holding and manipulating the hai dryer to aim the orifice and the flow of heated air in a desired direction, the improvement comprising:
(a) damper means downstream of the heating element and supported in the barrel in the vicinity of the orifice and pivotally movable between first and second positions providing maximum and minimum effective orifice openings for producing a dispersed and concentrated air flow, respectively
normally biasing said damper means to said first position
for normally providing a maximum effective orifice opening;
(c) trigger means positioned immediately adjacent the pistol type hand grip for selective actuation between first and second limits by a digit of the hand holding said hair dryer

(d) means coupling said trigger means to said damper for selectively moving said damper against the bias of said biasing means from said first to said second position in response to the movement of said trigger means from said first to said second limit; and wherein
(e) the angle formed between said damper means and the said damper, is acute.

4,097,723
THERMAL SYYTEMS INCORPORATING APPARATUS AND METHODS FOR SIMULATING TIME RELATED TEMPERATURES Frank W. Leitner, 3732 Pomfret La, Charlotte, N.C. 28211, and
 Division of Ser. No. S1, No. 779,778, Nov, 29, 1968, Pat No. 3,586,830. This application Jul. 22, 1974,
U.S. Cl. 219-494

1. The method of remotely obtaining at least one thermal condition of a load supplied heat over a primary path by a heat surce comprising the steps of,
supporting electrical heating means adjacent to said load by load;
establishing a heat path at least partly different than the primary path having at least a stable thermal than the primary path having at least a stable thermal parameter the primary path to the load; and,
sensing at a point along the heat path to develop control signals for regulating the heat source to provide optimum load control.

FUEL VENDING 4,097,724
FUEL VENDING APPARATUS AND METHOD
Ayden, N.C.
Filed Mar. 9,1977 , Ser. No. 775,832
U.S. CI. 235-92 FL Int. C. \({ }^{2}\) G06M \(3 / 12\)

19 Claims

1. In apparatus for vending liquid fuel and having an electrically driven pump means for dispensing fuel, counter means nected for controllably energizing said pump means, money acceptor means for signalling said counter means to add credit units, and a primary dispensing switch means operatively re-
sponsive to the dispensing of fuel for signalling said counter ponsive to the dispensing of fuel for signalling said counter
neans to subtract credit units, the combination therewith means for guarding against improper dispensing of gasoline and comprising fail-safe circuit means electrically connected with said counter means and said acceptor means and said primary switching means and operably for selectively dis
 ing of fuel for signalling said fail-safe means, said fail-safe means responding to signalling by said secondary switching eans and abnormality in normal sequential operation of said counter means and said primary switching means by disabling fuel delivery.

GARMENT COUNTER
Frank David Lieberman, and Herb Lou Goodman, both of 4676 Admiralty Way, both of Marina del Rey, Calif. 90291

Filed Apr. 1, 1977, Ser. No. 783,818 U.S. CI. 235-92 PK

1. A counter for garments suspended, by means of hangers
having tip portions, from a rail having a lower surface, including:
wand, said wand having, at one extremity thereof, a slide portion, said slide portion being adapted to engage the
lower surface of said rail: light source and a light a light source and a light sensor supported in said wand in
aligned relationshp with each other to form ligh said source and sensor being positioned in said wand so as to have said light path interrupted by said tip portions when said slide is moved along the lower surface of said rail; and
counting means coupled to said sensor for counting the interruptions of said light path by said tip portions as said surface of said rail.

\section*{,097,726}

TAPE ENDING INDICATOR FOR TAPE RECORDER Ken Satoh, Hachioji, and Yoshio Tomizawa, Tama, both o Japan, assignors to Olympus Optical Co., Ltd., Tokyo, Japan Fliled Jun. 3, 1975, Ser. No. 583,267 Claims priority, application Japan, Jun. 11, 1974, 49.67869[U]
Int. Cl. U.S. C. 235-92 MP

2 Claims

1. A tape ending indicator for a tape recorder, comprising: rotating member operatively connected to a supply or speed proportional to the rotational speed of said supply or take-up reel; pluality of mag vals along the periphery of said rotating member magnetic head disposed adjacent to the periphery of said rotating member for generating a pulse signal each time one of said magnets passes said magnetic head;
a flip-flop circuit responsive to said pulse signal, the output
of said flip-flop of said hip-hop changing each time said pulse signal is count pulse generator for producing count pulses of a fixed frequency, the frequency of said count pulses being substantially greater than the frequency of said pulse signals generated by said magnetic head;
gate means connected to said flip-flop circuit and said count
pulse generator for passing said said gate means is enabled by said output of said flip-flop circuit whereby the number of count pulses passed by said gate means is proportional to the frequency of pulses generated by said magnetic head;
indicator means for counting the number of pulses passed by said gate means and for providing an indication that a
terminal end of a tape is approaching when the number count pulses passed by said gate means reaches a predetermined value.

CIRCUIT FOR CONTROLLING AUTOMATIC OFF-LINE OPERATION OF AN ON-LINE CARD READER Bryan Dilch, loughby, Ohio

Filed Sep. 1, 1977, Ser. No. 830,002
Int. Cl.
GO6K S/OO; H04Q 3/00
U.S. Cl. 235-382

1. A security system in which coded cards are scanned at plural remote terminals to determine whether access will be permitted at plural remote locations, said system including a
central processor connected to said plural remote terminals and sequentially polling said plural remote terminals to permit said remote terminals, in sequence, to transmit card data to said central processor, said central processor transmitting entry authorization or denial data to said remote term
sponse to said card data, said system comprising:
means at one of said remote terminals for producing a signal in response to transmission of said card data; means at said one of said remote terminals for measuring predetermined elapsed time period after said start signal;
means responsive to said elapsed time measuring means for means responsive to said elapsed time measuring means for
producing a mode change signal whenever no entry auproducing a mode change ignal when aver said one of said
thorization or denial data is received at sin remote terminals during said predetermined elapsed tim period; and
means responsive to said mode change signal for permitting selective access in response to data on said coded cards a said one of said remote terminals without receipt at said terminal of said entry authorization or denial data from said central processor.

APPARATUS FOR PROVIDING AND SENSING CODED Information
Leonard J. Genest, Huntington Beach, and Daryle Messner Buena Park, both of Calif., assignors to Monitron Industries, Buena Park, Colif.
Santa Ana, Calif.
Continuation-in-part of Ser. No. 430,247, Jan. 2, 1974. This application Nov. 13, 1975, Ser. No. 631,55
U.S. C1. 235-439 nt. Cl. \({ }^{2}\) GO6K 7/08, 19/00
U.S. CI. 235-439

39 11 Claims receiving and sensing the information, wherein said means comprises at least one sensing coil and means for positioning the card in relation to the at least one coil, said card comprising: substrate of electrically
reactive material; and,
layer of magnetically reactive material adapted to be en coded by the selective removal of a portion of said mag netically reachive maid data positions being aranged in
predetermined pattern, said at least one data position being adapted to be aligned with and positioned adjacent said at least one coil,
aid layer of magnetically reactive material overlying at least a first portion of one side of the substrate, said substrate
having a second portion of said one side which when folded about an edge contiguous with the first portion

covers at least a first side of said at least one data position without increasing the amount of magnetically reactive都 portions of the substrate having position, at least one of the portions together in a folded position to form a comosite card with said magnetically reactive layer substan ially between said two portions of the substrate.

SCANNING SYSTEM AND METHOD
Lawrence Seligman, Shirley; James P. Ballard, Westboro, and Edwin A. Jeffery, Natick, all of Mass., assignors to Data General Corporation, Westboro, Mass. Filed May 27, 1975, Ser. No. 581,15
Int. C. \({ }^{2}\) GO6K 7/14; GO8C 9/06
U.S. C. 235-467

18 Claims

1. A scanner for converting a visual indicia coded patter to electrical signals which comprises a source of light provid of reflecting surfaces positioned about the periphery thereof means for rotating said polygon, means for directing the coher ent light beam to each of said polygon reflecting surfaces on at a time as said polygon is rotated, a first set of reflecting means for generating a first scanning pattern of a first configuscanning pattern of a second configuration which is differen
than said first configuration, a different set of said reflecting than said first conifguraion, a ding coherent light beam for
surfaces of said polygon providing the co order to generate each each of said sets of reflecting means in order to generate each of said patterns, and wherein said first pattern comprises two
trace lines and said second pattern comprises three trace lines. trace lines and said second pattern comprises

FOCUS CORRECTION SYSTE
FOCUS CORRECTION SYSTEM FOR VIDEO DISC
PLAYER Adriadio Corporation, Glenview, III.
Filed Jul. 2, 1975, Ser.
No. 592,710

4 Claims

1. In an optical reproducing system in which a multi-turn torage track of a video record is scanned by a focused reading storage track of a veam of energy to derive information stored in said track, such information including a frequency modulated carrier signal and a focus-servo pilot signal having a frequency which is low relative to that of said carrier and exhibiting the same spection
phase distriburin:
system comprising
a displaceable
reading beam;
means, including a photoreceptor comprising first and second light responsive elements symmetrically disposed with respect to the axis of said reading beam and arranged in a spaced apart confronting relation with the gap sepa-
rating said elements disposed substantially normal to that rating said elements disposed substan,
portion of said track under scansion,
each said element comprising a mask portion extending across said element adjacent to and paralleling said gap for efrectively shielding a reading beam,
said elements being positioned in the far field of said reading beam so as to be responsive to the scanning of said track by said beam for developing a pair of signal components
representative of the spatial pattern of said pilot signal, representative of the spatial patiers ond a phase relation said compone
indicative of the degree and sense of the out-of-focus condition, if any, of said beam relative to said track, with one of said components effectively constid
ence signal for the other said component; ence signal for the oner said cotput of said first element for
a phase shifter coupled to the out a phase shifter couple so sid signal component developed by
shifting the phase of sai despect to said signal component said first element with respect to said signal component
developed by second element an amount sufficient to establish, in the absence of an out-of-focus condition, said components as a pair of quadrature related signals,
a synchronous detector responsive to said pair of quadrature a synchronous detectorents for developing a focus-error relared signal comporing an amplitude and polarity deter-
correction signal having an mined by the degree and sense of out-of-focus condition and actuating means coupled to said focusing lens and re-
sponsive to said correction signal for displacing said lens sponsive to said correction signal for oisplacing said litude
(of maintain said beam focused on said track

AUTOMATIC GAIN \(4,097,731\) 4,097,731 DEvices \begin{tabular}{l} 
DEVICES \\
Thomas R. Krause, Troy; Eugene E. Paananen, Brighton, and \\
\hline
\end{tabular} John F. Burcze, Detroit, , all of Mich., assignis
Corporation, Detroit, Mich.

Filed Jun. 2, 1977, Ser. No. 802,
Int. Cl. \({ }^{2}\) G01J \(1 / 32\)
18 Claims


1. A self-regulating beam-of-light sensor device for sensing the presence of an object in a sensing station comprising: a light source having its output directed at the sensing sta-
tion; a phototransducer means, disposed in aligned relationship with said light source and responsive to the output with said light source and responsive to the output
thereof, for developing a detection signal in accordance with the presence of an object in the sensing station; first comparator means for comparing the detection signal
with a first reference signal level and outputting a signal with a first reference signal level and outputting a signal
representing the presence of an object when the detection representing the presence
signal exceeds the first reference signal;
signal exceeds the ifrst reference signal;
second comparator means for comparing the detection sigsecond comparator means
nal with a second reference signal level and outputting a count signal of a first level if the second reference signal exceeds the detection signal, and of a second leven if detection signal exceedive to the output of the second com-
counter means, responsive parator means, for decrementing a stored count if the count signal is of the first level, and incrementing the stored count if of the second level; and feedback means, responsive to the stored count of the counter means, for regulating the output intensity of the light source in accordance with the stored count to compensate for extraneous factors affecting the intensity of the pensate.
source.
AUTOMATIC GAIN CONTROL FOR PHOTOSENSING DEVICES Pasnanen, Brighton, and Thomas R. Krause, Troy; Eugene E. Pasnanen, Brignon, and
John F. Burcz, Detroit, all of Mich., assignors to Burroughs Jorporation, Detroit, Mich.
Filed Jun. 2, 1977, Ser. No. 802,711
U.S. Cl. \(250-205\)
1. A self regulating beam-of-light sensor device for sensing 1. A self regulating beam-of-light sensor device for sensing
the presence of an object in a sensing station comprising: a light source having its output directed at the sensing sta-
tion;
phototransducer means, disposed in aligned relationship with said light source and responsive to the output with saic light source a detection signal in accordance with the presence of an object in the sensing station;
with a first reference signal level and outputting a signal autocollimation system, said casing being adjustable along a representing the presence of an object when the detection vertical axis and being pivotable about said vertical axis. signal exceeds the first reference signal;
scond comparator means for comparing the detection sig nal with a second reference signal level and outputting a count signal of a first level if the second reference signa exceeds the detection signal, and of a second level if the
detection signal exceeds the second reference signal; counter means for storing an adjustable count having a

ZERO INDEX FOR ELECTRO-,
Kent E. Erickson, Brookside, N.J., assignor to Keuffel \& Esser Compeny, Morristown, N.J.

proporional re light sourc reedback means, responsive to the stored count of the counter means, for energiz tion to the stored count
clock means for outputting a stream of periodic clock pulses
and means for adjusting the stored count upward or downward for each clock pulse in accordance with
ourput signal level of the second comparator means. output signal level of the second comparator means.

DOOR SECURING 4
DOOR SECURING LIGHT BARRIER Erwin Langenbach, Waldkirch-Buchholz, and Karl-Hans Sackmann, Erzgrube, both of Germany, assignors to Erwin Sick Gesellschaft mit besc
Waldkirch, Germany

Fed Sep. 30, 1976, Ser. No. 728,073 asims priority, application Germany, Oct 29, 1975, 2548465 U.S. C. \(250-221\)

1. A door securing light barrier system comprising: a casing p plurality of optically active devices in said casing adapted to direct a light barrier beam through at least a part of a door
opening, and including at least one light beam transmitting device fixed in said casing, and a passive reflector pivotable about two axes perpendicular to each other for adjusting the angle of the light beam of the light beam transmitting device relative to said casing, one of aeam is broken, said light beam
signal when the light barrier beal transmitting device being combined with a light receiver in an

Filed Feb. 9, 1977, Ser. No. 767,082
Int. C1.2
U.S. C. \(250-237\) G

1. In a measuring system having at least two bodies arranged for close relative movement therebetween in the course of effecting such measure, an improved zero index device capable measuring course, said index device comprising:
(a) means associated with one of said bodies for projecting the image of a pair of parallel illuminated slots;
(b) a pair of photoelectric sensors having respective finite fields of view of incident illumination
 ing respective ones of said slot images to incidence upon ent sald sensor fields of view in such a manner as to effect, with relative movement between said anes in the vicinity of the designated zero datum position, an increase in the area of illuminated field of one of
said sensors concurrently with a decrease in the area of illuminated field of the other of said sensors, whereby, precisely at said designated zero datum position, the respective sensor fields are equally illuminated; and
(d) means electrically to ascertain said equal illumination of said sensor fields and to provide an indexing signal indicative thereof.

TESTING THE OPERATION OF A RECORDING FLUOROMETER/DENSITOMETER
Donald \(\mathbf{P}\) Brexinski, Corring N. \(\mathbf{Y}_{\text {, assignor to }}\) Corning Glass
Wonald P. Brezinsk, Corning, N.Y.
Wor, 1977, Ser. No. 799,94 Filed May 24, 1977, Ser. No. 799,943
21/ U.S. C. \(250-25\)
1. A mether 12 Claims cludes:
source of analysis energy, and a sample stage movable across said source,
characteristics ing an output representing the optical characteristics in a track in said sample, and

scanning multiple tracks of a test sample which bear features that generate detector outputs indicating performance parameters of said analyzer, and
recording said outputs as a record of said performance.

1. A radiation energy calibrating device for determining the peak voltage applied to a source of radiation where the source is subjected to a varying input voltage, said calibrating device comprising:
radiation detector means operated responsive to the radiation output of the source for providing electrical signals that are direct functions of the radiation intensity, calibrated absorbe
detector means,
detector means,
means for detecting the peak electrical signals provided by said radiation detector means;
means for converting the peak electrical signals to the kv peak input to the source, and
to the kv peak input to the source comprises means for determining the minimum absorber thickness through which the transmitted radiation spectrum is effectively monoenergetic and corresponds to the peak voltage ap-
plied. plied.

EPITHERMAL \(4,097,737\) William P Mills William R. Mills, Jr., Dallas, Tex., assignor to Mobil Oil Corpo-
ration, New York, N. ration, New York, N.Y. Int. Cl. \({ }^{2}\) GO1V Ser. \(5 / 00\) U.S. CI. 250-269

1. An epithermal neutron detector which comprises: (a) a thermal neutron counter, and
(b) a filter encasing said counter comprising a layer of cadmium about 8 mils thick and a layer of gadolinium about 10 mils thick to impart a substantially step function response immediately above the thermal neutron energy level.

METHOD OF ANALYSIS
METHOD OF ANALYSIS OF A SAMPLE OF INSULATING MATERIAL BY PHOTOELECTRONIC
Lucette Feve, Gif-sur-Y vette, and Remy Fontaine, Montlhery, both of France, assignors to Commissariat a l'Energie Atoboth of France, assig
mique, Paris, France
Filed Dec. 17, 1976, Ser. No. 751,344 Claims priority, application France, Dec. 19, 1975, 7539096
Int. Cl. U.S. C. 250-305

1. A method of analysis of a sample of insulative material by hotoelectronic spectrometry comprising the steps of:
fixing said sample of insulative material upon a conductive
sample-holder. subjecting a surfa
effect the emission of phample to photon radiation to developing positive charges at said surface in consequence of the vacancies resulting from said emission of photoelec-
trons which are not neutralized by the flow of charges
within said sample: within said sample;
simultaneously subjecting a portion of said conductive sam-ple-holder to said photon radiation to effect the emission sample so as to neutralize said positive charges and thereby create a zone adjacent said surface exhibiting a substantially zero electric field; and
measuring the energy of photoelectrons emitted by said sample, said energy being compared with the energy of incident photon radiation to determine the electron binding energy of said sample.

BEAM DEFLECTION AND FOCUSING SYSTEM FOR A BEAM DNING CORPUSCULAR-BEAM MICROSCOPE Karl-Heinz Müller; Moriz V. Rauch; Burkhard Krisch, all of Berlin, Germany, and Lee H. Veneklasen, San Leandro, Calif., assignors' to Siemens Aktiengeselischaft, Berlin and Muncih, Germany
Claims priority, application Germany, Sep. 12, 1975, 2541245 U.S. Cl. 250—311

1. In a scanning, corpuscular-beam microscope including beam deflection system comprising a first stage for deflecting the beam out of the optical axis of the microscope and a second stage, disposed after the first stage along the beam path, for deflecting the beam towards the optical axis of the microscope, and a first objective lens having a short focal length, disposed focusing the beam on a specimen, the improvement compris ing,
a second objective lens having a long focal length and disposed above said first objective lens along the beam path, saic second objective lens being excited for low magnification o the specimen by the microscope and redirecting said deflected beam in a direction approximately parallel to said microscope
axis and focusing said beam on said specimen, said first objecaxis and focusing said beam on said specimen, said first objec
tive lens and said second stage of said deflection system being inoperative during said redirection of said beam by said second objective lens.

4,097,740
METHOD AND APPARATUS FOR FOCUSING THE TRANBECTIVE LENS OF A SCANNING TRANSMISSION-TYPE CORPUSCULAR-BEAM Rarl-Heinz Müller, Reinhard Schliepe, and Volker Rindfleisch all of Berlin, Germany, assignors to Siemens Aktiengesell schaft, Berlin and Munich, Germany
Filed Sep. 9, 1976, Ser. No. 721,693
Claims priority, application Germany, Sep. 19, 1975, 2542356 U.S. Cl. 250-311 Int. Cl. \({ }^{2}\) H01J 37/26

1. In a method for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope in which the excited in sawtooth fashion and generates a raster consisting of parallel lines on a specimen to be examined, said microscope including a beam radiation detector disposed behind the specimen along the beam path which generates an output signal which controls the brightness of a picture tube monitor oper-
ated synchronously with said raster, the improvement com prising the steps of,
measuring, during the exposure of a specimen point, partial beam radiation intensities in a cone of the beam at two points disposed symmetrical with respect to the longitudinal axis of said beam cone by means of said detector, the crocs-sectional area of said cone at the same height in said microscope, and
adjusting the lens current of the objective lens of said microscope so that output signals generated by said detector are equal for both of said beam radiation measurements at said points thereby focusing said beam on said specimen

\section*{4,097,741}

X-RAY DIAGNOSTICS SYSTEM FOR X-RAY PHOTOGRAPHS
Manfred Pfeiler, and Kurt Dietz, both of Erlangen, Germany assignors to Siemens Aktiengesellischaft, Berlin \& Munich, Germany
Clein Oct. 20, 1976, Ser. No. 734,10
Claims priority, application Germany, Oct. 20, 1975, 254694
U.S. C. 250-322
1. In an X-ray diagnostics system for making X-ray photographs including a control console having console selection means for selecting photographic values according to the organ to be examined, a radiation detector arranged to sense nected with said radiation detector and operable for switching off the X-ray radiation when a predetermined radiation dose has impinged on said radiation detector, actual value signa
means connected with said radiation detector and operable for forming a transparency-actual value signal which corresponds to the X-ray transparency of a patient being examined, and comparator means connected with said actual value signal means and operable for comparing the transparency-actual

value signal with a further signal which corresponds to the photographic values selected at the control console and for
supplying an output signal when the transparency-actual value signal deviates from a predetermined value range relative to said further signal
\[
4,097,742
\]

THERMAL CAMERA TUBE
Edward Herbert Eberhardt, Fort Wayne, Ind., assignor to International Telephone \& Telegraph Corporation, Nutley, N.J. Filed May 25, 1977, Ser. No. 800,593 U.S. C. 250— 333 \(\qquad\)

1. In a thermal camera tube, a thermal retina disposed in
vacuum envelope to receive thermal radiation emitted from an
object comprising:
a heat sink mesh disposed between said thermal radiation and said target to support said target, said heat sink mesh having webs to define web areas of said target and holes surrounded by said webs to define hole areas of said tar get; and
contacting electrode disposed over said holes connecting said thin film target in said holes to said webs.
\(4,09,743\)
MOISTURE ANALYZING METHOD AND APPARATUS Roger E Carlson, Hopkinton, Mass., assignor to Moistur Roger E. Carlson, Hopkinton, Mass., assignor
Systems Corp., Hopkinton, Mass. Filed Apr. 19, 1977, Ser. No. 788,750
Int. Cl. \({ }^{2}\) G01J \(/ 1 / 00\)

\section*{U.S. CI. 250-339}
1. Analyzer apparatus comprising
radiant energy source means; bution; means for angularly moving the support means, and
with it the source, about an axis intersecting the slice; and as detected by said photodetector means.
2. Apparatus according to claim 1 wherein said photodetecor means produces a signal \(V_{m}\) dependent upon the energy level of said first beam, a signal \(V\), dependent upon the energy level of said third beam, a signal \(\mathbf{V}_{m}\). dependent upon the enthe energy level of said fourth beam, and said output means comprises signal processor means for producing an output signal dependent upon the relationship
\[
\frac{V_{r}}{V_{m}} \times \frac{V_{m}}{V_{r}}
\]

RADIOGRAPHIC APPARATUS HAVING REPETITIVE MOVEMENT OF THE ORIGIN OF THE RADIATION Christopher Archibald Gordon LeMay, Osterley, England, assignor to EMI Limited, Hayes, England
Continuation of Ser. No. 630,779 , Nov, Continuation of Ser. No. 630,779 , Nov. 11, 1975, Pat. No. 4,010,370. This application Sep. 22, 1976, Ser. No. 725,507 Claims priority, application United Kingdom, Nov. 13, 1974, The portio
The portion of the term of this patent subsequent to Mar. 1 , Int. C. \({ }^{1994 \text {, hass been disclaimed. }} 21 / 34,23 / 04 ;\) G01T \(1 / 20\) U.S. C. \(250-366\) \(1 .{ }^{2}\) G01N \(21 / 34,23 / 04 ;\) G01T \(1 / 20\) 1. An apparatus, for examining the body of a 28 Claims 1. An apparatus, for examining the body of a patient by
means of penetrating radiation such as x -radiation, the apparatus including: a source of a substantially planar fan-shaped tus including: a source of a substantially planar fan-shaped
distribution of said radiation; support means arranged to supdistribution of said radiation; support means arranged to sup-
port said source so as to irradiate a slice of said body with said radiation; detector means, including a plurality of detectors arranged to detect the radiation after passage through the body along a plurality of beams at different angles within said distri-
bution ; means for angularly moving the support means, and means for repetitively angularly displacing said beams relative
source means and producing first and second radiant energy beams having the same given band of wavelength; sond optical means for receiving radiant energy from said source means and producing third and fourth radiant energy beams having a common band of wavelength different than said g;
radiant energy director means for directing said first and third beams first to a sample being analyzed and then to
said photodetector means and directing said second and fourth beams to said photodetector means; and
to said support means, such that, during each of a series of
increments of the angular movement of said support means,

each of said beams remains at the same inclination in relation to said body.

\section*{4,007745}

HIGH RESOLUTION MATRIX LENS ELECTRON OPTICAL SYSTEM
Harold G. Parks, Scotia, N.Y., assignor to General Electric Company, Schenectady, N.Y.

Filed Oct. 13, 1976, Ser. No. 732,019
U.S. CI. 250—398

1. An electron optical system for use in deflecting a beam o collimated electrons emitted by source means along an axis of said optical system toward a surface
from said source
fom said source means, comprising.
electron lens means positioned along said system axis be tween said source and target means and having an array of a plurality of lenslets each adapted for focussing a beam of
electrons impinging thereon substantially to a point at a electrons impinging thereon substantially to a point at a
selected distance beyond said lens means toward said target means;
first means for forming a magnetic field of substantially constant amplitude essentialy along said system axis at least between said lens and target means; first deflection means for selectably deflecting said electron beam axially emitted from said source beam to illuminate a selected one of said plurality of said lenslets; and second deflection means positioned between said lens and beam of electrons to a selected impact site upon said target
means surface responsive to the magnitude and polarity of a variable electric field and to said axial magnetic field contained within said second deflection means.

DRIVING AND POSITIONING ARRANGEMENT FOR RADIOGRAPHY
William Ellis Ingham, Peppard Common, Nr. Henley-onThames, and Anthony Michael Williams, Iver, both of England, assignors to EMI Limited, Middlesex, England led Sep. 23, 1976, Ser. No. 726,0 Claims priority, application United Kis U.S. CI. 250-444

Int. C. \({ }^{2}\) G03B 41/16

3. A radiographic system comprising:
a frame member having a housing with an aperture dimensioned to permit passage therethrough of at least part of patient's body;
patient's body;
carriage for supporting the patient's body in a generally horizontal position;
means for supporting the carriage and for moving the carriage, and with it the patient's body, relative to and through the aperture, generally along the longitudinal axis of the patient's body, to dispose a selected slice of the irradiation of said slice with penetrating radiation;
a scale member having a first part supported by said frame member and a second part supported by said carriage and moving therewith relative to said aperture, said parts of the scale member being juxtaposed and being dimensioned and marked to indicate, by their positions with respect to each other, the position of the carriage relative to the aperture;
means for selectively moving at least one of said scale member parts relative to the other, while the frame member and the carriage remain stationary, to cause said scale member parts to assume a selected juxtaposition relative each other when said selected slice of the body is disposed at said selected position relative to the aperture of frame member housing;
alternating ridges and notches extending along said with tudinal axis of the patient's body and the other one of said scale member parts including a first and a second microswitch each having a first and a second state;
means for placing each microswitch in its first or in its second state depending on whether a ridge or a notch of rack nember is disposed an selected pos said micreswithe during relative movement of the two scale member parts being an indication of the extent and direction of such movement.

DEVICE FOR MESSURING ABSORPTION OF RADIATION IN A SLICE OF A BODY Günter Kowalski, Hamburg, Germany, assignor to U.S. Pbilips Corporation, New York, N.Y.
Filed Jan. 21, 1977, Ser. No. 761,452 Claims priority, application Germany, Feb, 3, 1976, 2604020 U.S. CI. \(250-445 \mathrm{~T}{ }^{\text {Int. Cl. }{ }^{2} \text { G03B 4///G }}\)

1. A device for measuring radiation absorption in a slice of a 1. A device for measuring radiation absorption in a slice of a
body, comprising a radiator which emits a fan-shaped radiation beam which completely envelops a body to be examined, an
array of detectors, arranged behind the body, for measuring array of detectors, arranged behind the body, for measuring
local radiation intensity, a movement mechanism for rotating local radiation intensity, a movement mechanism for rotating the radiator/detector system during a measurement, and
shielding means which moves with the radiator in a translatory shielding means which moves with the radiator in a translatory
manner during the measurement and whose orientation in space is not rotated, at least for as long as it is present in the beam path, the angle of rotation of the radiator/detector system being equal to the sum of the scanning angle ( \(\beta\) ) and the opening angle ( \(\alpha\) ) of the fan-shaped radiation beam.

4,097,748
X-RAY APPARATUS ESPECIALLY FOR MAMMOGRAPHY
Jacques Monvoisin, Paris, France, assignor to Thomson-CSF, Paris, France File Filed Apr. 5, 1977, Ser. No. 784,743
Claims priority, application France, Apr. 9, 1976, 7610567 U.S. Cl. 250-505 Int. Cl. \({ }^{2}\) G03B 41/16

1. In an a source of X-radiation, means for holding said source of
X-radiation, for holding an object to be irradiated and for holding means for forming an image from said X -radiation, said source having a fixed diaphragm which defines a beam of X-radiation which has an angular deviation such
that its shape resembles a pyramid of rectangular cross that its shape resembles a pyramid of rectangular cross
section, said X -ray machine further including beam-defining means for passing only a limited portion of said pyra-
midal beam, said beam-defining means being capable of
motion in a plane perpendicular to the axis of said pyramidal beam, the improvement comprising
said beam-defining means includes in combination
beam the long extent of which is substinnilly a narrow dicular to the motion of said beam-defining means; a second slit disposed near and ahead of said object; a third slit, disposed near and behind said object and ahead
of said image forming means; and of said image forming means; and
means for displacing said first, seco
unison along mutually parallel planes and third slit in
unit unison along mutually parallel planes and in a manner to
maintain geometrical similarity, i.e., to maintain a line of sight through said slits to said source of X -radiation.

FOURIER POWER SPECTRA OF OPTICAL IMAGES UPECTRA OF Keith L. Gardner, Ridegecrest, CClifi,, sssignor to The United
States of America as represented by the Secretary of the Navy, Washington, D.C.
Filed Jan. 6, 1977, Ser. No. 757,429 U.S. Cl. \(250-550\) Int. Cl. \({ }^{2}\) G02B \(27 / 388^{2}\)

5 Claims
image sharpness varies according to the angle of image
rotation, rotation,
otoelectrically detecting the smeared line image to ac - INTERNAL COMBUSTIST quire data on image sharpness, and

processing the acquired data to establish the angle of image rotation which results in the sharpest image and relatin that angle to the angular orientation of said pattern parallel lines.

RETROREFLECTANCE MEASURING APPARATUS
Walter G. Egan, Woodhaven; Herbert B. Hallock, Huntington Walter G. Egan, Woodhaven; Herbert B. Hallock, Huntington, to Grumman Aerospace Corporation, Bethpage, N.Y. Filed Sep. 24, 19p6, Ser. No. 72
Int. C1.
1. A direct optical Fourier analysis system comprising: a focusing device for producing an optical image of an optical input along an optical axis,
an electro-optical modulation device following the focusing device on the optical axis for varying the input signal at two-dimensional charge coup
modulating device along the samede following the multiplicity of photo lock driver for scanning the elements included therein a means for detecting and processing the modulated signa means for detecting and processing the modulate

\section*{4,097,750}

METHOD OF ORIENTING OBJECTS USING OPTICALLY SMEARED IMAGES
Robert W. Lewis, Rochester; Bernard W. Joseph, Berkley, and Frederick R. Faxvog, Rochester, all of Mich., assignors to Motors Corporation, Detroit, Mich.
Filed Mar. 18, 1977, Ser. No. 779,158
\[
\begin{aligned}
& \text { Filed Mar. } 18,1977 \text {, Ser. No. } 77 \\
& \text { Int. Cl. }{ }^{2} \text { G01N } 21 / 30
\end{aligned}
\]
U.S. Cl. \(250-548\)
1. The method of determining the orientation of an industrial part wherein the part is characterized by a pattern of dominant
parallel lines comprising the steps of parallel lines comprising the steps of
optically forming an image of the said part and smearing the
image by at least one cylindrical lens having a cylinder axes to thereby smear the image as a function of the angle between the said parallel lines and the cylinder axis, the smeared image lines being sharpest when the direction of smearing is parallel to the said parallel lines and the smeared image lines are less sharp when the directio
smear differs from the direction of the parallel lines, angularly scanning the part by rotating the image of the relative to the cylindrical lens so that the smeared line
U.S. CI. 250—571

1 Claim

1. Apparatus for measuring the electromagnetic reflectanc and retroreflectance properties of the surface of a body or tes specimen comprising:
a radiation source for generating a collimated beam of elecincident on said specimen
incident on said specimen;
beam splitting means interposed in the path of said beam transmitting components of said beam and reflecting other components thereof, including radiation reflected from said specimen, and stray ambient radiation;
radiation sensor means exposed to radiation reflected sub stantially by said beam splitter and producing an output signal in response to said reflected radiation
adiation chopping means interposed in the path of said eriodically blocking said radiation directed at said specimen whereby, when said chopper blocks reflectance from said specimen, the radiation reflected by said beam splitter into said sensor serves as a reference signal and, when the chopper passes radiation, the reflected radiation incident reflectance from said specimen; sequencing means for regulating the chopping rate of said chopper;
detector means for receiving said sensor output signal and having means for processing said sensor signal in coordi nation with said sequencing means, said detector having nation with said sequencing means, seaid detector having
further means for comparing said reference signal component and said measuring signal component and producing a difference signal therefrom that characterizes the reflec tance of said specimen; and
signal intelligence means receiving said difference signal
reducing said signal to a form suitable for utilization.

POWER SUPPLY OF \(4,097,32\) TIONS DRIVEN BY MERNAL COMBUSTION ENGINES,
MOTOR VEHICLES
Helmut Wulf, Ostrildern, and Wolfgang Weidemann, Fellbach, both of Germany, assignors to Dximler-Benz Aktiengesellschaft, Germany
Filed Jul. 8, 1976, Ser. No. 703,603 Claims priority, application Germany, Jul. 12, 1975, 253124
Int. C. \({ }^{2}\) B60K \(25 / 00\); F02G 5/02 U.S. C1. \(290-\mathbf{2 0}\)

1. A power supply arrangement for installations driven by internal combustion engines, which comprises a generator
means, a storage battery means and load means as well as switching means and means for operatively connecting th generator means, storage battery means, load means and switching means, at least one thermionic converter mean acted upon by the hot exhaust gases of the internal combustion engine serving as generator means, characterized in that also at
least one electric motor means is provided as load means which mechanically feeds into the power flow of the drive connec tion of the installation, the thermionic converter means being constructed and rated for power output in accordance with the utilizable thermal energy content of the exhaust gases of the
internal combustion engine, the electric motor means including a rotor and a stator, the rotor being operatively connected with a rotating part in the power flow connection for the mechanical drive of the installation, and the stator being arranged non-rotatably about the rotor and being radially immovably supported with respect to the rotor, and the electric motor
means being arranged within the area of a flywheel of the internal combustion engine the rotor serving at least as a par of the flywheel mass.

\section*{4,097,753}

COMPARATOR CIRCUIT FOR A C-2C A/D AND D/A
CONVERTER
eter William Cook, Mount Kisco; James Thomas Parrish, Carmel, and Stanley Everett Schuster, Granite Springs, all o tion, Armonk, N.Y.

Apr. 2, 1976, Ser. No. 673,178
Int. Cl.2 H03K \(5 / 20\)
.S. C. 307-359
13 Claims
levels in a
1. A igital-to-analog (D/A) converter, comprising:
a first field effect transistor (FET) having a gate and first and the D/A converter:
a second field effect transistor (FET) having a gate and firs and second electrodes, with its gate connected to an ana log input voltage, said first and second FETs each havin
their first electrode connected to a common voltag source;
hird FET having a gate and first and second electrodes with its first electrode connected with the second elec rode of said first FET at a first common node; with its first electrode connected with the second elec
trode of said second FET at a second common node, said disposed about an adjacent pair of teeth and every third coil trode of said second FET at a second common node, said disposed about an adjacent pair of teeth and every third coin
second node being also connected to the gate of said third being connected in series to form a phase winding, there being FET, said first node being also connected to the gate of seid fourth FET, and said third and fourth FETs each having its second electrode connected to a common phase holtage source;
said digital-to-analog converter having an input and an output, with its output leading into the gate of said first FET and its input connected to respond to a means providing a digital representation of said anace by said comparator at one of said common nodes; and

means for generating an offset voltage which is used to compensate for the differences in threshold voltages and current carrying capabilities of said four FETs said means for generating an offset voltage including means for adding said offset voltage teing compared;
whereby said four FETs included in said comparator circuit compare said analog input voltage with said output of said D/A converter and produces an output at either of said common nodes. SHORT PITCH ALTERNATOR Sames B. Fart, Ann Arbor, Mich, assignor to Tecumseh Products Company, Tecumseh, Mich. Filed Oct. 20, 1976, Ser. No. 734,117
U.S. Cl. 310-67 R

Int. Cl. \({ }^{2}\) H02K \(21 / 12{ }^{2}\)
10 Claims 1. A three-phase alternating current generator having first and second relatively rotatable portions, an even number of \(n\) magnetic poles disposed on the first portion, the second portion comprising a slo derebetween, \(3 n\) coils, each coil being

three-phase windings each formed of a different group of \(n\) coils.

\section*{CONSTRUCTION 4,097,755} DEvice Kiyoshi Kitai, Tokyo; Masuo Ogihara, Chiba; Kozo Sato, YotKiyoshi Kita, Tokyo; Masuo Ogihara, Chiba; Kozo Sato, Yor-
sukaido, and Nobuo Shinozalk, Cuba, all of Japan, assignors sukaido, and Nobuo Shinozaki, Chiba, all of Japan
to Seiko Koki Kabushiki Kaisha, Japan
Filed May 11, 1976 Ser No, 685,408 Claims priority, application Japan, May 14, 1975, 50-57101; Claims priority, application Japan, May 14, 1975,
May 14, 1975, 50-63774[U]; May 14, 1975, \(50-63778[\mathrm{U}]\) May 14, 1975, 50-63774 U); May 14, 1975,
Int. C1. \({ }^{2}\) H02K 16/02 U.S. Cl. \(310-114\)

1. An electromechanical driving device comprising first and second permanent magnet rotors each having a plurality of magnetic poles;
mounted thereon for rotation plate having said rotors mounted thereon for rotation, said non-magnetic support plate including a projection projecting from an edge of said support plate in a direction of the length of said projection;
first mount
irst mounting means for mounting said first rotor for rotation on said projection of said non-magnetic support plate,
and second mounting means for mounting said second and second mounting means for mounting sport plate at a
rotor for rotation on said non-magnetic suppor position proximate said first rotor for magnetically coupling with said first rotor and offset from the length direcpling with said first rotor ana a direction between said first and second rotors and the length direction of said projection are non-parallel;
wheel train mounted on said suppor
and driven by said second rotor; and
and driven by said second rotor; and netic field and including a coil to develop an electromagniensional to receive a coil bobbin having an axial bore dimensional to receive said projection and positioned with said projection inserted into said axial bore to mount said coreless field coil on said projection of said support plate
with said first rotor within said axial bore and positioned with said first rotor within said axial bore and positioned
to drive said first rotor with the electromagnetic field to thereby drive said wheel train upon energization of said coreless field coil.

TUBULAR WHEEL SPEED SENSOR Thomas A. Gee, Allen Park, Mich., assignor to Eaton Corpora-
tion, Cleveland, Ohio tion, Cleveland, Ohio
Division of Ser. No. 460,325, Apr. 12, 1974, Pat. No. 4,029,108. This application Jan. 28, 1976, Ser. No. 653,060 U.S. Cl. \(310-155\) Int. C. \({ }^{2}\) H02K \(21 / 38\) 1 Claim

SYNCHRONOT, 4
Anthony W. Rigazio, Oglesby, Ill., assignor to General Time Corporation, Thomaston, Conn.

Filed Feb. 18, 1976, Ser. No. 659,108 U.S. Cl. 310-162 Int. Cl. \({ }^{2}\) H02K 21/00 \(\quad 15\) Claims

1. A synchronous motor comprisng
(a) a rotor of disc-shaped outline, said rotor having a plurality of permanently magnetized portions disposed in con-
tiguous alternating fashion around an axis of rotation; (b) a single-piece stator, said stator having a pair of legs defining at opposite ends a pair of stator poles, said poles being arcuate in outline, disposed substantially coaxially along said axis at an air gap, and spaced apart by an angle of between about \(90^{\circ}\) and \(180^{\circ}\);
(c) a coil assembly including
one end directed toward and
located substantially at said air gap, said core end providing a core pole disposed substantially equidistantly from said stator poles, and
(2) a winding having a plurality of turns supported by said core, said winding adapted at opposite ends to be connected to means providing a source of current; and (d) means mounting said rotor in said air gap and said stator
to the other end of said core whereby said current source develops an energizing flux field across said air gap between said poles for driving said rotor.
body;
coil means including a first winding wound about a portion of said first pole piece and a second winding wound about a portion of said second pole piece, said first and second windings between interconnected to produce an output signal at a set of terminals; and
means for mounting said tubular housing in said aperture in
said reference structure, said mounting min limited axial movement of said tubular housing relative to said structure, said mounting means comprising:
a key received in a first keyway formed in the outer periphery of said tubular housing, said key being positioned in said first keyway so as to be substantially parallel with the axis of said tubular housing, said key also being engageable with a second keyway provided in said reference with said aperture, varying the circumferential position of said second keyway relative to said aperture effective to vary the rotational position of said housing relative to said reference structure; and
readial spring positioned on the outer surface of said tubular member so that the inner surface of said radial spring is in ntact with said outer surface of said tubular housing said radial spring being substantially circular in cross section and having projections on the outer surfaces thereof, said projections being engageable with said aperture in said supporting structure.

COAXIAL DISI 4,097,758
COAXIAL DISK STACK ACYCLIC MACHINE Kenneth W. Jenkins, Clifton Park, N.Y., assignor to General Enneth W. Jenkins, Clifton Park, N.Y., assignor
Electric Company, Schenectady, N.Y.
Filed Aug 2,

U.S. Cl. \(310-178\)
1. A radial type acyclic machine comprising:

14 Claims
central, axial shaft;
first plurality of low magnetic reluctance, electrically conductive disks centered about said shaft and positioned in a first axial stack rotatable about said shaft;
a second plurality of low magnetic reluctance, electrically conductive disks positioned in a second axial stack about said first axial stack and rotatable about said shaft;
conductive means electrically interconnecting each disk in each of said first and second pluralities of disks; and

means establishing an axially-directed magnetic field through each of said first and second pluralities of disks.
\[
\begin{aligned}
& 4,097,759 \\
& \text { R.RAY TIUR }
\end{aligned}
\]

Avery D. Furbee; Roy F. Kasten, Jr., both of Elmhurst, and Viktor W. Pleill, Wheaton, all of Ill., assignors to Picker Corporation, Cleveland, Ohio
r. No. 707,218
U.S. C. \(313-60\)

24 Claims
X-RAY TUBE HAVIN \(4,097,760\)
X-RAY TUBE HAVING BEARING LUBRICATION Gabriel Cinelli, Niles, III., aseignors to Picker Corporation,
Cleveland, Ohio Filed Jul. 21, 1976, Ser. No. 707,219 U.S. C. \(313-60\) Int. Cl. \({ }^{2}\) H01J \(35 / 04\)


\footnotetext{
1. An X -ray tube, comprising
(a) an evacuated envelope:
(a) an evacuated envelope
(c) means supporting said anode for rotation, said mean including a bearing having portions lubricated by the ion implantation of a thin layer of metal.
}
 IMAGE TUBE CATHODE
John E. Ruedy, and George A. Morton, both of Princeton, N.J., assignors to RCA Corporation, Nem York, N.Y.
Filed Feb. 16, 1966, Ser. No. 531,644 Filed Feb. 16, 1966, Ser. No. 531,6 U.S. Cl. 313-94
1. An X -ray tube having an evacuated envelope within which are disposed a rotatable anode and a cathode, compris\(\underset{\text { ing: }}{\text { (a) }}\)
(a) a support structure for rotatably supporting said anode, said support structure adapted to rapidly dissipate heat; wardly of said support structure, said shaft adapted to control the rate of heat transfer from said anode to said support structure; and,
(c) a bearing included as part of said support structure, said (c) a bearing included as part of said support structure, said
bearing having portions lubricated by ion implantation of lead.
15. A rotatable anode structure for use in an \(X\)-ray tube, comprising:
(b) a shaft extending outwardly from said rotor body along an axis substantially parallel to the axis of rotation of said rotor body;
(c) a disc-like anode affixed to said shaft:
) a housing disposed concentrically within said rotor body about which said rotor body rotates; and,
(e) a black coating applied to the outer surface of said roto body, the inner surface of said rotor body, and the outer surface of said housing.

1. A photocathode comprising a substrate having thereon, photoemissive layer, an electrically resistive layer underlying the photoemissive layer, and terminal means electrically connected to spaced portions of said resistive layer, whereby a tions, the lateral resistivity of said resistive layer varying along tions, the lateral res

XENON ARC DISCHAPGE XENON ARC DISCHARGE LAMP HAVING A
PARTICULAR ELECTRODE COMPOSITION AND PHEREIN THE ARC DISCHARGE IS OBTAINED WITHOUT HEATING THE ELECTRODE Joseph James Hilton, Bethlehem, and James Joseph Malloy, J Telegraph Corporation, Nutley, N.J. Continuation of Ser. No. \(604676, \mathrm{~A}\) This application May 17, 1977, Ser. No. 797,660
U.S. C. 313-218
1. In a xenon arc discharge lamp comprising an enclosed pressurized sealed optical envelope having a light transparent window, a pair of electrodes at opposite ends of said lamp, and
means for applying a potential across said electrodes to promeans for applying a potential across said electrodes to pro-
vide an arc discharge therebetween, the improvement in which at least one of said electrodes comprises a porous sintered body of a refractory metal selected from the group consisting of tungsten and molybdenum, said body being impregnated with
a fused mixture of alkaline earth oxides and a metal oxide, said a fused mixixure of aikaline earth oxides and a metal oxide, said application of said potential without heating said electrode.

\section*{\section*{4,097,763} \\ ELECTRIC PROGRAMMER}

Myrl J. Sarrem, Carson City, Nev., assignor to Richdel, Inc., Carson City, Nev. Filed Feb, 7, 1977, Ser. No. 765,882
U.S. C. \(307-141\)

Feb. 7, 1977, Ser. No. 765,8
Int. C1. \({ }^{2}\) H01H \(7 / 00\)
3 Claims

1. In an electric programmer, which includes: mounting means; clock motor means supported by said mounting means; means; clock motor means supported said mounting means and connected to said clock motor means to be rotated thereby; gear actuating means attached to said control disc; a first shaft
rotatably mounted on said mounting means; a gear coaxially mounted on said first shaft to be engaged by said gear actuating means during rotation of said control disc to turn said first shaft; a rotary distribution switch mounted on said mounting means and including a wiper contact connected to the first shaft to be rotated thereby, and further including a plurality of switch contacts to be selectively contacted as the wiper contact is rotated; switching means mounted on said mounting means and incluaing an acuating arm, and swich actuating trollable time intervals as said first shaft rotates and as said wiper contact engages successive ones of said switch contacts, said switch actuating means including: a selector disc coaxially mounted on said first shaft to be rotated thereby; a plurality of further shafts rotatably mounted in said selector disc and extending parallel to the first shaft; and a corresponding plurality
of longitudinally-extending pins eccentrically mounted at the extremities of the respective further shafts in positions successively to engage said actuating arm as said first shaft rotates, the time interval of engagement of any one of said pins with said actuating arm being determined by the angular position of such pin with respect to the longitudinal axis of the corre-
sponding further shaft. sponding further shaft

\section*{4,097,764 \\ FAIL-SAFE SOLID STATE LOGIC} Henry C. Sibley, Adams Besin, N.Y., assignor to Cencal Signal Corporation, Rochester, N.Y.
Filed Mar. 18, 1977, Ser. No. 779,192 U.S. C. 307-200 A

6 Claims


A fail-safe logic device, comprising
solid state, toggle flip-flop AND gate having an output at which a binary one signal appears provided a first AC digital signal, representative of a binary one, applied to a first input occurs concurrently with another digital signal, also rep input;
ens for applying such first AC digital signal to said first logic input of said device;
voltage mons for applying said other digital signal at a DC voltage power supply terminal of said logic device as a second logic input of said device
a vital driver coupled to said output of said toggle flip-flop AND gate, said vital driver being operative to accept only
an output AC signal which is one-half the frequeny an output AC signal which is one-hal, whe frequency lack of conversion, due to a short or the like from input to output, will result in rejection of the unconverted, or wrong-frequency, signal then appearing at said output.

ELECTRONICALLY ALTERABLE NON-LATCHING JOSEPHSON AND, OR, NAND, NOR LOGIC CIRCUIT Hans Helmut Zappe, Granite Springs, N.Y., assignor to Interna tional Business Machines Corporation, Armonk, N.Y. Filed Jun. 30, 1976, Ser. No. 701,3
U.S. Cl. 307-212 Int. Cl. \({ }^{2}\) H03K 19/195

1. A logic circuit comprising
a first non-latching device capable of carrying Josephson current having a zero voltage state and a finite voltage state shunted by a terminated transmission line,
a plurality of serially disposed non-latching devices capable
of carrying Josephson current having a zero voltage state of carrying Josephson current having a zero voltage state
and a finite voltage state shunted by another terminated transmission line disposed in series with ssid first non-
latching device, a portion of said another terminated latching device, a portion of said another terminated
transmission line being disposed in electrically coupled relationship with said first non-latching device
means connected to said plurality of devices for applying binary information signals thereto, and
means for biasing said first non-latching device in an initial condition in one of said zero and said finite voltage states and said plurality of non-latching devices in an initial condition in one of said zero and finite voltage states to generate at said terminated transmission line one of the
logic functions AND, NAND, OR, NOR.

\section*{4,097,766}

LOW CURRENT DRAIN AMPLIFIER SYSTEM Alexis C. M. Renirie, Nijmegan, Netherlands, assignor to Vita tron Medical B.V., Dieren, Netherlands
Divislon of Ser. No. 608,465 , Aug. 28, 1975, Pat. No. 4,043,347 Divislon of Ser. No. 608,465, Aug. 28, 1975, Pat. No. 4,043,
This application Nov. 3, 1976, Ser. No. 738,585 This application Nov. 3, 1976, Ser. No. 738,585
Int. Cl. \({ }^{2}\) H33K \(17 / 00\)


\footnotetext{
1. Low current drain apparatus for high gain signal amplifi cation, comprising:
}
ceived input signal, said amplifier means being character ized by having the circuit characteristic of a curren source at ins output, said curch source being a function of b. an active circuit having an input and
being directly connected to the output of said transcon ductance amplifier means, said active circuit being characterized by having a high input impedance and being dand output to a high or low state a a current source circuit connect
output; and
d. a high input impedance load connected to said current source circuit and to said active circuit output.

OPERATIONAL R
David E. Blackmer, Wilton, and C. Rene Jaeger, South Lyndeboro, both of N.H., assignors to DBX, Incorporated, New-
ton, Mass. ton, Mass.
U.S. Cl.
Int. Cl. \({ }^{2}\) H03K \(17 / 00\)

13 Claims

1. A device for rectifying an \(A C\) current input signal applied at its input terminal and adapted to have its output terminal onnected as a DC current source, said device comprising in
nected to stage having an inverting input terminal connected to
terminal;
a first transmission conveying means coupled betwern first controllable current terminals of said device and connected to input and output the output signal from said amplifier stage so that current flows between the input and output terminals of the device along said first transmission path only when said input signal is of a first polarity; and
a second transmission path including second controllable current conveying means coupled between the input and trolled by the output signal from said amplifier stage so that a second current flows between said input and output terminals of said amplifier stage along said second transmission path and an inverted current substantially equal in magnitude but opposite in polarity to said second current simultaneously flows between the output terminal of said amplifier stage and the output terminal of said device signal is of a polarity opposite said first polarity

\section*{4,097,768
ECTIFIER}

Franz Jenik, Munich, Germany, assignor to Siemens Aktiengeseelischaft, Berlin \& Munich, Germany
Filed Dec. 6, 1976, Ser. No. 747,955
Claims priority, application Germany De \(5,1975,2554865\) Claims priority, application Germany, Dec. 5, 1975, 2554865 U.S. C. 307-230

1. A rectifier for rectifying an alternating voltage signal small amplitude in which the alternating voltage signal is sup-
plied directly to a first amplifier having a bent amplification plied directly to a first amplifier having a bent ampilication bent portion connecting the linear and cut-off portions, an operating point of said first amplifier being located at the bent portion of the characteristic and which delivers rectified signals at an output, a control amplifier being connected to the
first amplifier which produces a control voltage for determining said operating point of the first amplifier, a supply voltage connected to said first and control amplifiers which is the same for both, said control amplifier having a second amplifier which is constructed in a same fundamental circuit arrangement as the first amplifier but which has an amplification
which is large in comparison with the amplification of the first amplifier.

4,097,769
CIRCUIT FOR CONTROLLABLY PROVIDING POWER FROM AN AC SOURCE TO A LOAD
Michael A. Wilson, Sarasotar; Fred J. Momparler, Bradenton,
and Kenneth Coleman, Sarasota, all of Fla., assignors to Elec-
tro Corporation, Sarasota, Fla. Ser. No. 739,261
Filed Nor. 5, 1976,
U.S. C. 307-252 B
int. C. \({ }^{2}\) H03K 17/56
U.S. Cl. 307-252 B 8 Clxims 1. A. cin a load prising:
means for starting a pulse race between a first and a second
pulse at the beginning of each half period of the AC source;
a first pulse path means coupled to said pulse race starting means for passing said first pulse in the event that a conductive body is not sensed within an established period of
time and inhibiting said first pulse in the event that a conductive body is sensed within the established period of time;
second pulse path means coupled to said pulse race starting
means for passing the second pulse after a delay time, which delay time is longer than said established period of time;
meal means coupled to said first and second pulse path means for receiving the first and second pulse
eans for connecting the AC source to a load upon recep.

\begin{tabular}{l} 
ROMC: \\
SOMEE 22 \\
\hline
\end{tabular}
tion of the second pulse prior in time to the reception of the first pulse, said connecting means coupled to said terminal means; and
means for disconnecting the AC source from the load upon the second pulse, said disconnecting means coupled to said terminal means. \(\qquad\)
SCP \(\quad\) 4,097,770 Michael Scott Fisher, Bridgewater, N.J., assignor to RCA Cor poration, New York, N.Y.

Filed Jun. 11, 1976, Ser. No. 695,197
U.S. CI. 307-252 J

15 Claims

?
1. A triggering circuit for a controlled rectifier having an and having a cathode connected to a point of reference potential aving a gate electrode comprising, in combination: copacentor having a first plate connected to said reference potential and having a second plate;
first switch for selectively connecting the second plate of said capacitor to said point of reference potential;
first transistor having an emitter electrode connected to
the second plate of said capacitor, having a collector electrode connected to the gate electrode of said controlled rectifier, and having a base electrode;
means for applying a bias potential to the base, electrode of said first transistor for conditioning said first transistor to be nonconductive so long as the potential at said second plate does not depart from said reference potential by more than a predetermined value in the sense for tending to turn said first transistor on,
ing said capacitor in said sense for tending to turn on said
ransistor whenever said first switch does not connect the second plate of said capacitor to said point of reference potential, thereby to prevent the charging of said capacitor; and
means for automatically clamping the gate electrode of said controlled rectifier to a potential a given time after said
irst transistor turns on, each time said first transistor turns n , thereby conditioning said controlled rectifier to turn of in response to reversal of the voltage at its anode electrode.

\section*{4,097,771}

INTEGRATED CLOCK PULSE SHAPER Wolfgang Gollinger, Voerstetten, Germany, assignor to ITT Industries, Incorporated, New York, N.Y.
Claims priority, application Germany, Jan. 31, 1976, 2603704 Int. Cl. \({ }^{2}\) H03K \(5 / 01\)

2 Claims
first and second field effect transistors being coupled, respectively, to a first voltage means, the gate of said first field effect transistor being coupled to the drain of said second field effect transistor, and the gate of said second
field effect transistor being coupled to the drain of said first field effect transistor;
first load means coupled between a second voltage
and the drain of said second field effect transistor; and the drain of said second field effect transistor; an input field effect transistor having its gate coupled to said input;
coupling
oupling means for coupling the source of said input field effect transistor to the drain of said first field effect transisfirst current source means coupled between the source of said input field effect transistor and said first voltage means; and
fend current source means coupling the source of said first field effect transistor to said first voltage means.

\section*{SwITCHED MOD, 4,0973}

Magnus Carl Wilhelm Lindmark, Vasavagen 9, Stocksund, Sweden (S-182 74)
Filed Nov. 1, 1976, Ser. No. 737,511
Claims priority, application Sweden, Nov. 3, 1975, 7512267 Int. Cl. \({ }^{2}\) H03K \(17 / 04,1 / 12\)
U.S. C. \(307-296\) A 6 Claims

1. An integrated clock pulse shaper for providing first and
second non-overlapping clock signal voltages for use in multiphase clocked logic circuits, comprising
first insulated-gate field effect transistor having source, drain and gate terminals;
second insulated-gate field effect transistor having source, frrst and second transistors galvanically cross ach of said the gate terminals of said second and first transistor re spectively;
a second resistor; and
a second resistor; and
means for applying first and second clock signal voltages to respectively via said first and second resistors, said first and second non-overlapping clock signal voltages appear ing at the drain terminals of said first and second transistors respectively

\section*{4,097,772}

MOS SWITCH WITH HYSTERESIS
Ernest Aubert Carter, Phoenix, Ariz., assignor to Motorola, Inc., Schaumburg, III.

Filed Jun. 6, 1977, Ser. No. 803,500

5 Claims

1. A field effect transistor hysteresis circuit comprising: an input and an output;
1. In a switched mode power supply having a pair of supply voltage terminals, a pair of transistors having their emitter-col lector paths connected in series to said terminals, first and second capacitors connected in series between said terminals, a series circuit of a load circuit and an inductor connected between the junction of said first and second capacitors and the pulses connected to the basis of said transistors; the improvement wherein said source of control pulses is connected to render said transistors conductive on alternate pulses, and further comprising a third capacitor connected in parallel with nation with said inductor at a frequency substantially equal to the pulse repetition frequency of said control pulses of said source of pulses, whereby back e.m.f. of said inductor at the time of switching off of each of said transistors reduces the emitter-collector voltage of the other transistor at the switch on time of said other transistor.

\section*{ARC DISCHARGE FLASH \begin{tabular}{c}
\(4,097,774\) \\
\hline
\end{tabular}}

ARC DISCHARGE FLASH LAMP AND SHIELDED COLD Robert J. Cosco, Amesbury; John M. Lo, Boston, and Roger T. Hebert, Peabody, all of Mass., assignors to GTE Sylvania Incorporated, Danvers, Mass.
\[
\begin{aligned}
& \text { Filed Jun. 3, 1976, Ser. No. 692,2 } \\
& \text { Int. Cl. }{ }^{2} \text { HO1J } \sigma 1 / 04
\end{aligned}
\]
U.S. C. 313- 178 Int. Cl. \({ }^{2}\) H01J \(61 / 04\)

5 Claims
1. A cold cathode flash tube including an elongate envelope enclosing at least one cathode assembly and an electron discharge and ion counterflow path respectively from and toward the assembly, wherein the cathode assembly comprises: a discrete body containing a sintered co,
emissive material, the body being intermittently emisial
when cold and being disposed on the lead wir mass of refractory metal material interposed in the io counterflow path toward the body so as to shield a sub and
antial emissive area of the body from ion bombardment;

means extending from the emissive body to the refractory metal mass for holding the mass in spaced relation to the
body thereby to expose the shielded area for electron body thereby to expose the shielded area for electron
emission.

INFRARED SENSITIVE \(\begin{aligned} & \text { 4,097,775 } \\ & \text { PHOTOCONDUCTIVE PICKUP }\end{aligned}\)
George W. Bain, Jr., Fort Wayne, Ind.; Stanley V. Forgue George W. Bain, Jr., Fort Wayne, Ind.; Stanley V. Forgue,
Princeton, and Albert G. Morris, Lawrencerille, both of N.J., assignors to RCA Corporation, New York, N.Y.

Filed Aug. 4, 1955, Ser. No. 526,458
U.S. C. 313-388

3 Claims

1. A photoconductive target for a pickup tube comprising layer of porous lead telluride on a transparent conductive
layer, said porous lead telluride having a resistivity of approximately \(10^{-11}\) ohm cm when maintained at a temperature substantially equal to liquid nitrogen temperature

\section*{4,097,776}

COATED ELECTROLUMINESCENT PHOSPHORS Sidney Allinikov, Yellow Springs, Ohio, assignor to The United ted by the Secretary of the Air Force, Washington, D.C.
Int. Cl.2 H01J Mar. 1 25, 1977, Ser. No. 781,228
H02F 1/13; C09K 3/34; B05D 5/06
\(\overbrace{10}^{8}\)
1. A composition consisting essentially of an electroluminescent solid particulate phosphor coated with a crystallized
liquid crystal or a mixture of crystallized liquid crystals, said liquid crystal or mixture of liquid crystals melting at about the temperature to which the phosphor is heated as a result of being disposed in an electric field.
6. An electroluminescent device comprising a layer of electroluminescent phosphor particles coated with a crystallized liquid crystal or a mixture of crystallized liquid crystals, said liquid crystal or mixture of liquid crystals melting at about the
temperature to which the phosphor particles are heated as result of being disposed in an electric field, the coated particles being dispersed in a layer of a dielectric material having a thickness no greater than 3 mils; and an electrode member adhered to each surface of the phosphor-containing layer, at least one of the electrode members being a light transmitting layer.

\section*{ARC DISCHARGE LAMP 4 ,007,777 \\  \\ Walter Bacharowski, Parma, Ohio, assignor to General Electic} Company, Schenectady, N. \(\mathbf{Y}\)

Filed Nor. 10, 1976, Ser. No. 740,255
Int. \(1 /{ }^{2}\) H01J \(7 / 44,13 / 46,19 / 78\) : H01K \(1 / 62\) U.S. C1. \({ }^{\text {Int. }} 15-60\)

1. An arc discharge lamp comprising: an arc tube containing an ionizable radiation-generating fill and having main electrodes sealed therein at opposite ends and a starter electrode said lamp for increasing the and an electrical circuit within said lamp for increasing the peak starting voltage applied across the electrodes when said lamp is connected across the secondary side of a capacitor type ballast, said circuit comprisconnected in series and bridged across the main electrodes, and the other resistor being connected between the starter electrode and th remote main electrode.

4,097,778
George Ludwig
tries, Incig, Troy, Mich., assignor to Tom McGuane IndusFiled Oct. 12, 1976, Ser. No. 731,298
1. In a headlamp delay device, the combination 33 Claims 1. In a headlamp delay device, the wich having spaced contacts, said contacts member movable said contacts at different positions, ding said contact mem in each of said positions with a predetermined force, housing
piston means dividing said housing into two chambers, tion to a source of vacuum,
an inlet to said one chamber,
an orifice associated with said inlet to said chamber for
connection to a source of pressure higher than that sup- wires being connected to one of the wires that extends through \(\begin{aligned} & \text { plied through said vacuum, } \\ & \text { spring means yieldingly urging said piston means in a direc- the glass bottle seal, the other end of said electrode being } \\ & \text { conneted to the other of the wires that extends through the }\end{aligned}\) spring means yieldingly urging said piston means in a direc-
tion opposite to that which the vacuum tends to move said piston means,
a shaft extending through said housing through said pisto means and connected to said switch contact member, means and connected to said switch contact member,
4,097,780
energy storing means interposed between the shaft and the ME THOD AND APPARATUS FOR ENERGIZING THE
piston means and operable by the piston means upon CELIS OF A PLASMA DISPLAY PANEL TO SELECTED

dissipation of the vacuum and functioning of said spring means to move said piston means to store energy when the
vacuum is being dissipated such that upon predetermined storage of energy, the energy storing means functions to move the shaft and in turn the contact member within the switch against the action of the detent means successively storing energy and moving the shaft against the action of
successive detent means from one detent position to an-

4,097,779
LUORESCENT LAMP CONTAINING A CATHODE HEATER CIRCUIT DISCONNECT DEVICE Frank M. Latussa, Magnolis, Mass., assignor to GTE Sylvania Incorporated, Danvers, Masse

Filed Apr. 5, 1976, Ser. No. 673,822
U.S. C. 315-106

1. In a rapid start type of fluorescent lamp comprising an elongated glass envelope having a phosphor coating on the and means to supply heater current to said electrode, the improvement which comprises a thermally actuable circuit opening device proximate said electrode, said device being normally closed at room temperature and thereby permitting
heater current to flow through said electrode during lamp start heater current to flow through said electrode during lamp start
up, said device becoming open after lamp ignition as a result of upe said device becoming open after lamp ignition as a result of flow, said device comprising a \(U\) shaped bimetallic element enclosed in a sealed glass bottle and supported therein by two
wires extending through the glass bottle seal, said electrode weing mounted on a glass stem mount having two lead-in wires extending therethrough, one of said lead-in wires being con-
nected to one end of said electrode and the other of said lead-in
glass bottle seal.

METHOD AND APPARATUS FOR
4,097, ELIS OF A PLASMA DISPLAY PANEL TO SELECTED
BRIGHTNESS LEVELS Peter Dinh.Tuan Ngo, Colts Neck, N.J., assignor to Bell Tele phone Laboratories, Incorporated, Murray Hill, N.J.
Filed Aug. 17, 1976, Ser. No. 715,161

Filed Aug. 17, 1976, Ser. No. 715,1
Int. C1. \({ }^{2}\) H05B 41/24
U.S. CI. 315-169 TV \({ }^{\text {Int. }}\)

19 Claims

11. A method for energizing a gas discharge display cell desired brightness level comprising the steps of
repetitively impressing alternating-polarity sustain signals across said cell, and establishing said cell in a temporary
light-emitting state, by impressing at least a first write pulse of non-variable duration across said cell, said write pulse terminating prior to the initiation of a predetermined one of said sustain signals by a selected interval, characterized by the step of selecting said interval as a func tion of said desired brightness level.

ATOMIC SPECTRUM
ATOMIC SPECTRUM LIGHT SOURCE DEVICE Hideaki Koizumi; Yoji Arai, both of Katsuta, and Selichi Murayama, Kokubunji, all of Japan, assignors to Hitach
Ltd., Japan Filed Nov. 25, 1975, Ser. No. 635,080
Claims priority, application Japan, Nov. 27, 1974, 49-135506 S. Cl. 315-176 Int. Cl. \({ }^{2}\) G01J 3/12 15 Claim

1. An atomic spectrum light source device comprising discharge tube in which an inactive gas is enclosed and which has a light taking-out window, an anode and a cathode ar-
ranged in said discharge tube, at least one of said anode and ranged in said discharge tube, at least one of said anode and
cathode including an element for emitting at least one required atomic spectrum, a first electric source for supplying to said anode and cathode a low frequency power whose alternating period is longer than a flight time of ions between said anode and cathode to generate atoms of said element by sputtering due to a glow discharge from said at least one of said anode and
cathode, and a second electric source for supplying a high frequency power
sputtered atoms.
\(\qquad\)
4,097,782
ENERGY SAVING MEANS REDUCING POWER USED BY Hiram Darden Chambliss, 1900 N. 5th St., Grand Junction, Colo. 81501

Filed Dec. 15, 1975, Ser. No. 640,980
Int. Cl. \({ }^{2}\) H05B \(39 / 09\) U.S. Cl. 315-209 R \({ }^{\text {Int. C.2 }{ }^{2} \text { H05B 39/09 }} 12\) Claims

1. Energy saving means for reducing power used by lamps employing means reducing power without significant reduc tion of apparent brightness as viewed by the normal human eye, comprising in combination, a traffic signal incandescent
lamp, a switching circuit for selectively providing upon command lamp lighting power at a predetermined lighting voltage for said lamp, and a command circuit actuating said switching circuit periodically including equipment providing a normal
daytime mode of operation for lighting said lamp while in use daytime mode of operation for lighting said lamp while in use
in daytime brightness at a duty cycle of less than \(100 \%\) and at in daytime brightness at a duty cycle of less than \(100 \%\) and at
a frequency between 5 Hz and 30 Hz to retain some of the a frequency between S Hz and by the human eye until the nex lighting pulse occurs, thereby constituting equipment with a operating mode whereby said power is decreased for lighting the lamp without a corresponding reduction in viewed bright ness wherein said power for said lamp is supplied from an Hertz, and wherein said command circuit respectively turns on and off said lamp over a duration of on and off pulses having an integral number of successive half cycles.

\section*{4,097,783}

ULTRAVIOLET LIGHT PROCESSOR
Michael L. Hathaway, Aurora, Ill., assignor to PPG Industries,
inc., Pittsburgh, Pa.
Flied Sep. 13, 1976, Ser. No. 722,470
U.S. CI. 315-323 Int. C. \({ }^{2}\) H05B 41/36

15 Claims

13. An ultraviolet light processor comprising.
a. a sequence of medium or high pressure mercury vapor
lamps for emitting ultraviolet light when connected to source of alternating electrical power;
b. means for automatically and sequentially connecting lamps of said sequence through a reactance to a source of electrical power to thereby cause said lamps to emit ultra violet light, wherein said reactance comprises an induc ive reactance and a capacitive reactance;
timing means cooperating with said connecting means fo interposing a time interval in the range of from about second to about 10 seconds between connections of adja cent lamps of said sequence to said source of alternating electrical power;
d. means for initiating the op
means and said timing means
e. means for permitting said connecting means to function only from the beginning of the connecting sequence; f. means for varying the capacitive reactance through a plurality of discrete steps of capacitive reactance; and
g. means for causing alternating electric power to be applied to said lamps through a predetermined value of reactance at least until said lamps are warmed up.

\section*{4,097,784}

QUADRUPOLE CONVERGENCE CIRCUIT Martin Fischman, Seneca Falls, and Jesse H. L'Hommedieu, Waterloo, both of N.Y., sssignors to GTE Sylvania Incorpo ated, Stamford, Conn.
\[
\begin{aligned}
& \text { Filed May 31, 1977, Ser. No. 802,058 } \\
& \text { Int. Cl. }{ }^{2} \text { H01J } 29 / 70,29 / 76
\end{aligned}
\]
U.S. C1. 315-368 7 Claims

1. In a cathode ray tube deflection apparatus employing an inline color cathode ray tube and an affixed deflection yoke having horizontal, vertical and quadrupole windings coupled to horizontal and vertical frequency signal sources, a quadrupole convergence circuit comprising
a quadrupole winding,
means for developing substantially parabolic shaped hori zontal and vertical frequency signals coupled to said convergence winding;
neans for clamping s
zontal and vertical frequency signy parabolic-shaped horiupole winding, said clamping mals coupled to said quad pedance value in response to means having an increasing bitantially parabolic-shaped vertical frequency of said and
means coupled to said clamping means and to said means for developing substantially parabolic-shaped vertical frequbsy signals, said means and said means for developing ubstantially parabolic-shaped vertical frequency signals combining to provide a compensating alteration in impe alteration in impedance value of said clamping means in response to an increasing value of said substantially para-bolic-shaped vertical frequency signal whereby the mag itude of said substantially parabolic-shaped horizonta frequency signal is controlled.

MAGNETIC-TAPEETRANSPORT APPARATUS Mituhira Sato, Yokohama, and Tomomi Kato, Tokyo, both of
Japan, assignors to Sansui Electric Co.. Ltd., Tokyo, Japan Japan, assignors to Sansui Electric Co., Ltd., Tokyo, Japan
Filed Nov. 8, 1976, Ser. No. 740,059 \({ }_{154369[\mathrm{U}]}^{\text {Cliority, application Japan, Nov. } 13}\)
U.S. Cl. 318-89

Int. C. \({ }^{2}\) B65H 77/00

1. In a tape-transport apparatus of the type for winding a magnetic tape unwound from one reel on the other reel and
vice versa, an improvement for stopping the apparatus com-
prising:
(a) a first \(D C\) motor having permanent magnet poles and operatively coupled to a tape-winding reel for rotating the
same;
(b) a second DC motor having permanent magnet poles and
(o) a second DC motor having permanent magnet poles and
operatively coupled to a tape-unwinding reel for rotating the same;
(c) a first brake and a second brake for said first and second
(t) DC motors, respectively, adapted to apply the retarding
forces to them to stop them when the tape transport is to be stopped;
(d) first control means adapted to supply DC power to said first DC motor for rotating it in a first direction, thereby winding the magnetic tape on said tape-winding reel operatively coupled to said first DC motor;
supply to said first DC motor;
(f) first DC motor retarding means adapted to retard the rotation in said first direction of said first DC motor due to its inertia when said second control means interrupts
power to said first DC motor, including second DC motor retarding means adapted to retard the rotation in said first direction of said second DC motor during a time period in which the magnitude of electromotive force generated by the rotation of said first DC motor due to its inertia after
the DC power supply thereto has been interrupted is higher than a predetermined level; and
(g) means adapted to operate said first and second brakes
when the magnitude of electromotive force reaches said predetermined level so as to stop the transport of the tape.

\section*{LIMIT CONTROL APPARATUS}

Bryant D. Lund, Salt Lake City, Utah, assignor to E-Systems, Inc., Dallas, Tex.

Filed Jun. 16, 1976, Ser. No. 696,601
Int. C.'
U.S. C. \(318-282\) \(\qquad\)
1. For use in a control system wherein a processing circuit is operable to receive a commanded direction signal and selecsubject to a first limit ot travel in a first direction, the combination comprising:
first limit sensing means connected to the actuator and operable to generate a first limit detection signal characterized proaches the first limit of travel;
integrating means arranged to receive said first limit detec tion signal and provide a first integral signal output; signal output and provide a first limit signal when said first integral signal output exceeds a predetermined level; and logic means arranged to receive said first limit signal and the commanded direction signal, said logic circuit being oper-

able to provide a modified direction signal to the proces ing circuit, said modified direction signal being indicative of the commanded direction in the absence of said firs
limit signal, said logic means being operable to modify said commanded direction signal upon receipt of said first limit signal such that said modified direction signal is indicative of the direction opposite said commanded direction dur-
ing the continuance of said first limit ing the continuance of said first limit signal.


\section*{SPEED IN ROTATING OBJECTS \\ Lars-Goran Larsson, and Frede Sörensen, both of Vesteras} Sweden, assignors to Asea AB, Vasteras, Soeden
Filed Jun. 9, 1976, Ser. No. 694,439 Filed Jun. 9, 1976, Ser. No. 694,439
Claims priority, application Sweden, Jun. 17, 1975, 7506926 U.S. CI. 318-332 Int. Cl.2 H02P 5/00 14 Claims

1. A method for controlling the peripheral speed of a rotating object, driven by a driving system including an electri
motor, which is subject to wear comprising the steps of:
(a) generating a first signal representing a speed reference for a size of the rotating object before any wear occurs and at which the angular rotation rate will be a minimum; (b) measuring a quantity proportional to the torque of the motor driving the object;
(c) decelerating and accelerating the object over equal pre(d) integrating the quantity proportional to torque ove (d) integrating the quantity proportional to torque over the
equal times of deceleration and acceleration in an integra tor to obtain a second signal at the output of the integrator which has eliminated therefrom the loss moment; (e) coupling said second signal through a function generator to convert it into a third signal representative of the in
crease in the speed necessary to compensate for wear and (f) using the sum of said first signal and third signal as a control input to the motor driving the rotating object.

CONTROL CIRCUIT FOR A SEL
MOTOR Nils Hansson Nygaard, Sonderborg; Kaj Nielsen, and Benny Strandtoft, both of Nordborg, all of
Flied Dec. 15, 1996 , Ser. No. 750,728
Claims priority, application Germany, Dec, 17, 1975, 2556726 U.S. C. 318-415 Int. Cl. \({ }^{2}\) H02P I/O0

2 Claims

1. A control circuit for a self-starting electric motor having at least one stator winding in series with a pulse controllable
electronic switch, gate control means having \(A\) and \(B\) inputs electronic switch, gate control means having A and Binputs
and an output connected to said switch with a first signal for said \(A\) input causing blocking regardless of the signal on said B
input and with the opposite signal for said A input input and with the opposite signal for said A input providing a signal for said output and direct transmission between said
input \(\mathbf{B}\) and said output, a starting impulse generator having a int
duty cycle with a short starting signal and a long stopping signal, a pulse generator connected to said B input and being responsive to the position of the rotor of said motor for pro ducing a pulse wave corresponding to the speed thereof, a
frequency-to-voltage converter connected to said winding for generating a signal corresponding to the speed of said motor, a comparator and a reference voltage for said converter to generate a digital signal at a predetermined voltage level of said converter, selector gate means having inputs connected to said
starting impulse generator and said comparator and the output thereof connected to said o input A, said selector gate means allowing said comparator signal to override said starting impulse generator when said motor has normal speed and allow
said short starting signal thereof to be transmitted to said input said short starting signal thereof to be transmitted to said inpu A when said motor is stopped or operating below its normal operating speed.

OTATION-SUPERY, 0 ,097,789 SYSTEM D-CAN OR BLOWER

ROTATION-SUPER SYSTEM Benno Doemen, St. Georgen, German
Motoren KG, St. Georgen, Germany
Filed Apr. 19, 1976, Ser. No. 678,361 Claims priority, application Switzerland, Apr. 26, 1975,
U.S. C1. 318-461

Int. Cl. \({ }^{2} \mathbf{H 0 2 H} 7 / 08\)

1. Rotation-supervised d-c fan, blower, or ventilator system
having a brushless \(\mathrm{d}-\mathrm{c}\) motor ( G ) arranged for connection to a source of d-c (10) providing intermittent, pulsed power to said motor to operate said motor at a predetermined speed, or
within a predetermined speed range, current flow (i) through the motor ( G ) being in pulses undulating between upper and lower values, whereby the current through the motor will
have an a-c component, said system comprising
an impedance element ( Z ) connected in series with the motor (G);
an a-c responsive evaluation circuit ( \(K, T\) ) sensitive to the being connected across said impedance element and sensing the voltage drop of the a-c component of the pulsating current flow through the motor;
an a-c amplifier \(\left(V, V^{\prime}\right)\) connected across the impedance
element \((Z)\), and applying the a-c component of the voltage drop across the impedance element ( \(Z\) ) to the evaluation circuit ( \(\mathbf{K}\), \(\mathbf{T}\) );
and a band pass filter means ( \(F\) ) connected to the evaluation circuit ( \(K, T\) ) and to the motor and matched to the fre-
quency of the \(\mathrm{a}-\mathrm{c}\) component at said operating speed or range, to enhance said \(\mathrm{a}-\mathrm{c}\) component at said speed, or range, with respect to other frequencies at other speeds;
the evaluation circuit ( \(K, \mathrm{~T}\) ) providing an output signal the evaluation circuit ( \((\mathbb{}, \mathrm{T}\) ) providing an output signal
( \(U_{1}\) ) if the frequency of the sensed a-c component of the pulsating current flow through the motor drops below a predetermined level.

4,097,790
MOTOR PROTECTOR WITH REMOTE TEMPERATURE Robert J. Wilson, Bolinulation
Corporation, Detroit, Mich. Filed Aug. 16, 1976,
Aug. 16, 1976, Ser. No. 714,389
Int. Cl.2 \({ }^{2}\) G05B \(5 / 00\)

1. A motor protector located remotely from an electric motor that is subject to overheating comprising
means for generating an analog of motor temperature includ-
ing a block of heat conductive material, first and second electrical heating elements mounted in heat transfer relationship with the block of heat conductive material for either of the elements, the block of material having a predetermined thermal inertia due to its mass and its specific heat which represents the thermal inertia of the motor, means in circuit with the motor for supplying
current proportional to motor current to the first heating element, and means in circuit with the motor for supplying current proportional to motor power to the second heating element, the heating effect of said heating elements and the thermal inertia of said block being such that the
block of heat conductive material is heated to an block of heat conductive material is heated to an analog
temperature corresponding to the actual motor temperature over a varying range of motor current and power, temperature detection element secured to the block of material in heas transfer relation therewith for responding
to the temperature of said block, and
a circuit including the temperature detection element responsive to the temperature of said block for controlling the energiz.

DELAYED TUR 4,097,791
CIRCUIT
COF CONTROL Ward L. Bivens, PeriRCUIT both of Ohio, assignors to and Richard A. Schwehr, Mentor, both of Ohio, assignors to Towmotor Corporation, Mentor,
Ohio Filed Dec. 1, 1975, Ser. No. 636,78
Int. C.2 H02P 1/04 U.S. Cl. 318-484 4 Claims

1. A delayed turn-on and turn-off control circuit for an electric motor comprising:
an electrical power source having a positive terminal and a ground terminal;
motor relay having a normally open contactor connected
in series between the electric motor and one of the terminals of the power source, said contactor being movable between an opened position at which the electric motor is at which the electric motor is connected to the power source, and an electrical actuator means connected to the contactor for moving the contactor to the closed position in response to said actuator means being energized and to said opened position in response to said actuator means being de-energized;
means for providing an electrical current at a predetermined
value; motor start switch connected to the current providing means and being movable between a normally open position and a closed position
power silicon controlled rectifier connected in series be-
tween the electrical actuator means and the ground termitween the electrical actuator means and the ground termi-
nal of the power source for energizing the electrical actuaor means in response to receiving a first electrical signal and for de-energizing the electrical actuator means in response to receiving a second electrical signal, said receiving the first electrical signal;
a turn-on delay means connected to the motor start switch and to the control gate of the power silicon controlled
rectifier for delivering said first electrical signal to th rectifier for delivering said first electrical signal to the
control gate only after the running of a first predetermined period of time after the closing of the motor start switch;
a turn-off delay means connected to the motor start switch and to the power silicon controlled rectifier for delivering only after the running of a second predetermined period of time after the opening of the motor start switch, said turn-off delay means including a commutating capacitor, means to charge the commutating capacitor to the voltage of the power source onled recitifer is conductive, a commutating silicon con-
trolled rectifier connected between the commutating capacitor and the grounded side of the power silicion controlled rectifier, means for gating on the commutating silicon controlled rectifier after said second predeter-
mined period of time following the opening of the switch for providing a reverse bias on the power silicon controlled rectifier as the second electrical signal for rendering it nonconductive, and means for disabling the turn-o being closed and for initiating the running of the second predetermined period of time in response to the moto start switch being opened; and
wherein said gating on means includes a time delay capacitor, a timing resistor connected between the electrical
current providing charging the time delay charging the time delay capacitor, to the mennsol gate of the commutating silicon controlled rectifier in response to the voltage across the time delay capacitor reaching unijunction transistor and a load resistor, said unijunction transistor having its emitter connected to the time delay capacitor and one of its bases connected to the contro gate of the commutating silicon controlled rectifier, said
load resistor being connected to said one base of the uni junction transistor, a control gate of the commutating silicon controlled rectifier and to the ground terminal for keeping the control gate voltage low until the unijunction transistor is turned on.

BATTERY CHARGER CONTROL CIRCUIT Ward Martin Calaway, Sierra Madre, Calif., assignor to Leste Electrical of Nebraska, Inc., Lincoln, Nebr.
Filed Dec. 9,1976 , Ser. No. 748,732
\(\begin{array}{lll}22 & \\ \text { Int. Cl. }{ }^{2} \text { H02J } 7 / 04 & \\ & \\ & \text { Claims }\end{array}\) U.S. Cl. 320-22

1. Apparatus for controlling the charging of a battery, com1. App
prising:
multip
whe
multiple-purpose means for generating a first control signal when the rate of charging of the battery falls below predetermined rate during a charging run and generating said multiple-purpose me
activating said multiple-p including selector means for runs a predetermined purpose means to initiate charging charging run in response to after the termination of said selector means including manually activatable means for including said selector means in circuit with said multiple purpose means; said multiple-purpose means further including
means for measuring the potential of a battery said measuring means including a first counter and means for applying pulses to said first counter
said multiple-purpose means further including a timer said timer including a second counter;
said multiple-purpose means further including switch means for applying a signal to said second counter from a selected one of said plurality of output terminals of said first counter when said multiple-purpose means is measuring said second counter including means for generating said first control signal and said second control signal;
said multiple-purpose means including means for
said multiple-purpose means including means for terminating a charging run in response to said first control signal;
brator and an OR gate;
he output of said OR gate being electrically connected to
the output of said OR gate being electrically connected to
said second counter; said second counter
a battery charger;
said timer-gated
multivibrator being enabled by pulses on two of its inputs;
one of said two inputs of said timer-gated multivibrator
being electrically connected to another being electrically connected to another of said output
terminals of said first counter and the other of said inputs to said timer-gated multivibrator being electrically connected to said battery charger, whereby said timer-gated multivibrator is energized when said battery charger is applying charge to a battery and said first counter has said manually activatable means including a first conductor connected to one input of said OR gate and second and third inputs and a manually activatable switch means for connecting said first conductor to either of said first and second inputs, said first input being electrically connected
to another of said output terminals of said first counter and said third input being connected to still another of said outputs of said first counter.

X-RAY TESTING SYSTEM
Jonathan S. Shapiro, Greenwich; Vincent Berluti, Jr., West Haven, both of Conn.; Anthony Pellegrino, Brewster, N.Y., Machlett Laboratories, Inc., Stamford, Conn. Filed Oct. 22, 1976, Ser. No. 734,948

13 Claims

1. A system for testing an X -ray tube comprising
anode current sensing means disposed for electrical connection to the anode of the tube for producing an analog voltage signal representative of
operational interval of the tube;
voltage to frequency converter means connected to the output of the anode current sensing means for producing a train of pulses having an instantaneous frequency proportional to the instantaneous amplitude of the analog voltage signal;
voltage pulse gating means connected to the output of the
voltage to frequency converter means for permitting the voltage to frequency converter means for permitting the
passage of pulses in the train only during the operational interval;
rigger signal means connected to an input of the voltage
gating means for rendering the gating means conductive at the commencement of the operational interval and age gate signal during the entire operational interval and means for prolonging the voltage gate signal beyond the termination of the operational interval; and
oltage pulse counting means connected to the output of the gating means for counting pulses passed through the gat-
ing means during the operational interval and obtaing quantity equivalent to the product of the anode current and the length of time transpired during the operational interval.

STATIC MEANS FOR DETECTING GROUND INSULATION FAILURE FOR ROTARY ELECTRIC H. Buchines

Ce H. Burrus, Jr., Brookfield, Wis., assignor to Allis-Chalmers
Filed Nor. 15, 1976, Ser. No. 742,358
iled Nov. 15, 1976, Ser. No. 742,3
Int. Cl. \({ }^{\text {G01R }} 31 / 02,31 / 12\)
U.S. C. \(324-54\)

2 Claim

1. In combination with a dynamoelectric machine having an electrically grounded rotating shaft with electrical potential enerated therein, a bearing rotatably supporting said shaft on said shaft and said bearing sufficient to cause a voltage potential across said oil film and electrical insulation isolating said bearing from electrical ground said insulation being dividing
 device for detecting electrical potential from said bearing to aid ground which avoids providing a path for current fow wear comprising a voltage sensing means connected across said conductor and said bearing, said voltage sensing means ndicating a change in voltage when there is a condition exposing the unit to an increase in current flow from said bearing to said ground.

4,097,795
ELASTOMER BELT IMPREGNATED WITH CARBON
TESTING DIELECTRIC ADEOUACY AND FOR
INDICATING PHYSICAL DEFECTS IN A
NONCONDUCTING MATERIAL
Robert W. Thompson, Pearland, Tex., assignor to Westinghouse Electric Corp., Pittsburgh, Pa. Division of Ser. No. 603,074, Aug. 8, 1975, Pat. No. 4,010,416.

> This application Sep. 21, 1976, Ser. No. 725,315 U.S. CI. \(324-54\)

1. A belt to be utilized with a high voltage source for testing he Dielectric Adequacy and for detecting flaws in a non-conrounded on oppsite ends and impregnated with particulat onductive material, and a pair of D-shaped rings forming
osition, the D-shaped rings having rounded transitions to provide continuous curved smooth surfaces outside the belt, he belt being folded so that the rounded ends register and the uckle being disposed at the fold, the folded portion being onded together in order to capture in cross-section, the bel and buckle cooperating to produce a smooth tight band around the non-conductive material and prevent corona discharge when connected to the high voltage source.

METHOD FOR TESTING RADOMES
Clarence D. Lunden, Federal Way, Wash., assignor to The Boeing Company, Seattle, Wash.
led Feb. 18, 1977, Ser. No. 769,852
Int. C. \({ }^{2}\) G01R \(27 / 04\)
U.S. Cl. \(324-58\) B

11 Claims

1. A method for determining at a localized area radio-fre quency performance including delamination and/or wate designed to pass electomagnetic waves at a prescribed frequency, said method including the steps of:
illuminating by normal incidence a local radome patch with a sweep-frequency band of microwaves covering at leas one-half octave centered, substantially on said prescribe frequency,
nating and reflected microwaves directed onto and from said local radome patch, respectively,
producing an \(X-Y\) plot corresponding to microwave reflectivity as a function of said microwave sweep-frequency, and
calibrating said X-Y plot with a signal coresponding to the
reflectivity of a dielectric slab, block or a radome patch with known radio-frequency performance.

\section*{4,097,797}

APPARATUS FOR TESTING ELECTRICAL CIRCUIT UNITS SUCH AS PRINTED CIRCUIT CARDS Michel Finet, Soumagne, Belgium, assignor to Burroughs Corporation, Detroit, Mich.

This application Jun, 71, Oct. 17, 1974, abandoned. This application Jun. 7, 1976, Ser. No. 693,595
Int. C. \({ }^{2}\) G01R \(15 / 12\); G06F \(11 / 00\)
U.S. Cl. \(324-73\) R \({ }^{\text {Int. }}{ }^{2}\) G01R \(15 / 12 ;\) G06F \(11 / 0011\) Claims 1. Modular electrical testing apparatus for circuit units hav ing a plurality of connector terminals, comprising:
reference circuit unit engaging terminals of either rerence circuit unit known to be without
production circuit unit to be tested for faults;
B) means enabling said electrical testing apparatus to be operated in
(C) reference pattern generating means effective during said Generation Mode for generating a digital coded reference pattern from said reference circuit unit, said reference pattern generation means comprising:
(i) application means for sequentially applying a series of preselected digital coded test stimuli to a selected termi-
means (ii) means for scanning all of said terminals engaged in said connector means for each said application of said test
stimuli to each of said terminals of said reference circuit (iii) me, said scanned referencin a change in logic state of each of said terminals having a unit terminas and for as a result of said application of said test stimuli; and
(iv) means for designating a part of reference code correD) means for recording said test stimuli said reference circuit unit terminals, said identified terminals having changed logic states, said logic state of each of said identified terminals, and said part reference code of said reference circuit unit; and
(E) testing means effective during said Test Mode for testing said production circuit unit, said testing means comprising: said production circuit unit
(ii) means for sercit unit, corresponding to said desired part referencence pattern corresponding to said desired part reference code;

(iii) means for sequentially applying said test stimuli associated with said selected reference pattern to said terminals of said production circuit unit;
(iv) a plurality of paired first and second flip-flop devices,
each pair of said flip-flop devices being assocised with each pair of said hip-flop devices being associated with a terminal of said production circuit unit and wherein said first flip-flop of said pair is connected to a terminal of said production circuit unit being tested and said second flip-flop of said pair is connected to said applica-
tion means, and wherein said first flip-flop is effective to tion means, and wherein said first fip-flop is effective to
store an indication of a logic state change of its corresponding production unit terminal in response to said application of said test stimuli, and wherein said second nip-flop is effective to store an indication of an expected logic change of said terminal associated with said flipop pair as a result of said application of said recorded test stimuli, and wherein said plurality of pairel hip-fop
devices are disposed on one or more modular circuit cards for insertion into said electrical testing apparatus; (v) means for comparing said stored logic states of said pluality of flip-flop pairs; and
(vi) means for indicating a fault in said production circuit unit being tested when a mismatch between any of said compared flip-flop logic states is present.

OSCILLOSCOPE SWEEP RATE INDICATOR SYSTEM David Harmon Olson, and Eldon Carl Berg, both of Aloh
Oreg., assignors to Tektronix, Inc., Beaverton, Oreg
Fied Feb. 28, 1977, Ser. No.
Int. \(\mathbf{C l}^{2}\) G01H \(23 / 02\)
3 Claims

1. A sweep rate indicator system for indicating the sweep rate of an oscilloscope, comprising
time-base generator circuit having a plurality of selectable fixed and variable sweep rates for providing a time-base ramp signal, said time-base generator circuit including means for generating a gate signal whose pulse widt corresponds to the time period of said time-base ramp signal;
means for generating clock pulses having a predetermined repetition rate;
counter means re
counter means responsive to said gate signal and said clock pulses for providing a count output proportional to the pulse width of said gate signal;
decoder means responsive to said count output for generatof said time-base ramp signal; and
means responsive to said control signal for providing a
digital readout of said sweep rate digital readout of said sweep rate.

4,097,799
TOR INCL
ELECTRICAL INDICATOR INCLUDING RELATIVELY TRANSLATABLE SCALE AND INDEX TAPES Fric K. Thoreon, Seattle, Wash, assignor to Eldec Corporation, annwod

Filed May 20, 1977, Ser. No. 798,817
Int. Cl. \({ }^{2}\) G01R 17/06; G09F 9/00
U.S. C. \(324-99 \mathrm{R}\)

1. In an electrical indicator of the type including a housin having defined therein an elongated window having first and
second ends; a DC torque motor supported within the housing second ends; a DC torque motor supported within the housing and having a drum rotatable in response to an electrical signal a firse having a first end attached to a peripheral surface of the drum; first and second rollers supported within the housing in proximity to the first and second ends of the elongated win dow, respectively; and a spring-biased, rotatable reel sup-
ported within the housing; the first tape passing from its first ported within the housing; the first tape passing from its firs
end in a first circumerential direction around a portion of the end in a first circumerential direction around a portion of the
peripheral surface of the drum, over the first roller, and the over the second roller to terminate in a second end attached to
a peripheral surface of the reel, the reel tending to cause the first tape to translate in a first direction past the window, and the DC torque motor rotating the drum in response to the eectrical signal to tend to cause the first tape to translate in second, opposite direction past the window, an improvement comprising: proximity to the first and second ends of the window and adjacent to the first and second rollers, respectively; second elongated tape having a plurality of spaced scale markings located thereon, a first end of said second tape that said second tape lies on the peripheral surface of the drum in spaced parallel relationship to the first tape, said second tape passing around a second portion of the pe ripheral surface of the drum in a second circumferential direction, opposite to the first circumferential direction,
over said third roller, and then over said fourth roller to over said third roller, and then over said fourth roller to
terminate in a second end attached to the peripheral sur face of the drum at a location adjacent said primt end of said second tape; and, means for tensioning said second tape as it passes around and over the drum and said third and first and second directions past the window as the first tape translates in the second and first directions past the window, respectively, in response to the forces exerted on the first tape and said second tape by the DC torque moto and the spring-biased reel.

4,097,800
ohn Kuchmas, Jr., Kearny, and Gary E. Bubb, Hackettstown, both of N.J., assignors to The United States of America as represented by the Secretary of the Army, Washington, D.C Filed Jan. 12, 1977, Ser. No. 758,62
US. Cl. 324-178 Int. Cl. \({ }^{2}\) G01P 3/
2 Claims

1. A laser screen apparatus for measuring the velocity of a
laser means for generating a monochromatic light bean which includes
laser having a light source emitting at a wavelength of 6328 angstroms;
a power supply electrically coupled to said laser for stimulating said laser to emit said monochromatic light beam; detector means for sensing the presence of said monochromatic light beam of said laser means and generating an utput signal in res photodiode operati
cept said monochromatic light beam being reflected
from a reflecting means, said photodiode having an with said variable oscillator to adjust said oscillator delay
output electrically connected to a counter means; and increments in order to locate said highest counting rate at
output electrically connected to a counter means; and
a narrow band pass optical filter positioned in front of said a narrow band pass optical filter positioned in front of said
photodiode for filtering out all other wavelengths of visible light;
said counter means having an input electrically connected to said detector means for counting the time interval between launch of said projectile and to indicate the inter-
ruption of said monochromatic light beam by said projectile;
means for generating an initial triggering pulse for initiating
said counter means when said projectile is launched, said counter means when said projectile is launched, said
counter means indicating the elapsed time, from launch to screen interception, that said projectile takes to travel a fixed distance from launch to said laser screen, said velocity being proportional to said elapsed time, and which may
be determined by dividing said fixed distance by said be determined by dividing said fixed distance by
elapsed time measured by said counter means; and
said reflecting means positioned intermediate said means and said detector means for successively reflecting
said monochromatic light beam back and forth to form a said monochromatic light beam back
vertically disposed light grid network.

4,097,80
CROSS-CORRELATOR CIRCUIT
David Lewis Freeman, Bridgenorth, and Ralph Seymour Flemons, Peterborough, both of Canada, assignors to Canadian General Electricic Company Limited, Toronto, Canada Filed Mar. 15, 1977, Ser. No. 777,769 Claims priority, application Canada, Apr. 1, 1976, 249394 U.S. CI. 324-188 Int. CI. \({ }^{2}\) Go4F \(8 / 00 \quad 9\) Clàms

1. A cross-correlation analyser comprising: quantizing means for quantizing a first random modulated signal and a second similarly modulated signal having an unknown lapsed
time interval from said first signal; variable oscillator delay means for delaying said quantized first signal by a succession of equal time delay increments to provide a series of delayed quantized versions of said first signal in time overlapped rela-
tion with said second quantized signal; a plurality of first comtion with said second quantized signal; a plurality of first comparison means each receiving a respective said delayed first
quantized signal of said series and said second quantized signal, to simultaneously compare individual ones of said first series of delayed quantized signals with said second quantized signal; a plurality of counting means each connected to a respective said
comparison means, the individual average counting rate of said counting means being a measure of the degree of coincidence between the respective first and second quantized signals; signal overflow detection means for determining which said counting means has the highest rate; signal responsive servo predetermined one of said counting means, and oscillator read out means to provide a function of said oscillator frequency as an inverse function of said lapsed time interval.

4
MAGNETORESISTIVE FIELD SENSOR WITH A RESPONSE AT FIELDS BELOW SATURATION OF THE SHIELD
Nickolas Joseph Mazzeo, Mahopac, and David A. Thompson, Somers, N. Y, assignors to International Business Machines Corporation, Armonk, N.Y.
U.S. Cl. 324 Int. Cl. \({ }^{2}\) G01R 33/02
U.S. Cl. 324-252

16 Clim

15. Magnetic apparatus including a magnetoresistor senso for sensing a magnetic field and said sensor having a first level of permeance,
magnetic field source located in a predetermined po magnetically saturable shielding body of material having substantially higher level of permeance juxtaposed wit said sensor and being designed and located between said
sensor and said source to absorb substantially all of smaller magnetic fields from said source for shielding said field from reaching said sensor whereby the resistance of said sensor stripe remains substantially constant below mag netic saturation HSAT of said shielding stripe and varies significantly above that value, and
said magnetic field source being juxtaposed with said senso and said shielding body, said source being adapted to vary the magnetic field about said sensor and said shielding body above and below the saturation level of said body, said magnetoresistive sensor comprising a thin film strip deposited upon one side of a thin film of a substantiall
non-magnetic material with said shielding non-magnetic material with said shielding body of mag
netic material comprising a layer on the other side of said non-magnetic material.

4, 4,007803
BatTERY SELF-DISCHARGE INDICATOR
Siva Feldman, Ottawa, Canada, assignor to Her Majesty the Queen as represented by the Minister of National Defence of Filed Oct. 26, 1976, Ser. No. 735,820 Filed Oct. 26, 1976, Ser. No. 735,820
priority, application Canada, Apr. 30, 1976, 251571 U.S. CI. 324-29.5 10 Claims 1. A method for detecting electrical leakage between elec rodes in an electrochemical cell, comprising the steps of: charging the cell to a fully charged condition storing the cell on open circuit for a predetermined period to
permit at least partial dissipation of the full charge due to
said leakage;
recharging the cell to an onset of gassing condition;

measuring the duration of recharge to achieve said gassing condition; and
cell to ascertain then with a like parameter of a refernce cell to ascertain the presence of said leakage.

\section*{4,097,804}

TRANSMITTING AND RECEIVING DIVERSITY SYSTEM Masahisa Yamaguchi, Tokyo, and Tatsuo Watanabe, Mitaka, both of Japan, assignors to Kokussi Denshin Denwa Kabushiki Kaisha, Japan
Claims priority, applicatiti. U.S. Cl. 325-15 Int. Cl. \({ }^{2}\) H04B \(1 / 06\), 5 Claims

3. In a diversity communication system which receives a plurality of analog signals having the same waveform, relatively shifted in phase, and which are received over different signal paths, and which rannsmits a pluraity of analog signals having the same waveform over the same signal paths that the receive
plied ther means for combining analog signais applied thereto;
means for applying one of the received analog signals to said signal combining means;
controllable variable delay means responsive to a control
signal and receptive of the remaining received analog signal and receptive of the remaining received analog
signals for delaying the remaining received analog signals by respective delay times determined by the control signal and for applying the respective delayed
signals to said signal combining means;
phase measuring means for measuring phase differences
phase measuring means for measuring phase differences
between the recẹived analog signal applied directly to said combining means and the respective delay received analog signals and for applying a control signal to said con-
trollable delay means for varying the respective delay trollable delay means for varying the respective delay meduce to negligible values the phase differences between the received analog signal applied directly to said signal
combining means and the respective delayed received analog signals applied to said signal combining means; switching means receptive of an analog signal to be transmit ted for switching the same between the different signa paths over which the received analog signals are received be transmitted for delaying the same and for applying the delayed analog signal to be transmitted to the signal path over which the received analog signal applied directly to said signal combining means is received; and means for applying the remaining analog signals to respec tive ones of the other signal paths.

FREQUENCY-SYNTHESIZER TYPE TRANSCEIVER Motoyuki Fujili; Koji Yokota, and Hajime Yashita, all of Tokyo, Japan, assignors to Torio Kabushiki Kaisha, Tokyo, Japan Flaims priority, Jun. 14, 1976, Ser. No. 695,397 U.S. CI. 325-17

1. A phase-locked loop circuit for a frequency-synthesizer ype transceiver comprising
(a) an oscillator for producing a reference frequency,
(b) a voltage controlled oscillator for producing an output frequency,
(c) a first oscillator circuit for producing a designated fre(d) first combining means for combining the output fre quency with the designated frequency and forming a firs mixed frequency,
(e) a second oscillator circuit for producing a carrier frequency,
second combining means for combining the carrier fresecond mixed frequency,
(g) comparing means for comparing the phases of the second mixed frequency and the reference frequency and producing a comparison signal, and
h) the voltage-controlled oscillator being connected to the comparing means for receiving the comparison signal, whereby said signal regulates the output frequency pro duced by the voltage-controlled oscillator.

ADAPTIVE EQUALIZER WITH IMPROVED DISTORTION ANALYSIS John Brian Evans, Plano, Tex., assignor to Xerox Corporation, Stamford, Conn.

Mar. 31, 1976, Ser. No. 672,108
Int. C.
.S. Cl. 325-42 Int. C. \({ }^{2} \mathbf{H 0 4 B} 1 / 12\)
14. In a receiving terminal for an analog data cor 21 Claims system which relies on a limited bandwidth, switched transmis lated, passium for supplying said receiving terminal with a mod gree of transma input signal suffering from an unknown degree of transmission distortion; \(\square-2\)
said input signal including a series of lest pulses during a predetermined equalizer adjustment period; and said receiving terminal including means for demodulating
said input signal, whereby a baseband version of said training pulses is recovered:
the improvement comprising
an adaptive equalizer having a plurality of available set.


tings, said equalizer being connected to feed said input signal to said demodulating means; and and said equalizer for ween said demodulating means and equalizer for identifying and selecting the seling which causes said equalizer to best compensate for said rransmission distortion on he basis of only one to the baseband version of said test pulses.

\section*{4,097,807}

AUTOMATIC EQUALIZING METHOD AND SYSTEM Noriaki Fujimura, Tokyo, Japan, assignor to Fujitsu Limited, Kawasaki, Japan
Claims priority Dec. 29, 1975, Ser. No. 644,507
\(\begin{array}{ll}\text { Claims priority, application Japan, Dec. 27, 1974, } & \text { 50-1303 } \\ \text { Int. C. }{ }^{2} \text { H04I 27/18 } \\ \text { U.S. CT. 325-42 } & 19 \text { Claims }\end{array}\)
U.S. C1. 325-42

19 Claims

1. Apparatus for use at the receiving terminal of a suppressed carrier data communications system, receiving transmitted
data signals over a transmission channel, for automatically compensating for static transmission channel characteristics,
and for dynamic cariations in the amplitude and phase characand for dynamic variations in the amplitude and phase characing: data signals from the transmission channel, said transversal filter having a controllable transfer function, and an output for data signals as modified by said transfer func-
tion;
dynamic compensating means operatively connected to said dynamic compensating means operatively connected to said
output of said filter for correcting distortion of the modioutput of said filter for correcting distortion of the modi-
fied data signals caused by the dynamic variations in the
amplitude and phase characteristics of the locally generated carrier, said dynamic compensating means hav ing controllable compensating characteristics and having
an output for providing distortion corrected data signals decision means having an input and an output, with saic input connected to the output of said dynamic compensat ing means, said decision means responding to the distor tion corrected data signals from said dynamic compensat ing means for producing a digital output representation error signal generating means connected to said input and said output of said decision means for producing an error signal proportional to the difference between the signals appearing at said input and said output of said decisio means;
processing means connected to said decision means and to
said error signal generating means, and responsive to said said error signal generating means, and responsive to said
output of said decision means and to said error signal fo processing the error signal to produce a first control signa representative of only the data signal distortion due to the static transmission channel characteristics, and a second tion due to the dynamic locally-generated carrier charac teristics;
first control means operatively connected to said transversal filter, to said processing means, and to said error signal generating means, and responsive to the first control sig-
nal and to said error signal for varying said controllable transfer function of said filter to minimize the error signal, thereby substantially correcting the distortion of the data signals due to the static characteristics of the transmission channel, and
second control means operatively connected to said dy
namic compensating means and to and responsive to the second control signal for varyin said controllable compensation characteristics of said dynamic compensating means to minimize the error sig nal, thereby substantially correcting the distortion of the data signals due to the dynamic teristics of the locally-generated carrier

4,097,808
ENTERTAINMENT SYSTEM AND METHOD Harry George Parke, Brooklyn, N.Y., assignor to Marine Ele tric Corporation, Brooklyn, N.Y.
Filed Apr. 2, 1976, Ser. No. 672,950
\begin{tabular}{c} 
Filed Apr. 2, 1976, Ser. No. 672, \\
Int. C1. \({ }^{2}\) H04B \(7 / 00\) \\
\hline
\end{tabular}
U.S. CI. 325-51

1. A system for providing entertainment and/or information oo automobile vehicles having radio receivers and receiving aerials, travelling along a roadway, comprising, an antenna comprised of two parallel conductors strung adjacent to said
roadway and parallel to the direction thereof, transmitter means for exciting said two conductors with a modulated radio frequency signal within 550 to 1650 Khz broadcast band so that each vertical slice through said antenna is effective as a dipole said transmitter means being adjusted to excite said antenna
weakly enough so that the radiated signal is negligible beyond Ted dignals caused by the dynamic variations in the weakly enough so that the radiated signal is negligible beyond
short distances from said roadway so as not to interfere with ordinary broadcast reception, but strongly enough so that said vehicles, which are substantially closer than a wavelength's distance from said antenna, and within the near field region thereof, receive useful signals, said conductors being vertically said roadway being part of a road which has a divider for separating said roadway and another roadway, said roadways accomodating travel in opposite directions, and said antenna being along said divider at the height of an average automobile being along said
vehicle aerial.

PHASE LOCKED LOOP TUNING SYSTEM WITH A PRESET CHANNEL MEMORY

\section*{elix Aschwanden, Thal will, Switzeriand, assignor to RCA Cor} poration, New York, N.Y.
Filed Apr, 26, 1977, Ser. No. 790,863 Claims priority, application United Kingdom, Oct. 27, 1976, 44661/76

\section*{Int. Cl. \({ }^{2}\) H04B \(1 / 16\)}
U.S. Cl. 325-453

可苌


LOCAL EVENT BROADCAST SYSTEM Albert J. Miller, Campbell, Calif., assignor to Engineering Sys tems Corporation, Santa Clara, Calif. Filed Sep. 1, 1976, Ser. No. 719,60
Int. C.' \({ }^{2}\) H04B 3/60, 7/20 U.S. C. 325-54


A method of providing program coverage only within the 8. A meth main event, with various programs different each other and relating to sub-events of the main event, comprising the steps of: assembling and radio broadcasting the plurality of programs at corresponding plural different frequencies from a central location; separately receiving each of the different frequency radio broadcasts from the central locations within the locality of the main event, so that at each relay location only one program of the plurality of programs broadcast from the central location is received; at each of the relay locations, radio broadcasting, respectively, the program received at the relay location at a low power only covering the area of the sub-event location; providing a plurality of mobile
spectators within each sub-event location with portable radio spectators within each sub-event location winh portable radio
receivers tunable to the low power radio broadcast from the relay location within the respective sub-event location so as to receive only the program relating to such sub-event.
1. An apparatus for tuning a receiver to receive any one of plurality of radio frequency carriers, comprising:
a plurality of passive timing means corresponding a plurality of passive timing means corresponding to respec monostable multivibrator means for generating a program ming signal;
program selection means for selectively coupling one of said nostable multi-
ming signal; means for generating a local oscillator signa having a frequency determined in response to a contro signal;
anter means for counting to a fixed number \(\mathbf{K}\) response to a signal coupled to it;
second counter means for counting to a programmed num ber \(M\) of signal cycles determined in response to the dura tion of said programming signal in response to a signal coupled to it;
input switch means for selectively coupling said local oscil-
lator signal to said first and second counter means lator signal to said first and second counter means in
accordance with the number of cycles accumulated by said first and second counter means, one of said first and second counter means developing an output signal having
a period directly related to the period of said local oscillaa period directly related to the period of said local oscilla
tor signal by a factor \(N=K+M\), said input switch mean trabling storage of said programmed number \(M\) in said second counter means development during said outpu signal; and
hase compara
phase comparator means for generating an error signal rep-
resenting the phase and frequency deviations between reference frequency signal and said output signal and developing therefrom said control signal for said local oscillator means.

RADIO WITH AUTOMATIC SCAN TUNING Lee Hullinger, Jr. Greentown, and Leo E. Noble, Russiaville. both of Ind., assignors to General Motors Corporation, \(D\) troit, Mich. Filed Mar. 2, 1977, Ser. No. 773,384 Int. CI. \({ }^{2}\) H04B \(/ / 32\) U.S. C. \(325-470\)
g power tuning means and \(\quad 3 \mathrm{C}\) i. In a racio having pow frequency signal for means responsive to a received radio frequency signal for generating a latching switch having a sweep position and being e tive in said sweep position to activate the power tuning
means to sweep through a range of frequencies within a
frequency band and further having a stop position and frequency band and further having a stop position and
being effective in said stop position to deactivate the being effective in said stop position to deactivate the
power tuning means to remain tuned to a single radio frequency, the latching switch being characterized by a time delay in latching in the sweep position;
circuit means responsive to the on-station signal for switch-
ing the latching switch to its stop position,
first means for switching the latching switch to its sweep first means for switching the latching switch to its sweep
position to thereby initiate a sweep of the power tuning means;
second means manually activatable to disable the first mean
whereby the radio remains tuned to a single radio fre quency;

third means responsive to the latching switch in its stop position to activate the first means, if not disabled, after a first predetermined time delay of sufficient length to per-
mit recognition of a received radio signal and activation of mit recognition of a received radio signal and activation of
the second means; fourt means respons
position to deactivate the first means after a second predeposition to deactivate the first means after a second prede-
termined time delay of just sufficient length to ensure latching of the latching switch in its sweep position,
whereby the power tuning means resumes sweeping whereby the power tuning means resumes sweeping
through the range of frequencies after stopping at each received radio frequency signal, until the second means is activated.

FREQUENCY SELECTIVE DETECTOR CIRCUIT Theodore S. Rzeszewski, Lombard, III., assignor to Matsushita Electric Corporation, Franklin Park, III.

Hed Jul. 25, 1977, Ser. No. 818,65
U.S. CI. 328-138

1. A frequency selective detector system including in combiation:
first means having an input and an output for measuring an interval between pulses applied to the input thereof and providing a first output state on the output thereof when he incerval between such input pulses is less than a first predetermined amount and providing a second output such input pulses is more than said first predetermined
amount; ; hand having an input connected to the output or said first means for measuring an interval between input pulses applied thereto and responsive to the output state of
said first means to provide a first output state on the output thereof whenever the interval between successive
tainments of the second output state of said first means is less than a second predetermined amount and providing a successive output state whenever the time interval between first means is more than said second predetermined amount; and
means for supplying input pulses to the input of said first means.

\section*{4,097,813}

CARRIER WAVE RECOVERY CIRCUIT Susumu Otani, and Toshitake Noguchi, both of Tokyo, Japan, assignors to Nippon Electric Co., Ltd., Tokyo, Japan Claims priority, application Japan, Jun. 8, 1976, 51-67329
U.S. Cl. 329 - 104

\section*{PUSH-PULL POWER AMPLIFIER}

Marvin Cohn, Baltimore, Md., assignor to Westinghouse Elec tric Corp., Pittsburgh, Pa. Int. C1.2 H03F \(3 / 26\)
U.S. CI. \(330-286\)

1. A push-pull power amplifier comprising:
a first and second tee shaped slot line hybrid component each having a first, second and third arm,
said first and second arms of said first and second hybrid component arranged to conduct anti-phase waves on said respective arms derived from a wave on said third arm, a first and second transistor each having a gate, source, and drain,
said gate and source of said first transistor coupled across said first arm of said first hybrid component, said gate and source of said second transistor coupled across said second arm of said first hybrid component,
said drain and source of said first transistor coupled acros said first arm of said second hybrid component, said drain and source of said second transistor coupled means for coupling said source of said first and second tran sistors together,
sistors together,
means for coupling an input signal on said third arm of said first hybrid component, and
means for coupling an output signal from said third arm of said second hybrid component.

\section*{4,097,815}
1. A circuit for extracting a carrier wave from a doublebinary PSK signal input which includes a clock frequency amponent, said circuit comprising: PSK signal input:
second frequency first frequency doubler connected to the output of said said PSK signal input
\({ }^{a}\) first band-pass filter for deriving from the output of said first frequency doubler a signal having a line spectrum at the frequency \(2 \mathrm{fc}+\mathrm{fs}\), wherein fc is the frequency of said carrier wave to be recovered and is is the frequency of said clock frequency component;
a second band-pass filter for deriving from the output of said first frequency doubler a signal having a line spectrum at the frequency \(2 \mathrm{fc}-\mathrm{fs}\);
first band-pass filter with a clock frequency signal having the same frequency as and being in-phase with said clock frequency component, said first mixer means to mix said output of said first band-pass filter and said clock frequency signal in such a manner as to generate an output
signal containing a line spectrum at the frequency 2 fc; a second frequency mixer means for mixing the output of said second band-pass filter with said clock frequency signal, said second mixer means to mix the output of said second band-pass filter and said clock frequency signal in such a manner as to generate an output signal containing a line spectrum at the frequency 2 fc ;
said first and second frequency mix a third frequency doubler connected to the output of said first signal combiner;
a second signal combiner for combining the outputs of said second and third frequency doublers;
carrier wave synchronizing circuit for deriving a synchrosignal combiner circuit.
which varies with frequency, such as a video amplifier circuit for a television receiver, said amplifier circuit comprising: a first amplifier element (61) such as a transistor, having input and output terminall, and having an output impedance which is substantially within the frequency range value of said load impedia amplifier circuit;
of the signals fed to said means for connecting said first amplifier output to said user load impedance;
a second amplifier element (85) such as a transistor, having input and output terminals;
means for connecting said second amplifier output terminal to said first amplifier input terminal;
minal of said element connected between the output terment of said second amplifier element; and
in 59 said second amplifiter element; and to the output ected to the input of said first amplifier and sation of said first amplifier for temperature varierions.

\section*{4,097,816}

TUNING SYSTEM
Kazuyoshi Imazeki, and Koichi Kızami, both of Tokyo, Japan, assignors to General Research of Electronics, Inc., Tokyo, Japan

Filed Jul. 20, 1977, Ser. No. 817,367
U.S. C. 331-2 Int. C. \({ }^{2}\) H03B 3/04 6 Claims

1. A system for generating a plurality of preselected frequenating a first reference signal having a predetermined frequency; means, including at least two controllable variable-frequency oscillators, a mixer, a programmable frequency divider, and a switch, for generating a second reference signal, with said mixer being coupled to said first reference signal generating means and being selectively coupled to one of said variable-frequency oscillators by said switch to generate an output signal having a rrequency corresponding to the difference between said selected variable-frequency oscillator; means coupled to said first reference signal generating means and to said second reference signal generating means and including said programmable frequency divider for comparing said first and second reference signals and ceveloping a control signal which varics between said first and second reference signals, with said control signal being applied to both said controllable variable-frequency oscillators to vary the oscillation frequencies thereof untir the frequency of said second reference signal is substantially equal to the predetermined frequency of said first refer ence signal, whereby the output signal of the selected controlcorresponds to one of the plurality of predetermined receiver frequencies as selected by both the programmable frequency divider and the controllable variable-frequency oscillator selected by the switch.

CYLINDRICAL CAVITY POWER COMBINER FOR PLURALITY OF COAXIAL OSCILLATORS Glenn R. Thoren, Norwood; James L. Lampen, Burlington, and George Jerinic, Acton, all of Mass., assignors to Raytheon Company, Lexington, Mass.

Filed Jun. 30, 1977, Ser. No. 814,745
Int. Cl.'2 H03B 7//14, 9/12
U.S. CI. 331-56

3 Claims

1. An improved power combiner for radio frequency energy utilizing the combination of a cylindrical cavity with a plural.
ity of coaxial oscillators coupled to such cavity around the ity of coaxial oscillators coupled to such cav
periphery thereof, such combiner comprising:
periphery thereof, such combiner comprising:
(a) a cylindrical cavity dimensioned to resonate at a prede-
termined frequency in the \(\mathrm{TM}_{01 N}\) mode of oscillation,
termined frequency in the \(\mathrm{TM}_{01 N}\) mode of oscillation, where \(\mathbf{N}\) is an integer;
(b) a plurality of coaxial oscillators disposed in a coupling relationship with the cylindrical cavity about the periph-
ery thereof, each one of such oscillators including a first ery thereof, each one of such ocsillators including a first
and a second length of coaxial line having different radii and the same characteristic impedance, such first and second length being separated by a coaxial matching
section. section.

ADJUSTABLE ETALON LASER MODE SELECTOR AND METHOD OF ADJUSTMENT
Nubar Sahag Manoukian, San Jose, and Thomas Frazier Johnstarn, J.r., Sunnyvala, , both of Calif., assignors to Coherent,
Inc., Palo Alto, Calif.

Filed Sep. 3, 1976, Ser. No. 720,198
U.S. C. 331-94.5 C I. Cl. \({ }^{2}\) H01S \(3 / 082\)

angle relative to said cavity optical axis that is generally equal to Brewster's angle for the laser nominal wave equal th and
means for selectively adjusting the spacing between said prisms while maintaining the resonant frequency of the laser cavity and etalon combination remains substantially constant during said adjustment of said prism spacing, whereby different modes of the operating wavelength
spectrum of the laser may be selected for output without spectrum of the laser may be selected for output withour
such adjustment modulating the natural resonant frequency of the cavity and etalon combination.

4,097,819
SEMICONDUCTOR LASER
David W. Bellavance, Dallas, Tex., assignor to Texas Instruments Incorporated, Dallas, Tex.
sion of Ser. No. 645,773, Dec. 31, 1975, abandoned. This application Feb. 25, 1977, Ser. No. 771,866
U.S. Cl. 331-94.5 H
1. A semiconductor I-bar mesa laser on a semiconductor abstrate comprising:
an elongated central member having a longitudinal axis; and crar integral with each end of said central member and perpendicular to said longitudinal axis; and said facets being parallel ach end of said central member, said facets being parallel to one another and perpendicular mirrors of a longitudinal lasing cavity of said central member.

4,097,820
LASERS
Roland John Hill, Quarndon; Robert Bryn Price, Burton-onTrent, and Norman Thomas Jewell, Countesthorpe, all of England, assignors to Rolls-Royce Limited, London, England Continuation of Ser. No. 576,542, May 12, 1975, which is a
continuation-in-part of Ser. No. 325,832, Jan. 22, 1973, continuation-in-part of Ser. No. 325,832, Jan. 22, 1973, Claims priority, application United Kingdom, Jan. 26, 1972, 3801/72
U.S. Cl. 331-94.5 G
\(G^{\text {Int. }}\)
Cl. \({ }^{2}\) H01S \(3 / 02\)
means for supplying an explosive mixture to said detonation channel;
means for igniting said mixture to excite at least one detona tion wave into circulation around said circuit, the ignitio of said mixture producing detonation gases containing lasing species;
wave for at least one said circulation of said detonaio exhaust means for continuously exhausting said detonation gases from said channel, said exhaust means including supersonic expansion slit nozzle means for producing population inversion in said lasing species of said detona
tion gases, said slit nozzle mata tial proportion of the length of said linear portion of sai detonation channel circuit; an
laser resonator means receiving said detonation gases from said slit nozzle means for producing lasing in said lasing
species, said laser resonator means having at least on spectes, saxid oriented to extend meanstantially parallel to the
opter optical axis oriented
lateral extent of said slit nozzle means.

COAXIAL LINE IMPATT DIODE OSCILLATOR COAXIAL LINE IMPATT DIODE OSCLLLATOR James L. Lampen, Burlington; George Jerisc, Acton, and Glenn Company, Lexington, Mass.

Filed Jun. 30, 1977, Ser. No. 814,741
U.S. Cl. 331-101
t. Cl. \({ }^{2}\) H03B \(7 / 14,9 / 12\)

3 Claims


5imate max
having a selected thickness and length and located in the cavity so that the distance between the leftmost edge of the element and the end of the plunger positioned at the low frequency end of the frequency range is substantially
equal to the distance between the right-most edge of the

element and the end of the plunger positioned at the high frequency end of the frequency range, for providing uni ormity in variation of capacitance between the coupling element and the plunger as the plunger is moved; and signal produced therein to an output.
\(4,097,823\)
RANSMITTER WHEREIN OUTPUTS OF A PLURALITY OF PULSE MODULATED DIODE OSCILLATORS ARE Ceorge Jerinic, COMBINED George Jerinic, Acton; Glenn R. Thoren, Norwood; Francis J of Mass., assignors to Reytheon Company, Lexington, Mese. exington, Mass. U.S. CI. 332-9 \(\mathrm{R}^{\text {Int. C1. }{ }^{2} \text { H03K 7/08 }}\)
1. In a diode oscillator wherein an IMPATT diode is electrically connected between a center conductor and an outer conductor at a first end of a length of coaxial line and is biased through the center conductor, a termination load is disposed between such center conductor and such outer conducto adjacent a second end and an output port is formed through the outer conductor intermediate the IMPATT termination load, the improvement comprising:
(a) a first impedence transformer integrally mounted with the IMPATT diode;
(b) a second i mpeden
conductor between the IMPATT diode and the outpu conductor between the IMPATT diode and the outp
port and slidably engaging the outer conductor; and
(c) means for applying a bias voltage through the center conductor and, simultaneously, for adjusting the position of the second impedance transformer relative io the firs impedance transformer and the output port

BROAD-BAND CAVITY-TUNED TRANSISTOR OSCILLATOR
Robert Joly, Palo Alto, Calif., assignor to Hewlett-Packar Company, Palo Alto, Calif.
Continuation-in-part of Ser. No. 713,007, Aug. 9, 1976, Continuation-in-part of Ser. No. 713,007, Aug. 9, 1976, Int. C. \({ }^{2}\) H03B 5/18, \(7 / 06\)
U.S. Cl. \(331-101\) oscillator comprising:
1. An oscillator comprising:
a cavity structure having a translationally movable tuning plunger disposed therein;
plunger disposed meren, ment disposed within the cavity structure for producing
mes ment disposed within the cavity structure for producing a
signal having a selected frequency within a frequency range of substantially one octave, the coupling element

1. A transmitter for radio frequency energy wherein pulses of radio frequency energy from each one of a plurality of diode oscillators are combined, the frequency of such pulses being determined by the frequency of a continuous wave signal out of a crystal-controlled oscillator, and the length and pulse
repetition interval between such pulses being deternined by periodic signals from a modulator, such transmitter comprising:
) the first combination of a first resonant cavity and at leas one diode oscillator coupled thereto, such first combina the crystal oscillator and to the periodic signals out of the modulator to amplify, periodically, the continuous wave signal; and
) the second combination of a second resonant cavity and the plurality of diode oscillators, such second combination being responsive to the amplified portions of the contin
ous wave signals out of the first combination and to the periodic signals out of the modulator to combine the
1. An adjustable etalon mode selector mounted within the optical cavity of a laser, said etalon comprising
pair ofy with the laser beam passing therethrough, each said prism having a first surface facing outwardly of said etalon and inclined at a slight angle to a normal to said optical axis, and each said prism having a second surface optically
adjacent and spaced from the second surface of the other said prism, each said second surface being inclined at an

1. A detonation powered gas dynamic laser comprising: circuitous detonation channel having at least one substan tially linear portion in the circuit thereof;
amplified portions into pulses of radio frequency energy to be transmitted.

\section*{4,097,824}

VARIABLE EQUALIZER
Kohei Ishizuka; Yasuhiro Kita, both of Hachioji; Yoshitaka Takasaki, and Junichi Nakngawa, both of Tokorozawa, all of Japan, assignors to Hitachi, Ltd., Japan Claims priority, application Japen, Mar. 1, 1976, 51-21144
U.S. CI. 333-28 R Int. C. \({ }^{2} \mathrm{H} 03 \mathrm{H} 7 / 14\)
energy along a propagation path in response to an electri cal input signal;
. tapping means, including at least two spaced double electrode tapping transducers, disposed on said surface in said propagation path each for extracting a selected portion
said propagating surface acoustic wave energy; and d. suppression means, including a grooved element array disposed in said surface between said tapping transducers, for reducing acoustic wave reflections at desired frequencies within a desired passband and suppressing spurious signals produced thereby.

4,097,827 DIODE WITH ATTENUATOR
Mark R. Williams, West Melbourne, Fla., assignor to The United States of America as represented by the Secretary of the Air Force, Washington, D.C
\[
\begin{aligned}
& \text { Filed Feb. 4, } 1971, \text { Ser. No. } 765,711 \\
& \text { Int. Cl. }{ }^{2} \text { H3H } 7 / 24
\end{aligned}
\]
U.S. CI. 333-81 R

1. A constant impedance, constant phase PIN diode variable attenuator being comprised of a first PIN diode pi pad, having a RF input terminal, a second PIN diode pi pad having an output terminal and in series with said first PIN diode pi pad, the cross section of the apertures and tapering conically away output terminal and in series with said first PIN diode pi pad, the cross section of he aperures and
said first and second PIN diode pi pads comprising three di- from the back side of the front plate.
odes each and sharing a common diode, and a control voltage pads for variation of attenuation thereof.

4,007,826
INSULAR WAVEGUIDE RING RESONATOR FILTER
Robert M. Knox, La Grange, and Peter P. Toulios, Westchester Robert M. Knox, Li Grange, and Peter P. Toulios, Westchester,
both of Ill., assignors to Epsilion Lambda Electronics Corp., Batavia, III.

This application Now, Jun. 30, 1975, Pat. No. 3,995,23 Int. Cl. \({ }^{2}\) H01P \(1 / 20\) U.S. Cl. 333—73 R

16 Claims

SURFACE ACOUSTIC WAVE TAPPED DELAY LINE Henry M. Gerard, Capistrano Beach, Calif., assignor to Hughe Aircraft Company, Culver City, Calif. Filed Jan. 5, 1977, Ser. No. 757,128 Int. C.2. \({ }^{2} \mathbf{H 0 3 H} 9 / 30,9 / 26,9 / 32,9 / 02\) U.S. CI. 333- 30 R

5 Claims

1. A surface acoustic wave tapped delay line, comprising a. a substrate of material having a planar surface capable supporting propagating surface acoustic wave energy; input means incluaing an input transducer disposed on the guide
said substrate surface for launching surface acoustic wave waveguide.
1. A variable equalizer comprising:
first series circuit of a first input A.C. signal voltage source circuit and a first impedance circuit; and
second series circuit of a second signal voltage source
circuit and a second impedance circuit, said sece voltage source circuit having a voltage which is propor tional to a product of the A.C. voltage of said first input signal voltage source circuit and the square of the recipro
cal of the impedance of said first cal of the impedance of said first impedance circuit; said first and second series circuits being connected in para
lel with each other.
input means including an input transducer dispos first length of waveguide is other than an integral multiple of
1. An insular waveguide band reject ring resonator filter fo use in the frequency range from about 1 GHz to about 1,000 Ho comprising a conductive image plane, a first length o elongated high permittivity dielectric waveguide of finite cross
section arrged in a closed ring form and disposed adjacent to said conductive image plane, a second length of elongated high permittivity dielectric waveguide of finite cross section dis posed adjacent to said conductive image plane and spaced from first length of waveguide to provide a coupling region herebetween, and a thin film of synthetic organic resin dis aid lengths of waveguide and extending laterally thereof, said hin film being low loss in character and having a low permitvity compared with that of said lengths of waveguide, said second length of waveguide having an inlet port at one end of said coupling region and spaced away from said first length of
waveguide a distance substantially greater than the distance waveguide a distance substantially greater than the distance said second length of waveguide having an outlet port at the other end of said coupling region and spaced from said first ength of waveguide a distance substantially greater than the distance between said lengths of waveguide in said coupling region, said filter rejecting and blocking passage of energy
from said inlet port to said outlet port when ery of said first length of waveguide is an integral multiple of the guide wavelength of the energy in said first length of waveguide, said filter permitting passage of energy from said net port to said outlet port when the mean periphery of said
 -

TUNING UNIT WITH BANDSWITCH FOR HIGH FREQUENCY RECEIVERS
Martin Hindermayr, Aying, and Ferdinand Wagner, Munich, both of Germany, assignors to Wilhelm Ruf KG, Munich, Germany
Claims priority, application Germany, Nov. 6, 1975, 254978 US. C. \(334-1\) Int. Cl. \({ }^{2}\) H03J 5/32 application Germany, N
Int. Cl. \({ }^{2}\) H03J \(5 / 32\)

12 Claims
1. Tuning unit with bandswitch for high frequency receivers having potentiometer means for the control of capacity diodes composed of a plural moved by means of screw tuning spindle eans mounted beside one another in a common housing of insulating material, bandswitch means formed of metal wires associated with each tuning spindie means, said tuning spindle means being joined for rotation with sleeve means simultaeusly front plate and each sleeve means having an axial flange
surface engaging the back side of the front plate about one surface engaging the back side of the front plate about one
aperture therein, said flange surface being slightly larger than


4,097,829
THERMOELECTRIC COMPENSATION FOR VOLTAGE CONTROL DEVICES
Leonard D. Cohen, Brooklyn, N.Y., assignor to Cutler-Hammer, Inc., Milwaukee, Wis.

Filed Feb. 14, 1977, Ser. No. 768,480
U.S. CI. 334-15 Int. C. \({ }^{2}\) H03J \(3 / 0\)

\section*{9 Claims}

1. A device for compensating a thermally produced shift in the tuning characteristic of voltage controlled frequency tun(a) Sents comprising
(a) a Seebeck effect device with a voltage-temperature characteristic to produce a control correction voltage with a magnitude substantially equal to the thermally induced
(b) means for thermally connecting element,
said tuning element to cause the Seebeck device to erperience substantially the same temperature change as the tuning element, and
(c) means for electrically connecting said Seebeck device to the control voltage circuit of said tuning element in voltshift to cancel the effect of said thermally induced shift in the tuning characteristic of the tuning element.

\section*{LATCH FOR CONTA,097,830} Tadeusz \(J\). Rys, Bellefontaine, Ohio, assignor to I-T-E Imperial Corporation, Spring House, Pa.

Filed Jul. 6, 1976, Ser. No. 702,882
Int. Cl. \({ }^{2}\) H01H \(73 / 02,75 / 00,77 / 00\) U.S. CI. 335-21

7 Claims

1. A circuit breaker pole unit including a narrow insulating housing, cooperating movable and stationary contact mean disposed within said housing, a manually operable spring pow
ered operating mechanism for opening and closing said contac means; said mechanism including a releaseable cradle and latc means for maintaining said cradle latched in an operating position wherein said operating mechanism is operable to close said contact means; automatic means for tripping said latch means responsive to predetermined abnormal current cond tions thereby releasing said cradle whereby said contact mean
are opened by said mechanism; a metal frame within said housing; said latch means including a plate-like main section gener ally parallel to a wall of said frame and a latching sectio projecting angularly from said main sections and engageabl by said cradle to maintain the cradle in said operating position
pin means extending between said main section and said wal pin means extending between said main section and said wal
providing a cantilevered pivotal mounting of said latch mean to said frame for movement of said latch means about an axis generally at right angles to said main section and said wall; a link interposed between said latch means and said automatic means; said main section incla giva single aperture to receiv latter and said latch means. \(\qquad\)
CIRCUIT BREAKER ACCESSORY TRIPPING APPARATUS
Charles L. Jencks, Avon, and Roger N. Castonguay, Terryville, both of Conn., assignors to General Electric Company, N York, N.Y.

> Filed Jan. 21, 1977, Ser. No. \(\mathbf{7 6 1 , 1 1 5}\) Int. C. \({ }^{2}\) H01H \(9 / 20\)
U.S. Cl. 335-166 21 Claim 1. Accessory apparatus for tripping an electric circuit
breaker, said apparatus comprises, in combination: breaker, said apparatus comprises, in combination:
A. a support for mounting attachment to the circuit breaker;
B. first and second members mounted by said support for individual movements between respective reset and actuated positions;
C. latch means carried by said second member for releasably latching said first member in its reset position while said
. a third member mounted by said support
between actuated and reset positions;
E. a first spring connected between said first and third mem
bers, said first spring being charged while said first mem
ber is in its reset position and said third member is in its
actuated position;
F. a second spring
and said support, said second spring being charged while said third member is in its actuated position trip initiating means mounted on said support and opera-
tive to move said second member away from its rese position and thus unlatch said first member for movemen to its actuated position under the influence of said firs spring, the movement of said first member to its actuated
second position, the improvement comprising: longitudinally block and extending over said armature and defining a clearance cavity between said wall means and said armature, said latching device including an integral latch member generally hoating in said cavity and manually movable in a longitudinal direction generally perpendicular to said selected axis and parallel to said wall means, said ach member comprising an between said wall means and said armature and generally between said coil means and said terminal block and a wal inclined from said shoulder and away from said wall means and toward said block, a guide pin extending longitudinally into recess in said terminal block, said recess being transversely larger than said guide pin for allowing lateral movement of aligned with said inclined wall and extending from said mem ber toward said wall means, an integral leaf spring biasing saic member in a direction away from said terminal block, said shoulder of said abutment and said armature coacting to hold said latch member in a reset position against the biasing actio and when said armature is in said first position, said member being biased by said leaf spring into a latched position with saic protuberance and said inclined wall wedge between said armaure and said wall means and said latch member including a ortion prorruding from said relay in a direction away from said latched position to said reset position.
position serving to initiate tripping of the circuit breaker
and
H. means for coupling said third member to the breake operating mechanism such as to achieve movement of said hird member to its actuated position, and, upon tripping restore said first, second and third members to their rese positions.

RELAY WITH MANUALLY RELEASABLE LATC onald R. Ritzenthaler, Reedsburg, and Frederick E. Erickson, Baraboo, both of Wis., assignors to Gulf \& Western Indus. tries, Inc., New York, N.Y.

Int. Cl. \({ }^{\text {H }}\) H01H \(9 / 20\)
U.S. C. 335-166

1. In a manual reset relay including a terminal support block, n armature pivotally mounted on a selected axis, coil means eetween said axis and said terminal block for forcing said mature into a first position adjacent said coil means when current is passed through said coil means, biasing means for iasing said armature away from said first position and toward
second position spaced from said coil means a second position spaced from said coil means, a contact contching device, said latching device including latch means responsive to movement of said armature from said second position to said first position for releasably latching said arma-
ture in said first posititon and manal atch means and allowing said armature to pivet into said

\section*{007,833}

\section*{ELECTROMAGNETIC ACTUATO}

John L. Myers, Dayton, Ohio, assignor to Ledex, Inc., Dayton, Filed Feb. 9, 1976, Ser. No. 656,748 U.S. Cl. 335-261 Int. Cl. \({ }^{2}\) H01F \(7 / 08\)

An electromagnetic device comprising
stator means comprising a first closed flux-carrying path including a core and an air gap opening in said core de fined by first and second substantially parallel pole surfaces and a second closed flux-carrying path including a core and fourth substantially parallel pole surfaces,
coil means comprising means for generating electromagnetic flux in said first and second closed flux carrying paths, the direction of flux flow across said air gaps being substantially perpendicular to said pole surfaces, and
armature means mounted on said device to be movable said third and fourth pole surfaces in a plane substantially parallel to said pole surfaces to overlap simultaneousl varying areas of said first and second pole surfaces and said third and fourth pole surfaces in dependence upon the position of said armature means and to conduct there ond closed fux-carrying paths, the direction of flux flow in said armature means remaining substantially perpendic ular to said pole surfaces.

\section*{NON-LINEAR RESISTORS} Kenneth M. Mar, Tempe; Kim Ritchie, Phoenix, and James N. Smith, Tempe, all of Ariz., assignors to Motorola, Inc., Schaumburg, IIl
pr. 12, 1976, Ser. No. 676,268
U.S. C. 338-21

Int. Cl. \({ }^{2} \mathbf{H 0 1 C} 7 / 10\)

1. A non-linear resistor comprising:
semiconductor substrate having a first surface and a second surface
ixture of non-iinear resistive material comprising a mixture of \(40 \%\) to \(95 \%\) by weight of a conductor material dielectric material disposed on said first surface.

4,097,835
DUAL TRANSDUCER ARRANGEMENT FOR
ULTRASONIC IMAGING SYSTEM Philip S. Green, Atherton, Calif,, assignor to SRI International, Menlo Park, Calif.

Filed Sep. 20, 1976, Ser. No. 724,416
U.S. Cl. \(340-1\) R

1. In an ultrasonic imaging apparatus of the type which includes different operating systems, such as systems which
operate in the Doppler and B-scan modes, wherein the improvement comprises,
dual transducer arrangement comprising first and second rransducers associated with different operating mode systems of an ultrasonic
said first and second transducers each comprising a gener-
ally semicylindrical piezoelectric body foi med with ally semicylindrical piezoelectric body fo med with gen-
erally parallel semicircular opposite end surfaces and a flat side face,
electrodes disposed on the opposite end surfaces of the transducer bodies for connection to the different operatmeans for focusing said transducers, and means for relatively movably mounting said first and second
transducers at opposite sides of a mid-plane extending between the transducers with the flat side faces of the transducers closely adjacent said mid-plane. signal range of each of said transponders; and

\section*{4,097,836}

DEPTH SOUND INDICATOR
Parvin Riddle, 2024 West St., Annapolis, Md. 21401 , and opher I. Reynolde, Welmo Anapolis, Mo. 21401, and Chrisdile, Annapolis, Md.

Iapolis, Md.
Filed Feb. 10, 1977, Ser. No. 767,389
Int. C. \({ }^{2}\) G01S \(9 / 66\)
U.S. C. \(340-3\) C

12 Claims

1. A water depth sounder indicating apparatus, said apparatus receiving at periodic intervals a constant amplitude water depth signal from a depth sounding device, the duration of said water being measured by said depth sounding device, comprising:
a reference signal generator, said reference signal generator outputting a constant amplitude reference signal whose duration corresponds to a selected depth of water; and said water depth signal; and
an output device producing an output signal when the durations of said water depth signal and said reference signal re unequal and producing no audible signal when said durations are equal.
measuring the time period from interrogation signal trans mission to receipt of said output signals from each of said transponders.


4,097,838
SEISMIC RODENT CONTROL DEVICE Fiala, 218 Dowling Ave., W., Transcona, Canads Filed May 27, 1977, Ser. No. 801,1
Int. C. \({ }^{2}\) H04B \(1 / / 00\)
U.S. CI. 340-15

16 Claims

1. A device for disturbing the habitat or rodents, burrowing 4,097,837
UNDERWATER TRANSPONDER CALIBRATION
ARRANGEMENT Reginald J. Cyr, 700 Francis Botello Rd., Goleta, Calif. 93017 Filed Mar. 29, 1976, Ser. No. 671,675
U.S. Cl. 340-5 C
37. In a method of calibrating an underwater transponder array mine the relative position between said transponders, and each of said transponders generating a different output signal in response to receiving a first interrogation signal, and a first of said transponders generating said first interrogation signal in response to receiving a second interrogation signal different from said first interrogation signal, the improvement comprising the steps of:
the water bottom :
easuring the depth
of said transponders; sequentially generating each of said first and said second make of heat with said thermostats coincident with the

WINDSHIELD WIPER SYSTEM ACTIVATED LIGHTING Walter J. Lesiak, 112 Old Tavern La., Summerville, S.C. 29483 Filed Apr. 8, 1976, Ser. No. 674,96
U.S. Cl. \(340-52{ }_{\text {R }}^{\text {Int. }}\)

8 Claims


A circuit for active preder 1. A circuit for activating a pre-determined light means upon
the activation of the windshield wiper system of a vehicle comprising:
(a) power
vehicle;
(b) sele,
b) tive th means connected to said power means and opera-
tive to activate said windshield wiper system;
(c) activating means operative to activate said pre-deter
mined light means;
(d) said pre-determined light me
lighting on said vehicle; and
sected to said switchs comprising first relay means connected to said switch means and second relay connected
to said power means and said pre-determined light means to said power means and said pre-determined light means wiper system, said first relay means causes said second relay means to provide power from said power means to actiate said pre-determined light means.
4.097,840

AUTOMATIC SEMI-TRAILER LANDING GEAR EXTENSION AND RETRACTION APPARATUS Warrer A. Chappelle, 4801 NW. 69th, Oklahoma City, Okla. Filed Oct. 18, 1976, Ser. No. 733,230
Int. Cl. \({ }^{\text {B60QQ }} 1 / 00\)
U.S. CI. \(340-52\) R 29 Claims
position to allow the forward end portion of the semi-trailer to e supported by the tractor with the hitch pin means engaging the fifth wheel hitch member; an improved automatic landing gear extension and retraction apparatus comprising: an electric drive motor mounted on the forward end portion
of the semi-trailer and having a power of the semi-trailer and having a power output shaft; means ior dirivingly connecting the power output shaft to
the input drive shaft of the gear drive means of the landing gear;
position
position sensing means operatively connected to the landing gear for providing a first signal output when the landing gear is retracted and, alternately, for providing a secon
signal output when the landing gear is extended; and control circuit means mutually interconnecting the source o electrical power, the electric drive motor and the position sensing means, and responsive to external control thereof for providing electrical power to the electric drive motor to rotate the input drive shaft in the first direction to electrical power to the electric drive motor to rotate the input drive shaft in the second direction to retract the landing gear.

1. In a tractor trailer rig of the type which includes a conventional tractor having an operator's cab, a source of electri cal power, and a fifth wheel hitch member; a semi-trailer hav ing fifth wheel hitch member, road wheels journaled on the rear end portion and an alternately extendable and retractable landing gear mounted intermediate the hitch pin means and the
road wheels; the landing gear having gear drive means operaroad wheels; the landing gear having gear drive means opera-
tively engaged therewith which gear drive means includes an input drive shaft adapted to be engaged by a crank handle fo nanual rotation thereof in a first direction to extend the land ing gear to engage the ground and support the semi-trailer ion to retract the landing gear from the ground engagin
1. A braking fluid pressure fault alarm device for a vehicle dual brake system having brake actuating means, a front brake system including a front master cylinder and front wheel cylinrear wheel cylinders, conduit means operatively providing fluid communication between said master cylinders and said wheel cylinders for applying braking fluid pressure from said master cylinders to said wheel cylinders to brake said vehicle
in response to operation of said actuating means, and proporin response to operation of said actuating means, and propor-
tioning valve means interposed between the rear master cylinder and the rear wheel cylinders of said rear brake system for which is revelartioned rear wheel braking fluid pressure which is regulated in proportion to the rear wheel braking fluid pressure from said rear master cylinder, said fault alarm device comprising: signal means for generating a fault-indicat
ing alarm signal when an alarm circuit is energized for closure control valve means interposed between said master cylinders and said wheel cylinders and associated with said proportion having therein a stepped cylinder which cons including a body diameter portion at its one end, a medium diameter portion at
its intermediate portion, and a larger diameter portion at its other end; a stepped piston having a smaller diameter en
portion defining an end face slidably but hermetically inserted portion defining an end face slidably but hermetically inserte
in the smaller end portion of said stepped cylinder, a large diameter intermediate portion defining together with said smaller diameter end portion a boundary face therebetween
and slidably but hermetically inserted in the medium diameter and slidably but hermetically inserted in the medium diameter
intermediate portion of said stepped cylinder and a medium diameter other end portion defining an end face and disposed in the larger diameter other end portion of said stepped cylin er; a sleeve defining an end face and slidably but hermetically iterposed between the medium diameter oher end portion of of said stepped cylinder; said stepped piston being axially movable to ameutral position and in axially opposed direction therefrom; switch means engaged with said stepped piston of said control valve means for energizing said alarm circuit in esponse to the sliding movement of the stepped piston of sai control valve means from its neutral position; and connecting said rear master cylinder to the end face of the smaller diame ler end portion of said stepped piston, the proportioned rea wheel braking fluid pressure from said proportioning valv means to the boundary face between the smaller diameter en stepped piston, and the front wheel braking fluid pressure from said front master cylinder to the end faces of both of said sleeve and the medium diameter other end portion of said stepped iston; said end faceer said medr mid meter of her end portio said stepped piston having a greater surface area than sai piston; with deterioration of the proportioned rear wheel brak ing fluid pressure between said proportioning valve means and said rear wheel cylinders occurring as a result of fault in said roportioning valve means despite increases in the rear whee rge said stepped piston to slide from said neutral positio under the force of the front wheel braking fluid pressure to insure a fault indication in said signal means.

DECELERATION INDICATION SYSTEM
David R. Zalar, Wales, and James E. Hansen, Oak Creek, botb Wis, essimers to Cuter-Hammer. Inc., Milmauke, Wis. Filed Aug. 9, 1976, Ser. No. 712,80 Int. Cl.2 \({ }^{2}\) B60Q \(1 / 26\); G08B 21/00; G01P 3/42, \(15 / 00\)

1. A deceleration indication system adapted to be connected 10 the ignition system of a leading motor vehicle to provide ignal to the following driver whenever the engine speed of the ading motor vehicle decreases comprising:
 tion system of the leading motor vehicle indicative o engine speed and to provide respective uniform-widt control pulses having a frequency proportional to sai engine speed and variable therewith;
providing a voltage change having a positive slope when providing a voitage change having a positive slope whe
said pulse frequency is increasing on engine acceleration or a voltage change having a negative slope when sai pulse frequency is decreasing on engine deceleration,
voltage change having a negative slope for providing an output voltage;
and means responsive to said output voltage for operating said indicator.

\section*{4,097,843}

WARNING DEVICE AND RECEPTACLE ADAPTOR ebastian B. Basile, 20 Coutant Dr., New Rochelle, N.Y. 10804 U.S. CI. \(340-280\)

Int. C1. \({ }^{2}\) G08B \(13 / 02\)
5 Claims
1. A warning device for indicating loss of power to an elecgagement of a plug between the electrical unit and power source, which comprises:
a relay switch having a coil and a spring-biased blade which moves to and from a contact, and is biased against the contact and drawn away from the contact and held toward the coil when the coil is energized,
means connected to the relay switch for connecting the receptacle adaptor for receiving the blades and grounding prong of a grounded plug, including
a housing having front and back surfaces,
contact members extending into the housing from its front surface for receiving the grounded plug blades, channel pin the housing for receiving the plug groundfrom its front to back surfaces,
a pin having a front end and a back end, mounted in the channel for reciprocating axially therethrough, and biasing means pin engagement with the channel and pin that allows the tip of the plug grounding prong to come into engagement with the pin front end when a prong is inserted into the channel, and allows the pin to be thereby moved against the bias axially through the channel to an extent that the pin back end extends beyond the housing rear surface,
second switch connected to the relay contact, the second switch having a contactor and means for rendering the pin witch is closed when the grounding prong is removed from the receptacle channel and the pin is moved axially to its spring-biased position, and
non-off switch having two poles, one pole being connected to the relay blade, for activating and de-activating the warning device,
a battery having one pole connected to the other pole of the on-off switch, and
alarm means connecte
alarm means connected between the on-off switch and the battery, and between the battery and the on-off and sec-
power to the relay is lost or when the grounding prong is exclusive subpopulations those red cells having a central pallo withdrawn from the receptacle adaptor. and those red cells lacking a central pallor

OUTPUT CIRCUIT FOR A DIGITAL CORRELATOR
OUTPUT CIRCUIT FOR A DIGITAL CORRELATOR Aircraft Company, Culver City, Calif.
 U.S. CI. \(340-146.2\)

4,097,846
DATA STORAGE AND RETRIEVAL SYSTEM DATA STORAGE AND RETRIEVAL SYSTEM
ary Lewis, St. Clair Shores, Mich., assignor to Energy Conversion Devices, Inc., Troy, Mich.,
13 Claims U.S. Cl. \(340-146.3 \mathrm{H}\)

1. A circuit responsive to a plurality of correlation signals comprising:
a correlati
correlation circuit including a plurality of transistors having their current paths connected in parallel between a first voltage source and a first common lead, and having signals,
a first load
a first load transistor having its current path coupled be tween said first common lead and a second voltage source
said first load transistor having a control electrode; and a compensating circuit coupled to the control electrode said first load transistor for controlling the resistance of
said first load transistor to provide a substantially constan voltage step on said common lead for each parallel transis tor biased into conduction.

\section*{4,097,84}

METHOD OF AND AN APPARATUS FOR AUTOMATIC CLASSIFICATION OF RED BLOOD CELLS
James W. Bacus, Hinsdale, III,, assignor to Rush-Presbyterian
Misal Center, Chicago, 1 I.
abandoned. This application Aug. 18, 1977, Ser. No. 825,673
U.S. CI. \(340-146.3\) CA. Cl. \({ }^{2}\) G06K 9/00

8 Claim

1. An apparatus for automatically classifying red blood cells in a blood specimen comprising means for examining a plura ng individual abnormal red blood cells examined by its respec ive features into one of several abnormal cell subpopulations. and means for reporting the red blood cells in at least one of the espective abnormal cell subpopulations. eeans for examining a plurality of red blood cells for identify ing features including a central pallor or a lack thereof, and means for classifying into one of several different and mutually

1. In a data storage and retrieval system including a recording medium having recorded thereon information in the form of patterns of energy transmitting or non-transmitting micro-
sized image-forming spots surrounded by the other of same and ized image-forming spots surrounded by the other of same and f equally spaced potential image-forming spot loctions; the provement in means for retrieving the recorded data repre ented by the image-forming spots in said image field, said dat e ong means comprising image sensing means including ne or more energy sensing elements positioned actively to
intercept image spots directed in a substantially non-centered elationship with respect thereto a from image-forming spots in said locations, each sensing element being responsive to the parts of one or more image spots impinging thereon by gener ating a signal of a value depending upon the area thereof which intercepts the image spot or spots involved, each of said sensing elements being at all times much smaller in size than the image spots intercepted thereby so that a number of sensing axis directions to intercept an entire image spot if they were centered with respect thereto, whereby the outputs available rom said one or more sensing elements represent the outputs of an actual or hypothetical multiplicity of groups of said
sensing elements intercepting the entire image field and where each group thereof are contiguous and of a size to intercept a
ent single image spot when centered with respect thereto, and means for "OR" gating said sensing element signals represent ing the respective outputs of each of said different groups of said actual or hypothetical multiplicity of groups of sensing lements, to produce signals represes arg the paths of im-

MULTI-FONT OPTICAL \(4,097,847\) APPARATUS
George E. Forsen, Glastonbury, and Stephen F. Jackson, East George E. Forsen, Glastonbury, and Stephen F. Jackson, East Hartford, Conn.
tion of Ser. No. 270,192, Jul. 10, 1972, abendoned. This application May 14, 1975, Ser. No. 577,151
U.S. C. \(340-146.3\) AE 8 Claim 1. Multi-font optical character recognition apparatus for converting character representative symbols located on a torage medium in the form of a two-dimensional field of equally spaced potential image-forming spot locations; the neving means corming spots in said parts of one or more image spots impinging thereon by generments, to produce signals representing the paturs of im forming spots in the image field of said recording medium.
brightness values into a digital code representative of said
symbol, said apparatus including scanning means for oplically ing \(N \times N\) simultaneously accessible submemories each con
scanning the storage medium to generate analog signals repreing the difference between the analog signals produced by the various brightness values, means for converting the analog signals into one bit digital data signals denoting either blackness for the symbol or whiteness for the background in depentrace means for developing contour digital data representative of incremental movements between data points about the pe rimeter of the symbol, and recognition means for converting he contour data into a digital code representing the scanne ing means including:
a character memory for storing the one bit digital data signals in predetermined arrays representing corresponding
segmental areas of the scanned symbol,


address means for addressing particular data bits in the character memory,
a perimeter trace table memory for storing a search sequence for finding the perimeter of the character, and
control means for causing the address means to follow the search sequence stored in the perimeter trace table so that
the perimeter of the symbol stored in the character mem ory is searched for in a \(5 \times 5\) array of a portion of the character memory according to the following sequence: row 2 , col. 1 ; row 2 , col. 2 ; row 2 , col. 3 ; row 1 , col. 2 ; row 1, col. 3 ; row 1, col. 4; row 2, col. 4; row 3, col. 4; row 2,
col. 5 ; row 3, col. 5 ; row 4, col. 5 ; row 4, col. 4 ; row 4, col. col. 5 ; row 3, col. 5 ; row 4, col. 5 ; row 4, col. 4; row 4, col.
3 ; row 5 , col. 4; row 5, col. 3; row 5, col. 2; row 4, col. 2 ; row 3, col. 2; row 4, col. 1; row 3, col. 1; row 2, col. 1; stopping in the search whenever a part of the perimeter is
found, and beginning a new search with a shifted \(5 \times 5\) found,
array.

\section*{PEADOUT UNIT \(4,007,848\)}

READOUT UNIT FOR DATA STORED IN A RANDOM-ACCESS MEMORY AND PRESENTED ON A
RASTER SCAN DISPLAY IN ACCORDANCE WITH A RASIER SCAN DIVELAY LINE PATTERN
Antoon Hendrikus Brands, Borne; Jouke Gietema, Hengelo, and Hendrik Cornelis Bleijerveld, Borne, all of Netherlands, assignors to Hollandse Signaalapparaten B.V., Hengelo, Nether-
Filed Mar. 3, 1977, Ser. No. 773,909 \(\underset{7603159}{\text { Claims }}\)
U.S. C1. \({ }^{365-118}\) Int. Cl. \({ }^{2}\) G11C 11/26
U.S. C.
1. A readout unit for data stored in a random-access
m Claim 1. A readout unit for data stored in a random-access memory and presented on a raster scan display in accordance with a
predetermined line pattern, the random-access memory includ-
aining \(a \times a\) memory elements, for each picture line the elevant data is readout in \(q\) bits simultaneously from each o the respective \(N\) submemories in a cycle of the random-acces
memory, and the readout unit contains at least one picture line memory for storing the data representing a picture line for being readout in the sequence as required for presentation on \(\beta^{2}(\beta)\) raster scan display, wherein, in order to display a fractio \(\beta^{2}(\beta=1,1,1, \ldots)\) of the data stored in the random-access memory on the whele of the raster, starting from a point give according to the invention comprises:
a. a picture element address generator for addressing a frac tion \(\beta\) of the number of picture elements of a line in the picture line memory, for a fraction \(\beta\) of the total number of picture lines, in a period of \(1 / \beta\) times that required fo scan display, starting from the point given by the picture

element coordinates ( \(q\).integer \(\left[x_{/} / q\right], y_{y}\) ), such that the data stored in the picture line memory is readout in the same groups of \(q\) bits as stored in the picture line memory in the sequence as required for the picture line reproduc-
tion: b. a pictur
a picture element converter for delivering, on the reception of said groups of \(q\) bits, new successive groups of \(q\) bits representing the memory data to be displayed for each picture line
abscissa \(x_{o}\)
a picture ele picture elements representing the data to the number of picture elements representing the data to be displayed
until the total number display of a picture line is obtained; and
d. a memory address generator for reading a fraction \(\beta\) or the number of picture lines \(1 / \beta\) times out of the random access memory, starting from the picture element ordinat \(y_{o}\) for storage into the picture line memory

4,097,849
ELECTRONIC COMPARATOR FOR PROCESS
ELECTRONIC COMPARATOR FOR PROCESS
CONTROL , Ohi, assignor to Systems Research Filed Sep. 27, 1976, Ser. No. 726,990
U.S. C. \(340-213\) Q Int. C. \({ }^{2}\) G01B \(11 / 06\)
\(\qquad\) 1. In an optical micrometer for measuring a dimension of an article within a zone of measurement, said optical micrometer surement interval representing the dimension of the article.
the improvement comprising the improvement comprising
first counter means for receiving said input data during each measurement interval,
means for generating a command pulse following each me surement interval,
second counter means responsive to said command pulse for receiving the input data from said first counter means,
output register means for
output register means for storing the data from the previous
measurement interval
third counter means responsive to said command pulse for
receiving the input data from the previous measuremen interval
clock means for supplying pulses to said output register
means and to ing said command pulse for causing said counter means to decrement, said counter means each providing a zero output signal upon reaching a zero count.

gate means for transferring the remaining data from th other of said second or third counter means to a compar means reaches zero,
said comparison circuit comparing the number remaining in said other counter means with a preset, adjustable number circuit means responsive to the output of said comparison circuit for controlling the operation of said clock mean a. ter
means ring said clock means when said second counter means reaches zero, provided said deviaition limit is not
exceded, and
b. terminating the operation of said clock means when sai hird counter means r
whereby said output register means tains either new input data, if within predetermined limits, or previou input data.

\section*{4,097,850}

MEANS FOR ADJUSTING AND FOR TESTING A DETECTING DEVICE tion, Northbrook, III.

Filed Nov. 1, 1976, Ser. No. 737,388
Int. Cl. \({ }^{2}\) G08B 29/00
U.S. C. \(340-214\) device, detecting means responsive Claim 1. In a warnis having first and second electrodes for receiving a nominal alue voltage thereacross and a third electrode exhibiting a voltage in accordance with said nominal value voltage in the hange in voltage upon the presence of said phenomena in predetermined concentrations; means for applying said nominal value voltage across said first and second electrodes, and means for selectively changing the value of the voltage across
said first and second electrodes either by one discrete amount sufficient in the absence of said phenomena to change the voltage at said third electrode by said first amount or by another discrete amount sufficient to change the voltage at said third electrode by a second and greater amount, said means fo hanging including first and second resistors each connected at said phenomena.
en with said second electrode, and a switch connected with said first electrode and opposite ends of said resistors and ctuable to selectively connect either or neither of said resis ors across said first and second electrodes, said first and secandectrodes having said nominal value voltage thereacros hen neither said first nor said second resistor is connected eacross, said first resistor when connected across said firs

and second electrodes developing a voltage thereacross which changes the voltage across said electrodes by said one discret amount sufficient to change the voltage at said third electrode by said first amount, said second resistor when connected across said first and second electrodes developing a voltage thereacross which changes the voltage across said electrodes age at said third electrode by said second amount.

SENSITIVITY COMPENSATED FIRE DETECTOR Roy W. Klein, Hoffman Estates, III., assignor to Pittway Corpo
ration, Northbrook, Filed Jul. 19,

Int. C. \({ }^{2}{ }^{2}\) G08B \(17 / 10\)
U.S. C. \(340-237 \mathrm{~S}\)

17 Claim
1. In a detecting device, a detector circuit having terminals re receiving a voltage thereacross and an impedance between aid terminals which changes in value in accordance with the g a first electric signal which changes relatively rapidly in value in response to the occurrence of said phenomena, mean or generating in response to said first signal a second electri said first signal and means for response to changes in valu econd signal and for controlling said generating means to maintain said second signal at substantially a first predeter ined value independent of said voltage across and impedance said detector means for constant and relatively slowly hanging values of said frrt signal, said second signal having a tast a second pretermined value upon the occurrence of least a second \(p\).


FAULT DETECTOR FOR LIQUID IMMERSED
FAULT DETECTOR FOR LIQUID IM
INDUCTIVE APPARATUS Gerald O. Usry, Rome, Ga., assignor to General Electric Com pany, New York, N.Y.


1. Apparatus for detecting pressure changes within an enclosure for electrical inductive apparatus containing a liquid and a gas, wherein said gas is located in a space above and is in
contact with said liquid, comprising:contact with said liquid, comprising,
opening of predetermined size therein, at least one end of said first chamber, flow restricting opening being immersed in said liquid;
(b) a second gas containing chamber having an opening therein that is of the free-flow type relative to the opening in said first chamber, said
(c) means for equalizing the pressure of gas contained in said first chamber, said second chamber, and said space above said liquid; and
chambers changes with respect to pressure in one of said of said chambers.

\section*{4,097,853}

MEANS FOR DISTINGUISHING MOTION FROM NOISE Ralph M. Francis, Jrr., Racine, Wis., wssignor to Milwaukee Resistor Corporation, Milwaukee, Wis.

Filed Sep. 20, 1976, Ser. No. 725,026
U.S. CI. 340-258 A

24 Claims
1. For use with apparatus that provides a composite signal comprised of a substantially continuous spectrum of frequencies including frequencies designated as noise and defined by
selected lower and upper bandwidth limits and a substantially selected lower and upper bandwidth limits and a substantially
predetermined band of frequencies coincident with a portion predetermined band of requencies coincident with a portion having lower and upper bandwidth limits within said spectrum; means for discriminating signals corresponding with sponding with noise, comprising:
first amplifier means having input and output means, said
input means including means for receiving said composite input means including means for receiving said composite
signal and said amplifier means having a bandwidth response corresponding substantially with said predeter
mined bandwidth of said noise, said amplifier means producing an unclipped output signal corresponding with said composite signal within said noise band,
means
means for substantially separating from said output signal signals which correspond with said information frequency
band from signals which correspond with said noise frequencies,
means for converting said information and noise signals, respectively, to corresponding absolute value signals,
means for producing a reference potential
amplifier means having input means for said absolute value signal corresponding with said noise signal and input means for said absolute value signal corresponding with said information signal, said last named amplifier means being constructed and arranged to produce an alternating output signal which is proportional to the difference between said noise and information input signals and which polarity that depends upon which of said noise and information corresponding signals is greater,
means for converting said alternating output signal from said

having a polarity relative to said reference potential which is functionally related to the polarity of said offset signal and corresponds with which of said noise signal or said feedback means coupling said sig,
time to said input means of said first amplif are related to Tedback ment ity correspons being responsive to signals having a polarity corresponding with noise for reducing the sensitivity
of said first amplifier means proportionately to the magnitude of the noise component of said signals, and
means responsive to said time related signal reaching a predetermined amplitude of one polarity for indicating the existence of a predominant information signal.

SENSING MECHANISM \(\stackrel{4,097,854}{4}\) IISM FOR MIN
APPARATUS
Sigmund Black, Belle Mead, and James L. Finney, Cranbury, both of N.J., assignors to The United States of America as repres
D.C.

Filed Mar. 4, 1977, Ser. No. 774,354
Int. C. \({ }^{2}\) G08B \(21 / 00\)
U.S. Cl. \(340-282\)
 sensing mechanism comprising:
engaged with the roof of a mine for sensing any shift of
said roof bolting apparatus with respect to said mine roof in any direction within a horizontal plane,
said means having a vertically movable probe assembly for position with respect to the mine roof,

said means including means actuated by the pivotal move ment of the probe assembly for generating a signal indica. ment of the probe
tive of said shift.

\section*{4,097,855}

ELECTRONIC TENNIS SCORING SYSTEM OLalvo, 6117 Reseda BIvd., Reseda, Calif. 91335 Filed Nov. 25, 1977, Ser. No. 854,662 \(\xrightarrow[-323 \text { R }]{\text { Int. }}\)
323 R
1. An electronic scoring system for keeping score betwee wo opposing sides each including one or more opponent, comprising:
a first electronic transmitting device to be selectively actusive point;
a second electronic transmitting device to be selectively actuated by the other side to indicate which side won each successive point;
receiving and scoring means for initially storing a prelimi nary indication as to who won each successive point;
additional logic circuit means for preventing the full record ing of the preliminary indication if it is disputed by the other side; and
means for fully recording the point if it is not disputed, and for displaying the resultant score. 14 Claims

GAS PANEL SINGLE ENDE \(\begin{gathered}4,097,86\end{gathered}\)
GAS PANEL SINGLE ENDED DRIVE SYSTEMS iliaam Roger Lamoureux, Kingston, and James Bryce Tru-
shell, Sangerties, both of N.Y. uusiness Mrtes, bo or N.Y., assignors to International Business Machines Corporation, Armonk, N.Y.

Filed Oct. 4, 1976, Ser. No.
Int. Cl.
U.S. CI. \(340-324 \mathrm{M}{ }^{\text {Int }}\)

7 Claims

1. A gas discharge display storage system adapted for low level logic control of a high level driving system during the normal sustain sequence of said system comprising in combina-
tion,
a gas panel comprising an envelope filled with an illuminable
first and second sets of dielectrically coated coordinate first and second sets of dielectrically coated coordinat conductors positioned in orthogonal relationship on oppo
site sides of said envelope, the intersections of said con ductors defining gas cells in the region of each of said coordinate intersections,
sustain generator associated with each of said sets of coor dinate conductors
comprising means for applying a continuous reference signal to one of said sets of coordinate conductors, the level of said reference signal correspond ing to that of the associated logic circuits to permit continuous communication between said coordinate conductor set and said logic circuits.
said sustain generator further including means for generatin
 reference level for application to the other of said coordnate conductors, communication between said other of said coordinate conductors and said control logic being provided during the interval between said high leve pulses, the algebraic sum of said level and pulse sig
effecting discharge of said previously selected cells.

4,097,85
APPARATUS FOR SELECTIVELY DISPLAYING
analogue quantities of plural input data
Nobuaki Miyakawa, Hitachi, Japan, assignor to Hitachi, Ltd, Japan
Filed May 11, 1976, Ser. No. 685,697
Claims priority, application Japan, May 16, 1975, 50-57312
U.S. CI. \(340-324 \mathrm{R}\)

R 2
1. An apparatus for selectively displaying analogue quantiies of plural input data signals, comprising:
\[
\begin{aligned}
& \text { a plurality of input means for receiving a corre } \\
& \text { plurality of input voltages of said data signals; }
\end{aligned}
\] connected toeans having a plurality of input terminals connected to said input means and having an output termi-
nal for selectively providing one of said input voltages;
reference voltage generating means for generating a plural-
ity of reference voltages corresponding to said data sig. ity of
nals;
nals;
second switching means having a plurality of input terminal connected to said reference voltage generating means and having an output terminal for selectively providing one of said reference voltages corresponding to said one of inpu
voltages selected by said first switching means: voltages selected by said first switching means;
voltage dividing means having an input terminal connected
to said second switching means and having a plurality of output terminals, for dividing the selected one of refer-

ence voltages into a plurality of predetermined differen voltages, and respective output terminals being provided for said respective predetermined different voltages; means for generating a plurality of switching signals for
driving said first and second switching means and for driving said first and second switching means and for
selectively providing one of said switching signals to said
first first and second switching means; and
first and second switching means; and
display means including a plurality of light emitting diodes each connected between the output terminal of said first
switching means and a respective output terminal of said switching means and a respective output terminal of said
voltage dividing means for providing a luminant display voliage dividing means for providing a luminat
for the selected one of said input data signals.

DIGITAL TO ANALOG RESOLVER CONVERTER Carl Stella, Valencia, Calif., and David Julian Simon, Saddle Brook, N.J., assignors to The Singer Company, Little Falls, Filed Oct. 8, 1975, Ser. No. 620,740
Int. Cl. \({ }^{2}\) H03K \(13 / 02\) U.S. CI. \(340-347 \mathbf{S Y}\) 10 Claims

1. A method utilizing electronic circuitry for converting an \(m\) bit digital voltage signal representing an angle over an oc-
tant, which is a portion of an \(n\) bit digital voltage signal repre-
senting the angle from \(0^{\circ}\) to \(360^{\circ}\), into an analog voltage signal epresenting a continuous periodic function of the angle to b comprising: (a) dividing the continuous periodic function of the angle into an even number \(p\) of equal angular segments, each
segment having a slope with the same sign over the full segment;
(b) determining and storing the average slope of each seg. ment and the intercept of each slope segment in the elec tronic circuitry;
(c) converting the
(c) converting the \(r\) least significant bits of the digital signal into an analog value in a digital to analog converter where \(r\) is equal to \(m-\log _{2} p\);
(d) selecting in said electronic circuitry a slope and intercept in accordance with the remaining \(\log _{2} p\) bits of the \(m\) bit digital voltage signal and the ( \(m+1\) )th bit; and
(e) miding to the result the selected intercept in said elec
add tronic circuitry.

THREE-LEVEL TO TWO-LEVEL DECODER
Floyd Willlam Looschen, Leguna Beach, Calif., assignor to Moyd Willam Losschen, Leguna Beach,
Burroughs Corporation, Detroit, Mich.

Filed Nov. 1, 1976, Ser. No. 737,783
U.S. C. \(340-347\) DD

\section*{4,097,860 \\ OFFSET COMPENSATING CIRCUIT}

Taksahi Araceld; Kazuo Ochiai, and Rikio Maruta, all of Tokyo Japan, assignors to Nippon Electric Co., Ltd., Tokyo, Japan
Filed Feb. 9,1977 , Ser. No. 766,848 Claims priority, application Japen, Feb. 10, 1976, 51-14144 U.S. CI. \(340-347\) CC \({ }^{2}{ }^{2} \mathbf{H O 3 K}\) 13/02, \(13 / 32\)


1. An offset compensating circuit comprising: a subtractor for subtracting a presumed value of the offset from the input signal to form the output signal; a sign decision circuit for
determining an algebraic sign of the output signal of said subdetermining an algebraic sign of the output signal of said subcounting pulses from said source having its count-up and count-down function controlled by the output signal of saic sign decision circuit and adapted to produce respective output ignals when it has overflowed in an increasing direction and in internal setting value representing the presumed value of the offset is increased upon overflow of said counter in the increasing direction while said internal setting value is decreased upo overflow of said counter in the decreasing directio


George R. Pariza, Schaumburg, III, assignor to Pittway Corporation, Northbrook, III.

> Filed Mar. 14, 1977, Ser. No. 776 Int. C.2 \({ }^{2}\) G10K \(9 / 12\)

> 1. An improved horn for generating an audible signal, comhaving walls he margins of which define an opening; an elec romagnetic coil within said housing and having a pair of cerminals connected to opposite sides of a winding thereof and extending exterioriy of said housing; a ciaphragm of electri-
cally conductive material positioned on said housing in electrical contact therewith over said opening and closing said housing; a striker member of magnetically permeable and electrically conductive material; and means for mounting said striker in said housing between said diaphragm and said coil in opera-
tive association with said coil for movement away from and strikingly against said diaphragm to generate noise, said means normally resiliently urging said striker toward and into electri cal contact with said diaphragm, electrically insulating said
cail terminals and including a torminal extended exteriorly of said housing and electrically connected with said striker.
\(4,097,862\)
ACOUSTIC WARNING DEVICE, IN PARTICULAR A
BELL ves Brionne, Pau, France, assignor to Legrand S.A., Limoges, France Filed Dec. 23, 1976, Ser. No. 754,022 Claims priorty, application France, Doc. 24, 1976, 7539663 U.S. C. \(340-396 \quad 26\) Claims

1. An acoustic warning device comprising, a striker member forming a movable core of a control solenoid and arranged to strike resonator means in response to energization of said sole-
noid, permanent magnet means adapted to define in cooperation with retaining means a rest position for the striker member, said permanent magnet means being in coaxial alignment with the solenoid and disposed beyond one end of said solenoid, said permanent magnet means having radial pole lines proximate to said permanent magnet means extending only partly into the axial zone corresponding to the axial extent of said permanent magnet means.

4,097,863
MARINE RADAR SYSTEM WITH INDEPENDENT SWITCHED POWER SUPPLIES
Derek Chembers, Bedford, N.H., asigior to Raytheon Come pany, Lexington, Mase.

Filed Aug. 6, 1976, Ser. No. 712.300
Int. C1. \({ }^{2}\) G01S 9/00; H02M 3/22
U.S. C. 343-5 R
\[
=\frac{1}{4}
\]
1. For use in a three-level digital data transmission system, he combination comprising:
means for providing binary signals \(H, H, L\) and \(L\) indicative of the levels of a self-clocking three-level digital signal
having high, low and intermediate levels: having high, low and intermediate levels;
means responsive to said \(\mathrm{H}, \mathrm{H}, \mathrm{L}\) and L signals for detecting eans responsiv erating a clock signal at a predetermined time after the detection of data presence; and
means responsive to said \(H, H, L\) and \(L\) signals and said clock signal for producing a binary output signal represen tative of a decoded binary form of said three-level signal

971 O.G. 64
means for varying the width of said switching regulator pulses operating at said third rate to regulate the output voltage in accordance with a composite voltage derived from simultaneously sensing the switching regulator output voltage and inverter current to improve regulation; digital samples; and
means for reading out of said samples from said storing means at a fourth rate which is constant with each range, said fourth rate being less than or equal to said second rate which latter rate varies in accordance with the radar range setting.

RADAR-OPERATED VEHICLE SAFETY APPARATUS Hiroshi Endo, Yokomukn, and Krunhiro Ban, Amagesaki, both of hama and Mitsubishi Denki Kabushiki Kaisha, Tokyo, both of, Japan
of, Japan Filed Apr. 12, 1977, Ser. No. 786,828 Claims priority, application Japan, Apr. 12, 1976, 51-40381 U.S. CI. 343-7 VM Int. Cl. \({ }^{2}\) G01S 9/42

1. A vehicle safety apparatus comprising:
a radar device for measuring the range of an object and the
a vehicle speed sensor for measuring the speed of the vehicle relative to the roadway;
means for determining whether said object is stationary or moving in the same direction as the vehicle;
a first computing circuit for processing the measured vehicle speed relative to the roadway to derive a first minimum
distance on the assumption that said object is stationary;
a first comparator for comparing said measure range of said object with said first minimum distance to provide an output when said measured range is equal to or smaller than said first minimum distance;
a first gate circuit for passing said output from said first comparator to a utilization circuit when said object is
a second computing circuit for processing said measured vehicle speeds relative to both the roadway and the objec to derive a second minimum distance on the assumption that said object is moving;
a second comparator for comparing said measured range of said object with said second minimum distance to provide an output when sald measured range is equal hecond gate circuit for passing said outpur
ond comparator to said utilization circuit when said object is determined as a moving object.

4,007,865
ELECTRONIC COUNTERMEASURE SEQUENCE TIMER Erald N. Jones, Inyokera, Calif, assignor to The United States
of Americe es represented by the Secretery of the Navy, of America as represented by the Secretary of the Nary, Filed J Jun. 1, 1971, Ser. No. 152,464
Int. C.2. \({ }^{\text {G } 01 S} 7 / 38\)
U.S. C. 343-18 E

1. A random period time sequencer for causing the device to which it is coupled to pseudo-randomly alternate between its operating modes, comprising:
a power supply;
digital shift register providing a plurality of outputs con-
sisting of ones and zeros in the form of electrical signals; an initializing circuit coupled to said power supply and having an output coupled to said shift register for providing an electrical signal to said shift register establishing predetermined initial conditions in said shift register;
a variable period clock coupled to said initializing circuit; detecting the totality of zeros in the output and providing an output indicative thereof;
a ones detector coupled to an output of said shift register for detecting the totality of ones in the sutput shift register for an output indicative thereof; an least one code genert of said shif register for generating a digital pattern in response to the coincidence of preselected bits therein;
coinciaence of preselected couspled to said ones and zeros
a generator ccyce control couts
detectors, for receiving their outputs, and to said at least one generator for controlling its pattern cycle;
a cycle selector for selectively coupling said at least one a cycle selector for selectively coupling sad
code generator to said shift register; and
an interface driver coupled to the output of said shift register for providing the sequencer output in response thereto.

4,097,866
MULTILEVEL SIDELOBE CANCELIER
William F. Frost, Huntington; Raymond J. Masak; Herbert F Baurle, both of E. Northport, and Anthony F. Kowalski, Miller Place, all of N.Y., assignore to The United States of America as represented by the Secretary of the Air Force,
Washington, D.C Washington, D.C.

Filed Feb. 10, 1977, Ser. No. 767,254
Int. C. \({ }^{2}\) H04B \(1 / 10\) G01S 3/06
U.S. C. \(343-100\) LE
1. A multilevel sidelobe canceller, comprising:
first, second and third antennas, said second and third anten first, second and third antennas, said second and third antennas having substantially omni-directional reception char first, second
loops having a signal input, an output and a feedback input;
first and
first and second summers, the output of said first summer forming the output of said multilevel sidelobe canceller; means for coupling said first antenna to a first input of said first summer;
means for coupling said second antenna to the signal input of said first and second control loops;
means for coupling said third antenna to one input of said second summer;
means for coupling the output of said second control loop to another input of said second summer; control loop to means for coupling the output of said second summer jointly to the signal input of said third control loop and to the feedback input of said second control loop;

means for coupling the output of said first control loop to second input of said first summer;
means for coupling the output of said third control loop to a third input of said first summer; and
for jointly coupling the output of said first summer to the feedback inputs of said first and third control loops.

\section*{4,097,867 \\ HELICAL ANTENNA ENCASED IN FIBERGLASS BODY \\ Jumes Joseph Eroncig, 6400 SW. 145th Ter., Miami, Fla \\ Flied Sep. 23, 1975, Ser. No. 615,91 U.S. C. \({ }^{343-715}{ }^{\text {Int. Cl. }{ }^{2} \text { H01Q } 1 / 32,1 / 36}\) \\ }
1. A wave guide antenna comprising a hollow fibergla antenna body encapsulating and totally surrounding a coiled electrically conductive top-loaded wire, said coiled wire being tightly would in helical coils at the top end of said antenna body and increasing in spacing distance between the helical to provide for interception of ultra short waves, said encapsulated helical wires serving to provide strength to said fiberglass antenna body, a cellophane sheath surrounding and merged into the exterior surface of said fiberglass antenna body, saic sheath providing a smooth exterior surface to said antenna, a base ferrule secured to the bottom end of said antenna and top ferrule secured to the top end of said antenna body and electrically connected to the other end of wire proximate thereto, said top ferrule being provided with a locking mechanism adapted to secure a tuning shaft in an optimum position, said tuning shaft being slideably adjustable along the central axis of said antenna body and being in direct electrical contac with said top ferrule.
\(4,097,868\)
ANTENNA FOR COMBINED SURVEILLANCE AND FOLIAGE PENETRATION RADAR
John Joseph Borowick, Bricktown, N.J., assignor to The United States of America as represented by the Secretary of the Army, Washington, D.C.

Filed Dec. 6, 1976, Ser. No. 747,764
Int. CR. \({ }^{2}\) HO1Q 21/00, 9/28, 19/10
U.S. CI. \({ }^{343-727}\)

12 Claims

1. An aperture sharing radar antenna for first and second radar apparatus operative in different frequency bands comprising in combination:
a first radar antenna array including a plurality of waveguides having front and side walls coupled to and operable with said first radar apparatus in one frequency band, the tantially parallel rows of multiple slots arranged along said front walls in a common plane; and
second radar antenna array coupled to and operable with said second radar apparatus in another frequency band, said second array including a planar dielectric sheet and a
stripline dipole element on said sheet operatively mounted stripline dipole element on said sheet operatively mounted
transversely to said common plane along the front of said first radar antenna array extending parallel to and spaced from said multiple slots to avoid obstruction thereof and cause negligible interference to the effective operation of
said first radar apparatus, said first antenna array acting as aid first radar apparatus, said first antenna array acting as reflector for said second antenna apparatus during operation of said second radar apparatus.

1. A direction finder antenna comprising
a circular waveguide having one end closed and the other
end open, a radiating element comprising a figure of revo-
lution about the axis of said circular waveguide, said lution about the axis of said circular waveguide, said radiating element having one wall joined with the ope
end of the circular waveguide, an axial opening extending throug
an axial opening extending through the wall of the radiating element which is opposit,
circular waveguide wall,
a cirlar wive
along the axis of a said circular waveguide. along the axis of a said circular waveguide
orthogonally disposed ports in the wall of
orthogonally disposed ports in the wall of said circular
waveguide positioned at a predetermined the closed end thereof, and
means at each of said ports for deriving electrical outputs from said direction finder antenna.

ACTIVE SLEEVE SURROUNNDING FEED LINE FOR DIPOLE ANTENNA
Leon F. Fulmer, \(\mathrm{Sr}_{\mathrm{n}}\) Promperity, and John R. Lewis, Jr., New berry, both of S.C., aedignors to Shakespeare Company, Co berry, both of S.C., semignors to Saikespeare Con
lumbis, S.C.
Flied Sep. 13, 1976, Ser. No. 722,498 U.S. C. \(343-792\) Int. C. \({ }^{2}\) H01Q \(9 / 16\) 7 Claims

1. Apparatus forming at least a portion of an antenna comprising: an outer generally cylindrical casing, rigid one-piece pacer means within said casing having a generally cylindrical outer surface and a honeycomb-like interior including a media cylindrical member and a plurality of centering lug means
extending radially inward from said cylindrical member and together defining an axial aperture spaced from said outer surface, a transmission line positionable in said aperture and centered within said lug means, and a wire braided around the outer surface of said spacer means and uniformly spaced from said transmission line.

\section*{4,097,871}

TRANSVERSE RECORDING HEAD FOR MAGNETIC Ami E. Berkowits, Schenectady; Joeeph A. Lahut, Scotia, an Jish Min Wang, Schenectady, all of N. Y, assignors to General Electric Company, Schenectedy, N.Y.
Filed Dec. 27, 1976, Ser. No. 754,582
\[
\begin{aligned}
& \text { Flued Dec. } 27,1976 \text {, Ser. No. } 754,582 \\
& \text { Int. C. }{ }^{\mathbf{G} 03 G} 19 / 00 \text {; } 11 \mathrm{~B} 5 / 2
\end{aligned}
\]
U.S. C. \(346-74.1\) 12 Claims 1. A magnetic printing head for selectively simultaneously magnetizing at least one of a multiplicity of regions of a relatively thin magnetizable recording belt in a direction trans-
verse to a direction of essentially linear movement of the re verse to a direction of essentially linear movement of the recording belt past the stationary printing head, comprising: an elongated member of magneizable mard slots formed into
multiplicity \((\mathbf{N} \times \mathbf{M})\) of linearly arrayed sin
an edge thereof closest to the moving magnetic belt, saic multiplicity of slots being divided into 2 plurality ( \(\mathbf{N}\) ) of
sequential word groups each containing a like number ( \(M\) ) of ordered slots;
plurality (N) of conductive word lines, each ara within the plurality of ordered slots of a different one of plurality of word groups of slots, each word line indepen plurality of word groups of slots, each word line indepen-
dently and selectively energizable for carrying an electrical current of magnitude less than the magnitude of current required to selectively form a magnetic field of mag nitude sufficient to magnetize one of the regions of said belt adjacent to an open end of each slot of said plurality of slots in each said word group; and
within a like ordered slot of all of said plurality of word

groups, each digit line independently and selectively energizable for carrying another electrical current of magnitude less than the magnitude of current required to selec tively form a magnetic field of magnitude sufficient to magnetize one of the regions of said belt adjace;
open end of each slot containing that digit line;
open end of each slot containing that digit line;
at least one word line and at least one digit line bei
pendently and simultaneously energized to cause forma tion of a magnetic field of direction essentially transverse to the direction of linear motion of the belt and of magni sude sufficient to magnetize each region of said belt adjaslots contaning the simultaneously energized lines.

AXIAL DROPLET ASPIRATOR
rancis Peter Glordano, Brooklyn, and Ferdinand Hendrike Yorktown Helghts, both of N.Y., assignors to Internationa Business Mechines Corporation, Armonk, N.Y.
Filed Dec 20,197 , Ser. No

Filed Dec. 20, 1976, Ser. No. \(\mathbf{1 5 2 , 7 7 8}\)
Int. C.2 \({ }^{2}\) G01D \(15 / 18\)
U.S. CI. 346-75

25 Claims

1. An integral ink jet aspirator comprising
housing means having front and rear ends and including a gas inlet port;
a charge electrode enclosing the front end of said housing
means, said electrode having an axial passe frome means, said electrode having an axial passage from a
outer face to an inner face, said inner face being curvilin ear;
an ink jet head on said outer face of said charge electrode in
axial alignment with said axial passage in said charge electrode;
a tunnel within said housing means in axial alignment with said axial passage in said charge electrode, said tunnel having an entrance and an exit and having a substantially unifor
exit;
mouth ad ter spaced from said curvilinear surface of said charge elec spaced from said curvilinear surface of said charge elec-
trode, with the space therebetween forming a channel; turbule, with the space deasing means within said housing means and between said inlet port and said channel; and deflection means in the walls of said tunnel.

INK JET PRINTER \(4,007,873\)
INK JET PRINTER FOR SELECTIVELY PRINTING Van CIIfton Marting, Boulder, Colo., assignor to International Business Machines Corporation, Armonk, N.Y.
Filed Feb. 28, 1977, Ser. No. 773,107 led 7, G01D Ser. No. 773,107
U.S. CI. 346-75
\(4,097,874\)
BLOCKING ASSEMBLY FOR AN AUTOMATIC Eerold Anderka, Ellerbek; Horst Hampel, Bonningstedt; Walter Jozant, Bad Bramstedt, and Kiaus Straszewsild, Quickborn, all of Germany, asoignors to Mesne Koh-I-Noor Rapidograph, Inc., Bloomsbury, N.J.
ration-in-part of Ser. No. 781,394, Mar. 25, 19
application May 3, 1977, Ser. No. 793,477 Claims priority, application Germany, Feb. 19, 1977, 2707258 U.S. Cl. \(346-140\) R \({ }^{\text {Int. C. }{ }^{2} \text { G01D 15/16 }}\) U.S. CI. \(346-140\) R

1. An ink jet printer for selectively printing different resolu ions on a medium comprising.
cylindrical means for supporting the medium for receiving ink drops;
a plurality of arrays of ink jet nozzles disposed relative to said cylindrical means, each of said arrays having a plural ity of ink jet nozzles linearly spaced in a first direction to supply ink drops at a selected drop rate to the medium, said arrays being disposed relative to each other so that the tracks from each of said nozzles interlace with othe
tracks from other of said nozzles.
lo producing means to produce
first producing means to produce relative linear motion
between said cylindrical means and said arrays in the firs direction;
second producing means to produce relative rotation be tween said cylindrical means and said arrays in a second direction substantially orthogonal to the first direction; said arreys in accordance with the resolution to be printed;
and means to alter at least two out of the velocity of said firs producing means, the velocity of said second producing means, and the drop rate of the drops supplied in accor dance with the desired resolution to be printed.

1. In an automatic drafting device of the type adjustably supporting a tubular writing pen with writing tip in both a ing surface and a raised rest position with the pen tip out of ontact with the writing surface, the improvement comprising A. A housing support for said tubular pen;
B. A rest mode mechanism mounted upon said housing and engaging said pen, so as to urge said pen inwardly of said housing into a raised rest position;
and engaging said pen, so as to urge said pen outwardly of said housing in a lowered writing position; and
D. A sealing element supported upon said housing, so as to engage the writing tip of said pen in the raised rest posilow and so as to disengage laterally from the writing tip in ition, and
ing and engaging said sealing ely supported in said housrevent axial movement of said element as an override to ealing element is moved laterally outwardly of said sabu lar pen during pre-selected periods.

\section*{4FT ENCODER}

Trank L. Scholten, Katonah, N.Y., and Francis S. Szabo, Mountuin Lakes, N.J., assignors to Addressograph-Multigraph Corporation, Cleveland, Ohio

Filed Apr. 4, 1977, Ser. No. 784,553
Int. C1. \({ }^{\text {G03B }}\) 15/24; G01D 5/34
U.S. CI. \(354-8\)

3 Claim projected from a font source to a photosensitive surface, the comporitimproved means to space the characters in a line composition according to the width value of each character omprising:
a projection system with a focused optical axis
for intercepting ting means positioned on said optical axis, for intercepting the focused optical axis and directing it to eans for oscillating said first beam deflecting mean through an angle sufficient to project the optical anis in measured steps along a length of composition line
a projection grating of alternate energy transparent and uniform light distribution sensitivity for the exposure time opaque portions, and means to project radiant energy display function, a further light sensing element disposed
grating;
a second beam deflecting means carried in oscillation synchronism with said first beam deflecting means;
a receptor grating of alternate energy transparent and within the box and a further reflecting mirror movable to a
position proximate that of the main reflecting mirror when the position proximate that of the main reflecting mirror when the
latter is raised, said further reflecting mirror being operable to direct light reflected back from the reflecting means and/or the film means onto the further light sensing element whereby the combined outputs of the two light sensing elements implement a uniform light distribution sensitivity for the exposure time control function.

DUAL-FUNCTION \(\begin{gathered}4,097,877 \\ \text { VARIABLE RESISTOR IN }\end{gathered}\) AUTOMATIC/MANUAL CAMERA SHUTTER CONTROL CIRCUIT
Masahiro Kawasaki, Tokyo, Japan, zesignor to Asahl Kogaku Masahiro Kawasal, Toky, Japan, ask
Kogyo Kabushiki Kaisha, Tokyo, Japan
and Filed Nov. 9, 1976, Ser. No. 740,326
Claims priority, application Japan, Nov. 11, 1975, \(50-1\) 153233[U]
deflecting means to sweep a projected energy image of said projection grating over said receptor grating along an optical path
means; and
a sensor means sensitive to said radiant energy positioned to detect a registration of the projected energy pattern with position indicating output signal.

4,097,876
DUAL-MODE LIGHT METER SYSTEM FOR SLR CAMERA USING BEAM-SPLITTING REFLEX MIRROR Naoyuki Uno, Urawa, and Kantsuhiko Miyata, Tsurugashima, both of Japan, asaignors to Asahi Kogakn Kogyo Kabushiki Kaisha, Tokyo, Japen
Filed Dec. 7, 1976, Ser. No. 748,358
Claims priority, application Japan, Dec. 9, 1975, 50-146675 U.S. Cl. 354-31

1 Claim

1. In a single lens reflex camera including a main reflecting irror movable between raised and lowered positions within camera box, a viewinder optical system disposed to receive
light reflected from the lowered mirror, reflecting means dis posed at the rear of the box closely adjacent to and in front of film means and a light sensing element disposed within the box o implement an automatic exposure time control function in response to light reflected back from the reflecting means
and/or the film means after the mirror is raised, the improvement characterized by having at least a portion of the reflecting mirror being formed as a beam spilter whereby some ligh passes through the lowered mirror and is reflected back onto the sensing element by said reflecting means to implement an
initial exposure time display function, said reflecting means including a shield member mounted within the box and mov able between a light reflecting position in front of said film means when the mirror is lowered and a light blocking position eneath the mirror when the latter is raised so that the shield member prevents light from entering the camera box via the member being mounted to lie at an inclined angle to the film means when in its light reflecting position to implement a
1. A shutter control system for a camera having a reflex mirror, comprising:
(a) an automatic circuit for providing a voltage output for measured brightness of a photographic abject and at least ne preset parameter, such as aperture opening, exposure time, and/or film sensitivity,
(b) a manual circuit for providing a voltage output for controlling the camera shutter speed in accordance with a preset value thereof,
(c) a variable resistor having a first sliding contact for setting said at least one preset parameter in an automatic mode and a second sliding contact for setting the shutter speed (d) first switch means normally connecting said variable resistor and said first sliding contact exclusively in said automatic circuit and responsive to movement of said rflex mirror for connecting said variable resistor and said (e) a shutter control circuit responsive to a voltage connected to an input thereof for controlling the shutter open
(f) a second switch, manually controllable, for selectively connecting the voltage outputs of said automatic and manual circuits to the input of said shutter control circuit, manual modes of operation, and
(g) indicator means connected to the output of said automatic circuit for displaying the parameter calculated by said automatic circuit, whereby said last mentioned parameter is displayed prior to a photography operation
irrespective of the position of said second switch.

CAMERAS
CHOTOGRAPHIC
CAMEAS
Filed Jan. 6, 1977, Ser. No. 757,176
Claime priority, application Switzeriand, Feb. 6, 1976 Int. Cl. \({ }^{2}\) G03B 17/08
U.S. Cl. \(354-64\)

1. An underwater housing for a photographic camera, com prising:
a camera housing portion;
a closure portion detachably connected with the camer housing portion;
said camera housing portion having wall means;
actuation elements for actuation elements for operating the camera penerrating
through the wall means of the camera housing portion; one of the actuation elements comprising a presser arrange ment for triggering a camera shutter;
said presser arrangement comprising a pressure pin and a
said camera housing portion having an opening receiving
said seal;
said seal comprising a head, a substantially ring-shaped flange and a plug elastically expansible in lengthwis
said plug and said ring-shaped flange extending substantially centrally with respect to one another and protruding from the underside of said head;
said ring-shaped flange having an outer surface containing a
peripheral groove
said openion of the camera housing portion surrounding
said opening extending into the peripheral groove;
means providing a blindhole bore extending through the
plug from the top of the head;
said pressure pin being held in the blindhole bore.

\section*{4,097,879}

DEVICE IN A CAMERA FOR IMPARTING PICTURES ON A PHOTOGRAPHIC FILM WITH A TOP-AND-BOTTOM
Toshihiro Kondo, Chofu, Japan, asaignor to Fuji Photo Film Co,
Ltd., Minamimaligara, Japan, a part interest
Claims priority, application Japan, Oct. 17, 1975, 50-125177 Int. C. \({ }^{2}\) G03B 17/24

13 Claims

1. In a device for recording marks on a film indicating the top and bottom of picture images on a photographic film in a posed, the combination of, a container having a pair of trans-
parent walls spaced from each other and parallel to the general plane of a film frame positioned to record a photographic image in the camera, said walls defining an open cavity therebetween, said cavity being so positioned that light passing through said transparent wals strikes said phoographic film in liquid within said cavity and having a volume of the order of not greater than one-half the volume of said cavity whereby the liquid prevents the passage of light through the lower portion of said cavity. while light passes through at least the
upper half of said cavity to thereby produce a distinctive markupper half of said cavity to crebey produce a distinctive markphotographic film.

\section*{4,097,880}

PHOTOGRAPHIC STROBOSCOPE Tsunemi Yoshino, Ibaraki, Japan, assignor to West Electric CO, Llu., Ozakk, Jiled Jun. 23, 1977, Ser. No. 809,091 Claims priority, application Japen, Jun. 30, 1976, 51-78322; Int. Cl. \({ }^{2}\) G03B 15/03; H05B 4I/18 U.S. C. \(354-145\)


\section*{1. A photographic stroboscope comprising}
(a) a main capacitor;
(b) a flash lamp for converting the energy stored on said main capacitor into a flash of light
(c) a trigger circuit comprising a trigger capacitor, a trigger (d) first switching means adapted to be caused to conduct in response to a flash command signal applied thereto
(e) second switching means responsive to the conduction of said first switching means for reversing its output level
and for reversing its output level again to an initial level after said first switching means has been disabled; and (f) a time delay circuit interconnected between the gate of said thyristor and the output of said second switching means for reverse biasing said gate of said thyristor with respect to the cathode thereof when said first switching thyristor with respect to said cathode thereof when said first switching means is disabled, thereby causing said thyristor to conduct.

FOCUSSING APPARATUS FOR CAMERAS
Tohru Kactagiri, Shimoouwan, Japen, assignor to Sankyo Kogaku Kogyo Kabushikd Knicha, Japan
Filed Jul. 30, 1976, Ser. No. 710,018
Claims priority, application Japan, Aug 5, 1975, 50 108407[U] Int. Cl. \({ }^{2}\) G03B 19/12, 13/02 U.S. CI. 354-155
1. A focussing apparatus for camera comprising
a real image rangefinder optical system having an optical axis with primary and secondary image points thereon; and
rangefinder between said primary and said secondary
image points, said mask plate having a plurality of aper-
tures symmetrically arranged about and out of intersec-

tion with the point of intersection between said mask plate
and said optical axis of the optical system. and said optical axis of the optical system.

4,097,882
MULTIPLE LENS CAMERA HAVING LENS-POSTTION CONTROLLED FOCAL-LENGTH ADJUSTMENT many, assignor to AGFA. Filed Dec. 20, 1976, Ser. No. 752,314 Claims priority, application Germany, Dec. 23, 1975, 2558277 US. C. \({ }^{354-197}{ }^{\text {Int. CT. }{ }^{2} \text { G03B 3/00. 13/02 }}\)

6 Claims

1. In a photographic camera having an optical axis, a combination comprising at least two different photographic lenses; a lens carrier mounting said lenses; means mounting said lens
carrier for displacement in a direction normal to said axis cartireen respective lens-changing first settings in each of which a different one of said lenses is located on said optical
axis, and also for displacement in a direction lengthwise of said axis, and also for displacement in a direction lengthwise of said axis to different second settings corresponding to different
distance ranges; means for selecting respective ones of said distance ranges; means fer selecting respective ones of said
second settings; and means responsive to operation of said selecting means for displacing said lens carrier lengthwise of said optical axis through distances which differ for each of said second settings in dependence upon the respective first setting
assumed by said lens carrier, including a cam movable by said asslecting means, a cam follower tracking said cam, and a transseliecsing means, a cam filtiower racking from said cam follower to
mission element transmitting motion mission element
said lens carrier.

\section*{4,097,883}

Gunter Adamski, and Claus Prochnow, both of Brunswick, Germany, adgnors to Rolle1-Werke Franke \& Heldecke, Bruns. wick, Germany
Filed Sep. 9, 1996, Ser. No. 721,891
Claims priority, application Germany, Sep. 17, 1975, 2541384

U.S. C. 354 - 293 Claims prising
prising: with means for fastening the head to the camera in a
head with means for fastening the head to the camera in a particular support surface and having a first, plane inter-
face surface;
surface, interfacing with the first surface of the head means for rotatably connecting the hand grip part to the
head insert planar interface, there being an axis of rotatio

extending transversely to the planar interface between the head and the grip part; and
he grip part having a center axis
zero angle to said axis of rotatio zero angle to said axis of rotation.

\section*{4,097,884}

APPARATUS AND METHOD FOR AUTOMATICALLY Paniel J. Lasky, Sunte Clara, X-RAY Fill P both of Calif, astanom to Adex Coporation Sante Jose, both of Calif, asedion to Ader Comporntion, Clare,

Filed Sep. 24, 1976, Ser: No. \(\mathbf{7 2 6 , 2 4 2}\)
Int. C1. \({ }^{2}\) G03D \(3 / 08\)
16 Claims


An apparatus for processing \(x\)-ray film comprising: a processing tank having a first port disposed generally in its lower portion, said first port serving to provide an inlet
and an outlet for working solutions flowing into or out of said tank;
a first valve having a first inlet, a first outlet and a first electrical control terminal, said first valve being normally to said first terminal and operative to allow a developer solution to flow from its inlet to its outlet;
a second valve having a second inlet, a second outlet and a second electrical control terminal, said second valve being normally closed and further being responsive to a second
signal applied to said second terminal and operative to allow a fixer solution to flow from its inlet to its outlet; third valve having a third inlet, a third outlet and a third electrical control terminal, said third valve being normally closed and further being responsive to a third signal apflow from its inlet to its outlet.
onduit means interconnecting said first, second and third outlets and said first port;
fourth valve having a fourth inlet connected to said conduit means, a fourth outlet and a fourth electrical control further being responsive to a fourth signal applied to said fourth terminal and operative to allow working solutions to flow from its inlet to its outlet;
a first source of photographic developer solution having first orifice coupled to said first inlet and being capable of
second source of photographic fixer solutio
second orifice coupled to said second imlet and being capable of supplying fixer solution to said second inlet; a third source of water having a third orifice connected to said third inlet, said water having a pressure which is in pressure and being subject to variations, said third orific having a dimension sufficient to provide a turbulent flow of water to said tank when said third signal is applied to said third terminal and said pressure exceeds said fir pressure; and
first means for selectively supplying first, second, third and
fourth signals to said first, second, third and fourth term fourth signals tespectively, whereby when said first and third sig. nals are applied, developer solution and water turbulently flow into said tank via said first and third valves to form a developer working solution, when said second and third
signals are applied, fixer solution and water turbulently flow into said tank via said second and third valves to form a fixer working solution when said third signal is applied, water turbulently flows into said tank via said third valve, and when sere permitted to drain through said fourth outlet. \(\qquad\)
4,097,885
COMPACT, TWO-PHASE CHARGE-COUPLED-DEVICE STRUCTURE UTILIZING MULTIPLE LAYERS OF CONDUCTIVE MATERIAL
Loyd R. Walsh, San Joee, Callif, mesignor to Fairchild Camera Instrument Corp., Mountrin View, Calif.
Int. Cl. \({ }^{2}\) H01L 29/78; Ho1L 29/04; G11C 19/28 U.S. C. 357-24

1. At least one semiconductor cell structure, a cell thereor comprising:
substrate formed from selected semiconductor material of one conductivity type;
region of first insulating material formed on a first surface of the substrate;
plurality of regions of first electrically conductive material disposed at selected intervals on the first insulating material;
pluraity of regions of second insulating material formed on all portions of first electrically conductive material whi
are not in contact with the first insulating material first and second spaced apart barrier regions formed in the substrate adjacent to the first insulating material and in regions of the substrate not overiaid by either one of insulating material, the first and second barrier regions being the same conductivity type as the substrate, but each having a different impurity concentration than the substrate;
region of second electrically conductive material disposed on that portion of the first insulating material over alternate barrier regions, and disposed on the second insulating material overlying selected portions of the first electrically conductive material;
region of third insulating material formed on all portions of
second electrically conductive material which are not in
contact with either one of the first and the second insulat ing materials;
ing materials; electrically conductive material disposed on that portion of the first insulating material over remain ing barrier regions, and disposed on selected portions of the second and the third regions of insulating material; means for electrically connecting alternating regions of firs conductive material; and
means for connecting the remaining regions of the firs electrically conductive material to the third electrically conductive material.

4,097,886
SPLIT ELECTRODE STRUCTURE FOR SEMICONDUCTOR DEVICES Richard D. Baertuch, Seotia, and Jerome J. Tiemann, Schenecthay, betho of N.Y..

Filed Oct. 22, 1976, Ser. No. 735,024
Int. Cl. \({ }^{2}\) H01L 29/78; G11C 19/28; H03H 7/28
S. Cl. 357-24 \({ }_{2}\) Cleim

1. A semiconductor device comprising
a substrate of semiconductor material including an active length and a width dimension located adjacent a major surface thereof,
means for transferring charge carriers along the length of said channel portion, and two potential barriers to the transfer of charge carriers in a direction orthogonal to the length of said channel portion which form two side
bounds of said channel portion and thereby define said width dimension of said channel portion,
said means for transferring charge carriers including poten tials applied to a group of electrodes insulatingly overly ing said channel portion and orthogonal to the length same length measured along the length dimension of said channel portion,
said electrodes forming with said substrate a plurality of stages of a semiconductor device, each stage of said device including a respective one of said electrodes, each of
said electrodes having the same area over the extent of said channel portion, each of said electrodes having a split along the length dimension thereof dividing the electrod into a ifst part and a second pars, each ort of electrode being set to a respective predetermined value,
the area of each of said parts of said electrodes resolvable into the area of a respective integral number of element and a remainder porton ing a element, an element being a rectangle having one side
equal to the length of said electrodes and an adjacent side equal to a predetermined minimum linear dimension, the area of each of said remainder portions resolvable into the area of a respective integral number of subelements, subelemen being a square having a side pre pair of remainder portions of an electrod
adjacent the split thereof, the sum of the areas of each pair of remainder portions of a respective electrode being fixed and less than or equal to the area of an element,
some of said electrodes including a remainder portion having an area less than the area of an element,
first-conductive line connected to the first parts of said electrodes,
second conductive line connected to the second parts of said electrodes,
whereby each part of an electrode can be provided with any of \(P Q\) consecutive discrete values of area from zero to the total area of an electrode, where \(P\) equals the number of
elements in an electrode and \(Q\) equals the number of subelements in an element.

4,097,887
LOW RESISTANCE, DURABLE GATE CONTACT PAD FOR THYRISTORS
Francis William Kallkbrenner, West Chester, Pa., assignor to General Electric Company, Philadelphia, Pe.

Filed Sep. 13, 1976, Ser. No. 722,973
Int. Cl. \({ }^{2}\) H01L 29/74, 23/42, 23/44
U.S. CI. \({ }^{357}{ }^{\text {Int. }} \mathbf{3 8}\)

14 Claims

1. A thyristor comprising, a multi-layer body of semiconductor material having opposite end layers and at least one intermediate base layer of alternately opposite \(\mathbf{P}\) and \(\mathbf{N}\) conductivity types, one said end layer being slotted to form lateraily
adjacent main and control regions, said main region and the opposite end layer of said body being metalized on their outer surfaces to form two main electrodes of said body, said one end layer in said control region having a relatively lower impurity provide at least one channel extending transversely therethrough to said base layer, a body of conductive metal coating said one higher impurity concentration end layer in said control region and filling said channel thereby to form a control electrode contact surface directly electrically connected to said base layer through said channel, said body of conductive metectrical contact with said base layer, and a control contacting means pressed against said contact surface and having a contact area appreciably greater than the cross sectional area of said transverse channel wherein the wearing away of said contact surface of metal causes said contacting means to be brought into direct contact with said higher impurity concen-
tration end layer such that substantially all current entering tration end layer such that substantialt surface is transmitted directly into said base layer through said body of conductive metal without crossing the junction between said higher impurity end layer and said base layer.

HICH DENSITY COLLECTOR-UP STRUCTURE Lewis K. Russell, San Jose, Calif., assignor to Signetics Corpora tion, Sunnyvale, Calif.
Continuation of Ser. No. 622,714, Oct. 15, 1975, abandoned. This application Feb. 7, 1977, Ser. No. 766,483 U.S. CI. \(357-46\) 11 Claims

1. A high density semiconductor structure comprising (a) a body of semiconductor material including a stratum of first conductivity type having a substantially planar surface;
(b) first and second nested regions disposed within said stratum so as to extend from said planar surface to different depths below the surface of said stratum, said first region being of second conductivity type opposite said
first conductivity type and disposed within first conductivity type and disposed within said stratum so
as to form a first semiconductor junction as to form a first semiconductor junction therebetween,
said second region being of said first conductivity type said second region being of said first conductivity type
and nested within said first region to form a second semiconductor junction therebetween, said first region being substantially uniform in thickness and relatively thin as compared to its depth below the surface of said stratum; (c) a plurality of third regions of said second conductivity relation to form a like plurality of third semiconductor junctions therebetween; and
(d) contact means connected to said stratum and said regions whereby, upon application of a potential difference fortum, said first region and said second region form the tum, said first region and said second region anm
elements of an injection source transistor, and said first, second and third regions form a plurality of collector-up transistors.

\section*{4,097,889}

COMBINATION GLASS/LOW TEMPERATURE DEPOSITED SI \(\mathrm{N}_{\mathrm{H}} \mathrm{H}_{\mathrm{H}} \mathrm{O}_{2}\) PASSIVATING OVERCOAT WITH IMPROVED CRACK AND CORROSION RESISTANCE FOR A SEMICONDUCTOR DEVICE Werner Kern, Belle Mead, and Chester Edwin Tracy, South River,
N.Y.

Filed Nov. 1, 1976, Ser. No. 737,850
Int. Cl. \({ }^{2}\) H01L 29/34
U.S. C. 357-54
1. In a semiconductor device having a metallic conductor disposed on the surface of a body of semiconductor material
and a passivating overcoat including a glass layer disposed aver said conductor, he improvement comprising said passivating overcoat further incluaing a low-temperature-deposited
nitride layer comprising a chemical compound having the formula \(\mathrm{Si}_{w} \mathrm{~N}_{x} \mathrm{H}_{y} \mathrm{O}_{z}\) wherein \(w_{i}, x, y\) and \(z\) are integers othe han zero said nitride layer being deposited at a temperature below the eutectic temperature at which said metallic conduc tor begins to alloy with said semiconductor material.

LOW PARASITIC CAPACITANCE AND RESISTANCE LOW PARASITIC CAPACITANCE AND RESISTANCE METHOD OF MANUFACTURE
Raymond A. Morris, Sunnyvale, and Thomas J. Viola, Jr.,
Mountain View, both of Calif,, asslgnors to Hewlett-Packard Mountain Vien, both of Calir
Company, Palo Alto, Calif.
Company, Palo Alto, Calif. Jun. 23, 1976, abandoned. This Cision of Ser. No. 699,130, Jun. 23, 1976, abandoned.
application Mar. 23, 1977, Ser. No. 780,373
Cl. 357-55 Int. C1.2 H01L 29/06 5 Claims


A low-parasitic capacitance and electrical resistance sem onductor component comprising:
semicond surface ans having a substrate with a first and second surface, a plurality of edges, and a plurality of
layers of selected conductivity types for implementing selected semiconductor device on the first surface adjacent to one of said edges;
a block of a selected glass juxtaposed to the full height and width of said one edge of the semiconductor means and extending over said one edge of the first surface of the
semiconductor means to the semiconductor device with the exposed surface of the glass block being substantially flush with the surface thereof; and
first conductive means extending across the exposed surface layers of the semiconductor device on the first surface of the semiconductor means.

\section*{4,097,891}

\section*{LASER STUD MOUNTS}

Peter Richard Selway; Martin Chown; Richard Edward Ep worth, all of Hariow; Norman Derek Leggett, Hoddesdon, an Harish Ram Dass Sunak, Bishops Stortford, all of England,
New York, N.Y.
Claims priority, application United Kingdom, Apr. 1, 1975,
13203/75
Int. CC. \({ }^{2}\) H01L 23/12
8 Clxims
U.S. C. \(\mathbf{~ 1 . ~ A ~} 157-81\)
1.
aper aparatus comprising: a metallic base;
an externally threaded stem coupled to and extending from one side of said base, said stem having a bore therein along its axis;
heat sink coupled to and extending from another
said base, said bore extending into said heat sink an injection laser mounted on said heat sink and having first terminal provided by said stem, base and heat sink;;
a strip line forming a second terminal for said injection laser;
body of electrically insulating material coupled to said base
for securing said strip line; and
a light guide consisting of a core region surrounded by a
lower refractive index cladding region extending through

the stem in said bore for receiving radiation from said laser and transmitting said radiation.

VIDEO COI \(4,097,892\)
VIDEO COLOR FILM ANALYZER Filed Oct. 8, 1976, Ser. No. 730,737
Int. Cl. \({ }^{2}\) G03F 3/08

25 Claims

1. In a color film analyzer for processing color films, film canning means for scanning a film and providing separate colors of the film, reference means for deriving reference evels from the color signals provided while a standard film is eing scanned, said reference means including register means or registering said reference levels for use in the processing of able means for adjusting the color signals provided while an unknown film is being scanned to said reference levels.

\section*{4,097,893}

ORTABLE VIDEO RECORDING SYSTEM EMPLOYING CAMERA AND RECORDING STATIONS CONNECTED RECORDING STATION
BY WIRELESS LINKS
Marvin Camras, Glencoe, III \(_{n}\) sadignor to IIT Reverrch InstiMarvin Camras,
tute, Clicago,
Il.
tute, Chicago, Il . of Ser. No. 488,466, Jul. 15, 1974, Pat, No
Continuation-in-part \(3,984,625\), which is a continuation of Ser. No. 237,220, Mar. 22 1972, abandoned, which is a continuation of Ser. No. 889,775, Dec. 11, 1969, abandoned, which it a division of Ser. No. 27, 1976, Ser. No. 718,173
Int. CL. \({ }^{2}\) H04N \(7 / 00\)
U.S. Cl. 358-83
1. A portable video recording system, particulery 29 Chim eur video recording operations and the like video recording station, and an independent, self-containg being of a size to be readily manually carried on the person and comprising a video camera, a transmitter operatively connected to said camera, for transmitting the output signals of said video camera by transmission of a high-frequency carrie the camera for controlling the transmission of recorder start-
stop signals from the transmitter, receiver means forming part of said camera station, for receiving signals transmitted from such a recording station and representing a predetermined operating condition of said recorder, and indicatin control of said indicating means, to provide a desired indica tion to the camera operator of the operation of the recorder said recording station comprising video recording means, means for receeving transmitted signals from said camera station and supplying the received output signals of said video

video recording means, means for controlling the start-stop operation of said recording means, means operatively connected to said recorder receiving means and to said recorder controlling means, responsive to recorder start-stop signal rom said camera station received by said receiving means, means disposed to effect a monitoring operation of televisio a signal indicative of a predetermined condition in said received signals, and transmitter means forming a part of said recording station for transmitting said indicative signals from the recording station to said camera station.

SECURED
ames L. Tanner, RCRAMBLE DECODER FILTER Sanchez, Loner, Rageseded, Band Bano Ans Becht, Grinada Hillt, ill Callif, maignors to Tanner Electronics Syateme Tolls, all of Inc., Van Nuys, Calif.
Int. C. \({ }^{2}\) H04N \(1 / 44\) : H01H. \(35 / 42\) : 1018
 12 Claims

1. A circuit device for removing an interfering signal purposely injected between the video carrier and audio carrier o a elevision transmiscion signal, said interfering signal having a
frequency substantially in the range of one-fourth to threefourths of the frequency interval between the video carrier and the audio carrier comprising:
a housing;
narrow band notch filter mounted in said housing
means for tuning said filter to the optimum frequency for eliminating the interfering signal, the latter having a frequency substantially in the range of one-fourth to three fourths of the frequency interval between the video carrier and the audio carrier; and
means for mounting said housing, said mounting means including means for securing sain
rized removal from said mounting

1. An information record, for use in playback apparatus employing a playback beam of light of a given frequency; said record comprising:
a substrate having a light reflective surface; and
a layer of light absorptive material overlying said reflective surface, with an information track formed in said layer; spaced pits, with variations in the spacing betweens successive pit edges representative of recorded information; wherein the thickness of said layer in all regions of said record other than those occupied by said pits is a given thickness chosen to establish an anti-reflection condition
for all said other record regions for light at said given frequency directed toward said light reflective surface through said absorptive layer, and
wherein the thickness of said layer in
wherein the thickness of said layer in those record regions occupied by said pits is significantly less than said given thickness.

\section*{4}

Leslie Ronald Avery, Surrey, Engiand, asaignor to RCA Corporation, New York, N.Y.
Filed Mar. 3, 1977, Ser. No. 774,213
Claims priority, application United Kingdom, Feb. 23, 1977, 12535/77
U.S. Cl. 358-153 Int. Cl. \({ }^{2}\) H04N 5/08 18 Claims

1. A sync separator circuit, comprising:
source of video signals, said video signals including syna first plurality of se
controllable switching means coupled to said first plurality; a source of first bias current coupled to a control terminal of said controllable switching means
first means coupled to one of said first plurality and said controllabbe switching means for providing a first current through said first plurality of series coupled diodes, said Coupled to said first plurality voltage at a first terminal coupled to said first plurality of series coupled diodes
during the occurrence of said synchronizing second means coupled to said control terminal and respon-
sive to said source of video signals for providing during
the occurrence of said synchronizing signals an additional the occurrence of said synchronizing signals an additiona
bias current to said controllable switching means for intro bias current to said controllable switching means for intro
ducing to said first plurality of series coupled diodes dur ing said occurrence a second current in addition to saic ing said occurrence a second current for establishing a second voltage at said first terminal;
a source of first reference voltage; and
comparator means responsive to said first reference voltage and said second voltage for developing an output signal
when said second voltage and said first reference voltage differ by a predetermined value.

4,097,897
AUTOMATIC BOOST CONTROL IN AN APERTUR CORRECTOR FOR TV VIDEO SIGNALS
Edwin Earl Morris, Clinton, N.Y., assignor to General Electric Company, Utica, N.Y
Filed Apr. 22, 1977, Ser. No. 790,161
Int. C.2 H04N \(5 / 14,5 / 22\)
U.S. CI. 358-162

dividing the scanned image into two scanned image portions;
filtering

解g the separate scanning image portions by two masks, respectively, one mask including the positive part of a negative part of a desired fiter funct mask including the
part of a desired filter function,

detecting the light passed through the masks by respective photodetectors to generate respective output signals;
substracting one of the output signals from the other output signal to thereby generate a filtered signal; and reproducing the filtered signal into a filtered two-dimensional image.

VIDEO RECORD PLAYER SWITCHING SYSTEM Jon Yu, Indinapolies Ind enteror to RCA Corporation, New York, N.Y. Claims priority, application United Kingdom, Dec. 8, 1975, 50280/75
U.S. CI. \({ }^{\text {Int. Cl. }{ }^{2}} \mathbf{H} \mathbf{H} 04 \mathrm{~N} 5 / 22,7 / 00,5 / 78,5 / 4418\) Cluime

1. In a video record player, including means for recovering recorded signals respectively representative of picture infor mation and accompanying sound information; apparatus com rising, in combination:
a player output terminal;
a player on/off switch, subject to switching between "on" and "off" conditions;
a power supply developing a plurality of supply potentials in response to switching of said player on/off switch to said "on" condition;
means, rendered operative in response to supply potentia development by said power supply, for forming a player output signal inclusive of picture carrier frequency oscilla tions and sound carrier frequency oscillations;
signal input terminal coupled to said recorded signal recover ing means and a sound signal input terminal coupled to saic ecorded signal recovering means, and including means fo modulating the amplitude of said picture carrier frequency scillations in accordance with recovered picture signal infor means for modulating the frequency of said sound carrie frequency oscillations in accordance with recovered sound
signal information when present at said sound signal input terminal; and
a switching system coupled to said power supply, and subject to operation in a first mode in response to development of one of said supply potentials, while subject to
operation in a second mode in the absence of said one supply potential development; said switching system, when operating in said first mode, providing a first, low impedance, signal path for coupling said player output
signal to said player output terminal, while isolating said signal to said player ourpur cermal from said player output terminal and said output signal forming means; said switching system, when operating in said second mode, providing a second, low impedance, signal path for coupling said external signal input terminal to said player output terminal, while isolating said output signal forming means from said player output terminal and said external signal input terminal.

4,097,900
ELECTRO-ACOUSTIC DEVICE FOR READING A TWO DIMENSIONAL IMAGE BYY MEANS OF AN ELECTRODE Michel Moulin, and Bernard Munier, both of Paris, France, cesignors to Thomson-C.SF, Paris, France
Filed Dec. 17, 1976, Ser. No. 751,942
Claims priority, application France, Dec. 23, 1975, 7539526 U.S. C. 358-213
1. An electro-acoustic device for reading an optical image in two dimensions, comprising:
two dimensions, comprising:
a semiconductive and photosensitive medium onto whit said image is projected on a interaction surface;
a piezoelectric medium coupled with said semiconductive medium and carrying at least two electromechanical transducers on its surface, said transducers generating two elastic surface waves in opposite directions under electri-
cal control, one of said waves being in the form of a pulse cal control, one of said waves being in the form of a pulse
and the other in the form of a long wave of which the and the other in the form of a long wave of which the
duration is at least equal to twice the time taken by said pulse to scan said interaction surface, the scanning of said pulse to scan said interaction surface, he scanning of said interaction surface by said puse producing, by means of
non-linear interaction with said long wave, an electrical signal of which the amplitude at each point is dependent upon the illumination at that point:
electrode network carried by said semiconductor medium, said electrodes being in ohmic contact with said semiconductor medium and electrically insulated from one another and being substantially parallel to the propagation direction of the elastic waves, the electrical signals collected respectively by each of said electrodes together representing the line-by , electrode constituting an analysis line.

4G PEDUCTION IN 4,097,90
IMAGE TRANSDUCERS HAVING DYNAMICALLY SHAPED RASTERS
Company, Binghintey Point, N.Y., assignor to The Singer Filed Apr. 12, 1977, Ser. No. 786,838
S. Cl. 358-223 Int. C. \({ }^{2}\) H 04 N N \(5 / 34\)

1. A method of reducing lag in image transducers such as mage orthicons and vidicons by use of an erasure scan during
nominal horizontal and vertical retrace times thereby allowing use of conventional T.V. interlaced field techniques comprisuse of conventio
ing the steps of:
A. At the end of a horizontal read-out scan of the image transducer
1. backstepping the electron beam of said image trans ducer up to a position earlier scanned during readout, 2. ransducer with said electron beam to erase any lag image,
image,
3. repositioning said electron beam to begin the next horizontal read-out scan,
4. initiating said next horizontal read-out scan, and
5. repeating steps A1 through A4 until the last horizontal scan line in a given reaster field has been scanned, then
B. When the last horizontal line in the field has been scanned 1. back-stepping the electron beam up to the region last erasure-scanned by said beam,
2. performing multiple erasure scans so as to completely erase the remaining surface of said cathode within the time normally available for vertical retrace in conventional T.V. systems,
3. repositioning said electron beam to begin the first hori-
4. initiating said next raster field scan, and
4. initiating said next raster
5. repeating steps \(A\) and \(b\).

\section*{4,097,902}

TELEVISION LIGHT SHIELD
Roy F. Curnuck, 243 Elm Dr., Levittown, N.Y. 74226
Filed Mar. 15, 1977, Ser. No. 777,629
Int. C1. \({ }^{2}\) H01J 24/06; H04N \(5 / 64\) U.S. C1. 358-255
1. A detacha 1. A detachable and adjustable television ligh
providing a generally enhanced picture comprising a series of eight plates that are attachable in an fashion to provide said light shield
wherein said series of eight plates are formed from two sets of four plates each,
said sets of plates differ from each other by 1 inch in width said plates consist of a reflective inner surface and a nonface is positioned to receive and reflect the images from the television faceplate
mounted on said plates are eyelets, which are attachable to suction cups by elastic bands,

said suction cups are strategically placed on the cabinet of the television set, thereby providing adequate support for said light shield.

4,097,903
ficsimit siciovic iconne syste
reference picture element just above said first occurring picture element have the same state, and said reference run is defined as the run succeeding the run including the reference picture element just above the first occurring picture element of the instant run to be coded when saire
first occurring picture element and said reference picture element just above said first occurring picture elemen have different states;
subtractor means connected to said first counter means and said second counter means for determining a difference between respective run lengths of said instant run to \(b\) signal representative of the difference
coding means connected to said subtractor means for coding said error signal to develop a coded output pulse train; and output terminal means connected to said coding means for sending out said coded output pulse train.

4,097,904
Tasaku Wade OPTCAL READ HEAD Denwa Co., Ltd., Tokyo, Japan
Filed May 5, 1977, Ser. No. 794,315 Claims priority, application Japan, May 15, 1976, 51-54814
Int. Cl.
H04N \(1 / 12\). G2B
\(5 / 16\) U.S. C. \({ }^{358-294}\)

Yukio Nakagome, Yokohama; Hiroich Teramura, Tokyo; Yukio Nakkgome, Yokohama, Hiroich Yeramara, Tokyo kyo, all of Japan, assignors to Kokusai Denshin Denwa Kabushiki Knisha, Japan
Claims priority, application Japen, Oct. 30, 1975, 50-130841
U.S. Cl. 358-261 int. Cl. \({ }^{2}\) H04N \(1 / 00\) O. 1975, 50-130841

8 Claims

1. A read-head for reading an optical information on an riginal paper comprising an optical fiber assembly having a plurality of light emission fibers for emitting light onto the original paper and a light receiving fiber for receeving reflected ight from said original paper, a transparent plate having an apaque film with a small hole motented at the extreme end of said optical fiber assembly, the other extreme end of said light assemble being positioned in front of a light source and a light detector element, respectively, said transparent plate being positioned in contact with or near the original paper to be scanned.
1. A facsimile signal coding system comprising:
input terminal means for receiving a facsimile signal obtained by scanning an original picture;
storage means connected to said input terminal means for successively and temporarily storing the lengths and posi-
tions on each scanning line of runs of black or white signal;
signal;
irst register means connected to said storage means for shifting the runs of black and white on a scanning line to be coded
second register means connected to said storage means for shifing the runs of black and white on a reference scan-
ning line preceding said scanning line to be coded: ning line preceding said scanning line to be coded;
first counter means connected to said first register means for
first counter means connected to said first register means for
determining the length and position of an instant run to be determining the length and position of an
coded on said scanning line to be coded;
second counter means connected to said second register
means for determining, as reference run information means for determining, as reference run information, the length and position of a reference run on said reference
scanning line, wherein said reference run is defined as the run including the reference picture element just above the first occurring picture element of the instant run to be coded when said first occurring picture element and said
whereby reproduction of one or more of said individual pulse ecordings will be effected thereby and the remainder of said
individual pulse recordings will be silenced, and stop means in aid circuit spaced from ihe individual pulse recordings and

electrically connected to the tape travel means acting after
reproduction of the last of said individual pulse recordings to reproduction of the last of said individual pulse recordings to
stop action of said tape travel means after a decay interval has passed.

APPARATUS
Joeef Schild, Vienna; Robert Scheiber, Wiener Neudorf; Harald
Schmidt Vienns; Josef Dresch, Vlenna, and Eduard Keznickl
Schmidt, Vienna; Josef Drasch, Vlenna, and Eduard Keznickl,
Raienna, all of Austria, 2ssignors to Kari Voct
Raimund Hause, both of Veena, Austria
Filed Apr. 9, 1976, Ser. No. 675,583
Filed Apr. 9, 1976, Ser. No. 675,583
Claims priority application Austria, Apr. 10, 1975, 2746/75; Claims priority, application Austria, Apr.
Jul. 25, 1975, 5795/75
Int. C. \({ }^{2}\) G11B 27/08
U.S. C. \(360-13\)

18 Claims

1. A recording apparatus for a tape-like data medium in which a sound sequence is recorded in gaps between section of the data medium carrying an original sound recording without removal of the original recording, said apparatus compris-
ing a record head, an erase head, data medium transport means for selectively driving the data medium in a forward or a reverse direction, mode setting means for the setting of the operating mode of the apparatus in either a record mode or a playback mode, and at least one counting means for actuating the mode setting means after a preset data medium length has un through wherein said counting means comprises means for producing a signal for switching on at least one fading device ofeans at a predetermined data medium length prior to the end ing said original sound recording, said fading device means for selectively fading-in or fading-out a portion of said sound sequence in said one of said gaps between sections of the data medium carrying an original sound recording.

METHOD AND APPAR,097,907
METHOD AND APPARATUS FOR THE SUPPRESSION Winfried Horstmann, Griesheim, Germany, assignor to Robert Bosch GmbH, Stuttgart, Germany
Filed Jan. 28, 1977, Ser. No. 763,591
Claims priority, application Germany, Jan. 30, 1976, 2603420
Int. C. \({ }^{2}\) H04L 7/00 U.S. C. \(360-33\)

1. A system for suppressing signal disturbances, which are due to switching from a first television signal to a second leievision signal, for use during a playback of said television
signals on a magnetic tape recorder including a magnetic tape signals on a magnetic tape recorder including a magnetic tape
having image structure and synchronous signals recorded thereon in line packets, each line having about the same associated line period of time, and for use in connection with an electronic switch including input means coupled to said televi-
sion signals and output means and being operative to be ever sion signals and output means and being operative to be ener-
gized by a switching signal for disconnecting said first television signal and connecting said second television signal to the output means, a demodulator coupled to the output means of said switch and being operative for producing demodulated signals from said television signals, and a timing error correcor operative for receiving said demodulated signals and for said system comprising, in combination:
delaying means coupled between said demodulator and said timing error corrector and being operative for receiving and delaying said demodulated signals for a period of time substantially equal to said line period
switching means coupled to said demodulator for receiving
said demodulated signals and coupled to said delaying means for receiving the delayed demodulated signals and being operative for providing an output signal from the delayed demodulated signals and for switching for a per-
iod of time substantially equal to said line period for proiod of time substantially equal to said line period for pro-
ducing another output signal from said demodulated signals; and
amplitude filtering means coupled to said switching means ampinade filtering means coupled to saiming error corrector for receiving said output signals and being operative for selectively passing syn-
chronous signals forming a portion of said output signals to said timing error corrector.

\section*{4,097,908}

METHOD FOR INSPECTING THE SKEW OF A MAGNETIC HEAD, FOR SELECTIVELY LOCATING A LEAD SCREW AND AN APPARATUS THEREFOR ibert S. Chou, Monte Sereno, and Frank M. Balbas, San Jose, both of Calif., assignors to Shugart Associates, Sunnyvale, Filed Sep. 17, 1976, Ser. No. 724,701
Int. CI. \({ }^{2}\) G11B \(5 / 56,5 / 43,5 / 012\)
\(\qquad\)
S. C1. \(360-76\)

16 Claims 1. A method of inspecting the skew angle of the transducing sap of a magnetic head in a disk drive having a rotatable spinspindle, comprising:
providing a rotatable disk having several concentric circular providing a rotatabie disk having several concentric circular
recording tracks including one particular track having elongated bits of information magnetically recorded at a
plurality of predetermined acute angles measured relative to intersecting radial lines of said disk, said acute angles being in a range between a first angle in the counterclock-
wise direction relative to a radial line and a second angle wise direction relative to a radial line and a second angle in the clockwise direction relative to a radial line mounting said disk upon the rotatable spindle;
Filed Jun. 25, 1976, Ser. No. 700,026
Int. CI. \({ }^{2}\) G11B S/16; G06K \(7 / 00\)
bits of said one track as said disk is rotated;
SINGLE GAP MAGNETIC READ HEAD James O. Lafevers, and Charles T. Kao, both of Richardiso Tex., assignors to Recognition Equipment Incorporated, De Tex, Tex.

1. A single gap magnetic read head, comprising: a plurality of sensing elements each having an air gap aligned along a single gap line and positioned adjacent each other in side-by-side magnetic contact, each sensing elemen including:
first and second core segments joined at one end and spaced apart at a second end to form the air gap of each element, and
otating said disk such that for every bit passing said mag netic head produces a read signal having an aitation be proportional to the difference
tween said gap and the bit; and
monitoring the amplitudes of said read signals, and compar ing such amplitudes to a predetermined reference to determine whether or not the skew angle of the gap is accept able.

號 cach sensing element, the pickoff coils alternately the second core segment of an adjacent element.

MAGNETIC TRANSDUCER WITH INNER AND OUTER MAGNETIC MEDIUM COOPERATING SURFACE ZONES OF DIFFERENT CONVEXITY
Francis Kong King, Rochester, and Jon Jay Schmidt, Stewartrille, both of Minn,, assignors to international Businese inines Corporation, Armonk, N.Y.


1. A transducer adapted to have a data transferring relationship with a flexible medium comprising:
ship with a flexible medium comprising: by a second surface zone,
a magnetic core having a gap therein which is on the surfac of said first zone, \(\qquad\) intered green titanate ceramic and electrodes embedded in the \(M\) is select ceramic, the electrodes being of metal , whetal and/or transition metal alloys, the body having been sintered and less convexity than said second zone whereby said gap lies and prevents conversion of the ceramic to the semiconductive in close proximity to said flexible medium as the medium state and the cores of the electrodes remain in the metallic moves across said surface zones.

ELECTRICAL CAPACITOR HAVING AN IMPREGNATED DIELECTRIC IMPREGNAPAD DIELECTRIC
John Lapp, Franklin, and Fred S. Sadjer, Racine, both
assignors to McGraw-Edison Company, Eigin, III. Continuation-inn-part of Ser. No. 456,867, Apr. 1, 1974, abandoned. This application Jan. 20, 1975, Ser. No. \(\mathbf{5 4 2 , 3 9 1}\)
The portion of the term of this patent subsequent to Jun. The portion of the term of this patent subsequent to Jun. 27 . Int. Cl. \({ }^{2}\) H01G 4/22
U.S. CI. 361-318
-
21 Claims

\section*{SOLID ELECTROLYTE CAPACITO}

Werner Schnabel, Nattheim, Germany, assignor to Siemens Aktiengesellschaft, Berlin \& Munich, Germany
Filed Mar. 5, 1976, Ser. No. 664,264
Claims priority, application Germany, Mar. 5, 1975, 2509613 U.S. Cl. 361-433 Int. C1. \({ }^{2}\) H01G \(9 / 00\)

1. An electrical capacitor, comprising a sealed casing, a capacitor pack in the casing and having a pair of electrically conductive strips and a pair of dielectric layers wound alterposition impregnating said dielectric layers, said dielectric composition comprising a mixture of a mono-halogenated diphenyl oxide and a mono-halogenated alkyl diphenyl oxide where the alkyl group contains from 1 to 20 carbon atoms in the molecule, and said dielectric layers being composed of tion voltage over its normal operating temperature range.
\[
\begin{aligned}
& \text { ELECTRICAL CAPACITOR HAVING AN } \\
& \text { IMPREGNATED DIELECTRIC SYSTEM }
\end{aligned}
\]

IMPREGNATED DIELECTRIC SYSTEM assignors to McGraw-Edison Company, Elgin, III. Continuation-in-part of Ser. No. 542,391, Jan. 20, 1975, which is 2 continuation-in-part of Ser. No. 456,867, Apr. 1, 1974,
sbandoned. This application Sep. 15, 1975, Ser. No. 613,073 abandoned. This application Sep. 15, 1975, Ser. No. \(\mathbf{6 1 3 , 0 7 3}\)
The portion of the term of this patent subsequent to Jun. 27 , The portion of the term of this. patent subseque

1995, has been disclaimed.
Int. Cl. \({ }^{2}\) H01G \(4 / 22\)
20 Claims

1. An electrical apparatus, comprising a pair of electrical conducting elements disposed in spaced relation with respect to each other and adapted to provide an electrical potential therebetween, and a dielectric system interposed between said elements, said dielectric system comprising a dielectric material composed of polymeric film and cellulosic fiber material, and a liquid dielectric composition impregnated into said dimixture of a mono-halogenated diphenyl oxide and a monohalogenated alkyl diphenyl oxide where the alkyl group contains from 1 to 20 carbon atoms in the molecule, said apparatus having a high discharge inception voltage over its normal operation temperature range.
1. A solid electrolyte capacitor comprising
a sintered anode of film-forming metal, said anode being coated with a dielectric active oxide layer
cathode formed on said dielectric active oxide layer oppositely of said anode,
said cathode consisting of a semiconductive metal oxide, a graphite layer including graphite particles disposed on said cathode, and
nadditional semiconductive metal oxide layer with higher specific resistance than said cathode disposed on said
cathode adjacent to and in between the of said graphite layer. of said graphite layer.

\section*{4,097,915}

Gerald M QUADRIPLANAR CAPACITOR
Gerald M. Locke, Saco, Me., assignor to Corning Glass Works, Filed Aug. 16, 1976, Ser. No. 714,297 U.S. Cl. \(361-433\) Int. C1. \({ }^{2}\) H01G \(9 / 00\)

1. A quadriplanar component comprising: an electrically conductive component enclosure open at one
end, the opening defining edge portion of said enclosure forming a quadrilateral, said enclosure forming one electrode of said component,
a component element,
a lead fixedly attached to said element, said element being disposed within said enclosure in electrical relationship
therewith with said lead extending therewith with said lead extending outwardly from said
open end substantially perpendicularly to the plane of said quadrilateral, and
flat member having opposing flat surfaces, said surfaces
substantially corresponding in size
said quadrilateral, said flat surfaces having an aperture shaf to said mounting means for rotating said members relative therein suitable to extending end of said lead being disposed within said aperture and said member being rigidly attached to said lead with the planes of said flat surfaces being substantially perpendicular to the longitudinal axis of said lead, the peripheral edges of said member being substantially parallel to the opening defining edges of said enclosure, said component.

4,097,916
ELECTROLYTIC CAPACITOR LEAD TERMINAL
CONFIGURATION
John Piper, Greenville, S.C., assignor to Union Carbide Corpo-
ration, New York, N.Y.
Filed Jun. 28, 1976, Ser. No. 700,589
U.S. C1. 361-433

sive to acoustic signals and coupled to said motor for applying electronic signals thereto to energize the same.


1 Claim

\section*{4,097,918} SYSTEM
ILLUMINATED SP William C. Anderson, Grand Rapids; Gordon J. Cooper, Alto, and Charlie R. Tyke, Cascane, all of Mich., assignors to Wes tinghouse Electric Corp., Pittsburgh, Pa.
Filed May 17, 1977, Ser. No. 797,84
U.S. C. 362-147

10 Claims 1. A space dividing wall panel and lighting fixture combina1. A polar capacitive device comprising a porous valvemetal anode body having (i) a dielectric oxide film formed thereon, (ii) a solid electrolyte layer over the dielectric oxide film, (iii) a conductive counterelectrode covering a major relatively closely spaced and adjacent terminal leads and a second pair of terminal leads spaced further apart than said first pair of terminal leads, all of said terminal leads having end portions remote from said anode body, the end portions of each pair being symmetric about an axis lying between the first pairs of terminal leads being parallel and lying in the same pairs of terminal leads being parallel and lying in the same
plane and extending in the same direction, one of said pair of terminal leads being connected electrically to said counterelectrode coating on said anode body and the other said pair of terminal leads being connected electrically to the valve-metal anode body such that the order of polarity on the eninal ead is \(\mathbf{P}_{1}-\mathbf{P}_{2}-\mathbf{P}_{2}-\mathbf{P}_{1}\) where \(\mathbf{P}_{1}\) and \(\mathbf{P}_{2}\) represent opposite polarities.
at least one planar, vertically oriented, space dividing panel having an upper horizontal edge portion,
an elongated lighting fixture spaced above and overlying, at least in part, said upper horizontal edge portion of said at least one space dividing wall panel,
a pair of spaced connecting means on the underside of said pair of lighting fixture supe, support means each including mounting means at one end thereof constructed and arranged to associate with the upper horizontal edge portion of said space dividing wall panel and complementary connecting means at the other end thereof constructed and arranged to incound side of said elongated lighting fixture.

4,097,919
ILLUMINATION SYSTEM
Mitchell Bobrick, Redondo Beach, Calif; Murray L. Quin, St. Louis, and Morris M. Buzan, St. Charles, both of Mo., assignors to Emerson Electric Co., St. Louis, Mo.
Division of Ser. No. 625,586, Oct. 24, 1975, Pat. No. 4,032,775, which is a division of Ser. No. 496,879, Aug. 12, 1974, Pat. No. 3,936,671. This application Nov. 19, 1976, Ser. No. 743,177
U.S. C. 362-270
\[
\text { Int. C. } .^{\text {F F }} \text { IV } 21 / 26
\]

2 Claims Robert E. McCaslin, 81 Anchor Dr., Pittsburg, Calif. 94565 Filed Jun. 7, 1976, Ser. No. 693,384 \({ }_{32}{ }^{\text {Int. }}\)
U.S. C. 362-32 13 Claims 1. A rotatable light display comprising: a support; a plurality ing of electrically insulative material, having bottom, top, and of elongated, flexible members; means carried by the support side walls diverging from an open mouth; a radiation shield of and rotatable relative thereto for rotatably mounting said specular heat conductive material spaced from and lying along members thereon with the members extending outwardily from a major area of he inside surface of the said walls beiween said the support in directions generally longitudinally of the axis of mouth and a rear opening; a tubular heal sink or heat-conducrotation of said mounting means; means coupled with said tive material, said heat stin having a mady, said fins defining with members for datio shive shaft; means connecting the drive said radiation shield a multiplicity of air passages between said
mouth and said rear opening; a reflector mounted on an
extending within the tubular heat sink, said reflector having a

METHOD AND APPARATUS \(\stackrel{4}{4,097,921}\)
DETHOD AND APPARATUS FOR AUTOMATICALLY DETERMINING THE DILUTION CURVE OF A
SOLUTION, PARTICULARLY THE OXYGEN DISSOCIATION CURVE OF BLOOD OR HEMOGLOBIN Italo Raffaele, Milan, Italy,
Italo Raffaele, Milan, Italy, assignor to Luigig Rossi, Milan, Italy
Continuation-in-part of Ser. No. 598,163, Jul Continuation-in-part of Ser. No. 598,163, Jul. 22, 1975,
bandoned. This application Nor. 24, 1976, Ser. No 744, 25 Claims priority, application Italy, Jul. 26, 1975, 25627 A/75 U.S. Cl. 364-416 Int. C. \({ }^{2}\) G01N 33/16, 9 Clisims
lamp-receiving opening in it, and a high-intensity lamp mounted to project within said reflector within said heat sink.

7. An apparatus for automatically determining the oxygen dissociation curve of the whole blood or of hemoglobin solu-
tions, comprising: tions, comprising
first dosing means for feeding to the said chamber blood saturated with oxygen at a predetermined level;
second dosing means for feeding to the said chater second dosing means for feeding to the said chamber deoxygenated blood; means for measuring the partial pressure of
the oxygen on the mixture which is formed in said ber and converting the measurement into an electrical signal; an analogic computer, for receiving said signal and containing basic or reference data related to the oxygenated blood for calculating, in real time with respect to the mixing, the functions \(\mathrm{S}=f\left(\mathrm{P}_{\mathrm{o}}\right)\) and Total \(\mathrm{O}_{2}=f^{\prime}\left(\mathrm{P}_{\mathrm{O}_{2}}\right)\),
and recording means for recording the calculated values of the two above said functions.
1. In a system for executing loops of programmed instructions, said system including instruction addressing means for
storing the memory address of a next instruction to be exestoring the memory address of a next instruction to be exe-
cuted, instruction execution register means having an operation part and at least one address part for storing signals representing an instruction being executed, and control means including timing means for producing control signals in response to signals including signals from the operation part of said prising: execution register means, the improvement comprising:
stack
stack register means coupled to receive the contents of the instruction addressing means for storing addresses from said instruction addressing means in response to said control signals generated by certain non-branching instructions in said instruction execution register means, said tack register means including output means for providing signals repres
stored; and
gating means responsive to said control signals generated by other certain instructions in said instruction execution register means and to said stack register output means for gating signals from said stack register output means into
said instruction addressing means. said instruction addressing means.

4,097,922
AUTOMATIC REAL TIME NAVIGATION COMMUNICATOR
John L. Vito, and Roderick S. Mesecar, both of Corvallis, Oreg, assignors to The United States of America as represented by cetary of the Nary, Washington, D.C.
Filed Nor. 8, 1976, Ser. No. 739,411
Int. C. \({ }^{2}\) H 03 K 13/24; G06F \(15 / 50\)
U.S. C1. \(364-443\)

10 Claims 1. An automatic real time navigation communicator for use
with a satellite navigator wherein the heading with a satellite navigator wherein the heading defined by the
navigator is defined by a first binary word defining hundreds a second binary word defiring binary a word defining hundreds, ing ones and a fourth binary word defining tenths and for use with a sensor that defines change in heading by a fifth binary word defining sixths wherein:
second binary counter and a third binary counter, a second binary counter and a third binary counter con-
nected in series and for respectively storing and counting hundreds, tens and ones;
ers with binary bits that correspond with the same binary (c) second means responsive to changes in said fifth binary
entere processing said data representing the desired variable which varies as a function onerate a unique combination (e) conditioning the meter for oneration in said second mode;
(f) entering the postage data and the unique
from the data center into the postage meter
from the data center into the postage meter;
(g) processing the entered combination in said postage me ter; and
(h) causing said funding register means to be recharged with
the desired variable amount of postage.

\section*{4,097,924}

COMPUTER OPERATOR GUIDE DEVICE Mario Figini, Boceco Marengo (Alessandria), Italy, assignor to Ing. C. Olivettria C., S.p.A., Irean (Turin), Italy
Filed Sep. 3, 1976, Ser. No. 720,472 Filed Sep. 3, 1976, Ser. No. 720,472
Clesime priority, application Italy, Sep. 11, 1975, 69260 A/75 U.S. C. \(364-900\) G06F 15/02, 3/14; COOK 15/18 3 Claims
word for modifying the binary word in said third counter; and
d) third means for transferring the binary words in said first, second and third counters to said satellite navigator.

\section*{4,097,923}

REMOTE POSTAGE METER CHARGING SYSTEM REMOTE POSTAGE METER CHARGING SYSTEM
USING AN ADVANCED MICROCOMPUTERIZED USING AN ADVANCED MICROCER
Aton B. Eckert, Jr., Norwalk; Howell A. Jones, Jr., Southport, and Frank T. Check, Jr., Hamden, all of Conn., assignors to Pitrey-Bowes, Inc., Stamford, Conn


1. A method of funding a postage meter with a variable amount of postage, said postage meter being remote from a data center and having means for conditioning said postage
meter to operate in either a first mode wherein the user of the meter to operate in either a first mode wherein the user of the
postage meter can select an amount of postage to be printed or postage meter can select an ammunt oner can recharge the postage meter with a variable amount of postage and a funding register means which is rechargable with an additional variable amount
means which is rechargable wisinn the steps of:
of postage, the method comprise funding
(a) establishing communication with a data center fund
(a) establishing communication with a data center funding U.S. C. 366-
I.S. C. \(366-2{ }^{\text {Int. C. }}{ }^{2}\) B28C 5/18, 5/42, 9/04
1. A system comprising a plurality of like rotary concre 8 Cla
(b) entering into the data center funding computer data mixer and transport trucks and a mobile emergency power
identifying the postage meter to be funced, (c) entering into the data center funding computer data compdrisic pump and a hydraulic motor, a gear train and a
concrete mixer container, said engine operatively connected to
concrete mixer container, said engine operatively connected to
and driving said pump, said pump in operative connection to and driving said pump, said pump in operative connection to
and driving said motor, said motor operatively connected to and driving said gear train through a connection therebetween, said gear train operatively connected to and driving said concrete mixer container, said connection between said motor and said gear train being detachable, said truck frame having
ongitudinally extending axis parallel to its length, said con crete mixer container located above said truck frame and being axially symmetrical and rotatable about a central longitudinal axis directed upward and rearwards, means in said concret mixer container to move a fluid concrete mass longitudinally of
aid container, each said concrete mixer and transport truck being unstable beyond a prdetermined degree of tilt relative to the horizontal about the longitudinal axis of said truck frame said mobile emergency power unit consisting essentially of a mobile unit frame, a mobile unit engine, a mobile unit hydraulic pump, a pluraility of flexible conduits and a connected to said mobile unit pump and said mobile unit pump permanently connected through said flexible conduits to said mobile unit motor, said mobile unit motor comprising a mechanical output means connectable to said

chanical output means in operative connection to said gear train, said mobile unit engine and said mobile uni pump fixedly attached to a mobile unit frame, mobile unit frame, said mobile unit motor is releasably supported on said mobile unit motor support means during transport of said motor on said mobile unit frame, said flexible conduits hen extending between said mobile unit pump and said mobile unit motor from a point on said mobile unit pump
furthest from said mobile unit engine to a point on said mobile unit engine furthest from said mobile unit pump and being extensible from said mobile unit, said mobile unit frame having a longituidinal axis extending parallel to engine frame and mobile unit engine output means and adapted to apply torque to said mobile unit frame in one direction and said mobile unit pump having a mobile unit pump frame and means adapted to apply an equal torque o said mobile unit frame in a direction opposite to said
one direction, and wherein said mobile emergency power unit is stable at a greater degree of tilt relative to the horizontal about the longitudinal axis of said mobile unit frame than the predetermined degree of till relative to the horizonta axis of said (rack tame byond which said concrete mixer and transport truck is unstable.

\section*{4,097,926}

MIXER PADDLE SHAFT ASSEMBLY 23508 Face, Jr,, 1008 Mngnalia Ave., Norfoik, Va, Filed Feb. 22, 1977, Ser. No. 770,530 Int. C. \({ }^{2}\) B28C \(5 / 14,7 / 16\)

\section*{U.S. C. \(366-46\)}
1. Apparatus for mixing materials together comprising, in frame means;
drum means mounted on said frame means for receiving said materials for mixing thereof
\({ }_{a}\) drive shaft driven by said motive means, the free end of the drive shaft extending into the interior of the drum means, the drive shaft having an indentation formed in said free end;
quill shaft disposed at least partially within the interior of the drum means, a first end of the quill shaft being slidably received within the indentation in the drive shaft, the quill shaft being thereby rotatable on rotation of the drive shaft, a second end of the quill shaft extending through an end of
the drum means externally thereof; the drum means externally thereof;

a hollow shaft having a longitudinal channel extending therethrough, the quill shaft being slidably received within the channel, the hollow shaft being rotatable on rotation of the quill shaft
mixing therefrom to mix materials wilhow shaft and extendfirst bearing means for mounting the drive shaft for rotation relative to the drum means;
second bearing means for mounting the second end of the
quill shaft for rotation relation to the drum mens; quill shaft for rotation relation to the drum means; and the quill shaft in connecting relation to the drive shaft, the retaining means being releaseable to allow the quill shaft to be withdrawn from the interior of the drum means.

\section*{4,097,927}

APPARATUS FOR MIXING BULK MATERIALS Stoyan Hristov Sendor, Sofis; Ivan Alexandrov Kuklin, Vidin; Ivan Angelov Nikolor, Vidin, Assen Ninov IVanor, Vidin; Kurtasher, Vidin, all of Bulgaria, assignors to Chimkombinat, Vidin, Bulgaria
Claims priority Int. Cl. \({ }^{2}\) B01F \(5 / 26,7 / 16\)
1. An 2 Claims vertically elongated upright cylinder formed with a sloping bottom;
an internal pipe extending upwardly in said cylinder along the axis thereof and opening at a free end below the top of said cylinder into the interior thereof; a centrifugal blower having a discharge side connected to said pipe;
an intake duc
an intake duct connected to the intake side of said blower and disposed externally of said cylinder, said intake duct
communicating with the interior of said cylinder above said free end of said pipe;
a rotatable vaned mixing rotor freely rotatable in said cylinder and disposed above said free end for propulsion by
fluid emerging therefrom; and fluid emerging therefrom; and
anlet pipe for delivering material to be mixed with the
bulk material in said container and depositing same upo
said rotor, said rotor comprising a lower cone and an mixing chamber, means for feeding the constituents under upper cone, said cones being connected at their bases, said pressure to the mixing chamber for mixing the same therein,

lower cone being formed with bow-shaped curved blades and said upper cones being formed with radial blades.
\[
\begin{aligned}
& \text { 4,097,928 } \\
& \text { FEEDING SYNTF }
\end{aligned}
\]

APPARATUS FOR FEEDING SYNTHETIC MATERIAL

Bernd Fries, Nuremberg, Germany, assignor to DEMAG Kunststoftechnik Zweigniederiassung der DEMAG AG, Nuremberg, Germany
Continuation of Ser. No. 503,116, Sep. 4, 1974, abandoned. This
application Apr. 28, 1976, Ser. No. 681,237
Claims priority, application Germany, Sep. 14, 1973, 2346348
U.S. Cl. 366-336 \(\quad 8\) Claims 4. Apparatus for feeding synthetic material composed of the same number and configuration of constrictions, whereby 4. Appraters surituents to a mould, such apparatus comprising a velocity over said cross sectional area of said exit.

\section*{DESIGNS}

JUNE 27, 1978

\section*{248,256}

Leo A. Pollano, deceased, late of Atherton, Calif,
 Filed Jun. 18, 1976, Ser. No. 697,406 Term of patent 14 year
Int. Cl. D1-O1

West Norway Factories Led. A/S
No. 673,069

USS. C. D6-56



USS. CI. D2-380


ANKLE WALLET OR THE LIKE
 Din Filed Oct 13, 1976, Ser. No. 732,161 Term of patent 14 years
USS. CI. D2-383 Int. Cl. D2-07


Robert L. Wilson, Senetabia, Miss., assignor to Chromeraft Corporation, Amsterdam, N.Y. Fled Oct. 6, 1976, Ser. No. 730,047 Term of patent 14 years
Int. C. D6-01
USS. C. D6-63


248,261 Manufacturing, Inc. Sacramento, Calif. Term of patent 14 year
Oct.
USS. CI. D6-63

\section*{248,262}

Gary M. Robichaud, Coventry, R.I., assignor to Leonard Micha- Harry E. Coleman, 3609 McLee Dr., Alexandria, La. 71301 elson, Providence, R.I. Filed Mar. 12, 1976, Ser. No. 666,445 Filed Apr. 12, 1976, Ser. No. 676,201 Term of patent 14 year
Int. Cl. D6-01
U.S. C1. D6-79 Int. Cl. D6-01


248,263
Robert C. Shape, Warren, Ohio, asolgnor to Warren Steel Specialties Corp., Warren, Ohio
ed Dec. 22, 1976, Ser. No. 748,151 Term of patent 14 years
Int. C1. D6-99
U.S. C. D6-85


Term of patent 14 years
U.S. CI. D6-149


248,265
CHECK WRTING DESK
David A. O'Connor, Norfolk, Va., aselgnor to Virginia National Bankshares, Inc., Norfoll, Va.

Filed Mar. 23, 1976, Ser. No. 669,605 Term of patent 14 years
U.S. CI. D6-157

\(-\)

248,266
STAND FOR FLOWERS OR THE LIKE Kola, 1418 Highland, Joliet, III. 60435 Filed May 4, 1977, Ser. No. 793,560 Term of patent 14 years
Int. C. D6-06. 04
U.S. CI. \(\mathbf{D 6}-183\)

248,26
DISPLAY \(\stackrel{248,267}{ }\)

248,270
SPATULA
Patrick J. Mitchell, 836 Industry Dr., Tukwila, Wash. 9818 Filed Jan. 6, 1977, Ser. No. 757,368 Term of patent 14 years
U.S. CI. D6-188

Term, 1976, Ser. No. 692,792 Term of patent 14 years
Int. CI. D7


248,268
Robert Fields, 279 Wentworth, Glencoe, III. 60022 Filed Sep. 8, 1976, Ser. No. 722,074 Term of patent 14 yea
Int. Cl. D6-06
U.S. CI. D6-193


248,269
RAMEKIN
Don Schreckengost, East Liverpool, Ohio, assignor to The Salem China Company, Salem, Ohio
China Company, Salem, Ohio
Flled Oct. 7, 1976, Ser. No. 730,155 Term of patent 14 years
Int. Cl. \(\mathbf{D 7}\) -
U.S. C. D7-28


GARAGE 248,273 John P.
92677

Filed Sep. 3, 1976, Ser. No. 720,109 Term of patent 31 years
U.S. CI. D8-331

Int. Cl. D8-07

GARAGE DOOR LOCKING DEVICE ICE
guel, Calif JOIST HANGER
Jisin Tyrell T. Gilb, Berkeley, Calif., asignor to Simpeon Manufacturing Co., Inc., San Leandro, Calif. Filed Mar. 24, 1976, Ser. No. 670,100 Term of patent 14 years
Int. Cl. D8-08
U.S. C. D8-380


\begin{tabular}{c}
248,274 \\
\hline
\end{tabular}
George W. Kingston, Chery Chase, Md., and David R. Norcross,
George W. Kingston, Chery Chase, Md., and David R. Norcross,
Washington, D.C., assignors to Timber Engineering Co.
Washington, D.C
lled Aue. 5, 1976, Ser. No. 712,071 Term of patent 14 year
Int. C1. D8-a8
U.S. CI. D8-354


UNK UNIT FOR CONVEY8,276
LIN Filed Mar. 29, 1976, Ser. No. 671,391 Term of pateat 14 years
Int. C1. D8-99: D12-05
U.S. CI. D8-499


248,277
CONTAINER FOR TONER POWDER Harlan Gean Hartman, Hilton; Stephen James Fiminini, R COVERED CONTAINER ester, and Arthur Caristian Risbberger, Jr., Weboter, all of David Goldemith, Jamaica Estantes, and Robert P. Gersin, New N.Y., amignors to Eastman Kodak Company, Rochester, N.Y. New Yoth of N.Y

Continuetioninnpert of Ser. No. S47,148, Feb. S, 1975. This. New York, N.Y. application Feb. 17, 1976, Ser. No. 658,211

Term of patent 14 year
U.S. C. D9-207

Int. Cl. D9-03 application Apr. 1, 1977, Ser. No. 783,529 application Apr. 1,
Term of patent 14 years
U.S. C. D9-222

Int. C. D9-03

\(\qquad\)
\(\xrightarrow{248,280}\)
Sam M. Martin, Etobicoke, Canidh, mignor to Congrimers Glese Company Limited Filed Apr. 30, 1976, Ser. No. 682,114 PACKAGING TRAY OR THE LIKE Morell J. Holden, Jr,, Canandaigua, N.Y., amignor to Mobil Oil Corporation, New York, N.Y.
Flied Aug. 8, 1975, Ser. No. 602,931 Term of patent 14 years
U.S. C. D9-219


DISPENSING VALUE FOR A CONTAINER
\(\xrightarrow{\text { 248,284 }}\)
Warren J. Schieser, Columbus; John R. Soeeden, Westerville; R. Donald C. Bowser, 397 Thomas La, Girard, Ohio 44420 Alan Felmer, Columbus, and Curtis J. Bond, Marion, all of
Ohio, aselgnors to Corco, Inc., Columbus, Ohio
Filed May 19, 1976, Ser. No. 688,084
Term of patent 14 years
Int. C. D9-07 led Feb. 10, 1977, Ser. No. 767,621
Term of patent 14 years Term of patent 14 yea
Int. Cl. D10-06
U.S. CI. D10-109
U.S. C. D9-275


James E. Smith, Boulder, Colo., assignor to Denver Instrument
Company, Denver, Colo. 1976, Ser. No. 725,707 Filed Sep. 23, 1976, Ser. No. 72
Terro potent 14 years
Int. Cl. D10—04
U.S. C. D10-91


248,283
SMOKE DETECTOR
Keith D. Xitts, Gleavier; Kenneth M. Hattori, Bensenville, and
Jamea H . Stade, Elkgrove Village, all of III, aseignors to The Gillette Company, Booton, Mass.
Filed Ame. 27, 1976, Ser. No. 718,397 Termo of patent 14 years
Int. CI. D10—06
U.S. C. D10-106

Terrum of patent 14 ye
Int. CI. D10—06

\(\stackrel{248,285}{ }\)
DIAMOND RING
Josef J. Barr, 293 S. County Rd., PAlm Beach, Fin. 33480
lled Jun. 28, 1976, Ser. No. 700,711
Term of patent 14 year
Int. C. D11-01
U.S. C1. D11-27

-

248,286
DIAMOND RING
Josef J. Barr, 293 S. County Rd., Palm Beach, Fla. 33480 Filed Jun. 21, 1976, Ser. No. 698,178 Term of patent 14 years
U.S. C. D11-34 Int. Cat. D11-01

\({ }^{248,287}\)
JEWELRY CHARM
Judy Sharp, Lancaster, Pa., assignor to The Family Jewels, Inc.,
Judy Sharp, Lancas
Filed Jun. 7, 1976, Ser. No. 693,302 Int. Cl. D11-01
U.S. CI. D11-83


248,288
ORNAMENT OR THE LIKE
Virginia A. Maholiss, 5575 S. 22nd St., Millwaukee, Wis. 53221
Filed May 18, 1976, Ser. No. 687,522 Filed May 18, 1976, Ser. No. 687,522 Terro of patent 14 years
Int. C. D11-05
U.S. CI. D11-125

\[
\begin{gathered}
\text { 248,289 } \\
\text { FLOATING GARDEN BOX }
\end{gathered}
\] FLOATING GARDEN BOX
Nita M. Opltz, Truesdale Lake Dr., South Salem, N.Y. 10590 Opitz, Truesdale Lake Dr., South Salem,
Filed Sep. 22, 1976, Ser. No. 118,683 Term of patent 14 years
Int. C1. D11-02; D21-03 U.S. CI. D11-156


Marcel Guerette, Lachenaie, Cannda, assignor to Moody Si Ltd., Terrebonne, Canada
Filed Jul. 23, 1976, Ser. No. 708,045 Filed Jul. 23, 1976, Ser. No. 708,045
Claims priority, application Canada, May 20, 1976, 200576 Term of patent 14 year
Int. C1. D6-99 U.S. C1. D12-59
U.S. CI. D12-102


248,292
Muneyoshi Mrede, No. 29-1, 2-Chome, Onta-Cho, HignshlMurayama City, Tokyo; Hiroahi Kojima, No. 19.5, 4 Chome Higashi-Toyota, Hino City, Tokyo, and Toshlo Hayakawa, No. 2800-1, Ogiwa-Higmbi-Cho, Kodaira City, Tokyo, allo of
Japan
Continuation-in-part of Ser. No. 602,872, Aug. 7, 1975, Pat. No.
Continuation-in-part of Ser. No. 602,872, Aug. 7, 1975, Pat. No.
Des. 244, 181. This application Oct. 22, 1976, Ser. No. 734,802
Des. 24,181. This application Oct. 22, 1976, , Ser. No. \(\mathbf{2 1 4 4 , 8 0}\)
Claims priority, application Japan, Mar. 6, 1975,
The portion of the term of this patent subecquent to May 3, 1991
hass been disclaimed.
Int. Cl. D12-15
U.S. CI. D12-142


248,295
AUTOMOTIVE WHEEL
George E. Day, 1240 N. Iry, Escondido, Calif. 92026, and R. W.
George E. Day, 1240 N. Iry, Escondido, Calif. 92026, and R.
Johnson, 559 Larchwood Dry San Marcos, Califf. 92069 Filed Mar. 10, 1977, Ser. No. 776,201

Term of patent 14 yea
Int. C. D12-16
U.S. CI. D12-206

Toshio Hayakawa, and Takizo Sakamoto, both of Kodaira, Japan, asignors to Bridgestone Tire Company Limited, Tokyo,

Filed Dec. 13, 1976, Ser. No. 749,913 Term of patent 14 years
Int. C. D12-15
US. C1. D12-146
UNIVERSAL MOUNT FOR A CITIZEN BAND RADIO UNIVERSAL MOUNT TAPE PLAYER
29615 . McCutchen, 37 S. Del Norte Rd., Greenville, S.C.
29615
Iled Mar. 8, 1977, Ser. No. 775,648
Term of patent 14 years
Int. Cl. D12-16
U.S. Cl. D12-155


Toshibico Kadota TAPE RECORDER TAPE TRANSPORT A. Wions, Portola Valley, Calif., assignor to Ampex cal Co., Ltd., Tokyo, Japan
Filed Apr. 26, 1976, Ser. Term of patent 14 years
U.S. Cl. D14-6 Int. CI. D14-
辟


248,297
LOUD SPEAKER
Dieter Rams, Kronberg, Germany, assignor to Braun Aktiengesellschart, Frankfurt am Main, Germany
Claims priority, application Germany, Sep. 29, 1975, 738410 Term of patent 14 years
U.S. C. D14-34 Int. Ca. D14-01


971 O.G. 65

TELEPHONE
Mokudai, Yamato, and
GROUND SCRAPER FOR CLOSING DITCHES AND THE Isamu Hirasawa, Tokyo; Hirokazu Mokudai, Yamato, and
Osamu Kato, Zama, all of Japan, assignors to Kanda Tsushin Osamu Kato, Zama, all of Japan, assignors to Kand
Kogyo Co., Led., Tokyo, Japan Claims priority, application Japan, Aug. 9, 1976, 51-30943 Term of patent 14 years
Int. C. D14-03
U.S. CI. D14-58


248,301
CONTROL AND DISPLAY PANEL FOR RADIO CONTROL AND DIVPLAY OR THE LIKE
RECEIVERS OR THE LIKE
Robert Alan Geaten, Scottsdale, Ariz., assignor to Motorola
Inc., Schaumburg, Ill.
Filed Jun. 17, 1976, Ser. No. 697,305 Term of patent 14 years
Int. Cl. D14-03
U.S. C. D14-76
int. Cl. D14-03



CANISTER VACUUM CLEANER OR SIMILAR ARTICLES
Fred E. Pearman, Jr., Five Forks Community, S.C., assignor to The Singer Company
Filed Nov. 12, 1976, Ser. No. 741,450 Term of patent 14 years
Int. Cl. D15-05
U.S. Cl. D15-52


TABLE FOR PORTABLE CUTTING TOOLS
TABLE FOR PORTABLE CUTTING TOOLS \(\quad\) BINOCULAR
Wilfred M. McCord, Jr., and Boyko G. Verney, both of Louis- Paul R. Maguire, 4284 Sea View La., Los Angeles,
Filed Sep. 27 , 1976, Ser. No. 726,740
ville, Ky., assignors to Vermont American Corporation, Louis
Filed Sep. 3, 1976, Ser. No. 720,108 Int. CI. D15-09
U.S. Cl. D15-127

U.S. CI. D16-59 rm of patent 14 years


248,305
SURVEILLANCE CAMERA HOUSING Perry Scott, 403 Twentieth St., Santa Monica, Calif. 90402 Filed Oct. 6, 1976, Ser. No. 729,884

Term of patent 14 years
U.S. CI. D16-02


248,306
Rene C. Pinchuk, Kensington, Calif., assignor to Ehrenrelch Rhoto-Optical Industries Inc., San Francisco, Calif. Filed Jul. 6, 1976, Ser. No. 703,023 erm of patent 14 yea
US. C1. D16-06


MOUNT FOR TELESCOPIC SIGHT
Gerald T. Weast, 23702 Croosley, Hazel Park, Mich. 48050 Filed Mar. 25, 1976, Ser. No. 670,226 Term of patent 14 year
Int. C1. D22—0S
U.S. C1. D22-7


24N, 310
GUN SIGHT
Borge Hestehave s031 GUN SIGHT Alt Loma, Calif. 90701 Filed Sep. 18, 1973, Ser. No. 398,467 Term of patent 14 years
Int. C1. D22-01
U.S. C. D22-8

Int. Cl. D22-01


George C. Henry, 26701 Via Alcala, Mission Viejo, Calif. 92675 Filed Feb. 9, 1977, Ser. No. 766,984 Term of patent 14 ye
Int. Cl. D23-01

FISHING SINKER
George M. Raptis, 17876 Vicino Way, Pacific Palisades, Calif.
Filed Mar. 15, 1977, Ser. No. 777,61 Term of patent 14 years
Int. Cl. D22- 30
U.S. C1. D22-30



DECORATIVE DOOR
Warren G. Stichtenoth, Cincinnati, Ohio, assignor to American Warren G. Stichtenoth, Cincinnati, Ohio, assignor to American Standard Inc.
Division of Ser. No. 533,411, Dec. 16, 1974, Pat. No. 243,095. This application Jun. 14, 1976, Ser. No. 696,004 Term of patent 14 years
U.S. Cl. D25-48 Int. Cl. D25-02
int. C1. D25-02 Warren G. Stic
Standard Inc Division of Ser. No. 533,411, Dec. 18, 1974. This application Jun. 14, 1976, Ser. No. 696,006 Term of patent 14 years
Int. Cl. D25-02
U.S. C1. D25-48

noth, Cincinnati, Ohio, assignor to American Standard Inc.
Division of Se

No. 533,412, Dec. 16, 1974. This application
Jun. 14, 1976, Ser. No, 696,007 Jun. 14, 1976, Ser. No. 696,007 erm of patent 14 yea
Int. Cl. D25-02
U.S. Cl. D25-48



DECORATIVE DOOR
DECORATIVE DOOR DECORATIVE DOOR
Warren G. Stichtenoth, Cincinnati, Ohio, assignor to American Warren G. Sticht
Standard Inc.
Standard Inc.
Standard Inc.
Division of Ser. No. 533,412, Dec. 16, 1974. This application Jun. 14, 1976, Ser. No. 696,008

Term of patent 14 year
Int. C1. D25-02
Int. CI. D25-02


248,323
DECORATIVE DOOR
Warren G. Stichtenoth, Cincinnati, Ohio, assignor to American
Warren G. Stichte
Standard Inc. This application Jun. 14, 1976, Ser. No. 696,009 Term of patent 14 years
U.S. C. D25-48 Standard Inc. This application Jun. 14, 1976, Ser. No. 696,011 Term of patent 14 year U.S. C. D25-48
 248,326
DECORATIVE DOOR Warren G. Stichtenoth, Cincinnati, Ohio, assignor to American Standard Inc. Division of Ser. No. 533,399, Dec. 16, 1974, Pat. No. Des. 244,384. This application Jun. 14, 1976, S
U.S. CI. D25-48
erm of patent 14 year
Int. CC. D25-02


248,324
DECORATIVE DOOR
Warren G. Stichtenoth, Cincinnati, Ohio, assignor to American Standard Inc.
Standard Inc. This application Jun. 14, 1976, Ser. No. 696,010 Term of patent 14 year
U.S. C1. D25-48

 South,
Filed Sep. 30,1976 , Ser. No. 728,445, Term of patent 14 years
U.S. C1. D25-74


Fe Trail, Bartlend Constance
Bartlett, III. 60103
Filed No. 4,1976 , Ser. No. 738,748
Term of patent 14 years Term of patent 14 years
U.S. C. D25-78

Int. C. D25-01


EXECUTIVE GAME INDICATOR
Lesmeri-Anne M. Postma, 1662 Camden Ave., West Los Angeles, Calif. 90025

Filed Aug. 13, 1976, Ser. No. 714,005
Int of patent 14 yeas
U.S. CI. D34-5 MM


SPLASHER POOL WITH SLIDE AND INTEGRAL STEP van A. Ziegler, Dallas, Pa.; Harry T. Bowkley, Claremont, and Thaddeus W. Fuller, Pomona, both of Calif., assignors to Muskin Corporation, Colton, Calif.
ied Sep. 20, 1976, Ser. No. 724,271 Int. Cl. D21-01
U.S. CI. D34-5 F


Inc., Cheswick, Pa
248,329
SMOKING STA
Franco Gensini, Florence, Italy, assignor to Action Industries, Inc., Cheswick, Pa.
Filed Aug. 3, 1977, Ser. No. 821,42
Claims priority, application Italy, Feb. 22, 1977, 11533/77[U erm of patent 14 years
Int. CI. D27-03
U.S. C1. D27-12


COMBINED DOMINO H 248,332
COMBINED DOMINO HOLDER AND SCORE COUNTER Rex V. Bailey, deceased, late of Malakoff, Tex., by Hester Caroline Bailey, beneffiary and devisee, P.O. Box 494, Malakoff, Tex. 75148
T. 26, 1976, Ser. No. 745,346

Term of patent 14 years
U.S. Cl. D34-5 MM


MAL LITTER BOX
Donald Haugen, 709 W. Huron St., Ann Arbor, Mich. 48103 Filed Jan. 24, 1977, Ser. No. 761,980 Term of patent 14 year
U.S. CI. D30-41


PROTECTIVE COVER FOR A PIANO Joseph Stello, 808 Broadway, New York, N.Y. 10003 Filed Mar. 23, 1976, Ser. No. 669,673 Term of patent 14 yea
U.S. CI. D56-1 B

\(\stackrel{248,335}{ }\) PAINT PAD BUCKET
Donald R. Cooke, Minneapolis, and Robert I. Janssen, St. Paul, both of Minn., assignors to Padeo, Inc., Minneapolis, Minn. Filed Mar. 21, 1977, Ser.
Term of patent 14 years
U.S. C. D64-18

FOR ARTISTS BRUSHES
CARRYING CASE FOR ARTISTS BRUSHES Max Marx, Box 142,12 Portside Rd., Lake Hopa
07849

Filed Oct. 21, 1976, Ser. No. 734, erm of patent 14 yea
Int. Cl. D3-02
U.S. CI. D87-1 R


\section*{ARTICLE CARRYING BAG FOR} CRUTCH ATTACHMENT TO A Albert William Fink, 1825 N. Gramerey PI., Los Angeles, Calif. 90020 Filed Jun. 28, 1976, Ser. No. 700,515 Term of patent 14 years
U.S. C. D87-1 R
 ?


248,338
BLANKET FABRIC
Fing Gross, Providence, and Roger Guillemette, TIverton, both Leo John Comensolii, Fural, GRIC Gloria Da Smythe Potts of R.I., assignors to Fairhope Fabrics, Inc., Fall River, Mass. \(\quad\) Point, both of Australia, assignors to Speeda Knitting Millis Filed Apr. 21, 1975, Ser. No. 569,885 Int. C. D5-05

\section*{U.S. CI. D92-1 PF}


Pty. Ltd.
Filed Oct. 27, 1976, Ser. No. 736,044
Claims priority, application Australia, Apr Apr. 27, 1996, 69070 Int. Cl. D5-0s U.S. CI. D92-1 FF


248,340
ORNAMENTALS 240 Charles Eugene Miller, 51964 Fir Rd., Granger, Ind. 46530 ne Miller, 51964 Fir Rd., Granger, I
Filed May 24, 1976, Ser. No. 689,469 Term of patent 14 years Int. C1. D20—03 U.S. CI. D96-12 A


\section*{LIST OF PATENTEES}

\section*{то шном}

PATENTS WERE ISSUED ON THE 27TH DAY OF JUNE, 1978 Note-A Arranged in accordance with the first significant character or word of the name
(in accordance with city and telephone directory practice).
A. B. Dick Company: See-
Loria Adrian M.; and Thomas, Richard E., \(4,007,637\), Cl. Moschovis, Elias P.; and Gilson, John L., 4,097,391, Cl. 252-62.10L.




Abbotrt Liboratories. See-

Charudatan, Raghavan, 4,097.261, Cl. \(71-66.0000\)
Horrom, Bruce Wayne. Minard, Frederick Nelson; and Zaugg, Harold Elamer, 4.0.07, 997 , CI. \(424,250.000\). Narat, Takashi; Okachi, Ryo; Yamamoto, Mitsuyoshi; Mori, Yasukk;
Salo, Moriyuki; Susimoto, Masahiro; and Shimizu, Yoshiaki,

Abiko, Shira: S
nake Tsunemitsu; Nakagawa, Testsuo; Abiko, Shiro; and
Kancko, Norio, \(4,097,366\) Cl. 208 -127.000.
 Reinforced intercrystalline thermoplastic polyester compositions.
\(4,097,466, \mathrm{Cl} .260-40.0 \mathrm{R}\). Acda, Petrus Marinus, to Polva Ned
coupling. \(4,097,070\), Cl 28586.000.
coupling. inc. S. See-
Adamation,
Perry, Kenneth E., \(4,096,664, ~ C I . ~ 49-235.00 ~\)

 Caterpillhr T
 Heidecke. .9merar grip. 4,097,883, Cl. 354-293.000. John, to David


 Adex Corporation: See-
Lasky, Daniel J.; and Wright, Philip R., 4,097,884, Cl. 354.323 .000 . Lasky Daniel Schen
Ebel, Eckhard; Kobel, Hans-Rudolf; and Widmer, Ernst, 4,097,369,
Ady, Eshmel W., to Ady. 180.100 Ady, Larry Dale. Cleaning composition derive



dialysis 4,096,859, Cl. 128-213.000. Gashkov, Ilia; Gole, Jean; Guerarinov; Pascault, Jean-Pierre; Pham
Gerad; Panayoovo, Ivan Martino Quang Thna; Pillot, Chistiant; and Salle, Robert, 4,097,660, C
S26.13,.00
Agers, Brian Michacl; and Todd, Maurice Cornelius, to Du Pont de
Nemours. E ., and Company. Jet for fluid texturing yamn. 4,096,612,
E-Gevzert AG: See-
Engelmann, Dieter, \(4,097,882\), , 1 , 354197.000 .
Mannhardt,
4,097,280, Cl. \(96-44.000 .1\). Cl. \(352-243.000\).

Agfa-CGeverer N. No. Seen Ima; and Christiaen, Lucien Antoine, 4,097,323,
De Reock
Co \(156-159.000\). C. \(156-159.000\).
Ahmed, Nazd, Ivan Gerald, to Western Electric Com-
pany, Inc. Hydrostataic extrusion methods and apparatus. \(4,096,721\),

Wave energy transer-characlerisic
7.300 .000
irfixix Industries Limited: See-
Rumball, Kenneh Francis, \(4,096,963, \mathrm{Cl}\). 215-317.000

Aisin, Shamil Mustafovich: See-
Rivkin, lly Yakovevich; Olga IVanovas Dondoshanksy, Alexandr Lvovich; Zellis,
vgeny Alfredovich; Karpov, Vladien Efremovich; Sorokin,
 Aiken, Thomas, and Pooce, Wilfred Aitken, Thomas; and Pote, Wilrred D. to Nalco Chemical Company.
Cationization of starch utilizing alikali metal hydroxide cationic
water-soluble polymer and oxidant for improved wet end strength. waster-soluble oplymer and oxidant for improved wet end strength.
\(4,097,427\), Cl. \(260-9.000\). Akaba, Hayaoo Ikeda, Akira, and Lee, Masayoshi, to Kabushikk Kaisha,
Hoya Lens. Automatic lens grinding machine. 4,096,684, C1. 51 . loya Lens. Automa
loiong
Kishino, Katsuo Sec
 Tatsuro; Thukam
Cl. \(60-307.000\).
 Takara, to Toshiba Chemical Producis Co. Ldd. Heat-resistant ther-

Ishida, Tora: Aee- Akiyama, Minory, Nishimura, Daikichi, Heyshi,
Hiroshi, Sakurai, Yoshio; and Tsukagoshi, Shigeru, 4,097,66s, Cl. Hiroshi: Saku
s36.2.000.
AKZO N.V.: See-
AKZO N. V : See-
Hatmut; and Gunther, Gerhard, 4,007,298, Cl.
106-243.000. 106-243.000.




Hartigan, Richard Joseph, Jr, 4,097,652, Cl. 428-401.000.
Albright, JJmes A.: See
Albighi, Smay A.; See- Albright, James A. 4, 4,097,641, C1. 428-245.000.
Alcan Rescarch and Development Limited. See-
 Alexander Wiegand GmbH u. Co., Armaturen- u.Manometerfabrik: See-ibert, Paul; and Rossner, Ewald, 4,096,760, C1. 73-738.000


lied Chemical Corporation: See-
Gaminer, Elithene F.; Brian K., 4,097,241, CI.
23-281.000. James, LConard Evans; Balint, Laszlo Joseph; and Lazarus, Stanley



 Cl. 428.97.000.
Stephenson, Robert Larry, 4.096.606, Cl. 24-230.00

Allied PPper Incorporated: See-
Shaw, Michael J., \(4.097,647\), , Cl. 428-325.000.


Burrus, Joe H. JT., 4,097,794, Cl. 324.54 .000 .
Almer, Franz, to Graystone Corporation Track tamper with hingeable Allmer, Franz, to Graystone Corporation. Track tamper with hingeable
unitary pivotable tamping unit. \(4,096.806\), C1. 104.12 .000 . Alred John Caldweempling Highted paraicle sorter using a field emission




4,097, \(575, \mathrm{Cl} .433 .120 .000\),
merican Can Company



Wallace, Sydney Johnslone, 4,096,937, Cl. 198-377.000.
Amerian Carier Equipment. Inc: See-
Sweet, Prilip J.; Hamlet, Buck Ce:; and Sweet, David L.. \(4,097,034\),
American Color \(\&\) Chemical Corporation: See-
Botros, Raouf, \(4,097,231\), C1. \(8-41.00 \mathrm{D}\).


 Saratakis, Dimitrios; and Stcin, Larry, 4, 4097,471, Cl. 260-112.50R
Strike, Donald Pi, and Kao. Wen-Ling, 4,097,514, Cl. 260-464.000





Anderka, Gerold; Hamel, Horst; Jozat, Walter; and Straszewski,
Klaus, to Mesne Koh-1-Noor Rapidograph, Inc. Blocking ascembly Klaus, to Mesne Koh-1-Noor Rapidograph, Inc. Blick King gasemsembly
for an automatic drafting devivec. \(4,07,874\), Cl. \(346-140.00 \mathrm{R}\). Anderson, James B.e to United States of America, Energy. Isotope
separation proces. \(4,097,247\), Cl. 55.17 .000 . separation process. \(4.097,247\), Cl. 55.17 .17000
Anderson.
47-70.000.



system. 4.097,918, Clic
Andreasen, Torben: See-

Torben; Jensen, Hilmerr, Greve, Mogens; and Kurstein, Peter,
4,097,320, Cl. \(156-109.000\).
Andress. Harry J.. Jr., to Mobil Oil Corporation. Novel amino alcohol
reaction products and compositions containing the same. \(4,097,389\), reaction products
Cd. 252 . 5.50 S
Andrew Adsms


Angwin, Meredith J .: See- Sl . Cl . 209 -3.000.
Perry, Elijiah R.: Angwin, Meredith J.; Rabinowitz, Mario; and
Shimhock. John F., 4,097,682, Cl. 174-15.00R.
Anic S.p.A.: See-
Romano, Ugo, 4.007.,676, Cl. \(560-132.000\).




Apparatebau Rothemuhile Brandt \& Krizzer:
Kirchhofl, Fee- Franz-Josef; and Brandt, Joachim, 4,097,252, Cl. Apper. Quentin. D ., to Rockwell International Corporation. Targel
pocating system. \(4,097,155, \mathrm{Cl}\). \(356-152.000\).

Arai. Masakazu: See- S.,
Yui, Hiroshi. Kakizaki, Tesuyi; , Sano, Hironari; Arai, Masakazu;
and Matsui, Hiroshi, 4,097,554, Cl. \(260-878.00\) R.


 876.00B.
Arendt, Ronald H. and Curran, Math Mew J., to General Electic Com-
pany. Coated silicon.iron product and process therefor. \(4,097,443, \mathrm{Cl}\). Arendt, Ronald H. and Curran, Mathew J., to General Electic Com.
pany. Coaled silicon-iron product and process therefor. \(4,097,343, \mathrm{Cl}\).
204.37.00R.

Arledge, E. R.. I. Fretezeproof sanitary water supply appliance.
A,006t,877, Cli. \(137-281.000\). See-
Armang Cork Company: See
Garrick, John R.; and Kotumeyer, Richard E., 4,097,209, Cl rmstrong Cork Company: See-
Garrick Johner.
425-82. 1000
N.; and Kottmeyer, Richard E., 4,097,209, Cl. Nichols. James D.; and Quinn. Edwin J. 4,097,432, Cl. 260-23.0XA.
Armstrong Machine Works: See-

Arrow Machine, Inc.: See- Blaine, Benjamin F., 4,097,199, Cl.
Dote. Jimes R.: and
\(417-286.000\).

 Aromatic copolyester composition. 4,097,431. Cl. 260-22.00R.
Asahi-Dow Limited: Sectimizu
Toyama, Kunio; Shimizu Isamu
 Asahi Kalsuo, Kogyo Kabushiki Kaisha: See-

Ishida, Toraa; Akiyama, Minoru; Nishimura, Daikich; Hayashi,
Hiroshi. Sakurai, Yoshio; and Tsukagoshi, Shigeru, \(4,097,665\), Cl.
s36-23.000.
Asahi Kogaku Kogyo Kabushikik Kaisha: See-
Kawasaki, Masahiro, 4,097,877, Cl. \(354-50.000\)
Uswasaki, Masahiro, 4,097,877, Cl. 35450.000.
Uno, Nayuuki, and Miyata, Katsuhiko, 4,097,876, Cl. \(354-31.000\).
Asano Masahide: See-
Miki, Tosaku; Hosokawa, Yasuhiro, Miwa, Tamotsu; Fujita, Hiro-
shi. Asono Masahide; and Aibara, Shunzo, 4,097,608, Cl.
424.
Asano, Takateruy; and Ito, Keiko, to Fuii Chemicals Industrial Company
Limited. Water-soluble composition admixture of cosolymer having

shywanden, Felix, , to RCA Corporation. Phase locked loop tuning
system with a presel channel memory. 4,097,810, Cl. 325-453.000.
Asea AB: She a presel channel memory. 4,031,
Backsko, Hans, 4,096,628, Cl. 29-628.000.
Larsson. Lars-Goran:
Larsson. Lars-Goran; and Sorensen, Frede, 4,097,787, Cl.

Ashworth, Robert A., to A A thur G. McKece Company. Production of
liquid and gaseous fuel products from coal or the like. 4,097,361, Cl.
208-10.000.
Askew, Herbert Frank; Jayne, Gerald John Joseph; and Elliott, John
Scotchhord, to Edwin Cooper and Company Limited. Proct, So for
sulfrizing norbormenyl compounds. 4,

images. \(4,097,1136\) Cl. \(3533-71.000\).
Atec...ess KG: See-
Weiss, Hermann; and Wellkamp, Hans, 4,097,161, Cl. 403-2.000.
Allantic Richfield Company: See-


Kesling, Haven Sylvester, Jr., 4,097,524, Cl. 260-561.00R.
Schuh, Frank ,.,.,066,737, Cl. \(73-46.000\).


Lagerstedt, John Arme, 4,096,608, Cl. 24-2
Allas Powder Company Se.
Mullay, Jon \(5,4,0,37,36, \mathrm{Cl}\). 149-2.000.


Atun, Alber: See-
De Luca, Paul \(V\).; and Atun, Alber, 4,097,102,

Shifter, John W.; and Audesse, Emery G., 4,097,221, Cl. 431. Auerbach, Albert A; and Steinberg, Sidney, to Medalert Corporation.
Method and apparatus for monitoring a Method and apparatus for monitoring a timed failure condition rela-
tionship in a cardiac pacer. 4,096,865, Cl. \(128-419.0 \mathrm{PT}\). tionship in a cardiac pacer. \(4,096,865\), Cl. \(128-419.0 \mathrm{PT}\).
Auga Inc.: See-
Holt, Richard C.; Damon, Neil F; and Hanlon, Richard J.,
4,097,7101, C. 339911.700 C

 Austin, Arthur L.; Levis, William W., Jr;; Pizzini, Louis C.; and Hart-
man, Rober J .; man, Rober J., to BASF Wyandotte Corporation. Procecs for pre-
paning an oxyalkylated product. \(4,097,39\), Cl. 252 . 182.000 .
 Brook, Richard Morley. 4,096,950, Cl. 209-121.000. Nemeth, Suzette B.; and Wilson, David W., 4,097,627, Cl. Avery, Leslie Ronald, to RCA Corporation. Sync separator circuit.
\(4.097,896\), Cl. \(358-153.000\).

June 27, 1978
AVI Alpenlandische Veredelungs- Industrie Gesellischaff mbH., Firma:
See-
See
Ritter, Klaws;
\(52-665.000\). Ritter, Gerhard; and Ritter, Josef, \(4,096,680, \mathrm{Cl}\). Aviado, Domingo M. See
Salem. Harry; and Aviado, Domingo M.. 4,007,577, Cl. 424 Awis, Edi.00rd Adam. Dual flush valve. 4,096,591, Cli, 4326.000.

Axtell, Martin John Shelley: See-- Selwod Tartin John Shelley; Buron, John David; Selwood, Peter Richard, deceased; Selwood, Timothy
John, xecutori and Axtell, Martin John Shelly, executor,
opit,

Axtell, Martin John Shelly, executor: See-
Selwood, Timothy John; Axtell, Martin
John Shelley; Burton, John elwood, Timothy Jotn; ; xtelll, Martin John Shelley; Burton, John
David, Selwood, Peter Richard, deceased; Selwood, Timothy
John, executor; John, executor; and Axt
4, and
ar. Padmas. Cl. 47.480 .000 .
 Aykwa, ,uichiro, to Shikoku Paper Mfg. Co., Ltd. Method of purifi-
cation of waste water by treatment with zirconium salt. \(4,097,377\), Cl. cation of waste water by treatment with zirconium salt. \(4,097,37\), CI.
Alo. 2.000
Amiche Aziende Chimiche Riunite Angelini Francesco
See
Baiocchi, Leandro, 4,007,522, ll. 260-517.000.
B.F. Goodrich Company, The: See-
Messery. James W.; and Shipman, James J., 4,096,898, Cl. 152.
330.00 L .




tion and realloying of arsenic/selenium alloys. 4,097,267, C1.
O.SoB.
Bacharowski, Walter, to General Electric Compary. Arc discharge





Company. Split electrode s
4,097.786. Cl 377 .2.4000. See
Bagrosky, Michacl Edward. See.


Bailey, John V.: See-
Cleveland. Thomas H.; and Bailey, John V., \(4,007,547\), Cl
260-860.000.
Bain, Ceorge W. Ji.; Forguue, Stanley V.; and Morris, Abert G., to
RCA Corporation. Infrared sensitive photoconductive pickup tube.









 Balducci, Luigi; Sarti, Dino; and Gerelli, Fausto, to Montedison S. S.P.A.
Inorganic pigments and process for preparing same. 4,097,30, Cl. Balint, Laszlo
 Ballard, James P. . See-
Seligen
Sawence; Ballard, James P.; and Jeffery, Edwin A.,
Ban, Kazuhiro: See-



Tertiary amide derivatives of pyrrolidine and piperidine. 4,097,48

 Domas, Paü A., to UUited States of America, National Aeronautios
and Space Administration. Redundant disc. 4,097,194, C. 416 -
244.00A. and Space
244.00A.
Barch, Herb Methorbert W.; and Bohy, August G., to PPG Industries, Inc.
57.34 .00 B .
 C1. 42 , 331.000.
 Preparation of acceyliene-substituted polyimide oligomers and poly.
imide polymers. \(4,097,456, \mathrm{Cl} .260-47.0 \mathrm{UA}\).


 4,097,009, Cl. 244.129 .500 .
Baron, Arthur L. Sec.
Rawings, Herber L.
and Rawlings, Herber L.; and Baron, Arthur L., 4,097,435, Cl. 260.
28.0.
 Process for rperearing male
4,097,799, Cl. \(260-346.750\).
 Bartels, Hermann; Gallati, Fritz; Leng, Karl; and Rutishauser, Heinz, to
Merliter Instrumente AG. Appartus for the selective delivery of

 Ratrervolic, David B., to UOP Inc. Hydrocarbon-feed distributor of
injecting hydrocarbon feed. \(4,097,243, \mathrm{Cl} .23-288.00 \mathrm{~S}\).

\[
\begin{aligned}
& \text { Urich, 4,097,496, Cl. } 260.345 .80 \mathrm{P} \text {. } \\
& \text { tolini, Robert Alfed. see- } \\
& \text { Neil., Clyde Carr; Hammer, Jacobo Meyer; and Barolini, Robert }
\end{aligned}
\] Neil. Clyde Carl; Hammer, Jacob Meyer; and Bartolini, Robert
Ifred, 4,097, 117 , Cl. 30.96 .170
arville., George W. and Peterson. Joel R. Sr Device for anchoring



Merkle, Hans; and Mueller, Albrecht, 4,097,521, C1. 260-513.600.
SF Wyandolte Corporation sel


Basile. Sebabstian \(\mathbf{B}\). Warning device and receptacle adeptor. \(4,097,843\),
Cl. \(340-280.000\).
\(\mathrm{Cl}, 340-280.000\).
Bassis., Redulph . Method of knitting a velour fabric. 4,096,610, Cl .
28159.000 \(28-119.000\).
Bauer,
Jack
 876.00B.
Bauer, Kurt: See-
Rupp. Roland

Rupp, Roland; Schnoring, Hildegard; Schellmann, Erhard; and
Bauer, Kun, \(4,096,738\), Cl. \(73-52.000\). auman, Roberer Andrew, to Col gate Palmolive Company. Pharmaceu-
tical composition containing quaternary ammonium compounds.







 4,097, S40, Cl. 5688.862 .000 . Lessnig, Wermer; Metz, Gunter: Spiegel, Willi; and Feischer
Jurgen, \(4,096,965\), Cl. 22020000 Markusch, Peter, 4,0077,422, Cl. 260-2.5AK.












Beckmin Intriments. Inc. Sien Beckwith, Sterining, Free condening liquid retro-pumping refrigerator



Becchem droup Limited: See

Barck, Willium Ni: Oay, Charles H. JT: Deckman, Stephen W.


 Beint somekhi.







 Bell Telephone Laboraties. Incorporated. See-





C1. 137-102.200.







Serger, Abe, to Genenal Elecricic Company. Organofunctional-silicon Bergernienter,




 Thermoplessici resin molding of complex decorative relief. 4, 4, 097,634,













Ehricich, Stephen Jeffrey; and Beyer, Edward Rober, 4,097,691, Cl.
 Bianchi, Nereo. to NECCHI Socies per Azioni. Device for varying the


 Bickel. Semvel H., to Texas Instrumens In Incopporated. Solid state













Bish, James R. See-







 Blakeway, Douggles Hayward, to Blakeway Industries Lid. Carburetor Blakeway Industries Lded. See-
Berger, Richard E; and Wahrenburg, Hertert L., to Caterpillar Trac- Bledsec, James

Bleijerveld, Hendrik Comelisis. Sece


Bliuiut Altan Edgar John: Sec.

Blount, Davi. H. Procoses for the production of poly (urechane silicate)



Bocing Company, The Sese- Seq.


Bohy. Aubust G. Sew:

Bonne, Claude: See-
Perronnet. Jeques; Girault, Pierre; and Bonne, Claude, 4,007,578,
Cl. \(424-273.00\).
Bordat, Andre Julues Edmond, to Societe Nationale Indussrielle Aeros-
patiale. Supporting foil for a hydrof


 Bor ischarge ev
\(555+29.000\)
Bosch, Pecer N. See-
Giceker, Donald
4eroy, Roth, John F.; and Bosch, Peter N.,





 Bowles. Vernon O. Solar heat collection. 4,096,861, Cl. 126
Box Innards, Inc. Seear
Peters, Charies Luther, Jr., 4,096,767, C1. 74.822.000.



S42413.000. Brands, Antoon hendikus,
Cornelis, to Hollandse Signalapaparaten B.V. Readout unit for data
stored in a random-access memory and presented on a master
 365-118.000.
Brandt, Joachim:
Brandt, Joachim: See-
Kircchhof, Fran-Josef; and Brandt, Joachim, 4,097,252, Cl
s5.135.000.


Braun Aktiengeesclicchaft See-
Weise, Hans Jocechim 4,097,718, CI. 219-222.000.

Brax, Jeen Albert to Soint Gobain Indussiries. Feeder conduits for





Brewer, Robert W., JT:. See-
Collins, Waller W., \(4,066,979\), Cl. 22426.00B.







Sridgstone Tire Co. Lit.: See-
Kitazawa, Yoichi; Sato, Takesh; and Tsuji, Hisso, 4,096,899, Cl
Kitazawa, 152.34 .00 Oich,
Muramatisu, Tateo; Fukai, Toshio; and Takahashi, Haruo Muramatsiu, Tateo: Fukai, Toshio; and Takahashi, Haru
4.096,700, Cl. 61-1.00F.
Bridon Limited: See- Campbell, Robert Edward, 4,097,164, Cl. 403-284.000.




aistol-Myers, Company: See- Merkle, F. Henry, 4,007,606, Cl.
Chavkin, Leonard; and Ment
Cind


Taylor, Corporation: See- Cl . 134 C.
S. A .
Schnur, Joeel M .




 sensing devices for use therewith. 4,096,950, CI. 209.121 .000 .
Hroome, Michael D., to Draper Shate and Screen Co. Tripod stand for projection screen. \(4,0097,013, \mathrm{Cl}\). 24 84-171.000.
Brown, Allen C. See-
Eyrick, Theodore B.i. Brown, Allen C.; and Hattes, Neil R.,
4,0.06888, Cl. 128-145.600. Brown, David, to Osro Limited. Rotary seals, 4,096,666, Cl \(51-7.000\).
 Negn Keith ...to Addreseograph. Multigrapp Corroration. Apparg-
tus and method for incrementally rotating a shart. \(4,096,761, \mathrm{Cl}\). 74128.000 .
Brown Rober

Brown, Robert Warren, to Xerox Corporation. Proceses for providing
encappulated toner Composition. \(4,097,400, \mathrm{Cl} .252 .316 .000\).
Brunetti, Heimo: See-
Soman, Nobouo; Kurumada, Tomoyuki; Brunetti, Heimo; and Rody,
 General Electric Company. Method and a
stator vanes. 4,066,614, Cl. 29.-15.


 Kuchmas, John, JTr; and Bubb, Gary E. 4,097,800, Cl. 324178.000 . Buchannn, Vernon G.; and Rhoedeas Carl E. to Microfilm Service
Corporation. Step-and-repeat camera. 4,097, i43, Cl. \(355-53.000\). Buck, Charles E. Ser-
Huntzinger Gerald. O . Buck, Charies E.; and Campbell, Robert E.,
\(4,096,735, \mathrm{Cl} .73-35.000\). Buckler, Robert Thoman, to Miles Laboratories, Inc. 5,6 -Benzo ana-
 loader. 4, 0 , The See

Budris, Allan R., to Worthington Pump. Inc. Multi-stage ring type
cendifugal pump with inducer means. 4,07, 186, Cl. 1.515 .143 .000 .











K rase Thomas R.; Paananen, Eugene E.; and Burcz, John F.,
4,097,732, Cl. 250.205 .000 .
Burd, Inc., How Well Division: See-


4.097,244, Cl. 4 Pal. 1.0 .
 228d. 122.000 .
Beyer, Karr-Heinrich; and Weirauch, Kurt, 10 Bayer
Akherdit, Claus;
 esters. 4,007,455, Cl. \(260-47.0 \mathrm{OCB}\).
Eurkhath Gerald W., to Arco Polymers, Inc. Cold-patching. 4,097,172, Cl. 40475.000 .
Burt. Robert Pag

Burr, Robern Page, to Kollmorgen Technologies Inc. Electric wiring
assemblies. 4,097,684, Cl. 17468.500.
aurroughs Corporation See- Sl
Finet, Mi.hel, 4,077,977, C1. 324-73.00



Looschen, Floyd Willian, 4,097,859, Cl. 340-347.0DD.
Burroughs Wellcome Co. See-
Krenitsky, Thomat Anthon; and Bushby, Stanley Rober Morris,
4,097,337, Cl. 195-100.000.
Burroway, Gury L.: See-
Maximovich, Michael J.; and Burroway, Gary L., 4,097,440, Cl. Burrus, Joe H., H., Ir, to Allis-Chalmers Corporation. Static means for
detecting ground insulation failure for rotary electric machines

Buron, John Dvaid: See-
Selwood, Timothy
Sohn; Axtell, Marin John Shelley; Burton, John David; Selwood, Peter Richard, decceased; Selwood, Timoth
Jobh, executor, and Axtell, Martin John Shelly, executor 4,097,203, \(\mathrm{Cl}, 417,480.000\).

Burton, Willard J. Mine stopping device and method of constructing
same. 4,006.702. Cl. 61.45 .5000 .
Kushby, Stanliey Rober Morris: See-
Krenisky, Thomas Anthon; and Bushby, Stanley Robert Morris, Butler, William H., Jr. Process and apparatus for mixing and transport
ing cement. \(4,097,925, \mathrm{Cl}\). \(366-2.000\).
ing cement: 4.097,925, Cl. \(366-2.000\).
Buzan, Morris M. Seel
Bobrick. Mitchell; Ouin, Murray L.; and Buzan, Morris M
Bobrick, Mitchell. Quin, Murray L.; and Buzan, Morris M.,
4.097,99, Cl. \(362-270.000\).
B.V. Neratoom: See-
Esscebagers Jan, \(4,006,885\), Cl. \(138-97.000\).


Apparatus to apply viirations to parcially or completely thermofusi-
ble articles. \(4,097,327\), Cl. \(156-515.000\).
Caley, William F.; and Fiengas, Spero N., to University of Toronto,
The Governing Council of the. Preparation of metal alloy coatings on
The Governing Council of the. Preparation of
iron substrates \(4,097,31\), , Cl. 204181.00 N .
Calzaurifio


Cammarathe Frapk, III, 'to Baxter Travenol Laboratories. Inc. Molded,
collapsible solution container having transverse fold lines. \(4,096,897\), collupsible sol.
Cl. 150.50.
cmpelll, Glenn
Cmpbell, Glenn M.: See-
Weiss Veme Eempell, Glenn M.; and Wilson, Gerald L.
4,096,791, Cl. \(99-353.000\).
4,096,791, Cl. \(99-353.000\).
Campbell, Robert E .5
Hee-
 Campbell. Robert Edward, 10. Bridon Limited. Terminals on wire rope
and strand. \(4,097,164\), Cl. \(403-284.000\). Campioni, Armando, io Indesiit Industria Eletrrodomestici Italiana S.p.A.A. Amplifying circuit. 4,997, 815 S. Cl. \(330-289.000\).
Camras, Marvin, to IIT Research Institute. Porable vide
ampas, Marvin, to ict research Institute. Portable video recording
system employing camera nd recording stations connected by wire-
leas links. 4,07 . less links. 4,007, 893 . Cl. \(258-83.000\).
Canad, Herm Majesty the Queen in right of, as represented by the Minister of National Defence: See-
Deschenes, Pierre \(J .4,4,09,782\), Cl. 89-1.00A.









 Carlson, Karl, to scotto, Anthony J J. Septic tank-leaching pool arrange
ment. \(4.007,300 \mathrm{Cl}\) Carlson, Roger E... io Moisture Systems Corp. Moisture analyzing
method and apparatus. 4,097,743, Cl. 250-339.000










 Carison, George A.; and Jankovsky, William O., 4,096,711, Cl
6413.000 . Cochran, Thomas E., 4,096,765, Cl. 74-473.00R.

 4.O99,957, Cli. Pi4, Dirscher. George W.; and Hagen, Paul D.
Kairle.a, Willard Oswald and Helton, Eugene L., 4,096,653, Cl Kaarlela, Willard Oswald; and Helton, Eugene L., 4,096,653, Cl
37 .142.00A.

4,097,093, Cl. 305-22.000. Unuh, Dale H., 4,097,060, Cl. \(280-492.000\).

25ide catalyst and a process for its preparation. 4,097,414, Cl .
2ebulak, Wapler S .; and Weyand, John D ., to Aluminum Company of America. Titanium dibondushapes. 4,099,567, Cl . 2646, Amselem, Armand, 4,0077.422, Cl. 200-294.80C.
Drobnik, Jaroslavi, Koppecke, Jindrich; Labsky, Jiri; Rejmanova,
Pavla; Exner, Josef; and Kalal, Jaroslav, 4,097,40, Cl. 260 , Paval; Exner, Josef; and Kalal, Jarosiav, 4,097,470, Cl. \(260-\)
78.0 .
Mikes, Otakar; Strop, Petr; and Coupek, Jiri, 4,097,420, Cl. \(260-\) Chambers, Derek, to Raytheon Company. Marine radar system with
indeenden swithed
 Chambliss, Hiram Darden. Energy seving means reducing power used
by yamps. \(4,077,782\), Ci. 15 S. 200.000
Chan, John Kai-Fai, to Union Carbide


 Chappelle, Warner A. Automatic semi-trailer landing gear extension and retraction apparatus. \(4,0077,840\), Cl. \(1.340-52.00\).
Char. Conway, Kenneth Edward; Freeman, Thomas Edward; and
Charudatan, Raghavan, 4,007.261, Cl. \(71-66.000\). APAP Tableard; and Merkle, F. Henry, to Bristol-Myers Company.




JUNE 27, 1978
LIST OF PATENTEES


 Berger, Dieter, 4,097,465, Cli. 260.75.0EP.

 ciala acelam B . and Fr , Lonnie E , to Tenex Corporation. Cap
Cheris, Alber B.; and Frye, Lennic
runner. \(4,097,628\), Cl. 428.43 .000 .
Cherne Industrial, In... See-
Larson, Richard \(\mathrm{E} .4,096,997\), Cl. 239-413.00

\begin{tabular}{l} 
Kobzina, John W., 4,097,2655 Cl. \\
Lowe, Warren, \(4,097,386, ~ C l\) \\
\hline
\end{tabular}
Chiese. Petere J... JT.; and Otti, Meredith S . to Bickmore. Inc. Method for
removing bot
removing bot eggs from animal hair. \(4,097,305\), Cl. 1346.000 .
Childress, Boobyan:
Leitiner Free
Leitner. Frank
219994.000 .
Chimkombinat: See-
Sendov, Soyon Hristov; Kuklin, Ivan Alexandrov; Nikolov, Ivann
Angelovy: Ivanov, Assen Ninov; Mirchev, Mircho Georgiev; and
Kurashev, Radoslav Borisov, 4,097,927, Cl. 366-247.000.
Chimosa Chimica Organica S.p.A. See -
Tozzi, Antonio; and Cassandrini Paolo, 4,097,454, Cl. \(260-45.75 \mathrm{~N}\).
Chyoza Chemical Enginering \& Construction: See-
Tanaka, Tsunemitsu; Nakagawa Testor
Tesuo
Abiko, Shiro; and

Chou, Albert S. and Balbas, Frank M., to Shugart Associates. Method
for inspecting the skew of magetic head for selectively locating a
lead screw and an apparatus therefor \(4,097,908\), Cl. 360 . 76.000 .

Inc. Roast-neutralization-leach
ore. 4,097 ,
Corts, Cli. 423 -1 150.000 .





Christiaen, Lucien Antoine: See
De Roeck. Josesht Ima, and Christiaen, Lucien Antoine, 4.097,323,
CI \(156-159.000\),



 Farooq, Salcem; and Karrer, Friedrich, 4,097,581, Cl. 424.278.000. Farogi, aleem; and Kand Coviello, Vincenzo, 4,097,515, Cl. 260
Siegris., Adol Emil; and
465.00 C .

 Wegmuller, Hans; and Hase. Jarosiav, 4,007,376, Cl. 210-36.000.
Cincinntit Milacron-Heald Corp. See
Uhtenwoldt, Herberr R.; Humes, Norman S.; and Crossman, RichUhtenwoldt, Herbert R. Humes, Norman S.; and Crossman, Rich
ard E. \(4,066,67\), Cl . Sl-99.000.
\begin{tabular}{c} 
Cincinnati Milacron Inc.: See- \\
Kellemann, Anrrold LeRoy; and McDonald, David Ian, 4, 4, \\
\hline
\end{tabular}
\(\xrightarrow{\mathrm{Cl} .214-1.10 \mathrm{PT} \text {. }}\) Taner, Rendil Curts, \(4,096,770, \mathrm{Cl} .82-1.00 \mathrm{C}\).
Cinelli, Gabriel: See- Furbee, Avery D.; and Cinelli, Gabriel, 4,097,760, C1. 313-60.000.

Clark, Alexander. Composing toinet. 4,096,92,
Clark Equipment Company See
Rocco, Jack O., 4,006,961, Cl. 214 - 510.000 .
Clavell, Cesar, JI, to United States of America, Navy. Spinning disk
electrical isolator for a fowing seawatier stream. \(4,097,680\), Cl.
electrical isolator for a fowing seawater sircal.
174 . .000 .
.



saddlebag bracket. 4,096,988, Cl. 224.39 .000 .

 rangement. \(4,096,765\), Cl. 74473.00 R .
 manufacturing a conctic whe heat ex
157.30A. Compery, George A.; and Kast, Howard B.., to General Elecruic
CI. \(165-81.000\). Cl. \(165-81.000\).
Conen Arond
Cones soles. \(4,096,733\), CI. \(73-7.000\).
hen, Howrd Joseph; ion. Fiating agents. \(4,097,302\), Cl. \(106-312.000\). Conen, Loonard D., to Cutler-Hammer, Inc. Thermoelectric compens tion for voltage control devices. 4,097,829, Cl. 334-15.000. Manouk.ian Nee- Nubar Sahag, and Johnston, Thomas Frazier, Jr.,
\(4,098,818, \mathrm{Cl} .311 .94 .50 \mathrm{C}\) Cohn, Marvin, to Westinghousece Electric Corp. Push-pull power ampl


 Company,
2640.300 .
cole, Herbert S. Jr., to General Electric Conpany. Multi-colored
liquid crystal displays. \(4.097,130\) C. \(\mathbf{C l}\).30.355.000. Coleman, John H.; and Marks, Tobin J ., to Northwestern University; and Plasma Physics Corporation.
tion. 4,077 . 344 , Cl. \(250-527.000\).
man, Renneth: See-
Wison, Michael A; Momparler, Fred J.; and Coleman, Kenneth,
4,097,769, Cl. \(307-252.00 \mathrm{~B}\).

Colgate Palmolive Company: See
Ruuman, Robert Andrew, 4,097,600, Cl. 424-267.000.
Kolling Ronall L. Seer
Kindermann, Joseph C.; and Colling, Ronald L., 4,096,841, Cl.
 Collins, Waller W. \(\mathbf{4}\), to Brewer, Robert W., Jr. Belt buckle knife.
4,066979 , Cl. 224 -26.00B.
 Satellite connected by means
\(4,0977010 . \mathrm{Cl}\)
244-188.000.
ombo, Paole: See-
Radici, Pierino; Custro, Sergio; and Colombo, Paolo, 4,097,453, Cl. 2604S.90P.
Columbus McKinnon Corporation. See-
Schreyer, Kenneth D., \(4,097,024\), Cl. 254, 169.000 .


 Comitato Nazionale per l'Energia Nucleare: See-
Scuricini, Giovan Batista, \(4,496,888\), Cl.
\(233-23.00 \mathrm{~A}\)


Evans, John Jam
42426.300.
Compagnie Francaise de Raffinage: See-
Muler, Alain, \(4,097,412\), l. 252.265 .000.



Lamy, Jacques Edouard, 4,006,705, \(\mathrm{Cl}, 611111.000\).
Compagnie Internationale pour 1 Informatique CII-Honeywell Bull
(Societe Anonyme): Seed
(Societe Anonyme): See-
Pichon, Michel, 4.096, 748, Cl. 73-362.0AR.


Connors, Charles W., 1 N Nalco Chemica
member. \(4.077,019\), Cl. \(244-204.000\).

Yanga Kang; Mompany, Kaye L. .; and Reedy, James D., 4,097,533, Cl.
20.-603.00C
Conway, Kenneth Edward; Freeman, Thomas Edward; and Charudat.

Data General Corporation: See-
Seligman, Lawrence: Ballard, James P.; and Jeffery, Edwin \(A\) Datta, Pabitra, to Addresograph Multigraph Corporation. Phosphon

graphic process. 4,097,617, Cl. 427-14.000.
Daussan et Compannie. See-
Daussan, Hengi jean, 4,096,976, Cl. 222--991.000
 Suusan, henr jean, to Duussan et Compagnie. Cesells for transferring,
liquid meal having a removable insulating lining. 4,096,976, Cl.
222-s91..000. Davey, Richard G., to Owens-1llinois, Inc. Glass
mold lubrication. \(4,097,257\), Cl. 65.26 .000.
mavid Brown-Vosper (Offshore) Limited: SeeAdamson, Stewart Mal
Cavidson, Bruce Lion Lloyd: \(S\)
 Davis, Gerald Tiuts; and Shackle, Dale Richard, to Mead Corporation
The. Manifold carbonless form and proces for the continuous pro-
 Davis, Herberer C. . Sheel entry and automatic copying apparatus.
\(4,097,066\), Cl. 282.29 .00 B Davis Robert A.. See -
Brewer, A.trur \(\mathrm{D} . ;\) and Davis, Robert A., 4,097,580, Cl
424277.000 .


Dawson, Loma Ann \(\begin{gathered}46-1.000 .\end{gathered}\)
Dawson, Lorna Ann. Stereophonic electromagnetic pickup device for
stringed musian instruments. 4,096, 780, M1. 844.1.160.
Dayco Corporation: See-




 fluoroalky ylthio groups, 4,097,642, \(\mathrm{Cl} .428-262.000\).


Defago, Raymond: See-
Koller, Stefani Karlen, Urs; Kneubuhler, Werner; and Defago
 threshold circuit for optical micrometer. 4,097,158, Cl. \(336-160.000\)
Dehlsen, James ©. P. Seeal
Haber. Terry M.; and Dehlsen, James G. P., 4,096,974,


Del Laboratories, Inc. See-
DeLauder, William R.; and Sppring, Ferrinand E. To Ralston Purina
Company. Process for preparing a protin forified natural cerceal 4,0077,613. Cl. \(426-303.000\).
De Leo, Richard V.; and Hagen, Floyd W. to Rosemount Inc. Pressure
 4.0.096,744, CI. 73 -180.000.
Dellorfano, Fred M., Jr.: See


 Del Ser Gonzalez, Clemente. Olive pitting and stuffing machine.



 DEMAG Kunsstoflechnik Zweigniederlassung der DEMAG AG:
See-
Fries, Bermd, 4, 4,97.928, Cl. 366-336.000.
Demmin Timothy R: See-.
 Den \(\mathrm{B}, 0 \mathrm{cor}\), Cornelis, to Imperial Chemical Industries Limited. Matres-
ses for subaqueous structures. 4,096,701, \(\mathrm{Cl} .61-38.000\).








Begay, Alber: Jee Rosenthale, Marvin E.; and Dervinis, Alphonse,
4,007,596, C1. \(424-247.000\).
Desarr, \({ }^{4}\) Rene. Lance for desulphurizing cast iron or steel. \(4,097,030, \mathrm{Cl}\). Desaar, Rene.
2esc-225..00.
Dechenes, Pier
sechenes, Pierre J., to Canada, Her Majesty the Queen in right of, as
represented by the Mininar of National Defence. Barrier for whecled
represented by the Mininster of Natiu
vehicles. \(4,096,782\), Cl. 89.1 .00 A .
Desisto, Richarar E. Se. Se-
Sisto, Richard E.: See-
Soler., Norman
219.-368.000.
\begin{tabular}{l}
219.368 .000 . \\
Sor, Gerhand to Heuser Verwal \\
\hline
\end{tabular}
Desor, Gerhard, to Hauser Verwaltungs-Gesellschaft mit beechnrunkter
Hatfung. Pressure gauge for indicating small pressure changes.
\begin{tabular}{l} 
Haffung. Pressure geng \\
\(4,096,799\), cl. 73.731 .000 \\
\hline
\end{tabular}
DeTorre, Robert Pe, to PPG Industries, Inc. Self-aligning apparatus for
soring fracturaij material

Dettman, Charles R., ind Froderick, John J., to EEectronic Surveil-
lance ence Security Inc. Electronic fence surveillance apparatus.
\(4,007,025,1.256-1.1\).
DeVos, Marc Francois; and Gouw, Hoan Giok. Slide-puzele 4097,049,
Cl 2733.005 .
Cl. 273-153.005.


\section*{}

 Diceggie, , , i,4acomo. Li. Lighted message board construction. 4,096,656, Cl Dickinsso.000. Harry D. Modular traffic controller. 4,097,170, CI.
404.6.00.


 Eitel, to Otio Fuchs KG.; and Schuco Heinz Schurmann Gm
C. Insulated constrution lement. \(4,096,678\), Cl. \(52-403.000\).
Dienstuhl, Karl Wilhelm: See-

Deterich, Dieter, to Beayer Aktiengeeellschaft. Inorganic-organic com



Gary A. See- .
Has., Werner E. L. and Dir, Gary A., 4,097,127, Cl. 350-332.000





Doemen, Benno, to Papst-Motoren KG. Rotation-supervised def fan or
blower system. \(4,07,789\), Cl. \(318-461.000\).
Dole, James R.; and Blaine, Benjemin \(F\)., to Arrow Mection


Uhtenwolltht Herbert Re; Humes, Norman S.; and Crossman, Rich
ard E. \(4,096,667\), Cl. \(51-99.000\). crueas. Ronald DeW ayye to Bo Back Cliowson Company, The. Dewater
ing screen. \(4,097,382\), Cl \(210-456000\) Cubbon, Robert Charles Patrick; Russell, Peter John; Talbot, Robe ited. Preparation of a bleach. 4,097,536, Cl. 260-610.00R Culbertson, Harry M., to Monsanto Company. Process for preparing
high orho Cunningham, Roberr E. to Goodyear Tire \& Rubber Company, The.
Method of preparing block polymers. \(4,097,557\), Cl. \(260-880.00 \mathrm{~B}\).
 2cri-78. 30 .
Cunnck. Curran, Laurence Ee Vevistilation and insulation bame. 4,006,790, Cl
98.37 .000 . Curran, Matthew J.: See-
AAcent. Ronald
3., Curry Harold George; Attwood, Brian William; White, Derek Grahan
Walter; Christensen, John Mossand; and Kor
 urtiss-Wrig
gio: See-. \(4,07.122\), C1. 416-1 1.000
ter-Hammer, inc.: See-

 Cymbal, William D., to General Moltors." Corporation. Transmissio
shif control. \(4,096.717\), Cl. \(70-248.000\). CYr, Reginald J . UUderwater transponder calibration arrangement.
4,097,837, Cl. \(340-5.00 \mathrm{C}\). Aadson, Joseph E. See-
128.213 .000 . Dafter, Roberr Vincent, Jr., to Western Electric Company, Inc. Method See- DmbH \& Co. Deutsche Automaten- und Getranke - Maschinen
 Daichi 10.5 Seiyaku \(C_{0}\) Lte

Shi; Assano, Masahide; and
Daimper-3enz. Altiengesellschaft: See-
Wulf, Helmut; and Weidem
Wulf Henz Aktien gesellschafi: See- Wolif Weidemann, Wolgang, 4,097,752, Dake. Nolan, to Dake, Nolan. Litting mechanism. 4,096,955, Cl. 214
75.014 Daks, Mark L.: See-
Wellington, Charles K.; and Dakss, Mark L., 4,097,129, Cl Wellington, Cha
350.9 .150
Dalton, James M. Se
 Industries. Method of detecting heal seal breaks and package thereof
\(4,097,236\), \(\mathrm{Cl} .23-230.00 \mathrm{~L}\)

\(\underset{\substack{18 \\ 71}}{\substack{1 \\ \hline}}\)
 Danbar, Inc. Sec.-
Petruci, Peime
Da., \(4,097,016, ~ C l . ~ 248-418.000 . ~\)
Danfoss A/S: See-
Karrl, Bent, 4.096.708, Cl. \(62-275.000\)

 Dany, Franz-Josef., Mietens, Gerhard, and Schallus, Erich, to Hocechst
Altien gesellochat. Process for imparting antistatic propertics to

 Darling, Thomas Roberin to Du Pont de Nemours. E. I. and Company.
Polyurethane coating composition curable by addition polymeriza

 tion. 4,097, ,439, Cl. \(260-31.20 \mathrm{~N}\).
Daruschy, Paul: See-



Canads 2 LLd. Laminate for use in packing oil. 4,096,946,
\(2006-184.200\)
Everell to Intert ind
\(307-359.000\). cookskey, Ralph D. Steam

Bennett, James G; and Coser, Gien D. 4097,459, C. 260
Aer, Gordon Ji: See-
Anderson, willime
oper Libo 18, cl. \(362 \cdot 147.000\).
Coors Consuiner C
Coplin, Clirene,
Hause. Leroy Robert; and Coplin, Clarence Wiliam, 4,



\(\qquad\)



2.10 O .

Siegist. Adoll Emil; and Coviello, Vincenzo, 4.097,515, Cl. 260




Crmer, Afiron. Underwat



Cremer, Hens H. Sele - L: and Cremer, Hans H. 4,097,156, Cl.



\footnotetext{
-
}
.


































\footnotetext{
蹅
}






 mand ard Oil Company. Use of coated catalys.
momecic Panhydrides. 4,007,501, C1. 260-346.740.



Olge IVanovna; Dondohhansky, Alexandr LVovich; Zellis,
Evgeny Alfrodovich Karpov, Vladilen Efremovich; Sorokin,
Vladimir Konstantinovich, and Shishkin, Oleg Petrovich,
Vlodimir
4.096.74, Constantinovich
Cli-14.00B.
Donermeyer. Dosail D. See-
Martins, Joseph G.; and Donermeyer, Donald D., 4,097,445, Cl
260-40.00R.
Donotrio John
braking moch to

 361-35.000.
Dorsey. Geofrey A., Jr., to Kaiser Aluminum \& Chemical Corpora. Dorsey, Geoffre
tion. Pretreat
Cl
Cl. \(148-6.270\).
Dorsy.M.C.O. Distributors. Inc.: See-
McComb, Kenneth H:; and McComb, Timothy 1., 4,097,213, C1.



Dreser Ind Instries, Inc.: Seea \(4,097,906, \mathrm{Cl}\). \(360-13.000\).
Phillips Victor

Phillips, Victor Quin; Grifin, Phil Harmon; and Sharki,
James.es, 4.07.23,
Van






 Conuiner Company. Container with outwardly flexible bottom end
wall having integal supor means and method of manufacture
therfore. \(4,096,814\), cl. 113-120.00M.

Cole, Clarence R.i and Duncan, Robert L., 4,097,565, Cl.
264, 0.3001
Dunshee, Roberi. S., to United States Steel Corporation. Plasma arc


Du Pont de Nemours, E. .1., and Company: See-
Ager, Brian Michacl: and Todd, Maurice Cornelius, 4,096,612, cl.
28-272.000. \({ }^{28}{ }^{28} 2727.000\).











228.122.000. D. ., 4,097,786, Cl. \(318-282.000\).
 Noonand. John Michacl: McConkey. Robert Charles; and Hanrahan,
Michael John \(4,097,282\),



 drocarbon oils 4.077,365, C1. 208-180.000.
Ebechardt, Edward Herbert, to International
Eberhard, Edward Herbert, to International Telephone \& Telegraph
Coproration. Thermal camera tube. 4,077,72, Cl. \(250-333\),
 Pitney.-Bowes. Inc. Remote postage meterc charging system using an
advanced
microcomputerized
postage 364900.000 .
Ecker, Konrad Kert, Konrad; Hofmann, Karl; and Seifert, Kurt, to Roberr Bosch
GmbH. Fuel injection valve for preliminary and principal injection.
 4,096, \(04, \mathrm{Cl}, 16.128 .100\).
Economy, Constantine F.
See

Weber. Alfred; Kennecke, Mario; Mueller, Rudolf; Eder, Ulrich;
and Wecher. Rudift,, ,097,334, Cl. 195 - 51.00 G .


Egan, Chark J., , Colthevron Research Company. Hydrocracking in the
presence of water and a low hydrogen partial presure. 4,097,364, Cl.
presence of water and a low hydrogen partial pressure. 4,097,364, Cl.
208.11.1.00.
Egan, Walter G .; Hallock, Herbert B. and Hilgeman, Theodore W ., to
Gruman Grumman Aecrospace Corporation.
raus \(4,0,097,751\), C. \(250-571.000\).


Chrlich, Stephene Jeffriey; and Beyer, Edward Robert, to Motorola, Inc.
Remote eflephone couller as for medical emergency data transmis.





 236.1.0.0.
Electronized Chemicals Corporation: See-
Lair, Willer M. 4,097,54, Cl.
 1.0SSR.
Elf Union: See-
Elgeti. Klaus: Hee, \(4096,908, \mathrm{Cl}\). \(165-64.000\).


 4,007,429, Cll \(260-17.0\) ser.
Ellbruner. Adabert: See-
 Ellingson, Chester W., Jr. Wind
494.475.OOO.
Ellioth, John Scotchford




Roddy, Joseph T.., 4,097,706, Cl. 200-293.000.
EMI Limited: See-
Inghimed. William Ellis; and Williams, Anthony Michael, 4,097,746,
C1. 250-44.000. Cl. 250.444 .000 . Emel. Leroy L. Method and apparatus
structure. \(4,097,324, \mathrm{Cl}\). 156 -179.000.
structure. 4.007.324, C. \(156-179.000\).
Emmons. William D.; and Nyi, Kayson, 10 Rohm and Heas Company. Unsaturated esters of glycol monodicyclopentenyl ethers. 4,097,67\%,
C1. 560.220 .000 . Cl. \(560-220.000\).
Endo, Hiroshi, and Ban, Kazuhiro, to Nissan Motor Company, Limited;
and Mitsubishi Denki Kabushiki, Kaisha. Radar-pperated vehicle




Kerb, Unrich. We- Wiechert, Rudolf; and Engelfried, Otto, 4,097,678,
Cl. 560.257 .000 . Engelsmann, Dieter, to AGFA-Gevert AG. Multiple lens camera
having lens-position controled focal-length adjustment. \(4,097,882\),
having lens-position controlled
Cng. 34.197 .000.
Engeering Systems Corporation: See-

England, Robert C. Device for inserting and removing contact lenses Eppe, Rudolf: See-


 Epworth, Richard Edward: See-
Selway, Peter Rechard; Chown, Martin; Epworth, Richard Ed-
ward; Legsett, Noman Derek; and Sunak, Harish Ram Dass,
ward; Leggett, Norman Derek; and Sunak, Harish Ram Dass,
\(4,097,8991\), Cl
Erickson, Frederick E.: See--
Riztenhaler. Donald R.; and Erickson, Frederick E., 4,097,832, Cl.
Erickson, Kenis E, to Keuffel \(\&\) Esser Company. Zero index for electro-




Erwin Sick Gesellschaft mit beschrankter Haftung Optik-Elekkronik:
See Lengenbach, Erwin; and Sackmann, Karl-Hans, 4,097,733, Cl. Lengenbach, 2 2.-22...00.
Escher, Balint: See-
sion device includ
111.-17.000.
Exner, Josef. See
Drobnik. Jarosla
- propelier protection means. \(4,090,819, \mathrm{Cl}\).

Exxon Research \& Enginecring Co.: See-
Gladrow, Elroy M.
4,097,410:
Gladrow, EIroy M. 4,097,410, Cl. 252 -4s5.002.
Eyeil R., to Cheme-

 Factor, Arnold; MacLaury, Michacl R., and Webb, Jimmy L., to Gen-
eral Electric Company. Dehydrochlorination of a dihydroxydiphenyl eral Electric Company. Dehydrochlorination of a dihydroxydiphenyl
richloroethane. 4,097.538, C1. \(568-726.000\). Fagan, Jamen J.;. Otro, William F;, nd McKnight, William B., to United.


 Dear. Roberr Ernest Arthur; and Falk, Robert Allan, 4,097,042, Cl.
Fanc-262.000. Fancher. Llewellyn W., to Stauffer Chemical Company. Alkyl thiourea
miticides. \(4,097,605\), \(\mathbf{~ C l} .424 .322 .000\).



 Faudemay, Edmond L. J., 10. S. S. Dupont. Adjustment device for
liguefied gas lighters. \(4,097,222\), Cl. 431143.14000 . liquefied gas lighters. 4,097,222, Cl. 431-143.000.
Laulner,
Levine
Leve, Albert A.: See- and Faulkner, Albert A., 4,096,824, CI.
Levis.-10.000.
 Faulkner, Philip George, 1 , British Petroleum C.
Forming proceses. \(40066,815, \mathrm{Cl} .113\)-120.00A.
Faxvog, Frederick R. See,
Lewis. Rober W. Joseph, Bernard W.; and Faxvog, Frederick R.,
\(4,097,50, \mathrm{Cl} .250 .548 .000\).

Feldman, Keive, to Her Majecty the Queen as represented by the





and reppair unit for use in the method. 4,096,885, Cl. 138-97.000.
Etablisements Francois ef Fiils: See
Sit Salomon, Georges Pierre Joseph, 4,097,062, Cl.
Ethyl Corporation See
Marsee, Frederick J.,
, 4,096,843, Cl.
123-179.00A.
Marsec. Frederick J., 4,096,843, Cl. 123-179.00A.
Eucatex, S.A. Sendez, Jose Antonio; and Netto, Cassiano Mesquita,
Sanz Hernand


Scientific and Industrial Research Organiza ion. Triazoles. \(4,097,599\),
C1. 424 263.000.
 Evensen, Harald. Thisis, and Tellesbo, Ola, to Isda Fabrikeer A,S.
Inorganic raw felt intended for the production of roof felt. 4,097,644, Inorganie raw
Cl. 428.281 .000 . Evers, William J.; Heinsohn, Howard H., Jr.; Shuster, Edward J.; and
Schmitt, Frederick Louis, © International Fravor \(\&\) Fragrances, Inc.





Minister of National Defence of Her Majest's Cansenien Govern-
ment. Battery selfdischarge indicator. \(4,097,803\), Cl. 324.29 .500 .

Klaus, Gerald R., \(, 4,096,603\), Ci. 16 Se-110.00R.





3ielding., 150 h . O.: See-
Erikson, Carl A.; Fielding, John O.. Cline, Harvey E;; and Fields. Anthony, Thomas R., 4,097,226, Cl. 432-120.000. Fields. Virgil L., to Hobart" Corporation. Bumper lock for dishwashing machine rack suppor: 4,097,098, Cl. 312.-311.000. \(4,097,171, \mathrm{Cl}\)
Figigini Mari. Mario to Ing. C. Olivettid \& C., S.p.A. Computer operator guide
 cal circu
73.00 R
Finney, James L.: See-
Beack. Sigmund;
Fischell, Roberrt E., to Johney Jop James L. \(4,097,854, \mathrm{Cl}\). \(340-282.000\).




 Fischer, Klaus: See-
Fischer, Artur; and Fischer, Klaus, 4,096,672, C1. 52-127.000.



 Inco.porated.
\(315-368.000\).








Frem. 324188.000 .







\(\mathrm{FMC}_{\text {Garber }}^{\text {Grtion: See- }}\) Amold L. and Cremer, Hans H. \(4,097,156\), Cl.































Foraideht Indinutries See- Se9,63, Cl. \(52-156.000\).












 Frey. Chriruloph sed von
 Fry. Nancon Y:



Fujimura, Noriaki, 4,097,807, Cl. \(325-42.000\).
Fujurara Minorui.
Horikiei, Kazuhito; Hirasawa, Hiroshi; and
Fujiwara,
Horikiti, Kazuhito; Hirasawa, Hiroshi; and Fujiwara, Minoru,
4.066,769, Cl. 74 -801.000.








 Furey, Robert J.ja and Stupay, Lawrence J., , Bunker Ramo Corpora-
tion Elecricil oconection system. 4,097,104, Cl. 339-74.00R. Scki, Chichitiada; and Furuhashi, Nobuo, 4,097,561, Cl. 261-41.00D. Seki, Chichitada and Furuhashi, Nobuo, 4,097,561, Cl. 261-41.00D.

 utcher, Raph James, to Dominion Engincering Works Limited. Paper
webt straal
abyel, Fried system. \(4,096,643\). Cl.
34-12..000.


 C. J., 4,097,270, Cl. 75 -68.00R
Gallagher, Ruth E.; and Goswami, Jagadish C., to Stauffer Chemical
Comple
 Bartels, Hermann; Gallati, Fritz; Lang, Karl; and Rutishauser,
Heinz, \(4,006,972, \mathrm{Cl}\). 222 -135.000.

June 27, 1978

\section*{LIST OF PATENTEES}

Galloway, Richard M. : See-
Brungerd, Alvin J;
Galloway, Richard M.; and Kerwick, Donald P. \(4,006,614, \mathrm{Cl} .29 .156 .80 \mathrm{R}\).
 Garber, Arnold L.; and Cremer, Hans H., to FMC Corporation. Real-
time system for automatically measuring the performance of weap-
ons. 4097,156, Cl \(356-152.000\). time system for automatically measuring the periormance of weal
ons. \(4,097,156\), C1. \(366-152.000\). Ons.
Garder, Derect Victor, , to Beecham Group Limited. 2,2-Dimethyl-7.
amine-alkoxy aminc-alkoxy
200-286. 0 or
Gardner, Jeffrey M., to Container Corporation of America. Internal
partion
 spectra of optical limages using CCD's. 4,097,749, Cl. \(250-550.000\). Garcher, Heat developable photographic material and processs compris-
 Hercules Incorporated. Magnetic orientation of casting powder
granules. W,097.315, Cl. 149.2.000.
 aring asembly with flexible support and viscous damping. 4,097,094,
ci. \(308-9.000\). Gargaillo, Daniel Pierre. Punc
\(4,096,727\), Cl . 72.312 .000 .
Garkusha, Olgg Ivanovna: See-
Rivkin, Ilya Yakolvevich, Aisin, Shamil Mustafovich; Garkusha
4., Olag IVanouva; Dondoshanksy, Alexandr Lvovich; Zellis,
Evgeny Alfredovich; Karpov, Vladien Efremovich; Sorokin,
 Garnere. David. to Coaal Industry (Patents) Limited. Conveying appara-
tus. \(4,096,940\), Cl. 198-66.000.
tus. 4, 4,066,940, Cl. \(198-560.000\).
Garner, Eugene F.; and Haillon, Brian K., to Allied Chemical Corpo-



Garretio Corporation, The: See--
Six, Lyle D., \(4,097,276\), Cl.
S5-208.00R
Garick, John \(\mathbb{R}\).; and Koutmeyer, Richerd E., to Armstrong Cork
 Garwin, Richard Lewrence; and Levine. James Lewis. to International
Business Machines Corporation. OPtical scanning device for produc. ing a multiple line scan using a linear array of sources and a textured
scanned surface. \(4.097,115, \mathrm{Cl}\). \(350-6.700\). scanned surface. \(4,007,115\),
Gaskin, Raymond Lester. Refuse vehicle. \(4,096,956, \mathrm{Cl} .214 .82 .000\). Saser, Oswald: See-
Schidbusur, Hubert; and Gasser, Oswald, 4,097,509, Cl. \({ }^{\text {Schmidbsur, }}{ }_{260-30.00}{ }^{\text {Hu }}\)

Gaub, Erwin: See-
Sandau, Harturt; Weigerr, Wihhelm; Steinel, Winfrided, Kraisel,
, andau, Hartmut; Weigert, Will
August; Rititer, leaus Gaub,
rich, \(4,096,787\), Cl. \(92-260.000\).
Gay, Chareses H., J. J. See
Barack, William N.; Gay, Charles H., Jri; Beckman, Stephen W.

Gebr. Eickhoff Maschinenfabrik und Eilen
Geddes, Andrew E.: See-
Reams Lowell A; and Geddes, Andrew E., 4,096,695, Cl.
\(60-517.000\).
Gee. Tho-317.000. A.. to Eaton Corporation. Tubular wheel speed sensor.
 Gegauf, Fritz, to Fritz Gegauf Aktiengesellschaft, Berninas-Nahmass
chinenfabiri. Clutching device for sewing machines. 4,006,812, Cl
112.220.000.

Geimer, Michael R.: See-
Guverana Humberto F.; and Geimer, Michacl R., 4,096,892, Cl
140-140.000.
Geluk, Ronald J.an, to N. V. Optische Industrie "De Oude Deiln".
Meho and apparas for .inearly filtering two-dimensional signals.



\(355-24.000\).
Bennelt, James G.; and Cooper, Glenn D., 4,097,458, Cl. 260
Bennett, James G.; and Cooper, Glenn D., 4,07,
47.0ET
Bennet. James G.; and Cooper, Glenn D., 4,097,459, Cl. 260 -



Cole, Herber S., Jr., 4,097, 130, Cl. 350-335.000.
Cote, Paul T, and Schupp, Lewis J., 4,097,220, CI. 431-95.00A. Erikson, Cart A.; Fielding, John C.; Cline, Harvey E.; and
Anthony, Thomas R., 4,097,226, Cl. \(432-120.000\).


Haaf, William Robert; Lee, Gim Fun, Jr; 260; and \(260,4,097,550\),
CI. \(260-876.00 \mathrm{~B}\).
Herbst. Cr.
Herbst. LROROy

 Jencks, Charles L.;
3355.166.000.
Jenkins





Guillou, Jean Pierre; and Letourneau, Georges, 4,097,616, C1.
426-548.000. 426.58 .000.
General Mils, Inc.:
Weiss Veme

Weiss, Verne. Eec. Campbell, Glenn M.; and Wilson, Gerald L.,
4,006,791, Cl. 99.333 .000 .
neral Motors Corporation: See-
Crawford, Daniel G.j. James, Stanley E.; and Nixon, Donald H.,















 Soley. Nonryan
Sole. Nos.
210.00.
General Time Corporation: See-
Rigazio, Anthony W. \(4.097,757, \mathrm{Cl} .310-162.000\)
Rigazio, Anthony Lend Mesiner, Daryle to Mo. Monitron Industries
Apparatus for providing and sensing coded information. 4,097,728,
Apparatus for providing and sensing coded information. 4,097,728,
Cepil-4353.00.

 4enuardi, Bennie, to Navarre, Irving. Outboard bub. 4,097,191, Cl
\(416-170.00\).
 erard. Henry M., to Hughes Aircraft company. Surface acoustic
Wave tapped delag line. 4,097,825, Cl. 333-30.00R.
Gerelli, Fausto: Ser-
Baiduci,, Luigi; Sarti, Dino; and Gerelli, Fausto, 4,007,300, Cl
106-299.000


 eesellechaf fur Kernforschung m....H.: Seee,
Guber, Walter, Saidl, , Jaroslav; Daruschy, Paul; and Hild, Werner, Geske, Reruce R., to UOP Inc. Channel base well screen. 4,096,911, CI. Gibbons, John Francis; and McLaughin, Daniel John, to Combustion Enginecrin, Inc. Holddo
4.099,332, C. \(116-87.000\).
Gietema, Jouke: See-
Gietema, Jouke: See- \(\begin{gathered}\text { Brands, Antoon Hendrikus; Gietema, Jouke; and Bleijerveld, Hen- }\end{gathered}\)
 Giliette Co, Cle 5 , 5 297.000.
Gillette Company. The: See-
Muller, Frank. Andrew; and Peper, Henry, Jr., 4,007,290, Cl.
\(106-30.000\).
Gilmore, Charles L. Haystack mover control means. \(4,096,960, \mathrm{Cl}\)
214 . 214405. 0000 . L .
Gilson, John L . Se-
Mocshovis, Elias \(P\)

4.006,747, Cl. 73.251 .000 .
Ginata, Mar, Marco V . Continuous process for electrolytic refining and
electrowining of elements and compounds. 4,097,354, C1.
204206.000.
Giordano. Francis Peter; and Hendriks, Ferdinand, to International
Busines Machines Corporation. Axial droplet aspirator. 4,097,872,
C 346 , Business Mach
CLI. \(346-75.000\).
Girult, Pierre

Perronnete. Jacquess; Girault, Pierre; and Bonne, Claude, 4,097,578,
cl. \({ }^{42+273.00 R}\)




Wisebbeck, Jurgen; Muller, Gerrld; Schorken, Karl; and Schwinden
hammer, Hans-Pecter, to Feten \& Guilleaume Carlswerk Aktien

bon conversion catalyst containing a CO oxidation promotet









Gee. Jean: See ilia, Gole, Jean; Guerard, Daniel; Herold, Albert; Merle,
Rashhov,
Gerard; Panayoov, Ivan Martinov; Pascault, Jean-Pierre; pham,

Suang Tho;
\(526-17.3000\). . . See-
Golembeck, Gerald A. See
Eide. Richard H.; and Golembeck, Gerald A., \(4,096,595, \mathrm{Cl}\). 5 .
3is.00R.

118 -221.000. 1 igang, to ITT Industries. Incorporated. Integrated clock
oillinger Woirg
 Gomberg, Henry J., to Texas Gas Transmission Corporation. Method
and apparturs
Good mpodun Herb
Lout
Lieberman, Frank David; and Goodman, Herb Lou, 4,097,72s, Cl.
23s-2.0PK.
oodrich, Stanley R., Jr.; Skoinin, David J.; Stearns,



Cunning Emam, Robert E., 4,097,557, Cl. 260.880.00B.
Kelly
ISG-136.000.

Kieft, Alvin J.j Cline, Richard L.; and Rabito, Thenes
\(4,097,442\), Cl. \(260-37.00 \mathrm{~N}\) Kline, Richard \(\mathrm{H} .4,4,097,464, \mathrm{Cl} .260-62.000\).
 \({ }_{\text {Maximovich, }}^{260-87.000}\) Michael J.; and Burroway, Gary L., 4,097,440, Cl.

 S26-278.000.
Goto. Toshiyuki: See-
Yamatd
Yamasid Akitioshi; Goto, Toshiyuki; Kimura, Yoichi; and Kikuchi,
Yosi,689, Cl. 179-1.00G. Gotoh, Astuko: See-
Sohde, Takeshi, Gotoh, Astuko, Iwamoto, Kuniharu; and
onamoto Yasushi, 4,997,234, Cl. 8-94.190. Gouw, Hoan Giok: See-
DeVo. Marc Francois; and Gouw, Hoan Giok, 4,097,049, Cl.
evis. Goverde.,
Kontinstianan
Corrnelis:
See-

Kontinen, A Amene Ilmari; Geeverde, Baatiaan Cornelis; and Janssen,
Peter Silvester Lamberus, \(4,097,338\), Cl. 195-103.00R.
Grace, Aleran C. V.i. and Wonn, J. Jnet C . A. Asynchronous addressable
multiplex
multiplex system. 4,097,695, C1. 179-15.0BA.
Grafalloy Corporation: See-
Tennent Roration: See- Lee \(4,097,626, \mathrm{Cl} .428-36.000\).
Creemers, Henricus M. J. C.; Graff, Renier J. L.; and Verschoor,
Hendrinus M. 4 ,
 Graham. White Sailes Corporation: See-
Franzz, Virgil L., 4,007,248, Cl. \(55-33.000\).
Grapes, Eugene \(F\).: See-
Grapes, Eugene F.. See
Paturson, W. W., III; and Grapes, Eugene F., 4,096,816, Cl.
alt-75.000. Gray. Alden. .f. Sanderson, Ian S., and Hardy, John C., to Maremont
Corporation. Method of making a variable reluctance A.C. electrical Gray, Alden J.;. Sanderson, Ian S.; and Hardy, John C., to Maremont
Corporation. Method of making a variable reluctance A.C. electrical
generator. 4,096,624. Cl. 29-596.000.


Great Wertern Augar Company, The See
Freyta.
195.3.0.00.
Greftes. Johannes Anton, to U.S. Philip. Corporation. Switching
system for an automatic telecommunication exchange with a pluraily oreefkes, Johannes Anton, to U.S. Philips Corporation. Switching
system for an automatic telecommunication exchange with a pluraily
of inemeremedate lines that are grounded when not in use. 4,097,693, Cl.

urtenasonit C imaging system. 4,097,835, CI. \(340-1.00\) R.
Gren, Ray: See-
ren, Ray: See
Schimming, Fred \(\mathbf{H}\), , 4,096,638, Cl. \(33-396.000\).


4,0v6, 821. Cl. 1 Llem-10.000.
Greve, Mogens: See-
 Torben, Jensen, Hilmer;
4,07.320, Cl. \(156-109.000\).
Ifin, Phi, Harmon See- Sriffin, Phil Harmon; and Shark, Martin
Phillips, Vicoor Uuin;
Phillips, Victor Quin, Griffin, Phil Harmon; and Sharkj, Martin
J.mes, \(4.097,249\), C1. 541.000 .


244158.000. Giuseppe; and Grossi, Mario D., 4,097,010, Cl.

Groth, Hugh F., to True Temper Corporation. Ground working appa-
ratus with tools to draw the apparatus forward. \(4,066,915, \mathrm{Cl}\)
172.24.00.
Grubb, Willard T., to General Electric Company. Nuclear fuel assem-
bly and process. \(4,097,402\), Cl. \(252-301.10\).



GTE Laboratories Incorporated See- Sel
Wellington
350.-9.150.

 Fischman., Martin; and L'Hommedieu, Jesse H., 4,097,784, Cl.
315-368.000. \(\stackrel{\text { Latass, }}{\text { 315-368.0.00. }}\). Frank M., 4,097,779, Cl. 315-106.000.

Shaffer, John W., and Audesse, Emery G., 4,097,221, Cl. 431- mixing a basic liquid substance with other media. 4,097,026, Cl 95.00R.
Guaido Eddardo, to United States of America, Army. Ther-

 product for permenent storage and disposal of highly radioactive
liquid wastes. \(4,097,401\). Cl. 252-301.10W. Gudel, Alfred. Metho and devicic for the
space planes. 4,0966,634, \(\mathrm{Cl} .33-75.00 \mathrm{C}\).
Guerard, Danil: See
Rashkov, Ilis, Goe-, Jeann: Guerard, Daniel; Herold, Albert; Merle,
Gerard; Panyotov, Ivan Martinov; Pascault, Jean-Pierre: Pham
Gerard; Panayotov, lvan Mararinoor; Pascault, Yean-Pierre; Pham,
Quang Tho; Pillot, Christian; and Salle, Robern, 4,007,660, Cl .

Guevara, Humberro F.; and Geimer, Michacl R., io International
Telephone \(\&\) Telegraph Corporation. Rigicic coaxial cable cutting and

Clill 180 -121.000. Jean Pierre; and Letourneau, Georges, to General Food

\(\qquad\) Guff Oil Corporation: See-
Heilman, William \(J\).; Peterson, Frank C.i. Renz, Mical C.; and






Gulf \(\&\) Westem Manufacturing Company: See-
Giecrer, Donald Leroy Roth, John F.; and Bosch, Peter N.,


Gundi Rajato systeme 4,096,831, C1. 123-32.0EG.
funt injectiorthar: See- and Gunther, Gerhard, 4,097,298, Cl.
Hacufler, Hartmut; and
Gunther, Gerhard: See-
Hasulfer , Harmut; and Gunther, Gerhard, 10097,298 , C1.
106-243.00.
 Guolo, Giuseppe, to Calzaturificio G,
fastener. \(4,096,648\), Cl. 3650.000.








 Haber, Terry M., and Dehlsen, Jamm
cans. \(4,096,974\), , . 222.402 .130 .
Haberiand, Detle:
Haberland, Detef. See- Haberland, Detief; and Herberger, Roland,
Breuninger,
4.097,
Karl


 compoosition having a water-diliusable maleinized oil base. \(4,097,298\).

Hagen, Paul \(\mathbf{D}\).: See-
Iverson,
Lowell
P.; Dirscherl. George
\(W\) .; and Hagen, Paul \(D\) Iverson, Loweil P.; Dirscherl, George W.; and Hagen, Paul D.
Haindl, Karel, to Vyzkumny ustav vodohospodarsky. Apparatus for

366-165.000. B., to Outboard Marine Corporation. Hydraulically powered marine propulsion tiling
assembly. \(4,096,820\), Cl. 1151.0 HT
assembly, 4,096,820, Cl. \(115-41.0 \mathrm{HT}\).


pentenyl1- \({ }^{3}\)-cyclohexene-1-cartoraldehyde, perfume compositions

Tire slititing apparatus. 4,006,772, Cl. 82-82.000.
Halliturun Company Se
Lawson, Michael Be 4,096,869, Cl.

Egan, Walter .i.; Hallock, Herbert B.; and Hilgeman, Theodore
W., \(4,097,751\), Cl. 250-511.000.
Halsted, Edwin H., to General Motors Corporation. Cam acturated
swith. 4,097,702, Cl. 2e0-153.0LB.
smilton, Brian X.: SeeGarner, Eugene
 C1. 267. 15.00A:
Mamann, Ingeborg: See-
Hofer, Wolfgang, Maurer, Fritz; Riebel, Hans-Jochem; Rohe,
Lothar;

 Hammer, Jacoo Meyer, 1 RRA CORPoration. Optical waveguide
coupler employing deformed shape fiber-optic core coupling portion.



to Hoechst Aktiengesellschatt. Shaped article of cellululse hydrate
with a coating of plastic matreial of chemically modified procein and
process for the production thereof. 4,097,623, C1. 427-230.000.
Hampel, Horst See-
Hampel, Horst: Seeld, Hampel, Horst; Jozat, Walter; and Straszewski,
Anderka, Cerold
ner

Hanakatata Takayoyshi; and Mitaka, Shunjij, to Canon Kabushiki Kaisha.
Input device. .0.09,935, Cl. 40 . 479.000 .
On, Richard J.: See-
Holt, Reichard C.i. Damon, Neil F; and Hanlon, Richard J.,
4,097,10, C. 399.17 .700 .
ahan, Michael John: See-
Noonan, John Michacel; M.Conkey, Robert Charles; and Hanrahan,
Michael John 4,097282, C1. \(96-73.000\).
Michacl Johnn. 4,097,282, Cl. 96.73 .000 .



Hardy, John C.: See-
Gray, Adden J;
Ci.
Harenc, Michel. See-
Moutou, Paul
Cril: Hareng, Michel; and Le Berre, Serge,
Moutou, Paul Cyril; Hareng, Michel; and Le Berre, Serge,
\(4,097,142, \mathrm{Cl} .355-45.000\).
Harlamert, W. .erjimin, ot Hartzell Propeller. Inc. Aircraf propeller
and blade pitch control system. 4,077,189, C1.416-46.000.


Nelson, Amold Eugene, 4,097,085, Cl. 296-28.00C.
Harnish Waye Nealson See
Peake. Clinton Soseph; Harnish, Wayne Nelson; and Davidson,
 Harris Jesse W. Warth drilling knobby bit. 4,096,917, Cl. \(175-228.000\).
Harrison, lan T . See
Fried, John H.; and Harrison, Ian T., 4,097,674, Cl. \(560-100.000\).
 (ethylene oxide) monofilament. 4,097,652, C1. 428-401.000.
Harman, Robert. S. Se-
Austin, Arthur L.; Levis, William W. Jr.; Pizzini, Louis \(\mathrm{C}_{\text {; }}\) and
Austin, Arthur L.; Levis, william W., Jr: Pizzini, Louis C.; and
Hantman, Rober J., 4,097,399, Cl. \(252-182.000\).
Hartman, Russell E.: See-
Richmond. Kenneth Hartman, Russell E.; Rogers, Jerry W.;
and Nelson, Jack, \(4,096,764\), Cl. \(74-233.000\).




Lefevre Robert .., to Amer
tus for he he reonstitution
\(4,096,893, \mathrm{Cl} .1411-9.000\).

Hasegawa, Osamu: See-
Murakami, Masuo; Takahashi, Kozo; Hirata, Yasufumi; Takashima,
 Hasegawa Yoshiyukk, to Toray Silicone Company, Ltd. Compositions
comprising (1) a copolymer formed from an unsaturated acid and (2)

 athaway, Michel L., to PPG Industries, Inc. Ultraviolet light proce sor. \(4,097,783, \mathrm{Cl}, 315-323.000\)
attes, Neil R.: See-
Eyick THeodore B. Brown, Allen C.; and Hattes, Neil R.,
4.096888, Cl. 128.145 .600 .
 Hauser. Oscar G.; Meagher, Thomas; and Ruckdeschel, Frederick R
to Xerox Corporation. Reproducing machine having interchangeable developer housings. 4,097,139, C1. \(355-4.000\).
Hauser, Raimund: See-
Schild, Josef, Scheriber, Robert; Schmidt, Harald, Drasch, Josef,
end Hauser Verwalitungs- Geescll, cshaf mit beschrank ker Haftung: See-

Hausmenn, Albert: See-
Hennecke, Rudolf; and Haussmann, Albert, 4.096,916, Cl
in3-137.000 Hawkins, Harold \(\mathbf{G}\). to General Motors Corporation. Insulation displacement terminai. 4,097, 1077 , Cl. .139.97.00R.
Hawrylo, Frank Zo Rymuth and Hawrylo. Frank Zyymunt, and Kressel. Henry, to
Melalifed device.,4097,366, Cl. 428-209.000.
Hayeshi. Hiroshi: See-

 \(\stackrel{536-23.000 \text {. }}{ }\)
Hayashi, Shizuo: See-
Tsutsumi, Hosho; Hayashi, Shizuo; Nakayama, Hirokazu; and
Ukena, Toshinao, 4,097,403,
Ukena, Toshinao, 4,097,403, Cl. 252-312.000.
Hayashid, Moopukis. Se-
Satiou, Haruhiko: Honiden, Yoshinori) Hayashida, Motoyuki; and
Hayashada, Susumumu Mesuo, 4,096,828, Cl. 123-209.000.
Fukumoto Ichiro; and Hayashida, Susumu, 4,097,679, Cl.

 Hazlift, Williia
\(248-515.500\)
Heberlein Mas
Heberlein Maschinenfabrik-AG: See-
Heyner, Harald, 4,096,611, Cl. \(28-220.000\).

Hegge, Theodorus Cornelis Jozef Maria: See-
vanderveen, Jan; and Heger , Theodorus
4.07nelis Jozef Maria,
Heilman, William J.; Pecterson, Frank C.; Renz, Mical C.; and Theard, Lessie P., to Gulf Oil Corporation. Thermosettable epoxide-polyan-
hydride compositions. \(4,097,488\), cl \(260-2.180\).



Heinlein, Hans: See-
Heinlein, Werner, 4.097.174, C, 407.46000
Heinlein, Werner, 4,097.174, Cl. 407-46.000.
Heinntein, Wemer, to Heinlein, Hans. Milling cutter. 4,097,174, C
407-46.000. Heintein,
4077
Heinsobni.00.


Evers, william. J.; Heinsohn, Howard H., Jr.; and Vock, Manfred
Hugo 4.097 .615 , Cl. 426-535.000. Heldmann, Hieinrich: See-
Wallwey, Erich, Esecker, Wolfgang; and Heldmann, Heinrich, Helena, Laboratories Corporation: See-
Golias,
Tipton L.; and Mayes, David, 4,096,825, Cl. 118-221.000.
 Hendon, Harry \(\mathrm{H} . \mathrm{S}\)
Hendon, Harry H. See-
Neissel. John Pe. Hendon, Harry H.; and Terhune, James H.,
und
endrickson, James B.: see-

Hendriks, Ferdinand:
Hendiserserdinand: See-
Giordeno Francis Peter; and Hendriks, Ferdinand, 4,097,872, CI.
346.7.000.
Hengstebeck, Robert J., to Standard Oil Company. System for steam-
cracking hydroarbons and transfer-line exchanger therefor.
\(4,097,544\), C1. \(260-683.00\).
 254.00R.,
Henekere. Rudolf; and Haussmann, Albert, to Delmag-Maschinenfab-
rik Reinhold Domfeld. Diesel pile driver. \(4,096,916\), Cl
.
 Lonn, Tenterne MMichisel, ase and Henneveld, Clifford Hendrik,
4,096,867, cl. 131-171.00R. Her Majety the Queeen as represented by the Minister of National
Defence of Her Majesty's Canadian Government: SeeDefence of Her Majesty's Canalian Governm
Feldman, Keiva, 4.097. 833 , Cl. 324.29 .500 .


 134105.000 .
Hercules incorporated:
See-
 Jabloner, Harold, 4,097,460, Cl. 260-47.0UA
Hermann Stock, Firma: See
Sotck, Hermann, \(4,077,235, ~ C l . ~ 21-93.000 . ~\)

 Rastor, Stephen D.; Skoultchi,
R., 4007.47, Ci. \(252-501.000\).




 Heymes. Rene, , ot Roussel Uclaf. 7 -Amino-thiazoly acetamido cephalo-
sporanic acids. \(4,4097,995\), CI. \(424-246.000\). sporanic acids. \(4,097,595\), Cl. 424.246.000.
Heyn
180 Bennington. Powered shopping cart and trailer. 4,096,920, Cl . \(180-11.000\).
Heyner, Harald, to Heberlein Maschinenfabrik AG. Apparatus for





 Lukogy Kabushiki Kaisha, and Nippon Kokan Kabushiki Kaisha.
L,07, supporting and gyatinn device in a stecl-refining converter.





Guber, Walter; Said1, Jaroslav; Daruschy, Paul; and Hild, Werner,
4,077,401, C1. \(252-301.10 \mathrm{w}\). Hildebranter, Juergen J. See-
Cramer, Rudolf; and Hildebrandt, Juergen J., 4,096,857, Cl. 128 .
 W. W, 4,097,751, Cl. 250.571.000. Hill, Paul David: See- 4.000 .
Micthell, , illen Le- \(4,4096,847\), Cl. \(126-61.000\).
Hill, Roland John; Pricc, Robert Bryn; and Jewell, Norman Thomas, to
Rolls-Royce Limited. Lasers. \(4,097,820\), Cl. 331 , Hillon, Joseph James; and Malioy, James Joseph, Jr. to International
Telephone
 charge is obtained without heating the electrode. 4,097,162, Cl.
313 .218.000. Idermayr, Martin; and Wagner, Ferdinand, to Wilhelm Ruf KGG.
Tuninn unit with bandswitch for high frequency receivers. 4,097,828, Cl. \({ }^{\text {Clasawa, Hirroshi }}\) See

Horikinit, Kazuhito; Hirasawa, Hiroshi; and Fujiwara, Minoru,
\(4,006,769\), Cl. 74801.000 .




Hirota, Jun: See-




Ahmed, Nazaeer; and Histand, Ivan Gerald, 4,096,721, Cl. 72-60.000,
Hitachi, Ldi: See-





Hockere, ,iticl: Seo-
Diels, Manfred;
Dienstuul, Karl Wilhelm; Jager, Tilo; and Hocker,
Eitel, 4,096,678, Cl. 52.403 .00

Hoechst Aktiengeselllschant: See-
ng Gesellschaft m.b.H. Process of desulfurizing liquid melts.
, 0977.269. C1. 7.58 .000. oneyerer Bermhard: See-
Hofr, Wolfgang; M



 Reisdorff, Joser
Homyer,
\(542-413.000\).
 Kkada, Motohio, Kaak Katasumi, Honda, Kiyoshi; and Matsuura,
Kazuo, 4,097,065, Cl. 280739.000. onda, Kiyoshi: See-
Konda, Kiyoshi: Sei-
Okeda, Moiohiro, Oka, Katsumi, Honda, Kiyoshi; and Matsuura,

oniden, Yoshinori: See- Se
Satu H Harhhiko Honiden, Yoshinori; Hayashida, Motoyukk; and
Walkamot Mutsuo, \(4,096,828\), Cl. \(123-209.000\)

Hoover, Michatel C.; and Long, William C. .1. Goeosource. Inc. Appara-
tus for performing three-way sort. 4,096,949, Cl. 209-74.00M.
Horat Charles J.: See



Cl. 60.307 .000.
Horibe Kiny: See.
Ishibashi. Toshihi




Mayer, Norbert; Pfahler, Gerhard; and Wiezer, Harrmut, 4,097,452,
CI. \(260-45.80 \mathrm{~N}\), .
Niermann. Hermann; and Mainzer, Franz, 4, 4,097,583, Cl.
423.303 .000 .
Papenfuhh, Theodor; and Troster, Helmut, 4,097,450, Cl .
260-42.210.
Papenfuhs, Theodor; and Volk, Heinrich, \(4,097,510\), Cl. 260 -
439.00R.

\(260-430.000\)
Teige, Wolfgang; and Schickfluss, Rudolf, 4,097,444, Cl. \(260-1020\)
Teige, Wolifgang; and Schickfluss, Rudof, 4 , 4 , 0 ,
Weigand, Hanfried, 4.096,853, Cl. 128-2.00A.




Youni, 4o,0h7.3iro; Horibe, King
Horiguchi, Masaru See. 148-6.210.
Oht

 Gliass Worsks, Ltid Naktical fiber. 4,O97,258, Cl. \(65-31.000\), 0 Hoya shikini Kaizhhito; Kirasawa, Hiroshi, and Fujiwara, Minoru, to Kabu-
sion. 4,096,769, Cl. 74.801 .000 .

 CI. \(137-627.500\),
Com

 \({ }^{\text {ror }} 360.33 .0000\).


Lashikawa, Masas: See-
Kumamaru, Hiroyuki; Shioyama, Hiromu; and Hoshikawa, Masao,
4.077,19, .ll \(350-96.230\)

Hosokawa, Yasuhiro: See-
Miki. Tosaku; Hosokawa, Yasuhiro; Miwa, Tamotsu; Fuitta Hiro
ind
shi, Tosaku; Hososawa, Yasuhiro, Miwa, Tamotsu, Fujita, Hiro
shand
424324.400 . Masahide; and Aibara, Shunzo, \(4,097,608\), Cl




239. 533.500 .
Hogendobler, Richard Shure: See-
Fo

Holan, George. See - See
Evans, John
James Alexander; and Holan, George, 4,007,599, Cl.
Hollandsse Sisgnasalapparaten B.V. See-
Brands, Antoon Hend
Hikus; Gietema, Jouke; and Bleijerveld, Hen-








Kautmanns.Harordid, \(, 4096,774\), , Cl. 83 . 552.000 .
Houser, John Martin, to Singer Compan , The. Trigger switch and lock

 Company. High tensile strength polyethy
composites. \(4,07,477\), cl. 260 20.1.
Howard, John R. and Loomis, Robert W., to Next Generation Housing
Corporation of America. Split-slab house construction. \(4,096,675\), C. Corporation
H2y. Mal Mancolm
Soy Malcolm G.. See-
Reichelt, Walter R., Jr.; and Hoy, Malcolm G., 4,097,716, Cl . Reichelt, Waller
\(219-137.00\).
Hoya Glass Works, LId. See-
Horiawa, Susumu Nakagawa, Kenji; and Nogami, Yoshito,
4.097,258, C1.

Hsu, John Shao-Tze. ti. Ingersoll-Rand Company. Parison extrusion
head. \(4.097,214\), Cl. 425 -466. 000 .
Hu Luo-Kuang Selie- S-Gorge; and Hu, Kuo-Kuang. 4,096,934, Cl .
Kimser Philip
\(40-110.000\). Huang, Tracy J.: See-
Haas, Werner O.; and Huang. Tracy J., 4,097,367, Cl. 208-135.000.


\section*{Hudson, 1 M. Lo}
 Hughes Aircraf Company: See-






Huncringer, Gerald \(O\) : Buck, Charle E , and Campoll, Robert E, to




 Husom, Aland L: See-








inhe chemical Kogyo Kabustiki Kaish See








Imamur, shigeysus. See


Imazei, Kiatzy








Inderin swith Limimect Sece








 INTECO- Ini.0enamionale Technische Beratung Gesellschat m.b.H.:




 King Financis Kong; and Schmidt. Jon Jay, 4,097,909, Cl.


 \({ }^{3} \mathrm{O}\) Zeppe. inans Helluut, 4,097.765, Cl. 307 -212.000.






 Terational Thelepono os © clegerght Corporation Se-

 Interor Chemicals Limited See
 \({ }^{2}\)



















Ho, Aseno: Tee
Ithateru; and Ito, Keiko, 4,007,283, Cl. \(96-115.00\) R.


ITT Indistrieit, Coli




















Morssimat Yukimess Yoshidi
d Masula, Hideo
Komats, Kotit 1roymen Kenj
ayne Gend Joh Josph: see
Astow, Hecter Frank Joyne, Gernad dohn Joseph; and Ellioth
Seffery, Edwini A. Stee-

















Joann everiem Mills Company. Sect-1.


Shason Weiler E. Jr. See-


Manoukiann Nubar Sangs; and Johnston, Thomas Frazier, Jr.





Jagee, , Tiels. Mee Manfred; Dienstuhl, Karl Wilhelm; Jager, Tilo; and Hocker,
Diel






Jankovsky, William O. See-
Carlson, Geerge A.;
And
Jankovsky, william \(0 ., 4,096,711, \mathrm{Cl}\)


Jansen, Alan A. Headrest. 4,097,038, Cl. \(269-328.000\).
Janssen, Peter Silvester Lambertus: See-


Cohen, Annold, 4,006,733, , Cle- \(73-7.000\).
Jordan, Richard J . Pulse ignition distributor. 4,096,840, Cl. 123 .
146.50A.
Jordan. 146. SOAChard Feverungsbau GmbH: See-
Josef Martin Fer
Martin Johannes Josef; and Weber, Erich, \(4,096.809\), \begin{tabular}{l}
\(112-271.000\). \\
\hline
\end{tabular}
Joseph, Bernard W. Wee
Lewis. Rober W. Joseph, Bernard W.; and Faxvog, Frederick R.,
\(4,097,950, \mathrm{Cl} .250-548.000\).

Jukkola, Walfred Wilhelm, to Dorr-Oliver Incorporated. Fluidized bed

Junod, Louis. Door with fiexible wound sections. 4,096,902, Cl.
1. R. K. K2.00.

Kaarlela, Willard Oswald; and Helton, Eugene L. 1o Caterpillar Trac-
tor Co. Carraidge retaining means for earthworking tips \(4,096,653\),
Kabushikika Kaish. Hoya Lens: See-
Akaba, Haya; Ikeda, Akira; and Lee, Massyoshi, 4,096,684, CI. Sh-101.0.0.
abs
Kabushiki Kaisha Komatsu Seisakusho: See-
Tsukiji, Yoshihiro, \(4,007,175\), Cl. \(408-23.000\).
Kabushiki Kaishan Segag Enterprises. : See
Ochi, Shikanosuke, \(4,0077,047\), CI. 273-127.00R.

Kabushiki Kaisha Toyota Chuo Kenkyusho: See-
Horikiri, Kazuhito; Hirasawa, Hiroshi; and Fujiwara, Minoru, 4.096,769, Cl. 74-801.1000 Kaiser Aluminum \& Chemical Corporation: See-
Dorsey, Geoffrey A., Jr., \(4,07,312\), Cl. \(148-6.270\).
Kakizakli, Tetsujil See
Yui, Hiroshi, Kakizaki, Tessuji; Sano, Hironari; Arai, Masakazu Kakui, Kuniakki, to Toyo Kogyo Co., Ltd. Casing for liquid-cooled rouary piston engines. 4,097,207, Cl. 418-83.000.
Kalal, Jaroslav; Seo-
Dorobuil,
porosiav; Kopecek, Jindrich; Labsky, Jinj; Rejmanova,
Paver, Kalkbrenner, Francis William, to General Electric Company. Low
resistance, durable gate contuct pad for thyistors. 4,097,887, Cl.
3577 Kaminski, EIton George, to Stolle Corporation, The. Ecological easyOpen can end. 4oorse.967, Cl. 220-269.000.
Akiy. Jama, Kehichechi- Kamiuchi, Junichi; Matsuda, Itsuo; and Fujii,
Takara \(4,097,545\), Cl. 260-330.00P. Kanaoka, Yuichi, to Teika Seiyake Kabushiki Kaisha. N-(3-fiuoran-



4.0.07,707, Cli.
Kander, Joachim: See-
Wortmann Jose Jechim

Wormann, Joachim; Dany, Franz-Joseff; and Kandler, Joachim,
4.097.400, Cl. 252 -182.000. Kane, Winliam Paul, io Du Pont de Nemours, E. I., and Company.
Heat-sealable vinylidene chloride copolymer coating composition.


Kano, Yasuma, Norio, Sumitomo Me.tal. Industries, Lid. Stripper guides for
rolling mill \(4,0966,725\), cl. \(72-250.000\).




 360.126 .000 .
Kaoonard, John Joseph, to Atlantic Richfield Com-
pany. Linquid and phase oxidation of unsulurated alinhatic aldehydes to


C. 2 23-283.3000, Mjima, Kanji; and Imamura, Shigeyasu, 4,097,242,
Tsusumi, Hisao; Hayashi, Shizuo; Nakayama, Hirokazu; and


 ing a a cathector
128.349.00R.
Kaplan, David, executor: See-
Kaplan, David, ricezack, Irving; Young, Nathan H., deceased,
Kind

 Karges. John J. Jr: See-

Kroyer St. Anne's Limited: See- Brian William; White, Derek
Curry. Harold Ceorge Atwod,
Grahm Walter; Christensen, John Mosgald and Kroyer, Karl










Keller. Harold A.: See- Sand and Keller, Harold A., 4,096,796, Cl
uno-35.000
Keller J.; and
Katagiri, Kazuharu: See
Kitahara, Makooi; Ishikawa, Shozo; Katagiri, Kazuharu; Arita
Tetsuo; and Masubuchi, Shoji, \(4,097,646\), Cl. \(428-323.000\).

sing apparatus for cameras. 4,097,881, Cl. \(354-155.000\).
Kataura, Yasuil: See.
Ototani, Tohei; and Kataura, Yasuji, 4,097,268, Cl. \(75-57.000\). Ototani, Tohei, and Kataura, Yasuji, 4,097,268, Cl. \(75-57.000\).
Kato, Tomimi See
Sato, Mimituhiro; and Kato, Tomomi, 4,097,785, Cl. \(318-89.000\).
 Kawamoto, Masahiro: See-
Matsumoto, Shoichi:
Matsumot, Shation Shi; Kawamoto, Masahiro; and Mizunoya, Kiyo-
shi, \(4,097,128\), Cl. \(350-335.000\). awamot, Tamio, to Nissan Motor Company, Limited. Torque con-
verer flit control system for power transmission system. 4,096,693, Cawasak Suvogogyo Kabushiki Kaisha: See-
Hisuccii, Kosaku; Sato, Satoshi; and Wada,
266-226.000.
Higuchi, Kousaku; Sato, Satoshi; and Wada, Susumu, 4,007,031, Cl.
2 26-226.000. Kawasaki, Masasiro, to Asahi Kogaku Kogyo Kabushiki Kaisha. Dual.
function varible resistor in automatic/manual camera shutter control



 reduction gearing, 4,096,763, Cl. 7469.000 .
eller Corporation, The: See-

 4,096,953., IC. 1214 chanism.
Kelley Company, Inc.: See-

Celly, Clifford G. Clamp arrangement and system for sheet material
 Company. The. Machin for spirally w...rapping acor Tir
around an annuluar tire bead. 4,097,311, Cl. \(156-136.000\).
elly, John Joseph: See-.




 settitig meens. 4 hanger and running 1001 , Cl. \(166-200.000\).

 Aktiengsecelischaft. \(\Delta\)-S \(\alpha\)-D-homo-20-keto steroids. 4,097,678, C
S60-257..00er:
 overcoatt with improwed crack and corrosion resistance for a semi-
conductor device. \(4,097,889, \mathrm{Cl}\). 357.54 .000 . conductor device. 4,097,889, C1. 357.54.000.
Berr. Ralphe, Bruno J.: and Kerr, Ralph O.. 4,097,498, Cl. 260-346.750.
Berwick, Donald P.: See_






 239-406.000. Keuffel \& Eser Company: See-
Erickon, Kent E., 097,734, Cl. 250-237.00G.
 Kezni,ccl, Eduard: See-

Schild, Juasf: Sce- Scheiber, Roberti, Schmid, Harald; Drasch, Josef
and Keznickl, Eduard, 4,097,906, C1. \(360-13.000\).
 Kieft, Alvin J.; Cline, Richard L.: and Rabito. Thomas G., to Goodyear Klein, Wiilliam Richard; Kotila, Carl Leroy; and Krams, Ira Lesie, to

 Yamada, ALitoshi; Goto, Toshiyuki; Kimura, Yoichi; and Kikuchi, \(\begin{gathered}\text { Martin, 4,097,623, Cl. } 427.230 .000 \text {. } \\ \text { Yoshinobu, 4, 4097,689, Cl. 179-1.00G. }\end{gathered}\) D., to Bio-Medicus, Inc.

 Shinji, 4,097,472, Cl. \(424,177.000\).
Okamjo, Kikumoto, Ryoji; Tamao,
Yoshiok Uni;


Rudy, Richard, 4,097,043, Cl. 272 27-113.000.
Kim. Raymond W. H.; Kiein, Robert A.; Lodge. Edward H.; Lueders,
Arthur L. and Woodier, James G., to Bell \& Howell Company, Arthur L., 2nd Wodier, James G., to Bell \& Howell Company.
Projector molded chasis. \(4,007,132\), Cl. \(352-242.000\).
 Blessinger, Jomes. Edward, 4,096,789, Cl. 83-478.000.
Kimstock, Inc.: See
Kimstock, Inc.: See
Clow, William E.,
\(4,096,980, ~ C l . ~ 224-39.000 ~\)

 Kindermann, Joseph C; and Colling; Ronald, L., to General Motors
Corporation. Ignition system for use with fuel injected-spark ignited
internal combustion engines. 4,096,841, C1. 123-148.00E.
King. David P. See -
Barker, Robert I;: and King, David P., 4,096,739, Cl. 73-56.000.
 macgnes Corporation. Magnetic transecucer with inner and oute
\(4,097,909\), \(1.360-99.000\).


 themuhle Brand \& Krizzer. Electrostatic precipitator. 4,097,252, Cl.
Siskpastion .
Kirkpatick. Joel L.. to Gulf Oil Corporation. 5-Acylamino-1,3,4
thindizole-2.sulfonamides and use as herbicides. 4,097,263, Cl.
 Combat unwanted vegetation \(4,007,264\), Cl. . 1 1.90.000.
for reproducing desired ideographs, \(4,096,934, \mathrm{Cl} .400-110.000\).
Kishide, Katsuhiro; Takao, Hiroshi; Togawa, Kimmochi; and Matoba,



\(101 \cdot 110.0000\)
Yee_ Strandberg, Per, 4,007, 159, C1. 356-167.000






Akira, and Kitajima, Sigenor, 4,096,834, CI. \(12 \mathrm{~J} \cdot 32.0 \mathrm{EE}\).
anoto Tatsij: See-
 Kitazawa. Yoichi, Sato, Takeshi, and Tsuji, Hisso, to Bridgestone Tire
Co., Led. Light weight preumatic tire having a hin side wall rubber.


Rozo: Watanabe, Yuichi; and Okamoto, Yasunon, \(4,097,074, \mathrm{Cl}\).
285.231.1.000.
Klaue, Hermann. Actuator and cooling structure for disk brakes.
\(4,006,926\). C1. 1888.71 .400
Kiaus, Gerald R. to Fellowes Manufacturing Company. Drawer pull
and label holder. \(4,096,603\), Cl . \(16-110.00\).
Klein, Karl M. See-.





PI 22
LIST OF PATENTEES

 shiki K aishh. Process for producing conjugated diolefinic polymers.
\(4,097,661\). Cl. \(526-175.000\). Komey. Katsuoshi, and Inoue, Hiroshi, to Tokyo Shibaura Electric
Co. Lid. Method for manuacuuring heat-resistant reinforced com-









 Kontz, Robert F. See-
Dickson. Andrew C; and Kontz, Robert F., 4,097,570, Cl. Krisch \&urkhhard: See-
264-296.000.


215-32.000.

Kopich. Leonard \(\mathbf{F}_{\text {, }}\) to General Motors Corporation. Variable timing
device particulariy for engine camshafts. 4,006,836, Cl. 123-90. 150 .


 Korsch, Helmut, 10 Braunshweigische Maschinenbauanstalt. Batch-
type centrifuge. 4,097,303, Cl. 127-19.000.






Garrick, John R.; and Kotmeyer, Richard E., 4,097,209, Cl.
42s-82. 100 .
Kovase Jeno. See-
Benko





Kraftwerk Union Aktiengseellschaft: See-




Kruger, Gunther, to terele Chemicals Co. Lid. Steroid compounds and
processes thereof \(4,097,477\), C. \(260-239.570\).
Kruse. Rober Le., t M Monsanto Company. Polymer polyblend composi-
tion. \(4,097,544\), Cl. 260-876.00R.
\[
\begin{aligned}
& \text { on. 4,01,,54, CI. } 260-876.00 \text { R. } \\
& \text { ona, Lid.: See- }
\end{aligned}
\]

Uuchmas, John, Jr; and Bubb, Gary E., to United States of America,
Army Lases scren. \(4,097,800\), Ci. 324178.000 .
 und Getranke - Maschinen. Method of and apparatus for dispensing
self-conserving
liquids. \(4,096,971\), , Cl. \(222-1.000\). Kuhla, Donald E., to Pizer Inc. Quaternary salts as hypoglycemic
agents. \(4,097,598, \mathrm{Cl}\). 424256.000 .


Sendov, Stoxan Hristov; Kuklin, Ivan Alexandrov; Nikolov, Ivan
Angelo; IVanov, Asen Ninovi Mirchev. Mircho Georgiev; and
Kurtashev, Radoslav Borisov, 4097927 CI.


Kulkarmi, Mohan V.; ind Von Kamp, John. io Goodyear Tire \& Rub-
ber Company The Polseren ber Company, The. Polyester-co
tion. \(4,097.548\), Cl. \(260-873.000\).
Sumaru, Hiroyuki; Shioyama. Hiromu; and Hoshikaww, Masao, to
Sumitemo Electric Industries, LId. Optical fiber cable. \(4,097,119\), Cl

Curata, Noboru, to Honda Giken Kogyo Kabushiki Kaisha. Device for
winding a spiral spring to start an engine. 4.006,842, cl. \(123-179.00\).
 urstein, Peter: See
tein, Peter: See- Oto Chrisian; Jensen, Knud Seir; Andreasen,
Braver, Häald Ond
Torben: Jensen, Hilmer; Greve, Mogens; and Kurstein, Peter,

 Angeov, Vanov, Assen Ninov; Mirchev, Mircho Georgiev; and
Kurtashev, Radoslav Borisov, 4,097,927, Cl. 366-247.000.







June 27, 1978

Pevila; Exner, Josef; and Kalal, Jaroslav, 4,097,470, Cl. 260
78.0AA.

 4,096,608, Cl.
ahut, Joseph A.
See-

Laing, Alfred M.: See-




 amont, Charles. Edward. Internal combustion engine method and

 Compeny. Cooxial line IMPATT diode occillator. 4,097,821, Cl.
Lampen, James L.: See-
Jeinic, George; Thoren, Gienn R.; Sullivan, Francis J., Jr.; and

Lamy, Henri, to Eil 4 UUion. Heanting and cooling enclosure for a gas
 menis operationnels des Richesese sous-Marines
Lying or undewater pipelines. 4,096,70s, Cl .61111 .000 .




 \(188-282.000\).
anghammer, Hans-Jurgen, to Klockner-Werke AG. Method of mellLanghan aper,
ing and and therefor. 4,097,028, Cl. 266-47.000.

Begss, James Ingram; Langlitz, Karlheinz; Schmitz, Gunter; and
Jansa, Woifgang, 4.096,918, Cl. \(177-145.000\).

Lapp. Sapencitior having an impregnated dielectric. 4,097,912, C
call-318.000.
361-318.000.
Lapp. Johnn and Sader. Fred S., to McGraw-Edison Company. Electri-
cal capacior having an impregnated dielectric system. 4,097,913, C1.
\(361 .-318.000\). Christian, to Babcock \& Wilcox Company, The. Dis-
Lapple, Walter




 controning
3asky
Las. Danicl J J

Cl. \(334,323.000\). to GE Sylvanin Incorporated. Fluorescent lamp
Latasa, Frank M M,
contining a cathode healer circuit disconnect device. 4,097,779, CL
containing 2 cathode healer circuit
\(315-106000\) 315-10.000.
Laucke, Ivan. Retainer for punch and die sets. \(4,096,776, \mathrm{Cl} .83-698.000\)




Lazanss, Stannley David: See-
Jarus. Staniey Daval Evans; Balint, Laszlo
David, \(4,097,468\), Cl. \(260-75.00 \mathrm{M}\).
971 O.G. 66

 Liecemment, Frank D.vidi, wnd Goodmen, Hert Lou. Gurment counter


 Lindmart M.3.000 Menus Carl Wilbelm. Swiched mode power suppl.

 Netterstedt, Sture

Luperti, Herry E. and Manns, Robert E. to Pitney-Bowes, Inc. Means
for self-positioning platen covers. 4,097.145, Cl. \(355-15.000\).


 Littman, Stanley; and Touval, Irving, 4,097,560, Cl. \(260-931.000\).
Ming. Helmut: Seer
Krall, Heribert A.; and Mnag, Helmut, 4,096,907, Cl. 164488.000

 Meciver, Bernard A.i, to Generral Motors Corporation Ion implanted


Lipha, Lyonnaise Induatrielle Phammand, Bengh, 4,096,681,




 313.178 .000. Tire stud puller. 4,097,021, Cl. 2s4-22.000.


 Lueders. Arth
\(352-242.000\).
Loebbalke, Gregory A.: See-
Addms. Snalley B:
Leebbal
Adas Stanley B. Loebbake
4.006, 878 , CI. 137.351 .1000 .
Loemert Hertert He
Lofquist, Robert Alden, to Allied Cher Herbert Heinz, 4,096,879, CI.

857.0UN.
Logna. R.ymond D. Endless belt sanding cool. 4,096,668, Cl. 51 -
170.0EB.

Long, E. D.vid, to Allied Chemical Corportaion. Control system for
electrically energized engine fuel. 4.096830 , C1.

 Long, William C. See-
Hover. Michacel \(\mathbf{C}\)
74.00M.
Loomis Rober W.: See-
Howard John R: nd Loomis, Robert W., 4,096,675, Cl. \(52-79.100\). Looschen, FFoyd William, to Burroughs Corporation. Three-level
LWo-vel decoder. 4,097,899, Cr. 340.347.0DD.
Lopes Antone




 Luder, 61.99 .000 .
Lud Wig. George, to Tom McGuane Industries, Inc. Headlamp auto
matic delay system. 4097 . 278 , Cl . \(315-82.000\)
meders Arhur L. Se. Se-
Kim, Raymond W. H.; Klein, Robert A.; Lodge, Edward H.;
Lued Luederts Art
352-24.00.
Luhring Chicago In


 Cl. \(318-282.000\).
Lunden, Clarence. Do Bocing Company, The. Method for testing
ridomes. \(4,097,796\), Cl. \(32488.00 B\). Lunn, Norman Laurence; McCrea, Charles Jefrrey; Pregaman, Ray-
mond David; and Turowski, Lawrence Edward, to St. Joe Minerals


Mich Lury, Michasel R.: See-
Factor, Arnold, Mectaury,
4,097,538, Cl. \(568-726.000\).
Magna International Inc.: See. Putkowski Ledinleo W
Magnesium Elektron LId.: See-
Pinllipa Raymond Francis
4.097,430, Cl. 260-17.00R

 Optical layer device with refecting surfice on collodion foil.
4.097, 126. C1. 30.299 .000 . Miillet, Allfed Marie Aime. to Carel Fouche Languepin. Method and
apparatus for electrical machining. 4,097,710, C1. 219-69.00D.

Mainzer, Franz: Se-
Niermann: Hermann; and Mainzer, Franz, 4.097,583, Cl.
423-030.000 \({ }_{\text {Majima }}^{\text {423-303.000. }}\)
Tsutu, Keiecichi, Majima, Kanji; and Imamura, Shigeyasu, 4,097,242,
Cl. 23 , 283.000 . Kakite, Maseshi: See-
 Mallon, Richard G. See- Sewis. Arther
 \(166-29.0000\)
Malloy Jimes
Hitom, \(J\) Joseseph
Hilton. Joseph J James; and Malloy, James Joseph, Jr., 4,097,762, Cl.
313 . 18 . Mandl) Thomas Herbert. Pbonetic teaching device. 4,096,645, Cl .
\(35-35.00 \mathrm{R}\). Manfuso John A.. Jr., to Burton, Parsons and Company. Inc. Method
for cleaning sort hydrophilic gel contact lenses. \(4,096,870\), Cl for cleaning soft hydrophilic gel contact lenses. \(4,006,870\), Cl .
13428.0000 . E . Seeanna, Roobert E.: See-
Luperti, Harry E.: and
 Gevaert AG. Web with overlays for use in document presentation
devives of coyping machines and method of making the same

 anufucturer Systems Inc.. See.
Anderson, Leroy E. Schidt
 Mar, Kenneth M.; Ritchie, Kim; and Smith. James N., to Motorola, Inc.
Nonn linear resistors \(4,07,834\), Cl. \(338-21.000\).

Noice, Frank M. 4,096,978, Cl. 2248.00R.
Marahon Electric Manuracturng Comany: See-
Motten, Roger Henwood, Jr., 4,097,114; C1. 339-259.00F.
Maremont Corporation: Seea- Jr., 4,097,114, C1. 339-259.00F.
Gray, Alden J.i. Senderson, Ian S.; and Hardy, John C., 4,096,624,
Cl. 29-596.000. Marine Elecerric Corporation: See-
Parke, Harry George, 4,097,808, Cl. \(325-51.000\)
Marks, Tobin J. See-
Markuleman, John H.; and Marks, Tobin J. \(\mathrm{J}, 4,097,384, \mathrm{Cl} .250 .527 .000\).
 positions 4.0077 7.422. cl. \(260-2.5 A K\).
Mart, Philip R., Sr.: See-
Pecers, David Le, and Marr, Philip R., Sr., 4,097,154, Cl.
336. 1 . 12.020 . Marsee, Frederick J., to Ethyl Corporation. Starting system. 4,096,843,
Marsh, Watice H . W., to Singer Company. The. Interlock for button-
hole sewing presser device. \(4,096,811\), Ci. \(112-77.000\). hole sewing preser device. 4,096,811, C1. 112-77.000.
 Martin, Johannes Josef; and Weber, Erich, to Josef Martin Feuerungs. beformbit. Apparatus for compensating for thermally induced
deformation of sections of grates in industrial furnaces or the like.
4,090 , \(1.110-11.000\).

JUNE 27, 1978 LIST OF PATENTEES

Martin, Johnn R. Register control method and apparatus. 4,096,801, Cl. Rubber Company. The. Resin composition. 4,007,400, Cl. 260 Matin, Roper A., to Murdock Corporation, The. Electrical connector. Martin, Van Clifon, to International Business Machines Corporation Matrin. Van Clifon, to International Business Mechines Corporation
Ink jet printer for selectively printing different resolutions. \(4,097,873\),
C1. 346.75 .000 . Cl. 346 -7s.000.


 continuous web of materinal
4.066,91., Cl. \(225-999.000\).

Aruseki, Takashi; Ochini, Kazuo; and Maruta, Rikio, 4,097,860, CI.
340-347.7.0cC.
Maryymam,
350.00 R .
Marwill Stanley J. , to Phillips Petroleum Company. Fermentation
apparatus. \(4,077,339\), Cl. \(195-142.000\).

Mask, Ruwlolifi, Antho
Christenson, Roger M.; and Maska, Rudolf, 4,097,438, Cl. 260 -
29.4Usil I. Selected depth mooring system. 4,096,598, Cl. 9 .




Akirra; and Kitajima, Sigenori, 4,096,834, Cl. 123-32.0EE.
Masuda, Hiden:
Morishima See Yukims, Yoshida, Minoru; and Masuda, Hideo,


Matsuda, Itsuo: See-
Akiyam, Keichi, Kamiuchi, Junichi; Matsuda, Itsuo; and Fujii,
Tikara, \(4,097,545, \mathrm{Cl}\), \(260-830.00 \mathrm{P}\).

and Matsui, Hiroshi, 4,097,544, Cl. \(260-878.00 \mathrm{R}\).
Matsui, Sedayosi. See
Koike, Wataro Takayama, Masami, Ohashi, Hideaki; and Matsui,






Yameda, Akitoshi; Goto, Toshyuti; Kimur
Yoshinobur 4.07,68, Cl. \(179-1.00 \mathrm{G}\).

Masuura, Kazuo: See
Okada, Motohiro Oka Kassumi; Honda, Kiyoshi; and Matsuura



 424200.000.

Maurer, Fritz: See-,
Hofer, Wolgang; Maurer, Fritz; Riebel, Hans-Jochem; Rohe,
Lothar, Schroder, Rolf; Hammann, Ingeborg; Behrenz, Wolf-




Mayer, Norbert; Prahler, Gerhard; and Wiezer, Hartmut, to Hoechst
Aktiengeeslischaf.
 decanes as \(U V\) stabilizers. 40097,452, C1. 260-15.80N.
Schwarz, Judd Leomard; and Mayer, Richard Eugene, 4,097,630, Cl. 428 .97.000.
 Mayo, Haydn Frnkk, to R. G. Dixon \& Company Limited. Brosh
retention means for floor treating machines. 4,006599, 1 , 15-9.00R. Mazere, Nickolose Joseph, and Thomphon, David A, it International
Businexs Machines Corporation. Magnetoresistive field sensor with Business Mschines Corporation. Magnetoresistive fie
magnetic shield which prevent senser response
saturaion of the shield. \(4,097,802\), Cl. 324252.000 .
saturation of the shield. 4,097,802, Cl. 324-252.000.
cAvity, Jack A . See
Cook. Herbert G.; end McAvity,

 cComb, Kenneth H.; and McComb, Timothy II, io Dorrey-Mc Comb
Distributorn Inc. Mechanism for dijusting an extrusion die in cereal
grain Distributors. Inc. Mechanism for sdjusting an extrusion
grin extruder apparatus. \(4,097,213, \mathrm{Cl}\). \(425-376.00 \mathrm{~B}\).

Mccomber Frunk P. See-

MoConkey, Robert Charles: See
Noo
Noonan, John Michesel; MeConkey, Robert Charles; and Hanrahan,
Michlect John, \(4,097,282\), Cl. 9673.000 . Crea, Charles Jeffrey: See- 1.96 . 73.000 .
Lunn, Norman
Raymoren
Raymonm D.Laurence, MeCree, Charlese Jefrrey; Pregaman,
C. 27.360 .000 .



Morrill, Charles D., \(4,0977,069, \mathrm{Cl}\). \(2855-84.000\).
McGrw-dison Compent

McIntyre, Vernon E., to W, Wdsworth Equipment Company. Mounting
bracelet
McKecly, Stephen Lbit
netors
tor Physio
to



cess. \(4,097,362\), Cl. 208 . -7.0000 .

 4,097,007, ㄷ. 1444.3110.

McLaughin, Henry. Felton. Drag implement for gathering and spread-
ing dirt
4.096.64,
il
Comphany, Willirem A.; and Richardson, Edwin A., to Shell Oil Company. Acidizing asphaltenic oil reserervoirs with acids contuining Mclaughlin, William F . Dual fow encatheter. 4,096,860, Cl
 McMallean, Lon M. Navigational computer. \(4,096,635, \mathrm{Cl} .33-98.000\). McNab, Incorporated. See -
Dimond, Joseph M., 4,096.743, C1. 73.136.00A.

McNaney. Jowe
\(350-353.000\) T. Light beam position control system. 4,097, 123, Cl.
Mead Corporation, The: See-
Devis. Gerald
427 (itus) and Shackle, Dale Richard, 4,007,619, C1. Wood, Prentice J. \(4,096,985, \mathrm{Cl} .229-40.000\).

Medalert Corportion: See-
Auerbach, Albert A.; and Steinberg, Sidney, 4, 4, \(096,865, \mathrm{Cl} .128\) -
4li.


eeiller, Hermann, to Willibald Grammer. Arm rest asembly for a seat,
particularly a driver's seal. \(4,097,088\), Cl. \(297-217.000\).


\(\qquad\)
 tion chamber of a repetitive combustion coating apparatus. 4,096,945,
C. \(206-169.000\). Mensen, Leroy K., to Raymond Lee Organization. Inc.., The, a part
interet. Camping utility stand. \(4,096,951\), Cl. \(211-207.000\).



 Merle, Gerard: See-


Messe Koh-1. Noor Rand Mesecar, Roderick S., 4,097,922, Cl.



Messner, D.aryle: See- Leconard J.; and Messner, Daryle, 4,097,728, Cl.
Genest, Uns.
23s.
Metal.000.

Fischer, Herbent, 4,097,585, Cl. 423.574.00R.
Stonner, Hans.-Martin; and Wiesner, Paul, 4,097,539, Cl.

Metuler Instrumente AG: See- Heinrich, 4,096,800, Cl. 101-110.000.





Michelmen Iron Works Corp: See-,
Michelman, Lionel S.; Michelman, Samuel M.; Michelman, David






Microfim Service Corporation: See-
Buchannent
355.53.000. Mietens. Gerhard: See-
Dany, Franz-Josef
 Mikes, Otakar, Strop, Petr; and Coupek, Jini, to Ceskoslovenska akade-
mie ved. Methood for preparation of macroporous amphoteric ion
mie ved. Methor hor preparation or macroporous amphoteric ion
exchangers with highly crosslinged hydrophilic polymeric matrix.
4,097, l






Millar. John M., to Beatrice Foods Co. Flamboyant finish and process
for applying same. \(4,097,639, \mathrm{Cl}\). 428 -215.000. for applying same. 4, 4097,639, Cl. 428-215.000. broadcast system . \(0,097,809\), C1. 325 S. 54.0000 Corporation. Local ev Miller, Mason D. Board game apparatus. 4,097,050, Cl. 273-243.000.
 Liller, Richarar S. S. See- Sc. 82.82.000.
 Mills, William R., Jr., to Mobil Oil Corporation. Epithermal die-awa
porosity loging
pioch,






 Minnesota Mining and Manufacturing Company: See-
Bergh, Eugene \(\mathrm{H} .4,4,097,634, \mathrm{Cl} .428\)-156.000
Wails, Ronald E.., 4,097,405, Cl. 252-316.000.
Minogue, Robert W.; and Troyer. Lloyd E. Eto Let-R-Edge of Canada,
Lto. Product for constuucting three-dimensional sign character.
4,097,632. Cl 428 . 130.000 4,007,632. Cl. 428.130 .0000 .
iirchev, Mircho Geor giev:

 Mitaka Shunji: See
Hanakayat
Takayosh; and Mitaka, Shunji, \(4,096,935, \mathrm{Cl}\)

 Yoshikuno Ohki Obo, K Kazou; Tezulka, Tohru; and Tonomura
Shinji, 4,097,472, Cl. 424 177.000.






Tanaka, Akira; and Yoshida, Akio, 4,097,285, Cl. 96-132.000.

 and M Masui, Hiroshi, \(4,007,554, ~ C l . ~ 260-878.00 R . ~\)

 Miwa, T, Tamotsu: See
Miki. Tosaku:
she
shi
 Miyabe, Yoshio: See
 Miyakawai, Nobuaki, to Hitachi, LLd. Apparatus for selectively display
ing analoge qual
340.324.00R. Miyakawa, Takeo: See-


Uno Nayuki, aed Miyata, Kassuhiko, 4,097,876, Cl. 354.31 .000 .
Miyzaki, Masami, ot Toa Electric Company, Ldd. Time-division tele phon, system embodying trunks having demodulating-adder circuit

Mastumoto Shoichi; Kawamoto, Masahiro; and Mizunoya, Kiyo-
shi, .ost 128. Cl. 350.335 .000 .


Mobay Chemical Corporation: See-
Cleveland, Thomas \(H\).; and Bailey, John V., 4,007,547, Cl. Cleveland, Thomas H.; and Bailey, John V., 4,097,547, C.
Rewli.
Rawlings, Herbert L.; and Baron, Arthur L., \(4,097,435, \mathrm{Cl} 260\)










plate. 4,096,849, Cl .126 .121 .000 .
Monier Colourtile Piy. Lid.: See-
Monie Colourtile Plyd Lit. See-
Aarons, Raymend Joseph, 4,096,671, C1. 52.94 .000
Monitron Industries: See-

Monro, David Jann, to USM Corporation. Adjustable and floating
boring bar stabilizer. \(4,096,771\), C1. \(82-35.000\).











Phenyl pyrazole thioemides. \(4,097,672\), Cl. 548 .377. 000 .
Moore, James
O.,
to Mo More


Moore. William Percy. J..
sto . Waverly. Chemical Co. Process for
2.50F.








 Morreale, Anhhony P., 1 Rapidsyn Co . Method for interconnecting
stator coils. \(4,096,625\). Cl. 29.596 .000 .



 Morris, Raymond A.; and Viole, Thomas .., Jr., to Hewlet-Packard.
Company. Low parsaitc capacitiance and resistance beamlead semi.
conductor component and method of manufacture. 4,097,B90, Cl. conductor component and meth,
3ot-55.00.
Morison, Ronald L., and Dawson, John W. Process for making fishbait


971 O.G. 67

Morse, Millon. Synthetic resinous nesting cup construction. 4,096,947,
C1. \(206-519.0000\) Morion, George. A.: See-
Ruerty ,


 delection apparatus and method. 4,096,736, Ci. 7340.000 .
Mosier, Benjamin SeeMosier, Benjamin: See- Mosier, Beniamin, 4.097.395, Cl. \(252-106.000\).
Moskasey, Dan E. and Mames M, to Gulf \& Western Manufacuring Company. Press Poskalik, James M, to Gulf \& Western Manufacturing Company. Press
side adjusting and overload protection assembly. 4,096,998, Cl.
loo-53.000.


Mar Kenneth M; Ritchie, Kim; and Smith, James N., 4,097,834,
Ci. \(338-21.000\).
 Company. Fuse holder with separate reject spring. 4,097,114, Cl.
339.-2s.9.0.F. Motz, Kaye L.: See-
Yang, Kang. Motz, Kaye L.; and Reedy, James D., 4,097,535, Cl.
260-603.00C. 20ulin Jean-Clacude: Escher. Balint; and Prince, Dominique, to Sociece
 anodes for solide electrolyte capacitiors. 4.097,415, CI. 252-512.000.




uanyagipari Kutato Intezet: See-
Simon, Arszler, Balazs; Soth, Attila; and





The. Ball.point instruments wiring with improved transitionialily
erasable
106-30.000.




 Siemens Axtiengesellischaft, Method and apperatus for focusing th
objective lens of a scanning transmision-type corpuscular-beam
 Clamping arrangements for saliboais or other appications. 4,0 1502,
Culins. Rex. 100 . Coal Industry (Patents) Limited. Mine equipment.
4,096,753, Cl. \(73-432.00\).

 Mutsuo; Iwasumi, Sumaio; Hasegawa, Osamu; Nozaki, Yoshihise




 ing a sticky material-containing exhaust gas. \(4,0077,251\), Cl. \(55-97.000\)
Murdock Corporaion The: See-
Mant Martito Rogration, The: See- 4,09111, Cl. 339.183 .000 .
Musolf, Thomas Carl; and Wyman, Harold Thom











 Nakagawa, Junichi: See

 Naka \(4,07,238\), Cl. \(65-31\).
Tanaka, Tsunemitsu; Nakagawa, Telsuo; Abiko, Shiro; and
Kanco, Norio \(4,097,366\), Cl. 208. 127.000 . Nakagome, Yukioio Teramura, Hirichic Yamazaki, Yasuhiro; and



 Nakamura, Mitsuo: See-

Akira; and Kirajima,
Nakamura, Yasuo. See-
Umemura, , Sumio; Ohdan, Kyoij





Nalco Chemical Company See- Wilfred D., 4.097.427, Cl. \(260-9.000\).
Aithen, Thomas; and Poce .
Connors, Charles W., \(4,097,019\), Cl. \(249-204.000\).

linporation; and
Namiki, Psamu: See





Levine, Ronnie Stuart, 4,097,588, Cl. 42452.000.
National tharch and Chemical Corporation: See.
Pastor, Stephe D.
R
R., 4,097,350, Cl. 204 - 159.230 . Martin M.; and Hernandez, Hent
Pastor, Stephen D.;


NECCHI Societa per Azioni: See-
Bianchi, Nerco, \(4,096,810\), Cl. 112.65 .000
Bianchi, Nereo, 4,096,810, Cl. 112-65.000.
Negish, Naoki: Seel-
Sakiki Ti,
 Tamura Takaaki; Fuijta, Norihiko Matsura, Chihiro; Ito,
Wataru;

apparatus for treatment of yarn in package form. 4,097,232, Cl.
Reil. Clyde Cari; Hammer, Jacob Meyer; and Bartolini, Robert Alfred,
to RCA Corporation. Op
4.097,117, Cl. 3 30.96.170.
Neiman S.A... See
Lipschutz Paul, 4.096.715, CII. 70.59 .000 .






 Neison, Norman A., it Upiohn Company, The. 2-Decarboxy-2.
hydroxymethyl-11-deoxy-PGE, analogs. 4,097,529, cl. \(260-586.008\)

 Nemeth, Suzette B.; and Wilson, David W., to Avery International
Corporation. Double faced tab fastener characterized by a stirp of
release agent desisned to extend partly beyond the width of a trip of release agent designed to extend partly beyond the width of a strip of
achesive. \(40,07,627\), Cl. 488.40 .000 . adhesive. 4,097,627, Cl. 428-40.000.
31.00, D.
3n; and Zemer, Yigael. Educational aid. 4,096,644, Cl. 35 . Netterstedt, Sture; and Lindstrand. Bengt, to Rosfrial Tak Aktiebolag.
Feattener for reteining shect cladding. \(4,066,681\), Cl.
N2. 713.000 . Sanz Hernandel, Jose Antonio; and Netto, Cassiano Mesquita,
4.097,633, Cl. 428-172.000 Neuhierlithermann. Toy model vehicle track support system. 4, 4, 096,658 ,
Cl. \(41-17.000\).
 Newell, Denis Alfred, to Alfred Herbert Limited. Diehead chaser
carricr. \(4,097,178, \mathrm{Cl}\) 408-151.000.




Nicholson, Myron D.: See-
Jhnnson Donald C.; and Nicholson, Myron D., 4,097,666, Cl.
s36-57.000. Nielsen, Jacob Auggust, to Kosen Crisplant A/S. Selectively controlla--
bie unloading arrangement for soring conveyor constructions.



schaff. Process for the production of phosphorus pentasulinde.
4,, 合,


 Sendov, Stoyan Hristov; Kukin, Ivan Alexandrov; Nikolov, Ivan
Angelovi Ivanov, Assen Ninov; Mirchev, Mircho Georgiev; and
Kurashev, Rod,

OKame, Takeshi; Gotoh, Astuko; Iwamoto, Kuniharu; and
Oippon Elotto Yasuhi, 4,097,234, Cl. 8-94.190.



Takahashi, Massaoki; and Fumishi, Michio, 4,097,233, Cl. 8-83.000.


266-22.0.000.
Nippon Soken, Inc.: See
Tippon Soken, Inc.: See-
Tanaka, Ehizi, Ohash, Michihiro; Mochizuki, Hiroshi; and Ni-
shimalsu, Akira, \(4,0066,838\), CI. 123-139.0AW. shimatsu, Akira, 4,09
ippondenso Co., Lde.: See
Nojiri, Tadao, and See- Sugura, Akio 4i.096,992, Cl. 235.462 .000 .
Norimatsu, Hideaki; Nakamura, Mitsuo Kondo Norimatsu, Hideakj; Nakamura, Misuo; Kondo. Toshio; Masuda,
Akira, and Kitajima, Sigenori, 4,096,834, Cl. 123.32 .0 EE .





Nishimura, Daikichi: See-


 Nagao, Shozo; Iwamatsu, Junkichi; Kitsukawa, Hiroshi; Nishizaki, 4,007,75s, C1. 310-114.000.




Scki, Chichitadd; and Furuhashi, Noouuo. 4,097
Yuzawa, Haruo, \(4,097,563\), Cl. \(261-121.00 \mathrm{~B}\).

Niznik, George E., Elo Generara Electric Company. Thermoplastic form-
able bend, a
Cile
Ciznik, Georgene E., to General Electric Company. DihydrooxadiaziNiznik, George E., to General Electric Company. Dihhdrooxad
nones and metthod for making. \(4,097,671\), II \(54-66.000\).

\(\underset{\text { Horikawa, }}{\text { Nogami, }}\) Susumu; Nakagawa, Kenji; and Nogami, Yoshito, 4.097, 258 , C1. 6 . 6 -31.000
Noguchi. Toshhiake: See-
 Nohira, Hidetaka, Bessho. Hirionori; and Sakai, Yasuyuki, to Toyota
Jidosha Kogyo Kabushiki Kaisha. Catalyst container for use in exhaust manifold. 4,0066.691, ll. 60.2959 .000 .
Noice, Frank M.,
Noice,
224.4 .00 R
R.

 Noland, , Richard D. Baghouse with double pass traveling purge head.
4,007,254, Cl. \(55-244.000\). Noonan, John Michaceli, Mc Conkey, Robert Charles, and Hanrahan,
Michael Johnt, Eo Easman Kodak' Company. Anionic imino-contain. Michacl John, to Eastman Kodak Company. Anionic imino connain-
ing poplymeric adhesives for photographic materials. \(4,097,282\), Cl.


 Uuiiizing same. 4,096,868, Cl. 131-173.000.
Northern Telecom Limited. See
Harman, Stephen George, 4,097,697, Cl. 179-175.30R.
Harman, Stephen George, 4,097,697, Cl. 179-175.30R.
Northesten Unversity See
Coleman,
 Cl. \(209-3.000\). Richard, to Du Pont de Nemors, E. L., and Company.
Noval, Enmest



Nozakki, Yoshhisisa: See-
Murakami, Masuc;
Takahashi, Kozo; Hirata, Yasurumi, Takashima, Mutsuo; IWanami, Sumior Hasegawa, Osamu4, Nozaki, Yoshihisa,
Tachikawa, Shiro Takeda, Masakki; and Usuda, Shinji,
\(\qquad\)
Nucloonics Data Systems. See-
Bertin, Michace C. Hicksted, Richard L.; and Mitsuhashi, James


 yhuis Robert J.; and Smith, Terrence F. Method and apparatus ior
polling security alam installations. 4,097,696, C1. \(179-2.00 \mathrm{~A}\). Nyi, Kayson:



 Koike, Wataro, Takayama, Masami. Ohashi, Hideaki; and Matsui,
Shadayohh, \(, 097,426\), Cl. \(260-2.5 A M\). Tanaka, Eizi; Ohashi, Michihino; Mochizuki, Hiroshi; and Ni-
shimasu Akira, \(4,096,838\), CI. 123 -139.0AW. Shimassu, Akira, 4,096,838, Cl. i23-139.0AW.
Yano, Kazuhiko; Otsuki, Kazuhiko; and Ohashi, Ryota, 4,096,882,



 Tamura, Hirokazu; Ohinouye, Tsuneo; Hori, Kenji; Nakagami,
Catsur; Tskluamooo, Yutaka; and Akishino, Katsuo, 4,096,692, Tasuro, Tsukam
C. 6 . 6 -0.7.0.0.
ubo, Kazuo: See-





Photo Film Co., LId. Process
4,097,783, Cl. 210 -500.00M.
il-Rite Corporation: Sec.


Ka, K, Rstumi: See-
Okada, Motohiro; Oka, Kasumi; Hon
Kazuo, 4,07,065, Cl. \(280-739.000\).

kachi, Ryo: See-
Nara, Takshi; Okachi, Ryo; Yamamoto, Mitsuy



 \(\mathrm{N}^{2}\) aray lsulfony.1-1-argininamides and the pharmaceutically acceptuble
alis thereof. 4,097.472, C1. 424.177 .000 .


\section*{}

Nagao Shozoi: Iee- Iamasu, Junkichi; Kisukawa, Hiroshi, Nishizaki,
Koozo; Watanace, Yuichi; and Okamoto, Yasunori, 4,077,074, Cl. Kozo. Watanabe
285-532.1.000.
Kamoto Yasushi: See-
Sohde, Takeshi;
Oto
Ostoh Okamoto, Yasushi, 4,097,234, Cl. 8.94.190. Kitch mechanism for a

ich, Jack: See-
Oberharte Bruce J.; and Olich, Jack, 4,097,237, C1. 23-230.00B.






 mover tire and inm aseembly 4.006,900, Cl. \(152-344.00 \mathrm{O}\).



Sanayorov, Ivan Marinov: See
Rashov, liai; Gole,
Jenn;







Orofino, Milchact. Saniury pickup device for animal feces. 4,097,082,




Oani. Susumumi, and Noguchi. Toshiake, io Nippon Electric Co., Ltd.





Chiesa. Peter J., JJ.; and Ott, Meredith S., 4,097,305, Cl. 1346.000.
Fito Fuch KG. See.
Diels, Manfred; Diensuhl, Kar! Wilhelm; Jager, Tilo; and Hocker,
Dicls, Manfrede Dienstuhl, Karl Wi
Eitel, \(0.06688, \mathrm{Cl}\). \(52-403.000\).
Will

Fagan James J.; Otuo, William F.; and McKnight, William B.,
4.077.07,


\section*{}

rated. Term.
339.999.00R.
owenc.
339-99.00R.
Owens-Coming Fiberglas Corporation: See-
Foley, Kevin M.
ancwhurst, Harold A.; and McCombs, Frank P.,
77,568, Cl. 264-216.000.

 Oxford Hill, Ltd.: See



Ozga, Stanley Edward, to RCA Corporation. Hardware control for
repecang program loops in electronic computerr. 4,097,920, Cl.
364200.000.









Pensylvania Enginecring Corporaion: See-
Penwedt






tenkolber,
Hand tool
29-278.000

Permax: See 467.000 .



shock, John F., to Electric Power Rescarch Institute, Inc. Means for
protectin underground clectrical equipment from thermal runaway.
4,097.,822, Cl. 174 15.00 .
Perry, Keneneth E,t.t. Adomation, Inc. Seal tight door for warewasher.
4,096,664, Cl.
49.25.0.00.
Perry, Wi, Wiliam V. Denture matching apparatus. 4,0966,632, CI.
Per-32.000.
Pocien, to Produits Chimiques Ugine Kuhmman. Process for
senarating straight and branched chain soaps and their acids.



Precise pointing alignment of optical probes. 4,097,154, Cl.
Peter-15, David. L., to Singer Company. The. Las reduction in image
transducers having dynamically shaped rasters. 4, 4,997,001, Cl.
Peters, David L., to Singer Company, The. Lag reduction in image
transolucers. having dynamically shaped rasters. \(4,097,901\), C1.
3etersen, Warren D., to Burd, Inc., Howell Division. Chair assembly
Petersen, Warren D.i. , Bo Burd, Inc., Howell Division. Chair assembly
for an incremental pataing having a telescoping sleceve-like construc.
tion. 4,077,089, Cl. . See-447.000.
Peterson, Frank C :






Pahler, Gerhard: See--
Mayer., 0 orbeerf Pahler, Gerhard; and Wiezer, Hartmut, 4, 4097,452,
Cl. \(260-45.80 \mathrm{~N}\). Mayer, Norbert:
CI. \(260-45.8 \mathrm{~N}\).
Peerer, Josef: See-
Peifer, Josef; See-
Mannemardt
\(4,097,280\), Cl. \(96-4.000\).

diagnostics system for X-ray photographs. 4,097,741, Cl. 250-322.000
Pfizer Inc.. See.
Kraska. Allen R.; and Schnur, Rodney C., 4,097,525, Cl. 260
554.00 .


Gerard; Panayotov, Ivan Martinov; Pascault, Jean- Pierre: Pham,
Quang Tho Pillot, Christian; and Salle, Rober, 4,077,60, Cl.







Phillips, Victor Quin; Griffin, Phil Harmon; and Sharki, Martin James,
to Dresser Industries, Inc. Mud degasser trough. 4,097,253, Cl .
S5S-169.000.
Shone-Ducs. Inc.: See-
Streit Kenneth F., \(4,09,887\), Cl. \(138-117.000\).

 iner, Earl T., to. Cutler-Hammer, Inc. Industrial reversing speed
control
200-157.000.
 CII-Honeywell Bull (Societe Anonyme)
in circuit. \(4,096,748\), Cl. 73.362 .0 AR .
 Furbee, Avery. D., and Cinelli, Gabriel. 4,097,760, Cl. 313.60 .000 .
Pierre, Kenneth J.; Tung, Ker-Kong; and Nadj, Henniette, to Beckman Instrument J, T Tung, Ker-Kong; and Nadj, Henriette, to Beckman Cl. 195-99.000:
Rillot Chistion:
Re

Rachnkov, lisa, Gole, Jean; Guerard, Daniel; Herold, Albert; Merle,
Gerard; Panyound

Piper, John, to Union Carbide Corporation. Electrolytic
terminal configuration. 4,097,916, Cl. \(361-433.000\).
ney-Bowes., Inc.. See-
Eckert, Alton B., Jr; Jones, Howell A., Jr.; and Check, Frank T.,
J.
J.,., 4,097,923, Cl. \(364-900.000\).
Luperti, Harry E.; and Manna Robern E., 4,097,145, Cl. 355-75.000.

Wu, Bosco, 4,097, 150, and Manna, Rober E . 356 . 72.000 .
Conforti, Frederick J., 4,097,850, Cli. 340-214.000.


Plasma Physics Corporation: See-
Coleman, John .f.and Marks, Tobin J., 4,097,384, Cl. \(250-527.000\).

Pneupac Limited: SeS-6..
Jones. Norman stwart; and Bennett, Geoffrey Richard, 4,096,875,
C.
Poliniak, Eugene Samuel, to RCA Corporation. Method of transferring a surface relief pattern from a poly (1-methyl-1-1-yclopropene sulfone)
Iayer layyer to a non-metallic inorganic layer. 4,097,618, C1. \(427-41.000\).
lat

Tolysius, Pel, Wolfgang, 4,096,642, Cl. 34.57.00R.
Thyristor, and method of producing the same. \(4,096,623, \mathrm{Cl}\).
29.880.000


De Luca, Paul. and Atun, Albert, 4, 4, \(07,102, \mathrm{Cl} .339-19.000\).


Pote. Wilfred D.: See-
Aiten, Thomas; and Pote, Wilfred D., 4,097,427, Cl. 260-9.000. Potlatch Corporation: See-
Saunders. Robert J.; and Keller, Harold A., 4,096,796, Cl.
100-35.000.
Pouliot, Oliver L. See-
Daly, William Pe.
Pewis,
4.
 moulsen, Rober Edvin: See-
Poulsen
Poulsen, Freddy; and Poulsen, Robert Edvin, 4,097,048, Cl. 273. Powrie. William Duncan; and Tung, Marvin, to Creston Valley Foods
Ltd. Potato reatment process. 4,097,612, Cl. 426-269.000.

Peric, Jocion E.: Poyer, Wayne F.; and Koenig, Neale F.,
4,096,854, C1. \(128-2.05 \mathrm{~T}\).

 29.4UA.




Prab Conveyons: Inc. See-
Precision Components Inc. See- Se. David, 4,097,690, Cl. 179-2.00A.

Raymond David; and Turowski, Lawrence Edward, 4,097,62,
C1. 472-366.000.
Piliz 48.400
Price. Roberr Bryn: See
Hill, Roland John; Price, Robert Bryn; and Jewell, Norman
Thomas, 4.097.820, Cl. 3310.94 .50 G . Pries. Erich, to Dr. C. Otto \& Comp. G.m.b.H. Apparatus for cleaning
 \(4,097,415 \mathrm{Cl} .252\)-S12.000.
Pringle, John Philip, to Capital. Wire \& Cable, Division of U.S. Indus-
ties. Inc. Laminated structural member and method of making same.
4.097,648, Cl. 428.326 .000 .
4.097,648, Cl. 428-326.000.

4,097,429, Cl. 20017.0 Rer.
Prochnow, Claus, to Rollei-Werke Franke \& Heidecke. Adjustment
 4.097.144, Cl. \(355 .-63.0\)
ochnow, Claus: See-

Adamskias: See-
354293.000.
Procter \& Gamble Company. The: See-
Rolfes, Thomas Richard. \(4,097,418\), Cl. \(252-531.000\).
rodel, Marcel, to Sicame. Hot line clamps. 4,097,108, Cl. 339-109.000.
Production Data Inc.: See-
Tonnelli, Gerald J.. 4,096,752, C1. \(73-431.000\).
 Person, Luccien, ,4,097,507, Cl. \(200-413.000\).
Umemura, Sumio Ohan, Kyoil Uda, Tiazo; Matsuzaki, Tokuo;
Hidaka, Mikio Nakamura, Yasuo; and Tsuruoka, Masao,

Prowald, OSwald, to Gerlach-Werke GmbH. Settable regulator device
for gas/air mixture ratios. \(4,097,219, \mathrm{Cl} .431\)-90.000. fror gas/air mixture
Pruvor, Francois See
Pardo

Pugh, Gary L.: and Rowlet, Glenford, it Stephent Indust
Multile size envelope feder. \(4,997,040, \mathrm{Cl}\) 271-104.000.
Purcell. John E.: See-


 Microbial tran
Quayle,
\(403-286.0000\).
Quick Fiil, Inc.: See-
Roberson, Ronald E., 4,097,724, Cl. 235-92.0FL.
Uuin, Murray, L.See-. Suin, Murray L.; and Buzan, Morris M.
Bobrick, Mithelli.
4,097,
in, Edwin \(J\). See-



Rabinowitz, Mario: See-
Perry, Elijah R. Angwin, Meredith J. Rabinowitz, Mario; and
Shimshock, John F.,



adnovaion, Incorporated: See-
Jacobson. Arnol Frederick; and Pazaris, James Oliver, 4,097,736,
Raffaece, Italo, to Rossi. Luigi. Method and apparatus for automatically

determinition curve of blood or hemoglobin solutions. 4,097,921, Cl.
distacit.oon.
Raffery, Edson D.: See-

128.344 .000 . Cigarette dispenser adapter. 4,096,969, CI.
Ragus. A. Anthony.
221-1.19.000.
Raines, William L.; and Karges, John, Jr., to H. K. Nuttall Equipment


 DeLauder, Willam R.; and Spring,
Khay-303.3000. Ali, 4,096,734, Cl. 73-23.100.

Rank Xerox, LItd. See-
Sasamori, Yusuke, \(4,097,146, ~ C 1 . ~ 355-75.000 . ~\)






 de Valorisation de la Recherche (ANVAR). Heterog
polvmerization process \(4,097,660\), Cl. \(526-173.000\).
ucch, Moriv.
Muller, Kai, See-







Weatherly, Mark ... \(4,096,874\), Cl. 135-5.00R.
Raytheon Company: See C
Chambers. Dere, \(4097,863, \mathrm{Cl} .343-5.00 \mathrm{R}\).
Jerinic, George; Thoren, Glen R.
Cerinic, George; Thoren, Gienn R.: Sulliv. Francis J., Jr.; and
Lampen, James L., 4,097,823, Cli. \(332-9.90\) R.

Thoren, Glen R R.i. Lampen, James L.; and Jerinic, George,
\(4.0077,817\), CI. \(331-56.000\).
4,097,817, Cl. 331 i- 56.000 .
Corporation See-
Alphonse, Gerard Argant, 4,096,756, Cl. 73.609.000
Alphonse, Gerard Argant, 4,096,756, Cl. 73.609 .000
Aschwandi.
Avery
Avery



Kern
Ki2. 20.000 .erner;
W57-54.000. Neil. Clyde Carl; Hammer, Jacob, Meyer; and Bartolini, Robert
Alfred, 4,097,17, Cl. 350.96 .170 .
Ozga, Stanley Edward, 4,097,920, Cl. 364-200.000.




Recognition, Cl. 60.517 .000 .
Lafevers, James O.; and Kao. Charles T., 4,097,910, CI.
360.126.000.
Reedy, James D. See
Yang Kan:
Yang, Kang. Motz, Kaye L.; and Reedy, James D., 4,097,535, Cl
260.003.00C
 unwinding
roving
Reibelanz, Will
Wanner, Karl; Reeibetanz, Wibber; Bleicher, Manfred; and Wiesner
Herbert, 4,071
 of America. Welding method. 4,097,716, Ci. 219.137.00R. \(152-370.000\).
Reinhold. Donald
 Reisdorf, Josef Helmut; Brandes, Wilhelm; Scheinpflus. Hass;
Homeyer, Berhnard; and Roserser, ecter, to Bayer Aktiengesell:
 Cl. . 542 -4 13 . 1300 .

Drobink, Jaroslay- Kopecek, Jindrich; Labsky, Jiri; Rejmanova,
Peala; Exner, Josef; and Kalal, Jaroslav, \(4,097,470\), Cl. 260 ,
78.00A Rellick, Joseph Richard See
Patterson
Patterson, Frank Knawles; and Rellick, Joseph Richard, 4,097,653, Rengo Kabushiki Ki. Koisha: See-
eninie, Alexis C .eru, 4,096,941, Cl. 198-689.000.
Renirie, Alexis C. M., to Vitatron Medical B.
amplifier system. \(4,097,766, \mathrm{Cl}\). \(377-229.000\).


Restelli, Edward F., JJ.: See-
Auger, Robert G. ; Auger, Robert
\(423-74.000\).
Rethy, Maria: See-
Simon, Artur; Sarosi,

Reuschel, Konrad; and Schink, Norbert, to Siemens Aktiengeseellschaft.
Method of producing silicon useful for
manufacture. \(4,097,584, \mathrm{Cl} 423-348.00\)
Rexnord lnc.: See-
Gentsch, C. Stewart, 4,096,943, Cl. 198-793.000
Reynoldss Christopher I. See-
Riddilo, Parvin; and Reynolds, Christopher 1., 4,097,836, Cl. 340 -
Rhoodes, Carl E.: See-
Buchanan, Vernon G. and Rhoades, Carl E., 4, 4, \(097,143, \mathrm{Cl}\).



States of America, Navy.
106.4 .0000
Richardson, Edwin A.: See-
McLaughlin, William A.; and Richardson, Edwin A., 4,096,914, Cl 166-307.000.
Richdel, Inc.: See-
Saarem, Myrl J., 4,097,763, Cl. 307-141.000
Richman, William M. Fireplace ash system for basementless buildings.
\(4,096,848\), Cl. 126-120.000.
Nelson, Jack, to Dayco Corporation. Power transmission belt struc
ture and metho of making same. 4,096,764, Cl. 74.233 .000 .



Krambrock, Wolfgang; Schwedes, Hansjorg; Richter, Wolfgang
and Elgeti, Klasus \(4,066,640\), Cl. \(34-10.000\).




 Lothar; Schroder, Rolf; Hammann, Ingeborg; Behrenz, Wo
gang; and Homeyer, Bernhard, 4,097,592, Cl. \(424-200.000\).

Rieber \& Son A/S: See-
Parmann, Gunar, \(4,097,573, \mathrm{Cl}\).
264-322.000.

Chemical Corporation. Cleavage of alpha-oximinoketones, aldehydes
and acteals and their nitroso isomers. 4,097,517, C1. 260-465.400.

79.00R. Anthony W., to General Time Corporation. Synchronous

Rigazio, Anthony
molor. 4,097,757, Ci. 310 . 10 General 162.000 .

Riggs, Danus O.; and logel, charles
ratus sof reced
198-460.000.

\(260-293.70\).
Rindieisch, Volker: See-


Rist, Bruno A.: Seepreparian
206 -34.200.
olfs, Thomas Richard, to Procter \& Gamble Company, The. Granu-
Rollei-Werke Franke \& Heidecke: See-
Adamski,
354-293.000.




Ritter Company, The: See-
Rodish, John, 4,096,987, Cl. 229-55.000.
Ritter, Gerhard: See-
Ritter, Klaus; Ritter, Gerhard; and Ritter, Josef, 4,096,680, Cl


 las colored speckles. 4,007.418, Cl \(252-531.000\)

Prochnow, Clauss 4,097,144, Cl. 355-63.000
 Romanillos. Federico Hernando. System in an industrial polyexpansion process. \(4,097,210, \mathrm{Cl}\). \(425 .-89.000\).
Romano, Ugo, ot Anic S.p.A. Method
Romano, U80, to Anic S.p.A. Method for the preparation of aromatic
urechans. 4,097,676, Cl. 660 -132.000.
Roof, Douglas L.: See - He, Miller, Merrell Thomas; and Roof, Douglas
Hall, Water Denis
L., 4,096,772, C1. 82-82.000.
grid for steel concrete constrution 4,006,30, ci. 52.663 .000
                                    . 52.6300
\[
\begin{aligned}
& \text { Rosen, Marvin: See- } \\
& \text { Keyworth Donald A.; Di Bella, Eugene P.; and Rosen, Marvin, } \\
& \text { 4,097,451, Cl. } 26045.70 \text {. }
\end{aligned}
\]


lvanovna, Dondoshanskly, Alexandr Lvovich; Zellis, Evgeny Al.
fredovich; Karpov, Vladilen Efremovich; Sorokin, Vladimir Kon
stantinovich; and Shishkin, Oleg Petrovich. Method and apparatus
for measuring mass flow rate of individual components of two-phase



non-antisecretory doses of prostag landins. 4,097,603, Cl. 424-305.000.
Eber Bosch GbH: See-
Eckert, Komrad; Hofmann, Karl; and Seifer, Kurt, 4,096,999, Cl.
Horstmann, Winfried, 4,097,907, Cl. 360-33.000.
Sandau, Hartmut; Weiger, Wilhellm; Steinel, Winfried; Kraisel,
August; Ritter, Klaus; Gaub, Erwin; and Kochendorfer, Hein-


\begin{tabular}{l} 
Schwartz, William \(\mathrm{H} .4,4,097,083, \mathrm{Cl} .29478 .00 \mathrm{~A}\). \\
\hline
\end{tabular}
Schwartz, William H. . \(4,097,083\), Cl. 294.78.00A.
bertson, Peter Murday. Electrochemical oxidation of diacetone-L
sorbose to diacetone-L-ketogulo nic acid. 4,007,346, Cl. \(20-80.000\).
oddy, Joseph T, to Emerson Electric CO. Molded enclosure havin \(096,987, \mathrm{Cl}\), 29.55000 \(542-413.000\).
Richmond, Kenneth D.: Hartman, Russell E.; Rogers, Jerry W.













Begany Alser .i. Rosen hale, Marvin E.; and Dervinis, Alphons Roskott, Lodewijk; and Schroeder, Armold, to Akzona Incorporated
Process for the
4.097.467, Cl. 260 preparation of a copolymerizable composition Rosling, Denys Reginald, to Babcock \& Wilcox Company, The. Fu
Rosce cover: Luigi: See-
Ramthele, Italo. 4,097,921, C1. 364-116.000.
Rosner. Ewald: See-
Rossener Ewaldd Sec-
Rositbern, Paul; and Rosser, Ewald, 4,096,760, Cl. 73-738.000.
Rostrian Tak Aktiebolag: See-
Nettertedt. Sture; and Lindstrand, Bengt, 4,096,681,


4,096,728, Cl. \(22-345.000\). Limited: See
Rothans of Pell Mall Candd
Sheahan, Michael H., \(4,096,682\), Cl. \(53-149.000\).

Rottenkolber, Mich Mect. L. See-
Perline, IVving W. Trapido, Leonard; Rotenkolber, John J.; and
Rottenkober, Michael L., 4,096,618, Cl. 29.278.000.
Rourke. Terence Arthur. Process and apparatus for calcining limestone.
\(4,097.225\), Cl. 432.96 .000 .
Roussel Uclaf: See-
Buendiai, Jean; and Schalbar, Jeanine, 4,097,494, Cl. 260-345.80P.
Heymes, Rene, \(4,077,595\), Ci. \(424-246.000\).



Royston, Calvin T : See-
Seiferth,
\(426-121.0000\).


 Cl. \(272-113.000\).
Rudedy. John E and Morton, George A.. to RCA Corporation. Image
tube cathode. \(4,097,761\), Ci. 313.94 .000 .







 260.610.000.
Ruskraf, Inc.: See

Ruti-te Strake B.V.: See-
Luanmit. Adrianus Johnnes Franciscus, 4,096,889, Cl. 139-435.000.
Rutishauser, Heinz: See- Sallati, Fritz; Lang, Karl; and Rutishauser,
Bartes, Hermann;
Heinz, 4,096,972, Cl. 222-135.000.






307.141.000.
Sachs Systemiechnik: See-
Sischer, Wolfgang, \(4,097,355\), C1. 204 228.000.

Sack, Stuart, to Ocicienteal Petroleum Corroration. Que
sis reactor effucent str cams \(4,097,360\), Cl. 208-8.000.
saiskmann, Karl-Hans: See-
Langent
Langach, Erwin; and Sackmann, Karl-Hans, 4,
Langenbach, Erw
\(250-221.000\).
Sadler, Fred S.: See-
Lapp, John; and Sadier, Fred S.., 4,097,913, Cli. 361-318.000.
 Sefy.
Sudill
Guber. Walter, Saidl, Jaroslav; Daruschy, Paul; and Hild, Werner,
4.077 .41 , \(252-301.10 \mathrm{~W}\). St. Cliai, John Craig. Multipiele effect evaporation of water from water
containing combustible sludges. 4,097,378, Cl. 210.67.000. Saint Gobain Industries: See
Brax, Jean Alber, 4,097,299, Cl. 65-327.000.
St Jean, Raymond .., to Reymond Lee Organization, Inc., The, a part
interest. Mattress device. \(4,096,594, \mathrm{Cl} 59.09000\). St. Jee Minerals Corporation: See-
Joe Minerals Corporation: Seec
Lunn, Norman Luarence, Mcrea, Charles Jeffrey; Pregaman,
Raymond David; and Turowski, Lawrence Edward, \(4,097,625\),
C1. 427.360 .000 ,
Saito, Shhoichi, to ololympus Optical Co., Ltd. Magnetic tape cassette.
4,097,006, CI. 242-199.000.
Sakiai, Tomoma; and Negishi, Naoki, to Kogyo Kaihatsu Kenkyusho
(Industrial Rescarch Institut). Process of ofroducing mainly monocy-
clic aromatic componnd from unutiized carbon resources mainly clic aromatic compounds from unutilized carbon resources mainly
composed of polycyclic aromatic compounds. \(4,097,541\), Cl. 260 -
668.00 . Sakai. YaR
Nasuyki:
Nee-

4.096,691, Cl. 60.295 .000 .
Sakuri, Yoshio: See
Ishid



 Incorporated Method on lowering
line. 4,077 77 , 1.424273 .00 .
he. Rober: Sel Sl. 424-273.00R.
Rashkov, llia;
Goree, Jean; Guerard, Daniel; Herold, Albert; Merle,

Quang Tho; Pillot, Christian; and Salle, Robert, 4,097,660, Cl.
zee \(26-173.000\).

alimond, Marion P.: See-
Pyke. Thomas R.; and Salmond, Marion P., 4,097,335, Cl. 195 -
1..00S. Salomon, Georges Pierre Josephh to Etablissements Francois et Fils. Ski
binding. 4,097,062, Cl. 280-618.000.
 Salvo, Gaetano. Electronic tennis scoring system. 4,097,855, Cl. 340 -
323.0.
Samis, Alfonso A. Gas filter cleaning apparatus. 4,097,255, Cl .
55-294.000. Samolis, Alfonso A.
Sancheqea, George: See-

Balazs, 4.097 .894, , cl. \(358-118.000\). Sanchez, George; and Becht, Sanchez, Jose, to Pennwait Corporation. Diperoxyester mixture pre.
pared by reacting dihydroperoxides and carbonyls. \(4,097,088\), Cl.
252426.000 .


 manufacturing the same. 4.096,787, Cl . \(92-260.000\)
Sanders Assciate, Inc.
Carey, Charles. \(4,097,110, \mathrm{Cl}\). 350-149.000.
Sanderson, lan S.: See-
GII. 29.5996 .000 . Sandhu, M. A. Akram, to Eastman Kodak Company. Method for transfer-
ring heat-transerable dyes. \(4,007,230, \mathrm{Cl}, 8.2 .50 \mathrm{~A}\) Sandhu, M. Aram, to Eastman Kodak Company. Metho
ring heat-transferable dyes. 4,097,230, Cl. 8-2.50A.
Sandoz, Inc.: See-
Barcza, Sandor; and Hendrickson, James B., 4,097,609, Cl.
424.31.000. Sando2 Lud. See-
Wicki, Heinz, 4,097,476, Cl. 260-173.000.
 C. .1.1.15.000.
Sandrock. Gary Dale, to International Nickel Company, Inc., The.
Method for storing hydrogen in nicke-cher Sandrock. Gary Dale, to International Nickel Company, Inc., The.
Method
34.15 .000 . Sankyo Company, Limited: See-
Soma, Nobuo; Kurumade
Jean,
Soma, Nobboo, Kurumada, Tomoykki; Brunetti, Heimo; and Rody,
Jean, 4,097.587, Cl. 260.45 .80 A .


Fukumoto. Ichis. 13.2 .2000
Sano.
Yironari: See-

 Soulic
Sansui Electric Co.., Ltd. See-
Sato, Mituhiro; and Kato, Tomomi, 4,097,785, Cl. 318-89.000.
Sanuki, Setsuo: See-
 San2 Hermandez, Jose Antonio and Netto, Cassiano Messuita, to Euca-
tex, S.A. Decorative panel. \(4,097,635\), Cl. \(428-172.000\).

 260-112.50R.
Saroi. Gyula: See-
Simon, Artur;


Sarti, Retiny, Sel
Balduci, Lugi, Sarti, Dino; and Gerelli, Fausto, 4,097,300, Cl .
I06-299.000.

 patocess. \(4,097,146\), Cl. \(355-75.000\). 1 preparing pyrazines. 4,097,478, Cl. \(344-353.000\)




4.097.428, Cl. \(260-345,90\) R.
Sato, \(\begin{aligned} & \text { Siotoshi; Sec- } \\ & \text { Higuchi, Kousaku; } \\ & \text { 2ato, }\end{aligned}\) Satoshi; and Wada, Susumu, 4,097,031, Cl.




 Sauder, Myrl. to Cl
Cl. 312 2-257.
Sauder Wood

 Apparatusu and method for controlling press racking. 4,096,9\%,
100-35.000ibert C. Athletic shoe sole. \(4,096,449\), Cl. \(36-32.00\) R.
 Sayry, James Frankkin, to Du Pont de Nemour
Process for making strith frobric cappoble of
upon heat setining. 4,096,609, Cl. \(28-155.000\).
upon hear setting. 4,096,609, Cl. 28-155.000.
Scan-Optics, Inc... See
Forsen, George E.; and Jackson, Stephen F., 4,097,847, Cl. 340 canglas \(\mathrm{A} / \mathrm{S}\) : See-
Scanglas A/S. Seee
Brauer, Harad Oto Chrisian; Jensen, Knud Sejr; Andreasen,
Torbent Jensen, Hilmer; Greve, Mogens; and Kurstein, Peter,
Torben; Jensen, Hilmer; Greve, Mogens; and Kurstein, Peter,



Schaferer, Wolfgang: See-
Schooder, Manfred; and Schaefer, Wolfgang, 4,097,530, Cl. 260 -
586.00P.


 Schallany. Franz-Joseffic Mietens, Gerhard; and Schallus, Erich,
Dan,


 and Kezhicks, Eevuard, 4,007,906, Cl. 360 -13.000.
and


 Kerb, Ulicich; Wiecherr, Rudolf; and Engelfried, Otto, 4,097,678,
Cl. \(560-257.000\). Cl. \(560-257.000\).
Wenner. Alfecke, Mario; Mueller, Rudolf; Eder, Ulich;
and Wicrent, Rudolf, \(4,097,334\), Cl. 19s-51.00G.
 Shickus, Rudif
Teige, Wolf
4.o.p.
hieber, Shirley
Fchieber, Shirley: See-
Frey Nany
R. and Schieber, Shirley, \(4,096,929\), Cl. \(190-42.000\).

Inter-record
3 gap 1.1300
gecording or playback apparatus. 4,007,906, Cl .
chimmel, Karl F., and Wismer, Marco, to PPG Industries, Inc. Sub-
strates coated with end and intermediate reaction product of \({ }^{2}\).
 Schim ming, Fred H., to Clardy, Roland, and Grest
to each. Pendulum 4,096638, Cl. \(33-396.000\).



 Schlesier, Kenneth, Mansfield; Benyon, Carl William, Jr.; and Shaw,
Joseph Michael, to RRA Corporation. Method of making a sapphire Joseph Michael., to RCA Corporation. Met
gatat transisor. \(40.077,344, \mathrm{Cl}\). 148-188.000.
Schliepe Reinhard: See-
Muller, ,arl-Henze Scliepe, Reinhard; and Rindfleisch, Volker,
\(4,097,740\), Cl. \(250-311.000\).


schaft. Double-ylide metal complexes. 4,097,509, Cl. \(260-430.000\).
chmid Harald: Seemidth Harald, See-
Schild, Josef, scheiber, Robert; Schmidt, Harald; Drasch, Josef,
and Keznickl, Eluard, 4,097,906, Cl. \(360-13.000\). Schmidt, Jon Jayy. See-
King. Francis Kong; and Schmidt, Jon Jay, 4,097,909, Cl
King, Francis Kong; and Schmidt, Jon Jay, 4,097,909, Cl.
360.99 .000 .

midt, Robert August: See
Berger, Leot and Schmid, Robert Augush 4,097,497, Cl.
260.346.710.
Schmitt, Frederick Lowis: See-
Evers, William J.; Heinsonn, Howard H., Jr.; Shuster, Edward J
and Schmirt
Schmitz, Gunter: See-
Beggs, Jame Ingram; Langlitz, Karlheinz; Schmitz, Gunter; and
Jansa, Wolifgang, 4,096,918, C1. 177-145.000.
Kch, Philip W.: Se


capacitior. \(4,097,914\), Cl. 361 -433.000.
chncider. Walter. Processs and apparartus
nated shees. \(4,097,629\), C. 428 -71.1000.

ing thermoppasti" latels. 4,097,325, C1. 156-215.000.
Rupp, Rol Land; Schno-ring, Hildegard; Schellmann, Erbard; and
Buaer, Kur, 4.096, 388 , C1. \(73-52.000\).

 compositions containing
4.097, 1317 . Cl. 149.7 .700 .
Schnur, Redney C.: See-
Kraska, Allen R.; and Schnur, Rodney C., 4,097,525, Cl. 260 566.00 .
Scholten, Frank L.; and Szabo, Francis S., io Addressograph-MultiScholven, Frank L.; and Sazabo, Francis S., 1 , Addressograph-Multi-
graph Corporation. Shati encoder. \(4,097,875\), Cl. 3548.000 .
 bypass throt
418878.000.
Schorken, Karl: See-
Gladenbeck, Jurgen; Muler, Gerald Schorken, Karl; and Schwin-
denhammer, Hans Peeter, \(4,097,886\), Cl. 174131.00 A.
 Stouffer, Richard \(\begin{gathered}242-107.00 . \text {. } \\ \text { Schreyer, Kenneth D., to Columbus McKinnon Corportion. Hand }\end{gathered}\) Schreyer, Kenneth D., to Columbus. McKinnon Corporation. Hand
hoist puller oparating handle
hover. \(4,097,024\), Cl. 254169.000 . hois/p puller operating handle/fever. 4,097,024, C1. 234169.000 .
Schroder, Martin: Seeg
Hammer, Klius




 Huest Aktien sesclish shaf


Schuco Heinin Schurman \(\mathrm{GmbH} \& \mathrm{Co}_{0}\) See

schuh, Frank J. Jot Alalantic Richrifeld Company. Underwater wellhead







Schwarar, Hans Hi.Helmult: See-
4.097. Sto, cl. 5 Sche.862.000.

Schwehr, Richard A.: See- Schwehr, Richard A., 4.097,791, Cl.
Bivens. Ward L.: and Scher


260.-86.002. Scott, Foyd Lo... Jr.: See
Kenneday, John Wi; Kinney, Charles W.; Scott, Floyd L., Jr.; and
Schmuck, Pillip W,. 4,096,913, Cl. \(166-290.000\).
Scott Paper Company: See-
Focht Bruce., , 0907,633, Cl. 428 - 138.000 .


Scuricin, Giovan Battista, to Comitato Nazionale per 1 Energia Nucle are. Method and an apparatus for the dynamic balancing of rototing
bodies,
eamaticularly for centrifuges. \(4,096,988\), Cl. 233 -23.00A.






wear. 4.096, Seno, Cl. \(36-120.000\)
Seifrt, Kurt: See
ckerr, Soenrad; Hofmann, Karl; and Seifert, Kurt, 4,096,999, Cl.
239-333.50.
Seiferth, Oscar E. and Royston, Calvin T., to Oscar Maycr 8 Co. Inc.
Sticed food package with hide windows. 4,097,611, Cl. 426-121.000.
Seiko Koki Kabushiki Kaisha: See.

Seiler, Hanspeter: See-
 Seiler, Niklaus; and Seiler, Hanspeter, to Seiler Pumpenaniagen A.G,
Method of compacting solids-centaining waste or the like. \(4,096,997\),
Cl. 100.39 .000 . Seiler Peiler, Nikenaulaus;
Seitz, James F.:.: See- Seiler, Hanspeter, 4,096,797, Cl. 100-39.000. Seki, Chichituda; and Furuhashi, Nobuo, to Nissan Motor Compan.
Limited. Idle, mixture adjusting device of carburetor. \(4,097,561\), Cl.
Seligman, Lawrence; Ballard, James P.; and Jeffery, Edwin A., to Data

Selwod, Peter Richard, deceased: See-
Selwod, Timothy John; Axtell, Martin
Selwood, Timothy John; Axtell, Martin John Shelley; Burton, John
Davi; Selwod, Peter Richard, deceased; Selwood, Timothy
John, executor, And Axtell
John, execuoor, and Axtell, Martin John Shelly, executor,
4.097,203, Cl. 41 -480.000.
Selwod, Timothy John; Axteli, Martin John Shelley; Burton, John
David; Selwood, Peter Richard, deceased; by Selwoor, Timothy

John, executor;
William R. Selw
Cl. 417.480 .000 .
ood, Timothy John, executor: See-
 Dovid; Selwood, Peter Richard, deceased; Selwoor, Timothy
John, \(x\) ecucutriand And Axtell, Martin John Shelly, executor,
\(4,097,203\), Cl. \(417-480.000\) \(4,097,2023, \mathrm{Cl}, 417.40 .000\).
Sendov, Stoyan Hristov; Kuklin, Ivan Alexandrov; Nikolov, Ivan
Angelov; Ivanov, Assen Ninov; Mirchev, Mirch; Goorgiv, Kurtashev Ranov, Assen Ninov; Mirchev, Mircho Gikoolov, Vav, Van
mixien; and
motisove to Chimkombinat. Apparatus for mixing bulk materials. \(4,0077,927\), Cl. \(366-247.000\).
 Senju Metal Industry Co., Ldd.: See
 Sentrol Systems Lid.: See-2,
Derpe
Semigis, Joseph, 4,097,153, Cl. 356-103.000

Olsen, Cartton: Edward; and Serpa, Leroy Jasper, 4,096,626, Cl.


Shackle, Dale Richard: See-
Davis, Gerald
427.44.000.
itus; and Shackle, Dale Richard, 4,097,619, Cl
 takespeare Company: See-
Fulmer, Leoon F. Sr;
Sewis, John Fulmer, LLon F., Sr.; and Lewis, John R., Jr., 4,097,870, C
343. F 92.000 . Na,GGSi,O 12 and related rare earth sodium ion conductors and
electrolytic cells ther
 Shapiro, Jonathan S.; Berluti, Vincent, Jr.; Pellegrino, Anthony; and
Wagner, Howard \(\mathbf{c}\)., to Machelt
Laboratories, Inc., The. X -ray testing system. 4,097,793, Cl. 32420.00 R.
Shapras, Peter: See
Deet.
Deets, Gary Le- and Shapras, Peter, 4,097,552, Cl. 260-876.00R.
Sharki, Martin JJes: See-
Phillips, Victor
Phillip, Victor: Quin Grinin, Phill Harmon; and Sharki, Martin
James, \(4.097,249\), il. \(55-11.000\).


Nishyama, Mitsuru, 4,097,131, Cl. 350-338.000.
Shaura, Tsuneo: See-
Shi
Shirasaka, Kaname; Nakagami, Yoshihiro; Tomiyori, Takashi;
Ikemoto
427-173.000. Masanori; and Shaura, Tsuneo, 4,097,621, Cl.
 Cl. \(356-73.000\).
Shaw Josehn Michael: See-
Schlesier
aww, Josepp Michael: See-
Schlesier, Kenneth Mansifld, Benyon, Carl William, Jr.; and
Shaw, Josenn Michael, 4,097,314, Cl. 148.188.000.


 Shelby, Rocen L.; Duke, James T.; and Parker, Duane L., to Caterpil-
Iaro Tractor Co. Track guiding means for a track-type vehicle.
\(4,097,093, \mathrm{Cl} 30522.00\).


Shelstad. Richard J. Self-cleaning indon, Edwin A., 4,096,914, Cl. Shelstad, Richard J. Self-cleaning filter assembly. 4,097,379, Cl
\(210-167.000\). Shepard, Richard Wiilton: See-
Lopes, Atome,
\(66-121.000\). \(\quad 6-121.000\).
Shepherd.
198-71..00. Shergov, Igor Vladimirovich; and Melbard, Sergei Nikolaevich. Ther-
mionicheater ceathode assembly of electron-beam gun. 4,097,714, Cl.
219-121.0EB.

Sheridan, James P. See- Silver, Stanley Milton. Plant watering system and process. 4,096,663,

Schurf. 5


Shimler, Richard Welty: See- Shimer, Richard Welty, 4,097,393, Cl.
Cupper) Robert Alton; and Sill
252.78.300.
\(252-78.300\)
Shiina, Naonori: See
Shina, Naonori: See-
Shimokawa, Hayoo; Nakamuri, Makoto; Ueno. Hideyo; Namiki,
Isamu; and Shina, Naonori, 4,097,319, Cl. 156 -79...00.





Shimizu, Yoshiaki: Seec.
Nara, Takashi;
OKachi, Ryo; Yamamoto, Mitsuyoshi, Mori, Y Yasuki; Sato, Moriyuki; Suyimoto.
4,097,428, II. \(206-345.50\).
4,097, 428, Cl. \(200-345.90\) R.
Shimoina, Masaloshi. See-
Watanale, Rosinzo; and Shimojima, Masatoshi, 4,097,124, Cl.
Shimojima, Masalosinises Shimojima, Masatoshi, 4,097,124, Cl.
Watanabe, RInzo; and
350-187.000.
3k0.187.00.
Shimoka, Haya; Nakamuri, Makoto; Ueno, Hideyo; Namiki, Isamu;
and Shina, Naonori, to Furukawa Electric Co., Lth.. The. Method of

Shimshock, John F.: See-
Perry Elijah R. Angwn, Meredith J; Rabinowitz, Mario; and
stimshock John F,
Shinozaki, Nobuo: Soer-., 4,097,682, Cl.
Kitai, Kiyoshi; Oqihara, Masuo; Sato, Kozo; and Shinozaki, Nobuo
Kitai, Kiyoshi, Ogihara, Masu
4,097, H5s, C. 3 30.114.000.

Shipman, Jame, J.. See-
Messerly J. James W.; and Shipman, James J., 4,096,898, Cl. 152 .
30.








\begin{tabular}{l} 
Shuman, Jack N. Cllamping \\
4,097,035, Cl. 26.121 .00 \\
\hline
\end{tabular}

















Silver, Melvin J. Smith, John Bryan; and ingerman, Carol M. Method
of inhibiting biood platelet aggregaion. 4,007,602, Cl. 424-305.000.
Cl. 47 .ero.000.
.
momura, Norio: See-
Yakaki, Nasamichi; Takahata, Hideyo; and Simomura, Norio,
\(4,097,160\), Cl. \(356-237.000\).

 polymers of elastomeric
\(4,097,658\), Cl. \(526-143.000\).

\section*{Selle, Carl; and Simon, David Julian, 4,097,888, Cl. 340-347.05Y} imonek, Ildiko: See-
Benko, Pal; Simonek, Ildiko; Pallos, Laszlo; Kovacs, Jeno; and Magyar, Karoly, 4,097,688, Cl. 542 -418.000. California. Desulfur. Simpson, Howard
ization process and tatalyst. \(4,097,413\), Cl. \(252-465.000\).

impson, Robert E.,., U United States of America. Interior. Carridge for
grouting an ancho element in a hole of a support structure. \(4,096,944\), \begin{tabular}{l} 
grouting an anch. \\
cli. \\
\hline \(100-219.000\).
\end{tabular}








Skiscchuhfabrik Dynafit Gesellschaft m.b.H. See-
olnik, David J. See-
Goodich, Stanley R, Jr.; Skolnik, David J.; Stearns, Joseph A.;
Fractll Robert C. Brezinski, Richard R.; and Parks, Robert R.,
Farrell, Robert C.; Brezinski, Richard R.; and Parks, Robert R.,
\(4,097,057\), C1. \(280-96.100\).



Rlatry, Gerald Holmes. ot FMC Corporation. Preparation of perace-
tic acid by oxidation of acetaldehyde. \(4,097,520, \mathrm{Cl} .260-502.00 \mathrm{~A}\). Sleger, Roger R. to Ampex Corporation. Web transport system. 4.,09,.,005, Cl. 242.189.000.
Sloan, Betty Jeanne. Foot jewelry. 4,096,710, C1. 63-2.000.

Sloan, Bety Jearne.
Sloany Valve Compeny: See-,
Horowitz, Charles, 4,096,884, Cl. \(137-627.500\).
mith, David B.; and Benson, James A. to Physio-Control Corpora-
tion. Portable electronic physiologicil instrument having separable


 Mari. Keneneth M.

mith, Leonard R. See-
Kelly, Emmett J J.; and Smith, Leonard R., 4,097,321, Cl.
IS6-136.000.
Smith, Ray E:; and Albright, James A.. to Velsicol Chemical Corpora-
tion. Flame retardant finishes for textile materials. \(4,097,641, \mathrm{Ci}\). sixithe

Th, Terrence F.: See- Smith, Terrence F 4.007.696, Cl 179 -
Nyhuis, Robert J.; and Smith, Terrence F., 4,097,696, Cl. 179 -
2.00A.

SmithKline Corporation: See-
Levinc. Marshall S.; and Faulkner, Albert A., 4,096,824, Cl.
ins-100.000. Levine. Marsh.
118.00 .000 .
Smithsonian Institution: See-
Colombo Giuseppe
244-158.000.
Snamprogetii, S.p.A.: See-
Pagani, Giorgio Guerreri, Gianfranco; and Peri, Bruno, 4,097,250,
C. \(55,48.000\).





\(\qquad\)







\(\qquad\)








Solien Milinn Jen-cinude Escher

Societ. Nationict Industrielle Arospatiale: See- 1480.






Soma, Nobuoi, Kurumada, Tomoruki; Brunetti, Heimo; and Rody,
Jeant,


Sorokin, Vladimir Konstantinovich: See-
Rivivin, Ilya Y Yakovevich; Aisin, Shamil Mustafovich; Garkusha


Southwest Research Institute: See-
Meltion Rosser B., Jr.; and Hubbard, Elbert M., 4,096,945, Cl.
206469.000 . Southwire Company
Bonnamour, Y Yes Bermard, 4,096,906, C1. 164-433.000.
 Speakman, John Gabriel, to British Petrolcum Company Limited, The
Preparation of titanium containin cataly
materin


 Spider Staging, Inc.: See-
Spider Staging, Inc.: See-
Fisher, Harry S. \(4.096,922\), C1. \(182-36.000\).
Spiegsel, Raymond William, to Whirlpol Corporation. Dishwasher
rack supporting and adjusting apparatus. \(4,097,099, \mathrm{Cl} .312-311.000\).
Spiegel. Willi: See-
Lessnig. Werner; Metz, Gunter; Spiegel, willi; and Fleischer,
Jurgen, \(4,096,965\), C1. \(220-20.000\).
Jurgen, 4,096,965, Cl. 220-20.000.
Spong, Fred William, to RCA Corporation. Multilayer optical record.
 Spring, Ferdinand E: See
D.L.Luder. William R.; and Spring, Ferdinand E., 4,097,613, Cl.
426.303 .000 . Springer. Barry R. Camera testing methods and apparatus. 4,096,732,
C1. 73.5 . Springer, Joseph E., Sr. Connecting bracket arrangement for towing
Iawn mower. 4,097,059, Cl. \(280-204.000\). SRI International: See- G. \(280-204.000\). Suabilus GmbH: See-
Wirges, Winfried, \(4,096,785, ~ C l . ~ 91-416.000 . ~\)
 Sude, Elwood. H. Orienting device for dental facebow or pantograpb.
\(4,096,637, \mathrm{Cl} .33-174.00 \mathrm{D}\). Stahh, Michal. Automatic multi nail dispenser. 4,096,982, C1.
227-113.000.






system for flexible photoreceptorss. 4,096,826, C1. 118-656.000.
Stanley Electric Co., Lid. Seen
Okazaki,



\(526-278.0000\).
Kuhn, Leroy B.
Kuhn, Leroy B., 4,097,558, Cl. 260.899 .000 .
Lam, Hsiaio-Ling; and Pallos, Ferenc M., 4,097,512, Cl. \(260-\)
453.0RW.

 4,097,057, Cl. 280.96 .100.
Steele Chemicals \(C 0\). . Ldd. See-


 The. Halogenated buty interlayer
aticles. 4096,888, Cl. 1388125.000 .
Stein, Larry: See-,
Steinberantak, Sids, Dimeyitrios; See- and Stein, Larry, 4,097,471, Cl. 260-112.50R.
Steinorangrakisis. Dimitrios; and Stein, Larry, 4,097,471, Cl. 260-112.50R.
Auerbachn. Albert A.; and Steinberg, Sidney, 4,096,865,
Al Auerbach. Albert A.; and Steinberg, Sidney, 4,096,865, Cl. 128 .
Steinberger. Joseph, to Paul Forkardt Kommanditgesellschaft. High
speed power chuck. 4,097,053, CI. 2799-1.00C steineerger. Joseph, to Paul Forkardt Komman
Stehinel, Winfried Sek. 4,077,053, Cl. 279-1.00C.
 Stella, Cich, \(4,096,787\), Cl. \(922-260.000\).









 schaf fur Elektronilk Grundstone mbe Proceser-Chemitronic Gesell-
monecrystall prouction of Solle Copporation. The: Soe-- 4,097,327, Cl.
Kaminski, Elton George, 4,096,967, Cl. 220-269.000

 Stonner, Hans. Martin; and Wiesner, Paul, to Metall gesellschaft Aktien-
geselischaf. Process of scrubbing polyhydroxy phenols from gas.
4,097, 539, cli. \(568-751.000\). Stouffer, Richard C.; and Schotthoefer, Jerome W., to Allied Chemical
Coporation. Constan pull safety belt retracting mechanism.
4.097,003, Ci. 242.107 .000 Strindberg, Per, to Kockums Automation AB. Method of, and device
for fffcting conact-frec measurement by optical scanning.
4,097,159, Cl. 356-167.000. Strandiof, Benny: Se-
Nygamen Nygard, Nils Hanson; Niel
\(4,097,788\), Cl. 318 (15:000.

 Clit 13 Kenneth. 11.000 ., to Phone-Ducs, inc. Mutibore conduit. 4,096,887,


\section*{LIST OF PATENTEES}

JUNE 27, 1978
 Stromberg Carsisonk Corporation: See-
Niertiit Frank, 4,096,839, Cl . 123 -139.0AW.
 Tack \& Gabel, Firmaisee Seel, Friedrich, 4,097,078, Cl. 292-216.000. Tack, Alberk; and Gabel, Friedrich, 4,097,078, C. 292-216.000.
Tagaw, Kazukk:


 Murayyma, Takso; Shimiza
4,097,251, Cl. \(55-97.000\).


 having,
Takahashi, Haruo: See-



 Takahashi, Massookj; and Fumishi, Michio, 1 . Nippon
Basic dye compoition. \(4,097,23\). 1.8 .83 .000 .


Matoba, Kizavo, 4,097,333, Cl. 204i 195.00s.
Asahara, Nakaba; Takao, Hiroyuki; and Yasue, Kenji, 4,097,431,
Cl. \(260-22.00\). Cl. 2 26-22.00R.
Takasaki, Yoshitak: See
Ishizuka, Kohei;

Takashima, Mutsuo: See
Murakami, Masuo;
Mukhi, Kozo; Hirata, Yasufumi; Takashimas Mutsuu; I Wanami, Sumioi, Hasegawa, Osamu; Nozaki, Yoshhisisa,
Tachikawa, Shiro Takeda, Masaaki; and Usuda, Sinji, Tachikawa, Shiro; Takeda, Masank, and Usuda, Shinj.
\(4,097,487\), Cl. \(200-366.850\).


 Seda, Masaaki: SeeMurakami, Masuo; Takahashi, Koozo; Hirata, Yasufumi; Takashima, Mursuo; I wanami, Sumio Hasegawa, Osamu; Nozaki, Yoshihisa
Tachikawa, Shiro T Takeda, Masakk; and Usuda, Shinii \({ }^{4,0077487, \text { Cli. }}\) 200.326.850.
albot, Roberer Eric. See- Charles Patrick; Russell, Peter John; Talbot,
Cubbon, Rober and
Robert Eric; and Woodbridge, David Thomas, \(4,097,536\), Cl. Rober Eric,
260-610.00R,
Tally, David N.. See- Stefano, Gene E.; and Tally, David N., 4,096,888, Cl. 138-125.000. Tameo, Yoshikuni: See- Hijikata, Akiko; Kikumoto, Ryojij, Tamao,
Okamoto, Shosuke; Yoshikuni, Ohkubo, Kazuo. Tezulk,
Shinji, 4,097,591, Cl. 424-177.000.
Tamao, Yoshikuno: See-
Okamoto , Shosuck;
Hijikata, Akiko, Kikumoto, Ryoii; , Tamao, Yoshikuno Ohtubo, Kazuo) Tezuka, Tohru; and Tonomura,
Stinji, 4,097,472, Cl. 424-177.000.
 252 -9.900.
Tamura, Masar:




 Direct-positive photographic silver halide emulsion containing novel
dye \(4,077.255\). . 1.96 .1.23.00.



formation of coke deposits in a fluidized bed reactor. \(4,097,366, \mathrm{Cl}\). Thompson, Richard G. Propulsion unit for skiers. 4,096,919, Cl. 180 -
20.008.


 to Tanner Electronics Systems Technol,
decoder fitter 4.07894, Cl. \(358-118.000\).
Tanner, Randal. Curis, to Cincinnati. Milacron Inc. Method and appa-
ratus for modifying he positer ratus for modifying the position of a machine slide to compensate for
different following eerrors. \(4,096,770\), Cl. \(82-1.00 \mathrm{C}\).




 Taylor, George, to British Steel Corporation. Cleaning coke oven
doors. \(4,07,30\). Cl. 134.600
Taylor, Rober E . Whecl jack apparatus. 4,097,022, Cl. 254-133.00R.


\section*{TDK Electronics Co., Ltd. See-
Touoka, Yasumich; Fuluyda, Kazumasa; and Hosaka, Akihiko,
4.097.313, Cl. 148 . 105.0000 .
Technica-Guss Gmb: See-}
chnica-Guss GmbH: See-
impregnated with carbon for testing dielectric adequacco and for
indiciating phsical defects in a nonconducting material. 4,097,995, Cl.
324.54.000.
\({ }^{32454.0000}\).
Thomsen, Joryen Thyrsted, to J. P. Schmidt Jun. A/S. Method of
cuttin wrapers for tobacco products and cutting table for carrying
out said method. \(4,06,775\), C. \(.83-511.000\).

Monvoisin, Jacques, 4,097.748, Cl. \(250-505.000\).
Moulin, Michel; and Munier, Bernard
Moutou, Paul, Cyrili Hereng, Michel; and Le Berre, Serge,
4,, ,
Thoren, lienn R.;. Lampen, vames L.; and Jerinic, George, to Raytheon
Company. Cylindricilal avity power combiner for
Company. Cylindrical cavity power combiner for plurality of coaxial
oscillators. \(4,007,817\), Cl. \(331-56.000\).
Jerini, Georgee Thoren, Glenn R.; Sullivan, Francis J., Jr.; and
Lampen, James L, \(4,097,823, \mathrm{Cl}, 332-9.00 \mathrm{R}\)

orson, Eric \(\mathbf{K}\)., to Eldec Corporation. Electrical indicator including
relatively translatable scale and index tapes. \(4,097,99, \mathrm{Cl}\). 324 99.00R.
Kignal Corporation: See-
Klein, William Richard: Ketila

Technicon Instruments Cornoration: See-
Tecubserhard. Bruce J., and Olich, Jack, 4,097,237, Cl. 23-230.00B.



Kanaoku, Yaichi, 4,097,488, Cl. \(260-326.50 \mathrm{C}\)
Tekronix, Inc.: See--
Tektrinix, Inc. Se Se-
Oloson. David Harmon; and Berg, Eldon Carl, 4,097,798, Cl.
78.00D.
Tellesbo, Ola: See-
Evensen
428-281.000. Thiis; and Tellesbo, Ola, 4,097,644, Cl.


Tennent, Richard. Lee, to. Grafalloy Corporation. Construction for a
fiteer reinforce shaf.
4,097,626, Cl. 428-36.000.


Texaco Development Corp. See
Cavit, Stanly B.
,


Bickel, Samuel H., 4,097,708, Cl. 219-10.5sR.
Textron Inc. See
Rieth, Kurt Albert, 4,096,688, Cl. 59-79.00R.





Hellman, William ., Peterson, Frank C.; Renz, Mical C.; and Toray Indinstries, Inc., See-
Kusakabe, Haruhiko Makita, Masashi; and Ueds, Masutoshi,

Thiokol Corporation: See-
Bertorzpi, Eugenen Ribello, 4,097,299, Cl. 106-287.320.
 Thomas, Watter B.. III; and Welker, Christopher H., to Corning Glass Works. Low-temperatur
4,097,296, Cl. \(106-53.000\).


Toringion Company, The: See-
Lopes, Antone, Jr.; and Shepard, Richard Wilton, 4,096,713, Cl.



Toth, Attila: See-
oth, Autila: See-
Simon. Artur, Sarosi, Gyula; Keszier, Balazs; Toth, Attila; and
Rethy, Maria, \(4,097,658\), Cli. \(526-143.000\). Rethy, Maria, 4,0,
oulios, Peter P.: See-
 Tout, John R. Self placing automatic form. 4,097,173, Cl. 404-98.000.
Touval. Irving: See-
Littman. Stanley and
Touval, irving: See-
Litman, tuanley and Touval, Irving, 4, 4097,560, Cl. \(260-931.000\).
Towmotor Corporation: See-
Towmotron Corporation: See-
Bivens, WPard
318-484.000.



Kakui, Kuniaki, 4,097,207, Cl, 418-83.000.
Satou, Haruhik; Honiden. Yophinori; Hayshida, Motoyuki; and
 Gosesishi Kabushiki Kaisha. Synthetic pape
sion theret.
,4097, 7 .645, Cl
Cl
sion thereto. \(4,097,645\), Cl.
Toyot Sidosha Kogyo Kabushik. Kaisha: See-
Nohira, Hidetaka; Bessho, Hirronori; and Sakai, Yasuyuki,



Tozzi, Antonio; and Cassandrini, Paolo, to Chimosa Chimica Organica
S.p.A. Bennophenone base stabilizing ganent for polymers and poly-

357.54.000. Rudolf, to GKN-Stenman AB. Arrangement in door-

Tranberg, Erik Rudolf, to GKN-
Iocks. 4.066, 719, Cl.
Trapido, Leonard:
See-
Trapido, Leonard, See- Trapido, Leonard, Rortenkoiber, John J.; and
Perline, rrving
Rottenkolber, Michael L.,

Door mounting and actuator for a pressure vessel. 4,00, 220.0 ,
Trevil, Bernard, to Societe d'Etudes de Machines Thermiques S.E.M.T.
Treuil, Bernard, to Societe d'Eudes de Machines Thermiques S.E.M.T.
Method and means for conditioning the intate air of a supercharged,







Bakul, Valentin Nikolaevich; Bilyk, Igor Ivanovich; Bronshtein, Dolores Khaimovna; Vovchanovsky, Ivan Fecdorvich, and
Tsypin, Nekhemian Veniaminovich, \(4,097,274\), Cl. 75-201.000.

4.097,3ens, Cl. 195 .99. 9000 .
ung, Marvinn See- Sel
Powrie Willam Duncan; and Tung, Marvin, 4,097,612, Cl
426-269.000 426-269.000.
Turowski, Lawrence Edward: See
Lurowski, Lawrence Edward: See-
Lunn, Norman LLuurence. Mcrea, Charles Jeffrey; Pregaman,
Raymond David; and Turowski, Lawrence Edward, 4,097,625, Raymond David;
Cl. 427.360 .000 .
Tyee Aircraft, Inc. See.
Dubuque. Douglas \(\overline{\mathrm{K}}\). , 4,097,163, CI. 403-274.000.
Dubuque, Douglas K., 4,007,163, Cl. 403-274.000.

 Chida, IShii, Ryhiharu: See-
Kunichi; Sakuai, Yoshishige; Yamada, Hiroshi; Uchid Kuniharu; and Sauzuri, Yoshishige; Yamada, Miroshi, Uchida,
Uanekichi, 4,096,757,' Cl. \(73-621.000\). Taizo: See-
Umémara, Sumio; Ohdan, Kyoji; Uda, Taizo; Mastsuzaki, Tokuo;
Hidaka, Mikio

Kusakabe, Heen-iko; Makita, Masashi; and Ueda, Masutoshi,
4,098900 , cr. \(139-335.000\). Uehinger. Wermer; and Wendelspiess, Pius, to KM-Engineering AG.
Metho and a means for ransering articles in particular semimanu-

working these articles mechanically. 4,096,731, C1. \(2-40\) s.000.
Jeno, indeyo SeShimekawa, Hayao; Nakamuri, Makoto; Ueno, Hideyo; Namiki,
Isamu; and Shiina, Naonori, 4,097,319; Cl. 156-79.000.
 Limited. Method and apparatus for drawing tubes. 4,096,726, Cl.
72-291.000.
E., to Ciddi, Herbert R.; Humes, Norman S.; and Crossman, Richard
Silatiacron-Heald Corp. Internal grinding machine.







 arrylonitrite, 4.097.,518, Cli. \(260-465\).
Union Carbide Corporation: See
Troyer, LLopyl E. See-
Mobert W.; and Troyer, Lloyd E., 4,097,632, Cl.
428.130.000.
Tru-Eze Manufacturing Co.. Inc.: See-
True Temper Corporation: See
Groth. Hugh F., \(4,066,95\), Cl. \(172-42.000\).
Groth, Hugh F., 4,096,915, Cl. 172-42.000.
Trushell, Jomes Bryc: Se
Lemoureux, William Roger; and Trushell, James Bryce, 4,097,856,
Cl. 340.324 .00 M .
TRW Inc.
Ki. See.
Kieraga, James A., \(4,097,180\), Cl. \(408-154.000\)



Tsukagoshi, Shigeru: See-
Ishida, Torao, Kiyama, Minory; Nishimura, Daikichi; Hayashi,
Hiroshi, Sakurai, Yoshio; and Tsukagoshi, Shigeru, 4,097,665, Cl. Hiroshhi Sakurai, Y
S36-23.000.
Tsukamoto. Yutaka: See-
Nakamura, Hiroranu; Ohinouye, Tsuneo; Hori, Kenij; Nakagami,
 Tsukijij. Yoshihirio, to Kabushikj Kaisha Komatsu Seisakusho. Machine
for drilling holes in right-angular work suffaces. \(4,097,175\), Cl. 4088.23.000.
Tsuruoka, Masao: See-
aruoka, Masao: See-
Umemura, Sumo; Ohdan, Kyoji; Uda, Taizo; Matsuraki, Tokuo;
Hidaka, Mikio; Nakamura, Yasuo; and Tsuruoka, Masao,


 ing or solub
252.312 .000 .

2522.78.300. Anth Joseph; and Runyan, Walter Warren, 4,097,559, Cl.
Pa 260.928 .0000 .

Piper, John, 4,097,916, Cl. 361 . 433.000 .

ted States Bedding Company, The: See-
Eide, Richard H.; and Golembeck, Gerald A., 4,096,595, Cl. 5 -
345.5 34t. Nop.
sd States of America







 Kuchmas. John, Jr.; and Bubb, Gary E., 4,097,00, Cl
Miner. M. Marr.
102-214.000.
 Betten, Paul R., 4,097,331, Cl. 176-81.000.
Lewis. Anthur E.; and Mallon, Richard G., 4,096,912, C 166-259.00
Interior: See-
Black,
igmund; and Finney, James L., \(4,097,854\), Cl Simpson, Robert E., 4,096,944, Cl, 206 -219.000.
National Aeronautics and Space Administration: Se
 Barack, William N.i. Gay, Charles H., JIf; Beekma,
and Domas, Paul A.. 4.097, \(194, \mathrm{Cl} .416-244.00\)
Navy: See-



Steen, Donald B... 4,097,701., Cl. 2000153.00S.
Vio, John L.
is. Waln, Garry \(\mathrm{L} ., 4.096,802, \mathrm{Cl} .102-49.500\).
Wameling, Richard \(\mathrm{F}, 4,4,096,818, \mathrm{Cl} .114311 .000\)
U.S. Philims Coling, Richaraion: See-
Eckhardh, Friedhelm, \(4,096,604\), Cl. \(16-128.1100\).

Eckhard, Friedhelm, 4,096,604, Cl. 16-128.100.
Gertach, Gijberus; and Kelly, John Joseph, 4,097,394, Cl.
elt



United States Steel Corporation: See-
Auger, Rober G.; and Restelli, Edward F., Jr., 4,097,574, Cl.

Dunshee. Robert S. \(4,097,713, \mathrm{Cl}\). 219.121.00P.
Marin. Wayne A., 4,096,730, Cl . \(72-352.000\).
Unitika Lhd. See
Asahara, Neakaba; Takao, Hiroyuki; and Yasue, Kenji, 4,097,431,
Cl. 260 -22.00R. Universi. 2 of Toronto, The Governing Council of the: See-
Caley William F.; and Flengas. Spero N., \(4,097,351\), Cl. 204
181.00 N. University of Virginia: See-

Uno, Naoyuki, and Miyata, Karsuhike, to Asshi K Kogaku Kogyo Kabu-
shiki Kaish. Dualmole
Sheam
 Unruh. Dale H., to Caterpillar Tractor Co. Roll stiffening and dampen-
ing in articulated vehicles. \(4,097,060, \mathrm{Cl}\). \(280-42.000\).
UOP Inc. See-
Bartholic, David B.. 4,097,243, Cl. 23-288.00S.

Hayes. John C.." 4,007, 368 , Cl. 208-139.000.
Upjohn Company, The: See-



Moon, Malcolm W.: and Kornis, Gabriel, 4,097,672, Cl.
s48.377.000.


Pyks, Tho
s. 1.05 S

Upson Tools, Inc. Seee
Engel Paul Recich, \(4,096,896, \mathrm{Cl}, 145.50000 \mathrm{~B}\).
Urushizakki, Sakae. Tape cutter. 4,097,328, Cl. 156-523.000
USM Corporation: See
Monro, David Jee- \(\mathbf{4}\),096,71, CII, 82-35.000.
Usry, Gerald O., 1 General Electric Co
Usry, Gerald O., to General Electric Company. Fault detector for
liquid immersed inductive apparatus. 4,097,852, cl. \(340-242.000\).
Usuda, Shini: See-
Mrackami, Masuo; Takahashi, Kozo; Hirata, Yasufumi; Takashima,
Mutsuo; Iwanami, Sumio Hasegawa, Osamu
Mutsuo; Iwanami, Sumio, Hasegawa, Osamu; Nozari, Yoshihisa,
Tachikawa, Shiro TTikeda, Masaaki; and Usuda, Shinji,
4.097,487, Cl \(260-326.850\) Vagias, , Ernest. String anchor replacement for repetition lever and jack
in a piano action. 4,096,779, Cl. \(84-239.000\). in a piano action. 4.006,799, Cl. 842 239.000.
vanderveran Jan; and Hegge, Theodorous Cornelis Jozer Maria, to U.S.
Philips Corporation. Liquid crystalline compounds and mixtures.

 Van House, Robert M., to General Motors Clorporation. Vhicle power
brake system with master booster and slave booster. 4,096,696, Cl.
60-447.000. 60-.547.000. Richard Gieorge,
Van Houtce, Dresser Industries, Inc. Tapping
sleeve for large size pipe. 4,097,073, C1. 285-197.000.

Van Over, William Edward: See-
Beveridge. Wendell Hazelton, Jr;; and Van Over, William Edward,
 preparation of ortho-alikylaten phenols. \(4,097,411\), Cl. 252 -457.000.

Veldman, Donald Richard; and Lang-on. Howard S. to Langdon,
Howard S . Tilting terminal clamp assembly. 4,097,112, Cl.
339.246 .
 Krinzer, John; and Wu, Chin Ching, 4,097,485, Cl. 260-306.80D.
Krenzer, John, \(4,097,486\), Cl. 260-306.80D.

 Verderio, Giusenpe. Fire escape 1 to be attached to the outside of a
building. \(4,099,923\), Cl. 182.83 .300 . building. \(4.096,923, \mathrm{Cl} .182-83.000\).
Verschor, Hendrinus M . See-

Cremers. Henicus M. . J.e. .; Graff Renier J. L. and Verschoor,
Hendrinus M. \(4,097,659\), Cl. 526.151 .000 . Viden, Oitinus. .1., Conwed Corporation. Selectively sorptive rein-
forced sheet. \(4,097,638\), Cl. 428-213.000.


 Viscardi., Frank. Gear shift selector brake interlock. 4,096,930, CI.
1924.00 . 192-4.00A-
Vitaron Medical B.V. See-
Renirie Al
Renirie, Alexis C. Mee \(4,097,766\), Cl. \(307-229.000\).

Navy. Automatic real time navigation communicator. 4,097,922, Cl .
Vivitar Corporation
 Vlahakis, Entichios Van. Toilet bowl dispenser. 4,006,593, \(\mathrm{Cl}, 4,231.000\).
Vlahakis,
Eftichios Van. Drain opening method. \(4,006,871, \mathrm{Cl}\). \(134+0.000\).
Vobecky, Paul:
Vobecky, Paul: See-
ehyode. Robin B.; and Vobecky, Paul, 4,096,723, C1. 72-123.000.
 Hugo, 4,097,615, Cli. 426-533.000.
Hall, John B.isprecker Mark A. Vock, Manfred Hugo Shuster,
Edward S. Sinals, Joaquin; and Novak, Robert M., \(4,097,416\),


Vojik. Frencis Michael: See-
Cohen, Howard Joseph; and Vojik, Francis Michael, 4,097,302, Cl. 106.312 .000
Volk, Heinrich:

Volk, Heinnich: See-
Kisnter, heicza and Volk, Heinrich, 4,096,800, Cl. 101-110.000.
Papenfus, Thedor; and Volk, Heinrich, 4,097,510, Cl. 260 -
439.00R.
 von Bonin, Wulf, to Bayer Aktiengesellschaft. Fire-proofing sealing
eiemens. \(4,097,385\), Cl. \(428-35.000\).






yzkumny ustav vodohospodarsky: See-
Haindl. Karel, \(4,097,026, \mathrm{Cl} .366 .165 .000\)
Wachter, Rudolf Ludwig; and Edinger, Winfried Franz, to Permahop
Hopfenpulver Gmbt Co. KG, Firma. Apparatus for cooling hops.

 Wacker-Chemitronic Gesellschaft fur Elekronik Grundstoffe mbH:
See-See-
Stock, Horst; and Ellbrunner, Adalbert, 4,007,329, Cl. 156-617.0SP.

Wada, Susumu: See
 Wada, Tasaku, to Kokusai Denshin Denwa Co., Ltd. Optical read head.
\(4,097,904\), Cl. \(358-244.000\)




Wagner, Ferdinand: See-
Hindermayr, Marin; and Wagner, Ferdinand, 4,097,828, Cl.
3347.000.
Wagner, How Jord G.: See-
Shapiro. Jonathan S.; Berluti, Vincent, JJ.; Pellegrino, Anthony;
and Wanger, Howard G... \(4,097,793\), Cl. 32420.00 R .

Berger, Richard E.; a
Wakahara. Yosaushi: See-
Wakahara, Yasushi: See-
Nakagome, Yukio; Teramura, Hiroichi, Yamazaki, Yasuhiro; and



 Wallwey, Erich, Becker, Wolfg ang; and Heldmann, Heinrich, io Weg-
mann \& Co. Mounting for ammuition containers on rapid-fire gun

 Walsh, Lloyd R., to Fairchild Camera and Instrument Corp. Compact,
two-phase charge-coupled-device structure e tutilizing multiple layers



Berkowitz, Ami. E.; Lahut, Joseph A.; and Wang, Jish Min,
4.077, 871 , Cl. \(346-74.100\),
Wang, Samuel Shang-Ning; and Lewellyn, Morris Eugene, to Ameri-
cant Cyanamid Company Composilion for mineral concentrate dewa-
tering during filtation. 4.097 .390 , C.l


Wapner, Herbert H.: See-
Kaplan, David; Brezack, Irving; Young, Nathan \(H\)., deceased; Kaplar, David; Brezack, Irving; Young, Nathan
Kaplane Devide executror, Brezack Iring,
Wapner, Herbert H., 4,096,863, Cl. 128 -349.00R.
Ward, John W., to Union Oil Company of California. Hydracracking
processs and catalyst for production of middle distilate oils. \(4,097,365\), process and catalyst for production of middele distiliate
Cl. 200 -11. 1.
4.00. Ward, Richard Harry. Mat cutting machine. 4,006,631, C1. \(30-29.000\).
Warner, David A. Otical
Warner-Lambert Company: See-
Warner-Lambert company: See-
Sirart. Jagadich,
4,097,441, Cl. \(260-332.20 \mathrm{~A}\).
Warszzwskkie Zakkiady Mechaniczne PZL-WZM: See- \(\quad\) Sriwak, Eugniusz; Krainkki, Andrcej; Lendzion, Kryszof; and Watanabe. Rinzoo, and Shimojima, Masatoshi, to Vivitar Corporation.
Zoom lens. \(4,097,124\), Cl. \(350-187.000\).
Watanabe, Tactuol See See
Yamaguchi, Masahisa; and Watanabe, Tatsuo, 4.007,804, Cl. Yamaguchi,
325 -1.500.

 preparation of
Weberf. Erich: See-
Martin, Johannes Josef; and Weber, Erich, 4,096,809, Cl. Martin, Johannes
In-211.00.
Wegmann \& Co.: See-
Wallwey, Erich; Becker, Woligang; and Heldmann, Heinrich, egegmuller, Hans; and Hasase. Jaroslav, to CIBA-GEIGY Corporation.
Process for Process for
210.3.000.
Weidemann,
idemann, Wolfgang: See - Sel
Wulf. Helmut; and Weidemann, Wolfgang, 4,097,752, Cl.
290.-20.000. 290-20.000.
ine Heignd. Hanfied, to Hoechst Aktiengesellschaft. Device for the
introduction of contrast medium into an anus practer. \(4,096,833, \mathrm{Cl}\). introductio
128-2.000
Weiger, Wil
Seiger, Wiihelm: See- Sandau, Hartmut; Weiger, wilhelm; Steinel, Winfried; Kraisel,
,

Weilind. Emilil. See-
Brunsch, Klaus; and Weiland, Emil, 4,097,193, Cl 416-22400
Brunschi, Klaus; and Weiland, Emil, 4,097,193, Cl. 416-224.000.
iner Stel Corporation: See- Cl \(100-215.000\)
Zupancic, Joseph, \(4,096,799\), , Weise, Hans Joachim, to Braun Aktiengeselischaft. DDevice the heas
treating hair on the human head, and the like hair curling device
having self-regulating PTC heater. 4,097,118, Cl. 219-222.000.

 Weisz, Geradine Fay. Methods and compositions for treatment of
bacterial and fungus infections of the skin \(4,097,590\), Cl. \(424-151.000\). bacterial and fungus infections of the skin. 4,09,
Welker, Chistopher H .. see
Thomas. Walter B., IIl; and Welker, Christopher \(\mathrm{H} ., 4,097,296, \mathrm{Cl}\) Wellington, Charles K.; and Dakss, Mark L., to GTE Laboratories Incorporated. Coupling
\(4.07,12\), Cl. \(350-9.150\).

Weiss Hermann; and Well
endelspiess, Pius: See-
Uehtinger
Uelinger, Werner; and Wendelspiess, Pius, \(4,096,731, \mathrm{Cl}\).
72.405 .000 .
WERSII-lecerimonic \(G\) Gmb \& Co . Kommanditgesellschaff fur elektronis-
che Baucemente: che Buuclemente: See-
Ditumar,
iffried, \(4,096,778, ~ C l . ~ 84-1.250 . ~\)
West Electric Co., Lted. See Seo

Wetsi- Sincon Michael, to Kraft Foods Limited. Methoo of removing,
biter substances from brewers yeast and brewers yeast autolysales.




Watanabe, Yuichi: See-
Nagao, Shozo Iwamatu, Junkichi; Kisukuawa, Hiroshi; Nishizaki,
Kozoi, Watanabe, Yuichi;
Ond Okamoto, Yasunori, 4,097,074, Cl. 285-231.000.
fied will willime D., Youngstown Sheet and Tube Company. Modi-
fied rester Waters, William D,
fied vill ste
\(264-255.000\).

 Watts. Ronald E...to Minnesota Mining and Manufacturing
Particulate thicknening agent. 4,077,45, Cl. 252-316.000.
Waukesha Bearings Corporation: See

Waverly Chemical Co.: See-
Moore, William Percy, Jr., 4,097,419, Cl. 260-2.50F. Moore, William Percy, Jr., 4,097,419, Cl. 260-2.50F.
Weatherly, Mark G., Ro Rymond Leo Orgniztion, Inc., The, a part
interest. Weather shelter. 4,096,874, Cl. 135-5.00R. interst. Wealh
Weaver, Wilian
Anderson, Leroy See-
Echmidt, Michael P.; and Weaver, William
Webb, Jimmy L. See-
Factor, Aronold; MacLaury, Michacl R.; and Webb, Jimmy L.,


 Koob, Robert W.; and Husson, Alan L. L, 4,096,925, Cl. 187-29.00R.
Tho

 We wior Jencrzy. 4,096,998, Cl. 239-533.300.
Weyand, John D. Se,
Cebulat Walter S.; and Weyand, John D. Weyand, John D. See-
Cebulak. Walter \({ }^{26465}\).; and Weyand, John D., 4,097,567, Cl.
Whirlpool Corporation: See-
Spiegel, Rymond William, 4,097,099, C1. 312-311.000.
White Castle System Inc: Seoper

 Curry, Harold George; Atrwood, Brian William; White, Derek
Grahai Walter; Ghrisensen, John Mosgaard; and Kroyer, Karl
Kristian Kobs, 4,497,740, Cl. 428-219.0go.


White, Roberr. F. Wit General Motors Corporation. Engine moun
\(4,097,011\), C1. \(248-5.000\) Whitehead, Edwin Nelson. Process for preparing an identification card
\(4,0977,279\), Cl. \(96-27.00 \mathrm{R}\).
 clutch and brake package. 4.096,931, Cl. 192 . 18.00 . Modular stecring
Wicki, Heind, to Sasnoz
 Widmer, Ernst: See-


Wiechert, Rudolf: See-
Kerb. Ulich; Wiechert, Rudolf; and Engelfried, Otto, 4,097,678,
C. S60-257.000.
Weber. Alfred; Kennecke, Mario; Mueller. Rudolf; Eder, Ulich;
and Wiechert, Rudolf, 4,097,334, Cl. 195-51.000.
Wiesser, Herbertirt, Ree
Wanner, Karl; Reibetanz, Wilbert; Bleicher, Manfred; and Wiesner,
Herbert, 4,07,176, Cl. 408-56.000.
Wiessner, Paul: See-
Stonner,
S68-751.000.
Wiezer, Hartmut: See
iezer, Hartmut: See-
Mayer, Norbert; Prahler, Gerhard; and Wiezer, Hartmut, 4,097,452,
C. \(260-45.80 \mathrm{~N}\).
Wildt. Hans-Achim Dietmar, to Du Pont de Nemours, E. I. and Com.
pany. Stable chloride process anatase slurries. \(4,097,301\). C1.
pany. Stable
106-30. 0 .
woo
Wilhelm Ruf KG: See-
Hindermayr: Martin; and Wagner, Ferdinand, 4.097,828, Cl.
334-7.700.

Will Ross, Inc. See
Hryson. John D. 4.0066.994, Cl. 239-57.000.
William R. Selwood Limited: See-
Selwod, Wimothimited: See- Solel, Martin John Shelley; Burton, John
David; Selwood, Peter Rechard, deceased; Selwwod, Timoty
David; Selwood, Peter Richard, deceased; Selwood, Timothy
John, executor;
4.097,
Williams, Anthony Michael: See-
Williams, Anthony Michael: See
Ingham. Winliam EIlis; and Williams, Anthony Michael, 4,097,746,
C. \(250-444.000\).
Williams, Georre M.
Wiliams, George M. See-
Gardner, Wiliam H. Graham, Donald H.; and Williams, George
Min., \(4,097,315\), Cl. \(149-2.000\).
M. 4.,097.315, Cl. \(149-2.000\).
William, Mark R., to. Nited States of America, Air Force. Constant
imedance, constant phase pin diode with attenuator. \(4.097827, \mathrm{Cl}\)
impedance,
333.81.0R.
will
Willibald Grammer: See-
Meiller, Hermann \({ }^{\text {M }}\), 4097,088, Cl. 297-217.000.
Wilson, David W.: See-
Wison, David W.: See-
Nemeh, Suzette B.; and Wilson, David W., 4,007,627, C1.
428-40.000.


Wilson, Gerald L.: See-
Weis. Verne E., Campbell, Glenn M.; and Wilson, Gerald L.
U.096,791. Cl. Wilson Jones Company: See
Wilson Sones Company: See-
Martoran, San, 4,096,981, Cl. \(225-99.000\).
Wilson, Michael A.i. Momparier, Fred \(J\). and Coleman, Kenneth, to
Electro Corporation. Circuit for contrilaly

Willon, Robere J., to General Motors Corporation. Motor protecto
 length. 4,096,785, Cl. \(91-416.000\).
Wise, Joseph A.igusta: See-
Over,
William Roderick; and Wise, Joseph Agusta, 4,097,106, Cl. Wiseman, Ressell M. , to Diamond Shamrock Corporation. Apparatus
for releasc of an entrained gas in a liquid medium. \(4,097,338\), Cl.
204.270.000. Wismer, Marco:


 Witzke, Horst, to Optel Corporation; and Grumman Aerospace Corpo-
ration part interst to each. Photogalynic coll using transparent
conducting electrode. 4,097,65s, cl. 429-111.000.
 4,090, 185, Cl. 45 S. 88.000
Womack, John \(W\)., to Mobil Oil Corporation. Means and method for Womack, John W., to Mobil Oil Corporation. Means and method for
controlling excess air inflow. 4,097,218, Cl. \(431-76.000\). Controlling excess air inflow. 4,097,218, Cl. 431-76.000. Grace, Alan .. V; and Wong, Janet C.. 4.0077.695, Cl. 179 -15.08A
Wood, Prentice J., to Mead Corporation, The. Aricle carrier and blank Wood, Prentice J., to Mead Corporation, The. Aricle carrier and blank
therefor. \(4,096,985\), Cl. 229-40.000.
 Noicinileme








 Wu, chin ching see se







Wynne. Francis Edmund, Jr. See-
McKiney



Cerox Conoranioion see










 Yymsem. \(4,097,804\), Cl. \(325-15.000\).
Yasechi, Masary, to Nippon Electric Co., Ltd. Partial response









Yamazaki, Yasshiro: See-
Nakagome, Yukio, Teramura, Hiroichi; Yamazaki, Yasuhiro; and
Wakahara, Yasushi, 4,097,003, Cl.
 Yankee, Enrest W., to Upiohn Company, The. \(8 \beta, 12 a, 15 \beta\)-PGF \({ }_{2 a}\)
Compouns. \(4,077,675\), Cl. \(560-121.000\), Yano. Kazuhiko. Oiskuki, Kazuhiko: and Ohashi, Ryota, to Kanzaki
Kokykoki Mg. .Co., Ltd. Controi valve. 4,096,882, Cl. 137-596. 120
 Yasue, Kenji: See
Asahara, Naka
Ashara, Neakaba; Takao, Hiroyuki; and Yasue, Kenji, 4,097,431,
Cl. 260-22.00R. Yataki, Masamichi; Takahata, Hideyo; and Simomura, Norio, to Canon

Kabushiki Kaisha. Method for inspecting object defection by light Zalar, David R;; and Hansen, James E., to Cuterer-Ham.
beam. \(4,097,160\), Cl. \(366-237.000\).
Yetes. Dow. Chlorine generator. \(4,097,356, \mathrm{Cl}\). 204-237.000.
Yates,
Yazaki Sogoyo Kabushiki Kaisha: See-
Ishibsshi, Toshihiro; Horibe, Kinya; Ishida, Masaharu; and Sano,





Yoo, Jin S., See-
Burk. Emmett H., Jr.; Yoo, Jin S.; and Karch, John A., 4,001,
Cl
Yoshida, Akio: See-
Yoshida, Akio: See-
Tanaka, Akira; and Yoshida, Akio, 4,097,285, Cl. \(96-132.000\).
Yoshida, Minoru: See-
Morishima, Yukimas; Yoshida, Minorru; and Masuda, Hideo,
4.09,

 ing apparatus hydrofoili. 4,097,374, Cl. Company. Apparatus for form Young, Jerry W., to Phillips Petroleum Company. A
ing a container side wall. \(4,096,788\), Cl. 93 -39.00
Younn, Nathan \(H\)., deceased: See-
Kaplan, David; Brezack, Irving; Young, Nathan H., deceased; Aplan, David,
Kaplan, David, executor; Brezack. Irving, executor; and
Winner
 Yu, John Pang, to RCA Corporation.
system. 4,097,899, Cl. 388-181.000.
 \begin{tabular}{l} 
Process \\
878.00 R. \\
\hline
\end{tabular}
Yurawa, Haruo, to Nissan Motor Company, Limited. Altitude correc-
tion device of a carburetor. 4,097,563, C1. 261-121.00B.
 Zappe, Hans Helmut, to International Business Machines Corporation.
 Harold Elmer: See-
rom, Buce
rold
Euce
Harold Elmer, \(4,0977,597\), C1. 424250.000 .

 Evgny Alfredovich; Karpov, Vladilen Efremovich, Sororkin,
Vladimir Konstantinovich; and Shishkin, Oleg Petrovich, Zellweger, Ltdi. Se
Felix, Emst, \(4,097,692, ~ C I . ~ 179-2.50 R ~\)
Felix, Ernst, \(4,0097,692, \mathrm{Cl} .179-2.50 \mathrm{R}\).
Zemer, Yigel: eee
Nesher Dand

Zenith Radio Corporation: See-
Korpel Adrinus. \(4,097,730, \mathrm{Cl} .250-201.000\).
 products recovery and utilization. 4,097,344, C1. 204-138.00R.
Lemmon, Jonn S. Se. Olson, Donald R.; and Zepernick, Dean E., \(4,096,880\), Cl. .137.454.200. Ensinecring Corroration. Encloure Ziegler, Joseph, to Pennsylvania Engineering Corporation. Enclosure
for steel converting apparatus. \(4,097,029\), Cl. \(266-142.000\). for steel converting apparatus. 4.007,029, Cl . \(266-142.000\). .
Zimmer. A.aron. Permanently lubricated bearing cartridge. 4,097,095, Zimmer, Aaron.
C.l. 388.20 .000 .
Zinnes. Harold:
 Zitelli, William E., to Westinghouse Electric Corp. Auxiliary manual turbine controller. \(4,096,699, \mathrm{Cl}\). \(60-697.000\).
umwalt. Floyd A . Harness for plug and socket. \(4,007,105, \mathrm{Cl} .339\) Zumwalt
75.00 P . Floyd A. Harnes Zupancic,
\(4.096,99\) Joseph, to Weiner Steel Corporation. Baler for lose wir
99, Cl. \(100-215.000\). William Robert; Lee, Gim Fun, Jr.; 260; and 260, 4,097,S50,
 I. \(260-876.00 \mathrm{~B}\).

\section*{LIST OF REISSUE PATENTEES}

\section*{то шном}

PATENTS WERE ISSUED ON THE 27TH DAY OF JUNE, 1978
Note-A Arranged in accordance with the first significant character or word of the name
(in accordance with city and telephone directory practice).
 Cella, John 426.54 .000 .

 pressure valve or the lire. Te. 29,679, Cl. 251 I-214.000.
Butterworth, Donald J.: See-
Butterworth, Donald J.See-
Salem, Eli; Butterw Clth, Donald J.; and Ryan, Leo F., Re. 29,680, Cl. 260-2. 10 R . Cella, John A.; and SChmith, William H., to Alberto-Culver Company.
Low calorie dry sweetener composition. Re. 29,682, Cl. \(426-548.000\) Diveley. William R., to Hercules Incorporated. Metal salts of \(1,1,5,5\). tetrasubssituted dithiobiurets. Re. 29,681, Cl. 260-429.900.
Ecodynne Corp. Se_-
Salem, Eli; Butterworth, Donald J.; and Ryan, Leo F., Re. 29,680,
Foxboro Company. The: See-
Nabi, Saleh A., Re. 29,685, Cl. 364.900 .000
Nabi, Saleh A., Re. 29,685, Cl. \(364,900.000\).
Gordon, Mack. Welding helmet with eye piece control. Re. 29,684, Cl .
29-147.000.

Ocken, Alfred, J Jr, to Motorola, Inc. Encapsulation housing for elec.
tronic circuit boards or the like and method of encel
Re. 2, , ic83, Cl. Cl. 174 beards or the the like and method of encapsulating.
Ryan, Leo F. Se-
Salem. Eli; Butterworth, Donald J.; and Ryan, Leo F., Re. 29,680,
C. 20.2 .10 . Salem, Eli; Butterworth, Donald J.: and Ryan, Leo F., to Ecodyne
Copp. Regeneration of anion exchange resins. Re. 29,680, Cl. 260 .
2.10R. 2.10.
Schmitt,
C. 2.10R.
Chitilililiam H.: See-
Cell

 Wiliam H., Re. 29,682, Cl Antonini, Frank Pe- and Schwalbe, Julien I., Re. 29,678, CI.
206-571.000.

\section*{LIST OF PLANT PATENTEES}

Darby, Robert H. Hibiscus plant named Lady Baltimore. 4,271, 6-27-78,
Cl. 6.000 .
Duffet, william E.: See-
Jesel, werter H.
Jessel, Walter H.,. Jr.; and Duffett, William E., 4,272, Cl. 74.000.
Jessel, Walter H., Jr.; and Duffett, William E., 4,273, Cl. 78.000 .

 Chrysanthemum piant. 4,273, \(6-27-78\), Cl . 78.000 .


\section*{LIST OF DESIGN PATENTEES}

Action Industries, Inc: See- \(\quad\) Gensini Franco, 488,399, Cl. D27-12.000.


Wilson, George Aee-, 48,288 , Cl. D1441.000.
 Bailey, Rex V.,. deceased, and by bailey, Hester Caroline, beneficiary
and devises. Cobined domino holder and score counter. 248,332,
\(6-27.78\), Cl

 Blaisdell, Ronald G.; Hough, Harold L.; and Levin, Robert E., to GTE
Sylvania Incorporated. Photochemotherapy chamber. 248,315,
6.-27.78, Cl. D24-39.000. Blaisdell. Ronald G.. and Hough, Harold L., to GTE Sylvania Incorpo-
rated. Modular photochemotherapy chamber. 248,316, \(6-27.78\), Cl.
D24.39.000. D24, 39.000 .
Roldif. Kehicle trailer. 248,291, 6-27-78, Cl. D12-102.000


 Bowser, Donald C. Distress flag. 248,284, 6 .
Braun Aktiengeselicshaft. See
Rams, Dieter, 248,297, Cl. D14.34.000.
 Hayakawa
146.000.
Chromeraft Corporation: See-
Wilson, Rober L \(\mathrm{L}, 248,260\), Cl. D6-63.000.
Wilson, Rober L., 248,260, Cl. D663.000.
Comeman, Harry E. Kiosk. 248,264, \(6-27.78\). CI. De 149.000 .



Cooke, Donald R.; and Janssen, Robert Li., to Padco, Inc. Paint pad
bucket. 248,335, \(6-27-78\), Cl. D64-18.000.

Schieser, Warren J; Sneeden, John R.; Feltner, R. Alan; and Bond,
Curtis ...248,2811, Cl. D9-275.000;

Grambumpany: Soug See
(enver Inst, 248,272, Cl. D8-307.000 enver Instrument Company: See, -121, Cl. D88.
Smith, James. E., 248,282, Cl. D10-91.000.
Smith, James E., 248,282, Cl. D10-91.000.
Durb8n Johe.
D8-331.000. P. Garage door locking device. 248,273, 6-27-78, Cl .

Eastman Kodak Company: See-
Hartman, Harlan Glinni Flamini, Stephen James; and Rissberger
 Ehrenreich Photo-Optical Industries Inc. See-
Einchuk, Rene .. 248,306, Cl. D16-06. 000 .


Fairhope Fabrics, Inc.: See-
Gross, Irving; and Guillemette, Roger, 248,338, Cl. D92-1.0PP. Family Jewels, Inc., The: See-
Sharp,
ludy, 248,28 , Cl. D11-83.000.
 Fields, Roubert., Tabie 1 op. 248,268, G-277-78, \(\mathrm{Cl} . \mathrm{D} 6-193.000\).

Flamini, Stephen James: See-



 Gilb, Tymerll T., to simpson Manu
Si4, 275, \(6-27.78\), Cl. D8.380.000.
Gillette Company, The: See-
Kitts, Keith..Hatiori, Kenneth M.; and Stade, James H., 248,283, Gleaton, Robert Alan, to Motorola Inc. Control and display panel for
radio receivers or the like. \(248,301,6-27 / 78\), CI. DI4-76.000.

 Grambuhs, Douglas Hood, to Deere
248,272, \(6-27.78\), Cl. 8 D. 307.000 .
Gross Irving and Guillemetete, Roger, to Fairhope Fabrics, Inc. Blan.
ket fabric. \(248,338,6-27-78\), Cl. D99-1.0PP.


Guerente. M. Marcel, to Moody Si Ltd. Mobile ladder. \(248,290,6-27-78\). Cl.
D12-59.000.
Gueretete, Marcel, to Moody
Dulleme.00.
Guilemete, Roger: See-
Guillemette, Roger: See-
Grosi, rving; and Guillemette, Roger, 248,338, Cl. DP2-1.0pp.
Hartman, Harlan Glenn; Flamini, Stephen James; and Risberger



Cl. DIO-106.000.
Haugn, Donald Animer box. 248, 333, \(6-27.78\), Cl. D 3 O-41.000.
Hayakawa, Toshio, and Sakamoto, Takao,

Hayakawa, Toshio: See-
Moeda. Munyoshi. Kojima, Hiroshi; and Hayakawa, Toshio,
248,292. Cl. D12.142.000.
Henryy, Georgec C. Tank valve. \(248,3131,6-27.78, \mathrm{Cl}\). D23-19.000.
Hestehave, Borge. Gun sight. 248,310 . \(6-27-78\), Cl. D22-8.000.

Tsushin Kogyo Co., Ltd. Telephone. 248,300, 6-27.78, Cl. D14
58.000
Holden, Morell J. J. Jr., to Mobil Oil Corpo
like. 248,287, ,-27.78, Cl. D. D-219.000.


Janssen, Robert I.
Cooke. Donald
Cooke. Donnalid Re; and Janssen, Robert I., 248,335, Cl. D64-18.000.

Katota, Toshihiko, to Olympus
248,296, \(6-27-78\), Cl. D146.000.
Kanda Tsushin Kogyo Co., Letd. See-
Hirasa, Isamu Mokudi, Mirokazu; and Kato, Osamu, 248,300,
Cl. D14.58.000.
\(\begin{aligned} & \text { Kanowsky Manuacturing, Inc.: See- } \\ & \text { Mccarthy, Richard, 248,261, Cl. D66-63.000 }\end{aligned}\)

Kato, Osamu: See-
Hiraswa, Isamu; Mokudai, Hirokazu; and Kato, Osamu, 248,300
Hirasawa, Isamu; Mokudai, Hirokazu; and Kato, Osamu, 248,300 ,
Cl. D14-58.000.
Kavlick, Raymond P: See-
Morgan, Samuel A.; and Kavlick, Raymond P., 248,299, Cl. DI4-
45.000. Kingson. George W.; and Norcross, David R. to To Timber Engineering
C. Al


Kojima, Hiroshi: See-
Maeda, Muneyoshi; Kojima, Hiroshi; and Hayakawa, Toshio,


 Maeda, Muneyoshi, Konima, Hiroshi; and Hayakawa, Toshio. Vehicle
tire. \(248,292,6-27.78\), Cl. Di2-142.000.
 Maguire, Paul R. Binocular. 248,307, 6-27.-78, Cl. D16-59.000.
Matolias.
125.000. Martin, Sam M ., to Consumers Glass Company Limited. Produce



 D15.127.700.
McCutchen, Jan


 Meeker. Paul K.:
Cichaelson. 2000 .
Michaelson. Leonard: See-
Robichuad Gary M., 248,262, Cl. D6-79.000.
Miller. Chaul, Gary M., \(248,262, \mathrm{Cl}\). D6-79.000.
D966.12.00A.
Muge. Ornamental standard. \(248,340,6-27.78\), Cl. DP6. 12.00 A .
Mitchenl. Patrick J. Display rack. \(248,267,6-27-78, \mathrm{Cl}\). D6-188.000.
obil Oil Corporation: See. Mobil Oil Corporation: See
Holden, Morell , J. 248,278, Cl. D9-219.000.

Kudai, Hirokazu: See-
Hirasawa, Isamu Mokudai, Hirokazu; and Kato, Osamu, 248,300 , Cl. D14.58.0e
Guerete. See

Morgan, Samuel A.; and Kavlick, Raymond P.., to Sycor, Inc. Housing
for d data entry terminal. \(248,29,6-27-78\), Cl. D14-45.000.
Motorola Inc.. See-
Gleaton, Ropert Alan, 248,301, Cl. D1476.000.
 skin or torporation: See-
 Norcross, , avid R.. See-
Kinston, George W.; and Norcross, David R., 248,274, Cl. D8.
354.000.






 Pollano, Leo A. . deccased; and Pollano, Adele, executrix. Lasagna.
248, \(256,6-27.78\), Cl. Dl- 14.000 248,256, 6-27.78, Cli. D1-14.000.
Postmana, Lesmeri-Anne M. Executive game indicator. \(248,330,6-27-78\),
Cl. D \(34-5.0 \mathrm{MM}\). Rams. Dieter. to. Braun Aktiengesellschaft. Loud speaker. 248,297,
6.27.78, Cl. D14-34.000. aptis, George M. Fishing sinker. 248,311, \(6-27-78, \mathrm{Cl}\). D22-30.000. Richards, Theodore \(W\). Binocular reflector telescope. 248,308, \(6-27-78\),
Cl. D16-6.0.000
 Harman, Harlan Glienn; Flamini, Stephen James; and Rissberger
Amhur Cristian, Jri, 248,27 , Cl. D9.20..000; Robichuud, Gary M., to Mic chaelson, Leonard. Bed headboard. 248,262 ,
6.27 .78 , Cl. D6.79.000. Romero, Charles L.: See-

Romero, Edward E.; and Romero, Charles L. Vial holder and unit
gauge for hpodermic syringes. \(248,34,6-27.78\), Cl. D24-25.000.
Hayakawa, Toshio; and Sakamoto, Takao, 248,293, Cl. D12-
I4...000.
\({ }_{\text {Salem }}^{146.000 \text {. }}\) Shina Company, The: See-
Salem China Company, The: See-
Schreckengost, Don, 248,269. Cl. D7.28.000.
Schieser, Warren J.; Sneeden, John R.; Feltner, R. Alan; and Bond









Simpon Manufacturing CO.) Inc. See-
Singer Company. The: See
Peamman, Fred Es,
Jr., 288,303 , Cl. DIS-52.000.

Comenesoli, LLeo John; and Smythe, Gloria Dawn, 248,33, Cl.
De2-1.0FF. needen, John R.: Se

outh, Donald A. Building trim. 248,327, \(6-27-78\), Cl. D25-74.000.
 \({ }^{\text {Comensial }}\) Di. Leo
 Sello, Josph. Protective cover for a piano. 248,334, 6-27-78, Cl. DS6-

 Sichenoth, Warren G., to Amenica
Stichenenoh, Warren G ., to A merican Standard Inc. Decorative door.
24.
 \({ }_{\text {Timber }}^{\text {Ensinecring }}\) Co. See-
 Varney boyko

enture Foods Incopporation: See-




Weasti. Coradd T . Mount for telescopic sight. 248,309, \(6-27-78\), Cl WESTNOFA, West Norway Factoris Lid. A/S: See-
Wilson, George A. it it Ampex Corporation. Tape transport. 248,298,






\section*{CLASSIFICATION OF PATENTS}

ISSUED JUNE 27, 1978
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{CLASS 2} & \multicolumn{2}{|r|}{-4,08} & \multicolumn{2}{|c|}{CLASS 59} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 362 \mathrm{AR} \\
& 425.2 \\
& 425.6
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{CLASS 100} & \multicolumn{2}{|r|}{} \\
\hline 12
180 & 4,096,589 & & & 79 R & 4,096,68 & & & \({ }^{39}\) & 4,096,796 & &  \\
\hline & & 10 &  & & & & +0,096,7751 & & 4,096,798 & \({ }^{120}\) & 4,096,848 \\
\hline 111 & 4.096 .392 & & & \({ }^{382} 8\) & \({ }_{4}^{4,0096,689}\) & 432 R & 4,096,773 & & 4,096,799 & \({ }_{271}^{121}\) & 4,096,689 \\
\hline \({ }^{231}\) & 4,096,5993 & \({ }_{122}^{57}\) & 4,096,643 & & 4,0966 & 598 & 4,096,775 & & & & \\
\hline 326 & 4,096,591 & & 35 & 337 & \(4,096,693\) & \({ }_{6}^{609}\) & 4,096,756 & 227 & 4,096,801 & 350 R & 4,096,851 \\
\hline & & \({ }^{31} \mathrm{R}\) & 4,096,644 & \({ }_{5}^{49}\) & 4,0,066,695 & 718 & 4,096,778 & & 102 & 19 & 4,097,303 \\
\hline \(\stackrel{90}{345}\) & 4,096,5944 & \({ }_{43}^{33 \mathrm{R}}\) & 4,096,646 & S497 & - 4 & \({ }_{738}^{731}\) & 4,096,760 & 49.5 & 4,096,802 & & 128 \\
\hline \({ }_{360}{ }^{24}\) & 4,096,996 & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{CLASS 36}} & \({ }_{645} 6\) & 4,0966,698 & \multicolumn{2}{|c|}{CLass 74} & 214 & 4,0066,809 & \multicolumn{2}{|l|}{\({ }_{2}{ }^{\text {A }}\) - \(4,006,853\)} \\
\hline \multicolumn{2}{|c|}{CLass 8} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{657}\) CLASS 61}} & 61 & 4,096,762 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{214}\) CLAss \({ }^{404}\)}} & 2. & \\
\hline \(1{ }_{2}{ }^{\text {A }}\) & 4,097,229 & \({ }^{32} \mathrm{R}\) & 4,096,649 & & & 69 & 4,096,763 & & & & \\
\hline \({ }_{41}{ }^{\text {d }}\) A & \(4,097,231\) & 120 & 4,096,650 & \({ }_{38}{ }^{\text {F }}\) & \({ }_{4}^{4,0966,700}\) & 233 & 4,096,764 & 12 & 4,096,800 & -4.19 & 4,0996,8585 \\
\hline 63 & 4,097,232 & & 4,096,651 & \({ }_{49}^{48}\) & 4.096 , & \({ }^{473} \mathrm{R}\) R & +,096,765 & & & \({ }_{14}^{14.6}\) & 4,096,858 \\
\hline 83.19 & \({ }_{4}^{4}, 0,097,234\) & & 37 & & \({ }_{4}^{4,0966}\) & \({ }_{801}^{640}\) & \({ }_{4}^{4,096,769}\) & 467 & 4,096,807 & 込 213.4 & \({ }^{4.0969859}\) \\
\hline \multicolumn{2}{|c|}{CLASS 9} & \({ }^{41} 8\) & 4,096,653 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{III CLASS 62}} & 882 & 4,096,767 & & & 214.4 & 4,096,862 \\
\hline 8 R & 4,096 & \({ }_{142} \mathrm{~A}\) & 4,096,653 & & & \multicolumn{2}{|l|}{\({ }^{865}\) CLASS \({ }^{45}\)} & 14.14 & 4,007,287 & \({ }_{\substack{34 \\ 34 \\ 34}}^{\substack{4 \\ \hline}}\) &  \\
\hline & & \multicolumn{2}{|c|}{AsS 40} & 115
167 & 4,096,706 & 0.5 B & 4,097,267 & \({ }^{26}\) & 4,007,288 & \({ }_{19}^{34} 9\) & 4,0996,866 \\
\hline 32 & 4.097,679 & & 4,096,65s & 275 & 4,096,708 & & 4,097,266 & \({ }^{30}\) & 4,007,290 & & \\
\hline & 15 & 564 & 4,096,656 & 307 & 4,096,709 & & 4,097,268 & 38.9 & & & \\
\hline 49 R & 4,096,599
4
\(4,066,600\) & & 4 & & 63 & \({ }_{68}^{58}\) & 4,097,270 & 43 & \(4,097,293\) & \({ }_{173}^{178}\) & 4,096,867 \\
\hline \({ }_{320} 9\) & 4,0,096,601 & 56 & 4,096,657 & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{CLass 4}} & \({ }_{1}^{119}\) & +i,097,271 & 52 & 4,097,294 & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{CLASS 134}} \\
\hline \multicolumn{2}{|c|}{CLASS 16} & \multicolumn{2}{|l|}{CLASS 4} & & & & 4,007,227 & 53 & 4,097,296 & & \\
\hline 85 & 4,0066,602 & \(23^{13^{R}}\) & 4 & \(\stackrel{13}{26}\) & \(4,0,06,712\) & \({ }_{2}^{201}\) & 4,097,274 & \({ }_{2}^{17}\) & 4,097,297 & 6 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{128.1}\) CLASS \(21.096,604\)}} & \multicolumn{2}{|l|}{CLASS 46} & \multicolumn{2}{|c|}{CLass 6} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{208 \mathrm{R}}\) CLASS 82}} & 28 & 4,097,299 & 10 & 4,097, 706 \\
\hline & & 17 & 4,096,658 & & 4,097,257 & & & 3300 & 4,097,301 & & 4,0977,387 \\
\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{CLASS 23}} & \({ }_{76}{ }^{47}\) & \(4,096,660\) & \({ }_{327}^{32}\) & 4,097,259 & \({ }^{10}\) & 40 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{CLASS 110}} & 40 & 4,096,871 \\
\hline & & \multicolumn{2}{|l|}{6 A CLAsS 47} & \multicolumn{2}{|l|}{CLASS 66} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\({ }^{82}\) CLASS \({ }^{4}\) 8096,722}} & & & \({ }_{1}^{105}\) & 4,006,872 \\
\hline \({ }_{230}^{230 \mathrm{~B}}\) & \begin{tabular}{l}
\(4,097,237\) \\
4,0723 \\
\hline, 29
\end{tabular} & 58 & 4,096,661 & 121 & 4,096,713 & & & \({ }_{271}^{244}\) & 4,096,8808 & \multicolumn{2}{|l|}{\({ }_{\text {135 }}^{135}\) CLASS \({ }^{\text {435 }}\)} \\
\hline 230.3 & 4 & 70 & 4,096,662 & & 68 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {478 }}\)}} & \multicolumn{2}{|c|}{CLASS 112} & 5 R & 4,096,874 \\
\hline \({ }_{23}^{232} \mathrm{R}\) TP & 4,0972,239 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{80}\) CLASS 49,066 \({ }^{\text {4, }}\)}} & \multicolumn{2}{|l|}{SC 4, 4,096,74} & & & 65 & 4,096 & \multicolumn{2}{|l|}{\({ }^{\text {S }}\) CLAss 136} \\
\hline 281 & 4,097; 241 & & & & 70 & 552 & 4,096,774 & & 4,096,811 & 89 & 4,097,308 \\
\hline \({ }_{2}^{283}\) & 4,097,242 & \({ }^{235}\) & 4,006,664 & 59 & 4,096,715 & \({ }_{962}^{698}\) & 4,096,777 & \({ }_{227}^{220}\) & \({ }_{4}^{4,096,8,813}\) & \({ }_{89}^{89} \mathrm{PC}\) & 4,0077,309 \\
\hline \multicolumn{2}{|c|}{CLASS 24} & \multicolumn{2}{|c|}{CLASS 51} & \multicolumn{2}{|l|}{139 4,096,716} & \multicolumn{2}{|c|}{CLASS 8} & \multicolumn{2}{|c|}{CLASS 113} & \multicolumn{2}{|c|}{ass} \\
\hline & 4,096,605 & 7 & 4,096,666 & \({ }_{4}^{248}\) & 4,096,717 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{120 \mathrm{M}}^{120} \mathrm{~A} \quad 4.098\)}} & & \\
\hline & 4.096,606 & 99 & & & & 1.25 & & & & & \\
\hline \({ }_{2}^{239} \mathbf{~ A P}\) & 4,0096,607 & 101 LG & \({ }^{4,0996,684}\) & & & 239 & 4,096,779 & & & \({ }_{351}^{281}\) & +0,06,877 \\
\hline \multicolumn{2}{|c|}{CLA} & 309 R & 4,097,246 & \multirow[t]{2}{*}{\({ }_{90}^{66}\)} & \({ }_{4}^{4,0977,262}\) & \multirow[t]{2}{*}{28} & & 75
280 & 4,096, & & \\
\hline 155 & 4,096,609 & \multicolumn{2}{|r|}{52} & & \(4.0972,263\) & & 4,096,781 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{311}\) CLASS \({ }^{\text {4,096,818 }}\)}} & & 4,0906,881 \\
\hline 159 & 4.096,6610 & 63 & 4,096,669 & & \(4.097,265\) & \multicolumn{2}{|l|}{CLASS \({ }^{49} 9\)} & & & \({ }^{596.12}\) & \\
\hline \({ }_{222}^{220}\) & 4,096,6611 & 79.1
90 & \({ }_{4}^{4,0966,6675}\) & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{CLASS 72}} & \({ }_{34}{ }^{\text {A }}\) & 4,096,783 & \({ }_{41} 17\) & \({ }_{4}^{4,096,819} 4\) & \({ }^{596.13}\) & \({ }_{4}^{4,096,888}\) \\
\hline \multicolumn{2}{|c|}{CLASS 29} & 94 & 4,096,671 & & & & 91 & & & \multicolumn{2}{|l|}{CLASS 138} \\
\hline 156.8 R & 4,096,614 & \multirow[t]{2}{*}{\({ }^{156}\)} & 4,096,673 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{- \({ }_{50}^{104}\)}} & \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\hline 146 \\
496
\end{array}
\]} & & & & 97 & 996,885 \\
\hline \multirow[t]{2}{*}{\({ }_{278}^{157.3 \mathrm{~A}}\)} & 4,0996,615 & & 4,096,676 & & & & 4,096,786 & 48 & 4.096 & \multirow[t]{2}{*}{\({ }_{125}^{17}\)} & 4,096.886 \\
\hline & 4,096,6 & \({ }_{297}^{233}\) & \({ }_{4}^{4,096066674}\) & \({ }_{132}^{123}\) & \({ }_{4}^{4}, 0,096,7.724\) & & & \multicolumn{2}{|l|}{\(100 \quad 4\)} & & 4,096,888 \\
\hline & 4.096,6018 & 403 & & \({ }_{250}\) & 4,096,725 & \multirow[t]{2}{*}{260} & 4,096 & \({ }_{221}^{120}\) & \(4,096,825\) & \multicolumn{2}{|r|}{ASS 139} \\
\hline 4 & -0966,620 & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{cill
713}} & \multirow[b]{2}{*}{\begin{tabular}{l}
312 \\
345 \\
\hline
\end{tabular}} & 4,096,726 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{93}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CLass \({ }^{119}\)}} & \multirow[t]{2}{*}{435} & \multirow[t]{2}{*}{\({ }_{\substack{4,096,889 \\ 4,890}}\)} \\
\hline \({ }_{56}^{56}\) R & 4,0906,621 & & & & \({ }^{4}, 0,096,7,727\) & & & & & & \\
\hline ( 888 & \({ }_{4}^{4,0996,62623}\) & & & \multirow[t]{3}{*}{( \(\begin{aligned} & 350 \\ & 352 \\ & 405\end{aligned}\)} & \(4,096,729\) & & & 1 & 4,096,827 & \multicolumn{2}{|r|}{AsS 140} \\
\hline 596 & & & & & 4,096,7 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1.5R \({ }^{\text {R }}\), 097,27}} & \multicolumn{2}{|r|}{123} & \multirow[t]{2}{*}{\(140^{1}\)} & 4,096,89 \\
\hline & 4,096,625 & \multirow[t]{2}{*}{\({ }_{244}^{149}\)} & 4,096,683 & & \({ }^{\text {cos }}\) CLASS 73 & & & \multicolumn{2}{|l|}{\({ }_{32 \mathrm{JEA}}^{42 \mathrm{~J}}\)} & & 4,096,892 \\
\hline \multirow[t]{2}{*}{628} & 4,096,627 & & & \multirow[t]{2}{*}{} & & & & & +0,068,83 & \multicolumn{2}{|r|}{CLASS 141} \\
\hline & 4,096,628 & \multirow[b]{2}{*}{析} & & & 4,096,733 & \({ }_{48}^{48 \mathrm{HD}}\) & \({ }_{4}^{4,0977,281}\) & 32 & 4,096,834 & \({ }_{93}^{90}\) & 4,0966,893 \\
\hline \multicolumn{2}{|c|}{CLASS 30} & & \(4,097,248\) & \({ }_{35}^{23 .}\) & 4.096, 733 & & 4,097,282 & & \({ }_{4}^{4,0966,831}\) & \multicolumn{2}{|l|}{\({ }^{93}\) CLASs iss} \\
\hline \multirow[b]{3}{*}{\({ }_{29}^{258}\)} & 4,096,629 & \multicolumn{2}{|r|}{4,072} & \multirow[t]{2}{*}{\({ }_{46}^{40}\)} & 4.0967736 & \multirow[t]{2}{*}{\({ }_{132}^{126}\)} & 4,097,283 & \multirow[b]{3}{*}{} & \multirow[t]{2}{*}{4,096,8335} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & 4,0906,630 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{ll}\text { 97 } \\ 135 & 4,0,07,29 \\ 4,097,252 \\ 4\end{array}\)}} & & 4,096,737 & & 4,097,285 & & & & \\
\hline & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
52 \\
\(\substack{58.5 \\
88 . \\
\hline}\)
\end{tabular}} & \({ }^{4}, 0906,738\) & & 8 & & & \multicolumn{2}{|c|}{CLASS 148} \\
\hline \multirow[b]{2}{*}{32} & & \({ }^{169}\) & 4,090, 234 & & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{37 4,096,70}} & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{4,006,8399} & \multirow{3}{*}{\({ }_{6}^{6.21}\)} & \multirow[t]{2}{*}{} \\
\hline & 4,096,632 & 294 & 4,0997254 & & 4,096,741 & & & & & & \\
\hline \multicolumn{2}{|c|}{CLASS 33} & 429 & 4,097,256 & \multirow[t]{2}{*}{} & 4,096, 742 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 353 \\
& 355 \\
& 467
\end{aligned}
\]} & & & \(4,096,841\) & & 4,0077,31 \\
\hline & \({ }_{4}^{4}, 0966,6338\) & \multicolumn{2}{|c|}{CLASS 57} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{180}^{180}\)}} & & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 179 \mathrm{~A} \\
& 179 \mathrm{~S} \\
& 193 \mathrm{P}
\end{aligned}
\]} & \multirow[t]{2}{*}{4,096,843} & 188 & \multirow[t]{2}{*}{4,097,314} \\
\hline & 4,0906,635 & & & & & & & & & & \\
\hline R & & 58.95 & & 205 & 4,096,746 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 356 \\
& 496 \\
& 494
\end{aligned}
\]} & & 198 & & 2 & , 31 \\
\hline 4 D & 4,09 & 157 F & 4,096,687 & 251 & 4,096,74 & & 4,096,795 & 209 & 4,096, & & 7,316 \\
\hline
\end{tabular}

PI 50
CLASSIFICATION OF PATENTS
\[
\begin{aligned}
& \text { CLASSIFICATION OF PATENTS }
\end{aligned}
\]
CLASS 415
\(\frac{\text { g动云 }}{}\)


PLANT PATENTS
\begin{tabular}{ll|ll|l|l|l|l}
\hline \(24:\) & 4,271 & \(54:\) & 4.272 & 4,273 & & & \\
\hline
\end{tabular}

CLASSIFICATION OF DESIGNS PI 55
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & & & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\[
\begin{array}{lll}
\text { D11- } & 27 & 248,288 \\
& 34 & 248,286 \\
& 83 & 248,287 \\
& 125 & 248,288 \\
\hline 128
\end{array}
\]}} & \multirow{7}{*}{DIS-D16-} & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\(\begin{array}{cc}45 & 248,299 \\ 98 & 248,300 \\ 76 & 248,301 \\ 32 & 248,302 \\ 52 & 248,303 \\ 127 & 248,304\end{array}\)}} & \multirow[b]{5}{*}{\[
\begin{array}{|l}
\mathrm{D} 24 \\
\mathrm{D} 25
\end{array}
\]} & \multirow{6}{*}{\[
\begin{aligned}
& 25 \\
& 39 \\
& 39 \\
& 46 \\
& 48
\end{aligned}
\]} & \multirow[t]{5}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & \multirow[b]{3}{*}{\[
\begin{gathered}
383 \\
68 \\
63
\end{gathered}
\]} & & & & & & & & & & & & & & & \\
\hline & & 248,299 & & & & & & & & & & & & & & \\
\hline & & 248,260 & & & & & & & & & & & & & & \\
\hline & & & & & & D12 & & & & & & & & & & \\
\hline & 89 & 2488,263 & D9- & 207 & \({ }^{2488,277}\) & & 102 & 248 & & & & & & 2488.39 & & \\
\hline & & 2 & & & & & & & & & & & &  & & 248,334 \\
\hline & 157 & & & & & & & & & & & & & & & 248,335 \\
\hline & & & & & & & & & & & & & & & D8\%- & 248,336 \\
\hline & & & & & & & & & & & & & & & & 248,337 \\
\hline & 193 & & & & & & & & & & & & & & & 248,339 \\
\hline & & & & & & & & & & 30 & & & & & & 退,338 \\
\hline & & & & & 248,284 & & & & & & & & & & & 248,340 \\
\hline
\end{tabular}

CLASSIFICATION OF PLANTS
\begin{tabular}{lll|ll|l|l|l|l|l}
\hline P. - 68 & 4,271 & 74 & 4,272 & 78 & 4,273 & & & \\
\hline
\end{tabular}


SUBSCRIPTION ORDER FORM
ENTER MY SUBSCRIPTION TO:
\begin{tabular}{|c|c|}
\hline @ \$ Domestic; @ \$ Foreign. & \\
\hline \(|||||||||||||||||||||||||\mid\) & Remittance Enclosed (Make hecks payable to Superin tendent of Documents \\
\hline \(\qquad\) & \[
\square \begin{aligned}
& \text { Charge to my Deposit } \\
& \text { Account No..................... }
\end{aligned}
\] \\
\hline | \(11|1| 1|1| 1|1| 1|1| 1|1| 1|1| 1 \mid\) & mall or \\
\hline  & Superintendent of Documents Government Printing Office Washington, D.C. 20402 \\
\hline please print or type & \\
\hline
\end{tabular}

\section*{US}

\section*{OFFICIAL GAZETTE UNITED STATES
PATENT OFFIGE} VOL. 971
JUNE
1978
рमто оाजडाi micRa phota divisiai \(\square\) Bellemouell

END```


[^0]:    Printing authorized by Sertion $11(\mathrm{a}) 3$ of TYtle 35. U.S. Code P.T.O

[^1]:    971 O.G. 2

[^2]:    A controlled-deflection roll comprising stationary roll support:
    stationary roll support; substantially tubular roll shell having an outer surface; means mounting said tubular roll shell to be rotatable about said stationary roll support;

[^3]:    4,093,231
    SUPERFLY GAME APPARATUS
    SUPERFLY GAME APPARATUS
    ed Aug. 3, 1977, Ser. No. 821,617
    $\qquad$

[^4]:    wherein
    is a branched alkyl of 3 to 8 carbon atoms.

[^5]:    

[^6]:    hims responsive

[^7]:    Printing authorized by Section 11 (a) 3 of Title 35, U.S. Code P.T.O.

[^8]:    3,801,019. (See 3,762,048.)

[^9]:    ## 4,096,037

    ARGINASE TEST
    Abdus Salam Mia, Fairless Hills, Pa, assignor to PitmanFiled May 24, 1976, Ser. No. 689,237

[^10]:    is a straight or branched chain alkyl
    6 carbon atoms; and $A$ is chlorine.

[^11]:    a

